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Abstract

Here we provide a detailed description of the genome-wide information available on the National 

Longitudinal Study of Adolescent to Adult Health (Add Health) sibling pair subsample (Harris et 

al., 2012). A total of 2020 samples were genotyped (including duplicates) arising from 1946 Add 

Health individuals from the sibling pairs subsample. After various steps for quality control (QC) 

and quality assurance (QA), we have high quality genome-wide data available on 1,888 

individuals. In this report, we first highlight theQC and QA steps that were taken to prune the data 

of poorly performing samples and genetic markers. We further estimate the pairwise biological 

relationships using genome-wide data and compare those estimates to the assumed relationships in 

Add Health. Additionally, using genome-wide data from knownregional reference populations 

from Europe, West Africa, North and South America, Japan and China, weestimate the relative 

genetic ancestry of the respondents. Finally, rather than conducting a traditional cross-sectional 

genome-wide association study (GWAS) of body mass index (BMI), we opted to utilize the 

extensivepublicly available genome-wide information to conduct a weighted genome-wide 

association study (GWAS) of longitudinal BMI while accounting for both family and ethnic 

variation.
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Introduction

The National Longitudinal Study of Adolescent to Adult Health (Add Health) is a nationally 

representative longitudinal study including over 20,000 adolescents originally sampled in 

Grades 7-12 in the United States between 1994 and 1995. Add Health respondents have 

been followed through adolescence and into early adulthood with four in-home interviews 

(1995, 1996, 2001-2002 and 2008-2009). The Add Health design included the oversampling 

of approximately 3,000 pairs of individuals who were raised in the same household. These 

pairs of individuals are biologically related to varying degrees including monozygotic (MZ) 

and dizygotic (DZ) twins, full siblings, half siblings and unrelated. For further details on the 

study design and sampling scheme for the Add Health Sibling Pairs Sample, including 

phenotypic, environmental and biological assessments, see Harris et al. (2013). During the 

fourth in-home visit (Wave IV; 2008-2009), Add Health collected saliva on the entire 

sample of Add Health respondents (N=15,701), including the sibling pairs subsample. 

Consent rates (consent to provide saliva for DNA extraction) among the sibling pairs 

subsample for Wave IV saliva collection was an impressive 96%, which was similar to the 

consent rate for the entire Add Health sample. See Harris et al. (2013) for additional 

information on the Add Health Study design and genetic data.

Genome-wide association studies have largely been conducted using case-control and/or 

cross-sectional study designs primarily due to efficiency and ease of collection. The 

integration of genome-wide data into well-characterized longitudinal and prospective cohort 

studies that include biological relationships such as the Add Health sibling pair subsample 

has been much more limited. Notable exceptions include the Framingham Heart Study 

[NHLBI SNP-Health Association Resource (SHARe)] that follows multi-generational 

samples prospectively, and the Health and Retirement Study (HRS) that surveys a 

representative sample of individuals over the age of 50 every two years and follows them 

prospectively.Utilizing genetic data from longitudinal and prospective cohort studies has 

many potential advantages including refinement of phenotypic endpoints, phenotypic 

change and trajectory. Within the context of the ethnically diverse Add Health sibling pairs 

subsample of adolescents and young adults, there are additional advantages including 

family-based assessment and utilizing measured environmental and social factors collected 

over time.

Here, we provide a description of the genome-wide data that were generated on the Add 

Health sibling pairs subsample. In particular, we focus on describing the targeted sample for 

genotyping, the quality control (QC) and quality assurance (QA) steps that were taken and 

how putative biological relationships were assessed. Using genome-wide data from known 

reference populations, we alsoshow the genetic ancestry of the Add Health sibling pairs 

subsample. We also explore the genetic heritability of body mass index (BMI) using the 
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genome-wide data from the Add Health sibling pairs subsample. Finally, rather than 

conducting a traditional cross-sectional genome-wide association study (GWAS) of BMI, 

we opt to utilize the rich genome-wide information publicly available to conduct a 

weightedgenome-wide association study (GWAS) of longitudinal BMI while accounting for 

both family and ethnic variation. Funding for the genotyping of the sibling pairs subsample 

was provided by the National Institutes of Child Health and Human Development (R01 

HD060726).

Materials andMethods

Quality Control and Quality Assurance

The QA/QC Report for the Add Health Sibling Pairs Sample is provided in the 

Supplemental Materials. Briefly, there we describe how the sample was selected, prepared 

and genotyped, the number of markers removed, the number of samples removed, sex 

checks and duplicate concordance. The number of individual samples deemed of high 

quality for subsequent relationship testing, ancestry estimation and genome-wide analysis is 

N=1,888. The number of SNP markers (chromosomes 1-22 and X) with a genotyping call 

rate of at least 95% is N=940,862.

Computer Software

For biological relationship testing, PLINK (Purcell et al., 2007) and Kinship-based Inference 

for GWAS (KING; Manichaikul et al., 2010) were used. For genetic ancestry estimation, we 

used KING (Manichaikul et al., 2010) and ADMIXTURE (Alexander et al., 2009). R (R 

Core Team, 2013) was used for graphical display of ancestry information. For the estimation 

of heritability using genome-wide data, genome-wide complex trait analysis (GCTA; Yang 

et al., 2011) was used. For the genome-wide association study (GWAS) we used SAS 9.3 

(SAS Institute, Cary, NC, USA) and R. Once again, R was usedfor graphical display of the 

genome-wide association results.

Estimation of Genetic Relatedness

Using information from chromosomes 1-22 (919,509 SNP markers) on the clean set of 

1,888individual samples, we estimated Identity by State (IBS) and Identity by Descent 

(IBD) using PLINK (Purcell et al., 2007) as well asthe Kinship Coefficient using KING 

(Manichaikul et al., 2010). These measures are used to test duplicate concordance, confirm 

expected biological relationships, identify unknown or cryptic relatedness in the sample and 

provide the information necessary to assess genetic ancestry. The relationship measures are 

calculated pairwise for all individuals in the dataset. As generally recommended, we pruned 

autosomal SNPs to establish an approximately independent set of SNP markers to be used 

for IBS, IBD and Kinship Coefficient estimation. We used a linkage disequilibrium 

threshold (r2) of 0.20 with a SNP window size of 50 and number of SNPs to shift window at 

each step of 5 (PLINK command: --indep-pairwise 50 5 0.20). After pruning, a set of 

231,649 autosomal SNP markers in approximate linkage equilibrium was used to estimate 

the relationship measures. Pairwise mean IBD was estimated using PLINK (“PI_HAT”). 

However, PLINK’s estimates of IBD may be biased in stratified (multiethnic) samples 
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(Manichaikul et al., 2010 and Thorton et al., 2012). Therefore, we relied upon the KING 

package to provide estimates of relationship (Kinship) that are robust to stratification.

Estimation of Genetic Ancestry

We explored genetic ancestry in two different ways. Note that the sample of N=1,888 

individuals with clean genotypes includes two MZ twin pairs. For the purposes of estimating 

genetic ancestry, we removed one individual (randomly) from each of the two MZ twin pairs 

resulting in a final analysis sample of N=1,886. For our first approach to estimating genetic 

ancestry, we used KING (Manichaikul et al., 2010) to identify clusters of individuals based 

upon genetic similarity. KING uses multidimensional scaling (MDS) with Euclidean 

distance to generate principal coordinates (PCs) that can be used to identify population 

substructure. For the KING procedure, we used the same set of 231,649autosomal SNP 

markers in approximate linkage equilibrium that was used for the estimation of genetic 

relatedness.

Second, we explored genetic ancestry using the software package, ADMIXTURE 

(Alexander et al., 2009). ADMIXTURE uses an efficient likelihood model-based estimation 

of genetic ancestry using genome-wide data. For the ADMIXTURE procedure, we opted for 

a supervised analysis utilizing a series of known genetic ancestry populations as fixed 

groups to estimate the proportion of ancestry that individuals from the Add Health sibling 

pairs subsample share with each ancestral reference population. The ancestral populations 

used were derived from the Human Genome Diversity Project (HGDP; Li et al., 2008) and 

International Haplotype Map Project (HapMap; International HapMap 3 Consortium, 2010). 

Specifically, we utilized 108 samples from the HGDP to represent the Americas (Surui, 

Maya, Karitiana, Pima and Colombian), and 402 samples from HapMap to represent Europe 

(CEU), Africa (YRI), China (CHB) and Japan (JPT). In all, we identified 257,035 SNP 

markers that overlap across the Add Health sibling pairs subsample, the HGDP sample and 

the HapMap sample. For efficiency using the program ADMIXTURE, we created an 

autosomal SNP marker set that was in approximate linkage equilibrium (123,198 SNPs) to 

estimate ancestry.

GCTA Heritability of BMI

We used the GCTA software (Yang et al., 2011) to estimate heritability of body mass index 

(BMI) as measured in Add Health as part of the Wave 2, Wave III and Wave IV data 

collection. BMI was calculated using the standard formula of mass (kg) divided by height 

(m)squared (kg/m2) for each respondent. GCTA works by first estimating the genetic 

relatedness between all possible pairs of individuals. The genetic relatedness measures are 

known to be sensitive to population stratification, so for this application, we restricted the 

analysis to white respondents only. The subsequent step in the GCTA process is the 

estimation of a random effects model, where the random effects have a covariance structure 

based on the estimated genetic relatedness values. The percentage of total variance 

associated with the genetic random effects is considered the estimated heritability. For this 

particular study, we removed all pairwise relationship measures above 0.025.
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Genome-Wide Association Approach

To conduct SNP-by-SNP genome-wide association analysis of BMI, we started initially 

with919,509 autosomal markers with a genotyping call rate greater than 95%. Further steps 

involved removing SNP markers that show evidence of deviation from Hardy-Weinberg 

Equilibrium (HWE) in 492 unrelated, self-identified white individuals extracted from the 

entire sample. These 492 individuals were selected via a two-step process. First, we focused 

on the homogenous self-identified white sample followed by the random selection of one 

individual from each biological relationship pair. In all, 6,237 autosomal SNPs were flagged 

for potential deviation from HWE (p < 0.001) and removed from the genome-wide 

association analysis. On the basis of minor allele frequency (MAF), we further removed 

SNP markers with an MAF < 0.01 (32,313). Therefore, the final genome-wide association 

marker set includes 880,959 autosomal SNPs.As noted previously, the sample of N=1,888 

individuals with clean genotypes includes two MZ twin pairs. For the purposes of the 

genome-wide association analysis, we removed one individual (randomly) from each of the 

two MZ twins pair resulting in a final analysis sample of N=1,886.

To optimize statistical power, rather than conduct a traditional family-based association 

analysis on the related sets of individuals, we opted for a more flexible linear mixed effects 

model (Bates et al., 2014). This approach allowed us to model longitudinal measures of BMI 

(Waves II, III and IV) from all 1,886 individuals while accounting for biological 

relationships (if present) and within-individual variation in BMI as well as controlling for 

age, sex and MDS-derived components of ancestry. BMI measures from women who were 

pregnant were excluded from this analysis. Note that only 5 respondents did not have BMI 

measures across all three waves.

Weighted Association

A major issue plaguing genome-wide studies is multiple testing that arises from testing 

hundreds of thousands (if not millions) of SNP markers for association with the disease or 

trait of interest. In response to this issue, many investigators have advocated the use of a 

Bonferroni-correction to limit the probability of committing type-I errors. However, this 

comes at a cost of simultaneously increasing the probability of committing type-II errors, 

thereby diminishing the opportunity of detecting true association signals. This is particularly 

true of smaller genome-wide association datasets such as the sibling pairs samples. One 

solution is to utilize prior information into the association scan. In this study, we use a 

weighted association approach as implemented by Roeder et al., 2006 to accomplish this. 

While there are a variety of ways to construct weights, there are only two criteria that must 

be met. First, each weight must be greater than 0 and the mean of the weights must be 1. 

There are numerous sources of prior information that can motivate the weighting scheme 

including linkage scans, bioinformatics information, as well as previously conducted (and 

independent) genome-wide association signals (Roeder et al., 2007; Roeder & Wasserman, 

2009). Further, the prior information can be in the form of test statistics (i.e. LOD scores, Z 

scores) or p-values (Roeder et al., 2006).

The weights for this study were derived from the GWAS on BMI as conducted by the 

Genetic Investigation of Anthropometric Traits (GIANT) consortium (Speliotes et al., 2010). 
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Details on the sample and the analysis procedures can be found elsewhere (Speliotes et al., 

2010). Briefly, the GIANT consortium conducting a GWAS on BMI using 249,796 

individuals and made the association signals for each of the ~2.8M SNP markers available to 

the public. In particular, the p-values from the GWAS served as the prior information used 

to devise the weighting scheme for the genome-wide association scan from this study. In the 

original introduction to this approach, Roeder et al. (2006) introduced exponential and 

cumulative weighting procedures. We opted for a cumulated weighting scheme that can be 

less sensitive to large prior association signals and we also used a scaling factor (B) of 2 

(Roeder et al., 2006).

We focused on markers that either overlapped between the GIANT consortium and this 

study or GIANT consortium markers that were in reasonable linkage disequilibrium (r2> 

0.80)with SNP markers from this study. In all, we identified 717,411 markers to be tested 

for association that also have corresponding weights from the GIANT consortium. As a 

result, p-values from this study may be up-weighted or down-weighted depending upon the 

association signal from the GIANT GWAS. More specifically, the unweighted (nominal) p-

values from this study are divided by the weights as assigned through the GIANT GWAS to 

generate the weighted p-values. The weighting procedure was conducted in R using the 

“weighted_FDR.R” script that can be found at http://www.wpic.pitt.edu/wpiccompgen/fdr/.

Results

Biological Relationships

Table 1uses the Kinship Coefficient generated from KING to tabulate the observed pairwise 

relationship status based upon genome-wide data versus the expected pairwise relationships 

based upon information from Add Health (using the Add Health variable, “sibcl4”). The 

sibcl4 variable is one of the classification variables available for the Add Health sibling 

pairs subsample. This particular classification designates pairs of respondents into 

monozygotic twin pair (MZ), dizygotic twin pair (DZ), full sibling pair (FS), half-sibling 

pair (HS), cousin pair (CO), unrelated pair (UN) and undetermined relationship (UD). A 

total of 1,781,328 (1888C2) pairwise relationship comparisons were conducted. As 

recommended by the authors of KING (Manichaikul et al., 2010), a Kinship Coefficient 

greater than 0.354 is categorized as an MZ twin pair (duplicates have been removed), 

between 0.177 and 0.354 as 1st degree relationship (DZ twin pairsand full sibling pairs - no 

parent-offspring are present), between 0.0884 and 0.177 as 2nd degree relationship (half-

sibling pair and avuncular), between 0.0442 and 0.0884 as 3rd degree relationship (half-

avuncular and first cousin) and less than 0.0442 as not related (NR).Note that the expected 

values for the Kinship Coefficient are 0.50, 0.25, 0.125, 0.0625 and 0.0 for MZ, DZ/FS, HS, 

CO and UN respectively and the boundaries suggested by the authors of KING are to 

account for the variability in the estimated Kinship based upon genome-wide data. As can be 

seen in table 1, the vast majority of expected relationships are consistent with the observed 

genetic relationships. However, there are notable discrepancies. For example, there are 33 

expected full sibling pairs that are consistent with being half-sibling pairs according to the 

genetic data. Further, there are two pairs of MZ twins - one set of MZ twin pairs were 

thought to be a DZ twin pair while the other set were unknown prior to this study. 
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Additionally, a pair of individuals who were thought to be an MZ twin pair is likely an DZ 

twin pair.As can also been seen in the table we have detected 266 pairs of individuals 

thought to be unrelated who are at least distally related.The majority of these pairs (264) are 

3rd degree relationships (i.e., cousins). In total, there are 664 full sibling/DZ twin pairs (1328 

individuals) that would be utilized for studies employing a traditional sibling pair family-

based design. Based upon these relatedness measures, we have created a new variable 

available in the Add Health data sources called “sibclg” that specifies the biological 

relationship based upon the genome-wide information as presented here.This variable will 

be made available to Add Health researchers through the Restricted-Use Data mechanism of 

Add Health and will be included with other variables related to the sibling pair data.

Self-Reported Ethnicity and Multidimensional Scaling (MDS)

We used the Add Health “ah_race” variable for self-report ethnicity. This variable includes 

five categories: White, Black, Native American, Asian and Hispanic. Add Health 

respondents who self-reported as Hispanic were included in the Hispanic category 

irrespective of whether they also self-reported as White, Black, etc. Of the 1,886 individuals 

included in this analysis, there are 917 who self-identify as White, 677 who self-identify as 

Black, 209 who self-identify as Hispanic, 73 who self-identify as Asian, 8 who self-identify 

as Native American; 2 individuals have unknown self-identified ethnicity (see table 2). 

Supplemental figure 3 shows the first 5 principal coordinate (PC) MDS estimates from 

KING, color-coded by self-identified ancestry. As can be seen in supplemental figure 3A, 

the first principal coordinate (PC1) distinguishes the European ancestry from African 

ancestry while the second principal coordinate (PC2) captures variation between European, 

Asian and to an extent, Hispanic ancestry. In supplemental figure 3B we see variation from 

Hispanic samples including a small set of self-identified Native American individuals. 

Supplemental figures 3C and 3D further distinguish between and within self-identified 

ethnic groups.

Self-Reported Ethnicity and Genetic Ancestry

Table 2 and supplemental figure 4 displays the proportion of ancestry shared with each of 

the reference populations of each individual from the Add Health sibling pairs sample. As 

can be seen in table 2 and supplemental figure 4A, the vast majority of individuals who self-

identify as White have predominately European ancestry (CEU). Supplemental figure 4B 

illustrates the admixed ancestry typical of African Americans, self-identifying as Black. 

Self-identified Black individuals have a varying degree of African (YRI), European (CEU) 

and American (AMR) ancestry as can be seen in table 2. Likewise, self-identified Hispanic 

and Native American individuals (supplemental figures 4C and 4D) display an admixed 

ancestry largely comprised of American (AMR), European (CEU), African (YRI) and to a 

lesser extent, Chinese (CHB) and Japanese (JPT) ancestry. Finally, supplemental figure 4E 

includes self-identified Asians. As can also be seen in table 2 the ancestry of this subgroup is 

primarily of Chinese origin (CHB) but with measurable admixture of Japanese (JPT) and 

European (CEU).
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GCTA Heritability and Weighted Genome-Wide Association Analysis of BMI

The GCTA heritability of Wave II, Wave III and Wave IV BMI based upon a sample of 

whiterespondents was estimated to be 0.82 (SE=0.081), 0.71 (SE=0.091), and0.67 

(SE=0.084) respectively. Using a bivariate approach, the GCTA genetic correlation between 

Waves II/III, Waves II/IV and Waves III/IV were estimated to be 0.95 (SE=0.031), 0.85 

(SE=0.042) and 0.99 (SE=0.033) respectively. The degree of relationship among the 1,886 

individuals used in the genome-wide association analysis varies. In all, there are 614 

individuals who are not 1st degree relatives (siblings) of others in the sample (N=614), 609 

sibling pairs (N=1,218 individuals) and 18 sibling trios (N=54). Tables 2 and 3 provide the 

characteristics of the sample used for the genome-wide analysis. As noted previously and 

seen in table 2, approximately half of the sample self-identifies as White, 36% Black, 11% 

Hispanic, 4% Asian and less than 1% as Native American. Table 3 shows the frequency of 

males (48%) and females (52%) as well as the mean age and BMI of the sample at each 

wave of collection. Consistent with other studies, the mean (and standard deviation) of BMI 

increases throughout young adulthood.

To assess for the presence of systematic biases in genome-wide analyses, we generated a 

quantile-quantile(Q-Q) plot of the unweighted p-values (supplemental figure 5). As can be 

seen in the Q-Q plot, there is no evidence of widespread bias that is generating the 

associations.To illustrate the distribution of the weights as derived from the GIANT 

consortium, we provide asimple histogram (figure 1). As can be seen in figure 1, the vast 

majority of the p-values genome-wide are effectively down-weighted (<1; gray bar, 

N=522,093) while a fair number of p-values are substantially up-weighted (>1; colored bars, 

N=195,318). These weights were applied to each of the nominal p-values generated via the 

linear mixed effect model of longitudinal BMI.The resulting −log10 weighted p-values are 

displayed using a traditional Manhattan Plot (figure 2). The red horizontal line on figure 2 

represents a genome-wide significant threshold (p=5×10−8) while the blue horizontal line 

represents a threshold of p=5×10−5. Table 4 displays the 39 SNP associations achievingp< 

5.0×10−5 ordered by genomic location. We chose a threshold of p< 5.0×10−5 as a 

reasonable, albeit arbitrary, threshold for association signals that warrants potential follow-

up as other studies have done (e.g. see Carty et al., 2012). In the table, we report the SNP 

marker name, chromosome, base pair location, and the nearest gene and where that SNP is 

located relative to that gene. We also report the allele conferring risk (increasing BMI units), 

the frequency of that allele and the other allele present in the data (reported as forward 

strand). Finally, we report the results of the analysis including the linear mixed model 

coefficient (corresponding 95% confidence interval), the unweighted p-value, the weight 

applied to that SNP marker and the corresponding weighted p-value. In this analysis, the 

linear mixed model coefficient may be interpreted as the additive effect of the risk allele on 

body mass index in units of kg/m2. For example, the C allele of SNP rs1421085 (FTO gene) 

is associated with a 0.27 kg/m2 increase in BMI. Overall, the list of 39 SNPs include some 

marker pairs that are likely in high linkage disequilibrium (LD) from the same genic region. 

Additionally, the influence of the weighting scheme can clearly be seen in the table. Using 

weights in this way allows for strongly significant markers to sift to the top even when 

down-weighted. There are 6 SNP markers that were down-weighted, yet still achieved a 

genome-wide suggestive level. However, the remaining 30 SNP markers were up-weighted. 
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Therefore, this is largely a list of SNPs that have been pushed towards the top of the 

association signals as they are SNPs with prior information indicating evidence of 

association with BMI (GIANT consortium) and achieved at least nominal significance in the 

Add Health sample. A notable signal includes the highly replicable FTO gene region 

(chromosome 16) providing evidence that the Add Health sibling pairs sample is an 

informative genetic dataset for future use.

Discussion

The primary focus of this study was to introduce the Add Health sibling pairs subsample 

genome-wide association data and conduct initial analyses to demonstrate the scientific 

potential of the data as a resource to the Add Health community of researchers. Given the 

unconventional (among traditional genome-wide studies) Add Health pairs subsample, we 

adopted a relatively unconventional approach to carry out the genome-wide analysis. First, it 

is estimated that 96% of all genome-wide studies have been conducted on people of 

European descent (Bustamante et al., 2011). The reasons and explanations for focusing so 

exclusively on samples of European descent range from convenience and efficiency (using 

existing cohort studies that focus on subjects of European descent) to minimizing sources of 

genetic heterogeneity (Pulit et al., 2010; Bustamante et al., 2011). However, recently, there 

has been a series of studies that have empirically demonstrated a critical role of multiethnic 

studies in genome research of complex disease(Pulit et al., 2010; Masunuru et al., 2012; 

Carlson et al., 2013; Gong et al., 2013; Manichaikul et al., 2012; Manku et al., 2013; 

Marigorta et al., 2013; Sabater-Lleal et al., 2013). Often, these multiethnic studies will 

conduct genome-wide analyses within a relatively homogenous European descent sample 

and simultaneously conduct a genome-wide analysis among a more genetically diverse 

sample such as African-Americans before combining the association signals using meta-

analysis. An alternative approach, and one that was chosen for the present study, conducts 

the genome-wide analysis on the entire sample across multiple ethnic backgrounds. This 

approach has been successfully conducted in other studies of complex disease (for examples, 

see Kurreeman et al., 2012 and Xu et al., 2013). However, rather than use the Add Health 

sample as a discovery sample (often requiring very large sample sizes) we adopted a 

weighting scheme based upon the GIANT consortium (Speliotes et al., 2010) that is 

comprised of a series of European descent samples. Therefore, the approach taken for the 

present study is one that explores the extent to which the variants discovered in European 

descent GIANT consortium may also be of relevance to the multiethnic Add Health pairs 

subsample.

We note here that there are a multitude of valid and reasonable approaches that investigators 

may take when conducting a genetic study of a multiethnic, family-based sample with 

longitudinal measures of phenotype, behaviors and the environment. For example, Add 

Health researchers may be interested in imputing genotypes for purposes of combining 

association signals across multiple data sources genotyped on different platforms. Add 

Health researchers may also be interested in incorporating Add Health sampling weights 

and/or taking into account phenotypic clustering particularly when studying genetic risk 

factors within an environmental context. Furthermore, the family-based structure of the data 
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would allow for more specific analyses using informative sibling pair family units through a 

variety of family-based association approaches (e.g. FBAT, Laird et al., 2000).

Through the weighted genome-wide association analysis, we observed association signals 

that align with previous and in some cases, established genetic variants associated with BMI. 

For example, we were able to identify the FTO region that has been previously identified 

and replicated (Frayling et al., 2007). Additionally, we were able to identify variants that are 

upweighted through the GIANT consortium results, but do not achieve genome-wide 

significance in either GIANT or the Add Health sibling pairs subsample. These variants may 

be of particular interest for researchers who wish to explore GxE interactions in the Add 

Health sample to further explain the variability of the effect of these variants on BMI over 

time (age and development), behaviors and under particular environmental contexts.

The Add Health study is unique because of the explicit emphasis on properly characterizing 

the multilevel and multidimensional aspects of adolescents’ lives as they transition to 

adulthood. This design in conjunction with the related and unrelated pairs data (see Harris et 

al., 2013) has expanded the scope of the gene-environment interaction perspective to a 

multilevel perspective in which environmental influences are measured at the level of the 

state (Boardman 2009), neighborhood (Cleveland et al., 2003; Beaver et al., 2012), and 

schools (Boardman et al., 2012). Most importantly, the research design enables the 

measurement of factors such as social norms (Boardman et al., 2008) that are otherwise 

difficult to assess. The assessment of these contextual factors has been highlighted as a 

critical area for future research in gene-environment interplay (Spittel et al., 2013) and the 

utilization of genome-wide data in conjunction with this social environmental backdrop may 

provide important insights in the etiology of complex morbidities such as obesity (Boone-

Heinonen and Gordon-Larsen, 2012).

As described elsewhere (Boardman et al., 2013), the existing gene-environment interaction 

typology includes models in which genetic risk may be the most evident in the least risky, 

the most risky, or the typical environments. Depending on the anticipated GxE relationship 

and the specific phenotype, environments may either trigger or control genetic expression in 

a causal manner, or they may simply mask otherwise small genetic associations. Without a 

representation of the full range of environments, one may conclude that a specific 

polymorphism is either protective, risky, or not associated with a particular phenotype. 

Belksy and Pluess (2009) make a very strong case for the differential susceptibility 

hypothesis that argues that environmentally sensitive loci will be protective in the most 

enriching environments but deleterious in unhealthy environments. This cross-over 

association cannot be identified without a representative sample from the full continuum of 

environments that is, again, why the representativeness of the Add Health study is such an 

important resource in conjunction with the pairs data.

Finally, it is important to note that GWAS is but one use of genome wide data. For instance, 

the genome-wide relationship models discussed above (Yang et al., 2010) can be extended 

to incorporate these multilevel design features so that the contextual variation in the 

heritability of health behaviors can be examined using measured genetic similarity rather 

than assumed similarity from sibling-based models. Similarly, sibling fixed effects 

McQueen et al. Page 10

Behav Genet. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



approaches can take advantage of the “random assignment” of risk alleles to examine 

siblings residing and socializing in similar environments compared to those in very different 

social contexts (Fletcher et al., 2011). These methods provide unique and new possibilities 

to identify causal models and have thus far not been extended to the genome-wide level.

Add Health Sibling Pairs Subsample Data Access

The genome-wide data and phenotype measures used in this study will be made available to 

the scientific community through the NIH database of Genotypes and Phenotypes (dbGaP) 

by January 2015. Researchers interested in using the Add Health sibling pairs subsample 

genome-wide data will be required to access genotype data through the dbGaPauthorized 

access system. Once genotype data are available through the dbGaP and access has been 

granted, researchers who request other phenotypic data not in dbGaP will be able to apply 

for a Genome-wide Data Restricted Access Agreement through Add Health beginning in 

2015 (http://www.cpc.unc.edu/projects/addhealth).This process will allow approved 

investigators access to the entire Add Health sibling pairs subsample longitudinal data in 

addition to the genome-wide data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histogram of the weights derived from the GIANT consortium applied to the genome-wide 

association p-values.
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Figure 2. 
Manhattan Plot of the Weighted GWAS Association Signals
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Table 1

Observed versus Expected Relationship Status

Observed Relationship (KING Kinship Coefficient)*

MZ 1st Degree 2nd Degree 3rd Degree NR TOTAL

Expected Relationship*

MZ 0 1 0 0 0 1

DZ 1 173 2 0 1 177

FS 0 480 33 0 6 519

HS 0 6 38 2 5 51

AV 0 0 0 2 1 3

CO 0 1 0 19 18 38

NR 0 1 1 264 1,780,270 1,780,536

UD 1 2 0 0 0 3

TOTAL 2 664 74 287 1,780,301 1,781,328

*
Note: MZ=monozygotic twin pair, DZ=dizygotic twin pair, FS=full sibling pair, HS=half-sibling pair, AV=avuncular pair, CO=cousin pair, 

NR=not related and UD=undetermined.
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Table 2

Self-Identified Race and Proportion of Genetic Ancestry*

Ancestral Population**

Self-Identified
Race***

Europe
(CEU)

Africa
(YRI)

Americas
(AMR)

China
(CHB)

Japan
(JPT)

White
N=917 (48.6%) 0.983 0.007 0.004 0.003 0.003

Black
N=677 (35.9%) 0.178 0.803 0.008 0.007 0.004

Hispanic
N=209 (11.1%) 0.612 0.105 0.251 0.017 0.015

Asian N=73 (3.9%) 0.068 0.005 0.001 0.807 0.120

Native American
N=8 (0.4%) 0.338 0.280 0.332 0.021 0.029

*
Proportion of genetic ancestry as estimated by ADMIXTURE.

**
Ancestral populations derived from the HGDP and HapMap reference populations.

***
As defined by the Add Health Race ("ah_race") variable (2 respondents coded as unknown).
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McQueen et al. Page 20

Table 3

Characteristics of the Genome-Wide Association Sample

Characteristic

Biological Sex *

    Male 905 (48%)

    Female 981 (52%)

Age **

    Wave II (N=1761) 16.4 (1.7)

    Wave III (N=1634) 22.4 (1.7)

    Wave IV (N=1886) 28.9 (1.7)

Body Mass Index (BMI) **

    Wave II (N=1688) 23.4 (5.1)

    Wave III (N=1562) 26.6 (6.4)

    Wave IV (N=1859) 29.4 (7.9)

*
Values expressed as sample size (relative percentage).

**
N refers to the number of non-missing values for each wave and variable. Values expressed as mean (standard deviation).
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