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Abstract 

Background. Colorectal carcinomas (CRC) from the serrated route like serrated 

adenocarcinoma and CC showing molecular features of microsatellite instability 

(hmMSI-H) share common features (preference for female genre, right side location, 

mucinous histology and altered CpG methylation patterns) but dramatically differ in 

terms of prognosis, development of immune response and treatment options. Despite 

this fact, to date no expression profiling comparison was carried out to find out which 

functions and genes may be responsible for such differences. Methods. The molecular 

signatures of SAC and hmMSI-H were obtained with transcriptomic arrays and qPCR 

and immunohistochemistry (IHC) were used to validate differentially expressed genes 

at mRNA and protein level. Results. An over-representation of innate immunity 

functions (granulomonocytic recruitment, chemokine production, TLR signaling, 

antigen processing and presentation) were obtained from this comparison and ICAM1 

was more expressed in hmMSI-H whereas two genes (CRCP and CXCL14) were more 

expressed in SAC. These array results were subsequently validated by qPCR and 

CXCL14 and ICAM1 by IHC. Conclusions. Our findings point out specific functions 

and genes which provide a better understanding about the role of immune response in 

serrated pathological route and may be of help for identifying particular molecular 

targets, especially in SAC which lacks molecular targeted therapy. 
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Introduction 

The so-called adenoma-carcinoma sequence is typically characterized by chromosomal 

instability and microsatellite stability (MSS) and by ending up in the development of 

conventional carcinoma (CC) [Vogelstein]. Less is known about the CRCs being the 

end-point of the serrated pathway although high-level of microsatellite instability (MSI-

H), BRAF mutation and CpG island methylation phenotype (CIMP) seems to be driven 

forces in this carcinogenic process [Makinen, 26]. ]. Based on common features as right 

sided location and the identification of remnants of serrated polyps (SP) adjacent to the 

tumor, it was assumed that serrated adenocarcinoma (SAC) and CRC showing 

histological and molecular features of MSI-H [10] (hMSI-H) are both end-points of the 

serrated pathway [108]. Strikingly, SAC and hMSI-H differ in terms of prognosis, and 

treatment options. SAC has been recognized in the latest WHO classification of tumors 

of the digestive system as a new subtype of colorectal cancer (CRC)[1], accounting for 

7.5 to 8.7% of all CRCs[2,3]. Criteria for its histologic diagnosis have been proposed 

[2] and validated in a series of 81 cases [3] and it has been shown to have a worse 

prognosis than conventional carcinoma (CC) [3] displaying a higher frequency of 

adverse histological features at the invasive front including a weak peritumoral 

lymphocyte response [4]. On the contrary, hMSI-H is characterized by the occurrence of 

Crohn-like reaction and peri- and intra-tumoral infiltrates [10]. Moreover, it has been 

recently demonstrated that, based on higher expression of PD-L1 and BRAF mutation, 

hMSI-H patients are candidates for immune checkpoint and tyrosine kinase inhibitors, 

respectively [95,96]. In contrast, the frequency of KRAS mutation in SAC is even high 

than in CC [12, 13] and SAC display mostly MSS thus making them refractory to anti-

EGFR monoclonal antibodies and immune checkpoint inhibitors. For these reasons, the 

aim of this work is, by using molecular profiling, to ascertain which molecular features 
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are responsible for such differences in immune response between SAC and hMSI-H 

with a view to identify useful diagnostic biomarkers. 

 

Material and Methods 

Patients and tumor samples 

The clinico-pathological features of the patients have been previously reported.[3,4] and 

approval for the study was granted by the Local Ethical Board. SACs were diagnosed 

on the basis of criteria proposed by Mäkinen et al.[2] and hMSI-Hs according to prior 

established criteria (mucinous, signet-ring cell, and medullary carcinoma, tumor 

infiltrating and peritumoral lymphocytes, “Crohn-like” inflammatory response, poor 

differentiation, tumor heterogeneity, and “pushing” tumor border).[10] Frozen samples 

of 11 SACs and four hMSI-H were retrieved from the Santa Lucia University Hospital, 

Cartagena, Spain and used for the gene expression microarray study. Validation by 

qPCR was performed upon frozen specimens of 12 SAC and nine hMSI-H and, in 

addition, adjacent normal mucosa was also analyzed from seven SACs and six hMSI-H. 

Paraffin blocks of 10 SAC and 15 matched hMSI-H, included in previous works, [8,13] 

were used for immunohistochemistry (IHC) validation. Clinico-pathological features of 

the study cases are shown in Table 1. The study was approved by the Hospital Ethics 

Committee and was carried out in accordance with the ethical standards laid down in the 

1964 Declaration of Helsinki and its later amendments. Written informed consent was 

obtained from all patients. 
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RNA extraction 

A volume of approximately 10mm3 was extracted from each frozen tissue using the 

disposable sterile biopsy punch Acupunch 2mm (AcudermInc, Lauderdale, FL, USA). 

RNA was extracted following the manufacturer´s instructions (Qiagen, Hilden, 

Germany). Briefly, tissue was disrupted and homogenized in 700µl of Qiazol (Qiagen 

ref:1023537) using a Tissueruptor by Qiagen for 20 seconds. The homogenate was 

incubated at room temperature for 5 minutes. After adding 140µl of chloroform and 

centrifuging at 12,000xg for 15 minutes at 4ºC, 350µl of the aqueous phase was 

subjected to automatic total RNA extraction using the Qiacube equipment and the 

miRNeasy Mini Kit (ref:217004), both provided by Qiagen.  

 

RNA labelling and microarray hybridisation  

Total RNA was quantified by spectrometry (NanoDrop ND1000, NanoDrop 

Technologies, Wilminton, Delaware USA) and fragment size distribution was analysed 

by RNA 6000 Pico Bioanalyzer assay (Agilent Technologies, Palo Alto, California 

USA). RNA 150ng was concentrated in a SpeedVac to a working dilution and used to 

produce Cyanine 3-CTP-labeled cRNA using the Low Input Quick Amp Labelling Kit, 

One-Color (Agilent p/n 5190-2305) according to the ‘One-Color Microarray-Based 

Gene Expression Analysis’ protocol Version 6.0 (Agilent p/n G4140-90040). This 

method uses T7 RNA polymerase which simultaneously amplifies target material and 

incorporates cyanine 3- labelled CTP. A 2000ng cRNA product was hybridized with 

Whole Human Genome Oligo Microarray Kit (Agilent p/n G2519F-014850) containing 

41,000+ unique human genes and transcripts. Arrays were scanned in an Agilent 
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Microarray Scanner (Agilent G2565BA) according to the manufacturer’s protocol and 

data extracted using Agilent Feature Extraction Software 10.7.1 following the Agilent 

grid template 014850_D_F_20100430 protocol GE1_107_Sep09 and the QC Metric Set 

GE1_QCMT_Sep09. 

 

Microarray data analysis 

Agilent raw data were pre-processed using Agilent background correction and quantile 

normalisation was applied to obtain homogeneous scales in all samples. Differential 

expression analysis was performed on normalized data using the Limma (Linear Models 

for Microarray Data) package by Bioconductor 

(www.bioconductor.org/packages/2.3/bioc/html/limma.html) and comparison was made 

between SAC (n=11) and hMSI-H (n=4). The p-values were corrected by multiple 

testing using the Benjamini and Hochberg method[90] to give adjusted p-values. In 

order to further identify cellular function differences between SAC and hMSI-H, gene 

expression data were analysed by Gene Set Enrichment Analysis (GSA) using the 

FatiScan tool of the Babelomics suite (www.babelomics.org).[91] We used different 

functional annotation databases, namely the pathways from the KEGG database 

(www.genome.jp/kegg) and the Biological Process, Molecular Function and Cellular 

Component from Gene Ontology (GO) (www.geneontology.org). Paintomic 

representations on significant KEGG pathways were used to portray those proteins 

whose gene expression was higher in SAC (blue boxes) or higher in hMSI-H cases (red 

boxes), the intensity of the colour indicating the strength of this difference [92]. 

Differentially expressed GO biological process were represented as scatterplot and 

TagPlots using REVIGO online package [93].   



7 

 

 

Quantitative PCR  

The retrotranscriptase reaction was performed from a total of 1 µg of DNAseI-treated 

RNA using the DyNAmo cDNA synthesis Kit (ref:F470L) provided by Thermo 

Scientific (Rockford, IL). Five microlitres of 1:5 diluted cDNA was added to the qPCR 

reaction containing 12.5μl 2X QuantiTect SYBR Green PCR Kit (ref:204145) by 

Qiagen and 300nM of each primer in a total volume of 25μl. qPCR was performed on a 

7500F real time PCR system by Applied Biosystems (Foster City, CA, USA) according 

to the instruction manual and following the standard protocol: 50ºC 2min, 95ºC 10min, 

40 cycles of 95ºC 15sec, 60ºC 1min and a melt curve stage consisting in 95ºC 15sec, 

60ºC min, 95ºC 30sec and 60ºC 30sec. The relative quantitation was done by the 2-ΔCt 

method using β-actin as housekeeping gene. Primers were designed by using primer3 

software and sequences and fragment size are described in Table 2. 

 

Immunohistochemistry 

The validation subset consisted of 40 SC and 20 hMSI-H cases matched for gender, age, 

location. Blocks from each case were selected based on larger tumor invasive front 

areas and all stainings were performed on whole tissue sections using the Benchmark 

Ultra Ventana and the Optiview DAB IHC V5 kit. Details on antibody (purveyor, 

reference, type, (clone); antigen retrieval conditions (buffer, temperature, time); 

incubation (temperature, time) and dilution are as follows: CRCP. Sigma Aldrich, 

HPA007216, polyclonal; CC1, basic, 95ºC, 56min; and room temperature (RT), 

overnight (ON) and 1:350. CXCL14: Abcam, ab3662, polyclonal; C1, basic, 95ºC, 
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56min; RT, ON and 1:100. ICAM1: Cell Signalling Tech, #4915, polyclonal; CC2, 

acid, 95ºC, 48min; RT, ON and 1:300. Endogenous peroxidase activity was blocked 

using 0.5% H2O2 for 5 minutes. For visualization of the antigen, the sections were 

immersed in 3,3'-diaminobenzidine (DAB) and counterstained with Harris´ 

haematoxylin for 5 minutes. As controls, normal liver was used for CRCP, brain for 

CXCL14 and kindney for ICAM1 as suggested by the antibody purveyors. These 

markers were evaluated at the tumor invasive front by considering a staining intensity 

score (1=none or weak staining, 2=moderate, 3=strong) in a given area and a stained 

area score (A< one-third, B=between one- and two-thirds, C> two-thirds). For statistical 

analysis, both intensity and distribution were considered and those immunoscores being 

1B or less were assumed as negative whereas those being 2B or higher were considered 

positive.  

 

Statistical analysis 

Statistical analysis was performed using SPSS (Version 15.0, Chicago, IL) package.  

For checking the relationship between mRNA expression by qPCR and histological 

diagnoses the Mann-Whitney’s U test was used. Statistical significance in the 

immunohistochemistry study was assessed using Pearson χ2 or Fisher´s exact test when 

indicated.  
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Results 

Differentially expressed functions 

Bioinformatic analysis revealed a considerable number of KEGG pathways and Gene 

Ontology terms differentially expressed in SAC vs. hMSI-H (levels from 3 to 19):  56 

KEGG pathways; 529 GO biological processes (BP); 56 GO cellular component (CC) 

and 101 GO molecular functions (MF). As shown in supplementary material S1, apart 

from differentially represented KEGG pathways dealing with neurodegenerative 

diseases (hsa05014, hsa05012), autoimmune diseases (has04940, hsa05320)  and 

protein and aminoacid metabolism (hsa00270, hsa00280, hsa03050, hsa00310, 

hsa00380) it is remarkable the over-representation of immune response pathways 

(intestinal IgA production (hsa04672, leukocyte transendothelial migration (hsa04670), 

NOD- (hsa04621) and Toll-like receptor signalling (hsa04620), Adipocytokine 

signalling (hsa0920), complement cascade (hsa04610), antigen procession and 

presentation (hsa04612), primary immunodeficiency (hsa05340), Fc epsilon RI 

signaling pathway (hsa04664), B cell receptor signalling pathway (hsa04662), Fc 

gamma R-mediated phagocytosis (hsa04666), allograft rejection (hsa05330), Graft-

versus-host disease (hsa05332). Likewise, differentially expressed GO biological 

processes were related to immune response, such as antigen processing and 

presentation, humoral immunity and cytokine (Fig. 1). More precisely, supplementary 

material S1 points out molecular functions associated with neuropeptide binding, MHC 

and chemokine activities, G-coupled receptors and GTPases, NADH dehydrogenase 

activity and actin binding. Interestingly, when KEGG cytokine-cytokine receptor 

interaction panel was represented with Paintomics, it was observed that the interactions 

of some cytokines (especially chemokines from the C-X-C family) were typical from 
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hMSI-H (CXCL10, CXCL11, IL8, OSM, IL-1B, IFNG and CSF2) whereas in SAC 

almost exclusively involved CXCL14. Other cytokine families such as TGF-β and IL17 

were less differentially implicated in SAC and hmMSI-H (Supplementary material 

S2A). KEGG colorectal cancer panel also showed a dissimilar representation of 

pathways in the comparison of these tumour types whereas the antigen processing and 

presentation panel showed an over-representation in hmMSI-H of molecules 

particularly involved in MHC class I pathway (Supplementary material S2B and S2C, 

respectively). 

 

Differentially expressed genes 

The analysis of microarray data identified 1,144 differentially expressed genes, 533 of 

which were more expressed in SAC than in hmMSI-H and 611 more expressed in 

hmMSI-H. A list of the 34 genes; 17 more expressed in SAC and 17 in hmMSI-H is 

provided as Supplemental material S1. In general terms, genes overexpressed in SAC 

play roles in GTPases signalling and in apoptosis / cell cycle control (GPR56, CRCP, 

PLEKHQ3, TUFT1, FANK1, CDK20, CDK6) whereas those over-represented in 

hmMSI-H were more involved in immune response (LILRA3, CSF3R, CCL3L3, 

ICAM1, FCGR2B, LILRB3, amongst others). Based on the extent of differential 

expression grade, the importance of the biological functions, the design of suitable 

primers and the availability of antibodies we decided to validate CXCL14, CRCP and 

ICAM1 by qPCR and IHC. According to microarray results, CRCP and CXCL14 were 

overexpressed in SAC whereas ICAM1 was overexpressed in hmMSI-H. 
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Validation by qPCR 

Gene expression of CRCP, CXCL14 and ICAM1 was assessed by quantitative PCR in a 

series incorporating more hmMSI-H cases and one more SAC. In order to quantify the 

presence of such genes in normal tissue, healthy mucosa adjacent to tumor was also 

analyzed. As shown in Figure 2, when comparing tumor and normal mucosa, CXCL14 

was more expressed in normal than in tumor tissue (7.35±2.2 vs. 3.63±1.2; p=0.002); 

especially when hmMSI-H tumors were compared to their corresponding adjacent 

mucosa (9.64±4.4 vs. 1.26±0.7; p=0.003). In contrast, ICAM1 was more expressed in 

tumoral than in normal tissue (0.03±0.009 vs. 0.009±0.003; p=0.019), this difference 

being more relevant in hmMSI-H cases where tumor tissues expressed 10 times more 

ICAM1 than neighboring healthy mucosa (0.07±0.03 vs. 0.007±0.003; p=0.003). qPCR 

assays on cancer specimens validated microarray; CRCP and CXCL14 were more 

expressed in SAC than in hmMSI-H (0.22±0.07 vs. 0.04±0.02; p=0.001 and 4.9±1.7 vs. 

1.2±0.7; p=0.003, respectively) whereas ICAM1 was more expressed in hmMSI-H than 

SAC (0.07±0.03 vs. 0.01±0.003; p=0.003).  

 

Validation by immunohistochemistry 

In order to investigate whether differential expressed genes would have an impact on 

protein expression, immunohistochemistry was performed in an extended series. CRCP 

showed a membranous and cytoplasmic staining in normal colorectal epithelial cells 

with no expression on lamina propria cells; CXCL14 was also cytoplasmic and was 

found in neuroendocrine cells from the epithelial crypts in cells from the lamina propria 

whereas ICAM1 expression was absent in colon glands and present in different stromal 
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cells including endothelial cells (Fig 3). CRCP and CXCL14 were also expressed in 

tumor cells whereas ICAM1 was expressed in stromal cells and, stainings were 

evaluated in the corresponding type of cell, accordingly. Results are shown in Table 4 

and representative staining images in Figure 4. CRCP staining was not significantly 

associated with tumor subtype as positive expression was not more frequently observed 

in SAC compared to hmMSI-H (45% vs. 50%; p=0.463). Nevertheless, and in 

agreement with the array results, CXCL14 was more expressed in SAC than in hmMSI-

H (14/40 (35%) vs. 2/20 (20%); p=0.0353) and ICAM1 more expressed in hmMSI-H 

than in SAC (15/20 (75%) vs. 18/40 (45%); p=0.0194.  

 

Discussion 

Despite recent different molecular classifications for colorectal cancer have been 

proposed with a grade of overlap [Guinney, Rodriguez-Salas], CRCs are currently 

diagnosed based their histology [1] and just a few biomarkers are currently used to 

determine the most suitable treatment. It is for this reason important to correlate 

molecular profiling with histological features, this issue being especially critical in the 

serrated pathway for colorectal carcinogenesis since it is not as clearly discerned as the 

conventional adenoma-carcinoma. Furthermore, the immune surveillance awake against 

tumour is now considered as a breakthrough in cancer treatment and in the serrated 

pathological pathway two CRC subtypes can be found with typical weak (SAC) or 

abundant (hMSI-H) immune responses. Therefore, as no previous studies have 

compared the molecular features of serrated pathway CRCs, we aimed to characterize 

the biology of these tumours in order to identify which steps in the complex immune 

response against the tumor could need to be targeted for giving SAC a specific 
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histology-based treatment. With no prior selections of functions our results demonstrate 

that the immune features are what basically make SAC and hMSI-H different at the 

molecular level.  More specifically, activities dealing with innate immunity, antigen 

processing via MHC class I, chemokines from the C-X-C family and transendothelial 

leukocyte migration are more characteristic of hmMSI-H. In fact, the main immune 

response against cancer involved tumour antigen presentation by class I MHC and 

subsequent CD8 T cell activation. Interestingly, amongst most significantly over-

expressed genes in hmMSI-H (Table 3) there is an important representation of those 

coding for proteins involved in carbohydrate ligand binding implicated in immune 

response, such as SIGLEC5 which codes for a cell surface lectin with sialic acid 

recognition sites for the first Ig V set domain [Barb]. In addition, CLEC4D and 

CLEC4A also, over-expressed in hmMSI-H, encode for members of the C-type 

lectin/C-type lectin-like domain (CTL/CTLD) superfamily which have diverse 

functions, such as cell adhesion, cell-cell signalling, binding to carbohydrate 

endogenous and pathogenic ligands, and playing roles in inflammation and immune 

response acting as pattern-recognition and antigen-uptake receptors and also signalling 

cytokine production [Meyer-Wentrup]. A very interesting molecule in immune response 

activated by pathogen carbohydrates and cytokines, such as TNF-α and IL-1, is the 

intercellular cell adhesion molecule-1 (ICAM1 or CD54), a cell surface glycoprotein 

that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules [101]. 

ICAM1 functions as a co-stimulator on antigen presenting cells, binding to its receptor 

LFA-1 (leukocyte function associated antigen-1) on the surface of T cells during antigen 

presentation [102]. Apical localization of ICAM1 on endothelial cells (or basolateral 

localization on epithelial cells) is a prerequisite for leukocyte trafficking through the 

endothelial (or epithelial) barrier, thus mediating pathogen invasion as well as host 
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defense, a pattern also observed in tumors [101]. Given that in hmMSI-H, the over-

expressed gene ICAM1 is implicated in functions characteristic of this tumor type such 

as antigen processing and presentation, cytokine production and leukocyte 

transendothelial migration, we decided to validate this gene using qPCR and IHC. The 

results confirm at the mRNA and protein levels that ICAM1 is over-expressed in 

hmMSI-H compared to SAC and when comparing tumour versus normal adjacent 

mucosa, ICAM1 was found to be more expressed in tumor than in normal tissue. In 

agreement with our findings, Astarci et al reported, using tumor samples from colon 

cancer patients, that non-transformed normal cells (well-differentiatied) showed no 

immunohistochemical expression of ICAM1, but the poorly differentiated tumor cells 

showed higher expression [Astarci] Moreover, the incidence of lymph node or liver 

metastasis was significantly lower in patients with ICAM1-positive tumors than in those 

with ICAM1-negative tumors, the presence of tumour infiltrating lymphocytes being 

more frequently observed in the ICAM1-positive tumors than in the ICAM1-negative 

tumors. The prognosis of the patients with ICAM1-negative tumors was significantly 

poorer than that of those with ICAM-1-positive tumors [Maeda]. All these findings are 

concordant with ours as hmMSI-H cancer cells are less differentiated than typical gland-

forming SAC cells and develop higher immune response at the tumor 

microenvironment. Other reports have related immunohistochemical ICAM1 expression 

with better prognosis as it was inversely associated with M2 macrophage infiltration 

and with the metastasis index in human colon tumors and that loss of ICAM1 

accelerated liver metastasis of colon carcinoma cells. [Yang]. More specifically, 

ICAM1 downregulation has been associated with immunosuppressant signals; 

Michielsen et al. observed that pre-treatment of monocyte derived dendritic cells with 

tumour conditioned media obtained from colorectal tumour explant culture inhibited the 
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up-regulation of ICAM1 in response to LPS, enhancing IL-10 while reducing IL-12p70 

secretion [Michielsen]. Likewise, it has been demonstrated that mature miR-222 and -

339 suppress ICAM1 expression on tumor cells, thereby down-regulating the 

susceptibility of tumor cells to cytotoxic T lymphocytes (CTL)-mediated cytolysis 

[Ueda] and some other authors showed that the enhanced expression of the 

costimulatory molecules CD40, CD48 and ICAM1 on target cells results in an increased 

state of stimulation of CD8+ T cells, and consequent increased lysis of target cells, this 

effect being mediated mainly through ICAM1 [Slavin-Chiorini]. By studying colorectal 

carcinoma tissue from 96 patients, Maurer et al. concluded that the over-expression of 

ICAM-I might prevent cell-cell disruption and, hence, tumor dissemination, and this 

expression might favor host anti-tumor defense by trafficking of lymphocytes 

[Maurer].Taking together these reports it could be inferred that ICAM1 is an important 

molecule favoring the leukocyte migration to the hmMSI-H microenvironment and 

being able to contribute to an efficient tumor antigen presentation and subsequent 

activation of CTL in this CRC subtype.  

Previous works comparing SAC and CC molecular signatures highlighted that anti-

apoptosis, neural differentiation, cytoskeleton, GTPases, calcium signaling, response to 

hypoxia, tyrosine kinase receptor (TKR)-ERK pathways and the Wnt/β-catenin pathway 

are characteristic activities of SAC [Laiho, Conesa-Zamora IJC, García-Solano IJC, 

Conesa-Zamora Clin Epigen]. Accordingly, amongst the most expressed genes in SAC 

compared to hmMSI-H, some of these functions are also present: apoptosis (FANK1) 

[Wang], neural markers (GTF2IRD2, CRCP, TUFT1), cytoskeleton (MTMR8), GTPases 

(GPR56, PLEKHG3, CRCP), calcium binding (KCNMB3, CRCP), response to hypoxia 

(TUFT1), TKR-ERK signaling (IGFBP2, CDK6, CDK20) and Wnt/β-catenin pathway 
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(AXIN2, FRZB). Given its role as part of a receptor complex for a small neuropeptide, 

its participation in the regulation of GTPase function, in calcium signaling and in the 

granulocytic differentiation, CRCP was chosen to validate the microarray result as 

upregulated in SAC compared to hmMSI-H. According to our results, CRCP might play 

some part in the neoplastic process as it is more expressed in tumor than in normal 

adjacent mucosa. In agreement with the array CRCP was over-expressed in SAC as 

assessed by qPCR. However, we could not validate this finding at the protein level. 

Possible explanation for this fact could be that, as immunohistochemistry does not give 

information on protein functionality or isoform type, nor whether the protein is 

accumulated but not recently expressed nor which of one of the five protein-coding 

transcripts of CRCP is being detected. CRCP is part of a membrane receptor complex 

(CGRP) required for signal transduction at calcitonin gene-related peptide inducing, by 

interacting with GTPases, the activation of protein kinases A and C by increasing 

cAMP and calcium level in the cytosol, respectively and subsequently, activating many 

potential downstream effectors in cells [ Evans]. Previous works have reported a role of 

CRCP in enhancing the formation of granulomonocytic, but not erythroid or mixed, 

colonies by purified human CD34(+) cells [Harzenetter]. This role in granulopoiesis 

might have some consequences in the differentiation of the granulocytic population in 

the tumour microenvironment, thus favoring a tolererogenic immune state. This 

hypothesis deserves future studies like evaluating the effect on proliferation and 

invasion of the reported stable peptide antagonists to CGRP in the tumour milieu 

[Miranda].  

Our array results also pointed out CXCL14 (also known as BRAK) as another 

interesting molecule with implications in the immune regulation. CXCL14 is a 
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chemokine from the C-X-C family which, in contrast to other members of this group, is 

upregulated in SAC compared to hmMSI-H. With the aim of finding some clues of 

whether CXCL14 could have a role in the shift from reactive to tolerogenic immune 

response, we decided to validated it by qPCR and IHC, thus observing an agreement 

with array results using these two techniques. Previous works have associated stromal 

CXCL14, as we evaluated in CRC, with shorter survival in ovarian and breast cancer 

[Zhao, Sjöberg]. Of note, this marker was more expressed in basal-like breast carcinoma 

cases which shares characteristics with SAC such as bad prognosis and Fascin1 over-

expression [Rodríguez-Pinilla, Conesa-Zamora IJC]. Whereas the stromal expression of 

CXCL14 seemed to be associated with worse prognosis, some studies, including the 

transfection of the gene in cancer cell culture, indicated a tumor suppressor role of 

CXCL14 [Lin]. In agreement with our results, Knight et al. observed, using RNAseq, 

that CXCL14 expression in sigmoid and rectum is mainly stromal and not epithelial 

[Knight] and Lin et al. reported that mRNA and protein CXCL14 expression were 

markedly reduced in colorectal carcinoma compared to normal tissues [Lin] as it was 

previously observed for other cancer types [Cao]. Interestingly, CXCL14 is a potent 

chemoattractant for neutrophils, and weaker for dendritic cells, but inactive to 

monocytes, NK cells, and T and B lymphocytes. [Cao]. This cytokine is implicated in 

the homeostasis of monocyte-derived macrophages rather than in inflammation and it 

was reported that a CXCL14-driven recruiting of immature dendritic cells and 

regulatory T cell (Tregs) after a stroke [Lee]. Using recombinant CXCL14, 

Shellenberger et al. showed in vitro, that this chemokine bound immature dendritic cells 

with high affinity and blocked endothelial cell chemotaxis [Shellenberger] thus, 

possibly making difficult the transendothelial migration of immune cells to the tumor 

environment as opposite of ICAM1. In turn, Meuter et al, using a murine model, 
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demonstrated that CXCL14 was dispensable for the homeostatic recruitment of antigen-

presenting cells toward the periphery and for Langerhans cells functionality [Meuter]. 

All these evidences might play an important role in SAC by recruiting 

immunotolerogenic cells, such as Treg and immature dendritic cells, and not those cells 

involved in fighting against the tumor, which are typically NK and T cells, thus 

enabling the immune escape characteristic of this tumor type. Moreover, it has been 

demonstrated that hypoxia inducible factor-1α (HIF-1α) drives CXCL14 expression via 

directly binding to the CXCL14 promoter [Lee] being this evidence particularly relevant 

as upregulation of HIF-1α and response to hypoxia are characteristic of SAC compared 

to conventional colorectal carcinoma [Laiho, Tuomisto, Conesa-Zamora].  

Although it is not yet clear the role of ICAM1, CRCP and CXCL14 in cancer and 

conflicting findings have been reported, it seems that in vivo studies are needed to 

unveil their contribution in the recruitment of granulocytic and monocytic populations 

in the tumor microenvironment and how this impact the immune response against 

colorectal cancer. In conclusion, our study suggests that the dramatic differences of 

SAC and hmMSI-H in terms of immune response against the tumor might be due to 

distinct functions associated with the innate immunity such as endothelial activation, 

granulomonocytic recruitment, antigen presentation via MHC class I and chemokine 

production and this information could be of help for the treatment of SAC, which lacks 

options of molecular targeted therapy. 
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Tables 

Table 1. Demographic and pathological features of the study cases. 

  microarray training set qPCR validation set IHC validation set 

  SAC hmMSI-H    SAC hmMSI-H   SAC hmMSI-H   

  n=11 (%) n=4 (%) p-value n=12 (%) n=9 (%) p-value n=40 (%) n=20 (%) 
p-

value 

Gender                   

Female 5 (45.5) 4 (100)   10 (43.5) 7 (77.8)   7 (70) 8 (53.3)   

Male 6 (54.5) 0 (0) 0.029 13 (56.5) 2 (22.2) 0.080 3 (30) 7 (46.7) 0.405 

Age (SD) 65.1[22.4] 61 [22.6] 0.759 68.5 [15.99] 66.4 [15.22] 0.942 71.5 [8.8] 66.3 [14.0] 0.449 

Localization                   

Proximal 9 (81.8) 4 (100)   16 (69.6) 9 (100)   8 (80) 14 (93.3)   

Distal/rectum 2 (18.2) 0 (0) 0.360 7(30.4) 0 (0) 0.061 2 (20) 1 (6.7) 0.315 

Dukes´stage                   

A 3 (27.3) 0 (0)   4 (17.4) 0 (0)   0 (0) 0 (0)   

B 1 (9.1) 2 (50)   4 (17.4) 4 (44.4)   2 (20) 6 (40)   

C 7 (63.6) 2 (50) 0.162 15 (65.2) 5 (55.6) 0.169 8 (80) 9 (60) 0.294 

WHO grade                   

High 1 (9.1) 0 (0)   12 (52.2) 0 (0)   4 (40) 1 (6.7)   

Low 10 (90.9) 4 (100) 0.533 11 (48.8) 9 (100) 0.006 6 (60) 14 (93.3) 0.041 

Type                   

Non-mucinous 7 (63.6) 2 (50)   13 (56.5) 6 (66.7)   8 (80) 12 (80)   

Mucinous 4 (36.4)    2 (50) 0.634 10 (43.5) 3 (33.3) 0.597 2 (20) 3 (20) 1.000 

SAC: Serrated adenocarcinoma; hmMSI-H: Colorectal carcinoma showing molecular and histological 

features of microsatellite instability; qPCR: quantitative polymerase chain reaction. IHC: 

Immunohistochemistry. SD: Standard deviation. WHO: World Health Organisation 
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Table 2. Sequences and amplicon sizes for the primers used in this study  

Gene Primer sequence (5´-3´) fragment size (bp) 

CRCP Fw: GCCACAAGTTGACCAAAGCT 97 

  Rv: CCGCTCTTCACTCTCTTCCA   

CXCL14 Fw: CTACAGCGACGTGAAGAAGC 84 

  Rv: ACGCTCTTGGTGGTGATGAT   

ICAM1 Fw: GTGACCGTGAATGTGCTCTC 82 

  Rv: CCTGCAGTGCCCATTATGAC   

B-ACTIN Fw: GAGCTACGAGCTGCCTGACG 122 

  Rv: GTAGTTTCGTGGATGCCACAG   
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Table 3. Selection of the 34 most differentially expressed genes (17 more expressed in 

SAC and 17 in hmMSI-H) as obtained from the array analysis. 

Gene ID Gene description >expressed in  raw.p.value adj.p.value 

FANK1 fibronectin type III and ankyrin repeat domain 1  SAC 7,49E+07 0.0005 

GTF2IRD2 GTF2I repeat domain containing 2 SAC 9,53E+06 0.0006 

MTMR8 myotubularin related protein 8 SAC 9,93E+07 0.0006 

TMEM8B transmembrane protein 8B SAC 1,58E+08 0.0008 

FRZB frizzled related protein SAC 2,37E+08 0.0011 

IYD iodotyrosine deiodinase SAC 2,71E+08 0.0011 

GPR56 adhesion G protein-coupled receptor G1  SAC 3,25E+08 0.0013 

KCNMB3 K+ Ca2+-activated channel subfamily M regulatory β3  SAC 3,36E+08 0.0016 

PLEKHG3 pleckstrin homology and RhoGEF domain containing G3 SAC 4,98E+08 0.0017 

CRCP calcitonin gene-related peptide-receptor component protein SAC 5,25E+06 0.0017 

TUFT1 tuftelin 1 SAC 5,57E+08 0.0018 

ZNF140 zinc finger protein 140  SAC 6,32E+08 0.0019 

CDK20 cyclin dependent kinase 20 SAC 6,35E+08 0.0019 

IGFBP2 insulin like growth factor binding protein 2  SAC 6,84E+08 0.0020 

AXIN2 axin 2 SAC 7,29E+08 0.0020 

CDK6 cyclin dependent kinase 6  SAC 8,09E+06 0.0021 

CXCL14 C-X-C motif chemokine ligand 14 SAC 8,22E+08 0.0021 

GPR109B hydroxycarboxylic acid receptor 3  hmMSI-H 3,04E+07 0.0003 

LILRB3 leukocyte immunoglobulin like receptor B3  hmMSI-H 2,83E+07 0.0003 

CD300A CD300 glycoprotein involved in immune response hmMSI-H 2,78E+07 0.0003 

SLC11A1 solute carrier family 11 member 1 hmMSI-H 2,74E+06 0.0006 

GPR84 G protein-coupled receptor 84 hmMSI-H 2,42E+07 0.0003 

CLEC4D C-type lectin domain family 4 member D  hmMSI-H 2,10E+07 0.0002 

CD14 CD14 molecule involved in innate immune response hmMSI-H 2,07E+07 0.0002 

FCGR2B Fc fragment of IgG receptor IIb hmMSI-H 1,75E+07 0.0002 

CCL3L3 C-C motif chemokine ligand 3 like 3 hmMSI-H 1,72E+07 0.0006 

SOD2 superoxide dismutase 2  hmMSI-H 1,30E+07 0.0002 

ICAM1 intercellular adhesion molecule 1 hmMSI-H 1,12E+07 0.0002 

MCHR1 melanin concentrating hormone receptor 1 hmMSI-H 1,02E+07 0.0002 

CSF3R colony stimulating factor 3 receptor hmMSI-H 5,69E+05 0.0001 

FPR2 formyl peptide receptor 2 hmMSI-H 5,25E+06 0.0001 

SIGLEC5 sialic acid binding Ig like lectin 5 hmMSI-H 4,77E+06 0.0001 

CLEC4A C-type lectin domain family 4 member A  hmMSI-H 2,37E+06 0.0001 

LILRA3 leukocyte immunoglobulin like receptor A3 hmMSI-H 2,11E+06 0.0001 



29 

 

SAC: Serrated adenocarcinoma; hmMSI-H: Colorectal carcinoma showing molecular and histological 

features of microsatellite instability, For simplification purposes, pseudogenes and non-coding RNA were 

excluded from this table. Genes chosen for validation by qPCR and IHC are written in bold letters 

 

 

 

 

 

Table 4. Immunohistochemical expression of CRCP, CXCL14 and ICAM proteins in 

SAC and hmMSI-H CRC. 

Protein Tumor 
type 

Negative  
n (%) 

Positive 
n (%) 

p-value 
    

CRCP SAC 22 (55) 18 (45)   

hmMSI-H 10 (50) 10 (50) p=0.4628 
CXCL14 SAC 26 (65) 14 (35)   

hmMSI-H 18 (90) 2 (10) p=0.0353 
ICAM1 SAC 22 (50) 18 (45)   

hmMSI-H 5 (25) 15 (75) p=0.0194 

SAC: Serrated adenocarcinoma; hmMSI-H: Colorectal carcinoma showing molecular and 

histological features of microsatellite instability. 
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Figure legends 

Figure 1. Terms of Gene Ontology Biological Processes differentially represented 

between SAC and hmMSI-H. A. The scatterplot shows the remaining biological 

processes which are differentially expressed between SAC and hMSI-H after the 

redundancy reduction. The graph is represented in a two dimensional space derived by 

applying multidimensional scaling to a matrix of the GO terms’ semantic similarities 

[93]. B. The Tag Cloud displayed words which are differentially represented from the 

SAC vs. hMSI-H comparison with larger and darker letters signifying stronger 

overrepresentation. Underrepresented keywords are not displayed in the Tag Cloud. 

Figure 2.  qPCR results of the mRNA expression of DIO3 and FOXD2 genes in SAC 

and CC tumoral tissue as well as in adjacent non-tumoral specimens. * indicates 

statistical significance. 

Figure 3. Immunohistochemical expression of CRCP, CXCL14 and ICAM1 in normal 

colorectal mucosa. Original 20X magnification. 

Figure 4. Immunohistochemical expression of CRCP, CXCL14 and ICAM1 in serrated 

adenocarcinoma (SAC) and CRC showing histological and molecular features of 



31 

 

microsatellite instability (hmMSI-H). Original 20X magnification in all except in 

ICAM1 in SAC (X40). 

 

Supplementary material 

Supplementary material 1. Differentially expressed KEGG pathways and Gene 

Ontology terms in the comparison between SAC and hmMSI-H transcriptomic analysis 

(p-adjusted <0.05)  

Supplementary material 2. Paintomics representations of KEGG pathways A. Cytokine-

cytokine receptor interactions illustrating differences in the contribution of specific 

cytokines and certain cytokine families (mainly, CXC chemokines) in each type of CRC 

subtype. B. Colorectal cancer pathway which shows an over-representation of TGFB1, 

PIK3CG, RAC2 and BIRC5 activities in SAC and those of MAPK10, AXIN2, TCF7 

and mismatch repair proteins MLH1 and MSH2 in hmMSI-H. C. Antigen processing 

and presentation panel illustrates a over-expression in hmMSI-H of genes whose 

proteins are involved in antigen processing through MHC class II and, especially class I. 

Proteins whose gene expression was higher in SAC are depicted in blue boxes those 

higher in hmMSI-H cases are represented in red boxes, the intensity of the colour 

indicating the strength of this difference [92] 

 

 

 


