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ABSTRACT 
 

ADVANCES IN THE UNDERSTANDING OF SOURCING AND FATE OF 
PYROGENIC ORGANIC MATTER IN THE ENVIRONMENT 

 
Aleksandar Ivaylov Goranov 

Old Dominion University, 2020 
Director: Dr. Patrick G. Hatcher 

 

 

With higher occurrences of forest fires worldwide, there has been an increase in 

scientific interest surrounding the chemistry of pyrogenic organic matter (pyOM). The 

main structural components of pyOM, the condensed aromatic compounds (ConAC), 

exhibit intriguing physico-chemical properties and have been one of the main focuses of 

biogeochemical research. The overwhelmingly large number of scientific articles 

regarding pyOM and ConAC are guided by the assumption that ConAC in the 

environment are exclusively of pyrogenic origin, even though some recent studies have 

suggested that some of these ConAC could also be derived from non-pyrogenic radical-

driven processes. To evaluate this controversial proposition, two wood samples exposed 

to Fenton chemistry through iron nails are evaluated using several qualitative and 

quantitative techniques. Presented is quantitative evidence that ConAC can be produced 

non-pyrogenically from terrestrial biomass upon exposure to reactive oxygen species. 

Evidence from this study directly challenges the dogmatic assumption that ConAC are 

solely pyrogenic and implores that the global estimates of the contributions of fire-derived 

organic matter to both terrestrial and aquatic ecosystems must be re-evaluated.  

During rain events, significant amounts of pyOM enter the aquatic environment by 

dissolution and become known as dissolved pyOM (pyDOM). Then, degradative 

processes driven by sunlight and microbes can alter its composition. Using advanced 

analytical techniques, the structural and molecular changes that occur to pyDOM after 

photo-irradiation and microbial incubation were evaluated. Multiple new insights into the 

photochemical degradation of pyDOM were uncovered, including the evolution of new 

structural entities, the development of a photo-transformation pathway, and the attribution 

of photo-reactivity to fire temperature and pyrolyzed biomass type. The bio-incubation of 



 
 

pyDOM with soil microbes indicated that a portion of pyDOM has been incorporated into 

microbial biomass which vastly differed for each different incubation. The lability and 

observed diversity in composition of the microbially produced compounds indicate that 

pyDOM contributes to the large complexity and diversity of natural organic matter in the 

environment.  

Results from this Dissertation advance our understanding of pyOM, pyDOM, and 

ConAC in the environment, and reveal that the sourcing and degradation (fate) of ConAC 

(and, therefore, of pyOM/pyDOM) are much more complex than originally perceived. 
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CHAPTER I1 

INTRODUCTION 

 

Wildfires are phenomena that have been occurring in the geological record since 

the evolution of terrestrial plants, and even nowadays there are massive uncontrollable 

fires that cause devastating damage to terrestrial ecosystems (Bowman et al., 2009). The 

residue that is left after biomass pyrolysis (of trees, grasses, etc.) is referred to as black 

carbon, charcoal, soot, and others, but collectively is known as pyrogenic organic matter 

(pyOM). In recent years, the scientific community has recognized that pyOM can 

chemically alter our ecosystems. Furthermore, there is a growing interest in using pyOM 

as a soil supplement in agriculture (e.g., Spokas et al., 2012), for carbon sequestration 

(e.g., Lehmann, 2007), and for water decontamination (e.g., Abdel-Fattah et al., 2015; 

Dai et al., 2019). Because these natural and anthropogenic activities contribute to the 

distribution of massive amounts of pyOM in the environment, examining the sources and 

environmental fate of pyOM is of utmost scientific concern. The goal of this Dissertation 

is to advance the understanding of the origins and fate of pyOM in the environment using 

novel molecular and structural approaches. 

PyOM is a bi-phasic mixture of graphene-like condensed aromatic compounds 

(ConAC) and a pool of poorly characterized aliphatic molecules (Hockaday et al., 2007; 

Bostick et al., 2018; Wozniak et al., 2020). ConAC in soils and sediments have been 

studied extensively (Masiello, 2004; Czimczik and Masiello, 2007; Bird et al., 2015; Santín 

et al., 2016a), and until very recently, they were thought to be exclusively of pyrogenic 

origin (e.g., Goldberg, 1985; Glaser et al., 1998). Using that assumption, it has been 

estimated that fire-derived ConAC comprise ~14 % of soil organic matter (Bird et al., 

1999; Hammes et al., 2007; Cusack et al., 2012; Reisser et al., 2016) and ~10% of the 

globally fluxed riverine dissolved organic matter (DOM) to the oceans (Jaffé et al., 2013).  
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While there is no question that ConAC are produced by combustion, recent studies 

report that ConAC can be created from non-pyrogenic radical-based processes (Chen et 

al., 2014; Waggoner et al., 2015). As all ConAC in the aquatic environment are assumed 

to be pyrogenic, it is likely that the global estimates of export of pyOM to the oceans or 

their incorporation into soil organic matter are over-estimated. The reports of Chen et al. 

(2014) and Waggoner et al. (2015) have been questioned by the scientific community, 

with the argument that observed non-pyrogenically produced ConAC are an experimental 

or analytical artifact. The main critique is that these studies have not employed 

quantitative analytical techniques for ConAC quantification, namely the 

benzenepolycarboxylic acids (BPCA) analysis (Wagner et al., 2018). The BPCA method 

is a chemical marker technique currently viewed as the gold standard for quantifying 

ConAC in environmental matrices, even though questions exist regarding its specificity 

(Zimmerman and Mitra, 2017; Chang et al., 2018; Gerke, 2018). It utilizes a concentrated 

nitric acid digestion to degrade ConAC into BPCA molecular markers (benzenehexa- and 

benzenepentacarboxylic acids) which are quantified chromatographically, and the total 

BPCA concentration is used as a proxy for ConAC concentration. The proposed non-

pyrogenic pathway for formation of ConAC is through radical-induced molecular re-

arrangement (electrocyclization) of lignin (Waggoner et al., 2015), the second most 

abundant biopolymer in the environment (Thevenot et al., 2010). Chapter II of this 

Dissertation will include a study of two wooden boards that have been exposed to Fenton 

chemistry through the association with iron nails embedded in them. The wood specimens 

were exposed for over a decade to environmental conditions such as wetting and drying 

cycles induced by rain and sun, simulating the kind of exposure that fresh plant materials 

experience in soil litter layers. After the decade of exposure, a visual charcoalification of 

the wood material in zones adjacent to iron nails has been observed. I hypothesize that 
the Fenton reaction produced ConAC from woody biomass after a decade-long 
exposure to yield the charcoalified product. The observed changes due to exposure 

to the Fe nail will be evaluated quantitatively using the BPCA method to provide a 

quantitative proof of the non-pyrogenic formation of ConAC, validating this hypothesis. 

This study contributes to the increasingly growing concern that the measured ConAC in 



3 
 

the environment via the BPCA method do not entirely correspond to pyOM, which would 

have important implications to the knowledge of sourcing of ConAC in the environment.  

For many years it was thought that this highly condensed solid pyOM was very 

stable and that it accumulated for millennia in soils and sediments without much impact 

to the environment (e.g., Goldberg, 1985; Glaser et al., 1998). It has been recently 

recognized that some portion of this pyOM can be leached by water (e.g., rain) and can 

enter the aquatic environment (Hockaday et al., 2007; Dittmar and Paeng, 2009; Dittmar 

et al., 2012; Jaffé et al., 2013; Stubbins et al., 2015; Bostick et al., 2018). Research has 

shown that dissolved pyOM (pyDOM) contributes significantly to the global carbon cycle 

(Druffel, 2004; Lehmann, 2007; Riedel et al., 2016), constituting an average of 10% of the 

total globally exported organic matter from rivers to the ocean (Jaffé et al., 2013). 

However, the estimated annual production of pyOM from forest fires exceeds the 

estimates of pyOM in terrestrial environments (Kuhlbusch and Crutzen, 1996; Schmidt 

and Noack, 2000; Czimczik et al., 2003; Forbes et al., 2006). The fact that one does not 

observe massive accumulation of pyOM in soils suggests that there are degradative 

and/or transport pathways that alter pyOM cycling and fluxes in the environment 

(Masiello, 2004; Bostick et al., 2018). It is known that solar photo-irradiation is highly 

destructive to ConAC, and photochemistry has been identified as the most significant sink 

in the environment for these compounds (Stubbins et al., 2012). However, while it is 

known that some of them photo-mineralize (mainly to CO and CO2), the photo-

transformation pathway and the chemical structures of the molecular by-products remain 

uncertain. I hypothesize that the structural and molecular changes occurring after 
photo-irradiation can be discerned by applying advanced analytical techniques. I 
aim to validate this hypothesis by applying ultrahigh resolution mass spectrometry and 

multidimensional nuclear magnetic resonance spectroscopy to pyDOM samples before 

and after photo-irradiation. Chapter III of this Dissertation will therefore include a study 

showing numerous new insights to the photochemistry of pyDOM, including observation 

of new structural moieties, development of a photo-transformation pathway, and 

evaluation of the photo-reactivity of pyDOM as a function of fire temperature and 

pyrolyzed biomass type. 
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 While photochemical degradation is a very important process for sunlit 

environments, a large fraction of pyDOM is also cycled through soil porewater and 

groundwater systems. In these dark environments the fate of organic matter is mainly 

controlled by microorganisms such as bacteria and fungi. Previous studies have shown 

that microbes can utilize pyOM as food (e.g., Zimmerman, 2010), however, the molecular 

details of this degradation are unknown. Furthermore, to date, there are no studies in the 

literature of pyDOM that have evaluated its bio-degradability without priming the systems 

with labile molecules (e.g., sucrose). Because studies have determined that microbial 

degradation of terrestrial DOM can be fully respired to CO2 with no photochemical 

facilitation (e.g., Ward et al., 2013; Fasching et al., 2014), evaluating the bio-reactivity of 

pyDOM is needed. Thus, Chapter IV of this Dissertation will be on the microbial 

degradation of pyDOM. I hypothesize that significant molecular changes to pyDOM 
will be observed after biotic incubations with microbes. My study will evaluate the 

types of molecules that are bio-degraded and bio-produced, determine the effect of 

production temperature and photochemistry, and provide new insights on the involvement 

of pyDOM within the global carbon and nitrogen cycles.  

The three studies shown in this Dissertation will contribute greatly to the knowledge 

of pyOM in the environment. They provide novel insights on the sourcing of the 

condensed component (ConAC) of pyOM, and on the photochemical and microbial fate 

of its water-soluble fraction (pyDOM). Given the highly complex nature of this type of 

environmental matrix, a variety of analytical platforms have been utilized to accomplish 

comprehensive analysis. Chapter V will conclude this Dissertation and provide future 

directions for the wildfire biogeochemistry community. The novel insights into the 

chemistry of pyOM that are presented in this document will bring more pieces to the 

mysterious complexity of carbon cycling and will provide a better understanding of what 

the consequences of forest fires, or related anthropogenic activities, are to the aquatic 

environment. 
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CHAPTER II 

 

DECADE-LONG FENTON DEGRADATION OF WOOD LEADS TO NON-

PYROGENIC FORMATION OF CONDENSED AROMATIC COMPOUNDS 

 

 

1. INTRODUCTION 
 

Pyrogenic organic matter (pyOM), or black carbon, is the solid residue left after 

combustion (e.g., forest fires, fossil fuel usage), and such substances have been a focus 

of research for several decades now. There is an overwhelming number of studies that 

report of: its pyrogenic formation (e.g., Hedges et al., 2000; Baldock and Smernik, 2002; 

Santín et al., 2016b), abundance in various environmental matrixes such as soils and 

sediments (Masiello, 2004; Czimczik and Masiello, 2007; Bird et al., 2015; Reisser et al., 

2016; Santín et al., 2016a), aerosols (Wozniak et al., 2008; Bao et al., 2017), and 

dissolved organic matter (e.g., Wagner et al., 2018). It is now well recognized that pyOM 

plays an important role in the global carbon cycle due to its presumed recalcitrance. For 

example, it has been estimated that 14% of soil organic carbon, a major terrestrial 

reservoir of organic carbon on Earth, is fire-derived (Bird et al., 1999; Hammes et al., 

2007; Cusack et al., 2012; Reisser et al., 2016). Another important finding is that large 

quantities of condensed aromatic compounds (ConAC) of combustion-derived pyOM in 

soils (Jaffé et al., 2013; Jones et al., 2020) are annually exported by rivers to the world’s 

oceans.  

 There is a growing concern that the ConAC used to assess the existence of pyOM 

may not be exclusively of pyrogenic origin. Recent studies by ultrahigh resolution mass 

spectrometry and NMR suggest that ConAC in the environment can be produced non-

pyrogenically through radical polymerization of ligninaceous molecules. The first 

evidence for this proposition came from Fe-rich systems (Chen et al., 2014; Waggoner et 
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al., 2015) where hydroxyl radicals were iron-generated via photochemistry or the Fenton 

reaction (Fenton, 1894; Walling, 1975). This induced well-known ring-opening of aromatic 

structures and subsequent production of carboxyl-containing olefins that can initiate the 

formation of ConAC through electrocyclization reactions like the Diels-Alder reaction 

(Diels and Alder, 1928). Another recent study also observed non-pyrogenic formation of 

ConAC, this time in the aerobic microbial incubation of wheat straw (Chen et al., 2020), 

another example of a system rich in active radicals from exoenzymes. However, these 

studies have been questioned by the scientific community and “warrant further 

investigation using quantitative methods such as the benzenepolycarboxylic acids 

method [sic]” (Wagner et al., 2018). The benzenepolycarboxylic acids (BPCA) method is 

currently used extensively to quantify ConAC in various environmental matrixes. 

Originally developed for quantification of ConAC in soil matrices (Glaser et al., 1998), it 

employs an oxidation by nitric acid at highly degradative conditions (high temperature and 

pressure). After this thermochemolytic digestion, the graphene-like ConAC are degraded 

into BPCA compounds. These marker molecules are then quantified chromatographically 

and quantitatively related back to total ConAC concentration in the digested sample using 

various mathematical approaches (Glaser et al., 1998; Dittmar, 2008; Ziolkowski et al., 

2011; Stubbins et al., 2015; Kappenberg et al., 2016). Most researchers assume that 

ConAC can only be created by exposure to high temperatures. One of the most recent 

studies on ConAC revealed using stable carbon isotopic measurements that oceanic 

ConAC are not of riverine or terrestrial origin (Wagner et al., 2019a). This finding contrasts 

with many of the previous studies that assume a land-derived origin of ConAC in the 

oceans (e.g., Dittmar and Koch, 2006; Jaffé et al., 2013). The finding of Wagner et al. 

(2019a) also suggests that oceanic ConAC can be produced by non-pyrogenic processes 

in the ocean, especially considering the high photo-degradability of ConAC during sunlit 

riverine export and the likelihood of ConAC not reaching the mouths of rivers whatsoever.  

In this Chapter, I present the first quantitative evidence for the previously proposed 

formation of non-pyrogenic ConAC in the terrestrial environment employing the BPCA 

assay. I have collected two pine wood boards from decks attached to residential houses. 

The decks were assembled with iron nails more than 10 years ago and were exposed to 

wetting and drying events by the natural weathering processes. Upon recent dismantling 
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of the decks, the obtained boards were observed to have undergone a charring-like 

process (“charcoalification”) in the contact zone between the boards in close proximity to 

the Fe nails used to connect the boards. Figure 1 shows photographs of the observed 

charcoalification next to the iron nails in both wood samples (Pine 1 and 2). Because the 

charcoalification was limited to the junction of two boards, the observed transformation 

occurred under dark conditions and photochemistry was eliminated as being responsible 

for the alteration. Portions of the boards remote from Fe nails appeared to be virtually 

intact mainly indicating that microbial decomposition of the wood has been retarded. It 

appears that the charcoalification is catalyzed by Fe and very likely due to Fenton 

chemistry. To evaluate the chemical changes that have occurred, material from two 

locations has been obtained for each sample – the blackened solid, hereafter referred to 

as a “Fe-exposed sample” and trimmings of wood far from the nail, referred to as a 

“control”. In contrast with previous studies by Chen et al. (2014) and Waggoner et al. 

(2015), large amounts of sample were available which allows for the application of 

numerous analytical techniques and performing “comprehensive analysis”. If ConAC 

were created during the decade-long exposure to nails, understanding of this non-

pyrogenic process and unveiling its by-products would be critical for properly constraining 

the fluxes and accumulation of pyrogenic organic matter in the environment.  
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2. MATERIALS AND METHODS 
 

2.1. Sample Extraction  
 

Wood specimens were rinsed with laboratory-grade MilliQ water (18.1 mΩ) and air 

dried under cover. Charcoalified wood pieces from the areas in close proximity to the nails 

were sampled with pre-combusted tweezers. Wood samples remote from the nail were 

sampled using a pre-combusted wood scraper. Sampling was done from numerous 

“control” and “Fe-exposed” zones to obtain representative samples. All samples were 

ground and sieved (Mesh #80, 0.177 mm opening) to fine powders.  

 
2.2. Elemental analysis 
 

Elemental analysis for carbon (C%), hydrogen (H%), and nitrogen (N%) was 

performed using a Thermo Finnigan FlashEA 1112 elemental analyzer fitted with a CHN 

column. Samples were analyzed in triplicate and calibrated to a five-point external 

calibration curve of nicotinamide (CE Elantech, Inc.). Empty tin capsules were analyzed 

as blanks and to evaluate for sample carryover.  

Metal (Cu% and Fe%) analysis was performed after ashing 20-30 mg solid 

samples at 600 OC in a temperature-controlled oven for 24 hours. The solid residue was 

then digested with 5 mL aqua regia (HNO3:HCl = 1:3 molar ratio) for 12 hours, and the 

acid was evaporated in a sand bath at 70 OC. Then, 5 mL 65% HNO3 were added and 

allowed to digest for 6 hours, after which the acid was again evaporated in a sand bath 

at 70OC. HNO3 was added once more and evaporated after the digestion. Lastly, 5 mL 

2% HNO3 and ~1 mg of La(NO3)3 were added, and the nitrates formed during the 

digestions were dissolved with the assistance of a 10-minute sonication. The solutions 

were filtered using 0.2 µm PTFE filters and immediately analyzed. 

Metal quantification was performed on a Shimadzu AA-7000 atomic absorption 

spectrometer using a flame atomizer. Copper nitrate (1000 ppm, Acros Organics) and 

iron nitrate (10000 ppm, ASSURANCE) were used for external calibration. Instrument and 

procedural blanks were used to evaluate for contamination and sample carryover.  
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2.3. Solid-state Nuclear Magnetic Resonance (NMR) analysis 
 

NMR analysis was performed with untreated dried powdered samples. Samples 

were packed in a 4 mm Zirconia (ZrO2) rotor with a polychlorotrifluoroethylene (Kel-F) 

cap. Analysis was performed on a 400 MHz (9.4 Tesla) Bruker BioSpin AVANCE II 

spectrometer fitted with a 4 mm HCN MAS probe at the College of Sciences Major 

Instrumentation Cluster (COSMIC) facility at Old Dominion University (Norfolk, VA). One-

dimensional quantitative 13C spectra were acquired using the recently developed multi-

pulse cross-polarization (MultiCPMAS) pulse program (Johnson and Schmidt-Rohr, 

2014). Samples were spun at the magic angle at 14 kHz and analyzed using relaxation 

delay of 1 s, 5000 scans, 5 cross-polarization segments, and a total contact time of 3.30 

ms. The obtained spectra were phased, calibrated to an external adamantane standard 

(Earl and Vanderhart, 1982), and multiplied by an exponential window function (EM) of 

50 Hz. Spectra were then baseline-corrected and integrated in the following ranges: 

Methyl: 0 – 20 ppm, Methylene: 20 – 45 ppm, O-Alkyl: 45 – 90 ppm, di-O-Alkyl: 90 – 110 

ppm, Aryl: 110 – 146 ppm, Aryl-O: 146 – 165 ppm, Carboxyl/Ester (COO): 165 – 184 

ppm, Carbonyl (CO): 184 – 220 ppm.  

 

2.4. Benzenepolycarboxylic acids (BPCA) analysis 
 

Dried powdered samples, no more than 5 mg carbon-equivalents (Kappenberg et 

al., 2016), were weighed in 25-mL glass ampules. Concentrated nitric acid (2 mL, 65% 

HNO3, J.T. Baker, trace metal grade) was added and the ampules were allowed to 

demineralize for 15 min (Wagner et al., 2017a). Then, they were flame sealed and 

thermolyzed in a programmable oven for 9 hours at 170 OC. After the digestion, the nitric 

acid was evaporated at 60 OC in a sand bath under a gentle stream of ultrapure N2 gas 

(Airgas, UHP300). The BPCA-containing residue was then dissolved in 2 mL of 0.6 M 

phosphoric acid and filtered using a 0.2 µm PTFE filter into an autosampler vial. Only 

benzenehexa- (B6) and benzenepentacarboxylic (B5) acid markers were quantified as 

these markers have been found to be most reliable as being produced only by ConAC 

molecules (Stubbins et al., 2012; Wagner et al., 2018). In contrast, benzenetri- and 
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benzenetetracarboxylic acids can be produced after the nitric acid oxidation of 

ligninaceous molecules (Kappenberg et al., 2016; Bostick et al., 2018). B6 and B5 were 

quantified chromatographically on an Agilent 1100 high-performance liquid 

chromatography (HPLC) system. Separation was achieved utilizing an organic-free 

gradient of 0.6 M phosphoric acid (pH = 1) and phosphate buffer (20 mM, pH = 6) on an 

Agilent Poroshell 120 Phenyl-Hexyl (4.6 x 150 mm, 2.7 µm) column following procedures 

outlined by Wagner et al. (2017a). Injection volumes were varied from 5 – 20 µL and the 

separated compounds were detected spectrophotometrically at 254 nm at ambient 

temperature. The B5 and B6 peaks eluted at characteristic times and were quantified 

using external calibration curves. The concentration of these two markers (in nM) were 

related to the initial concentration of ConAC (in µM carbon-equivalents) following Eq. 1 

below (Stubbins et al., 2015).  

 

 ConAC = 0.0891 × (B5 + B6)0.9175 Eq. 1 

 

The calculated ConAC content is then normalized to the amount of organic carbon 

(OC) that was oxidized to result in a ConAC/OC value (in weight percentage, wt.%). 

ConAC contents quantified using this approach are directly comparable to the recent 

pyrogenic organic matter literature (e.g., Dittmar et al., 2012; Jaffé et al., 2013; Wagner 

and Jaffé, 2015; Wagner et al., 2015a, 2019a,b; Drake et al., 2020). The method was 

evaluated using the Suwannee River natural organic matter standard (SRNOM, 1R101N) 

from the International Humic Substances Society (IHSS) and BPCA recoveries were 

comparable to previously published values (Wagner et al., 2017a). 

 
2.5. Base-solubilization of organic matter 

 
Base-extraction was selected as the method for obtaining a representative liquid 

extract of the solid wood samples. It was performed using sodium hydroxide (Fisher, 

Certified grade) at pH = 12 at a ratio of 0.5 g sample/100 mL extractant. Suspensions 

were vigorously stirred on a shaker plate for 24 hours. Then, the supernatant is removed 

and substituted with new 100 mL of extractant. The extraction was done three times over 
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3 x 24 hours to result in a total of 300 mL base-extract of each sample. Base-extracts 

were then filtered through pre-combusted 0.7 µm glass-fiber filters (GFF, Whatman, 47 

mm diameter) and cation-exchanged using a Dowex 50Wx8 resin (Acros Organics). A 

procedural blank of just sodium hydroxide was processed the same way. All extractions 

were performed under an inert (N2) atmosphere. The procedure followed the IHSS 

guidelines and is evaluated and described in greater detail elsewhere (Hatcher et al., 

2019). Carbon content of the final extracts was quantified using a Shimadzu Scientific 

total organic carbon analyzer (TOC-VCPH) with potassium hydrogen phthalate (Nacalai 

Tesque, JIS special grade) external calibration curves.  

 
2.6. Ultrahigh resolution mass spectrometry (FT-ICR-MS) 

 
Cation-exchanged base-extracts were diluted to 50 mg·L-1 carbon-equivalents (50 

mgC·L-1) and then further diluted with methanol (CH3OH, Fisher Scientific, Optima LC-

MS grade) to give 1:1 CH3OH:H2O mixtures. Samples were analyzed on a Bruker 

Daltonics 12-Tesla Apex Qe FT-ICR-MS housed in the COSMIC facility. The instrument 

is calibrated daily with a polyethylene glycol standard and instrument blanks are analyzed 

in-between samples to assure for no sample carryover. Samples are infused into the 

Apollo II electrospray ionization (ESI) source at flow rate of 120 µL/h and molecules are 

ionized in negative mode. Ionization voltages are optimized on a per-sample basis to 

assure for uniform spray currents across the dataset. The ionized molecules are collected 

in a hexapole, filtered by a quadrupole for a mass range of 200-1200 m/z, pre-

concentrated in a second hexapole, and transferred into the ICR cell where 300 transients 

were collected. They were co-added, and the resultant free induction decay is zero-filled 

and sine-bell apodized. After a fast Fourier transformation, spectra are calibrated to 

naturally abundant fatty acids, dicarboxylic acids, and compounds belonging to the CH2-

homologous series (Sleighter et al., 2008). Peaks with signal-to-noise above 3 were 

exported to MATLAB where salt, blank, and 13C isotopologue peaks were removed from 

each spectrum. Molecular formulas were assigned to each mass list using the Molecular 

Formula Calculator from the National High Magnetic Field Laboratory (Tallahassee, FL). 

Formulas were restricted to elemental composition of 12C5-∞, 1H0-100, 16O0-50, 14N0-10, 32S0-
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4, and 31P0-2, and the obtained formulas were refined following previously published 

criteria (Kujawinski and Behn, 2006; Koch et al., 2007; Stubbins et al., 2010). No 

ambiguous assignments were left in the final formula lists (i.e., for each mass spectral 

peak there was only one molecular formula). For simplicity, only formulas containing 

carbon, hydrogen, and oxygen elements are used hereafter (i.e., CHO formulas). 

Molecular formulas are further classified based on their modified aromaticity index 

(AIMOD), a measurement of the double-bond density in a molecule (Koch and Dittmar, 

2006, 2016). Compounds with AIMOD = 0 are classified as “aliphatic”. Molecules with 0 < 

AIMOD < 0.5 have either an aromatic moiety that is highly functionalized with aliphatic 

groups or have olefinic/alicyclic bonds. Molecules with 0.5 ≤ AIMOD < 0.67 are classified 

as “aromatic”. Formulas with AIMOD ≥ 0.67 (Koch and Dittmar, 2006, 2016) and number 

of C-atoms ≥ 15 (Osterholz et al., 2016) are classified as condensed aromatic (ConAC). 

The calculation for this index is shown below. 

 

 
AIMOD =

1 + C − 1
2 O − S − 1

2 (N + P + H + Cl)

C − 1
2 O − N − S − P

 Eq. 2 

 

 

3. RESULTS 
 

3.1. Structural characterization using one-dimensional NMR spectroscopy 
 

Bulk structural characteristics of the two samples before and after exposure to 

Fenton chemistry were determined using one-dimensional nuclear magnetic resonance 

(NMR) spectroscopy. Solid-state 13C NMR analysis is a classical approach for evaluating 

solid environmental matrices (Simpson and Simpson, 2009; Mao et al., 2017), and 

utilizing the 13C multi-pulse cross-polarization magic angle spinning technique (13C 

MultiCPMAS, Johnson and Schmidt-Rohr, 2014) allows for quantitative reporting of the 

total content of the various 13C functionalities in the studied samples. Figure 2 shows the 

results obtained for the two samples. 
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The obtained 13C MultiCPMAS NMR spectra for the control samples were highly 

characteristic for woody samples (Gil and Neto, 1999). Lignin and carbohydrate 

signatures are easily identified and seem to predominate in the spectra, as these 

biopolymers are of high abundance in woody biomass (Hedges et al., 1985). Lignin’s 

presence is identified by the peaks associated with its methoxy (CH3O-, 56 ppm) and 

phenolic (aryl-O, 147 ppm) functionalities. Cellulose’s glycosidic units present seven 

peaks in the area between 60 and 110 ppm (C1-C6,). There are several peaks in the 

region of 0 – 45 ppm, which is where methyl (CH3-) and methylene (-CH2-) functionalities 

usually resonate. These are generally associated with acetylated glucose units in 

hemicelluloses and resinous substances. Pine 1 is a pressure-treated wood, thus it is 

also expected that some of aliphatic resonances to originate from alkyl groups in the 

quaternary ammonium ligands of the pressure-treatment reagent (Freeman and McIntyre, 

2008). The peak at 172 ppm is associated with carboxyl groups (-COOH) or derivatives 

(-COOR) such as amides or esters. It is likely that this peak corresponds to acetyl esters 

of hemicellulose, cellulose lactones, and carboxyl groups of gluconic and glucuronic acids 

of oxidized cellulose.  

Nearly all peaks found in the Fe-exposed samples are present in the control 

samples, which is expected as both samples are from the same parent source. The 

distribution (peak intensity) of carbon moieties has changed after the long-term Fenton 

oxidation – carbonyl, carboxyl, aryl-O, and aryl increase showing that the exposure to Fe 

in the nail over decade-long exposure period has enriched the two exposed samples in 

aromatic structures at the expense of degradation of cellulosic materials (as evident by 

decrease in di-O-alkyl and O-alkyl resonances). Carbohydrates are labile towards 

oxidative processes and their degradation pathways via Fenton reaction has been 

previously studied (Moody, 1963; Morelli et al., 2003). This is in agreement with the 

presented data. It must be noted that the abundance of iron in the exposed samples (and 

copper in the Pine 1 samples) may have quenched some of the aromatic signals (Pfeffer 

et al., 1984; Botto et al., 1987), thus the abundance of aromatic carbons in the Fe-

exposed samples is likely much greater.  
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3.2. Quantification of condensed aromatic compounds (ConAC)  
 

The obtained solid samples were subjected to nitric-acid digestion for BPCA 

quantitative assays along with elemental analyses (Table 1).  

 

 

Table 1. Elemental analysis and benzenepolycarboxylic acids (BPCA) quantification of 
condensed aromatic compounds (ConAC) in the two pine wood samples. 

Sample C 
(wt.%) 

H 
(wt.%) 

H/C 
(mol/mol) 

ConAC/OC 
(wt. %) 

Fe  
(wt.%) 

Cu 
(wt.%) 

Pine 1 
Control 

46.2 
    ± 0.6 

5.8 
    ± 0.2 

1.49 
  ± 0.06 

0.23 
     ± 0.02 

Below 
LOD 

0.347 
   ± 0.015 

Pine 1 
Exposed 

50.1 
    ± 0.6 

5.2 
     ± 0.1 

1.23 
        ± 0.03 

1.02 
        ± 0.03 

4.413 
  ± 0.650 

0.775 
 ± 0.017 

       
Pine 2 

Control 
46.1 

         ± 0.4 
6.0 

       ± 0.1 
1.55 

    ± 0.03 
0.25 

       ± 0.01 
Below 
LOD 

0.026 
   ± 0.002 

Pine 2 
Exposed 

47.0 
               ± 2.0 

5.2 
        ± 0.2 

1.33 
   ± 0.03 

1.12 
        ± 0.02 

4.733 
   ± 0.153 

0.050 
  ± 0.003 

*LOD = limit of detection 

 

 

The bulk elemental analysis reveals an enrichment in carbon and 

dehydrogenation, which results in the decrease of H/C ratio for both samples (14% and 

17% decrease, respectively) indicative of aromatization of the samples after exposure to 

Fenton chemistry in agreement with the presented NMR data earlier. To quantify any 

ConAC in these samples, the BPCA analysis was employed. While it certainly has 

limitations, it is currently considered to be the best quantitative tool for quantifying ConAC 

in environmental matrixes (Hammes et al., 2007; Wagner et al., 2018). Here, the ConAC 

quantity (ConAC/OC in weight %) is reported after scaling the B6 and B5 concentrations 

(Stubbins et al., 2015) and normalizing the data to organic carbon in the sample. 

Interestingly, there are detectable amounts of ConAC in both control samples. Given that 

the boards of both decks were exposed to natural conditions over 10+ years, it is likely 

that some of the Fenton-produced ConAC has diffused throughout the boards or that 
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ConAC are produced in the control samples at low abundances. It is observed that both 

Fe-exposed samples contain about 1% of ConAC, which is low given the extent of 

charcoalification determined by visual inspection (Figure 1). Regardless, the increase of 

ConAC in these samples indicated that ConAC have been produced during the decade-

long exposure of wood to the nails, a truly non-pyrogenic process.  

An alternative explanation is that due to carbohydrate mineralization (or other 

radical-labile molecules) by Fenton chemistry, the ConAC that was already present in the 

unexposed zones became concentrated in the regions of Fe-exposure. However, 

occurrence of ConAC in the unexposed regions of the wood could have only resulted via 

copper Fenton-like chemistry (Pham et al., 2013). While sorption of aerosol-derived 

ConAC into the wood is possible (Bao et al., 2017; Wagner et al., 2019b), no ConAC has 

been observed in fresh wood as measured by the BPCA analysis in a recent study 

(Bostick et al., 2018). Thus, because the control of Pine 2 also has ConAC of 0.25%, and 

is poor in Cu (Table 1), Copper Fenton-like chemistry is very unlikely to be the source of 

it. Thus, it is much more plausible that ConAC from the Fe-exposed regions became 

redistributed through the woods with the assistance of water dissolution throughout the 

decade-long exposure. 

  

3.3. Molecular Characterization using Ultrahigh Resolution Mass 
Spectrometry (FT-ICR-MS) 

 

To investigate the 12-year exposure on the molecular level, ultrahigh resolution 

mass spectrometry (FT-ICR-MS) was performed. This technique has become extremely 

popular in organic geochemistry as it is able to resolve the thousands of molecules in 

complex environmental samples and evaluate their composition (Hertkorn et al., 2007; 

Sleighter and Hatcher, 2007; Hertkorn et al., 2008; Zhang et al., 2020). While this 

instrument only measures mass-to-charge values for all ionized molecules in a sample, 

its ultrahigh precision allows for a unique molecular formula to be assigned to each mass 

peak. While not quantitative, it is another common tool for detecting the presence of 

ConAC in various samples (Hockaday et al., 2007; Wagner et al., 2018). Similar to the 

assumption employed for the BPCA method, formulas with modified aromaticity index 



18 
 

AIMOD ≥ 0.67 (Koch and Dittmar, 2006, 2016) are often labeled as black carbon (e.g., 

(Stubbins et al., 2010, 2017; Roth et al., 2019), and if they contain a N or S atom, they 

are even referred to as black nitrogen (Wagner et al., 2015b) and black sulfur (Hertkorn 

et al., 2016), respectively. Given that the utilized FT-ICR-MS instrument did not have an 

ionization source suitable for analyzing solid samples, the four samples of this study were 

base-extracted using dilute sodium hydroxide. This is a classical extraction technique in 

the study of solid environmental matrices such as soils, and it has been shown that it 

does not alter the structural composition of the evaluated sample (Hatcher et al., 2019). 

Figure 3 shows the molecular formulas obtained for each wood sample before and after 

Fenton exposure. The formulas are classified using a presence/absence approach 

(Sleighter et al., 2012) in three categories: Fenton-labile (formulas present in the control 

samples); Fenton-resistant (formulas present in both samples); and Fenton-produced 

(formulas present in the Fenton-exposed sample).  
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After exposure to Fenton chemistry there are clear shifts in molecular composition. 

For both samples, molecular formulas with higher O/C ratio and lower H/C ratio evolve, 

which is also accompanied by loss of numerous aliphatic/olefinic compounds (blue 

markers). The compounds are likely carboxyl-containing aliphatic molecules (CCAM) 

recently found and proposed to be important in the formation of aromatic and condensed 

aromatic compounds in soils (DiDonato et al., 2016; DiDonato and Hatcher, 2017). The 

newly formed Fenton-produced molecules are lignin-like, but there are also some ConAC 

formulas (AIMOD ≥ 0.67) formed. If this data is interpreted using the traditional approaches 

in the literature (e.g., Stubbins et al., 2010, 2017; Roth et al., 2019), it can be concluded 

that ConAC are being produced after Fenton exposure. This data complements the trends 

presented earlier using BPCA analysis and is in agreement with the previously published 

mechanisms for formation of ConAC from lignin (Chen et al., 2014; Waggoner et al., 

2015). The observed changes are also consistent with humification reactions in soils 

(Stevenson, 1994; Guggenberger, 2005) which are known to produce aromatic and 

condensed aromatic structures (Chang et al., 2018; Gerke, 2019). This likely validates 

the hypothesis made previously by DiDonato et al. (2016) that the most stable fraction of 

soil organic matter, the humic acid, is derived from lignin which has been processed via 

radical electrocyclization reactions. However, a more in-depth analysis of these samples 

using humic acid extractions must be done to fully evaluate this proposition. A recent 

study determined that microbe-induced humification produces condensed moieties (Chen 

et al., 2020), also in agreement with that presented here in which Fenton exposure leads 

to humification.  

Additional evidence for the observed molecular changes can be obtained by 

evaluating the common formulas among the two samples being compared in each of the 

woods. Plots of the relative mass spectrometric abundance of individual peaks that are 

common to the Fe-exposed samples versus those in the control samples are indicative 

of how much these molecules are affected by the Fenton reaction (Figure 4). A correlation 

with a high coefficient of determination (R2) would indicate that these peaks are not 

affected by the Fenton oxidation (Sleighter et al., 2012). The low R2 values of Pine 1 and 

Pine 2 (0.0395 and 0.0185, respectively) indicate that there are significant changes in the 

molecular abundance of these molecules.  
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Thus, while the common formulas among the control and Fe-exposed samples of 

each wood specimen are operationally classified as “resistant” to Fenton-exposure, solely 

because they are detected in both samples, a closer inspection reveals significant 

changes in their mass spectrometric abundances. It is possible that the Fenton-induced 

changes are insufficient to cause them to disappear and be counted as formulas that are 

Fenton-labile or Fenton-produced. Additional evaluation using three-dimensional van 

Krevelen diagrams allows for observing these changes in better detail (Figures 5 and 6). 

Shifts of the mass spectrometric abundance of the common formulas is easily depicted 

by the percent change plots on the right panels indicating that the molecular composition 

shifts to higher oxygenation and lower hydrogenation. These trends parallel with what is 

observed above (Figure 3) using only unique formulas for each sample, and with the 

quantitative solid-state 13C NMR data (Figure 2), further validating my observations.  
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4. DISCUSSION 
 

4.1. Non-pyrogenic formation of ConAC in the environment 
 

The evident non-pyrogenic formation of ConAC, and the fact that none of the wood 

boards have never been exposed to combustion, is strong evidence that ConAC in the 

environment can also originate from non-pyrogenic sources, validating previously made 

propositions (Chen et al., 2014; Waggoner et al., 2015). It must be noted that one of the 

woods presented here (Pine 1) had been pressure-treated, and one may argue that the 

chemical used (typically copper complexes with alkylated quaternary ammonium ligands, 

Freeman and McIntyre, 2008) is responsible for the observed trends. However, the close 

association of the charcoalification in close proximity to emplaced Fe nails suggests that 

Fenton reactions driven by Fe was dominant in the locality of the nails. Perhaps a Cu-

driven Fenton oxidation (Pham et al., 2013) was occurring throughout and in the 

remainder of the wood remote from nails – the control. This could possibly explain the 

existence of BPCAs in the control of that sample. While there is no unambiguous 

knowledge if Pine 2 had been pressure treated, analysis of nitrogen using elemental 

analysis revealed no detectable amounts of N (data not shown). Additionally, copper 

measurements (using atomic absorption spectroscopy) of Pine 2 revealed that the copper 

content is comparable to that of untreated wood (Etiégni and Campbell, 1991) providing 

additional evidence that this sample has not been pressure-treated (Table 1). Thus, 

unless the sample was treated with a highly unusual reagent, Pine 2 can be considered 

to be untreated. This validates the observed trends for Pine 1 proving that the observed 

compositional changes are not induced by its pressure treatment.  

Additional evidence for this non-pyrogenic process is provided by a recently 

acquired wood sample of maple (Figure 7), which has been exposed for one year to iron 

nails and it is known that this wood plank has not been pressure-treated. While there is 

not enough material to perform BPCA analysis and quantitatively confirm the formation 

of ConAC, it is clear that even after a year visual charcoalification has occurred.  
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Figure 7. Charcoalification of fresh maple wood through exposure to iron nails. The blue 
arrow indicates a zone with no visible charcoalification. The red arrows show where 
exposure to Fe nails has occurred over a period of one year. 
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The evidence shown in this Chapter has significant implications to the wildfire 

biogeochemistry community, because for over 20 years much of the research is based 

on the assumption that all ConAC observed in the environment are exclusively derived 

from combustion processes (mainly forest fires, but also various anthropogenic activities). 

Previous evaluations of the BPCA methodology have raised concerns that this method 

may falsely identify ConAC as being pyrogenic (Hammes et al., 2007; Zimmerman and 

Mitra, 2017), and the data presented here verifies this argument. As previously suggested 

(Chang et al., 2018), the BPCA method is an excellent technique for quantifying ConAC, 

but it cannot distinguish between pyrogenic (from pyOM) and non-pyrogenic ConAC. 

Thus, when this method is utilized, I strongly advise for a careful data interpretation and 

determination if non-pyrogenic sourcing of ConAC is possible in the particular study. 

However, it is likely that this may not be fully possible, and more complex techniques 

involving isotopic measurements may need to be employed (e.g., Wagner et al., 2017a). 

This finding complements recent observations which also raise concerns about the 

generally simplistic model of pyDOM cycling proposed by Jaffé et al. (2013). A recent 

study made the surprising discovery that ConAC found in the global ocean have a 

different stable-carbon isotopic (δ13C) signature than that of ConAC from terrestrial 

vegetation exported by rivers. The researchers employed a method which determines the 

δ13C-value of BPCAs (Wagner et al., 2017a), allowing them to evaluate the source of 

ConAC. The surprising statistically-significant difference between riverine and oceanic 

ConAC carbon isotopic signature contrasts with the many previous published studies 

implying that oceanic ConAC are sourced by rivers (Dittmar and Koch, 2006; Hockaday 

et al., 2006; Dittmar and Paeng, 2009; Dittmar et al., 2012; Jaffé et al., 2013; Wang et al., 

2016; Marques et al., 2017; Coppola et al., 2019; Jones et al., 2020). Oceanic ConAC 

turn out to have a carbon isotopic signature similar to that of phytoplankton-produced 

biomass, as well as marine particulate and dissolved organic carbon (Beaupré, 2014) 

suggesting that the ConAC are sourced from a non-pyrogenic process in the ocean. The 

research presented in this Chapter signifies and provides quantitative evidence of the 

proposed Fe-stimulated electrocyclization reactions (Chen et al., 2014; Waggoner et al., 

2015) which could be a possible pathway for a non-pyrogenic formation of ConAC in 

oceanic environments. This has been recently suggested as an important process in 
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hydrothermal vents zones (Estes et al., 2019), but studies have yet to evaluate the carbon 

isotopic composition and to analytically constrain the fluxes and sourcing of ConAC in the 

global ocean from such sources. 

Clearly, the long-held assumption that “all condensed aromatic organic matter (i.e., 

ConAC) in the environment is exclusively pyrogenic” is questionable in light of the findings 

presented here, and this must be considered in the future research of wildfire and 

terrestrial/oceanic biogeochemistry. While the study of this Chapter reports only of ~1% 

of ConAC being produced over 10+ years, this can be a significant fraction of the 10% 

ConAC in rivers (Jaffé et al., 2013) and the 14% of ConAC in soils (Bird et al., 1999; 

Hammes et al., 2007; Cusack et al., 2012; Reisser et al., 2016). It is likely that this 

relatively low abundance of ConAC in these visually charcoalified samples is a 

consequence of a majority of ConAC being washed over time from these areas 

Unfortunately, the data presented in this chapter is insufficient to quantify the potential 

overestimation of pyOM in the soil and aquatic environments, and future studies need to 

address this process using quantitative techniques and evaluate its significance. Non-

pyrogenic ConAC and fire-produced ConAC (“black carbon”) do not seem to be 

distinguishable with the traditional techniques for identifying ConAC in the environment 

(FT-ICR-MS and BPCA quantification) which creates a serious challenge for geochemists 

who study pyrogenic organic matter. It is essential that future studies focus on exploring 

these substances, evaluate their structures, isotopic signatures, heteroatomic content, 

and fluxes in the environment. The presence of this non-pyrogenic ConAC creates a 

serious challenge to the current views on cycling of lignin and pyOM/pyDOM in the 

environment. This must be overcome in the future by advances in the chemistry and 

analysis of organic molecules the environment in order to fully understand the how pyOM 

and pyDOM are involved in the global biogeochemical cycles.  

 

4.2. Constant reworking of fresh plant litter by reactive oxygen species into 
steady fluxes of aromatic and condensed aromatic molecules 

 

Reactive oxygen species (ROS) are well known to hydroxylate and cleave the 

monolignol units of lignin during plant litter degradation (also known as humification) 
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yielding muconic acids (Umezawa et al., 1983; Umezawa and Higuchi, 1987; Higuchi, 

1990, 1993), species that are highly reactive due to the presence of olefinic bonds (C=C) 

in their structures. These acids can then participate in cyclization reactions that yield 

aromatic compounds (including ConAC), as Waggoner et al. (2015) described. The shift 

of molecular composition from aliphatic to aromatic presented earlier is in agreement with 

their proposed Diels-Alder-like reactions. ROS are highly ubiquitous in soils, and it is 

suggested that they are essentially important in the processing of soil organic matter. 

Trusiak et al. (2018) recently observed that hydroxyl radicals are produced in Arctic soils 

coincident with rain events that supply dissolved oxygen to the soil surface. They suggest 

that Fe2+ reacts with dissolved oxygen to produce hydroxyl radicals through Fenton 

chemistry yielding Fe3+. The oxidized Fe3+ is then reduced back to Fe2+ at the expense of 

organic matter which is being oxidized. In another study of rot in fruits, Morelli et al. (2003) 

suggest that oxygen reacts with Fe2+ ligated to organic matter to produce a superoxide 

radical that can abstract hydrogens from water or organic matter to form hydrogen 

peroxide. H2O2 can then react with Fe2+ yielding hydroxyl radicals, which can then attack 

organic matter constituents of fruits such as carbohydrates and proteins. These studies 

show that oxidation of soil organic matter with oxygen-containing radicals is continuous, 

with ROS radicals being constantly regenerated at the expense of the organic matter 

being oxidized. These findings have an implication that radical-driven processes are 

continuous in the environment, and can constantly produce aromatic substances, as well 

as non-pyrogenic ConAC, for prolonged periods of time. Because the exposure to Fenton 

chemistry is an oxidative process, oxygenation of organic matter is inevitable, thus 

enabling the solubilization of organic matter. It has been found that a similar oxidative 

process of charcoal, photo-oxidation, can produce and leach dissolved ConAC from 

particulate charcoal (Roebuck et al. 2017). Thus, it is expected that Fenton chemistry not 

only produces ConAC, but also facilitates its dissolution and transport to the aquatic 

environment. Once mixed with fire-derived ConAC in the global pool of dissolved organic 

matter, there is no current way of analytically distinguishing non-pyrogenic from pyrogenic 

ConAC, which can bias measurements and lead to over-estimations of fire-derived 

organic matter in the different environmental reservoirs.  
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My proposition of constant formation of non-pyrogenic ConAC in soils can possibly 

explain recent unusual findings in the wildfire biogeochemistry literature. A study 

evaluating ConAC concentrations and radiocarbon age across the Amazon River 

(Coppola et al., 2019) identified significant fluctuations in the radioisotopic composition of 

ConAC. Their study, in parallel with many others (Jaffé et al., 2013; Güereña et al., 2015; 

Wang et al., 2016; Wagner et al., 2017b) reported that rivers globally export dissolved 

ConAC at a constant rate. Other studies have found that the riverine export of ConAC is 

constant and is not affected by fire history (Dittmar et al., 2012; Ding et al., 2013; Marques 

et al., 2017). These studies report of no correlation between the production of charcoal in 

the upstream catchments and corresponding ConAC concentrations in rivers downstream 

indicative that the ConAC flux is independent of how long ago a fire had occurred. If these 

ConAC were truly sources by pyOM, their concentrations should increase immediately 

after a forest fire, and this was not observed. Another study also reports of a lack of 

correlation between ConAC in soils and fire history of these regions (Kane et al., 2010), 

which is also raising questions, because it is expected that soils with previous exposure 

to fire will be enriched in ConAC.  

 While these studies attempted to evaluate the export and environmental dynamics 

of pyOM and pyDOM, they are basing their findings on the assumption that the measured 

ConAC using the employed BPCA analysis is exclusively of pyrogenic origin. Based on 

the findings presented in this Chapter, it is likely that the aforementioned studies have 

quantified both fire-derived ConAC (“black carbon”) and non-pyrogenic (Fenton and 

microbial-derived) ConAC that are both leached from soils and sediments. Specifically, 

the reports by Ding et al. (2013) and Kane et al. (2010) that ConAC quantities are 

unaffected by recent fire events raise concerns as a recent fire event must increase the 

ConAC contents (in riverine DOM and soil organic matter, respectively). I hypothesize 

that the reported ConAC in these studies is actually Fenton-derived that is continuously 

being produced during plant litter degradation of soils by microbes or Fenton chemistry, 

and then continuously transported in rivers. The fire-derived ConAC flux that Ding et al. 

(2013) targeted to measure was likely masked, I hypothesize, by a larger constant flux of 

non-pyrogenic ConAC. The observation of relatively low abundance of ConAC (~1%) in 

the wood samples of my study after Fenton exposure is possibly a result of such a 



31 
 

constant formation and leaching of ConAC from the wood planks into the soil beneath the 

two houses. This would result in a continuous ConAC flux as reported by Ding et al., 2013. 

In a recent study observing the non-pyrogenic formation of ConAC in soils by microbes 

(via similar radical-based reactions to those discussed here here) it was estimated that 

non-pyrogenic pathways may be annually producing 3 – 12 % of ConAC in soils (Chen et 

al., 2020). Thus, it is likely that Fenton-derived ConAC are significantly contributing to the 

globally active pool of ConAC, a finding that is significantly at odds with the many studies 

implying a combustion history.  

 

5. CONCLUSIONS 
 

While it is without a doubt that ConAC are produced in pyrolytic processes, here I 

present quantitative evidence for an abiotic non-pyrogenic process that can be important 

to the sourcing of pyrogenic organic matter in the environment. Results from this study 

indicate that ligninaceous aromatics and aliphatic compounds (such as CCAM) can 

contribute to the formation of non-pyrogenic ConAC in soils and a fraction of the 

presumed charcoal-derived pyOM in soils may be Fenton-derived. Results from this study 

also validate the previous propositions by Chen et al. (2014) and Waggoner et al. (2015) 

and indicate that the sources of ConAC in the environment must be re-evaluated in future 

studies to account for any non-pyrogenic contributions.  

 

 

 

 

 

 

 

 

 

 

 



32 
 

CHAPTER III 

 

PHOTOCHEMISTRY AFTER FIRE: STRUCTURAL 

TRANSFORMATIONS OF PYROGENIC DISSOLVED ORGANIC 

MATTER ELUCIDATED BY ADVANCED ANALYTICAL TECHNIQUES 

 

 

PREFACE 
 

The contents of this chapter have been published in 2020 in the journal Geochimica et 

Cosmochimica Acta. The data included in this chapter have been published in the data 

repository Mendeley. Full citations for the manuscript and data are provided below. The 

formatting of the manuscript has been slightly altered to fit it in the continuity of this 

Dissertation. Copyright permission has been obtained from the publisher (Elsevier) and 

is provided in Appendix A.  
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P.G. (2020) Photochemistry after fire: Structural transformations of pyrogenic dissolved 

organic matter elucidated by advanced analytical techniques. Geochim Cosmochim Ac 

290, 271-292.  
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P.G. (2020) Photochemistry after fire: Structural transformations of pyrogenic dissolved 

organic matter elucidated by advanced analytical techniques. Mendeley Data, V1, doi: 

10.17632/sc9ftvtcxn.1 
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1. INTRODUCTION 
 

Pyrogenic organic matter (pyOM) is the pool of compounds that are by-products 

of incomplete combustion of natural organic matter (Goldberg, 1985). A significant 

fraction of pyOM consists of condensed aromatic compounds (ConAC), also commonly 

referred to as “black carbon”. This fraction is a highly complex mixture of molecules with 

variable molecular weight, degree of condensation, degree of oxygenation, and solubility 

in aqueous media (Masiello, 2004; Wagner et al., 2018; Wozniak et al., 2020). Upon 

biomass pyrolysis (such occurs in oxygen-limited wildfire environments), a large fraction 

of the organic matter is volatilized into the atmosphere, and the graphene-like solid 

products are accumulated, and eventually buried in various environmental matrices. This 

solid residue has been presumed to be recalcitrant to further degradation (e.g., Skjemstad 

et al., 2002), and to store carbon for millennia (e.g., Masiello and Druffel, 1998; Ziolkowski 

and Druffel, 2010). Thus, pyOM may effectively sequester carbon, and mediate the levels 

of CO2 in the atmosphere, the primary driver of climate change (Lorenz and Lal, 2014). 

Oxygen-functionalized pyOM molecules, including oxygenated ConAC, can be 

leached by rain and transported to aquatic environments as pyrogenic dissolved organic 

matter (pyDOM, Hockaday et al., 2007; Dittmar and Paeng, 2009; Jaffé et al., 2013; 

Stubbins et al., 2015). Pyrogenic inputs into the various dissolved organic matter (DOM) 

pools have been identified as important components of the globally active cycle of organic 

matter (Druffel, 2004; Lehmann, 2007; Riedel et al., 2016). Thus, elucidating the 

chemistry of pyDOM is paramount to understanding its role and behavior in the 

environment. Furthermore, the estimated annual production of pyOM from forest fires is 

more than enough to account for its build-up in terrestrial environments (Kuhlbusch and 

Crutzen, 1996; Schmidt and Noack, 2000; Czimczik et al., 2003; Forbes et al., 2006). The 

fact that one does not observe massive accumulation of pyOM in soils suggests that there 

are degradative and/or transport pathways that alter the cycling and fluxes of pyOM in the 

environment (Masiello, 2004; Bostick et al., 2018).  

ConAC have been shown to be highly photo-labile (Bostick et al., 2020b), and this 

has been identified as an important pathway for their degradation in the environment 

(Stubbins et al., 2010, 2012). Using size-exclusion chromatography, Wagner and Jaffé 
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(2015) found that ConAC in natural DOM are photo-degraded into smaller compounds. 

This likely renders them more susceptible to bio-degradation (Mopper and Kieber, 2002; 

Bruun et al., 2008; Wagner and Jaffé, 2015; Wagner et al., 2018). However, while 

previous studies have provided valuable information on the cycling of ConAC in the 

environment, they have strictly dealt with natural DOM samples, a highly complex mixture 

of natural and pyrogenic compounds that have aged in the environment for an unknown 

length of time. Environmental aging alters the chemical properties of pyOM, which, for 

example, affects its stability towards oxidative processes (Ascough et al., 2011) as might 

be expected from photo-irradiation by natural sunlight.  

Biochars, which are biomass pyrolyzed under controlled laboratory conditions, 

offer another avenue for studying environmental processes affecting pyOM without 

introducing confounding variables from environmental aging or admixture with DOM from 

non-pyrogenic sources. For example, biochars have been used to study the 

photochemical (Ward et al., 2014; Fu et al., 2016) as well as microbial (Zimmerman, 2010; 

Zimmerman et al., 2011) stability of pyOM. Only a few studies have examined the 

photochemistry of biochar-derived pyDOM (Ward et al., 2014; Fu et al., 2016; Wang et 

al., 2020). These studies have shown agreement in trends with previous photochemical 

studies on environmentally exposed ConAC (Stubbins et al., 2010, 2012; Wagner and 

Jaffé, 2015). In these studies, ConAC were photo-transformed into smaller, more aliphatic 

molecules as well as inorganic carbon via photo-mineralization. Fu et al. (2016), Li et al. 

(2019), and Wang et al. (2020) also showed that upon light-excitation, biochar-derived 

pyDOM produces reactive oxygen species (ROS), which are highly reactive photo-

transients that are involved in various degradative processes (e.g., Scully et al., 2003; 

McNally et al., 2005; Porcal et al., 2013). These aforementioned studies, however, 

focused on chars produced over narrow temperatures (400 or 450 OC), and fire in nature 

occurs over a much wider range of temperatures yielding chars with properties that vary 

along a combustion continuum (Masiello, 2004; Wagner et al., 2018; Wozniak et al., 

2020). Previous studies have shown that pyrolysis temperature and biomass type have a 

significant effect on the molecular composition of pyDOM (Schneider et al., 2010; Santín 

et al., 2016b; Bostick et al., 2018; Wozniak et al., 2020), thus it is likely that they will 

sequentially impact its photo-reactivity.  
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To evaluate the photo-degradation of pyDOM and assess its dependence on 

production temperature and parent feedstock, aqueous extracts from a temperature 

series of biochars were subjected to photo-degradation in a custom-built solar simulator. 

As forest fire temperatures are generally in the 300-500 OC range, but more pronounced 

structural changes to pyOM occur above 600 OC (Santín et al., 2015, 2016b), oak wood 

chars prepared at lower (250 and 400 OC) and higher (525 and 650 OC) temperatures 

were used to representatively evaluate the combustion continuum. A parallel study, 

Bostick et al. (2020b), examined the photo-degradative impacts on total organic carbon 

(TOC), benzenepolycarboxylic acids (BPCA) molecular markers for ConAC, and 

operationally defined optical pyDOM fractions (chromophoric and fluorophoric pyDOM) 

for the same samples. It was observed that 5 – 18 % of the organic carbon was 

mineralized over a 5-day photo-irradiation, with the photo-lability of pyDOM increasing 

with the production temperature (250 < 400 < 525 < 650 OC) of the parent oak char. It 

was determined that the ConAC content was the primary factor for controlling the photo-

lability of pyDOM, and the degree of condensation of ConAC was a secondary factor. A 

comparison of oak versus grass pyDOM from parent chars prepared at the same pyrolysis 

temperature (650 OC) revealed that parent feedstock also has a critical role in pyDOM 

photochemistry. To characterize the photo-transformations at the molecular level, these 

aqueous extracts were examined via Fourier transform – ion cyclotron resonance – mass 

spectrometry (FT-ICR-MS) and nuclear magnetic resonance (NMR) spectroscopy. These 

two parallel studies have allowed us to gain new insights on the photo-reactivity of pyDOM 

leached from chars produced at varied temperatures, as well as to identify the by-

products and pathways of the pyDOM components that are susceptible to photo-

degradation. 

 

2. MATERIALS AND METHODS 
 

2.1.  Preparation of char leachates and photo-irradiation  
 

Chars in this study were obtained by pyrolyzing laurel oak wood (Quercus 

hemisphaerica, 1 cm x 1 cm x 5 cm pieces) either under full atmosphere (250 OC) or 
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under nitrogen gas flow at 400, 525, and 650 OC in a custom-made pyrolyzer. Dwarf 

Fakahatchee grass sheaths (Tripsacum floridanum) were also charred under N2 flow at 

650 OC. Characteristics and details of the production of these solids have been published 

previously (Zimmerman, 2010; Mukherjee et al., 2011; Bostick et al., 2018, 2020b; 

Wozniak et al., 2020). After grinding and sieving to 0.25 – 2.00 mm size particles, about 

10 g of solid biochar material was leached in 400 mL of MilliQ laboratory-grade water 

(18.1 mΩ) for two days in amber vials under dark conditions. A leachate of the parent oak 

biomass was also prepared using shavings of the wood to allow for a representative 

extraction of reference wood DOM. The produced leachates are denoted hereafter with 

the parent biomass preceding the pyrolysis temperature (e.g., Oak 525, Grass 650). 

Further details of the preparation and composition of these leachates can be found in 

their previous studies (Bostick et al., 2018, 2020b; Wozniak et al., 2020). 

Leachates were filtered using mixed acetylated and nitrated cellulose filters (0.45 

µm) and diluted to avoid self-shading effects (leachate absorbance at 340 nm as 

following: Oak Biomass: 0.068, Oak 250: 0.130, Oak 400: 0.138, Oak 525: 0.064, Oak 

650: 0.040, and Grass 650: 0.120). The leachates were then spiked with HgCl2 to prevent 

bio-degradation. Preliminary experiments determined that the addition of HgCl2 does not 

interfere with the utilized NMR or FT-ICR-MS analyses. Leachates were transferred to 

quartz tubes (3-cm diameter) arranged horizontally for photo-irradiation in a custom-built 

photo-incubation chamber. Q-Lab Corporation UV-A lamps were installed to produce UV-

A light (295 – 365 nm, λMAX = 340 nm, 40 watt). This band of the solar spectrum is what 

passes through the ozone layer in the stratosphere, and therefore is the main driver for 

photochemistry in the tropospheric environment (e.g., Mopper and Kieber, 2000, 2002; 

Stubbins et al., 2008). Irradiation was conducted over a period of five days (120 hours) 

though light outputs were approximately 1.2 times more intense than natural sunlight, and 

natural light/dark cycles were not replicated. Thus, while irradiations were not intended to 

replicate natural conditions, the total light exposure was equivalent to that experienced 

over ~12 days (assuming 12 light hours per day). PyDOM samples were collected at time 

0 (“Day 0”) and at the termination of the irradiation (“Day 5”) for all samples except Oak 

400 pyDOM which was sampled at 0 (“Day 0”), 24 (“Day 1”), 48 (“Day 2”), and 120 (“Day 
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5”) hours of irradiation. A more detailed description of sample preparation and photo-

irradiation is provided in the parallel study (Bostick et al., 2020b). 

 

2.2.  Nuclear magnetic resonance (NMR) spectrometry 
 

NMR analysis was performed without pre-concentration and minimal sample 

modification. Samples were diluted volumetrically with deuterated water (Acros Organics, 

100% D) to produce a 90:10 H2O:D2O solution. Sodium 2,2,3,3-tetradeutero-3-

trimethylsilylpropanoate (TMSP, Acros Organics, 98% D) was added to a final 

concentration of 0.83 µM to serve as an internal reference. Liquid-state analyses were 

performed at room temperature (24.9 ± 0.1 OC) on a 400 MHz (9.4 Tesla) Bruker BioSpin 

AVANCE III spectrometer fitted with a double-resonance broadband z-gradient inverse 

(BBI) probe at the College of Sciences Major Instrumentation Cluster (COSMIC) facility 

at Old Dominion University (Norfolk, VA). Data were processed using the Bruker TopSpin 

software. NMR assignments and predictions were performed using the ACD/Labs 

ChemSketch and NMR predictors (Advanced Chemistry Development, Inc.) and cross-

referenced following Silverstein et al. (2005). 

One-dimensional (1D) 1H spectra were acquired using the PEW5shapepr pulse 

program, which utilizes Perfect Echo - WATERGATE and shaped presaturation elements 

for water suppression (Adams et al., 2013; Whitty et al., 2019). Relaxation delay of 4 

seconds was used to allow for a more quantitative observation of certain resonances (aryl 

and olefinic functionalities, as well as some low molecular weight compounds, Vlahov, 

1999; Alexandri et al., 2017). The obtained free induction decay (FID) of 10k summed 

transients was zero-filled to a 16k-sized dataset, and apodized using a 3-Hz Lorentzian 

window function (WDW = EM). Spectra are internally calibrated to the sharp 

distinguishable singlet of methanol at δ = 3.34 ppm (Gottlieb et al., 1997), phased, and 

baseline-corrected. Spectra are then blank-corrected by normalizing them to a spectrum 

of a procedural blank using the TMSP peak (δ ≈ - 0.02 ppm). Spectral integration was 

then performed over chemical shifts that are specific for the different 1H chemical 

environments. Integrals are converted to C-basis (Decesari et al., 2007) and normalized 

to total spectral intensity. Further details regarding 1H NMR data treatment can be found 
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in Section 1 of Appendix B. Due to certain alterations in sample preparation and 

instrumental parameters, there are slight differences between the data for the fresh 

(control) leachates presented here and in Bostick et al. (2018), as discussed in Section 2 

of Appendix B.  

Two-dimensional (2D) 1H-1H total correlation spectroscopy (TOCSY) spectra were 

acquired using the phase-sensitive gradient-enhanced mlevgpphw5 pulse program. It 

includes a 17-step Malcolm Levitt (MLEV-17) composite decoupling scheme (Bax and 

Davis, 1985) and a W5-WATERGATE element for water suppression (Liu et al., 1998). 

Long-range spin-spin couplings were allowed to evolve over a mixing time of 100 ms. 

Spectra were acquired with 2048 and 128 points in the F2 and F1 dimensions, 

respectively, with 512 transients per increment. The acquired data were then zero-filled 

to a 4096 x 1024 matrix, which is processed with a π/2-shifted (SSB = 2) sine-squared 

window function (WDW = QSINE). Linear prediction to 256 points was used in the F1 

dimension. Spectra are calibrated to the methanol peak (δ = 3.34 ppm, Gottlieb et al., 

1997), phased, and baseline-corrected in both dimensions. To eliminate T1 noise, a 

common artifact in 2D spectra, a one-dimensional positive projection was calculated 

based on rows with no significant resonances. The projection was then subtracted from 

each row in the 2D spectrum, canceling out T1-noise resonances to a large extent. The 

same manipulation was applied on all columns to clean-up the spectra in the F2 dimension 

(Klevit, 1985).  

 

2.3.  Ultrahigh resolution mass spectrometry (FT-ICR-MS) 
 

Prior to mass spectrometric analysis, fractions of the photo-irradiated samples and 

their corresponding controls (the fresh leachates) were adjusted to pH = 2 by addition of 

HCl, and solid-phase extracted using 3-mL PPL cartridges (Agilent Technologies, Bond 

Elut PPL, 100 mg styrene divinyl copolymer) as previously described (Dittmar et al., 

2008). This step was necessary to remove the high amounts of inorganic salts in the 

pyDOM matrices that would interfere with ionization during the FT-ICR-MS analysis 

(Stenson et al., 2002). Cartridges were eluted with methanol (Fisher Scientific, Optima 

LC-MS grade), and eluents were diluted with water (Fisher Scientific, Optima LC-MS 
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grade) to obtain 1:1 CH3OH:H2O mixtures. Samples were infused (120 µL/h) into an 

Apollo II electrospray ionization (ESI) source interfaced with a Bruker Daltonics 12-Tesla 

Apex Qe FT-ICR-MS housed in the COSMIC facility. Prior to analysis, the instrument was 

externally calibrated with a polyethylene glycol polymer standard to assure accurate m/z 

measurements over the desired mass range (300 – 800 Da). External calibration was 

performed every 6 hours to check for instrumental drift during the time of the analysis. 

Instrument blanks were measured between samples to assure for no carryover. Ionization 

was performed in negative mode, and ESI voltages were optimized per each sample to 

assure for consistent spray currents in order to make the samples in the dataset 

comparable. Ionized molecules are collected in a hexapole, sorted by a quadrupole, 

preconcentrated in a second hexapole, and transferred to the ICR cell where 300 

transients are collected using a 4 MWord time domain. The data were co-added, and the 

resultant FID was zero-filled and sine-bell apodized. The Bruker Daltonics Data Analysis 

software then performed a fast Fourier transformation. Each obtained mass spectrum 

was then internally calibrated to naturally abundant fatty acids, dicarboxylic acids, and 

compounds belonging to the CH2-homologous series, as previously described (Sleighter 

et al., 2008). Then, using an in-house MATLAB script, salt, blank, and isotopologue (13C, 
37Cl) peaks were identified and removed. Molecular formulas within ± 0.5 ppm error were 

assigned to peaks (S/N ≥ 3) in the FT-ICR-MS spectra using the Molecular Formula 

Calculator from the National High Magnetic Field Laboratory (Tallahassee, FL). Formula 

assignments were restricted to elemental compositions of 12C5-∞, 1H0-100, 16O0-30, 14N0-5, 
32S0-2, 31P0-2, and 35Cl0-4, constraints previously evaluated and verified for pyDOM from 

the biochars of this project (Wozniak et al., 2020). Molecular formulas that did not adhere 

to previously established rules for molecular composition (Stubbins et al., 2010) were 

discarded. For cases when one m/z peak had multiple molecular formula assignments, 

inclusion within homologous series (CH2, H2, COO, CH2O, O2, H2O, NH3, HCl) was used 

to refine the assignments (Kujawinski and Behn, 2006; Koch et al., 2007). In the final data 

for all samples, at least 80% of the mass spectral peaks were assigned with unambiguous 

molecular formulas.  

To evaluate the bulk composition of pyDOM, various averaged metrics based on 

molecular formula lists were used. The following parameters were calculated for all 
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formulas and then averaged without intensity-weighing: N/C ratio, nominal oxidation state 

of carbon (NOSC), double bond equivalency (DBE) and carbon-normalized DBE 

(DBE/C), and modified aromaticity index (AIMOD). For each metric, a brief description and 

calculation (if necessary) are shown below: 

 

• N/C - used to characterize the heteroatomic (N-containing) formulas in the studied 

samples. 

 

• DBE is a well-established measure of the total unsaturations + alicyclic rings in a 

molecule (e.g., Bae et al., 2011). It is calculated as following: 

 

 DBE = 1 +
1
2

(2C − H + N + P − Cl) Eq. 3 

   

DBE/C is the DBE-value normalized to the number of C-atoms in the molecule. This 

metric can serve as a proxy for the aromaticity of molecules (Hockaday et al., 2006).  

 

• Modified aromaticity index (AIMOD) – While DBE is only a measure of the quantity of 

double bonds/alicyclic rings in a molecular structure, AIMOD is a value that measures 

the double-bond density in a molecule (Koch and Dittmar, 2006, 2016). This index and 

its mathematical definition are described earlier in Section 2.6 of Chapter II.  

 

• The molecular weight (MW) metric is the average molecular weight of all molecular 

formulas. This number is corrected for the loss of a H-atom during ionization in 

negative ESI mode. While MW for all formulas in each sample is reported, the MW of 

the ConAC is reported separately.  

 

• NOSC is the average oxidation state of all carbons in the molecule based on its 

elemental composition. This parameter can be a proxy for polarity, solubility, 

biogeochemical reactivity, and bioavailability of substances (Kroll et al., 2011; LaRowe 
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and Van Cappellen, 2011). For example, it has been used to study the alteration of 

DOM by polyvalent cations (Riedel et al., 2012). It is calculated as shown below: 

 

 NOSC = 4 −
4𝐶𝐶 + 𝐻𝐻 − 3𝑁𝑁 − 2𝑂𝑂 − 2𝑆𝑆 + 5𝑃𝑃 − 𝐶𝐶𝐶𝐶

𝐶𝐶
 Eq. 4 

 

3. RESULTS 
 
3.1.  One-dimensional 1H NMR Analysis 

 

Based on one-dimensional structural NMR analysis it is evident that the major 

functionalities of pyDOM (aryl, olefin, oxygenated alkyl (O-alkyl) and alkyl) were altered 

significantly (Figure 8) by photo-irradiation. While aromatic and olefinic moieties appear 

to be degraded (mineralized and/or transformed to other functionalities), oxygenated and 

aliphatic spectral signals (alkyl & O-alkyl) increased after photoirradiation. Photochemical 

exposure also resulted in a significant loss of organic carbon (5 – 18%, Bostick et al., 

2020b) due to formation of CO2 (and/or corresponding HCO3-/CO32-), carbon monoxide 

(Stubbins et al., 2008), or volatile organic compounds such as CH4 (Bange and Uher, 

2005). This is also in agreement with mechanistic studies that, using mass-spectrometry, 

determined that oxidation of polycyclic aromatic hydrocarbons (PAHs) ultimately yields 

long-chain alkanes and CO2 (Zeng et al., 2000b, a). After the five-day photo-irradiation 

experiment in this study, the various pyDOM samples had ample resonances for O-alkyl 

as well as measurable olefinic and aryl moieties (Figure 8), which suggests that the photo-

degradation of pyDOM was not complete, as one would expect from complete conversion 

to CO2. 
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Figure 8. Distribution of 
main chemical functionalities 
in fresh (open) and photo-
irradiated pyDOM leachates 
(crosshatched bars) from 1D 
1H NMR. Data is presented 
on a C-basis (after Decesari 
et al., 2007) for the three 
main functionality groups: a) 
aryl (6.50 – 8.30 ppm), b) 
olefinic (5.00 – 6.50 ppm), 
and c) combined alkyl and 
oxygenated alkyl (O-alkyl) 
protons (0.60 – 4.40 ppm). 
The number immediately 
under the bars indicates the 
day of photo-irradiation. 
Changes in each 
functionality after the five-
day irradiation relative to the 
fresh leachate (see Eq. B1) 
are shown as percentages 
under each leachate label. 
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The relative abundance of the aryl signal is reduced to a large extent after 

irradiation of all pyDOM samples (Figure 8a), which is consistent with previous studies of 

ConAC in DOM (Stubbins et al., 2010, 2012; Wagner and Jaffé, 2015), as well as of 

ConAC from biochar-derived pyDOM (Ward et al., 2014; Fu et al., 2016; Bostick et al., 

2020b). In the parallel study examining the same samples using the BPCA method, 

Bostick et al. (2020b) observed large ConAC losses (75 – 94%) over the 5-days of photo-

degradation, which parallels the aryl loss presented here, and is in agreement with the 

proposed idea that the primary factor for sample photo-lability is the increasing ConAC 

content. Using a BPCA Aromatic Condensation (BACon) index (Ziolkowski and Druffel, 

2010; Bostick et al., 2018), a proxy for degree of condensation of ConAC, Bostick et al. 

(2020b) also determined that the degree of condensation of ConAC is a secondary factor 

determining the photo-lability of pyDOM. Both of these properties of the samples relate 

to light absorptivity of the samples, which is well-known to drive the photochemical 

degradation of natural DOM (e.g., Bertilsson and Tranvik, 2000).  

Olefinic moieties of pyDOM (resonating in the region of 5.00 – 6.50 ppm, and not 

reported previously) decreased in relative abundance after irradiation (Figure 8b). The 

most notable peak in the olefinic region of the upper temperature leachates (Oak 400, 

Oak 525, and Oak 650) is a sharp singlet at δ = 5.97 – 5.99 ppm (Figure 9), characteristic 

of a polysubstituted olefinic bond (i.e., having no neighboring H-atoms that would cause 

peak splitting (also known as multiplicity, Silverstein et al., 2005).  
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The hypothetical structures (generated using ACD/Labs NMR predictor software) 

shown in the insert of Figure 9 indicate that the olefinic bond may originate from either 1) 

the aromatic fraction of pyDOM (condensed or ligninaceous aromatic molecules) or 2) its 

poorly characterized aliphatic fraction. The decrease in olefinic spectral signal after photo-

degradation (Figure 8b) demonstrates that these functionalities are also photo-degraded. 

Photochemical processes are known to primarily degrade aromatic compounds to 

produce aliphatic compounds which suggests that the olefinic groups may be part of 

ConAC, but more in-depth structural NMR and/or mass spectrometric work is planned in 

future studies to reveal the origin of this functionality in pyDOM, as it cannot be 

distinguished using the currently employed analytical approaches. With increasing 

thermal maturity of the parent char, the olefinic functionalities of the upper temperature 

chars (Oak 400, Oak 525, and Oak 650) become increasingly photo-labile (20 % loss in 

Oak 400 vs. 93% loss in Oak 650 pyDOM, Figure 8b). In comparison with the high 

temperature oak char pyDOM, Oak Biomass, Oak 250, and Grass 650 show olefinic 

resonances with very different chemical shifts and multiplicities, suggesting that these 

structural entities are associated with components that are perhaps ligninaceous, and do 

not exist after pyrolysis at higher temperatures. Interestingly, the olefins of Grass 650 

pyDOM show a strong similarity to those of Oak 250, and the observed resonances for 

high temperature char leachates from oak (singlets at δ = 5.97 and δ = 5.99 ppm, Figure 

9) are present in neither Oak 250 nor Grass 650 pyDOM. This is another indication that 

these resonances are likely associated with ConAC which would be produced at higher 

temperatures. The similarity between Oak 250 and Grass 650 pyDOM is also evident in 

the relative abundance of the major functional groups and their change after photo-

irradiation (Figure 8). This indicates that Oak 250 and Grass 650 are of similar 

composition and photo-reactivity. The different olefinic signatures between Oak Biomass 

and Oak 250/Grass 650 suggest that upon pyrolysis lignin is structurally modified and can 

persist in some altered form at higher temperatures (e.g., 650 OC). Wozniak et al. (2020) 

observed a high number of lignin-like compounds present in the FT-ICR-MS data for 

Grass 650 pyDOM, which supports the hypothesis that the observed olefinic resonances 

of Grass 650 pyDOM are primarily ligninaceous. 
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While aromatic and olefinic functionalities were degraded, alkyl- and O-alkyl 

functionalities were produced by increased photo-degradation (Figure 8c). These alkyl 

and O-alkyl groups are known photo-products (e.g., Stubbins et al., 2010), but also exist 

in pyDOM prior to photo-irradiation. It has been determined that pyOM is a bi-phasic 

system of ConAC and aliphatic fractions (Hockaday et al., 2007; Wozniak et al., 2020), 

but the pyrogenic aliphatic compounds have been overlooked in the pyOM/pyDOM 

literature, and their structural composition has not been extensively studied. Thus, I 

employed additional analyses in an attempt to provide more information on their structure 

and photo-reactivity. 

 

3.2.  Two-dimensional 1H-1H Total Correlation Spectroscopy (TOCSY) NMR 
Analysis 

 

Total correlation NMR spectroscopy (TOCSY) is a technique well-suited for 

examining aliphatic moieties associated with sp3-hybridized carbon. This technique 

provides information on the connectivity in molecules by detecting the interactions 

between 1H-nuclei that are 2-6 covalent bonds away from each other. These interactions, 

also known as couplings, result in peaks off the diagonal line in the TOCSY spectra, and 

are known as cross-peaks. Thus, if two peaks on the diagonal have a cross-peak, their 

corresponding protons are nearby in the corresponding structure(s) and are in a “coupling 

network”. It must be noted that nuclei that 1) are separated by a heteronuclear 

functionality (e.g., an ether group), 2) have small J-coupling constants (i.e., their protons 

have weak interactions), or 3) have broadened resonances, will not produce cross-peaks 

(Gheysen et al., 2008; Simpson et al., 2011). These limitations introduce challenges in 

the interpretation of TOCSY data, but they are usually a small downside relative to the 

high sensitivity of the technique (due to detection based on 1H-nuclei). TOCSY is capable 

of providing a wealth of structural information (e.g., Kaiser et al., 2003; Hertkorn et al., 

2006; Powers et al., 2019), but unfortunately the challenging pyDOM samples of this 

project did not produce spectra of high quality (for reasons described in Section 3 of the 

Appendix B). However, numerous novel observations were obtained as described below. 
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Figure 10. Data from 2D 1H-1H Total Correlation Spectroscopy (TOCSY) NMR for fresh 
(blue) and photo-degraded (red) leachates in the alkyl and O-alkyl regions (0 – 5 ppm). 
The whole TOCSY spectra (0 – 10 ppm) can be seen in Figure 10. The 1D 1H spectra of 
the fresh leachates are displayed as F1 and F2 projections. The green asterisks (*) 
indicate peaks that are off-scale. Peak groups are referred to as panel and peak number 
(e.g., a3, d1, etc.). Peak labels correspond to: 1 = ethanol (CH3-CH2-OH), 2 = isopropanol 
((CH3)2CH-OH), 3 = propionate (CH3-CH2-COO-), 4 = carbohydrates, 5 = lignin, 6 = methyl 
(CH3-) and methylene (-CH2-) groups, and 7 = ethyl group (CH3-CH2-). 
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Figure 11. Whole 2D 1H-1H TOCSY NMR spectra for control (blue) and photo-degraded 
leachates (red). The 1D 1H spectra of the control leachates are displayed as F1 and F2 
projections. The green asterisk (*) indicates peaks that are off-scale. Peaks/peak groups 
are referred to as panel label and peak number (e.g., a3, d1, etc.). Peak labels correspond 
to: 8 = formate (HCOO-), 9 = Aryl-H, 10 = NH4+, 11 = Olefins and their coupling with O-
alkyl functionalities. 
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The Oak Biomass leachate (Figure 10a) displayed typical signatures of a woody 

extract, with characteristic resonances of cellulose (a4) and lignin (a5) (Liitiä et al., 2003; 

Kapaev and Toukach, 2016). There is a significant overlap in the resonances in the a4 

and a5 regions, however, upon photo-irradiation the lignin coupling networks were 

reduced and the cellulosic peaks became more pronounced, although the carbohydrates 

also appeared to be slightly photo-modified. The methyl (-CH3) and methylene (-CH2-) 

resonances (a6) in this sample also appear to be photo-degraded. No cross-peaks were 

observed for the aromatic protons in this sample (Figure 11, peak group a9) indicative of 

a high degree of substitution of the aromatic rings. A cross-peak is observed upon photo-

degradation that suggests a ring-substituent cleavage such as removal of methoxy 

groups (-OCH3). 

Upon char formation with increasing temperatures, carbohydrate signatures 

gradually disappear from the spectra of the leachates, and new aliphatic coupling 

networks are created (peak groups b6, c6, f6). The latter functionalities also appear to be 

photo-produced, with a positive identification of an ethyl functionality (CH3-CH2-, δ = 0.85, 

triplet, and CH3-CH2-, δ = 1.27, quartet) being produced upon photo-irradiation (d7) as 

exemplified by Oak 525 pyDOM. These observations are in contrast with the findings of 

Fu et al. (2016) who observed photo-degradation of methyl groups (CH3-) in pyDOM from 

a bamboo shavings char (prepared at 400 OC). The lignin O-alkyl resonance networks (a5 

and b5) in Oak Biomass and Oak 250 are no longer visible in Oak 400 pyDOM. This is 

expected, because lignin is readily degraded at temperatures above 400 OC (Laird et al., 

2008). However, lignin’s methoxy resonances (-OCH3, δ = 3.92, singlet) are present in all 

samples, in agreement with the fact that lignin is a major precursor of pyDOM (e.g., 

Richter and Howard, 2000). Methoxy groups appear to degrade upon photo-irradiation, 

as observed previously (Stubbins et al., 2008), and are likely the source of methanol in 

the photo-degraded leachates (CH3OH, δ = 3.34, singlet). The spectrum of Grass 650 

pyDOM (Figure 10f) exhibited a high diversity of structures as evident by the numerous 

cross-peaks, with high similarity to Oak 250, and in contrast to Oak 650. Many of these 

cross-peaks are characteristic for lignin, as it was suggested by the evaluation of olefinic 

resonances in Section 3.1 above. The preservation of lignin at 650 OC suggests that pyro-
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transformative processes are highly dependent on the composition of the starting 

feedstock, as Wozniak et al. (2020) also concluded. 

In all samples, resonances of low molecular weight (LMW) compounds can be 

identified by their characteristic NMR signatures. These include acetate (CH3-COO-), 

formate (H-COO-), methanol (CH3OH), ethanol (CH3-CH2-OH), acetone (CH3-CO-CH3), 

propionate (CH3-CH2-COO-), isopropanol ((CH3)2CH-OH), and ammonium (NH4+). Such 

substances have been previously observed in pyOM (Spokas et al., 2011) and pyDOM 

(Smith et al., 2016). Upon photo-degradation, some of these peaks exhibited a slight 

change in their chemical shift position. This is likely due to changes in the pH of the 

system, to which certain peaks, like acetate, are sensitive (Tynkkynen et al., 2009). The 

observed changes in abundance for formate, methanol, and acetate were variable, with 

no clear trend with production temperature (Figure 12). For example, upon photo-

irradiation, acetate increased in Oak 250 and Oak 650, but its apparent concentration 

(based on relative NMR peak area) decreased in the other leachates. When a LMW 

compound is lost during photo-irradiation, it is likely that it acted as a radical scavenger 

(e.g., Buxton et al., 1988; Clifton and Huie, 1989) since none of these compounds are 

photo-degradable by direct UV-A photolysis. If its relative concentration increases, it likely 

is a photo-product of side-chain cleavage reactions of a larger pyDOM compound (e.g., 

Walling, 1975; Wetzel et al., 1995; Goldstone et al., 2002). While the data for LMW 

compounds can be evaluated in greater detail, interpretation of the photochemical 

reactions within pyDOM would be limited, because no measurements of ROS species 

have been conducted. These data suggest that both ROS and LMW species are involved 

in mediating the photochemical transformation pathways of pyDOM and DOM, which 

indicates the necessity of their evaluation in future studies.  
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Figure 12. Distribution of low 
molecular weight 
compounds for fresh (open 
bars) and photo-irradiated 
pyDOM leachates 
(crosshatched bars) from 1D 
1H NMR. Data is presented 
on a C-basis (after Decesari 
et al., 2007) for the three 
main LMW species: a) 
formate (HCOO-, δ ≈ 8.3 
ppm), b) methanol (CH3OH, 
δ = 3.34 ppm), and c) 
acetate (CH3COO-, δ ≈ 1.9 
ppm). The number 
immediately under the bars 
indicates the day of photo-
irradiation. Changes in each 
functionality after the five-
day irradiation relative to the 
fresh leachate are shown as 
percentages under each 
leachate label (calculation 
shown in Eq. B1 of Appendix 
B). Please note that the y-
axis scale of each panel is 
different.  
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3.3.  Ultrahigh Resolution Mass Spectrometric Analysis (FT-ICR-MS) 
 

The FT-ICR-MS technique allows for studying the molecular-level elemental 

composition of natural samples (e.g., Sleighter and Hatcher, 2007; Hertkorn et al., 2008), 

and has proved valuable in the study of environmental processes (e.g., Kim et al., 2006). 

To visualize molecular composition changes after photo-irradiation, O/C and H/C ratios 

of assigned molecular formulas are plotted on van Krevelen (vK) diagrams (Van Krevelen, 

1950; Kim et al., 2003). As has been done previously (e.g., Stubbins et al., 2010), the 

pyDOM formulas are classified into three groups:  

• Photo-labile – molecular formulas that are unique to the control non-irradiated 

samples (fresh pyDOM leachates). These formulas may have been lost either via 

complete photo-mineralization to inorganic carbon (or volatile organic gases), or 

were photo-transformed to other compounds;  

• Photo-resistant – formulas that are present in both the control and its 

corresponding photo-irradiated sample. While termed “resistant”, they are not 

necessarily impervious to photo-transformation;  

• Photo-produced – formulas that are unique to the photo-irradiated samples and 

were not detected in their corresponding control leachates. These are the products 

of photo-transformation of photo-labile and perhaps, to some extent, photo-

resistant compounds. These newly detected peaks may also represent 

compounds that have low ionization efficiencies whose ionization was suppressed 

due to competition with other ions in the control leachates. It is possible that due 

to the loss of the photo-labile compounds, more ESI charge was available for 

molecules with low ionization efficiency. Despite this analytical caveat, these newly 

detected compounds are very likely true photo-products as the mass spectrometric 

data presented here are consistent with quantitative NMR data for these samples 

(Figure 8), as well as previous findings in the photochemistry literature (Kujawinski 

et al., 2004; Gonsior et al., 2009; Stubbins et al., 2010; Rossel et al., 2013; Riedel 

et al., 2016; Gomez-Saez et al., 2017; Yuan et al., 2019; Miranda et al., 2020).  
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Figure 13. Van Krevelen (vK) diagrams of pyDOM leachates before and after 
photo-irradiation. Molecular formulas are separated into three classes using a 
presence/absence approach: Photo-labile (blue), Photo-resistant (gray), and 
Photo-produced (red). The yellow arrows indicate the general shift of molecular 
composition due to photo-irradiation. The number of molecular formulas of each 
pool (and corresponding percentages) are given in parentheses in the legends. The 
black lines separate the vK space based on the modified aromaticity index (AIMOD, 
Koch and Dittmar, 2006, 2016). vK diagrams of individually plotted photo-labile and 
photo-produced formulas are shown on Figures B2-3 in Appendix B, respectively. 
Photo-resistant formulas are individually plotted on Figure 14. 



54 
 

Based on the abundance of photo-labile and photo-produced compounds, it is 

evident that different pyDOM samples behave dissimilarly upon photo-irradiation (Figure 

13). Most broadly, upon photo-irradiation, low temperature (Oak 250 and Oak 400) and 

Grass 650 pyDOM showed shifts toward higher O/C and H/C ratios, while those produced 

from higher temperature (Oak 525 and Oak 650) shifted toward lower O/C and higher H/C 

ratios. But there were subtle differences among all the samples. 

Oak 250 pyDOM composition clearly shifted to being characterized by compounds 

with higher O/C and H/C ratios, as noted by a removal of photo-labile compounds at H/C 

ratios of 0.3 – 0.6 and O/C ratios of 0.1 – 0.3, coupled with an evolution of photo-produced 

formulas at H/C ratios of 0.3 – 1.2 and O/C ranging 0.2 – 0.7. Similar observations were 

made for photo-exposed ConAC-rich mangrove porewater exported to adjacent estuaries 

(Tremblay et al., 2007). Because Oak 250 pyDOM is rich in ligninaceous molecules, it is 

likely that many of the observed photo-labile and photo-produced species are thermally 

modified lignin molecules. A similar trend in changes of molecular composition was 

observed for ligninaceous samples after transformation by ROS (Waggoner et al., 2015, 

2017; Waggoner and Hatcher, 2017). Oak 400 pyDOM also showed a shift towards a 

more aliphatic and oxygenated composition, as determined by the evolution of photo-

produced compounds that are more H-rich (H/C from 0.5 to 1.75) and O-rich (O/C from 

0.4 to 0.8). Similar photo-induced changes in composition have been observed for DOM 

from the Cape Fear River Estuary (North Carolina, USA), a watershed influenced by 

industry, urban areas, forests, and some agricultural areas (Gonsior et al., 2009). Oak 

525 pyDOM shows a much different response to photo-irradiation, with its composition 

shifting to high H/C (0.5 – 2) and low O/C (0 – 0.5), evident by the formation of highly 

aliphatic structures, as previously observed for biochar-derived pyDOM (Ward et al., 

2014), and DOM from the Congo River (Stubbins et al., 2010) which is rich in ConAC 

(Wagner et al., 2017a; Drake et al. 2020). Thus, it is likely that these structures are ConAC 

photo-degradation products. Oak 650 degraded similarly to Oak 525 suggesting that their 

pyDOM are of similar composition. However, using quantitative approaches, Bostick et 

al. (2020b) determined that Oak 650 was more photo-labile than Oak 525. Another 

important observation from the FT-ICR-MS data is that the proportion of photo-labile 

compounds increased over the oak pyDOM temperature gradient. While only 6% of Oak 



55 
 

250 pyDOM formulas were removed by photo-irradiation, nearly half of Oak 525 and Oak 

650 pyDOM formulas were no longer detected (40% and 38%, respectively). In contrast 

to Oak 650, the FT-ICR-MS data of Grass 650 show a photo-labile pool of molecular 

formulas at low H/C and O/C ratios, and a pool of photo-produced compounds at higher 

ratios indicating similarities with the photo-transformation of Oak 250 and Oak 400. These 

observations indicate that both production temperature and biomass feedstock control 

the photo-reactivity of pyDOM. 

Molecular formulas present in both the photo-degraded and corresponding control 

samples of each pyDOM are conventionally labeled photo-resistant (e.g., Stubbins et al., 

2010), but the magnitude distribution of these formulas changes significantly after photo-

irradiation as well. Using abundance-colored vK diagrams (Figure 14), it is evident that 

the shifts in abundance of the photo-resistant compounds before and after photo-

irradiation are identical to the shifts observed using photo-labile and photo-produced 

compounds shown with yellow arrows in Figure 13 above. Furthermore, while Oak 650 

does not photo-produce as many new aliphatic compounds as Oak 525 (Oak 525 = 2145 

(33%), Oak 650 = 476 (22%)), it is clear that for both samples the aliphatic photo-resistant 

compounds increase significantly in abundance after photo-degradation. Thus, it is also 

possible that many of the 837 photo-labile compounds of Oak 650 are converted to 

already existing aliphatic “photo-resistant” formulas. In difference, Oak Biomass, Oak 

250, and Grass 650 do not show any significant shifts in their magnitude distributions.  

Scatterplots of relative abundance (for both control and photo-degraded pyDOM 

samples) were prepared in order to quantitatively evaluate the change of composition of 

the photo-resistant formulas (Figure 15). If the coefficient of determination (R2) is close to 

1.00, the two samples being compared have a compositionally similar pool of photo-

resistant compounds (Sleighter et al., 2012). The abundance of the photo-resistant 

molecules for the oak char leachates changes drastically after photo-irradiation (all R2 < 

0.1) with the exception of Oak 250 pyDOM (R2 ≈ 0.80). The significant decrease in R2 for 

the upper temperature chars is another indication that the composition of their pyDOM is 

more susceptible to irradiation-induced changes. The small change in magnitude 

distribution in Oak Biomass, Oak 250, and Grass 650 (R2 > 0.80) is also indicative of the 

low susceptibility of these samples to photo-transformation. 
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Figure 14. 3D Van Krevelen diagrams of for photo-resistant molecules in each leachate 
(molecular formulas that have been found common to both control and 5-day photo-
irradiated leachate). Color code corresponds to relative magnitude, with red being the 
most abundant, and blue being with least. Color schemes are the same for each photo-
control pair, but different for each leachate. The black circle serves as a visual reference 
for comparisons. 
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Figure 15. Abundance scatterplots of the photo-resistant formulas. A high R2 value 
indicates a high similarity in the abundance composition of the common formulas in the 
compared samples (Sleighter et al., 2012). 
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The water-extract of the parent oak biomass had a significantly different photo-

degradation pattern from all of the pyDOM leachates. It showed a uniform removal of 

photo-labile compounds across the vK diagram space (Figure 13) and a formation of a 

small pool of photo-produced aliphatic compounds (274, 8%). This was an unexpected 

result, because previous studies of woody biomass (Derbyshire and Miller, 1981; George 

et al., 2005) or ligninaceous samples (Tremblay et al., 2007; Gonsior et al., 2009; 

Waggoner et al., 2015, 2017; Waggoner and Hatcher, 2017) have observed substantial 

changes upon oxidation. 

The leachate of Oak 400 was also sampled for analyses at Days 1 and 2 to obtain 

time-resolved information on the shifts of molecular composition across the five-day 

photo-irradiation experiment (Figure 16). 
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During the first day of the irradiation, the number of ConAC formulas increased. 

While photo-production of ConAC has been observed for certain aquatic systems (Chen 

et al., 2014), this likely did not occur here because there was no increase in aryl 

functionalities observed via NMR (Day 0 = 10.6 %, Day 1 = 10.2 %), nor in compounds 

yielding BPCA molecular markers (decrease of 22%, Bostick et al., 2020b). It is likely that 

unfunctionalized ConAC (i.e., PAHs) present in Oak 400 pyDOM at Day 0, undetected by 

the ESI-FT-ICR-MS, were photo-oxygenated, thus entered the analytical window to be 

detected at Day 1. Already observed ConAC at Day 0 also likely became oxidized and 

contributed to the shift in molecular composition. This suggests differences in the 

analytical windows of ESI-FT-ICR-MS, NMR, and BPCA analyses, which needs to be 

considered in future studies, as previously noted by Wozniak et al. (2020).  

The molecular composition of Oak 400 pyDOM on Day 1 was similar to previous 

mass spectrometric measurements of biochar leachate (Ward et al., 2014), as well as of 

DOM from fire-influenced sites (Hockaday et al., 2007; Gonsior et al., 2009; Stubbins et 

al., 2010). After further photo-irradiation, on Day 2 there was a loss of molecules with low 

H/C ratios (inside the yellow circle) and a production of formulas at high O/C and H/C 

ratios, similar to the trend of Oak 250. There was also a significant loss of aryl 

functionalities (from 10.2% to 7.7%). By Day 5, there was a major loss of ConAC as 

observed by FT-ICR-MS, NMR, TOC and BPCA molecular markers (Bostick et al., 2020b) 

as well as a production of more oxygenated and aliphatic compounds as described above 

(Figure 13 and corresponding section). By evaluating the abundance distribution of the 

formulas that were present among the four Oak 400 samples of the time series study 

(Figure 17), identical shifts in composition were observed. These non-linear changes over 

the time series suggest a sequence of different photo-transformation reactions that occur 

throughout the five-day photo-irradiation.  
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Metrics derived from FT-ICR-MS data (nominal oxidation state of carbon, AIMOD, 

carbon-normalized double bond equivalency, and molecular weight) allow for an 

assessment of how bulk pyDOM composition changes after photo-irradiation, and 

supplements the trends shown above using van Krevelen diagrams. While there is a 

significant degradation observed for these leachates, the average MW of the molecules 

in these leachates does not show large differences (Figure 18a). This is likely due to the 

simultaneous destruction of aryl/olefinic and formation of alkyl/O-alkyl functionalities. 

Previous studies of pyDOM have mainly focused on ConAC and have determined that 

larger ConAC are photochemically degraded to smaller molecules as determined using 

the BPCA analysis, size-exclusion chromatography (Wagner and Jaffé, 2015), and UV-

VIS spectroscopy (Stubbins et al., 2012). Bostick et al. (2020b) also report a decrease in 

the MW of ConAC from Oak 400 and Oak 650 pyDOM upon photo-degradation (as 

determined by UV spectroscopy and BPCA analysis). The FT-ICR-MS data presented 

here does not show a significant change in MW of pyDOM for both Oak 400 and Oak 650. 

This discrepancy is due to the different analytical windows of the utilized instrumentation. 

Bostick et al. (2020b) used the slope ratio UV-VIS-spectroscopic measurement, a proxy 

of the MW changes of optically active compounds within UV absorbance of 275 – 400 nm 

(Helms et al., 2008), as well as the BACon index, also derived solely from ConAC. The 

FT-ICR-MS has a much larger analytical window detecting all ionizable compounds in 

negative-ion mode ESI, including many aliphatic compounds that would not be detected 

using UV-VIS spectroscopy. However, when MW only for ConAC is evaluated (Figure 

18b), the observed decreases in MW agree with Stubbins et al. (2012), Wagner and Jaffé 

(2015), and Bostick et al. (2020b).  

In agreement with previous photochemical studies, DBE (Figure 18c), C-

normalized DBE (Figure 18d), and AIMOD (Figure 18e) decrease after photo-irradiation. 

Decreases in these metrics are indicative of destruction of conjugated (ConAC) or olefinic 

sp2 systems, in agreement with the degradation of ConAC and ligninaceous aromatic 

molecules. In contrast, many of these metrics (MW, MW ConAC, DBE) increase for Oak 

250 pyDOM and for the first day of irradiation of Oak 400 pyDOM. This is likely due to 

oxygenation of unfunctionalized ConAC, which are undetectable in the control samples, 
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but their oxygenated products were detectable, as proposed earlier for the observed 

trends on Figure 16.  

The nominal oxidation state of carbon (NOSC) is a useful parameter for evaluating 

changes in oxidation state (Kroll et al., 2011; LaRowe and Van Cappellen, 2011). An 

increasing NOSC is indicative of oxidation (i.e., molecules become more oxygenated), 

while decreasing NOSC signifies reduction (molecules become more aliphatic). Oak 

Biomass, Oak 525, and Oak 650 show a decreasing NOSC indicative of these samples 

becoming more aliphatic after the five-day photo-irradiation, while the other samples 

seem to become oxygenated due to their positively changing NOSC (Figure 18f). This 

data parallels the observations made earlier using the van Krevelen diagrams above. 

Lastly, changes in N/C ratios before and after photo-irradiation are indicative of the 

photochemistry nitrogen-containing pyDOM molecules. For Oak Biomass, Grass 650, 

and the lower temperature oak char leachates (Oak 250 and Oak 650), a decrease in 

nitrogen is evident after photo-irradiation. This is likely due to photo-degradation of 

nitrogen-containing molecules. The observed evolution of ammonium peaks using 2D 

TOCSY NMR (peak group 10 in Figure 11) in these samples agrees with this proposition 

suggesting a deamination pathway. The absence of NH4+ peaks in the Oak Biomass 

spectra indicate that the nitrogen-containing ligninaceous molecules photo-degrade 

through a different mechanism. The increase in N/C for the higher temperature char 

leachates (Oak 525 and Oak 650) indicates a preservation of nitrogen into the 

photochemical by-products. This suggests that these photo-products may be of higher 

bio-lability and marine-like composition. 
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Figure 18. FTMS metrics for the control (open) and photo-irradiated pyDOM leachates 
(crosshatched bars). The number immediately under the bars indicates the day of photo-
irradiation. Changes in each metric for each leachate after the five-day photo-irradiation 
relative to the control leachate are shown as percentages under each leachate label. 
Please note that the y-axis scale of each panel is different. 
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Figure 19. Average nitrogen-to-carbon (N/C) ratios for the control (open) and photo-
irradiated pyDOM leachates (crosshatched bars). The numbers immediately under the 
bars indicate the day of photo-irradiation. Percent change in N/C for each leachate after 
photo-irradiation relative to the control leachate are shown under each leachate label. 
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4. DISCUSSION 
 
4.1.  Photo-lability of the pyDOM structural and molecular components of 

pyDOM as a function of production temperature 
 

The decreases in aryl functionalities are indicative of the photo-lability of aromatic 

functional groups, and this agrees with previous observations for both pyDOM (Ward et 

al., 2014; Fu et al., 2016; Bostick et al., 2020b) and DOM in general (Kujawinski et al., 

2004; Gonsior et al., 2009; Stubbins et al., 2010; Rossel et al., 2013; Riedel et al., 2016; 

Gomez-Saez et al., 2017; Yuan et al., 2019; Miranda et al., 2020). While it is not possible 

to directly differentiate between aryl groups from lignin versus those of ConAC using 1H 

NMR, the presented data suggest that aryl functionalities from ConAC are more photo-

labile than ligninaceous aryl groups, as evident from the data for Oak Biomass and Oak 

250 leachates in comparison to the leachates of higher temperature chars (Figure 8). 

Previously it was determined that Oak Biomass DOM is ConAC-free (Bostick et al., 2018), 

and that Oak 250 pyDOM contains both condensed and ligninaceous aromatic 

compounds (Bostick et al., 2018; Wozniak et al., 2020). These two samples show higher 

initial aromatic content relative to the higher temperature char pyDOM samples (Figure 

8) perhaps due to the higher solubility of lignin. However, smaller proportions of aromatic 

functionalities are lost from these samples after photo-degradation. It is evident that the 

aryl groups associated with ConAC in Oak 400, Oak 525, and Oak 650 (lignin-poor chars) 

are more photo-labile (34 – 58% loss) than the aryl groups associated with the lignin-rich 

Oak Biomass DOM and Oak 250 pyDOM (20 – 24% loss). While lignin has been shown 

to be photo-labile (Opsahl and Benner, 1998; Spencer et al., 2009), its monolignol units 

contain only a single aromatic ring, thus are less photo-reactive at the utilized irradiation 

wavelengths (295 – 365 nm, λMAX = 340 nm). Therefore, lignin is expected to be less 

photo-labile than ConAC. It is well-established in organic spectroscopy that with the 

increasing number of conjugated rings (i.e., number of conjugated π-bonds), the energy 

gap between the bonding molecular orbital (π) and antibonding molecular orbital (π*) 

narrows. This allows for radiation of higher wavelengths (and therefore lower energy) to 

be absorbed and excite the molecule through a π → π* transition. Moreover, the molar 
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absorptivity (ε) increases, allowing the molecule to absorb higher quantities of radiation 

(e.g., Mamy et al., 2015). This increased susceptibility to molecular excitation and 

radiation absorption explains the greater photo-lability of ConAC relative to ligninaceous 

aromatic compounds. This is also in good agreement with previous photochemical studies 

(Stubbins et al., 2010, 2012; Wagner and Jaffé, 2015), as these works have also observed 

that larger ConAC have higher photo-lability. Furthermore, photochemical studies of 

model pyrogenic compounds, polycyclic aromatic hydrocarbons (PAHs), in organic-

solvent (Guieysse et al., 2004), soil (Marquès et al., 2016), and surface water (Jacobs et 

al., 2008) media have also reported that larger PAHs are more readily photo-degraded 

than smaller ones.  

This study also reports on the photo-reactivity of another, previously 

uncharacterized functionality of pyDOM – olefins. The observed olefinic peaks at δ = 5.97 

and 5.99 ppm in higher temperature leachates via 1D 1H NMR (Figure 9) may originate 

from both the aromatic and non-aromatic components of pyDOM, indicating that future 

structural NMR studies should evaluate the source of this functionality in greater detail. 

These functionalities appear to be only present in higher temperature char leachates (Oak 

400, Oak 525, Oak 650) indicating that they are associated with structures formed at 

higher temperatures, possibly ConAC. The data presented in this Chapter show that this 

functionality degrades upon photo-irradiation (Figure 8b), and its lability increases with 

the production temperature of the parent char. Linear polyenes are optically absorptive 

much like ConAC. However, only alkenes having five or more conjugated double bonds 

are capable of absorbing UV-A radiation, and such compounds are unlikely to be a part 

of the composition of pyDOM due to their hydrophobic character. Thus, I conclude that 

the degradation pathway for the olefins of pyDOM is not based on their ability to absorb 

light. Rather, olefins are likely degraded through radical-mediated reactions. Reactive 

oxygen species (ROS) are produced upon photo-excitation of PAHs (Penning et al., 1999; 

Yu et al., 2006) and ConAC from biochar-derived pyDOM (Fu et al., 2016; Li et al., 2019; 

Wang et al., 2020). Olefinic groups are easily ruptured and substituted by ROS, yielding 

oxygenated and aliphatic structures. A recent study, however, evaluating the composition 

of terrestrial and marine DOM upon permanganate oxidation (Laszakovits et al., 2020) 

did not observe degradation of olefins, and it was concluded that these functionalities 
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were hindered (and therefore preserved) in the hydrophobic DOM pockets. While DOM 

molecules are amphipathic (Wershaw, 1999) and radical activity is lowered in the internal 

regions of their aggregates (Latch and McNeill, 2006), it seems that the olefins in the 

pyDOM samples were easily accessible, especially in pyDOM from chars produced at 

higher temperatures. Given that more thermally mature pyDOM is richer in LMW 

compounds (Bostick et al., 2018), and such substances promote disaggregation 

(Simpson, 2002), it is likely that pyDOM has different conformational properties than 

natural DOM, thus the olefinic functional groups of pyDOM seem to be easily accessible 

by ROS. 

The reason for the greater extent of photo-degradation of olefinic moieties in 

pyDOM from higher thermal maturity chars is unknown. It may be that either 1) more ROS 

species are produced by photo-degradation of more thermally mature pyDOM, thus more 

ROS would be available to degrade more olefinic bonds, or 2) there are more olefinic 

moieties per molecule in more thermally mature pyDOM, therefore these olefins degrade 

faster because of higher pyDOM degradation rates at higher thermal maturity. The 

implication of the presence of this olefinic functionality in pyDOM and its controlled photo-

reactivity by thermal maturity may be important for the chemistry and cycling of pyDOM, 

because the olefinic bond is much less energetic than the delocalized aromatic bond, 

which means that these olefinic moieties are much more susceptible to attacks by 

radicals. While these olefinic functionalities are 2 – 9% of pyDOM (as measured by 1H 

NMR, Figure 8b), they are likely important mediators in the transformative processes of 

pyDOM. Furthermore, the lability of olefins towards radical attacks will allow for the 

degradation of olefin-containing pyDOM structures in soil/sedimentary environmental 

matrices (i.e. “dark” environments) or areas rich in ROS (such as the Fe-rich blackwater 

swamps, Chen et al., 2014), which would contradict with the assumed persistence of 

pyOM in dark environments. Finally, olefins can undergo electrocyclic condensation 

reactions such as the Diels-Alder reaction, and it has been shown in Chapter II that such 

reactions can form non-pyrogenic ConAC in the environment. This has important 

implications to the sourcing of ConAC and the use of BPCAs to quantify pyOM in the 

environment. My observations here show that olefinic moieties of pyDOM are potentially 
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important to the biogeochemistry of pyOM, and natural organic matter in general, and 

therefore should be thoroughly evaluated in future studies.  

The TOCSY data (Figures 10 and 11) demonstrate that cellulose was removed at 

lower temperatures (below 250 OC) while lignin was present in the leachates of oak chars 

of up to 400 OC. This is in agreement with solid-state 13C NMR and FT-ICR-MS data for 

these biochars reported previously by Wozniak et al. (2020). Several LMW compounds 

such as isopropanol, propionate, acetate, acetone, methanol, and ammonia, were also 

observed and showed non-linearly changing abundances (Figure 12). This suggests that 

different radical processes occur in the different leachates upon photo-degradation. The 

NMR data also allow for the identification of methoxy (-OCH3) residues in all pyDOM 

leachates, as well as a photo-produced ethyl (-CH2CH3) residue in Oak 525 pyDOM 

revealing some of the structural motifs of pyDOM and its photo-products.  

The FT-ICR-MS data for the Oak Biomass leachate (Figures 13 and 14) and 

TOCSY data (Figures 10 and 11) indicate that the water-soluble oak wood organic matter 

contains mostly ligninaceous and cellulosic molecules, as observed previously for this 

leachate (Wozniak et al., 2020). Similar observations were also made using the water-

soluble organic matter from white oak after FT-ICR-MS analysis (He et al., 2019). After 

photo-irradiation, this leachate lost 1292 formulas (39%) uniformly throughout the vK 

space (Figure 13), which contrasts with previous oxidative studies of lignin that observed 

high degrees of molecular alteration (Chen et al., 2014; Waggoner et al., 2015, 2017; 

Waggoner and Hatcher, 2017). The 1H NMR data provide an explanation for this 

unexpected result (Figure 20). It is evident that the fresh leachate contained a significant 

amount of acetone (CH3-CO-CH3, δ = 2.21 ppm, singlet, 35% spectral magnitude), which 

is a known radical scavenger (Liu et al., 2015). After photo-exposure, the spectral 

magnitude attributed to this compound represented only ~1% of the total spectral 

intensity. The monolignol aromatic rings of lignin are not highly absorptive of the 

employed radiation (295 – 365 nm, λMAX = 340 nm), therefore, it is expected that most of 

the changes in this sample would have happened through radical-mediated reactions. 

Thus, it is likely that ROS were quenched by the presence of acetone, and more 

substantial changes in composition that were observed in previous studies (Chen et al., 

2014; Waggoner et al., 2015, 2017; Waggoner and Hatcher, 2017) would have occurred 
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after a longer photo-exposure of Oak Biomass and complete depletion of the present 

radical-quenching species. It is likely that its photo-labile compounds were mostly photo-

mineralized, converted to compounds undetectable by ESI-FT-ICR-MS (as indicated by 

the low number of photo-produced compounds – 274 formulas, Figure 13), or converted 

to already existing (photo-resistant) compounds. The 1H NMR data (Figure 20) also 

showed the formation of a large quantity of methanol (CH3OH, δ = 3.34 ppm, singlet, 55% 

spectral intensity), which is indicative of demethoxylation (cleavage of methoxy groups, -

OCH3), a known process in the oxidative degradation of lignin (Crawford, 1981; 

Waggoner and Hatcher, 2017; Waggoner et al., 2017).  

 

 

 
Figure 20. Production of methanol (δ = 3.34 ppm) and destruction of acetone (δ = 2.21 
ppm) after photo-irradiation of Oak Biomass DOM as evident by 1D 1H NMR. 
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The 2D NMR data (Figure 10) also support this finding of degradation by showing 

that aliphatic functionalities of this woody water-extract (a6) were photo-degraded (as their 

spectral intensities decreased), and by the observation of a new cross-peak between aryl 

functionalities in the TOCSY data (Figure 11, peak group a9). It is likely that the lost 

aliphatic resonances were associated with side-chains of lignin, and their disappearance 

after photo-irradiation also suggests side-chain cleavage and formation of LMW 

compounds. Another indication of an ROS-driven degradation in this sample is the 

decrease in carbohydrate functionalities. Sugars are not optically absorptive, therefore 

cannot be degraded by direct photolysis at UV-A wavelengths. However, studies have 

found that ROS species such as hydroxyl radicals are destructive to sugars (Moody, 

1963; Morelli et al., 2003).  

From this study, it is clear that 1) the examined oak wood DOM and pyDOM 

samples degrade very differently from each other and 2) the structural moieties of pyDOM 

exhibit different photo-lability that appears to be heavily controlled by the production 

temperature and parent feedstock. Bostick et al. (2020b) determined that ConAC 

concentration in each leachate, and the degree of condensation of ConAC, are the main 

factors controlling the photo-degradation of pyDOM. Both of these factors are directly 

related to the production temperature of the parent char (Schneider et al., 2010; Santín 

et al., 2016b; Bostick et al., 2018; Wozniak et al., 2020). Generally, with increasing 

thermal maturity, more aliphatic compounds and inorganic carbon (or volatile gasses) are 

produced at the expense of photo-labile ConAC (Bostick et al., 2020b). However, it is yet 

little understood how feedstock is related to the photo-degradation of pyDOM. 

 

4.2.  Photochemical degradation rate and the influence of parent feedstock 
 

The photo-degradation trend of Grass 650 pyDOM was unexpected and reveals 

that the nature of the parent biomass used for biochar formation also has a significant 

impact on the photo-degradation of the leached pyDOM. Bostick et al. (2018) determined 

that both Oak 650 and Grass 650 contained similar quantities of ConAC (based on BPCA 

quantification), and ConAC were of similar degrees of condensation (based on the BACon 
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index). Thus, based on the findings of Bostick et al. (2020b) that ConAC concentration 

and degree of condensation are the main controls of the photo-degradation extent, 

pyDOM of both Oak 650 and Grass 650 should degrade in a similar manner. While 

ConAC (based on BPCA measurements) in Oak 650 and Grass 650 did degrade in similar 

quantities over the five-day experiment (Oak 650 = 94% loss vs. Grass 650 = 90% loss), 

their bulk pyDOM mineralized to much different extents (18% and 7% TOC loss, 

respectively), and multiple compositional differences after photo-degradation were 

observed between these samples. This suggests that there are other factors controlling 

the photochemistry of pyDOM affecting its photo-degradation rate.  

Rates of chemical reactions (ν) are dependent on many factors including the order 

of the reaction, concentration of reactants, temperature, solvent, and the presence of 

catalysts or inhibitors. Thus, the photo-degradation rate of pyDOM (ν) can be expressed 

by the equation shown on Figure 21. 

 

 

 
Figure 21. Generic expression of kinetic rate of photo-degradation of pyDOM. 
 

 

This kinetic equation is highly generic but shows the influence of three major 

factors to the photo-degradation rate of pyDOM: 1) concentration of reactant(s), 2) rate 

constant (k), and 3) secondary sample matrix components such as catalysts (cat) and 

inhibitors (inh). As Bostick et al. (2020b) determined, the extent of degradation of pyDOM 
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is controlled by the concentration of ConAC in the original leachate, therefore the reaction 

is at least of first order, and the ConAC fraction is considered a primary reactant. 

However, as photo-irradiation of ConAC creates high fluxes of ROS (Fu et al., 2016; Li et 

al., 2019; Wang et al., 2020) and many of the photochemical processes of pyDOM involve 

radical-mediated reactions, it is possible that ROS participate as secondary reactants (R) 

and impact the reaction mechanism by increasing the reaction order. This would 

sequentially impact the rate of photo-degradation of pyDOM. Considering, however, that 

the concentrations of ROS in natural waters are at steady-state, and the photochemical 

reactions are typically of first order (Zepp, 1979; Blough and Zepp, 1995; Fasnacht and 

Blough, 2002; Goldstone et al., 2002; Pullin et al., 2004), it is possible that dilution during 

terrestrial-to-marine export will alter the photochemical kinetics in natural systems, and 

this must be considered in future photochemical studies of pyDOM.  

The photochemical rate is also largely dependent on the rate constant (k), which 

is heavily dependent on structure of the reactant(s), as well as on how they interact. 

Structurally for ConAC, this parameter will be a function of the number of condensed 

rings, heteroatomic content (N, S, Cl), and presence/absence of functional groups 

(aldehyde, quinone, carboxyl groups, etc.). For the samples of this study, Bostick et al. 

(2020b) determined, based on their measured BACon index, that the degree of 

condensation of ConAC also influences the extent of photo-degradation.  

The third factor that is likely to explain the vast difference between the extents of 

degradation of Oak 650 pyDOM and Grass 650 pyDOM is the presence of substances 

that can catalyze (cat) or inhibit (inh) the reaction rate. It is possible that the isopropanol 

and propionate that are identified in Grass 650 pyDOM using TOCSY NMR (Figure 10) 

act as photo-degradation inhibitors by scavenging ROS (Watts et al., 2017) and 

consequently slow its photo-degradation rate. Conversely, it is also possible that the oak 

char leachates contain a photo-accelerant, such as iron species, as previously found in 

wood ash (Etiégni and Campbell, 1991). Silicates can also act as photo-accelerants (Badr 

et al., 2008), and such species have been also previously measured in a biochar made 

of bamboo shavings (Fu et al., 2016).  

The effect of matrix constituents must be important to the formation of pyOM and 

the consequent photochemistry of its pyDOM. The observation that Grass 650 pyDOM is 
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characterized with high abundance of apparent ligninaceous resonances and lignin-like 

molecules is unexpected, as lignin is thought to be highly thermo-labile above 400 OC 

(Laird et al., 2008). No data is available to explain what is stabilizing the lignin and 

protecting it from the pyro-transformative reactions at high temperatures, but it is possible 

that it interacts with, for example, a mineral from the grass matrix, and is stabilized via 

chelation. It is also unknown if and how the non-aromatic component of pyDOM is 

involved in the photo-transformation of ConAC. These feedstock-induced differences in 

composition alter the photo-chemical degradation rates of its different constituents, as 

well as the degradation pathway. This is also suggested by the observation that methyl (-

CH3) groups in Oak 400 pyDOM are photo-produced while the same functionality is photo-

degraded in a bamboo shavings char (400 OC) leachate (Fu et al., 2016). As chars are 

produced in the environment from a variety of different feedstocks, the way their 

properties affect the chemistry of pyDOM must be evaluated and considered to account 

for the variability in photochemistry of pyDOM.  

 

4.3.  Proposed ConAC photo-degradation pathway 
 

The trends in molecular composition identified using FT-ICR-MS show that ConAC 

in each pyDOM leachate degraded differently. By coupling the data from this chapter with 

studies of model pyrogenic compounds, PAHs, a master degradation pathway for ConAC 

in sunlit aquatic environments can be proposed (Figure 22) after adaptations and 

modifications from previous mechanistic studies (Zeng et al., 2000a,b; Fasnacht and 

Blough, 2003a,b; and references therein). 
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Starting with freshly produced minimally functionalized ConAC (e.g., Wagner et al., 

2017b), the first step is oxygenation (OX). There are a number of proposed pathways in 

the PAH photo-degradation literature (e.g., Fasnacht and Blough, 2003b), and with regard 

to ConAC in the environment, there is no study to our knowledge that explores these in-

depth. There are three main mechanisms proposed previously: OX1: Direct photolysis, in 

which ConAC are photo-excited (hν) and produce ConAC-cation radicals (ConAC+᛫), 

which extract hydroxyl groups (-OH) from water molecules (Sigman et al., 1991); OX2: 

Oxygen-mediated direct photolysis, whereby upon excitation (hν), ConAC react with 

dissolved oxygen (O2(aq)) to produce oxygenated ConAC (Sigman et al., 1998; Fasnacht 

and Blough, 2003a,b; Kahan and Donaldson, 2007); and OX3: Radical-mediated 

oxygenation, in which ROS attack ConAC and oxygenate them with no involvement of 

light in the reaction (Neff, 1979; Psillakis et al., 2004). Hydroxyl radicals (᛫OH) produced 

from ozone (Beltrán et al., 1998; Rivas et al., 2009) or Fenton chemistry (Laurent et al., 

2012; Lemaire et al., 2013) are known to be highly effective in degrading ConAC. ConAC 

themselves are also known to produce a significant amount of ROS when irradiated (Fu 

et al., 2016; Li et al., 2019; Wang et al., 2020), but studies have suggested that steady-

state concentrations of ROS species in most natural waters are too low to compete with 

light-induced mechanisms (Zepp, 1979; Blough and Zepp, 1995; Fasnacht and Blough, 

2002; Goldstone et al., 2002; Pullin et al., 2004). The parallel study of these samples also 

showed that the photo-degradation of ConAC is mainly driven by their light absorptivity 

properties (Bostick et al., 2020b), therefore ConAC in sunlit environments are degraded 

through a direct photolysis mechanism (OX1 or OX2), as previously suggested by 

Stubbins et al. (2008). However, it must be noted that the radical-mediated oxygenation 

mechanism (OX3) is certainly important for ConAC transformation/degradation in dark 

environments, such as peats, soils, sediments (Page et al., 2012, 2013; Tong et al., 2016; 

Trusiak et al., 2018), and in ROS-rich aquatic environments such as Fe-rich blackwater 

swamps (Chen et al., 2014). Data generated by this study suggest that ROS species are 

most important for the degradation of the non-aromatic component of pyDOM, as 

hypothesized by Bostick et al. (2020b). Besides photo-oxidizing ConAC already present 

in pyDOM and DOM, these oxidative pathways are also responsible for photo-oxidizing 
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unfunctionalized ConAC in solid pyOM to result in their photo-dissolution (Roebuck et al., 

2017; Li et al., 2019). 

The oxygenation step (OX) of ConAC yields functional groups such as alcohol (-

OH), enol (C=C-OH), aldehyde (-CHO), quinone (cyclic diones) and carboxylic acids (-

COOH) (e.g., Yu et al., 2006; Fu et al., 2016). Other oxygen-containing functionalities, 

such as ethers, carboxylic acid derivatives, or more exotic groups (such as acetals) are 

also possible, but not shown in Figure 22 for simplicity. Formation of O-containing 

functionalities also often involves disruption of the aromatic sp2-structure of ConAC, 

resulting in formation of aldehydes/enols (e.g., Wischmann and Steinhart, 1997; Yu et al., 

2006; Fu et al., 2016). Mechanistically, ring-opening can be induced by light (Pullen et 

al., 1998; Toteva and Richard, 2011; Arruda et al., 2013) or ROS (Stenson et al., 2003; 

Waggoner et al., 2015, 2017; Waggoner and Hatcher, 2017; and references therein). 

When enols are formed, they easily rearrange to aldehydes through keto-enol 

tautomerism (KET). Aldehydes and quinones are highly labile even to mild oxidants, thus 

are easily converted to carboxyl groups (e.g., Dalcanale and Montanari, 1986; Sato et al., 

2000; Travis et al., 2003). From the proposed master pathway, it is clear that the manner 

in which oxygenation of ConAC occurs can be highly variable, yet it is poorly understood 

for ConAC in the environment. Based on the variety of potential oxygenation mechanisms 

and the multiple unknowns in the photochemistry of pyOM, further work should focus on 

a detailed evaluation of the photo-induced pyDOM oxygenation mechanisms and 

characterization of their products. 

The end-products of ConAC oxygenation are carboxyl groups, which can also exist 

as their derivatives (amides, esters, lactones, etc.). The COOH group is typically cleaved 

and volatilized as inorganic carbon (CO2). Decarboxylation (D) generally requires thermal 

exposure, but photochemical (e.g., Griesbeck et al., 1999; Li et al., 2011) and radical 

pathways (e.g., aqueous Barton decarboxylation, Mangin et al., 2015) at ambient 

conditions do exist. Thus, carboxyl-containing molecules can be decarboxylated, yielding 

CO2 and an aliphatic residue (methyl in this instance). This cycle of oxidation and ring-

cleavage can repeat multiple times until all aromatic rings are destroyed, and small 

aliphatic compounds are produced. Zeng et al. (2000a,b) confirmed this mass 

spectrometrically for the oxidation of pyrene and benzo[α]pyrene by observing similar 
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compounds being produced. These compounds were also enriched in nitrogen (Figure 

19), suggesting that pyDOM photochemistry may produce aliphatic marine-like 

compounds (Benner et al., 1992; Sleighter and Hatcher, 2008; Hertkorn et al., 2013). 

Zeng et al. (2000a,b) also determined that these small aliphatic molecules can be further 

polymerized through radical-mediated reactions (RMR) to yield larger aliphatic structures, 

as other studies have also suggested (Matsumoto et al., 1996; Matsumoto et al., 1998; 

Yu et al., 2006; Waggoner et al., 2015). Ultimately, all oxygen-containing functionalities 

are removed, and all alkyl residues are converted to straight-chain alkanes. In the 

mechanism proposed by Zeng et al. (2000a,b) the ultimate products of ConAC oxidation 

are CO2 and long-chain alkanes, both of which would disappear from the ESI-FT-ICR-MS 

analytical window.  

The proposed mechanistic pathways are supported by the trends observed using 

the advanced analytical techniques employed in this study. The aromatic species in Oak 

250 pyDOM were oxygenated but did not transform into highly aliphatic molecules as the 

aromatic species in Oak 525 and Oak 650 pyDOM did (Figure 13). This is because this 

leachate is not rich in ConAC, and its constituent molecules are of relatively low degree 

of condensation (as determined quantitatively by BPCA analysis, Bostick et al., 2018, 

2020b). Because ConAC contents and degree of condensation mainly controlled the rate 

of photo-transformation, Oak 250 pyDOM photo-mineralized slowly, with a corresponding 

TOC loss of only 11% (Bostick et al., 2020b). The ConAC of Oak 250 would have likely 

required a longer photo-exposure to reach a higher degree of photo-transformation. The 

leachate of Oak 400, which had undergone greater thermal lignocellulosic transformation 

than that of Oak 250, was more photo-labile. Its degradation can be readily tracked 

through the time series experiment for this sample (Figures 16 and 17), supporting the 

proposed sequential oxidation and decarboxylation steps of this pathway. In Oak 525 

pyDOM, the formation of aliphatic compounds is observed (shown in Figure 13) indicating 

that many more molecules in this sample have undergone ring-opening reactions, and 

within five days, have proceeded much further on the proposed pathway, as also 

observed by Ward et al. (2014) in pyDOM from a char of tealeaf willow-feather moss 

mixture made at 450 OC. I hypothesize that if the Oak 400 time series were extended 
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further, the ConAC of Oak 400 would have also reached the extent of photo-

transformation of Oak 525 and Oak 650.  

The photo-degradation of Oak 650 pyDOM is intriguing because not many new 

aliphatic formulas were photo-produced as in Oak 525 pyDOM (Oak 525 = 2145 (33%), 

Oak 650 = 476 (22%), Figure 13). Oak 525 also produced more alkyl and O-alkyl 

functionalities than Oak 650 (66% and 58% increase, respectively, Figure 8c). However, 

Oak 650 pyDOM has been quantitatively determined to be most susceptible to 

degradation, losing almost all of its ConAC (94% loss, Bostick et al., 2020b). This 

enhanced photo-lability can be explained by the fact that it had the greatest concentration 

and degree of condensation of ConAC in its fresh leachate (Bostick et al., 2018, 2020b). 

The last step of the pathway, conversion of small aliphatic compounds to linear alkanes, 

is proposed to be radical-mediated. Formation of alicyclic molecules is unlikely as there 

were no evident cross-peaks for these functionalities in the TOCSY spectra (Figure 10), 

and Zeng et al. (2000a,b) did not observe any cyclic alkanes using mass spectrometry. 

In the FT-ICR-MS data there are also no carboxyl-rich alicyclic molecules (CRAM) 

observed, which are substances common to marine DOM (Hertkorn et al., 2006). The 

presence of radicals is necessary for the polymerization to straight-chain alkanes that are 

hypothesized here, and ConAC photo-degradation is known to produce ROS (Fu et al., 

2016; Li et al., 2019; Wang et al., 2020). It is likely that the photo-irradiation of Oak 650 

produces a high flux of such radicals, which allows for the nearly complete removal of the 

small oxygenated intermediates resulting in the complete photo-transformation of its 

ConAC pool into alkanes. If this is the case, the long-chain alkane by-products would not 

be ionizable by the electrospray ionization source and would therefore be undetectable 

by the mass spectrometric analysis. While such sp3-carbon-rich compounds are highly 

detectable by 1D and 2D NMR, it may be that, due to their hydrophobic character, these 

molecules clustered as colloids or particles and precipitated on the walls of the 

irradiation/storage vessels, and therefore were not detectable by the following NMR 

analyses. As there is no direct evidence presented for the formation of these alkanes in 

this study, alternatively, the small aliphatic molecules could have also been mineralized 

by ROS into gaseous species. Clearly, the degradation pathways of ConAC and pyDOM 

are not linear, and unfortunately, the conclusions here are based mainly on a “before and 
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after” approach that is unable to capture these non-linear transformations. While the Oak 

400 time series experiment does support the proposed pathway, future photochemical 

work of pyDOM should include a high resolution time series, as well as a variety of 

auxiliary measurements (ROS, metals, LMW compounds, etc.) to fully decipher the 

seemingly complex photochemistry of pyDOM. 

 

4.4.  Implications of pyDOM structural photo-transformations to biogeochemical 
cycling of organic matter 

 

ConAC and pyDOM photochemistry are important to global carbon cycling in many 

ways. The proposed oxidative pathways of ConAC (Figure 22) likely control photo-

dissolution of pyOM, a process of high environmental significance thought to influence 

the leaching of pyOM in aquatic environments (Roebuck et al., 2017; Li et al., 2019). 

While large amounts of ConAC are annually exported by rivers to the global ocean, 

ConAC concentrations change during export, likely due to degradative processes during 

transport (Jaffé et al., 2013; Wang et al., 2016; Marques et al., 2017; Coppola et al., 2019; 

Jones et al., 2020). It has also been determined that rivers export highly aromatic and 

young (<500 14C years old) dissolved ConAC to the marine environment (Ziolkowski and 

Druffel, 2010; Wang et al., 2016; Coppola et al., 2019). Open ocean DOM samples were 

found to contain less aromatic and very old ConAC (~18,000 14C years), which is 

explained by preferential photo-degradation of the high molecular weight ConAC, 

preserving the LMW ConAC (Santschi et al., 1995; Ziolkowski and Druffel, 2010). Another 

more recent study evaluating δ13C signatures of ConAC in global rivers and the open 

ocean also suggests that photo-degradative processes during export can be significant 

to the cycling of and source-identification of ConAC in the environment (Wagner et al., 

2019a). Additionally, using a conservative mass balance approach, Bostick et al. (2018) 

estimated that over 86% of the leached pyDOM may be lost in transit, with ConAC photo-

degradation being one of the main suspected reasons. The study presented in this 

Chapter, among others in the published literature, show that photochemistry has indeed 

a significant impact on the quality and quantity of pyDOM in the biogeochemical cycles.  
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Determining the structural changes associated with pyDOM photochemistry is 

important for better understanding the reactions occurring in natural systems. For 

example, the comparison between Oak 650 pyDOM and Grass 650 pyDOM photo-

degradation clearly indicates that the kinetics of degradation for these two samples are 

different, and evaluating the structural changes may be a key for determining how these 

two types of pyDOM differ. The abundance of different matrix components (e.g., Fe3+, 

NO3-) and structural moieties (e.g., heterocyclic N) may also affect photochemical 

kinetics, which in turn will have implications to cycling of organic matter in sunlit 

environments. These differences in pyDOM types may also explain some contradicting 

interpretations in the literature. For example, Stubbins et al. (2012) suggested that ConAC 

mainly photo-mineralize to CO and CO2, while Ward et al. (2014) argued that ConAC 

mainly photo-transform to small aliphatic molecules. These two studies have utilized 

completely different types of samples (ConAC from the deep ocean versus ConAC from 

a biochar leachate, respectively), have slightly different photo-irradiation apparatuses, 

and utilized different analytical techniques. Thus, while the discrepancy in their 

conclusions may be due to the different analytical windows of the utilized analyses, as 

Ward et al. (2014) suggests, it is also likely that the relative degree of photo-

transformation versus photo-mineralization also varies for ConAC in different samples.  

This study also brings new pieces of information to the long-running effort to 

explain the changes land-derived DOM occurring to terrestrial DOM during terrestrial-to-

marine export, and the sourcing and chemistry of marine DOM (Hedges et al., 1997). The 

proposed pathway for photochemical degradation of ConAC (Figure 22) suggests that, 

once solubilized, and if exposed to light for sufficient amounts of time, ConAC degrade to 

small aliphatic structures, which have the potential to be polymerized to larger long-chain 

alkanes. These small aliphatic compounds are mainly observed in the pyDOM of Oak 525 

and Oak 650 after photo-irradiation (Figure 13), and poor in number of unsaturations 

(Figure 18), and rich in nitrogen (Figure 19). These characteristics are common for marine 

DOM (Benner et al., 1992; Sleighter and Hatcher, 2008; Hertkorn et al., 2013), thus, it 

appears that photo-degradation shifts pyDOM to a marine-like molecular composition, 

and pyDOM photo-degradation products may be mislabeled as being derived from marine 

sources. Such an observation was made by Rossel et al. (2013) who compared the 
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molecular composition of deep ocean DOM to a photo- and microbially degraded leachate 

of a vascular plant and found a high degree of similarity. While terrestrial and marine DOM 

can be distinguished by their δ13C-signatures (Raymond and Bauer, 2001), it is known 

that photochemical and biotic transformation of DOM can alter the molecules’ isotopic 

composition (Macko and Estep, 1984; Vähätalo and Wetzel, 2008). Thus, it is unknown if 

pyDOM photo-products and marine-derived DOM can be separated without further 

advancements in the development of specialized pyDOM-specific molecular markers. 

The convergence of pyDOM photochemistry with the numerous other sources of organic 

matter into the aquatic environment is likely a contributing reason to the high isomeric 

complexity of natural DOM (Hertkorn et al., 2007). 

The last step of the proposed pathway, formation of long-chain alkanes, has not 

been previously observed in the environment. It has only been reported in laboratory 

studies in sterile conditions (Zeng et al., 2000a,b). The photo-produced small aliphatic 

molecules are of composition that would render them to be bio-labile (Spencer et al., 

2015) and they will likely be consumed by biota as a food source. Thus, I hypothesize 

that the formation of the long-chain alkanes through radical-mediated reactions is likely 

to happen only in sterile laboratory experiments. In the environment, it is likely that the 

small aliphatic compounds produced towards the last stage of photo-degradation (Figure 

22) are rapidly consumed by biota as a food source to produce marine DOM. Thus, 

pyDOM photo-degradation products may be important to riverine and marine food webs. 

This would be another observation of a photo-enhanced bio-lability, a well-studied 

phenomenon for DOM (Kieber et al., 1989; Lindell et al., 1995; Wetzel et al., 1995; Benner 

and Biddanda, 1998; Moran and Covert, 2003; Qualls and Richardson, 2003; 

Obernosterer and Benner, 2004; Abboudi et al., 2008; Chen and Jaffé, 2014; Antony et 

al., 2018) that has been proposed previously for pyDOM (Wagner and Jaffé, 2015). Thus, 

future work involving biotic incubations should be done to evaluate the biotic fate of 

pyDOM and its photo-degradation products. 
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5. CONCLUSIONS 
 

This study examined the molecular composition and the photochemical changes 

of leachates from chars produced at different temperatures and from different parent 

biomass types. Using 1H NMR, it was shown that aryl and olefinic functionalities of 

pyDOM were photo-labile, and alkyl and O-alkyl functionalities were photo-produced. The 

extent of degradation was controlled by the production temperature and parent feedstock 

of the parent chars. The photo-degradation of ConAC from the different leachates 

proceeded to different stages, which allowed for the development of a photo-

transformation pathway for ConAC. The rate of photo-degradation was attributed to 

differences in starting ConAC concentrations in the leachates, as well as to the degree of 

condensation of ConAC. This study also found that the presence of one or more matrix 

components that catalyze/inhibit the rate of photo-transformation is another factor for 

consideration. 

As ConAC are produced at a variety of temperatures and feedstocks in the 

environment, natural pyDOM will be of a highly variable composition. However, the 

proposed pathway here suggests if this variable pyDOM is subjected to photo-irradiation, 

ConAC are oxygenated, decarboxylated, and marine-like smaller aliphatic N-rich 

molecules are produced. In sterile laboratory conditions these molecules can be 

polymerized by ROS to a pool of long-chain alkanes, however in aquatic systems the 

small aliphatic molecules may be biotically labile and be metabolized by heterotrophs. 

Thus, pyDOM photochemistry may turn out to be a significant food source for biota that 

supports the production of marine DOM.  

 

 

 

 

 

 

 

 



84 
 

CHAPTER IV 

 

LABILIZATION AND DIVERSIFICATION OF PYROGENIC DISSOLVED 

ORGANIC MATTER BY MICROBES 

 

 

PREFACE 
 

The data included in this chapter have been published in the data repository Mendeley 

(citation below). 

 

Goranov, A.I., Wozniak, A.S., Bostick, K.W., Zimmerman, A.R., Mitra, S. and Hatcher, 

P.G. (2020) Labilization and diversification of pyrogenic dissolved organic matter by 

microbes. Mendeley Data, V1, doi: 10.17632/kjkhy3tfys.1 

 

 

1. INTRODUCTION 
 

Pyrogenic organic matter (pyOM), the carbonaceous solid residue that is left after 

biomass burning (e.g., forest fires, biochar production), has been gaining attention in 

recent years as an important active component of the global biogeochemical cycles. 

Compositionally, pyOM is mainly comprised of condensed aromatic compounds (ConAC) 

of various degrees of condensation and functionalization (Masiello, 2004; Schneider et 

al., 2010; Wagner et al., 2018). These molecules have been found in various 

environmental matrices such as soils and sediments (Schmidt and Noack, 2000; 

Skjemstad et al., 2002; Reisser et al., 2016) and atmospheric aerosols (Wozniak et al., 
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2008; Bao et al., 2017). In these environmental matrices, ConAC were originally thought 

to be exclusively stable (“recalcitrant”) due to their highly condensed character (Goldberg, 

1985; Masiello and Druffel, 1998). However, more and more studies report the presence 

of pyrogenic molecules in different aquatic environments (Hockaday et al., 2006; Dittmar 

and Paeng, 2009; Roebuck et al., 2017; Wagner et al., 2017; Li et al., 2019). These 

studies support the estimates that riverine systems annually export large amounts of 

pyrogenic dissolved organic matter (pyDOM) to the global ocean (Dittmar et al., 2012; 

Jaffé et al., 2013; Wang et al., 2016; Marques et al., 2017; Jones et al., 2020). During 

export, pyDOM is likely altered by various processes resulting in degradation and 

alteration of its physico-chemical characteristics (Masiello, 2004; Coppola et al., 2019; 

Wagner et al., 2019). Using laboratory-prepared chars and conservative assumptions, 

Bostick et al. (2018) approximated that 86% of the leached pyDOM is degradable (e.g., 

mineralizable to CO2), which indicates that pyDOM is a very active component within the 

global carbon cycle, as previously suggested (Druffel, 2004; Lehmann, 2007; Riedel et 

al., 2016).  

 In sunlit aquatic environments, photo-degradation is the most significant sink for 

the ConAC fraction of pyDOM (Stubbins et al., 2012). The photochemistry of ConAC and 

pyDOM has been studied utilizing either laboratory-prepared pyDOM (Ward et al., 2014; 

Fu et al., 2016; Li et al., 2019; Bostick et al., 2020b; Goranov et al., 2020; Wang et al., 

2020) or ConAC-rich natural organic matter (Stubbins et al., 2010, 2012; Wagner and 

Jaffé, 2015). These studies have reported that ConAC are exceptionally photo-labile and 

they degrade through a series of oxygenation, ring-opening, and decarboxylation 

reactions leading to a pool of smaller aliphatic by-products. Additionally, pyDOM 

photochemistry has been associated with the production of high fluxes of reactive oxygen 

species (ROS), important transients involved in the photo-degradation of pyDOM (Fu et 

al., 2016; Li et al., 2019; Goranov et al., 2020; Wang et al., 2020). These studies have 

contributed to a better understanding of the biogeochemical cycling of pyDOM in the 

presence of sunlight in the environment. Microbial (biotic) pathways are another 

degradative pathway with high potential for altering and/or mineralizing pyDOM, but they 

are far less understood.  
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Biotic reworking of organic molecules is a key mechanism for producing the 

diverse molecular composition of natural organic matter (Lechtenfeld et al., 2015; Hach 

et al., 2020). Due to the highly condensed character of pyOM, it is often regarded as bio-

recalcitrant, though several studies have shown that a fraction (about 0.5 to 10 %) is 

indeed bio-degradable (Kuzyakov et al., 2009, 2014; Zimmerman, 2010; Zimmerman et 

al., 2011). PyOM is mainly comprised of ConAC (Bostick et al., 2018; Wozniak et al., 

2020), which contributes to its low bio-degradability (Zimmerman, 2010). By contrast, 

pyDOM is highly heterogeneous (Wozniak et al., 2020), and in addition to ConAC, it 

contains numerous low molecular weight (LMW) species (e.g., acetate, methanol, 

formate; Bostick et al., 2018; Goranov et al., 2020) as well as various pyrogenic aliphatic 

compounds and inorganic nutrients (Hockaday et al., 2007; Mukherjee and Zimmerman, 

2013; Goranov et al., 2020; Wozniak et al., 2020). The very solubility of pyDOM is 

imparted by the greater abundance of polar functional groups, which would also allow for 

greater microbial accessibility. To date, there is no study that evaluates the molecular-

scale bio-degradability of pyDOM. It is unknown whether and how (e.g., mechanistic 

pathways, kinetic rates) these different compound groups are bio-degraded.  

Additionally, there are concerns that leachates of fire-derived substances may be 

toxic due to the presence aromatic molecules. It has been shown that cellulose- and 

pinewood-derived biochar water-extracts (pyDOM of laboratory-made charcoals) inhibit 

the growth of cyanobacteria while pyDOM of lignin-derived biochar has no inhibitory 

effects (Smith et al., 2016). The toxicity has been mainly attributed to polysubstituted 

phenols in the above-mentioned biochars. In natural systems, however, it is likely that 

other pyDOM components also play a role in controlling the bio-reactivity of pyDOM. An 

important very recent finding is that pyOM and pyDOM contain organochlorine 

compounds (both aliphatic and aromatic; Wozniak et al., 2020), which may enhance the 

toxicity of these pyrogenic substances. Thus, biotic incubations of pyDOM are needed to 

reveal if microbial growth can be sustained in a pyDOM/ConAC-rich environment. 

 To explore these questions, aqueous biochar leachates were incubated with a soil-

derived microbial consortium and the compositional changes to pyDOM were evaluated 

using numerous analytical techniques. Laboratory-produced biochars can be considered 

model pyrogenic substances as they are similar to what is produced during forest fires in 
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the environment (Santín et al., 2017) but have not experienced environmental aging 

which impacts their physico-chemical properties (Ascough et al., 2011). Here, oak wood 

was used to produce biochars because most of riverine dissolved organic matter (DOM) 

is exported from forested catchments (Hedges et al., 1997). Pyrolysis was performed at 

two different temperatures (400 and 650 OC) representative of those in forest fires (Santín 

et al., 2015, 2016). As photochemistry has been shown to increase the bio-lability of 

various types of DOM (Kieber et al., 1989; Lindell et al., 1995; Wetzel et al., 1995; Benner 

and Biddanda, 1998; Moran and Covert, 2003; Qualls and Richardson, 2003; 

Obernosterer and Benner, 2004; Abboudi et al., 2008; Chen and Jaffé, 2014; Antony et 

al., 2018), pyDOM that had been photo-irradiated was also incubated with microbes. 

Previous studies of these pyDOM samples showed significant compositional and 

structural changes after photo-irradiation, which certainly implies different bio-reactivity 

(Bostick et al., 2020b; Goranov et al., 2020).  

In a parallel study of the same samples (Bostick et al., 2020a), total organic carbon 

(TOC) loss and respired CO2 were quantified, and the changes to the bulk structural 

composition was determined by one-dimensional 1H nuclear magnetic resonance (NMR) 

spectroscopy. Additionally, in that study, benzenepolycarboxylic acids (BPCA) molecular 

markers were used to quantify the changes specific to the condensed (ConAC) fraction 

of pyDOM. It was found that pyDOM leachates derived from biochars of higher pyrolysis 

temperature (650 OC) were less bio-degradable than those from lower temperature (400 
OC) leachates, and photo-irradiation increased the bio-lability of pyDOM. Over the 96-day 

incubation, up to 48% of the carbon was respired to CO2 following first-order kinetics, with 

LMW compounds (e.g., acetate, formate, methanol) being preferentially degraded. To 

elucidate the molecular-level changes taking place during the bio-incubation of pyDOM, 

and probe the various molecules that are being degraded or produced by soil biota, these 

samples were examined using ultrahigh resolution mass spectrometry (Fourier transform 

– ion cyclotron resonance – mass spectrometry, FT-ICR-MS), two-dimensional NMR, and 

fluorescence spectroscopy. The collective results from these two studies improve the 

understanding of the degradative pathways of pyDOM and ConAC in the environment 

and allow for better interpretations pertaining to terrigenous-to-marine transfers and 

global cycling of organic matter. 
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2. MATERIALS AND METHODS 
 

2.1.  Preparation of pyDOM samples 
 

Two biochars were prepared by heating laurel oak wood (Quercus hemisphaerica) 

under N2 atmosphere at 400 and 650 OC for 3 hours. After grinding and sieving to particles 

of uniform size (0.25 - 2.00 mm), the chars were leached in 18.1 mΩ MilliQ laboratory-

grade water (5 g in 500 mL) over 50 hours on a shaker table. The obtained pyDOM 

leachates, hereafter referred to as “Oak 400 Fresh” and “Oak 650 Fresh”, were filtered 

using 0.2 µm Millipore GSWP mixed cellulose ester filters. Physico-chemical 

characteristics of similarly-produced solid chars and their leachates were reported in 

several previous studies (Zimmerman, 2010; Mukherjee et al., 2011; Bostick et al., 2018; 

Wozniak et al., 2020). A fraction of each leachate was also subjected to photo-irradiation 

for 5 days in a custom-made solar simulator equipped with Q-Lab Corporation UV-A 

lamps (295 – 365 nm, λMAX = 340 nm, 40 watt) equivalent to natural photo-irradiation of 

12 days. Photo-transformation rates, structural changes, photo-irradiation apparatus 

design, and other relevant information has been published previously (Bostick et al., 

2020b; Goranov et al., 2020). Photo-irradiated pyDOM samples will be hereafter referred 

to as “Oak 400 Photo” and “Oak 650 Photo”. The four samples were diluted to a uniform 

TOC concentration of 4.7 mgC·L-1 prior to microbial incubations. 

 

2.2.  Incubation of pyDOM 
 

Microbial incubations were performed using a soil-derived microbial consortium as 

an inoculum. Soil from the Austin Cary Memorial Forest (Gainesville, FL) was chosen, 

because this area is frequently subjected to prescribed burns (Johns, 2016), and its soil 

microbes likely interact with pyOM and pyDOM on a regular basis. Taxonomic details of 

its soil microbial characteristics have been published previously (Khodadad et al., 2011). 

The collected soil was treated to remove roots and detritus, and its water-extract was 

centrifuged to obtain a pellet. The pellet was then dissolved in 10 mL MilliQ laboratory-

grade water to obtain an inoculate, 100 µL of which was used to spike 50 mL of each 
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pyDOM substrate. Additionally, microbial nutrients (KH2PO4 and (NH4)2SO4) were 

provided following Zimmerman (2010) to support a healthy growth medium. Samples 

were incubated in gas-sealed amber vials on a shaker table at 28 ± 5 OC for 10 days in 

the dark. Using a double-needle assembly, CO2-free air (Airgas, Zero Air) was flushed 

through the samples on days 0, 2, 5, and 10, which oxygenated the samples and removed 

dissolved inorganic carbon for its measurement, and is reported by Bostick et al. (2020a). 

A procedural blank and control samples were prepared in the exact same way but were 

poisoned with HgCl2 immediately following the mixing of the different components 

(pyDOM, inoculate, nutrients). Additionally, a solution of sucrose (0.5 g C12H22O11 in 40 

mL MilliQ laboratory-grade water) was also incubated in the same manner. All incubated 

samples were poisoned with HgCl2 to terminate microbial activity before shipment to Old 

Dominion University (Norfolk, VA) for spectroscopic and spectrometric analyses. Prior to 

spectroscopic analysis (see Section 2.3 below) or spectrometric analysis (see Section 2.4 

below), samples were filtered using acid-washed 0.1 µm Teflon (PTFE) syringe filters. 

Further details about sample preparation can be found in the parallel study (Bostick et al., 

2020a). 

 
2.3.  Analysis of chromophoric and fluorophoric dissolved organic matter 

 
Chromophoric DOM (CDOM) measurements were performed on a Thermo 

Scientific Evolution 201 ultraviolet-visible (UV-VIS) spectrophotometer operated in a 

double-beam mode. A matched Starna quartz cuvette with MilliQ water was used as a 

reference during all spectral measurements. Spectra were recorded from 230 – 800 nm 

using a 1 nm step, 0.12 s integration time, and 500 nm/min scan speed. In addition to the 

double-beam referencing, the average noise in the 700-800 nm spectral region was 

subtracted from the spectra to correct for any instrument baseline drifts, temperature 

fluctuations, as well as scattering and refractive effects (Green and Blough, 1994; Helms 

et al., 2008). After consecutive procedural-blank corrections, the spectra (kept in decadic 

units) were normalized to the cuvette path length (1.0 cm) and the TOC content (in mgC·L-

1) to convert them to specific absorbance (L·mgC-1·cm-1; Weishaar et al., 2003). CDOM 
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was quantified by integrating the spectra from 250 – 450 nm (Helms et al., 2008) and is 

reported in L·mgC-1·cm-1·nm units. 

Fluorophoric DOM (FDOM) measurements were performed on a Shimadzu RF-

6000 spectrofluorometer operated in 3D acquisition mode. Samples were analyzed 

without dilution as no sample yielded absorbance at 230 nm above 0.07 (Miller et al., 

2010). Samples were excited from 230 – 500 nm (5 nm step) and emission was recorded 

over 250 – 650 nm (5 nm steps) to obtain excitation-emission matrices (EEMs). 

Additionally, five replicate water Raman scans were acquired on MilliQ water in 2D 

emission mode by exciting the sample at 350 nm and fluorescence intensity was 

monitored over 365 – 450 nm (0.5 nm steps). All measurements were done with 5 nm slit 

widths of the monochromators, 600 nm/min scan speed, and in high-sensitivity mode.  

EEMs were processed in MATLAB using the drEEM toolbox (version 0.4.0.) using 

previously published routines (Murphy et al., 2010, 2013). Briefly, using the 

FDOMcorrrect.m function, the raw EEMs were adjusted for instrumental bias, blank-

corrected using an EEM of the procedural blank, and scaled to adjust for any inner-filter 

effects using the raw UV-VIS spectra (Kothawala et al., 2013). This function also 

normalized the EEMs to Raman units (RU) after the area of the water Raman peak (peak 

maximum at 397 nm) had been determined by the ramanintegrationrange.m function 

(Murphy, 2011) on the averaged water Raman spectrum. The EEMs were then processed 

using the smootheem.m function to remove 1st and 2nd order Rayleigh signals and Raman 

scattering. EEMs are visualized and difference plots are generated using an in-house 

MATLAB script. 

 

2.4.  Fourier transform - ion cyclotron resonance - mass spectrometry (FT-
ICR-MS) 

 

Procedural blank, control, and incubated samples were loaded onto solid-phase 

extraction cartridges (Agilent Technologies Bond Elut PPL, 100 mg styrene divinyl 

copolymer) as previously described (Dittmar et al., 2008). Cartridges were eluted with 

methanol (Fisher Scientific, Optima LC-MS grade) and infused into an Apollo II 

electrospray ionization (ESI) source interfaced with a Bruker Daltonics Apex Qe FT-ICR-
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MS operating at 10 T and housed in the College of Sciences Major Instrumentation 

Cluster (COSMIC) facility at Old Dominion University (Norfolk, VA). The instrument is 

externally calibrated daily with a polyethylene glycol standard, and a surrogate laboratory 

pyDOM standard was analyzed before and after pyDOM analyses to verify for the lack of 

instrumental drift. Additionally, an instrumental blank of methanol was analyzed between 

samples to verify for the absence of sample carryover. ESI spray voltages were optimized 

for each sample to assure for consistent spray currents among the samples. For each 

sample, 300 transients with a 4MWord time domain were collected, co-added, and the 

resultant free induction decay was zero-filled and sine-bell apodized. After fast Fourier 

transformation, internal calibration of the resultant mass spectra was performed using 

naturally abundant fatty acids, dicarboxylic acids, and compounds belonging to the CH2-

homologous series as previously described (Sleighter et al., 2008). Then, using an in-

house MATLAB script, salt, blank, and isotopologue (13C, 37Cl) peaks were removed. 

Molecular formulas within ± 1 ppm error were assigned to FT-ICR-MS spectral peaks (S/N 

≥ 3) using the Molecular Formula Calculator from the National High Magnetic Field 

Laboratory (Tallahassee, FL). Formula assignments were restricted to elemental 

composition of 12C5-∞, 1H1-∞, 14N0-5,16O0-30, 32S0-2, 31P0-2, and 35Cl0-4, and were refined using 

previously established rules (Stubbins et al., 2010). Any ambiguous peak assignments 

were refined by inclusion within homologous series (CH2, H2, COO, CH2O, O2, H2O, NH3, 

HCl) following Kujawinski and Behn (2006) and Koch et al. (2007). For all samples, at 

least 80% of the mass spectral peaks were assigned, and they accounted for at least 

93% of the mass spectral magnitude. Molecular composition was evaluated by plotting 

the molecular formulas on van Krevelen (vK) diagrams, scatterplots of the formulas’ 

hydrogen to carbon (H/C) versus oxygen to carbon (O/C) ratios (Van Krevelen, 1950; Kim 

et al., 2003). Formulas were further categorized using the modified aromaticity index 

(AIMOD) as described previously in Section 2.6 of Chapter II. Additionally, N-containing 

formulas falling in the ranges of 1.5 ≤ H/C ≤ 2 and 0.1 ≤ O/C ≤ 0.67 were classified as 

peptide-like. Statistical evaluation using one-way analysis of variance (ANOVA) of means 

was performed in MATLAB using the “anova1” function. Post-hoc Scheffé's assessments 

were performed using the “multcompare” function in the same software. For the Kendrick 

Mass Defect (KMD) series analysis (described later in this Chapter), Kendrick Mass (KM) 
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was first calculated using the molecular weight of each compound (i.e., calculated mass 

from its molecular formula) following Eq. 5. Then, the Kendrick Nominal Mass (KNM) was 

calculated as the rounded integer (no decimals) of the Kendrick Mass (KM) as shown in 

Eq. 6. The Kendrick Nominal Mass (KMD) is the difference between KM and KNM, i.e., 

the decimals (Eq. 7). This analysis was performed for oxygen (O), carbonyl (CO), and 

carboxyl (COO) series. 

 

 KM = Molecular Weight × constant           Eq. 5 

constant =  
15.9949146
16.0000000

 for O;   
27.9949146
28.0000000

 for CO;   and 
43.9898292
44.0000000

 for COO series 

 KNM = integer of KM Eq. 6 

 KMD = KM − KNM Eq. 7 

 
2.5. Nuclear Magnetic Resonance (NMR) spectroscopy 

 
One-dimensional 1H NMR spectra of the samples of this project were published 

and evaluated in the parallel study (Bostick et al., 2020a). For the study reported in this 

Chapter, a select sample was analyzed using two-dimensional 1H-1H total correlation 

spectroscopy (TOCSY) to further evaluate several functional groups of interest. Analyses 

were performed on a 400 MHz (9.4 Tesla) Bruker BioSpin AVANCE III spectrometer fitted 

with a double-resonance broadband z-gradient inverse (BBI) probe in the COSMIC 

facility. Samples were analyzed without pre-concentration and volumetrically diluted with 

deuterated water (D2O, Acros Organics, 100% D) to obtain a 90:10 H2O:D2O solution. To 

obtain ultraclean NMR spectra, NMR tubes were soaked with aqua regia, rinsed 

extensively with ultrapure water, and individually tested as blanks to verify that no 

background peaks are present. While 1H spectra were originally processed using an 

exponential multiplication function (line broadening) of 5 Hz to obtain higher signal-to-

noise for a more accurate and precise integration (Bostick et al., 2020a), here they were 

re-processed using a multiplication function of 1.5 Hz to better observe the splitting 

(multiplicity) patterns of the peaks of interest. TOCSY spectra were acquired using the 
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phase-sensitive gradient-enhanced mlevgpphw5 pulse program. It utilizes a 17-step 

Malcolm Levitt (MLEV-17) composite scheme (Bax and Davis, 1985) for magnetization 

transfer between any coupled nuclear spins, and a W5-WATERGATE element for water 

suppression (Liu et al., 1998). Both short-range and long-range spin-spin couplings were 

observed using 30 ms and 100 ms mixing times, respectively. The data were then zero-

filled to a 4096 x 1024 matrix and then fitted with a π/2-shifted (SSB = 2) sine-squared 

window function. Linear prediction to 256 points was used in the F1 dimension. All spectra 

were internally calibrated to the sharp distinguishable methanol singlet at 3.34 ppm 

(Gottlieb et al., 1997), and then were phased and baseline-corrected. T1-noise removal 

was performed by calculating the positive projection of rows with no resonances and the 

summed projections were subtracted from all rows in the spectrum (Klevit, 1985). The 

same procedure was performed for all columns (F2 dimension).  

 

3. RESULTS 
 

3.1.  Molecular degradation of pyDOM 
 
Ultrahigh resolution mass spectrometric analysis of the bio-incubated and 

corresponding control pyDOM leachates revealed significant changes in molecular 

composition after the 10-day incubation (Fig. 23). The identified molecular formulas for 

these samples were classified into one of three groups using a presence-absence 

approach (Stubbins et al., 2010; Sleighter et al., 2012). This approach identifies any 

common formulas among the two samples being compared (control and bio-incubated), 

as well as any formulas that are unique to each sample. It is important to note that the 

electrospray ionization (ESI) source is prone to biases, and the analytical window of FT-

ICR-MS depends most critically on it. Thus, it may not identify compounds that are present 

if they are not ionizable (Stenson et al., 2002; Patriarca et al., 2020). Therefore, it is 

essential that observations by FT-ICR-MS are always paired with supplementary 

quantitative techniques (optical analyses, NMR, etc.) in order to determine if the identified 

trends are real or an artifact of ESI charge competition (D’Andrilli et al., 2020). 
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Figure 23. Van Krevelen (vK) diagrams of 10-day microbially incubated pyDOM 
leachates. Formulas are classified as bio-labile (molecular formulas only found in the 
“killed” control pyDOM leachates) and bio-produced (formulas that are only found in the 
bio-incubated samples). Formulas that are present in both the control and bio-incubated 
samples are operationally classified as bio-resistant and not shown for clarity. These 
three classes of molecules are separately plotted on vK diagrams and shown in Section 
1 of Appendix C. The number of formulas found in each of these pools is listed in the 
legends along with corresponding percentages (relative to total number of formulas in the 
two samples being compared). The black lines indicate modified aromaticity index cutoffs 
(AIMOD; Koch and Dittmar, 2006, 2016), and the red box indicates the peptide region (valid 
only for N-containing formulas). 
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In all samples, nearly a third of the formulas (23 – 31%) present in the control 

samples were not observed after the biotic incubations, which is proportional to the 

organic carbon losses observed by Bostick et al. (2020a). Interestingly, for all leachates 

the degraded (“bio-labile”) molecules were not from a specific area of the vK diagrams 

but rather represent a broad range of H/C and O/C ratios and compound types (see Figure 

C1 in Appendix C). This variety of compound characteristics among bio-labile molecules 

suggests that the degradation pathway may not be from microbial consumption alone. It 

would be unlikely for the soil microorganisms to utilize organic matter compounds as food 

indiscriminately. Most interestingly, it is evident that large numbers of aromatic (AIMOD ≥ 

0.50) and some ConAC (AIMOD ≥ 0.67) formulas are lost, in agreement with observed 

losses in CDOM (Figure 24), as well as aryl functional groups (measured by 1H NMR) 

and ConAC (measured by BPCA analysis) reported in the parallel study (Bostick et al., 

2020a). Losses of specific compound classes, especially ConAC (due to their low 

ionizability) might be considered an artifact due to competition processes in the ESI 

source (Stenson et al., 2002; Patriarca et al., 2020). The agreement between FT-ICR-MS 

and other quantitative data (UV-VIS, NMR, TOC, BPCA), however, confirms the 

interpretation of degradation. 
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Figure 24. Total chromophoric dissolved organic matter (CDOM) content of pyDOM 
leachates before (blue) and after (green) 10-day biotic incubations. CDOM content is 
reported as the integrated carbon-normalized absorbance from 250 – 450 nm (Helms et 
al., 2008). The percent loss of CDOM for each leachate is shown as percentage under 
the label of each leachate. 
 

 

Approximately half of the formulas (37 – 56%) in the original pyDOM leachates are 

classified, using the presence/absence approach, as bio-resistant (observed before and 

after biotic degradation). These formulas are located in all areas of the vK diagram (Figure 

C2 in Appendix C), showing variable oxygenation and aromaticity. Furthermore, the 

relative peak magnitudes of these formulas did not change significantly (R2 > 0.95, Figure 

25; Sleighter et al., 2012), suggesting that a wide variety of pyDOM molecules appear to 

be recalcitrant to microbial degradation. Using the available molecular data, it is not 

possible to attribute the observed recalcitrance to any molecular property. Therefore, it is 

likely that some of these molecules are still bio-labile and would have degraded in due 

time if the incubations were sampled at later time points. Longer biotic incubations should 

be conducted in future studies to fully differentiate between labile and recalcitrant pyDOM 

molecules.  
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Figure 25. Abundance scatterplots of the bio-resistant formulas following Sleighter et al. 
(2012). This approach evaluates the similarity in relative abundance of each common 
formula among the control and its corresponding bio-incubated sample. A high R2 value 
indicates a high similarity in the abundance of these formulas. 
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The use of hydrogen-to-carbon ratio (H/C) versus molecular weight (MW) plots has 

also been useful in interpreting ultrahigh resolution mass spectrometry data (e.g., 

(Gonsior et al., 2018; Powers et al., 2019; Valle et al., 2020), and such plots using the 

presence-absence approach are shown in Figure 26. These graphics help evaluate how 

different types of compounds (aliphatic vs aromatic) change relative to their MW.  

For both Oak 400 leachates, it is clear that large aromatic molecules (H/C < 1.5, 

MW > 550 Da) are removed during the biotic degradation, and smaller (300 < MW < 550) 

aromatic compounds are produced. These aromatic molecules that are being degraded 

into smaller ones are mainly ligninaceous and not ConAC, in agreement with the BPCA 

data published by Bostick et al. (2020a). With regards to the aliphatic molecules (H/C > 

1.5), it is clear that molecules of a wide range of sizes are removed and created during 

the incubation suggesting that molecular weight is not a critical factor in their bio-lability. 

This is in apparent disagreement with the general knowledge that microbes preferentially 

consume low molecular weight substrates (e.g., Søndergaard and Middelboe, 1995), 

which was also concluded for these samples by Bostick et al. (2020a). The consumption 

of large molecules indicates that microbes utilize extracellular enzymes to degrade them 

into smaller substrates (Billen et al., 1990) or secondary degradative pathways are also 

at play. 
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Figure 26. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of microbially 
incubated pyDOM leachates. Formulas are classified as bio-labile (molecular formulas 
only found in the “killed” control pyDOM leachates) and bio-produced (formulas that are 
only found in the bio-incubated samples). Formulas that are present in both the control 
and bio-incubated samples are operationally classified as bio-resistant and not shown for 
clarity. These classes are also individually plotted on Figures C4-6 in Appendix C. The 
number of formulas of each of these pools is shown in the legends (along with 
corresponding percentages). The red lines indicate where peptide-like formulas would 
plot. 
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3.2.  Composition of bio-produced organic matter 
 

The bio-produced organic compounds can be evaluated in various ways to 

examine the processes that may have occurred during the incubations. Using a 

presence/absence approach (Sleighter et al., 2012), the bio-produced formulas of each 

sample are compared with those of the other samples (Table 2). No significant overlap 

was found (2 – 320 formulas, 0 – 12%) among the molecules produced in the incubated 

pyDOM samples. Furthermore, no significant match was found between the bio-produced 

formulas of incubated pyDOM and those of the incubated sucrose control sample (63 – 

94 formulas, 3%, Table 2). These observations indicate that the products of the 

incubations were either vastly different for each sample and may depend on the starting 

substrate or were further altered post-exudation to result in their diversification. 

 

 

Table 2. Overlap of bio-produced molecular formulas among samples. The number of 
formulas corresponds to the formulas in common between the two samples being 
compared, and the percentage is relative to the total number of formulas in the two 
formula sets.  

Sample Oak 400 
Fresh 

Oak 400 
Photo 

Oak 650 
Fresh 

Oak 650 
Photo 

Oak 400 Fresh - - - - 
Oak 400 Photo 320 (12%) - - - 
Oak 650 Fresh 126 (4%) 104 (5%) - - 
Oak 650 Photo 165 (5%) 81 (3%) 2 (0%) - 

Sucrose 94 (3%) 63 (3%) 68 (3%) 83 (3%) 
 

 

A significant fraction of the bio-produced organic matter was characterized as 

peptide-like (N-containing, 1.5 ≤ H/C ≤ 2.0, 0.1 ≤ O/C ≤ 0.67). This indicates that microbes 

convert a part of pyDOM into labile DOM (Moran et al., 2016; Vorobev et al., 2018), a 

process hereafter referred to as “microbial labilization”. Given that the pyDOM samples 

used in this study were poor in organic nitrogen, the microbes must have used the 

inorganic nitrogen (NH4+) that was provided as a nutrient and converted some or all of it 

into microbial biomass. The peptide-like microbially-produced formulas comprise 23 – 40 
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% of the bio-produced formulas (Table 3), and the results of the comparative analyses 

described above also imply that these proteinaceous formulas are of highly variable 

composition.  

The peptide-like formulas in the four samples were evaluated using one-way 

ANOVA to extract the variability in their composition. Averages of molecular parameters 

were derived from the formula lists – average number of elements (C, H, O, N), elemental 

ratios (O/C, H/C, N/C, H/N, O/N), molecular weight, double-bond equivalencies (DBE, 

DBE/C, DBE-O), modified aromaticity index (AIMOD) and nominal oxidation state of carbon 

(NOSC). While the peptide-like formulas seem similar when plotted in the vK space 

(Figures 23 and Figure C3 in Appendix C), significant differences (p < 0.05) in the means 

of all molecular parameters were observed. When each metric was evaluated using 

ANOVA, there was at least one sample among the five being compared that had a 

significantly different mean. Using Scheffé's post-hoc test, it was observed that it was not 

the same sample that was statistically different each time, which indicated the vast 

diversity of bio-produced peptide-like molecules after these five incubations. The results 

from these statistical assessments support the findings by the presence/absence 

comparisons presented earlier (Table 2) and these findings collectively conclude that the 

microbial incubations of pyDOM created pools of new, very diverse molecules, a process 

hereafter referred to as “microbial diversification”. As FT-ICR-MS was performed with soft 

electrospray ionization with no fragmentation, the structure of the observed molecules is 

inferred from the elemental composition of the assigned molecular formulas. Another 

possibility for these N-containing molecules is that they were formed by radical processes 

that coupled pyDOM molecules with the NH4+ nutrient that was added to support microbial 

growth. A preliminary experiment (data not shown) showed that mixing pyDOM with NH4+ 

did not result in abiotic formation of new molecules (for example via Michael addition; 

McKee et al., 2014), but abiotic formation was not tested in the presence of radicals. 

To confirm that these formulas were associated with proteinaceous structures and 

are not just compounds that coincidentally plotted in the ’peptide region’, 

spectrofluorometric analysis was performed to obtain excitation-emission matrices 

(EEMs) of the pyDOM samples before and after bio-incubation (Figure 27). The data for 

Oak 650 Photo is not reported as its EEM spectra were of questionable quality, and as 
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the sample was in limited amounts, analytical validation and quality assessment were not 

possible.  

 

Table 3. Molecular metrics of peptide-like bio-produced formulas (N-containing, 1.5 ≤ H/C 
≤ 2.0, 0.1 ≤ O/C ≤ 0.67) found in pyDOM samples after the 10-day incubation. The metrics 
below are reported as number-weighed mean ± standard deviation. The molecular 
metrics colored in red correspond to the means that were found to be significantly 
different (p < 0.05) from at least one of the other four means (evaluation done by ANOVA 
followed by Scheffé’s post-hoc test). 
 Oak 400 

Fresh 
Oak 400 
Photo 

Oak 650 
Fresh 

Oak 650 
Photo Sucrose 

Number of 
bio-produced 

formulas 
1778 1111 1246 1456 1339 

Number of 
peptide-like 

bio-produced 
formulas 

541 (30%) 261 (23%) 497 (40%) 314 (22%) 160 (12%) 

Number of 
identified 

oligopeptides 
14 5 11 18 2 

C number 28.5 ± 7.6 30.9 ± 10.9 30.7 ± 7.6 30.3 ± 8.7 31.7 ± 9.6 
H number 49.8 ± 14.4 54 ± 20.6 53.7 ± 14.8 54 ± 16.5 55.4 ± 18.5 
O number 7.8 ± 2.6 7.8 ± 3.2 7.8 ± 2.9 9.0 ± 2.8 7.9 ± 3.1 
N number 2.4 ± 1.1 2.8 ± 1.3 2.5 ± 1.2 2.4 ± 1.2 2.4 ± 1.3 
O/C ratio 0.28 ± 0.08 0.26 ± 0.09 0.25 ± 0.08 0.31 ± 0.10 0.25 ± 0.08 
H/C ratio 1.74 ± 0.12 1.74 ± 0.13 1.74 ± 0.13 1.78 ± 0.16 1.74 ± 0.14 

N/C ratio 0.085  
± 0.037 

0.094  
± 0.045 

0.082  
± 0.038 

0.083  
± 0.045 

0.078  
± 0.042 

H/N ratio 24.8 ± 11.4 23.5 ± 13.4 26 ± 13.2 28.6 ± 16.7 29.4 ± 16 
O/N ratio 4.0 ± 2.2 3.5 ± 2.2 3.8 ± 2.5 5.1 ± 3.5 4.3 ± 2.7 

MWa 550 ± 140 589 ± 188 582 ± 147 596 ± 143 597 ± 172 
DBEb 5.81 ± 1.78 6.28 ± 2.17 6.13 ± 2.06 5.51 ± 2.59 6.2 ± 2.33 

 DBE/Cc 0.211  
± 0.065 

0.215  
± 0.071 

0.206  
± 0.069 

0.189  
± 0.083 

0.203  
± 0.071 

 DBE-Od -2.27 ± 2.75 -1.75 ± 3.52 -1.90 ± 3.55 -3.82 ± 4.26 -1.86 ± 3.65 

 AIMODe 0.077  
± 0.05 

0.090  
± 0.052 

0.083  
± 0.049 

0.089  
± 0.057 

0.116  
± 0.049 

 NOSCf -0.929  
± 0.239 

-0.933  
± 0.259 

-0.984  
± 0.227 

-0.903  
± 0.269 

-1.002  
± 0.218 

aMolecular Weight (Da); bDouble-bond equivalency; cCarbon-normalized DBE; dOxygen-
corrected DBE; eModified Aromaticity Index; fNominal Oxidation State of Carbon 
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Figure 27. Fluorescence excitation-emission matrices (EEMs) of control (left panels) and 
bio-incubated (middle panels) pyDOM samples. Difference spectra are shown in the right 
panels. The black box indicates the region where compounds of proteinaceous and 
autochthonous/microbial origin fluoresce (Coble, 1996; Coble et al., 2014), with tyrosine-
like (B1 and B2) and tryptophan-like (T1 and T2) peaks labeled on the difference plots (right 
panels). 
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Proteinaceous organic matter has a highly characteristic fluorophoric signature 

due to the distinguishable signals of the aromatic amino acids tyrosine and tryptophan. 

The short Stokes’ shifts of these fluorophores allow them to spectroscopically separate 

on the EEM plot allowing for identification of related labile substances (Wünsch et al., 

2019). Other amino acids, namely histidine and phenylalanine, are also fluorophoric, but 

are not easily identified in EEM data of complex matrices. A simplistic approach to 

evaluate the change after the bio-incubation is to use difference plots (e.g., Hemmler et 

al., 2019). For all samples, strong proteinaceous signals evolve after biotic incubations 

indicating that molecules of proteinaceous and autochthonous/microbial origin are 

produced (Coble, 1996; Coble et al., 2014). This indicated that peptide-like molecules 

observed using FT-ICR-MS are not an artifact due to charge competition in the source, 

but are truly bio-produced, validating the findings of the presence/absence analysis. 

There are subtle differences among the EEMs of all control and bio-incubated samples 

indicative of the high variability in fluorophoric content of these samples. This agrees with 

the observed variability in molecular composition described earlier. An interesting 

observation is that in the two Oak 400 pyDOM incubations, tyrosine-like fluorescence 

(peaks B1 and B2) decreases after biotic incubation while tryptophan fluorescence (peaks 

T1 and T2) increases. In contrast, the tryptophan-like fluorophores are degraded and 

tyrosine-like ones are produced after biotic incubation of Oak 650 Fresh pyDOM. It must 

be noted that there are proteinaceous fluorophores (and peptide-like formulas) in the 

control samples resulting from the addition of the microbial inoculate, but the associated 

fluorophores were present in low amounts. Thus, proteinaceous fluorescence signals in 

the control samples are not unexpected. However, a decrease in proteinaceous 

fluorophores is opposite of what is expected after significant microbial growth. Therefore, 

it is possibly due to fluorophoric compounds in this system being highly bio-labile and/or 

susceptible to oxidation by specific ROS, but the residual post-oxidation by-products 

would be still detectable by FT-ICR-MS and classified as peptide-like compounds. The 

loss of tyrosine-like fluorophores in the Oak 400 samples, and loss of tryptophan-like 

fluorophores in Oak 650 Fresh, are indicative of different microbial physiology and 

exudates in these incubations. The complexity of these EEM spectra and the compound-

specific changes observed here indicate that proteomic and/or metabolomic analyses 
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(e.g., Nalven et al., 2020) are necessary in future microbiological studies of pyDOM in 

order to fully understand the changes in molecular composition during such incubations. 

To determine if the bio-produced formulas are from true proteins, or are 

compounds with residual proteinaceous fluorophores, the formulas were evaluated in the 

context of possible combinations of amino acids that would be singly charged. Given that 

microbes exude large proteins (molecular weight > 30 kDa) such as lignin peroxidases, 

manganese peroxidases, and laccases (Higuchi, 2004), the peptide-like formulas 

observed by FT-ICR-MS (analytical window of 200-1000 Da) may have resulted from 

hydrolysis of the above-mentioned enzymes (or other proteinaceous exudates). If that is 

the case, the hydrolysates would likely have had a simple oligomeric composition. To test 

this, the bio-produced peptide-like formulas in each sample were compared to a library of 

888,009 possible combinations of 20 amino acids (oligomeric sequences of 2-7 residues). 

Only a small number of oligopeptides were identified (5 – 18 oligopeptides of 2 – 5 amino 

acids, Tables 3 and C1 in Appendix C) which is counter to the proposed idea that 

hydrolysis of microbial exudates produced these newly observed peptide-like formulas. 

The lack of identified oligopeptides also calls into question the idea that microbial 

processes were solely responsible for the high variability of the bio-produced organic 

matter observed after the microbial incubation of pyDOM.  

In an attempt to further elucidate the composition of these bio-produced N-

containing substances, the previously published 1H NMR data of these samples (Bostick 

et al., 2020a) were re-evaluated in greater detail. Additionally, to further elucidate the 

connectivity between observed functional groups, two-dimensional 1H-1H total correlation 

NMR spectroscopy (TOCSY) was utilized on a select sample. Figure 28 shows the 

TOCSY spectra of the bio-incubated Oak 650 Fresh sample.  
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Figure 28. Two-dimensional 1H-1H total correlation spectroscopy 
(TOCSY) NMR spectra of the bio-incubated Oak 650 Fresh sample. 
Short- and long-range couplings were allowed to evolve during mixing 
times (τ) of 30 (blue) and 100 ms (red), respectively. The 1D 1H 
spectrum is shown as a projection on top (black). 
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There are three groups of resonances that were found in all samples, even in the 

controls (although of small contributions relative to the total spectral signal). These 

resonances have not been previously observed in the 1H NMR spectra of these pyDOM 

samples (Bostick et al., 2018; Goranov et al., 2020) indicating that they represent by-

products of the microbial incubations, likely microbial biomass. In the control samples, the 

compounds associated with these resonances must be from the soil inoculant that was 

added. The three resonances are also observed to be in the same coupling network 

indicating that they are a part of the same or similar structures. Due to the very low 

concentration of these samples (3.5 – 4 mgC·L-1), the NMR analysis did not allow for a 

high-resolution structural elucidation, but some distinct signatures were nonetheless 

observed. The deshielded aliphatic peaks at δ = 2.1 – 2.3 ppm have a complex multiplicity 

pattern, a characteristic feature of alicyclic structures. These are likely residual 

carbohydrate moieties which have lost most of their O-containing groups through various 

cleavage processes and their backbone Calicyclic-H resonances have been shifted upfield. 

The peak at 1.55 ppm is from β-hydrogens to a heteroatom (H-Cβ-Cα-X, where X = O, N, 

S), and these are known to be associated with peptidoglycans (Spence et al., 2011). The 

TOCSY analysis was performed with two different mixing times (τ = 30 and τ = 100 ms) 

in order to evaluate short-range (2 – 3 bond) and long-range (4 – 6 bond) connectivities. 

Based on the observed couplings the observed resonances are vicinal to each other (3 

bonds away). This indicates that these functional groups are closely bound in the 

peptidoglycan substances they likely represent. 

 All of these analyses of the molecules observed after the biotic incubation of the 

four pyDOM samples conclude that the observed biochemical processes in these 

systems are complex and difficult to unambiguously interpret. Based on the findings 

above it is clear that these formulas can originate from three different sources:  

1) exoenzymes, which microbes use to extracellularly degrade larger molecules 

into smaller ones (Hyde and Wood, 1997; Higuchi, 2004);  

2) peptidoglycans, which likely leached into solution after bacterial death and cell 

lysis (Yavitt and Fahey, 1984); and  

3) other metabolites and exudates involved in the physiology of the different 

microbes in the used consortium (e.g., signaling compounds).  
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The significant degradation of pyDOM and production of these biological compounds 

indicates that microbes successfully converted the presumably carbon-rich recalcitrant 

pyrogenic molecules into more labile substances, a process hereafter refer to as 

“microbial labilization”. However, the fact that the observed bio-produced labile molecules 

are not identifiable as simple oligopeptides, and are present in significantly different 

composition among the four samples, suggests that this molecular diversity may not be 

caused by predictable biotic reactions but by random radical-driven processes. Further 

evidence for the random radical-driven processes comes from the observed degradation 

of molecules across the whole vK space (Figures 23 and C1 in Appendix C), which is 

unusual because microbes generally preferentially consume smaller aliphatic species 

(Berggren et al., 2010a,b; Kirchman, 2018). 

 

3.3.  Radical Oxygenation as a potential source of molecular diversity  
 

Microbial physiology has been associated with the production of reactive oxygen 

species (ROS), which have been shown to be important in the degradation of various 

types of organic compounds (e.g., Scully et al., 2003; McNally et al., 2005; Porcal et al., 

2013; Trusiak et al., 2018; Xiao et al., 2020). A recent study showed that radicals can 

degrade various types of ligninaceous molecules (Waggoner et al., 2017) suggesting that 

microbially induced radical reactions can target a variety of pyDOM molecules. While 

there were no ROS measurements made in this study, Kendrick Mass Defect (KMD) 

analysis of the FT-ICR-MS data (Kendrick, 1963; Hughey et al., 2001) was performed to 

seek evidence for radical action. The KMD analysis identifies formulas that differ by any 

repeating structural moiety (e.g., -CH2-). To identify potential products of radical attack, 

the FT-ICR-MS data was evaluated in the context of oxygenation, i.e., the mass lists were 

searched for formulas differing by one oxygen atom (addition of hydroxyl group), carbonyl 

group (addition of aldehydes or ketones), and carboxyl groups (Figure 29). 
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Figure 29. Kendrick Mass Defect (KMD) analysis using oxygen (O) series of the bio-
produced formulas of Oak 400 Fresh pyDOM. Panel a) shows the whole KMD plot while 
panel b) shows an expanded region of it. Formulas not part of the O KMD series are 
colored in gray. Formulas in dark green are proposed substrates, and their oxygenation 
products are colored in light green. Only the molecular formulas for one of the series 
(KMD = 0.4174 Da) are labeled on panel b), while for the rest of the molecules, only the 
substrate formula and the number of oxygens in the oxygenation products are listed for 
clarity. The red arrows in panel b) show the formation of the four oxygenation products of 
the C24H40O5 substrate after a sequential attack by hydroxyl radicals (•OH). Panel c) 
shows possible chemical reactions that can cause an increase of number of oxygens. 
Panel d) shows further oxidative processes involving the formation of keto and carboxyl 
groups which can contribute to the degradation of pyDOM, as well as to the formation of 
DOM radicals. The KMD plots for the O series are shown on Figure 30 below. 
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Figure 30. Kendrick Mass Defect versus Kendrick Nominal Mass plots for the Oxygen 
(O) series within the bio-produced formulas of the four pyDOM samples. Formulas not 
part of the O KMD series are colored in gray. Formulas in dark green are substrates with 
their oxygenation products colored in light green. The number of formulas of each of 
these pools are shown in the legends (along with corresponding percentages). 
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The mathematics behind the KMD analysis (see Section 2.4 of this Chapter) 

convert the mass of the molecular formula (also known as the IUPAC mass) to a 

“Kendrick” mass, whose mass is on a different scale which is specific for the selected 

structural moiety. On Figure 29a, an example is shown with the KMD analysis for 

molecules differing by one oxygen (-O-). On the regular (IUPAC) mass scale, such 

formulas would differ by 15.994915 Da, but on the Kendrick “O” mass scale, they differ 

by 16 Da. The difference between the Kendrick Mass, KM (e.g., 408.2876 Da) and the 

Kendrick Nominal Mass, KNM (408 Da) is the Kendrick Mass Defect, KMD (i.e., 0.2876 

Da), and formulas with the exact same KMD differ by one or more oxygens, and lie on a 

KMD series. Visually these formulas would plot on horizontal lines on the KMD plot as 

indicated by the dashed lines in Figure 29b. Taking the series of KMD = 0.4174, this 

evaluation shows that there are five formulas in this particular KMD series that differ in 

number of oxygens (C24H40O5-10). This implies that once C25H40O5 is produced, it acts as 

a substrate and the other four formulas (C24H40O6-10) are produced by oxygenation (likely 

in a sequential manner: C24H40O5 → C24H40O6 → C24H40O7 → C24H40O9 → C24H40O10). 

This can happen via oxygenation by hydroxyl radical (•OH) attacks. This ROS can 

abstract a hydrogen from C-H bonds and the hydrogen is substituted with an OH-group, 

resulting in the formation of alcohols (C-OH) as shown in Figure 29c. This is likely how 

the oxygenation products shown in Figures 29a and 29b have formed. Evidence for such 

reactions will be found on the KMD plots as evolution of a new molecule within the same 

KMD series, but with a different number of oxygens. Further radical attack results in 

formation of polyols (Figure 29c). In the case of formation of geminal diols (two alcohol 

groups on the same carbon atom), they can rearrange to aldehydes or ketones via keto-

enol tautomerism (Figure 29d). Further radical attack would produce carboxyl groups, 

which can also be radically cleaved, and DOM radicals be formed. These radicals (as well 

as any other radical intermediate in this pathway) can be then further paired with hydrogen 

radicals (•H) from the solution, other •OH radicals, or other radicalized pyDOM or 

proteinaceous species.  

Using KMD analysis, formulas produced by oxygenation were identified and 

plotted individually (Figure 31). It is assumed that the smallest molecule in each series is 

the substrate and any molecules with more oxygens are oxygenation products.  



112 
 

 

 
 
 
 

 
 
 

 

 

Figure 31. Van Krevelen diagrams evaluating oxygenation products among the bio-
produced formulas of the four incubated pyDOM samples. Formulas not part of any of the 
oxygenation KMD series (O, CO, or COO) are colored in gray. Formulas in dark green 
are substrates with their oxygenation products colored in light green. The number of 
formulas in each of these pools are shown in the legends (along with corresponding 
percentages). The black lines indicate modified aromaticity index cutoffs (AIMOD; Koch 
and Dittmar, 2006, 2016). 
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KMD analysis revealed that up to nearly a third (34 – 748, 3 – 42%) of the bio-

produced formulas in these pyDOM samples could be classified as products of 

oxygenation reactions, likely driven by ROS species such as the hydroxyl radical (•OH). 

This is in agreement with previously observed cross-linking of microbial compounds 

through oxidative processes (Sun et al., 2017). The majority of the formulas, however, 

were not found to be products of oxidation as they did not lie on neither of the evaluated 

KMD series (O, CO, nor COO). Therefore, these compounds are likely formulas of 

exudates which were resistant to radical attacks or are formulas of compounds which 

have already been radically coupled with other compounds to result in unrecognizable 

molecules by the KMD analysis.  

Additional evidence for intense radical processes in these systems is evolution of 

bio-produced unsaturated aliphatic compounds (1 < H/C < 2, O/C <2) on the van Krevelen 

diagrams (Figures 23 and C3 in Appendix C). ROS can attack aliphatic and aromatic 

compounds, open aromatic and alicyclic rings, cleave oxygen- or nitrogen-containing 

functionalities, and produce highly aliphatic molecules, as previously observed after 

photo-irradiation of pyDOM (Goranov et al., 2020), ConAC (Zeng et al., 2000a,b), and 

radical-based degradation studies of lignin (Waggoner et al., 2015, 2017; Waggoner and 

Hatcher, 2017; Khatami et al., 2019a,b). ROS can also attack any of the proteinaceous 

exudates and peptidoglycans cleaving them from many of their functional groups and 

converting them into the observed unsaturated aliphatic compounds. These produced 

aliphatic compounds could also contribute to the newly produced N-containing (“peptide-

like”) compounds observed by FT-ICR-MS if they are oxygenated by ROS post-formation. 

However, this seems unlikely as data from the supplementary fluorescence and NMR 

analyses support the formation of microbial biomass. These indirect observations of 

intense radical processes indicate that the microbial incubations of pyDOM are extremely 

complex systems, and future studies need to employ more specialized bio-analytical 

techniques to fully understand the processes occurring in them.  

While FT-ICR-MS peak magnitudes are considered to be semi-quantitative, 

making it generally impossible to quantify the different bio-labile and bio-produced 

compounds, the ultrasensitivity of this technique ensures detection of all compounds that 

are within its analytical window. Here, the number of molecular formulas can be used as 
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a quantitative measure for molecular diversity (e.g., Gurganus et al., 2015). Previously 

published liquid-state 1H NMR data for the same samples (Bostick et al., 2020a) provide 

a quantitative measure of functional group content. Strong positive and negative 

correlations were observed between the numbers of bio-labile and bio-produced formulas 

and the percent NMR spectral signal accounted for by olefinic functionalities and 

methanol, respectively (Figure 32 and Table C2 in Appendix C). These correlations 

suggest that the diversity of bio-degraded (bio-labile) and bio-produced molecules was 

related in some way with a process related to the availability of methanol (CH3OH) and 

olefinic functionalities (C=C) in pyDOM. 

 

 

 
Figure 32. Correlation analysis between the number bio-labile and bio-produced 
formulas detected by FT-ICR-MS and relative intensity (%) of olefinic functionalities (C=C) 
and methanol (CH3OH) as measured by liquid-state 1H NMR and reported by Bostick et 
al. (2020a). No significant correlations were found between other functional groups and 
the number of bio-produced and bio-labile formulas (Table C2 in Appendix C).  

 

 

Olefinic functionalities have been recently identified as important structural motifs 

in the composition of pyDOM and were observed to degrade in photochemical 

experiments due to their high reactivity with ROS species (Goranov et al., 2020). Although 
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they are in low abundance in pyDOM (< 10%), it is likely they act as important 

intermediates in the degradative pathways of pyDOM. The olefinic bonds can be 

homolytically cleaved by radicals and effectively act as radical-accelerators that further 

propagate radical-mediated organic matter transformations. Thus, the abundance of 

olefins can further increase the abundance of radicals and contribute to the elevated 

molecular diversity resulting in the linear relationship shown in Figure 32.  

The other correlation between molecular diversity and NMR data is observed to be 

with methanol (CH3OH), a very sharp highly distinguishable singlet at δ = 3.34 ppm in 1H 

NMR spectra (Gottlieb et al., 1997). As it is a common contaminant in NMR analysis, 

special precautions were taken to obtain ultraclean spectra (see Section 2.5 of this 

Chapter). Methanol is a species that is naturally present in pyDOM (Bostick et al., 2018), 

and while it is generally considered to be toxic to microbes (Dyrda et al., 2019), there are 

methylotrophic bacteria and fungi (microbes of the families methylococcaceae and 

methylobacteriaceae) that can utilize it as a substrate (Chistoserdova et al., 2003; Kolb 

and Stacheter, 2013; Chistoserdova and Kalyuzhnaya, 2018). These species have been 

previously observed in the soil from the area where the microbial inoculum was extracted 

from (Khodadad et al., 2011), suggesting that the degradation of methanol may be biotic. 

In fact, in these samples, methanol, along with the other two measured low molecular 

weight substances, acetate and formate, was nearly completely degraded over the 10-

day incubation (Bostick et al., 2020a).  

The inverse relationship between the content of methanol and molecular diversity 

(Figure 32) can be interpreted in several ways. Firstly, methanol could be exhibiting 

toxicity to the microbes that assimilate pyDOM, as has been observed previously (Dyrda 

et al., 2019). This, however, is unlikely for the pyDOM systems studied here because the 

sample with the highest amount of methanol (Oak 400 Photo, ~3.7% CH3OH) was the 

second most bio-reactive (Bostick et al., 2020a). Instead, the observed strong negative 

correlation may be explained by the fact that methanol is a known radical-scavenger 

(Múčka et al., 2013). If, as I propose, the molecular diversity results from the activity of 

radical processes, an increasing concentration of methanol would quench these radicals 

thereby decreasing their activity and limiting the molecular diversity. This would explain 

the negative relationship depicted by the correlation shown in Figure 32. 
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4. DISCUSSION 
 

4.1.  Multiple pathways for the alteration of pyDOM by microbes 
 

Using a variety of analytical platforms in this and the parallel study (Bostick et al., 

2020a), significant quantitative and qualitative losses were observed when pyDOM was 

subjected to incubation with a microbial consortium collected from a site impacted by 

forest fires. Additionally, labile and diverse compounds were produced during these 

incubations. Due to the high complexity of pyDOM, the changes are not straightforward, 

and there are at least two important pathways at play, 1) degradation through microbial 

assimilation (consumption of pyDOM), and 2) degradation/transformation via radical-

mediated reactions (e.g., oxygenation) by ROS produced from microbial exoenzymes. 

These two pathways are discussed in the context of degradation of pyDOM and formation 

of new labile and diverse molecules. 

 

4.1.1. Molecular degradation of pyDOM 
 

A surprising observation in this study is that there was a uniform loss of pyDOM 

molecules from all regions of the vK diagrams. Microbes, it is generally presumed, 

preferentially assimilate small non-aromatic substances such as carbohydrates, proteins, 

low molecular weight acids (Berggren et al., 2010a,b; Kirchman, 2018). Thus, the 

aromatic fraction of pyDOM, mainly the ConAC, are generally considered to be bio-

recalcitrant (Goldberg, 1985; Masiello, 2004). In addition to the condensed character of 

many of the molecules, there are significant numbers of potentially toxic organochlorine 

compounds, of both aliphatic and aromatic character, in pyDOM (Wozniak et al., 2020). 

Thus, the finding of the major biological activity in these samples and the significant 

amount of carbon, including aromatic carbon, that was mineralized, is a very significant 

finding for the wildfire biogeochemistry community (Bostick et al., 2020a).  

Although pyDOM is highly heterogeneous (Wozniak et al., 2020), the observation 

of diverse molecular consumption is not unique to it. In a recent microbial degradation 

study of snow DOM, Antony et al. (2017) observed that both aromatic (including ConAC, 
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lignin, and tannins) and aliphatic formulas were bio-degraded. This is likely due to 

microbes evolving chemical mechanisms to thrive in the extreme conditions of glaciers 

(Antony et al., 2016). Analogously, as there have been previous prescribed fires in the 

area from which the microbes for this study were extracted (Johns, 2016), it is also 

possible that these organisms have adapted to the presence of ConAC and other 

pyrogenic substances, developing mechanisms for their assimilation (Judd et al., 2007).  

While microbial assimilation of pyDOM compounds certainly occurred, the 

molecular data from this study show that there was a second degradative pathway which 

likely contributed to the extensive molecular alteration, and to the significant loss of 

carbon that was quantified in the parallel study (Bostick et al., 2020a). While some 

microbial exoenzymes operate via hydrolytic pathways (amylases, lipases, proteases, 

cellulases, β-galactosidases, etc.), many other enzymes operate through oxidative 

(electron-withdrawing) pathways. Examples of such enzymes are the various lignin-

modifying enzymes in the peroxidase (lignin peroxidases, manganese peroxidases, etc.) 

and phenoloxidase (e.g., laccases) families (Higuchi, 2004). Thus, reactive oxygen 

species are usually produced and involved in the microbial degradation of organic matter 

in the environment.  

The bio-labile molecules in the studied pyDOM samples are of highly variable 

degree of oxygenation, aromaticity, and size (some MW > 550 Da). Thus, microbial 

exoenzymes would have been needed to reduce the size of substrates into smaller units 

that could pass through microbial cell membranes (Sinsabaugh et al., 1997; Fuchs et al., 

2011; Burns et al., 2013) and be consumed by the biota. The presence of enzymatic 

compounds is confirmed by observation of peptide-like compounds (FT-ICR-MS analysis) 

and proteinaceous fluorophores (spectrofluorometric analysis). An important finding is 

that a preferential degradation of ConAC of smaller molecular weights was observed 

(Bostick et al., 2020a). As small ConAC (i.e., oxygenated PAHs) are known to be toxic 

(e.g., Idowu et al., 2019), it is unlikely that they were directly consumed by the microbes. 

These substances are highly susceptible to attacks by ROS, which is likely how they were 

degraded in these samples. Thus, I speculate that microbes are most likely not directly 

consuming ConAC, but rather, are degrading them indirectly using ROS. These radicals 

can oxygenate pyDOM with various functional groups (e.g., hydroxy, aldehyde/keto, 
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carboxyl), and can also cleave functional groups (e.g., methoxy functionalities), open 

aromatic rings, and completely mineralize compounds to inorganic carbon (CO, CO2, 

HCO3- and CO32-) as shown on Figure 29. ROS have been previously shown to be very 

important in pyDOM photochemistry (Ward et al., 2014; Fu et al., 2016; Goranov et al., 

2020; Wang et al., 2020), and it is likely that they play an important role in the microbial 

degradation of pyDOM as well.  

More evidence for radical species involvement is provided by the peptidoglycan 

molecules produced during pyDOM incubation. While these molecules are generally large 

(Vollmer et al., 2008) and would not be detected as singly-charged molecules using FT-

ICR-MS (analytical window covering m/z 200-1000), their hydrolytic products (small 

oligopeptides) would be observed. Very few oligopeptide sequences (5 – 18 oligopeptides 

of 2 – 5 residues) were identified among the bio-produced formulas indicating that such 

hydrolysates did not exist in the samples at the time of measurement. However, if there 

were abundant radical reactions occurring in the system, as I suggest, it is very possible 

that these hydrolysates were altered into unrecognizable organic structures that would 

still be classified as “peptide-like” but would have different molecular composition than 

the predicted linear peptide sequences. It is also possible that instead of peptidoglycan 

hydrolysis followed by consecutive oxygenation, ROS directly cleaved the peptidoglycans 

into smaller substances of peptide-like molecular composition.  

 

4.1.2. Labilization and Diversification of pyDOM 
 

The production of labile unrecognizable biological substances during these 

incubations correlates well with previous findings showing the formation of thousands of 

new biological compounds during biotic incubations unrelated to microbial metabolic 

pathways (Lechtenfeld et al., 2015; Wienhausen et al., 2017). However, in difference with 

previous studies, an insignificant overlap of bio-produced formulas was observed among 

the four pyDOM samples after the incubations (2 – 320 formulas, 0 – 12%). Insignificant 

numbers of matching formulas from pyDOM were also found in the bio-produced formulas 

of an incubation of sucrose with the same soil microbes (63 – 94 formulas, 3%). This 

indicates that microbes diversified the composition of these pyDOM samples.  
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The observed diversity can be explained by a scenario wherein the microbes 

secreted labile molecules whose identities differed depending on the growth medium 

and/or food source, yielding high variability among bio-produced formulas after the 

incubation of pyDOM. Additionally, it is possible that different microbial species (different 

bacteria, fungi, archaea, etc.) have proliferated in response to the sample-specific pyDOM 

composition, yielding different microbial populations growing during each different 

incubation, sequentially producing different bio-produced compounds (Fitch et al., 2018). 

The finding of extreme molecular diversity contrasts with previous observations 

made by Lechtenfeld et al. (2015) in a study evaluating the molecular composition of 

microbially produced DOM. In their study, marine microbes were supplied with two 

different substrates (glucose and glutamic acid; and a mixture of oligosaccharides and 

oligopeptides), and a significant overlap (67 – 69 %) in the bio-produced organic matter 

was observed. The difference in observations between the work presented in this Chapter 

and by Lechtenfeld et al. (2015) is likely caused by a large difference in the composition 

of the pyDOM substrates relative to those in the Lechtenfeld et al. (2015) study. While the 

four pyDOM samples used here are highly heterogeneous to one another (Goranov et 

al., 2020; Wozniak et al., 2020), the substrates by Lechtenfeld et al. (2015) were of much 

higher similarity. Another possible reason is that the physiology of the soil microbes used 

here may be producing more diverse molecules than the marine microbes used by 

Lechtenfeld et al. (2015). It is likely that that aquatic microbes have a much different 

degradation strategy. As soils are far less rich in labile molecules, it is possible that soil 

microbes have adapted to produce much higher fluxes of ROS to degrade the more 

recalcitrant soil organic matter, which can also explain the larger dissimilarity in bio-

produced organic molecules after the incubations of pyDOM.  

An important observation using the H/C vs molecular weight plots (Figure 26) was 

that the bio-produced compounds after incubation of pyDOM were of various molecular 

weights. Thus, it is likely that that the microbial biomass produced during the incubation 

is radically coupled with pyDOM molecules. This has been recently proposed as an 

important process in marine DOM cycling (Hach et al., 2020). In that study, when 

isotopically 13C-labeled organisms were incubated with oceanic surface waters, 

microbially produced compounds were quickly coupled to the ambient marine DOM 
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molecules. This “recombination” process occurred within hours of the production of 

microbial exudates, followed by the observation of a highly diversified DOM pool. This 

process is likely driven by radical coupling reactions, and such pathways have also been 

observed in incubations in the presence of sunlight (Sun et al., 2017). Another possible 

explanation is that chemically reactive species, such as quinones, reacted with microbially 

produced compounds via nucleophile-driven reactions (such as the Michael addition; 

McKee et al., 2014) to produce highly diverse pools of molecules after each incubation.  

  The observations from this study are compared to previous work by Waggoner et 

al. (2017) where a ligninaceous sample was treated with three different ROS: hydroxyl 

radical (᛫OH), singlet oxygen (1O2), and superoxide (O2-᛫). Each different radical degraded 

a specific pool of ligninaceous compounds, which showed that different ROS can degrade 

a variety of types of organic matter. However, there was a significant overlap observed 

between the three pools of molecules that were degraded indicating that degradation 

pathways solely based on ROS attacks are still ordered. Thus, because ROS on their 

own do not produce completely diversified molecular pools, the combination of the two 

pathways I describe here must have occurred to produce the great variability in the bio-

produced microbial biomass observed in this study. 

Clearly, the chemistry behind these microbially induced compositional changes of 

pyDOM is highly complex, and the observed molecular diversity after these biotic 

incubations contrasts with previous studies. These discrepancies cannot be interpreted 

unambiguously using the employed analytical approaches, and future studies need to 

involve measurements of radicals and their effects, as well as various DNA sequencing 

and “omics” approaches. 

 

4.2. Implications for the cycling of pyDOM in the environment 
 

The present study provides a detailed evaluation of the compounds that microbes 

degrade and produce in samples mimicking pyDOM in hydrologically dynamic 

environmental systems such as riverine and groundwater systems. It brings new 

knowledge about the properties and reactivity of pyDOM and challenges the conventional 

idea that pyDOM is stable towards biotic degradation. Several studies have already 
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shown that pyrogenic substances have soluble DOM components (Hockaday et al., 2007; 

Mukherjee and Zimmerman, 2013; Wagner et al., 2017; Bostick et al., 2018) and that 

more soluble components are produced with environmental aging (Abiven et al., 2011; 

Ascough et al., 2011; Roebuck et al., 2017; Quan et al., 2020). A recent study incubated 

pyDOM using riverine microbes and observed a significant degree of degradation as well 

(Qi et al., 2020). However, rather than using an extracted inoculate, in that work, the 

authors directly incubated pyOM in riverine water. Therefore, these incubations can be 

considered primed by the more labile riverine molecules (Guenet et al., 2010; Bianchi, 

2011). The experiments presented in this study, in parallel with Bostick et al. (2020a), 

show that a large portion of pyDOM can be respired (bio-degraded) without priming, which 

indicates that these pyrogenic molecules may be far less resistant to degradation than 

previously presumed.  

The involvement of pyDOM within the global carbon cycle is complex, and in many 

cases poorly understood. There is a growing body of literature showing that significant 

amounts of pyOM are solubilized and exported to the global ocean (Dittmar et al., 2012; 

Jaffé et al., 2013; Wang et al., 2016; Marques et al., 2017; Jones et al., 2020). However, 

the estimated pyDOM production and seepage rates of 1440 TgC·y-1 (Bostick et al., 2018) 

are greater than previously reported riverine flux estimates (203 TgC·y-1; Jaffé et al., 

2013; rescaled by Bostick et al., 2018). In addition to the implied 86% loss of carbon 

during export, a recent study also reported that the stable carbon isotopic signature (δ13C) 

of oceanic ConAC are not terrigenous, but rather, marine-like (Wagner et al., 2019). This 

suggests that either all of the riverine-exported ConAC are being mineralized before 

reaching the global ocean or are chemically altered significantly to change their δ13C 

isotopic signature (Jones et al., 2020). Furthermore, microbial and photochemical 

processes have been found to transform DOM with characteristic terrigenous DOM 

composition (compounds with lower H/C and higher O/C ratios) into compounds having 

characteristics of marine-derived DOM (compounds with higher H/C, lower O/C ratios; 

Rossel et al., 2013). Thus, pyDOM may simply be losing its diagnostic molecular and 

isotopic fingerprints during riverine export due to a variety of degradative post-production 

processes, as shown by the diversification observed in our study.  
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The cycling of organic matter in the environment has always been an enigma, and 

there has been a long-standing effort to explain the fate of land-derived DOM (terrigenous 

DOM including pyDOM) in the global ocean (Hedges et al., 1997). In Chapter III it was 

hypothesized that biotic consumption of photo-degradation products of pyDOM (“small 

aliphatic compounds”) could result in the formation of marine-like DOM. This hypothesis 

was tested by comparing the incubation products from this study (the bio-produced 

formulas) to FT-ICR-MS formulas of several marine DOM samples (Table 4). An 

insignificant number of CRAM-like marine formulas (Hertkorn et al., 2006) was observed 

in these comparisons (4 – 272 common formulas, 0 – 6% overlap) contrasting with this 

proposition and suggesting that biotic incubations of photo-degraded pyDOM do not 

produce significant numbers of marine-like molecules.  

An alternative idea is that the bio-produced molecules observed in this study are 

part of the fast-cycling, labile DOM pool per Hansell’s model (Hansell and Carlson, 2015), 

and are quickly depleted in the natural environment. This parallels the findings of a 

recently published study (Hach et al., 2020) observing that microbially produced 

molecules are extremely labile and are, within hours, broken down and recombined with 

ambient DOM molecules. The closed laboratory systems in the study of this Chapter, may 

have enabled the observation of these highly labile molecules, whereas in the natural 

environment, they would have been quickly transformed, diluted, or mineralized to 

inorganic carbon resulting in their removal from analytical detection. The richness in 

nitrogen and peptide-like character of these new molecules suggest greater potential 

lability (Hach et al., 2020), and it is likely that the by-products of biotic degradation of 

pyDOM are readily incorporated into microbial food webs. This is consistent with the idea 

that terrigenous DOM is either mineralized to CO2 or incorporated into food webs 

(Berggren et al., 2010a; Ward et al., 2013; Fasching et al., 2014). It is also consistent with 

the fact that the majority of organic nitrogen in the oceans is derived from microbial 

peptidoglycans (McCarthy et al., 1997, 1998; Simpson et al., 2011), and with observations 

of nitrogen from peptidoglycans in soil and sedimentary porewater systems (Schulten and 

Schnitzer, 1998; Hu et al., 2018, 2020).  
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Table 4. Overlap of bio-produced formulas of pyDOM with marine DOM samples.  

Sample Name Number of 
Formulas 

Number of formulas in common 
with all bio-produced formulas 

of pyDOM 
DSa 1752 4 (~0%) 
GBa 1727 6 (~0%) 
TPa 1303 4 (~0%) 

CCBa 1079 4 (~0%) 
OSCa 1189 4 (~0%) 

DOM411b 2402 3 (~0%) 
DOM412b 3524 6 (~0%) 
DOM417b 3312 3 (~0%) 

DOM 1, RO/EDc,d 1697 249 (~5%) 
DOM 1 rep, RO/EDc,d 1756 272 (~6%) 
DOM 2, RO/EDc,d 1918 223 (~5%) 
DOM 2 rep, RO/EDc,d 1950 219 (~5%) 
DOM 3, PPLd 2226 223 (~5%) 
DOM 3 rep, PPLd 2256 235 (~5%) 
DOM 4, PPLd 2325 246 (~5%) 
DOM 4 rep, PPLd 2429 244 (~5%) 

aSleighter and Hatcher (2008) 
bUnpublished data from samples obtained during the WACS-2 cruise (R/V Knorr) as 
part of the Western Atlantic Climate Study (WACS). 
cChen et al. (2014) 
dSleighter et al. (2012) 
 

 

The production of these highly variable and diverse molecules, compositionally, is 

likely a contributing factor to the large complexity of natural organic matter (Hertkorn et 

al., 2007; Hawkes et al., 2018). They contribute to the highly variable microbial 

exometabolomes observed previously (Antón et al., 2013; Watrous et al., 2013; Romano 

et al., 2014) and stimulate further questions about their function and fate within the global 

carbon cycle. In this study, soil microbes were used, as the corresponding degradation 

by-products can be observed in both soil, groundwater, and partially in the upstream of 

rivers. Therefore, it would be critical to perform further studies with different microbial 

consortia (riverine, estuarine, marine, etc.) to fully understand the biological degradation 

of pyDOM in different environments.  
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5. CONCLUSIONS 
 

This study probing the molecular changes occurring after biotic degradation of 

pyDOM revealed that soil microbes can effectively recycle and transform a significant 

portion of pyDOM molecules into labile microbial biomass. After the 10-day incubations, 

it appears that a wide range of molecules, both aromatic and aliphatic, were degraded, 

forming a highly diverse pool of compounds, including N-containing compounds with 

proteinaceous signatures and a peptidoglycan-like backbone. These observations are 

consistent with the previous identification of nitrogen from peptidoglycans in soils and 

oceans. These bio-produced compounds were highly specific for each pyDOM sample 

(very few common bio-produced molecular formulas among samples). The observed 

molecular labilization and diversification have implications for the studies of wildfire 

biogeochemistry, as this shows that microbial reworking of pyDOM can contribute to the 

large complexity and variability of natural organic matter. This study reveals that 1) 

pyDOM can be a medium for microbial growth, and 2) previously considered “recalcitrant” 

pyrogenic molecules can be incorporated into microbial food webs. This suggests that 

pyDOM is a much more active component in the global carbon and nitrogen cycles, and 

future studies need to further evaluate the bio-reactivity of pyDOM with microbial 

consortia of different environments, as well as in the context of wetted soils, groundwater 

processes, cycling within the riverine and marine water columns, and other aspects of the 

global carbon and nitrogen cycles. 
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CHAPTER V 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

1. CONCLUSIONS 
 
Wildfires have always been present and have interacted with other biogeochemical 

components of the environment. However, only recently scientists have started to 

critically evaluate their environmental impact to expand the knowledge about their 

chemistry. In this Dissertation, I have presented numerous novel findings in regards of 

the sourcing and fate of pyrogenic organic matter in the environment, enhancing the 

knowledge of wildfire biogeochemistry. In Chapter II, I present quantitative evidence of 

the recently proposed abiotic non-pyrogenic formation of ConAC via electrocyclization 

reactions of lignin after exposure to the Fenton reaction (Chen et al., 2014; Waggoner et 

al., 2015). My findings indicate that this process can be a source of condensed molecules 

in soils, as well as any radical-rich systems. These pyrogenic-like compounds can then 

leach and contribute to the constant distributions of ConAC in the aquatic environments, 

thus potentially resulting in an overestimation in the quantitative constraining of the 

pyrogenic carbon fluxes and reservoirs in the environment.  

The fluxes of pyrogenic dissolved organic matter (a significant portion of which are 

made of ConAC) from the terrestrial environment to the global ocean have been 

quantified in multiple studies (Dittmar et al., 2012; Jaffé et al., 2013; Wang et al., 2016; 

Marques et al., 2017; Jones et al., 2020). It has been estimated that during this export, 

86% of pyDOM degrades (Bostick et al., 2018). The photochemical study in Chapter III 

allows for a better understanding of the degradative pathway of ConAC in such systems: 

sunlight photo-irradiation excites ConAC and they are photo-oxygenated with various 

functionalities such as hydroxyl and aldehyde groups. These moieties are then further 

photo-oxidized to carboxyl groups, which are then mineralized as inorganic carbon (e.g., 

CO2) leaving smaller ConAC with aliphatic residues. Upon continuous exposure to 

sunlight, this cycle is repeated until all aromatic rings are degraded, and the molecular 

composition becomes highly aliphatic, less oxygenated, with smaller molecular weight, 



126 
 

and enriched in nitrogen (marine-like composition). These photo-produced molecules are 

likely to be highly bio-labile in natural systems, but in sterile conditions (as in the 

performed experiments presented in Chapter III) they are further cleaved out of oxygen-

containing functional groups and polymerized into straight-chain alkanes. It is proposed 

that the kinetics of this pathway are controlled by the abundance (concentration) of 

ConAC in pyDOM, the degree of condensation of ConAC, and the additional matrix 

species such as inorganic nutrients or low molecular weight organic compounds. The 

abundance of the aforementioned pyDOM constituents is likely related to the char 

pyrolysis temperature and original biomass (e.g., oak vs grass). Additionally, reactive 

oxygen species produced by the photo-excitation of ConAC appear to degrade other light-

unreactive structures within pyDOM such as the polysubstituted olefinic moieties that are 

found in char leachates from higher temperature chars (Oak 400, Oak 525, Oak 650). 

Biotic incubation of pyDOM also revealed significant degradation. Molecules of 

various compound classes (ConAC, lignin-like, lipid-like, etc.) were bio-mineralized while 

many aliphatic, including peptide-like, labile molecules were produced. Microbial 

degradation appears to be through a combination of an assimilation (microbial 

consumption) and radical-mediated pathways. The microbially produced new molecules 

are associated with proteinaceous fluorophores and have peptidoglycan-like backbones 

as determined by NMR and fluorescence spectroscopies. It is also evident that their 

composition is unique in each pyDOM sample, and evidence suggests that there may be 

a dependence on the starting composition of the incubated pyDOM leachate. One 

possibility is that the microbial consortium produced different exudates when microbes 

consumed the different compounds from each different pyDOM medium. Alternatively, 

microbial exudates could be paired via nucleophile-driven (e.g., Michael addition) or 

radical-driven reactions with pyDOM compounds present in the incubation matrix, 

producing a highly complex pool of diverse and labile substances. The observed 

labilization and diversification of pyDOM is an important finding for understanding how 

pyDOM is coupled with the actively cycling pools of carbon and nitrogen in the 

environment. My results suggest that microbes are actively incorporating (“recycling”) 

pyDOM in the global carbon and nitrogen cycles, contributing to its large molecular 

diversity. While the studies shown in Chapters II and III did not evaluate any natural 
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samples (e.g., charcoal samples from forests where wildfires have occurred in the past), 

the tight experimental control allowed for eliminating confounding variables in these 

experiments from environmental aging or admixture with DOM from non-pyrogenic 

sources. These in vitro laboratory experiments allow for simulating environmental 

processes which can directly test hypotheses and provide better understanding of the 

complex processes occurring in the environment.  

Results from the research presented in this Dissertation enhance the knowledge 

of ConAC sources in the environment, as well as of the degradative pathways of pyDOM. 

While many new insights in wildfire biogeochemistry are presented here using numerous 

advanced analytical techniques, their application revealed numerous new aspects of 

research in regards of pyOM and pyDOM to be explored in future studies.  

 

2. DIRECTIONS FOR FUTURE RESEARCH 
 

The complex sourcing and degradative pathways of pyOM and pyDOM are 

recently discovered avenues of research in organic geochemistry. A significant focus of 

many experts in the field has been on the cycling of these organic compounds in the 

environment. It has been conceived that ConAC continuously leach in the aquatic 

environment after solubilization from soils (Hockaday et al., 2006, 2007; Dittmar et al., 

2012; Jaffé et al., 2013) which leads to their accumulation and sequestration in the deep 

sea (Dittmar and Paeng, 2009; Ziolkowski and Druffel, 2010). This continuous export of 

pyDOM has been studied in more detail since then (Wang et al., 2016; Marques et al., 

2017; Roebuck et al., 2017; Wagner et al., 2017b; Bostick et al., 2018; Coppola et al., 

2019; Li et al., 2019; Drake et al., 2020; Jones et al., 2020). Interestingly, fire history (fire 

frequency and time since last burn) does not affect these dynamics (Ding et al., 2013). 

Additionally, recent findings by Wagner et al. (2019a) show that the terrestrial stable 

isotopic signature of ConAC (≈ -30 ‰) is not preserved after their riverine-to-marine 

transfer. These studies indicate that sourcing and fate of ConAC in the environment is 

much more complex than originally thought. 

There are numerous possibilities of why the isotopic signature of ConAC in the 

world ocean (≈ -24 ‰) is significantly enriched with about 6 ‰ than that in the terrestrial 
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environment. This finding certainly questions many of the above-mentioned studies and 

indicates that reassessment of the terrestrial-to-marine transfer of ConAC is needed. The 

immediate hypothesis would be that photochemical alteration, as exposure to sunlight, 

preferentially degrades 13C-depleted compounds such as ligninaceous aromatics (Benner 

et al., 1987; Spencer et al., 2009; Lalonde et al., 2014). This is additionally coupled with 

observations using compound-specific radiocarbon dating (∆14C) of ConAC (Ziolkowski 

and Druffel, 2010). It was observed that rivers export highly condensed and young (< 500 
14C years old) ConAC while these compounds were found to be much less aromatic but 

ancient (~18000 14C years old) in the deep sea. These observations were also attributed 

to photochemistry as larger ConAC would be degraded allowing for the LMW ConAC to 

be preserved and accumulated in time. In the aforementioned study by Wagner et al. 

(2019a), compound-specific δ13C signatures of ConAC from photo-irradiated surface 

waters and from the dark abyssal ocean were evaluated, and no statistically significant 

difference in δ13C was observed. These findings suggest that photochemistry does not 

cause the discrepancy in stable isotopic composition of ConAC. However, as the authors 

conclude in their study: “the impact of sun exposure upon riverine BPCA-specific δ13C 

signatures must be directly tested to confirm isotopic stability during photo-degradation 

[sic]” (Wagner et al., 2019a). As discussed in Chapter III and previous studies (Stubbins 

et al., 2010, 2012; Ward et al., 2014; Wagner and Jaffé, 2015; Fu et al., 2016; Li et al., 

2019; Bostick et al., 2020b; Wang et al., 2020), photo-irradiation can significantly alter the 

structure of pyDOM and ConAC. Moreover, the complete (or nearly complete) 

mineralization of ConAC has been observed in some systems (Yuan et al., 2019; Bostick 

et al., 2020b). The terrestrial-to-marine export of ConAC should be re-evaluated in the 

context of photochemistry and other degradative pathways of ConAC, as it is possible 

that all ConAC are degraded even before they reach the mouths of rivers, which would 

leave their degradation by-products and inorganic carbon (e.g., CO2) to enter the ocean 

and be undetected by the ConAC-specific methodology (Wagner et al., 2017a) used by 

Wagner et al. (2019a).  

Additionally, in Chapter III it was suggested that high fluxes of ROS radicals are in 

part responsible for the degradation of pyDOM in addition to the photo-excitation of 

ConAC and other aromatic molecules. ROS are of essential importance for the 
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degradation and alteration of non-light-absorbing molecules or molecular moieties such 

as olefins. A recent study showed that hydroxyl radical (᛫OH), singlet oxygen (1O2), and 

superoxide (O2-᛫) degrade lignin differently (Waggoner et al., 2017), an observation which 

suggests that this is also possible for ConAC and pyDOM. No such comparative study 

has been carried out with pyDOM, and it is therefore not known if ROS have the capacity 

to significantly degrade and alter the isotopic signature of ConAC. In the context of 

structural examination, it is also critical to compare how molecules are altered by different 

ROS in comparison with direct photo-irradiation (i.e., degradation by photo-excitation). 

This will enhance the understanding and help deconvolute the complexity of the 

degradation pathway(s) of ConAC (and pyDOM) in sunlit environments. 

Chapter IV shows evidence of molecular degradation and structural alterations in 

a biologically active system. The soil microbes that were used degraded pyDOM 

effectively (Bostick et al., 2020a), and it appears to happen through a combination of 

assimilation (consumption) and radical-mediated pathways. This biotic removal of ConAC 

and pyDOM from the environment must also be evaluated using isotopic techniques. 

Given that it is the first report of such high levels of biotic degradation of pyDOM in the 

environment, it must be carefully evaluated in the context of quantitative carbon and 

nitrogen cycles. Additionally, it was found that microbes do not produce significant 

number of molecules typical for marine environments (such as carboxyl-rich alicyclic 

molecules, CRAM; Hertkorn et al., 2006) after growing in pyDOM media, defying one of 

the hypotheses proposed in Chapter II. However, they were found to produce many 

peptidoglycan-like molecules, correlating with the previous observations of peptidoglycan 

nitrogen in soils and the global ocean. This is plausible as the microbial consortium used 

in these incubations was extracted from a forest soil, thus these organisms would produce 

soil-related substances, which can either accumulate on land or be leached and 

transported to the marine environment. Future studies should perform similar incubations 

with other consortia (riverine, oceanic, glacial, etc.) to evaluate the fate of pyDOM and 

ConAC in these different environments. Related to the hypothesis from Chapter II, it 

would also be necessary to incubate pyDOM with riverine, estuarine, and marine 

microbes to properly evaluate if pyDOM before or after photo-degradation could be a 

source of marine DOM. Additionally, integrating bio-analytical techniques (omics, cell 
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counting, etc.) would be necessary to fully decipher the microbial interactions with pyDOM 

and effectively deconvolute the different reactions occurring during these incubations.  

While exposure of pyDOM to sunlight and microbes (separately or altogether) 

during terrestrial-to-marine export alters the quantity and quality of its molecules, there 

are other processes that must be explored to fully decipher the complex cycling of pyOM 

and pyDOM. Several non-pyrogenic processes have been discussed as avenues for 

future research, especially in terms of sourcing of ConAC to the environment (Wagner et 

al., 2019a; Jones et al., 2020): non-pyrogenic sourcing of ConAC by biotic 

(autochthonous) excretion, as suggested by Wagner et al. (2019a); production of ConAC 

at hydrothermal vents (Dittmar and Koch, 2006; Rossel et al., 2017; Estes et al., 2019); 

seepage of petrogenic ConAC from the ocean floor or through other openings, as 

suggested by Ziolkowski and Druffel (2010); as well as deposition of aerosols (Szidat et 

al., 2007; Mouteva et al., 2017; Coppola et al., 2019; Wagner et al., 2019b). The research 

study presented in Chapter II suggests that another non-pyrogenic process can also 

contribute to these non-pyrogenic ConAC in the environment. The proposed radical-

mediated cyclopolymerization of lignin is very applicable for soil and sedimentary systems 

and must also be considered in the proper re-evaluation of pyOM, pyDOM, and ConAC 

fluxes in the environment.  

Besides the necessity to improve the constraints of pyOM, pyDOM, and ConAC 

within the global carbon (and heteroelement, for example, nitrogen) cycles, current 

literature needs more comprehensive structural and molecular analyses of these 

materials. Pyrogenic organic matter in both its solid (pyOM) and dissolved (pyDOM) forms 

is a challenging environmental matrix to analyze, which likely contributes to the scarcity 

of structural and molecular studies. The high mineral (ash) content (Etiégni and Campbell, 

1991; Xu et al., 2017; Bostick et al., 2018; Zhao et al., 2019; Li et al., 2020) and the high 

abundance of ConAC (making the sample matrix conductive, Freitas et al., 2001) are the 

reasons why these matrices are very difficult for solid-state structural NMR analysis. 

Infrared spectroscopy is another classical technique for analysis of solid samples, 

however the low oxygenation and high molecular rigidity of ConAC (graphene-like sheets) 

create serious limitations for this technique as well. After extraction of organics in liquid 

medium for liquid-state analyses, another set of challenges become present: low solubility 
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of ConAC (Wagner et al., 2017b), lability towards formation of colloids (Liu et al., 2018), 

and molecular chlorination (Wozniak et al., 2020). All these issues complicate and alter 

the analytical windows of any liquid-state/gel-state NMR or mass spectrometric analyses 

used for structural and molecular characterization (Wozniak et al., 2020). In contrast with 

marine DOM, for example, there have been numerous studies that have pinpointed exact 

structures of the molecules that are present in the ocean (e.g., Aluwihare et al., 1997; 

Hertkorn et al., 2006; Arakawa et al., 2017; Powers et al., 2019). Wildfire biogeochemists 

in the future should pair their expertise with that of analytical chemists to resolve the 

complexity of pyOM, develop new analytical methods, or find ways to refine current 

techniques to improve them for the analysis of pyOM and pyDOM. An important aspect 

of future work would be multi-dimensional NMR, which is becoming more and more useful 

in deciphering the structure of natural organic matter.  

Clearly, there is a long path to fully understand and decipher the complexity of 

pyrogenic organic matter in the environment, both in structural and cycling contexts. The 

research presented in this Dissertation addresses many questions about these 

compounds, but it also presents numerous new avenues of research for wildfire 

biogeochemists to pursue in the next decades of scientific research.  
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APPENDIX B 

SUPPORTING INFORMATION TO CHAPTER III 

Section 1. 1D 1H NMR Analysis: Data processing 

Figure B1. One-dimensional 1H NMR spectrum of the control Grass 650 leachate. The 
four main functional group regions discussed in Chapter III are: aryl (6.50 – 8.30 ppm), 
olefinic (5.00 – 6.50 ppm), oxygenated alkyl (O-alkyl, 1.85 – 4.40 ppm) and alkyl (0.60 
– 1.85 ppm). The water region (4.40 – 5.00 ppm) is not considered as signals in this 
area are heavily attenuated by the water suppression elements in the utilized pulse 
program. The peak of the TMSP internal reference (sodium 2,2,3,3-tetradeutero-3-
trimethylsilylpropanoate) is also shown at δ ≈ -0.02 ppm. Asterisks (*) denote peaks that 
are off-scale. 
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NMR spectra are integrated over 0.00 – 10.00 ppm with exclusion of any signal 

between 4.40 - 5.00 ppm (water region). While there are certain functionalities that 

resonate in the water region, such as amine- an ester-1H, their peaks are heavily 

attenuated by the Perfect Echo - WATERGATE and shaped presaturation water 

suppression elements (Adams et al., 2013; Whitty et al., 2019). Thus, the spectral 

intensity in this region is not quantitative. The utilized pulse program is highly effective in 

selectively saturating resonances in this region, and not attenuating resonances outside 

of it. This allows for quantitative observation of functionalities close-by, and if desired, 

quantification using a standard addition approach (e.g., Whitty et al., 2019). While 

resonances in the areas of 0.00 – 0.60 (“methane” region) and 8.30 – 10.00 ppm 

(“aldehyde” region) were measured and used for the normalization to total spectral 

intensity, these regions were not evaluated in Chapter III. Resonances in the “methane” 

region are either of dissolved methane (Fulmer et al., 2010) or poorly characterized 

silicates (Lam and Simpson, 2008), and due to the poor knowledge of these resonances 

in the context of pyDOM they were not considered in my interpretations. Resonances in 

the “aldehyde” region are generally from aldehydes (typical photo-products, Yu et al., 

2006) and some highly deshielded aryl functionalities (Dvorski et al., 2016). Since these 

resonances can increase or decrease to unknown extents after to photo-irradiation, they 

have not been considered in this study either.  

Low molecular weight compounds that resonate at highly characteristic chemical 

shifts (acetate, methanol, formate) are manually integrated and subtracted from their 

corresponding regions. After integration, the different chemical environments are divided 

by the H/C ratio typical for each functional group to convert the data to C-basis (Decesari 

et al., 2007; Bostick et al., 2018). This allows for a better approximation of the relative 

abundance of functional groups evaluated in Chapter III by discussing the data in terms 

of carbon (instead of hydrogen), which is helpful for interpreting the data regarding to the 

global carbon cycle. Each integral is then normalized to the total spectral intensity. 
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All data is also presented as percent change as shown for the aryl functionality of 

Oak 400 below. This is useful in comparing different samples and looking at extent of 

change, as shown previously (Mitchell et al., 2018).  

%Change =
Photo − Control

Control
× 100 =

7.04 % − 10.6% 
10.6 %

= −33.8 % Eq. B1 

Section 2. 1D 1H NMR analysis: Analytical differences from Bostick et al. (2018) 

Due to different instrumental parameters, there are notable differences in the 1H 

NMR data obtained for these samples relative to their previous study, Bostick et al. 

(2018). In the previous study of these pyDOM leachates there was no clear trend 

observed for the olefinic moieties across the dataset. This was most likely due to the short 

relaxation delay that was used (2s) for the NMR analysis. In the current study I have 

employed a higher relaxation delay (4s) which allows for a more quantitative evaluation 

of olefinic resonances (e.g., Vlahov, 1999; Alexandri et al., 2017). This revealed a logical 

trend for these samples which has been described in Chapter III.  

The change in relaxation delay also affected the functionality distribution of the 

Oak Biomass leachate. While Bostick et al. (2018) reported that aryl functionalities are 

higher in Oak Biomass than in Oak 250 (43% versus 30%), I report that aryl in Oak 

Biomass is 26% versus 34% in Oak 250. This is due to the larger acetone peak (CH3-CO-

CH3, δ = 2.2 ppm, singlet) observed in the spectrum of Oak Biomass (35% of the total 

spectral intensity), which skews the functionality distribution in the spectrum. 

It must be also noted that there is a slight variation in sample preparation. While 

Bostick et al. (2018) used biochar:water ratio of 1g:40 mL, here I have used 1g:20 mL to 

obtain more concentrated leachates. This most certainly has caused some differences 

between the two datasets, as discussed by Wozniak et al. (2020). 
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Section 3. Analytical caveats of 1H-1H Total Correlation NMR Spectroscopy 
(TOCSY NMR) 

The obtained TOCSY spectra were noisy and exhibited many T1-noise ridges that 

required extensive correction, which was not fully successful in some cases. Additionally, 

the spectra of the more thermally mature pyDOM exhibited only a few cross-peaks. This 

is likely because the samples were analyzed without pre-concentration (at total organic 

carbon content of 10-25 mgC·L-1). Typically, high-quality multidimensional NMR spectra 

are achieved by analyzing samples at 30-100 mg/mL (30,000-100,000 mg/L) which is 

achieved using pre-concentration or dissolution of solid sample in solvent (Simpson, 

2001; Simpson et al., 2011). This approach was avoided in order to observe the numerous 

photochemically important low molecular weight species (Whitty et al., 2019). Another 

surprising observation was that no cross-peaks were observed between aryl and aliphatic 

functional groups, in contrast with previous work showing that ConAC in the environment 

are typically functionalized with alkyl and O-containing functionalities (Dittmar and Koch, 

2006). This may be due to one of the limitations of TOCSY, namely the inability to detect 

couplings between aryl-1H and aliphatic-1H nuclei due to their weak interactions (i.e., 

small J-coupling constants). 
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Section 4. Individual plots of the photo-labile and photo-produced formulas 

Figure B2. Photo-labile (blue) and photo-produced formulas (red) for Oak Biomass 
DOM (top), Oak 250 pyDOM (middle), and Oak 400 pyDOM (bottom panels). The 
number of molecular formulas of each pool (and corresponding percentages) 
are given in parentheses in the legends. The black lines separate van Krevelen 
space based on the modified aromaticity index (AIMOD, Koch and Dittmar, 2006, 2016). 
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Figure B3. Photo-labile (blue) and photo-produced formulas (red) for Oak 525 
pyDOM (top), Oak 650 pyDOM (middle), and Grass 650 pyDOM (bottom panels). The 
number of molecular formulas of each pool (and corresponding percentages) 
are given in parentheses in the legends. The black lines separate the van Krevelen 
space based on the modified aromaticity index (AIMOD, Koch and Dittmar, 2006, 2016). 
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APPENDIX C 

SUPPORTING INFORMATION TO CHAPTER IV 

Section 1. Individually plotted bio-labile, bio-resistant, and bio-produced formulas 
on van Krevelen diagrams (H/C vs O/C) 

Figure C1. Van Krevelen diagrams of bio-labile formulas identified in the four 
pyDOM samples using presence/absence approach (Sleighter et al., 2012). The 
number of formulas and the corresponding percentage (relative to total number of 
formulas in the two samples being compared) are shown in the legends. The black lines 
indicate modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016), and 
the red box indicates the peptide region (valid only for N-containing formulas). 
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Figure C2. Van Krevelen diagrams of bio-resistant formulas identified in the four 
pyDOM samples using presence/absence approach (Sleighter et al., 2012). The 
number of formulas and the corresponding percentage (relative to total number of 
formulas in the two samples being compared) are shown in the legends. The black lines 
indicate modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016), and 
the red box indicates the peptide region (valid only for N-containing formulas). 
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Figure C3. Van Krevelen diagrams of bio-produced formulas identified in the 
four pyDOM samples using presence/absence approach (Sleighter et al., 2012). The 
number of formulas and the corresponding percentage (relative to total number of 
formulas in the two samples being compared) are shown in the legends. The black lines 
indicate modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016), and 
the red box indicates the peptide region (valid only for N-containing formulas). 
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Section 2. Individually plotted bio-labile, bio-resistant, and bio-produced formulas 
on H/C vs Molecular Weight plots 

Figure C4. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the bio-
labile formulas. The number of formulas and the corresponding percentage (relative 
to total number of formulas in the two samples being compared) are shown in the 
legends. The red lines indicate where peptide-like formulas would plot. 
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Figure C5. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the 
bio-resistant formulas. The number of formulas and the corresponding percentage 
(relative to total number of formulas in the two samples being compared) are shown in 
the legends. The red lines indicate where peptide-like formulas would plot. 
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Figure C6. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the 
bio-produced formulas. The number of formulas and the corresponding percentage 
(relative to total number of formulas in the two samples being compared) are shown in 
the legends. The red lines indicate where peptide-like formulas would plot. 
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Section 3. Oligopeptide Sequences 

Table C1. Oligopeptide sequences identified among the bio-produced formulas of each 
pyDOM sample. 

Sample Measured 
m/z 

Amino Acid 
combination# 

Molecular weight 
(Da) 

Molecular 
Formula 

Oak 400 
Fresh 201.1246 AL 202.1317 C9H18O3N2 

Oak 400 
Fresh 356.2192 OLL 357.2264 C17H31O5N3 

Oak 400 
Fresh 455.2874 OLLV 456.2948 C22H40O6N4 

Oak 400 
Fresh 512.3457 ALLVV 513.3526 C25H47O6N5 

Oak 400 
Fresh 512.3457 GLLLV 513.3526 C25H47O6N5 

Oak 400 
Fresh 512.3457 VVVVV 513.3526 C25H47O6N5 

Oak 400 
Fresh 514.3251 ALLLS 515.3319 C24H45O7N5 

Oak 400 
Fresh 514.3251 ALLTV 515.3319 C24H45O7N5 

Oak 400 
Fresh 514.3251 GLLLT 515.3319 C24H45O7N5 

Oak 400 
Fresh 514.3251 LSVVV 515.3319 C24H45O7N5 

Oak 400 
Fresh 514.3251 TVVVV 515.3319 C24H45O7N5 

Oak 400 
Fresh 526.3607 ALLLV 527.3683 C26H49O6N5 

Oak 400 
Fresh 526.3607 GLLLL 527.3683 C26H49O6N5 

Oak 400 
Fresh 526.3607 LVVVV 527.3683 C26H49O6N5 

Oak 400 
Photo 341.2195 LPX 342.2267 C16H30O4N4 

Oak 400 
Photo 341.2195 KPV 342.2267 C16H30O4N4 

Oak 400 
Photo 350.1836 HPV 351.1907 C16H25O4N5 

Oak 400 
Photo 528.3188 LLWV 529.3264 C28H43O5N5 

Oak 400 
Photo 552.3768 LLLPV 553.3839 C28H51O6N5 
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Oak 650 
Fresh 498.3293 AALLL 499.3370 C24H45O6N5 

Oak 650 
Fresh 498.3293 ALVVV 499.3370 C24H45O6N5 

Oak 650 
Fresh 498.3293 GLLVV 499.3370 C24H45O6N5 

Oak 650 
Fresh 512.3455 ALLVV 513.3526 C25H47O6N5 

Oak 650 
Fresh 512.3455 GLLLV 513.3526 C25H47O6N5 

Oak 650 
Fresh 512.3455 VVVVV 513.3526 C25H47O6N5 

Oak 650 
Fresh 552.3042 DLLPP 553.3112 C26H43O8N5 

Oak 650 
Fresh 552.3042 ELPPV 553.3112 C26H43O8N5 

Oak 650 
Fresh 552.3042 OOLPV 553.3112 C26H43O8N5 

Oak 650 
Fresh 552.3042 OLUVV 553.3112 C26H43O8N5 

Oak 650 
Fresh 552.3042 LLPUT 553.3112 C26H43O8N5 

 

Oak 650 
Photo 242.1508 KP 243.1583 C11H21O3N3 

Oak 650 
Photo 342.2034 OLV 343.2107 C16H29O5N3 

Oak 650 
Photo 356.2190 OLL 357.2264 C17H31O5N3 

Oak 650 
Photo 552.2676 ALSTY 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 ATTYV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 DOLPP 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 DLPUV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 EOPPV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 EPUVV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 GLTTY 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 OOOPV 553.2748 C25H39O9N5 
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Oak 650 
Photo 552.2676 OOUVV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 OLPUT 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 LLUUS 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 LFSST 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 LUUTV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 FSTTV 553.2748 C25H39O9N5 

Oak 650 
Photo 552.2676 SSYVV 553.2748 C25H39O9N5 

#Combination can be of any order 
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Section 4. Correlation analysis 

Table C2. Data used for the correlation analysis between molecular diversity (as 
determined by FT-ICR-MS) and 1D NMR (Bostick et al., 2020a). Coefficients of 
determination (R2 values) are listed for each functional group in the corresponding color. 

Oak 400 
Fresh 

Oak 400 
Photo 

Oak 650 
Fresh 

Oak 650 
Photo 

Number of bio-labile 
formulas 1646 1242 1364 1410 

Number of bio-
produced formulas 1778 1111 1246 1456 

Aldehyde (O=CH) 

R2=0.1263, R2=0.2374 
3.18% 4.52% 10.99% 4.24% 

Aryl 

R2=0.0094, R2=0.0668 
9.87% 8.47% 20.65% 7.54% 

Olefinic (C=C) 

R2=0.9472, R2=0.9978 
7.64% 15.60% 14.31% 11.41% 

HC-O-R 

R2=0.4217, R2=0.3385 
6.75% 23.64% 4.57% 9.41% 

HC-C=Y 

R2=0.0201, R2=0.0511 
12.33% 13.14% 4.49% 9.13% 

HC-C-C-X 

R2=0.4639, R2=0.3968 
3.98% 5.99% 6.52% 7.38% 

Methylene (CH2) 

R2=0.1287, R2=0.0997 
6.46% 7.85% 11.57% 12.65% 

Methyl (CH3) 

R2=0.0653, R2=0.1664 
0.89% 0.84% 0.25% 0.93% 

Formate (HCOO-) 

R2=0.0033, R2=0.0124 
10.57% 3.51% 24.18% 33.91% 

Methanol (CH3OH) 

R2=0.9418, R2=0.9279 
3.69% 0.47% 0.72% 1.31% 

Acetate (CH3COO-) 

R2=0.4217, R2=0.3909 
34.63% 15.97% 1.75% 2.10% 
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