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ABSTRACT 

 

This paper deals with the analysis of the sea surface temperatures using a reconstructed 

dataset which goes back to 1884, with a monthly time frequency. We use fractional 

integration methods to examine features such as persistence, seasonality and time trends 

in the data. The results show that seasonality is a relevant issue finding evidence of 

seasonal unit roots. Removing the seasonal component, persistence is also very 

significant, and looking at the data month by month, evidence of significant linear trends 

is detected in all cases. According to these results, monthly sea surface temperatures 

increase between 0.07ºC and 0.11ºC every 100 years. 

 

Keywords: Sea surface temperatures; seasonality; time trends; persistence 

 

 

 

 

 

 

Corresponding author: Prof. Luis A. Gil-Alana 

    University of Navarra 

    Faculty of Economics and NCID (ICS) 

    Edificio Amigos 

    31009 Pamplona 

    Spain 

 

   Email: alana@unav.es 

 

 

 
* Prof. Luis A. Gil-Alana gratefully acknowledges financial support from the Ministerio de Economía y 

Competitividad (ECO2017-85503-R). Comments from the Editor and two anonymous reviewers are 

gratefully acknowledged. 

mailto:alana@unav.es


2 
 

  



3 
 

1. Introduction  

The interest in global warming and climate change has increased rapidly in recent years. 

There is agreement that the Earth’s surface temperature has increased over the last 100 

years by between ~0.3℃ and ~0.6℃. (Houghton et al., 1995; Cane et al, 1997; Hansen 

and Lebedeff, 1988; Nicholls et al., 1996; Jones et al., 2010; Folland et al., 2018). The 

causes of this temperature increase may be a response to anthropogenic forcing 

(industrialization and the effect of burning and emissions of fossil fuel, greenhouse gas 

concentration that affects the atmosphere, etc.), a part of the climate system’s innate 

natural variability (e.g. solar irradiance), or a combination of the two. However, most of 

the scientific community mantains an almost unanimous agreement on this topic 

supporting the anthropogenic origin of climate change (Anderegg et al., 2010; Beckage 

et al. 2018). 

The surface air temperature is considered as the usual variable to determine 

climate change and many articles have investigated the presence of time trends in air 

temperatures either at a global level (Santer et al. 1995; Hegerl et al. 1996, 1997; Jones 

and Hegerl 1998, Hansen et al., 2010; etc.) or at a local and regional temperatures (Ghil 

and Vautard 1991; Hasselmann 1993; Schlesinger and Ramankutty 1994; North and Kim 

1995; North et al. 1995; Papalexiou et al., 2018; etc.).  

However, sea surface temperature (SST) is a fundamental physical parameter for 

the understanding of climate dynamics and climate change due to the oceans’ large 

thermal inertia compared with that of the atmosphere and land (Deser et al., 2010).  

In this research we focus on understanding sea surface temperatures and their 

behaviour with a monthly time frequency. This paper is a contribution to the literature on 

the analysis of sea surface temperature from a time series viewpoint focusing on some its 

features such as seasonality, time trends and persistence. To this purpose, we examine the 
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time series properties of sea surface temperatures from January 1884 to January 2019 

using monthly data. Another contribution of this work is that by the first time we jointly 

examined the three features (time trends, persistence and seasonality) in a unified 

treatment based on long memory and fractional integration, which has not been jointly 

studied so far in SST data. The dataset was obtained from KNMI Climate Explorer which 

is a web application to analysis climate data statistically. This tool is made available by 

the World Meteorological Organization together along with the European Climate 

Assessment & Data. 

The rest of the paper is organized as follows: In Section 2 we briefly review the 

literturautre on sea surface temperatures. In Section 3 we present the techniques used in 

the paper. Section 4 describes the dataset, while Section 5 contains the empirical results. 

Finally, Section 6 concludes the paper. 

 

2. Sea surface temperatures 

Temperatures of the sea surface are used as a key factor connecting the oceans to the 

global climate system.  An example of this affirmation is collected in the research done 

by Yaya and Akintande (2018) that relates global and regional sea surface and land air 

surface temperatures finding evidence of a high correlation between them. Also, SST 

anomalies in the tropical Pacific are commonly used indicators for diagnosing the El 

Niño–Southern Oscillation (ENSO) state, and the impact of global warming on SST based 

ENSO monitoring indices have been analysed recently (Turkington et al. (2018)). 

SST might present certain irregularities and its potential non-linear pattern creates 

difficulties to measure it. Nevertheless, reliable data can be found at the Hadley Centre 

(Rayner et al., 2003; 2006; 2009; Minobe and Maeda, 2005; etc.), and also at the National 
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Oceanic and Atmospheric Administration (Smith et al., 2008), and in Kaplan et al. (1998) 

among other sources.  

One of the main assumptions regarding the classical definition of temperature 

anomalies is that the annual cycle is constant and does not change over time. In order to 

analyse the SST anomalies, several statistical methods have been used, such as, optimal 

smoothing (OS), the Kalman filter (KF) and optimal interpolation (OI) (Kaplan et al., 

1998). However, more accurate data, achieved by including bias-adjusted satellite data, 

and accurate analysis is required to minimize errors (Smith, 2008; Banzon, 2016).  

On the other hand several authors have claimed that the climate system presents 

memory or persistence across different regimes.  In 2003, Gil-Alana introduced fractional 

integration techniques to analyse the Central England Temperature (CET) from 1659 to 

2001, which is the longest available instrumental record of temperature in the world. The 

results show that central England temperatures have increased about 0.23 °C per 100 

years in recent history (Gil-Alana, 2003). Also, he evaluated the warming in both the 

Northern and Southern Hemispheres (Gil-Alana, 2005, 2007). Other authors that have 

also found persistence and evidence of long memory in temperatures and sea temperatures 

are Eichner et al. (2003), Lennartz and Bunde (2009), Franzke (2012a, 2013), Bunde et 

al. (2014), Ludescher et al. (2016), Massah and Kantz (2016), Deng et al. (2018) among 

many others. On the other hand, Álvarez-Ramirez (2008) showed that ocean temperatures 

are more persistent than land temperatures and several authors have studied recently the 

SST locally, in different areas, for instance, in the Mediterranean Sea (Shaltout, 2014), 

Baltic Sea (Stramka and Bialogrodzka 2015), Southwest coast of Portugal (Goela, 2016), 

pointing at a general increasing of the local temperature, hence contributing to global 

warming (Mudelsee, 2019). Interestingly, Breaker (2019) has recently estimated long-

range persistence in ocean surface temperature off the coast of central California, a region 
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where similar observations had not been made. Other papers which analyze time structure 

dependencies and dynamics in temperatures are Stern and Kaufmann (2000), Kaufmann 

and Stern (2002), Jones and Moberg (2003), Gil-Alana (2003, 2005), Moberg et al. 

(2005), Mills (2004, 2006, 2007), Gil-Alana (2008a, 2015), Deng et al. (2018) and Yaya 

and Akintande (2018).  

 

3. Methodology (Explain in an easier way) 

As the main goal in the paper is to show if there is a linear trend in the sea surface 

temperatures across the years, our initial model is based on the following regression, 

,...,2,1;tty =++= txt   (1) 

where yt refers to the observed data, i.e., the anomalies over sea surface temperatures, α 

and β are unknown coefficients which refer respectively to a constant and a potential 

linear trend in time, and xt is the error term (or the detrended series) that is supposed to 

be well-behaved. Thus, for example, if this error term in (1) is a random variable 

independently and normally distributed with mean zero and a constant variance, the 

ordinary least squares (OLS) estimate of β can be obtained, and statistical inference based 

on the classical F and t statistics can be applied here (Hamilton, 1994). Thus, if we are 

able to reject the null hypothesis of: 

,0oH ==      (2) 

versus the alternative: 

,0aH =      (3) 

we can then claim that temperatures are increasing over time. Nevertheless, a pattern that 

is observed in monthly sea surface temperatures is that they display several features which 

are not consistent with standard models, for example, seasonality, along with strong 

dependence between the observations across time.  
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 Following Hyllerberg (1986, 1992) seasonality can be defined as a systematic, 

though not necessarily regular, variation around trend in time series. This author classifies 

seasonality in three categories when modelling seasonal data: i) purely deterministic 

models (by means of seasonal dummy variables), ii) seasonal stochastic stationary models 

(using seasonal ARMA processes), and iii) seasonal nonstationarity (by means of 

seasonal differences). The first group based on seasonal dummies simply allows for the 

mean of the series to vary by season, and therefore it raises no statistically interesting 

issues. Therefore, in the empirical application carried out below we use stochstic 

approaches using first a simple autoregressive of order 1 (AR(1)) process of the form: 

            ...,2,1,12 =+= − tuu ttt     (4) 

assuming so far that xt = ut, and where εt is a white noise process. Thus, φ indicates the 

degree of seasonal serial dependence.1 If non-seasonal dependence is also permitted, we 

can add the following model, 

,...,1,0,)1( ==− tuxL tt
d   (5) 

with xt = ut = 0 for t ≤ 0, where L indicates the lag operator, i.e., Lkxt = xt-k, and d can be 

any real value. Clearly, if d = 0, xt = ut, there is no dependence at all, and the classical 

estimation of β in (1) and based on ordinary (OLS) or generalised (GLS) least squares 

still remains valid.  However, allowing for d > 0, dependence is permitted, and the higher 

the value of d is, the higher the level of dependence between the observations is, noting 

that the polynomial on the left hand side of equation (5) can be expressed, for all real d, 

as: 
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1 In the empirical application carried out in Section 5, the seasonal AR parameter is found to be very close 

to 1, suggesting the need of seasonal differentiation. In fact, performing seasonal unit root tests the results 

support this hypothesis in all series. 
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and thus, equation (5) can be expressed as: 

....
2

)1(
)1( 21 ttttt
d ux

dd
xdxxL +−

−
+−=− −− . 

Then, it is said that xt is integrated of order d and denoted as I(d). This type of process 

displays the property of long memory because of the strong degree of association between 

observations which are far distant in time. They were introduced in the earlier 80s by 

Granger (1980, 9181), Granger and Joyeux (1980) and Hosking (1981) and since then 

have been widely employed in the analysis of aggregate data including climatological and 

meteorological data (Bloomfield, 1992; Koscielny-Bunde et al., 1998; Percival et al., 

2001; Monetti et al., 2003; Gil-Alana, 2005, 2008b, 2015, 2018; Rybski et al., 2006, 2008; 

Fatichi et al., 2009; Franzke, 2010, 2012b; Bunde et al., 2014; Yuan et al., 2015; 

Ludescher et al., 2016; Bunde, 2017 among many others). In this context of fractional 

integration, the estimation of β in (1) must take into account the additional dependence 

structure on the error term. 

 We estimate the model by using the Whittle function in the frequency domain 

(Dahlhaus, 1989). The Whittle function is an approximation to the likelihood function, 

and we use this function in the context of a testing procedure developed in Robinson 

(1994) that is very convenient with our dataset. This method allows us to test the null 

hypothesis: 

,0oH dd ==     (6) 

for any real value d0, in a model given by (1) and (5) independently of the specification 

of ut in (5), which may be a seasonal AR(1) process as in (4). The test statistic has a 

standard null N(0, 1) limit distribution and is the most efficient method in the Pitman 

sense against local departures from the null. Moreover, this standard behaviour holds for 

any value of d0, including thus stationary (d0 < 0.5) and nonstationary (d0 ≥ 0.5) 

hypotheses. 
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4. Data 

The data examined in this work are the anomalies over sea surface temperatures, and have 

been obtained from the KNMI Climate Explorer2, which is part of the World 

Meteorological Organization, and from the European Climate Assessment & Data. The 

monthly time period examined stretches from January 1884 to January 2019.  

[Insert Figures 1 and 2 about here] 

Figure 1 plots the original data of sea surface temperature time series downloaded 

from KNMI webpage. As can be observed, there are periods of time where the 

information is incomplete. For this reason, first we have analyzed the time periods where 

we have complete data (see Figure 2, Panel i), with data starting in 1947. Then, we have 

also linearized the time series with the purpose of being able to analyze periods of longer 

duration in the data (see Figure 2, Panels ii) (starting in 1922), iii) (in 1904) and iv) (in 

1884).3 

 

5. Results 

Based on the monthly nature of the data, we start by using the model given by the 

equations (1), (4) and (5), i.e., 

,)1(,)1(, 12
tttt

d
tt xLuxLxty  =−=−++=  (7) 

testing Ho (6) for do-values equal to 0, 0,01, … (0.01), …, 1.99, and 2. As earlier 

mentioned, this parameter is very relevant in the sense that it is informing us about the 

degree of dependence in the data and thus, it can be taken as an indicator of the level of 

persistence. Higher the differencing parameter is, higher the level of persistence is.  

                                                 
2  https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=coads_sst 
3  All reconstructations are based on linear extrapolation using the last observation prior to the break and 

the first one after the break.  

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=coads_sst
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[Insert Table 1 about here] 

We conduct the estimation of do under three different set-ups: i) with no 

deterministic terms, i.e. assuming that α = β = 0 in (7); ii) with an intercept, i.e., imposing 

β = 0, and iii) with an intercept and a linear time trend, i.e., estimating α and β along with 

the other parameters in the model. We selected the appropriate models by using their 

corresponding t-values and the results showed that the time trend is not required in any 

of the four series, the intercept being sufficient to describe the deterministic components. 

The results of the estimated coefficients are reported in Table 1. The estimated values of 

d are 0.73 for the sample starting in 1884; 0.74 for the one starting in 1904, and slightly 

higher (0.81 and 0.86) for those starting in 1922 and 1947. If we look at the confidence 

intervals, we see that all values belong to the interval [0.5, 1), implying nonstationary 

mean reverting behaviour. However, if we focus on the seasonal AR coefficients, we see 

that they are all very close to 1, suggesting that the series may contain seasonal unit roots. 

Based on these high seasonal AR coefficients, we next conducted seasonal unit 

root tests (based on Dickey, Hasza and Fuller (DHF, 1984), Beaulieu and Miron (BM, 

1993) and Hylleberg et al. (HEGY, 1990) methods), and the results, though not reported, 

suggested evidence of unit roots in the four series.4 Thus, we perform seasonal first 

differences, and work next with the differenced series. Here, noting that seasonality has 

been removed, we consider the model given only by the equations (1) and (4), i.e., 

    ...,2,1,)1(, ==−++= tuxLxty tt
d

tt   , (7) 

Under the assumptions that ut is both white noise, i.e., ut = εt, and autocorrelated. 

However, in the latter case, instead of imposing a particular parametric (ARMA) structure 

                                                 
4 The same evidence in favor of seasonal unit roots was obtained when using seasonal fractionally integrated 

methods (see, Gil-Alana and Robinson, 2001). 
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on ut, we use a non-parametric approach due in Bloomfield (1973) which approximates 

ARMA models with very few parameters.5 

[Insert Table 2 about here] 

 Table 2 (Panel i) displays the estimates under the assumption of white noise errors, 

while Panel ii) focuses on the case of autocorrelation. The values are very similar in the 

two cases, and the first thing we observe is that the time trend is not required in any single 

case. The estimates of d are large, though smaller than 1 in all cases, with the exception 

of the dataset starting in 1947 with autocorrelated errors. These results indicate that the 

data are highly persistent but no evidence of time trends is detected on the data. 

[Insert Table 3 about here] 

 As a final step in the analysis, we focus on the data separated by months, testing 

once more the degree of persistence and the significance of the time trend coefficients in 

the model given by (7) for the two types of residuals (uncorrelated and following the 

model of Bloomfield). The results for the reconstructed dataset starting in 1884 are 

presented in Table 3. The first thing we observe is that all estimated values of d are 

positive and smaller than 1 implying, once more, fractional integration. The values range 

between 0.43 (March with autocorrelation) and 0.66 (October with no autocorrelation. 

However, the most interesting feature is that the time trend coefficients are now 

statistically significant in all cases, implying an increase in the temperatures during the 

sample period. Under no autocorrelation, the highest increases take place in March 

(0.085) and April (0.083) implying an increase of about 0.8ºC in the temperatures every 

100 years and a very similar result is obtained under autocorrelated errors. 

[Insert Tables 4 – 6 about here] 

                                                 
5 Non-linear deterministic terms of the form advocated by Cuestas and Gil-Alana (2016) were also 

employed but the coefficients were found to be statistically insignificant in all cases. 
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Tables 4, 5 and 6 display the results for the subsamples starting respectively at 

1904, 1922 and 1947. For the first two of these subsamples, the estimated values of d are 

very similar to those in Table 3 (with values of d ranging from 0.24 to 0.57), however, 

the time trend coefficients are much higher than those in Table 3, with values above 0.010 

in practically all cases, implying increases above 0.10ºC/100 years for each month of the 

year. Finally, in Table 6, the results refer to the observed data between 1947 and 2018. 

Here, the values of d are much smaller than in the previous cases, ranging from 0.12 to 

0.46 with no autocorrelation and being much smaller with the model of Bloomfield. In 

fact, the I(0) hypothesis of short memory (i.e., d = 0) cannot be rejected in eight of the 

months, and long memory patterns are only detected in the months of July, August, 

September and November. Nevertheless, the time trend coefficients are once more 

statistically significant in all cases, with values close to those given for the whole sample 

period (1884 – 2018). 

These results are in line with other researches done for Sea Surface Temperature 

in the Mediterranean zone (see Pastor et al., 2019). They conclude that there is a 

consistent warming trend for the Mediterranean in the period 1982-2016, finding different 

linear trends for seasons and months. Alexander et al. (2018) conclude that the warming 

trend projected in their research occurs in summer affecting positively (from 0.05 to 

0.5°C/decade) in the range of temperatures. The findings achieved by this research are 

consistent with many other studies (see Friedland and Hare, 2007; Chollett et al., 2012; 

López García and Belmonte, 2011; Shaltout and Omested, 2014; Thomas et al., 2017). 

6. Conclusions 

In this article we have examined the sea surface temperatures using a reconstructed 

dataset which goes back to 1884, with a monthly time frequency. We use fractional 

integration techniques to investigate issues such as the degree of persistence in the data, 
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the seasonality and the presence of time trends. This specification is more general than 

other standard methods and include the classical stationarity I(0) and nonstationarity I(1) 

as particular cases of interest. Our results indicate first that seasonality is a very relevant 

issue in the data and testing for seasonal unit roots, the results provide strong evidence in 

favour of this hypothesis. Removing the seasonal component, throughout seasonal 

differentiation, the data are still very persistent and significant trends are observed across 

different sample periods. We provide evidence that the temperatures have increased 

between 0.07ºC and 0.11ºC during the last one hundred years. 
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Figure 1: The monthly time period analysed is from January 1884 to January 2019 
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Figure 2: Time series plots. Sea Surface Temperatures 

i) Sea Surface Temperatures  1947 -2019 ii) Sea Surface Temperatures  1922 -2019 

  

iii) Sea Surface Temperatures  1904 -2019 iv) Sea Surface Temperatures  1884 -2019 
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Table 1: Estimated coefficients in the model given by equation (7) 

i)    with no autocorrelation 

Series d   (95% band) Intercept Time trend  Seas. 

1884 – 2018 0.74   (0.69,  0.78) 18.366   (107.19) ---- 0.917 

1904 – 2018 0.75   (0.70,  0.80) 18.368   (110.40) ---- 0.916 

1922 – 2018 0.81   (0.76,  0.86) 18.275   (109.89) ---- 0.922 

1947 – 2018  0.86   (0.81,  0.92) 18.765   (116.07) ---- 0.923 

The values in parenthesis in the third column are t-values. Thus, values above 1.645 in absolute value 

indicate statistical significance at the 5% level. 
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Table 2: Estimated values of d on the first seasonal differences 

i)    with no autocorrelation 

Series No terms With intercept With time trend 

1884 – 2018 0.73   (0.69,  0.77) 0.73   (0.69,  0.77) 0.73   (0.69,  0.77) 

1904 – 2018 0.74   (0.70,  0.79) 0.75   (0.70,  0.79) 0.75   (0.70,  0.79) 

1922 – 2018 0.79   (0.75,  0.83) 0.79   (0.75,  0.84) 0.80   (0.75,  0.84) 

1947 – 2018  0.85   (0.80,  0.91) 0.86   (0.81,  0.91) 0.86   (0.81,  0.91) 

ii)   with autocorrelation 

Series No terms With intercept With time trend 

1884 – 2018 0.82   (0.69,  0.90 

) 

0.81   (0.71,  0.89) 0.81   (0.71,  0.89) 

1904 – 2018 0.79   (0.69,  0.91) 0.80   (0.70,  0.90) 0.80   (0.70,  0.90) 

1922 – 2018 0.86   (0.75,  0.99) 0.85   (0.76,  1.00) 0.85   (0.76,  1-00) 

1947 – 2018  0.99   (0.87,  1.15) 1.02   (0.86,  1.16) 1.02   (0.86,  1.16) 

The values in parenthesis indicate the 95% confidence band for the values of d; in bold the selected model 

for each series. 
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Table 3: Seasonal persistence and trends with sample size: 1884  -  2018 

Month i)   No autocorrelation ii)   With autocorrelation 

January 0.55  (0.45,  0.67) 0.0078  (5.20) 0.54  (0.37,  0.74) 0.0078  (5.14) 

February 0.63  (0.52,  0.77) 0.0071  (3.38) 0.54  (0.36,  0.78) 0.0071  (4.57) 

March 0.58  (0.46,  0.73) 0.0085  (5.25) 0.43  (0.25,  0.66) 0.0086  (8.01) 

April 0.55  (0.46,  0.68) 0.0084  (6.36) 0.53  (0.36,  0.76) 0.0084  (6.34) 

May 0.63  (0.54,  0.76) 0.0073  (4.41) 0.62  (0.48,  0.79) 0.0073  (4.46) 

June 0.60  (0.50,  0.76) 0.0076  (5.30) 0.52  (0.36,  0.69) 0.0077  (6.78) 

July 0.58  (0.48,  0.71) 0.0077  (5.47) 0.54  (0.38,  0.70) 0.0078  (6.01) 

August 0.61  (0.52,  0.75) 0.0075  (4.91) 0.54  (0.38,  0.71) 0.0076  (6.16) 

September 0.62  (0.52,  0.75) 0.0076  (5.07) 0.65  (0.45,  0.85) 0.0075  (4.34) 

October 0.66  (0.55,  0.80) 0.0075  (3.73) 0.58  (0.36,  0.80) 0.0077  (5.00) 

November 0.56  (0.46,  0.67) 0.0077  (4.92) 0.63  (0.44,  0.87) 0.0077  (3.65) 

December 0.44  (0.36,  0.55) 0.0082  (7.70) 0.63  (0.44,  0.80) 0.0077  (3.57) 

The values in parenthesis in the 2nd and 4th columns indicate the 95% confidence band for the values of d; 

those reported in columns 3rd and 5th are t-values. 
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Table 4: Seasonal persistence and trends with sample size: 1904  -  2018 

Month i)   No autocorrelation ii)   With autocorrelation 

January 0.46  (0.35,  0.1) 0.0100  (7.44) 0.43  (0.25,  0.68) 0.0101  (7.17) 

February 0.49  (0.34,  0.73) 0.0084  (5.28) 0.31  (0.12,  0.72) 0.0092  (8.91) 

March 0.52  (0.40,  0.70) 0.0100  (6.29) 0.37  (0.19,  0.62) 0.0101  (8.63) 

April 0.42  (0.31,  0.57) 0.0104  (9.99) 0.35  (0.18,  0.61) 0.0104  (9.55) 

May 0.50  (0.37,  0.68) 0.0103  (8.49) 0.33  (0.14,  0.57) 0.0105  (11.28) 

June 0.43  (0.30,  0.63)  0.0103  (10.66) 0.24  (0.07,  0.44) 0.0105 (13.67) 

July 0.43  (0.31,  0.62) 0.0100  (9.65) 0.32  (0.15,  0.63) 0.0102  (10.82) 

August 0.47  (0.35,  0.66) 0.0103  (9.23) 0.30  (0.15,  0.51) 0.0105  (12.05) 

September 0.50  (0.38,  0.68) 0.0105  (8.97) 0.41  (0.24,  0.71) 0.0105  (9.68) 

October 0.56  (0.42,  0.74) 0.0106  (6.25) 0.39  (0.21,  0.64) 0.0106  (9.16) 

November 0.47  (0.36,  0.62) 0.0106  (7.61) 0.47  (0.28,  0.79) 0.0106  (6.77) 

December 0.30  (0.21,  0.43) 0.0107  (12.66) 0.40  (0.22,  0.66) 0.0106 (7.55) 

The values in parenthesis in the 2nd and 4th columns indicate the 95% confidence band for the values of d; 

those reported in columns 3rd and 5th are t-values. 
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Table 5: Seasonal persistence and trends with sample size: 1922  -  2018 

Month i)   No autocorrelation ii)   With autocorrelation 

January   0.46  (0.35,  0.60) 0.0108  (6.61)  0.44  (0.23, 0.70) 0.0107  (6.25) 

February 0.47  (0.34,  0.62) 0.0104  (5.94) 0.34  (0.12,  0.58) 0.0101  (7.33) 

March 0.57  (0.43,  0.76) 0.0107  (4.85) 0.37  (0.15,  0.65) 0.0104  (17.66) 

April 0.49  (0.36,  0.68) 0.0110  (7.44) 0.31  (0.08,  0.60) 0.0115  (9.28) 

May 0.54  (0.39,  0.75) 0.0117  (6.93) 0.29  (0.08,  0.59) 0.0109  (9.86) 

June 0.46  (0.32,  0.69)  0.0112 (8.69) 0.17 (-0.02,  0.42)  0.0105 (12.44) 

July 0.47  (0.35,  0.65) 0.0109 (8.14) 0.36  (0.14,  0.58) 0.0107 (8.97) 

97) August 0.53  (0.40,  0.72) 0.0115  (7.31) 0.31  (0.09,  0.58) 0.0109  (10.26) 

September 0.51  (0.38,  0.69) 0.0115  (7.67) 0.42  (0.18,  0.73) 0.0112  (8.06) 

October 0.60  (0.46,  0.80) 0.0118  (5.10) 0.44  (0.17,  0.76) 0.0113  (7.12) 

November 0.48  (0.36,  0.64) 0.0113  (6.56) 0.57  (0.30,  0.92) 0.0116  (4.82) 

December 0.29  (0.20,  0.42) 0.0109 (10.64) 0.43  (0.23,  0.69) 0.0113 (6.25) 

The values in parenthesis in the 2nd and 4th columns indicate the 95% confidence band for the values of d; 

those reported in columns 3rd and 5th are t-values. 
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Table 6: Seasonal persistence and trends with sample size: 1947  -  2018 

Month i)   No autocorrelation ii)   With autocorrelation 

January   0.14  (0.00,  0.35) 0.0070  (7.75)  0.01 (-0.25, 0.32) 0.0060  (8.21) 

February 0.18  (0.04,  0.38) 0.0072  (7.20) 0.07  (-0.17, 0.38) 0.0071  (7.30) 

March 0.30  (0.16,  0.51) 0.0076  (6.16) 0.12  (-0.11, 0.45) 0.0075  (7.43) 

April 0.37  (0.23,  0.60) 0.0082  (5.89) 0.12  (-0.13, 0.42) 0.0083  (8.64) 

May 0.40  (0.25,  0.64) 0.0088  (5.76) 0.20  (-0.01, 0.46) 0.0086  (7.47) 

June 0.40  (0.25,  0.68)  0.0089 (5.70) 0.13  (-0.04, 0.36)  0.0094 (9.27) 

July 0.40  (0.27,  0.62) 0.0090 (5.70) 0.27  (0.10,  0.49) 0.0090 (6.90) 

August 0.46  (0.33,  0.68) 0.0090 (4.94) 0.30  (0.13,  0.53) 0.0090 (6.47) 

September 0.46  (0.31,  0.70) 0.0096  (5.41) 0.28  (0.08,  0.59)  0.0093  (6.80) 

October 0.20  (0.25,  0.64) 0.0093  (5.77) 0.22  (-0.02, 0.54) 0.0089  (6.91) 

November 0.24  (0.11,  0.42) 0.0083  (7.38) 0.27  (0.02,  0.60) 0.0083  (5.62) 

December 0.12  (-0.02,  0.31) 0.0080  (8.42) 0.13 (-0.16,  0.54) 0.0080  (6.31) 

The values in parenthesis in the 2nd and 4th columns indicate the 95% confidence band for the values of d; 

those reported in columns 3rd and 5th are t-values. 

 

 

 

 

 

 

 


