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ABSTRACT Control in HVAC (heating, ventilation and air-conditioning) systems of buildings is not trivial,
and its design is considered challenging due to the complexity in the analysis of the dynamics of its nonlinear
characteristics for the identification of its mathematical model. HVAC systems are complex since they consist
of several elements, such as heat pumps, chillers, valves, heating/cooling coils, boilers, air-handling units,
fans, liquid/air distribution systems, and thermal storage systems. This article proposes the application of
LAMDA (learning algorithm for multivariable data analysis) for advanced control in HVAC systems for
buildings. LAMDA addresses the control problem using a fuzzy classification approach without requiring
a mathematical model of the plant/system. The method determines the degree of adequacy of a system for
every class and subsequently determines its similarity degree, and it is used to identify the functional state or
class of the system. Then, based on a novel inferencemethod that has been added to LAMDA, a control action
is computed that brings the system to a zero-error state. The LAMDA controller performance is analyzed via
evaluation on a regulation problem of an HVAC system of a building, and it is compared with other similar
approaches. According to the results, our method performs impressively in these systems, thereby leading to
a trustable model for the implementation of improved building management systems. The LAMDA control
performs very well for disturbances by proposing control actions that are not abrupt, and it outperforms the
compared approaches.

INDEX TERMS HVAC control, control engineering, fuzzy logic, artificial intelligence, LAMDA.

I. NOMENCLATURE
4SID Subspace-based

State-Space System Identification
ACODAT Autonomous Cycle of Data Analysis Tasks
AI Artificial Intelligence
ANFIS Adaptive-Network-based Fuzzy Inference

System
ANN Artificial Neural Networks
ARIMA Autoregression Integrated Moving Average
ARMAX Autoregression Moving Average

eXogenous
ARX Auto Regression eXogenous
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BMS Building Management System
CVaR Conditional Value at Risk
DAT Data Analysis Tasks
DMC Dynamic Matrix Control
EEV Electronic Expansion Valve
EHAC Extended Horizon Adaptive Control
EPSAC Extended Predictive Self-Adaptive Control
FAN Fuzzy Adaptive Network
FBC Feedback Controllers
FDI Fault Detection and Isolation
FFBP Feed-Forward

Back-Propagation
FPGA Field-Programmable Gate Arrays
FL Fuzzy Logic
GA Genetic Algorithms
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GAD Global Adequacy Degree
GPC Generalized Model Control
HAD Higher Adequacy Degree
HVAC Heating, Ventilation and Air-Conditioning
IT Information Technology
LAMDA Learning Algorithm for Multivariate Data

Analysis
JIT Just in Time
LAMDA Learning Algorithm for Multivariable Data

Analysis
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
ML Machine Learning
MAC Model Algorithmic Control
MAD Marginal Adequacy Degree
MIMO Multiple-input and Multiple-output
MLP Multilayer Perceptron
MPC Model Predictive Control
NNARX Neural Network Auto Regression eXoge-

nous
PDF Probability Density Function Approxima-

tion
PFC Predictive Functional Control
PID Proportional, Integral and Derivative
PLC Programmable Logic Controller
RBF Radial Basis Function
RD Robust Distance
RGA Relative Gain Array
RNN Recurrent Neural Networks
SARIMA Seasonal Autoregressive Integrated Moving

Average
SISO Single Input and Single Output
SP Set Point
SVM Support Vector Machines
TCBM Topological Case Base Modeling
T-S Takagi-Sugeno
WLAC Weighted Locally Adaptive Clustering

II. INTRODUCTION
Buildings require most of the total supplied energy, with
breakdowns of 40% to 42% inWestern countries [1]–[4]. This
energy feeds the elevators, plugged-in IT equipment, elec-
tronic devices, and lights, along with the HVAC system and
the security and fire systems. Above all, the HVAC facility
consumes most of the energy that is supplied to the building.
As energy production remains contaminating and expensive
and has substantial negative impacts on the environment and
finances, the optimization of building energy with a focus
on HVAC systems is necessary. The energy saving prob-
lem can be addressed by retrofitting the building architec-
ture, renovating old installations or adding intelligence to
the BMS, thereby leading to a savings of up to 30%. It is
far more sustainable and cost-effective to improve the con-
trol algorithms to realize higher efficiency than to renovate

the HVAC equipment with more efficient modern technolo-
gies [1], [2], [4], [5].

System automation enables operation with autonomous
optimization principles that maintain comfort and reduce the
amount of consumed energy. Automatic control is essential
for coping with unforeseen user activities in smart buildings.
IT achievements and industrial engineering breakthroughs
enable the envisioning of smart buildings with self-adapting
facades, shapes and autonomous behaviors, for maximizing
the comfort of the occupants in changing contexts with nearly
zero carbon emissions. Therefore, the objective that is pur-
sued with the automation of HVAC control is to maximize
the thermal comfort while minimizing the energy consump-
tion. The operational efficiency of an HVAC system strongly
depends on its control system and optimization parameters.

The construction of an accurate and effective model of an
HVAC system is challenging. Modeling its characteristics,
nonlinearities, dynamics and highly constrained parameters
complicates the design and operation. Advanced control sys-
tem engineering provides several approaches for improving
control systems and reducing the energy consumption while
ensuring the indoor thermal comfort with satisfactory robust-
ness and stability. Solving the problem requires the following
steps, among others: focusing on the control problem; solving
the multiobjective optimization problem; synthesizing the
system management at the supervisory level; and proposing
new predictive or adaptive models that mimic the system
behavior.

There are interesting reviews that address the strengths,
weaknesses and performances of HVAC control models and
their applicability in practical contexts [4], [5], [7]–[11]. Each
proposed control model in HVAC systems requires assump-
tions regarding the system properties and the environment,
to balance its simplicity with its accuracy.

According to current research, online feedback-based data
analytics for smart building diagnosis and management
require software-intensive solutions. FL can be used in con-
trol engineering; it ignores an HVAC system’s nonlinearities
and does not require parameter tuning, in contrast to other
conventional methods. Fuzzy logic controllers show lower
performance while adapting to signal variations with respect
to MPC techniques [12] and, additionally, prove their robust-
ness in real-time operations since they do not require learning
processes, in contrast to ANN models. FL defines a set of
control rules and obtains the control output with a fuzzy
inference from the current input. The use of fuzzy sets in
complex industrial system control is well documented in the
literature [11], [13]–[15] and yields superior results to those
of classical controllers; however, a key limitation originates
from the elucidation with heuristic control rules [14], [15].
To overcome this limitation, various studies propose learning
mechanisms for fuzzy controller rules, although their perfor-
mances are not yet satisfactory.

On the other hand, LAMDA [16] operates on online con-
textual data and discovers the GAD of a class for each
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individual with fuzzy clustering. The GAD is a numeri-
cal array with values that range from 0 to 1; these values
quantify the membership degree of any object/individual
to the system classes. Thus, LAMDA assigns an individ-
ual to the most suitable class. LAMDA, by detecting the
operational system states, becomes a powerful tool for
classification and clustering [16]–[18]. LAMDA has been
used in FDI to detect the operational states—either nor-
mal or abnormal—by identifying faults with the data that
are gathered from sensors [19]–[23]. The classification per-
formance of LAMDA has been improved with LAMDA-
FAR [24] and LAMDA-HAD [25], [26] and clustering
with LAMDA-RD [27] and the LAMDA triple π operator
(LAMDA-TP) [28], [29]. More recently, LAMDA has been
proven to provide a satisfactory model for control systems
by driving the process from its current functional state to
the required state with an inference method that assigns a
numerical value to the controller output [30].

This article proposes an advanced LAMDA-based control
method that provides robustness and intelligence in HVAC
systems. LAMDA modeling overcomes the process com-
plexity by designing the controller from currently available
data and by avoiding other considerations, such as nonlin-
earities, operating constraints, time delays and uncertainties.
This study proves that LAMDA satisfies the demanding
HVAC control requirements due to the following character-
istics [26], [27]:

• LAMDA operates in both supervised and unsupervised
learning scenarios.

• LAMDA enables the definition of clear control
rules (classes) because its structure is known.

Thus, the main contribution of this work is the design of a
new type of intelligent controller that is based on LAMDA
and applied to regulation of an HVAC system. The main
advantages of our method are that it does not require a mathe-
matical model of the system and it requires few variables to be
parameterized. HVAC systems are an excellent case study for
evaluating our proposed controller since their dynamics are
complex due to the many elements that are involved. For the
controller design, it is necessary to establish classes (opera-
tional states) of the system and their rules. Then, an inference
method based on [30] is defined. For the validation of the
proposed method, a comparative analysis of the behavior of
the LAMDA controller is performed by comparing it against
other well-known methods and evaluating its performance
and robustness when disturbances are added to the system.
Excellent results have been obtained with the LAMDA con-
troller in various scenarios.

This article presents a review of the various control meth-
ods that are used in HVAC systems in Section II. Section III
introduces the process of HVAC systems and the basic formu-
lation of LAMDA. Section IV describes how the LAMDA
control capabilities operate in HVAC systems. Section V
evaluates our control approach in a real context and ana-
lyzes its performance in comparison with other conventional

control models. Finally, Section VI presents the conclusions
of the paper.

III. RELATED WORKS
HVAC control modeling can be approached using physics
or deduced from the input and output data. HVAC control
systems use conventional and advanced methods. Among the
conventional methods, the PID controller is still considered
in 9% of the literature on HVAC control, which represents a
significant interest. Other self-tuning techniques, such as gain
scheduling, are also considered in the 9% portion. Decou-
pling, state-space representation and transfer functions are
also considered. Advanced control methods implement tech-
niques to predict the system behavior, optimize several objec-
tives and adapt to it. The LQ and LQG optimization schemas
provide higher robustness and stability. With the exponential
progress of IT, MPC and its variants attract the attention of
researchers in 15% of HVAC-related articles, followed by
multiagent architectures, which are studied in 14% of the
articles. Fuzzy logic control also provides interesting results
and is considered in 13% of studies [1], [9].

A. GENERAL CONTROL MODELS
White box—or forward—models are built with mathematical
formulations. They model the mass balance, heat transfer,
thermal momentum or flow rates with differential equations.
They require knowledge of the physical and/or chemical laws
of the system. The key advantage is that they provide an
easy analysis with a simple algebraic formulation and robust
generalization. Thesemathematical models are typically used
in HVAC system design. They are typically applied in simpler
systems, such as SISO and steady-state or quasi-steady-state
systems without high-frequency disturbances, e.g., temper-
ature and relative humidity changes in HVAC. In any case,
they inherently incur high computational expenses. They
outperform black box models when the feedback system
information is scarce or incomplete [9].

Black box—or inverse—models approach the problem
empirically by collecting system performance data and using
these data to establish a relation between the inputs and
outputs via ML, statistical or AI methods. Current research
considers AI for plant modeling, controller design, system
performance improvement, calibration and parameterization.
One of the key advantages is that once AI models have
been learned, they are very fast and require few computa-
tional resources, especially those that are based on neural
networks [31]. Other data-driven models of interest in the
literature are frequency-domain, data mining, state-space,
geometric, case-based reasoning, stochastic and instanta-
neous methods [9]. ANN have been used in simulations of
heat pump operation [32] and models to optimize simulta-
neously the building energy and comfort [33]. A particu-
lar case of neural networks is the modeling of the system
dynamics with RNN [34]. RNN can be simulated with evo-
lutionary algorithms [35]. However, studies on ANN models
have not been widely conducted in the HVAC industry yet
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‘‘due to uncertainty, long training periods, and complexity in
setting up and maintaining the system’’ [36]. Other black box
approaches utilize statistics and rely on identifying the best
sample of a population. Statistical approaches use linear or
polynomial time series regression models in control design
to fit the system trajectories. Examples include the nonlinear
ARX model, the ARMAXmodel and the ARIMAmodel [1].
Some of these methods do not consider the system output,
whereas others do not consider the inputs [7]. Statistical
models cannot simulate nonlinear behaviors standalone and
require the support of other methods, such as ANN, as dis-
cussed in articles on HVAC control, such as NNARX, FFBP
and RBF methods [9].

FL modeling is showing satisfactory performance in con-
trol and can interact with ANN models and GA algorithms
to provide hybrid models with the best characteristics of
black box and white box models [14], [15]. FL uses simple
mathematics for nonlinear and complex systems, which are
sufficient for HVAC [11]. The FAN and NFIS improve the
prediction accuracy, and the T-S fuzzy model can be applied
to online models [13]. In [6], an HVAC system for a motor
vehicle is proposed and includes a climate control circuit that
is coupled to onboard sensors, a human-machine interface,
and climate actuators. The control system receives crowd data
and at least one weight, which indicates the confidence level
that is associated with the crowd data. It generates command
parameters using a set of fuzzy rules in response to the crowd
data and the weights. It shows high precision and rapid opera-
tion; however, for higher accuracy, FL requires more grading,
which increases the number of rules exponentially, and more
grading is not always available for some components. Other
drawbacks of bare FL are its lower speed comparedwith other
models, the lack of a real-time response, and learning from
feedback.

Several studies propose optimizing the performance by
implementing clustering techniques that are based on a clus-
tering ensemble, such as WLAC [37]; by setting the weights
for the fine-tuning of the fuzzy algorithm [38]; or via an
iterative fusion of the base clusters [39], which yields visible
improvements. Additionally, in [40], a clustering approach
is proposed with the objective of minimizing the effect
of the differences in the quality and diversity of the base
clusters [40]. The contextual information, such as seasonal
periods or scheduled activities, and the knowledge of the sys-
tem’s behavior are translated into fuzzy rules that shorten the
model training process. FL does not require a mathematical
formulation for representing the physics of the system nor
mechanisms for overcoming the nonlinearities [11].

Finally, hybrid models combine black box and white box
models to balance their drawbacks. Hybrid models use opti-
mization to obtain the system parameters, such as least
squares, gradient descent and genetic algorithms (GAs) [1].
For example, a two-stage energy management strategy has
been developed for commercial buildings with these mod-
els [41]. One of the interesting contributions of that study is
the inclusion of uncertainties in electricity prices in the MPC

logic for optimizing the energy consumption. They propose
balancing the power supply and the building load while min-
imizing the operational costs. The load demand, wind power
and electricity price are forecasted with a SARIMA model
and a CVaR is added to consider the price uncertainties.
In [12], an HVAC system has been modeled using MATLAB,
which uses a fuzzy controlling system and an RBF to define
a predictive control system.

B. HVAC CONTROL METHODS
Kozák et al. [42] utilize a classical automation of control
by looping back the output to the SP input to obtain the
difference, or error signal, the amplitude of which regulates
the actuators. These FBC stabilize unstable processes and
reduce the sensitivity to parameter variations. Performance
is guaranteed even when there are uncertainties that do not
match exactly the real process. SP, which is typically the
thermal expectation in HVAC, may be complemented with
other information sources such as timers for regular activ-
ity, event scheduling, or weather forecasting for predicting
outdoor conditions. In [43], PID controllers for the HVAC
industry are described. In the case of HVAC systems, plain
PID controllers do not perform well due to the nonlinearities
of the system. Installations are designed to work at a full load,
but the equipment typically works at a partial load, which is
inefficient and requires autotuning techniques such as relay-
autotuning or open-loop step tests. Classical methods for tun-
ing the gains of PID controllers include the Ziegler-Nichols
method and the Cohen-Coon method [44]. FL realizes higher
performance in tuning PID control today. These basic control
methods are widely implemented in PLCs and in FPGAs as
they have simple control laws that are used in multipurpose
applications [36].

In advanced strategies, one of the problems is to work
with multiple variables, with techniques that split a MIMO
system into SISO subsystems, such as the RGA [42], or that
split the decentralizing PID controllers into a number of
controllers that equals the number of inputs. These methods
encounter challenges when finding Lyapunov functions and
proving their stability, are complex and sensitive to parameter
variations, have a limited operating range, or require the
measurement of all state variables.

The new principles in control [9], [34], [36] , [45] are opti-
mally, robustness and intelligence. In HVAC, the robustness
principle aims at addressing the design problem of partial
loads attenuating the effects of disturbances and at stabiliz-
ing operations to improve the performance. An HVAC con-
trol prediction strategy uses models to anticipate the system
dynamics, such as MPC, and typically simulates the system
dynamic behavior by solving linear or quadratic problems,
such as Euler-Lagrange equations. MPC controllers optimize
the control for a future time horizon by analyzing possible
state trajectories, but the results are applicable only for the
current timeslot, and the optimization must be recalculated
for the next horizon in the next timeslot. MPC is gaining
support in complex systems [1], [7], [8], [33], [46], [47],
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TABLE 1. Classification of scientific references according to the
addressed problem.

namely, systems that have high-order dynamics or long
delays, while nonpredictive PID controllers are still preferred
for simpler systems [43]. Examples of the studied MPC
approaches for buildings are DMC, MAC, PFC, EPSAC,
EHAC and GPC [47]. MPC can realize robustness against
disturbances by predicting possible extreme disturbances,
e.g., in min-max MPC; by surpassing the constraints, e.g.,
in constraint tightening MPC; by using FBC to converge
to the nominal model, e.g., in tube MPC; or by collecting
several samples online for modeling spaces that are generated
by disturbances, e.g., in multistage MPC. When the HVAC
control strategy is an optimization strategy, there are multiple
aspects to address: the objectives, constraints, disturbances,
modeling techniques and receding horizon [33]. Control opti-
mization, which is model-free and is also known as an expert
system, is conducted online with incomplete datasets and
penalizes the accuracy. A simplified model of central chiller
components that uses genetic optimization algorithms real-
izes 0.73% to 2.55% accuracy [48].

Finally, due to the complexity of HVAC control, it has been
approached from various angles. Table 1 presents a classifi-
cation of the bibliography according to the main field that is
addressed in each article. The first approach is for the problem
of simulating the system behavior, namely, the modeling
problem. The second, third and fourth approaches hardly
discuss the problem of control with classical, hard or soft
methods. The fifth approach is the introduction of artificial
intelligence in the control model. The last approach seeks
energy savings from the complete system supervision.

The scientific literature on FL methods in HVAC control
looks promising because simple mathematics are used for
nonlinear and dynamic systems. However, FL requires more
rules for the realization of higher accuracy; this requirement
reduces the speed, and such rules are not always available.
Real-time response HVAC control with FL has not been stud-
ied so far. This limitation is one of the problems the proposed
method aims at addressing, by using contextual information
or real-time feedback.

IV. AUTONOMOUS ARCHITECTURE
A. HVAC SYSTEMS
HVAC system direct modeling mimics complex structures,
such as chillers, heat pumps, heating/cooling coils, boilers,

air-handling units, thermal storage systems and liquid/air
distribution systems. Sensors and actuators enable the regu-
lation of the controllable plant variables, such as the ambient
temperature in the occupied zones, the static pressure in the
pipes, the chilled flowing water temperature and the air fan
speed. An HVAC system is difficult not only to simulate but
also to manage due to the nonlinearities and dynamics of its
physical behavior. This difficulty is demonstrated with the
following example: A chiller removes heat from a fluid in
a vapor compression cycle or an absorption cooling cycle,
which consumes almost half the energy. It has a compressor,
an evaporator, a condenser, and an EEV, which are typically
designed separately under the following assumptions [1], [2]:
• The refrigerant properties are homogeneous in each
component.

• The refrigerant flow rate through the compressor is con-
stant throughout the system.

• The expansion process through the EEV/orifice plate is
isenthalpic.

• The temperature of the walls does not vary through the
cross-section or across the ducts.

If the refrigerant is in quasi-steady state, using the energy
balance equations that are proposed in [1], the heat transfer
rate in the evaporator (Qe) and the refrigerant mass flow
rate (ṁr ) are obtained via Eqs. (1) and (2):

Q̇e = αeiAei (Two − Twe) (1)

ṁr (h1 − h6) = αeoAeo (Twe − Te) (2)

where h1 is the enthalpy of the refrigerant at the evapo-
rator outlet-compressor inlet (kJ/kg), h6 is the enthalpy of
the refrigerant expansion valve exit/evaporator inlet (kJ/kg),
Aei is the area of the evaporator inlet (m2), and Aeo is the
area of the evaporator outlet (m2). Two is the return water
temperature (◦C), Twe is the temperature of the evaporator
wall (◦C), Te is the temperature of the refrigerant at the
evaporator inlet (◦C), αei is the heat transfer coefficient of the
refrigerant that is entering the evaporator (W/m2K ) and αeo
is the heat transfer coefficient of the refrigerant that is leaving
the evaporator (W/m2K ). Via a similar approach, the heat
transfer rate of the condenser (Qc) and the other parameters
of the HVAC system, such as the dynamic temperature of the
heating/cooling coil, can be obtained by applying the energy
balance in the air–water heat exchanger [1].

The mathematical formulation is even more complicated
when applied to the case of an existing buildingHVAC system
due to the scarce and unstructured available documentation
and because the hidden habits that have been acquired by the
engineers and operators hinder the modeling of an identical
system.

In contrast, data models are simple to build, but quality
data are required for building trustable models. Typically,
some of the essential data are not always available or sensors
generate interferences. Filtering, sensor networks, detection
algorithms, and virtual sensors improve the model, but are
insufficient for practitioners. The previous section presented
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FIGURE 1. Functional blocks of a LAMDA controller.

another approach for overcoming modeling issues by perfect-
ing the mathematical simulation with data models, collecting
HVAC system data in normal or abnormal conditions, and
using statistics, AI [46] or DL [34]. The studied models
include TCBM, 4SID, PDF, JIT, MLP, SVM, FAN, T-S fuzzy,
ANFIS, linear and polynomial time series regression, ARX,
ARMAX, and ARIMA.

B. LAMDA CONTROLLER
LAMDA is a clustering algorithm that uses the degree
of adequacy to classify each individual. The analysis of
the similarity compares the features of any object X =[
x1; ...;xj; ...;xn

]
, with those of the existing classes C =

{C1;C2; ...;Ck ; ...;Cm} [26]. LAMDA is a noniterative algo-
rithm, and it was intended for use in system supervisory
tasks and in the identification of functional states. This study
extends its applicability to control systems by identifying the
current system operational state and driving it to the target
state, which is defined by its variables [30]. Themain strategy
is to set rules, namely, classes in LAMDA terminology, based
upon the knowledge of the system behavior and the con-
text information, as in other conventional fuzzy controllers.
Figure 1 illustrates the structure of a LAMDA controller.

The features of the objects are normalized to [0, 1] to
improve the performance via the following formula:

x̄j =
xj − xjmin

xjmax − xjmin
(3)

where xjmin is the minimum value of feature xj, xjmax is the
maximum value of feature xj and x̄j is the normalized feature.
With normalized values, LAMDA calculates the marginal

adequacy degree (MAD), which describes the similarity of
any feature with the corresponding feature of the class.MADs
are calculated with probability density functions, such as that
of the normal distribution:

MADk,j
(
x̄j | ρk,j

)
= e
−

1
2

(
x̄j−ρk,j
σk,j

)2

(4)

where ρk,j is the mean of the jth feature in the kth class and
σk,j is the standard deviation of the jth descriptor in the kth
class.

After obtaining the MADs, LAMDA calculates the GADs
using aggregation functions T-norm (Eq. (5)) and S-norm

(Eq. (6)) and the parameter α ∈ [0, 1], which represents
the level of exactitude. As α increases, the classification
becomes more selective [27]. When two or more features are
considered, the GADs are computed recurrently.

T (a, b) =
1

1+ p

√(
1−a
a

)p
+

(
1−b
b

)p (5)

S (a, b) = 1−
1

1+ p

√(
a

1−a

)p
+

(
b

1−b

)p (6)

Parameter p modifies the sensibility and is typically set to
p = 1. The GADs are computed for every class. The GAD of
the kth class is obtained via Eq. (7):

GADk,X̄
(
MADk,1, . . .MADk,n

)
= αT

(
MADk,1, . . . ,MADk,n

)
+(1−α)

× S
(
MADk,1, . . . ,MADk,n

)
(7)

In classification tasks, the normalized object X̄ is assigned
to the class with the maximum GAD, as expressed in Eq. (8),
where the index is the identifier of the selected class.

index = max
(
GAD1,X̄ ,GADk,X̄ , . . . ,GADm,X̄

)
(8)

The previous steps describe how LAMDA identifies the
current operational state of the system. However, in the case
of a LAMDA controller, it is not sufficient to identify the
functional state in which the system is operating; there-
fore, the control requires an inference method for driving
the system to the desired state. This method is realized by
defining the known rules that govern the plant, similar to con-
ventional fuzzy controllers. The following expression defines
the generic inference mechanism for LAMDA:

R(l):

IF
{
x̄1 is F i1 and . . . , and x̄n is F

k
n

}
THEN

{
yl is Gl

}
(9)

where x̄j takes values from the universe of discourse Uj.
The linguistic output variable yj is defined in the universe of
discourse Vj. F lj and G

j are fuzzy sets in Uj and Vj, respec-
tively, (j = 1, ...,n) , (l = 1, ...,m), where n is the number of
features and m is the number of rules, which are also known
as LAMDA classes.

In this case, LAMDA operates with the GADs using the
first-order T-S inference method, where Gj = qj. Eq. (10)
expresses how to obtain a crisp output:

u = β
n∑

k=1

qkGADk,X̄ (10)

where u is the controller output, qk is theweight that is applied
in the kth class, and β is the parameter for moderating u,
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FIGURE 2. Block diagram of a simple HVAC system [53].

thereby limiting the controller’s output to the class bound-
aries. It is calculated in the training phase via Eq. (11):

β =
max

(
qk
)

n∑
k=1

qkGADk,max(X̄)

(11)

V. LAMDA CONTROLLER IN HVAC SYSTEMS
As discussed in the previous sections, HVAC systems are
nonlinear and dynamic and require complex control methods.
Controllable variables in the thermal zone are coupled and
interact with each other.

This section tests LAMDAwith the HVAC system that was
defined by Arguello-Serrano and Velez-Reyes [51], in which
the objective is to regulate the temperature (T3[◦F]) and
relative humidity (W3 [lb/lb]) parameters in a thermal space,
namely, Zone 3, as illustrated in Figure 2.

Outdoor air (fresh air) flows into the system, 25% of which
mixes with 75% of the returning air, and the remainder is
expelled. The mixed air passes through a filter to the heat
exchanger, where it is conditioned by following the SP ref-
erence. The conditioned air is propelled to the thermal zone
with a fan. The system must control variables T3 and W3
simultaneously, based on thermal loads by varying the fan
speed, u1, to regulate the air flow rate and the cold-water
pumping rate, u2, from the chiller to the heat exchanger.

The HVAC system differential equations of energy and
mass balances from the conventional mathematical model
are:

Ṫ3 =
f
Vs
(T2 − T3)−

hfg
CpVs

(Ws −W3)

+
1

0.25CpVs

(
Q0 − hfgM0

)
(12)

Ẇ3 =
f
Vs
(Ws −W3)+

M0

ρVs
(13)

TABLE 2. Numerical values for system parameters.

Ṫ2 =
f
Vhe

(T3 − T2)−
0.25f
Vhe

(T0 − T3)

−
fhw
CpVhe

(0.25W 0 + 0.75W3 −Ws)

− 6000
gpm
ρCpVhe

(14)

where hw is the enthalpy of liquid water, W0 is the humidity
ratio of outdoor air, hfg is the enthalpy of water vapor, Vhe is
the volume of the heat exchanger, Ws is the humidity ratio
of the supply air, W3 is the humidity ratio of Zone 3, Cp is
the specific heat of air, T0 is the temperature of outdoor air,
M0 is the moisture load,Q0 is the sensible heat load, T2 is the
temperature of the supply air, T3 is the temperature of Zone 3,
Vs is the volume of Zone 3, ρ is the air mass density, f is the
volumetric flow rate of air (ft3/min), and gpm is the flow rate
of chilled water (gal/min). The assumptions that are made in
the derivation of this mathematical model are also detailed in
the study of Arguello-Serrano and Velez-Reyes [51].

Representing the system in state-space notation for the
design of the control system, let u1 = f , u2 = gpm, x1 = T3,
x2 = W3, x3 = T2, y1 = T3, and y2 = W3. The following
parameters are defined to complete the model: α1 = 1/Vs,
α2 = hfg/CpV s, α3 = 1/ρCpV s, α4 = 1/ρV s, β1 = 1/Vhe,
β2 = 1/ρCpV he, and β3 = hw/CpV he. The mathematical
model of (10), (11) and (12) can be reformulated as:

ẋ1 = u1α160 (x3 − x1)− u1α260 (Ws − x2)

+α3
(
Q0 − hfgM0

)
(15)

ẋ2 = u1α160 (Ws − x2)+ α4M0 (16)

ẋ3 = u1β160 (x1 − x3)+ u1β115 (T0 − x1)

− u1β360 (0.25W 0 + 0.75x2 −Ws)

− 6000u2β2 (17)

y1 = x1 (18)

y2 = x2 (19)

Table 2 and Table 3 list the numerical values that were
chosen for the simulation and the system parameters at the
operating point, respectively.
f (u1) and gpm (u2) are the control actions that modify

the target variables T3 (x1) and W3(x2). Figure 3 illustrates
the mutual interactions among these parameters within the
differential equations, thereby rendering a MIMO control
problem.

In the figure,G1 (�) ,G2 (�), andG3 (�) are expressions (15),
(16) and (17), respectively.
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TABLE 3. Numerical values for system parameters at the operating point.

FIGURE 3. Block diagram of the HVAC model (MIMO system).

FIGURE 4. Step change of 10% is applied to u1.

The proposed controller analyzes the data to discover pos-
sible relations between inputs and outputs by implementing
two LAMDA controllers, one for each of the two output zone
variables, namely, x1 and x2. To validate this implementation,
it is necessary to determine whether the outputs are coupled,
in which case a decoupling stage is required.

The method starts applying a step at one of the inputs and
monitoring the response at the outputs to obtain the numerical
values in the convenient FOPDT (first-order plus dead time)
form:

X (s)
U (s)

=
Ke−t0s

τ s+ 1
(20)

In the experiment, a step change of 10% is applied in the
HVAC system operating point to u1, as plotted in Figure 4,
to monitor the controllers’ responses at outputs x1 and x2,
while u2 remains unchanged.

Figure 5 plots the response of x1 to the step change of u1.
An approximate model of the transfer function g11 is

obtained via the reaction curve method. In this case, t1 is the
time for the curve to reach 28% of the total change, and t2 is
the time to reach 63.6%. These parameters are obtained via

FIGURE 5. Response of x1 to the 10% step change of u1.

FIGURE 6. Response of x2 to the 10% step change of u1.

Eqs. (21) - (24).

t1 = 0.5690− 0.5 = 0.0690 h;

t2 = 0.7037− 0.5 = 0.2037 (21)

τD =
3
2
(t2 − t1) =

3
2
(0.2037− 0.0690) = 0.2021h

(22)

KD =
1x1
1u1
=

72.6688− 71
18700− 17000

= 9.8164× 10−4 (23)

tD = t2 − τD = 0.2037− 0.2021 = 0.0016h H⇒

g11 =
9.8164× 10−4e−0.0016

0.2137s+ 1
(24)

Figure 6 plots the response of x2 to the step change of u1.
An approximate model of the transfer function g21 is obtained
via the reaction curve method. The parameters are obtained
via Eqs. (25) - (28).

t1 = 0.5183− 0.5 = 0.0183 h;

t2 = 0.5527− 0.5 = 0.0527h (25)

τD =
3
2
(t2 − t1) =

3
2
(0.0527− 0.0183) = 0.0516h

(26)
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FIGURE 7. Step change of 10% is applied to u1.

FIGURE 8. Response of x1 to a 10% step change of u2.

KD =
1x2
1u1
=

0.009− 0.0092
18700− 17000

= −1.1764× 10−7 (27)

tD = t2 − τD = 0.0527− 0.0516 = 0.0011h H⇒

g21 =
−1.1764×10−7e−0.0011s

0.0527s+ 1
(28)

The next action in the experiment is to apply a step change
of 10% in the HVAC system operating point at u2, as plotted
in Figure 7, while u1 remains unchanged.

Figure 8 plots the response of x1 to the step change of u2.
An approximate model of the transfer function g12 is obtained
via the reaction curve method. These parameters are obtained
via Eqs. (29) - (32).

t1 = 0.5779− 0.5 = 0.0779h;

t2 = 0.7313− 0.5 = 0.2313h (29)

τD =
3
2
(t2 − t1) =

3
2
(0.2313− 0.0779) = 0.2301h

(30)

KD =
1x1
1u2
=

63.3306− 71
63.8− 58

= −1.3223 (31)

tD = t2 − τD = 0.2313− 0.2301 = 0.0012h H⇒

g12 =
−1.3223e−0.0012s

0.2301s+ 1
(32)

FIGURE 9. Response of x2 to a 10% step change of u2.

Figure 9 plots the response of x2 to the step change of u2.
An approximate model of the transfer function g22 is obtained
via the reaction curve method. These parameters are obtained
via Eq. (33).

According to Figure 9, x2 remains unchanged with a step
change of u2. Thus:

g22 = 0 (33)

Based on the obtained transfer functions, the linearized
model can be represented by matrix G(s):

X (s) = G (s)U (s) (34)

where:

G (s) =
[
g11 g12
g21 g22

]
(35)

Substituting Eqs. (24), (28), (32) and (33) into Eq. (35)
yields:[
x1
x2

]

=


9.8164× 10−4e−0.0016

0.2137s+ 1
−1.3223e−0.0012s

0.2301s+ 1
−1.1764× 10−7e−0.0011s

0.0527s+ 1
0


×

[
u1
u2

]
(36)

From G(s), the gains of each element are obtained to yield
gain matrix K .

K =
[

9.8164× 10−4 −1.3223
−1.1764× 10−7 0

]
(37)

The RGA [57] is a matrix (Bristol’s matrix) that is used to
measure the interaction between the inputs and outputs in a
multivariate process control. It is defined as:

RGA (K ) = 3(K )K ×
(
K−1

)T
(38)
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FIGURE 10. HVAC system two-closed-loop LAMDA control scheme (decoupled).

where the operator × denotes element-by-element
multiplication:

3(K ) =
[
λ11 λ12
λ21 λ22

]
=

[
0 1
1 0

]
The parameters of3(K ) describe the dependence between

the inputs and outputs (Eq. (37)), thereby leading to the con-
clusion that the decoupling stage is not necessary for this con-
trol. Due to the HVAC system characteristics and the resulting
parameters of3(K ), the control design with two independent
LAMDA controllers, namely, one for the temperature x1 and
another for the relative humidity x2, is feasible.

u2→ x1 and u1→ x2 (39)

Figure 10 illustrates the operational scheme of the pro-
posed control system with two separated control loops, each
of which is dedicated to maintaining one of the two variables
that are associated with the thermal zone comfort.

This model could be approached as an FOPDT system;
however, the transformation uncertainties and the nonlin-
ear effects would degrade its performance. This degradation
motivates the design of LAMDA-PI controllers for maintain-
ing the steady-state error as close to zero as possible since the
control target is to maintain the temperature at 71[◦F] and
the relative humidity at 0.0092[lb/lb]. Figure 10 illustrates
the LAMDA-PD controllers at the input stage, the signals
of which are integrated to obtain the LAMDA-PI controllers
[30]. The added blocks have scaling gains of kp1, kd1, ki1,
kp2, kd2 and ki2 for tuning the responses of the controllers.

The controllers’ inputs are e and ė, where e is the error that
is obtained via the subtraction of the SP reference and the
current system output and ė is its derivative. These variables
are used to drive the system to the desired zero state, in which
the error and its derivative are equal to zero, and to maintain
it at zero.

The centers of fuzzy classesCk and their respective param-
eters in the consequent qk are presented in Figure 11; they are
the training data for LAMDA operation. Twenty-five classes

FIGURE 11. Defined classes and outputs for: a) the relative humidity
LAMDA controller and b) the temperature LAMDA controller.

are defined for each controller, and the centers are set as a
combination of the following sets:

e1 = [−1,−0.5, 0, 0.5, 1] 10−4
[
lb
lb

]
and

ė1 = [−0.5,−0.25, 0, 0.25, 0.5] 10−5
[
lb/lb
h

]
(40)
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TABLE 4. Numerical values for system parameters at the operating point.

e2 = [−10,−5, 0, 5, 10]
[
◦F
]
and

ė2 = [−5,−2.5, 0, 2.5, 5]
[
◦F
h

]
(41)

VI. SIMULATIONS AND RESULTS
In this section, ourmethod is compared against two additional
controllers, namely, PI and conventional Fuzzy-PI [59], to
evaluate their behaviors in the regulation tasks and to ana-
lyze their performances and responses to disturbances. The
main criteria for the evaluation of the approaches is the IAE
(integral absolute error, see Eq. (42)), which is an index
that measures the performances of the controllers. The IAE
reflects the cumulative error, namely, how far the response
is from the applied reference. Therefore, the controller that
realizes the minimum index value performs the best.

IAE =
∫
∞

0
|e (t)| dt (42)

As discussed above, disturbances that simulate thermal
loads in the system are added for evaluating the robustness
of the closed-loop system.

The PI controllers are calibrated at the beginning via
the Smith and Corripio method [58] to realize the best
performance based on the IAE minimization. The Fuzzy-
PI controllers have been designed by considering Gaussian
membership functions with their maximum values at the cen-
ter points of the LAMDA classes for the same rules for a fair
comparison with the LAMDA-PI controller. The sample time
in this experiment is set to 0.01 hours, which is equivalent to
36 seconds, and the gains of the Fuzzy-PI and LAMDA-PI
controllers have been empirically calibrated to perform their
control actions in the same ranges as the PI controllers. The
gains of the studied controllers are presented in Table 4.

The objective of the studied HVAC system is to maintain
the temperature T3 at 71 [◦F] and the relative humidity at
0.0092 [lb/lb]; namely, this maintenance is a problem of
regulation in the field of automatic control. The experiment
begins with the application of a moisture disturbance in
Zone 3, as is illustrated in Figure 10. The moisture distur-
bance signal for robustness consideration that is applied to
the system is plotted in Figure 12.

The control actions and system responses of the PI and
LAMDA-PI controllers are presented in Figure 13 for com-
parison.

The resulting IAEs after the application of the moisture
disturbance to the HVAC system are presented in Table 5.

FIGURE 12. Moisture disturbance signal for testing the controller’s
robustness feature.

Additionally, Table 5 presents the differences and the relative
percentages of variation 1% (Eq. (43)) with respect to the
best IAE value ‘‘IAEB’’ (the value that is marked in bold text):

1% =
|IAEX − IAEB|
(IAEX+IAEB)

2

(43)

where IAEX is the index of the controller that does not
perform the best.

The results in Figure 13 and Table 5 demonstrate that
the LAMDA controller realizes the best IAE performance
when a moisture disturbance is applied in the thermal zone.
The applied disturbance affects both the W3 and T3 outputs,
of which the latter is more affected. However, the LAMDA-
PI controller corrects the disturbance faster, thereby lead-
ing to lower overshoots in the response. This outcome also
implies an energy savings when driving the system to the
desired state. This smoother or less abrupt behavior is shown
in the magnified frames in Figure 13, thereby proving the
improvement both graphically and numerically. In the case
of temperature, the improvement over the PI controller is
142%, and that over the Fuzzy-PI is 32%; for humidity, the
improvement over the PI controller is 3.5%, and that over the
Fuzzy-PI is 13%. The smoother control signal enables faster
regulation of the output variables, thereby demonstrating the
robustness of the proposed controller.

In the next test, a temperature (heat) disturbance is applied
in Zone 3, as plotted in Figure 10. The heat disturbance signal
for robustness analysis is presented in Figure 14.

The controllers react to the changes and the responses are
plotted in Figure 15, in which the performances of PI and
LAMDA-PI are compared.

The resulting IAEs after the application of the temper-
ature disturbance to the system are presented in Table 6.
Additionally, Table 6 presents the differences and the relative
percentages of variation1%with respect to the best IAE (the
value that is marked in bold text).
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FIGURE 13. Comparative results with a moisture disturbance: (a) control
action u1, (b) humidity ratio W3, (c) control action u2, and
(d) temperature T3.

The results in Figure 15 and Table 6 demonstrate again
that the LAMDA controller realizes the best IAE perfor-
mance when a temperature disturbance is applied in the

TABLE 5. IAE comparison with the application of a moisture disturbance
to the HVAC system.

FIGURE 14. Temperature disturbance signal for robustness analysis.

thermal zone. The applied disturbance affects only the T3 out-
put. Again, the LAMDA-PI controller yields the best results
for this test. Our approach shows improvements in the case
of temperature over the PI controller of 5% and over Fuzzy-
PI of 148%, and for humidity, it shows improvements over
the PI controller of 6% and over the Fuzzy-PI of 2.4%. The
Fuzzy-PI controller presents a more abrupt control action
than that of the LAMDA-PI controller, and the PI controller
has a smoother but slower response, which causes the system
to take longer to reach the reference values (see the mag-
nified frames in Figure 15), thereby increasing the energy
consumption of the actuators (fan and chiller) for maintaining
the system at the desired reference values.

A. DISCUSSION OF THE RESULTS
In the studied HVAC system for buildings, two types of
disturbances have been applied separately: temperature (heat)
and moisture.

It has been shown that the moisture disturbance that is
applied to the thermal zone most affects the behavior of the
system and is the most critical for the control system since it
causes the two controllers to begin regulating the variables T3
and W3.

All the tested controllers realize the control objective of
stabilizing the system at the desired reference values, namely,
71◦F and 0.0092 lb/lb. However, it is important to ana-
lyze the ways in which the approaches stabilize the system,
along with their respective performances. In all the tests that
were conducted, LAMDA-PI yields the lowest IAE values,
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FIGURE 15. Comparative results with a temperature disturbance:
(a) control action u1, (b) humidity ratio W3, (c) control action u2, and
(d) temperature T3.

demonstrating that in the presence of significant step-type
disturbances (±10% of the reference values), the controller
takes the system quickly to the reference without failing or

TABLE 6. IAE comparison with the application of a temperature
disturbance to the HVAC system.

becoming unstable. In the case of humidity (see Figure 13b),
it performs without overshoot and faster than the Fuzzy-
PI controller, where LAMDA realizes higher performance
with values that exceed 30%. In the case of temperature
disturbances (see Figure 15c and 15d), the response is the
fastest without producing considerable oscillations, such as
those observed in Fuzzy-PI, or a very slow response, as in the
case of the PI, which results in high energy consumption that
must be reduced in systems of this type. The control actions
that are produced by the LAMDA-PI controller are not abrupt
and can be physically implemented in the studied system.

The implementation of the proposed controller shows
advantages in terms of both the performance and the response
to disturbances, and its design is simple since no mathemat-
ical model of the HVAC system is required and it is only
necessary to define the centers of the classes and the rules
based on the knowledge of the HVAC system. Our proposed
approach also improves the results with respect to Fuzzy-PI,
which presents a similar design methodology, but requires the
definition of additional parameters for the Gaussian, triangu-
lar or trapezoidal membership functions.

With respect to the depreciation of the overall control
system, it has been shown that the controller exhibits a sat-
isfactory response to changes in the dynamics of the HVAC
system; namely, the system remains stable even though the
conditions of the HVAC system to be controlled are mod-
ified, demonstrating the excellent features of our method.
With respect to controlling system failures, future studies will
analyze this problem in the context of a supervision system.

VII. CONCLUSION
Advanced building HVAC control is a necessity in our society
for ensuring the comfort of the occupants and saving energy.
The soft control or AImethods that are based onANN, FL and
evolutionary algorithms are yielding interesting results in
terms of accuracy and computational optimization perfor-
mance. This paper proposes an HVAC control that is based
on the LAMDA, which is a fuzzy logic clustering approach
for smart buildings. The proposed model outperforms other
conventional controllers.

LAMDA control is a powerful technique for knowledge
extraction because it supports both the identification of the
most relevant system features and control decision-making.
This is a singular characteristic from the modeling perspec-
tive. Mathematical models are difficult to implement, require
assumptions that reduce the accuracy of the simulation, and
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are unable to support online solutions due to their com-
plexities. Empirical approaches typically suffer from lack of
quality data or sufficient information for building reliable
models.

Due to the need to save energy, maintain comfort and add
objectives to the HVAC control system, a general approach
is required that results in a complex and multifaceted prob-
lem because multidimensional data are required that are not
possible to analyze via simple techniques. The proposed
approach enables the definition of the main domain-based
features of the studied phenomena, and this definition is used
to implement useful strategies for driving the controller from
its current state to the desired target state.

The implementation of a LAMDA-based controller drives
the HVAC system to the target state by calculating the ade-
quacy with respect to the class (GADs). The versatility of the
algorithm has been demonstrated by comparing LAMDA-PI
with the conventional PI and Fuzzy-PI controllers. The main
advantage of working with LAMDA is that it is only nec-
essary to define the centers of the fuzzy logic classes and
the weights for the outputs, and no additional parameters are
required, such as in conventional fuzzy controllers.

This article has demonstrated the utilization of contex-
tual information in real time in a LAMDA controller. The
proposed approach includes the contextual data in the error
input as real-time feedback information with a manageable
number of rules. The results of the experiments for evalu-
ating the robustness have proven that higher precision and
faster operation of LAMDA-PI are achieved compared with
available conventional controllers and that LAMDA-PI pro-
vides energy savings, as it manages the actuators using a
softer approach. In addition, the proposed controller can be
trained with an online learning mechanism for real-time cal-
ibration. In future work, the ability to self-adjust the classes
for the algorithm without requiring the human expertise of
the designer will be extended by using the gradient descent
algorithm.
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