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ABSTRACT 

SPACE-BASED LASER COUNTERMEASURE FOR  

HYPERSONIC GLIDE VEHICLE 

Robert Joseph Fowler IV 
Old Dominion University, 2020 

Director: Dr. Brett Newman 

 

The purpose of this thesis is to investigate the effectiveness of a space-based laser 

weapon system for countering a hypersonic glide vehicle. Hypersonic glide vehicles are an 

emerging type of weapon system which combine the range of ballistic missiles with the 

maneuverability of cruise missiles.   These systems pose a unique threat to military assets not 

only for their expanded capabilities but also for the lack of an effective defensive 

countermeasure. Space-based laser weapon systems may offer a solution to this problem.  The 

dynamics of a space-based laser system defending against a hypersonic glide vehicle are 

modeled first.  The governing equations of motion for the space orbital mechanics and the 

atmospheric flight mechanics of the two objects, assuming point mass three degree of freedom 

conditions, are defined.  Several variables in the engagement model are allowed to vary 

including initial conditions for true anomaly and right ascension of the ascending node for the 

space-based laser system and the velocity ratio, angle of attack, and heading about the ground 

target for the hypersonic glide vehicle.  The motion of each object is propagated from the initial 

condition forward in time from which the relative motion and lasing along the line of sight are 

analyzed. A predetermined intercept range for the laser is then compared against the flight path 

of the hypersonic glide vehicle to determine when a successful intercept of the hypersonic glide 

vehicle occurs. Finally, the solution set for the intercept of the hypersonic glide vehicle by the 



 
 

 
 

laser is examined.  Results reveal usable solution sets do exist where a space-based laser system 

could defensively counter a hypersonic glide vehicle attacking a specific ground target. 
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NOMENCLATURE 

 

a   Semi-major Axis  

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅  Rotation Matrix 

B  Constant in density altitude relation 

e   Eccentricity 

E  Eccentric Anomaly 

g  Earth’s gravity 

h  HGV initial launch altitude 

H  Isothermal scale height of the atmosphere 

H  Specific angular momentum 

Î  vernal equinox 

i   Inclination 

J  HGV range parameter 

L/D   Lift to Drag Ratio 

Lattarget  Target’s Latitude  

Longtarget  Target’s Longitude 

mm  Number of moles 

n  Mean Motion 

P  Semi-latus Rectum 

𝑟𝑟𝑒𝑒  Earth’s Radius 

R   Ideal gas constant 
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R��⃗   Geocentric equatorial position vector  

s  HGV distance along flight path 

T  Air temperature 

u  Argument of latitude  

t0  time 

V��⃗   Geocentric equatorial velocity vector 

VL   HGV initial launch velocity 

Vr=r0  HGV velocity at ground level 

μ  Earth gravitational constant 

Φballistic  HGV Range ballistic/skip phase 

Φglide  HGV Range glide phase 

𝜑𝜑  HGV Heading Angle 

ν   True Anomaly 

Ω   Right Ascension of Ascending Node  

ω   Argument of Perigee 
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CHAPTER 1  
 

INTRODUCTION 
 

 

1.1.  Problem Motivation 
 
During the course of human history man has sought to protect himself from his 

environment and his fellow man.  This drive within our species for protection has spurred the 

often interlinked advancement of technology and defensive weaponry.  The 20th century saw the 

advancement of powered atmospheric flight followed later by space flight.  However, as early as 

the 1930s the idea of using a rocket to launch a reentry vehicle capable of gliding along the upper 

atmosphere at hypersonic speed was proposed by aeronautical engineer Eugen Sänger. [1] During 

the late 1950s and early 1960s, in the midst of the Cold War, the United States investigated 

hypersonic vehicles, developing plans for a sophisticated manned spaceplane named the X-20 

Dynamic Soarer or Dyna-Soar. [2]  Although the project was cancelled shortly after construction, 

portions of the design would be realized later in the form of NASA’s Space Shuttle. The Space 

Shuttle, however, lacked the skip-glide capability of Dyna-Soar, and it would be another 20 

years before significant investment would be made resulting in the return of hypersonic skip-

glide vehicles.  

In 1917 the emission process for a coherent radiation beam was described by Albert 

Einstein. [3]  Almost forty years later, in 1960, the engineer and physicist Theodore Maiman 

would build the world’s first light amplification by stimulated emission of radiation or LASER. 

[4]  Today laser technology can be found in many useful applications including communications, 

home electronics, medical equipment, manufacturing, and national defense. With the growing 

threat posed by ballistic missiles during the 1970s and early 1980s, United States President 
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Reagan was determined to develop a nuclear deterrent that did not result in mutually assured 

destruction.  He called upon 

“... the scientific community in our country, those who gave us nuclear weapons, 

to turn their great talents now to the cause of mankind and world peace, to give 

us the means of rendering these nuclear weapons impotent and obsolete.” [5] 

This initiative led to the creation of the Strategic Defense Initiative (SDI), headed by the SDI 

Organization (SDIO) which investigated the feasibility of several missile defense technologies, 

including lasers, particle beams, and space-based missiles.  Although many aspects of the 

original SDI were determined to be years away from feasibility, work of the SDIO would 

continue when it would eventually become the Missile Defense Agency (MDA).  MDA 

investigated several means of missile defense including a joint project with Boeing, Northrup 

Grumman, and Lockheed Martin to develop the YAL-1 Airborne Laser (ABL) outfitted with a 

chemical oxygen iodine laser (COIL).  The YAL-1 successfully destroyed a boosting ballistic 

test missile in 2010, resulting in the first directed energy lethal intercept demonstration from an 

airborne platform. [6] 

During the last 10 years, utilizing advancements in materials science, militaries around 

the globe have begun to test hypersonic missiles with skip-glide capability.  Recently, Russia 

fielded the Vanguard Hypersonic Glide Vehicle (HGV), the world’s first such weapon system 

traveling at Mach 20. [7]  As with cannons and rockets before them, hypersonic missiles have the 

potential to unseat decades long military strategies focused on ballistic missile defense (BMD). 

The entrance of HGVs onto the battlefield presents a new challenge for national security.  Anti-

missile ballistic weapons do not possess the speed or maneuverability to counter these new 
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weapons.  Countermeasures such as Close-In Weapon Support (CIWS) are also ineffective given 

the velocity of the HGVs.  As such, the U.S. military’s land and sea assets are unprotected.  

Investigations to combat and counter hypersonic missiles are of significant importance to protect 

our military assets.  Laser weapon systems offer a potential solution to combating the threats 

faced by hypersonic missiles. First conceived during the Reagan era for deterrence of ballistic 

missiles, one of these concepts is the Space-Based Laser (SBL). Over the last several years laser 

weapon technology has matured to the point where the U.S. Navy is fielding multiple Laser 

Weapon Systems (LWS) across the fleet as part of the Navy Laser Weapon Incremental 

Approach. [8] The U.S. Department of Defense is similarly investigating aircraft based LWSs 

such as the Airborne High Energy Laser (AHEL) for use on an AC–130  as well as an LWS 

integrated with a fighter jet. [9] The importance of these countermeasures for new high-speed 

threats motivates this thesis investigation. 

1.2.  Literature Review 

1.2.1 Hypersonic Weapons 

Most hypersonic vehicle technologies that exist in the United States can be traced back to 

the NASA X-15 hypersonic research aircraft, which was designed and manufactured by North 

American Aviation.  Three research vehicles were flown on 200 missions from 1959 to 1968 

with the primary purpose to serve as the intermediary step to piloted space flight.  The X-15 

explored advancements in hypersonic flows, high-temperature metallic alloys, liquid rocket 

propulsion, and guidance control systems.  Vehicle configuration as seen in Figure 1 consisted of 

a highly slender but conventional layout with main wing and aft horizontal and vertical tails with 

a single internal rocket.  Design specifications, as described in References [10] and [11], 

included maximum velocity of 6,600 ft/s, maximum altitude of 250,000 ft, maximum dynamic 
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pressure of 2,500 lbf/in2, maximum temperature of 1,200 F, and maximum load factor of 7.33 g.  

After being air dropped by the host B-52 aircraft, which served as the first stage, a typical 

mission profile, as shown in Figure  2 and Figure 3, consisted of boosted ascent, ballistic arc 

through near space conditions, gliding reentry, and finally approach and landing.  The vehicle 

would commonly experience hypersonic conditions up to Mach 6 and would maneuver both 

longitudinally and laterally.  The X-15 demonstrated many of the essential capabilities of a 

modern HGV, and its characteristics are highly relevant to the class of HGVs investigated in the 

thesis.  

 

 

Figure 1 X-15 Three-View with Design Characteristics [10] 
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Figure  2 X-15 Altitude vs. Range Plot [11] 

 

 

Figure 3 X-15 Lateral vs. Longitudal Range Plot During Gliding Flight [10] 

 

Over the last half century, the land-based intercontinental ballistic missile (ICBM) and its 

sibling the submarine launched ballistic missile (SLBM) have successfully served as the top-



6 
 

 
 

level strategic deterrent for national defense of the United States.  References [12] and [13] 

provide a thorough review of the development, capability, and operational fielding of these 

weapon systems such as the Titan, Minuteman, and MX ICBM systems, and the Polaris, 

Poseidon, and Trident SLBM systems (see Figure 4 and Figure 5). These systems employ a 

traditional rocket to boost the payload along an orbital arc of global range, after which the 

payload follows a hypersonic reentry and flies along a piecewise non-maneuvering path to the 

target as shown in Figure 6.  To increase effectiveness and survivability, advanced payloads with 

independent targeting known as multiple independently targeted reentry vehicles (MIRV), as 

seen in Figure 7, and maneuver capability known as maneuverable reentry vehicles (MARV) 

have also been fielded. [12] [13] Reference [14] discusses various engineering analysis 

methodologies to predict and design the performance and effectiveness of such systems.  The 

ICBM and SLBM are a form of hypersonic weapon systems; however, they are considerably less 

versatile and adaptable when compared to the HGVs studied in this thesis. 

 

 

Figure 4 Minuteman II Exploded View [12] 
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Figure 5 Trident Exploded View [15] 

 

 

 

Figure 6 Typical ICBM Flight Sequence [12] 
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Figure 7 MIRV Capability [15] 

 

To provide a complimentary alternative to the ICBM-SLBM, which is more versatile by 

providing precision strike with reduced collateral damage, rapid response with lower 

detectability, and alternative and adjustable attack routes, air and sea launched cruise missiles 

were developed and fielded in the later decades of the 20th century.  References [16] and [17] 

offer an overview of these systems and the design challenges and trades that were involved in 

their development including the Boeing Air Launched Cruise Missile (ALCM) AGM-86B and 

the General Dynamics/Convair Sea Launched Cruise Missile (SLCM) Tomahawk AGM-109.  

The AGM-86B and the AGM-109 are shown in Figure 8.  After launch, these systems operate 

much like an aircraft where the ALCM or SLCM cruises over long range to the target using lift 

surfaces and small turbofan propulsion to achieve the range performance.  Mission profiles are 

commonly flown at subsonic speeds at low altitude achieving ranges on the order of 1,000 to 

3,000 nm.  Figure 9 shows a typical cruise missile strategic mission profile.  As the target is 
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approached, the ALCM-SLCM can select alternate routes to the target with some capability to 

maneuver.  Although not a hypersonic weapon, the cruise missile shares some common traits of 

HGVs regarding versatility and is thus important to mention in this thesis. 

              

 

Figure 8 AGM-86B and AGM-109 [18] 

 

 

Figure 9 Typical Cruise Missile Strategic Mission Profile [18] 
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 The X-43A Hypersonic Experimental Vehicle (Hyper-X) was a NASA research program 

that began in 1997 in collaboration with General Applied Science Laboratory (GASL) and Micro 

Craft to build three scaled-down test vehicles to investigate supersonic-combustion ramjet 

(scramjet) technology.  The air-breathing, pure hydrogen fueled engine was built by GASL, with 

the lifting body built by Micro Craft. See Figure 10.  The X-43A vehicles conducted three test 

flights with the first, launched in 2001, resulting in a mishap.  The second and third test flights 

were successful.  The X-43A was attached to a modified Pegasus first stage rocket and dropped 

from a B-52 at an altitude of 40,000 feet while flying at Mach 0.8. See Figure 11.  During the X-

43’s third test flight in 2004 the rocket boosted the X-43 to test point at 110,000 feet where 

separation from the rocket occurred.  The X-43 engine experienced 11 seconds of powered flight 

in which a speed of Mach 9.68 was achieved.  An 800 nm controlled descent ended with splash 

down in the Pacific Ocean.  An illustration of the flight profile is shown in Figure 12. 

 

 

Figure 10 X-43 Scramjet Vehicle Geometry [19] 
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Figure 11 X-43A Mounted to Pegasus Rocket on B-52 Stratofortress [20] 

 

 

Figure 12 X-43A Flight Profile [19] 
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As a follow-on program to the X-43A, the USAF began working with NASA on the X-

43C.  The X-43C was to use a hydrocarbon-fueled scramjet engine (HyTECH) as opposed to a 

pure hydrogen fueled engine.  Reference [21] discusses operational benefits that can be found 

from using a hydrogen or hydrocarbon-fueled engine.   The Air Force Research Lab (AFRL) 

contracted Pratt & Whitney to develop the engine which, after the cancellation of the X-43C, 

would eventually be used on the X-51 Waverider shown in Figure 13.  Like the X-43A, the X-51 

would be dropped from a B-52 while attached to a solid rocket booster, in this case an Army 

Tactical Missile System (ATACMS). See Figure 14.  The flight profile for the X-51, shown in 

Figure 15, is also similar to the X-43A.   Four flights were conducted with the final flight 

occurring in 2013 with the X-51 traveling at Mach 5.1. [22] 

 

 

Figure 13 X-51A Waverider Scramjet [23] 
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Figure 14 X-51 Attached to ATACMS on B-52 Stratofortress [22] 

   

 

Figure 15 X-51 Flight Profile [24] 

 

HGVs represent a class of weapon that can travel at Mach 5 or greater, combining the 

speed of a ballistic missile with the maneuverability of a cruise missile.  Designs for HGVs 
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usually consist of a supersonic compression ramjet or scramjet, requiring that the vehicle be 

launched by a first stage rocket booster.  The first stage can be launched from the land or sea like 

a ballistic missile, or dropped from an aircraft and ignited like a cruise missile.  After the vehicle 

has reached supersonic speeds the first stage detaches and the scramjet is fired.  During 

hypersonic cruise, HGVs generate compression lift by riding on their own shock waves allowing 

them to greatly extend their range. HGVs have a range comparable to that of a MaRV, upwards 

of 10,000 to 15,000 km as indicated in Figure 16.  Taking Norfolk Naval Station (NNS) as a 

potential ground target, observe from Figure 17 that an HGV could be launched from anywhere 

in Europe or Asia and easily reach the NNS position. 

 

 
Figure 16 MaRV vs. HGV Approximated Range [25] 
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Figure 17 Range Map from Norfolk Naval Station 

 

Another characteristic of HGVs is that they can be maneuvered laterally and vertically.  

HGVs achieve maneuverability either by actuated tail fins, such as the X-51 Waverider or by 

rear control thrusters, such as the Hypersonic Technology Vehicle (HTV-2).  With this 

maneuverability, HGVs are able to perform skip-glide maneuvers to extend downrange target 

access, as well as lateral maneuvers to suppress countermeasures or enhance crossrange target 

selectability.  The lateral maneuver characteristic of HGVs is similar to that of cruise missiles.  

They can perform numerous lateral maneuvers to hinder an adversary’s ability to determine the 

final ground target location.  This hindrance in turn makes HGVs difficult to counter with 

traditional anti-ballistic missile technology since the required flight path to intercept the HGV 

target can change any given number of times within the vehicle’s initial parameters of fuel, 

altitude, speed, and heading as characterized in Figure 18. 
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Figure 18 Ballistic Missile vs. HGV Flight Path[25] 

 

The flight of an HGV is comprised of several phases; the first two phases are similar to a 

traditional flight path for an ICBM, beginning with a powered boost phase, followed by an 

unpowered ballistic phase. Figure 19 depicts the ballistic phase (the velocity, flight path angle, 

and downrange angle variables will be defined in Chapter 3. [26] )  As the HGV completes its 

ballistic phase following an elliptical trajectory returning to the more dense upper atmosphere it 

begins a direct reentry phase followed by a pull-up phase as shown in Figure 20.  The lift, drag, 

and weight forces shown in the Figure 20 will be developed in Chapter 3.  During the pull-up 

phase, depending on the angle of attack, the HGV can move directly into the glide phase 

illustrated in Figure 21 where it performs a shallow descent into the atmosphere, or it can 

Ballistic Missile 
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execute a skip maneuver in which the HGV exits the dense atmosphere and begins a second 

ballistic phase. [27] [28]  The HGV can execute multiple skips thus prolonging the time of flight 

and extending its range.  After executing the final skip and glide phases the HGV will enter into 

a dive phase to acquire its target. [29] HGV characteristics reviewed in this section are inherently 

tied to this thesis. 

 

 

Figure 19 HGV Ballistic Phase [27] 

 

 

Figure 20 HGV Reentry and Pull-Up Phases [27] 
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Figure 21 HGV Glide Phase [27] 

 

1.2.2 Laser Weapon Systems 

Traditional weapon systems such as guns, cannons, and missiles utilize kinetic energy.  A 

cannon shell can be several meters off target and still have lethal effect on its intended target.  

However, a laser weapon system requires exceptional pointing precision, not only to track the 

target but also to maintain focus on a specific spot within its line of sight (LOS).   Compounding 

this problem is the nature of the target.  If the LWS is focused on a spot on the target that is non-

critical to its operation, say the bumper of a truck vs. the engine compartment, then the laser will 

have little to no effect.  In the same scenario a cannon shell or missile will result in massive 

damage regardless of the spot it hits.  Further, if the critical spot on the target is not well defined 

or hardened, say the nose cone of a cruise missile, then the LWS will have minimal effect.  This 

factor is one reason why power is above all the greatest challenge to LWSs.  LWSs are a sub-

category of Directed Energy Weapon Systems (DEWS), which also include highly focused 

energy such as microwaves and particle beams.  Reference [30] is an overview of the system 

design characteristics for LWSs, high powered microwave weapons (HPMW) and particle beam 
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weapons (PBW).  Of the three forms of DEWS, LWSs are the most technologically advanced 

and most widely deployed within the U.S. military.  Reference [31] describes the various types 

of lasers including the various permutations of chemical lasers, as well as solid state lasers, fiber 

lasers, and free electron lasers.  Of the laser types, chemical lasers have received the most 

attention in previous decades because of their ability to obtain high power outputs. 

In 1976 the United States Air Force (USAF) converted a NKC-135 Stratotanker into the 

Airborne Laser Lab (ALL).  The ALL featured a 456 kW chemical laser with CO2 - N2 - H2O 

propellants and operated at a wavelength of 10.6 μm. [32] The ALL main beam director assembly 

(BDA) was located on the dorsal section of the fuselage forward of the wings as shown in Figure 

22.  The ALL successfully shot down five AIM-9 missiles and one BQM-34A Firebee drone.  In 

1977 the Soviet Union began a similar airborne laser effort by converting an Ilyushin Il-76MD 

transport aircraft into the Beriev A-60 Laser Lab.  The A-60, shown in Figure 23, featured a 

retractable turret of unknown power as well as a nose mounted targeting laser.  As discovered 

during testing of the ALL, thermal blooming, or the localized heating of the air pockets due to 

varying levels of air density in the atmosphere along the beam path between the BDA and the 

target, can lead to issues with attenuation and defocusing of the beam. Other atmospheric 

conditions including aerosols, moisture, and dust were also found to affect LWS performance. [30]   
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Figure 22 NKC-135A Airborne Laser Lab [32] 

 

 

Figure 23 Beriev A-60 Airborne Laser [32] 

 

Advancing from the progress made with the ALL, the USAF continued laser 

development with the Boeing YAL-1 ABL which was a modified Boeing 747-400 aircraft with a 

megawatt-class high energy laser (HEL). [33]  The HEL was a COIL invented by the USAF in 

1977 and housed within the fuselage of the 747, the COIL operated as a continuous wave laser 
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with a wavelengh of 1.315 μm. The BDA for the ABL replaced the nose of the aircraft as shown 

in Figure 24.  The arrangement of the BDA by Boeing is similar to the Soviet Beriev A-60 

targeting laser nose fairing which precede the YAL-1 by several decades. [32]  The ABL featured 

six laser modules with the entire system weighing approximately 200,000 lbs. [34]  To partially 

address the issue of thermal blooming the ABL made use of adaptive, or deformable, mirrors. A 

representative engagement scenario is shown in Figure 25.  The YAL-1 successfully shot down 

two representative missiles in 2010, requiring between 90 and 500 seconds of lasing depending 

on the distance from the target.  Although the YAL-1 program was cancelled in 2012 the laser 

technology demonstrated on the airborne platform over three decades has opened the door to a 

new generation of LWSs. Though this thesis research focuses on space fielded systems, the past 

ALL and ABL airborne concepts are inherently related. 

 

 

Figure 24 Boeing YAL-1 Airborne Laser [32] 
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Figure 25 Boeing YAL-1 Engagement Scenario [35] 

 

The Tactical High Energy Laser (THEL) which would be transitioned into the Mobile 

THEL (MTHEL) shown in Figure 26, was a joint US/Israeli ground based LWS initiated in 

1996.  MTHEL featured a deutrium-fluoride chemical laser with a 3.8 μm wavelength. Between 

2000 and 2004 MTHEL destroyed 28 122 mm and 160 mm Katyusha rockets. [32]  Additionally, 

MTHEL was the first LWS to destroy artillery shells, mortar rounds, and counter a three round 

mortar salvo in a single engagement.   MTHEL was envisioned as a point defense system to 

protect an area against an incoming threat as represented in Figure 27.  Like the airborne 

chemical laser before it, MTHEL was eventually cancelled in 2004 due to concerns about its size 

and cost. 
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Figure 26 Tactical High Energy Laser [36]  

 

 

Figure 27 Tactical High Energy Laser Engagement Scenario [32] 
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Miniaturization of LWS technology has been a driving focus of U.S. military research 

and tactical deployment efforts across the armed services.  Currently, all branches of the 

Department of Defense (DoD) have efforts underway to test and deploy LWSs with most efforts 

shifting toward solid state lasers (SSL); the Navy has developed an incremental approach as 

shown in Figure 28. This approach is being implemented in three increments to evolve LWSs 

and is described as follows: 

Increment 1 is the 60 kW HELIOS laser being installed on ships to destroy drones 
and cripple small attack craft; 

Increment 2 will ramp up the power enough to take side shots against cruise 
missiles, so a ship with it installed can use it to defend other ships nearby but not 
itself; and 

Increment 3 will be still more powerful, able to burn through the nose-cone in a 
head-on shot, allowing a ship with it installed to defend itself. [37] 
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Figure 28 US Navy LWS Incremental Approach [37] 

 

Although decades of research and funding have been spent in the study and testing of 

chemical lasers, most new efforts are now focused on SSLs.  While chemical lasers have proven 

effective at countering missiles, rockets, artillery shells, and mortar rounds, their high cost, large 

size, and use of toxic chemicals has made them lose favor.  SSLs, unlike chemical lasers, 

produce their beams by passing electricity through crystal or glass.  This beam generation 

method is advantageous from a weapon perspective, as described in Reference [38], since the 

only ammunition or fuel for the weapon is electrical power and the logistics of hazardous 

chemical waste is eliminated.  A drawback to SSLs is waste heat management, which in 

chemical lasers heat management is achieved through the working chemical fluid. Land and sea-

based SSLs primarily rely on chilled water to cycle their waste heat. As described in Reference 

[39], thermal management systems (TMS) often constitute 50% or more of the weight budget for 
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SSLs.  Current development efforts are focused on scaling up the power capacity of SSLs while 

reducing the TMS footprint. 

As shown by the ALL, the tactical use of mobile lasers requires the consideration of a 

number of internal and external factors to be effective against a target.  Factors inherent to the 

internal system design include power output, tracking, targeting, cooling, beam control, and 

many others.  Chief amongst these is power output, the metric for which LWSs are rated with 

respect to their radiant power output.  The effective range of a laser is proportional to the power 

output.  LWS performance is also impacted by optical beam control, which is the ability to 

position the centroid of a laser on the target.  Optical jitter, motion caused by platform motion 

and LWS component motion, can negatively affect the optical beam.  Small level relative motion 

between mirrors and lenses can degrade the performance of precision pointing systems. Sources 

contributing to optical jitter include thermal effects, mechanical vibration, acoustics, static and 

dynamic loading, and heating and cooling systems as described in References [40] and [41] . 

 

1.3.  Space-Based Laser 
 
In 1999 the USAF and Ballistic Missile Defense Organization (BMDO) began a joint 

venture with TRW, Lockheed Martin, and Boeing to develop the SBL Integrated Flight 

Experiment (IFX).  The SBL IFX was a technology demonstrator leveraging previous research in 

high energy lasers to test the feasibility of placing an LWS on an orbital platform.  The SBL IFX 

was a megawatt class hydrogen fluoride chemical laser with wavelength between 2.7 and 2.85 

μm.  The SBL IFX had a total mass of 22,900 lbm and featured a 2.8 m beam director as shown 

schematically in Figure 29. Details of the characteristics of the systems are described in 
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References [42] and [43].    A depiction of the engagement profile for the SBL is represented in             

Figure 30, in which the SBL IFX objective was to strike down an ICBM test article during the 

boost phase when the missile was under significant aerodynamic stress and most vulnerable. [44]  

The SBL IFX was planned to be succeeded by a constellation of 20 satellites with ground 

coverage able to protect a large portion of the globe from ICBM launches as shown in Figure 31.   

Placing an LWS on an orbital platform would pose unique challenges compared to those 

faced by terrestrial based LWS systems.  While land and sea-based systems can be positioned 

defensively around high value assets, an orbiting LWS target may only be in range for a fraction 

of its orbital period, thus requiring a constellation.  A study described in Reference [45] to 

adequately cover potential launches from northern Asia for instance, would require a satellite 

constellation of between 71 and 90 satellites at altitudes between 367 to 470 km.  This 

constellation would result in at least 3.6 satellites directly over northern Asia at any time.  This 

study did not consider local distribution fluctuations caused by orbital motion, but it does show 

that adequately protecting a large area greatly increases the number of required satellites as 

would be expected. When initially proposed, the SBL constellation was not envisioned as the 

sole defensive mechanism to counter the ballistic missile threat but as a part of the greater 

defensive strategy. [44]  This strategy consisted of a layered defense for countering ballistic 

missiles grouped by the kill point in which the defensive system was to operate including Boost, 

Midcourse, and Terminal Phase kill points as shown in Figure 32. The SBL IFX program was 

cancelled in 2002; however, with the Russian deployment of the Avangard HGV in 2018, many 

elements of the SBL are being revisited and are intrinsic to the research focus. 
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Figure 29 Proposed BMD Space-Based Laser [46] 

 

 

            Figure 30 SBL IFX Typical Engagement Profile [44] 
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Figure 31 SBL Constellation Coverage [46] 

 

 
Figure 32 Ballistic Missile Defense Efforts [47] 
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1.4.  Problem Statement 
 
The purpose of this work is to investigate the methodology for determining what set of 

initial conditions will allow a space-based laser weapon system to acquire and counter a 

hypersonic glide vehicle moving toward a ground target, with each vehicle having its own 

dynamic state.  While complete global coverage would require numerous satellite-based LWSs, 

determining initial conditions under which select geo-locations can be protected would be 

advantageous to protecting military assets.  This determination is twofold: first identifying if 

target acquisition and counteraction is feasible, and second, when it is feasible, estimating the 

domain of conditions and the quality of those conditions for successful engagement.  An 

important part of the investigation is development of a computational tool that can generate 

answers to these questions efficiently and accurately for a wide array of situations.  The tool is 

envisioned either for utilization as a fielded decision support aid or a high- level planning aid.   

1.5.  Assumptions 

1.5.1 Overall 

In developing the governing equations, several assumptions have been made to simplify their 

calculation.  Not all of these assumptions are conservative in nature and real-world results would 

differ.  The following assumptions are of a generic nature to the setup of the problem. 

1) A spherical earth is considered.  This assumption is made to simplify calculations related 

to ground track and HGV target acquisition.  As a result of this non-conservative 

assumption ground track for the idealized orbit will differ from the actual ground track—

more significantly at the equator and poles than at other regions of the earth. 
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2) Atmospheric effects are ignored with respect to the satellite.  An isotropic atmosphere is 

assumed for calculations related to the HGV.  This assumption is made to simplify 

calculations related to the motion of the satellite and the HGV.   

3) In the calculation of the orbiting bodies an idealized undisturbed motion has been 

assumed. In reality, large masses such as the Sun, Jupiter, and Saturn affect the motion of 

a satellite orbiting the Earth.  This assumption has been made to simplify calculations 

related to satellite orbit.  As a result of this non-conservative assumption, the idealized 

orbit will differ from the actual orbit. 

1.5.2 Laser Weapon System Representation 

The system performance of the LWS has been simplified to a binary line of sight (LOS) 

method.  If the HGV is within the LOS of the LWS and in range of 1000 km or less, it is said to 

be disabled.  This implementation has the effect of ignoring such system parameters as target 

track, beam power output, training, fast mirror steering, steady state error (jitter), etc.  

Additionally, external factors such as atmospherics, thermal blooming, and dispersion are also 

ignored.  This assumption is made to simplify the calculation of the LWS to HGV interaction.  

Given the number of variables involved in LWS performance, a detailed physics model would be 

required to accurately represent the interaction, which is beyond the scope of this study. 

1.5.3 HGV 

The following assumptions were made with respect to the Hypersonic Glide Vehicle. 

1) Given that an HGV can be launched from ground or air assets, the flight of the HGV will 

be limited to a single skip and glide phase.  Limiting the HGV to a single skip-glide flight 

segment is meant to approximate fuel limitations, assuming the mass of the vehicle is 
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constant throughout that time of flight.  By only accounting for skip and glide, this also 

ignores the boost and initial ballistic phase of a ground launch.  Additionally, reentry, 

pull-up, and dive phases are ignored. This is because in determining the range of the 

HGV, the skip and glide phases are predominant in their contributions to the total range 

calculation compared to the other phases. [27] [28] 

2) Only vertical motion is considered.  In reality, HGVs are able to maneuver laterally. 

Given that the range limits for HGV lateral motion will be significantly smaller than the 

vertical motion limits – since lateral motion sacrifices range – this assumption is 

considered conservative.  

3) Heating of the HGV surface is ignored.  In reality, thermal heating due to the atmosphere 

acts as a boundary condition for HGV performance.   

1.6.  Thesis Outline 
 
This research work includes the design methodology for determining the conditions 

under which a space-based laser weapon system can engage and neutralize a hypersonic glide 

vehicle.  Chapter 2 discusses the design methodology, examining the initial conditions and 

boundary conditions involved.  Chapter 3 examines the equations of motion for the HGV and 

satellite.  Chapter 4 provides an overview of the simulation including the code framework and 

key functions involved in the solution.  Chapter 5 presents the case study results.  Lastly, Chapter 

6 provides research conclusions and recommendations for further investigation.   
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CHAPTER 2  
 

DESIGN METHODOLOGY AND MODEL DEVELOPMENT 
 

2.1.  Approach 

Analysis was approached from the perspective that several components of the defensive 

layer as shown in Figure 32 and discussed in Reference [47] would not be capable of countering 

an HGV due to the novel characteristics exhibited by these new weapon systems, specifically the 

speed and skip-glide capabilities described in Chapter 1.  As a result of the capabilities exhibited 

by HGVs, existing hard-kill interceptors will not succeed in terminating HGVs as acknowledged 

by Michael Griffin, Under Secretary of Defense for Research and Engineering. [48]  In this 

investigation the space-based laser (SBL) portion of the defensive layer is examined in isolation 

to determine its effectiveness. 

2.2.  Objectives 
 
The present strike and defend scenario problem as outlined can be deconstructed into two 

parts, the evader and the pursuer.   The evader, or HGV, has the goal of reaching the ground 

target before it is countered by the pursuer or SBL.  The evader has been restricted to a series of 

set flight paths, performing one skip-glide maneuver per flight.  The strike profile path begins 

with the HGV being launched on a first stage booster and proceeding into a ballistic skip phase.  

The HGV re-enters the atmosphere and continues on a glide phase trajectory to the ground target, 

ignoring the reentry and pull-up phases discussed earlier.  The HGV completes the same scenario 

altering the longitude and latitude coordinates of its starting launch location.  This process 

continues in a circular fashion around the ground target. Additionally, the launch angle of attack 

and initial velocity ratio are varied during each iteration. 
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The pursuer has the goal of countering the HGV before the HGV can reach the ground 

target.  A nearly circular fixed orbit is defined for SBL, but the right ascension of the ascending 

node and true anomaly are allowed to vary with each flight path iteration of the HGV.  This 

variation allows the orbital plane and positioning along the orbit to cover the surface target 

region. Thus, a set of LWS overflights for each HGV track are considered.  The HGV is 

considered to be countered when the LWS is within 1000 km and the time window of the 

engagement is within one time step.  When the pursuer successfully defends the ground target 

against the evader, the quality of success is rated by metric Q accounting for range, 𝑄𝑄𝑅𝑅, time, 𝑄𝑄𝑇𝑇, 

and geometry aspect, 𝑄𝑄𝐺𝐺, with each value having an upper, 𝓊𝓊, and lower, ℓ bound. 

𝑄𝑄 = 𝑄𝑄𝑅𝑅𝑄𝑄𝑇𝑇𝑄𝑄𝐺𝐺 
(2.1) 

𝑄𝑄𝑇𝑇 is the time during which the HGV is within the LOS of the LWS, while 𝑄𝑄𝐺𝐺 is the off nadir 

angle, θ.  𝑄𝑄𝑅𝑅 is the distance along the LOS between the HGV and LWS, characterized by 𝑅𝑅. To 

determine 𝑅𝑅 first the relative inertial position vector, 𝑅𝑅�⃑ , is calculated by subtracting the inertial 

position vectors of the HGV, 𝑅𝑅�⃑ 𝐻𝐻𝐻𝐻𝐻𝐻, and LWS, 𝑅𝑅�⃑ 𝐿𝐿𝐿𝐿𝐿𝐿.  The relationship between the HGV and 

LWS is represented schematically in the vector diagram shown in Figure 33. 

𝑅𝑅�⃑ = 𝑅𝑅�⃑ 𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑅𝑅�⃑ 𝐿𝐿𝐿𝐿𝐿𝐿 

 (2.2) 

The inertial frame is represented by unit vectors Î, Ĵ, and K�. R is then found by taking the square 

root of the components of 𝑅𝑅�⃑ . 

𝑅𝑅�⃑ =  X𝐼𝐼 + 𝑌𝑌𝐽𝐽 + 𝑍𝑍𝐾𝐾� 

(2.3) 
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𝑅𝑅 = �(𝑋𝑋2 + 𝑌𝑌2 + 𝑍𝑍2) 

(2.4) 

 

Figure 33 Vector Diagram for LWS and HGV 

 

The 𝓊𝓊 and ℓ values for 𝑄𝑄𝑅𝑅 𝑄𝑄𝑇𝑇, and 𝑄𝑄𝐺𝐺 are shown in Table 1, with the quality relationships 

shown in Figure 34. 

 

Table 1 Upper and Lower Bounds for Quality Metrics 

Quality Metric ℓ 𝓊𝓊 
𝑄𝑄𝑅𝑅 30 km 1000 km 
𝑄𝑄𝑇𝑇 60 s 300 s 
𝑄𝑄𝐺𝐺 0° 90° 
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Figure 34 Quality Metrics QR, QT, and QG 

  

2.3.  Initial Conditions 
 
HGV test flight data was not available for comparison during this research effort.  Instead 

of using actual flight data, initial conditions developed by Nguyen in Reference [49] were used.  

Likewise, it is known that the SBL IFX and follow-on constellation were planned for low earth 

orbit (LEO), but specific orbital parameters were unavailable.  The orbit of the International 

Space Station (ISS) was chosen as a substitute test study location for the SBL given NASA’s 

success in constructing and maintaining a low earth orbit space station with the equivalent 

complexity that would be expected of an SBL. 

Of the six classical orbital elements required to determine the orbit of the satellite, four 

are used for initial conditions, these include:  semi-major axis, eccentricity, inclination, and 

argument of perigee. The initial values are: a = 6788586.18 m, e = 0.0004482, i = 51.6422°, and 
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ω = 208.80294°, which places the SBL in the approximate orbit of the International Space 

Station. The remaining two elements are set by the SBL parameter variation logic. 

In calculating the trajectory for the HGV several parameters were defined as initial 

conditions including a lift to drag ratio, L/D, of 8.61. [49]   An initial launch altitude, h, of 30 km 

was chosen, which is similar to the drop altitude exhibited by the B-52 for the test of the X-43 

and X-51.  An initial HGV launch velocity, 𝑉𝑉𝐿𝐿  was set between Mach 2 and Mach 11.5 to 

simulate the speed exhibited by the X-43 and X-51. The launch velocity was normalized with 

respect to the orbital velocity of the HGV at the surface of the earth, 𝑉𝑉𝑠𝑠.  

𝑉𝑉�𝐿𝐿 =
𝑉𝑉𝐿𝐿
𝑉𝑉𝑠𝑠

 

(2.5) 

𝑉𝑉𝑠𝑠 is the circular orbit velocity:  

𝑉𝑉𝑠𝑠 = �
𝐺𝐺𝑚𝑚𝑒𝑒
𝑟𝑟𝑒𝑒

 , 

(2.6) 

where G is the gravitational constant, 𝑚𝑚𝑒𝑒 is the mass of the earth and 𝑟𝑟𝑒𝑒 is the radius of the earth. 

The velocity of the HGV at ground level, 𝑉𝑉𝑔𝑔=𝑟𝑟𝑒𝑒, was set to 0.3.  Initial velocity imparted by the 

first stage booster is sufficient to insert the HGV along its ballistic skip trajectory.  At the end of 

this segment the HGV follows the glide phase to the ground target.  The atmospheric model is 

used for altitudes below 30 km with an isothermal scale height of the atmosphere, H, set at 6704 

m based on the U.S. Standard Atmosphere 1976, with the glide calculations continuing from the 

ballistic calculations for the HGV.  During the ballistic and glide phase the angle of attack, α, 
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and the non-dimensional in-flight velocity, 𝑉𝑉�𝑓𝑓are varied according to the HGV parameter 

variation logic.  The HGV reaches the target by taking the final point along the flight path and 

mapping it to the target longitude and latitude location.   

NNS, located at latitude = 36.957638° and longitude = -76.329428° in Norfolk, VA, is 

the world’s largest naval complex and has been selected as the ground target for the HGV which 

the LWS is to counter.  Given the high concentration of high value targets including aircraft 

carriers, destroyers, cruisers, amphibious assault ships, and submarines, Norfolk is a key U.S. 

asset and potential target for HGVs.   A time step of 60 s was used throughout all calculations 

with the simulation beginning at time 0 s. As the simulation progresses with the LWS and the 

HGV following their orbits and flight paths, respectively, the earth and ground target rotates.  

Vehicle and earth motions are propagated in the inertial frame, and data is transformed to the 

earth fixed frame, when needed.  

 

2.4.  Orbital Mechanics 
 

To describe the astrodynamics of an artificial body such as a satellite or platform about a 

natural primary attracting body requires six classical orbital elements. These elements describe 

the size, shape, and orientation of the orbit, and the position of the satellite along the orbit.  

These six elements are defined below. [50] 

1. Semi-Major Axis, a, specifies the size of the orbit and is one-half the distance 

across the long axis of an ellipse as seen in Figure 35. 

2. Eccentricity, e, specifies the shape of an orbit by looking at the ratio of the 

distance between the two foci and the length of the major axis. See Figure 36. 
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3. Inclination, i, describes the orientation or tilt of the orbit relative to the equatorial 

plane. 

4. Right Ascension of the Ascending Node, Ω, describes the orientation or swivel of 

the orbit relative to the vernal equinox, indicated by unit vector Î, and the point at 

which the orbit passes north of the equator on the equatorial plane. 

5. Argument of Perigee, ω, describes the orientation of an orbit within its orbital 

plane. This element is the angle between the ascending node and perigee, 

measured in the direction of the spacecraft's motion. 

6. True Anomaly, ν, specifies the position of the satellite along its orbit as measured 

from perigee. 

Figure 37 depicts inclination, right ascension, argument of perigee, and true anomaly in relation 

to the equatorial plane and the inertial frame represented by unit vectors Î, Ĵ, and K�.  Unit vector Î 

points from the associated star to the planet at the instant when the equatorial plane of the planet 

passes through the star’s center and the planetary northern hemisphere experiences increasing 

radiance from the star.  Unit vector Ĵ lies in the equatorial plane pointing in the direction of the 

planetary orbital motion and unit vector K� points along the planetary northern pole. 
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Figure 35 Semi-Major Axis   [50]                  

      

 

Figure 36 Eccentricity [50] 

  

 

Figure 37 Classical Angular Orbital Elements [50] 
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Expressing the instantaneous geocentric equatorial position and velocity vectors of a 

satellite for engineering analysis and prediction in computer code, such as MATLAB, is often 

advantageous and even necessary.   Figure 38 depicts the state vector for position R and velocity 

V with respect to unit vectors Î, Ĵ, K� and vernal equinox, .  The six rectangular position and 

velocity components of R and V form the six state variables that comprise the state vector, for 

which equations relating to the six classical orbital elements exist. 

 

Figure 38 Orbital State Vectors [51] 

 

2.5.  Closed-Form Solution for LWS Orbit 
 

The equations of motion of a satellite in orbit about another body have been well understood 

since the time of Newton and Kepler.  Here the six classical orbital elements are used to develop 

the instantaneous position and velocity of the LWS in closed-form.  Beginning with the semi-

major axis and the earth gravitational constant, μ, the mean motion, n, period of orbit, T and final 

time, tf for a specified number of orbits norb are given by.  
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𝑛𝑛 = �
𝜇𝜇
𝑎𝑎3

 

    (2.7) 

𝑇𝑇 =
2𝜋𝜋
𝑛𝑛

 

      (2.8) 

𝑡𝑡𝑓𝑓 = 𝑇𝑇 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜. 

      (2.9) 

The mean anomaly, M, is determined by first calculating the initial eccentric anomaly, 𝐸𝐸0, using 

the eccentricity, e, and the initial value for true anomaly, 𝜈𝜈0, and then taking the fractional 

period of an orbit that has elapsed since pericenter, tp . 
[52] 

𝐸𝐸0 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜈𝜈0)

1 + 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐(𝜈𝜈0)� 

    (2.10) 

𝑡𝑡𝑝𝑝 =
−𝐸𝐸0 + 𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸0)

𝑛𝑛
+ 𝑡𝑡0 

     (2.11) 

𝑀𝑀 = 𝑛𝑛�𝑡𝑡 − 𝑡𝑡𝑝𝑝� 

     (2.12) 
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Then true anomaly ν at general time t can be determined from M by solving Kepler’s equation.   

The specific angular momentum, H, is found by first utilizing the semi-major axis and 

eccentricity to calculate the semi-latus rectum, p.  

𝑝𝑝 = 𝑎𝑎(1− 𝑒𝑒2) 

    (2.13) 

𝐻𝐻 = �
𝜇𝜇
𝑝𝑝

 

     (2.14) 

For the specific angular momentum, true anomaly, and eccentricity, the earth centered inertial 

coordinates (ECI) for the LWS, can be determined in Cartesian space as follows:  

𝑅𝑅𝑥𝑥,𝑦𝑦,𝑧𝑧 = �
𝐻𝐻2

𝜇𝜇
��

1
1 + 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣

� �
𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣
𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣

0
� 

   (2.15) 

𝑉𝑉𝑥𝑥,𝑦𝑦,𝑧𝑧 = �
𝜇𝜇
𝐻𝐻
��

−𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣
𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣

0
� . 

    (2.16) 

Vector Rx,y,z defines the path of the LWS around the earth and is referred to as the orbit 

equation.[51]  Similarly, vector Vx,y,z determines the orbit velocity equation.  The product of the 

rotation matrices corresponding to the argument of perigee, inclination, and the right ascension 

of the ascending node is employed to generate the direction cosine matrix, 𝑄𝑄𝑥𝑥 . [51]  
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𝑄𝑄𝑥𝑥 = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔 0

0 0 1
�× �

1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
0 −𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖

�× �
𝑐𝑐𝑐𝑐𝑐𝑐Ω 𝑠𝑠𝑠𝑠𝑠𝑠Ω 0
−𝑠𝑠𝑠𝑠𝑠𝑠Ω 𝑐𝑐𝑐𝑐𝑐𝑐Ω 0

0 0 1
� 

  (2.17) 

Matrix 𝑄𝑄𝑥𝑥 implements transformation from the inertial frame to the perifocal or orbit frame. 

Geocentric equatorial position vector R is found by taking the inverse of the direction cosine 

matrix and multiplying it by the position orbit equation. 

𝑅𝑅 =  𝑄𝑄𝑥𝑥
−1𝑅𝑅𝑥𝑥,𝑦𝑦,𝑧𝑧 

     (2.18) 

Likewise, the geocentric equatorial velocity vector V is found by taking the inverse of the 

direction cosine and multiplying it by the velocity orbit equation. 

𝑉𝑉 =  𝑄𝑄𝑥𝑥
−1𝑉𝑉𝒙𝒙,𝒚𝒚,𝒛𝒛 

      (2.19) 

To translate the given LWS position into latitude, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿, and longitude, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿, the 

following calculations are made. 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 = sin−1(sin 𝑖𝑖 sin 𝑢𝑢) 

    (2.20) 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 = tan−1 �
P𝑦𝑦
𝑟𝑟
� −𝜛𝜛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 

    (2.21) 
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where, r, is equal to  

𝑟𝑟 =
𝑝𝑝

1 + 𝑒𝑒 cos 𝑣𝑣
 

      (2.22)  

and u is the argument of latitude found by summing the true anomaly and the argument of 

perigee, i.e.  

𝑢𝑢 = 𝑣𝑣 +𝜔𝜔 . 

      (2.23) 

To graph the trajectory of the LWS the unit vector, h, is calculated to find the nodes’ line, n. 

ℎ = �
ℎ𝑥𝑥
ℎ𝑦𝑦
ℎ𝑧𝑧
� = �

sin 𝑖𝑖 sinΩ
−sin 𝑖𝑖 cosΩ

cos 𝑖𝑖
� 

    (2.24) 

𝑛𝑛 = �
𝑛𝑛𝑥𝑥
𝑛𝑛𝑦𝑦
𝑛𝑛𝑧𝑧
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

ℎ𝑦𝑦

�ℎ𝑥𝑥
2 + ℎ𝑦𝑦

2�
1
2

ℎ𝑥𝑥

�ℎ𝑥𝑥
2 + ℎ𝑦𝑦

2�
1
2

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

    (2.25) 
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2.6.  Numerical Solution for LWS Orbit 
 

      The numerical solution for the LWS orbit is calculated as a method of verifying the closed-

form solution.  The position and velocity vectors R and V are then propagated through an 

ordinary differential equations solver where the orbital state space vector, Ṡ, is determined at 

each new time step and the position vector is multiplied by the new position magnitude, Rmag. 

 

Rmag = |R| 

      (2.26) 

Ṡ = �
𝑉𝑉

−�
𝜇𝜇

Rmag
3�𝑅𝑅

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

V𝑥𝑥
V𝑦𝑦
V𝑧𝑧

− �
𝜇𝜇

Rmag
3�R𝑥𝑥

−�
𝜇𝜇

Rmag
3�R𝑦𝑦

−�
𝜇𝜇

Rmag
3�R𝑧𝑧

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

     (2.27) 

If perturbations were to be accounted for, they would be added to the last three terms of the 

orbital state space vector.   
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2.7.  HGV Boost Phase Equations of Motion 
 

. The ballistic missile boost phase utilizes the same classical orbital elements as those of a 

satellite.  The range of the ballistic missile boost phase is determined from the assumed semi-

major axis and eccentricity.   The semi-major axis is given in terms of the two launch conditions: 

the magnitude of the launch radius vector from center of the earth, rL, and the ratio of velocity to 

circular orbital velocity at launch altitude, VL.    

𝑎𝑎 =
𝑟𝑟𝐿𝐿

(2− 𝑉𝑉𝐿𝐿)2 

     (2.28) 

Additionally, the eccentricity, e, is given in terms of VL, and the launch angle, θL. The 

relationship between the launch conditions and the orbit is represented in Figure 39. 

𝑒𝑒 = �1− (2 −𝑉𝑉𝐿𝐿)2𝑉𝑉𝐿𝐿
2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃𝐿𝐿) 

   (2.29) 
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Figure 39 Ballistic Phase Launch Geometry [26] 

 

The magnitude of the radius vector from center of the earth, r, is. [53] 

𝑟𝑟 =
𝑎𝑎(1 − 𝑒𝑒2)

(1 + 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜃𝜃′)) 

     (2.30) 

By employing that radius, the velocity of the HGV in the ballistic phase can be calculated. 

𝑉𝑉 = �𝜇𝜇 �
2
𝑟𝑟
−

1
𝑎𝑎
� 

     (2.31) 



49 
 

 
 

The total angular ballistic range, Φballistic, can be found by summing the number of ballistic skips, 

n, which is used in determining the skip coefficient, cskip, which in turn is a function of the Lift to 

Drag Ratio, L/D.  

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒
�
4(𝑛𝑛−1)𝜃𝜃𝑓𝑓

𝐿𝐿 𝐷𝐷⁄ �
 

     (2.32) 

𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑅𝑅
𝑟𝑟𝑒𝑒

= 2 �𝑡𝑡𝑡𝑡𝑡𝑡−1

⎝

⎛ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑓𝑓
1
𝑉𝑉𝑓𝑓
2 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃𝑓𝑓⎠

⎞
∞

𝑛𝑛=1

 

  (2.33) 

 
2.8.  HGV Glide Phase Equations of Motion 

 
The Glide Phase of the HGV is dependent on the atmospheric density.  As discussed earlier, 

an approximation is made concerning the atmosphere in which it is assumed to be isothermal.  

The scale height, H, is the increase in altitude for which atmospheric pressure decreases by a 

factor of 1/e. Scale height is determined by taking the mean atmospheric temperature, T, 

universal gas constant, R, mean molecular mass of one atmospheric particle, M, and gravitational 

acceleration. The mean atmospheric temperature is the primary variable in determining the scale 

height; a value of 229.3K has been assumed for these equations.[27]  

𝐻𝐻 =
𝑇𝑇𝑇𝑇
𝑔𝑔𝑔𝑔

 

      (2.34) 
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It is also necessary to find the range parameter for glide vehicles which is twice the partial range, 

Φglide_partial, divided by the lift to drag ratio. 

𝐽𝐽 =
2𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐿𝐿 𝐷𝐷⁄
 

     (2.35) 

The altitude is found by taking the velocity ratio of the HGV for the radius of the Earth, which 

for an altitude of 30 km is 0.3.  

𝑟𝑟 = 𝐻𝐻 �ln �
1− �1− 𝑉𝑉𝑓𝑓2�𝑒𝑒𝐽𝐽

�1−𝑉𝑉𝑓𝑓
2�𝑒𝑒𝐽𝐽

�+ ln �
1− 𝑉𝑉𝑟𝑟=𝑟𝑟0

2

𝑉𝑉𝑟𝑟=𝑟𝑟0
2 �� 

   (2.36) 

The HGV glide range is finally calculated taking into account the final velocity ratio of the HGV 

as well as the lift to drag ratio. 

𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
𝑅𝑅
𝑟𝑟𝑒𝑒

=
1
2
�
𝐿𝐿
𝐷𝐷
� ln �

1
1 −𝑉𝑉𝑓𝑓

2� 

    (2.37) 

The ballistic and glide components of altitude and range along the flight path are combined 

resulting in predicted 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
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CHAPTER 3  
 

SIMULATION OVERVIEW 

 
 

3.1.  Program Layout 
 

The program for the HGV-LWS simulation was developed within the Mathworks MATLAB 

R2013a computing environment[54] with the M_Map Toolbox [55] running on the Windows 7 

operating system. The program’s primary function is MAIN.m.  This function retrieves four 

user-specified variable sets that manipulate the orbit of the LWS satellite and flight path of the 

HGV.  These variables exist as a for-loop with minimum and maximum values and step size for 

each term (Table 2).  The variables are then sent to LWS.m and HGV.m where the motion of the 

LWS and HGV are determined, respectively.  Four other functions are called by the program; 

these are sub-functions of LWS.m and include the following: LWS_TIME.m, 

ECCENTRIC_ANOMALY.m [56], ORBIT_STATE.m [57], and ODE45.m [58]. Final determination 

of the quality of the engagement is determined by QUALITY_MEASURE.m, which is then sent 

back to MAIN.m for processing.  Table 3 lists constants used by the program. 

 

Table 2 Control Inputs for LWS and HGV 

Control Input Notation Range Increment 
True Anomaly ν 0 to 360 deg 10 deg 
Right Ascension of 
Ascending Node 

Ω 0 to 360 deg 10 deg 

Velocity Ratio Vf 0.1 to 0.5 0.1 
Angle of Flight Path 
to Horizontal 

θf 35 to 40 deg 0.5 deg 
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Table 3 Program Constants 

Constant Notation Value 
Radius of Earth re 6378.1 km 
Rotational Period of Earth Te 86164 s 
Gravitational Constant μ 3.986004415e5 km3/s2 
Gravitational Acceleration g 9.80665 m/s2 
Ground Target Latitude TLat 36.957638 deg 
Ground Target Longitude TLong -76.329428 deg 
Radius of Laser Acquisition rcapture 1000 km 

 

 

After the values for true anomaly and right ascension of ascending node are sent to LWS.m, 

the other four classical orbital elements are shown in Table 4. The period of the orbit is sent to 

LWS_TIME.m as an input to calculate the time vector and time span, which are sent back to 

LWS.m.  The number of orbits and time step are constants listed in LWS_TIME.m and are 

shown in Table 5.  Next, ECCENTRIC_ANOMALY.m is called using the mean anomaly and 

eccentricity as inputs.  Finally, the ordinary differential equation (ODE) solver ODE45.m is 

called which integrates the orbit states found in ORBIT_STATE.m.  The values for the time step, 

state, node line, and other calculated data are then sent back to MAIN.M 

 

Table 4 Constants for LWS.m 

Constant Notation Value 
Semi-Major Axis a 6788586.18 m 
Eccentricity e .0004482 
Inclination i 51.6422 deg 
Argument of Perigee ω 208.80294 deg 
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Table 5 Constants for LWS_TIME.m 

Constant Notation Value 
Number of Orbits norb 2 
Time Step step 60 s 

 

 

The HGV input variables are velocity and attitude of attack which are sent to HGV.m with 

the following values listed in Table 6 as constants.   After completing the calculations outlined in 

Chapter 3, HGV.m sends the HGV position and velocity data from the boost and glide phases to 

MAIN.m.   

 

Table 6 Constants for HGV.m 

Constant Notation Value 
Launch Velocity VL 0.6 
Launch Altitude yL 30 km 
Lift to Drag Ratio L/D 8.61 
Velocity Ratio at Earth’s Surface Vr 0.3 
Temperature of Atmosphere T 229.3 K 
Universal Gas Constant R 8.315 J/mol*K 
Molar Mass of Atmospheric Particle M 0.029 kg/mol 

 

 

MAIN.m receives the position and velocity information for the LWS and HGV for the inputs 

listed in Table 2.  The program then calculates whether the HGV will reach the ground target 

first for a given set of inputs or the LWS will counter the HGV prior to the HGV reaching the 

ground target.  A limit of two orbits is set for the satellite.  The flight path, instantaneous 

position, and ground tracks are plotted for the LWS and HGV for each condition where the LWS 
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counters the HGV.  These results are plotted on a rotating three-dimensional sphere of the earth 

with a geopolitical map overlaid on the sphere. This graphic is also presented in the two-

dimensional projection manner (Figure 40).  Figure 41 shows the overall computational tool flow 

chart and sequencing.   

 

 

Figure 40 Flat Earth Map with HGV-LWS Data 
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3.2.  HGV Flight Path Determination 
 
The initial flight path for the HGV is calculated assuming a flat earth.  This flight path is 

mapped onto the spherical representation of the earth, setting the target’s latitude and longitude 

as the end point for the flight path.  The heading angle 𝜑𝜑 is initially set due East, with 

subsequent headings occurring every 45 degrees in a counterclockwise rotation, as seen in  

Figure 42, thus creating a set of flight paths about the target location.   

 

 

Figure 42 HGV Heading to Ground Target 
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To create the set of flight paths around the ground target, 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are converted into an 

earth center-earth fixed (ECEF) frame denoted by 𝑃𝑃𝑥𝑥  𝐻𝐻𝐻𝐻𝐻𝐻, 𝑃𝑃𝑦𝑦 𝐻𝐻𝐻𝐻𝐻𝐻, and 𝑃𝑃𝑧𝑧 𝐻𝐻𝐻𝐻𝐻𝐻 with  𝑟𝑟𝑒𝑒 added to 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 giving the HGV distance from the center of the earth 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻.   

𝑃𝑃𝑥𝑥  _𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻�cos�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻� 

𝑃𝑃𝑦𝑦 _ 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻�sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻� 

𝑃𝑃𝑧𝑧 _𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 cos�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻� 

(3.1) 

𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is set as the longitude of the HGV, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻,  with the latitude for the first flight path, 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐻𝐻𝐻𝐻𝐻𝐻, set to the target latitude, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡.  

𝑃𝑃𝑥𝑥  _𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡�cos(𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑃𝑃𝑦𝑦 _ 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡�sin(𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑃𝑃𝑧𝑧 _𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 cos�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡� 

            (3.2) 

Similarly, the ground target location in the ECEF frame, 𝑃𝑃𝑥𝑥_ 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑦𝑦 _𝑡𝑡𝑡𝑡𝑡𝑡, and 𝑃𝑃𝑧𝑧_𝑡𝑡𝑡𝑡𝑡𝑡, is first 

converted from the modified polar coordinates in longitude, Llon_tar, and latitude, Llat_tar.  

𝑃𝑃𝑥𝑥_𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑒𝑒 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡− 90�cos�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 − 180� 

𝑃𝑃𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑒𝑒 sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 − 90�sin�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 − 180� 

𝑃𝑃𝑧𝑧_𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑒𝑒 cos�𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 − 90� 

            (3.3) 
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The x, y, and z components of the target position are normalized with respect to the target 

distance from the center of the earth, rtar which for a land-based target and assuming a spherical 

earth can be approximated as 𝑟𝑟𝑒𝑒. 

 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑃𝑃𝑥𝑥 _𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝑃𝑃𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡

2 + 𝑃𝑃𝑧𝑧 _𝑡𝑡𝑡𝑡𝑡𝑡
2 ≈ 𝑟𝑟𝑒𝑒 

        (3.4) 

The following substitutions were made for each normalized polar component using α, β, and γ. 

𝛼𝛼 =
𝑃𝑃𝑥𝑥_𝑡𝑡𝑡𝑡𝑡𝑡

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
 

𝛽𝛽 =
𝑃𝑃𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
 

𝛾𝛾 =
𝑃𝑃𝑧𝑧 _𝑡𝑡𝑡𝑡𝑡𝑡

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
 

            (3.5) 

Employing the normalized ECEF position components and heading angle, the rotation matrix, 

ARot can be determined. 

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 = 

�
cos𝜑𝜑 + (1 − cos𝜑𝜑)𝛼𝛼2 𝛼𝛼𝛼𝛼(1− cos𝜑𝜑) − 𝛾𝛾 sin 𝜑𝜑 𝛼𝛼𝛼𝛼(1 − cos𝜑𝜑) + 𝛽𝛽 sin𝜑𝜑
𝛼𝛼𝛼𝛼(1− cos𝜑𝜑) + 𝛾𝛾 sin 𝜑𝜑 cos𝜑𝜑 + (1 − cos𝜑𝜑)𝛽𝛽2 𝛽𝛽𝛽𝛽(1 − cos𝜑𝜑) −𝛼𝛼 sin𝜑𝜑
𝛼𝛼𝛼𝛼(1 − cos𝜑𝜑) −𝛽𝛽 sin 𝜑𝜑 𝛽𝛽𝛽𝛽(1 − cos𝜑𝜑) + 𝛼𝛼 sin 𝜑𝜑 cos𝜑𝜑 + (1 − cos𝜑𝜑)𝛾𝛾2

� 

            (3.6) 
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The product of 𝐴𝐴𝑅𝑅𝑅𝑅 and the HGV position vector generates the new position vector in terms of 

the earth centered inertial (ECI) frame, 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻_𝐸𝐸𝐸𝐸𝐸𝐸, as it relates to 𝜑𝜑. 

𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻_𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 �
𝑃𝑃𝑥𝑥_𝐻𝐻𝐻𝐻𝐻𝐻
𝑃𝑃𝑦𝑦_𝐻𝐻𝐻𝐻𝐻𝐻
𝑃𝑃𝑧𝑧_𝐻𝐻𝐻𝐻𝐻𝐻

� 

            (3.7) 

3.3.  Ground Track Propagation 
 

During the motion of the LWS and HGV, ground tracks like Figure 43 were generated across 

the surface of the spherical representation of the earth.  The ground track is plotted at every time 

step as the earth rotates.  Taking the latitude and longitude position of the LWS, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 and 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿, or HGV, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿,  and multiplying it by the radius of the earth 

results in an earth center fixed reference position for the ground track of either the LWS or HGV 

denoted by 𝑃𝑃𝑥𝑥_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿, 𝑃𝑃𝑦𝑦_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿, 𝑃𝑃𝑧𝑧_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑃𝑃𝑥𝑥_𝑔𝑔𝑔𝑔_𝐻𝐻𝐻𝐻𝐻𝐻, 𝑃𝑃𝑦𝑦_𝑔𝑔𝑔𝑔_𝐻𝐻𝐻𝐻𝐻𝐻, 𝑃𝑃𝑧𝑧 _𝑔𝑔𝑔𝑔_𝐻𝐻𝐻𝐻𝐻𝐻, respectively.  

𝑃𝑃𝑥𝑥_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟𝑟𝑒𝑒 cos 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 cos 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 

𝑃𝑃𝑦𝑦_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟𝑟𝑒𝑒 cos 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿sin 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 

𝑃𝑃𝑧𝑧_𝑔𝑔𝑔𝑔_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟𝑟𝑒𝑒 sin 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙_𝐿𝐿𝐿𝐿𝐿𝐿 

            (3.8) 
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Figure 43 Ground Track Representation 
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CHAPTER 4  
 

CASE STUDY RESULTS 
 
 
4.1.  Analysis Results 
 

For the case of a satellite-based LWS countering an HGV in the protection of a ground target 

located at Norfolk Naval Station, a total of 100,185,210 case studies were run.  Of the total 

number of cases run in which the LWS true anomaly and right ascension were varied along with 

the HGV velocity ratio, angle, and heading, a total of 487,414 case studies resulted in the LWS 

successfully intercepting the HGV, or 0.49% of the total cases.  To better understand the results 

of the intercepts, the number of intercepts were compared against the HGV velocity ratio.  This 

comparison is shown in Figure 44 from which it can be seen that the number of intercepts is 

generally decreasing as the velocity ratio of the HGV increases.  There is, however, an increase 

in intercepts from the south at a velocity ratio of 0.5 which is detailed in the southern heading of 

the HGV, shown in Figure 45.   
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Figure 44 Successful Intercepts 

 

 
Figure 45 Intercepts with respect to HGV Heading and Velocity Ratio 

 

In order to further examine the intercepts, the position of the LWS at time of intercept as well 

as the flight path of the HGV are plotted for varying velocity ratios in Figure 46 through Figure 

50. These figures show that as the velocity ratio increased the distance from the ground target 

increased representing a longer time of flight.  The position of the LWS at the time of intercept 

HGV Velocity, VF 

E 
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remained clustered around the ballistic skip phase portion of the HGV flight path regardless of 

HGV velocity.  This finding mirrors expected results for a conventional anti-ballistic missile in 

that the ballistic phase is the most vulnerable phase of the flight path for the missile due to the 

proximity to the passing LWS.   

With a velocity ratio of 0.1 to 0.2, the HGV can be launched from the Caribbean Sea and 

the Atlantic Ocean west of Bermuda, as shown in Figure 46 and Figure 47, and reach the target.  

At a velocity ratio of 0.3 and 0.4, the HGV can be launched from the Eastern Atlantic Ocean, the 

Pacific Ocean east of Hawaii, and South America, as shown in Figure 48 and Figure 49, and 

reach the target.  At a velocity ratio of 0.5, Figure 50 shows the HGV can be launched from the 

Pacific Ocean west of Hawaii, central Russia, and the southern Atlantic Ocean and reach the 

target.  

Figure 46 displays eight ground tracks for the HGV at the eight corresponding headings; this 

is not the case with Figure 47 through Figure 50 where the ground tracks are only depicted when 

an intercept was predicted.  Figure 46 through Figure 50 indicate no intercepts occur above a 

latitude of 51.81° which corresponds to the limits of the LWS orbit, namely the inclination as 

well as the upper limit of the range quality.  Increasing either the upper limit for range quality or 

increasing the orbital inclination will allow the LWS to capture the full range of HGV latitude 

positions for this scenario of target position, HGV velocity ratio, flight angle and heading.   
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Figure 46 Intercepts for Vf = 0.1 

 

 
Figure 47 Intercepts for Vf = 0.2 
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Figure 48 Intercepts for Vf = 0.3 

 

 
Figure 49 Intercepts for Vf = 0.4 
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Figure 50 Intercepts for Vf = 0.5 

 

4.2.  Individual Case Study 
 

By isolating selected input variables, additional insight is gained.  By narrowing the data set 

down to HGV velocity ratio for 0.1 and the LWS right ascension of the ascending node between 

205° and 290°, varying by 5°, the LWS intercepts can be overlaid onto the LWS ground tracks as 

shown in Figure 51.  Shifting the LWS right ascension of the ascending node by 90° and 

truncating some ground tracks for visual clarity yields Figure 52, which when combined give the 

data set shown in Figure 46.   
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Figure 51 Intercept for Vf = 0.1 and Ω between 205° and 290° with LWS Ground Tracks  

 

 
Figure 52 Intercepts for Vf = 0.1 and Ω between 100° and 185° with LWS Ground Tracks 
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The data set of intercepts for an HGV velocity ratio of 0.1 is further refined by examining 

only those intercepts that occurred when the HGV had a north heading and an HGV angle of 35°.  

This narrow range of data has been categorized subsequently in terms of intercept time duration.   

Figure 53 shows that as the LWS moves east in its orbit it acquires the HGV.  The LWS 

continues at 60 second increments, per the time step, acquiring the HGV until it is out of range.  

The longest duration intercept that any orbit of the LWS was able to maintain was 5 minutes.  

Examining one such intercept orbit of the LWS where the intercept duration was 5 

minutes yields further insight. In Figure 54 the intercepts occurred when the LWS had orbit 

parameters of v = 150° and Ω = 270° and the HGV had flight path parameters of Vf = 0.1 and θf 

= 35°.  Additionally, the location of the HGV for each intercepting time step is shown as the 

LWS heads northeast. The shortest approach occurred during the second time step at 180 

seconds with a range of 392 km. As indicated in Table 7, this location also corresponded with the 

narrowest angle of 1.4° compared with approximately 7.9° at the start and finish of the intercept. 

Applying the quality metrics outlined in Table 1 and Figure 34, the quality factors for 

range, time, angle and total quality are summarized in Table 8.  From these quality metrics it can 

be seen that the maximum Total Quality measure occurs at 180 seconds and 240 seconds with 

the Quality then decreasing at 300 seconds.  Normally, the intercept with the longest time would 

be expected to have the greatest quality, but as the range between HGV and LWS increased, the 

Total Quality was lowered.  The effect that range, time, and angle have on the total quality can 

be seen in Figure 55 in which it is readily apparent that range plays the greatest role in reducing 

the total quality of the intercept. 
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Figure 53 Intercepts for Vf = 0.1 and HGV Heading North, with LWS Ground Tracks 

 

 
Figure 54 Intercepts for Single LWS Orbit 
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Table 7 Intercept Data for Single LWS Orbit 

Time 
 (sec) 

Range 
(km) 

Angle 
(deg) 

LWS_LAT 
(deg) 

LWS_LON 
(deg) 

HGV_LAT 
(deg) 

HGV_LON 
(deg) 

60 970.7 7.82 8.2162 -83.497 17.4404 -79.008 

120 591.2 4.08 11.2471 -81.025 18.034 -78.862 

180 392.0 1.40 14.2569 -78.501 18.6287 -78.72 

240 596.5 4.15 17.2391 -75.909 19.2244 -78.582 

 

 

Table 8 Quality Metrics for Single LWS Orbit 

Time  Range Angle   QR   QT   QG      Q  
(sec) (km) (deg)         
60 970.7 7.82 0.13 0.10 0.99 0.01 

120 591.2 4.08 0.47 0.33 1.00 0.15 
180 392.0 1.40 0.65 0.55 1.00 0.36 
240 596.5 4.15 0.47 0.78 1.00 0.36 
300 977.4 7.90 0.12 1.00 0.99 0.12 

 

 
 

  
Figure 55 Quality Metrics for Single LWS Orbit vs. Time Step 
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4.3.  Quality Metrics 
 

Examining the quality metrics across all 487,414 intercepts resulted in interesting insights 

as well.  Figure 56 shows that the occurrence of intercepts for a given range quality and for the 

five HGV velocity ratios are generally decreasing as the velocity ratio increased and as the range 

quality increased.  This is similarly true for occurrence with respect to time quality shown in 

Figure 57.  Again, it is apparent that a slight uptick in occurrence is noticed for a velocity ratio of 

0.5 which is a factor of the HGV and LWS variables.  The nadir angle was found to be near 0 

degrees for most cases resulting in a geometry ratio of near 1.0 as seen in Figure 58.  This bias is 

due to a combination of the time step, the mesh size for the LWS right ascension of the 

ascending node and the upper limit on the range quality. Combining the simultaneous influences 

of range, time and geometry on the simulation data set yields the total quality metrics for all 

intercept cases, as shown in Figure 59.  For all intercepts, 31% have a total quality score of 0.05 

which can be seen by the large spike in intercepts on the left of the graph.  These are attributed to 

single time step intercepts with near maximum allowable ranges between the LWS and HGV.  

The second grouping of data has a total quality score between 0.06 and 0.25 which is attributed 

to 60 to 180 seconds of intercept and a medium to long range between the HGV and LWS.  The 

most favorable grouping of data exists between a total quality of 0.26 and 0.45 accounting for 

19% of all intercepts.  
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Figure 56 Intercept Occurrence vs. Range Quality 

 

 
Figure 57 Intercept Occurrence vs. Time Quality 
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Figure 58 Intercept Occurrence vs. Geometry Quality 

 

Figure 59 Intercept Occurrence vs. Total Quality 
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The trends and findings discussed thus far become readily apparent when the right 

ascension of the ascending node is compared with the total quality for multiple headings and 

varying velocity ratios as shown in Figure 60 through Figure 64.  As the velocity increases, the 

grouping of data for various headings disperses from a tight grouping shown in Figure 60 to a 

separated grouping shown in Figure 64.  This dispersal was also apparent in Figure 46 through 

Figure 50.  The double grouping for heading 5 which aligns with a southwest trajectory also 

aligns with the increases in the number of cases shown in Figure 45.  The apparent missing 

points that occur at total quality values of 0.05 align with the drop in occurrences in Figure 59 

between the first and second groupings as described earlier. 

 

 

Figure 60 Right Ascension of Ascending Node vs. Total Quality for Multiple Headings at Vf=0.1 
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Figure 61 Right Ascension of Ascending Node vs. Total Quality for Multiple Headings at Vf=0.2 

 

 
Figure 62 Right Ascension of Ascending Node vs. Total Quality for Multiple Headings at Vf=0.3 
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Figure 63 Right Ascension of Ascending Node vs. Total Quality for Multiple Headings at Vf=0.4 

 

 
Figure 64 Right Ascension of Ascending Node vs. Total Quality for Multiple Headings at Vf=0.5 
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CHAPTER 5  
 

CONCLUSIONS 
 
5.1.  Conclusions 
 

This research has shown that for a given set of initial conditions for a space-based laser 

weapon system and a hypersonic glide vehicle, solutions for a laser weapon system intercepting 

the glide vehicle can be determined.  The design methodology employed in this research 

employed simplifying assumptions with regard to the interaction of the laser and glide vehicle.  

A case study involving a single satellite demonstrated the effectiveness of this methodology, and 

a unique set of solutions was determined while varying the velocity ratio, angle of attack, and 

heading for the glide vehicle along with the true anomaly and right ascension of the ascending 

node for the space-based laser weapon system.  As expected, the results showed that the glide 

vehicle was most vulnerable during its ballistic phase.  Furthermore, by applying a series of 

quality metrics related to range, time, and trajectory geometries to the data set, the total quality 

or effectiveness of the interception was quantified.   

 

5.2.  Recommendations 
 

Further investigation to refine the solution can be made by refining some of the simplifying 

assumptions.  Regarding the LWS, this would include the effects of perturbations on the satellite 

orbit as well as a detailed physics model to incorporate target acquisition, tracking, beam power, 

and atmospheric effects.  Additionally, increasing the number of LWS satellites in the 

constellation would allow for an increase in the number of intercepts of the HGV. With respect 

to the HGV, further incorporation of semi-random six degree of freedom motion within a power 
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and thermal budget would expand the application of the solution set allowing for an upper limit 

on vehicle operational capabilities that could be incorporated.  Combining these improvements 

would yield an improved method for assessing orbital laser interception of an HGV by an LWS.  

Lastly, examining the dynamics and potential intercept of the laser and HGV from a land, sea, or 

air-based platform would have immediate applicability to systems under development. 
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