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The study on the lignocellulosic material conversion into bio-based platform chemicals, such as levulinic acid 
(LA), is one of the most promising routes to promote the development of advanced biorefineries. In this work, 
a dynamic mechanistic model is developed to simulate the LA production from lignocellulosic material. A wide 
operating range is used to estimate the parameters of the reaction kinetics. Because multi-parameter 
estimation problem is complex, a genetic algorithm-based optimization procedure is used to determine the 
optimum parameters values. Measurements are obtained for various reaction times (0 - 45 min) temperatures 
(150 – 200 °C) and acid concentration of 7.0 % w/v H2SO4. The calculated reaction rates for the state 
variables, concentrations of LA, glucose, 5-hydroxymethylfurfural and humins are used to construct the 
dynamic mechanistic model. The prediction of measured state variables was particularly accurate, as 
determined by the root mean square error (RMSE) and correlation coefficient (R2). Therefore, a satisfactory 
agreement between experimental LA yield of 57.2 mol% and computed LA yield of 56.4 mol% was achieved 
(at 200 °C, 7.0 % w/v H2SO4, 45 min). The proposed methodology drives the systematic development of an 
industrially reliable dynamic mechanistic model for LA production from sugarcane bagasse as a means to 
increase the LA yields in the biorefinery. 

1. Introduction 

The use of lignocellulosic materials in biorefineries to obtain value added products has being attained relevant 
space at the present time. Currently, Brazil is the world's largest sugarcane producer and is expected to 
produce about 602 million tons of sugarcane in the 2019 - 2020 harvest (Udop, 2019). This corresponds to a 
production of about 182 million tons of sugarcane bagasse (SCB). 
In this sense, levulinic acid (LA) can be formed from lignocellulosic materials in acid conditions and relative 
high temperatures. Synthesis of LA occurs through serial acid hydrolysis reactions, including dehydration of 
hexoses formed in the decomposition of cellulose to 5-HMF, followed by a rehydration reaction for the 
production of levulinic acid and formic acid (Fleig et al., 2018). Formation of humins occurs mostly inside the 
hydrolysis reactor which operates in severe conditions (Leal Silva et al., 2018). 
According to the U.S. Department of Energy (DOE) the LA stands out among the 12 most promising sugar-
based building blocks selected as “Top Value Added Chemicals from Biomass”. LA is a versatile chemical 
platform with numerous potential applications for example textile dye, antifreezing agent, animal feed, coating 
material, solvent, food flavouring agent, pharmaceutical compounds, fuel additives, polymer and resin 
precursors. Besides that, LA has been employed as a precursor to produce a variety of chemicals, such as α-
angelica lactone, benzodiazepines, butyl levulinate, ethyl levulinate, γ-valerolactone, 1,4-pentanediol, 2-
methyl-tetrahydrofuran (MTHF), among others (Lopes et al., 2017). 

 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                 DOI: 10.3303/CET2080037 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Paper Received: 17 December 2019; Revised: 24 February 2020; Accepted: 15  April  2020 
Please cite this article as: Lopes E.S., Gariboti J.C.J., Feistel L., Rivera E.C., Maciel Filho R., Tovar L.P., 2020, Acid Hydrolysis-based 
Sugarcane Bagasse Biorefining for Levulinic Acid Production: Dynamic Mechanistic Modeling Under Varying Operating Conditions, Chemical 
Engineering Transactions, 80, 217-222  DOI:10.3303/CET2080037 
  

217



In this context, the genetic algorithm (GA) will be applied in this work by means of an optimization method 
inspired by the non-deterministic process of natural evolution (Hoffmann, 2019). Despite the natural ability of 
GAs to describe a highly complex reaction system, its application in the context of LA production has not yet 
been reported. Therefore, the consolidation of reliable kinetic mechanisms, including a wide range of 
conditions, will enable to find out high conversion of SCB to LA, achieving high yields. 

2. Materials and methods 

The sugarcane bagasse (SCB) was supplied by São José sugar-alcohol mill (Araras, São Paulo, Brazil). Its 
composition was calculated according to Sluiter et al. (2012) and Sluiter et al. (2008a) and is presented in 
Table 1. 

Table 1: Chemical composition (on dry basis) of SCB, ISF-I after prehydrolysis and ISF-II after NaOH 
treatment. Data represent the mean ± standard deviation of three independent experiments 

Component Integral ISF-I ISF-II 

 Content (w/w) 
Cellulose 40.5 ± 2.17 62.5 ± 1.33 78.0± 0.51 
Hemicelluloses 30.6 ± 4.04 12.5 ± 1.70 6.4 ± 0.45 
Lignin 19.1 ± 3.18 23.2 ± 1.89 7.4 ± 0.45 
Extractives 8.9 ± 0.06 0.0 ± 0.00 0.0 ± 0.00 
Ash 2,5 ± 0.12 1.8 ± 0.03 2.1 ± 1.18 
Total 101.6± 1.64 100 ± 2.04 93.9± 1.47 

 
The SCB was fractionated in 3 steps, as follow: 
Step1: consisted of a prehydrolysis of the SCB in a solution of H2SO4 (1.0 % w/v) and temperature of 121 °C 
for 90 min. A liquid:solid ratio of 6.7 (with 15 g SCB on dry basis) was used. The suspension was then filtered 
and separated into a liquid fraction (AH-I) and a water insoluble solid fraction (ISF-I).  
Step2: the hydrolyzed solid fraction was taken to the second process step (step2). At this stage, the solids 
were treated with NaOH (0.5 % w/v) and 121 °C  for 90 min. The liquid:solid ratio used was the same as in the 
previous step. This step (step2) generated a black liquor (BL) and a water insoluble solid fraction (ISF-II). 
Step3: consists of a catalytic depolymerization of cellulose. The experiments were performed in a bench 
system, with two 300 mL stainless steel vessels, that have 70 mm internal diameter and 5 mm wall thickness 
(Figure 1).  

  
Figure 1: Scheme of the reaction system used in the step3. Mechanical strain and sprain profiles are 
presented 
 
The system has 1 kW mica resistance heating, with temperature controller and pressure gauge. The reactor 
has operating limits of 200 °C and 20 bar. Certain amounts of FSI-II were weighed to achieve 12 % w/v solids 
loading. These samples were transferred to the reaction system with the 7.0 % w/v acid solution of H2SO4. 
Temperatures of 150, 175 and 200 °C were analyzed. After the reaction time (0, 15, 30 and 45 min) had 
elapsed the reactor was shut down and immediately immersed in an ice water bath for cooling and 
depressurization the system. In this step, the experiments were performed at different time intervals (0, 15, 30 
and 45 min). Samples collected from acid hydrolysate (AH-II) for each experiment were filtered through 
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membranes (0.22 μm PVDF). The filtrates were transferred to clean flasks and kept in the freezer for further 
chromatographic analysis. 
The AH-I, BL and AH-II fractions were analyzed based on standard procedures (Gouveia et al., 2009, Sluiter 
et al., 2008b). 

3. Kinetic model  

It is essential to have a detailed understanding of the reactions involved in AL producing from SCB in order to 
achieve a successful hydrolysis process. In addition, understanding the rate dependence of the temperature, a 
parameter that highly influence the process, is crucial. In Figure 2 is presented the proposed reaction scheme 
for the catalytic depolymerization of cellulose from SCB. It was considered the propositions that: batch reactor 
has no volume change; cellulose catalytic depolymerization from SCB was a function of temperature, reaction 
time, and concentration of acid solution; irreversible homogeneous reaction; temperature and concentration of 
acid solution are uniform in reactor and the effects of different particle sizes have been neglected. After two-
step treatments of biomass, the particle size is uniform reducing the resistance against the diffusion process, 
resulting in uniform acid concentration inside the particle and leading to a uniform temperature distribution. 

 
Figure 2: Proposed reaction scheme for the catalytic depolymerization of cellulose from SCB 
 
The mechanistic model that describes the kinetics may be represented by the following ordinary differential 
equations Eq(1)-(5). These equations are macroscopic at maximum gradients; this means that no interphase 
resistances are considered. 
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where [GLN] is the substrate concentration (glucan/cellulose) (g/L); [GLC] is the sugar (glucose) concentration 
(g/L); [5-HMF] is the concentration of 5-hydroxymethylfurfural (g/L); [LA] is the concentration of levulinic acid 
(g/L); [HUs] is the concentration of humins (g/L); kGLN is the rate of glucan (GLN) to glucose (GLC) reaction; 
kGLC1 is the rate of glucose decomposition reaction (GLC) in 5-hydroxymethylfurfural (5-HMF); kGLC2 is the rate 
of glucose decomposition reaction (GLC) in decomposition products (HUs); k5-HMF is the decomposition 
reaction rate of 5-hydroxymethylfurfural (5-HMF) in levulinic acid (LA); The velocity constants, kGLN, kGLC1, 
kGLC2 and k5-HMF were expressed in min-1; t is the reaction time (min). The reaction rate constants are 
represented by modified Arrhenius equation, including the effects of temperature (T) and acid concentration 
(acid), as in Eq(6). 

( )exp ii mA
i i

E
k A acid

RT
− 

=  
 

 (6) 

where Ai is the frequency factor, mi is the reaction order in acid, R is the ideal gas constant, and EAi is the 
activation energy. 
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The estimation of the optimal values of the parameters with the greatest effect on the responses was 
performed using a genetic algorithm (GA) based on the PIKAIA routine (Charbonneau and Knapp, 2002). This 
algorithm solved a nonlinear optimization problem where the objective function defined by Eq(8) is minimized. 

( )
2Predicted Experimental

, ,
Ult

nep nsp
j i j i

i j i

S S
FO

S
θ

  − =      
  (8) 

where θ is the vector containing all parameters, nep is the number of experimental profiles; nsp is the number 

of experimental sampling points; Experimental
,j iS is the ith measured concentration, Predicted

,j iS and Ult
,j iS are the 

concentrations calculated by the kinetic model and the final measured concentration, respectively.  
With GA configured, convergence is accelerated toward optimal values for the parameters that produce the 
best fit between the measured GLC, 5-HMF, and LA concentrations and their corresponding concentrations 
calculated by the kinetic model, minimizing FO(θ). 
The FORTRAN-encoded kinetic model (Eq(1)-(5)) was integrated using the initial value problem, Runge-Kutta 
method (IVPRK) to obtain the profile of GLC, 5-HMF and LA concentrations. The estimation problem of the 
kinetic parameters using the GA coupled to the model was performed on an Intel (R) Core (TM) i7-4790 @ 
3.60 GHz CPU. 

4. Results and discussion 

In the step1, prehydrolysis, the ISF had a solid recovery of 58.8 %. At this step, the solubilization of 
hemicelluloses occurred mainly, decreasing about 76 % in relation to the raw SCB. Cellulose and lignin were 
recovered mainly in solid fractions. At ISF, 91.0 % of the pulp was preserved in relation to the raw SCB. 
In the step2, where solids (ISF) were treated with NaOH, the ISF-II had 80.0 % of the solids recovered for ISF-
II. From the information presented in Table 2, it can be inferred that a significant solubilization of lignin 
occurred, corresponding to about 82 % of raw SCB. In addition, the ash removal in ISF-II was 7.0 % of raw 
SCB. In relation to cellulose, 91.0 % of the cellulose contained in the ISF was preserved in the ISF-II, 
favouring the production of LA that is performed in the step3 (catalytic depolymerization of cellulose). 
To understand the catalytic depolymerization of cellulose from SCB, the conditions studied were based on 
previous work (Lopes et al., 2017, Fleig et al., 2018). A total of 12 experiments (in triplicate) addressing the 
measurements of [GLC], [5-HMF] and [LA] was performed. Figure 3 shows the [LA] profile at 150 °C, 175 °C 
and 200 °C in relation to reaction time. It is possible to observe that [LA] behaves increasingly with the 
reaction time. It increased from 150 °C to 175 °C, reaching 31.9 g/L by the simulated value (31.5 g/L 
experimental) after 45 min of reaction and 200 °C. This fact proves the important positive influence that 
temperature exerts on the conversion of SCB to LA. Under the conditions studied was considering that GLC 
was almost fully consumed, with maximum residual contents of 2.2 g/L by simulated value (1.0 g/L 
experimental), and the same occurred to 5-HMF, with a maximum residual contents of 0.03 g/L by simulated 
value (0.1 g/L experimental). The highest [LA] represents a yield of 57.2 mol% by simulated value (56.4 mol% 
experimental). These results are in accordance with Zheng et al. (2017) when studying the conversion of corn 
stalk to LA using FeCL3 as catalyst. The authors found a yield of 48.9 mol% under 180 °C, 0.5 mol/L FeCL3 
and 60 min of reaction. The higher yield achieved in this work, when compared to Zheng et al. (2017), may be 
due to the use of higher temperature.  
 

 
 
Figure 3: [LA] profile in function of time, where ■ correspond to 150 °C, ● correspond to 175 °C and ▲ 
correspond to 200 °C. Experimental data are expressed by symbols (bars represent the triplicate standard 
deviation) and simulated data by continuous lines 
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Each of the measurements of [GLC], [5-HMF] and [LA] were used to estimate the kinetic parameters, 
presented in Table 2, and consequently to determine the kinetic reaction rates (kGLN, kGLC1, kGLC2, k5-HMF). 

Table 2: Kinetic parameters for the catalytic depolymerization of sugarcane bagasse for intermediate and side 
reactions to GLC, 5-HMF and HUs and the main reaction to LA 

 Reaction Ai (min-1) EAi (kJ/mol) mi 
kGLN  GLN → GLC 1.12×105 57.50 0.31 
kGLC1  GLC → 5-HMF 4.50×105 32.54 2.30 
kGLC2 GLC → HUs 4.01×104 37.60 1.08 
k5-HMF  5-HMF → AL 3.18×105 24.42 1.94 

 
The activation energy, EA, of the GLN → GLC reaction (EAGLN = 57.50 kJ/mol) is lower than the values 
reported in the literature, such as sugarcane bagasse reported by Girisuta et al. (2013) (EA = 144.8 kJ/mol) 
and cellulose reported by Chang et al. (2006) (EA = 86.3 kJ/mol). This difference in values can be explained 
by the number of steps involved in the process (step1, step2, step3, in specific case of this study), since the 
reported works only perform hydrolysis in a single step.   
EA indicates a higher temperature sensitivity for GLC formation, indicating that higher temperatures promote 
greater and faster GLC formation. At 150 °C and 175 °C after 15 minutes of reaction, GLC concentrations 
begin to decline due to their consumption to form other products, such as LA. Already at 200 °C this increase 
occurs only up to 5 min of reaction, from when the GLC begins to be consumed.  
The reaction rate constant of GLN → GLC was lower when compared to the rate constants of the 
decomposition reactions of GLC. Consequently, the EA of the GLN conversion (EAGLN = 57.50 kJ/mol) was 
higher when compared to GLC decomposition reactions (EAGLC1 = 32.54 kJ/mol and EAGLC2 = 37.60 kJ/mol). 
When evaluating the GLC decomposition, the EA values (EAGLC1 and EAGLC2) are similar. Therefore, the 
velocity constants values of kGLC1 (measuring the formation of 5-HMF) and kGLC2 (measuring the formation of 
degradation products, such as HUs) indicated the preferential formation of these latter products. In addition, 
these values also indicate that the use of higher temperatures gives preferential HUs formation over 5-HMF. It 
can be noted that decomposition of GLC at higher temperatures results in faster formation of HUs compared 
to formation of LA. In this case, using temperatures above 200 °C, GLC and 5-HMF are easily polymerized 
into HUs, resulting in a decrease in LA yield. 
The velocity constants, analyzed by the different temperatures used in this study, show that the hydration 
reaction constants of 5-HMF (k5-HMF) were up to 450 times faster than other reactions, which is in agreement 
with reported in previous studies (Girisuta et al. 2013, Girisuta et al. 2007). This indicates that the hydration of 
5-HMF → AL is not a limiting step during the catalytic depolymerization of cellulose from SCB. Once 5-HMF is 
formed, it is instantly converted to LA, and this explains the reason why the [5-HMF] in FSI-II that is always 
low. Thus, it is possible verify that the HUs are not formed from 5-HMF but from GLC, because the reaction of 
GLC → 5-HMF is very fast, as previously presented in other studies (Chang et al., 2006, Ren et al., 2015, 
Girisuta et al. 2013). These results lead us to believe that the GLC → AL reaction is the dominant reaction in 
catalytic depolymerization of cellulose from SCB. 
The kGLC1/k5-HMF values were 0.054, 0.061 and 0.068 under 150 °C, 175 °C and 200 °C, respectively, 
indicating that the temperature increase had a positive effect on the kGLC1/k5-HMF values. This implies that 
higher temperatures are better suited to catalyze FSI-II to produce LA, as also found by Zhi et al. (2015). 
Analyzing the experimental and the simulated values, was possible to determine the root mean square error 
(RMSE) and correlation coefficient (R2). The values for RMSE were 0.440, 0.801 and 1.043, at 150 °C, 175 °C 
and 200 °C, respectively. Also, the values for R2 were 0.998, 0.999, and 0.997, at 150 °C, 175 °C and 200 °C, 
respectively. These results show that the prediction of measured state variables was particularly accurate.  
Thereby, the predictions made with the model and its parameters and the kinetic experiments showed us that 
the use of higher temperatures (200 °C) generates a promising process in the formation of AL from SCB. In 
relation to the overall yield as a function of the available initial pulp, 39.1 % were obtained by the simulation 
(38.6 % experimental). It is equivalent to a 15.0 kg LA production for SCB by simulation (14.8 kg experimental) 
on 100 kg of starting material (on dry basis). 
These results are very promisors to improve the LA market. According to DSM (2019) the production 
estimates for using LA for polyamide intermediates, for example, is estimated in a market volume of 14,000 
kton in 2029 with a market value of $ 25 billion (DSM, 2019). Knowing the high potential of the LA in the 
biorefinery, the proposed methodology drives a satisfactory dynamic mechanistic model for LA production 
from SCB. With this, is possible to increase the LA yields in the biorefinery, not only from SCB but also using 
different agroindustry residuals as feedstock. 

221



5. Conclusions 

In this work was developed a mechanistic model to simulate the kinetics of the production of levulinic acid (LA) 
from sugarcane bagasse (SCB) with initial cellulose content of 38.4 %. Sulfuric acid at 7.0 % w/v and 
temperatures ranging from 150-200 °C was used. The approach was developed by coupling the genetic 
algorithm (GA) with the differential equations of the deterministic model (calling a hybrid GA model) with the 
description of the main reaction to LA, and intermediate and side reactions to glucose, 5-HMF and humins. A 
good fit between the experimental data and the kinetic model was obtained. The yield gradually increased 
over the course of the reaction time, reaching 57.2 mol% when considering 200 °C and 45 min. In this way, 
the growth opportunity of the LA has been proven by integrating the use of three fractionation steps within the 
biorefineries. 
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