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Abstract

Electrical stimulation is a physical therapist teichused on many different
pathologies; stroke is a recent application fiehdttinvolves specific adjustment
parameters, wich are different from other pathaegibased on last neurosciences
advances, specially related with the work way ttawbcognitive activation.
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INTRODUCTION

When performing bibliographic searches, several weyds may be used for
“electrical stimulation”:

- E.S. electrical stimulation.

- N.M.E.S. neuromuscular electrical stimulation.
- E.M.S. electrical muscular stimulation.

- F.E.S. functional electrical stimulation.

The main objectives for the use of electrical statian in stroke are:

1. Increase force and decrease atrophy of pareticlesisc

2. Stretch spastic muscles that are subject to fatigue

3. Improve proprioception through stimuli producedendon and muscle
receptors (fig. 2).

4. Maintain muscle and connective tissue trophism, ichng
accumulation of waste products, deficiency of watexygen and
nutrients, and minimizing adhesions that restritligg planes of
tissues, which can lead to shortening of the tssue

Thanks to this double action, contraction of paretiuscles and elongation of
spastic antagonistic muscles, spasticity is inadifig. 1).
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Kotz theory (Russian stimulation)

Based on 2500 Hz being the best frequency to séitawhe muscle, according to the
following mathematical formula (fig. 3).
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Fig. 3. The pulse unit.

However, no system in the body functions at subiigh frequency; only spinal
cord glia contain fibers sensitive to vibration7&0 Hz, although the average is 128
Hz., In general, muscle fibers respond to frequeneit 20 Hz (slow-twitch fibers) to
80-150 Hz (fast-twitch fibers). Therefore, thereaisconflict between the 2500 Hz
proposed by Kotz and the frequencies of physioklgsystems; muscle metabolism is
not prepared to adapt such a high frequency.

On the other hand, on average a muscle fiber haggmeserves, in the absence
of water and oxygen, to produce 100,000 actionmi@tis; therefore, after 40 s at 2500
Hz, the cell has no energy remaining. During aerigé contraction, the muscle utilizes
its own reserves since blood transport of food amgigen is almost completely
interrupted; so at a maximal contraction of 25-4Bes muscle will stop responding to
the stimulus.

Also, nerves have a physiological stimulus freqyeifca very high stimulus is
applied (2500 Hz o 1000-4000-8000 Hz, whateves,totoneurons will try to sustain
this frequency for a few seconds; but, since thigripossible, end up functioning at
their own physiological frequency (fig. 4).
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Fig. 4. Nerve fibers work frequency.



Another problem is that if there are no pauses@dapplied current, time is not
allowed for the nerve to repolarize; so if a cutreh2500 Hz is used, the frequency
must be modulated to generate these pauses (fig. 5)
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Fig. 5. The modulated frequency.

The predominance of slow or fast-twitch fibers givis name to a muscle when
one of the two contains a percentage above 70%6¢3nWith training, it's possible to
convert super fast fibers to others which are fijglaster or slower; but it is impossible
to directly change type | fibers to type llb andevversa.

It's the proportion between type lic and lla fibénat determines more focus on
force or endurance (fig. 6).
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APPLICATION PRINCIPLES

Several factors must be taken into account whetyimgpelectrical stimulation:

1. The voluntary contraction depends on the sinecimle; that is, first the slow-
twitch fibers are recruited, then the fast-twitdiefs are recruited according to the force
production needed. (fig. 7).
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Fig. 7. Henneman’s principle.
2. Nearly all of the movement generators are insghigal cord, but cortical activity
is fundamental in motor control; for this reasonigt fundamental to observe the

movement produced (fig 8).
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Fig. 8. The cortical generators.



3. Cortical activity, through concentration, isafsindamental to optimize muscle
performance; hence it is very important to paymdibe to the stimulus and try to
execute voluntary movement that electrical stimokatinduces. Only by paying
attention to the stimulus, changes are producedthat cortical level through
synaptogenesis (fig. 9).
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Fig. 9. The brain tissue in normal situation.

In the damaged area, brain neuroplasticity cangkewery fast changes, with a
neuronal growth between 1 and 400 mm daily (fig. 10
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Fig.10. Synaptogenic growth.

Thanks to this learning capacity, the cortex capeernce extensive changes
within its own structure (fig. 11 and fig. 12).
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Fig. 12. The cognitive training can modify the esrstructure and interconnections.
To some extent, mental representation is as impioesa movement execution
(fig.13) and, without it, the movement will be palibgical; for this reason it is very
important during the electrical stimulation sessiorrequest that the patient sense the
movement caused by the current and try to exedutévien if the patient does not

achieve it, this mental visualization process pk®g motoneuron recruitment at the
cortical and spinal cord levels (fig. 14).
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4, Voluntary contraction is asynchronous (concdpspace summation). In other
words, the number of fibers recruited is determibgdhe size principle, according to
the desired force. Electrostimulation is synchrajomeaning one pulse provokes a
simultaneous contraction of all the muscle fibel®0% recruitment). Electrical
stimulation is not physiological, so voluntary a@ation must always be combined
with electrostimulation.

5. Voluntary contraction is more fatiguing than eleal stimulation at both the

cardiovascular and nervous levels (neurotransmigtiggue); this can be useful since
stroke patients tend to suffer from associated icaadcular problems.

Electrostimulation is only more fatiguing than wvolary contraction at the energy
consumption level (ATP use).

6. Voluntary contraction produces a stronger contoaicthan electrical stimulation
(it generates only 20-30% of voluntary maximum &rcThis is due to the fact that
voluntary contraction provokes not only the cortimac of a single muscle, but of an
entire muscular chain, in addition to generatingpmplex nervous activity. Meanwhile,
electrical stimulation only causes hypertrophyhat level of the sarcomeres (structural
training) (fig. 15), but it doesn’t influence coamdtion processes (functional training).

SARCOMERE

Fig. 15. Sarcomere structure.



Therefore, it is very important to have the patiggtto contract the muscle at
the same time it is stimulated;, moreover, after ¢glssion it is important to perform
activities of daily living (ADLSs) that involve thetimulated muscles within 10 minutes
after ending the session (cognitive training).

7. The frequency of 33 Hz (or a range between 30 Hiz3nHz) provokes muscle
tetanization. As the frequency increases, the fof@ntraction also increases as faster,
but more fatigable, muscle fibers are recruited. aAgesult, the muscle fatigues and
claudicates (fig. 16).
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Fig. 16. Electrical stimulation muscle response.

8. When the electrical stimulus reaches the nenvéiyst penetrates the most
peripheral and superficial fast-twitch fibers aad,the intensity is increased, deeper and
slower fibers are activated. So electrical stimalaprovokes first the activation of fast-
twitch fibers, and later the slow fibers. Thishe treverse of the physiological process:
first slow-twitch fibers are activated, and them tlast-twitch fibers are progressively
recruited. In other words, voluntary contractioroyokes activation of muscle fibers
(motor units) in order from smallest to largest fHeman'’s Size Principle). During a
contraction, first the slow the small units are recruited, then the fastfibers for very
intense contractions. Under normal circumstancespmmarily use slow-twitch fibers,
and only use fast-twitch fibers for intense conimacs. Electrical stimulation allows,
precisely, recruitment of fast-twitch fibers that wormally don’t use (fig. 17).
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Fig. 17. Electric stimulus action on nervous fibers



This characteristic of electrical stimulation suftgethe muscle connective tissue
to a great deal of tension, restoring gliding ptaaed improving metabolism.

9. Electrodes are generally placed on the motontpoiA motor point is a
macroscopic point, and there is one in each mumadlg. It is the point where the nerve
crosses the muscle fascia to divide into milliohaxmns that terminate at their own end
plate; this point is usually located in the middfethe muscle belly and coincides with
the most prominent part of muscle; in the strokéepg this point is identified by
moving the electrode over the zone where we belibgemotor point is located, until
we achieve an optimal contraction (fig. 18).
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Fig. 18. The motor end-plate.

10.  Associate the electrical and the voluntary @mions through a greater
sensation of muscle tension but a lesser sensafioturrent; this permits greater
intensity and more comfort (or “less discomfort”).

11.  Avoid electrically stimulating a shortened nladoecause it is more painful and
it does not allow the fascia to increase in volumidle producing the contraction; so it
is generally preferable to place the joint in aifi@s in which the involved muscle is
slightly stretched.

APPLICATION PARAMETERS

1. The work frequency used is 33 Hz (or a rangevéen 30 Hz and 35Hz) to
activate type | slow-twitch fibers (red and smalhat work during aerobic and slow
training. 33 Hz reduces atrophy because the slatetivibers are the first to atrophy
due to their need to be always active (fig. 19).
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Fig. 19. Work frequencies in differents types loéifs.
2. The stimulus must never be painful (comfort @i so we use symmetrical or
asymmetrical biphasic rectangular impulse. Biphasis opposed to monophasic,

impulses are used to decrease the risk of cherbigals at the electrodes, allowing
greater intensities and longer application times @0).
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Fig. 20. Different types of pulses used.

3. The longest pulse time possible is selectedvget 350 and 450s, depending
on the machine) so that only the paretic fiberstremt, and so that they don’t adapt to
the stimulus.

4. The intensity must be high but not painful; sshbeen observed that there is a
limit to the intensity of contraction; the impulséisat exceed this maximum only
generate pain (fig. 21).
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Fig. 21. Intensity used in electrical stimulation.
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5. In the stroke patient, impulse trains are careséd with long work (on) times,

and, moreover, progressive ramping of the imputsiag as possible spasticity (in my
own practice, 5 to 10 seconds is enough); also;dfi¢gime”, between each train, must
be double the “on time”, because the paretic mgswed greater time for recovery (fig.
22).
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Fig. 22. Making the impulse trains.

6. The electrodes are placed to our preference, thvtlobjective being that we generate
a good contraction that is as comfortable as plessilne most appropriate muscles are:

- On the one hand, on supraspinatus (fig. 23) foaspinatus muscles (fig.
24), and on the other hand on the posterior detltmidcle; the objective
is to involve the glenohumeral joint, that tend$b&subluxed inferiorly;
it is important to look for the placement that genes the best
contraction, without provoking shoulder elevatigntbe upper trapezius.

Fig. 24. Placing on infraspinosus and posteriortdil.
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On the extensor muscles of the wrist,one eleetrot the lateral

epicondyle and the other on the lateral aspediefarearm (fig. 25), or

on the radial nerve point, about 10 cm above ttexdhepicondyle (fig.

26); the objective is to activate extension ofwhest and to avoid edema
formation; again we try to obtain the best conimactvith extension and
radial (not ulnar) deviation of the wrist.

Fig. 26. Placing on radial nerve point.

On the opponens pollicis muscle, one electrode dve thenar eminence,
and the other over the middle of the carpal tubmetimulate and activate
the median nerve (fig. 27); the objective is avaitbphy and fibrosis of
the first interdigital commissure. Avoid wrist affidger flexion since it
reproduces the patient’s pathology.

Fig. 27. Placing on opponens pollicis muscle.
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- On the peroneus longus and peroneus brevis esufay. 28); the
objective is to activatetiand to avoid dragging the foot during gate.
Try to provoke ankle daolesiion and eversion, never foot inversion
since it activates thedlls anterior muscle, reproducing the pathology.

Fig. 28. Placing on peroneus longus and brevis ressc

6. The typical session lasts 30 minutes daily; it isef@rable to apply electrical
stimulation immediately after the manual trainirfgparetic and spastic muscles to take
advantage of the learning that took place in themes system.

CONCLUSION

Electrical stimulation in the stroke patient is @ifficient tool for the maintenance of
muscle trophism, helping to reduce the appearaficsdema and fibrosis in paretic
muscles, and allowing the patient voluntary acdesthese muscles when combined
with cognitive activation.
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