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Abstract
We investigate the maximal size of distinguished submatrices of a Gaussian random matrix. Of
interest are submatrices whose entries have an average greater than or equal to a positive constant,
and submatrices whose entries are well fit by a two-way ANOVA model. We identify size
thresholds and associated (asymptotic) probability bounds for both large-average and ANOVA-fit
submatrices. Probability bounds are obtained when the matrix and submatrices of interest are
square and, in rectangular cases, when the matrix and submatrices of interest have fixed aspect
ratios. Our principal result is an almost sure interval concentration result for the size of large
average submatrices in the square case.
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1. Introduction
A Gaussian random matrix (GRM) is a matrix whose elements are i.i.d. standard normal
random variables. Gaussian random matrices have been a fixture in the application and
theory of multivariate analysis for many years. Recent work in the field of random matrix
theory has provided a wealth of information about the eigenvalues and eigenvectors of
Gaussian and more general, random matrices (see, e.g., Anderson, Guionnet and Zeitouni
[2]). This paper considers a different problem, namely, the maximal size of distinguished
submatrices in a Gaussian random matrix. We consider submatrices that are distinguished in
one of two ways: (i) the average of their entries is greater than or equal to a positive
constant, or (ii) the optimal two-way ANOVA fit of their entries has average squared
residual less than a positive constant.

Our goal is to identify maximal size thresholds, and associated probability bounds, for large
average and ANOVA-fit submatrices. Results are obtained when the matrix and the
submatrices of interest are square, and when the matrix and the submatrices of interest are
rectangular with fixed aspect ratios. In each case, the maximal size of a distinguished
submatrix grows logarithmically with the dimension of the matrix and depends, in a
polynomial fashion, on the inverse of the constant that constitutes the distinguishability
threshold. In the rectangular case, the aspect ratio of the submatrix plays a more critical role
than the aspect ratio of the matrix itself. Our principal result establishes almost sure upper
and lower bounds for the size of large average submatrices in the square case. In particular,
for n × n Gaussian random matrices, we establish that the size of the largest square
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submatrix with average greater than a positive constant τ is eventually almost surely within
an interval of fixed width that contains the critical value 4τ−2(ln n − ln(4τ−2 ln n)).

Results of the sort established here fall outside the purview of random matrix theory and its
techniques. Nevertheless, random matrix theory does provide some insight into the
logarithmic scale of large average submatrices. This is discussed briefly in Section 1.2
below.

1.1. Bipartite graphs
Our results on large average submatrices can also be expressed in graph-theoretic terms, as
every m × n matrix X is associated in a natural way with a bipartite graph G = (V, E). In
particular, the vertex set V of G is the disjoint union of two sets V1 and V2, with |V1| = m
and |V2| = n, corresponding to the rows and columns of X, respectively. For each row i ∈ V1
and column j ∈ V2 there is an edge (i, j) ∈ E with weight xi, j. There are no edges between
vertices in V1 or between vertices in V2. With this association, large average submatrices of
X are in 1: 1 correspondence with subgraphs of G having large average edge-weight. The
complexity of finding the largest subgraph of G whose average edge weight is greater than a
threshold appears to be unknown. However, it is shown in [4] that a slight variation of this
problem, namely finding the maximum edge weight subgraph in a general bipartite matrix,
is NP-complete. A randomized, polynomial time algorithm that finds a subgraph whose edge
weight is within a constant factor of the optimum is described in [1], but this algorithm
cannot readily be adapted to the problem of identifying the large average submatrices
considered here.

1.2. Size thresholds and random matrix theory
The results of this paper are combinatorial in nature and do not rely on the spectral
techniques employed in random matrix theory. Nevertheless, existing results in random
matrix theory provide insights into the relationship between the large average submatrices
studied here and the singular value decomposition. These results indicate that there is a
significant gap between the logarithmic size thresholds at which large average submatrices
become significant, and the root-n size thresholds at which they are detectable by standard
spectral methods.

Let W be an m × n Gaussian random matrix, and let τ > 0 be fixed. Define a rank-one matrix
S = (1 + δ)τabt, where δ > 0 and a ∈ {0, 1}m, b ∈ {0, 1}n are indicator vectors having k and l
non-zero components, respectively. The outer product abt defines a submatrix U whose rows
and columns are indexed by the indicator vectors a and b. Let Y = W + S be the sum of W
and S, which we regard as a perturbed version of S. Suppose that the dimensions m, n grow
in such a way that m/n → α with α ∈ [1, ∞), and that the dimensions k, l grow in such a
way that k/log n → ∞ and k/l remains bounded away from zero and infinity. It follows from
Proposition 4 that the probability of finding any k × l submatrix with average greater than τ
in the unperturbed matrix W is vanishingly small. On the other hand, the average of the k × l
submatrix U of Y has distribution (1 + δ)τ, (kl)−1), which is greater than τ with
probability very close to one when k and l are large. We might expect to see evidence of the
submatrix U in the first singular value of the matrix Y, or its associated left and right
singular vectors. However, in a sense we make precise below, this is not the case.

Let s1(V) ≥ … ≥ sm(V) denote the ordered singular values of an m × n matrix V, and let

 denote its Frobenius norm. As s1(·) is a norm, we have

(1)
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where the second inequality makes use of the fact that the Frobenius norm of a matrix is the
sum of the squares of its singular values. By a basic result of Geman [5],

(2)

with probability one as n tends to infinity. If k = o(m1/2) and l = o(n1/2), inequality (1)
implies that n−1/2|s1(Y) − s1(W)| → 0 with probability one, and therefore (2) holds with Y in
place of W. In other words, for fixed τ, and dimensions k, l such that log n ≪ k, l ≪ n1/2,
the embedded submatrix U of Y is highly significant, but has no effect on the limiting
behavior of s1(Y). Under the same conditions, U is also not recoverable from the top
singular vectors of Y. To be precise, let u1 and υ1 be the left and right singular vectors of Y
corresponding to the maximum singular value s1(Y). Using results of Paul [8] on the
singular vectors of spiked population models, it can be shown that atu1 and btυ1 tend to zero
in probability as n tends to infinity. Thus the row and column index vectors of U are
asymptotically orthogonal to the first left and right singular vectors of Y.

1.3. Overview
The next section contains probability bounds and a finite interval concentration result for the
size of large average submatrices in the square case. Size thresholds and probability bounds
for ANOVA submatrices in the square case are presented in Section 3. Thresholds and
bounds in the rectangular case are given in Section 4. Sections 5–7 contain the proofs of the
main results.

2. Thresholds and bounds for large average submatrices
Let W = {wi,j: i, j ≥ 1} be an infinite array of independent 0, 1) random variables, and for
n ≥ 1, let Wn = {wi,j: 1 ≤ i, j ≤ n} be the n × n Gaussian random matrix equal to upper left-
hand corner of W. (The almost sure asymptotics of Theorem 1 requires consideration of
matrices Wn that are derived from a fixed, infinite array.) A submatrix of Wn is an indexed
collection U = {wi,j: i ∈ A, j ∈ B} where A, B ⊆ {1, … , n}. The Cartesian product C = A ×
B will be called the index set of U, and we will write U = Wn[C]. The dimension of U is |A|
× |B|, where |A|, |B| denote the cardinality of A and B, respectively. Note that rows A need
not be contiguous, and that the same is true of columns B.

Definition. For any submatrix U of Wn with index set C = A × B, let

be the average of the entries of U. Note that F(U) ~ 0, |C|−1).

We are interested in the maximal size of square submatrices whose averages exceed a fixed
threshold. This motivates the following definition.

Definition. Fix τ > 0 and n ≥ 1. Let Kτ(Wn) be the largest k ≥ 0 such that Wn contains a k ×
k submatrix U with F(U) ≥ τ.

As the rows and columns of a submatrix need not be contiguous, the statistic Kτ(Wn) is
invariant under row and column permutations of Wn. Our immediate goal is to obtain
bounds on the probability that Kτ(Wn) exceeds a given threshold and to identify a threshold
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for Kτ(Wn) that governs its asymptotic behavior. To this end, we begin the analysis of
Kτ(Wn) using standard first moment-type arguments, which are detailed below.

Let Γk(n, τ) be the number of k × k submatrices in Wn having an average greater than or
equal to τ. We begin by identifying the value of k for which EΓk(n, τ) is approximately
equal to one. Let k denote the set of all k × k submatrices of Wn. Then

(3)

and, consequently,

(4)

where in the last step we have used a standard bound on 1 − Φ(·). For s ∈ (0, n), define

(5)

Using the Stirling approximation of , it is easy to see that ϕn,τ (k) is an approximation
of the square root of the final expression in (4). In particular, the rightmost expression in (4)
is less than 2ϕn,τ (k)2. With this in mind, let s(n, τ) be any positive, real root of the equation

(6)

The next result shows that s(n, τ) exists and is unique, and it provides an explicit expression
for its value when τ is fixed and n is large.

Lemma 1. Let τ > 0 be fixed. When n is sufficiently large, equation (6) has a unique root
s(n, τ), and

(7)

where o(1) → 0 as n → ∞.

We show below that the asymptotic behavior of the random variables Kτ(Wn) is governed
by the root s(n, τ) of equation (6). To begin, note that for values of k greater than s(n, τ), the
expected number of k × k submatrices U of Wn with F(U) ≥ τ is less than one. The next
proposition shows that the probability of seeing such large submatrices is small.

Proposition 1. Let τ > 0 be fixed. When n is sufficiently large,

for every r = 1, … , n.

The proofs of Lemma 1 and Proposition 1 are given in Section 5. The arguments refine those
in [11], with adaptations to the present setting. The asymptotic nature of the bound in
Proposition 1 results from the o(1) term in s(n, τ), and, in particular, approximations arising
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from the general form of Stirling’s formula. Using a more elementary bound, one may
readily obtain a non-asymptotic result for a size threshold that includes only the leading term
of s(n, τ).

Proposition 2. Let τ > 0 be fixed. Then

for every n, r ≥ such that  ln n + r > 2.

It follows from Proposition 1 and the Borel–Cantelli lemma that, with probability one,
Kτ(Wn) is eventually less than or equal to ⌈s(n, τ)⌉ + 1 ≤ s(n, τ) + 2. With this bound in
mind, it is of interest to know more about the asymptotic behavior of Kτ(Wn). It turns out
that the limiting distribution of Kτ(Wn) is essentially degenerate. Our principal result, stated
in Theorem 1 below, makes use of a second moment argument in order to obtain an almost
sure lower bound on Kτ(Wn) that is within a constant factor of the upper bound derived from
Proposition 1. The proof is given in Section 7.

Theorem 1. Let Wn, n ≥ 1, be Gaussian random matrices derived from an infinite array W,
and let τ > 0 be fixed. With probability one, when n is sufficiently large,

(8)

Note that the difference between the upper and lower bounds in Theorem 1 is a constant that
depends on τ, but is independent of the matrix dimension n. In particular, the values of the
random variable Kτ(Wn) are eventually concentrated on an interval that contains s(n, τ) and
whose width is independent of n. It follows from Theorem 1 that

almost surely as n → ∞. The lower bound in Theorem 1 can be slightly improved. An
examination of the argument in Lemma 4 in Section 7 shows the inequality of the theorem
still holds if the quantity 12 ln 2 is replaced with any constant greater than 8 ln 2.

Extending earlier work of Dawande et al. [4] and Koyuturk et al. [6], Sun and Nobel [10,11]
obtained a similar, two-point concentration result for the size of largest square submatrix of
ones in an i.i.d. Bernoulli random matrix. Bollobás and Erdős [3] and Matula [7], established
analogous results for the clique number of a regular random graph; see [11] for additional
references to work in the binary case. The proof of Theorem 1 relies on a second moment
argument, but differs from the proofs of these earlier results due to the continuous setting. In
particular, the proof makes use of the fact that, under the Gaussian assumption made here,
for any k × k submatrix U of W, there exists an upper bound and a lower bound on P(F(U) ≥
τ) whose ratio is of order τk.
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3. Thresholds and bounds for ANOVA submatrices
In this section, we derive bounds like those in Proposition 1 for the size of submatrices
whose entries are well fit by a two-way analysis of variance (ANOVA) model. A statistical
introduction to ANOVA can be found in Scheffé [9]. Roughly speaking, the ANOVA
criterion identifies submatrices whose rows (and columns) are shifts of each other.

Definition. For a submatrix U of Wn with index set A × B, define

where the minimum is taken over all real constants {ai: i ∈ A}, {bj: j ∈ B} and c.

Under the ANOVA criterion, a submatrix U will warrant interest if G(U) is less than a pre-
defined threshold. Note that by standard arguments,

where w̅i·, w̅·j and w̅·· denote the row, column, and the full submatrix averages, respectively.

Definition. Given 0 < τ < 1, let Lτ(Wn) be the largest value of k such that Wn contains a k ×
k submatrix U with G(U) ≤ τ.

Arguments similar to those in the proof of Proposition 1, in conjunction with a probability
upper bound on the left tail of a χ2 distribution, establish the following bound on Lτ(Wn).
The proof is given in Section 6.

Proposition 3. Let τ > 0 be fixed. When n is sufficiently large,

(9)

for every r = 1, … , n, where

and

(10)

Proposition 3 and the Borel–Cantelli lemma imply that Lτ(Wn) ≤ t (n, τ) + 1, eventually,
almost surely. The arguments used to lower bound Kτ(Wn) in Theorem 1 do not extend
readily to Lτ(Wn); we are not aware if a similar interval-concentration result holds in this
case.
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4. Thresholds and bounds for rectangular submatrices
The probability bounds of Propositions 1 and 3 can be extended to non-square submatrices
of non-square matrices by adapting the methods of proof, detailed in Sections 5 and 6,
respectively. We present the resulting bounds below, without proof. Similar results
concerning submatrices of 1s in binary matrices can be found in [11].

Definition. Let W(m, n) denote an m × n Gaussian random matrix, and let α > 0 and β ≥ 1
be fixed aspect ratios for the sample matrix and target submatrix, respectively.

a. For τ > 0, let Kτ(W: n, α, β) be the largest integer k such that there exists a ⌈βk⌉ × k
submatrix U in W (⌈αn⌉, n) with F(U) ≥ τ.

b. For 0 < τ < 1, let Lτ(W: n, α, β) be the largest integer k such that there exists a ⌈βk⌉
× k submatrix U in W(⌈αn⌉, n) with G(U) ≤ τ.

Proposition 4. Fix τ > 0 and any ε > 0. When n is sufficiently large,

for each 1 ≤ r ≤ n, where

for some constant C1(β, τ) > 0.

Proposition 5. Fix 0 < τ < 1 and any ε > 0. When n is sufficiently large,

for each 1 ≤ r ≤ n, where

for some constant C2(β, τ) > 0, where h(τ) is defined as in (10).

Remark. The bounds in Propositions 4 and 5 have a similar form. In each case, the bound is
of the form n−(β+1)r times a polynomial in ln n, and the leading term in s(·) and t (·) are of the
form (1+β−1) ln n times a function of the threshold τ. The aspect ratio β of the target
submatrix plays a critical role in both the size threshold and the probability bound. This
reflects the dependence of the size of a ⌈βk⌉ × k submatrix on β. By contrast, the aspect ratio
α of the sample matrix plays a secondary role, its logarithm appearing only in the constant
term of s(·) and t (·).

5. Proof of Lemma 1 and Proposition 1
Proof of Lemma 1. Let τ > 0 be fixed, and note that
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(11)

Differentiating ln ϕn,τ (s), with respect to s, yields

The last expression is negative when 2τ−2 ln n < s < 4τ−2 ln n; we now consider the value of
ln ϕn,τ (s) for s outside this interval. A straightforward calculation shows that for 0 < s ≤
2τ−2 ln n,

which is positive when n is sufficiently large. In order to address the other extreme, note
that, from (11), we have

(12)

It is easy to check that the right-hand side of the above inequality is negative when s > n − 2.
Considering separately the cases s + 2 < n < (2 ln 2)−1s ln s and n ≥ (2 ln 2)−1s ln s, one may
upper bound the final term above by (s ln s)/2 + (ln 2)/2 and 2s + (ln 2)/2, respectively.
Thus, for s < n − 2, we have

and, in particular, for 4τ−2 ln n ≤ s < n − 2,

when n (and therefore s) is sufficiently large. Thus for large n there exists a unique solution
s(n, τ) of the equation ϕn,τ (s) = 1 with s(n, τ) ∈ (2τ−2 ln n, 4τ−2 ln n).

Taking logarithms of both sides of the equation ϕn,τ(s) = 1 and rearranging terms yields the
expression

(13)

The argument above shows that the (unique) solution of this equation belongs to the interval
(2τ−2 ln n, 4τ−2 ln n), so we consider the case in which s and n/s tend to infinity with n.
Dividing both sides of (13) by s yields
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which, after adding and subtracting terms, can be rewritten in the equivalent form

(14)

For each n ≥ 1, define R(n) via the equation

Plugging the last expression into (14), we find that , and the
result follows from the uniqueness of s(n, τ)

Proof of Proposition 1. Fix τ > 0. If ⌈s(n, τ) ⌉ + r > n, the bound (1) holds trivially; in the
case of equality, it follows from a standard Gaussian tail bound when n is sufficiently large.
Fix n ≥ 1 for the moment, and suppose that l = ⌈s(n, τ) ⌉ + r ≤ n − 1. By Markov’s inequality
and the definition of ϕn,τ(·),

(15)

Let γ = e−τ2/4, and, to reduce notation, denote s(n, τ) by sn. Under the constraint on r, a
straightforward calculation shows that one can decompose the final term above as follows:

(16)

where

It is enough to bound the right-hand side of (16) as n increases, and r = r(n) is such that ⌈s(n,
τ)⌉ + r ≤ n − 1. By definition, ϕn,τ (sn) = 1, and

Thus it suffices to show that the product An(r)Bn(r)Cn(r)Dn(r) is uniformly bounded in r. To
begin, note that for any fixed 0 < δ < 4,

The last term will be less than one when δ is sufficiently small and n is large. The term Bn(r)
≤ 1 for each r ≥ 1, so it only remains to show that maxr≥1 An(r)·Dn(r) is bounded as a
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function of n. A straightforward calculation shows that ln An(r) ≤ r, and consequently,

, a quadratic function of r that is bounded from above by 1/τ2.

Proof of Proposition 2. Let k = ⌈4τ−2 ln n⌉ + r ≥ 3. Following the argument in (15), we find
that

The second inequality above makes use of the standard bound

The penultimate inequality follows from the fact that k ≥ 3.

6. Proof of Proposition 3
For any k × k submatrix U of the Gaussian random matrix Wn, it follows from standard
arguments that (k − 1)2G(U) has a χ2 distribution with (k − 1)2 degrees of freedom. In order
to bound the quantity P(G(U) ≤ τ), which arises in the analysis of Lτ(Wn), we require an
initial result relating the right and left tails of the χ2 distribution.

Lemma 2. Suppose that  for some ℓ ≥ 3. Then for 0 < t < ℓ − 2 we have

Proof. Let f denote the density function of X and let 0 < t < ℓ − 2. Since

it suffices to show that

(17)
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To this end, note that the ratio in (17) can be rewritten as follows:

(18)

As s tends to ℓ − 2, u tends to infinity, and therefore

Thus, it suffices to show that for u ∈ (1, ∞), the final term in (18) is an increasing function
of u. Differentiating with respect to u we find that

where the inequality follows from the fact that u > 1. Inequality (17) follows immediately.

Proof of Proposition 3. To begin, note that if X has a χ2 distribution with ℓ degrees of
freedom, then by a standard Chernoff bound,

(19)

Let 0 < τ < 1 be fixed. Fix n ≥ 1 for the moment and let r ≥ 1 be such that k = ⌈t (n, τ) ⌉ + r ≤
n, where t (n, τ) is defined as in the statement of Proposition 3. Let U be any k × k submatrix
of Wn, and let ℓ = (k − 1)2. As noted above, the random variable ℓG(U) has a χ2 distribution
with ℓ degrees of freedom, so by Lemma 2 and inequality (19),
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(20)

The second term in the last display is, at most, e. It follows from a first moment argument
that

where

The quantity h(τ) = (1 − τ) − ln(2 − τ) ≥ 0 as 0 < τ < 1. Define

and note that

where s(n, τ0) is defined as in Lemma 1. Following the argument after inequality (15) in the
proof of Proposition 1, and using the monotonicity of ϕn,τ0 for sufficiently large n, we find
that
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The result then follows from (21).

7. Proof of Theorem 1
In what follows we make use of standard bounds on the tails of the Gaussian distribution,
namely that (3s)−1e−s2/2 ≤ 1 − Φ(s) ≤ s−1e−s2/2 for s ≥ 3. The proof of Theorem 1 is based on
several preliminary results. The first result bounds the ratio of the variance of Γk(τ, n) and
the square of its expected value, a quantity that later arises from an application of
Chebyshev’s inequality.

Lemma 3. Fix τ > 0. There exist integers n0, k0 ≥ 1 and a positive constant C depending on
τ but independent of k and n, such that for any n ≥ n0 and any k ≥ k0,

(21)

Proof. Let k denote the collection of all k × k submatrices of Wn. It is clear that

(22)

In a similar fashion, we have

Note that the joint probability in the last display depends only on the overlap between the
submatrices Ui and Uj. For 1 ≤ r, l ≤ k define
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where U and V are two fixed k × k submatrices of W having r rows and l columns in
common. Note that G(r, l) = 0 if 2k − r > n or 2k − l > n. A straightforward counting
argument shows that

In particular,

Here we have used the fact that  is a probability mass function,
and that G(r, 0) and G(0, l) are either equal to zero or equal to (1 − Φ(kτ))2. When kτ ≥ 3 we
have (1 − ϕ(kτ))2 ≥ (3kτ)−2e−k2τ2. It therefore suffices to show that for 1 ≤ r, l ≤ k, such that
2k − r ≤ n and 2k − l ≤ n, one has

(23)

where C > 0 depends on τ but is independent of k and n. Inequality (23) is readily
established when r = l = k, so we turn our attention to bounding the quantity G(r, l) when it
is positive and 1 ≤ rl < k2. In this case

where U, V are submatrices of Wn having r rows and l columns in common. Let Φ̅(x) = 1 −
Φ(x). Note that G(r, l) = D0 + D1 where

(24)

and
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(25)

Consider first the term D1 defined in (25). As rl ≠ k2 and k2τ − rlt ≥ 1, the normal tail bound
yields

Plugging the last expression into (25), the exponential part of the resulting integrand is

which (after lengthy but straightforward algebra) can be expressed as

It then follows that

The term preceding the integral is less than one, and the integral is equal to one. Thus D1 is
less than the right-hand side of (23).

We next consider the term D0 defined in (24). Note that k2τ − rlt < 1 is equivalent to t > (k2τ
− 1)/rl, and therefore

Comparing the last term above with (23), it suffices to show that when k is sufficiently
large,
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or, equivalently,

(26)

Suppose first that . In this case, the left-hand side of the expression above
is, at least,

when k is sufficiently large. Suppose now that . As a quadratic function of
τ, the left-hand side of (26) takes its minimum at τ = k2/(k2 − rl)2, and the corresponding
value is rl[−2k2 + rl + 2(k2 − rl)2 ln k]/(k2 − rl)2. In this case, the assumption

 implies

This establishes (26) and complete the proof.

Lemma 4. Let τ > 0 be fixed. When k is sufficiently large, for every integer n satisfying the
condition

(27)

we have the bound

Remark. For the proof of Theorem 1, it is enough to show that the sum over k of the ratio
above is finite, and, for this purpose, the upper bound k−2 is sufficient.

Proof of Lemma 4. Let n satisfy condition (27). By Lemma 3, it suffices to show that

(28)

In order to establish (28), we will show that each term in the sum is less than k−8. To begin,
note that

and that (n − k)−l = O(n−l) when l ≤ k = O(n1/2). Thus for some constant C > 0,
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Rewriting (27) as  yields the bound

Combining the last three displays, and using the fact that  ln n by assumption, it
suffices to show that

(29)

In order to establish (29), we consider two cases for r + l. Suppose first that . By
elementary arguments,

It follows from these inequalities that

As the exponent above is negative when k is sufficiently large, (29) follows. Suppose now

that . From the simple bounds  and , we find that
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and it suffices to bound the initial terms in (29). But, clearly,

which is less than k−8 when k is sufficiently large.

Proof of Theorem 1. Proposition 1 and the Borel–Cantelli lemma imply that eventually,
almost surely, Kτ(Wn) ≤ ⌈s(n, τ)⌉ + 1. Thus, we only need to establish an almost sure lower
bound on Kτ(Wn). To this end, define functions

for integers n ≥ 1 and k ≥ 1, respectively. It is easy to see that f(n) is strictly increasing for
large values of n, and clearly f(n) tends to infinity as n tends to infinity. A straightforward
argument shows that g(k) has the same properties. Thus for every sufficiently large integer
n, there exists a unique integer k = k(n) such that g(k) ≤ n < g(k + 1).

Fix m ≥ 1 and consider the event Am that for some n ≥ m the random variable Kτ(Wn) is less
than the lower bound specified in the statement of the theorem. More precisely, define

To establish the lower bound, it suffices to show that P(Am) → 0 as m → ∞. To begin, note
that when m is large,

Fix n ≥ m sufficiently large, and let k = k(n) be the unique integer such that g(k) ≤ n < g(k
+1). The definition of g(k) and the monotonicity of f (·) ensures that k = ⌊f(g(k))⌋ ≤ f (n) < k
+1. In conjunction with the definition of f (n) and Lemma 1, this inequality implies that

and therefore s(n, τ) < s(g(k), τ) + 1+ o(1). Define

From the bound on s(n, τ) above and the fact that Kτ(Wg(k)) ≤ Kτ(Wn), we have
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where the last relation makes use of the fact that Kτ and r(k) are integers. Thus we find that

Consider the events above. For fixed k,

(30)

where we have used the fact that for a non-negative integer-valued random variable X

by Chebyshev’s inequality. As r(k) ≤ f (g(k)), Lemma 4 ensures that the final term in (30) is
less than k−2, and the Borel–Cantelli lemma then implies that P(Am) → 0 as m → ∞. This
completes the proof of Theorem 1.
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