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Summary
In the analysis of multivariate event times, frailty models assuming time-independent regression
coefficients are often considered, mainly due to their mathematical convenience. In practice,
regression coefficients are often time dependent and the temporal effects are of clinical interest.
Motivated by a phase III clinical trial in multiple sclerosis, we develop a semiparametric frailty
modelling approach to estimate time-varying effects for overdispersed recurrent events data with
treatment switching. The proposed model incorporates the treatment switching time in the time-
varying coefficients. Theoretical properties of the proposed model are established and an efficient
expectation-maximization algorithm is derived to obtain the maximum likelihood estimates.
Simulation studies evaluate the numerical performance of the proposed model under various
temporal treatment effect curves. The ideas in this paper can also be used for time-varying
coefficient frailty models without treatment switching as well as for alternative models when the
proportional hazard assumption is violated. A multiple sclerosis dataset is analysed to illustrate
our methodology.
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1. Introduction
This research was motivated by the need to better evaluate treatment effects in a phase II/III
clinical trial with multiple sclerosis patients, in which the primary endpoint, a clinical
relapse, is a recurrent event (Kappos et al., 2010). As multiple sclerosis is a heterogeneous
disease, relapse rates differ among patients, and the number of relapses shows
overdispersion compared to a Poisson model (Friede & Schmidli, 2010a). The most
commonly used model for overdispersed count data is the negative binomial regression
model (Wang et al., 2009), which assumes constant event rates as well as constant covariate
effects over time. This latter assumption may be too stringent in practice. Depending on the
mode of action and the pharmacokinetics of the drugs, treatment effects may vary with time
(Nicholas et al., 2012). Time-varying treatment effects are of particular interest in clinical
trials that consist of a core phase and an extension phase. In a core phase, patients are
randomized to the experimental treatment and the control treatment, and are then followed
for a fixed time period. Once a patient has reached the end of the follow-up period, the
patient enters the extension phase and then receives the experimental treatment. Hence
patients who were randomized to the control treatment in the core phase are switched to the
experimental treatment, while patients randomized to the experimental treatment in the core
phase stay on the experimental treatment in the extension phase. Such designs are frequently
used in clinical trials for ethical reasons. Similar in spirit are multiple sclerosis clinical trials
where information on patient relapses before randomization is available. For example in the
randomized placebo-controlled trial described in Lycke et al. (1996), relapses that occurred
in the two years preceding randomization were recorded. Such settings can also be seen to
correspond to a switch of treatment, where before randomization, patients receive standard
treatment, and after randomization, some patients are switched to the experimental
treatment. Although we focus here on clinical trials in multiple sclerosis, the proposed
methods are also applicable to other diseases where recurrent events are important
endpoints, and where study designs with a core and extension phase are common. Examples
of such diseases are asthma and chronic obstructive pulmonary disease (Friede & Schmidli,
2010b) where the recurrent event is an exacerbation, or gout (Akacha & Benda, 2010) where
the recurrent event is a relapse.

Better evaluation of the treatment effects in the aforementioned studies relies on advances in
recurrent events, time-varying coefficients, and treatment switching. There has been a vast
literature on each individual area, but little has been done on time-varying coefficients in
recurrent event models that accommodate treatment switching. A counting process with a
Cox-type of intensity function has been commonly used to analyse recurrent events data.
This model assumes that the underlying counting process is a time-transformed counting
process and that the covariates have multiplicative effects on the mean and rate functions of
the counting process. In order to adjust for the correlations among the recurrent events,
research efforts have been focused on marginal hazards models and frailty or random effects
models. For marginal hazards models, Pepe & Cai (1993) proposed semiparametric
procedures for graphical displays as well as for making inferences; Lin et al. (2000) provide
asymptotic justifications of these models; Wei et al. (1989) examine regression methods for
multivariate survival data by modelling marginal distributions and obtain asymptotic results
for the proposed estimators; Cai & Prentice (1995, 1997) proposed weighted partial
likelihood estimating equations for hazard models with distinct or common baseline hazard
rate functions. Frailty or random effects models were studied by Clayton & Cuzick (1985),
Oakes & Jeong (1998), Murphy (1995), Spiekerman & Lin (1998), Anderson & Louis
(1995), Fan & Li (2002) among others. An excellent article reviewing previous work as well
as building a very general framework for transformation models with random effects is Zeng
& Lin (2007).
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Statistical methods developed for recurrent events typically assume constant regression
coefficients. This assumption, however, is likely to be violated in practice and methods
allowing for nonconstant coefficients are of interest. Varying-coefficient models for survival
data, which assume the regression coefficients to be unknown functions of observed
covariates, U, have been studied by Murphy (1993) and Cai et al. (2007, 2008). In particular,
the latter two papers developed varying-coefficient models for multivariate failure time data
under marginal hazards models and under partial linear regression models, respectively. In
this paper, we focus on time-varying coefficient models. For nonfailure time data settings,
the time-varying coefficient model is only a special case of varying-coefficient models by
letting the observed covariate U be time. This is not true for failure time data settings
because the time is subject to censoring. Time-varying survival models have been studied by
Zucker & Karr (1990), Gray (1992), Cai et al. (2000), Martinussen et al. (2002), Cai & Sun
(2003), Tian et al. (2005) among others. However, all have focused on the multiplicative
models with univariate failure time data. Recently, Martinussen et al. (2011) developed the
methodology to handle time-varying coefficients in the context of multivariate event times,
but using the Aalen additive hazards model. Extending time-varying coefficient models to
the multiplicative models with multivariate event times remains unexplored.

There has also been related work on treatment switching in clinical trials (Robins & Tsiatis,
1991; Branson & Whitehead, 2002; Shao et al., 2005; Zeng et al., 2012). The literature,
however, has been focused on univariate time-to-event data with treatment switching caused
by drop-in or drop-out in clinical trials. The treatment switching considered in this paper is
instead determined by the study design, as in the motivating study of a trial with a core
phase and an extension phase. No literature, to the best of our knowledge, has studied time-
varying treatment effects with design-based treatment switching in the context of
multivariate failure time data.

In this paper, we develop a multiplicative semiparametric frailty modelling approach to
estimate time-varying effects for overdispersed recurrent events data with treatment
switching. The proposed model incorporates the treatment switching time into the time-
varying coefficients. This paper deals with new methodological challenges arising from
within-cluster dependence and time-varying nonparametric effects of the covariates. For the
parameter space, we have a mixture of parametric components, nonparametric components,
and time-varying components. An expectation-maximization algorithm based on B-spline
functions over the sieve space is derived to obtain the maximum likelihood estimates.
Although the new model is tailored to handle treatment switching in recurrent event times
with time-varying coefficients, the inference procedure and theorems provided in this paper
can easily be used in a non-treatment-switching framework by letting the switching time be
zero for the experimental group and be the study duration length for the control group. Since
the regression coefficients depend on time, our model is not a proportional hazards model
and can be used when the proportional hazards assumption is violated. In fact, the proposed
model is preferred to the Cox proportional hazards model with time-dependent covariates
because it has nonparametric time-varying coefficients while artificial time transformation
functions have to be created for the Cox model.

2. Inference procedures
2·1. Statistical models

Let N(t) be the counting process of relapses and let X denote the baseline information. If a
given patient stays on the placebo treatment all the time since time zero, we assume that the
patient’s intensity function is λ(t) (t > 0). However, if the patient has treatment initiated at
time c*, then we assume that at any time t > c* the intensity at time t is λ(t) exp{β(t − c*)},
where β(s) reflects the treatment effect depending on the length of time since treatment. We
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further incorporate the baseline characteristics and within-subject frailty, and hence propose
the following intensity models: for patients treated from the beginning,

(1)

where Ht− denotes all the past history before t, X denotes all baseline covariates, ξ is a
gamma-frailty with mean one, and dΛ(t) = λ(t) dt. For patients untreated at the beginning but
switched to treatment at time c*,

(2)

When β(s) = 0 (s ≥ 0), this implies that there is no treatment effect.

We can integrate models (1) and (2) into one expression

(3)

where c* denotes the time of initiating treatment. Therefore, c* = 0 for the experimental
treatment arm and c* > 0 for the control arm. In this paper, we assume that conditioning on
ξ, the current event rate is independent of the past, therefore, equation (3) is an intensity.

2·2. Nonparametric maximum likelihood estimation
The observed data from n subjects are

where Yi is the minimum of the censoring time and study duration τ, and
. Here, C* is the potential initiation time of the treatment

and the definition of Ci assumes that if the patient does not initiate the experimental
treatment before Yi, the observed initiation time is taken to be infinity for mathematical
convenience. We also assume that the switching times and censoring times are
noninformative. In other words, C* is independent of recurrent events and Y given X, and Y
is independent of N(t) and ξ given X. Similar to Zeng & Lin (2007) with identity
transformation, the observed data likelihood function is given by

where γ is a p × 1 vector of unknown parameters, ΔNi (t) denotes the jump size of Ni at time
t and f (ξ) is a gamma density with mean 1 and variance θ, denoted by Ga(θ−1, θ−1). The
parameters are {β(·), γ, Λ(·), θ}.

We use a sieve estimator of β but use nonparametric maximum likelihood to estimate Λ.
Specifically, we approximate β(t) via a sequence of B-splines for t ∈ [0, τ]; that is, we

assume that , where B1(t), …, BKn+m(t) are the B-splines based on

knots x1 = … = xm = 0 < xm+1 < … < τ = xm+Kn = … = xKn+2m, where , and the
B-splines are mth order piecewise polynomials. To construct the nonparametric maximum
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likelihood estimator of Λ, we assume that Λ(t) is a step function with jumps at observed
events of the observed counting process.

We use the expectation-maximization algorithm for parameter estimation (Klein, 1992;
Nielsen et al., 1992). In the maximization step, we maximize the conditional expectation of
the complete loglikelihood function

where Ê(· ∣ D) denotes the conditional expectation given the observed data and the estimates
at the previous iteration. The maximization is equivalent to solving the equations

for γ and the quantities α, where Zi (t) = {Xi, I (t > Ci)B1(t − Ci), …, I (t > Ci)BKn+m(t −

Ci)}T and . To solve for θ, we
maximize the quantity

Both equations can be solved using the Newton–Raphson algorithm. We then update Λ(t) as

In the expectation step of the expectation-maximization algorithm, we evaluate the
conditional expectation of Ê{g(ξi) ∣ D} using ∫ g(ξ)hi (ξ ∣ D) dξ, where hi (ξ ∣ D) is the
density of

which can be interpreted as the posterior density of ξi given the data.

At convergence, we can use the Louis (1982) formula to compute the observed information
matrix for all the parameters including the quantities α, γ, and the jump size of Λ.

To test the treatment effect, we define the weighted average treatment effect as

 for any smooth function g(t), where  and

. We can estimate w(g, β) by
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The variance of w(g, β) can be consistently estimated using the delta method. In particular,

where α = (α1, …, αKn+m), .

2·3. Asymptotic results
We establish the asymptotic properties of the nonparametric maximum likelihood estimators
in this section. The following conditions are needed for the theorems in this paper.

Condition 1. The true parameters β0(t) and λ0(t) are r times continuously differentiable
and their r th derivatives are bounded in [0, τ] where r ≥ 2. The true parameters γ0 and
θ0 belong to compact sets in their domains.

Condition 2. The conditional density of C* given X has bounded r th derivatives and its
support contains [0, τ]. The conditional density of Y given X has a bounded r th
derivative in its support, which contains τ.

Condition 3. If  with probability one, then α0 = 0 and α1 = 0.

Condition 4. The number of the knots Kn satisfies  and , as
n → ∞.

Conditions 1 and 2 are regularity and technical conditions. Condition 3 is an identifiability
condition. Condition 4 is the regularity condition needed to construct the sieve estimate for
the time-varying effect β(t).

Under these conditions, the following theorems give the consistency and asymptotic
distribution of the estimators.

Theorem 1—Under Conditions 1–4, when n → ∞,

where ∥·∥ is the Euclidean norm.

Theorem 2—Let Fβ consist of all the functions in [0, τ] whose r th derivatives are bounded
by 1, where r is given in Condition 1. Let FΛ consist of all the functions in [0, τ] whose total
variation is bounded by 1. Let Oγ be the unit ball in Rp and Oθ be the unit interval in R. We
treat {β̂n(t) − β0(t), Λ̂n (t) − Λ0(t), γ̂ − γ0, θ̂ − θ0} as a stochastic class in l∞(Fr × FΛ × Oγ ×
Oθ) whose value for (gβ, gΛ, a, b) is defined as
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where gβ and gΛ are any functions on Fr and FΛ, respectively, a is any vector on Rp and b is
any interval on R. Then under Conditions 1−4, n1/2{β̂n(t) − β0(t), Λ̂n(t) − Λ0(t), γ̂ − γ0, θ̂ −
θ0} converges in distribution to a mean-zero Gaussian process in the metric space l∞(Fr ×
FΛ × Oγ × Oθ).

The proofs of the theorems are given in the Appendix. By choosing gβ(t) = 1, gΛ(t) = 0, a as
a vector with all p elements equal to 0, and b = 0, Theorem 2 establishes the weak
convergence of n1/2 ∫ {β̂n(t) − β0(t)} dt. Similarly, the weak convergence of other
parameters can be obtained by choosing special values of (gβ, gΛ, a, b). With the
approximation of B-splines for β(t), the proposed model reduces to the usual frailty model
and work has been done to show that the estimators based on the expectation-maximization
algorithm have the same asymptotic properties as the maximum likelihood estimators in
frailty models (Parner, 1998; Murphy, 1995).

3. Numerical results
3·1. Simulation studies

We conducted extensive simulation studies to assess the finite sample performance of the
proposed methods. We generated recurrent event times from the counting process with
cumulative intensity Λ (t ∣ X, C*, A; ξ) = ξ Λ0(t) exp{γ X + β(t − C*)I (t > C*)}, where γ =
0·2, treatment assignment A was set to 0 or 1 with equal probability, X was simulated from a
Poisson distribution with mean 2 and truncated at 5, ξ was simulated from the gamma
distribution with mean 1 and variance θ = 0·8, and the cumulative intensity function Λ0(t) =
1·5t. We generated censoring times from the exponential distribution with hazard function
exp(−2 − 0·2A + 0·2X) and truncated by 1·2 and the largest follow-up time τ = 3. We
considered four scenarios for the treatment effects: (a) β(t) = 0, corresponding to the null
hypothesis of no treatment effect; (b) β(t) = −1, corresponding to a constant treatment effect;
(c) β(t) = log{1 − 0·9t/(0·6 + t)}, corresponding to a monotone treatment effect; (d) β(t) =
log{1 − 1·5t exp(−0·75t2)}, corresponding to a nonmonotonic treatment effect. For scenarios
(a)–(c), the switching times C* were set to 0 for the treatment group with A = 1, and to 1 for
the placebo group with A = 0. For scenario (d), we generated the switching times of the
control group subjects from a uniform [0, 4] distribution to study staggered switching and
partial switching. The treatment effect in scenario (c) is the Emax model with β(t) = log{1 −
Rmaxt/(T50 + t)}, where Rmax = 0·9 is the maximal intensity reduction and T50 = 0·6 is the
time to have a 50% intensity reduction.

We used the proposed expectation-maximization algorithm to calculate the estimates of γ, α,
θ, and Λ{t}, where Λ{t} denotes the jump size of Λ at time t. The Louis formula was used to
obtain the standard errors of the estimates. The cubic B-splines with m = 4 and Kn = 6 were
used in all scenarios. The knots were equally spaced on [0, τ]. For each scenario, we
generated 1000 replicates with sample sizes n = 400 and n = 200. Since θ and Λ{t} are
nonnegative, we used the log-transformation in constructing their confidence interval. In
particular, the 95% confidence interval for θ is θ̂ exp{±1·96 × se(θ̂)/θ̂}, where se(θ̂) denotes
the standard error. A similar formula is obtained for Λ{t}.

Table 1 shows the summary statistics for the parameters of interest for n = 400 and n = 200.
For scenarios (a)–(d), the average event counts are roughly 5·42, 3·46, 3·94, 4·64,
respectively, for the placebo group, and 5·63, 2·07, 2·54, 3·51, respectively, for the treatment
group. The nonparametric maximum likelihood estimators for γ, θ, β(t) with t = 0·5, 1·5, and

2·5, and the weighted average treatment effect  with g(t) = 1/τ are
virtually unbiased, with the average standard errors close to the empirical standard errors,
and the 95% confidence intervals achieve the nominal coverage probabilities. For each
scenario, Figs. 1 and 2 show the true treatment effect β(t), the estimates of the treatment
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effect , the empirical 95% confidence intervals, and the average of
the 95% confidence intervals for n = 400 and n = 200, respectively. We used the 2·5% and
97·5% quantiles of β̂(t) based on the 1000 replicates to construct the empirical 95%
confidence interval, and used the average values of the upper and lower limits of the 95%
confidence intervals calculated in each replicate to construct the average 95% confidence
intervals. The estimated treatment effect curves are virtually unbiased and the average 95%
confidence intervals are very close to the empirical 95% confidence intervals.

3·2. Application to acyclovir study
Viral infections have been suspected to initiate the disease process in multiple sclerosis
(Gilden, 2005). Hence antiviral drugs may be able to reduce the relapse rate in multiple
sclerosis patients. The first and largest study to investigate the effect of an antiviral drug,
acyclovir, has been reported in Lycke et al. (1996). The acyclovir study was a randomized,
placebo-controlled, double-blind clinical trial, where 60 multiple sclerosis patients were
randomly assigned to acyclovir and placebo, and then followed for two years. The relapse
rates were reduced by 34% in the acyclovir group as compared to placebo; however this
reduction was not statistically significant with p = 0·083. Information on the relapses in the
two years before randomization was also collected in this study, but not used in this
statistical analysis.

We used the proposed methods to reanalyse the data from the acyclovir study, using relapse
information before and after randomization, and investigating the time-dependence of the
potential treatment effect. It was assumed here that the pre-randomization period is
comparable to a placebo treatment. Since a few patients had pre-randomization information
for less than two years, we staggered the switching times for the acyclovir group. According
to the Akaike information criterion, the estimated treatment effect using quadratic B-spline
functions with 9 knots were chosen and presented. Figure 3 suggests that acyclovir may at
best temporarily reduce the relapse rate in the first few months after start of treatment.

4. Discussion
We have developed our model in the framework of a multiplicative model, but these issues
may also be studied in an additive model framework (Cai & Zeng, 2001; Martinussen et al.,
2011), for example, by assuming

(4)

where Λi j (t ∣ X) denotes the cumulative hazard function for the j th event of the i th
individual at the given covariates Xi j, ξi is the random effect following a gamma
distribution, ϕ is an unknown time-independent coefficient vector, α(t − C*) is an unknown
time-dependent coefficient function reflecting the treatment effect depending on the time
length of treatment, and Λ0(t) is an unknown baseline cumulative hazard function. While the
β(t) in (3) estimates the treatment effect in terms of hazard ratios, the α(t) in (4) estimates
the risk difference. When the model is correctly specified, the estimates in the multiplicative
model can achieve their efficiency bound, but not the estimates in the additive model
specified in (4).

The proposed procedure can be directly applied to the studies without treatment switching
by assigning the switching time C* to be either 0 or τ for the experimental and control
groups. The proposed model is developed using the gamma frailty mainly for numerical
convenience. The estimation procedure and asymptotic properties can in principle be
extended to other frailty or random effects models. As pointed out by one reviewer, the
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proposed approach should be implemented with caution by recognizing that the analysis
does not enjoy the protection against bias afforded by the randomization, and therefore must
be viewed cautiously in comparison with the analysis based on the core phase data with
randomization design only. Ourmotivatingmultiple sclerosis study has a design of this type
and its detailed description and analysis are given in the Supplementary Material.
Furthermore, in this paper, the switching time C* is assumed to be noninformative, which is
determined by the study design as in the motivating study with a core phase and an
extension phase. The method can be generalized to allow C* to be a drop-in or drop-out
time; however, the informative selection of drop-in or drop-out should be adjusted to keep
the randomization balanced between the two treatment arms. The latter is often done via
inverse probability weighted estimating equations. Furthermore, we note that under the key
assumption that C* and A(C*) are independent of the potential outcomes {N(t; a, c*): N(t;
c*) is the counting process when treatment is given at time c*}, β(t) has a causal
interpretation.

To the best of our knowledge, obtaining a confidence band for a nonparametric estimator is
a challenging and unresolved problem. One possible way to examine β(·) = 0 is to test

 (l =1, …, K) based on Theorem 2, where gl (t) are K basis functions. Even

though the asymptotic properties are established only for  in § 2·3, the
numerical performance, including point estimates, standard errors, and coverage
probabilities, of the treatment effect at a single time-point is quite satisfactory in all
simulations considered in this paper.

The programs for the estimation procedure for the proposed model are currently written in R
(R Development Core Team, 2013). The computations took only a few seconds for the
acyclovir study. The computation time depends on the sample size of the dataset, the
number of parameters, and the number of recurrent events per subject.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of invertibility of information operator
Let ψ = (γ, θ) and ψ0 = (γ0, θ0). The loglikelihood function from a single subject is

By differentiating the loglikelihood function with respect to Λ, ψ, and β along the submodel
dΛ(1 + εh), ψ + εb, and β + εh̃, respectively, where 1 in dΛ(1 + εh) is an identical mapping,
h ∈ L2[0, τ] and h̃ ∈ L2[0, τ], we obtain the score operators as
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where

We chose to differentiate the loglikelihood function with respect to Λ along the submodel
dΛ(1 + εh) to ensure that the Λ function along this submodel has jumps at the same time-
points as Λ, and therefore, the derivative of the loglikelihood function is well defined.

We note that lβ has a similar integral form to lΛ. Thus, following Murphy (1995) page 193
Lemma 2, we can show that the information operator, I(Λ, β, ψ) ≡ E{(lΛ, lβ, lψ)*(lΛ, lβ, lψ)},
where (lΛ, lβ, lψ)* is the dual operator of (lΛ, lβ, lψ), can be written as one Fredholm operator
of the first kind, which is the summation of an invertible operator and an integral operator
when Λ = Λ0, β = β0 and ψ = ψ0. Furthermore, using Conditions 1 and 2, the latter can be
shown to be a compact operator from

to itself, where BV[0, τ] is the Banach space consisting of all the functions with bounded
total variation in [0, τ] and C[0, τ] is the Banach space consisting of all the continuous
functions in [0, τ].

We next show that I(Λ0, β0, ψ0) is invertible. Following Rudin (1973) Theorem 4·18 and
4·24, it suffices to show that I(Λ0, β0, ψ0) is one-to-one. Suppose I(Λ0, β0, ψ0)[h, h̃, b] = 0;

that is, . First, we let C = τ so that . This is essentially the
score function in the usual frailty model without β in the regression. Thus, from Murphy
(1995) page 193 Lemma 2, we obtain h = 0 and b = 0. Now with lβ [h̃] = 0, we set C = 0 and
Y = τ and set N(t) to have a jump only at time t ∈ [0, τ], and therefore

. Clearly, h̃ = 0. Therefore, I(Λ0, β0, ψ0) is
invertible.

Finally, the same arguments apply if we consider a different Banach space,
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Therefore, the invertibility of I(Λ0, β0, ψ0) implies

. Furthermore, we note that I(Λ, β, ψ)
converges to I(Λ0, β0, ψ0) uniformly in the norm ∥Λ − Λ0∥∞ + ∥β − β0∥∞ + ∥ψ − ψ0∥ where
∥f∥∞ denotes the supreme norm in [0, τ]. We conclude that there exists some ε0 such that
whenever ∥Λ − Λ0∥∞ + ∥β − β0∥∞ + ∥ψ − ψ0∥ < ε0, the inequality

(A1)

holds. We will use this fact later.

Proof of Theorem 1
We will show that there exists a local maximum of the observed data loglikelihood function
over the sieve space

such that the obtained estimator, (Λ̂, β̂, ψ̂), converges to the true parameters in probability
under the norm in Theorem 1.

To this end, by Condition 1 and page 229 of Schumaker (2007), there exists a function

 such that . Then we consider the following
neighbourhood of β̂0 in the sieve space

where εn is to be chosen later. For each β ∈ Nεn, we define (Λ̂β, ψ̂β) = argmax Pnl(Λ, β, ψ),
where Pn is the empirical measure and Λ is a step function with jumps at the observed
events.

If we choose εn so that , then for β ∈ Nεn,

(A2)

Therefore, β has bounded total variation. Define

Then it can be shown that ∥Λ̂0 − Λ0∥BV = Op(n−1/2), so we have Pnl(Λ̂0, β0, ψ0) = n−1

log(n−1) + Op(1). Because Pnl(Λ̂β, β, ψ̂β) ≥ Pnl(Λ̂0, β, ψ0), similar algebra to that in Murphy
(1994, pp. 718–23) yields the inequality
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for some constant c1 and O(1) that are independent of β ∈ Nεn. Hence, using the same
partition arguments as in Murphy (1994), we conclude that lim supn {supβ∈Nεn

 Λ̂β(τ)} is
finite with probability tending to one. Moreover, since PnlΛ(Λ̂β, β, ψ̂β)[h]= 0, Pnlψ(Λ̂β, β,
ψ̂β)T b = 0, we obtain

The left-hand sides of the equations are Op(n−1/2) because both lΛ and lψ are Donsker due to
the fact that both Λ̂β and β belong to BV[0, τ]. We apply Taylor expansion at the true (Λ0, β0,
ψ0) to the right-hand sides and obtain

where I11 is the operator in I corresponding to Λ and ψ. Using the invertibility of I11, we
have

(A3)

where supβ∈Nεn
 |An| is a bounded random variable.

We now consider Bn ≡ Pnl(Λ̂β, β, ψ̂β) − Pnl(Λ̂0, β̂0, ψ0). First,

The first term on the right-hand side is equal to Cnn−1/2 where supβ∈Nεn
 |Cn| → 0 in

probability. For the second term, we apply Taylor expansion at the true values (λ0, β0, ψ0).
Since the first derivative of the second term at (λ0, β0, ψ0) is zero, the expansion becomes

where (Λ*, β*, ψ*) is between (Λ̂β, β, ψ̂β) and (Λ0, β0, ψ0). Using the result in (A1), we
obtain

Therefore, if β ∈ ∂Nεn, the result from de Boor (1978, p. 155) gives  so
that
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Consequently, if we choose , then Bn <

0; note that such εn still satisfies  due to r ≥ 2 and Condition 4. Hence, there
exists a local maximum β̂ within this neighbourhood. Furthermore, ∥β̂ − β0∥BV → 0 by (A2)
and

according to Condition 4. By (A3), the corresponding (Λ̂ = Λ̂β̂, ψ̂ = ψ̂β̂) satisfies

Proof of Theorem 2
For any h ∈ BV[0, τ], h̃ with bounded r th derivative in [0, τ] and b ∈ Rd, we have PnlΛ(Λ̂, β̂,
ψ̂)[h] = 0, Pnlβ(Λ̂, β̂, ψ̂)[h̃n] = 0, and Pnlψ(Λ̂, β̂, ψ̂)T b = 0. Here, h̃n is the projection of h̃ on

Sn and . This gives

(A4)

where Gn = n1/2 (Pn − P). It is straightforward to verify

is P-Donsker. Thus, the left-hand side of (A4) is equal to

where Gn = n1/2 (Pn − P) and op(1) here and in the sequel refers to some random element
that converges in probability to zero uniformly in (h, h̃, b). On the other hand, the right-hand
side of (A4), after the Taylor expansion gives

where (h*, h̃*, b*) = I(Λ0, β0, ψ0)[h, h̃, b]. This yields
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where (h**, h̃**, b**) = I(Λ0, β0, ψ0)−1[h, h̃, b]. Therefore, Theorem 2 holds.
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Fig. 1.
Estimated treatment effect curves β(t) for simulation studies with n = 400. True (dashed grey
line), estimates (solid black line), empirical 95% confidence interval (dotted grey line), and
average of 95% confidence intervals (dashed-dotted black line) for β(t) specified as (a) 0, (b)
−1, (c) log{1 − 0·9/(0·6 + t)}, (d) log{1 − 1·5t exp(−0·75t2)}.
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Fig. 2.
Estimated treatment effect curves β(t) for simulation studies with n = 200. True (dashed grey
line), estimates (solid black line), empirical 95% confidence interval (dotted grey line), and
average of 95% confidence interval (dashed-dotted black line) for β(t) specified as (a) 0, (b)
−1, (c) log{1 − 0·9t/(0·6 + t)}, (d) log{1 − 1·5t exp(−0·75t2)}.
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Fig. 3.
Time-varying treatment effect in acyclovir study. The solid black curve is β̂(t) with Kn = M
= 3, the solid grey curves show the pointwise 95% confidence intervals, and the dashed grey
curve is the null treatment reference line.
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