
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 12-2020

MementoMap: A Web Archive Profiling Framework for Efficient MementoMap: A Web Archive Profiling Framework for Efficient

Memento Routing Memento Routing

Sawood Alam
Old Dominion University, ibnesayeed@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alam, Sawood. "MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing" (2020).
Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/
5vnk-s536
https://digitalcommons.odu.edu/computerscience_etds/129

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/129?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MEMENTOMAP: A WEB ARCHIVE PROFILING

FRAMEWORK FOR EFFICIENT MEMENTO ROUTING

by

Sawood Alam
B.Tech. May 2008, Jamia Millia Islamia, India
M.S. August 2013, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2020

Approved by:

Michael L. Nelson (Director)

Michele C. Weigle (Member)

Jian Wu (Member)

Sampath Jayarathna (Member)

Erika F. Frydenlund (Member)

ABSTRACT

MEMENTOMAP: A WEB ARCHIVE PROFILING FRAMEWORK FOR
EFFICIENT MEMENTO ROUTING

Sawood Alam
Old Dominion University, 2020
Director: Dr. Michael L. Nelson

With the proliferation of public web archives, it is becoming more important to better
profile their contents, both to understand their immense holdings as well as to support
routing of requests in Memento aggregators. A memento is a past version of a web page and
a Memento aggregator is a tool or service that aggregates mementos from many different
web archives. To save resources, the Memento aggregator should only poll the archives that
are likely to have a copy of the requested Uniform Resource Identifier (URI). Using the
Crawler Index (CDX), we generate profiles of the archives that summarize their holdings
and use them to inform routing of the Memento aggregator’s URI requests. Additionally,
we use fulltext search (when available) or sample URI lookups to build an understanding
of an archive’s holdings. Previous work in profiling ranged from using full URIs (no false
positives, but with large profiles) to using only top-level domains (TLDs) (smaller profiles,
but with many false positives). This work explores strategies in between these two extremes.

For evaluation we used CDX files from Archive-It, UK Web Archive, Stanford Web
Archive Portal, and Arquivo.pt. Moreover, we used web server access log files from the In-
ternet Archive’s Wayback Machine, UK Web Archive, Arquivo.pt, LANL’s Memento Proxy,
and ODU’s MemGator Server. In addition, we utilized historical dataset of URIs from
DMOZ.

In early experiments with various URI-based static profiling policies we successfully
identified about 78% of the URIs that were not present in the archive with less than 1%
relative cost as compared to the complete knowledge profile and 94% URIs with less than
10% relative cost without any false negatives. In another experiment we found that we can
correctly route 80% of the requests while maintaining about 0.9 recall by discovering only
10% of the archive holdings and generating a profile that costs less than 1% of the complete
knowledge profile.

We created MementoMap, a framework that allows web archives and third parties to
express holdings and/or voids of an archive of any size with varying levels of details to fulfil
various application needs. Our archive profiling framework enables tools and services to

predict and rank archives where mementos of a requested URI are likely to be present.
In static profiling policies we predefined the maximum depth of host and path segments of

URIs for each policy that are used as URI keys. This gave us a good baseline for evaluation,
but was not suitable for merging profiles with different policies. Later, we introduced a more
flexible means to represent URI keys that uses wildcard characters to indicate whether a URI
key was truncated. Moreover, we developed an algorithm to rollup URI keys dynamically at
arbitrary depths when sufficient archiving activity is detected under certain URI prefixes.
In an experiment with dynamic profiling of archival holdings we found that a MementoMap
of less than 1.5% relative cost can correctly identify the presence or absence of 60% of the
lookup URIs in the corresponding archive without any false negatives (i.e., 100% recall).
In addition, we separately evaluated archival voids based on the most frequently accessed
resources in the access log and found that we could have avoided more than 8% of the false
positives without introducing any false negatives.

We defined a routing score that can be used for Memento routing. Using a cut-off
threshold technique on our routing score we achieved over 96% accuracy if we accept about
89% recall and for a recall of 99% we managed to get about 68% accuracy, which translates
to about 72% saving in wasted lookup requests in our Memento aggregator. Moreover,
when using top-k archives based on our routing score for routing and choosing only the
topmost archive, we missed only about 8% of the sample URIs that are present in at least
one archive, but when we selected top-2 archives, we missed less than 2% of these URIs.
We also evaluated a machine learning-based routing approach, which resulted in an overall
better accuracy, but poorer recall due to low prevalence of the sample lookup URI dataset
in different web archives.

We contributed various algorithms, such as a space and time efficient approach to ingest
large lists of URIs to generate MementoMaps and a Random Searcher Model to discover
samples of holdings of web archives. We contributed numerous tools to support various
aspects of web archiving and replay, such as MemGator (a Memento aggregator), Inter-
Planetary Wayback (a novel archival replay system), Reconstructive (a client-side request
rerouting ServiceWorker), and AccessLog Parser. Moreover, this work yielded a file for-
mat specification draft called Unified Key Value Store (UKVS) that we use for serialization
and dissemination of MementoMaps. It is a flexible and extensible file format that allows
easy interactions with Unix text processing tools. UKVS can be used in many applications
beyond MementoMaps.

iv

Copyright, 2020, by Sawood Alam, All Rights Reserved.

v

Beneath my mother’s feet...

vi

ACKNOWLEDGEMENTS

All praises be to the Almighty to bring me this far. I am deeply grateful for the help,
support, and contributions from numerous people and organizations in this journey.

My advisor during my masters and doctorate degree programs, Dr. Michael L. Nelson,
has been a tremendous support to me in my academic journey and career. If I were to
lead a team in the future, punctual weekly progress meetings and rigorous practice sessions
before every upcoming presentation are the two lessons I have learned from him that I would
replicate. My co-advisor Dr. Michele C. Weigle helped me learn how to express research
findings more effectively using suitable information visualization techniques for various types
of results and telling stories with properly annotated figures. These two people get the lion
share of credits for turning me into a researcher and teaching me techniques of effective
scholarly communication.

My doctoral dissertation committee members Dr. Jian Wu and Dr. Sampath Jayarathna
were helpful beyond this research. They were available for discussions on many research
topics and were supportive in finding job opportunities for me. Dr. Erika F. Frydenlund
provided an outsider’s perspective and her reflections improved the readability of my dis-
sertation for those unfamiliar with my research discipline.

Prior works of Dr. Robert Sanderson and Dr. Ahmed AlSum formed the basis of this
research. I got the opportunity to work with Dr. David S. H. Rosenthal, Dr. Herbert
Van de Sompel, Dr. Martin Klein, Dr. Lyudmila L. Balakireva, and Harihar Shankar
during the IIPC funded preliminary exploration phase of this archive profiling work. Dr.
Rosenthal’s blog post reviews after his retirement from Stanford kept this work in check and
reassured that I was on the right track. Dr. Sanderson reflected his thoughts and provided
constructive feedback on our MementoMap framework during JCDL ’19. Dr. Edward A.
Fox from Virginia Tech reflected his thoughts on our URI Key concept and showed interest
on potential future collaborations.

Numerous IIPC member organizations and individuals contributed to this work with
datasets and feedback. Kris Carpenter and Jefferson Bailey from the Internet Archive helped
us with the Archive-It WARC dataset. Joseph E. Ruettgers helped us with the petabytes
of storage space setup at ODU. Daniel Gomes and Fernando Melo were very generous in
sharing complete dataset of CDX files and access logs from Arquivo.pt web archive. Nicholas
Taylor shared Stanford Web Archive Portal’s CDX datasets. Dr. Andrew Jackson from the
British Library shared CDX files and a sample of access logs from the UK Web Archive

vii

and provided feedback on the IIPC funded archive profiling project. Kristinn Sigurðsson
provided feedback during the early days of the project. Garth Stewart shared CDX files
from the National Records of Scotland. Ilya Kreymer contributed to the discussion about
CDXJ profile serialization format and shared OldWeb.today access logs. Alex Osborne and
Dr. Paul Koerbin worked on sharing the web archive index from the National Library of
Australia. Olga Holownia from the British Library helped the progress of IIPC funded
project in numerous ways. Dr. Ian Milligan gave me the opportunity to attend multiple
Archives Unleashed datathons, an event where InterPlanetary Wayback was created.

Many people provided early feedback on this work during the Doctoral Consortium
events of JCDL and TPDL. Dr. Nattiya Kanhabua offered some really good suggestions
and potential related work references.

Dr. M. M. Sufyan Beg, Dr. Mohammad Zubair, and Dr. Hussein Abdel-Wahab were
the key people who helped me join the Old Dominion University. Dr. Ravi Mukkamala has
always been helpful in administrative matters and beyond. Dr. Stephan Olariu has been
available to discuss random interesting research topics every time I approached him. Dr.
Steven Zeil helped me with the logistics of teaching when I offered the Web Server Design
course. Ajay Gupta and many members of the Systems Group ensured that necessary
computing resources were available and were in good shape. Ariel Sturtevant and Phyllis
Woods took care of all the paper work.

Mark Graham and Brewster Kahle supported me by keeping the workload on me to the
minimum while I was finalizing my dissertation and working for the Internet Archive. Na-
tional Digital Stewardship Alliance recognized my work on the digital preservation, including
this work, and honored me with the Future Steward Innovation Award.

The list of past and ongoing collaborations with Dr. Mat Kelly are too long to list here,
but the routine of taking a break and going for a campus walk while exchanging ideas was
perhaps one of the most valuable memories we shared together. Dr. Alexander Nwala was
my go-to person for discussing matters related to language modeling, machine learning, and
classification. Dr. Mohamed Aturban and I shared the lab till late night and we collaborated
on archival fixity. Dr. Lulwah M. Alkwai and family are the ones I can count on even after
they have gone back to their home country. Dr. Justin F. Brunelle and family were my
tailgate hosts during Football season. Shawn M. Jones always had crisp and unambiguous
ideas and very receptive of feedback, someone I am looking forward to collaborate with on
formal publications in the future. John A. Berlin contributed to the Reconstructive project.
Plinio Vargas and I used to begin our day by solving puzzles and riddles and I enjoyed

viii

collaborating with him on a web archiving issue related to Twitter. Nauman Siddique
and Hussam Hallak were my friends I could call for help in person anytime. Himarsha
Jayanetti and Kritika Garg were my students and mentees I enjoyed working with and they
contributed to this work in the analysis of Arquivo.pt access logs. I have a long list of good
memories with every Web Science and Digital Libraries Research Group member I shared
the academic timeline with.

The Urdu community on UrduWeb is my home on the internet. I need to get back to it
and put fresh energy into numerous projects that are on hold and need to be mobilized.

My mother Sitara Begum, elder brother Masood Alam, maternal uncle Dr. Shabbir
Ahmad Khan, and maternal aunt Naseema Khatoon are the four most significant people
in my life due to their immense support and sacrifices towards my upbringing and growth
during the most unfavorable times. I am determined to continue working towards fulfilling
their dreams. I missed seeing my father Sayeed Ahmad all these years of my graduation
life. My wife Rehana Khatoon and daughter Fareeha Khan were always there for me and
they took care of all my needs silently. Abida, Aqeela, Wadood, Faizan, Raihan, Sumbul,
Nabeel, Raed, Manal, Shaima, and the rest of the extended family members, I love you all
and I miss you. My thoughts are with my grandparents I will never get to see them again,
may you all rest in peace.

This work was supported in part by the International Internet Preservation Consortium,
the National Science Foundation, and the Andrew W. Mellon Foundation.

ix

TABLE OF CONTENTS

Page

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 3

1.1.1 WHY AGGREGATE WEB ARCHIVES ANYWAY? 3
1.1.2 WHY AGGREGATE SMALL WEB ARCHIVES? 9
1.1.3 WHY PROFILE WEB ARCHIVES? . 11
1.1.4 WHY ROUTE LOOKUP REQUESTS? . 12

1.2 RESEARCH QUESTIONS. 16
1.2.1 LEARNING ABOUT THE HOLDINGS OF AN ARCHIVE. 17
1.2.2 EXPRESSING AND DISSEMINATING ARCHIVE PROFILES 17
1.2.3 ARCHIVE PROFILES FOR MEMENTO ROUTING 18

1.3 CHAPTER SUMMARY . 19

2. BACKGROUND . 21
2.1 HYPERTEXT TRANSFER PROTOCOL (HTTP) . 21

2.1.1 HTTP MESSAGE . 21
2.1.2 HTTP METHOD . 22
2.1.3 HTTP STATUS CODE . 22
2.1.4 SOFT-404 . 25

2.2 HTTP ACCESS LOGS . 25
2.3 WEB ARCHIVING AND WEB ARCHIVES . 27

2.3.1 ARCHIVE COLLECTION POLICY . 28
2.4 MEMENTO . 29

2.4.1 TIMEGATE . 29
2.4.2 TIMEMAP . 32
2.4.3 NOT-ARCHIVED VS. ARCHIVED-404 . 32

2.5 MEMENTO AGGREGATOR . 33
2.6 URI AND URI TRANSFORMATIONS . 37

2.6.1 URI NORMALIZATION/CANONICALIZATION 38
2.6.2 SORT-FRIENDLY URI REORDERING TRANSFORM (SURT) 41

2.7 ARCHIVE FILE FORMATS . 41
2.7.1 WARC . 42
2.7.2 WEB BUNDLES . 42
2.7.3 WAT, WANE, AND WET. 43
2.7.4 CDX/CDXJ . 44

x

2.8 SYNDICATION AND DISCOVERY . 46
2.8.1 RSS/ATOM FEED . 46
2.8.2 SITEMAPS . 47
2.8.3 ROBOTS EXCLUSION PROTOCOL . 49
2.8.4 WELL-KNOWN URIS . 51

2.9 INVERTED INDEX . 51
2.10 CHAPTER SUMMARY . 53

3. RELATED WORK. 55
3.1 SURFACE WEB CRAWLING . 55
3.2 DEEP/HIDDEN/DARK WEB CRAWLING . 57

3.2.1 DESCRIBING TEXTUAL DATABASES . 58
3.2.2 SEARCH FORM DETECTION . 59

3.3 FOCUSED CRAWLING . 60
3.4 ON-PREMISE INDEXING . 61
3.5 QUERY ROUTING. 61
3.6 BLOOM FILTERS . 64
3.7 ARCHIVAL COVERAGE OF THE WEB . 65
3.8 WEB ARCHIVE SEARCHING. 66
3.9 ARCHIVE PROFILING . 67

3.9.1 URI-R PROFILING . 68
3.9.2 TLD PROFILING . 68
3.9.3 RESPONSE CACHE PROFILING . 69
3.9.4 URI-KEY PROFILING . 70

3.10 CHAPTER SUMMARY . 70

4. MEMENTOMAP FRAMEWORK . 71
4.1 RESEARCH QUESTIONS. 71

4.1.1 RQ1: HOW TO LEARN AN ARCHIVE’S HOLDINGS AND VOIDS? 71
4.1.2 RQ2: HOWTO SUMMARIZE AND SERIALIZE ARCHIVAL HOLD-

INGS FOR DISSEMINATION? . 73
4.1.3 RQ3: HOWTOUTILIZEMEMENTOMAPS FORMEMENTOROUT-

ING? . 75
4.2 MEMENTOMAP COMPONENTS . 76

4.2.1 INGESTION . 77
4.2.2 SUMMARIZATION AND SERIALIZATION . 77
4.2.3 ROUTING . 77

4.3 EVALUATION PLAN . 77
4.3.1 COST . 79
4.3.2 ACCURACY . 79
4.3.3 FRESHNESS . 79
4.3.4 ROUTING EFFICIENCY . 79

4.4 CHAPTER SUMMARY . 80

xi

5. TOOLS IMPLEMENTATION. 81
5.1 INTERPLANETARY WAYBACK . 81
5.2 RECONSTRUCTIVE . 82
5.3 MEMGATOR . 83
5.4 RANDOM SEARCHER . 84
5.5 ACCESSLOG PARSER . 85
5.6 MEMENTOMAP. 85
5.7 UNIFIED KEY VALUE STORE . 85
5.8 CHAPTER SUMMARY . 86

6. LEARNING ARCHIVAL HOLDINGS . 87
6.1 ARCHIVE PROFILE DATA STRUCTURE . 88
6.2 URI-KEYS AND PROFILING POLICIES . 88

6.2.1 HMPN POLICY . 88
6.2.2 DLIM POLICY . 89
6.2.3 URI-KEY GENERATION . 90

6.3 PROFILING THROUGH CDX SUMMARIZATION . 91
6.3.1 DATASETS . 91
6.3.2 PROFILE GROWTH ANALYSIS . 93
6.3.3 ROUTING EFFICIENCY . 98

6.4 PROFILING THROUGH FULLTEXT SEARCH . 105
6.4.1 RANDOM SEARCHER MODEL. 107
6.4.2 IMPLEMENTATION . 112
6.4.3 RSM EVALUATION . 112

6.5 CHAPTER SUMMARY . 116

7. LEARNING ARCHIVAL VOIDS . 117
7.1 INTRODUCTION AND MOTIVATION . 117
7.2 SOURCES OF TRUTH . 118
7.3 EVALUATION . 119

7.3.1 ACCESS LOGS DATASET . 120
7.3.2 ACCESS PATTERNS . 120
7.3.3 SOFT-404 TIMEMAPS . 124
7.3.4 STATUS CODE CHANGES OVER TIME . 127
7.3.5 ROUTING ACCURACY . 129

7.4 WHO SHOULD PROFILE ARCHIVAL VOIDS? . 130
7.5 RECOMMENDATIONS . 131
7.6 CHAPTER SUMMARY . 132

8. SERIALIZATION AND DISSEMINATION . 134
8.1 UNIFIED KEY VALUE STORE (UKVS) . 134
8.2 MEMENTOMAP FILE FORMAT . 136

8.2.1 THE SURT FIELD . 137
8.2.2 THE FREQUENCY FIELD . 138
8.2.3 THE DATETIME FIELD . 142

xii

8.2.4 OTHER FIELDS. 144
8.3 MEMENTOMAP IMPLEMENTATION . 144

8.3.1 MEMENTOMAP GENERATION . 144
8.3.2 MEMENTOMAP COMPACTION. 144
8.3.3 LOOKUP IN A MEMENTOMAP . 146

8.4 MEMENTOMAP DISSEMINATION . 146
8.5 EVALUATION . 146

8.5.1 ARCHIVED VS. ACCESSED RESOURCES . 149
8.5.2 HOLDINGS OF ARQUIVO.PT . 152
8.5.3 THE SHAPE OF ARCHIVED URI TREE . 155
8.5.4 MEMENTOMAP COST AND ACCURACY . 160

8.6 CHAPTER SUMMARY . 164

9. MEMENTO ROUTING. 165
9.1 MEMENTO AGGREGATION AND ROUTING . 165
9.2 METHODOLOGY . 166

9.2.1 DENSITY SCORE . 166
9.2.2 CLOSENESS SCORE . 168
9.2.3 ROUTING SCORE . 169
9.2.4 INVERTED INDEX . 172
9.2.5 MEMENTOMAP AND INVERTED INDEX LOOKUP 172

9.3 CLASSIFIER REBORN . 175
9.4 EVALUATION . 177

9.4.1 DATASETS . 177
9.4.2 COLLECTION DIFFUSION . 179
9.4.3 BASELINE ROUTING . 180
9.4.4 HEURISTIC ROUTING . 181
9.4.5 MACHINE LEARNING-BASED ROUTING . 183

9.5 CHAPTER SUMMARY . 184

10. CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS . 186
10.1 CONTRIBUTIONS . 186

10.1.1 ALGORITHMS . 186
10.1.2 TERMINOLOGY AND METRICS . 187
10.1.3 SOFTWARE/TOOLS . 188
10.1.4 DATASETS . 188
10.1.5 SPECIFICATIONS . 189

10.2 FUTURE WORK . 189
10.3 CONCLUSIONS . 192

REFERENCES. 197

APPENDICES
A. ROBOTS EXCLUSION FILES (ROBOTS.TXT) . 220

xiii

B. DOWNCASING IN SURT . 222
C. TOOLS HELP MANUALS . 223

VITA. 228

xiv

LIST OF TABLES

Table Page

1 Common HTTP Methods . 23

2 Purpose of Various HTTP Status Code Classes . 23

3 Archive Dataset Size . 92

4 Presence of the Sample Query URI-Rs in Each Archive . 92

5 Relative Cost of Various Profiling Policies for UKWA . 96

6 Confusion Matrix of Memento Routing . 97

7 Relative Cost, Precision, Specificity, and Accuracy of Profiling Policy Groups . . . 98

8 RSM Operation Mode Mapping With Policies . 110

9 Cost Comparison of RSM Operating Modes . 113

10 Arquivo.pt Access Logs Summary . 120

11 Most Frequently Accessed Resources from Arquivo.pt . 123

12 Yearly Access Frequency of Top TLDs in Arquivo.pt . 124

13 Soft-404 TimeMap Response Bytes . 126

14 Status Code Distribution of TimeMaps in Arquivo.pt Access Logs 127

15 Status Code Fluctuations of URI-Rs in Arquivo.pt Access Logs 129

16 404-Only URI-R Repetitions in Arquivo.pt Access Logs and False Positive Re-
duction Due to the Archival Void Profile . 130

17 An Example of Sparse Tabular Data . 134

18 Top Arquivo.pt TLDs . 148

19 Arquivo.pt Index Statistics . 149

20 MemGator Log Responses from Various Archives . 150

21 URI-M vs. URI-R Summary of Arquivo.pt . 152

xv

22 Most Archived URI-Rs in Arquivo.pt . 153

23 Yearly Distribution of URI-Rs, URI-Ms, and Status Codes in Arquivo.pt 154

24 Unique Items With Exact Host and Path Depths . 156

25 Host and Path Depth Statistics of Unique HxPx Keys in Arquivo.pt 158

26 MementoMap Generation, Compaction, and Lookup Statistics for Arquivo.pt . . . 161

27 Datasets of Web Archival Holdings and Voids Profiles . 177

28 Archival Holdings of Primary Targets . 179

29 Recall, Accuracy, and Request Cost of Various Baseline Routing Policies 180

30 Recall, Accuracy, and Request Saving With the Heuristic Routing Score Thresh-
old on Holdings and Voids Profiles . 182

31 Recall, Accuracy, and Request Savings in Machine Learning-Based Routing 184

xvi

LIST OF FIGURES

Figure Page

1 Early Mementos of the Smithsonian Institution Home Page 2

(a) First Memento of the Smithsonian Institution in Arquivo.pt 2

(b) First Memento of the Smithsonian Institution in the Internet Archive . . 2

2 Over a Trillion Mementos and 468 Billion Web Pages in IA. 4

3 Growth of Mementos and Web Pages in IA Over Time. 5

4 MemGator Demonstration at the Library of Congress on June 15, 2016, While
IA was Under a DDoS Attack . 6

5 Dennis Ritchie’s Homepage at Bell Labs After Site Restructuring 8

(a) The Live Page is Missing and Inaccessible in IA . 8

(b) Archives Other Than IA Have Some Copies . 8

(c) Presence in IA Discovered Later After robots.txt is Removed 8

6 Expedia Serves Pages in Different Languages to Different Geo-locations 10

(a) Arquivo.pt Observed the Page in Spanish . 10

(b) Internet Archive Observed the Page in English . 10

7 Sample Lookup URI Overlap in Archive-It, UKWA, and Stanford Web Archives 11

(a) Overlap of DMOZ . 11

(b) Overlap of IA Wayback . 11

(c) Overlap of Memento Proxy . 11

(d) Overlap of UK Wayback . 11

8 Unclear Holdings of Archival Collections . 12

9 OldWeb.today Caused Excessive Load at loc.gov . 13

(a) LC Contacted Us About MemGator Causing Issues 13

xvii

(b) We Responded With Potential Source of Traffic Surge 13

(c) OldWeb.today Informed Us About an Exclusion Request 13

10 MemGator’s Default Archives’ List Explicitly Disabled PastPages 14

11 Request-Response Cycle of Memento Aggregator and Various Archives 16

(a) Request to All Known Archives . 16

(b) Response from a Few Archives . 16

(c) Memento Aggregator With Profile Based Routing 16

12 HTTP Request and Response Messages . 22

13 A Sample Soft-404 Response . 25

14 A Sample Extended Access Log . 26

15 Content Negotiation Using the Memento TimeGate of the Original Server 30

16 Content Negotiation Using a Generic Memento TimeGate of the Internet Archive 31

17 A TimeMap from the Internet Archive . 33

18 Not-Archived vs. Archived-404 . 34

19 Content Negotiation Using a Generic Memento TimeGate of a Memento Aggregator 35

20 An Aggregated TimeMap from MemGator Server . 36

21 A Generic URI Example . 37

22 URI Normalization Process . 40

23 Sort-friendly URI Reordering Transform (SURT) Process . 40

24 A WARC File With a Request and Corresponding Response Records 43

25 WAT File Structure . 44

26 Sample CDX File . 45

27 Sample CDXJ File . 45

28 Example Atom Feed . 47

xviii

29 Example Sitemap . 49

30 Example Index Sitemap . 49

31 Example robots.txt File . 49

32 A Sample Document Index . 52

33 A Sample Document Index . 52

34 A Sample Inverted Index . 53

35 Memento Routing Matrix . 78

36 Tools Contributions in the Web Archiving Ecosystem . 82

37 IPWB Indexing and Replay Workflow . 83

38 Reconstructive Intercepts a Zombie Resource and Reroutes to its Archived Copy 83

39 MemGator Workflow Diagram . 84

40 Sample Archive Profile Data Structure . 89

41 Illustration of URI-Key Generation . 90

42 Growth and Costs Analysis for Different Profiling Policies in UKWA 94

(a) URI-Ms Growth With CDX Size . 94

(b) URI-R Growth With URI-M Count . 94

(c) Space Cost . 94

(d) Time Cost . 94

43 Resource Requirement for Various Profiling Policies and Collection Sizes 97

(a) URI-Key Count . 97

(b) Profile Size . 97

44 Routing Precision of Different Profiling Policies in Different Archives 99

(a) Archive-It: Precision . 99

(b) Archive-It: Precision vs. Cost . 99

xix

(c) UKWA: Precision . 99

(d) UKWA: Precision vs. Cost . 99

(e) Stanford: Precision . 99

(f) Stanford: Precision vs. Cost . 99

45 Routing Specificity of Different Profiling Policies in Different Archives 100

(a) Archive-It: Specificity . 100

(b) Archive-It: Specificity vs. Cost . 100

(c) UKWA: Specificity . 100

(d) UKWA: Specificity vs. Cost . 100

(e) Stanford: Specificity . 100

(f) Stanford: Specificity vs. Cost . 100

46 Routing Accuracy of Different Profiling Policies in Different Archives 101

(a) Archive-It: Accuracy . 101

(b) Archive-It: Accuracy vs. Cost . 101

(c) UKWA: Accuracy . 101

(d) UKWA: Accuracy vs. Cost . 101

(e) Stanford: Accuracy . 101

(f) Stanford: Accuracy vs. Cost . 101

47 Random Searcher Model Overview . 111

(a) Flowchart of the Random Searcher Model . 111

(b) An Example Illustration of the Random Searcher Model 111

48 Searches Needed vs. Required Coverage . 114

(a) H1P0 Profile . 114

(b) DDom Profile . 114

xx

(c) HxP1 Profile . 114

(d) URIR Profile . 114

49 Incremental Accuracy vs. Recall as a Function of Archive Knowledge 115

(a) DMOZ . 115

(b) IA Wayback . 115

(c) Memento Proxy . 115

(d) UKWA Wayback . 115

50 Access Patterns in Six Years of Daily Log Files of Arquivo.pt 121

(a) Daily Arquivo.pt Access Log Records . 121

(b) Monthly Arquivo.pt Access Log Records . 121

51 Arquivo.pt Excluded Bots from Accessing Its Archival Replay 122

52 Monthly TimeMap Access of Arquivo.pt from Various Sources 125

53 A Potential Soft-404 TimeMap . 126

54 An Example of Structured Data With Mandatory and Optional Fields 135

55 UKVS Generic Record Format . 136

56 A Basic MementoMap Example File . 137

57 Illustration of SURTs With Wildcards . 139

(a) A Sample List of Sorted SURTs . 139

(b) A Visual Representation of SURTs as a Tree . 139

58 Extended Backus–Naur Form (EBNF) Grammar for the frequency Field. 140

59 Variations in frequency Field Value of a MementoMap . 140

60 Zero frequency for a More Specific URI Subtree in a MementoMap 140

61 Zero Mementos of Non-Zero URI-Rs in a MementoMap . 140

62 Non-Precise Frequencies in a MementoMap . 141

xxi

63 Optional Memento Distribution Over Time in a MementoMap 142

64 Mandatory Memento Distribution Over Time in a MementoMap 142

65 Various Datetime Range Examples in a MementoMap . 143

66 MementoMap Compaction (and Generation) Procedure . 145

67 MementoMap Lookup Procedure . 147

68 Overlap Between Archived and Accessed Resources in Arquivo.pt 151

69 Distribution of Mementos Over URI-Rs in Arquivo.pt . 153

(a) Percentage of URI-Rs by Popularity vs. Cumulative Percentage of Me-
mentos . 153

(b) Gini coefficient of memento over URI-R population 153

70 Cumulative Growth of URI-Rs and URI-Ms in Arquivo.pt . 155

71 The Shape of HxPx Key Tree of Arquivo.pt . 157

(a) Parents and Children at Each Host Depth . 157

(b) Parents and Children at Each Path Depth . 157

72 Global and Incremental Host and Path Segment Reduction 159

(a) Global HxPx Reduction Rate at Host . 159

(b) Global HxPx Reduction Rate at Path . 159

(c) Incremental Host Children Reduction . 159

(d) Incremental Path Children Reduction . 159

73 Growth of Compacted MementoMap vs. Lines Processed from an Input Memen-
toMap . 160

74 Relative Cost vs. Lookup Routing Accuracy . 163

75 Routing Score Calculation Procedure for Archives With Different Types of Profiles171

76 A Sample Inverted Index of Web Archive Profiles . 173

77 MementoMap Samples from Different Web Archives . 174

xxii

(a) A Sample MementoMap from Arquivo.pt With Both Holdings and Voids
Profiles . 174

(b) A Sample MementoMap from Perma.cc With Only Holdings Profile . . . 174

(c) A Sample MementoMap from Archive.is With Only Voids Profile 174

78 Variations of Inverted Indexes in UKVS Format from the Same Set of Memen-
toMaps . 175

(a) Inverted Index With the Archive Secondary Key Column and Density
Score as the Value Column . 175

(b) Inverted Index With the Archive Key and Density Score Collapsed in
the JSON Block . 175

79 A Sample Inverted Index Lookup Result . 176

80 Quora’s robots.txt File Excludes the Internet Archive With a Note About User
Privacy . 220

81 Historical robots.txt of Bell Labs . 221

82 Original SURT Implementation in Java . 222

83 InterPlanetary Wayback CLI Reference . 223

84 Reconstructive Reference . 224

85 Reconstructive Banner Reference . 224

86 MemGator CLI Reference . 225

87 AccessLog Parser CLI Reference . 226

88 MementoMap CLI Reference . 227

1

CHAPTER 1

INTRODUCTION

Web archives capture web pages from the live web, index them, and make them available
for replay later. The Memento protocol [245] provides a uniform means to lookup archived
resources in various web archives in the form of a list of all the captures, or mementos, of a
web page or a specific memento closest to a given date and time in the past. The number of
public web archives of varying sizes and collection policies supporting this protocol natively
or through proxies continues to grow [118, 141, 204, 240].

Figure 1 shows two copies of the early versions of the Smithsonian Institution’s home
page in two different web archives. Past versions of web pages are called mementos. A
memento of a resource can be served from the original server itself (e.g., a revision of a wiki
page) or from a web archive (even after the original server is gone).

Discoverability of archived resources is in the interest of both users and web archives.
Users want to find mementos that accurately represent the state of the resource at a given
time in the past which is more likely to be the case if there are many mementos of the
same resource (potentially in many different archives) over the period of the life of the web
page. Web archives want their collections to be utilized whenever they have a memento
that a user might be interested in. Memento aggregators are services that perform lookup
for mementos of web pages across many different web archives using the Memento protocol
and provide consolidated results. Without an aggregator, small archives will never get the
exposure that the Internet Archive (IA)1 gets (which has an Alexa ranking close to 200 for
the last several years2).

In this work we establish a framework for archive profiles to systematically describe
holdings of various web archives whether they are generated by the archives themselves or
third parties. Depending on the application, available resources, and the level of access to
the archives, one may generate a brief summary of holdings, a detailed ledger, or anything
in between. Among many use cases of archive profiles the primary purpose is efficient
Memento aggregation. There is a tradeoff between increasing exposure to web archives
(hence mementos) and managing load (hence resources and response time). The goal is to

1https://web.archive.org/
2https://www.alexa.com/siteinfo/archive.org

https://web.archive.org/
https://www.alexa.com/siteinfo/archive.org

2

(a) First Memento of the Smithsonian Institution in Arquivo.pt from
October 1996. https://arquivo.pt/wayback/19961013204418/http:
//www.si.edu/

(b) First Memento of the Smithsonian Institution in the Internet
Archive from December 1997 (JavaScript in the home page changes
the location to “newstart.htm”). https://web.archive.org/web/

19971210203441/http://www.si.edu/newstart.htm

Fig. 1. Early Mementos of the Smithsonian Institution Home Page

https://arquivo.pt/wayback/19961013204418/http://www.si.edu/
https://arquivo.pt/wayback/19961013204418/http://www.si.edu/
https://web.archive.org/web/19971210203441/http://www.si.edu/newstart.htm
https://web.archive.org/web/19971210203441/http://www.si.edu/newstart.htm

3

identify a few potential archives among all archives known to the aggregator that are likely
to return good results for a given page lookup.

1.1 MOTIVATION

A brief discussion on the following questions can help understanding the purpose and
importance of this work:

• Why aggregate web archives anyway?

• Why aggregate small web archives?

• Why profile web archives?

• Why route lookup requests?

1.1.1 WHY AGGREGATE WEB ARCHIVES ANYWAY?

The Internet Archive, the first web archive founded in 1996, has over a trillion mementos
of which about half are web pages (IA defines a “web page” as an HTML, text, or PDF
file [114]) as illustrated in Figure 2. Currently, it is adding roughly 1.6 billion mementos
each week as shown in Figure 3. According to an engineer at IA, every URI (Uniform
Resource Identifier) is captured on average about 2.1 times [115]. With that estimate, IA
has about 476 billion unique original URIs and 223 billion unique original web page URIs
as of October, 2020.

In November 2016, Google’s How Search Works page3 estimated the size of the web to
be over 130 trillion individual pages [219]. On one hand, this number does not reflect the
size of Google’s search index which is smaller (a few hundred billion4 or at least above 50
billion [92, 247]). On the other hand, this also does not include the number of historical
pages that are long gone, which, when included, would make the size of the web even larger.

IA’s seemingly large numbers, when put in perspective of the size of the web, become
small, relatively. This shows that while IA is the oldest and largest web archive, it still holds
only a small sample of the historical web. A recent study estimates that about two-thirds
of the entire web traffic is not archivable by public archives [126], where personal/private
web archiving can play an important role. Aggregating results from many archives helps
discovering more archived resources.

3https://www.google.com/search/howsearchworks/
4https://www.google.com/search/howsearchworks/crawling-indexing/

https://www.google.com/search/howsearchworks/
https://www.google.com/search/howsearchworks/crawling-indexing/

4

Fig. 2. Over a Trillion Mementos and 468 Billion Web Pages in IA as of October 26, 2020

5

Fig. 3. Growth of Mementos and Web Pages in IA Over Time [16] (IA started reporting
web page count instead of memento count on its homepage since October 2016).

IA has been blocked (or occasionally gets blocked) for years or months in many countries,
including China [123], Russia [99], Jordan [4, 75], and India [229, 151, 74]. Comcast, the
largest home Internet service provider in the United States, once blocked IA [73]. Being the
largest web archive, IA is susceptible to many threats, including natural disasters, hacking,
and Internet censorship. IA itself recognizes these threats and is trying to create mirrors in
different web archives for diversity in jurisdictions, countries, and geography, including the
most recent initiative of the Internet Archive of Canada [87]. Aggregation can help make
the long tail of smaller web archives available to everyone even when the largest archive is
inaccessible.

On June 15, 2016, I publicly demonstrated MemGator5, our newly created Memento
aggregator tool, at the Library of Congress (LC) for the first time. In the live demo I
illustrated many useful functionalities using MemGator as a command-line tool. One of
those examples was to count the number of mementos of a given URI for every year across
various archives (as illustrated in Figure 4). Later we found that IA was down during the
demonstration of MemGator due to a denial-of-service (DDoS) attack [148]. However, by
the virtue of aggregating from about a dozen other web archives the demonstration worked

5https://github.com/oduwsdl/MemGator

https://github.com/oduwsdl/MemGator

6

Fig. 4. MemGator Demonstration at the Library of Congress on June 15, 2016, while IA
was under a DDoS attack.

without anyone noticing any failures, proving the tool to be more resilient to transient errors
at individual archives. This reflects the potential experience of people living in places where
certain web archives might not be accessible, if they choose to utilize Memento aggregators.

The Smithsonian Institution unveiled its first homepage (http://www.si.edu/) in May
1995. Over time it has gone through many changes, but they did not preserve the history of
changes. Later, in 2014 they attempted to find the earliest copies of their homepage in web
archives [111]. Among thousands of mementos of their homepage IA had, the earliest copy
they found there was from May 19976, which redirects to another memento from December
1997 as shown in Figure 1b. Then they utilized Time Travel7, a Memento aggregator
service, which led them to discover a functional copy of their homepage from October 1996
in Arquivo.pt (Portuguese Web Archive) that was last updated in March 1996 as shown in
Figure 1a.

6https://web.archive.org/web/19970502110751/http://si.edu)
7http://timetravel.mementoweb.org/

http://www.si.edu/
https://web.archive.org/web/19970502110751/http://si.edu
http://timetravel.mementoweb.org/

7

Using robots.txt [165], IA allows webmasters to exclude historical copies of their whole
site, specific sections, or specific pages from being replayed. The US government and mil-
itary domains are exempted from this robots.txt exclusion as of December 2016 [212,
119]. In April 2015, Bell Labs8 restructured their web pages. As a result, the home page
of Dennis Ritchie, an American computer scientist primarily known as the creator of the C
programming language and one of the developers of the Unix operating system, was moved
from http://cm.bell-labs.com/cm/cs/who/dmr/ to https://www.bell-labs.com/usr/

dmr/www/index.html. People with broken links could not find any copies in the IA (as illus-
trated in Figure 5a). At that time, the robots.txt file of the cm.bell-labs.com in effect
prevented IA from replaying any pages from that domain9 (see Figure 81 of Appendix A for
the contents of the robots.txt file). Later the robots.txt file was removed, then we found
that IA has over 200 copies of Dennis Ritchie’s original home page (as shown in Figure 5c).
However, those using aggregators could easily find copies in other archives (as shown in Fig-
ure 5b) that do not utilize robots.txt for barring replay, such as Bibliotheca Alexandrina
Web Archive10, Archive.is11, and Archive-It12.

In December 2017, an American journalist Joy-Ann Reid apologized for “insensitive
LGBT blog posts” she wrote more than a decade ago [232]. A few months later she claimed
that either her blog or the copies of her blog in IA been hacked to fabricate homophobic
posts [96]. IA denied the claim of being hacked [72], but there were no technical means
deployed to prove fixity and non-repudiation of archived content [31, 47, 86]. We investigated
the matter further and looked for copies of her relevant posts in other web archives [187,
186]. We found a few copies of her posts in other web archives, suggesting that the claim of
IA being hacked not stand. Aggregating results from multiple independent archives gives
confidence about the validity and fixity of the content or lack thereof.

Each web archive has different goals and collection policies that result in a diverse set
of mementos across different archives. Some archives strive for broader coverage and run a
crawler that tries to traverse the connected graph of the World Wide Web (WWW) while
others limit their crawling to a specific set of web pages, such as domain names related to
a specific country (for example, the Icelandic Web Archive collects *.is pages and a hand-
picked selection of other Icelandic websites under some other TLDs13). Some individuals

8https://en.wikipedia.org/wiki/Bell_Labs
9https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt

10http://archive.bibalex.org/
11http://archive.is/
12https://archive-it.org/
13https://vefsafn.is/index.php?page=english

http://cm.bell-labs.com/cm/cs/who/dmr/
https://www.bell-labs.com/usr/dmr/www/index.html
https://www.bell-labs.com/usr/dmr/www/index.html
https://en.wikipedia.org/wiki/Bell_Labs
https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt
http://archive.bibalex.org/
http://archive.is/
https://archive-it.org/
https://vefsafn.is/index.php?page=english

8

(a) The Live Page is Missing and Inaccessible in IA

(b) Archives Other Than IA Have Some Copies

(c) Presence in IA Discovered Later After robots.txt is Removed

Fig. 5. Dennis Ritchie’s Homepage at Bell Labs After Site Restructuring

9

and organizations build focused collections with curated list of important pages while others
try to capture pages related to significant events in a timely manner. Some archives focus
on high-fidelity archiving and some provide on-demand archiving of a single page at a time.
Many different archives located in different parts of the world also capture the geo-location
diversity on sites that serve different content in different places. For example, some of the
mementos of the travel booking site Expedia in Arquivo.pt are in Spanish14,15 (as shown in
Figure 6a) while the Internet Archive has mementos of the same site in English16 (as shown
in Figure 6b) around the same time. Aggregation allows discovery of all these variations
from a single convenient place.

1.1.2 WHY AGGREGATE SMALL WEB ARCHIVES?

We conducted a preliminary experiment to assess the overlap among different web
archives [8, 210]. For that we collected four random samples of 1,000,000 URIs each from
four different sources:

1. the historical collection of DMOZ17

2. Internet Archive Wayback Machine access logs

3. Memento Proxy access logs, and

4. UK Web Archive Wayback access logs

Now defunct, DMOZ was a human curated directory of web pages in nested categories.
We then checked the presence of these four million sample URIs in two large web archives
(Archive-It and UK Web Archive) and one small web archive (Stanford Web Archive Por-
tal18).

Figure 7 shows the outcome of this experiment. There are two important observations
that highlight the need for aggregation: 1) none of the three archives have more than 5%
of any sample set archived, and 2) the overlap among archives is insignificant. We observe
that the coverage is almost additive in nature as more collections are aggregated together.
This means that an unpopular resource that is found in one web archive is less likely to be

14Expedia did not support Portuguese at that time, hence Spanish was the closest language option for
that geographical region.

15http://arquivo.pt/wayback/20161101203449/https://www.expedia.com/
16https://web.archive.org/web/20161031215653/https://www.expedia.com/
17https://en.wikipedia.org/wiki/DMOZ
18https://swap.stanford.edu/

http://arquivo.pt/wayback/20161101203449/https://www.expedia.com/
https://web.archive.org/web/20161031215653/https://www.expedia.com/
https://en.wikipedia.org/wiki/DMOZ
https://swap.stanford.edu/

10

(a) Arquivo.pt Observed the Page in Spanish

(b) Internet Archive Observed the Page in English

Fig. 6. Expedia Serves Pages in Different Languages to Different Geo-locations

found in any other archive (excluding the Internet Archive). Hence, even small archives may
contribute significantly to the effectiveness of the aggregation as they are not mere subsets
of large web archives.

Small curated collections often focus on high-fidelity captures that result in a more accu-
rate replay of archived web pages than large-scale automated crawls. Rhizome’s webenact19

is a good example of such collections. Rhizome is a born-digital art institution. Their
webenact service has a collection of a few hand-picked sites that have rich and interactive

19http://webenact.rhizome.org/

http://webenact.rhizome.org/

11

(a) Overlap of DMOZ (b) Overlap of IA Wayback

(c) Overlap of Memento Proxy (d) Overlap of UK Wayback

Fig. 7. Sample Lookup URI Overlap in Archive-It, UKWA, and Stanford Web Archives

embedded media in them. These collections include properly preserved interactions like
infinite scroll, media playback, and slideshows in modal windows that are otherwise difficult
to archive using traditional crawlers. Aggregating such small archives can help surface more
high-fidelity mementos for users when available.

1.1.3 WHY PROFILE WEB ARCHIVES?

As web archives grow larger over time, even the curated collections may collect many
unintended resources while missing out on many resources that should have been captured.
This may happen due to many reasons, including vaguely configured crawling policies, scripts

12

Fig. 8. Unclear Holdings of Archival Collections

in web pages, and transient failures of web servers or crawlers. According to Andrew Jackson,
the Web Archiving Technical Lead at the British Library, “We don’t even know what we’ve
got, especially for messy collections like web archives.” (Figure 8) [144]. Archive profiles are
one way to understand the holdings of an archive at any point in time.

Being able to describe the holdings of web archives by building archive profiles can enable
many use cases. One such use case is the ability to efficiently route requests from a Memento
aggregator to only archives that might have good results for the lookup URI.

Many archives would like to advertise their holdings even if those mementos are not
yet made accessible publicly. The reasons for not being able to access a resource could
be an embargo period, legal takedowns, requested exclusions, authorization requirements,
geo-spatial restrictions, etc. These archive profiles can even enable web archives to publicly
express their holdings about mementos that are only accessible to selected people, at selected
places, or at specific time periods.

1.1.4 WHY ROUTE LOOKUP REQUESTS?

In December 2015, soon after the popularity surge of OldWeb.today [167], a service that
allows accessing historical web in historical web browsers, many archives struggled with the
increased traffic. Library of Congress contacted us about MemGator causing issues on their
web archive server (as shown in Figure 9a). They found us because we added our contact
information in MemGator’s default user-agent request HTTP header. This field is supposed
to be customized by users who run MemGator on their own. We were aware that the
newly launched OldWeb.today service used MemGator which might not have customized

13

(a) LC Contacted Us About MemGator Causing
Issues

(b) We Responded With Potential Source of Traffic
Surge

(c) OldWeb.today Informed Us About an Exclusion Request

Fig. 9. OldWeb.today Caused Excessive Load at loc.gov

the user-agent. In our response we told LC about the potential source of traffic (as shown
in Figure 9b). A while later we received an email from the administrator of OldWeb.today
about an exclusion request from an archive from being aggregated (as shown in Figure 9c).

We found that fewer than 5% of the queried URIs are present in any individual archive
other than IA. In this case, being able to identify a subset of archives that might return
good results for a particular lookup request becomes very important.

Figures 11a and 11b illustrate a naive implementation of a Memento aggregator where
each request is broadcasted to all the known archives, but only a few archives return good
results. Memento aggregators, such as the Time Travel Service or MemGator, and other

14

1 $ curl -sL https://git.io//archives \
2 > | jq '.[] | select(.id=="pastpages")'
3 {
4 "id": "pastpages",
5 "name": "PastPages Web Archive",
6 "timemap": "http://www.pastpages.org/timemap/link/",
7 "timegate": "http://www.pastpages.org/timegate/",
8 "probability": 0.001,
9 "ignore": true

10 }

Fig. 10. MemGator’s Default Archives’ List Explicitly Disabled PastPages

services, need to know which archives to poll when a request for an archived version of a file
is received. LANL’s Time Travel Service routes requests to only a subset of archives using
binary classifiers trained on the observed results from various web archives in the past. The
default list of archives in MemGator had explicitly disabled the PastPages Web Archive
(as shown in Figure 10) because it was often not returning any good results. As a result
PastPages, before it shut down in 2018 (and the content was moved to IA20), was never
requested even if it had mementos for some lookup URIs. This binary approach of either
request a given archive for every lookup request or not request for any at all is not ideal.
Efficient Memento routing in aggregators is desired from both aggregators’ and archives’
perspective. Aggregators can reduce the average response time, improve overall throughput,
and save network bandwidth. Archives benefit by the reduced number of requests for which
they have no holdings, hence saving computing resources and bandwidth.

Broadcasting becomes practically impossible for an aggregator as the number of aggre-
gation sources grow large. Archive-It (AIT), a hosted web archiving subscription service
run by IA, is currently hosting over 15 thousand collections created by about two thousand
organizations and individuals21. Aggregating mementos from these many collections can be
overwhelming and impractical if the aggregator is to return the response to the client in
a reasonable amount of time. Luckily, AIT provides a special memento endpoint (called
“all”) where results from all of the public collections on AIT are combined. However, if an

20https://archive.org/details/pastpages
21As of November 27, 2020, AIT had 1,860 organizations and 15,515 collections and adding hundreds of

collections each month.

https://archive.org/details/pastpages

15

aggregator wants to exclude some collections, it has to then individually aggregate from
the rest. There are some other subscription services that have gained popularity such as
Webrecorder (now called Conifer)22, archiveweb.eu23, and the now defunct Internet Mem-
ory Foundation (IMF)24. They do not provide a combined endpoint yet, so the aggregator
must include their collections individually. Personal web archiving (collected by individuals,
potentially from their web browsing sessions) is another interesting dimension in web archiv-
ing. It is currently not very popular due to lack of tools and awareness, but a significant
amount of research and development is ongoing for personal web archiving [61, 156, 158].
If personal web archiving practices proliferate, a significant number of small, but valuable
archival collections might come to life that will be worth aggregating (with necessary access
control).

Figure 11c illustrates a setup where a Memento aggregator first queries an archive profile
service for the lookup URI. It receives a list of archives sorted in the order of the likelihood
of finding archived copies of the queried file in them. The aggregator then chooses the top-k
archives from the list that are above certain threshold to route the lookup request.

Previous work proved that simple rules are insufficient to accurately model a web archive’s
holdings [40, 39] (see Section 3.9.2 of Chapter 3 for more details). For example, simply rout-
ing requests for *.uk URIs to the UK National Archives is insufficient: many other archives
hold *.uk URIs, and the UK National Archives holds much more than just *.uk URIs. This
is true for the many other national web archives as well, such as Arquivo.pt is not limited
to *.pt and Vefsafn.is is not limited to *.is URIs. Earlier, we discussed the case of the
first copy of the Smithsonian Institution’s homepage was found in Arquivo.pt (as shown in
Figure 1a), which is not a page of primary interest of Portuguese people.

Using an informed routing at Memento aggregators can avoid overloading archives of any
size, where the aggregator only makes requests to a selected subset of archives where a given
lookup URI is likely to be found. It can help new archives with limited resources to flourish
while still being utilized when people look for archived mementos held by them. This can
result in an efficient aggregation, decreased response times, and good user experience while
saving resources of users, aggregators, and web archives.

22https://conifer.rhizome.org/
23https://www.archiefweb.eu/
24https://collections.internetmemory.org/

https://conifer.rhizome.org/
https://www.archiefweb.eu/
https://collections.internetmemory.org/

16

(a) Request to All Known Archives (b) Response from a Few Archives

(c) Memento Aggregator With Profile Based Routing

Fig. 11. Request-Response Cycle of Memento Aggregator and Various Archives

1.2 RESEARCH QUESTIONS

The above motivational examples helped identify the problem space that is the focus of
this research. The process of learning involves gathering information from different sources,
organizing the knowledge in a way that is easy to understand and express, and utilizing
the knowledge to solve other problems. We explore the following three primary research
questions and evaluate their potential solutions.

• RQ1: How to learn about the holdings and voids of an archive?

• RQ2: How to build an archive profile that will best summarize an archive’s hold-
ings/voids and allow for dissemination and exchange?

• RQ3: How to utilize archive profiles for the routing of URI lookup requests?

17

1.2.1 LEARNING ABOUT THE HOLDINGS OF AN ARCHIVE

Different people, based on their association with a web archive (or lack thereof), may
have varying levels of access to information of that archive’s holdings. Web archives generally
have an index of all the URIs they have collected one or more times. Having access to such
indexes can give a complete knowledge about their holdings. However, this information is
often not available publicly due to some practical problems such as logistics, security, or
privacy concerns. Entities that do not have direct access to an archive’s index can still
learn about its holdings by observing externally. We can perform searches using random
keywords in web archives that support fulltext search and note all the URIs returned in
their responses. This way, we can learn about a few new URIs from the archive’s holdings
with each search. In the case of web archives that do not support fulltext search, we can
observe their responses as we lookup individual URIs.

Each of these approaches have their own learning rate, associated cost, and usefulness
that needs to be studied and analyzed. There are many opportunities of optimization in
each of these approaches. For example, we need to identify a mechanism to generate a
list of keywords that yields maximum number of unique URIs in search results in the least
number of searches in a given web archive. Similarly, in the case where fulltext search is not
available and learning rate is one URI per lookup, we need to find a suitable list of diverse
URIs that maximizes the understanding of archive’s holdings.

The Random Searcher Model, one of our contributions (as discussed in Section 6.4.1
of Chapter 6), provides a means of discovery of an archive’s holdings via fulltext search.
Access logs collected by the running instances of MemGator, another contribution of this
work (described in Chapter 5), provide a longitudinal data of which URI lookups were
successful or unsuccessful in various web archives over time.

1.2.2 EXPRESSING AND DISSEMINATING ARCHIVE PROFILES

As we learn about the holdings of various archives, it becomes important to store and
organize that knowledge to make it useful. We call this organized knowledge about a web
archive’s holdings an Archive Profile. The purpose of an archive profile is to express the
holdings of an archive by the archive owners themselves or by a third party. A simple
archive profile can be a list of URIs present in an archive along with the date and time
when the archive observed each of those URIs. However, such simple profiles can become
significantly large for large archives. On the contrary, if a profile only stores the top-level

18

domains (TLDs) that are present in an archive, the profile will be small in size, but not very
effective for most of the use cases. We can also find a suitable middle ground of a partial
URI (such as just the domain name or up to one path depth) which is between the two
extremes of full URI and only the TLD. Alternatively, we can have full URIs recorded for
sites that are not well archived, but relatively shorter partial URIs for well-archived sites to
minimize the repetition and profile size. So, there is a tradeoff among factors like frequency
of updates, accuracy, size of the profile, granularity of details, and usefulness.

Depending on the purpose of the profile, one might want to store more metadata about
each record in the profile (e.g., MIME type, byte size, HTTP status code, or access restric-
tions). Another possibility is to only record a unique URI once and not repeat it each time
it was observed by the archive; instead, write down the number of observations made to
that URI. One might want to organize URIs in buckets of time slots of varying granularity
such as yearly, monthly, or daily. These profiles can be generated by different entities at
different times with different levels of details.

There is a need to define a suitable format for archive profiles that is flexible enough
to express varying levels of details, easy to parse and understand, compact in size, easy to
merge with other profiles or split arbitrarily in small chunks, and allows incremental growth
and versioning. The format should also be suitable for publishing on the web and easy to
exchange with other parties.

We introduced a file format called, Unified Key Value Store (UKVS), which fulfills
these needs of archive profiles’ serialization and dissemination (as described in Chapter 8).
Furthermore, we implemented the MementoMap tool (described in Section 5.6 of Chapter 5)
that ingests a list of URIs collected from CDX files, search results, access logs, or any other
means and produces a MementoMap of the archive in the UKVS format based on supplied
options to control the level of details.

1.2.3 ARCHIVE PROFILES FOR MEMENTO ROUTING

While there can be many use cases of archive profiles, the primary focus of this work
is to efficiently route memento aggregation requests to appropriate archives. We can build
algorithms to calculate routing scores for a given lookup URI to be present in different
archives based on the information in their corresponding profiles. Alternatively, we can
build binary or probabilistic classifiers for each archive (using data in their corresponding
profiles) to predict whether a given lookup URI is present in them individually. These
approaches can be useful when the number of archives to be aggregated is not significantly

19

large, as these approaches are not scalable beyond a limit.
Another way to look at this problem is to convert it into an information retrieval (IR)

problem and utilize many existing well-established techniques for the task such as language
modeling or vector space modeling [91]. In simple terms, IR is the task of searching for
resources from a collection that are relevant to a given query. This is generally performed
on a collection of documents where search keywords are generally words that appear in those
documents. In the case of memento routing, we can have a collection of archive profiles where
profiles are analogous to documents and the URIs present in them are analogous to words.
Then the task of memento routing converts into the task of finding relevant profiles (hence,
related archives) for a given URI lookup. It is worth noting that many IR tasks (such as
tokenization and stemming) will be different for URIs than for conventional documents.
Also, the document size (both the byte size as well as the word count) can be several orders
of magnitude larger for large archive profiles than general text documents.

1.3 CHAPTER SUMMARY

In this chapter we briefly described web archives, the Memento framework, Memento
aggregation and archive profiles. With the help of some real life examples we highlighted
the need for aggregating archives. We described that the rate of growth of the web will likely
always be faster than the ability to archive it, so we will always need techniques to efficiently
aggregate as many archives as possible, no matter how large certain archives get. We gave
examples of censorship of web archives, transient errors and attacks, lack of timely captures
of important events in a single archive, potentially unintentional exclusions, a means for
the validity and fixity, and the lack of variety in mementos. Then, we demonstrated the
significance of aggregating small archives by showing the little overlap among archives. We
showed that even small archives may bring some unique archived resources when aggregated.
We also highlighted the significance of small archives due to their focus on niche features
such as high-fidelity captures.

Furthermore, we described the usefulness of understanding the holdings of various web
archives by creating their archive profiles. We noted that even the curated collections
start to include many undesired resources and exclude many desired ones over time where
archive profiles can be helpful to understand their holdings. We also described the role of
archive profiles in expressing dark or restricted holdings in collections that are otherwise
not accessible publicly.

Using the example of an incident where LC was unable to handle a sudden surge of

20

traffic, we demonstrated how broadcasting lookup requests can be wasteful and problematic.
This establishes the need for a smart routing in Memento aggregators to avoid overloading
archives and to allow new archives to flourish. We envisioned that archive profiles can be a
means to implement an efficient and smart Memento aggregator.

We then established our three primary research questions related to learning holdings of
web archives, expressing and disseminating this information, and utilizing it for memento
aggregation routing. Finally, we described what we explore about each of these questions
and how.

The remainder of this document is organized as follows:

• Chapter 2 gives background information about various related terminologies that will
be helpful to understand the problems this work is addressing and their solutions.

• Chapter 3 explores and reviews published scholarly works in various related areas.

• Chapter 4 describes our MementoMap framework, research questions, and evaluation
plan.

• Chapter 5 describes various tools we built during our research as part of deliverables
and to help our research process.

• Chapter 6 describes our work around RQ1 in which we explore different approaches
to learn about holdings of web archives with different levels of access.

• Chapter 7 describes our work around RQ1 in which we discuss how to learn about
resources that are not present in a web archive.

• Chapter 8 describes our work around RQ2 in which we explore serialization and
dissemination methods of archive profiles.

• Chapter 9 describes our work around RQ3 in which we combine profiles of various
web archives and route Memento lookup queries to suitable archives.

• Chapter 10 enumerates our contributions, discusses potential future work, and con-
cludes by summarizing this work.

21

CHAPTER 2

BACKGROUND

In order to understand web archive profiling it would be helpful to be familiar with some
related terminologies. In this chapter we briefly describe Hypertext Transfer Protocol, web
archiving, Memento, aggregation, URI transformations, and some file formats.

2.1 HYPERTEXT TRANSFER PROTOCOL (HTTP)

Hypertext Transfer Protocol (HTTP) is a stateless client and server communication
protocol [103, 102, 110, 33, 26]. HTTP is a widely adopted protocol on the World Wide
Web (WWW). The monolithic specification of HTTP version 1.1 was later split in small
pieces, each covering a specific aspect of the protocol [108, 109, 107, 104, 105, 106]. HTTP up
to version 1.1 has been a text-based protocol, but HTTP version 2 and later are binary [235,
58]. In this work we primarily illustrate and focus on HTTP/1.1 as the later versions, despite
being binary encoded, are conceptually the same, especially, in the aspects of HTTP this
work has the focus on.

HTTP is relevant to this work at many levels. For example, Web archives preserve
HTTP exchanges and replay them using HTTP later.

2.1.1 HTTP MESSAGE

In HTTP a client user agent (such as a web browser) sends an HTTP Request Message to
a server using one of the supported methods (e.g., GET, POST, PUT, or DELETE), some headers,
and an optional payload. The server processes the request, and returns an appropriate
HTTP Response Message back to the client with a suitable status code (e.g., 200, 201, 301,
404, or 500), some headers, and an optional payload.

Figure 12 illustrates a typical HTTP request response exchange. The second line shown
in the figure is called a Request Line that contains the HTTP method, request URI, and the
HTTP version (in this example, “GET”, “/hello”, and “HTTP/1.1” respectively). Following
the Request Line there can be zero or more consecutive lines of headers with their names and
values separated by a colon sign (in this example, lines 3 and 4). Headers are terminated
by an empty line followed by an optional payload, which is absent in this example request

22

1 $ curl -ivs https://example.com/ 2>&1 | grep "^<\|^>"
2 > GET /hello HTTP/1.1
3 > Host: example.com
4 > User-Agent: curl/7.58.0
5 >
6 < HTTP/1.1 200 OK
7 < Date: Thu, 08 Aug 2019 15:47:15 GMT
8 < Server: Apache
9 < Last-Modified: Fri, 02 Aug 2019 03:35:56 GMT

10 < Content-Type: text/plain
11 < Content-Length: 16
12 <
13 < Hello Archives!

Fig. 12. HTTP Request and Response Messages (Characters > and < are not part of the
messages, they are annotations to identify request and response portions, respectively.)

message. Line 6 is the start of an HTTP Response Message which is called a Status Line
that consists of the HTTP version, status code, and a status message (in this example,
“HTTP/1.1”, “200”, and “OK” respectively). Same as the request message, the response
message has consecutive lines of headers, an empty line, and an optional payload (in this
example, lines 7–11 are headers and line 13 is the response payload).

2.1.2 HTTP METHOD

An HTTP method is a verb that indicates a generic action a client intends to perform
on a resource identified by a URI. It is a single token written using all upper-case letters
such as GET, POST, DELETE, etc. The base HTTP specification defines various common
methods, but other specifications extend the HTTP method space to include more methods.
Table 1 lists common HTTP methods among which the GET and POST are the most utilized
methods on the web [18]. A safe HTTP method does not change the state of the resource,
hence has no side-effects (with the exception of logging or change in the last access time).
An idempotent method means the overall effect of repeating the request is going to be the
same as a single successful attempt. Traditional web archiving systems focused only on the
GET method, both for capture and replay, but modern systems are accounting for other
methods as well.

23

Table 1. Common HTTP Methods

Method Description Safe Idempotent

GET Retrieve a representation of a resource Yes Yes
HEAD Same as GET, but omits the payload Yes Yes
POST Create a new resource No No
PUT Create or update a resource at a given URI No Yes
PATCH Partially update a resource No Yes
DELETE Remove a resource No Yes
OPTIONS Query available communication options Yes Yes
CONNECT Create a tunnel Yes Yes
TRACE Echo back the request Yes Yes

Table 2. Purpose of Various HTTP Status Code Classes

Status Class Code Range Description

1xx 100–199 Informational responses
2xx 200–299 Successful responses
3xx 300–399 Redirects
4xx 400–499 Client errors
5xx 500–599 Server errors

2.1.3 HTTP STATUS CODE

When a client sends an HTTP request to an HTTP server, the server communicates
the overall status of the HTTP exchange using response status codes. These status codes
are three-digit decimal numbers ranging from 100 to 599. The leftmost digit describes one
of the five response status classes as described in Table 2. Many existing HTTP-related
Request for Comments (RFCs) standardize various status codes and their semantics in each
class, but many codes in each range are still available for future extension. However, even
if a client does not know the exact semantics of a given status code, the class of the code
still gives a generic understanding of the response.

Status codes in the 1xx class are informational in nature such as, 100 Continue (an

24

interim response to indicate everything OK so far, wait for the actual response) or 103

Early Hints (to tell the client what other requests it might want to make in order to
preload necessary resources). This class of status codes is not very common in practice.

Status codes in the 2xx class indicate success. The 200 OK status is the most popular
(and often misused) status code, but other common codes in the class include 201 Created

(when one or more resources are creates as a result of a request), 202 Accepted (when
the request is accepted for asynchronous processing), 204 No Content (when the request
is successfully, but there is no content to send), and 206 Partial Content (when only a
subset of the response payload is returned).

Status codes in the 3xx class indicate a redirect. The response may contain a Location

header that the client may choose to follow to access the resource where the server is redirect-
ing. Common status codes of this class include 300 Multiple Choices (when a content-
negotiation cannot be resolved to one unique representation of the resource by the server
and results in an agent-driven negotiation), 301 Moved Permanently (when the resource
is moved to a new location, often used when domain names or URI structure of a website
are changed), 302 Found (when the resource is available at a different URI, but the server
wants the client to continue to come back to the current URI for content negotiation in the
future), 303 See Other (when a related resources is available at a different URI), and 304

Not Modified (when the content is not modified as per the conditions provided in the re-
quest and the client can leverage the corresponding cached resources instead). Status codes
307 Temporary Redirect and 308 Permanent Redirect are similar to the 302 and 301,
respectively, with one difference that these indicate that the client should not change the
request method when following the redirect.

Status codes in the 4xx class indicate a client error. Generally, a client should not
attempt to repeat the request that received a status of this class without making any changes
to the request. The 404 Not Found (the server does not have a resource representation for
the target resource or is not willing to disclose) is the most common status code in this
class. Some other common status codes in the 4xx class include 400 Bad Request (when
the request message is malformed), 401 Unauthorized (when authentication is needed to
access the resource), 403 Forbidden (when an authenticated user is not allowed to access
the resources), 405 Method Not Allowed (when the requested HTTP method is not allowed
on the resource), 410 Gone (when the resource identified by the URI is gone forever), 413
Payload Too Large (when the request payload is larger than configured for the server),
and 414 URI Too Long (when the URI is larger than configured for an HTTP server).

25

1 $ curl -i https://example.com/absent.html
2 HTTP/1.1 200 OK
3 Content-Type: text/plain
4 Date: Thu, 08 Aug 2019 21:13:04 GMT
5 Server: Apache
6 Content-Length: 40
7

8 Sorry, the requested page was not found!

Fig. 13. A Sample Soft-404 Response

Status codes in the 5xx class indicate a server error. Common status codes in the class
include 500 Internal Server Error (when the server encounters an unhandled error while
processing the request), 501 Not Implemented (when the requested HTTP method is not
implemented), 502 Bad Gateway (when the server acting as a gateway to another service
like a database or an external API received an invalid response), 503 Service Unavailable

(when the server is overloaded or down for maintenance, generally provides a Retry-After

header), 504 Gateway Timeout (when the server is acting as a gateway and the upstream
service did not return a response in time), and 505 HTTP Version Not Supported (when
the request HTTP version is unsupported by the server).

2.1.4 SOFT-404

As per the HTTP standards, if a resource is accessed that is not present on the requested
URI, the server should return the 404 Not Found status code, and if the resource is present
and is accessible then the response should be 200 OK. However, some poorly written web
applications may return 200 OK status code even for resources that are not present (as
illustrated in Figure 13). They often advertise the unavailability of the resource via the
response body instead of the status code. This behavior is called Soft-404 [180]. Moreover,
the term Soft-404 is commonly used as an umbrella term for any error page that is returned
with the 200 OK response code due to the prevalence of 404 Not Found errors over other
error pages on the web. Soft-404 is relevant to our work as some poorly implemented web
archives may return it, As a result, we may need to find workarounds to identify them and
isolate them from real 200 OK responses.

26

1 172.17.0.1 - - [13/Nov/2020:19:01:18 +0000] "GET / HTTP/1.1" 200 45
"-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/87.0.4280.66 Safari/537.36"

↪→

↪→

2 172.17.0.1 - - [13/Nov/2020:19:01:18 +0000] "GET /favicon.ico
HTTP/1.1" 200 238 "http://localhost/" "Mozilla/5.0 (X11; Linux
x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66
Safari/537.36"

↪→

↪→

↪→

3 172.17.0.1 - - [13/Nov/2020:19:02:42 +0000] "GET /img/logo.png
HTTP/1.1" 200 2906 "http://localhost/" "Mozilla/5.0 (X11; Linux
x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66
Safari/537.36"

↪→

↪→

↪→

4 172.17.0.1 - - [13/Nov/2020:19:03:12 +0000] "GET /img/unicorn.svg
HTTP/1.1" 404 196 "http://localhost/" "Mozilla/5.0 (X11; Linux
x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66
Safari/537.36"

↪→

↪→

↪→

5 172.17.0.9 - - [13/Nov/2020:19:05:36 +0000] "POST /login HTTP/1.1" 401
234 "-" "curl/7.58.0"↪→

Fig. 14. A Sample Extended Access Log

2.2 HTTP ACCESS LOGS

Many HTTP servers write a log in the standard Common Log Format or extended
Combined Log Format [41]. Figure 14 illustrates a typical access log file. It is a textual file
format that contains the following information about all the HTTP accesses, when available
(where any missing field is represented with a hyphen):

• IP address of the client

• User identity (often empty)

• Authenticated user’s ID (often empty)

• Date and time

• HTTP method, request path, and HTTP version

• HTTP status code

• Size of the response in bytes

Extended log versions may include additional fields as shown below:

27

• Referrer

• User-agent

• Cookies

• Request processing duration

• Any other headers if configured

However, not many web webmasters configure their server logging to include many useful
headers beyond the default fields (which usually only include referrer and user-agent on top
of the Common Log Format). For example, it would have been useful to know what language
preferences various clients had when accessing different resources from web archives, but the
access logs we collected from different web archives did not include this information. In this
work, we leverage access logs of web archives to learn about frequently accessed resources
that are not present in the archive. To process web archive access logs we have implemented
a generic HTTP access log parser with added capabilities for web archives (as discussed in
Chapter 5).

2.3 WEB ARCHIVING AND WEB ARCHIVES

Web archiving is the practice of collecting and preserving subsets of the WWW with the
intent to make them available in the future as historical records. The scope of web archiving
can be anything from a single web page saved by an individual for personal records to the
entire WWW captured by an institute or organization.

Institutions that capture the Web for preservation are called web archives. For example,
the Internet Archive is a large-scale web archive, founded in 1996 as a non-profit organiza-
tion. However, there are various other commercial, non-profit, institutional, and national
web archives around the world with different policies, goals, and focuses [51, 52, 241]. Some
web archives are on-demand (e.g., Archive.is and WebCite [100, 101]) as they capture web
pages and all the page requisites when requested explicitly by a client. Other web archives
are crawler-based that are configured to crawl certain portions of the WWW using standard
web crawling techniques.

The act of web archiving usually involves the following tasks [179] (our work relates to
and/or contributes to most of these aspects of web archiving as illustrated in Figure 36 of
Chapter 5 on Page 82):

28

• Collection policy making, seed selection, and crawling frequency configuration

• Capturing/Crawling

• Data storage

• Indexing

• Replay

Usually the coverage of the archival collection depends on the collection policy and
frequency of crawling, while the quality of capture depends on the tools used to capture
the web. Various open-source tools for capture/crawling, indexing, and replay are available
that can be used to set up a small or large-scale personal or institutional web archive.

2.3.1 ARCHIVE COLLECTION POLICY

Different web archives have different archival collection policies that control what gets
archived and what gets excluded. These policies shape the holdings and voids of a web
archive. For example, a web wide crawler can have more widespread coverage while crawling
popular resources more frequently. In contrast a focused crawler may collect many deep URIs
from the domains in scope that might be missed in a shallow web wide crawl. On-demand
one-page-at-a-time archives (e.g., Perma.cc [95, 205] and Archive.is) collect only pages (and
their page requisites) that users show an interest in, which may include deep links that would
otherwise not be discovered, but such archives cannot be as dense as crawler-based archives.
Moreover, there are various national web archives (e.g., Arquivo.pt [117, 89] and the UK
Web Archive [53, 145, 76]) that perform wide crawls, but they scope their crawlers primarily
to their national TLDs/gTLDs. Such crawlers may include resources from other parts of
the web, but their density will be low. Similarly, there are event-based collections that focus
on crawling resources related to specific events (e.g., COVID19 [134, 136, 218, 57, 135]).
These types of collections often require manual seed collection, which limits the number
of resources individual curators or collaborators can collect for archiving. In some cases a
collection can be made from a curated seed list by setting up a wide or deep crawling policy
starting from the seed URIs. A good example of this would be the End of Term crawl [113,
125, 49], which includes a curated list of domains/pages and many federal sites under the
.gov and .mil TLDs that is crawled a few times around the US presidential elections.

29

2.4 MEMENTO

Memento [245, 246, 189] is a protocol that adds the dimension of time on the web.
In other words, it is an HTTP framework for time-based access to resource states. The
framework is applicable to any web resource for time-based content negotiation (i.e., a
client can negotiate with a server to retrieve a historical version of a resource). However,
it has a greater focus towards web archives where time-based content negotiation is at the
core.

The Memento framework introduced a uniform Application Programming Interface (API)
for web archives to interoperate. This interoperability enabled memento aggregation for
cross-archive consolidation of archived resources.

The term Memento (as a proper noun) refers to the framework itself. However, the
common noun form memento is used for a prior state or a timestamped version of the
representation of an original resource. A memento is identified by a memento URI (or
URI-M) which often resolves to an archived copy in a web archive. An original resource
is identified by a resource URI (or URI-R) which used to exist in the past and might still
exist.

2.4.1 TIMEGATE

A TimeGate is a resource that acts as a gateway for datetime negotiation for a URI-
R. A TimeGate of a URI-R is identified by a corresponding TimeGate URI (or URI-G).
The client sends an Accept-Datetime request header to a URI-G for datetime negotiation.
The TimeGate then identifies the closest memento with respect to the requested datetime
and returns a 302 Found response with the corresponding URI-M in the Location header
as illustrated in Figure 15. The Memento framework covers various datetime negotiation
patterns in detail under Section 4 of its specifications [245]. A valid memento response
contains a Memento-Datetime response header that represents the datetime of a prior state
of the resource.

A TimeGate is an intermediate layer that may exist on the same host as the URI-R,
on a web archive, or on a Memento aggregator that consolidates various archives using
their TimeGate endpoints. If a web service implements the Memento protocol, ideally all
the URI-Rs of that service should advertise their URI-Gs in the Link response header.
However, if a URI-R does not advertise its TimeGate or does not exist anymore then a
generic TimeGate endpoint of a web archive (or a Memento aggregator) can be used, which

30

1 $ curl -I https://www.w3.org/wiki/Main_Page
2 HTTP/1.1 200 OK
3 Date: Tue, 16 Jul 2019 03:16:01 GMT
4 Link: <https://www.w3.org/wiki/Main_Page>; rel="original latest-version",
5 <https://www.w3.org/wiki/Special:TimeGate/Main_Page>; rel="timegate",
6 <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";
7 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";
8 until="Fri, 16 Nov 2018 19:10:23 GMT",
9 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";

10 datetime="Thu, 01 Jan 1970 00:00:00 GMT",
11 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";
12 datetime="Fri, 16 Nov 2018 19:10:23 GMT"
13 Content-Language: en
14 Vary: Accept-Encoding,Cookie
15 Cache-Control: s-maxage=18000, must-revalidate, max-age=0
16 Last-Modified: Mon, 15 Jul 2019 22:16:01 GMT
17 Content-Type: text/html; charset=UTF-8
18
19 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
20 https://www.w3.org/wiki/Special:TimeGate/Main_Page
21 HTTP/1.1 302 Found
22 Date: Tue, 16 Jul 2019 03:16:21 GMT
23 Vary: Accept-Encoding,Cookie,Accept-Datetime
24 Location: https://www.w3.org/wiki/index.php?title=Main_Page&oldid=80125
25 Link: <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";
26 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";
27 until="Fri, 16 Nov 2018 19:10:23 GMT",
28 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";
29 datetime="Thu, 01 Jan 1970 00:00:00 GMT",
30 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";
31 datetime="Fri, 16 Nov 2018 19:10:23 GMT",
32 <https://www.w3.org/wiki/Main_Page>; rel="original latest-version"
33 Content-Type: text/html; charset=UTF-8
34
35 HTTP/1.1 200 OK
36 Date: Tue, 16 Jul 2019 03:16:23 GMT
37 X-Content-Type-Options: nosniff
38 Memento-Datetime: Sat, 20 Dec 2014 11:34:08 GMT
39 Link: <https://www.w3.org/wiki/Main_Page>; rel="original latest-version",
40 <https://www.w3.org/wiki/Special:TimeGate/Main_Page>; rel="timegate",
41 <https://www.w3.org/wiki/Special:TimeMap/Main_Page>; rel="timemap";
42 type="application/link-format"; from="Thu, 01 Jan 1970 00:00:00 GMT";
43 until="Fri, 16 Nov 2018 19:10:23 GMT",
44 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=30366>; rel="first memento";
45 datetime="Thu, 01 Jan 1970 00:00:00 GMT",
46 <https://www.w3.org/wiki/index.php?title=Main_Page&oldid=108148>; rel="last memento";
47 datetime="Fri, 16 Nov 2018 19:10:23 GMT"
48 Content-Language: en
49 Vary: Accept-Encoding,Cookie
50 Expires: Thu, 01 Jan 1970 00:00:00 GMT
51 Cache-Control: private, must-revalidate, max-age=0
52 Content-Type: text/html; charset=UTF-8

Fig. 15. Content Negotiation Using the Memento TimeGate of the Original Server to Access
a Specific Version of a Wiki Page

often allows a template-based URI-G formation where the URI-R is passed as a path or
query parameter as illustrated in Figure 16.

Figure 15 illustrates the case where an original resource itself supports temporal content
negotiation. We make a HEAD request to a Wiki page (line 1, where “-I” flag asks curl
to make a HEAD request). The server responds with the status code 200 and a Link

31

1 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
2 https://web.archive.org/web/https://example.com/
3 HTTP/1.1 302 FOUND
4 Server: nginx/1.15.8
5 Date: Mon, 20 Jul 2020 20:11:04 GMT
6 Vary: accept-datetime
7 Location: https://web.archive.org/web/20141220124831/http://www.example.com/
8 Link: <https://example.com/>; rel="original",
9 <https://web.archive.org/web/20141220124831/http://www.example.com/>;

10 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",
11 <https://web.archive.org/web/timemap/link/https://example.com/>;
12 rel="timemap"; type="application/link-format"
13 Content-Type: text/plain; charset=utf-8
14 Content-Length: 0
15 Connection: keep-alive
16
17 HTTP/1.1 200 OK
18 Server: nginx/1.15.8
19 Date: Mon, 20 Jul 2020 20:11:07 GMT
20 Memento-Datetime: Sat, 20 Dec 2014 12:48:31 GMT
21 Link: <http://www.example.com/>; rel="original",
22 <https://web.archive.org/web/http://www.example.com/>; rel="timegate",
23 <https://web.archive.org/web/timemap/link/http://www.example.com/>;
24 rel="timemap"; type="application/link-format",
25 <https://web.archive.org/web/20020120142510/http://example.com:80/>;
26 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",
27 <https://web.archive.org/web/20141220115400/http://example.com/>;
28 rel="prev memento"; datetime="Sat, 20 Dec 2014 11:54:00 GMT",
29 <https://web.archive.org/web/20141220124831/http://www.example.com/>;
30 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",
31 <https://web.archive.org/web/20141220135303/http://www.example.com/>;
32 rel="next memento"; datetime="Sat, 20 Dec 2014 13:53:03 GMT",
33 <https://web.archive.org/web/20200720172043/https://example.com/>;
34 rel="last memento"; datetime="Mon, 20 Jul 2020 17:20:43 GMT"
35 Content-Type: text/html; charset=utf-8
36 Content-Length: 4064
37 X-Archive-Orig-Accept-Ranges: bytes
38 X-Archive-Orig-Cache-Control: max-age=604800
39 X-Archive-Orig-Date: Sat, 20 Dec 2014 12:48:31 GMT
40 X-Archive-Orig-Etag: "359670651"
41 X-Archive-Orig-Expires: Sat, 27 Dec 2014 12:48:31 GMT
42 X-Archive-Orig-Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
43 X-Archive-Orig-Server: ECS (rhv/818F)
44 X-Archive-Orig-X-Cache: HIT
45 X-Archive-Orig-x-ec-custom-error: 1
46 X-Archive-Orig-Content-Length: 1270
47 X-Archive-Orig-Connection: close
48 X-Archive-Guessed-Content-Type: text/html
49 X-Archive-Guessed-Charset: utf-8
50 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'
51 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org
52 Connection: keep-alive

Fig. 16. Content Negotiation Using a Generic Memento TimeGate of the Internet Archive
to Access an Archived Version of a Resource When the Origin Server Is Not Available or
Does Not Support Memento

header that contains a link with relation type “timegate” (line 5). This response suggests
that the original Wiki page that we are interested in has an associated TimeGate resource
available from where we can access its past states. We then use this newly discovered URI-G
and make another HEAD request with an Accept-Datetime header to access a version of

32

the resource as it was on Dec 20, 2014, at 12:30:00 (lines 19–20). The server returns
a 302 response code (line 21), which suggests that a resource was found that satisfies the
request and it can be accessed from the URI returned in the Location header (line 24). The
response returned includes Accept-Datetime in its Vary header (line 23) as an indicator of
availability of temporal content negotiation. We follow the 302 redirect automatically (as
curl is configured to follow the Location header in line 19 using “-L” flag) to access the
matching memento. We receive a 200 status code (line 35) and a Memento-Datetime header
(line 38) that indicates a version of the resource at 11:34:08 (about 25 minutes prior to the
requested time). Since a wiki is a content management system that preserves a history of
all of its changes [146], we can believe that the state of the resource at the requested time
in the past was the same as in the response, although the response indicated a slightly older
version when the resource was changed (i.e., the closest past version).

Figure 16 illustrates the case where we look for historical versions of an original resource
using a generic TimeGate endpoint of a web archive independent from the original resource.
In this example, we performed content negotiation on a resource from example.com in the
temporal dimension in an independent domain web.archive.org, which is a web archive.
We skip the first step of discovering a link relation type “timegate” for a URI-R and
use our out of band knowledge to form a URI-G (as shown in line 2 where the URI-
R https://example.com/ is concatenated to the generic TimeGate endpoint of the web
archive). The remaining steps are the same as described above in the previous example. It
is worth noting that the actual state of the resource at the requested datetime might have
been different from what we get from the web archive, which is a version observed after
about 19 minutes from the requested datetime (i.e., closest future version).

2.4.2 TIMEMAP

A TimeMap is a collection resource that lists links and their relations with an original
resource. A TimeMap of a URI-R is identified by a corresponding TimeMap URI (or URI-
T). The primary purpose of a TimeMap is to list all mementos with their URI-Ms and
corresponding Memento-Datetime as illustrated in Figure 17. Generally, the media type of
the entity body of a TimeMap resource is “application/web-link” [192, 221], but recent
implementations are experimenting with alternate formats like JSON.

2.4.3 NOT-ARCHIVED VS. ARCHIVED-404

A web archival replay system is yet another HTTP server that replays HTTP responses

https://example.com/

33

1 $ curl -i https://web.archive.org/web/timemap/link/http://example.org/index.html
2 HTTP/1.1 200 OK
3 Server: nginx/1.15.8
4 Date: Fri, 09 Aug 2019 21:58:23 GMT
5 Content-Type: application/link-format
6 Transfer-Encoding: chunked
7 Connection: keep-alive
8

9 <http://www.example.org:80/index.html>; rel="original",
10 <https://web.archive.org/web/timemap/link/http://example.org/index.html>; rel="self";
11 type="application/link-format"; from="Wed, 16 Oct 2002 10:13:37 GMT",
12 <https://web.archive.org/web/http://example.org/index.html>; rel="timegate",
13 <https://web.archive.org/web/20021016101337/http://www.example.org:80/index.html>;
14 rel="first memento"; datetime="Wed, 16 Oct 2002 10:13:37 GMT",
15 <https://web.archive.org/web/20031207031049/http://www.example.org:80/index.html>;
16 rel="memento"; datetime="Sun, 07 Dec 2003 03:10:49 GMT",
17 <https://web.archive.org/web/20040305230707/http://www.example.org:80/index.html>;
18 rel="memento"; datetime="Fri, 05 Mar 2004 23:07:07 GMT",
19 [... TRUNCATED ...]
20 <https://web.archive.org/web/20190731130056/http://www.example.org/index.html>;
21 rel="memento"; datetime="Wed, 31 Jul 2019 13:00:56 GMT",

Fig. 17. A TimeMap from the Internet Archive

captured from other HTTP servers in the past with necessary changes. This means there
are situations where the client may not be sure whether a status code reflects the state of
a resource on the web archival server or the original server corresponding to the URI-R.
For example, when accessing URI-M, if the archive returns 404 Not Found, should this be
interpreted as the archive does not have that memento (i.e., not-archived) or the crawler
of the archive received a 404 Not Found response from the origin server when attempting
to access the corresponding resource in the past, which is being replayed (i.e., archive-404).
Similarly, there can be confusion about other HTTP status codes in the redirect, client
error, and server error status classes. To resolve this confusion we look for signatures of a
memento in the response headers. If the response contains the Memento-Datetime header
and a Link header with relation type memento, then we know it is an archived resource
with the corresponding status code, otherwise we consider that the status code reflects the
state of the resource in the web archive server. Figure 18 illustrates the two cases in which
the example.com/absent.html is not archived, but the example.com/404.html is archived
with the 404 Not Found status code.

2.5 MEMENTO AGGREGATOR

A Memento Aggregator is a service that consolidates various web archives using the
Memento protocol. The primary function of a Memento aggregator is to provide HTTP

34

1 $ curl -I https://web.archive.org/web/20201109011314/http://example.com/absent.html
2 HTTP/1.1 404 Not Found
3 Server: nginx/1.15.8
4 Date: Wed, 11 Nov 2020 00:02:04 GMT
5 Content-Type: text/html; charset=utf-8
6 Connection: keep-alive
7
8 $ curl -I https://web.archive.org/web/20201109011314/http://example.com/404.html
9 HTTP/1.1 404 Not Found

10 Server: nginx/1.15.8
11 Date: Wed, 11 Nov 2020 00:03:16 GMT
12 Memento-Datetime: Mon, 09 Nov 2020 01:13:14 GMT
13 Link: <http://example.com/404.html>; rel="original",
14 <https://web.archive.org/web/http://example.com/404.html>; rel="timegate",
15 <https://web.archive.org/web/timemap/link/http://example.com/404.html>;
16 rel="timemap"; type="application/link-format",
17 <https://web.archive.org/web/20020401195232/http://www.example.com:80/404.html>;
18 rel="first memento"; datetime="Mon, 01 Apr 2002 19:52:32 GMT",
19 <https://web.archive.org/web/20200912032554/http://example.com/404.html>;
20 rel="prev memento"; datetime="Sat, 12 Sep 2020 03:25:54 GMT",
21 <https://web.archive.org/web/20201109011314/http://example.com/404.html>;
22 rel="memento"; datetime="Mon, 09 Nov 2020 01:13:14 GMT",
23 <https://web.archive.org/web/20201109011314/http://example.com/404.html>;
24 rel="last memento"; datetime="Mon, 09 Nov 2020 01:13:14 GMT"
25 Content-Type: text/html; charset=UTF-8
26 Content-Length: 2885
27 Connection: keep-alive
28 X-Archive-Orig-Age: 257886
29 X-Archive-Orig-Cache-Control: max-age=604800
30 X-Archive-Orig-Date: Mon, 09 Nov 2020 01:13:14 GMT
31 X-Archive-Orig-Expires: Mon, 16 Nov 2020 01:13:14 GMT
32 X-Archive-Orig-Last-Modified: Fri, 06 Nov 2020 01:35:08 GMT
33 X-Archive-Orig-Server: ECS (nyb/1D35)
34 X-Archive-Orig-Vary: Accept-Encoding
35 X-Archive-Orig-X-Cache: 404-HIT
36 X-Archive-Orig-Content-Length: 1256
37 X-Archive-Guessed-Content-Type: text/html
38 X-Archive-Guessed-Charset: utf-8
39 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'
40 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org

Fig. 18. Not-Archived vs. Archived-404

API endpoints for consolidated TimeGate and TimeMap. When a client performs datetime
negotiation with a Memento aggregator’s TimeGate endpoint, the aggregator performs the
same negotiation with all the known web archives and returns 302 Found response by se-
lecting the closest URI-M with respect to the requested datetime among various responses
received from upstream web archives as shown in Figure 19. The matching Memento in this
case is coming from the Internet Archive (as shown in lines 30–65). The actual state of the
resource at the requested datetime might have been different from what we get from the
web archive, which is a version observed after about 19 minutes from the requested datetime
(i.e., closest future version), but we do not have any other mementos closer to the requested
datetime in any of the aggregated web archives.

When a client asks an aggregator for the TimeMap of a URI-R, the aggregator fetches

35

1 $ curl -IL -H "Accept-Datetime: Sat, 20 Dec 2014 12:30:00 GMT" \
2 https://memgator.cs.odu.edu/timegate/https://example.com/
3 HTTP/1.1 302 Found
4 Date: Mon, 20 Jul 2020 20:32:00 GMT
5 Vary: Accept-Datetime
6 Location: https://web.archive.org/web/20141220124831/http://www.example.com/
7 Link: <https://example.com/>; rel="original",
8 <http://web.archive.bibalex.org:80/web/20020120142510/https://example.com/>;
9 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",

10 <https://wayback.archive-it.org/all/20141220085500/https://example.com/>;
11 rel="prev memento"; datetime="Sat, 20 Dec 2014 08:55:00 GMT",
12 <https://web.archive.org/web/20141220124831/http://www.example.com/>;
13 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",
14 <https://wayback.archive-it.org/all/20141220171028/https://example.com/>;
15 rel="next memento"; datetime="Sat, 20 Dec 2014 17:10:28 GMT",
16 <https://wayback.archive-it.org/all/20200719170744/https://example.com/>;
17 rel="last memento"; datetime="Sun, 19 Jul 2020 17:07:44 GMT",
18 <https://memgator.cs.odu.edu/timemap/link/https://example.com/>;
19 rel="timemap"; type="application/link-format",
20 <https://memgator.cs.odu.edu/timemap/json/https://example.com/>;
21 rel="timemap"; type="application/json",
22 <https://memgator.cs.odu.edu/timemap/cdxj/https://example.com/>;
23 rel="timemap"; type="application/cdxj+ors",
24 <https://memgator.cs.odu.edu/timegate/https://example.com/>; rel="timegate"
25 Access-Control-Allow-Origin: *
26 Access-Control-Expose-Headers: Link, Location, X-Memento-Count, Server
27 Content-Type: text/html; charset=utf-8
28 Server: MemGator/1.0-rc8
29
30 HTTP/1.1 200 OK
31 Server: nginx/1.15.8
32 Date: Mon, 20 Jul 2020 20:32:17 GMT
33 Memento-Datetime: Sat, 20 Dec 2014 12:48:31 GMT
34 Link: <http://www.example.com/>; rel="original",
35 <https://web.archive.org/web/http://www.example.com/>; rel="timegate",
36 <https://web.archive.org/web/timemap/link/http://www.example.com/>;
37 rel="timemap"; type="application/link-format",
38 <https://web.archive.org/web/20020120142510/http://example.com:80/>;
39 rel="first memento"; datetime="Sun, 20 Jan 2002 14:25:10 GMT",
40 <https://web.archive.org/web/20141220115400/http://example.com/>;
41 rel="prev memento"; datetime="Sat, 20 Dec 2014 11:54:00 GMT",
42 <https://web.archive.org/web/20141220124831/http://www.example.com/>;
43 rel="memento"; datetime="Sat, 20 Dec 2014 12:48:31 GMT",
44 <https://web.archive.org/web/20141220135303/http://www.example.com/>;
45 rel="next memento"; datetime="Sat, 20 Dec 2014 13:53:03 GMT",
46 <https://web.archive.org/web/20200720172043/https://example.com/>;
47 rel="last memento"; datetime="Mon, 20 Jul 2020 17:20:43 GMT"
48 Content-Type: text/html; charset=utf-8
49 Content-Length: 4064
50 X-Archive-Orig-Accept-Ranges: bytes
51 X-Archive-Orig-Cache-Control: max-age=604800
52 X-Archive-Orig-Date: Sat, 20 Dec 2014 12:48:31 GMT
53 X-Archive-Orig-Etag: "359670651"
54 X-Archive-Orig-Expires: Sat, 27 Dec 2014 12:48:31 GMT
55 X-Archive-Orig-Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
56 X-Archive-Orig-Server: ECS (rhv/818F)
57 X-Archive-Orig-X-Cache: HIT
58 X-Archive-Orig-x-ec-custom-error: 1
59 X-Archive-Orig-Content-Length: 1270
60 X-Archive-Orig-Connection: close
61 X-Archive-Guessed-Content-Type: text/html
62 X-Archive-Guessed-Charset: utf-8
63 Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-inline'
64 data: blob: archive.org web.archive.org analytics.archive.org pragma.archivelab.org
65 Connection: keep-alive

Fig. 19. Content Negotiation Using a Generic Memento TimeGate of a Memento Aggregator
to Access an Archived Version of a Resource from a Web Archive When the Origin Server
Is Not Available or Does Not Support Memento

36

1 $ curl -i https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html
2 HTTP/1.1 200 OK
3 Content-Type: application/link-format
4 Date: Fri, 09 Aug 2019 21:53:10 GMT
5 X-Generator: MemGator:1.0-rc7
6 X-Memento-Count: 162
7 Transfer-Encoding: chunked
8

9 <http://example.org/index.html>; rel="original",
10 <https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html>; rel="self";
11 type="application/link-format",
12 <https://memgator.cs.odu.edu/timemap/link/http://example.org/index.html>; rel="timemap";
13 type="application/link-format",
14 <https://memgator.cs.odu.edu/timemap/json/http://example.org/index.html>; rel="timemap";
15 type="application/json",
16 <https://memgator.cs.odu.edu/timegate/http://example.org/index.html>; rel="timegate",
17 <http://web.archive.org/web/20021016101337/http://www.example.org:80/index.html>;
18 rel="first memento"; datetime="Wed, 16 Oct 2002 10:13:37 GMT",
19 <http://web.archive.org/web/20031207031049/http://www.example.org:80/index.html>;
20 rel="memento"; datetime="Sun, 07 Dec 2003 03:10:49 GMT",
21 <http://archive.md/20070621200621/http://example.org/index.html>;
22 rel="memento"; datetime="Thu, 21 Jun 2007 20:06:21 GMT",
23 <http://wayback.archive-it.org/all/20170717191800/http://www.example.org/index.html>;
24 rel="memento"; datetime="Mon, 17 Jul 2017 19:18:00 GMT",
25 [... TRUNCATED ...]
26 <http://web.archive.org/web/20190731130056/http://www.example.org/index.html>;
27 rel="last memento"; datetime="Wed, 31 Jul 2019 13:00:56 GMT"

Fig. 20. An Aggregated TimeMap from MemGator Server

TimeMaps for the same URI-R from all known web archives and combines all successful
responses to return a more complete TimeMap. This is illustrated in Figure 20 where an ag-
gregated TimeMap from MemGator includes URI-Ms from web.archive.org, archive.md,
and wayback.archive-it.org web archive domains. This response was consolidated from
many different TimeMaps fetched from individual upstream web archives that support Me-
mento. Individual web archives may be sparse in capturing a rapidly changing resource ad-
equately, hence missing many updates. Depending on the crawling policy, web archives may
sample a small subset of the WWW. TimeMaps, when aggregated across various archives,
give a more complete picture of the past web.

Popular Memento aggregators such as Memento Time Travel1 and MemGator [10] may
generate a lot of traffic for the upstream web archives. Aggregating responses from all
known web archives is useful, but broadcasting each request to every web archive is wasteful,
because for a given request very few archives return a useful response. Aggregator services
often use local caches to reduce the amount of traffic they cause to upstream web archives.
Caching is helpful for popular resources that are requested very often (e.g., CDN-hosted

1http://timetravel.mementoweb.org/guide/api/

web.archive.org
archive.md
wayback.archive-it.org
http://timetravel.mementoweb.org/guide/api/

37

userinfo host port

http://user:pass@example.com:8080/img/logo.png?width=90&height=30#top

scheme authority path query fragment

Fig. 21. A Generic URI Example

jQuery2 that is commonly used in many web pages). However, caching failed responses
(such as 404 Not Found) or caching frequently archived resources may cause the freshness
issue. Additionally, less frequently requested resources may spoil the cache (depending on
the caching policy) while being ineffective in reducing upstream traffic. Our web archive
profiling work can solve this issue by making a prediction of top-K potential web archives
where mementos of a URI-R might be present to avoid aggregation request broadcasting.

2.6 URI AND URI TRANSFORMATIONS

A Uniform Resource Identifier (URI) [62] is a systematically formatted compact string
that is used to identify a resource (as illustrated in Figure 21). A Uniform Resource Locator
(URL) is a subset of URIs that has an additional capability of locating a resource (such as on
a network). URIs are at the core of web archives in many stages such as crawling, indexing,
analysis, and replay. While there are hundreds of registered URI schemes [139], web archives
primarily only focus on “http” and “https” because these are the most common ones on
the web.

A URI cannot identify multiple resources at the same time, but multiple URIs can
identify a single resource. Moreover, a single URI can be represented in more than one ways
due to the following reasons:

• http and https schemes generally point to the same resource

• Scheme and host segments are case-insensitive

• Percent-encoded hexadecimal digits are case-insensitive

• Some web services treat their path and/or query segments as case-insensitive as well
2http://jquery.com/download/#using-jquery-with-a-cdn

http://jquery.com/download/#using-jquery-with-a-cdn

38

• www sub-domain is generally optional

• Generally, an index.* file is loaded when the path portion of the URI ends with a
forward slash (i.e., a directory path) without an explicit filename

• Default ports 80 and 443 (of http and https respectively) are optional

• Paths can have single or double dots (e.g., ./..) for relative paths and multiple
consecutive forward slashes (e.g., //...) as path segment separator (like in Unix file
systems [202])

• Individual name-value pairs of query parameters can appear in any order

• Some well-known query parameters such as utm_* and jsessionid are used for track-
ing or session management, not to identify a resource

2.6.1 URI NORMALIZATION/CANONICALIZATION

When an entity can have many different representations, it is sometimes desired to
recognize one of those representations as the standard form. Suppose, we are given the task
to find whether a given substring is present in a base string of characters irrespective of the
case of letters (i.e., case-insensitive search). One possible approach to attempt this task is
to search for all possible variations of the lookup substring, but the cost of such lookup will
grow exponentially as the number of alphabet letters grow in the lookup substring (i.e., 2N

for a lookup string with N letters that can either be in upper or lower case). An alternate
approach is to decide an application-specific standard representation, such as all lower case
letters, and transform both the lookup and base strings to that form before performing
the search. After such transformation, this search is performed only once, irrespective of
the size of the lookup substring. This process of transformation of an entity to a standard
representation is called Normalization or Canonicalization (i.e., transforming to a normal
or canonical form).

Since a URI can be represented in many different ways, search engines, caching prox-
ies, web browsers, and web archives try to normalize URIs when they are used as storage
keys [54]. This way multiple variations of a URI are transformed into a unique repre-
sentation. For example, while loading a web page, a web browser encounters two im-
age elements with their source attributes set to http://example.com:80/logo.png and
HTTP://EXAMPLE.COM/logo.png respectively, which are the same URI represented in two

http://example.com:80/logo.png
HTTP://EXAMPLE.COM/logo.png

39

different forms. Making two different requests for these will be a network bandwidth wastage
and caching those responses under two different keys would be a storage wastage. This is why
web browsers (and many other components of the web infrastructure) normalize URIs using
the rules standardized under Section 6 of the URI RFC [62]. The URI normalization [62]
process involves one or more of the following steps:

• Remove scheme, “www”, port number, fragment identifier, and some well-known unnec-
essary query parameters

• Remove the “?” when the query is empty

• Remove directory index file name (e.g., index.html)

• Add trailing slash for directories

• Normalize path (such as removing dots and duplicate consecutive forward slashes) [202]

• Downcase hostname (path and query params are case sensitive)

• Upcase percent-encoded hexadecimal digits

• Sort name-value pairs of query params lexicographically

Some of these normalization steps (such as removing scheme, “www”, or directory index
file) change the semantics of the URI, but are commonly performed for practical reasons.
Figure 22 illustrates the URI normalization process. For example, from the URI represen-
tation shown in line 4 we removed “http://”, changed “NEWS.BBC.CO.UK” to lower case, re-
moved “:80”, collapsed duplicate forward slashes in the path (i.e., “//images//Logo.png”),
sorted query parameters (i.e., “height”, “width”, and “rotate”), changed percent-encoded
characters to upper case (i.e., “%c2%b0”, which represents the “°” symbol), and removed the
segment identifier “#top”.

It is worth noting that the terms Normalization and Canonicalization have slightly
different semantics in the context of URIs. A canonical URI can be something that we
may not be able to deduce using standard URI normalization rules and may need some
out of band information. For example, a company may register domain names under many
different TLDs to preserve its brand (e.g., example.com, example.org, example.us, and
example.co.uk) and serve the same resources on all these domains. However, it is equally
possible that some of these domain names are registered by different entities. Similarly,

example.com
example.org
example.us
example.co.uk

40

1. https://news.bbc.co.uk/images/Logo.png?width=200&height=80&rotate=90%C2%B0#top
2. http://www.news.BBC.co.uk/images/Logo.png?width=200&height=80&rotate=90%c2%b0#top
3. http://www.news.bbc.co.uk/images/Logo.png?rotate=90%c2%B0&width=200&height=80
4. http://NEWS.BBC.CO.UK:80//images//Logo.png?height=80&width=200&rotate=90%c2%b0#top
And many other variations of the URI...

↓ NORMALIZATION ↓
* Remove scheme, "www", port number, fragment identifier, and some unnecessary query parameters

* Normalize path (such as removing dots and duplicate consecutive forward slashes)

* Downcase hostname (path and query params are case sensitive)

* Upcase percent-encoded hexadecimal digits

* Sort name-value pairs of query params lexicographically
=> news.bbc.co.uk/images/Logo.png?height=80&rotate=90%C2%B0&width=200

Fig. 22. URI Normalization Process

A normalized/canonicalized URI
news.bbc.co.uk/images/Logo.png?height=80&rotate=90%C2%B0&width=200

↓ SURT ↓
* Downcase everything

* Reverse the hostname segments and separate them by commas

* Separate authority and path by a closing parenthesis
=> uk,co,bbc,news,)/images/logo.png?height=80&rotate=90%c2%b0&width=200

Fig. 23. Sort-friendly URI Reordering Transform (SURT) Process

sometimes webmasters introduce different URIs (under the same domain or a different one)
for the same resource for purposes like testing, cache bursting, or tracking. Search engines
do not like duplicate resources associated with many different URIs, so for the sake of
search engine optimization webmasters may include a link with relation type “canonical”
to indicate that the resource should be associated with the advertized canonical URI as the
single origin of truth [198].

However, in the web archiving community and in this work the terms Normalization
and Canonicalization are used interchangeably (unless specified otherwise) where the latter
is more common [226]. Canonicalization is very important in web archiving to minimize
the effort of a crawler and to improve the discovery of archived resources at the time of
replay. For this reason, many web archives use more aggressive canonicalization rules than
standard web browsers and proxy caches. However, canonicalization based on per-domain
rules, multi-domain ownership, and URI reorganization over time is an open research area
in the context of web archiving, which is out of scope for this work. Such a canonicalization

41

can reduce false positives and false negatives in web archive replay and discovery systems,
but will require some architectural changes.

2.6.2 SORT-FRIENDLY URI REORDERING TRANSFORM (SURT)

In addition to URI normalization/canonicalization SURT (Sort-friendly URI Reordering
Transform) [227] is used to place related URIs together when sorted. This spatial locality is
important for efficient indexing of large URI collections. In a traditional URI the hostname
parts are organized differently than paths. In the hostname section, the root of the Domain
Name System (DNS) chain (i.e., the Top-Level Domain, or TLD) comes at the end towards
the right hand side while registered domain name portion and subdomain sections are placed
towards the left hand side. In contrast, in the path section, the root path comes first followed
by deeper nodes of the path tree towards the right side. As a consequence, if a list of three
domain names example.com, foo.example.com, and example.net are sorted, the latter
with a different TLD will sit in between the other two. As opposed to this the SURT
reverses the order of domain name tokens (originally, separated by dots) and uses a comma
as the new delimiter. SURTs are commonly used in archival index files and many other
places where a URI is used as a lookup key field, including MementoMap (which is an
outcome of this research work).

Figure 23 illustrates how a normalized/canonicalized URI is converted to its correspond-
ing SURT. Due to the aggressive downcasing, SURTs are lossy (i.e., not completely re-
versible), hence only suitable as lookup keys in an index. This decision was made with a prac-
tical assumption that there will be very rare occasions where a site will have files/directories
at a given path depth with names that only differ in their letter casing or will have query
parameter values that collide due to case-sensitively (See Appendix B for comments in the
original Java implementation of SURT). The advantage of this decision is that mementos of
twitter.com/BarackObama and twitter.com/barackobama are consolidated (which point
to the same resource), but as a consequence bit.ly/A and bit.ly/a collide (which are two
different resources).

We can extend SURT and utilize it for archive profile serialization and dissemination.
Our extension includes support for wildcards inspired by “robots.txt” (discussed in Sec-
tion 2.8.3).

2.7 ARCHIVE FILE FORMATS

Web archives usually use special file formats to store the data, collection analysis, and

42

index for lookup. Following are some of the commonly used file formats by web archives
that are well supported in web archiving tools and can be used for archive profiling.

2.7.1 WARC

WARC (Web ARChive) file format [142, 15] is the de facto standard for web archives to
store their output including DNS (Domain Name System) lookup, HTTP requests, HTTP
responses (including headers and payload), and some other things. These files are the
default output of the commonly used Heritrix crawler [184], but it can also be generated
using WGet [220] or other tools such as WARCreate [158]. Figure 24 illustrates a sample
WARC file with two related WARC records of types request and response respectively.
A typical WARC file contains an arbitrary number of records which reduces the number of
inodes [207] on the file system, stores inline metadata, and eliminates the possibility of name
collisions in contrast to storing archival data in plain files. In the early days of web archiving
the Internet Archive introduced ARC file format that formed the basis of the WARC file
format [71].

WARC/ARC files can be used for archive profiling. However, it will be more efficient
to use their index instead. Web Archive Collection Zipped (WACZ) is a related file format
that bundles WARC files with their indexes and other metadata files [166]. It is still in the
draft phase, but is a potential candidate of an archive profiling source.

2.7.2 WEB BUNDLES

Web Bundles (also known as, Web Packaging) is an emerging web standard that bundles
multiple HTTP transactions (request and response pairs) in a single file for transporta-
tion [243, 251, 250, 249, 208, 164, 209]. The primary purpose of Web Bundles is to deliver
them to a user-agent (such as a web browser) via a third party (such as content delivery net-
work) and make the user-agent believe that the bundle was originally prepared and signed
by the main origin. This way, web pages can be shared offline and other means such as
store and forward on demand. It shares a lot in common with WARC files, but is optimized
for transportation while WARC is optimized for lossless long-term preservation of resources.
Unlike WARC, Web Bundles is a binary format file. Moreover, Web Bundles have a built-in
index, so each bundle is self-sufficient. It is more likely that bundled resources will be closely
related (such as, all the page requisites of one or more pages from the site), while WARC
records are put together more arbitrarily.

This is still a work in progress, but when ready, it is expected to benefit web archives in

43

1 WARC/1.0
2 WARC-IP-Address: 93.184.216.34
3 WARC-Type: request
4 WARC-Record-ID: <urn:uuid:9b1f7afd-c251-4cb3-a7e9-3690925dc462>
5 WARC-Concurrent-To: <urn:uuid:57ffb7a4-996b-47e8-8078-769362cbcbd3>
6 WARC-Target-URI: https://example.com/hello
7 WARC-Date: 2019-08-08T15:47:15Z
8 WARC-Payload-Digest: sha1:HI7YB5JPCEVFF54CDGIDSB3IUM75WU3U
9 WARC-Block-Digest: sha1:OGJKUHULUFYCBFFUT5Z5AKKRWUHXRKKN

10 Content-Type: application/http; msgtype=request
11 Content-Length: 67
12

13 GET /hello HTTP/1.1
14 Host: example.com
15 User-Agent: curl/7.58.0
16

17

18 WARC/1.0
19 WARC-IP-Address: 93.184.216.34
20 WARC-Type: response
21 WARC-Record-ID: <urn:uuid:57ffb7a4-996b-47e8-8078-769362cbcbd3>
22 WARC-Target-URI: https://example.com/hello
23 WARC-Date: 2019-08-08T15:47:15Z
24 WARC-Payload-Digest: sha1:LDEVQLI2LNVAXZU2JUJMUXYTG3YDXASI
25 WARC-Block-Digest: sha1:NHNS5CS6LO7FFJKDSVFSI4WQLBBE6SSU
26 Content-Type: application/http; msgtype=response
27 Content-Length: 180
28

29 HTTP/1.1 200 OK
30 Date: Thu, 08 Aug 2019 15:47:15 GMT
31 Server: Apache
32 Last-Modified: Fri, 02 Aug 2019 03:35:56 GMT
33 Content-Type: text/plain
34 Content-Length: 16
35

36 Hello Archives!

Fig. 24. A WARC File With a Request and Corresponding Response Records

capturing and replaying in a more coherent manner [31, 211]. This affects archive profiling in
a way that we might profile only the HTML pages of a website, leaving other page requisites
come from the same archive from where the HTML page is coming.

2.7.3 WAT, WANE, AND WET

Web Archive Transformation (WAT), Web Archive Named Entities (WANE), andWARC
Encapsulated Text (WET) files are derived formats from WARC [236, 182, 233, 85, 50]. A
WARC file is usually generated at the crawl time, which is post-processed for optimization
and creation of derivatives. WAT files contain JSON-formatted metadata about selected
WARC records such as title and outlinks of an HTML page. WANE files contain JSON-
formatted named entities (such as people, places, organizations, etc.) extracted from a

44

1 Envelope
2 WARC-Header-Metadata
3 WARC-Target-URI
4 WARC-Type
5 WARC-Date
6 ...
7 Payload-Metadata
8 HTTP-Response-Metadata
9 Headers

10 Content-Language
11 ...
12 HTML-Metadata
13 Head
14 Title
15 ...
16 Links [list]
17 Headers-Length
18 Entity-Length
19 ...
20 Container
21 Gzip-Metadata
22 Compressed?
23 Offset

Fig. 25. WAT File Structure

WARC record. WET files contain the plain text version of a WARC record after stripping
off all the markup and other structures. These derived files are helpful in tasks like un-
derstanding collections, text analysis, knowledge graph building, machine learning, fulltext
search, etc.

Figure 25 illustrates the structure of WAT record. These derived records are generally
placed in a WARC file using metadata or conversion WARC-Type records. All these
derived formats contain the original URI and the datetime when the corresponding WARC
record was created which can be utilized for archive profiling.

2.7.4 CDX/CDXJ

CDX (Capture inDeX) [138] is a CSV -like text file-based index format (as shown in
Figure 26) that has traditionally been used by the IA and was one of the primarily supported
index formats of OpenWayback3. It is very rigid in nature and has a predefined list of fields
that are not extendable. Each block of WARC files is indexed as a CDX line. Each entry in
the CDX file stores the canonical URI and observation time (Memento-Datetime) as lookup
keys and associated data such as the status code, content-type, content digest, record offset

3https://github.com/iipc/openwayback

https://github.com/iipc/openwayback

45

1 CDX N b a m s k r M S V g
2 com,example)/ 20140103030321 http://example.com text/html 200 B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A

- - 1043 333 example.warc.gz↪→
3 com,example)/ 20140103030341 http://example.com warc/revisit - B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A

- - 553 1864 example.warc.gz↪→
4 org,iana)/domains/example 20140128051539 http://www.iana.org/domains/example text/html 302

JZ622UA23G5ZU6Y3XAKH4LINONUEICEG - - 577 2907 example.warc.gz↪→

Fig. 26. Sample CDX File

1 com,example)/ 20140103030321 {"url": "http://example.com", "digest":
"B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A", "length": "1043", "offset": "333", "filename":
"example.warc.gz"}

↪→
↪→

2 com,example)/ 20140103030341 {"url": "http://example.com", "mime": "warc/revisit", "digest":
"B2LTWWPUOYAH7UIPQ7ZUPQ4VMBSVC36A", "length": "553", "offset": "1864", "filename":
"example.warc.gz"}

↪→
↪→

3 org,iana)/domains/example 20140128051539 {"url": "http://www.iana.org/domains/example",
"digest": "JZ622UA23G5ZU6Y3XAKH4LINONUEICEG", "length": "577", "offset": "2907",
"filename": "example.warc.gz"}

↪→
↪→

Fig. 27. Sample CDXJ File

in the WARC file, content length, and the WARC file name. The latter three are generally
used to locate the capture in a WARC file.

CDXJ [25] is an evolution of the classic CDX format. In this file format, lookup key
fields (URI-R and Datetime) are placed at the beginning of each line which is followed by
a single-line compact JSON [90] block that holds other fields that can vary in number and
be extended as needed (as shown in Figure 27). This format is primarily used by archival
replay systems including PyWB4 and our InterPlanetary Wayback (IPWB) [152].

Both of these formats are sort-friendly to enable binary search on file when performing
lookups. These CDX/CDXJ files are just indexes, hence these are significantly smaller
than WARC files. Having access to an archive’s CDX files gives complete knowledge of
its holdings in terms of what URIs it captured, when, and how often. This information is
sufficient to build a lightweight profile for the archive. Additionally, we can use a CDXJ-like
format for web archive profile serialization.

4https://github.com/webrecorder/pywb

https://github.com/webrecorder/pywb

46

2.8 SYNDICATION AND DISCOVERY

WWW is a decentralized publishing platform where webmasters or content creators/owners
can publish, update, or redact their resources independently. This decentralized nature, with
all its virtues, poses the challenge of content discovery for users. Search engines try to solve
the discovery problem by indexing the web at large scale and make relevant resources avail-
able via keyword searching. However, this means users needs to know in advance what
they are looking for, but this may not be the case if, for example, someone is interested
in the latest news. In the recent years after the rise of social media, content creators can
promote their content to subscribers directly, which is somewhat equivalent to newsletter
subscription of the pre-social media era. People have explored different means to make
their content discoverable by search engines and users, which emerged as various standards
or widely adopted practices on the web. In this section we explore some well-established
protocols to identify how they can inspire web archive summarization and discovery of web
archive holdings.

2.8.1 RSS/ATOM FEED

Really Simple Syndication (RSS) or Atom Feed are popular and competing standards
for web feeds [213, 194]. Atom tries to improve on some limitations of RSS [214]. A web
feed is a way to summarize recent changes in a web site and make it available to clients on
demand. Web sites that provide an RSS/Atom feed usually add their feed URIs in their
site’s markup with “alternate” link relation type for the discovery of feed sources. Web
browsers in the past used to highlight the presence of a feed link in a page in the toolbar
and give users easy controls to add the link in their feed readers, but in the recent years
some browsers like Google Chrome and Mozilla Firefox have removed it [201, 83]. However,
it is still possible to enable feed detection and subscription using browser add-ons.

Before the popularity of Web Push Notifications [63], periodic polling for recent changes
was a common practice for users to keep up with topics they are interested in. For example,
a user can subscribe to various blogs and news sites by adding their web feed URIs in a feed
reader software, these sites can add new content independently at any time and update their
Atom/RSS feed to reflect new changes, user’s feed reader can periodically poll all the feed
documents from all the sources it tracks to identify new content (that are not present in feed
reader’s cache or have timestamps past the last check), and make the new content available
for the user to read later. Figure 28 illustrates an Atom feed that contains metadata for

47

1 <?xml version="1.0" encoding="utf-8"?>
2 <feed xmlns="https://www.w3.org/2005/Atom">
3 <title>An Example Feed</title>
4 <subtitle>A blog that does not exist</subtitle>
5 <link href="https://example.org/blog/atom.xml" rel="self" />
6 <link href="https://example.org/blog/" rel="alternate" type="text/html" />
7 <id>urn:uuid:7a839982-a407-45f4-bf80-be7eb9ff7da3</id>
8 <updated>2020-06-21T09:24:28Z</updated>
9 <entry>

10 <title>Lorem Ipsum</title>
11 <link href="https://example.org/2020/06/21/lorem-ipsum" />
12 <id>urn:uuid:44bd656a-5cd8-4e0c-916b-1c3ed09f1821</id>
13 <updated>2020-06-21T09:24:28Z</updated>
14 <summary>
15 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
16 Integer vel ligula blandit dolor mattis varius id nec magna.
17 </summary>
18 <author>
19 <name>Jane Doe</name>
20 <email>jdoe@example.com</email>
21 </author>
22 </entry>
23 <entry>
24 <!-- Second entry -->
25 </entry>
26 <entry>
27 <!-- Third entry -->
28 </entry>
29 </feed>

Fig. 28. Example Atom Feed

the website (lines 3–8) and individual resources (lines 9–22). There are entries for each
individual resource that the website wants to summarize in the recent changes (lines 23–
28). These entries are usually present in the reverse chronological order of the resource
update time with pagination support.

2.8.2 SITEMAPS

HTML is a markup language that used to generate static documents, but later many
executable environments (such as Adobe Flash, Silverlight, Java Applets, and JavaScript)
emerged that can be embedded in an HTML document to change its state and manipulate
the markup after the web page is loaded in a capable client (such as a web browser). This
posed a serious challenge to web crawlers that parse web pages to extract external links
and embedded resources to be added in their frontier queue without necessarily rendering
those pages. Rendering pages for crawling (for example, in a headless browser or in a virtual
machine) to discover all the out-links and necessary resource URIs is difficult, costly, and
sometimes impossible [70]. This affects search engines as they fail to discover and index
many important pages of a website. This also affects web archives as they may fail to

48

archive some webpages with all their page requisites, resulting in a damaged replay [69].
To overcome this discovery problem Google introduced Sitemaps protocol as a Search

Engine Optimization (SEO) technique [224, 191, 230]. Webmasters can make better deci-
sions about which resources on their website are non-trivial and can automate the process
of listing important resources to be harvested by crawlers [188]. A sitemap is an XML
document, often placed at the web root of a domain as “/sitemap.xml”, that lists links to
resources that webmasters want search engines to index from their websites. Web crawlers
usually check for the presence of a sitemap at this well-known location before starting to
crawl a domain. This saves crawlers from doing extra work to parse each page they down-
load to extract more links. Sitemaps can also list resources that are otherwise disconnected
and not linked from other pages. In addition to listing resources, a sitemap can annotate
each entry with its last modified time, relative importance value, as well as change frequency
to further optimize crawler efforts. Moreover, sitemaps can have links to other sitemaps of
the domain to allow large sitemaps to be split in smaller parts for pagination and easier
management and update.

Figure 29 illustrates a typical sitemap where the “url” XML element is repeated for each
entry under which only the “loc” element is mandatory; other fields are optional. Figure 30
illustrates an index sitemap where the “sitemap” XML element is repeated to link to two
compressed sitemap pages.

We considered using sitemaps to summarize web archive holdings along the lines of how
it formed the basis for the ResourceSync framework [82, 130, 244]. However, we realized
the following drawbacks:

• It is good for listing all the resources, but not the summary of holdings at various path
depths, which means archives exposing their entire index.

• It is impractical for large archives to generate sitemaps of their collections and costly
for the consumers to download them and keep them synchronized.

• It is inherently verbose due to XML format.

However, we can still leverage some sitemaps concepts such as pagination in our Me-
mentoMap framework.

49

1 <?xml version="1.0" encoding="utf-8"?>
2 <urlset xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">
3 <url>
4 <loc>https://example.com/</loc>
5 <lastmod>2020-06-21T09:24:28+00:00</lastmod>
6 <changefreq>daily</changefreq>
7 <priority>0.9</priority>
8 </url>
9 <url>

10 <loc>https://example.org/2020/06/21/lorem-ipsum</loc>
11 <lastmod>2020-06-21T09:24:28+00:00</lastmod>
12 </url>
13 </urlset>

Fig. 29. Example Sitemap

1 <?xml version="1.0" encoding="UTF-8"?>
2 <sitemapindex xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">
3 <sitemap>
4 <loc>https://example.com/sitemap-1.xml.gz</loc>
5 <lastmod>2020-06-21T09:24:34+00:00</lastmod>
6 </sitemap>
7 <sitemap>
8 <loc>https://example.com/sitemap-2.xml.gz</loc>
9 <lastmod>2020-06-21T09:24:58+00:00</lastmod>

10 </sitemap>
11 </sitemapindex>

Fig. 30. Example Index Sitemap

1 User-agent: Googlebot
2 User-agent: bingbot
3 Disallow: /admin/
4 Disallow: /data/
5 Allow: /data/summary/*.html
6 Crawl-delay: 20
7
8 User-agent: *
9 Disallow: /

Fig. 31. Example robots.txt File

2.8.3 ROBOTS EXCLUSION PROTOCOL

Robots Exclusion Protocol (REP) (often called as “robots.txt”) is a means to tell crawler
bots which sections of a website they should not attempt to crawl [165, 253]. It is suggestive
in nature and does not prevent a crawler from accessing excluded sections of the website, but

50

a good crawler should respect the advice of webmasters to avoid being blocked later [225].
There can be many reasons why a webmaster would want to make certain resources accessible
online, but not want a search engine crawler to spend time on them, for example, large binary
files, admin interfaces, infinite pagination (such as calendars), and other crawler traps [133].
Usually, web crawlers check for the presence of “/robots.txt” before starting to crawl a
domain, which is a well-known location for it.

The format of the file is very simple. It starts with specifying one or more user-agents,
followed by one or more allow/disallow path directives that will be applicable to specified
user-agents above them. Both the user-agent directive and allow/disallow path directives
support wildcards. Furthermore, some non-standard extensions also added additional direc-
tives to specify crawl delay and the location of the primary “sitemap.xml” file (if it is not
present at the root of the website).

Figure 31 shows an example robots.txt file in which lines 1–2 suggest that “Googlebot”
and “bingbot” should respect directives that follow. Lines 3–4 suggests them to not index
any URIs that start with “/admin/” or “/data/”, but line 5 allows them to index any HTML
file that is present under “/data/summary/” path. Line 6 suggests them to pause for at least
20 seconds before making another request to the domain. Finally, lines 8–9 suggest every
other bot to not crawl anything from the website.

Unlike a sitemap.xml file that always expect full URIs, robots.txt support path pre-
fixes and wildcards that can be very helpful in summarizing specific sections of a website.
This behavior aligns well with the objective of web archive summarization. However, due
to the following reasons we cannot use robots.txt for archive profiling in its current form:

• It is an exclusion document, which means it suggests what not to look for rather than
summarizing what is present under a domain.

• Its allow/disallow directives usually refer to paths under the same domain rather than
full URIs, which in the case of web archives, there are numerous domains that they
collect resources from and replay.

• It does not allow additional attributes to be associated with each specified path pre-
fix/directive (e.g., we would want to report an estimate of number of resources that
are present under a domain or a path depth).

A sitemap.xml file allows expressing holdings of a website, but it is comprehensive in
nature. On the contrary, a robots.txt file allows summarized representation, but it is

51

not meant to express holdings. However, by combining the desired features of these two
protocols we can come up with something that can allow summarizing holdings of web
archives in an efficient manner.

2.8.4 WELL-KNOWN URIS

In the last two sections we mentioned that web crawlers look for special files under the
root of the domain at “/sitemap.xml” and “/robots.txt”. These are well-know locations
for these special files that provide metadata about the origin. Over time the need for more
such special metadata files emerged, but placing every special file under the root of the
domain has some drawbacks. For example, such file names may collide with other special
files or existing resources on certain domains and limit the control of the origin over its URI
space.

To avoid polluting the web root of origins and to minimize collisions a separate namespace
“/.well-known/” was proposed and a registry was created [193, 140]. This means all special
files in the future can be namespaced under this special path. Namespace is a common
means to solve such problems where many independent entities work in a shared space
and may cause collisions. A similar problem was identified in GNU/Linux desktops where
various applications create/expect application-specific files (such as, user configurations and
caches) under the “$HOME” directory of the user, which results in a growing number of
hidden files in users’ home directory as they install more applications over time. This was
solved by introducing special hidden folder like “$HOME/.config” and “$HOME/.cache”, so
that individual applications can create (and look for) their special files and folders under
these namespaces [56]. Many new applications now utilize these namespaces while existing
applications are gradually updating to support them.

We plan to register “/.well-known/mementomap” as a well-known URI for web archives
to server their primaryMementoMap at. This will allow automatic discovery of the summary
of archive holdings by applications like Memento aggregators.

2.9 INVERTED INDEX

An Inverted Index is a simple data structure that is commonly used in fulltext search-
ing [254]. In a simple term, if a document is considered to be a collection of words, then
an Inverted Index lists documents containing each word. Depending on the use case, an
Inverted Index may also contain frequency, relevance score, or other weight and indicators
of each word in each document.

52

1 D1: W1 W1 W1 W4 W4

2 D2: W1 W3 W3 W3 W3

3 D3: W1 W1 W1 W1 W2 W2 W4 W4 W4

4 D4: W4 W4 W4 W4 W4 W4

Fig. 32. A Sample Document Index (where each row represents a separate document)

1 D1: [(W1, 3), (W4, 2)]
2 D2: [(W3, 4), (W2, 1)]
3 D3: [(W1, 4), (W4, 3), (W2, 2)]
4 D4: [(W4, 6)]

Fig. 33. A Sample Document Index

Suppose we have a collection of documents ({D1, D2, D3, ...}) and each document is made
of a set of words ({W1,W2,W3, ...}) where each word may appear multiple times in the same
document as shown in Figure 32. Suppose we want to answer questions like, “what are the
top-k words in a given document of the collection?” (i.e., most relevant words to a given
document), without the need of scanning each document each time. This is a common
question for classification tasks. For this purpose we can create an index. An index in
this case can have a key field containing the name or the identifier of each document in
the collection and the value can have a sorted list of tuples containing words and their
corresponding term frequencies. To make the lookup in the index fast, the index is sorted
by its key field as shown in Figure 33.

Now, suppose we want to answer questions like, “what are the top-k documents of the
collection that contain a given word?” (i.e., most relevant documents to a given word),
without the need of scanning each document each time. This is a common question for
fulltext search tasks. For this purpose we can create an inverted index. As opposed to the
document index described above, words are being used as keys in an inverted index and the
documents those words appear in become part of the value field. To make the lookup in the
inverted index fast, the index is sorted by its key field (i.e., words) as shown in Figure 34.
Inverted indexes have traditionally been used in the Information Retrieval discipline. In
situations where case-sensitive search is not needed, words are canonicalized (e.g., changing

53

1 W1: [(D3, 4), (D1, 3)]
2 W2: [(D3, 2), (D2, 1)]
3 W3: [(D2, 4)]
4 W4: [(D4, 6), (D3, 3), (D1, 2)]

Fig. 34. A Sample Inverted Index

the word to all lowercase letters in languages where applicable) before they are added to
the inverted index. To associate variations of the same root word, stemming is performed
on words [173] before adding them to the inverted index so that a lookup for “book” also
matches words like “books”, “booked”, “booking”, etc.

A regular document index grows linearly as more documents are added to the collection.
This means for each new document added in the collection, there is one added entry or row
in the index. On the contrary, the growth of an inverted index follows Heaps’ Law, which
initially grows rapidly, but the growth slows down over time as each new document does not
introduce as many new words. The index is capped by the maximum size of the vocabulary
(or stems) of the language. However, the value field of the inverted index becomes denser
as more documents are added to the collection.

We can use an Inverted Index of archive profiles for Memento routing. Here, we consider
an archive profile serialized as a MementoMap (see Chapter 4 for details) to be a document
that describes holdings of the corresponding web archive and lookup SURT keys in the
MementoMap as words. While the number of profiles is small, it would be easy to perform
lookup in each profile individually, but as the number of archives (and corresponding Me-
mentoMaps) grow, it would become an impractical approach. Creating an inverted index
of MementoMaps can solve the scaling problem of Memento aggregators.

2.10 CHAPTER SUMMARY

In this chapter we briefly described various terminologies and technologies that will be
helpful in understanding problems this work addresses and the solutions we propose. We first
described HTTP and its components, such as HTTP methods and status codes, Soft-404,
and access logs. After that we discussed web archiving, web archives, and collection policies.
Then we discussed Memento and related terminologies such as TimeGate and TimeMap
along with a brief discussion on HTTP status codes in the context of web archives. Then we

54

talked about Memento Aggregators. Furthermore, we described URIs and transformations
of URIs such as normalization/canonicalization and SURT that are necessary for indexing.
After that we discussed various web archiving related file formats including: WARC, WAT,
WANE, WET, CDX, and CDXJ. Then we described various protocols used for syndication
and discovery including: RSS/Atom Feed, Sitemap, REP (or robots.txt), and Well-Known
URIs. Finally, we described Inverted Index which is primarily used in fulltext searching. We
included necessary illustrations for each terminology and established the purpose, relevance,
or usefulness of each in the context of this work.

55

CHAPTER 3

RELATED WORK

Archive profiling and Memento routing are niche fields that are not explored by many
researchers beyond a small community. In this chapter we describe work published by us
and a small number of researchers in the web archiving community. We also describe some
closely related works from the information retrieval community. Some of the relevant fields
of research to this work include: hidden/deep web, query routing, and profiling web archives.

3.1 SURFACE WEB CRAWLING

Estimating the size of the Surface Web that is publicly accessible, interlinked, and easily
indexable by web crawlers has been of great interest both for researchers and web crawling
practitioners. However, it is a difficult problem to estimate it accurately, which results in
different numbers reported by different researchers.

The WorldWideWebSize.com is a well-known site that is making a longitudinal data
available about the size of search indexes of various independent large-scale web search
engines [92, 247]. They select an unrelated pair of search keywords and use them to perform
a lookup in each search engine. They extract the number of matching documents for the
search terms as reported on the result page of each search engine. They use these numbers
to estimate the size of the index of one search engine relative to the other. Their data
suggests that for the past many years the average size of Google search index (the most
dominating one) was steady between 45 and 50 billion pages. At the start of the year 2019
it jumped up and averaged between 55 and 60 billion pages. Empirical evidence such as,
a growing number of open-source software documentation, wiki pages, online news, videos,
social media, etc. suggest that both private and public web is growing in size over time,
even after we subtract the number of pages that disappear from the web (i.e., there are
probably more pages added to the web than removed from it). However, their numbers do
not indicate any linear or exponential growth patterns. We can think of two possible reasons
behind it: 1) number of matching documents reported by search engines are not updated
frequently, and/or 2) search engines limit their index size to something that is sufficient
for users’ search needs, leaving any low quality pages out of the index. This means their

WorldWideWebSize.com

56

estimates reflect the size of search engine indexes, which might not be an indicator of the
size of the public web.

Lawrence and Giles estimated the size of the indexable web to be at least 320 million
pages in 1997 [169]. They estimated index sizes of six different search engines and analyzed
pairs of search engines to estimate the size of the indexable web. They reported that no
single search engine has indexed more than one third of their estimated indexable web. In
the same year Bharat and Broder estimated the lower bound of static pages on the public
web to be 200 million [64]. Later in 2004, Dobra and Fienberg estimated the site of the web
with a lower bound of 520 million [94]. They argued that the size of the web was at least
twice as big in 1997 as it was reported by the above two papers.

More recently, in 2012, Alarifi et al. estimated over 2 billion Arabic web pages indexed
in search engines [34]. They used more recent search engines (like Google, Yahoo, and Bing)
that operate on a much larger scale than those used in the past researches (like Alta Vista,
Excite, HotBot, and Lycos), many of which are not operational anymore. It is worth nothing
that their estimate is only about Arabic web pages, the overall indexed web is arguably much
larger than 2 billion pages.

In 2014, Khabsa and Giles estimated the number of English scholarly documents acces-
sible on the web over 140 million [160]. They used Google Scholar and Microsoft Academic
Search for estimation and reported that about 100 million are indexed in Google Scholar.
They further reported that about one quarter of these indexed scholarly documents are
freely accessible. Furthermore, they estimated the distribution of these documents in 15
different research fields and found that some fields have more freely available documents (as
big as 50%) than others (as low as 12%). There is a growing interest in bringing the two
disciplines of web archiving and scholarly communications closer to work as complements
to each other. These efforts are done from both ways, web archives trying to index and
preserve publicly accessible scholarly documents [190] and digital libraries enriching their
collections with scholarly documents found in public web archives [48, 200].

Size of the indexable web is of our interest as it gives an upper bound on how much of
the web can be archived, if we exclude personal web archiving behind session walls. These
research works on estimating the size of the web give the motivation to aggregate mementos
from many web archives as no single web archive is big enough to capture the scale of the
ever-growing web.

57

3.2 DEEP/HIDDEN/DARK WEB CRAWLING

The Surface Web is the portion of public WWW that is interconnected with links as a
graph [67] and can easily be crawled and indexed by search engine crawlers. In contrast,
the Deep/Hidden Web is the part of WWW that is kept behind paywalls, login walls, or
accessible by filling out a search form. Moreover, the Dark Web is portion of the web that
is intentionally kept inaccessible by standard web browsers such as the content in the Tor
network [116]. However, some of these terminologies are often used interchangeably [228].

Raghavan and Garcia-Molina developed a hidden Web crawler called the Hidden Web
Exposer (HiWE) and described its architecture [203]. The system was built to explore
electronic datasets and web resources that are only accessible via search forms or after
authorization/login.

Ntoulas et al. built a framework of query generation to effectively discover resources
from the hidden/deep web [195]. Unlike the surface web, hidden web is usually explored by
filling out HTML search forms with one or more fields instead of following hyperlinks. For
efficient discovery of resources it is critical to identify suitable values for each field and their
suitable combinations otherwise the search might not return any useful results. Ntoulas et
al. reported that one of their experiments discovered more than 90% of resources from a
large web site using less than 100 queries using one of their policies.

Wu et al. explored the query selection problem for discovering hidden web datasets [248].
The issue is not just to form queries that are likely to return good results, but also target to
get more unique results that were not discovered in any previous queries. To optimize the
query plan they converted hidden dataset discovery into a graph problem known asMinimum
Weighted Dominating Set [222] by modeling structured datasets as nodes connected with
relational links. This is a known NP-Complete problem [121] for which they proposed a
heuristically optimized approach and evaluated against real web datasets.

Sheng et al. proposed algorithms to find dataset tuples from the hidden web and estab-
lished theoretical upper and lower bounds for their proposed algorithms [223]. They stated
that their suggested algorithms are asymptotically optimal. To establish their claim they
evaluated their proposed techniques against real datasets.

Hernández et al. surveyed deep web crawling [132]. They discussed various aspects of
deep web crawling, such as discovery of sites with deep web resources, form filling, crawling
path learning, and evaluation datasets. They concluded that the field of crawler evaluation
needs more research and standardized datasets/metrics. Moreover, they suggested that
future deep web crawlers should account for ever-evolving web technologies.

58

While some small web archives allow browsing their collections, others mostly rely on
a URI lookup or fulltext search for the discovery of their holdings. Additionally, archived
contents span over a long period of time, which causes a disconnect between old and con-
temporary pages. As a result, hyperlink based shallow crawling might only discover a
temporal sub-graph of the holdings. This means archived content is mostly in the Deep
Web and cannot be indexed using Surface Web crawlers for profiling an archive by a third
party. Techniques used in hidden web crawling can be leveraged to query web archives
using search keywords when fulltext searching is available, otherwise using sample lookup
URIs as search keywords. Our Random Searcher Model (RSM), described in Section 6.4.1
of Chapter 6, is closely related to prior work in the field of Deep Web crawling. In RSM
we query a web archive that supports fulltext searching with some seed keywords, collect
links from returned results as part of that archive’s holdings sample, fetch a page using one
of the returned links, extract keywords from that page, and use these keywords to perform
more searches until the URI sampling need is fulfilled.

3.2.1 DESCRIBING TEXTUAL DATABASES

As described above, many textual databases on the web are part of the hidden web. One
approach to understand and describe a textual database relies on a fulltext search sample.
In this approach a handful of fulltext search queries are sent to the database and returned
responses are analyzed to both describe the dataset as well as finding more query terms
suitable for further exploration. The process initially learns about the database rapidly, but
the learning rate slows down as it starts to see more results that have already been seen in
previous queries. The learning rate often follows Heaps’ law [97] and asymptotically reaches
the complete knowledge.

Callan and Connell sampled text databases using fulltext queries to generate description
of databases [77]. They found that the resource description created by their sampling-
based technique was sufficiently similar to the one created with complete knowledge. The
sampling-based approach works independent of whether a database is willing to cooperate
and is requires less resources. Apart from using a query-based sampling technique, our work
is closely related to this in another aspect that we are not interested in the actual resources
held by web archives, but establishing only a way to summarize and describe their holdings.

Agichtein et al. discuss the problem of discovering textual databases that are not
crawlable, but expose a fulltext search interface [2, 1]. In this process, generally the crawler
is initialized with a small set of query terms that are used to perform fulltext search in the

59

database. From there, new search terms are discovered from the returned results to perform
further queries to discover more resources. If the system fails to produce any new terms,
then the search comes to a halt, irrespective of whether all the documents are discovered.
Agichtein et al. introduced a reachability metic to assess the completeness of the discovery
according to the need of an application.

These works on modeling textual databases inspire our fulltext search based archived
content discovery work [30]. After collecting a significant sample of holdings of a web
archive, we create archive profiles that act as a description of the archives and can be used
for Memento routing.

3.2.2 SEARCH FORM DETECTION

Deep web databases generally make their data searchable via an HTML search form.
However, HTML forms can be of many other types and purposes such as login forms, com-
ment posts, subscription, shopping carts, etc. Identifying an HTML form as a search form
usually requires textual and structural analysis of the form elements and their surroundings.

Cope et al. described a technique for distributed search application to detect HTML
search forms automatically [88]. To classify whether a form is a search form, they used
certain HTML attributes like name, value, and type of input elements, name of the form
element itself, and tokens present in the action attribute of the form (that sets the target
URI where the form is to be submitted). Using decision trees on these features they were
able to achieve about 85% accuracy.

Barbosa and Freire proposed a hierarchical form classifier architecture in which they
leverage both textual and structural features of form elements and the surroundings of
input elements [55]. In the first level of classification they identify generic forms using
structural attributes and then in the second layer they identify a domain-specific form using
the textual content of the form. They reported that their modular approach resulted in
high accuracy, precision, and recall.

Khare et al. wrote a survey paper on automatic detection of web search forms [161].
They described various research papers and approaches of search form detection and con-
cluded that a significant progress has been made in data extraction from deep web sources
in about a decade. They also noted that over time a shift from the rule-based form detection
to the model-based search interface identification is visible.

In our work, being able to identify a URI lookup or fulltext search form on web archives in
many different languages automatically can be helpful in profiling web archives. Currently,

60

there are only a limited number of web archives with search interfaces, so automating their
discovery is not worth the trouble, but it could be done if/when we need to. However, this
may not be a necessity if majority of web archives were to expose their indexes via a uniform
standard API [127].

3.3 FOCUSED CRAWLING

Unlike traditional general purpose search engines, a focused crawler identifies resources
that belong to a specific topic and downloads them selectively. This practice optimizes
resource and network usage while discovering documents related to a specific topic.

Micarelli and Gasparetti presented an overview of focused crawling [183]. They described
systems that are adaptive in nature and can change their behavior during the search process
according to the environment and given input parameters.

Bergmark et al. described that web crawling was traditionally been used for indexing
the web for searching, but later digital libraries recognized its potential for collection build-
ing [60]. Instead of using an open-ended crawl, a focused crawling on a specific topic can be
useful in keeping the collection in scope. They utilized a combination of focused crawling
and tunneling for collection building, where tunneling is a technique to estimate the value of
a link in addition to its relevance score before adding it to the frontier queue of the crawler.

Li et al. combined the properties of deep web crawlers and focused crawlers [171].
They proposed a multi-layered intelligent crawler caller iCrawler that classifies pages that
potentially belong to the search domain, links that point to such pages, and HTML forms
that search in a relevant database. A link is added to the frontier queue only when it
surpasses certain threshold of relevance and a search form is filled in with relevant values
when it is identified as a potential candidate for deep web search in a relevant database.
They reported that their harvest rate and coverage rate was better than existing deep web
form-based focused crawlers.

Focused crawling is relevant to our work in the limited scope of situations when a third
party is profiling an archive and the web archive returns some resources that are not part of
its archival collections. For example, the Internet Archive has collections of games, music,
television news, books, and many other types are artifacts that are not served via their
Wayback Machine. Profiling these collections can be useful in some applications, but mixing
them with mementos has limited value for memento aggregators. Generally, web archives
serve their mementos under a separate URI scope, so filtering non-memento resources is easy
and it does not require looking into the content itself. However, if for some web archives this

61

is not the case then using focused crawling techniques can be helpful in identifying resources
that are in scope from those that should be excluded from their profiles.

3.4 ON-PREMISE INDEXING

When dealing with a limited number of servers, it is possible to perform on-premise
indexing and summarization of the holdings of a database and transfer only the summary
to interested parties. In this approach, code for processing data is sent and executed where
data resides instead of bringing data to the code for processing. However, this approach
would require cooperation and willingness of the database owners to run code shipped by
a search engine on their infrastructure, which is not possible without sufficient review and
scrutiny, close partnership, and convincing advantages to the database owners. As a result,
this is not a scalable approach on the independently running web, but may prove helpful
for a handful of large databases.

Hammer and Fiedler proposed an approach to index hidden web by sending the crawler
to the database and running it in close proximity to where the data lives [128] This greatly
reduces the network cost as only finalized indexes are sent back to the search engine instead
of downloading actual documents, indexing them, and throwing them away. Kumar and
Bhatia also tried a similar approach to move indexing process to where the data resides and
sending back indexes to the search engine [168].

In the case of web archive profiling it is possible and more practical to ask a finite number
of large web archives to run profiling code on their servers while relatively smaller archives
can be profiled remotely. During our work we have experienced both logistical and technical
challenges in transferring large amounts of index files or running fulltext queries over large
collections to create a representative sample of holdings. Being able to run profiling code on
the servers of the cooperating web archives and only transferring the summary would have
been much easier.

3.5 QUERY ROUTING

Query routing is the task of identifying suitable sources of information from a larger set
of sources for a given query. Suppose there are a large number of libraries that collect books
on specific topics and there is a meta-search engine that indexes them all based on their
collection topics. When a user performs a lookup, the search engine classifies the query and
identifies the topic(s) the query may belong to, then it routes the search query to a subset
of libraries that collect books on those topics. It avoids broadcasting, saves resources, and

62

makes the lookup efficient. Query routing is a rigorously researched topic in various fields
including networked databases, meta searching, and search aggregation.

Gravano et al. described protocol and system called STARTS [122]. This was a project
steered by Stanford Digital Library in association with about a dozen organizations and
companies. The aim of this system was to enable searching across multiple document sources
with different interfaces and query models. The system was proposed at time when many
organizations used external search engines to get their data indexed (i.e., they outsourced the
search capability). These external search engines had different query models, incompatible
to each other, and did not expose adequate metadata. This means merging search results
from multiple document sources was difficult. The STARTS aimed to tackle this issue of
allowing search across organizations and document sources on the Internet.

Liu describes a query routing system to better handle multiple relevant results for a given
keyword query [172]. They system builds profiles of data sources as well as user queries. By
combining these two independent profiles a better relevance can be achieved. They reported
that their system performs a more fine-grained user interest matching than those query
routing systems that only rely on keyword search.

Callan et al. describe an approach of query-based language model creation for query
routing [78]. Traditional systems of query routing for textual databases required that each
database provides its language model that can be used to determine appropriate databases
for a given query. However, they found that such cooperation is not needed because their
query sampling-based system can construct language models for each database. They re-
ported that running about one hundred queries and retrieving a few hundred documents is
sufficient to create a reasonably accurate language model of a textual database for query
routing.

Jie Lu and Jamie Callan described a federated search query routing systems in hierarchi-
cal hybrid peer-to-peer networks [174, 175]. In this system there are some directory nodes
that construct content models of neighboring nodes for query routing while leaf nodes per-
form content-based retrieval of relevant document. While such a hierarchical system is out
of scope of this work, we think it will be a good future work to combine our work with this
federated routing when the number of public web archive grow beyond a limit. We envision
different regional or special-purpose Memento aggregators (e.g., an aggregator for european
web archives and one run by Webrecorder/Conifer for its subscription-based archives) that
can be queried individually or be aggregated as needed while each aggregator is responsible
of understanding the holdings of only a small subset of web archives.

63

Sugiura and Etzioni described the architecture of an automatic query routing system
calledQ-Pilot [237]. They built topic models of 144 specialized search engines to dynamically
identify the best subset of candidate search engines for given search queries. They reported
a query category identification accuracy of 70% and about 40% of the time the best search
engine was one of the top three from the result set.

Tran and Zhang described a query routing system from structured and linked datasets [239].
Their system returns top-k potential data sources or combinations for a given query key-
word based on a multi-level scoring mechanism. They performed experiments on 150 public
databases on the web and reported a P@1 of 0.92 and mean reciprocal rank of 0.89.

Meng et al. surveyed meta searching techniques [181]. Unlike query routing systems
a metasearch engine, in addition to identifying relevant search engines, retrieves results
from identified subset of relevant search engines, combines results, and ranks the aggregated
result before returning it to the user. They compared and contrasted various approaches
and algorithms used to solve these underlying aspects of metasearch engines.

Klusch et al. briefly reviewed semantic web service search [163]. In this paper they
looked for state or the art systems for identifying and composing relevant web services
via formal ontology-based representations such as Web Service Description Language, Web
Application Description Language, or REST APIs.

Greengrass extensively surveyed information retrieval [124]. They survey covers a great
deal of techniques and systems related to classification and query routing among many other
IR tasks.

Query routing would be a critical component of a Memento aggregator that aggregates
a large set of web archives. A Memento aggregator needs to identify a subset of candidate
web archives that are likely to return good results for a given lookup URI. However, query
routing has not been explored in the context of Memento routing extensively. In this work
we build a high-level understanding of holdings of various web archives and route URI lookup
requests at a Memento aggregator to a subset of web archives that are likely to return any
mementos for the given lookup URI.

In our work we used two terms “query” and “ lookup” with different semantics. A query
to a web archive refers to fulltext (or partial URI) searching that may result in references
to multiple (i.e., zero or more) resources ranked by their relevance to the query terms. In
the case of a lookup, the resource is predetermined and we are only checking whether it is
present. The response to a lookup, if successful, may return multiple versions of the same
resource, but not multiple resources. Results of lookups are binary (yes/no) in nature and

64

have no ranking or concepts of relevance. It is worth noting that Memento routing is a
lookup routing where the lookup URI acts as the identifier of the resources in every archive.

In traditional information retrieval systems it is easy to route queries when given query
terms/phrases have enough signals to identify their membership to certain topics or collec-
tions. However, in URI lookup routing given URIs can be opaque, resulting in lack of signals
for classification. For example, the lookup URI https://cdc.gov/coronavirus/2019-

ncov/ has sufficient tokens to identify that it may be present in COVID19 -related web
archival collections, but https://youtube.com/watch?v=QNo5ZDvKuHg does not1. This is
why in this work we only rely on the structural features of a URI, not the natural language
semantics, both for profiling and lookup routing.

3.6 BLOOM FILTERS

A Bloom filter is randomized space-efficient probabilistic membership set data structure.
When performing a lookup Bloom filters allow false positives, but no false negatives. Bloom
filters are useful in situations where an attempt to access a record is costly, especially, when
often the record may not be present in the system. In such situations Bloom filters allow a
quick and efficient way of knowing the absence of the record in a given system and short-
circuit the lookup. However, they report false positives with some probability, in which case
the lookup will be performed that will eventually fail to retrieve the record.

In the Bloom filter data structure a bit-array of size m is used that is initialized with
every bit set to “0”. As items are indexed one by one, they go through k number of different
hash functions that each yield a number up to m (the size of the bit-array) and bits of
corresponding positions are set to “1”, if not already. During lookup, the key goes through
the same k hash functions and if all the returned positions are already set to “1” in the
bit-array, the item is predicted to be present. However, it is possible that all the positions
corresponding to the lookup key were set to “1” by some other existing items even if the
lookup item itself is not present, which causes a false positive result. The probability p of
such collisions causing false positives increases as the number of indexed items n grows with
the finite size of the bit-array.

Bloom proposed the idea of hash coding with allowable errors in 1970, which was later
named after him as Bloom filters [65]. Bloom filters are being used in many applications,
such as network routing, database lookup, search query routing, spell checking, cache lookup,

1https://youtube.com/watch?v=QNo5ZDvKuHg points to the official “CDC Briefing Room: COVID-19
Update and Risks” video.

https://cdc.gov/coronavirus/2019-ncov/
https://cdc.gov/coronavirus/2019-ncov/
https://youtube.com/watch?v=QNo5ZDvKuHg
https://youtube.com/watch?v=QNo5ZDvKuHg

65

and peer-to-peer networks.
Majkowski explored Bloom filters while analyzing IP spoofing in Cloudflare networks [177].

He wanted to quickly identify whether the source IP address of a packet arriving to a given
data center belongs to the corresponding geo-locations. The article describes various issues
in using Bloom filters for the purpose and introduces “mmuniq-hash” [176], which helped
address the problem more efficiently while reducing the probability of false positives.

Broder and Mitzenmacher surveyed many different network applications of Bloom fil-
ters [68]. First, they described Bloom filters in detail and briefly mentioned their usage in
application other than networks, such as databases and spell checking. After that, they cov-
ered many different network applications such as resources routing, peer-to-peer networks,
caching, CDNs, etc. and how Bloom filters we modified to fit certain application needs.

While Bloom filters cannot describe holdings of a web archive, they do look promising
for Memento routing, but they have some drawbacks that limits their usefulness. A Bloom
filter is an in-memory data structure, which is costly to scale. While adding an item in the
filter is easy, deleting them is not possible because some bits of the bit-array corresponding
to an deletion-candidate item may belong to some other items still in the system. One
might think that adding a secondary Bloom filter for deleted items can solve the issue, but
a collision in that filter may yield false negatives, which defeats the purpose. Additionally,
adding a deleted item back will pose the same challenge which introduced the secondary
filter. Another drawback of Bloom filters is the inability to scale the bit-array later when
collision probability p increases, as it would require rebuilding the filter from scratch and
indexing all the items again. Our MementoMap framework achieves the benefits of Bloom
filters while avoiding most of their drawbacks.

3.7 ARCHIVAL COVERAGE OF THE WEB

Ainsworth et al. attempted to answer the question, “How much of the web is archived?”,
in 2011 [3]. Their results showed the answer to this question depends on how we sample the
web. This means the accuracy of the answer will depend on how well a sample represents
the web. They sampled URIs from DMOZ (a curated directory of web pages), Delicious
(a social bookmarking service), Bitly (a URL shortner server), and search engine indexes
and queried them against web archives to see how many copies each URI in their samples
has. They found that the variance in resulting numbers for each sample was too large to
generalize the outcome. For example, they found that the number of URIs that had at least
one archived copy in any of the web archive were as low as 35% in one sample and as high as

66

90% in another sample. They reported that about 15% to 31% (depending on the sample)
URIs are archived at least once per month.

Alkwai revisited the archival rate question in 2015, but for web pages of specific lan-
guages [36, 35]. They collected over 15,000 URI samples from English, Arabic, Danish,
and Korean languages to find out how much of the pages from each of these languages are
archived. They found that 72%, 53%, 36%, and 33% of their sampled URIs were archived
in these languages respectively. They also noted that if a URI is present in the DMOZ
collection, it has a higher chance of getting archived. Furthermore, they identified that very
few of the sampled Arabic URIs had an Arabic country TLD (e.g., “.sa” for Saudi Arabia)
and were hosted in an Arabic country. However, this was not the case with Danish and
Korean languages.

The GDELT Project, a platform that monitors the world’s news media, reported in 2015
that around 2% of the news articles disappear in a couple of weeks and up to 14% in a couple
of months [238]. Similarly, SalahEldeen and Nelson reported that about 11% of the resources
shared on social media during the 2011 Egyptian Revolution were lost after a year [215]. This
is an alarming rate with which resources on the web disappear. Leetaru investigated how
much of the web is being archived by the Wayback Machine of the Internet Archive [170].
He looked at the holdings of the Wayback Machine from many different angles and reported
various statistics. He expressed the need for more documentation and transparency on
policies and algorithms that control what URIs will be archived. He recommended that web
archives must adopt acquisition and collection decisions based on the community engagement
the way libraries do. Moreover, he noted that we have limited understanding of what is inside
of massive web archival datasets, which is one of the core motivations of our work towards
web archive profiling.

Hallak estimated recently that almost two thirds of the web traffic is not publicly archiv-
able because it goes to sites that are behind session walls or paywalls, to which some social
media sites are big contributors of [126]. Kelly et al. developed a framework to archive the
private web and integrate it with the public web to fill some of these cavities [155, 159].

These works identify archival voids as they show some biases in web archiving as well as
quantify the small portion of the web many archives hold. These works further motivate us
for Memento aggregation.

3.8 WEB ARCHIVE SEARCHING

Web archives are often large collections of historical versions of web pages from numerous

67

domains where each original URI may have one or more temporal copies. While researchers
and archive exploration tools may interact with an archive using APIs or datasets directly,
regular users interact with web archives using one of the three interfaces: 1) browsing, 2)
fulltext searching, and 3) URI lookup. Browsing works well for small curated collections, but
it becomes impractical for large and unstructured collections. Fulltext searching requires
indexing existing and ever-growing collections, which is a costly and resource-intensive task.
Consequently, large web archives (e.g., the Internet Archive) struggled to make their entire
collection searchable. Due to limited fulltext search support in web archives we do not have
a meta search engine that can perform keyword searching across web archives. URI lookup
is the only approach that works on all web archives, which enables utilities like Memento
aggregators. However, the downside of URI lookup is that the user needs to know the exact
URI of the desired resource in advance.

Gomes et al. described their fulltext search architecture, challenges, and lessons learned
in the process of making the Portuguese Web Archive (PWA) searchable [117]. At the time
of their publication in 2013, PWA was the largest public web archive with fulltext search
support over 1.2 billion resources. In a related study, Costa et al. surveyed various fulltext
architectures and efforts on making web archives searchable [89]. They assessed aspects
of scalability, reliability, time-awareness, an performance of Wayback Machine, PWA, and
Everlast. Time-awareness is an aspect that is unique to indexing web archive or other
temporal collections, which poses unique challenges not only in indexing and ranking, but
also in providing an intuitive query interface and a meaningful representation of results.

Kanhabua et al. proposed a clever approach of searching IA without indexing it [150].
They leverage the index of an existing general purpose web search engine (in their example
they used Bing) to indirectly search IA. When user makes a query, they retrieve a ranked
list of relevant URIs from Bing, then use these URIs to perform lookup in IA to see which
of these URIs have any mementos. One downside of their approach is the lack of ability
to surface historical resources that are not live on the web, hence recency-focused search
engines may not retain such references in their index.

3.9 ARCHIVE PROFILING

Memento query routing was earlier explored in the two content-based archive profil-
ing efforts described below in Sections 3.9.1 and 3.9.2, but they explored extreme cases of
profiling. In an earlier study [28], we found that an intermediate approach that gives flexi-
bility with regards to balancing accuracy and effort can result in better and more effective

68

Memento routing.
Memento query routing was also explored in an aggregator’s usage-based archive profiling

effort. We found that traffic from MemGator (our Memento aggregator service) requested
less than 0.003% of the archived resources in Arquivo.pt. There is a need for content-based
archive profiling which can express what is present in archives, irrespective of whether or
not it is being looked for.

3.9.1 URI-R PROFILING

Sanderson et al. created comprehensive content-based profiles [217, 216] of various In-
ternational Internet Preservation Consortium (IIPC)2 member archives by collecting their
CDX files and extracting URI-Rs from them. This approach gave them complete knowl-
edge of the holdings in each participating archive, hence they can route queries precisely
to archives that have any mementos for the given URI-R. This approach yielded no false
positives or false negatives (i.e., 100% Accuracy) while the CDX files were fresh. However,
these collected CDX files would go stale very quickly because many web archives keep crawl-
ing the web constantly and add more mementos to their collections regularly after indexing
batches of crawled data. In addition to that, on-demand web archives such as Save Page
Now (a service from the Internet Archive to submit URIs for immediate archiving) [120]
add hundreds of mementos to their collections every second [149] and make them available
almost immediately. It is a resource and time intensive task to generate such profiles and
some archives may be unwilling or unable to provide their CDX files. Such profiles are so
large in size (typically, a few billion URI-R keys) that they require special infrastructure to
support fast lookup. Acquiring fresh CDX files from various archives and updating these
profiles regularly is not easy.

3.9.2 TLD PROFILING

In contrast, AlSum et al. explored a minimal form of archive profiling using only the
TLDs and Content-Language [39, 40]. They created profiles of 15 public archives using
access logs of those archives (if available) and fulltext search queries. They found that by
sending requests to only the top three archives matching the criteria for the lookup URI
based on their profile, they can discover about 96% of TimeMaps. When they excluded
IA from the list and performed the same experiment on the remaining archives, they were

2https://netpreserve.org/

https://netpreserve.org/

69

able to discover about 65% of TimeMaps using the remaining top three archives. Excluding
IA was an important aspect of evaluation as its dominance can cause bias in results. This
exclusion experiment also showed the importance of smaller archives and the impact of
aggregating their holdings. This minimal approach had many false positives, but no false
negatives.

3.9.3 RESPONSE CACHE PROFILING

Later, Bornand et al. implemented a different approach for Memento routing by building
binary classifiers from LANL’s Time Travel aggregator cache data [66]. They analyzed
responses from various archives in the aggregator’s cache over a period of time to learn
about the holdings of different archives. They reported a 77% reduction in the number of
requests and a 42% reduction in response time while maintaining 85% Recall.

Klein et al. revisited the performance of the above binary classifier-based approach after
running the service for over a couple of years [162]. They reported an average Recall of
about 0.73 (i.e., about 12% reduction from the originally reported results) which means
the classifier misses more than one quarter of resources that are present in a given archive.
They plotted absolute numbers of false positives in 13 archives and also provided the total
number of entries (about 2.6 million) from the classifier log that they evaluated. However,
it is not clear if each log entry corresponds to one archive or has a combined entry for all
the archives. That is why it is difficult to assess the accuracy of the classifier. They also
reported that a more frequent retraining of the models can improve the prediction accuracy.

These approaches can be categorized as usage-based profiling in which access logs or
caches are used to observe what people were looking for in archives and which of those
lookups had a hit or miss in the past. While usage-based profiling can be useful for Memento
lookup routing, it may not give the complete picture of archives’ holdings, producing both
false negatives and false positives because the results are sensitive to the queries used to
train the model3. In Section 8.5.1 of Chapter 8 we will discuss that our MemGator logs
only reveal a tiny portion of an archive’s holdings. In Figure 68 of Chapter 8 on Page 151
we illustrate that most of the frequently archived resources are never accessed (a blind spot
for usage-based profiles) and most of the frequently requested resources are never archived
(a blind spot for content-based profiles).

3https://groups.google.com/forum/#!topic/memento-dev/YE4rt6L5ICg

https://groups.google.com/forum/#!topic/memento-dev/YE4rt6L5ICg

70

3.9.4 URI-KEY PROFILING

In previous work [28, 29] (described in detail in Chapter 6), we explored the middle
ground where archive profiles are neither as minimal as storing just the TLD (which results
in many false positives) nor as detailed as collecting every URI-R present in every archive
(which goes stale very quickly and is difficult to maintain). We first defined various profiling
policies, summarized CDX files according to those policies, evaluated associated costs and
benefits, and prepared gold standard datasets [28, 29]. In our experiments, we correctly
identified about 78% of the URIs that were or were not present in the archive with less than
1% relative cost as compared to the complete knowledge profile and identified 94% URIs
with less than 10% relative cost without any false negatives. Based on the archive profiling
framework we established, we further investigated the possibility of content-based profiling
by issuing fulltext search queries (when available) and observing returned results [30] if access
to the CDX data is not possible. We were able to make routing decisions of 80% of the
requests correctly while maintaining about 90% Recall by discovering only 10% of the archive
holdings and generating a profile that costs less than 1% of the complete knowledge profile.

3.10 CHAPTER SUMMARY

In this chapter we reviewed scholarly literature on various related topics. We first de-
scribed Surface Web, Deep/Hidden Web, and Dark Web and discussed work done to index
them. We then reviewed various research papers on textual database summarization and
search form detection. Moreover, we reviewed various scholarly works on focused crawling
and on-premise indexing. We also described how these are related to web archives and
archive profiling. Furthermore, we discussed some work done in query routing and its rele-
vance with Memento routing. After that we discussed Bloom filters, their relevance to our
work, and their shortcomings. Then we reviewed some work that attempt to estimate the size
of search engine indexes and the size of the indexable web. Furthermore, we reviewed works
that explore the archival coverage of the web, the web that cannot be archived by public web
archives, and potential approaches to integrate private web archiving with public archives.
We then reviewed some work on making large-scale web archive collections searchable. Then
we discussed initial efforts on Memento routing via both content-based and usage-based pro-
files. Finally, we discussed our own preliminary work on archive profiling to complete the
context that will be further explored in the later chapters in a more detailed manner.

71

CHAPTER 4

MEMENTOMAP FRAMEWORK

In this chapter we describe the MementoMap framework for web archive profiling. The
intent of this framework is to build a high-level understanding of a web archive’s holdings,
express it in a format that is easy to disseminate, and utilize a collection of MementoMaps
from various web archives to perform efficient Memento routing in Memento aggregators.
We first describe three research questions and how each question addresses certain aspects of
the framework. Then we describe three main components of the framework that correspond
to each of the research questions. Finally, we lay out an evaluation plan to assess the
effectiveness of the framework.

4.1 RESEARCH QUESTIONS

We divide this work in three primary research questions about ingestion of archival hold-
ings and voids, serialization of the summary, and utilization of the summary for Memento
routing. We discuss our research questions one by one below.

4.1.1 RQ1: HOW TO LEARN AN ARCHIVE’S HOLDINGS AND VOIDS?

Under this research question we explore various ways to identify resources that are
present in an archive or absent from it. Learning about an archive’s holdings in this con-
text means knowing URIs it contains and voids means knowing URIs it does not contain.
Moreover, we are also interested in the datetime of mementos and the content language,
when available. However, we are not interested in the content of mementos. This research
question is explored in more details in Chapters 6 and 7. Another related question can be
about “who would generate these profiles?” and the answer is both web archives and third
parties, but since their access levels to the archival holdings would be different so will be
their generated profiles.

We broadly divide the task of learning archival holdings in two categories, content- and
usage-based.

72

Content-based Profiling

In the content-based profiling web archives tell what they contain. This is usually performed
by accessing archival index or certain APIs they provide. We have two primary means of
building content-based profiles:

• CDX Profiling – In CDX profiling we access archival indexes of a web archive as
static files or through an API. We then build a higher-level understanding of archival
holdings after filtering certain unnecessary index records off. CDX profiling gives the
most comprehensive knowledge of archive’s holdings. It is the fastest way to build an
effective profile, but acquiring CDX data and keeping it up to date is difficult task.
CDX files are gold-standard, but there are both organizational barriers and engineering
challenges for most archives sharing this data. As such, we cannot assume it will be
available. This can more effectively be done by web archives themselves, ideally by
integrating MementoMap feature in archival replay systems.

• Fulltext Search Profiling – Some web archives provide fulltext search feature. Al-
though, we are not interested in the content mementos, fulltext search gives a way to
discover many URIs that are present in a archive. In this process we make fulltext
search queries in web archives that support it and record URIs from returned results.
In this mechanism we can learn at a maximum of N URIs per search query where
N is the number of results returned per page by the fulltext search, which could be
different for each archive. This value generally defaults to 10 or 20, but sometimes it
is possible to customize how many results are desired by the client. It is worth noting
that not all queries return a full page response. Also, as we continue to perform more
queries we start to get some results that we have already learned about, so the overall
learning rate slows down. Another down side of this approach is that it generally only
surfaces textual URIs (i.e., those that point to HTML or text pages that are fulltext
indexable).

Usage-based Profiling

In the usage-based profiling we observe web archives’ responses as we attempt to fetch
mementos or TimeMaps. In this process we learn about both absence and presence of
queried URIs in the archive. In this approach the learning rate is slow as we learn about a
single resource in each request. To avoid false negatives, these profiles are kept very high

73

level (for example only at the level of TLDs), which means they return more false positives.
We can perform usage-based profiling in two ways:

• Sample URI Profiling – In the sample URI profiling we first build a sample URI
set from a source (such as a directory or social media) depending of the purpose of
the profile. Then we check to see if those URIs are absent or present in a number of
web archives. Based on our observation we profile those archives’ holdings.

• Response Cache Profiling – The response cache profiling is a special case of the
sample URI profiling in which the sample of URIs is not built in advance, but the
profiling is performed gradually as users access an archive. This profiling takes a long
time to build and needs a constant feedback loop as the state of archiving changes over
time (i.e., new resources are archived and some previously archived resources become
inaccessible). This can be done at a Memento aggregator or at an archive itself by
analyzing their access logs. LANL’s Time Travel service uses this technique to train
binary classifiers for Memento routing based on the past observations.

4.1.2 RQ2: HOW TO SUMMARIZE AND SERIALIZE ARCHIVAL HOLD-

INGS FOR DISSEMINATION?

Once we learn about a web archive’s holdings, we need to summarize it and serialize for
dissemination. For summarization, we first introduced various profiling policies under HmPn
and DLim categories that are described in detail in Chapter 6. These policies summarized
grouping URIs based on common prefixes up to a certain host or path depth and some other
similar criteria. However, we later found these profiling policies were not very flexible as they
did not allow merging profiles of two different policies. We then explored a more flexible
summarization and serialization approach by adding wildcard support in SURT which is
discussed and evaluated in Chapter 8.

We introduce a serialization file format called MementoMap for which we introduce a
Unified Key Value Store (UKVS) [14] format that can be useful in many web archiving
and other applications. Chapter 8 describes various ways to use this serialization format to
express summarized holdings of an archive in many different ways as necessary for certain
applications.

74

Generation and Compaction

We supply a list of URIs that are present in a web archive or a list of URIs that are absent
from a web archive learned by various techniques described under RQ1 as an input to
generate a MementoMap. Additionally, we also provide various configuration options that
control the level of details in the MementoMap, which in turn decides when a URI prefix
needs to be rolled up into a higher level group. This decision also considers the depth of the
host or path segment in question and some heuristic values that we learned by analyzing
a large archival index. We designed a single-pass, memory-efficient, and parallelization-
friendly algorithm for MementoMap generation.

To limit or reduce the overall size of a MementoMap (either by the bytes count or num-
ber of records) we allow compaction of existing MementoMaps. A user can supply more
aggressive compaction parameters and provide an existing MementoMap as input to get a
reduced sized MementoMap. The compaction procedure iteratively and dynamically iden-
tifies sections of the MementoMap that can be rolled up into higher level nodes, reducing
the size at the cost of a less detailed profiling in certain sub-trees of URIs. Like the gener-
ation procedure, we designed the compaction algorithm to be single-pass, memory-efficient,
and parallelization-friendly, too. The generation algorithm internally uses the compaction
procedure with appropriate parameters. These procedures are described in Chapter 8.

Updates and Merger

Many web archival collections evolve gradually over time while others grow in periodic
batches. Hence, it is important to have a means to accommodate new changes in the holdings
of an archive to its MementoMap. A naive approach would be to regenerate the complete
MementoMap every once in a while from scratch, but this is wasteful, especially for large web
archives. We allow incremental updates to existing MementoMaps by generating smaller
MementoMaps from the freshly added data then merging it into the primary MementoMap
and running the compaction procedure on it.

Pagination

Our MementoMap framework also allows arbitrary split of data which is essential for an
effective pagination. Pagination is desired due to many practical reasons for example:

• An entity might want to store and disseminate its large MementoMap in chunks of
manageable size

75

• An entity might want to organize smaller MementoMaps by time (such as yearly) or
by structure (such as TLDs)

• An entity might want to avoid frequent updates and merger by providing smaller
MementoMaps of freshly archived resources along with the old data on which the dust
is settled already

• An entity might want to keep its MementoMaps separate for URIs it holds and URIs
it does not, for maintainability

Dissemination and Discovery

For dissemination and discovery of MementoMaps we propose that web archives make their
MementoMap available at the well-known URI [193] “/.well-known/mementomap” under
their domain names. Alternatively, a custom URI can be advertised using the “mementomap”
link relation (or “rel”) in an HTTP Link header or HTML <link> element. Third parties
hosting MementoMaps of other archives can use the “anchor ” attribute of the Link header
to advertise a different context. This primary entry point is for initial discovery, more Me-
mentoMaps (such as pages of the same profile or profiles made with different levels of details
for different purposes) can be discovered from there using link relations or corresponding
metadata of the primary MementoMap.

4.1.3 RQ3: HOW TO UTILIZE MEMENTOMAPS FOR MEMENTO ROUT-

ING?

A MementoMap can support many applications such as coordinated crawling between
archives, visualization of the archive’s holdings, or routing of requests from a Memento
Aggregator to the right archive. It is the latter application that is the focus of this work.

Considering a MementoMap as a document that describes holdings of a web archive, if a
set of MementoMaps of a number of archives is provided, it is possible to predict candidate
archives that might contain a given lookup URI. Essentially, by this analogy we convert
this routing problem into an information retrieval problem. A few potential approaches of
routing could be as following:

• Binary Classifier – In this approach we can build individual binary classifiers for
each archive. For a given lookup URI we ask every classifier to predict the presence
or absence of it in the corresponding web archive, then route the look up request to

76

archives with the positive response from the classifier. This approach was explored by
Bornand et al. and used in the LANL Memento aggregator [66]. This approach keeps
the prediction model of every archive separate and independent which allows easy
update and per-archive tweaks. However, the down side of this approach is scalability.
If the number of archives grows to hundreds or thousands, it becomes impractical to
run as many classifiers and query every classifier in parallel.

• Inverted Index – In this approach we create an inverted index of keys from every
MementoMap and keep record of their corresponding frequencies or other weights.
This approach scales well with the growth of number of archives or MementoMaps
as the index is precomputed and can always return only the relevant references to
archives. MementoMaps of various archive can be more detailed than we need for
routing purposes, in that case they can be further optimized during index creation.
For example, Arquivo.pt focusses primarily on archiving *.pt sites among many other
TLDs, so its profile can have more detailed summary of *.pt URIs. However, a
Memento aggregator may not be getting a significant number of requests for *.pt

sites, it we may choose to keep only the TLD-level entry for pt,* in the Inverted
Index. This practice can significantly reduce the size of the index.

• Routing Score Estimation – In this approach we can leverage various machine
learning techniques to estimate the likelihood of finding a URI in a web archive rep-
resented by one or more MementoMaps. Some available signals for model building
include the host and path depths (say, token count) of the lookup URI, token count
of the matched key in MementoMap (which can either be an exact match or a partial
key with a wildcard), difference of the two counts, and stored frequency values. After
estimating routing scores in each candidate archive above certain threshold we can
rank them for routing and let the aggregator choose top-k archives or archives above
certain threshold to aggregate from.

4.2 MEMENTOMAP COMPONENTS

We have divided the MementoMap framework in three major components that can be
implemented and leveraged independently. These components are roughly parallel to the
three research questions described above, but have an implementation perspective.

77

4.2.1 INGESTION

The ingestion component creates a uniform input for summarization and serialization
step for a given web archive in the form of a list of URIs it holds and/or a list of URIs it
does not. This component can process static CDX files, CDX server API, or access logs.
Moreover, this component can also learn about the holdings of an archive via fulltext search
or sample URI lookups.

4.2.2 SUMMARIZATION AND SERIALIZATION

The serialization component takes a list of URIs (sample or comprehensive) that are
present in a web archive and/or a list of URIs that are absent from an archive as the input,
identifies higher level groups of URIs that are present or absent in the archive, and yields
a compact representation of the summary of archival holdings. These serialized represen-
tations can then be advertized on the web for automated discovery or disseminated using
some other means. We use UKVS data format for serialization of MementoMaps.

While we provide an independent CLI tool and library for MementoMap creation and
management, integrating it in every archival replay system is out of scope. Furthermore, we
have seen interest in this work from the Portuguese Web Archive, the UK Web Archive, and
the National Library of Australia, but ensuring adoption of MementoMap by web archives
and aggregators is out of scope.

4.2.3 ROUTING

For efficient Memento routing we create an Inverted Index from MementoMaps of var-
ious web archives and perform binary search in it for all possible URI-Keys of the lookup
URI. Then we utilize Routing Score Estimation technique as described above on matched
index records to create a rank ordered list of archives as potential candidates for Memento
routing. Combining these two approaches allows the system to scale well as the Inverted
Index provides a small subset of an arbitrary number of web archives for further ranking
evaluation. We intend to have a reference implementation of this approach and have it be
used by our MemGator tool in the future.

4.3 EVALUATION PLAN

In this work we evaluate individual MementoMaps on cost vs. accuracy and the ag-
gregated index of multiple archives for Memento routing will be evaluated on its routing

78

Fig. 35. Memento Routing Matrix

efficiency. Additionally, we also evaluate the freshness of MementoMaps as archives evolve
over time.

In Figure 35 we illustrate how we map measures of Memento Routing to the traditional
classification concept of Information Retrieval in the form of a confusion matrix. The outer
large rectangle shown in the figure represents a set of sample URIs for which we want to
measure routing statistic against a web archive using its profile. The rectangle is divided by
a vertical line, on the left hand side of which are all the URIs from the sample set that are
actually present in the archive and on the right hand side are the URIs that are not present.
Inside area of the oval represents all the URIs that an archive profile predicts to be present
in the archive and their corresponding requests should be routed to the archive while the
outside area represents set of URIs from the sample that are not likely to be present in the
archive based on the profile and should not be routed. Ideally, we would like to minimize
false negatives (FN; when we fail to route a URI lookup to an archive that has the URI)
and false positives (FP; when we route a URI lookup to an archive that does not have the
URI) and maximize true positives (TP; when we route a URI lookup to an archive that has
the URI) and true negatives (TN; when we do not route a URI lookup to an archive that
does not have the URI). However, due to the inherent nature of classifiers an attempt to
minimize FN would result in increased FP and an attempt to maximize TN would result
in decreased TP. It is worth noting that the cost of false positives affects the infrastructure

79

(i.e., unnecessary work) while the cost of false negatives affects users (i.e., failure to discover
resources of interest).

By analyzing many different configurations to generate archive profiles (i.e., Memen-
toMaps) we can identify the relationship and right balance among precision, recall, and
associated costs that are suitable for different application needs. We describe many relevant
statistical measures (such as precision, recall, specificity, accuracy, and routing efficiency)
in Chapter 6.

4.3.1 COST

Cost in this context means a lot of things including time of data acquisition and ingestion,
time of processing, storage space, as well as the network bandwidth for dissemination. There
is also some cost associated with incremental or periodic updates and synchronization of
MementoMaps.

4.3.2 ACCURACY

Accuracy is the measurement of correctly identifying presence or absence of a set of
URIs in an archive represented by a MementoMap (i.e., in the Information Retrieval sense,
(TP+TN)/All). A more detailed MementoMap generally yields a better accuracy, but costs
more to generate and maintain. We evaluate this inherent cost vs. accuracy relationship to
identify a suitable balance depending on various factors such as available resources and the
application of the MementoMap.

4.3.3 FRESHNESS

As an archive collects more resources or changes the state of existing mementos its cor-
responding MementoMaps will go stale as they will end up producing more false negatives
and/or false positives (resulting in reduced accuracy). Factors that control the freshness
include the rate and frequency of archiving and the level of detail of corresponding Me-
mentoMaps. A web archive that archives a lot of web resources and frequently indexes
them for replay will need more frequent updates to its MementoMaps. On the other hand
a less detailed MementoMap would require less frequent updates, but it has the inherent
cost of producing more false positives (hence, low accuracy) in the first place. We evaluate
these relationships to come up with some guidelines about the frequency of updates for
MementoMaps.

80

4.3.4 ROUTING EFFICIENCY

Once we have a number of MementoMaps from various archives we create an Inverted
Index from them and build a routing score estimator. By changing the level of details in
the index and the cut-off value of routing scores we evaluate the accuracy of routing across
a number of web archives. This will involve measuring the number of archives that we
requested, but had no relevant mementos and the number of archives the we missed which
had corresponding mementos to return for a given set of URIs. Along with measuring the
number of archives, we also measure the number of mementos that we miss with varying
configurations.

4.4 CHAPTER SUMMARY

In this chapter we outlined our MementoMap framework. We described our three pri-
mary research questions about learning an archive’s holdings, summarizing and serializing
it, and using it for Memento routing. We then described three major components of the
framework parallel to these research question. Finally, we set out an evaluation plan for
various aspects involving this framework such as cost, accuracy, freshness, and efficiency.

81

CHAPTER 5

TOOLS IMPLEMENTATION

During our work we implemented various related tools to aid the research process (such as
processing and indexing WARC/CDX/access log data received from web archives, replaying
mementos, aggregating web archives, generating/evaluating archive profiles, and dissemi-
nating archive profiles) and released them publicly under the open-source MIT license [199].
These tools include an archival replay system, a Memento aggregator, an archive profiler,
an access log parser, and a reference implementation of MementoMap generator. Figure 36
summarizes our tool and software contributions in the web archiving ecosystem and anno-
tates the functional placement of each tool. Some of these tools helped other researchers in
carrying out their research both at Old Dominion University and outside, including inter-
national institutions. In this chapter we briefly describe these tools.

5.1 INTERPLANETARY WAYBACK

InterPlanetary Wayback (IPWB) [152, 20, 23, 22] is a distributed archival replay system
that facilitates permanence and collaboration in web archives by disseminating contents
of WARC files into the InterPlanetary File System (IPFS) [59] network. IPFS is a peer-
to-peer content-addressable file system that inherently allows deduplication and facilitates
opt-in replication. IPWB splits the header and payload of WARC response records before
disseminating into IPFS to leverage deduplication, builds a CDXJ index with references to
the IPFS hashes returns, and combines the header and payload from IPFS at the time of
replay.

Figure 37 illustrates the indexing and replay process of IPWB. The indexer extracts
records from the WARC store one record at a time, splits each record into HTTP header
and payload, stores the two pieces into IPFS, and generates a CDXJ record using the
returned references and some other metadata from the WARC record. The replay receives
requests from users containing a lookup URI and optionally a datetime, queries for matching
record in the CDXJ, fetches the corresponding header and payload from the IPFS Store
(using references returned from the index record), combines them, and performs necessary
transformation to build the response to the user. The software is made available under MIT
license [19]. See Figure 83 (Appendix C) for the reference manual.

82

Fig. 36. Tools Contributions in the Web Archiving Ecosystem

IPWB is a Memento-compliant archival replay system with the potential to integrate
MementoMap framework natively.

5.2 RECONSTRUCTIVE

Reconstructive is a JavaScript library that we built to facilitate client-side URL rerout-
ing [21] and an unobtrusive archival banner inclusion [24] in the IPWB. It utilizes JavaScript’s
ServiceWorker API to intercept requests and reroutes them to their appropriate archived
version as illustrated in Figure 38. We made both the rerouting and banner components
available under MIT license as an independent library so that they can be utilized in other
tools [17]. See Figures 84 and 85 (Appendix C) for the reference manual.

83

Fig. 37. IPWB Indexing and Replay Workflow

Fig. 38. Reconstructive Intercepts a Zombie Resource and Reroutes to its Archived Copy

5.3 MEMGATOR

MemGator is an open-source, easy to use, portable, concurrent, cross-platform, and self-
documented Memento aggregator CLI and server tool written in Go [27]. Currently, there
are two well-known Memento aggregator implementations: a closed-source one that powers
LANL’s Time Travel service and our open-source MemGator. MemGator works as a drop-in
replacement of Time Travel API when used as a service, but has added features like the
ability to use it as a CLI tool. While there are a few other open-source Memento clients, they
are either not full-featured or not maintained [38, 143]. MemGator implements all the basic
features of a Memento aggregator (e.g., TimeMap and TimeGate) and gives the ability to
customize various options including which archives are aggregated and a selection of response

84

Fig. 39. MemGator Workflow Diagram

formats suitable for different application needs. It is being used heavily by tools and services
such as Mink [157], WAIL [61, 156], OldWeb.today, and archiving research projects and has
proved to be reliable even in conditions of extreme load [131]. The software is made available
under MIT license [10].

Figure 39 illustrates the workflow of the MemGator implementation. The main thread
(the request listener) loads the list of archives and other configuration options. When
a lookup request is received, MemGator spins off goroutines (lightweight threads of Go
language) for each individual archive. These individual goroutines fetch the TimeMap from
individual archives independently. If the response is successful, the goroutine passes the
data to a TimeMap parser via a channel (message passing mechanism of Go), which makes
a linked list of the responses in a chronological order. The parser sends the linked list data to
the collator which accumulates responses from each individual goroutine and merges them
while maintaining the sorting. Once all goroutines are completed or timeout occurs, the
accumulator passes the aggregated linked list to the serializer. Depending on the format
requested by the client (such as Link or JSON), the data is serialized and returned as the
response to the user. See Figure 86 (Appendix C) for the reference manual.

We have been running an instance of MemGator in server mode since early 2016 which
is accessible publicly. This has provided useful logs for longitudinal study of Memento
aggregators. MemGator is also the prime candidate of utilizing MementoMap framework
for efficient Memento routing.

5.4 RANDOM SEARCHER

Random Searcher is a script to interact with the fulltext search interface of web archives
to perform a random walk to discover a sample of the holdings of an archive. It is an
implementation of the Random Searcher Model as described in Section 6.4.1 of Chapter 6.
The script is made available under the Archive Profiler repository [6]. Since web archives

85

lack a unified standard fulltext search API, the script currently only supports Archive-It
collections. However, it is possible to write modules to extend it to make it work with other
archives in the future.

5.5 ACCESSLOG PARSER

AccessLog Parser is a Python package to parse Common Log Format and Combined Log
Format [41] web server access logs. The package comes with a built-in CLI tool. While
the package and too works with any general web server log file, it has some added fea-
tures to recognize web archive replay access logs and extracts some web archive-specific
attributes when present. These attributes include extraction of various known endpoints
(e.g., Memento, TimeMap, TimeGate, and calendar), original URI (i.e., URI-R), any me-
mento datetime value, optional type modifiers (e.g., “id_”, “if_”, “im_”, etc.). The tool
provides means to transform access datetime to formats that are friendly for sorting and
arithmetic operations. Moreover, it provides various types of filters and output formatting
options to meet users needs. The tool is made available publicly under MIT license [5]. See
Figure 87 (Appendix C) for the reference manual.

5.6 MEMENTOMAP

Initially, we created a collection of scripts to process CDX files, build archive profiles with
various profiling policies, evaluate effectiveness of generated profiles, and prepare analysis
reports. This was our early implementation attempt which helped us create baseline gold
standard datasets. We learned a lot from this and identified some shortcomings of our
preliminary approaches. These scripts are still available publicly for reference under the
Archive Profiler repository [6].

MementoMap tool is the reincarnation of now defunct Archive Profiler. It implements
the most recent proposal of the MementoMap framework. The tool allows generation of
MementoMaps, compaction of existing ones, and lookup of an individual URI or a batch of
URIs in a given MementoMap file. This tool is described in more details in Chapter 8 under
Section 8.3.

The tool can be used as a Python module to facilitate native MementoMap support in
various archival replay systems such as IPWB and PyWB. Additionally, it can be extended
to run as a service to provide and HTTP API for many MementoMaps, which can then be
utilized by aggregators to avoid broadcasting. The software is made available under MIT
license [9]. See Figure 88 (Appendix C) for the reference manual.

86

5.7 UNIFIED KEY VALUE STORE

Unified Key Value Store is a file format that we discuss under Chapter 8. While we
do not have an independent generator and parser script of the format, we have its support
added in the InterPlanetary Wayback and MementoMap tools as described above in Sec-
tions 5.1 and 5.6. We plan to extract it into a separate library/tool in the future to be used
independently in other places.

5.8 CHAPTER SUMMARY

In this chapter we described various open-source tools, libraries, and scripts that we
built and released during our research. These include: InterPlanetary Wayback (an archival
replay system), Reconstructive (a client-side URL rerouting and archival banner injection
script), MemGator (a Memento aggregator), Archive Profiler (a set of script to profile and
analyze holdings of web archives), Random Searcher (a script to sample holding of web
archives via fulltext search), AccessLog Parser (a web server access log parser with added
features for web archives), MementoMap (a tool and module to generate, manage, and
utilize archive profiles), and Unified Key Value Store (a file format for flexible and efficient
key-value data storage). These tools are contributions of this work some of which can be
useful in other research and development works beyond the scope of archive profiling.

87

CHAPTER 6

LEARNING ARCHIVAL HOLDINGS

In order to route lookup requests to the archives that are likely to return good results,
we need to learn about the holdings of various archives. This chapter addresses our first
research question, “RQ1: How to learn about the holdings and voids of an archive? ”. In
this chapter we only explore the first part of this question that concerns how to learn about
the holdings of an archive. In Chapter 7 we will address the second part of the question
that deals with archival voids.

We examine various strategies of learning about the holding of web archives. We have
the following four approaches to discover the holdings of an archive:

1. CDX Profiling – If an archive’s CDX files are available, then we can generate profiles
with complete knowledge of their holdings [28, 29].

2. Fulltext Search Profiling – Random query terms are sent to the fulltext search
interface of the archive (if present) and from the search response we learn the URIs
that it holds. These URIs are then utilized to build archive profiles [30].

3. Sample URI Profiling – A sample set of URIs are used to query the archive and
build the profile from the successful responses. This is quite wasteful, as <5% of
the sample URIs are found in any archive. AlSum et al. explored the Sample URI
Profiling, but only on Top-Level Domains (TLDs) [40].

4. Response Cache Profiling – This approach depends on the response data collected
by an aggregator over a period of time as queries are made to the archive. Cached
responses are analyzed to learn about their holdings. As a result the Response Cache
Profiling is based on what people were looking for as opposed to what is in the archives.
This approach is different from the first two in a way that it is a usage-based profiling
approach while the first two are content-based. Bornand et al. explored this approach
by building binary classifiers from LANL’s Time Travel aggregator cache data [66].

An archive profile has an inherent trade-off in its size vs. its ability to accurately describe
the holdings of the archive. If a profile records each individual original URI the size of the

88

profile can grow quite large and difficult to share, query, and update. On the one hand,
an aggregator making routing decisions will have perfect knowledge about whether or not
an archive holds archived copies of the page, or Mementos. On the other hand, if a profile
contains just the summaries of top-level domains (TLDs) of an archive the profile size will
be small but can result in many unnecessary queries being sent to the archive. For example,
the presence of a single Memento of bbc.co.uk will result in the profile advertising .uk

holdings even though this may not be reflective of the archive’s collection policy. In this
chapter we examine various policies for generating profiles, from the extremes of using the
entire URI-R to just the TLD.

6.1 ARCHIVE PROFILE DATA STRUCTURE

In simple terms an archive profile data structure is a key-value store with some additional
metadata. Keys are some form of a URI transformation (optionally, some other fields such
as date, language, etc.) and the value is an indicator of the holdings in the given archive
corresponding to the key. We discuss this further in Chapter 8.

Figure 40 illustrates a sample archive profile. Lines 1–4 of Figure 40 contain some
metadata about the archive and the profile itself. Line 3 describes that there is only one
field used as the lookup key which is SURT of the lookup URI. If there were multiple lookup
fields (space separated), “!keys” would hold an array of those filed names in the order they
appear in the data. The “type” attribute of the metadata describes that the document is a
URI-Key profile using the policy H3P1 (as discussed in Section 6.2). Lines 5–8 illustrate the
statistical data about the archive holdings. Each line of the data section holds one record
which has one or more key fields followed by a single line JSON as the value. There can be
an arbitrary number of attributes in the JSON block, but in this example we use the sum
of URI-M counts from all the profiles under each URI-Key as “frequency” and keep track of
the number of profiles they came from as “spread”.

6.2 URI-KEYS AND PROFILING POLICIES

URI-Key is a term we introduce to describe the keys generated by transforming URIs
based on various policies. This is used as a lookup key in the profile. Initially, we have
created policies that can be classified in two structural categories, HmPn and DLim. These
policies enabled a baseline for evaluation. Later, we introduced wild-card support in URI-
Keys to get away with rigid profiling policies and make them more flexible.

bbc.co.uk
.uk

89

1 !context ["https://oduwsdl.github.io/contexts/archiveprofile"]
2 !id {"uri": "http://www.webarchive.org.uk/ukwa/"}
3 !keys ["surt"]
4 !meta {"name": "UKWA Collection", "type": "urikey#H3P1", "...": "..."}
5 com,dilos,)/region {"frequency": 14, "spread": 2}
6 edu,orst,)/groups {"frequency": 3, "spread": 1}
7 uk,ac,rpms,)/ {"frequency": 124, "spread": 1}
8 uk,co,bbc,)/images {"frequency": 152, "spread": 3}

Fig. 40. Sample Archive Profile Data Structure

6.2.1 HMPN POLICY

Policies of the generic form HmPn mean that the keys will have a maximum of “m”
segments from the hostname and a maximum of “n” segments from the path. A URI-Key
policy with only one hostname segment and no path segments (H1P0) is called TLD-only
policy (as discussed in Section 3.9.2). H3P0 policy covers most of the registered domains
(that have one or two segments in their suffix [185], such as .com or .co.uk). If the number
of segments are not limited, they are denoted with an “x”, for example, HxP1 policy covers
any number of hostname segments with maximum of one path segment and HxPx means
any number of hostname and path segments. Note that the HxPx policy is not the same as
the URIR policy (as discussed in Section 3.9.1) as HxPx strips off the query parameters from
the URI, while the URIR policy stores complete URIs. For example, https://youtube.
com/watch?v=QNo5ZDvKuHg becomes com,youtube,)/watch?v=QNo5ZDvKuHg under URIR
policy and com,youtube,)/watch under HxPx policy.

6.2.2 DLIM POLICY

Policies of the generic form DLim are based on the registered domain name (RD), the
number of segments in subdomain (#S), path (#P), and query (#Q) sections of a URI, and
the initial letter of the path (PI). A generic template for this category of URI-Keys can be
given as “RD[#S[/#P[/#Q[/PI]]]]”. The DDom policy includes only the registered domain
name in SURT format, while DSub, DPth, DQry, and DIni policies also include sections of
the template up to #S, #P, #Q, and PI respectively. In addition to these, RD can be further
decomposed to form DSuf and DTld as domain suffix and top-level domain respectively.
DTld is equivalent to H1P0, but may or may not be the same as DSuf (e.g., .com can be

https://youtube.com/watch?v=QNo5ZDvKuHg
https://youtube.com/watch?v=QNo5ZDvKuHg

90

A canonicalized SURT
uk,co,bbc,news,)/images/logo.png?height=80&rotate=90%c2%b0&width=200

↓ URI FEATURE EXTRACTION ↓
Registered Domain (RD): uk,co,bbc,)/
Path Initial (PI): i
Subdomain (#S): 1
Path (#P): 2
Query (#Q): 3

↓ URI-Key GENERATION ↓
HmPn:

H1P0: uk,)/
H3P0: uk,co,bbc,)/
HxP1: uk,co,bbc,news,)/images

DLim:
DDom: uk,co,bbc,)/
DPth: uk,co,bbc,)/1/2
DIni: uk,co,bbc,)/1/2/3/i

Fig. 41. Illustration of URI-Key Generation

both a TLD and domain suffix, but .co.uk is only a domain suffix).

6.2.3 URI-KEY GENERATION

Figure 41 illustrates the process of generating URI-Keys from a URI. URIs are first
canonicalized then go through SURT. For HmPn policies, query section and fragment iden-
tifier of the URI are removed (if present), then depending on the values of “m” and “n”
any excess portions from the SURT URL are chopped off. The hostname segments are
given precedence over the path segments in a way that no path segment is added until
all the hostname segments are included, hence uk,co,)/images is an invalid URI-Key,
but uk,co,bbc,news,)/images would be valid if the hostname is news.bbc.co.uk or
www.news.bbc.co.uk. For DLim policies, the registered domain name is extracted with
the help of the Public Suffix list (which is updated periodically). Then depending on the
individual policies, segments from zero or more sections (such as subdomain and path) of
the URI are counted, and if necessary, the initial letter of the first path segment is extracted
(replaced with a “-” if not alphanumeric). These values are then placed inside the template
to form the URI-Key.

uk,co,)/images
uk,co,bbc,news,)/images
news.bbc.co.uk
www.news.bbc.co.uk

91

6.3 PROFILING THROUGH CDX SUMMARIZATION

We first collected CDX files from three different web archives of different sizes. Then
we generated 23 different profiles (with 17 HmPn policies, five DLim policies, and one
URIR policy) for each archive’s dataset to measure their resource requirement and routing
efficiency.

6.3.1 DATASETS

For the evaluation we prepared two types of datasets, archive profiles and query URI-Rs.
For profiles, we used three archives (Table 3):

1. Archive-It Collections – We acquired the complete holdings of Archive-It [137]
before 2013 and indexed the collections (in CDX format) to create a dark archive of
the service. The archive has 2,952 collections with more than 5.3 billion URI-Ms and
about 1.9 billion unique URI-Rs. It has more than 1.9 million ARC/WARC files that
take about 230 TB disk space in compressed format. We created URI-Key profiles
with various policies for the entire archive from the CDX files.

2. UK Web Archive – We acquired a publicly available CDX index dataset from
UKWA [242]. The dataset has separate CDX files for each year (starting from year
1996). We created individual URI-Key profiles from each of the early 10 years of CDX
files (from year 1996 to 2005) with different profiling policies. We also created a com-
bined profile by incrementally accumulating data for each successive year to analyze
the growth. These 10 years of CDX files have about 1.7 billion URI-Ms and about 0.7
billion unique URI-Rs.

3. Stanford University Archive – We acquired the complete CDX files of the Stanford
Web Archive Portal [234]. This dataset is relatively smaller than the above two and
has data ranging from the year 2013 to 2015. It has about 25 million URI-Ms and 12
million unique URI-Rs.

We created the second dataset by collecting four million URIs; one million random unique
URI-R samples from each of these four sources:

1. DMOZ Archive – URIs used in a study of HTTP methods [18].

2. IA Wayback Access Log – URIs extracted from the access log used in a study of
links to the Internet Archive (IA) content [37].

92

Table 3. Archive Dataset Size

Archive URI-Rs URI-Ms Size

Archive-It 1.9B 5.3B 1.8TB
UKWA 0.7B 1.7B 0.5TB
Stanford 12M 25M 8.3GB

Table 4. Presence of the Sample Query URI-Rs in Each Archive

Sample

(1M URIs Each)
Archive-It UKWA Stanford

Union of

{AIT, UKWA, SUA}

DMOZ 4.097% 3.594% 0.034% 7.575%

Memento Proxy Logs 4.182% 0.408% 0.046% 4.527%

IA Wayback Logs 3.716% 0.519% 0.039% 4.165%

UKWA Wayback Logs 0.108% 0.034% 0.002% 0.134%

3. Memento Aggregator Access Log – URIs extracted from the access log used in a
previous archive profiling study [40].

4. UKWA Wayback Access Log – URIs extracted from an anonymized sample of the
recent UKWA Wayback access logs.

We then checked to see how much of each sample set is archived in each archive (or
prevalence in statistical terms). Table 4 shows that out of 1 million sample query URI-Rs
from DMOZ only 40,969 (or 4.097%) URI-R are archived in Archive-It, 35,936 (or 3.594%)
in UKWA, and 341 (or 0.034%) in Stanford. The union of the archived URI-Rs is 75,745 (or
7.575%), almost same as the summation of the individual values, which shows there is little
overlap among these archives. The table also shows that none of the individual archives
have more than 5% of any sample set, which means the prevalence is <5% for any pair of
an archive and a sample set.

We also examined how much of the archived URIs from different sample sets overlap
in various archives. Figure 7 (Chapter 1) shows that few request URI-Rs are held in any
archive and very few are held in all archives. For example, there are only two URI-Rs in
1 million DMOZ sample URI-Rs that are archived in all the three archives and no archive

93

has more than 4.1% of the URI-Rs, while 924,255 (or 92.426%) URI-Rs are not archive in
any of the three archives as illustrated in Figure 7a.

6.3.2 PROFILE GROWTH ANALYSIS

In commonly used CDX files each entry corresponds to a URI-M1 (as described in Sec-
tion 2.7.4 of Chapter 2). The length of each line in a CDX file depends on the length of the
URI-R in it. Our experiment shows that the average number of bytes per line (α) in our
dataset is about 275, which means every one gigabyte of CDX file holds about 3.9 million
URI-Ms. Equation 1 approximates the pattern shown in Figure 42a where Cm denotes the
number of URI-Ms and Sc denotes the total size of CDX files in bytes.

Cm =
Sc
α

(1)

Figure 42b shows the relationship between URI-M Count (Cm) and URI-R Count (Cr)
in two ways; 1) for each year of UKWA CDX files individually as if they were separate
collections and 2) accumulated ten consecutive years of data one year at a time while each
time it recalculates total number of unique URI-Rs visited. The ratio of URI-M Count to
URI-R Count (γ) as shown in Equation 2 is indicative of the average number of revisits
per URI-R for any given time period. The value of γ varies from one archive to the other
because some archives perform shallow archiving while others revisit old URI-Rs regularly
to capture as many changes to those resources as possible [178]. In our dataset γUKWA=2.46
and γAIT=2.87. The accumulated trend better accounts for how archives actually grow over
time. It follows Heaps’ Law [97] as shown in Equation 3 where URI-Rs are analogous to
unique words in a corpus. K and β are free parameters that are affected by the value of
γ, but the actual values are determined empirically. For the UKWA dataset K=2.686 and
β=0.911.

γ =
Cm
Cr

(2)

Cr = KCβ
m (3)

URI-Keys are used as lookup keys in a profile. The number of URI-Keys is a function
of URI-Rs, not URI-Ms, hence increasing URI-Ms without introducing new URI-Rs does

1In our dataset Archive-It has 0.71% non-HTTP entries (such as DNS queries or malformed records) in
their CDX files while UKWA has no non-HTTP entries.

94

(a) URI-Ms Growth With CDX Size (b) URI-R Growth With URI-M Count

(c) Space Cost (d) Time Cost

Fig. 42. Growth and Costs Analysis for Different Profiling Policies in UKWA

not affect the number of URI-Keys, instead, it only changes the statistical values (such
as “frequency”) stored for the corresponding key. Figure 42c shows the number of unique
URI-Keys (Ck) generated for different numbers of unique URI-Rs (Cr) on different profiling
policies. Every profiling policy follows a straight line with a slope value (φpolicy) and zero
y-axis intersect because for zero URI-Rs there will be zero URI-Keys. For a given profile
policy, we define the ratio of URI-Key Count (Ck) to URI-R Count (Cr) as Relative Cost
(φpolicy) as shown in Equation 4. The Relative Cost varies from one archive to the other
based on their crawling policy. Archives that crawl only a few URIs from each domain
will have relatively higher Relative Cost than those who crawl most of the URIs from each
domain they visit. Table 5 lists φpolicy values for UKWA dataset.

95

φpolicy =
Ck
Cr

(4)

Figure 42d illustrates the time required to generate profiles with different policies and
different data sizes. Previously we used a memory based profiling approach, but now we use
a file based approach instead. The latter approach scales better and allows for distributed
processing. Our experiment shows that the profiling time is mostly independent of the policy
used, but we found that DLim policies take slightly more time than HmPn policies because
they require more effort to extract the registered domain based on the public suffix list.
We found that about 95% of the profiling time is spent on generating keys from URIs and
storing them in a temporary file while the remaining time is used for sorting and counting
the keys and writing the final profile file. Hence, a memory based key-value store can be
used for the temporary data to speed up the process. Also, when an archive has a high value
of γ, we can save significant amount of time by generating keys from each URI-R only once
then adjust the “frequency” according to the number of occurrences of the corresponding
URI-Rs. However, when profiles are generated on small sub-sets of the archive (for example,
for incremental updates) there is a lower chance of revisits in the small subset. The mean
time to generate a key for one CDX entry τ can be estimated using Equation 5 where T
is the time required to generate a profile from a CDX file with Cm URI-Ms. The value of
τ depends on the processing power, memory, and I/O speed of the machine. On our test
machine it was between 5.7×10−5 to 6.2×10−5 seconds per URI-M (wall clock time). As a
result, we were able to generate a profile from a 45GB CDX file with 181 million URI-Ms
and 96 million unique URI-Rs in approximately three hours.

τ =
T

Cm
(5)

Figure 43 illustrates the correlation among the number of URI-Keys 43a and profile
size on disk 43b for various collection sizes with various profiling policies. The policies are
sorted in the increasing order of their resource requirement. If these generated profiles are
compressed (using gzip [93, 112] with the default compression level), for bigger profiles they
use about 15 times less storage than uncompressed profiles, but result in a similar growth
trend. These figures are helpful in identifying the right profiling policy depending on the
available resources such as storage, memory, computing power. Here are some common
observations in these figures:

• For host segments less than three, path segments do not make a significant difference
as they are not included unless all the host segments of the URI are already included.

96

Table 5. Relative Cost of Various Profiling Policies for UKWA

Policy Relative Cost (φpolicy)

H1P0 <0.00001

H2P0 0.00026

H2P1 0.00038

H2P2 0.00056

DDom 0.00857

H3P0 0.00858

DSub 0.00876

H4P0 0.01340

H5P0 0.01368

HxP0 0.01371

DPth 0.01577

DQry 0.01838

DIni 0.06892

H3P1 0.11812

HxP1 0.16247

H3P2 0.25379

H3P3 0.34668

HxP2 0.36298

HxP3 0.49902

HxP4 0.58442

HxP5 0.64365

HxPx 0.70583

URIR 1.00000

97

(a) URI-Key Count (b) Profile Size

Fig. 43. Resource Requirement for Various Profiling Policies and Collection Sizes

Table 6. Confusion Matrix of Memento Routing

Actual

Present Absent

Predicted
Routed True Positives (TP) False Positives (FP)
Not Routed False Negatives (FN) True Negatives (TN)

• Keeping either the hostname or path segments constant while increasing the other
increases in the value, but the growth rate decreases as the segment count increases.

• The last data-point (HxPx) shows a different trend, it is not just one path segment
ahead of its predecessor (HxP5), but any path segments more than 5 are included in
it.

• Growth due to path segments is significantly faster than the growth due to hostname
segments.

• If a single path segment is to be included, it is better to include all host segments,
which provides more details without causing any significant cost overhead.

98

Table 7. Relative Cost, Precision, Specificity, and Accuracy of Profiling Policy Groups

Group Policies Cost Precision
Specificity and

Accuracy

G1 H1P0/TLD Bound by # of TLDs < 0.05 ≈ 0.01

G2 H3P0, DDom,
DSub, DPth, DQry

< 0.01 ≈ 2G1 ≈ 0.78

G3 DIni ≈ 2G2 ≈ 3G1 – 4G1 ≈ 0.88

G4 HxP1 ≈ 5G3 ≈ 5G1 – 7G1 ≈ 0.94

G5 Higher HmPn 0.4 – 0.7 Not Explored Not Explored

G6 URIR 1.0 1.0 1.0

6.3.3 ROUTING EFFICIENCY

To analyze the routing efficiency of profiles, we picked eight policies from the 23 policies
we have used to generate profiles for all three archives in our dataset. These policies are
TLD-only (H1P0), H3P0, HxP1, and all the five variations of the DLim policies. We then
examined the presence of resources in the archives for our four query URI sample sets, each
containing one million unique URI-Rs. Based on the profiling policy, a query URI-R is
transformed into a URI-Key then it is looked up in the URI-Key profile keys to predict its
presence.

When a sample set of URI-Rs is examined against an archive using a profile to route
the matching URIs to the archive, each URI from the sample set may fall in one of the four
categories; 1) present in the archive and routed to the archive by the profile (true positive or
TP), 2) not present in the archive and not routed to the archive by the profile (true negative
or TN), 3) not present in the archive, but routed to the archive by the profile (false positive
or FP), and 4) present in the archive, but not routed to the archive by the profile (Table 6).
For example, if the query URI (in SURT format) is uk,co,bbc,)/images/test.png and it
is examined against the profile illustrated in Figure 40 then it will be routed to the archive
because the profile has a matching key uk,co,bbc,)/images in it. In this case, if the query
URI is actually present in the archive it will be a true positive otherwise a false positive.
Similarly, if the query URI is uk,co,bbc,)/videos/test.mp4, it will not be routed by the
profile to the archive because the profile does not have a matching key. In this case, if

99

(a) Archive-It: Precision (b) Archive-It: Precision vs. Cost

(c) UKWA: Precision (d) UKWA: Precision vs. Cost

(e) Stanford: Precision (f) Stanford: Precision vs. Cost

Fig. 44. Routing Precision of Different Profiling Policies in Different Archives

100

(a) Archive-It: Specificity (b) Archive-It: Specificity vs. Cost

(c) UKWA: Specificity (d) UKWA: Specificity vs. Cost

(e) Stanford: Specificity (f) Stanford: Specificity vs. Cost

Fig. 45. Routing Specificity of Different Profiling Policies in Different Archives

101

(a) Archive-It: Accuracy (b) Archive-It: Accuracy vs. Cost

(c) UKWA: Accuracy (d) UKWA: Accuracy vs. Cost

(e) Stanford: Accuracy (f) Stanford: Accuracy vs. Cost

Fig. 46. Routing Accuracy of Different Profiling Policies in Different Archives

102

the query URI is actually present in the archive it will be a false negative otherwise a true
negative.

Prevalence =
|Sample URI-Rs Present in an Archive|

|Total URI-Rs in a Sample| (6)

Recallpolicy =
|URI-Rs Correctly Routed by Profilepolicy to an Archive|

|URI-Rs Present in an Archive|
(7)

Precisionpolicy =
|URI-Rs Correctly Routed by Profilepolicy to an Archive|

|URI-Rs Routed by Profilepolicy to an Archive| (8)

Specificitypolicy =
|URI-Rs Correctly Not Routed by Profilepolicy to an Archive|

|URI-Rs Not Present in an Archive|
(9)

Accuracypolicy =
|URI-Rs Correctly Routed or Not Routed by Profilepolicy to an Archive|

|Total URI-Rs in the Sample|
(10)

High values of true positives and true negatives indicate the ability of the profile to
accurately route or not route a lookup to an archive. However, a high value of false positives
indicates that in many cases the profile predicts that the lookup URI-Rs are present in an
archive, but they are not. This does not affect the client much, as the intent of a client,
usually, is to increase the Recall (to get as many Mementos as possible), but it costs the
aggregator and archives in the form of unnecessary work. In contrast, a high value of false
negatives indicates that in many cases the profile fails to predict the presence of Mementos in
an archive for the given lookup URI-Rs. This saves resources of the aggregator and archives,
but affects the ability of a client to discover all the Mementos of a query URI-R. Small profiles
(such as H1P0) remain fresh for long time, but yield a high FP value. However, detailed
profiles (such as HxPx) yield low FP, but become stale quickly as an archive crawls more
resources, hence require regular updates. The FN value does not depend on how detailed
a profile is, instead how much a profile knows about an archive’s holdings. A profile will
yield FNs if it has an incomplete knowledge of an archive (such as when the profile becomes
stale) or the profile is utilized in a way that the values of “frequency” and “spread” below
certain threshold are ignored.

To establish a baseline, we only check to see if the lookup key is present in the profile
and do not use the statistical values (such as their frequency) present in the profile. This
brings some false positives in the result, but no false negatives, hence we do not miss any
URI-Ms from the archive for the query URI-R. In other words, the Recall value is always
1.0. With this in mind, we can utilize some statistical measures to estimate the routing

103

efficiency:

• Prevalence – [(TP + FN)/(TP + TN + FP + FN)]
This is the ratio of the number of URI-Rs in the sample set that are present in the
archive to the total size of the sample set (as defined in Equation 6). Due to the sparse
nature of web archives, this value is often very low. In our dataset it is less than 0.05
(Table 4).

• Recall – [TP/(TP + FN)]
This value estimates how many URIs from the sample set that are present in the
archive are actually routed to the archive by the profile (as defined in Equation 7).
Since our dataset represents the complete knowledge of archives for a given time period
and we do not set a threshold on the values of “frequency” and “spread”, hence the
Recall is always 1.0.

• Precision – [TP/(TP + FP)]
This value estimates how many URIs from the sample set that are routed to the archive
by the profile are actually present in the archive (as defined in Equation 8). Since the
Prevalence value is low in our dataset, a small change in the percentage of FP affects
the Precision significantly, hence the Precision may not be very effective to estimate
the routing efficiency. In our dataset this value is below 0.35 for profiles ranging from
H1P0 to HxP1.

• Specificity – [TN/(TN + FP)]
This value estimates how many URIs from the sample set that are not present in the
archive are actually not routed to the archive by the profile (as defined in Equation 9).
Since the Prevalence value is low in our dataset, this becomes the significant measure
to estimate the routing efficiency as it tells how much unnecessary work a profile can
avoid. In our dataset this value is above 0.5 and often close to 1.0 for any profiles
other than H1P0.

• Accuracy – [(TP + TN)/(TP + TN + FP + FN)]
This value estimates how many URIs from the sample set are correctly routed or not
routed to the archive by the profile (as defined in Equation 10). The accuracy value
combines the essence of the Precision and the Specificity. In our experiment, there
are no false negatives, hence the Accuracy can be simplified as (TP + TN)/(TP +

TN + FP). Additionally, in our dataset, TP � TN due to the low Prevalence, the

104

Accuracy can further be approximated to ≈ (TN)/(TN + FP) which is Specificity.
As a result, due to the sparse nature of archives, the Accuracy is very close to the
Specificity.

Figure 7 (Chapter 1) and Table 4 are good indicators of why archive profiles are useful:
since all the three archives have <5% of any of the query sets, there would be many unnec-
essary queries if an aggregator simply broadcasted all queries to all archives. Essentially,
broadcasting would yield a high number of false positives.

As illustrated in Figures 44a, 44c, and 44e, from all three archives it can be seen that
the Precision grows when a profile with higher Relative Cost is chosen. Figure 44 shows
that DDom profile doubles the precision as compared to the TLD-only profile and the HxP1
profile brings five fold increment in the precision. These figures also show that inclusion of
subdomain count does not affect the results much as there are not many domains that are
utilizing more than one subdomain. Figures 44b, 44d, and 44f show that there is significant
gain in Precision with little increment in Relative Cost. The difference in the trends of
Figure 44 can be understood by means of the following factors:

• Small Prevalence values of the sample URIs (as shown in Table 4) affect the growth
in Precision (on y-axis) from one profile to the next.

• Small Prevalence also makes the Precision a less stable measure of the routing effi-
ciency as it can change significantly with a slight change in the percentage of false pos-
itives. This is why DMOZ sample has the highest Precision in UKWA (Figure 44d),
but IAWayback and MementoProxy perform better in the other two archives (Fig-
ures 44b and 44f).

• The UKWA uses a shallow crawling policy which results in higher Relative Cost (φ).
This increases the distance (on x-axis) from one profile to the next.

• The UKWayback sample is based on a recent Wayback access log of the UKWA. How-
ever, the UKWA dataset is older and may not completely reflect what the archive had
at the time when the access log was captured. Also, an access log shows what clients
are looking for in the archive rather than what the archive holds. For these reasons,
the Prevalence of UKWayback is 0.001 for UKWA (i.e., <0.1% of the sample URI-Rs
are archived in UKWA). Additionally, the UKWayback sample is biased towards *.uk
URI-Rs that is not the primary focus of the other two archives, which is why the
Prevalence is even smaller for the two archives (0.034% and 0.002%).

105

• The Stanford archive is a small and focused archive and <0.05% of any sample set
is archived in it. Hence, this low Prevalence causes instability in the Precision and
shows some unexpected behavior such as decreased Precision on increased Relative
Cost (Figure 44f).

The precision value is useful when the intent is to know what is in the archive. However,
from the Memento routing perspective with such a small prevalence value (<0.05) it becomes
more important to know which URI-Rs not to route to an archive. For this purpose we
measure the routing efficiency in terms of the specificity as illustrated in Figure 45. As
illustrated in Figures 45a, 45c, and 45e, from all three archives it can be seen that the
Specificity of the H1P0 profile is very poor and it grows significantly when a profile with
higher Relative Cost is chosen. Figures 45b, 45d, and 45f show the Relative Cost it takes to
increase the Specificity.

To combine the essence of the precision and the specificity, we also measure the routing
efficiency in terms of the accuracy as illustrated in Figure 46. As illustrated in Figures 46a,
46c, and 46e, from all three archives it can be seen that the Accuracy of the H1P0 profile
is very poor and it grows significantly when a profile with higher Relative Cost is chosen.
Figures 46b, 46d, and 46f show the Relative Cost it takes to increase the Accuracy. We have
explained earlier that due to the sparse nature of archives, the values of the specificity and
the accuracy are almost the same as shown in Figures 45 and 46.

Figures 44, 45, and 46 also show that some profiling policies are quite similar in the
Relative Cost and their corresponding Precision, Specificity, and Accuracy values. Based
on this assessment, we grouped some policies together in Table 7 to provide a simpler cost
and efficiency estimate. We took the average of all the values from different archives and
samples in each group to estimate the Specificity and the Accuracy of each group. However,
the Precision values were less stable (due to small prevalence), hence we provided a relative
range instead.

A URI-Key profile is more robust than a URIR profile because it can predict the presence
of resources in an archive that were added in the archive after the profile was generated.
For example, if a new image named Large-Logo.png is added under bbc.co.uk/images,
it is very likely that the archives that crawl BBC will capture the new image. The URI-
Key profile illustrated in Figure 40 will be able to predict the presence of the new resource
without any updates, but a URIR profile will need an update to include the new URI-R
before it can predict the presence of the new image.

Large-Logo.png
bbc.co.uk/images

106

6.4 PROFILING THROUGH FULLTEXT SEARCH

If a web archive provides fulltext searching in its collection, it can be leveraged to discover
the holdings of the archive. In this approach, we send some random query terms to the
archive and collect the resulting URIs returned from the archive. Although with each
successful response we learn some new URIs, the learning rate slows down as we go forward
because of the fact that some of the URIs returned in a response may have been already
seen in earlier queries. This follows Heaps’ Law [97].

With carefully chosen values of various advanced search attributes and selection of a
suitable list of keywords, we can affect the parameters of Heaps’ Law and maximize the
learning rate. In this section we analyze different fulltext approaches to discover holdings
of an archive. We also explore different ways to perform the search when the language of
the archive is unknown or a list of suitable keywords is not available for that language.

For our experiments we chose the Archive-It hosted North Carolina State Government
Web Site Archive collection2 which is the largest collection in Archive-It and provides fulltext
search. Since we have Archive-It data (up to 2013) hosted in our dark archive at Old
Dominion University (ODU), it was easier for us to perform the coverage analysis on this
dataset.

We started our experiment by searching for stop-words. For example when we searched
for the term “a” it returned 26M+ results, which is very close to the number of the HTML
resources in the collection up till March 2013. However, each page only contains 20 results,
hence, in order to learn all the 26M+ URIs we will have to make 1.3M+ HTTP GET
requests. Our goal was to make as few requests as possible to learn a diverse set of URIs
in the collection. Additionally, this approach cannot be generalized, as not all archives will
behave the same on stop-words.

In the next step we built static and dynamic word lists and searched for those words as
query terms. For each term we only record the URIs in the first resulting page and move on
to the next word in the list. Having a configurable pagination would have benefited us by
choosing a larger number of results per page, but Archive-It has it fixed to 20 results and
does not allow any changes.

1. Top Words – We collected top the 2,000 English nouns3 and used them as the
query terms. We accumulated the first page results to plot the learning curve, but

2https://www.archive-it.org/collections/194
3http://worddetail.org/most_common/nouns

https://www.archive-it.org/collections/194
http://worddetail.org/most_common/nouns

107

also extracted other information such as the result count for each search term. As
expected, these top terms yielded high values for the result count for each terms.
Additionally, each term yielded more than one page of results, hence no effort was
unsuccessful. We also observed that the response time is correlated with the result
count, so the same number of top terms would take longer to fetch than a random
word list.

2. Random Linux Dictionary – We ran the same procedure on a randomly chosen
set of 2,000 unique words from the built-in Linux dictionary. This time the average
number of results per terms was lower, but there were many terms for which the
collection returned no results or fewer than 20 (page size) results.

3. Dynamically Discovered Word List – The above two experiments were based on
the static lists of words. This static word list approach requires the knowledge of the
language (and field) of the collection to choose a static list of words for that language,
which may not be easily available. Additionally, the list would be finite and may not
be enough to discover a sufficient number of the collection holdings. To overcome this
issue, we build a model (discussed in Section 6.4.1) that can dynamically discover new
words from the searched pages and utilize those words to perform further searching.
We introduced different policies in the dynamic discovery model based on how the new
words are learned and how the next word for searching is chosen. We then analyzed
the learning rate and the number of HTTP requests for each policy.

6.4.1 RANDOM SEARCHER MODEL

To perform searches on a static or dynamic word list, we developed a general Random
Searcher Model (RSM) that can be configured to operate in one of the four modes with
the help of configurable Vocabulary Seeding and Word Selection policies. To understand
the model we discuss different data structures, policies, operation modes, and procedures
separately then put them together to describe the overall working.

Data Structure

The RSM has the following data structures to hold various intermediate statistics and states:

1. Vocabulary – A data structure to hold the list of words to be searched. Depending on
some policies it may or may not allow duplicates. This data structure should provide

108

the number of total or unique words in the list. The data structure should support
functions to overwrite the list, add more words to the list, pop a random word from
the list, and remove all occurrences of the popped word in the list.

2. SearchLog – A data structure to hold the record of each search attempt. It con-
tains the searched word, attempt result (success or failure), and any additional meta
information such as the response result count and newly discovered URIs. An imple-
mentation may choose to offload some results to a separate data structure or include
more attributes for analysis. This data structure should provide the number of total or
successful searches. The data structure should support functions to add new records,
querying if a given word is present, and randomly selecting a successful searched word.

3. ResultBank – A dictionary like data structure to hold all the discovered URI-Rs and
their respective memento counts. This data structure should provide the number of
total URI-Rs (or dictionary keys). The data structure should support functions to
add new records and iterate over all the records.

Policies

Policies control the behavior of the RSM. We have defined two different policies with various
valid configuration values as described below:

1. Vocabulary Seeding Policy – This policy controls how the Vocabulary is seeded
and how often. Valid values are:

• Static – The Vocabulary is manually seeded in the beginning with a static list of
search keywords. It allows seeding only once and the procedure terminates when
all the seeded keywords are consumed.

• Progressive – The Vocabulary is initialized with a few words, but it is aggressively
overwritten after each successful search with the newly discovered words, except
when there are no new words discovered.

• Conservative – The Vocabulary is initialized with a few words and new words
discovery is only performed when all the words from the Vocabulary are consumed.
The Vocabulary is only reseeded when it is empty.

2. Word Selection Policy – This policy controls how search words are selected from
the Vocabulary. Valid values are:

109

• Popularity Biased – Randomly select one word from the Vocabulary where the
probability of a word being selected is proportional to the term frequency in the
Vocabulary normalized by the total number of terms in the Vocabulary. A simple
implementation of this policy would consider the Vocabulary as a bag of random
words (with duplicates allowed) to select a random word from it. There are other
memory efficient approaches possible, but this simple approach illustrates the
concept naturally.

• Equal Opportunity – Randomly select one word from the list of unique words in
the Vocabulary.

Operation Modes

An operation mode is a valid combination of Vocabulary Seeding and Word Selection policies
(as mapped in Table 8). Not all combinations of the two policies are valid. We recognize
the following four as valid modes of the RSM :

1. Static – This mode operates on a static word list that is known in advance so it
does not have to make additional fetches to discover more words. However, finding a
suitable word list for a given collection could be difficult.

2. PopularityBiased – In this mode the searcher randomly picks a URI from the re-
turned result and fetches that page to discover new words. Once the words are fetched,
it randomly picks a word from that and repeats the search operation. In this way the
searcher has to fetch a page after every search attempt to search for the next word.
Selection of the words is random, but the duplicates are not removed so the words
with higher frequency in the page have higher chance of being selected.

3. EqualOpportunity – This mode works the same way as the PopularityBiased mode
does, but it picks the next word from the unique list of words so a rare word on the
page has the same probability of being selected as a high frequency one.

4. Conservative – The PopularityBiased and the EqualOpportunity modes have the
drawback of being twice as costly in terms of number of HTTP requests as compared
to a static word list of the same size. The reason for this is that after every successful
search, there is a page fetch to learn new words. However, this Conservative mode does
not throw away previously learned words and consumes each of them. It makes a page

110

Table 8. RSM Operation Mode Mapping With Policies

Operation Mode Vocabulary Seeding Word Selection

Static Static Equal Opportunity
PopularityBiased Progressive Popularity Biased
EqualOpportunity Progressive Equal Opportunity
Conservative Conservative Equal Opportunity

fetch to learn new words only when all the previously learned words are consumed.
This reduces the number of HTTP requests significantly.

Procedures

The RSM has the following public procedures:

• Initialize() – This method initializes a Random Searcher instance with supplied
configuration options and Vocabulary seed.

• TerminationCondition() – This method returns True if the conditions are met to
terminate the NextWord iterator. It returns False otherwise.

• NextWord() – This method pops the next word from the Vocabulary based on the
Word Selection Policy (and removes all the occurrences of the word in the Vocabulary,
if any). If the Vocabulary is empty and the terminating condition is not met then it
randomly picks a successful searched word from the SearchLog. This is a generator
function that can act as an iterator until the configured termination condition is met.

• Search() – This method searches the collection for a given search keyword and pop-
ulates the SearchLog and the ResultBank with appropriate values from the search
result. Depending on the configured policies it may also select a URI from the result
to extract words from it to seed the Vocabulary.

• ExtractWords() – This method fetches the page at the given URI, sanitizes it (by
stripping off the markup, scripts, and styles), tokenizes the text to split in non-empty
words, and returns the bag of words (duplicates included, if any) in the order they
appeared in the document.

111

(a) Flowchart of the Random Searcher Model

(b) An Example Illustration of the Random Searcher Model

Fig. 47. Random Searcher Model Overview

• GenerateProfile() – This method iterates over all the items in the ResultBank and
generates an Archive Profile based on the supplied profiling policy.

112

To run the Random Searcher an instance of the RSM is initialized with one of the
four possible modes, some initial seed words, termination condition configuration, tokenizer
pattern, and other configurations. Then the NextWord generator is iterated over to discover
next word for searching until it hits the termination condition. For every word, the Search
method is called which internally performs the collection lookup and updates various data
structures of the RSM instance. Once the iterator terminates, GenerateProfile method is
called to serialize collected statistics in an Archive Profile. An overview of the RSM is shown
in Figure 47a as a flowchart diagram and in Figure 47b as a working example illustration.

6.4.2 IMPLEMENTATION

We implemented the RSM in Python and made the code available publicly [6]. However,
due to the lack of a uniform search API across archives, the implementation is not generic
enough to run on any archive. The page scraping part of the code that extracts useful
pieces of information from the search result page and assembles them in a data structure
needs custom implementation for each archive. The Archive-It search interface has an
undocumented JSON API that we used to avoid HTML parsing. Our implementation has
some additional intermediate data structures and logging in place for the sake of analysis
which is not needed for production purposes.

6.4.3 RSM EVALUATION

To evaluate the RSM we estimated the search cost of different operation modes for discov-
ering certain portion of the archive holdings in terms of a given profiling policy. To evaluate
generated archive profiles we measured how much of the archive holdings we must discover in
order to gain a satisfactory Recall and corresponding routing efficiency for a given profiling
policy. In this analysis we have used four different profiling policies. Examples are derived
from the URI https://www.news.BBC.co.uk/Images/Logo.png?width=80&height=40.

• H1P0 – Only TLDs are used as keys (212 unique keys in the collection). E.g., uk)/.

• DDom – Only registered domain name is used as keys (91,629 unique keys in the
collection). E.g., uk,co,bbc)/.

• HxP1 – All host segments and one path segment are used as keys (1,724,284 unique
keys in the collection). E.g., uk,co,bbc,news)/Images.

113

Table 9. Cost Comparison of RSM Operating Modes

Operation Mode Query Cost HTTP Cost

Static C C

PopularityBiased C 2C

EqualOpportunity C 2C

Conservative C C + δ (where δ � C)

• URIR – SURTed URI-Rs are used as keys (30,800,406 unique keys in the collection).
E.g., uk,co,bbc,news)/Images/Logo.png?height=80&width=200.

Estimating Searches Needed

Figure 48 illustrates the projected estimate of the search cost for each of the four profiling
policies based on the initial 2,000 searches. Each graph is extended up to the 100% limit
of each profiling policy on the y-axis. For example, there are total 212 unique TLDs in the
collection, hence the upper y-axis limit in Figure 48a is set to 212. The RSM operation modes
in which an additional HTTP request is made to fetch a Memento to extract words causes
additional HTTP GET overhead. Table 9 shows the HTTP cost of each RSM operation
mode with respect to the corresponding query cost. The value of δ is quite small as compared
to C. In our experiments we found that for C = 2, 000 the value of δ was 8. Which means for
making 2,000 queries we only needed eight additional HTTP GETs to extract new words in
Conservative mode. The Conservative mode is an overall winner. It shows a higher learning
rate and does not require a static list of words to be supplied. It is also good because it
does not have much overhead HTTP request cost for the term discovery.

Profile Routing Efficiency

Unlike CDX analysis, a fulltext search based archive profile will often be created based on
partial knowledge of the archive holdings. This may cause incomplete Recall in Memento
routing, which means that an archive might have some Mementos unknown to the profile
and as a result it may not have a matching key in it to route the query there. Hence, it
is important to analyze the incremental changes in the confusion matrix as we know more
and more of the archive’s holdings. Table 6 illustrates the confusion matrix in the Memento
routing context. For this analysis we selected the first ten years of UKWA dataset as the gold

114

(a) H1P0 Profile (b) DDom Profile

(c) HxP1 Profile (d) URIR Profile

Fig. 48. Searches Needed vs. Required Coverage

dataset, then we extracted the unique URI-Rs from it and randomized it. The randomized
URI-R list was then split into ten equal chunks. We then profiled these chunks incrementally
using different policies to see how these policies perform against a sample set of query URIs
when we know only 10%, 20%, 30%, ... to 100% of the archive. We repeated this process
for four different query URI sample sets of one million each. In each case we calculated the
confusion matrix and plotted Accuracy vs. Recall graph to estimate the routing efficiency.
Accuracy here means how often an archive profile is correct in routing or not routing a query
to the archive.

Figure 49 shows that if the complete archive is known, we should choose higher order
profiles such as HxP1. The HxP1 profile has Accuracy almost as good as the URIR pro-
file. The cost of the HxP1 profile is less than one sixth of the cost of the URIR profile.

115

(a) DMOZ (b) IA Wayback

(c) Memento Proxy (d) UKWA Wayback

Fig. 49. Incremental Accuracy vs. Recall as a Function of Archive Knowledge

Additionally, the HxP1 profile has higher Recall than the URIR profile when the complete
archive is not known. However, since we cannot afford to lose much of the Recall, we favor
smaller profiles such as DDom when we have partial access to the archive (such as when
using fulltext search). The DDom profile (that has less than 1% cost as compared to the
URIR profile) can have about 0.9 Recall while correctly routing (or not routing) more than
80% of the URIs by only knowing 10% of the archive. Cases where only a tiny fraction of the
archive is known by sampling (such as when neither CDX is available nor fulltext search),
we favor the smallest profile H1P0/TLD-only to maintain an acceptable Recall value. Even
though the URIR profile always yields 100% Accuracy, it suffers from poor Recall. With
the complete CDX accessible, the URIR policy costs a lot compared to other policies. Ad-
ditionally, the URIR policy does not have any predictive powers for unseen URIs, hence

116

maintaining the freshness of the profile is challenging as the archives acquire more URI-Rs.

6.5 CHAPTER SUMMARY

In this chapter we outlined four approaches of learning an archive’s holdings: 1) CDX
Profiling, 2) Fulltext Search Profiling, 3) Sample URI Profiling, and 4) Response Cache
Profiling. We performed exhaustive analysis of the first two approaches, but left the other
two as those were explored by other researchers already. We briefly described the data
structure of archive profiles, defined the term URI-Key, and outlined numerous profiling
policies with varying levels of details. We described and illustrated the URI-Key generation
method for each profiling policy.

For CDX summarization we described various datasets that we collected. We described
various relevant statistical measures for evaluation. Then we evaluated the overlap among
archives, growth of profiles with different policies, and their cost vs. routing efficiency. We
found that the growth of the profile with respect to the growth of the archive follows Heaps’
law, but the values of free parameters are archive-dependent. With accuracy defined as
correctly predicting that the requested URI-R is present or not present in the archive, we
gained about 78% routing accuracy with less than 1% relative cost and 94% routing accuracy
with less than 10% relative cost without any false negatives. The registered domain profile
doubles the routing precision with respect to the TLD-only profile, while a profile with
complete hostname and one path segment gives ten fold routing precision.

For fulltext search profiling we described another set of datasets. We then introduced
our contribution called Random Searcher Model. We described its data structure, policies,
operation modes, procedures, and reference implementation. For evaluation we selected
four distinct and diverse profiling policies. Then we evaluated number of search operations
needed to discover certain fraction of holdings of an archive and the cost of these searches.
Finally, we evaluated the routing efficiency of profiles created using Random Searcher Model.
We concluded that the DDom profile (that has less than 1% cost as compared to the URIR
profile) can have about 0.9 Recall while correctly routing (or not routing) more than 80%
of the URIs by only knowing 10% of the archive.

117

CHAPTER 7

LEARNING ARCHIVAL VOIDS

In order to not route lookup requests to the archives that are not likely to return good
results, it can be useful to learn about the voids of various archives. This chapter addresses
our first research question, “RQ1: How to learn about the holdings and voids of an archive? ”.
In this chapter we only explore the second part of this question that concerns how to learn
about the voids of an archive.

In Chapter 6 we explored various means to identify and summarize resources that an
archive holds. Knowing about the summary of holdings of an archive allowed us to improve
Memento routing accuracy without any false negatives. In this chapter we explore various
means to identify resources that are not present in an archival collection or a web archive
is not willing to serve. This will further improve the routing accuracy by reducing false
positives.

7.1 INTRODUCTION AND MOTIVATION

We introduce the term Archival Voids to describe what is missing from a web archive as
opposed to Archival Holdings that describe what a web archive holds. This can be defined as
a function that takes two arguments, a URI Key and a web archive, and returns the measure
of the archival void under the given URI scope (e.g., a TLD, a domain, or a domain name
with a path prefix) in the archive. However, a reliable estimate of a void required knowing
the set of URIs under the scope that ever existed and the set of URIs under that scope that
are present in the archive. Knowing the cardinalities and overlap or difference of these sets
is often not practical as it might require crawling a whole domain or TLD. However, in some
cases it is possible to estimate the archival voids. For example, a webmaster who knows all
the URIs of a website with finite resources can query a web archives to know how many of
those resources are present in or absent from the archive. In some cases, it might be possible
to estimate the number of URIs in scope by querying a public search engine and extracting
the number of hits, but this number may not be reliable as it may not contain historical
pages or non-textual resources. That said, in this work we are generating an archival voids
profile based on what a web archive knows, so in this case we will only report portions of
the web that have zero resources archived/accessible and are requested frequently.

118

“Why do we care about archival voids?” This is an obvious question to ask, especially
after knowing what is present in an archive. One might argue that if we already know
what is present in an archive then everything else can be considered to be missing from
the archive. This statement will be true if we had a complete knowledge profile (which
we already discussed in Chapter 6 that it is not practical and has its own issues when it
comes to freshness). On the contrary, if we had an archival holdings profile based on URI
sampling then we may not have an accurate knowledge of what is present in the archive,
hence we cannot deduce what is not present in it. Similarly, when we have a summarized
profile (using one of the profiling policies discussed in Chapter 6), we may conclude many
URIs to be present in an archive, but they might be absent from it (i.e., false positives).

To understand this, lets assume that an archive holds resources at paths “/a/1”, “/a/2”,
“/a/3”, “/b/1”, and “/b/2” under “example.com” domain. This needs five different keys in
the profile to describe these holdings, but we can summarize it as “com,example)/a/*” and
“com,example)/b/*” (here we are using wildcard character to illustrate that we have all
variations at the path depth 2). While this summary ensures that we do not assume “/c/1”
is present, it does suggest that “/a/1/z”, “/a/4” and “/b/3” (and many others) are present.
If we could list or summarize resources that applications might be interested in, but are not
present in the archive, we can further improve the accuracy by reducing false positives.

An aggressively summarized archival holdings profile improves the freshness, but inher-
ently introduces many false positives. An archival voids profile can compensate for that by
identifying those false positives and explicitly denying their presence in the archive. This
means an archival holdings profile and an archival voids profile can work together as op-
posing forces to find the sweet spot for an increased routing accuracy while minimizing the
profile size and maximizing freshness.

An archival voids profile has some use cases beyond Memento routing. For example,
an archive can identify voids in its collections to crawl those resources and fill the cavities
while those resources are still live on the web. Another use case could be public disclosure
of resources that an archive does not want to collect/serve due to their collection policies.
Moreover, it can be helpful in coordinating with other archives, like IIPC members do. For
example, if an archive has a void in a specific URI space, but another archive has holdings
for the same, then they have complementary holdings.

7.2 SOURCES OF TRUTH

The URI space is infinite and the web is vast. Many people have attempted to estimate

119

the size of the web at different times and have come up with different numbers from a few
billions to a few trillions (as discussed in Section 3.1 of Chapter 3). However, knowing the
size of the web and web archive holdings can only lead us to estimating how much of the
web is not archived. If we want to know what sections of the web are not archived, we need
to know all the existing URIs, not just their number. Knowing URIs of all the existing
resources on the web or creating a representative sample of the web is hard. However, we
can sample URIs from certain sources (e.g., DMOZ, social media, or access logs) that are
of interest for a specific application, while knowing that these samples will have their own
purposes and biases. We can create archive profiles of archival voids in the following ways:

• Perform lookups of sample URIs in an archive and record all the URIs that are not
archived.

• Use access logs of a Memento aggregator or the archive itself to identify resources that
are absent from an archive.

• Use URLs from the access control lists (ACL), approved take down requests, resources
blocked by robots.txt, and domains/TLDs blocked by an archive’s policy.

URIs collected by the means listed above can be summarized to form archival voids
profile. In the previous chapter we described Random Searcher Model (RSM) (Section 6.4.1)
to learn about the holdings of an archive using fulltext search. However, fulltext searching
is not a suitable technique for archival void detection because it only returns resources that
are present in an archive. In this chapter, we only investigate archival voids profiling using
access logs of an archive. Other approaches are either inefficient or beyond our abilities
(e.g., we do not have access to archiving policies or ACLs of any web archive).

7.3 EVALUATION

To evaluate our process for estimating archival voids, we use access logs of a web archive.
We extract URI-Rs from the access logs and identify URI-Rs that have always returned “404
Not Found” responses (ignoring any “3xx” or “5xx” responses). Then we filter URI-Rs out
that are not accessed frequently, so that we profile only the popular resources. Figure 68
(in Chapter 8) shows that there are many URIs that are accessed frequently, but are not
archived. Being able to summarize them can improve routing efficiency.

120

Table 10. Arquivo.pt Access Logs Summary

Feature Value

Number of files (1 file per day) 2,220
Total size 461G
Total size (GZipped) 37G
Total lines (requests) 1,647,573,303
Logs start date 2013-12-02
Logs end date 2019-12-31
Missing date (filled with an empty file) 2016-09-08
Memento support start date 2016-06-03
Log configuration changed (a field added) 2019-09-17
Major replay system upgrade (fixed many issues) 2019-11-18
TimeMap endpoint changed (/timemap/*/ → /timemap/link/) 2019-11-18

7.3.1 ACCESS LOGS DATASET

With the generous support from Arquivo.pt, we have access to over six years of their
web archives’ access logs. Table 10 summarizes the access logs data we acquired. These
log files contain about 1.6 billion records, but not all of these records are Memento related.
Memento support was added to Arquivo.pt in June 2016. To analyze these access logs we
created an access log parser with unique features for web archive access logs (as described
in Section 5.5 of Chapter 5).

7.3.2 ACCESS PATTERNS

Figure 50 illustrates daily and monthly access patterns of Arquivo.pt. There is a sig-
nificant increase in traffic for last few months of a 2017 and for the most part of 2018.
On further investigation on user-agents and status code distribution, we found that this
increase in traffic was primarily from Googlebot and a small portion of it was coming from
YandexBot. Together, these two bots were responsible for over 80% of the traffic.

On November 23, 2018, Arquivo.pt updated their robots.txt file to exclude all the
bots from accessing their resources under “/wayback” path under which their archival replay
operates. In Figure 51 we illustrate two versions of their robots.txt from the same day,
on which the latter shows corresponding change made to the file. The timing of this change

Arquivo.pt

121

(a) Daily Arquivo.pt Access Log Records

(b) Monthly Arquivo.pt Access Log Records

Fig. 50. Access Patterns in Six Years of Daily Log Files of Arquivo.pt

corresponds to the drop in traffic coming from search engine bots.
Furthermore, we noticed an increased bot activity in 2019 that attempt to access Ar-

quivo.pt’s robots.txt file many times every second. These requests are coming from many

122

1 $ curl https://web.archive.org/web/20181123104043id_/https://arquivo.pt/robots.txt
2 User-agent: Arquivo-web-crawler
3 Disallow: /wayback
4

5 User-agent: *
6 Disallow: /nutchwax/search
7 Disallow: /search
8

9 $ curl https://web.archive.org/web/20181123125853id_/https://arquivo.pt/robots.txt
10 User-agent: Arquivo-web-crawler
11 Disallow: /wayback
12 Disallow: /noFrame/replay
13

14 User-agent: *
15 Disallow: /wayback
16 Disallow: /noFrame/replay
17 Disallow: /nutchwax/search
18 Disallow: /search

Fig. 51. Arquivo.pt Excluded Bots from Accessing Its Archival Replay on November 23,
2018

different locations, and some of those hosts belong to Google. They all have the same re-
quest signature (i.e., the same request URI, user-agent, and referrer). While we do not fully
know the purpose and origin of these requests yet, it does not concern us much because the
requests are not about mementos or their replay system, so they are out of our scope for
this work.

Table 11 shows most frequent URIs that were accessed at least 10,000 times from Ar-
quivo.pt over the period of six years. While their own domain fccn.pt and some other
globally popular websites are present in this list, the high frequency of some less obvious
resources suggest that they are perhaps coming from some browser add-ons or some pages
that some people/tools open often where these resources are embedded.

Table 12 describes how often resources from various TLDs were accessed from the archive
each year. The top five TLDs include “.pt”, “.com”, “.org”, “.net”, and “.eu”. When
preparing these statistics, we removed any TLDs that did not appear in all years as they
were insignificant, and often malformed entries. This table only shows statistics on requests
that are related to a memento (i.e., they have a URI-R in their path). Such requests can
be URI-Ms, URI-Gs, or URI-Ts. The grand total is a little over one billion requests, which
is two thirds of the total number of requests in their logs. Numbers under the 2018 column
are larger than other years due to increased activity from search engine bots in the year
2018. The “.au” TLD shows an interesting trend as it was not as popular as some of the

fccn.pt

123

Table 11. Most Frequently Accessed Resources from Arquivo.pt

URI Count

fccn.pt/ 102,953
google.com/ 44,673
youtube.com/ 29,418
facebook.com/ 16,778
connect.facebook.net/en_us/sdk.js 16,462
discovery.dundee.ac.uk/admin/.../editor/contributiontojournaleditor.xhtml 14.608
tripadvisor.com.tr/cookiepingback?early=true 13,556
publico.pt/ 13,022
lamonitor.com/ 11,901
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943b.js 11,781
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943a.js 11,041
youtube.com/watch 10,563

other TLDs below it, but search engine bots seemed more interested in it in the year 2018,
which made it go significantly up in the table. This suggests the need for periodic updates
of archival voids profiles as the demand of certain sections of the web changes over time.

Considering TimeMaps, being one the most accessed resources by Memento aggregators,
we decided to see what other user-agents are interested in them. There were about 42
million TimeMap requests in their logs. We found that LANL’s TimeTravel Service is the
largest source of traffic to Arquivo.pt’s TimeMap endpoint. The first few months after
Arquivo.pt added Memento support LANL’s aggregator was making a significant number of
requests, but it slowed down after a few months. For the first few months LANL was using
an old Memento aggregator written in Java, which was later replaced by a new code that
utilizes a classifier and an improved caching stack. The increased traffic during the first
few months was likely caused by the cache front-loading and data collection for training
the classifier. The second source of traffic was our own MemGator instance, running at
Old Dominion University. There is a spike in July 2018, from our service, because someone
used our service to access TimeMaps of a long list of URIs, which changed our regular
usage pattern significantly. OldWeb.today uses our MemGator tool on its own servers to
reconstruct Mementos in old browsers, which was another significant source of traffic to
TimeMaps. Other sources include a variety of user-agents, often pointing to cURL, HTTP
libraries in different languages, or research projects. Two notable user-agents among them
which caused increased traffic on certain months pointed to an in-house script of Arquivo.pt

fccn.pt/
google.com/
youtube.com/
facebook.com/
connect.facebook.net/en_us/sdk.js
discovery.dundee.ac.uk/admin/.../editor/contributiontojournaleditor.xhtml
tripadvisor.com.tr/cookiepingback?early=true
publico.pt/
lamonitor.com/
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943b.js
static.tacdn.com/js3/src/modules/component/bounceusertracking-v21915390943a.js
youtube.com/watch

124

Table 12. Yearly Access Frequency of Top TLDs in Arquivo.pt

TLD 2014 2015 2016 2017 2018 2019 Total

.pt 1,769,211 5,638,317 42,105,411 139,685,874 455,617,209 75,585,184 720,401,206

.com 188,937 1,041,797 12,113,651 84,960,808 122,007,623 26,912,173 247,224,989

.org 14,594 76,424 1,106,144 5,383,964 35,025,928 2,411,604 44,018,658

.net 17,035 74,222 167,770 7,421,125 18,903,068 2,938,864 29,522,084

.eu 1,089 19,539 388,764 2,727,154 20,129,910 1,346,343 24,612,799

.au 10 189 815 30,275 4,147,213 92,882 4,271,384

.gov 172 3,258 16,502 485,699 1,930,423 479,466 2,915,520

.uk 5,061 3,920 14,400 391,839 1,364,946 343,796 2,123,962

.edu 627 5,945 16,230 192,558 1,385,982 291,992 1,893,334

.br 5,901 39,667 329,656 132,944 1,030,141 266,208 1,804,517

.ru 442 637 2,666 113,716 1,179,413 95,298 1,392,172

.de 564 2,613 22,047 143,661 737,228 444,187 1,350,300

.io 9 1,501 24,598 46,006 1,150,983 79,497 1,302,594

.pl 2 743 5,787 61,107 1,071,524 116,270 1,255,433

.int 160 894 2,617 97,603 731,551 204,840 1,037,665

.fr 149 3,009 19,283 142,771 644,848 195,730 1,005,790
OTHERS 34,717 125,950 171,235 721,084 3,335,357 1,441,533 5,829,876

ALL 2,038,680 7,038,625 56,507,576 242,738,188 670,393,347 113,245,867 1,091,962,283

(which we believe they use for periodic service quality/health check) and a MediaWiki bot,
called WaybackMedic [79], that fixes broken links.

7.3.3 SOFT-404 TIMEMAPS

To build an archival voids profile from access logs, it is important to isolate records that
have never been “200 OK”. When we tried to see the distribution of TimeMap responses
over different status codes, we found an insignificant number of “404s”, except in the last
two months. This was counter intuitive because our MemGator logs suggest that in more
than 96% requests Arquivo.pt returns no mementos in its TimeMap as shown in Table 20
(Chapter 8). After further investigation, we found that their old replay system had bugs,
causing it to return Soft-404 TimeMaps (as described in Section 2.1.4 of Chapter 2), until
it was upgraded on November 18, 2019.

Now we had two choices, either profile only the last six weeks of data or somehow identify
Soft-404 responses. Logs do not contain the response body, so we could not do much about

125

Fig. 52. Monthly TimeMap Access of Arquivo.pt from Various Sources

classifying responses. However, these access logs contain number bytes they returned in
each response. We could think of two possibilities of what their TimeMap response might
have been for resources they do not have any memento of: 1) there could be a plain message
saying something like “the resource is not found”, or 2) the response included the URI-R one
or more times along with some other template body. In the first case, number of bytes will
be exactly the same for all the failed TimeMap requests, but we did not see a single byte size
over-represented. In the second case, number of bytes in response will be a linear function
of the size of the request URI as shown in Equation 11. In this equation K represents the
number of times URI-R appeared in the response and C is the constant size of the template
body.

Response Bytes = K ∗ URI-R Size+ C (11)

To investigate our hypothesis we checked for TimeMap requests in December 2019 access
logs (when the Soft-404 issue was fixed) to find resources that are consistently returning

126

Table 13. Soft-404 TimeMap Response Bytes

Timestamp Request Bytes

1546885931 /wayback/timemap/*/http://matkelly.com/wail 222
1546885968 /wayback/timemap/*/http://matkelly.com/wail/ 225
1547238957 /wayback/timemap/*/http://matkelly.com/wail 222
1547239466 /wayback/timemap/*/http://matkelly.com/wail 222
1547239877 /wayback/timemap/*/http://matkelly.com/wail 222

1 <https://arquivo.pt/wayback/timemap/*/http://matkelly.com/wail>;
rel="self"; type="application/link-format",↪→

2 <https://arquivo.pt/wayback/http://matkelly.com/wail>; rel="timegate",
3 <http://matkelly.com/wail>; rel="original"

Fig. 53. A Potential Soft-404 TimeMap

404s and checked responses corresponding to them in the past logs. Table 13 shows Soft-
404 records of one such resource. In this table all the rows have a consistent number of bytes
(222) except the second one (225). However, the second row also has a trailing forward slash
in its URI-R, which is missing from the other rows. This was a clear indication that the
URI-R was repeated three times in the Soft-404 response body, which increased the byte
size of the response by 3 when only one extra character was added to the URI-R. Now,
we knew the value of K = 3 and the size of URI-R; using Equation 11 we can compute
C = 150. With this insight, we tried it on some other requests and found it working, which
gave us more confidence.

In Figure 53 we tried to reconstruct what the Soft-404 response might have been, which
matches our calculated numbers and looks like a reasonable representation. From this
response we think we know the nature of the bug in their code. They, were perhaps not
checking for the existence of any mementos for a given URI-R before generating the response.
Instead they were creating the obvious initial lines of the response and then looping over all
the mementos, which would loop zero times if there were no mementos and only the initial
lines will be returned.

With this ability to identify Soft-404s reliably, we went through all the TimeMap requests

127

Table 14. Status Code Distribution of TimeMaps in Arquivo.pt Access Logs

Status Requests

200 2,614,615
301 2,455
302 224,535
400 98,267
404 38,615,290
429 42,720
500 134,858
503 1,015

TOTAL 41,733,755

and fixed the status code (“404” for “200”) in a copy of logs. We used these amended logs
for further analysis.

7.3.4 STATUS CODE CHANGES OVER TIME

To ensure that we only profile URIs that never returned a successful response (after
amending Soft-404s), we decided to investigate how often URIs change from one status code
to the other. In the case of a URI-M there are many status codes possible, both due to
observed status codes from the origin and the state of the replay server. However, in the
case of a TimeMap we anticipated a limited number of different status codes. Actual status
code distribution of TimeMaps is shown in Table 14. If there are no mementos for the given
URI-R, the status should be 404, otherwise 200. In rare cases we expect 5xx status codes,
in case the server is facing any issues. However, the last two months of data had many
302 responses as well. On further investigation we found that when Arquivo.pt upgraded
their replay system, they also changed some of their service endpoints (in this case, their
TimeMap changed from /timemap/*/ to /timemap/link/), for which they put redirects in
place. In addition to this, they also had a few 301 responses for certain TimeMaps where the
URI-R contained Facebook’s tracking token in the query parameter, which they redirected
to a URI-R without the tracking token. After knowing this, we removed all the redirect
responses because they were not adding anything to our assessment of the popularity or
unavailability of resources.

128

After this cleanup we sorted entries primarily on their canonical representation and a
secondary sort on their time, so that we can know how each URI changed from one status
to the other. We were expecting that a few resources that were 404 before would become
200 when they are eventually crawled and are made available and a few resources might go
the other way if they are taken down for some reason. Other status code transformations
were expected to be less likely (e.g., the server returning 5xx response occasionally).

However, when we analyzed our data, we found that there were many fluctuations
between 200 and 404, where some resources changed their status codes back and forth
hundreds of times. It turned out that it was caused by lack of proper URI normaliza-
tion/canonicalization (see Section 2.6.1 of Chapter 2). For example, when a TimeMap was
requested for apple.com they returned 200, but for Apple.com or APPLE.COM they returned
404 instead. We thought about a few approaches to amend this effect as well, but that could
change our result in ways that can be harmful, so we decided to exclude all the requests that
include any upper case letter in the hostname portion of their URI-R and started over. After
excluding entries with any upper case letter in their hostname the number of fluctuations
went down, but there were still many entries with hundreds of fluctuations back and forth
between 200 and 404. We concluded that lack of URI canonicalization was not limited to
just hostnames in Arquivo.pt, but perhaps they had little to no canonicalization in place.

After that we decided to work with the dataset without any canonicalization or filtering,
considering each URI-R in the logs as an independent resource. This means we will have
many non-canonical URIs that will always report 404 while their corresponding canonical
version may or may not behave the same way. This may increase the size of our void profiles,
but we expect the prevalence of many unique non-canonical URI-Rs to be small, which may
fall below the threshold to be included.

Table 15 summarizes status code fluctuations of URI-Rs in the access logs of Arquivo.pt.
There are 15,502,081 unique non-canonical URIs that have always returned the 404 status
code and 680,328 URIs have always returned the 200 status code. We believe that the
number of URIs returning 200 status code would have been a little larger and 404 status
code a little smaller if Arquivo.pt were to exercise URI canonicalization from the beginning.
There were 36,447 URIs that returned 404 status code in the past, but later started to
return 200 while there were only 685 URIs that gone from 200 to 404. These numbers
confirm our intuition about more URIs becoming available over time while a few of the
existing resources disappearing (for example, blocked or taken down after reports or policy
reviews). This table does not reflect how many times and for how long certain status codes

apple.com
Apple.com
APPLE.COM

129

Table 15. Status Code Fluctuations of URI-Rs in Arquivo.pt Access Logs

Status Codes Over Time URI-Rs

404 15,502,081
200 680,328
404,200 36,447
200,404 685
200,404,200 648
404,200,404 48
404,200,404,200 43
200,404,200,404,200++ 40

remained associated with a given URI.
While analyzing data for status code fluctuations without any URI canonicalization

we found that one specific URI was still exhibiting about 150 fluctuations back and forth
between 200 and 404 status codes. On further investigation we found that it was http:

//www.fccn.pt/ (this domain belongs to Arquivo.pt) which appeared a total of 102,799
times in the access log and 88,807 times with status codes 200 or 404. This URI returned
200 status code only 105 times while 404 status code 88,702 times. We further investigated
the status code fluctuation pattern for this URI and found that it would return 404 status
code hundreds of times in a row with occasional 200 status code every once in a while.
It turned out that the server always returned the 404 status code for requests coming
from a specific IP address which has the “Mozilla/5.0+(compatible; UptimeRobot/2.0;

http://www.uptimerobot.com/)” user-agent, but the 200 status code to everyone else (such
as MemGator or the TimeTravel Service). From the user-agent string we can tell it is a server
health check service which periodically polls specific resources, but we do not know why the
server behaves differently for this user-agent.

7.3.5 ROUTING ACCURACY

After we identified most frequently accessed resources that have never returned a suc-
cessful response for any of their canonical or non-canonical URI-Rs, we created archival void
profiles with these. Table 16 shows the repetition breakdown of the number of URIs that
have always returned the 404 status code. There are over 13 million canonicalized URIs that

http://www.fccn.pt/
http://www.fccn.pt/

130

Table 16. 404-Only URI-R Repetitions in Arquivo.pt Access Logs and False Positive Re-
duction Due to the Archival Void Profile

Repetitions URI-Rs MemGator Requests Saving %

1s 13,673,599 64.67
10s 698,959 17.00
100s 2,319 8.42
1,000s 99 2.85
10,000s 2 0.00

have always returned the 404 status code, but each of them appeared only 1–9 times while
about 0.7 million 404 URIs appeared 10–99 times. The long-tail of low frequency URIs are
not suitable for profiling voids as they will increase the size of the profile disproportionately.
For example, going from the request saving of 8.42% to 64.67% it would require an increase
of about four orders of magnitude in the number of URIs in a voids profile. An attempt to
use less detailed profiling policies to reduce the size of the profile would introduce false neg-
atives. However, the last few rows of the Table 16 represent only a few URIs that have been
requested thousands or tens of thousands of times and have always returned the 404 status
code. Creating a void profile with these would cut the false positives down significantly.

There are over seven million entries in the Arquivo.pt access logs that originated from
the MemGator server running at ODU. We analyzed the percentage of requests that could
have been avoided if archival voids profiles of various frequencies were made available based
on the access log alone. Table 16 shows that about 2.85% false positive requests could
have been avoided by only profiling URIs that have appeared thousands of times and have
always returned the 404 status code. This saving could have been around 8.42% if we
included URIs that were repeated more than hundreds of times. We have reported lower
bounds to avoid any false negatives while we believe that the numbers would have been even
better if Arquivo.pt had a proper URI canonicalization in place from the beginning.

7.4 WHO SHOULD PROFILE ARCHIVAL VOIDS?

It is very important to keep the profile of archival voids fresh, otherwise false negatives
will increase very quickly. Unlike archival holdings profiles, aggressively reducing the URI
key size can be harmful in archival voids profiles as users will fail to discover many resources

131

that are present in a web archive.
An archival voids profile is expected to complement an archival holdings profile, so the

entries about what is missing can be very specific. However, it is possible to use an archival
voids profile independently, and is ideal for large web archives such as the Internet Archive.
If an archive is going to return good results for most of the requests, then it will be wasteful
to profile its holdings for the sake of routing. Knowing what it does not contain or is not
willing to serve is a more compact way to improve routing accuracy for such web archives.

In 2015, a Twitter bot called ICanHazMemento was launched which polls Twitter pe-
riodically to fetch new Tweets that contain the hashtag “#ICanHazMemento” and a URI in
their conversation chain and replies to them with a URI-M, pointing to a memento of the
URI in a web archive [197]. To find a suitable URI-M, it would perform a lookup in LANL’s
TimeTravel service and link back to it. If it does not find any mementos for the URI-R, it
attempts to save the resource in one or more archives and then tweet about them. How-
ever, the TimeTravel service had caching in place, so it would fail to recognize that a new
memento was created for the resource it returned “404 Not Found” response and cached
it a moment ago. Consequently, users following the link posted as a reply to their tweets
will fail to access a memento that was created. The issue was noticed and was fixed soon
after by configuring the TimeTravel service to not cache “404” responses. An archival voids
profile generated by a third party can have a similar issue.

Because of the potential danger of false negatives due to stale archival voids profiles,
it is recommended that an archival voids profile is generated by an entity that is close
to the source of truth (e.g., a web archive itself). When third parties (e.g., a Memento
aggregator) generate such profiles, they should add very specific entries and should update
the profile frequently. Also, they should only add resources in such profiles when they have
gained enough confidence that the resource is indeed missing and has very little chance to
be available anytime soon (e.g., due to successive failure responses of frequently queried
resources).

7.5 RECOMMENDATIONS

Based on our assessment, we have some recommendations for those generating such
profiles (most likely, web archives themselves or Memento aggregators):

• Keep archival voids profile separate as a paginated resource so that it can be up-
dated and consumed independently and more frequently (which is also a more logical

132

approach because the data source for the holdings profile would primarily be CDX
indexes while voids profiles will be generated using access logs and collection policies).

• Be more specific in including URIs in the voids profile and include shorter URI keys
only when the confidence is very high or a domain or TLD is blocked by the collection
policy (e.g., pornographic TLD “.xxx”).

• Update frequently from the list of take down requests from domain owners or govern-
ments.

• Include only resources that are high in demand, but missing or prohibited, because
listing items that no one is requesting for is not going to benefit in saving unnecessary
traffic while exposing more information in public and making the profile big.

On the utilization side proper order of evaluation will be important when there are
many competing URI keys for the lookup URI in both the archival holdings profile as well
as archival voids profile with different host/path depths.

7.6 CHAPTER SUMMARY

In this chapter we defined and discussed Archival Voids and established a means to
represent portions of URI spaces that are not present in web archives. With the help of
examples we explained the purpose of creating archival void profiles and illustrated how it
works in conjunction with the archival holdings profile in a hierarchical manner to describe
holdings and voids in more specific portions of the URI spaces. We discussed various sources
of truth that can be used to create archival voids profiles. For evaluation we used access logs
from Arquivo.pt to create an archival voids profile and analyzed it against our MemGator
access logs. In the process we described access patterns in Arquivo.pt and surfaced various
corner cases and issues that were present in it. We discussed prevalent Soft-404 TimeMaps in
the access logs for many years and techniques we used to remedy that in order to make a more
meaningful analysis of the dataset. We discussed the distribution of HTTP response status
codes in the access logs and reported how these status codes changed over time for various
URIs. We evaluated the routing accuracy against various archival voids profiles created from
these access logs and found that we could have avoided more than 8% of the false positives
(on top of the accuracy we got from archival holdings profile as discussed in Chapter 6)
if Arquivo.pt were to provide an archival voids profile based on URIs that were requested

133

hundreds of times and never returned a success response. Finally, we discussed who should
create archival voids profile and provided some guidelines based on our understanding.

134

CHAPTER 8

SERIALIZATION AND DISSEMINATION

In this chapter we describe our extended form of SURT that we use as URI-Keys in our flex-
ible archive profiles. We also describe a Unified Key Value Store file format that we evolved
from CDXJ. We utilize these for archive profile serialization and call it a MementoMap [32].
Finally, we evaluate various aspects of MementoMaps generated with different levels of de-
tails. This chapter addresses our second research question, “RQ2: How to build an archive
profile that will best summarize an archive’s holdings/voids and allow for dissemination and
exchange? ”

8.1 UNIFIED KEY VALUE STORE (UKVS)

Unified Key Value Store (UKVS) [14] is an evolving file format proposal that is a con-
tribution of this MementoMap work. It is an evolution of the CDXJ format that we earlier
proposed to be used by Archive Profiles [29]. This format utilizes extended SURT with
wildcard support and improves various other aspects to simplify it and eliminate some limi-
tations of our prior proposal (such as not being able to express URIs that are absent from an
archive or lack of support to merge two profiles generated with different profiling policies).
We generalized the format to be more inclusive and flexible after we realized its utility in
many web archiving related use cases (such as indexing, replay access control list (ACL),
fixity blocks [47], and extended TimeMaps) and many other places such as extended server
logging.

Suppose we want to store records of people in which their last and first names will make
the combined lookup key and their degree and profession along with an arbitrary number

Table 17. An Example of Sparse Tabular Data

LName FName Degree Profession Twitter DoB Award1 Award2

Doe Jane PhD Professor @jdoe - - -
Doe John MS Consultant - - - -
Roe Richard PhD Scientist - May 7, 1920 Fiction 42 Mad Scientist

Shmoe Joe - Lab Asst. - - - -

135

1 !fields {keys: ["LName", "FName"], values: ["Degree", "Profession"]}
2 Doe Jane PhD Professor {Twitter: "@jdoe"}
3 Doe John Masters Consultant
4 Roe Richard PhD Scientist {DoB: "May 7, 1920", Awards: ["Fiction 42", "Mad Scientist"]}
5 Shmoe Joe - "Lab Asst."

Fig. 54. An Example of Structured Data With Mandatory and Optional Fields

of other optional attributes will be the value stored in each record. We can use a fixed
column tabular data format for this (as shown in Table 17), but it will have two major
disadvantages: 1) fields with sparse values are wasteful and 2) adding a new field (e.g.,
“Award3”) will affect all existing records. Additionally, the tabular formats like CSV/TSV
have no information about what fields can be used as lookup keys. Other structured data
formats like JSON, XML, or YAML can be more expressive, but they are not friendly to
Unix text processing tools.

Our proposed UKVS data format solves these issues as illustrated in Figure 54. UKVS
is a textual file format for storing data that has one or more key fields for lookup and
corresponding value fields. UKVS also allows an optional object to annotate, enrich, or
subdivide each record. It uses Object Resource Stream (ORS) [25] syntax with some well-
defined fields and structure. UKVS format has the simplicity of popular file formats such
as Comma Separated Values (CSV) while being flexible like JavaScript Object Notation
(JSON). This makes it suitable for streaming and simple to process using traditional text
processing tools, irrespective of the number of records in the file. If the file is sorted, this
formats enables quick lookup using binary search, even in large files, which makes it suitable
for indexing records.

UKVS consists of some metadata records in the header followed by the body containing
data records with one line per record. The format of UKVS data record entries is illustrated
in Figure 55. The names of the fields of the data records that belong to keys and values are
advertised in the metadata headers in their respective order as shown in Figure 54 Line 1.
The “!fields” metadata here describes the structure of the data records where the first two
fields “LName” and “FName” are primary and secondary lookup keys respectively. The third
and fourth fields represent corresponding values as “Degree” and “Profession” respectively.
These four fields are mandatory, so their missing or unknown values must be filled with a
placeholder (as illustrated in Figure 54 Line 5 with a “-” sign). Fields other than Optional
Single Line JSON (OSLJ) are separated by whitespace and multi-token values are quoted in

136

1 <key fields...> <value fields...> {<optional single line JSON block>}

Fig. 55. UKVS Generic Record Format

double quotes. While multiple consecutive whitespace characters are allowed for readability,
they should be avoided to save bytes as per the application needs. This format is similar to
CSV/TSV files (or other tabular data formats), but the addition of the OSLJ block allows
each record to have arbitrary data, unique to each record, in a structured way.

8.2 MEMENTOMAP FILE FORMAT

MementoMap is our proposed format to serialize archive profiles in a flexible and concise
manner. It uses UKVS data format and adds a semantic layer on top of it by defining
various keywords and fields. It is inspired by the simplicity of sitemap and robots.txt,
but different from them in some aspects:

• Unlike sitemap and robots.txt, MementoMap of an archive can be published by third
parties, not just the archives

• Unlike sitemap, MementoMap may use wildcards in URIs (similar to robots.txt) to
reduce the number of records significantly

• Unlike sitemap, MementoMap can have flat pagination (generally more suitable for
sorted resources) where page can link to next, previous, first, and last pages instead
of a nested index of MementoMap pages

• Unlike robots.txt, MementoMap is safe to sort, split, and merge

• MementoMap provides means of variations in organizing various fields to optimize for
space and application-specif usability while keeping the essence of records the same

• MementoMap enables means to limit the size of the file or the number of records and
dynamically adapt to it

The example shown in Figure 56 has two parts, first five lines are headers and the last
five lines are data records. The !context entry in the header section describes where to look
for definitions and descriptions of terms used in the document. The !id entry points to the

137

1 !context ["http://oduwsdl.github.io/contexts/ukvs"]
2 !id {uri: "http://archive.example.org/"}
3 !fields {keys: ["surt"], values: ["frequency"]}
4 !meta {type: "MementoMap", name: "A Test Web Archive", year: 1996}
5 !meta {updated_at: "2018-09-03T13:27:52Z"}
6 * 54321
7 com,* 10000
8 com,twitter)/ 100
9 com,twitter)/* 250

10 uk,co,bbc)/images/* 300

Fig. 56. A Basic MementoMap Example File

web archive the MementoMap is about. The !fields entry suggests that in the data records
there are only two mandatory fields of which the first one is a SURT (a transformation of
URIs that we describe below) of the lookup URI that is used as the key and the second field
holds the frequency of archiving for a given SURT key. The first data row * 54321 suggests
that there are a total of 54321 mementos of all the URIs in the archive while com,* 10000

suggests that there are 10000 mementos that have .com TLD in their URIs. The next two
entries suggest that the root page of twitter.com has 100 mementos, but all the URIs from
twitter.com collectively have a total of 250 mementos. Finally, there are 300 mementos of
resources from bbc.co.uk who’s path begins with /images/.

8.2.1 THE SURT FIELD

We described basic SURT in Chapter 2 (Section 2.6.2). Figure 57a illustrates a sample
of sorted SURTs and highlights different segments. We have extended SURTs to support
wildcard to allow grouping of URI Keys with the same prefix and roll them up into a single
key. A visual representation of these SURTs is illustrated in Figure 57b in the form of a
tree that segregates layers of Scheme, Host, Path, and Query. It further annotates various
depths of Host and Path segments as H0, H1, H2. . . and P0, P1, P2. . . that will be
useful in understanding some terminologies used later. SURTs also allow credentials and
port numbers, but we omitted them from the illustration for brevity. It is worth noting
that the scheme portion is common in all HTTP/HTTPS URIs and has no informational
value, hence the “https://(” prefix is often omitted. SURT are generally reversible, but in
the MementoMap context (and anywhere where they are used as index keys) we can add

138

support for partial SURTs with the help of wildcards to represent a collection of URIs.

8.2.2 THE FREQUENCY FIELD

The frequency field is a concise way to represent the archival activity of a URI or a
set of URIs (represented by a SURT with wildcard). Figure 58 illustrates the grammar for
parsing the frequency field.

In its simple form it represents the number of mementos (or URI-M counts) of a URI
or all the URIs in a set. However, it also allows to express number of unique URIs (URI-R
counts) along with their URI-M counts for a given set of URIs using a wildcard as illustrated
in Figure 59.

The format of the frequency field here is [<urim-count>]/[<urir-count>]. The first
record in this example suggests that there are 300 mementos of all the URIs from apple.com.
The second record suggests that there are a total of 100 unique URI-Rs (original URIs)
from cnn.com that are archived a total of 400 times, that means on an average each URI
is archived four times. In the next entry, 200/ suggests that there are 200 URI-Ms from
example.com, but the number of unique URI-Rs is unknown. This entry is equivalent to
saying 200 as the separator sign (i.e., forward slash /) is optional when only the URI-M
count is known. The decision to make the separator optional here is to save bytes in the
case that is goint to be potentially more common as counting mementos (URI-Ms) and
updating URI-M counts are generally easier than counting unique URI-Rs and updating
the URI-R count later. In the next entry, /50 suggests that the number of unique URI-Rs
from facebook.com that are archived is 50, but how many times are they archived (URI-M
count) in unknown. The separator in this case is mandatory to avoid ambiguity. When
neither URI-M nor URI-R counts are known, an explicit / is mandatory (as illustrated for
google.com) to be used as the placeholder and to signify that none of the counts are known.

An explicit value of zero URI-Ms (as illustrated for twitter.com) gives a means to
express absence of resources matching the key, which can be useful for big archives like
the Internet Archive, as their positive profile (i.e., the profile that lists resources that are
present) might be huge, so they can instead advertise sets of URIs that they do not have
(or can not serve) any mementos for, but get a lot of replay requests. These entries with
zeros are how we serialize archival voids as discussed in Chapter 7.

An explicit zero memento count in a MementoMap is also useful to express holdings of a
bigger set, but lack of holdings in some of its subsets as illustrated in Figure 60. This example

139

http://(com,cnn)/*
http://(com,cnn,cdn)/img/logos/logo.png?h=20&w=30
http://(com,nytimes)/2018/10/*
http://(com,nytimes)/2018/11/*
http://(edu,odu,cs,ws-dl)/
http://(org,arxiv)/*
http://(org,arxiv)/pdf/*
http://(uk,bl,*
http://(uk,co,bbc)/news/world?lang=ar
http://(uk,co,bbc)/news/world?lang=en
http://(uk,gov,*)/

(a) A sample list of sorted SURTs. Different colors signify Scheme, Host, Path, and Query segments. The
“https://(” prefix is common in all SURTs, hence removed in practice.

(b) A visual representation of SURTs as a tree. Different colored regions signify Scheme, Host, Path,
and Query segments. Each node of the tree contains a token and each edge denotes the separator of the
corresponding segment. Dotted lines indicate transition from one segment to the next. Dotted triangles
with a wildcard character “*” denote a sub-tree. Trailing slashes are removed from this representation.
Labels on the right hand side (i.e., S, H0–Hn, P0–Pn, and Q) denote corresponding depth in each segment.

Fig. 57. Illustration of SURTs With Wildcards

140

1 zero = "0" ;
2 nonzero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
3 digit = zero | nonzero ;
4 number = nonzero, { digit } ;
5 approx = "~" | "+" | "-" ;
6 count = zero | number, [approx] ;
7 frequency = count | [count], "/", [count] ;

Fig. 58. Extended Backus–Naur Form (EBNF) Grammar for the frequency Field.

1 !fields {keys: ["surt"], values: ["frequency"]}
2 com,apple)/* 300
3 com,cnn)/* 400/100
4 com,example)/* 200/
5 com,facebook)/* /50
6 com,google)/* /
7 com,twitter)/* 0

Fig. 59. Variations in frequency Field Value of a MementoMap

1 !fields {keys: ["surt"], values: ["frequency"]}
2 com,cnn)/* 400
3 com,cnn)/profiles/* 0
4 com,cnn)/world 0

Fig. 60. Zero frequency for a More Specific URI Subtree in a MementoMap

1 !fields {keys: ["surt"], values: ["frequency"]}
2 com,yahoo)/* 0/20

Fig. 61. Zero Mementos of Non-Zero URI-Rs in a MementoMap

141

1 !fields {keys: ["surt"], values: ["frequency"]}
2 com,apple)/* 300
3 com,cnn)/* 400+/100
4 com,example)/* 200-/150~
5 com,facebook)/* /50+

Fig. 62. Non-Precise Frequencies in a MementoMap

suggests that there are a total of 400 URI-Ms for example.com, but zero mementos for URI-
Rs that start with cnn.com/profiles/ and zero mementos for the URI-R cnn.com/world.
The last two entries here are more specific subsets that override a more general record set
by the first entry.

There could be another case where a zero URI-M count is reported, but has a non-zero
URI-R count as shown in Figure 61. This can be useful to report the number of URI-Rs
that are blocked for legal reasons, in an embargo period, or added in the seed list or frontier
queue of the crawler, but not yet ready to be replayed.

Counting mementos and unique original URIs and keeping track of these numbers as
the archive grows is a difficult task. For third-party observers it is often impractical to
estimate exact values of these counts. Additionally, when counting is performed on subsets
of the archival collection and merged, it is difficult to maintain the accuracy of these counts.
Luckily, in many use cases a rough estimate might be good enough while avoiding the cost
of maintaining exact values. However, it is important to acknowledge whether a frequency
value is exact or a rough estimate. This can be expressed using following symbol suffixes to
either of the URI-M or URI-R counts (or both):

• No suffix for an exact value

• + suffix for a lower boundary

• - suffix for an upper boundary

• ˜ suffix for an approximate value

These looseness symbols can optionally be used with any numeric values of URI-M and
URI-R counts independently to form different combinations. The example in Figure 62
illustrates that there are:

142

1 !fields {keys: ["surt"], values: ["frequency"]}
2 com,twitter)/* 100/35 {datetime: {"2014": "20~/10", "2015": "60+/30+"}}

Fig. 63. Optional Memento Distribution Over Time in a MementoMap

1 !fields {keys: ["surt", "datetime"], values: ["frequency"]}
2 com,twitter)/* : 100/35
3 com,twitter)/* 2014 20~/10
4 com,twitter)/* 2015 60+/30+

Fig. 64. Mandatory Memento Distribution Over Time in a MementoMap

• exactly 300 mementos for apple.com URI-Rs,

• at least 400 mementos for exactly 100 unique cnn.com URI-Rs,

• at most 200 mementos for approximately 150 unique example.com URI-Rs, and

• an unknown number of mementos for at least 50 unique facebook.com URI-Rs

8.2.3 THE DATETIME FIELD

So far, we have been using surt as the only lookup key with no information about how
the archiving activity of a URI-R or a set of URI-Rs is distributed over time. Knowing
about the temporal activity could be very helpful for Memento routing (and many other
applications) for resources that were actively archived during a short period of time and
hardly had any archival activity for the rest of the time. To express the distribution of
archiving activity over time the Optional Single Line JSON (OSLJ) block can be utilized as
illustrated in Figure 63.

This example suggests that there are a total of exactly 100 mementos of exactly 35
unique URI-Rs from twitter.com. The OSLJ block further decomposes this frequency

value and suggests that in the year 2014 exactly 10 unique URI-Rs were archived about 20
times and more than 30 unique URI-Rs were archived more than 60 times in 2015.

Alternatively, this information can be expressed with a different organization as illus-
trated in Figure 64. We have moved the information buried inside of the OSLJ into a

143

1 !fields {keys: ["surt", "datetime"], values: ["frequency"]}
2 com,apple)/ 20160213052637 1
3 com,apple)/* 20160213 20
4 com,apple)/* 2010:2012 100
5 com,apple)/* :2009 50
6 com,apple)/* 201603: 120
7 com,apple)/* : 300

Fig. 65. Various Datetime Range Examples in a MementoMap

secondary key field as the first two columns ["surt", "datetime"] are now lookup keys,
making it easier to process using traditional text processing tools. We have also avoided
unnecessary bytes that were only present to format a valid JSON block and moved the name
of the field in the UKVS headers instead of repeating it with each record. However, we have
introduced more lines that repeat the value of the surt field. Also, if not all entries have
frequency values decomposed over time, then the corresponding column will have unneces-
sary placeholder (a “:” symbol in this case). So, there is clearly a trade-off here that can
be evaluated based on the nature of an archive and the application to optimize accordingly.

Potential values of the datetime field include valid substrings of the 14-digit date and
time format (YYYY[MM[DD[hh[mm[ss]]]]]) or a range composed of such substrings sepa-
rated by a colon “:” symbol. If the start or the end of the range is not given it is considered
the beginning of archiving and the current time respectively.

The example in Figure 65 (intentionally unsorted for gradual explanation) illustrates
different scenarios datetime field can be specified. The first entry suggests that the root
page of the apple.com is archive exactly once at the exact time 20160213052637 (i.e.,
2016-02-13T05:26:37Z). The second line suggests that URI-Rs from apple.com were archived
a total of 20 times on February 13, 2016 (i.e., their Memento-Datetime in 14-digit format has
a prefix of 20160213). The next entry of 2010:2012 suggests that there are 100 mementos
of apple.com URIs from year 2010 to 2012. The next line with :2009 suggests that there
are 50 mementos with datetime in 2009 and before. The entry with 201603: suggests that
there are a total of 120 mementos starting from March 2016 till now. Finally, the last line
suggests that there are an overall 300 mementos of apple.com URI-Rs.

144

8.2.4 OTHER FIELDS

A MementoMap may also contain frequency information decomposed over other useful
fields such as status, language, mime, etc. One or more of these fields can be included in the
OSLJ or as key fields (or a combination of both) as described the usage of the datetime field
above. Knowing the distribution of certain mementos over their status codes could help
reduce unnecessary traffic for resources that were captured numerous times, but resulted
largely in 5xx codes. Similarly, knowing about the number of redirects (i.e., recorded 3xx

responses) can give a better estimate of useful holdings of resources in an archive. The OSLJ
block is also open for application specific data or custom fields for specific human-friendly
notes.

8.3 MEMENTOMAP IMPLEMENTATION

We have a reference implementation described in Chapter 5 Section 5.6. It can generate
MementoMaps from CDX files or a list of URIs, compact them based on certain set of
parameters, and enable fast lookup in them.

8.3.1 MEMENTOMAP GENERATION

Generating a MementoMap begins by scanning CDX/CDXJ files, performing fulltext
search, filtering access logs, or any other means to identify what URIs an archive holds (or
does not hold). These URIs are then converted to SURTs (if not already) and their query
section is stripped off. We call these partial SURTs as HxPx URI Keys (which means a URI
Key that has all the host and path parts, but no query parameters). Previously, we found
that removing query parameters from these SURTs reduces the file size and the number of
unique URI Keys significantly without any significant loss in the lookup Accuracy [29]. We
then create a text file with its first column containing HxPx Keys and the second column as
their respective frequencies. The frequency column in its simplest form can be the count of
each HxPx Key. Finally, necessary metadata is added and the file is sorted as the baseline
MementoMap.

8.3.2 MEMENTOMAP COMPACTION

In order to make a less detailedMementoMap (which is desired for efficient dissemination
and long-lasting freshness at the cost of increased false positives), we pass a detailedMemen-
toMap through a compaction procedure which yields a summarized output that contains

145

1 func host_keys(surt)
2 s = surt.split(")")[0].split(",", MAXHOSTDEPTH)
3 return [s[:i].join(",") for i in 1..len(s)]
4

5 func path_keys(surt)
6 s = surt.split("?")[0].split("/", MAXPATHDEPTH)
7 return [s[:i].join("/") for i in 1..len(s)]
8

9 func compact(imap, omap, opts)
10 htrail = [None] * MAXHOSTDEPTH
11 ptrail = [None] * MAXPATHDEPTH
12 for line in imap
13 key, freq, *_ = line.split()
14 k = host_keys(key)
15 for i in range(len(k))
16 if htrail[i] == k[i] # Existing branch
17 htrail[i][1] += freq
18 else # New branch
19 for j in range(i, MAXHOSTDEPTH)
20 if rollup_threshold_reached
21 omap.seek(htrail[j][3]) # Move back
22 omap.write(htrail[j][:1].join(",* "))
23 reset_remaining_trail(ptrail, 0)
24 reset_remaining_trail(htrail, i)
25 if !htrail[i] # New tree node
26 htrail[i] = [k[i], freq, 0, omap.tell()]
27 htrail[i-1][2]++ # Incr parent's children
28 # Repeat similar logic for path segment
29 omap.write(line)
30 omap.truncate() # Clear any rollup residue

Fig. 66. MementoMap Compaction (and Generation) Procedure

fewer lookup keys by rolling sub-trees with many children nodes up and replacing them
with corresponding wildcard keys. Our compaction algorithm is illustrated with pseudo-
code in Figure 66. As opposed to an in-memory tree building (which will not scale), it is
a single-pass procedure with minimal memory requirements and does not need any special
hardware to process a MementoMap of any size. We leverage the fact that the input Me-
mentoMap is sorted, hence, we can easily detect at what depth of host or path segments
a branch differed from the previous line. We keep track of the most recent state of host
and path keys at each depth (up to MAXHOSTDEPTH and MAXPATHDEPTH), their corresponding
cumulative frequencies, how many children nodes each of them have seen so far, and the
byte position of the output file when these keys were seen the first time. Each time we

146

encounter a new branch at any depth, we check to see if a roll up action is applicable at
that depth or further down in the existing tree based on the most recent states and the
compaction parameters supplied. If so, we move the write pointer in the output file back
to the position where the corresponding key was observed first, then we reset the state of
all the deeper depths and update them with the current state. As a consequence of this
progressive processing, the trailing part of the output file is overwritten many times. The
input file does not have to be the baseline MementoMap, any MementoMap can be supplied
as input with fresh compaction parameters to attempt to further compact it. Our algorithm
is parallel processing-friendly if the input data is partitioned strategically (e.g., processing
each TLD ’s records on separate machines and combining all compacted output files). It is
worth noting that sub-trees of the path section are neither independent trees nor have a
single root node (as shown in Figure 57b), as a result, certain implementation details can
be more complex than a simple tree pruning algorithm.

8.3.3 LOOKUP IN A MEMENTOMAP

The algorithm for lookup in a MementoMap is illustrated with pseudo-code in Figure 67.
Given a URI, we first generate all possible lookup keys, in which all keys but the longest one
have a wildcard suffix (e.g., “Www.Example.COM/a/b?x=y&c=d” yields “com,example)/a/b”,
“com,example)/a/b/*”, “com,example)/a/*”, “com,example)/*”, and “com,*” as lookup
keys). We then perform a binary search in the MementoMap with lookup keys in decreasing
specificity until we find a match or all the keys are exhausted. In the case of a match, we
return the matched lookup key and corresponding frequency results.

8.4 MEMENTOMAP DISSEMINATION

For dissemination and discovery of MementoMaps we propose that web archives make
their MementoMap available at the well-known URI “/.well-known/mementomap” under
their domain names. Alternatively, a custom URI can be advertised using the “mementomap”
link relation (or “rel”) in an HTTP Link header or HTML <link> element (after this
link relation is registered in the IANA registry). Third parties hosting MementoMaps of
other archives can use the “anchor ” attribute of the Link header to advertise a different
context. Moreover, MementoMaps are self-descriptive as they contain sufficient metadata
in their headers to establish a relationship with their corresponding archives. MementoMaps
support pagination that can be discovered after retrieving the primary MementoMap from
a well-known URI or by any other means.

147

1 func lookp_keys(uri)
2 key = surtify(uri).split("?")[0].strip("/")
3 keys = [key]
4 while "," in key
5 keys.append(sub("(.+[,/]).+$", "\1*", key))
6 key = sub("(.+)[,/].+$", "\1", key)
7 return keys
8

9 func bin_search(mmap, key)
10 surtk, freq, *_ = mmap.readline().split()
11 if key == surtk # First line matched
12 return [surtk, freq]
13 left = 0
14 mmap.seek(0, 2) # Go to the EOF
15 right = mmap.tell()
16 while (right - left > 1)
17 mid = (right + left) / 2
18 mmap.seek(mid)
19 mmap.readline() # Skip partial line
20 surtk, freq, *_ = mmap.readline().split()
21 if key == surtk
22 return [surtk, freq]
23 elif key > surtk
24 left = mid
25 else:
26 right = mid
27

28 func lookup(mmap, uri)
29 for key in lookp_keys(uri)
30 result = bin_search(mmap, key)
31 if result
32 return [key, result]

Fig. 67. MementoMap Lookup Procedure

8.5 EVALUATION

For evaluation we used the complete index of Arquivo.pt, complete logs of our MemGa-
tor service, and generated MementoMaps. We first examine logs, then describe holdings
of Arquivo.pt in detail, and finally measure the effectiveness of various MementoMaps. Ar-
quivo.pt [117] was founded in 2008 with the aim to preserve web content of interest to the
Portuguese community, but not limited to just the .pt TLD (as shown in Table 18). It has
since archived about 5B mementos of which some data was donated to it by other archives,

148

Table 18. Top Arquivo.pt TLDs

TLD URI-R% URI-M%

.pt 61.422 68.266

.com 19.610 19.643

.eu 8.665 4.262

.net 1.973 1.829

.org 1.790 1.263

.de 0.635 0.343

.br 0.617 0.470

.uk 0.449 0.260

.fr 0.347 0.173

.nl 0.274 0.131

.mz 0.236 0.414

.pl 0.226 0.104

.io 0.223 0.208

.edu 0.201 0.096

.es 0.200 0.126

.it 0.198 0.109

.cv 0.198 0.335

.ru 0.196 0.203

.ao 0.156 0.295

.us 0.142 0.102

.cz 0.117 0.057

.info 0.113 0.160

IP Addresses 0.070 0.050
Other TLDs 1.941 1.149

including IA, explaining why its temporal spread extends back before the Arquivo.pt ’s found-
ing date. We analyzed 1.8T of Arquivo.pt ’s complete CDXJ index in production. A brief
summary of the dataset is shown in Table 19. We used it along with ODU’s MemGator
server logs to evaluate this work.

149

Table 19. Arquivo.pt Index Statistics

Attributes Values

CDXJ files 70
Total file size 1.8T
Compressed file size 262G
Temporal coverage 1992–2018
CDXJ lines 5.0B
Mementos (URI-Ms) 4.9B
Unique URI-Rs 2.0B
Unique HxPx keys 1.1B
Unique hosts 5.8M
Unique IP addresses 15K

8.5.1 ARCHIVED VS. ACCESSED RESOURCES

We analyzed over three years of ourMemGator logs containing records about 14 different
web archives. In its lifetime it has served a total of 5,241,771 requests for 3,282,155 unique
URIs. Table 20 shows the summary of our log analysis in which IA has over 35% hit rate, and
every other archive is below 10% (down to zero) in decreasing order of hit rate. Arquivo.pt is
showing a 3.35% hit rate, so we cross checked it with the full index and found that there are
only 1.64% unique URI-Rs from the MemGator logs that are present in Arquivo.pt (note
that the CDX data even includes recent mementos that would have generated a miss prior to
them being archived). The difference in these numbers is perhaps a result of some archived
URIs being looked for more frequently. We also found that these URI-Rs represent less
than 0.003% of the holdings of Arquivo.pt, which shows the poor utilization of the archive
by users of our MemGator server. This low percentage of overlap in access logs and archive
indexes conforms to our earlier findings [29]. The table shows an overall 93% miss rate,
which is all wasted traffic and delayed response time. Identifying sources of such a large
miss rate can save resources and time significantly, which is the primary motivation of this
work.

There are some other notable entries in Table 20 such as low number of requests to
PastPages which was excluded from being polled in the early days due to its zero hit rate
and high error rate and eventual shutdown in 2018. NRS (National Records of Scotland) is

150

Table 20. MemGator log responses from various archives. Data ranges from 2015-10-25 to
2019-01-16.

Archive Request Hit% Miss% Err% Sleep

Internet Archive 4,723,880 35.76 63.68 0.56 1,594
Archive-It 5,011,385 9.14 90.38 0.48 1,556
Archive Today 5,151,720 8.44 88.96 2.60 1,920
Library of Congress 4,862,458 4.77 94.31 0.92 2,705
Arquivo.pt 4,300,221 3.35 96.29 0.36 1,153
Icelandic 5,126,706 2.22 97.14 0.64 3,143
Stanford 5,178,835 1.54 98.02 0.43 1,482
UK Web Archive 5,113,984 1.49 86.30 12.20 2,779
Perma 4,116,099 1.32 98.67 0.01 46
PRONI 5,165,805 0.75 98.72 0.54 1,608
UK Parliament 5,181,991 0.63 98.85 0.52 1,542
NRS 2,683,311 0.21 99.77 0.01 46
UK National 5,178,184 0.10 99.45 0.45 1,457
PastPages 22,058 0.00 62.90 37.10 0

All 61,816,637 5.44 92.92 1.64 21,031

a new addition to the list, hence it shows a low number of requests. The high error rate of
the UK Web Archive was primarily caused by a bug in the Go language (used to develop
MemGator) that was not cleaning idle TCP connections that were already closed by the
application. As a result, UKWA’s firewall was seeing an ever increasing number of open,
but idle connections, hence dropping packets after a hard limit of 20 concurrent connections
per host. This has since been fixed after the release of the Go language version 1.7. We
have later introduced an automatic dormant feature that puts an upstream archive to sleep
for a configurable amount of time after a set number of successive errors. This new feature
also addresses situations when archives go out of service and the maintainers of aggregators
do not notice it in a timely manner [43, 44, 45, 46].

Figure 68 shows a breakdown of what people are looking for in archives and what web
archives hold. The 1.1K entry in the “Ones” row and “Tens” column shows that there are
over a thousand URI-Rs that were requested 10–99 times in MemGator and each has 1–9

151

Fig. 68. Overlap between archived and accessed resources in Arquivo.pt. Ones denote single
digit non-zero numbers (i.e., 1–9), Tens denote two digit numbers (i.e., 10–99), and so on.
The Zero column shows the number of mementos of various URI-Rs that are never accessed
using MemGator. The Zero row shows the number of access requests for various URI-Rs
using MemGator that are not archived. The (Zero, Zero) cell denotes N/A because the
number of resources that are neither archived nor accessed is unknown.

mementos in Arquivo.pt. Large numbers in the “Zero” column show there are a lot of me-
mentos that are never requested from MemGator. Similarly, the “Zero” row shows there
are a lot of requests that have zero mementos in Arquivo.pt. Another way to look at it is
that a content-based archive profile will not know about the “Zero” row and a usage-based
profile will miss out the content in the “Zero” column. Active archives may want to profile
their access logs periodically to identify potential seed URIs of frequently requested missing

152

Table 21. URI-M vs. URI-R Summary of Arquivo.pt

Attributes Values

Unique URI-Rs 1,999,790,376
Total number of mementos 4,923,080,506
Maximum mementos for any URI-R 2,308,634
Median (and Minimum) 1
Mean mementos per URI-R (γ) 2.46
Standard Deviation 57.20
Gini Coefficient 0.42
Pareto Break Point 70/30

resources that are within the scope of the archive. Ideally, we would like more activity
along the diagonal that passes from the (Zero, Zero) corner, except the corner itself, which
suggests there are undetermined number of URI-Rs that were never archived or accessed.

8.5.2 HOLDINGS OF ARQUIVO.PT

Table 21 and Figure 69 summarize the distribution of URI-Ms over URI-Rs in Arquivo.pt.
Almost 2M unique URI-Rs in Arquivo.pt have an average of 2.46 mementos per URI-R (γ
value [29]), but this distribution is not uniform. The top 30% URI-Rs account for 70% of
the mementos, for a Gini Coefficient of 0.42 [252]. Additionally, the Median is one, which
means at least half of the URI-Rs have only one memento. Furthermore, the most frequently
archived URI-R has 2.3M mementos (i.e., 0.05% of total), so we decided to investigate it
further. Table 22 lists the six most archived URI-Rs, and they are mostly one pixel clear
images and corner graphics primarily used in web designing in the pre-CSS3 era. The
only HTML page that shows up in the top list is a login page. We further investigated
all the mementos from all the subdomains of the top URI-R’s domain and found that
the blank.gif image was archived out of proportion. This shows another use for archive
profiling – identifying such unintentional biases due to misconfigured crawling policies or
bugs in crawlers’ frontier queue management.

Furthermore, we partitioned Arquivo.pt ’s index into yearly buckets for analysis as shown
in Table 23. Data prior to year 2008 is mostly donated from other sources in the form of
many small files, as Arquivo.pt was not yet established. However, when everything is put

153

(a) Percentage of URI-Rs by Popularity vs. Cu-
mulative Percentage of Mementos

(b) Gini coefficient of memento over URI-R pop-
ulation

Fig. 69. Distribution of Mementos Over URI-Rs in Arquivo.pt

Table 22. Most archived URI-Rs in Arquivo.pt. Most of these resources are either single
pixel blank images or corner graphics used for styling in the pre-CSS3 era.

URIs URI-Ms

com,wunderground,icons)/graphics/blank.gif 2,308,634
com,wunderground,icons)/graphics/wuicorner.gif 768,250
pt,ipleiria,inscricoes)/logon.aspx 238,292
com,wunderground,icons)/graphics/wuicorner2.gif 207,448
com,lygo)/ly/i/inv/dot_clear.gif 115,221
com,listbot)/subscribe_button.gif 108,530

com,wunderground,icons)/* (including top URI-R) 3,336,086
com,wunderground,* (41 sub-domains) 3,392,676

154

Table 23. Yearly distribution of URI-Rs, URI-Ms, and status codes in Arquivo.pt. The
symbol γ denotes the ratio of URI-Ms vs. URI-Rs. Column names with a “+” superscript
denote cumulative values as yearly data is processed incrementally. While URI-M+ repre-
sents a running total, URI-R+ does not, because some URI-Rs are already seen in previous
years. Status codes for the last two years (still in embargo period) do not add up to 100%
because a significant portion of their entries are either revisit records or screenshots.

Year URI-R URI-R+ URI-M URI-M+ Dup.
URI-R%

γ γ+ 2xx% 3xx% 4xx% 5xx%

1992 1 1 1 1 0.00 1.00 1.00 100.00 0.00 0.00 0.00
1993 1 2 1 2 0.00 1.00 1.00 100.00 0.00 0.00 0.00
1994 128 130 225 227 0.00 1.76 1.75 100.00 0.00 0.00 0.00
1995 642 772 742 969 0.00 1.16 1.26 100.00 0.00 0.00 0.00
1996 110,531 111,303 126,600 127,569 0.00 1.15 1.15 99.96 0.01 0.00 0.00
1997 466,515 563,734 847,783 975,352 3.02 1.82 1.73 100.00 0.00 0.00 0.00
1998 447,042 928,112 747,114 1,722,466 18.49 1.67 1.86 99.23 0.77 0.00 0.00
1999 732,866 1,513,381 1,233,994 2,956,460 20.14 1.68 1.95 76.52 10.61 12.84 0.00
2000 1,710,099 2,874,152 13,413,518 16,369,978 20.43 7.84 5.70 86.99 7.24 5.73 0.00
2001 4,837,012 7,286,174 7,873,642 24,243,620 8.79 1.63 3.33 93.87 4.87 1.25 0.01
2002 7,675,876 13,364,488 13,048,749 37,292,369 20.81 1.70 2.79 90.96 5.11 3.92 0.01
2003 11,043,675 21,565,730 19,989,725 57,282,094 25.74 1.81 2.66 92.12 4.45 3.41 0.03
2004 11,550,512 29,460,627 22,810,763 80,092,857 31.65 1.97 2.72 92.00 5.11 2.88 0.01
2005 9,057,866 35,249,604 19,839,405 99,932,262 36.09 2.19 2.83 93.99 3.94 2.07 0.01
2006 5,979,310 39,609,628 15,388,836 115,321,098 27.08 2.57 2.91 92.33 6.29 1.37 0.01
2007 26,841,427 63,396,199 43,021,527 158,342,625 11.38 1.60 2.50 83.03 14.88 2.08 0.01
2008 113,915,969 166,926,098 174,996,303 333,338,928 9.12 1.54 2.00 85.87 8.95 6.18 0.37
2009 249,069,391 383,960,128 355,833,394 689,172,322 12.86 1.43 1.79 87.37 6.55 6.49 0.36
2010 174,786,328 487,044,797 352,019,433 1,041,191,755 41.02 2.01 2.14 87.39 6.83 6.49 0.42
2011 206,966,813 634,061,322 465,274,765 1,506,466,520 28.97 2.25 2.38 89.13 6.21 6.99 0.58
2012 118,916,669 703,235,309 200,042,923 1,706,509,443 41.83 1.68 2.43 87.79 6.66 7.96 0.46
2013 174,913,693 827,924,633 236,583,969 1,943,093,412 28.71 1.35 2.35 84.03 7.28 10.90 0.57
2014 430,555,712 1,166,054,663 536,560,181 2,479,653,593 21.47 1.25 2.13 80.50 7.10 13.47 0.52
2015 558,504,002 1,563,688,006 1,087,680,516 3,567,334,109 28.80 1.95 2.28 78.32 5.12 17.75 0.32
2016 719,889,903 1,999,522,571 1,353,786,928 4,921,121,037 39.46 1.88 2.46 73.20 6.46 20.78 1.30
2017 685,097 1,999,687,103 1,111,999 4,922,233,036 75.98 1.62 2.46 57.82 5.44 7.89 0.22
2018 106,186 1,999,790,376 847,470 4,923,080,506 2.74 7.98 2.46 22.07 5.63 1.38 0.00

All 1,999,790,376 1,999,790,376 4,923,080,506 4,923,080,506 0.00 2.46 2.46 80.74 6.42 13.86 0.66

together it looks like the archiving activity took off significantly in 2007. Low numbers
in years 2017 and 2018 are due to Arquivo.pt ’s embargo policy. It shows that Arquivo.pt ’s
collection is growing by a healthy pace by mostly collecting new URI-Rs as well as revisiting
on an average 26% of older ones on a yearly basis. We expected γ would change gradually
over time, but years 2000 and 2018 had significantly high values with respect to other years.
So, we looked for the possibility of increased 3xx status codes in those years as a potential

155

Fig. 70. Cumulative growth of URI-Rs and URI-Ms in Arquivo.pt. Almost half of the
mementos are captured in the last two active years alone.

source of increase in γ (e.g., http URIs redirecting to corresponding https version [153,
154]), but we did not see any correlation there. However, the data for these years seems to
have come from another source and overall they are insignificant, hence, the cumulative γ+

is fairly stable between 2 and 3. We noted a significant and steady growth in 4xx status
codes which has crossed the 20% mark in year 2016. Status codes for the last two years (still
in embargo period) do not sum up to 100% because a significant portion of their entries
are either revisit records or screenshots that do not report status codes. In Figure 70 we
plotted a cumulative growth graph of both URI-Ms and URI-Rs to see the shape [147] of
Arquivo.pt during the active region. Their archiving rate is increasing over time as almost
half of the total mementos were archived in the last two active years alone.

8.5.3 THE SHAPE OF ARCHIVED URI TREE

To understand the shape of the URI Keys tree in MementoMap we first investigated the
number of unique Domains and HxPx Keys that have certain host or path depths as shown
in Table 24. These numbers are relative to the size of the Arquivo.pt index, but we believe

156

Table 24. Unique Items With Exact Host and Path Depths.

Depth Host (Domains) Host (HxPx) Path (HxPx)

0 1 1 4,456,831
1 119 6,479 113,022,403
2 1,949,845 508,607,506 225,489,773
3 2,097,254 429,000,297 334,455,187
4 1,316,005 161,912,251 174,429,887
5 234,110 21,825,084 127,484,179
6 95,492 7,935,125 68,578,693
7 28,121 3,252,943 45,819,300
8 64,716 3,722,893 22,178,800
9 55,801 2,660,529 15,553,102
10 5 50 6,596,158
11+ 5 12 858,856

Total 5,841,473 1,138,923,169 1,138,923,169

a similar trend should be seen in other archives, unless their collection is manually curated
and crawled using a more or less capable tool than what is currently being used by many
large web archives [184]. There were some outliers in the data that showed a host depth of
up to 15 and path depths up to 130, but those were very few in number. These numbers
gave us a good starting point to decide how deep we need to analyze hosts and paths for
profiling.

Figure 71 shows the shape of the total 1,138,923,169 unique HxPx Keys of Arquivo.pt ’s
current index put together in the form of a tree as the URI Key space changes on each
host and path depth. The tree is broken down in host and path segments (i.e., Figure 71a
and 71b) instead of one continuous tree and the latter is scaled down 70 times as compared
with the host segment to ensure that the shape of path segment is distinguishable from one
depth to the next. In the host segment, at each host level (after H1) a significant portion
leads to P0 (i.e., root path), but the remainder has further children host segments (i.e.,
sub-domains). Figure 71a shows that hostnames with depth more than four (i.e., H5 and
beyond) are significantly small in number. In the path segment, at each level a significant
portion terminates, but the remainder branches out into deeper path segments. The shape

157

(a) Parents and Children at each Host depth.
All the terminating host nodes at each level
lead to the root path (i.e., P0) shown at the
bottom.

(b) Parents and Children at each Path depth.
The root path (i.e., P0) shown at the top is
scaled 70 times down as compared with the
bottom row of the Host segment tree.

Fig. 71. The shape of HxPx Key tree of Arquivo.pt. Labels on the left denote Host and
Path depths. Corresponding pair of labels on the right denote number of Parents and
Children respectively. Darker nodes have higher number of Mean Children. Host and Path
segments are plotted separately with different scales while the bottom row of the Host
segment corresponds to the top row of the Path segment.

of the path segment in Figure 71b shows that the tree starts to shrink from P4 and the bulk
tree is around P3. Any effort to reduce the URI Key space near this level can significantly
reduce the Relative Cost.

Table 25 is based on the total 1,138,923,169 unique HxPx Keys of Arquivo.pt ’s current
index. For example, the H3 (see Figure 57b for naming convention) row means there are
a total of 2,158,880 unique H3 prefixes that cover a sum of 630,309,184 HxPx Keys of
which the most popular prefix covers 51,849,377 keys alone. The Mean number of keys per
prefix at H3 is 291.96 with a Median of 7 and Standard Deviation of 37,641.59. The RedQ
(Reduction Coefficient) column represents a derived quantity that we defined as the amount
of reduction in keys it would cause if HxPx Keys longer than a given depth are stripped
off at that depth and only counted reduced unique prefixes. This can be calculated using
Equation 12 at depth d where |HxPx Keys≥d| is the number of HxPx Keys with depth ≥ d

158

Table 25. Host and Path depth statistics of unique HxPx Keys in Arquivo.pt. Sorted HxPx
Keys no shorter than a given depth are chopped at that depth, number of occurrences of
these keys is Count, their total is Sum, and various other statistical measures are reported
based on these numbers. The RedQ value is calculated using Equation 12, Parents is the
number of non-terminal nodes of the previous depth, Children is the number of unique nodes
at a given depth, and MeanChld is the average number of Children per Parent.

Depth Count Sum Max Mean Med. StdDev RedQ Parents Children
Mean
Child

H1 973 1,138,923,169 616,372,626 1,170,527.41 930 21,620,107.00 1.00000 1 973 973.00
H2 2,068,333 1,138,916,690 109,176,956 550.64 5 91,308.66 0.99818 904 2,068,333 2,287.98
H3 2,158,880 630,309,184 51,849,377 291.96 7 37,641.59 0.55153 253,091 2,158,880 8.53
H4 1,329,137 201,308,887 3,765,122 151.46 10 4,797.10 0.17559 148,589 1,329,137 8.95
H5 245,881 39,396,636 376,969 160.23 5 3,420.96 0.03438 31,635 245,881 7.77
H6 103,579 17,571,552 105,591 169.64 27 1,106.03 0.01534 16,496 103,579 6.28
H7 34,380 9,636,427 19,572 280.29 20 450.16 0.00843 10,061 34,380 3.42
H8 69,829 6,383,484 535 91.42 120 45.75 0.00554 15,359 69,829 4.55
H9 55,811 2,660,591 80 47.67 56 19.6 0.00229 55,811 55,811 1.00
H10+ 10 62 19 6.20 2 6.51 0.00000 10 10 1.00
P0 5,841,503 1,138,923,169 2,264,623 194.97 7 3,059.43 0.99487 5,841,503 5,841,503 1.00
P1 145,687,459 1,134,466,338 2,242,344 7.79 1 376.64 0.86817 5,828,059 145,687,459 25.00
P2 290,761,965 1,021,443,935 603,840 3.51 1 130.76 0.64156 40,130,355 290,761,965 7.25
P3 392,635,328 795,954,162 565,043 2.03 1 78.14 0.35412 79,234,027 392,635,328 4.96
P4 215,251,988 461,498,975 512,098 2.14 1 80.01 0.21621 66,059,544 215,251,988 3.26
P5 158,256,277 287,069,088 512,098 1.81 1 65.72 0.11310 48,163,114 158,256,277 3.29
P6 91,334,214 159,584,909 50,384 1.75 1 22.3 0.05993 33,776,599 91,334,214 2.70
P7 60,099,825 91,006,216 44,114 1.51 1 17.24 0.02714 24,201,781 60,099,825 2.48
P8 31,101,768 45,186,916 24,631 1.45 1 15.54 0.01237 14,890,308 31,101,768 2.09
P9 18,601,197 23,008,116 10,247 1.24 1 9.74 0.00387 9,233,634 18,601,197 2.01
P10 6,817,122 7,455,014 5,858 1.09 1 9.36 0.00056 3,206,260 6,817,122 2.13
P11+ 858,772 858,856 2 1.00 1 0.01 0.00000 222,432 392,565 1.76

and |URI Keysd| is the number of unique partial URI Keys stripped at depth d (reported
under the Sum and Count columns of Table 25 respectively). Figures 72a and 72b show the
cumulative reduction as the top most frequent keys are rolled up at a host and path depth
respectively. Furthermore, there are 253,091 nodes in the tree one depth above (i.e., H2)
that lead to 2,158,880 nodes at the current depth. While the Mean Child count at H3 is
8.53, the distribution is not uniform. Figures 72c and 72d show the cumulative reduction
in immediate children count as the most popular parents leading to the current depth are
rolled up incrementally from bottom up. The purpose of the Reduction Coefficient is to
understand the impact and importance of various host and path depths globally while the
Mean Child count gives an estimate of a more localized impact at a given depth. For this

159

(a) Global HxPx Reduction Rate at Host (b) Global HxPx Reduction Rate at Path

(c) Incremental Host Children Reduction (d) Incremental Path Children Reduction

Fig. 72. Global and Incremental Host and Path Segment Reduction. Global reductions
describe the change in the total number of HxPx Keys (or the size of sub-trees) when keys
are rolled up at a given Host or Path depth. Incremental children reductions describe the
change caused by roll ups of immediate children nodes into their corresponding parent nodes
at a given Host or Path depth. Nodes with larger sub-trees and children counts in the two
cases respectively are rolled up first.

work we have used the latter as a factor to decide when to roll a sub-tree up while compacting
a MementoMap. Rolling the sub-tree up at H1, H2, and P0 are not applicable for evaluation

160

Fig. 73. Growth of compacted MementoMap vs. lines processed from an input Memen-
toMap. This plot illustrates a very small portion of the entire process to highlight the
compaction behavior at a micro level. The size of the output MementoMap decreases each
time a roll up happens. A roll up at smaller depth often reduces the size more significantly.

here because H1 means shrinking everything into a single record of “*” key, H2 would require
out-of-band information (because not every TLD is equally popular), and P0 being the root
of the path has nothing to roll up into (though compaction might happen in the relevant
host segment independently). We fit the remaining values of Mean Child count on Power
Law [84] curves (other curve fittings are also possible) for both host and path segments to
find a and k parameters and use these empirical values for compaction decision making.

RedQd =
|HxPx Keys≥d| − |URI Keysd|

|HxPx Keys|
(12)

8.5.4 MEMENTOMAP COST AND ACCURACY

Web archives are messy collections that contain many malformed records often caused by
configuration issues in web servers, poorly written web applications, bugs in archiving tools,
incompatible file transformations, or even security vulnerabilities [18]. Archive profiling can

161

Table 26. MementoMap generation, compaction, and lookup statistics for Arquivo.pt. Out-
put of one step is used as the input of the next step in a chain as the next step has at least
one smaller weight. The first record was created using some Linux commands instead of
the script, that is why some values are reported as N/A.

Input Wh Wp Lines Size (bytes)
Gzipped
(MB)

Rollups
Time
(sec)

RelCost Accuracy

CDXJ ∞ ∞ 447,107,301 30,753,644,382 3,449 N/A N/A 0.464 0.946
H∞P∞ 4.00 4.00 27,010,037 1,443,292,676 218 4,574,305 8,643 0.028 0.646
H4.00P4.00 4.00 2.00 14,143,676 662,171,623 119 703,394 507 0.015 0.600
H4.00P2.00 4.00 1.00 7,528,548 315,946,553 63 537,341 264 0.008 0.539
H4.00P1.00 4.00 0.50 4,269,344 162,132,599 35 483,779 151 0.004 0.482
H4.00P0.50 4.00 0.25 3,054,686 107,784,353 24 411,843 87 0.003 0.426
H4.00P0.25 4.00 0.00 1,673,784 40,446,417 11 1,411,579 70 0.002 0.275
H4.00P4.00 2.00 4.00 24,937,984 1,316,371,599 205 9,572 500 0.026 0.626
H2.00P4.00 2.00 2.00 12,867,647 585,142,758 111 669,670 468 0.013 0.588
H2.00P2.00 2.00 1.00 6,584,376 257,905,766 58 512,413 241 0.007 0.525
H2.00P1.00 2.00 0.50 3,615,997 121,452,813 32 458,681 124 0.004 0.472
H2.00P0.50 2.00 0.25 2,542,869 76,274,453 21 349,700 70 0.003 0.422
H2.00P0.25 2.00 0.00 1,529,328 33,658,544 10 1,171,377 56 0.002 0.270
H2.00P4.00 1.00 4.00 23,840,710 1,252,548,065 196 4,671 466 0.025 0.581
H1.00P4.00 1.00 2.00 12,313,036 555,628,348 107 640,163 448 0.013 0.549
H1.00P2.00 1.00 1.00 6,307,180 244,402,690 56 489,942 232 0.007 0.501
H1.00P1.00 1.00 0.50 3,465,689 114,755,789 30 439,647 116 0.004 0.453
H1.00P0.50 1.00 0.25 2,437,451 71,797,863 20 333,087 67 0.003 0.403
H1.00P0.25 1.00 0.00 1,474,541 31,881,496 10 1,117,830 58 0.002 0.261
H1.00P4.00 0.50 4.00 22,315,969 1,162,107,385 184 6,516 447 0.023 0.540
H0.50P4.00 0.50 2.00 11,729,408 525,115,243 101 594,779 420 0.012 0.520
H0.50P2.00 0.50 1.00 6,056,959 232,945,804 53 461,516 218 0.006 0.476
H0.50P1.00 0.50 0.50 3,342,092 109,798,250 29 417,912 112 0.003 0.433
H0.50P0.50 0.50 0.25 2,358,976 68,957,985 20 316,782 65 0.002 0.388
H0.50P0.25 0.50 0.00 1,434,084 30,800,396 9 1,071,071 51 0.001 0.253
H0.50P4.00 0.25 4.00 21,197,676 1,096,034,790 174 9,533 416 0.022 0.511
H0.25P4.00 0.25 2.00 11,217,682 498,573,523 97 558,528 392 0.012 0.495
H0.25P2.00 0.25 1.00 5,842,652 223,237,207 51 435,916 204 0.006 0.461
H0.25P1.00 0.25 0.50 3,241,589 105,791,213 28 398,097 109 0.003 0.420
H0.25P0.50 0.25 0.25 2,298,413 66,763,014 19 302,762 64 0.002 0.377
H0.25P0.25 0.25 0.00 1,404,993 30,018,340 9 1,031,775 53 0.001 0.249
H0.25P4.00 0.00 4.00 17,391,655 882,144,079 142 118,082 392 0.018 0.391
H0.00P4.00 0.00 2.00 9,453,810 410,205,661 81 560,039 324 0.010 0.385
H0.00P2.00 0.00 1.00 5,054,662 187,327,280 43 471,696 179 0.005 0.373
H0.00P1.00 0.00 0.50 2,901,796 91,419,782 25 440,818 95 0.003 0.354
H0.00P0.50 0.00 0.25 2,107,245 59,036,815 17 366,330 57 0.002 0.326
H0.00P0.25 0.00 0.00 1,339,475 27,946,167 8 986,664 48 0.001 0.236

162

uncover some of these as we found many malformed MIME-Type [11] and Status Code [12]
entries in Arquivo.pt.

To run our experiments we decided to filter only the clean records out from these CDXJ
files. We further limited our scope to only HTML pages that returned a 200 status code.
Additionally, we excluded any robots.txt and sitemap.xml files that were served wrongly
as “text/html”. With these filters in place we reduced mementos by almost half of the total
index size to only 2,671,653,766. Now, there are 962,832,513 filtered unique URI-Rs, which
means the γ value is increased slightly to 2.77. Also, the HxPx Keys count is reduced to
447,107,301, which is 39% of the overall number. From these keys we created the baseline
MementoMap with compressed file size of 3.4G (as shown in the first record of Table 26)
which is already reduced to 1.3% of the original index size. This baseline MementoMap has
46.4% Relative Cost (i.e., the ratio of reduced number of unique lookup keys vs. number of
unique URI-Rs) that yields 94.6% Accuracy.

In the next step we supplied this baseline MementoMap as input for compaction with
host and path compaction weights Wh = 4.00 and Wp = 4.0 respectively. These weights
are multiplied by their corresponding estimated Mean Child value at each depth to find the
cutoff number when the sub-tree is to be rolled up. A small weight will roll the sub-tree
up more aggressively than a large value, resulting in a more compact MementoMap. This
process produced a MementoMap with only 27,010,037 lines (i.e., 6.0% of the baseline or
2.8% Relative Cost) after going through 4,574,305 recursive roll ups. The process took
2.4 hours to complete on our Network File System (NFS) storage. The time taken to
complete the compaction process is a function of the number of lines to process from the
input, number of lines to be written out, and the number of roll ups to occur (along with
the read and write speeds of the disk). Since the process is I/O intensive, using faster
storage can reduce the time significantly, which we verified by repeating the experiment on
TMPFS [231]. We generated 36 variations of MementoMaps with all possible pairs of Wh

and Wp weights from values 4.00, 2.00, 1.00, 0.50, 0.25, and 0.00 as shown in Table 26. To
generate MementoMaps with smaller weights we used MementoMaps of immediate larger
weight pairs as inputs (e.g., input one with Wh = 2.00,Wp = 0.50 to generate one with
Wh = 1.00,Wp = 0.25). This technique of chaining the output as input to the next step
reduced the generation time for subsequent MementoMaps from hours to a few minutes and
also illustrated that MementoMaps can easily be compacted further when needed.

Figure 73 shows a portion of the roll up activity during the compaction process. The
size of the output grows linearly, but on a micro-scale whenever there is a roll up activity,

163

Fig. 74. Relative Cost vs. Lookup Routing Accuracy. A MementoMap generated/compacted
using Wh = 4.00 and Wp = 2.0 yielded 60% Accuracy with only 1.5% Relative Cost (high-
lighted with the red star).

the output size goes down depending on at what depth roll up happened and how big of a
sub-tree was affected.

Finally, we usedMemGator logs to perform lookups in these 36MementoMaps generated
with different host and path weight pairs to see how well they perform. Figure 74 shows
the Relative Cost and corresponding Lookup Routing Accuracy of these MementoMaps. The
Accuracy here is defined as the ratio of correctly identified URIs for their presence or absence
vs. all the lookup URIs. In this experiment MementoMaps with weights Wh = 4.00,Wp =

2.00 andWh = 2.00,Wp = 2.00 yielded about 60% Routing Accuracy with less 1.5% Relative
Cost without any false negatives (i.e., 100% Recall). Since Arquivo.pt had only a 3.35% hit
rate in the past three years, MemGator could have avoided almost 60% of the wasted traffic
to Arquivo.pt without missing any good results if Arquivo.pt were to advertise its holdings
via a small MementoMap of about 111MB in size. The accuracy can further be improved by

164

1) exploring other optimal configurations for sub-tree pruning, 2) generating MementoMaps
with the full index, not just a sample, and 3) including entries for absent resources from the
“Zero” row of the Figure 68.

8.6 CHAPTER SUMMARY

In this chapter we first described UKVS, the file format we use for serialization of Me-
mentoMaps. We illustrated a list of sorted SURTs with wildcards and organized them in a
tree to elaborate on the structure of URI-Keys. We then described various structures and
attributes of MementoMap files suitable for different needs.

We discussed a reference implementation that allows generation and compaction of Me-
mentoMaps as well as fast lookup in them. Then we described a few standard means of
disseminating generated MementoMaps by archives or third parties.

To evaluate the serialization format we used and its effectiveness we used the complete
index of Arquivo.pt and our MemGator service logs of over three years. We measured the
overlap of archived vs. accessed resources. We then analyzed the holdings of Arquivo.pt in
detail and the shape of their URI tree. Finally, we compared the cost and routing accuracy
of these MementoMaps and found that a MementoMap of less than 1.5% Relative Cost can
correctly identify the presence or absence of 60% of the lookup URIs in the corresponding
archive without any false negatives. We identified that inclusion of an absence list (i.e., an
archival voids profile) will improve the accuracy significantly.

165

CHAPTER 9

MEMENTO ROUTING

In the past three chapters we established the MementoMap framework to discover and
quantify archival holdings and voids for different URI spaces. Moreover, we established an
efficient and flexible means of serializing this information for dissemination. We evaluated
those MementoMaps for individual web archives without allowing any false negatives. Now,
we can leverage these serialized archive profiles (MementoMaps) to make routing decisions
by a Memento aggregator for multiple web archives together. This chapter addresses our
third research question, “RQ3: How to utilize archive profiles for the routing of URI lookup
requests? ”

9.1 MEMENTO AGGREGATION AND ROUTING

It is inconvenient and impractical for users to perform URI lookups in many different
public web archives one by one to find any or the most suitable Memento of a resource
closest to a given time in the past. It is a tedious task to repeatedly perform the same
lookup in tens of public web archives. Moreover, users might not be aware of all the public
web archives available at a given time as new web archives come to existence and existing
ones disappear or move to other domains every now and then [42, 43, 44, 45, 46]. To
address this issues there exist services and tools that provide a unified interface to interact
with many different public web archives at once using their Memento API. This practice
is called Memento Aggregation and such tools/services are called Memento Aggregators (as
described in Section 2.5 of Chapter 2). LANL runs a public Memento Aggregator called the
“Time Travel Service” and we developed and released an open-source Memento Aggregator
called “MemGator” that allows people to run their own Memento Aggregators as a CLI tool
or a web service.

Memento Aggregators are configured to aggregate a set of known public web archives.
In the most basic form an aggregator might poll all members of the set of web archives
for every single lookup request. This naive approach is called broadcasting and is wasteful
as only a few web archives return any good results for a given lookup URI. Though, the
subset of web archives that return good results can be different for different lookup URIs. In

166

Chapter 1 we gave examples to establish that broadcasting can be problematic for small web
archives with limited capacity to serve web requests, which they would not want to waste
for lookup requests that are not in their collection scope. Moreover, another downside
of broadcasting is that the client needs to wait for responses from all the web archives,
which sometimes causes a long delay by some archives that eventually do not return any
good results. Identifying potentially suitable candidate archives for a given lookup URI and
aggregating archives selectively is called Memento Routing. Our MementoMap framework
enables this capability by profiling web archives and creating a high level summary of their
archival holdings and/or archival voids.

9.2 METHODOLOGY

In this chapter our goal is to assign normalized scores to each web archive from a given
set of web archives for a given lookup URI. Based on those scores, an application (such as
a Memento aggregator) can decide which subset of archives it wants to poll for the lookup
URI. An application may choose to route a lookup request to the top-k archives or every
archive above a certain threshold.

We first define a density score that is derived from the frequency value reported in the
MementoMap as described in Section 9.2.1. This represents how densely a subtree of the URI
space (represented by a URI keys) is archived in a web archive. Then we define a closeness
score between a lookup URI key and the longest matching URI key prefix in a MementoMap
as described in Section 9.2.2. This score depends on the length of the matching URI key
prefix and the difference in lengths of the two keys. Finally, we define a routing score as a
product of these two scores as described in Section 9.2.3. We address many special cases as
well. Moreover, we describe both uniform and weighted normalized relative routing scores
when multiple web archives are combined for ranking.

We describe an inverted index with examples and how we use it to consolidate Memen-
toMaps from multiple web archives for efficient and scalable lookup. Finally, we illustrate
how we search the inverted index, extract matching records, and transform them into a
consumable result for a Memento aggregator.

9.2.1 DENSITY SCORE

We define density as a normalized score that captures the essence of how much of the
archival efforts in a web archive are concentrated around a given URI Key relative to the
overall size of the web archive. It is the logarithmic ratio of number of URI-Rs under a

167

given URI Key in a web archive to the total number of URI-Rs in the web archive. This
value ranges from “0” to “1” (inclusive of both, i.e., 0 ≤ µ ≤ 1) where a value of “0” means
URIs corresponding to the key are not archived and a value of “1” means all the archiving
activity is concentrated to URIs under the scope of the URI key. We denote density by µa,k
as shown in Equation 13 for a key “k” in an archive “a” with a set of URI-Rs “Ra”.

µa,k =
log(1 + ra,k)

log(1 + |Ra|)
(13)

The quantity ra,k is an exact or approximate value of the number of URI-Rs under the
URI key “k” in the archive “a”. It is calculated based on the frequency value (as described in
Section 8.2.2 of Chapter 8) returned from theMementoMap lookup as shown in Equation 14.
The frequency value has the [<urim-count>]/[<urir-count>] form. The frequency value
may also contain one of the three approximation notations when the reported values are not
exact, but we ignore these notations for density estimation because their primary purpose is
to minimize the number of insignificant changes in theMementoMap. For density estimation
we are interested in the URI-R count. However, it is possible that for a given URI Key either
the URI-R count (Cr) or the URI-M count (Cm) is missing. If the URI-R count is missing,
we can estimate it based on the reported URI-M count with the help of γ vale as defined
earlier in Equation 2 in Chapter 6. It is worth noting that if there is an exact match of
the lookup key (i.e., not a partial wildcard match) then the URI-R count is “1”. If γ is not
known for an archive, a default value between “2” and “3” can be used because we found
that many web archives have the average URI-M to URI-R ratio close to this range (e.g.,
for the Internet Archive γ = 2.1 and for Arquivo.pt γ = 2.5).

ra,k =


1, if there is an exact match of the lookup key

Cr, if the URI-R count is present
Cm

γ
, otherwise

(14)

We are using a log scale for both the numerator and denominator in Equation 13 to make
sure large archives with diverse set of URIs are not punished. Moreover, we are adding “1” in
both the log function inputs to avoid the condition of undefined “log(0)”. Also, this addition
of “1” nicely translates to a density value of “0” for archival voids that are represented with
a frequency value of “0” as described in Chapters 7 and 8.

Suppose we perform a lookup for “org,example)/a/b/c/d/e” in aMementoMap of a web
archive that has over a million unique URI-Rs in it. Suppose we find the longest prefix match

168

in the MementoMap as “org,example)/a/b/c/*”. We know it is not an exact match, so
there might be multiple URI-Rs present in the archive with prefix “org,example)/a/b/c/”.
If the MementoMap returns a frequency of “200/100” or “/100” then we know there are 100
URI-Rs under the matching URI key prefix (we can ignore the URI-M count when URI-Rs
counts are reported). However, if the frequency value is “200” or “200/” then we only know
the URI-M count and need to estimate the number of URI-Rs for the matching URI key
prefix. In this case we can divide the URI-M count with the value of γ (the average number
of URI-Ms per URI-R for the archive, say “2”) to get an estimated number of URI-Rs (say,
“100”). This means we get a density score µ = log(1 + 100)/ log(1 + 1000000) ≈ 0.334 for
the URI key in the archive.

9.2.2 CLOSENESS SCORE

We define closeness as a normalized score to describe how closely a returned Memen-
toMap URI key matches with the lookup URI (in SURT format). We denote closeness by
χl,k as shown in Equation 15 for a lookup URI “l” and corresponding returned URI key “k”
in a given MementoMap. The quantities Ll and Lk are representing the number of segments
(both host and paths combined) in the lookup URI and the returned URI key, respectively.
The difference in lengths of the two SURTs (l and k) Ll−Lk will be zero if there is an exact
match or the only additional segment in the URI key is a wildcard character “*” (which rep-
resents zero or more segments), otherwise a positive integer (because Ll ≥ Lk as a matching
prefix key cannot be longer than the lookup URI). The larger the difference (in denomina-
tor) is, the poorer the match is, resulting in a smaller closeness score. By adding “1” in the
denominator we ensure that we avoid division by zero and at the same time keeping the
closeness value between “0” and “1” (inclusive of both, i.e., 0 ≤ χ ≤ 1). We also want the
length of the longest matching URI key prefix (Lk) to play a role in the closeness score, but
effect should not be as prominent as the difference in lengths. Also, as we go from left to
right in the a SURT, the importance of segments goes down as they become more specific.
For these two reasons, we used a log scale in the numerator. We added “1” in the argument
of the log function to avoid the condition of undefined “log(0)” when there is no matching
key returned (i.e., Lk is “0”). Moreover, this addition of “1” nicely translates to a closeness
value of “0” when there is no matching key found in the MementoMap. To keep the closeness
value normalized (i.e., between zero and one) we make sure the numerator never goes above
“1” as the smallest value the denominator can have is “1”. For this reason, we use a min
function with one of its arguments as “1”. This condition will arrive when the length of the

169

URI key is greater than or equal to the base “b” of the log function. A suitable value of “b”
depends on the longest URI keys in a MementoMap that represent a significant portion of
the MementoMap (i.e., excluding any long but rare keys). From Chapter 8 we learned that
the bulk of URIs (about 95%) from a web archive can be represented in a MementoMap
with keys smaller than 10 segments (Figure 71 on Page 157 shows that there are very few
URIs with host segments > 4 and paths segments > 6), which means a log of base 10 (i.e.,
b = 10) is a suitable choice for the general case.

χl,k =
min(logb(1 + Lk), 1)

1 + Ll − Lk
(15)

Suppose we perform a lookup for the key “org,example)/a/b/c/d/e” (i.e., Ll = 7)
in a MementoMap and find the matching URI key prefix “org,example)/a/b/c/*” (i.e.,
Lk = 5). This means we get a closeness score χ = min(log(1 + 5), 1)/(1 + 7 − 5) ≈ 0.259

between the lookup key and corresponding matching URI key prefix.
In our TimeMap lookup use case the URI key is always going to be a prefix of the lookup

URI key. However, this closeness score can be generalized for any two independent URIs if
a use case emerges in the future. We first convert the two URIs to their SURT forms (say,
“s1” and ‘s2’), then identify the longest common URI key prefix between them (say, “k”),
and then take the product of the closeness scores of the two SURTs against their common
prefix (i.e., “χs1,k ·χs2,k”) while using the length of the longest of the two SURTs as the base
of the log (i.e., “b = max(Ls1 , Ls2)”). This way, the product of the closeness scores will be
a “1” if the two URIs (or their SURTs) are identical, a “0” if their TLDs are different, and
a fraction between the two otherwise.

Suppose we want to find the closeness score between “org,example)/a/b/c/d/e” (i.e.,
Ls1 = 7) and “org,example)/a/x/y” (i.e., Ls2 = 5). The longest length of the two SURTs
to serve as the base of the log function is 7 (i.e., “max(7, 5)”). The common prefix in this
case is “org,example)/a” (i.e., Lk = 3). In this case the closeness scores of “s1” and “s2”
to the common prefix “k” would be χ1 = min(log7(1 + 3), 1)/(1 + 7 − 3) ≈ 0.142 and
χ2 = min(log7(1 + 3), 1)/(1 + 5− 3) ≈ 0.237, respectively. This means we get the combined
closeness score χ = χ1 · χ2 ≈ 0.142 · 0.237 ≈ 0.034 for the two URIs.

9.2.3 ROUTING SCORE

With the key metrics density µ and closeness χ described above, we define the routing
score as a normalized score to assess whether a lookup URI is present in an archive with a
MementoMap (i.e., whether the request should be routed to the archive). We denote the

170

routing score with ρa,l,k as shown in Equation 16 for the likelihood of a lookup URI “l” to
be found in an archive “a” with a MementoMap that returns the longest matching URI key
prefix “k” with the corresponding frequency score when queried.

ρa,l,k =

1, if there is an exact match of the lookup key and µa,k > 0

µa,k · χl,k, otherwise
(16)

The above routing score is a means to estimate the likelihood of finding a lookup URI in
an archive independent of any other web archives that are being aggregated by a Memento
aggregator. It is not a linear quantity (due to logarithmic metrics involved), instead, a
normalized score that can be used to set a heuristic threshold for Memento routing. It is
a product of two normalized scores, both often being fractions, which means it is ≤ the
smaller of the two scores. This means if there are two web archives with routing scores “ρa1”
and “ρa2” for a lookup URI, where “ρa1 = 2ρa2”, it does not necessarily mean that a1 is twice
as likely to return a good result as a2, instead, it means that a1 is more likely to return a
good result than a2. If the heuristic routing threshold falls between the two scores then the
higher one will be routed and the other will not.

Suppose we perform a lookup for the key “org,example)/a/b/c/d/e” in a MementoMap
of a web archive and find the matching URI key prefix “org,example)/a/b/c/*” with fre-
quency value “200/100”. The corresponding density score would be µ ≈ 0.334 (as illustrated
in Section 9.2.1) and the closeness score would be χ ≈ 0.259 (as illustrated in Section 9.2.2).
Since this is not an exact match, the routing score would be ρ = µ ·χ ≈ 0.334 ·0.259 ≈ 0.087

for this lookup. If we have a cut-off threshold of “≥ 0.01” for the web archive then the
lookup will be routed to it, but if the cut-off threshold is set to “≥ 0.1” then the lookup will
not be routed to the web archive.

Relative and Weighted Routing Scores

If a ranked ordered list of web archives with their corresponding normalized relative routing
scores is desired for certain applications (as illustrated in Figure 11c in Chapter 1 on Page 16)
it can be calculated for each archive by dividing their routing score with the sum of the
routing scores of all the aggregated archives. We denote the normalized relative routing
score of each archive “ai” from a set of “N ” aggregated archives ai ∈ {a1, a2, ..., aN} and
their corresponding returned URI keys ki ∈ {k1, k2, ..., kN} for a lookup URI “l” by ρ′ai,l,ki
as shown in Equation 17.

171

1 if archive not profiled:
2 # Return a default non-zero routing score
3 # if neither the holdings nor the voids of the archive are profiled
4 return DEFAULT_ROUTING_SCORE
5

6 if archival holdings profiled:
7 # Initialize with a routing score of 0
8 # if the holdings of the archive are profiled
9 # irrespective of the state of the voids profiling

10 routing_score = 0
11 else:
12 # Initialize with a routing score of 1
13 # if only the voids of the archive are profiled
14 routing_score = 1
15

16 if uri_key prefix match found:
17 # Calculate and update the initialized routing score
18 # if a corresponding URI key is found in any profile of the archive
19 routing_score = calculate_routing_score(archive, lookup_uri, uri_key)
20

21 # Return the initialized/updated routing score
22 return routing_score

Fig. 75. Routing Score Calculation Procedure for Archives With Different Types of Profiles

ρ′ai,l,ki =
ρai,l,ki
N∑
j=1

ρaj ,l,kj

(17)

It is worth noting that if a Memento aggregator does not have MementoMaps for all the
archives it aggregates, it should assign some default routing scores to web archives it does
not have a MementoMap of to make sure those archives show up in the ranked ordered list.
Moreover, we can assign different weights (or importance factor) Wi ∈ {W1,W2, ...,WN}
to each aggregated archive to calculate corresponding normalized relative weighted routing
scores ρ′′ai,l,ki as shown in Equation 18.

ρ′′ai,l,ki =
Wi · ρai,l,ki

N∑
j=1

Wj · ρaj ,l,kj
(18)

172

It is not necessary to have either of the holdings or voids profiled for each web archive
being aggregated by a Memento Aggregator. Moreover, not every lookup URI will have a
matching URI key prefix in a MementoMap. However, in order to create a ranked ordered
list of archives for a given lookup URI we must assign some routing scores to each archive.
In Figure 75 we illustrate a procedure to achieve this. This procedure returns a default
routing score for web archives that are not profiled yet. If an archive’s holdings are profiled
(irrespective of whether its voids are profiled), we initialize the routing score with “0” so that
an appropriate score is assigned only if a matching URI key is found. However, if only the
voids of an archive are profiled then we initialize the routing score with “1”, which will be
changed to “0” later if a matching URI key is found. The latter condition is suitable for big
web archives (such as the Internet Archive) that return good results for the most lookups,
but want to avoid frequently requested resources that they do not contain or not willing to
return as per their policies. The function calculate_routing_score in the pseudo code is
not illustrated as it refers to the routing score calculation as described in Equation 16.

9.2.4 INVERTED INDEX

We take the analogy of documents and inverted indexes as described in Section 2.9 of
Chapter 2 and apply it to our MementoMap framework for Memento routing. In our case
a collection is a set of web archives that are aggregated by a Memento aggregator, each
web archive represented by its corresponding MementoMap is a document, URI-Rs in the
archive are words that are canonicalized and stemmed to form URI keys of MementoMaps,
and their corresponding frequency values as term frequencies. We may choose to transform
the frequency values from MementoMaps in a more compact and normalized form density
(as described in Section 9.2.1) before adding to an inverted index. Suppose, we have a set of
“N ” archives ({a1, a2, ...aN}) that each contain a subset of URI keys from a set of “M ” keys
({k1, k2, ...kN}) with density scores corresponding each archive and URI key pair from a set
of densities ({µ1, µ2, µ3...}). A sample inverted index for these web archives is illustrated in
Figure 76.

9.2.5 MEMENTOMAP AND INVERTED INDEX LOOKUP

In Chapter 8 we introduced a file format called UKVS and used it to serialize Memen-
toMaps of web archives. This format is sort friendly, which when used for MementoMaps,
allows binary search in URI keys on disk. This means if a Memento aggregator is aggre-
gating a small number of web archives, it can perform searches in MementoMaps of each

173

1 k1: [(a1, µ1), (a2, µ2)]
2 k2: [(a2, µ3)]
3 k3: [(a1, µ4), (a2, µ5), (a3, µ6)]

Fig. 76. A Sample Inverted Index of Web Archive Profiles

archive in parallel to identify which archives are likely to return good results for the lookup
URI.

However, this parallel search is not scalable beyond a small number of archives. To work
on a large set of web archives we can process their MementoMaps and make a combined
inverted index from them. Moreover, we can leverage our UKVS file format to serialize
inverted index as well, so that we get all the benefits of arbitrary split and merge, binary
search on disk, and incremental updates that have for MementoMaps. Additionally, if an
archive has published a more detailed MementoMap than needed by an application (e.g.,
a Memento aggregator), then it is possible for the application to abridge the MementoMap
when ingesting it for an inverted index using the MementoMap Compaction algorithm de-
scribed in Chapter 8. An inverted index works for small number of archives as well, but its
benefits would be more visible at large scale.

Suppose we have three MementoMaps from three different archives (as illustrated in
Figure 77):

• arquivo.pt – with both of its archival holdings and voids profiled

• perma.cc – with only its archival holdings profiled

• archive.is – with only its archival voids profiled

We can combine these to create an inverted index using UKVS format in many different
ways as shown in Figure 78. Numeric scores in the inverted index files do not match with that
in the MementoMap files because the value column on MementoMap shows the frequency
score while we have transformed it to the density score in inverted indexes. These keys
and values are for illustration purpose only, they do not reflect holdings or voids of actual
archives. In Figure 78a we placed the identifier of corresponding archive as a secondary key
column while we collapsed this with corresponding score in the JSON block in Figure 78b.
The latter format grows slower when many archives have a significant number of shared URI

arquivo.pt
perma.cc
archive.is

174

!context ["https://oduwsdl.github.io/contexts/ukvs"]
!id {uri: "https://arquivo.pt/"}
!fields {keys: ["surt"], values: ["frequency"]}
!meta {type: "MementoMap", profile: "both"}
!meta {updated_at: "2020-02-05T21:49:03Z"}
com,example)/ 200
com,facebook)/* 0
org,example)/a/* 20

(a) A Sample MementoMap from Arquivo.pt With Both Holdings and Voids Profiles

!context ["https://oduwsdl.github.io/contexts/ukvs"]
!id {uri: "https://perma.cc/"}
!fields {keys: ["surt"], values: ["frequency"]}
!meta {type: "MementoMap", profile: "holdings"}
!meta {updated_at: "2020-04-22T05:11:09Z"}
com,example)/ 100
org,example)/a/b/c/* 10

(b) A Sample MementoMap from Perma.cc With Only Holdings Profile

!context ["https://oduwsdl.github.io/contexts/ukvs"]
!id {uri: "https://archive.is/"}
!fields {keys: ["surt"], values: ["frequency"]}
!meta {type: "MementoMap", profile: "voids"}
!meta {updated_at: "2019-11-14T10:26:32Z"}
com,example)/ 0
org,example)/a/* 0

(c) A Sample MementoMap from Archive.is With Only Voids Profile

Fig. 77. MementoMap Samples from Different Web Archives

keys. Both of these inverted index formats benefit from the spatial locality on disk when
performing binary search for a lookup URI.

Once we have an inverted index in place, we can perform lookups in it to find records to
estimate the likelihood of finding a lookup URI (e.g., “http://example.org/a/b/c/d/e?x=y”)
in many different web archives. We first transform the lookup URI to SURT and remove
any query parameters from it to form a lookup key (e.g., “org,example)/a/b/c/d/e”). We
then perform a binary search in the inverted index to fetch all the records related to the
longest URI key prefix matches for each archive. In a sorted inverted index these records
are collocated (e.g., the last two lines of Figure 78b), making it easy and efficient to perform

175

!context ["https://oduwsdl.github.io/contexts/ukvs"]
!id {uri: "https://memgator.cs.odu.edu/"}
!fields {keys: ["surt", "archive"], values: ["density"]}
!meta {type: "InvertedIndex"}
!meta {updated_at: "2020-07-11T21:38:19Z"}
com,example)/ archive.is 0
com,example)/ arquivo.pt 0.2
com,example)/ perma.cc 0.08
com,facebook)/* arquivo.pt 0
org,example)/a/* archive.is 0
org,example)/a/* arquivo.pt 0.02
org,example)/a/b/c/* perma.cc 0.01

(a) Inverted Index With the Archive Secondary Key Column and Density Score as the Value Column

!context ["https://oduwsdl.github.io/contexts/ukvs"]
!id {uri: "https://memgator.cs.odu.edu/"}
!fields {keys: ["surt"], values: []}
!meta {type: "InvertedIndex"}
!meta {updated_at: "2020-07-11T21:44:25Z"}
com,example)/ {"archive.is": 0, "arquivo.pt": 0.2, "perma.cc": 0.08}
com,facebook)/* {"arquivo.pt": 0}
org,example)/a/* {"archive.is": 0, "arquivo.pt": 0.02}
org,example)/a/b/c/* {"perma.cc": 0.01}

(b) Inverted Index With the Archive Key and Density Score Collapsed in the JSON Block

Fig. 78. Variations of Inverted Indexes in UKVS Format from the Same Set ofMementoMaps

the search. After ingesting all the matching records, we calculate many derived attributes
and metricses. Finally, we return a composite result as illustrated in Figure 79. This figure
includes a default routing score of 0.8 for archive.org which is not profiled and is not part
of the inverted index shown in Figure 78. The list of archives with their resulting properties
is sorted in the descending order of the routing score, as a result archive.is, which has a
matching archival voids record, is placed at the end with a “0” score.

9.3 CLASSIFIER REBORN

Classifier Reborn is an open-source classifier module written in Ruby [81]. It has a simple
implementation of a Bayesian classifier [129, 206] among a few other types of classifiers. This
module is designed to work with string input, which it converts to tokens and counts their
frequencies to perform necessary statistical calculations.

In addition to our routing score calculation approach described above, we wanted to use a

archive.org
archive.is

176

1 {
2 "lookup_uri": "http://example.org/a/b/c/d/e?x=y",
3 "lookup_key": "org,example)/a/b/c/d/e",
4 "lookup_key_length": 7,
5 "archives": [{
6 "archive": "archive.org",
7 "routing_score": 0.8,
8 "relative_routing_score": 0.588
9 }, {

10 "archive": "perma.cc",
11 "uri_key": "org,example)/a/b/c/*",
12 "uri_key_length": 5,
13 "keys_distance": 2,
14 "density": 0.01,
15 "routing_score": 0.39,
16 "relative_routing_score": 0.287
17 }, {
18 "archive": "arquivo.pt",
19 "uri_key": "org,example)/a/*",
20 "uri_key_length": 3,
21 "keys_distance": 4,
22 "density": 0.02,
23 "routing_score": 0.17,
24 "relative_routing_score": 0.125
25 }, {
26 "archive": "archive.is",
27 "uri_key": "org,example)/a/*",
28 "uri_key_length": 3,
29 "keys_distance": 4,
30 "density": 0,
31 "routing_score": 0,
32 "relative_routing_score": 0
33 }]
34 }

Fig. 79. A Sample Inverted Index Lookup Result

simple classifier that can take the certain basic features from the result of aMementoMap (or
inverted index of MementoMaps) lookup as shown in Figure 79 (e.g., lookup_key_length,
uri_key_length, keys_distance, and density) and predict whether the lookup URI is
present in the corresponding web archive. We could have used one of the many off-the-
shelf classifier implementations, but we decided to use Classifier Reborn instead as we could

177

Table 27. Datasets of Web Archival Holdings and Voids Profiles

Archive Unique URI-Rs Prevalence Holdings Keys Voids Keys

Arquivo.pt 2.0B 2.89% 14M 2.3K
Archive-It 1.9B 3.96% 13M 0.7K
UKWA 0.7B 1.18% 5.2M 0.9K
Stanford 12M 0.02% 134K 1.0K

change it more easily to fit our needs and have better understanding of its internals. In the
process we contributed a significant amount of code and documentation to improve this open-
source code repository. Our first major contribution to this repository was to overhaul its
architecture to support modular backends to store the model instead of keeping everything
in the memory of the process. We then implemented a couple of storage backends including
the process memory backend (to preserve the original behavior) and an independent Redis
backend [80]. This change allowed us to persist the trained model more easily, independent
of the lifecycle of the training and prediction process, while the model could be built and
used collaboratively by independent processes running on different hosts. Our second major
contribution was the implementation of a classifier evaluation and validation module [7].
Moreover, we modified the code for our private use to make it work with the kind of input
data we have for Memento routing.

9.4 EVALUATION

To evaluate our Memento routing models we used CDX datasets from four different
web archives of varying sizes that we have used in the previous chapters as well. In earlier
chapters we focused on establishing baselines while making sure we do not allow any false
negatives. In this chapter, we do allow false negatives to see how many requests we can safe
from being routed while giving up on some recall. We evaluated three approaches, two of
which are based on our heuristic routing score: a cut-off threshold and top-k archives and
third is a rudimentary machine learning model.

9.4.1 DATASETS

To create archival holdings profiles for Memento routing evaluation we reused the CDX
datasets from Archive-It, UKWA, and Stanford web archives that we used for evaluation in

178

Chapter 6 and from Arquivo.pt that we used in Chapter 8. When generating MementoMaps,
we used weights Wh = 4.00 and Wp = 2.0 which yielded significant accuracy with very little
relative cost (as reported in Chapter 8). However, the Stanford web archive was two orders
of magnitude smaller than the rest, so we decided to generate a more detailed profile for
this and for that we used weights Wh = 8.00 and Wp = 4.0.

We also used access logs data from Arquivo.pt to create archival voids profile that we
used in Chapter 7. To create archival voids profile we only considered URIs that were
requested at least 100 times and have always returned a “404 Not Found” response. There
were about 24,000 such URIs that turned into about 23,000 unique URI keys in the voids
profile. The reduction ratio seems poor because we did not allow any roll ups in archival
voids profiles as we wanted to make sure they are very specific (as discussed in Chapter 7).

To create the archival voids profile for the remaining three archives we used longitudinal
access logs data of our MemGator server and selected URIs for each archive that have always
returned a “404 Not Found” response. These archival voids profiles are smaller in size than
the one for Arquivo.pt because our MemGator server receives a relatively smaller amount
of traffic than the Arquivo.pt server. When creating these archival voids profiles we took
a conservative approach to select only high-frequency (> 100) URI-Rs and prevented them
from getting rolled up in smaller URI keys to make sure they do not produce any additional
false negatives.

Usage-based profiles generally boost accuracy significantly, but are likely to produce an
increasing number of false negatives over time. This behavior was observed by Klein et
al. [162]. Our own data in Table 15 of Chapter 7 (on Page 129) suggests the same as it
shows more than 5% increase in “200 OK” responses during a period of three and a half
years from URI-Rs that were returning “404 Not Found” responses in the past. This means
a stale usage-based profile (based on access logs) may produce false negatives for these.
Moreover, periodic attempts to recreate archival voids profiles from the updated access logs
may introduce new keys to the voids profile (for URIs that are gaining popularity, but are
not present in the archive), but will not be helpful in removing existing keys as those were
not requested due to their presence in the voids profile (i.e., a cyclic dependency issue).
Archival voids profiles should ideally be created by the archives themselves (as discussed in
Chapter 7), but if an aggregator decides to create these based on its past observations then
it should use some reliable techniques to update the voids profiles frequently. Below are a
couple of ways to achieve this:

• Periodically poll each archive for URIs that constituted their corresponding archival

179

Table 28. Archival Holdings of Primary Targets

Archive Primary Target Holdings %

Arquivo.pt *.pt 61.42
Archive-It *.{edu,gov} 12.20
UKWA *.uk 98.95
Stanford *.stanford.edu 0.90

voids profiles (this requires bookkeeping of complete URIs, not just the rolled up URI
keys).

• Continuous updates by allowing a small percentage of requests to hit the archive, even
if the lookup URIs had a matching URI key prefix in the voids profile of an archive.

We randomly sampled one million unique URIs from our longitudinal MemGator access
logs to create a sample lookup dataset. We annotated these sample lookup URIs with their
presence or absence in each of the four archives. We also annotated these lookup URIs
with their number of occurrences in MemGator logs. These one million URIs collectively
appeared more than 1.6 million times in MemGator access logs. The prevalence of these
lookup URIs is below 4% in any individual web archive and as low as 0.02% in the smallest
one and about 7.9% of these sample URIs are present in at least one archive. This low
prevalence means the overlap of what people look for in web archives and what is being
archived is small, which means profiling web archives for Memento routing is important.
While MemGator’s access logs are not necessarily representative of what is being accessed
from each web archive individually, we chose this dataset for evaluation because Memento
routing is needed for Memento aggregators, not for individual web archives. Moreover,
in Chapter 6 we used four different lookup URI datasets and found that the maximum
prevalence was not significantly different from this.

Using these datasets as our gold standard we evaluated our routing score and classifier
models for Memento routing. A summary of this dataset is shown in Table 27.

9.4.2 COLLECTION DIFFUSION

Table 28 shows the primary target URI space of each archive and the percentage of
holdings that belong to their primary scopes. Arquivo.pt was founded with the aim to

180

Table 29. Recall, Accuracy, and Request Cost of Various Baseline Routing Policies (With
“R” lookup requests to a Memento aggregator of “N ” web archives)

Policy Recall Accuracy Request Cost

Random-1 0.276 0.02 R

Random-2 0.531 0.02 2R

Top-1 0.918 0.07 R

Top-2 0.987 0.04 2R

Broadcast 1.000 0.02 N ·R

preserve web content of interest to the Portuguese community [117], but we see that about
40% of their collection belongs to URIs other than “.pt” TLDs. Archive-It is a subscription-
based web archiving service with its primary customers being educational institutions and
libraries. We would assume that they would primarily focus on collecting URIs from “.edu”
and “.gov” TLDs. However, only about 12% of their URIs belong to these TLDs while
containing about 55% and 20% of “.com” and “.org”, respectively. Among all these web
archives we used for evaluation, UKWA has the tightest collection policy, but even that
has over 1% of leakage of TLDs other than its primary scope (i.e., “.uk”). Stanford has
a small collection of web pages archived by the University. We would assume that their
collection will focus on their university URIs (i.e., *.stanford.edu). However, we found
less than 1% prevalence of such URIs in their collection while 52% and 28% of “.com” and
“.gov” TLDs, respectively. It is worth noting that their collection might have changed over
time as the dataset we have was transferred to us when their archive was only one year
old. These findings reinforce assessment that web archival collections diffuse over time and
simple TLD-based Memento routing is insufficient.

9.4.3 BASELINE ROUTING

There are about 79,000 sample lookup URIs that are present in at least one archive.
Table 29 illustrates recall and request cost if an aggregator decides to poll from only a few
archives for each lookup request. In the case of broadcasting the recall is 100%, but it comes
with a cost of “N · R” requests (where “R” is the number of lookup requests received by
a Memento aggregator and “N ” is the number of upstream web archives it is aggregating
from). The Accuracy in Table 29 is poor (between 2% and 7%) for all policies because in

181

this routing method the routing score does not determine how many archives will be polled
for a given lookup request, or in other words, we do not attempt to identify true negatives.
Since prevalence of lookup dataset in each archive is small, false positives would be high.
Moreover, very few URIs are present in more than one archives so a higher value of k would
increase the wastage.

If an aggregator randomly selects “k” archives (i.e., random-k) for each lookup request
(to reduce the request cost to “k ·R”) and each lookup URI is present in exactly one of the
“N ” archives, then the theoretical recall value would be “k/N ”. Our experimental results in
Table 29 confirm this, but our recall values are slightly higher than the theoretical estimate
because a small percentage of our sample lookup URIs is present in more than one archives
(though these overlaps are small, as shown in Figure 7 of Chapter 1 on Page 11).

When we selected only the topmost archive based on the routing score for each of these
lookup URIs we missed 8.23% of these, but when we selected the top-2 archives we only
missed 1.31%. While these results are promising, top-k approach should not be used in
isolation because it will generate many false positives for those URIs that are not present
in any archive. To avoid the bulk of those false positives while still leveraging the top-k
approach an application should in conjunction use a low cut-off threshold for the routing
score. Another point to note when deciding the value of k for the top-k approach for
Memento routing is whether an application is looking for some, most, or all good results as
a smaller k would cover fewer good results.

9.4.4 HEURISTIC ROUTING

We started by combining MementoMaps (both holdings and voids) from all of the four
web archives into a single inverted index. By doing so the number of records dropped from
about 32 million (all MementoMap lines combined) to about 25 million unique URI keys
(i.e., about 22% reduction). During this process we also converted frequency values (in
this case, URI-M counts) of MementoMaps to corresponding density scores as described in
Section 9.2.1.

After that we calculated the routing score for each of the one million sample lookup
URI against each of the four web archives using the model described in Section 9.2.3 and
annotated sample URI dataset with these scores. Since we already annotated each sample
URI with its presence or absence information in each archive in the process of gold dataset
creation, we only needed to evaluate how effective these routing scores are at minimizing
false positives and false negatives (i.e., maximizing accuracy while keeping a reasonably

182

Table 30. Recall, Accuracy, and Request Saving With the Heuristic Routing Score Threshold
on Holdings and Voids Profiles

Holdings Only With Voids

Archive Threshold Recall Accuracy Savings % Accuracy Savings %

≥ 10−1 0.894 0.903 89.40 0.964 94.72
Arquivo.pt ≥ 10−2 0.933 0.825 80.92 0.857 86.83

≥ 10−3 0.991 0.638 64.61 0.681 71.97

≥ 10−1 0.881 0.929 91.33 0.948 96.11
Archive-It ≥ 10−2 0.916 0.838 84.06 0.879 90.94

≥ 10−3 0.972 0.680 70.17 0.727 76.42

≥ 10−1 0.843 0.874 88.94 0.889 93.28
UKWA ≥ 10−2 0.882 0.793 81.00 0.812 87.19

≥ 10−3 0.912 0.607 63.82 0.648 71.85

≥ 10−1 0.809 0.802 85.38 0.819 89.14
Stanford ≥ 10−2 0.867 0.675 70.96 0.701 77.88

≥ 10−3 0.898 0.586 63.22 0.603 69.63

good recall) when we choose different cut-off thresholds for Memento routing.
In Table 30 we show our routing evaluation results. In this table we have three different

cut-off points (i.e., 10−1, 10−2, and 10−3) for the routing score for each web archive. If
a lookup URI in the gold dataset has a routing score above the cut-off threshold for any
archive, we consider that lookup to be routed to that archive. The Accuracy value represents
how many of the one million lookup URIs we have correctly identified to be present in or
absent from the corresponding archive with the given threshold. The Recall value shows
how many of the URIs present in an archive were routed to that archive. A Recall value
of 0.9 would mean that we missed 10% of the URIs that were present in an archive (i.e., a
10% false negatives).

The Savings column represents the percentage of 1.6 million MemGator requests (that
include repetitions of the one million unique lookup URIs we chose for our gold dataset)
that would have been avoided from being routed. When the prevalence is small the value of
request savings should be very close to the accuracy value because in that case true negatives
play the most significant role in deciding what lookups should not be routed. However, if

183

the popularity of request URIs is not uniformly distributed in FP, FN, TP, and TN then
depending on the access pattern the savings percentage can be different.

There are two sets of results in this table, one pair of Accuracy and Savings represents
routing with only the archival holdings profiles and the other pair is for the case where we
combined both holdings and voids profiles for each archive. The Recall value remains the
same for both the cases as we created archival voids profile with strict conditions that do not
produce any additional false negatives. With the inclusion of archival voids profile we get
a more significant increase in Savings than in Accuracy because for archival voids profiling
we have used URIs that are requested more frequently (i.e., once correct true negative
identification affects multiple requests).

We see an inherent trade-off between Accuracy and Recall. For example, in the case of
Arquivo.pt, if we allow about 11% reduction in recall we can get an accuracy of about 96%
that would save over 94% of our lookup requests. However, if we increase the recall to about
99%, the accuracy goes down to about 64% with only about 60% savings in lookup routing.
Archive-It had slightly better prevalence, so we would expect better routing scores for it, but
Arquivo.pt had a larger archival voids profile, which has likely increased its scores. The poor
recall in UKWA and Stanford archives was due to their significantly low prevalence. These
results show a significant improvement over LANL’s classifier-based routing that produced
a recall of 0.73 with many wasted requests [162].

Moreover, we learned that an application should use different cut-off threshold for dif-
ferent archives based on how detailed their profiling is and how large the archive is. Alter-
natively, a weighted normalized relative routing score can be used to achieve similar effects.

9.4.5 MACHINE LEARNING-BASED ROUTING

In this technique of we did not use our heuristic routing score, closenessscore, or any
cut-off thresholds. Instead, we fed lookup_key_length, uri_key_length, keys_distance,
and density metrics as returned from our inverted index lookup (as shown in Figure 79)
and the ground truth from the gold dataset to our Classifier Reborn implementation and
allowed it to build a statistical Bayesian classifier model. We built these models for each web
archive individually as well as a combined one that leverages data from all the web archives.
Finally, we performed a 10-fold cross-validation in which the gold dataset is partitioned in
ten equal parts, then nine parts are used for train and one part is set aside for testing, this
process is rotated for all ten possible combinations and a combined report is generated.

In Table 31 we show our routing evaluation results based on our Machine Learning model.

184

Table 31. Recall, Accuracy, and Request Savings in Machine Learning-Based Routing

Archive Recall Accuracy Savings %

Arquivo.pt 0.863 0.978 96.22
Archive-It 0.844 0.941 94.92
UKWA 0.629 0.933 94.11
Stanford 0.535 0.968 95.27

Combined 0.827 0.948 95.73

The overall pattern we see in these results is that the accuracy is better than our heuristic
approach, but the recall is significantly poorer. For the smallest archive with the lowest
prevalence we missed over 46% of the URIs that were present in the Stanford archive while
the accuracy was almost 97%. This is not surprising because there were only about 0.02%
lookup URIs dataset that were present in the Stanford web archive. As a result the model
was biased towards predicting almost every request to be not present in the archive while
still having good a accuracy score. Apparently, we cannot learn “a cat” without learning “not
a cat”. It will be a good future work to see how various machine learning models perform
on Memento routing using our input features when they are trained on a dataset that has
a better prevalence.

Finally, we combined the input data for every lookup URI and web archive pair to train a
generic model. We found that it performed well even for those archives with low prevalence,
though the recall was still below 83%.

9.5 CHAPTER SUMMARY

In this chapter we addressed our third research question, “RQ3: How to utilize archive
profiles for the routing of URI lookup requests? ” We combined what we learned in the last
three chapters and put them to work. We first revisited what Memento aggregation and
Memento routing mean, why they are important, and where MementoMap framework fits
in the ecosystem.

We described our methodology in which we introduced and defined three different scores
density (a normalized transformation of the frequency), closeness (a measure of how similar
two URI keys are), and routing score (a means to estimate whether a lookup URI is present
in an archive). Then we described inverted index with examples and illustrated how we can

185

use it to combine multiple MementoMaps for efficient binary searching in a file on disk. We
described how the lookup is preformed in MementoMaps (or inverted index) and how the
results are prepared for downstream consumption.

We described our external open-source contributions to Classifier Reborn, a machine
learning module written in Ruby, and how we customized and used it for our work. Our
contributions included a significant overhaul of its architecture, a brand new evaluation and
validation component, and documentation.

Finally, we evaluated Memento routing using our MementoMap framework. We first
described the gold dataset we prepared that consists of MementoMaps of four different web
archives and one million unique URI samples from our MemGator’s longitudinal access logs.
We illustrated a significant diffusion of URI scope in different web archives, which concludes
that a simple TLD-based routing is not adequate. We found that using the heuristic routing
score threshold technique we can achieve over 96% accuracy if we accept about 89% recall
and for a recall of 99% we managed to get about 68% accuracy, which translates to about
72% saving in wasted lookup requests. Moreover, when using top-k archives for routing and
choosing only the topmost archive, we missed only about 8% of the sample URIs that are
present in at least one archive, but when we selected top-2 archives, we missed less than
2% of these URIs. We also evaluated a machine learning-based routing approach, which
resulted in an overall better accuracy, but poorer recall due to low prevalence of the sample
lookup URI dataset in different web archives.

186

CHAPTER 10

CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS

Due to the inherent nature of the web and web crawlers, as web archives grow larger over
time, their collections get dispersed, despite tightly controlled collection policies (cf. Figure 8
on Page 12). As a result, it becomes difficult to describe their holdings in the URI space,
even if at first glance it would seem trivial for national archives to correspond to their
respective TLDs (e.g., .pt for Arquivo.pt and .uk for UK National Library). In this work
we established the MementoMap framework to tackle this problem space.

In this chapter we summarize major contributions of our archive profiling work and
related publications in the form of algorithms, software, tools, datasets, and specification
drafts. Furthermore, we discuss potential future research and development based on the
foundational framework laid out by this work. Finally, we conclude this work by summa-
rizing all the previous chapters and stating take away findings.

10.1 CONTRIBUTIONS

Our contributions include many components that were essential for this work as well as
some by-products that were created to help our research process. Many of our contributions
have the potential to be leveraged in the future while some of our tools have already been
utilized by others.

10.1.1 ALGORITHMS

We introduced the Random Searcher Model (RSM) to discover samples of holdings of web
archives [30]. This algorithm utilizes fulltext search interface of web archives (if available) to
query the archive with a set of keywords and collects resulting URIs that are present in the
archive. Our system works with or without a static set of search keywords as a representative
set of search keywords might not be available for certain languages and disciplines that
the archival holdings belong to. We have described RSM in detail in Chapter 6 under
Section 6.4.1. Our algorithm yielded a routing accuracy of 0.8 with a recall of 0.9 after
discovering only 10% of the archival holdings.

To generate MementoMaps from a large list of URIs we introduced a space and time
efficient algorithm [32]. Our algorithm takes a stream of sorted list of URIs (in SURT form)

187

and yields aMementoMap based on the configuration options in a single pass. The algorithm
requires a constant (and small) amount of memory to operate, irrespective of the size of
the input. The same algorithm can be used to compact down an existing more detailed
MementoMap into a smaller and less detailed one by adjusting configuration parameters.
Moreover, the algorithm can also be used to merge multiple MementoMaps into one that
were either created in parallel or updated incrementally. We have described the algorithm
in detail in Chapter 8. Our algorithm produced MementoMaps that have an accuracy of
>0.6 with a relative cost <1.5% while producing zero false negatives (i.e., a recall of 1).

10.1.2 TERMINOLOGY AND METRICS

During our research we needed many terms to describe things and many metrics for
evaluations. We reused existing terms and metrics when we found something suitable, but
described and defined a few new ones:

• URI Key – We extended SURT with the wildcard support to describe subtrees of
the URI space in the form of URI prefixes.

• Archival Holdings – A measure to describe holdings of an archive.

• Archival Voids – A measure to describe what an archive is missing.

• Relative Cost – The ratio of the number of URI keys used to describe summarized
holdings of an archive over the total number of unique URI-Rs in the archive.

• Frequency Score – A means to represent the number of URI-Ms and/or URI-Rs
under a URI key.

• Density Score – A normalized score derived from the frequency score to describe the
archiving activity under a URI key.

• Closeness Score – A normalized score to describe how similar or different two URI
keys are.

• Routing Score – A normalized score to represent how likely it is that an archive has
a URI.

188

10.1.3 SOFTWARE/TOOLS

During our research on this archive profiling work we developed many tools to aid our
research process and/or as part of our deliverables. We discussed these in Chapter 5 and
outlined their functional role in the web archiving ecosystem. Below is a list of various
significant tools and software that we released publicly. However, this is not a comprehensive
list of all the software/tools/scripts we have created during this work.

• InterPlanetary Wayback (IPWB) – A novel archival replay system based on
IPFS [152, 20, 23, 22, 19].

• Reconstructive – A client-side URL rerouting and archival banner injection Service-
Worker script [21, 24, 17].

• MemGator – A portable Memento aggregator CLI and server [27, 10].

• Random Searcher – A script to sample holding of web archives via fulltext search
(an implementation of our RSM algorithm) [30, 6].

• AccessLog Parser – A web server access log parser with added features for web
archives [5].

• Archive Profiler – A set of script to generate URI keys, profile web archives, and
analyze their holdings [6].

• MementoMap – A tool and module to generate, manage, and utilize MementoMaps
(archive profiles) in the UKVS serialization format (an implementation of our single-
pass MementoMap generation algorithm) [32, 9].

• Classifier Reborn – A Ruby implementation of Naive Bayes classifier (it is not our
original software, but we contributed extensively to its development and overhaul) [81,
7].

10.1.4 DATASETS

To evaluate our work we collected different types of datasets from various sources as
outlines below:

• WARC and/or CDX files from a few different web archives

189

• Access logs from a few web archives and Memento aggregators

• Longitudinal access logs from our own MemGator service with response behavior of
each upstream archive that we aggregate results from

• Historical list of URIs extracted from DMOZ and Reddit

• List of words from different sources

• List of public domain suffixes

We wrote many scripts to process these datasets to clean/fix malformed records, filter
unwanted entries, and create derivative datasets. Some data sources (e.g., Arquivo.pt,
Archive-It, Stanford Web Archive, and the UK Web Archive) granted us with exclusive
access to their datasets. We plan to make some of our original and/or derived datasets
available in the future as we get permission from the upstream providers to share them
publicly.

10.1.5 SPECIFICATIONS

Our work yielded a file format specification draft called Unified Key Value Store (UKVS)
as described in Chapter 8. It is the file format we use to serialize MementoMaps for dis-
semination. This format is an evolution of a prior file format specification of ours called
CDXJ, which was fusion of CDX and JSON formats with added support for metadata. It is
an extensible and flexible and friendly file format to work with traditional Unix command
line text processing tools.

To make IPWB (our archival replay system) truly decentralized, we created an early draft
of a history-aware name resolution system for IPFS called IPNS Blockchain. We proposed
two potential approaches to add history component to IPNS (the naming system form IPFS).
One of our approaches requires a Blockchain to function while the other approach works
with centralized immutable database that is publicly audited.

10.2 FUTURE WORK

The concept of URI Key we introduced in the form of a SURT prefix, both based on the
static profiling policies we introduced in Chapter 6 and dynamic roll up with the wildcard
we introduced in Chapter 8, can be used in many places where a set of URIs needs to be

190

summarized structurally. Another potential use case of this concept is in creating a URI
diversity measure for a web collection [196, 13].

The concept of Archival Voids we introduced in Chapter 7 can be further investigated
as a crawl quality measure. For example, if a crawler job is initiated with a set of seed URIs
and is configured to collect resources within certain scopes (e.g., all the URIs under .gov
and .mil TLDs) then it is desired to know how well the configured scopes were crawled and
how many resources were missed.

The UKVS file format we introduced in Chapter 8 has many potential applications in the
web archiving ecosystem and beyond where a lookup key is used to retrieve associated values.
It would be worth investigating the impact of using a unified solution for MementoMap,
archival indexing, annotations, access control, archival fixity, etc. Furthermore, independent
parser libraries need to be created for the file format in various programming languages to
make it easier to work with this file format.

In this work we have laid out the foundation for multi-faceted archive profiles that
contain more than one dimension (e.g., URI, language, and date range) in their lookup
keys. However, we have only evaluated our work for routing efficiency based on URIs, which
is the readily available and the most useful facet for our primary application. There is a
potential research opportunity to explore profiling based on different permutations of these
facets to identify sources of additional routing accuracy gains and application where these
facet permutation can be useful.

In all of our evaluations under Chapters 6, 7, and 8 we took the conservative approach
to not allow any false negatives (i.e., we maintain a 100% recall) to establish the baseline.
We believe that the accuracy can be increased by allowing a small amount of false negatives
as it would reduce the more prevalent false positives. However, this hypothesis needs to be
evaluated in a future work. It is worth noting that the cost of false positives affects the
infrastructure while the cost of false negatives affects users, and for this reason we chose not
to allow any false negatives in our baseline evaluations.

In our evaluations we reported relationship between Accuracy and Recall value pairs. We
noted the inherent tradeoff between the two, as an increase in one value cause decrease in the
other. This allows the consumer ofMementoMaps to choose between optimizing their system
for either false negatives or false positives to justify their operational cost or application
needs. However, there is a future research opportunity of cost-sensitive learning where
these scores can be combined into one metric by assigning different weights to them [98].
Furthermore, cost-sensitivity can be applied at the level of individual archives to cooperate

191

with their differential capacities. For example, if an archive is resourceful enough to handle
extra traffic, we may want to allow more false positives to minimize false negatives. On the
other hand, we can assign larger weights to the Accuracy in the case of smaller archives to
allow them to flourish without the increased burden.

In Chapter 8 we used weight-based configurations that control how to roll up a branch
of a URI tree. There is a potential research opportunity to explore other policies and
methodologies to determine when to roll a branch up. We believe that such exploration
may yield in better routing accuracy, especially, if it is informed by the external knowledge
of the distribution of URIs on the web under different domain public suffixes or TLDs.

In Chapter 9 we defined a routing score metric and used it with heuristically determined
threshold values for the routing decision. We also used the Naive Bayes classifier to make
the routing decision as an alternate approach. We found that the classifier was biased
toward Accuracy at the cost of poor Recall due to low prevalence. One potential approach
to mitigate this issue would be to use the Bayesian method to get a probability score and use
it in place of the routing score to be able to adjust the balance between FPs and FNs rather
than relying on the classifier to make the routing decision. Moreover, there is a scope of
trying other classification techniques and deep learning systems on the data that is returned
from our MementoMap inverted index lookup to see if the routing decision can be improved.

By virtue of the Memento API, Memento aggregators can be chained in a hierarchy. This
means we can have multiple Memento aggregator instances at different locations or with
different policies that aggregate a subset of all the web archives. This means any one instance
would be responsible for creating and maintaining MementoMaps of only a small number
of web archives. These aggregators can then be used independently and/or aggregated by a
larger aggregator. It will be a good future work to explore the potential of such hierarchical
federated Memento aggregation architecture while leveraging the MementoMap framework
for profiling web archives at each level.

Many web archives are creating event-specific collections. However, these collections
usually do not contain a standardized metadata that allows cross-archive search in collec-
tions. Our MementoMap framework in this work is primarily based on lookup URIs. It will
be useful to explore options to enable cross-archive collection discovery and browsing. We
think MementoMap has the potential to allow such extensions in the future as it does not
restrict the key fields to be URIs.

We would like to work towards the adoption of the MementoMap framework by public
web archives. This would require development of more libraries and integration with many

192

existing archiving systems. Once the adoption reaches a critical mass, we can work towards
finalizing the standardization process and register the mementomap link relation and well-
known URI in the IANA registry.

10.3 CONCLUSIONS

In Chapter 1 we briefly introduced the web archiving discipline and related terminology
(e.g., Memento) that were necessary to understand the problem space this work addresses.
Then with the help of some real life examples, we highlighted the need of aggregating archives
to address issues like limited coverage of the web in any single web archive, censorship of web
archives, transient errors and attacks, lack of timely captures of important events, potentially
unintentional exclusions, a means for the validity and fixity, and the lack of variety in
mementos. Then, we demonstrated the significance of aggregating small archives by showing
the little overlap among archives and some unique resources that are only captured by small
focused archives. Furthermore, we described the usefulness of understanding the holdings of
various web archives by creating their archive profiles (or MementoMaps). Using a real life
example of an incident, we demonstrated how broadcasting lookup requests from Memento
aggregators can be wasteful and problematic. Finally, we established our three primary
research questions:

• RQ1: How to learn about the holdings and voids of an archive?

• RQ2: How to build an archive profile that will best summarize an archive’s hold-
ings/voids and allow for dissemination and exchange?

• RQ3: How to utilize archive profiles for the routing of URI lookup requests?

In Chapter 2 we provided necessary background information about various related ter-
minologies to help readers understand the problems this work is addressing as well as their
solutions.

We covered topics including HTTP and its components, access logs, web archiving,
web archives, collection policies, Memento and related terminologies such as TimeGate and
TimeMap, HTTP status codes in the context of web archives, Memento Aggregators, URIs
and their transformations such as normalization/canonicalization and SURT, file formats like
WARC, WAT, WANE, WET, CDX, and, CDXJ, syndication protocols like RSS/Atom feed,
Sitemaps, robots.txt, and well-known URIs, and Inverted Indexes. We included necessary

193

illustrations for each terminology and established the purpose, relevance, and usefulness of
each in the context of this work.

In Chapter 3 we reviewed published scholarly literature in various related areas. We
covered many topics including surface web, deep/hidden web, dark web, focused crawling,
textual database summarization, on-premise indexing, search form detection, query routing,
Bloom filters, size of search engine indexes, size of the indexable web, archival coverage of the
web, the web that cannot be archived by public web archives, public and private web archive
integration, large-scale web archive indexing, and initial efforts on Memento routing via both
content-based and usage-based profiles. In each section of this chapter we established the
relevance of prior work with our work and any shortcomings that we need to address.

In Chapter 4 we outlined our MementoMap framework, described our three primary
research questions in detail, and established the evaluation plan. We described three ma-
jor components of the framework parallel to corresponding research questions. We briefly
introduced various statistical measures for evaluation such as cost, accuracy, freshness, and
efficiency.

In Chapter 5 we described various open-source tools, libraries, and scripts we built during
our research as part of our deliverables and to help our research process. Some of our open-
source tools have been utilized in other research and development works by many other
people beyond the scope of archive profiling.

In Chapter 6 we addressed the first part of the RQ1 to explore ways to describe archival
holdings. We outlined four approaches of learning an archive’s holdings:

1. CDX Profiling

2. Fulltext Search Profiling

3. Sample URI Profiling

4. Response Cache Profiling

We described the data structure of archive profiles, defined the term URI-Key, and
outlined numerous profiling policies with varying levels of details and generation methods.
Moreover, we described relevant statistical measures and summarized various datasets that
we collected for evaluation. We evaluated the overlap among archives, growth of profiles
with different policies, and their cost vs. routing efficiency. We found that the growth of the
profile with respect to the growth of the archive follows Heaps’ law, but the values of free
parameters are archive-dependent. With accuracy defined as correctly predicting that the

194

requested URI-R is present or not present in the archive, we gained about 78% routing ac-
curacy with less than 1% relative cost and 94% routing accuracy with less than 10% relative
cost without any false negatives. The registered domain profile doubles the routing precision
with respect to the TLD-only profile, while a profile with complete hostname and one path
segment gives ten fold routing precision. For fulltext search profiling we then introduced
our contribution called RSM. We described its data structure, policies, operation modes,
procedures, and reference implementation. Finally, we evaluated the routing efficiency of
profiles created using RSM and concluded that the DDom profile (that has less than 1%
cost as compared to the URIR profile) can have about 0.9 Recall while correctly routing (or
not routing) more than 80% of the URIs by only knowing 10% of the archive.

In Chapter 7 we addressed the second part of the RQ1 to explore ways to describe
archival voids. We defined and discussed Archival Voids and established a means to represent
portions of URI spaces that are not present in web archives. We illustrated how archival
voids and archival holdings interact with each other in a hierarchical manner to describe
holdings and voids in more specific portions of the URI spaces. We discussed various sources
of truth that can be used to create archival voids profiles. For evaluation we used access
logs from Arquivo.pt for which we first described access patterns and surfaced various corner
cases that were present in it. We discussed prevalent Soft-404 TimeMaps in the access logs
for many years, and techniques we used to remedy that in order to make a more meaningful
analysis of the dataset. We discussed the distribution of HTTP response status codes in
the access logs and reported how these status codes changed over time for various URIs.
We evaluated the routing accuracy against various archival voids profiles created from these
access logs and found that we could have avoided more than 8% of the false positives (on
top of the accuracy we got from archival holdings profile as discussed in Chapter 6) if
Arquivo.pt were to provide an archival voids profile based on URIs that were requested
hundreds of times and never returned a success response. Finally, we discussed who should
create archival voids profile and provided some guidelines based on our understanding.

In Chapter 8 we addressed RQ2 to explored serialization and dissemination methods
of archive profiles. We first described UKVS, the file format we use for serialization of
MementoMaps. We illustrated a list of a sorted SURTs with wildcards and organized them
in a tree to elaborate on the structure of URI-Keys. We then described various structures
and attributes of MementoMap files suitable for different application needs. We described
our single-pass efficient algorithm for generation and compaction of MementoMaps and a
reference implementation of it along with binary search in file on disk. Then we described a

195

few standard means of disseminating generated MementoMaps by archives or third parties.
To evaluate the serialization format we used and its effectiveness, we measured overlap of
archived resources in Arquivo.pt against accessed resources by MemGator. We analyzed
holdings of Arquivo.pt in detail and the shape of their URI tree. Finally, we compared the
cost and routing accuracy of these MementoMaps and found that a MementoMap of less
than 1.5% Relative Cost can correctly identify the presence or absence of 60% of the lookup
URIs in the corresponding archive without any false negatives.

In Chapter 9 we addressed RQ3 in which we combined profiles of various web archives
and routed Memento lookup queries to suitable archives. We described our methodology
in which we introduced and defined three different scores: density, closeness, and routing.
Then we described inverted index and how we used it to combine multiple MementoMaps
for efficient binary searching and reported results. We described our significant external
open-source contributions to Classifier Reborn. We illustrated a significant diffusion of URI
scope in different web archives, which concludes that a simple TLD-based routing is not
adequate.

Finally, we evaluated our Memento routing models and found that using the routing
score threshold technique we can achieve over 96% accuracy if we accept about 89% recall
and for a recall of 99% we managed to get about 68% accuracy, which translates to about
72% saving in wasted lookup requests. Moreover, when using top-k archives for routing and
choosing only the topmost archive, we missed only about 8% of the sample URIs that are
present in at least one archive, but when we selected top-2 archives, we missed less than 2%
of these URIs. We also evaluated a machine learning-based routing, which resulted in an
overall better accuracy, but poorer recall due to low prevalence of the sample lookup URI
dataset in different web archives.

To summarize, we began our work by identifying serious issues related to Memento
aggregation and Memento routing, a niche yet important field, that was not explored well.
We performed thorough research by quantifying the scale of the problems, assessing their
impacts, identifying potential approaches to solve them, and evaluating those approaches.
We introduced a novel framework called MementoMap as a deliverable of our research,
which allows a flexible and scalable means to summarize and express holdings and voids of
web archives. The primarily purpose of the framework is to make Memento routing more
efficient, but it can be useful in many other applications. We reported promising results as
part of our evaluations, and we hope that these results will encourage practitioners in the
web archiving community to adopt the MementoMap framework to allow new players to

196

flourish while maximizing the yield for the end users. We hope that numerous algorithms,
terminologies, metrics, specification, datasets, and software tools we produced as part of
our work will inform future research works in related fields and be useful in many services
and applications.

197

REFERENCES

[1] Eugene Agichtein and Luis Gravano. 2003. Querying Text Databases for Efficient
Information Extraction. In Proceedings of the 19th International Conference on Data
Engineering (ICDE ’03), 113–124. doi: 10.1109/ICDE.2003.1260786.

[2] Eugene Agichtein, Panagiotis Ipeirotis, and Luis Gravano. 2003. Modeling Query-
Based Access to Text Databases. In International Workshop on Web and Databases
(WebDB ’03), 87–92.

[3] Scott Ainsworth, Ahmed Alsum, Hany SalahEldeen, Michele C. Weigle, and Michael
L. Nelson. 2011. How Much of the Web Is Archived? In Proceedings of the 11th
ACM/IEEE Joint International Conference on Digital Libraries (JCDL ’11), 133–
136. doi: 10.1145/1998076.1998100.

[4] Reem Al-Masri and James Cain. 2017. In Jordan, the ‘Invisible Hand’ Blocks Internet
Archive. https://www.7iber.com/technology/the-invisible-hand-blocks-
internet-archive/. (2017).

[5] Sawood Alam. 2019. AccessLog Parser and CLI. https://github.com/oduwsdl/
accesslog-parser. (2019).

[6] Sawood Alam. 2014. Archive Profiler: Scripts to Generate Profiles of Various Web
Archives. https://github.com/oduwsdl/archive_profiler. (2014).

[7] Sawood Alam. 2017. Classifier Validation. https : / / jekyll . github . io /

classifier-reborn/validation. (2017).

[8] Sawood Alam. 2016. Memento: Help Us Route URI Lookups to the Right Archives.
https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-

route-uri-lookups-to-the-right-archives/. (2016).

[9] Sawood Alam. 2019. MementoMap: A Tool to Summarize Web Archive Holdings.
https://github.com/oduwsdl/MementoMap. (2019).

[10] Sawood Alam. 2015. MemGator: A Memento Aggregator CLI and Server in Go.
https://github.com/oduwsdl/MemGator. (2015).

[11] Sawood Alam. 2019. Portuguese Archive MIME Types Count. https : / / gist .

github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b. (2019).

https://doi.org/10.1109/ICDE.2003.1260786
https://doi.org/10.1145/1998076.1998100
https://www.7iber.com/technology/the-invisible-hand-blocks-internet-archive/
https://www.7iber.com/technology/the-invisible-hand-blocks-internet-archive/
https://github.com/oduwsdl/accesslog-parser
https://github.com/oduwsdl/accesslog-parser
https://github.com/oduwsdl/archive_profiler
https://jekyll.github.io/classifier-reborn/validation
https://jekyll.github.io/classifier-reborn/validation
https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-route-uri-lookups-to-the-right-archives/
https://netpreserveblog.wordpress.com/2016/01/08/memento-help-us-route-uri-lookups-to-the-right-archives/
https://github.com/oduwsdl/MementoMap
https://github.com/oduwsdl/MemGator
https://gist.github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b
https://gist.github.com/ibnesayeed/bb167fe19c5719d87c1c1f665001d44b

198

[12] Sawood Alam. 2019. Portuguese Archive Status Codes Count. https : / / gist .

github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0. (2019).

[13] Sawood Alam. 2020. Seed Analyzer. https : / / github . com / oduwsdl / seed -

analyzer. (2020).

[14] Sawood Alam. 2019. Unified Key Value Store (UKVS). https://github.com/
oduwsdl/ORS/blob/master/ukvs.md. (2019).

[15] Sawood Alam. 2018. Web ARChive (WARC) File Format. https : / / www .

slideshare.net/ibnesayeed/web-archive-warc-file-format. (2018).

[16] Sawood Alam. 2020. Web Archives Size. https://github.com/ibnesayeed/web-
archives-size. (2020).

[17] Sawood Alam and John A. Berlin. 2017. Reconstructive: A ServiceWorker for Client-
Side Reconstruction of Composite Mementos. https : / / oduwsdl . github . io /

Reconstructive/. (2017).

[18] Sawood Alam, Charles L. Cartledge, and Michael L. Nelson. 2014. Support for Var-
ious HTTP Methods on the Web. Technical report arXiv:1405.2330.

[19] Sawood Alam and Mat Kelly. 2016. InterPlanetary Wayback: Peer-to-Peer Perma-
nence of Web Archives. https://github.com/oduwsdl/ipwb. (2016).

[20] Sawood Alam, Mat Kelly, and Michael L. Nelson. 2016. InterPlanetary Wayback: The
Permanent Web Archive. In Proceedings of the 16th ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL ’16), 273–274. doi: 10.1145/2910896.2925467.

[21] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2017. Client-
Side Reconstruction of Composite Mementos Using ServiceWorker. In Proceedings of
the 17th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’17), 237–240.
doi: 10.1109/JCDL.2017.7991579.

[22] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. InterPlan-
etary Wayback: A Distributed and Persistent Archival Replay System Using IPFS.
DWeb Summit ’18. (2018).

[23] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. Inter-
Planetary Wayback: The Next Step Towards Decentralized Web Archiving. IPFS
Lab Day ’18. (2018).

https://gist.github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0
https://gist.github.com/ibnesayeed/7307f0bf1783357db99f8b2357249dd0
https://github.com/oduwsdl/seed-analyzer
https://github.com/oduwsdl/seed-analyzer
https://github.com/oduwsdl/ORS/blob/master/ukvs.md
https://github.com/oduwsdl/ORS/blob/master/ukvs.md
https://www.slideshare.net/ibnesayeed/web-archive-warc-file-format
https://www.slideshare.net/ibnesayeed/web-archive-warc-file-format
https://github.com/ibnesayeed/web-archives-size
https://github.com/ibnesayeed/web-archives-size
https://oduwsdl.github.io/Reconstructive/
https://oduwsdl.github.io/Reconstructive/
https://github.com/oduwsdl/ipwb
https://doi.org/10.1145/2910896.2925467
https://doi.org/10.1109/JCDL.2017.7991579

199

[24] Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2018. Unobtru-
sive and Extensible Archival Replay Banners Using Custom Elements. In Proceedings
of the 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’18), 319–
320. doi: 10.1145/3197026.3203881.

[25] Sawood Alam, Ilya Kreymer, and Michael L. Nelson. 2015. Object Resource Stream
(ORS) and CDX-JSON (CDXJ) Draft. https://github.com/oduwsdl/ORS. (2015).

[26] Sawood Alam and Michael L. Nelson. 2019. CS 431/531 Web Server Design: A Course
to Develop a Standard Compliant HTTP Web Server. https://cs531-f19.github.
io/. (2019).

[27] Sawood Alam and Michael L. Nelson. 2016. MemGator - A Portable Concurrent
Memento Aggregator: Cross-Platform CLI and Server Binaries in Go. In Proceedings
of the 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’16), 243–
244. doi: 10.1145/2910896.2925452.

[28] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, Lyudmila L. Balakireva,
Harihar Shankar, and David S. H. Rosenthal. 2015. Web Archive Profiling Through
CDX Summarization. In Proceedings of the 19th International Conference on Theory
and Practice of Digital Libraries (TPDL ’15), 3–14. doi: 10.1007/978-3-319-
24592-8_1.

[29] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, Lyudmila L. Balakireva,
Harihar Shankar, and David S. H. Rosenthal. 2016. Web Archive Profiling Through
CDX Summarization. International Journal on Digital Libraries, 17, 3, 223–238. doi:
10.1007/s00799-016-0184-4.

[30] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, and David S. H. Rosenthal.
2016. Web Archive Profiling Through Fulltext Search. In Proceedings of the 20th
International Conference on Theory and Practice of Digital Libraries (TPDL ’16),
121–132. doi: 10.1007/978-3-319-43997-6_10.

[31] Sawood Alam, Michele C. Weigle, Michael L. Nelson, Martin Klein, and Herbert Van
de Sompel. 2019. Supporting Web Archiving via Web Packaging. Technical report
arXiv:1906.07104. https://arxiv.org/abs/1906.07104.

[32] Sawood Alam, Michele C. Weigle, Michael L. Nelson, Fernando Melo, Daniel Bicho,
and Daniel Gomes. 2019. MementoMap Framework for Flexible and Adaptive Web

https://doi.org/10.1145/3197026.3203881
https://github.com/oduwsdl/ORS
https://cs531-f19.github.io/
https://cs531-f19.github.io/
https://doi.org/10.1145/2910896.2925452
https://doi.org/10.1007/978-3-319-24592-8_1
https://doi.org/10.1007/978-3-319-24592-8_1
https://doi.org/10.1007/s00799-016-0184-4
https://doi.org/10.1007/978-3-319-43997-6_10
https://arxiv.org/abs/1906.07104

200

Archive Profiling. In Proceedings of the 19th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL ’19), 172–181. doi: 10.1109/JCDL.2019.00033.

[33] Rosa Alarcon, Erik Wilde, and Jesus Bellido. 2011. Hypermedia-driven RESTful
Service Composition. Service-Oriented Computing, 111–120.

[34] Abdulrahman Alarifi, Mansour Alghamdi, Mohammad Zarour, Batoul Aloqail, Hee-
lah Alraqibah, Kholood Alsadhan, and Lamia Alkwai. 2012. Estimating the Size of
Arabic Indexed Web Content. Scientific Research and Essays, 7, 28, 2472–2483. doi:
10.5897/SRE11.1708.

[35] Lulwah M. Alkwai, Michael L. Nelson, and Michele C. Weigle. 2017. Comparing the
Archival Rate of Arabic, English, Danish, and Korean Language Web Pages. ACM
Transactions on Information Systems, 36, 1, 1:1–1:34. doi: 10.1145/3041656.

[36] Lulwah M. Alkwai, Michael L. Nelson, and Michele C. Weigle. 2015. How Well Are
Arabic Websites Archived? In Proceedings of the 15th ACM/IEEE-CE Joint Confer-
ence on Digital Libraries (JCDL ’15), 223–232. doi: 10.1145/2756406.2756912.

[37] Yasmin AlNoamany, Ahmed AlSum, Michele C. Weigle, and Michael L. Nelson. 2014.
Who and What Links to the Internet Archive. International Journal on Digital Li-
braries, 14, 3-4, 101–115. doi: 10.1007/s00799-014-0111-5.

[38] Ahmed AlSum. 2011. Memento Server. https://code.google.com/archive/p/
memento-server/. (2011).

[39] Ahmed AlSum, Michele C. Weigle, Michael L. Nelson, and Herbert Van de Sompel.
2013. Profiling Web Archive Coverage for Top-Level Domain and Content Language.
In Proceedings of the 17th International Conference on Theory and Practice of Digital
Libraries (TPDL ’13), 60–71. doi: 10.1007/978-3-642-40501-3_7.

[40] Ahmed AlSum, Michele C. Weigle, Michael L. Nelson, and Herbert Van de Sompel.
2014. Profiling Web Archive Coverage for Top-Level Domain and Content Language.
International Journal on Digital Libraries, 14, 3-4, 149–166. doi: 10.1007/s00799-
014-0118-y.

[41] Apache HTTP Server. 2013. Common Log Format and Combined Log Format.
https://httpd.apache.org/docs/trunk/logs.html. (2013).

[42] Mohamed Aturban. 2020. A Framework for Verifying the Fixity of Archived Web
Resources. PhD thesis. Old Dominion University. doi: 10.25777/pc8d-y213.

https://doi.org/10.1109/JCDL.2019.00033
https://doi.org/10.5897/SRE11.1708
https://doi.org/10.1145/3041656
https://doi.org/10.1145/2756406.2756912
https://doi.org/10.1007/s00799-014-0111-5
https://code.google.com/archive/p/memento-server/
https://code.google.com/archive/p/memento-server/
https://doi.org/10.1007/978-3-642-40501-3_7
https://doi.org/10.1007/s00799-014-0118-y
https://doi.org/10.1007/s00799-014-0118-y
https://httpd.apache.org/docs/trunk/logs.html
https://doi.org/10.25777/pc8d-y213

201

[43] Mohamed Aturban. 2019. Where Did the Archive Go? Part 1: Library and Archives
Canada. https://ws- dl.blogspot.com/2019/08/2019- 08- 30- where- did-
archive-go-part1.html. (2019).

[44] Mohamed Aturban. 2019. Where Did the Archive Go? Part 2: National Library of
Ireland. https://ws- dl.blogspot.com/2019/09/2019- 09- 10- where- did-
archive-go-part-2.html. (2019).

[45] Mohamed Aturban. 2019. Where Did the Archive Go? Part 3: Public Record Office
of Northern Ireland. https://ws-dl.blogspot.com/2019/09/2019-09-25-where-
did-archive-go-part-3.html. (2019).

[46] Mohamed Aturban. 2019. Where Did the Archive Go? Part 4: WebCite. https://ws-
dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html.
(2019).

[47] Mohamed Aturban, Sawood Alam, Michael L. Nelson, and Michele C. Weigle. 2019.
Archive Assisted Archival Fixity Verification Framework. In Proceedings of the 19th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’19), 162–171. doi:
10.1109/JCDL.2019.00032.

[48] Paul Baclace. 2020. Making A Production Classifier Ensemble. https : / /

towardsdatascience . com / making - a - production - classifier - ensemble -

2d87fbf0f486. (2020).

[49] Jefferson Bailey. 2016. Preserving U.S. Government Websites and Data as the Obama
Term Ends. http : / / blog . archive . org / 2016 / 12 / 15 / preserving - u - s -

government-websites-and-data-as-the-obama-term-ends/. (2016).

[50] Jefferson Bailey, Vinay Goel, and Mark Sullivan. 2016. WANE Overview and Techni-
cal Details. https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/
WANE+Overview+and+Technical+Details. (2016).

[51] Jefferson Bailey, Abigail Grotke, Kristine Hanna, Cathy Hartman, Edward McCain,
Christie Moffatt, and Nicholas Taylor. 2014. Web Archiving in the United States: A
2013 Survey - An NDSA Report. https://blogs.loc.gov/thesignal/2014/10/
results-from-the-2013-ndsa-u-s-web-archiving-survey/. (2014).

https://ws-dl.blogspot.com/2019/08/2019-08-30-where-did-archive-go-part1.html
https://ws-dl.blogspot.com/2019/08/2019-08-30-where-did-archive-go-part1.html
https://ws-dl.blogspot.com/2019/09/2019-09-10-where-did-archive-go-part-2.html
https://ws-dl.blogspot.com/2019/09/2019-09-10-where-did-archive-go-part-2.html
https://ws-dl.blogspot.com/2019/09/2019-09-25-where-did-archive-go-part-3.html
https://ws-dl.blogspot.com/2019/09/2019-09-25-where-did-archive-go-part-3.html
https://ws-dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html
https://ws-dl.blogspot.com/2019/10/2019-10-21-where-did-archive-go-part-4.html
https://doi.org/10.1109/JCDL.2019.00032
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
http://blog.archive.org/2016/12/15/preserving-u-s-government-websites-and-data-as-the-obama-term-ends/
http://blog.archive.org/2016/12/15/preserving-u-s-government-websites-and-data-as-the-obama-term-ends/
https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/WANE+Overview+and+Technical+Details
https://webarchive.jira.com/wiki/spaces/ARS/pages/88309872/WANE+Overview+and+Technical+Details
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/

202

[52] Jefferson Bailey, Abigail Grotke, Edward McCain, Christie Moffatt, and Nicholas
Taylor. 2017. Web Archiving in the United States: A 2016 Survey - An NDSA Report.
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.

pdf. (2017).

[53] Steve Bailey and Dave Thompson. 2006. UKWAC: Building the UK’s First Public
Web Archive. D-Lib Magazine, 12, 1. doi: 10.1045/january2006-thompson.

[54] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. 2009. Do Not Crawl in the DUST:
Different URLs With Similar Text. ACM Transactions on the Web (TWEB), 3, 1,
3:1–3:31. doi: 10.1145/1462148.1462151.

[55] Luciano Barbosa and Juliana Freire. 2007. Combining Classifiers to Identify Online
Databases. In Proceedings of the 16th International Conference on World Wide Web
(WWW ’07), 431–440. doi: 10.1145/1242572.1242631.

[56] Waldo Bastian, Ryan Lortie, and Lennart Poettering. 2010. XDG Base Direc-
tory Specification. https : / / specifications . freedesktop . org / basedir -

spec/basedir-spec-latest.html. (2010).

[57] Sylvain Belanger. 2020. Documenting COVID-19 and the Great Confinement in
Canada. https://netpreserveblog.wordpress.com/2020/07/15/documenting-
covid-19-and-the-great-confinement-in-canada/. (2020).

[58] Mike Belshe, Roberto Peon, and Martin Thomson. 2010. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. Internet Engineering Task Force, (2010).

[59] Juan Benet. 2014. IPFS - Content Addressed, Version, P2P File System. Technical
report arXiv:1407.3561.

[60] Donna Bergmark, Carl Lagoze, and Alex Sbityakov. 2002. Focused Crawls, Tunneling,
and Digital Libraries. In Proceedings of the 6th European Conference on Research and
Advanced Technology for Digital Libraries (ECDL ’02). Volume 2458, 91–106. doi:
10.1007/3-540-45747-X_7.

[61] John A. Berlin, Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2017. WAIL:
Collection-Based Personal Web Archiving. In Proceedings of the IEEE/ACM Joint
Conference on Digital Libraries (JCDL), 340–341. doi: 10 . 1109 / JCDL . 2017 .

7991619.

[62] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. Internet Engineering Task Force, (2005).

http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
https://doi.org/10.1045/january2006-thompson
https://doi.org/10.1145/1462148.1462151
https://doi.org/10.1145/1242572.1242631
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://netpreserveblog.wordpress.com/2020/07/15/documenting-covid-19-and-the-great-confinement-in-canada/
https://netpreserveblog.wordpress.com/2020/07/15/documenting-covid-19-and-the-great-confinement-in-canada/
https://doi.org/10.1007/3-540-45747-X_7
https://doi.org/10.1109/JCDL.2017.7991619
https://doi.org/10.1109/JCDL.2017.7991619

203

[63] Peter Beverloo, Martin Thomson, Michaël van Ouwerkerk, Bryan Sullivan, and Ed-
uardo Fullea. 2020. Push API. https://w3c.github.io/push-api/. (2020).

[64] Krishna Bharat and Andrei Z. Broder. 1998. A Technique for Measuring the Relative
Size and Overlap of Public Web Search Engines. Computer Networks, 30, 1-7, 379–
388. doi: 10.1016/S0169-7552(98)00127-5.

[65] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Er-
rors. Communications of the ACM, 13, 7, 422–426.

[66] Nicolas Bornand, Lyudmila Balakireva, and Herbert Van de Sompel. 2016. Rout-
ing Memento Requests Using Binary Classifiers. In Proceedings of the 16th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’16), 63–72. doi:
10.1145/2910896.2910899.

[67] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. 2000. Graph Struc-
ture in the Web. Computer Networks, 33, 1-6, 309–320. doi: 10 . 1016 / S1389 -

1286(00)00083-9.

[68] Andrei Z. Broder and Michael Mitzenmacher. 2003. Survey: Network Applications
of Bloom Filters: A Survey. Internet Mathematics, 1, 4, 485–509. doi: 10.1080/
15427951.2004.10129096.

[69] Justin F. Brunelle, Mat Kelly, Michele C. Weigle, and Michael L. Nelson. 2016. The
Impact of JavaScript on Archivability. International Journal on Digital Libraries, 17,
2, 95–117. doi: 10.1007/s00799-015-0140-8.

[70] Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2017. Archival Crawlers
and JavaScript: Discover More Stuff but Crawl More Slowly. In Proceedings of the
17th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’17), 1–10. doi:
10.1109/JCDL.2017.7991554.

[71] Mike Burner and Brewster Kahle. 1996. Arc File Format. https://archive.org/
web/researcher/ArcFileFormat.php. (1996).

[72] Chris Butler. 2018. Addressing Recent Claims of ‘Manipulated’ Blog Posts in the
Wayback Machine. http://blog.archive.org/2018/04/24/addressing-recent-
claims-of-manipulated-blog-posts-in-the-wayback-machine/. (2018).

https://w3c.github.io/push-api/
https://doi.org/10.1016/S0169-7552(98)00127-5
https://doi.org/10.1145/2910896.2910899
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1007/s00799-015-0140-8
https://doi.org/10.1109/JCDL.2017.7991554
https://archive.org/web/researcher/ArcFileFormat.php
https://archive.org/web/researcher/ArcFileFormat.php
http://blog.archive.org/2018/04/24/addressing-recent-claims-of-manipulated-blog-posts-in-the-wayback-machine/
http://blog.archive.org/2018/04/24/addressing-recent-claims-of-manipulated-blog-posts-in-the-wayback-machine/

204

[73] Chris Butler. 2017. Comcast’s Blocking and Un-Blocking of Archive.org – What We
Know So Far. https://blog.archive.org/2017/06/05/comcasts-blocking-
and-un-blocking-of-archive-org-what-we-know-so-far/. (2017).

[74] Chris Butler. 2017. Statement and Questions Regarding an Indian Court’s Order to
Block archive.org. https://blog.archive.org/2017/08/09/statement-and-
questions- regarding- an- indian- courts- order- to- block- archive- org/.
(2017).

[75] Chris Butler. 2017. Who Blocked the Archive in Jordan? https://blog.archive.

org/2017/04/11/who-blocked-the-archive-in-jordan/. (2017).

[76] Helena Byrne. 2020. Reviewing Football History Through the UK Web Archive.
Soccer & Society, 21, 4, 461–474. doi: 10.1080/14660970.2020.1751474.

[77] Jamie Callan and Margaret Connell. 2001. Query-Based Sampling of Text Databases.
ACM Transactions on Information Systems (TOIS), 19, 2, 97–130. doi: 10.1145/
382979.383040.

[78] Jamie Callan, Margaret Connell, and Aiqun Du. 1999. Automatic Discovery of Lan-
guage Models for Text Databases. In Proceedings of the 1999 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’99), 479–490. doi: 10.
1145/304182.304224.

[79] Green Cardamom. 2016. WaybackMedic Bot. https://github.com/greencardamom/
WaybackMedic. (2016).

[80] Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co. isbn: 978-1-
61729-085-5.

[81] Lucas Carlson, David Fayram, Cameron McBride, Ivan Acosta-Rubio, Parker Moore,
Chase Gilliam, and Sawood Alam. 2014. Classifier Reborn. https://github.com/
jekyll/classifier-reborn. (2014).

[82] Todd Carpenter, Michael L. Nelson, Bernhard Haslhofer, Shlomo Sanders, Richard
Jones, Robert Sanderson, Martin Klein, Herbert Van de Sompel, Graham Klyne,
Paul Walk, Carl Lagoze, Simeon Warner, Stuart Lewis, Zhiwu Xie, Peter Murray,
and Jeff Young. 2017. ResourceSync Framework Specification (ANSI/NISO Z39.99-
2017). http://www.openarchives.org/rs/1.1/resourcesync. (2017).

https://blog.archive.org/2017/06/05/comcasts-blocking-and-un-blocking-of-archive-org-what-we-know-so-far/
https://blog.archive.org/2017/06/05/comcasts-blocking-and-un-blocking-of-archive-org-what-we-know-so-far/
https://blog.archive.org/2017/08/09/statement-and-questions-regarding-an-indian-courts-order-to-block-archive-org/
https://blog.archive.org/2017/08/09/statement-and-questions-regarding-an-indian-courts-order-to-block-archive-org/
https://blog.archive.org/2017/04/11/who-blocked-the-archive-in-jordan/
https://blog.archive.org/2017/04/11/who-blocked-the-archive-in-jordan/
https://doi.org/10.1080/14660970.2020.1751474
https://doi.org/10.1145/382979.383040
https://doi.org/10.1145/382979.383040
https://doi.org/10.1145/304182.304224
https://doi.org/10.1145/304182.304224
https://github.com/greencardamom/WaybackMedic
https://github.com/greencardamom/WaybackMedic
https://github.com/jekyll/classifier-reborn
https://github.com/jekyll/classifier-reborn
http://www.openarchives.org/rs/1.1/resourcesync

205

[83] Catalin Cimpanu. 2018. Mozilla to Remove Support for Built-In Feed Reader From
Firefox. https://www.bleepingcomputer.com/news/software/mozilla- to-
remove-support-for-built-in-feed-reader-from-firefox/. (2018).

[84] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. 2009. Power-Law
Distributions in Empirical Data. SIAM Review, 51, 4, 661–703. doi: 10 . 1137 /

070710111.

[85] Cleymour. 2015. WARC Revision 1.1 (Augmentation): Specification of the WAT
Format. https://github.com/iipc/warc-specifications/issues/16. (2015).

[86] John Collomosse, Tu Bui, Alan Brown, John Sheridan, Alexander L. Green, Mark
Bell, Jamie Fawcett, Jez Higgins, and Olivier Thereaux. 2018. ARCHANGEL:
Trusted Archives of Digital Public Documents. In Proceedings of the ACM Sym-
posium on Document Engineering 2018, DocEng 2018, 31:1–31:4. doi: 10.1145/
3209280.3229120.

[87] Kate Conger. 2016. Backing Up The History of the Internet in Canada to Save It
From Trump. https://techcrunch.com/2016/12/08/backing-up-the-history-
of-the-internet-in-canada-to-save-it-from-trump/. (2016).

[88] Jared Cope, Nick Craswell, and David Hawking. 2003. Automated Discovery of
Search Interfaces on the Web. In Proceedings of the 14th Australasian Database Con-
ference - Volume 17 (ADC ’03), 181–189.

[89] Miguel Costa, Daniel Gomes, Francisco M. Couto, and Mário J. Silva. 2013. A Survey
of Web Archive Search Architectures. In Proceedings of the Temporal Web Analytics
Workshop (TempWeb ’13), 1045–1050. doi: 10.1145/2487788.2488116.

[90] Douglas Crockford. 2006. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627. Internet Engineering Task Force, (2006).

[91] Shuaixiang Dai, Qian Diao, and Changle Zhou. 2005. Performance Comparison of
Language Models for Information Retrieval. In Artificial Intelligence Applications
and Innovations, 721–730.

[92] Maurice de Kunder. 2018. WorldWideWebSize.com – The Size of the World Wide
Web (The Internet). http://worldwidewebsize.com/. (2018).

[93] Peter Deutsch. 1996. GZIP File Format Specification Version 4.3. RFC 1952. Internet
Engineering Task Force, (1996).

https://www.bleepingcomputer.com/news/software/mozilla-to-remove-support-for-built-in-feed-reader-from-firefox/
https://www.bleepingcomputer.com/news/software/mozilla-to-remove-support-for-built-in-feed-reader-from-firefox/
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://github.com/iipc/warc-specifications/issues/16
https://doi.org/10.1145/3209280.3229120
https://doi.org/10.1145/3209280.3229120
https://techcrunch.com/2016/12/08/backing-up-the-history-of-the-internet-in-canada-to-save-it-from-trump/
https://techcrunch.com/2016/12/08/backing-up-the-history-of-the-internet-in-canada-to-save-it-from-trump/
https://doi.org/10.1145/2487788.2488116
http://worldwidewebsize.com/

206

[94] Adrian Dobra and Stephen E. Fienberg. 2004. How Large Is the World Wide Web?
In Web Dynamics - Adapting to Change in Content, Size, Topology and Use, 23–44.

[95] Kim Dulin and Adam Ziegler. 2017. Scaling Up Perma.cc: Ensuring the Integrity
of the Digital Scholarly Record. D-Lib Magazine, 23, 5/6. doi: 10.1045/may2017-
dulin.

[96] Caleb Ecarma. 2018. EXCLUSIVE: Joy Reid Claims Newly Discovered Homophobic
Posts From Her Blog Were ‘Fabricated’. https://www.mediaite.com/online/
exclusive- joy- reid- claims- newly- discovered- homophobic- posts- from-

her-blog-were-fabricated/. (2018).

[97] Leo Egghe. 2007. Untangling Herdan’s Law and Heaps’ Law: Mathematical and In-
formetric Arguments. Journal of the American Society for Information Science and
Technology, 58, 5, 702–709.

[98] Charles Elkan. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJCAI ’01), 973–
978.

[99] Adam Clark Estes. 2015. Russia Is Banning the Internet Archive and Blaming It On
Terrorism. https://gizmodo.com/russia-is-banning-the-internet-archive-
and-blaming-it-o-1713926987. (2015).

[100] Gunther Eysenbach. 2006. Going, Going, Still There: Using the WebCite Service to
Permanently Archive Cited Web Pages. In American Medical Informatics Association
Annual Symposium.

[101] Gunther Eysenbach. 2008. Preserving the Scholarly Record With WebCite: An
Archiving System For Long-Term Digital Preservation of Cited Webpages. In
Proceedings of the 12th International Conference on Electronic Publishing, 363–377.

[102] Roy T. Fielding. 2000. Architectural Styles and the Design of Network-Based Software
Architectures. PhD thesis. University of California.

[103] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616. Internet Engineering Task Force, (1999).

[104] Roy T. Fielding, Yves Lafon, and Julian F. Reschke. 2014. Hypertext Transfer Pro-
tocol (HTTP/1.1): Range Requests. RFC 7233. Internet Engineering Task Force,
(2014).

https://doi.org/10.1045/may2017-dulin
https://doi.org/10.1045/may2017-dulin
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://www.mediaite.com/online/exclusive-joy-reid-claims-newly-discovered-homophobic-posts-from-her-blog-were-fabricated/
https://gizmodo.com/russia-is-banning-the-internet-archive-and-blaming-it-o-1713926987
https://gizmodo.com/russia-is-banning-the-internet-archive-and-blaming-it-o-1713926987

207

[105] Roy T. Fielding, Mark Nottingham, and Julian F. Reschke. 2014. Hypertext Transfer
Protocol (HTTP/1.1): Caching. RFC 7234. Internet Engineering Task Force, (2014).

[106] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Authentication. RFC 7235. Internet Engineering Task Force, (2014).

[107] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Conditional Requests. RFC 7232. Internet Engineering Task Force,
(2014).

[108] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. RFC 7230. Internet Engineering Task
Force, (2014).

[109] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231. Internet Engineering Task Force,
(2014).

[110] Roy T. Fielding and Richard N. Taylor. 2002. Principled Design of the Modern Web
Architecture. ACM Transactions on Internet Technology (TOIT), 2, 2, 115–150.

[111] Lynda Schmitz Fuhrig. 2014. Tracking Down the Elusive ‘Treasure House for Learn-
ing’. https://siarchives.si.edu/blog/tracking- down- elusive- %E2%80%
98treasure-house-learning%E2%80%99. (2014).

[112] Jean-Loup Gailly and Mark Adler. 2013. GZIP File Format. http://www.gzip.org/.
(2013).

[113] Jennifer Gavin and Abbie Grotke. 2008. Library Partnership Preserves End-of-Term
Government Web Sites. https://www.loc.gov/item/prn- 08- 139/library-
partnership-saves-government-sites/2008-08-14/. (2008).

[114] Vinay Goel. 2016. Defining Web Pages, Web Sites and Web Captures. https://
blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-

captures/. (2016).

[115] Vinay Goel and Sawood Alam. 2015. A Conversation About URI-M to URI-R Ratio.
Private Communication. (2015).

[116] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1996. Hiding Routing
Information. In Proceedings of the International Workshop on Information Hiding,
1996, 137–150. doi: 10.1007/3-540-61996-8_37.

https://siarchives.si.edu/blog/tracking-down-elusive-%E2%80%98treasure-house-learning%E2%80%99
https://siarchives.si.edu/blog/tracking-down-elusive-%E2%80%98treasure-house-learning%E2%80%99
http://www.gzip.org/
https://www.loc.gov/item/prn-08-139/library-partnership-saves-government-sites/2008-08-14/
https://www.loc.gov/item/prn-08-139/library-partnership-saves-government-sites/2008-08-14/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/
https://doi.org/10.1007/3-540-61996-8_37

208

[117] Daniel Gomes, Miguel Costa, David Cruz, João Miranda, and Simão Fontes. 2013.
Creating a Billion-Scale Searchable Web Archive. In Proceedings of the Temporal Web
Analytics Workshop (TempWeb ’13), 1059–1066. doi: 10.1145/2487788.2488118.

[118] Daniel Gomes, João Miranda, and Miguel Costa. 2011. A Survey on Web Archiving
Initiatives. In Proceedings of the 15th International Conference on Theory and Prac-
tice of Digital Libraries (TPDL ’11), 408–420. doi: 10.1007/978-3-642-24469-
8_41.

[119] Mark Graham. 2017. Robots.txt Meant for Search Engines Don’t Work Well for Web
Archives. https://blog.archive.org/2017/04/17/robots-txt-meant-for-
search-engines-dont-work-well-for-web-archives/. (2017).

[120] Mark Graham. 2019. The Wayback Machine’s Save Page Now is New and Improved.
https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-

now-is-new-and-improved/. (2019).

[121] Fabrizio Grandoni. 2006. A Note on the Complexity of Minimum Dominating Set.
Journal of Discrete Algorithms, 4, 2, 209–214. doi: 10.1016/j.jda.2005.03.002.

[122] Luis Gravano, Chen-Chuan K. Chang, Héctor García-Molina, and Andreas Paepcke.
1997. STARTS: Stanford Proposal for Internet Meta-Searching. SIGMOD Record, 26,
2, 207–218. doi: 10.1145/253262.253299.

[123] GreatFire.org. 2018. www.archive.org Is 100% Blocked in China. http://archive.
is/JdTnl. (2018).

[124] Ed Greengrass. 2000. Information Retrieval: A Survey. https://www.csee.umbc.
edu/csee/research/cadip/readings/IR.report.120600.book.pdf. (2000).

[125] Abbie Grotke, Mark Edward Phillips, and George Barnum. 2008. Preserving Public
Government Information: The 2008 End of Term Crawl Project. https://digital.
library.unt.edu/ark:/67531/metadc28366/. (2008).

[126] Hussam Hallak. 2018. Why We Need Private Web Archives: Almost Two-Thirds of
Web Traffic IS NOT Publicly Archivable. https://ws-dl.blogspot.com/2018/07/
2018-07-18-why-we-need-private-web.html. (2018).

[127] John Erik Halse. 2016. CDX Server API. https://iipc.github.io/openwayback/
api/cdxserver-api.html. (2016).

[128] Joachim Hammer and Jan Fiedler. 2000. Using Mobile Crawlers to Search the Web
Efficiently. International Journal of Computer and Information Science, 1, 1, 36–58.

https://doi.org/10.1145/2487788.2488118
https://doi.org/10.1007/978-3-642-24469-8_41
https://doi.org/10.1007/978-3-642-24469-8_41
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-now-is-new-and-improved/
https://blog.archive.org/2019/10/23/the-wayback-machines-save-page-now-is-new-and-improved/
https://doi.org/10.1016/j.jda.2005.03.002
https://doi.org/10.1145/253262.253299
http://archive.is/JdTnl
http://archive.is/JdTnl
https://www.csee.umbc.edu/csee/research/cadip/readings/IR.report.120600.book.pdf
https://www.csee.umbc.edu/csee/research/cadip/readings/IR.report.120600.book.pdf
https://digital.library.unt.edu/ark:/67531/metadc28366/
https://digital.library.unt.edu/ark:/67531/metadc28366/
https://ws-dl.blogspot.com/2018/07/2018-07-18-why-we-need-private-web.html
https://ws-dl.blogspot.com/2018/07/2018-07-18-why-we-need-private-web.html
https://iipc.github.io/openwayback/api/cdxserver-api.html
https://iipc.github.io/openwayback/api/cdxserver-api.html

209

[129] David J. Hand and Keming Yu. 2001. Idiot’s Bayes – Not So Stupid After All?
International Statistical Review, 69, 3, 385–398.

[130] Bernhard Haslhofer, Simeon Warner, Carl Lagoze, Martin Klein, Robert Sanderson,
Michael L. Nelson, and Herbert Van de Sompel. 2013. ResourceSync: Leveraging
Sitemaps for Resource Synchronization. Technical report arXiv:1305.1476.

[131] Anne Helmond and Fernando N. van der Vlist. 2019. Social Media and Platform
Historiography: Challenges and Opportunities. TMG Journal for Media History, 22,
1, 6–34. doi: 10.18146/tmg.434.

[132] Inma Hernández, Carlos R. Rivero, and David Ruiz. 2019. Deep Web Crawling: A
Survey. World Wide Web, 22, 4, 1577–1610. doi: 10.1007/s11280-018-0602-1.

[133] Allan Heydon and Marc Najork. 1999. Mercator: A Scalable, Extensible Web Crawler.
World Wide Web, 2, 4, 219–229. doi: 10.1023/A:1019213109274.

[134] Olga Holownia. 2020. Novel Coronavirus Outbreak: Help Us Collect Websites. https:
//netpreserveblog.wordpress.com/2020/02/13/cdg- collection- novel-

coronavirus/. (2020).

[135] Karolina Holub, Ingeborg Rudomino, and Marta Matijevic. 2020. The Croatian Web
Archive – What’s New? https://netpreserveblog.wordpress.com/2020/07/15/

the-croatian-web-archive-whats-new/. (2020).

[136] International Internet Preservation Consortium. 2020. Novel Coronavirus (COVID-
19). https://archive-it.org/collections/13529. (2020).

[137] Internet Archive. 2006. Archive-It - Web Archiving Services for Libraries and
Archives. https://www.archive-it.org/. (2006).

[138] Internet Archive. 2003. CDX File Format. http://archive.org/web/researcher/
cdx_file_format.php. (2003).

[139] Internet Assigned Numbers Authority. 2019. Uniform Resource Identifier (URI)
Schemes. https://www.iana.org/assignments/uri- schemes/uri- schemes.
xhtml. (2019).

[140] Internet Assigned Numbers Authority. 2020. Well-Known URIs. https://www.iana.
org/assignments/well-known-uris/well-known-uris.xhtml. (2020).

https://doi.org/10.18146/tmg.434
https://doi.org/10.1007/s11280-018-0602-1
https://doi.org/10.1023/A:1019213109274
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/02/13/cdg-collection-novel-coronavirus/
https://netpreserveblog.wordpress.com/2020/07/15/the-croatian-web-archive-whats-new/
https://netpreserveblog.wordpress.com/2020/07/15/the-croatian-web-archive-whats-new/
https://archive-it.org/collections/13529
https://www.archive-it.org/
http://archive.org/web/researcher/cdx_file_format.php
http://archive.org/web/researcher/cdx_file_format.php
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml

210

[141] Internet Memory Foundation. 2010. Web Archiving in Europe: A Survey Pro-
vided by the Internet Memory Foundation. https : / / web . archive . org / web /
20110523234751 / internetmemory . org / images / uploads / Web _ Archiving _

Survey.pdf. (2010).

[142] ISO 28500:2017. 2017. WARC File Format. https://iso.org/standard/68004.
html. (2017).

[143] Andy Jackson. 2015. MementoWeb Client Java. https : / / github . com / ukwa /

mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/

client/MementosAggregator.java. (2015).

[144] Andy Jackson. 2014. Messy Web Archive Collections. https : / / twitter . com /

anjacks0n/status/466690812269846528. (2014).

[145] Andy Jackson. 2015. Ten Years of the UK Web Archive: What Have We Saved?
https://blogs.bl.uk/webarchive/2015/09/ten- years- of- the- uk- web-

archive-what-have-we-saved.html. (2015).

[146] Shawn M. Jones. 2019. Wikis Are Archives: Integrating Memento and Mediawiki.
https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.

html. (2019).

[147] Shawn M. Jones, Alexander Nwala, Michele C. Weigle, and Michael L. Nelson. 2018.
The Many Shapes of Archive-It. In Proceedings of the 15th International Conference
on Digital Preservation (iPRES ’18). https://hdl.handle.net/11353/10.923619.

[148] Brewster Kahle. 2016. Geez, Now Internet Insurance? https://blog.archive.org/
2016/06/16/geez-now-internet-insurance/. (2016).

[149] Brewster Kahle. 2018. Users Hitting ‘Save Page Now’ at 100 Per Second. https:
//twitter.com/brewster_kahle/status/994380510011928578. (2018).

[150] Nattiya Kanhabua, Philipp Kemkes, Wolfgang Nejdl, Tu Ngoc Nguyen, Felipe Reis,
and Nam Khanh Tran. 2016. How to Search the Internet Archive Without Indexing
It. In Proceedings of the 20th International Conference on Theory and Practice of
Digital Libraries (TPDL ’16). Volume 9819, 147–160. doi: 10.1007/978-3-319-
43997-6_12.

[151] Leo Kelion. 2017. Bollywood Blocks the Internet Archive. http://www.bbc.com/
news/technology-40875528. (2017).

https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://web.archive.org/web/20110523234751/internetmemory.org/images/uploads/Web_Archiving_Survey.pdf
https://iso.org/standard/68004.html
https://iso.org/standard/68004.html
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://github.com/ukwa/mementoweb-client-java/blob/master/src/main/java/uk/bl/wa/memento/client/MementosAggregator.java
https://twitter.com/anjacks0n/status/466690812269846528
https://twitter.com/anjacks0n/status/466690812269846528
https://blogs.bl.uk/webarchive/2015/09/ten-years-of-the-uk-web-archive-what-have-we-saved.html
https://blogs.bl.uk/webarchive/2015/09/ten-years-of-the-uk-web-archive-what-have-we-saved.html
https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.html
https://ws-dl.blogspot.com/2019/06/2019-06-05-wikis-are-archives.html
https://hdl.handle.net/11353/10.923619
https://blog.archive.org/2016/06/16/geez-now-internet-insurance/
https://blog.archive.org/2016/06/16/geez-now-internet-insurance/
https://twitter.com/brewster_kahle/status/994380510011928578
https://twitter.com/brewster_kahle/status/994380510011928578
https://doi.org/10.1007/978-3-319-43997-6_12
https://doi.org/10.1007/978-3-319-43997-6_12
http://www.bbc.com/news/technology-40875528
http://www.bbc.com/news/technology-40875528

211

[152] Mat Kelly, Sawood Alam, Michael L. Nelson, and Michele C. Weigle. 2016. Inter-
Planetary Wayback: Peer-to-Peer Permanence of Web Archives. In Proceedings of the
20th International Conference on Theory and Practice of Digital Libraries, 411–416.
doi: 10.1007/978-3-319-43997-6_35.

[153] Mat Kelly, Lulwah M. Alkwai, Sawood Alam, Michael L. Nelson, Michele C. Wei-
gle, and Herbert Van de Sompel. 2017. Impact of URI Canonicalization on Memento
Count. In Proceedings of the 17th ACM/IEEE-CS Joint Conference on Digital Li-
braries (JCDL ’17), 303–304. doi: 10.1109/JCDL.2017.7991601.

[154] Mat Kelly, Lulwah M. Alkwai, Michael L. Nelson, Michele C. Weigle, and Herbert
Van de Sompel. 2017. Impact of URI Canonicalization on Memento Count. Technical
report arXiv:1703.03302. https://arxiv.org/abs/1703.03302.

[155] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2018. A Framework for Aggre-
gating Private and Public Web Archives. In Proceedings of the 18th ACM/IEEE on
Joint Conference on Digital Libraries (JCDL ’18), 273–282. doi: 10.1145/3197026.
3197045.

[156] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2013. Making Enterprise-Level
Archive Tools Accessible for Personal Web Archiving. https://www.slideshare.
net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-

personal-web-archiving. (2013).

[157] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2014. Mink: Integrating the
Live and Archived Web Viewing Experience Using Web Browsers and Memento. In
Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries, 469–
470. doi: 10.1109/JCDL.2014.6970229.

[158] Mat Kelly and Michele C. Weigle. 2012. WARCreate - Create Wayback-Consumable
WARC Files From Any Webpage. In Proceedings of the 12th ACM/IEEE-CS Joint
Conference on Digital Libraries. ACM, 437–438. doi: 10.1145/2232817.2232930.

[159] Matt Kelly. 2019. Aggregating Private and Public Web Archives Using the Mementity
Framework. PhD thesis. Old Dominion University. doi: 10.25777/1t52-wz02.

[160] Madian Khabsa and Clyde Lee Giles. 2014. The Number of Scholarly Documents on
the Public Web. PLOS ONE, 9, 5. doi: 10.1371/journal.pone.0093949.

[161] Ritu Khare, Yuan An, and Il-Yeol Song. 2010. Understanding Deep Web Search In-
terfaces: A Survey. SIGMOD Record, 39, 1, 33–40. doi: 10.1145/1860702.1860708.

https://doi.org/10.1007/978-3-319-43997-6_35
https://doi.org/10.1109/JCDL.2017.7991601
https://arxiv.org/abs/1703.03302
https://doi.org/10.1145/3197026.3197045
https://doi.org/10.1145/3197026.3197045
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://www.slideshare.net/matkelly01/making-enterpriselevel-archive-tools-accessible-for-personal-web-archiving
https://doi.org/10.1109/JCDL.2014.6970229
https://doi.org/10.1145/2232817.2232930
https://doi.org/10.25777/1t52-wz02
https://doi.org/10.1371/journal.pone.0093949
https://doi.org/10.1145/1860702.1860708

212

[162] Martin Klein, Lyudmila Balakireva, and Harihar Shankar. 2019. Evaluating Memento
Service Optimizations. In Proceedings of the 19th ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL ’19), 182–185. doi: 10.1109/JCDL.2019.00034.

[163] Matthias Klusch, Patrick Kapahnke, Stefan Schulte, Freddy Lécué, and Abraham
Bernstein. 2016. Semantic Web Service Search: A Brief Survey. Künstliche Intelligenz,
30, 2, 139–147. doi: 10.1007/s13218-015-0415-7.

[164] Martin Knakal. 2020. Web Bundles: What Are They and Do They Pose a Threat to
the Web? https://www.cdn77.com/blog/web-bundles. (2020).

[165] Martijn Koster. 1996. A Method for Web Robots Control. http://www.robotstxt.
org/norobots-rfc.txt. (1996).

[166] Ilya Kreymer. 2020. Web Archive Collection Zipped (WACZ) Format. https://
github.com/webrecorder/wacz-format. (2020).

[167] Ilya Kreymer and David S. H. Rosenthal. 2016. Guest Post: Ilya Kreymer on old-
web.today. https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-
oldwebtoday.html. (2016).

[168] Manish Kumar and Rajesh Bhatia. 2016. Design of a Mobile Web Crawler for Hid-
den Web. In Proceedings of the 3rd International Conference on Recent Advances in
Information Technology (RAIT), 186–190.

[169] Steve Lawrence and Clyde Lee Giles. 1998. Searching the World Wide Web. Science,
280, 5360, 98–100. doi: 10.1126/science.280.5360.98.

[170] Kalev Leetaru. 2015. How Much Of The Internet Does The Wayback Machine Really
Archive? https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-

much-of-the-internet-does-the-wayback-machine-really-archive/. (2015).

[171] Yanni Li, Yuping Wang, and Erfeng Tian. 2012. A New Architecture of an Intelli-
gent Agent-Based Crawler for Domain-Specific Deep Web Databases. In Proceedings
of the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology (WI-IAT). Volume 1, 656–663.

[172] Ling Liu. 1999. Query Routing in Large-Scale Digital Library Systems. In Proceedings
of the 15th International Conference on Data Engineering, 154–163. doi: 10.1109/
ICDE.1999.754918.

[173] Julie Beth Lovins. 1968. Development of a Stemming Algorithm. Mechanical Trans-
lation and Computational Linguistics, 11, 1-2, 22–31.

https://doi.org/10.1109/JCDL.2019.00034
https://doi.org/10.1007/s13218-015-0415-7
https://www.cdn77.com/blog/web-bundles
http://www.robotstxt.org/norobots-rfc.txt
http://www.robotstxt.org/norobots-rfc.txt
https://github.com/webrecorder/wacz-format
https://github.com/webrecorder/wacz-format
https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-oldwebtoday.html
https://blog.dshr.org/2016/01/guest-post-ilya-kreymer-on-oldwebtoday.html
https://doi.org/10.1126/science.280.5360.98
https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
https://www.forbes.com/sites/kalevleetaru/2015/11/16/how-much-of-the-internet-does-the-wayback-machine-really-archive/
https://doi.org/10.1109/ICDE.1999.754918
https://doi.org/10.1109/ICDE.1999.754918

213

[174] Jie Lu and James Callan. 2003. Content-Based Retrieval in Hybrid Peer-to-Peer Net-
works. In Proceedings of the 2003 ACM CIKM International Conference on Infor-
mation and Knowledge Management (CIKM ’03), 199–206. doi: 10.1145/956863.
956903.

[175] Jie Lu and Jamie Callan. 2005. Federated Search of Text-Based Digital Libraries in
Hierarchical Peer-to-Peer Networks. In Proceedings of the 27th European Conference
on IR Research, Advances in Information Retrieval (ECIR ’05). Volume 3408, 52–66.
doi: 10.1007/978-3-540-31865-1_5.

[176] Marek Majkowski. 2020. MMUniq-Hash. https : / / github . com / cloudflare /

cloudflare-blog/tree/master/2020-02-mmuniq. (2020).

[177] Marek Majkowski. 2020. When Bloom Filters Don’t Bloom. https : / / blog .

cloudflare.com/when-bloom-filters-dont-bloom/. (2020).

[178] Vijini Mallawaarachchi, Lakmal Meegahapola, Roshan Alwis, Eranga Nimalarathna,
Dulani Meedeniya, and Sampath Jayarathna. 2020. Change Detection and Notifica-
tion of Webpages: A Survey. ACM Computing Surveys, 53, 1. doi: 10.1145/3369876.

[179] Julien Masanès. 2006. Web Archiving. doi: 10.1007/978-3-540-46332-0.

[180] Luis Meneses, Richard Furuta, and Frank Shipman. 2012. Identifying ‘Soft 404’ Error
Pages: Analyzing the Lexical Signatures of Documents in Distributed Collections. In
Proceedings of the 2nd International Conference on Theory and Practice of Digital
Libraries (TPDL ’12). Volume 7489, 197–208. doi: 10.1007/978-3-642-33290-
6_22.

[181] Weiyi Meng, Clement Yu, and King-Lup Liu. 2002. Building Efficient and Effective
Metasearch Engines. ACM Computing Surveys (CSUR), 34, 1, 48–89. doi: 10.1145/
505282.505284.

[182] Stephen Merity. 2014. Navigating the WARC File Format. http://commoncrawl.
org/2014/04/navigating-the-warc-file-format/. (2014).

[183] Alessandro Micarelli and Fabio Gasparetti. 2007. Adaptive Focused Crawling. The
Adaptive Web, 4321, 231–262. doi: 10.1007/978-3-540-72079-9_7.

[184] Gordon Mohr, Michael Stack, Igor Rnitovic, Dan Avery, and Michele Kimpton. 2004.
Introduction to Heritrix. In Proceedings of the 4th International Web Archiving Work-
shop.

[185] Mozilla Foundation. 2015. Public Suffix List. https://publicsuffix.org/. (2015).

https://doi.org/10.1145/956863.956903
https://doi.org/10.1145/956863.956903
https://doi.org/10.1007/978-3-540-31865-1_5
https://github.com/cloudflare/cloudflare-blog/tree/master/2020-02-mmuniq
https://github.com/cloudflare/cloudflare-blog/tree/master/2020-02-mmuniq
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://blog.cloudflare.com/when-bloom-filters-dont-bloom/
https://doi.org/10.1145/3369876
https://doi.org/10.1007/978-3-540-46332-0
https://doi.org/10.1007/978-3-642-33290-6_22
https://doi.org/10.1007/978-3-642-33290-6_22
https://doi.org/10.1145/505282.505284
https://doi.org/10.1145/505282.505284
http://commoncrawl.org/2014/04/navigating-the-warc-file-format/
http://commoncrawl.org/2014/04/navigating-the-warc-file-format/
https://doi.org/10.1007/978-3-540-72079-9_7
https://publicsuffix.org/

214

[186] Michael L. Nelson. 2018. The Internet Archive Can’t Preserve the Web’s History by
Itself. https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-
the-weaponization-of-internet-archives. (2018).

[187] Michael L. Nelson. 2018. Why We Need Multiple Web Archives: The Case of
blog.reidreport.com. https://ws-dl.blogspot.com/2018/04/2018-04-24-why-
we-need-multiple-web.html. (2018).

[188] Michael L. Nelson, Joan A. Smith, Ignacio Garcia del Campo, Herbert Van de Sompel,
and Xiaoming Liu. 2006. Efficient, Automatic Web Resource Harvesting. In Proceed-
ings of the 8th ACM International Workshop on Web Information and Data Man-
agement (WIDM ’06), 43–50. doi: 10.1145/1183550.1183560.

[189] Michael L. Nelson and Herbert Van de Sompel. 2018. Adding the Dimension of Time
to HTTP. In The SAGE Handbook of Web History.

[190] Bryan Newbold. 2018. Fatcat Design Document (RFC). https://github.com/
internetarchive/fatcat/blob/master/fatcat-rfc.md. (2018).

[191] Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and Specifi-
cations: A Sketch of Web Site Design Practice. In Proceedings of the 3rd Conference
on Designing Interactive Systems: Processes, Practices, Methods, Techniques (DIS
’00), 263–274. doi: 10.1145/347642.347758.

[192] Mark Nottingham. 2010. Web Linking. RFC 5988. Internet Engineering Task Force,
(2010).

[193] Mark Nottingham. 2019. Well-Known Uniform Resource Identifiers (URIs), Internet
RFC 8615. https://tools.ietf.org/html/rfc8615. (2019).

[194] Mark Nottingham and Robert Sayre. 2005. The Atom Syndication Format. RFC
4287. Internet Engineering Task Force, (2005).

[195] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. 2005. Downloading Tex-
tual Hidden Web Content Through Keyword Queries. In Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’05), 100–109.

[196] Alexander C. Nwala. 2018. An Exploration of URL Diversity Measures. https://ws-
dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html.
(2018).

[197] Alexander C. Nwala. 2015. I Can Haz Memento. https://ws-dl.blogspot.com/
2015/07/2015-07-22-i-can-haz-memento.html. (2015).

https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-the-weaponization-of-internet-archives
https://motherboard.vice.com/en_us/article/7xdn8y/joy-reid-and-the-weaponization-of-internet-archives
https://ws-dl.blogspot.com/2018/04/2018-04-24-why-we-need-multiple-web.html
https://ws-dl.blogspot.com/2018/04/2018-04-24-why-we-need-multiple-web.html
https://doi.org/10.1145/1183550.1183560
https://github.com/internetarchive/fatcat/blob/master/fatcat-rfc.md
https://github.com/internetarchive/fatcat/blob/master/fatcat-rfc.md
https://doi.org/10.1145/347642.347758
https://tools.ietf.org/html/rfc8615
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html
https://ws-dl.blogspot.com/2015/07/2015-07-22-i-can-haz-memento.html
https://ws-dl.blogspot.com/2015/07/2015-07-22-i-can-haz-memento.html

215

[198] Maile Ohye and Joachim Kupke. 2012. The Canonical Link Relation. RFC 6596.
Internet Engineering Task Force, (2012).

[199] Open Source Initiative. 2006. The MIT License. https : / / opensource . org /

licenses/MIT. (2006).

[200] Krutarth Patel, Cornelia Caragea, Mark Phillips, and Nathaniel Fox. 2020. Identi-
fying Documents In-Scope of a Collection From Web Archives. In Proceedings of the
20th ACM/IEEE on Joint Conference on Digital Libraries (JCDL ’20).

[201] Sarah Perez. 2013. It’s Not Just Reader - Google Kills Its RSS Subscription Browser
Extension, Too. https://techcrunch.com/2013/03/15/google- kills-rss/.
(2013).

[202] Rob Pike. 2000. Lexical File Names in Plan 9, or, Getting Dot-Dot Right. In Pro-
ceedings of the General Track: 2000 USENIX Annual Technical Conference, 85–92.

[203] Sriram Raghavan and Hector Garcia-Molina. 2001. Crawling the Hidden Web. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB
’01), 129–138. isbn: 1-55860-804-4.

[204] Marcel Ras and Sara van Bussel. 2007. Web Archiving User Survey. https://www.
kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf. (2007).

[205] Andrée Rathemacher. 2020. Perma.cc: Prevent Link Rot in Scholarship. University
Libraries, University of Rhode Island.

[206] Irina Rish. 2001. An Empirical Study of the Naive Bayes Classifier. In IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence number 22. Volume 3, 41–
46.

[207] Dennis Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System. Com-
munications of the ACM (CACM), 17, 7, 365–375. doi: 10.1145/361011.361061.

[208] Alfonso de la Rocha. 2020. WebBundles Are Built for Content-Addressable Networks.
https://adlrocha.substack.com/p/adlrocha-webbundles-are-built-for.
(2020).

[209] Lara Rode. 2020. Web Bundles: The Solution to the Internet’s Shrinking Attention
Span. https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-
internets-shrinking-attention-span-210d90d0f86a. (2020).

[210] David S. H. Rosenthal. 2016. Aggregating Web Archives. https://blog.dshr.org/
2016/01/aggregating-web-archives.html. (2016).

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://techcrunch.com/2013/03/15/google-kills-rss/
https://www.kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf
https://www.kb.nl/sites/default/files/KB_UserSurvey_Webarchive_EN.pdf
https://doi.org/10.1145/361011.361061
https://adlrocha.substack.com/p/adlrocha-webbundles-are-built-for
https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-internets-shrinking-attention-span-210d90d0f86a
https://medium.com/@TTTStudios/web-bundles-the-solution-to-the-internets-shrinking-attention-span-210d90d0f86a
https://blog.dshr.org/2016/01/aggregating-web-archives.html
https://blog.dshr.org/2016/01/aggregating-web-archives.html

216

[211] David S. H. Rosenthal. 2019. Web Packaging for Web Archiving. https://blog.
dshr.org/2019/12/web-packaging-for-web-archiving.html. (2019).

[212] Alexis Rossi. 2016. Robots.txt Files and Archiving .gov and .mil Websites. https:
//blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/. (2016).

[213] RSS Advisory Board. 2009. RSS 2.0 Specification. https://www.rssboard.org/
rss-specification. (2009).

[214] Sam Ruby. 2008. RSS 2.0 and Atom 1.0 Compared. https://www.intertwingly.
net/wiki/pie/Rss20AndAtom10Compared. (2008).

[215] Hany SalahEldeen and Michael L. Nelson. 2012. Losing My Revolution: How Many
Resources Shared on Social Media Have Been Lost? In Proceedings of the 16th In-
ternational Conference on Theory and Practice of Digital Libraries (TPDL ’12).
Volume 7489, 125–137. doi: 10.1007/978-3-642-33290-6_14.

[216] Robert Sanderson. 2012. Global Web Archive Integration With Memento. In Pro-
ceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL
’12), 379–380. doi: 10.1145/2232817.2232900.

[217] Robert Sanderson, Herbert Van de Sompel, and Michael L. Nelson. 2012. IIPC Me-
mento Aggregator Experiment. http://www.netpreserve.org/sites/default/
files/resources/Sanderson.pdf. (2012).

[218] Sabine Schostag. 2020. The Danish Coronavirus Web Collection – Coronavirus on the
Curators’ Minds. https://netpreserveblog.wordpress.com/2020/07/29/the-
danish-coronavirus-web-collection/. (2020).

[219] Barry Schwartz. 2016. Google’s Search Knows About Over 130 Trillion Pages. https:
/ / searchengineland . com / googles - search - indexes - hits - 130 - trillion -

pages-documents-263378. (2016).

[220] Giuseppe Scrivano and Hrvoje Nikšić. 1996. Wget. https://en.wikipedia.org/
wiki/Wget. (1996).

[221] Zach Shelby. 2010. Constrained RESTful Environments (CoRE) Link Format. RFC
6690. Internet Engineering Task Force, (2010).

[222] Chao Shen and Tao Li. 2010. Multi-Document Summarization via the Minimum
Dominating Set. In Proceedings of the 23rd International Conference on Computa-
tional Linguistics (COLING ’10), 984–992.

https://blog.dshr.org/2019/12/web-packaging-for-web-archiving.html
https://blog.dshr.org/2019/12/web-packaging-for-web-archiving.html
https://blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/
https://blog.archive.org/2016/12/17/robots-txt-gov-mil-websites/
https://www.rssboard.org/rss-specification
https://www.rssboard.org/rss-specification
https://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
https://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
https://doi.org/10.1007/978-3-642-33290-6_14
https://doi.org/10.1145/2232817.2232900
http://www.netpreserve.org/sites/default/files/resources/Sanderson.pdf
http://www.netpreserve.org/sites/default/files/resources/Sanderson.pdf
https://netpreserveblog.wordpress.com/2020/07/29/the-danish-coronavirus-web-collection/
https://netpreserveblog.wordpress.com/2020/07/29/the-danish-coronavirus-web-collection/
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://en.wikipedia.org/wiki/Wget
https://en.wikipedia.org/wiki/Wget

217

[223] Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin. 2012. Optimal Algorithms for
Crawling a Hidden Database in the Web. Proceedings of the VLDB Endowment, 5,
11, 1112–1123. doi: 10.14778/2350229.2350232.

[224] Shiva Shivakumar. 2005. Webmaster-friendly. https://googleblog.blogspot.com/
2005/06/webmaster-friendly.html. (2005).

[225] Kristinn Sigurðsson. 2016. 3 Things I Shouldn’t Have To Tell You About Running
a ‘Good’ Crawler. https://kris-sigur.blogspot.com/2016/02/3-things-i-
shouldnt-have-to-tell-you.html. (2016).

[226] Kristinn Sigurðsson. 2015. URI Canonicalization in Web Archiving. https://kris-
sigur.blogspot.com/2015/03/uri- canonicalization- in- web- archiving.

html. (2015).

[227] Kristinn Sigurðsson, Michael Stack, and Igor Ranitovic. 2006. Heritrix User Man-
ual: Sort-friendly URI Reordering Transform. http : / / crawler . archive . org /
articles/user_manual/glossary.html#surt. (2006).

[228] Manveet Singh. 2014. Clearing Up Confusion – Deep Web vs. Dark Web. https:
//brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-

web/. (2014).

[229] Saurabh Singh. 2017. India Bans Wayback Machine, Makes It Harder to Catch Liars
on the Web. https://www.indiatoday.in/technology/news/story/india-bans-
wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-

2017-08-08. (2017).

[230] Sitemaps.org. 2008. Sitemaps XML Format. https : / / www . sitemaps . org /

protocol.html. (2008).

[231] Peter Snyder. 1990. tmpfs: A Virtual Memory File System. In Proceedings of the
Autumn 1990 EUUG Conference, 241–248.

[232] Brooke Sopelsa. 2018. MSNBC’s Joy Reid Apologizes for ‘Insensitive’ LGBT Blog
Posts. https://www.nbcnews.com/feature/nbc- out/msnbc- s- joy- reid-
apologizes-insensitive-lgbt-blog-posts-n826091. (2018).

[233] Stanford Libraries. 2016. Data Formats and APIs. https://library.stanford.
edu/projects/web-archiving/research-resources/data-formats-and-apis.
(2016).

https://doi.org/10.14778/2350229.2350232
https://googleblog.blogspot.com/2005/06/webmaster-friendly.html
https://googleblog.blogspot.com/2005/06/webmaster-friendly.html
https://kris-sigur.blogspot.com/2016/02/3-things-i-shouldnt-have-to-tell-you.html
https://kris-sigur.blogspot.com/2016/02/3-things-i-shouldnt-have-to-tell-you.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
https://kris-sigur.blogspot.com/2015/03/uri-canonicalization-in-web-archiving.html
http://crawler.archive.org/articles/user_manual/glossary.html#surt
http://crawler.archive.org/articles/user_manual/glossary.html#surt
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://brightplanet.com/2014/03/27/clearing-confusion-deep-web-vs-dark-web/
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.indiatoday.in/technology/news/story/india-bans-wayback-machine-makes-it-harder-to-catch-liars-on-internet-1028631-2017-08-08
https://www.sitemaps.org/protocol.html
https://www.sitemaps.org/protocol.html
https://www.nbcnews.com/feature/nbc-out/msnbc-s-joy-reid-apologizes-insensitive-lgbt-blog-posts-n826091
https://www.nbcnews.com/feature/nbc-out/msnbc-s-joy-reid-apologizes-insensitive-lgbt-blog-posts-n826091
https://library.stanford.edu/projects/web-archiving/research-resources/data-formats-and-apis
https://library.stanford.edu/projects/web-archiving/research-resources/data-formats-and-apis

218

[234] Stanford University Libraries. 2013. Stanford Web Archive Portal. https://swap.
stanford.edu/. (2013).

[235] Daniel Stenberg. 2014. HTTP2 Explained. Computer Communication Review, 44, 3,
120–128. doi: 10.1145/2656877.2656896.

[236] Hunter Stern and Vinay Goel. 2015. Web Archive Transformation (WAT) Speci-
fication, Utilities, and Usage Overview. https://webarchive.jira.com/wiki/
spaces / Iresearch / pages / 14484029 / Web + Archive + Transformation + WAT +

Specification+Utilities+and+Usage+Overview. (2015).

[237] Atsushi Sugiura and Oren Etzioni. 2000. Query Routing for Web Search Engines:
Architecture and Experiments. Computer Networks, 33, 1, 417–429.

[238] The GDELT Project. 2015. The Incredibly Short Lifespan of an Online News Article.
https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-

online-news-article/. (2015).

[239] Thanh Tran and Lei Zhang. 2014. Keyword Query Routing. IEEE Transactions on
Knowledge and Data Engineering, 26, 2, 363–375.

[240] Gail Truman. 2016. Web Archiving Environmental Scan. https://nrs.harvard.
edu/urn-3:HUL.InstRepos:25658314. (2016).

[241] Gail Truman and Andrea Goethals. 2016. Web Archiving Environmental Scan. In
Proceedings of the 13th International Conference on Digital Preservation (iPRES
’16). http://hdl.handle.net/11353/10.502842.

[242] UK Web Archive. 2014. Crawled URL Index JISC UK Web Domain Dataset (1996-
2013). https://data.webarchive.org.uk/opendata/ukwa.ds.2/cdx/. (2014).
doi: 10.5259/ukwa.ds.2/cdx/1.

[243] Yusuke Utsunomiya and Kenji Baheux. 2019. Get Started With Web Bundles. https:
//web.dev/web-bundles/. (2019).

[244] Herbert Van de Sompel, Michael L. Nelson, Martin Klein, and Robert Sanderson.
2013. ResourceSync: The NISO/OAI Resource Synchronization Framework. In Pro-
ceedings of the 17th International Conference on Theory and Practice of Digital Li-
braries (TPDL ’13). Volume 8092, 488–489. doi: 10.1007/978-3-642-40501-3_70.

[245] Herbert Van de Sompel, Michael L. Nelson, and Robert Sanderson. 2013. HTTP
Framework for Time-Based Access to Resource States – Memento. RFC 7089. Inter-
net Engineering Task Force, (2013).

https://swap.stanford.edu/
https://swap.stanford.edu/
https://doi.org/10.1145/2656877.2656896
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/14484029/Web+Archive+Transformation+WAT+Specification+Utilities+and+Usage+Overview
https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-online-news-article/
https://blog.gdeltproject.org/the-incredibly-short-lifespan-of-an-online-news-article/
https://nrs.harvard.edu/urn-3:HUL.InstRepos:25658314
https://nrs.harvard.edu/urn-3:HUL.InstRepos:25658314
http://hdl.handle.net/11353/10.502842
https://data.webarchive.org.uk/opendata/ukwa.ds.2/cdx/
https://doi.org/10.5259/ukwa.ds.2/cdx/1
https://web.dev/web-bundles/
https://web.dev/web-bundles/
https://doi.org/10.1007/978-3-642-40501-3_70

219

[246] Herbert Van de Sompel, Michael L. Nelson, Robert Sanderson, Lyudmila L. Bal-
akireva, Scott Ainsworth, and Harihar Shankar. 2009. Memento: Time Travel for the
Web. Technical report arXiv:0911.1112. https://arxiv.org/abs/0911.1112.

[247] Antal van den Bosch, Toine Bogers, and Maurice de Kunder. 2016. Estimating Search
Engine Index Size Variability: A 9-Year Longitudinal Study. Scientometrics, 107, 2,
839–856. doi: 10.1007/s11192-016-1863-z.

[248] Ping Wu, Ji-Rong Wen, Huan Liu, and Wei-Ying Ma. 2006. Query Selection Tech-
niques for Efficient Crawling of Structured Web Sources. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE ’06), 47–47.

[249] Jeffrey Yasskin. 2020. Loading Signed Exchanges. https : / / wicg . github . io /
webpackage/loading.html. (2020).

[250] Jeffrey Yasskin. 2020. Signed HTTP Exchanges. https://tools.ietf.org/html/
draft-yasskin-http-origin-signed-responses-09. (2020).

[251] Jeffrey Yasskin. 2020. Web Bundles. https://tools.ietf.org/html/draft-
yasskin-wpack-bundled-exchanges-03. (2020).

[252] Shlomo Yitzhaki. 1979. Relative Deprivation and the Gini Coefficient. The Quarterly
Journal of Economics, 321–324.

[253] Henner Zeller, Lizzi Harvey, and Gary Illyes. 2019. Formalizing the Robots Exclusion
Protocol Specification. https://webmasters.googleblog.com/2019/07/rep-
id.html. (2019).

[254] Justin Zobel and Alistair Moffat. 2006. Inverted Files for Text Search Engines. ACM
Computing Surveys, 38, 2, 6. doi: 10.1145/1132956.1132959.

https://arxiv.org/abs/0911.1112
https://doi.org/10.1007/s11192-016-1863-z
https://wicg.github.io/webpackage/loading.html
https://wicg.github.io/webpackage/loading.html
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-09
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-09
https://tools.ietf.org/html/draft-yasskin-wpack-bundled-exchanges-03
https://tools.ietf.org/html/draft-yasskin-wpack-bundled-exchanges-03
https://webmasters.googleblog.com/2019/07/rep-id.html
https://webmasters.googleblog.com/2019/07/rep-id.html
https://doi.org/10.1145/1132956.1132959

220

APPENDIX A

ROBOTS EXCLUSION FILES (ROBOTS.TXT)

1396 # People share a lot of sensitive material on Quora - controversial political
1397 # views, workplace gossip and compensation, and negative opinions held of
1398 # companies. Over many years, as they change jobs or change their views, it is
1399 # important that they can delete or anonymize their previously-written answers.
1400 #
1401 # We opt out of the wayback machine because inclusion would allow people to
1402 # discover the identity of authors who had written sensitive answers publicly and
1403 # later had made them anonymous, and because it would prevent authors from being
1404 # able to remove their content from the internet if they change their mind about
1405 # publishing it. As far as we can tell, there is no way for sites to selectively
1406 # programmatically remove content from the archive and so this is the only way
1407 # for us to protect writers. If they open up an API where we can remove content
1408 # from the archive when authors remove it from Quora, but leave the rest of the
1409 # content archived, we would be happy to opt back in. See the page here:
1410 #
1411 # https://archive.org/about/exclude.php
1412 #
1413 # Meanwhile, if you are looking for an older version of any content on Quora, we
1414 # have full edit history tracked and accessible in product (with the exception of
1415 # content that has been removed by the author). You can generally access this by
1416 # clicking on timestamps, or by appending "/log" to the URL of any content page.
1417 #
1418 # For any questions or feedback about this please visit our contact page
1419 # https://help.quora.com/hc/en-us/requests/new
1420

1421 User-agent: ia_archiver
1422 Disallow: /

Fig. 80. Quora’s robots.txt File Excludes the Internet Archive With a Note About User
Privacy

221

1 # robots.txt for ftp://plan9.bell-labs.com and http://plan9.bell-labs.com
2 # see http://web.nexor.co.uk/mak/doc/robots/norobots.html
3 # and http://www.conman.org/people/spc/robots2.html
4 #
5 # put recently-added features last in case they cause
6 # the reader to stop reading.
7 # Visit-time is a GMT time range of allowed access.
8 # Request-rate for us is a maximum of one page per 5 seconds, at all hours.
9 # Crawl-delay is apparently only for msnbot.

10 #
11 User-agent: Googlebot
12 User-agent: msnbot
13 # the corporate crawler
14 User-agent: LSgsa-crawler
15 Disallow: /RealAudio/
16 Disallow: /bl-traces/
17 Disallow: /fast-os/
18 Disallow: /hidden/
19 Disallow: /historic/
20 Disallow: /incoming/
21 Disallow: /inferno/
22 Disallow: /magic/
23 Disallow: /netlib.depend/
24 Disallow: /netlib/
25 Disallow: /p9trace/
26 Disallow: /plan9/sources/
27 Disallow: /sources/
28 Disallow: /tmp/
29 Disallow: /tripwire/
30 Visit-time: 0700-1200
31 Request-rate: 1/5
32 Crawl-delay: 5
33

34 User-agent: *
35 Disallow: /
36 #
37 # Also, note that the prefixes ftp:// and http:// lead to the
38 # same files.
39 #
40 # the following are aliases for the same machine.
41 # cm.bell-labs.com
42 # cs.bell-labs.com
43 # netlib.bell-labs.com
44 # outside.cs.bell-labs.com
45 # plan9.bell-labs.com
46 # plan9.cs.bell-labs.com
47 # www.cs.bell-labs.com

Fig. 81. Bell Labs’ robots.txt on 2015-04-21 at 15:44:35 (UTC) https://web.archive.

org/web/20150421154435/http://cm.bell-labs.com/robots.txt

https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt
https://web.archive.org/web/20150421154435/http://cm.bell-labs.com/robots.txt

222

APPENDIX B

DOWNCASING IN SURT

35 /**
36 * Sort-friendly URI Reordering Transform.
37 *
38 * Converts URIs of the form:
39 *
40 * scheme://userinfo@domain.tld:port/path?query#fragment
41 *
42 * ...into...
43 *
44 * scheme://(tld,domain,:port@userinfo)/path?query#fragment
45 *
46 * The '(' ')' characters serve as an unambiguous notice that the so-called
47 * 'authority' portion of the URI ([userinfo@]host[:port] in http URIs) has
48 * been transformed; the commas prevent confusion with regular hostnames.
49 *
50 * This remedies the 'problem' with standard URIs that the host portion of a
51 * regular URI, with its dotted-domains, is actually in reverse order from
52 * the natural hierarchy that's usually helpful for grouping and sorting.
53 *
54 * The value of respecting URI case variance is considered negligible: it
55 * is vanishingly rare for case-variance to be meaningful, while URI case-
56 * variance often arises from people's confusion or sloppiness, and they
57 * only correct it insofar as necessary to avoid blatant problems. Thus
58 * the usual SURT form is considered to be flattened to all lowercase, and
59 * not completely reversible.
60 *
61 * @author gojomo
62 */
63 public class SURT {
64 // [... TRUNCATED ...]
65 }

Fig. 82. Original SURT Implementation in Java https://github.com/iipc/webarchive-

commons/blob/master/src/main/java/org/archive/util/SURT.java

https://github.com/iipc/webarchive-commons/blob/master/src/main/java/org/archive/util/SURT.java
https://github.com/iipc/webarchive-commons/blob/master/src/main/java/org/archive/util/SURT.java

223

APPENDIX C

TOOLS HELP MANUALS

1 $ ipwb -h
2 usage: ipwb [-h] [-d DAEMON_ADDRESS] [-v] [-u] {index,replay} ...
3

4 InterPlanetary Wayback (ipwb)
5

6 optional arguments:
7 -h, --help show this help message and exit
8 -d DAEMON_ADDRESS, --daemon DAEMON_ADDRESS
9 Multi-address of IPFS daemon (default

10 /dns/localhost/tcp/5001/http)
11 -v, --version Report the version of ipwb
12 -u, --update-check Check whether an updated version of ipwb is available
13

14 ipwb commands:
15 Invoke using "ipwb <command>", e.g., ipwb replay <cdxjFile>
16

17 {index,replay}
18 index Index a WARC file for replay in ipwb
19 replay Start the ipwb replay system
20

21 $ ipwb index -h
22 usage: ipwb [-h] [-e] [-c] [--compressFirst] [-o OUTFILE] [--debug]
23 index <warcPath> [index <warcPath> ...]
24

25 Index a WARC file for replay in ipwb
26

27 positional arguments:
28 index <warcPath> Path to a WARC[.gz] file
29

30 optional arguments:
31 -h, --help show this help message and exit
32 -e Encrypt WARC content prior to adding to IPFS
33 -c Compress WARC content prior to adding to IPFS
34 --compressFirst Compress data before encryption, where applicable
35 -o OUTFILE, --outfile OUTFILE
36 Path to an output CDXJ file, defaults to STDOUT
37 --debug Convenience flag to help with testing and debugging
38

39 $ ipwb replay -h
40 usage: ipwb replay [-h] [-P [<host:port>]] [index]
41

42 Start the ipwb relay system
43

44 positional arguments:
45 index path, URI, or multihash of file to use for replay
46

47 optional arguments:
48 -h, --help show this help message and exit
49 -P [<host:port>], --proxy [<host:port>]
50 Proxy URL

Fig. 83. InterPlanetary Wayback CLI Reference

224

1 // Import Reconstructive module in a ServiceWorker script
2 importScripts('reconstructive.js')
3

4 // Initialize a Reconstructive object with optional customizations
5 const rc = new Reconstructive({
6 urimPattern: `${self.location.origin}/memento/<datetime>/<urir>`,
7 bannerElementLocation:`${self.location.origin}/reconstructive-banner.js`,
8 bannerLogoLocation:`${self.location.origin}/reconstructive-logo.svg`,
9 bannerLogoHref: `${self.location.origin}/`,

10 showBanner: true,
11 debug: true,
12 customColor: '#0C383B'
13 })
14

15 // Add any custom exclusions in addition to the built-in ones
16 rc.exclusions.analytics = event => event.request.url.endsWith('custom-analytics.js')
17

18 // Bind fetch event to reroute requests using the Reconstructive instance
19 self.addEventListener('fetch', rc.reroute)

Fig. 84. Reconstructive Reference

1 <!-- Load a reconstructive-banner custom element in an HTML page -->
2 <script src="reconstructive-banner.js"></script>
3

4 <!-- Add the reconstructive-banner element in the markup with appropriate attribute values -->
5 <reconstructive-banner
6 logo-src=""
7 home-href="/"
8 urir="https://example.com/"
9 memento-datetime="Mon, 06 Feb 2017 00:23:37 GMT"

10 first-urim="https://archive.host/memento/20170206002337/https://example.com/"
11 first-datetime="Mon, 06 Feb 2017 00:23:37 GMT"
12 last-urim="https://archive.host/memento/20170206002337/https://example.com/"
13 last-datetime="Mon, 06 Feb 2017 00:23:37 GMT"
14 prev-urim=""
15 prev-datetime=""
16 next-urim=""
17 next-datetime="">
18 </reconstructive-banner>
19

20 <!--
21 Note: Reconstructive ServiceWorker module injects these with appropriate values automatically
22 -->

Fig. 85. Reconstructive Banner Reference

225

1 $ memgator -h
2 _____ _______ __
3 / \ _____ _____ / _____/______/ |___________
4 / Y Y \/ __ \/ \/ \ _____ \ _/ _ _ _ \
5 / | | \ ___/ Y Y \ _\ \/ __ | | |_| | | \/
6 __/_____/______|_|__/_______/_____|__|___/|__|
7

8 # MemGator ({Version})
9

10 A Memento Aggregator CLI and Server in Go
11

12 Usage:
13 memgator [options] {URI-R} # TimeMap from CLI
14 memgator [options] {URI-R} {YYYY[MM[DD[hh[mm[ss]]]]]} # Description of the closest Memento
15 memgator [options] server # Run as a Web Service
16

17 Options:
18 -A, --agent=MemGator/{Version} <{CONTACT}> User-agent string sent to archives
19 -a, --arcs=https://git.io/archives Local/remote JSON file path/URL of list of archives
20 -b, --benchmark= Benchmark file location - defaults to Logfile
21 -c, --contact=https://git.io/MemGator Comment/Email/URL/Handle - used in the user-agent
22 -D, --static= Directory path to serve static assets from
23 -d, --dormant=15m0s Dormant period after consecutive failures
24 -F, --tolerance=-1 Failure tolerance limit for each archive
25 -f, --format=Link Output format - Link/JSON/CDXJ
26 -H, --host=localhost Host name - only used in web service mode
27 -k, --topk=-1 Aggregate only top k archives based on probability
28 -l, --log= Log file location - defaults to STDERR
29 -m, --monitor=false Benchmark monitoring via SSE
30 -P, --proxy=http://{HOST}[:{PORT}]{ROOT} Proxy URL - defaults to host, port, and root
31 -p, --port=1208 Port number - only used in web service mode
32 -R, --root=/ Service root path prefix
33 -r, --restimeout=1m0s Response timeout for each archive
34 -S, --spoof=false Spoof each request with a random user-agent
35 -T, --hdrtimeout=30s Header timeout for each archive
36 -t, --contimeout=5s Connection timeout for each archive
37 -V, --verbose=false Show Info and Profiling messages on STDERR
38 -v, --version=false Show name and version
39

40 $ memgator [options] server
41 TimeMap: http://localhost:1208/timemap/{FORMAT}/{URI-R}
42 TimeGate: http://localhost:1208/timegate/{URI-R} [Accept-Datetime]
43 Memento: http://localhost:1208/memento[/{FORMAT}|proxy]/{DATETIME}/{URI-R}
44 About: http://localhost:1208/about
45 Monitor: http://localhost:1208/monitor - (Over SSE, if enabled)
46

47 {FORMAT} => link|json|cdxj
48 {DATETIME} => YYYY[MM[DD[hh[mm[ss]]]]]
49 [Accept-Datetime] => Header in RFC1123 format

Fig. 86. MemGator CLI Reference

226

1 $ accesslog -h
2 usage: accesslog [options] [FILES ...]
3

4 A tool to parse Common Log formatted access logs with various derived fields.
5

6 positional arguments:
7 files Log files (plain/gz/bz2) to parse (reads from the STDIN, if empty or '-')
8

9 optional arguments:
10 -h, --help Show this help message and exit
11 -v, --version Show version number and exit
12 -d, --debug Show debug messages on STDERR
13 -e FIELDS, --nonempty FIELDS
14 Skip record if any of the provided fields is empty (comma separated list)
15 -i FIELDS, --valid FIELDS
16 Skip record if any of the provided field values are invalid
17 ('all' or comma separated list from 'host,request,status,size,referrer')
18 -m FIELD~RegExp, --match FIELD~RegExp
19 Skip record if field does not match the RegExp (can be used multiple times)
20 -t TFORMAT, --origtime TFORMAT
21 Original datetime format of logs (default: '%d/%b/%Y:%H:%M:%S %z')
22 -f FORMAT, --format FORMAT
23 Output format string (see available formatting fields below)
24 -j FIELDS, --json FIELDS
25 Output NDJSON with the provided fields
26 (use 'all' for all fields except 'origline')
27

28 formatting fields:
29 {origline} Original log line
30 {host} IP address of the client
31 {identity} Identity of the client, usually '-'
32 {user} User ID for authentication, usually '-'
33 {origtime} Original date and time (typically in '%d/%b/%Y:%H:%M:%S %z' format)
34 {epoch} Seconds from the Unix epoch (derived from origtime)
35 {date} UTC date in '%Y-%m-%d' format (derived from origtime)
36 {time} UTC time in '%H:%M:%S' format (derived from origtime)
37 {datetime} 14 digit datetime in '%Y%m%d%H%M%S' format (derived from origtime)
38 {request} Original HTTP request line
39 {method} HTTP method (empty for invalid request)
40 {path} Path and query (scheme and host removed, empty for invalid request)
41 {prefix} Memento endpoint path prefix (derived from path)
42 {mtime} 14 digit Memento datetime (derived from path)
43 {rflag} Memento rewrite flag (derived from path)
44 {urir} Memento URI-R (derived from path)
45 {httpv} HTTP version (empty for invalid request)
46 {status} Returned status code
47 {size} Number of bytes returned
48 {referrer} Referer header (empty, if not logged)
49 {agent} User-agent header (empty, if not logged)
50 {extras} Any additional logged fields
51 Default FORMAT: '{host} {date} {time} {method} {path} {status} {size} "{referrer}" "{agent}"'

Fig. 87. AccessLog Parser CLI Reference

227

1 $ mementomap -h
2 usage: mementomap [-h] {generate,compact,lookup,batchlookup} ...
3

4 positional arguments:
5 {generate,compact,lookup,batchlookup}
6 generate Generate a MementoMap from a sorted file with the
7 first columns as SURT (e.g., CDX/CDXJ)
8 compact Compact a large MementoMap file into a small one
9 lookup Look for a SURT into a MementoMap

10 batchlookup Look for a list of SURTs into a MementoMap
11

12 optional arguments:
13 -h, --help show this help message and exit
14

15 $ mementomap generate -h
16 usage: mementomap generate [-h] [--hcf] [--pcf] [--ha] [--pa] [--hk] [--pk]
17 [--hdepth] [--pdepth]
18 infile outfile
19

20 positional arguments:
21 infile Input SURT/CDX/CDXJ (plain or GZip) file path or '-' for STDIN
22 outfile Output MementoMap file path
23

24 optional arguments:
25 -h, --help show this help message and exit
26 --hcf Host compaction factor (deafault: Inf)
27 --pcf Path compaction factor (deafault: Inf)
28 --ha Power law alpha parameter for host (default: 16.329)
29 --pa Power law alpha parameter for path (default: 24.546)
30 --hk Power law k parameter for host (default: 0.714)
31 --pk Power law k parameter for path (default: 1.429)
32 --hdepth Max host depth (default: 8)
33 --pdepth Max path depth (default: 9)
34

35 $ mementomap lookup -h
36 usage: mementomap lookup [-h] mmap surt
37

38 positional arguments:
39 mmap MementoMap file path to look into
40 surt SURT to look for
41

42 optional arguments:
43 -h, --help show this help message and exit

Fig. 88. MementoMap CLI Reference

228

VITA

Sawood Alam
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

EDUCATION

Doctor of Philosophy in Computer Science (2020)
Old Dominion University, Norfolk, Virginia, USA
Dissertation: MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing

Master of Science in Computer Science (2013)
Old Dominion University, Norfolk, Virginia, USA
Thesis: HTTP Mailbox - Asynchronous Restful Communication

Bachelor of Technology in Computer Engineering (2008)
Jamia Millia Islamia, New Delhi, India
Project: WIDE: Web Integrated Development Environment

PUBLICATIONS

Publication Updates: https://ibnesayeed.com/publications
Google Scholar: https://scholar.google.com/citations?user=zXdbEQgAAAAJ

CONTACT

Homepage: https://ibnesayeed.com/
Email: ibnesayeed@gmail.com (Personal)

sawood@archive.org (Work)

Typeset using LATEX.

https://ibnesayeed.com/publications
https://scholar.google.com/citations?user=zXdbEQgAAAAJ
https://ibnesayeed.com/
mailto:ibnesayeed@gmail.com
mailto:sawood@archive.org

	MementoMap: A Web Archive Profiling Framework for Efficient Memento Routing
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivation
	Why Aggregate Web Archives Anyway?
	Why Aggregate Small Web Archives?
	Why Profile Web Archives?
	Why Route Lookup Requests?

	Research Questions
	Learning About the Holdings of an Archive
	Expressing and Disseminating Archive Profiles
	Archive Profiles for Memento Routing

	Chapter Summary

	Background
	Hypertext Transfer Protocol (HTTP)
	HTTP Message
	HTTP Method
	HTTP Status Code
	Soft-404

	HTTP Access Logs
	Web Archiving and Web Archives
	Archive Collection Policy

	Memento
	TimeGate
	TimeMap
	Not-Archived vs. Archived-404

	Memento Aggregator
	URI and URI Transformations
	URI Normalization/Canonicalization
	Sort-friendly URI Reordering Transform (SURT)

	Archive File Formats
	WARC
	Web Bundles
	WAT, WANE, and WET
	CDX/CDXJ

	Syndication and Discovery
	RSS/Atom Feed
	Sitemaps
	Robots Exclusion Protocol
	Well-Known URIs

	Inverted Index
	Chapter Summary

	Related Work
	Surface Web Crawling
	Deep/Hidden/Dark Web Crawling
	Describing Textual Databases
	Search Form Detection

	Focused Crawling
	On-Premise Indexing
	Query Routing
	Bloom Filters
	Archival Coverage of the Web
	Web Archive Searching
	Archive Profiling
	URI-R Profiling
	TLD Profiling
	Response Cache Profiling
	URI-Key Profiling

	Chapter Summary

	MementoMap Framework
	Research Questions
	RQ1: How to Learn an Archive's Holdings and Voids?
	RQ2: How to Summarize and Serialize Archival Holdings for Dissemination?
	RQ3: How to Utilize MementoMaps for Memento Routing?

	MementoMap Components
	Ingestion
	Summarization and Serialization
	Routing

	Evaluation Plan
	Cost
	Accuracy
	Freshness
	Routing Efficiency

	Chapter Summary

	Tools Implementation
	InterPlanetary Wayback
	Reconstructive
	MemGator
	Random Searcher
	AccessLog Parser
	MementoMap
	Unified Key Value Store
	Chapter Summary

	Learning Archival Holdings
	Archive Profile Data Structure
	URI-Keys and Profiling Policies
	HmPn Policy
	DLim Policy
	URI-Key Generation

	Profiling Through CDX Summarization
	Datasets
	Profile Growth Analysis
	Routing Efficiency

	Profiling Through Fulltext Search
	Random Searcher Model
	Implementation
	RSM Evaluation

	Chapter Summary

	Learning Archival Voids
	Introduction and Motivation
	Sources of Truth
	Evaluation
	Access Logs Dataset
	Access Patterns
	Soft-404 TimeMaps
	Status Code Changes Over Time
	Routing Accuracy

	Who Should Profile Archival Voids?
	Recommendations
	Chapter Summary

	Serialization and Dissemination
	Unified Key Value Store (UKVS)
	MementoMap File Format
	The surt Field
	The frequency Field
	The datetime Field
	Other fields

	MementoMap Implementation
	MementoMap Generation
	MementoMap Compaction
	Lookup in a MementoMap

	MementoMap Dissemination
	Evaluation
	Archived vs. Accessed Resources
	Holdings of Arquivo.pt
	The Shape of Archived URI Tree
	MementoMap Cost and Accuracy

	Chapter Summary

	Memento Routing
	Memento Aggregation and Routing
	Methodology
	Density Score
	Closeness Score
	Routing Score
	Inverted Index
	MementoMap and Inverted Index Lookup

	Classifier Reborn
	Evaluation
	Datasets
	Collection Diffusion
	Baseline Routing
	Heuristic Routing
	Machine Learning-Based Routing

	Chapter Summary

	Contributions, Future Work, and Conclusions
	Contributions
	Algorithms
	Terminology and Metrics
	Software/Tools
	Datasets
	Specifications

	Future Work
	Conclusions

	REFERENCES
	Robots Exclusion Files (robots.txt)
	Downcasing in SURT
	Tools Help Manuals

	VITA

