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1. Introduction 

Osteoarthrosis (OA) is a chronic degenerative disease of slow progression that affects 

the hip, knee, distal phalangeal and intervertebral joints. It is characterized by joint pain, 

accentuated sensitivity, rigidity and alteration in mobility [1]. The disorder first 

manifests at the molecular and cellular level (abnormal metabolism of the tissues of the 

joint) followed by anatomical or physiological alterations (degradation and loss of 

cartilage, bone remodeling, osteophyte formation, synovial inflammation, sclerosis and 

loss of subchondral bone). The commitment of the hip and knees are a common cause 

of disability. OA is a severe clinical and public health problem, close to 50% of the 

people suffered OA at different levels, but the current clinical treatments available are 

incapable to reverse disease progression [2]. 

The most used current treatment are oral medications with nonsteroidal anti-

inflammatory drugs (NSAID) or corticoids, but these treatments cause different adverse 

effects, such as gastrointestinal reactions or renal dysfunction [2]. In the case of severe 

OA (debilitating pain, major functional limitation) is necessary the use of surgery. 

Currently, the regeneration of cartilage tissue is under research without found clinical 

satisfactory solutions [3]. The technique of microfracture is the clinical procedure most 

widely used to treat cartilage injury [4]. This technique consists in perforate the 

subchondral bone, allowing the bleeding and the formation of a clot rich in growth 

factor and mesenchymal cells [4, 5]. The cartilage regenerated by this technique is a 

fibrocartilage, which presents worst physical properties than the original one and has 

problems of integration with the surrounding tissue. 

Due to the different problems on surgery-based techniques for the treatment of 

osteoarthritis, other different methods are under study.   In this sense, hydrogels are one 

of the emergent candidates in cartilage regeneration. The use of hydrogel has several 
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advantages compared to the use of other techniques. The use of natural or bio-inspired 

polymers for the synthesis of hydrogels allows the preparation of scaffolds with 

properties close to the native extracellular matrix (ECM) [6]. Another advantage is the 

possibility of making them injectable and allows us to use a non-invasive approach [7]. 

Different examples of natural polymers are hyaluronic acid, collagen, gelatin, alginate, 

chitosan, chondroitin sulfate and fibrin. On the other hand, semi-interpenetrating 

networks (semi-IPN) hydrogels mimicking ECM features have been proposed for 

cartilage regeneration. These systems present the advantages of possessing improved 

properties and synergistic effects respect to the individual polymers [8]. Pescosolido et 

al. reported the suitability of hyaluronic acid/dex-HEMA semi-IPNs for encapsulating 

chondrocytes to manufacture bioprinted constructs for tissue engineering [9]. Other 

authors proposed the use of semi-IPN hydrogels of oxidized dextran/amino gelatin and 

hyaluronic acid cell transplantation [10].  

In this work, we developed an injectable semi-IPN hydrogel based on gelatin and 

hyaluronic acid (HA). Gelatin is produced by partial hydrolysis of collagen and 

promotes cell adhesion, proliferation, migration and differentiation due to the presence 

of RGD sequence on its structure [11]. Hyaluronic acid is a non-sulfated 

glycosaminoglycan and one of the major components of the ECM [12]. HA is involved 

in diverse biological processes, i.e. proteoglycan (PG) organization, tissue hydration or 

cell differentiation [13]. The application of a semi-IPN hydrogel system able to in situ 

release HA to the injured cartilage would contribute with some advantages. HA 

demonstrated to improve the synthesis of chondroitin-6-sulfate, collagen II, aggrecan 

and DNA [14] 

There are different ways of crosslinking hydrogels; the most common are the use of 

physical crosslinker [15], chemical crosslinker [16], Michael-type conjugate addition 
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reaction [17] or Schiff-base formation [18]. In most of the cases, the use of chemical 

initiators may promote toxicity and cell dead on injectable hydrogels [19], In the last 

decade, a novel methodology without chemical initiators was developed. This technique 

involves the partial oxidation of polysaccharides to obtain a reactive polymer that can 

interact with amine groups of other natural polymers [20]. In particular, oxidized 

dextran demonstrated to act as macromolecular crosslinker for polymers bearing amino 

groups to formulate crosslinked hydrogels for cartilage tissue engineering [21] [22]. 

In this work, we report the synthesis of an injectable and biodegradable drug delivery 

system from oxidized dextran (Dex-ox), gelatin and hyaluronic acid, without the use of 

any chemical initiator. Dex-ox forms a hydrogel in the presence of gelatin by Schiff-

base reaction and the chains of HA form a semi-IPN that can be used as injectable 

hydrogel. The hydrogel was loaded with two different anti-inflammatory drugs: 

naproxen, a nonsteroidal anti-inflammatory drug (NSAID) widely used to inhibit 

inflammation and cartilage damage in osteoarthritis [23] or dexamethasone, an anti-

inflammatory corticosteroid used by intra-articular injection for the treatment of 

osteoarthritis [24]. 

 

2. Experimental section 

2.1. Materials 

Phosphate saline buffered solution (PBS, pH 7.4, Sigma-Aldrich), sodium periodate 

(NaIO4, Alfa Aesar, USA), potassium dihydrogen phosphate (KH2PO4·2H2O, Merck, 

Fluka), sodium phosphate dibasic (Na2HPO4·2H2O, Sigma-Aldrich, Germany), 

hydroxylamine hydrochloride (Sigma-Aldrich) and dextran with a Mw of 70 kDa 

(Dex70, Pharmacosmos, Denmark) were purchased and used without further 

purification.  
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High molecular weight hyaluronic acid (HA) with a Mw of 800-1000 kDa and free of 

endotoxins was kindly supplied by Bioiberica S.A. (Barcelona, Spain) and used as 

received.  

Phosphate buffer pH 7.4 and 0.025M (PB) was prepared by dissolving the appropriate 

amounts of Na2HPO4·2H2O and KH2PO4·2H2O in deionized water and by adjusting the 

pH using HCl or NaOH.  

2.2. Preparation and characterization of oxidized dextran (Dex70-ox) 

 Dex70 (3 g) was dissolved in distilled water (100 mg/mL). NaIO4 solution (12 mL, 100 

mg/mL) in distilled water were added drop by drop to the dextran solution. The mixture 

was protected from light and stirred for 4 hours, when an equimolar amount of ethylene 

glycol was added to stop the oxidation reaction. The resultant solution was purified by 

dialysis against distilled water (molecular weight cut-off = 1000) for 3-5 days. After 

dialysis, the solution was lyophilized and the oxidized dextran (Dex70-ox) 

characterized. 

Oxidation degree determination: Oxidation degree of Dex70-ox was determined by the 

hydroxylamine hydrochloride titration method described by Zhao et al. [25] In this 

method, an excess of hydroxylamine hydrochloride reacted with Dex70-ox generating 

hydrochloric acid. The amount of hydrochloric acid produced is directly related with the 

aldehyde content in Dex70-ox and can be determined by simple titration with NaOH 

according to the equation (1): 

𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 (%) =
𝑉𝑁𝑎𝑂𝐻×𝑁𝑁𝑎𝑂𝐻

𝑊𝑠𝑎𝑚𝑝𝑙𝑒×𝑀𝑊 𝐷𝑒𝑥
     Equation (1) 

Where VNaOH is the consumed volume of NaOH in the titration process, NNaOH is the 

concentration of NaOH solution (0.1M), Wsample is the dry weight of Dex70-ox and 

MWDex is the molecular weight of the repeating unit of Dex70. 
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Nuclear Magnetic Resonance (NMR): 
1
H and 

13
C Nuclear Magnetic Resonance (NMR) 

spectra were recorded on a Bruker Avance 400 spectrometer (Bruker Optik GmbH, 

Germany), operating at frequencies of 400 and 100 MHz, respectively, using deuterium 

oxide (D2O) as solvent. 

Molecular weight distribution: Molecular weight distribution was analyzed by Gel 

Permeation Chromatography (GPC) using a GPC equipment (Shimadzu 20A, Japan) 

equipped with a set of chromatography columns PL Aquagel-OH with different cut offs 

(Agilent, USA). Water was used as mobile phase at 1 mL/min and the GPC columns 

were heated at 40 ºC. The apparent molecular weight obtained was determined by 

comparison with a calibration curve obtained with Pullulan® references (180 – 708000 

Da. Varian, USA). 

2.3. Design and characterization of an injectable hydrogel-based drug delivery system 

(IHDDS) 

To quickly determine the time needed to form the gel, Dex70-ox and HA were 

dissolved in phosphate buffer (PB) and mixed at different ratios with a gelatin solution 

in PB at 37 ºC. Briefly, the solutions were mixed and allowed to crosslink. The best 

crosslinking time (around 20 minutes) was determined by the inversion vial method and 

observation of the gel formation. The composition of this sample was used in this work 

and constituted the injectable hydrogel (IH).  

The IHDDS was designed in a two components (A and B) ready to mix system that 

allows mixing and manipulation before injection. In this case, the hydrogel was loaded 

with two different anti-inflammatory drugs (12 mg/mL), naproxen or dexamethasone in 

different formulations (Table 1). 

Table 1: Final composition of the different IHDDS prepared 

 
 Component A 

V= 0.5 mL 
 

Component B 

V= 0.5 mL 
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Name 
 Gelatin 

[mg/mL] 

Naproxen 

[mg/mL] 

Dexamethasone 

[mg/mL] 
 

Hyaluronic Acid 

[mg/mL] 

Dex70-Ox 

[mg/mL] 

IH  100 - -  40 100 

IHDDS-Nap  100 12 -  40 100 

IHDDS-Dex  100 - 12  40 100 

 

2.4. Hydration / degradation studies 

IH, IHDDS-Nap and IHDDS-Dex formulations were prepared and let them to form the 

corresponding gel which was dried with filter paper to remove the exuded water. Each 

hydrogel was weighed (Wh) and subsequently introduced in 10 mL of PBS of pH 7.4 

and transferred to an incubator at 37 ºC. At different intervals of time, each sample was 

taken out of the medium and accurately weighed after removing rests of external water. 

Then, the hydrogel was introduced again in the same medium until the next time 

interval. The hydration/degradation ratio (H/D) was determined using the equation (2): 

H/D = (Wt – Wh)/Wh       Equation (2) 

Where Wt is the weight of the hydrated sample at time t. A minimum of three replicates 

were measured for each simple and values were given as average ± standard deviation 

(SD). 

2.5. Anti-inflammatory release experiments 

The samples IHDDS-Nap and IHDDS-Dex were prepared as described in 

hydration/degradation studies subsection. The corresponding hydrogel sample was put 

in 10 mL of PBS of pH 7.4 at 37 ºC. At different times, the medium was removed and 

replaced by fresh medium. The extracted medium was analyzed by UV spectroscopy 

using a NanoDrop one (Thermo Fisher Scientific) equipment analyzing the peak at  = 

230 nm for naproxen and at 243 nm for dexamethasone, and using calibration curves of 

known concentrations of NSAID and corticoid respectively. A minimum of three 

replicates were measured for each sample and values were given as average ± SD. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

8 
 

2.6. Cell culture and in vitro tests 

Three different cell lines were used in this work. Primary human osteoblasts (HOB, 

Innoprot) were growth and maintained in a mixture of Dulbecco's Modified Eagle 

Medium (DMEM, Sigma) and HAM-F12 (Sigma) supplemented with 10% of fetal 

bovine serum (FBS, Life Technologies) and 1% penicillin/streptomycin. Human 

articular chondrocytes (HAC, Innoprot) were growth in basal medium for chondrocytes 

(Innoprot) supplemented with 5% of FBS, 1% of chondrocyte growth supplement 

(Innoprot) and 100 units/mL penicillin/streptomycin. Human dermal fibroblasts (HDF, 

Innoprot) were cultured in DMEM supplemented with 10% FBS, 200 mM L-glutamine 

and 100 units/mL penicillin/streptomycin. 

In all cases, the cells were incubated at 37 ºC in a humidified atmosphere of 5% CO2 

and the cell culture media was refreshed every 3 days. Cells were used from 5-6 

passages. 

In vitro toxicity studies: In order to calculate the half-maximal inhibitory concentration 

(IC50), a stock solution of Dex70-ox was prepared (80 mg/mL) in culture medium and 

consecutive dilutions were made. All solutions were sterilized by filtration using 20-

micron filters.  

For the toxicity of the IHDDS, the materials IH, IHDDS-Nap and IHDDS-Dex 

(prepared under sterile conditions) and the discs of the negative control Thermanox® 

(TMX, Labcrinics SL) were immersed in 5 mL of fresh and sterile medium and kept 

under stirring at 37 °C. After 1, 2, 7, 14 and 21 days, the medium was removed 

(leachates) and replaced with fresh medium. 

In parallel, the cells (fibroblasts for Dex70-ox test and, chondrocytes and osteoblasts for 

IHDDS tests) were seeded, using fresh complete culture medium, at a concentration of 

11·10
4
 cells/mL, on 96-well plates. After adding 100 μL of cell concentrate in each well 
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and maintaining for 24 hours at 37 °C and an atmosphere with 5% CO2, the culture 

medium was exchanged for the corresponding dilution or leachate (n = 8), and the plates 

were incubated for 24 hours under the same conditions. After this time, the contents of 

the wells were replaced by the MTT solution (10% in fresh medium). The MTT reagent 

was kept in contact with the cultures for 4 hours at 37 °C, and then, the content of the 

wells was extracted and 100 μL of dimethylsulfoxide (DMSO) was added, in order to 

dissolve the formazan crystals that may have formed. After a high intensity 20 s stirring, 

the optical density was read at 570 nm with a reference wavelength of 630 nm in a 

Biotek Synergy HT plate reader. The relative cell viability (% CV) was calculated with 

respect to the control, from the equation (3): 

% 𝐶𝑉 =
𝑂𝐷𝑆−𝑂𝐷𝐵

𝑂𝐷𝐶
 𝑋 100      Equation (3) 

where ODS, ODB and ODC are the optical density measurements of the sample, the 

blank and the control, respectively. Next, a dose-response curve of the relative cell 

viability vs concentration was plotted and the IC50, defined as the concentration at 

which the death of 50% of the cells in the negative control occurs, calculated. 

Cell viability assay: The cell viability of the hydrogels was measured by an Alamar 

Blue assay.  The different IHDDS systems were directly deposited on a 24-well plate 

and let to form the gel for 30 minutes. Cells were seeded on the gels at a concentration 

of 14·10
4
 cells/mL in fresh complete culture medium 

After the established time intervals (2, 7 and 14 days), the medium was removed from 

the wells and 1 mL of a 10% solution of Alamar Blue (Serotec, BUF012A) was added 

in complete medium without phenol red and incubated for 4 hours. The Alamar Blue 

was then replaced with fresh medium, transferred to a 96-well plate and measured the 

fluorescence at 570/630 (em/ex) in a microplate reader (Biotek Synergy HT 

spectrophotometer).  
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Statistical Analysis: Experimental data were expressed as the mean ± SD (number of 

samples expressed in each figure). Statistical analyses were performed using one‐ way 

ANOVA followed by post‐ hoc Tukey honestly significant difference test with three 

levels of statistical significance: * p < 0.05, ** p < 0.005, *** p < 0.001 

 

2.7. Design of an experimental model of osteoarthrosis 

Male New Zealand white rabbits (n=8) with an average body weight of 3860 g and 10 

month old were used for the experimental studies. Animals were housed individually 

and had free access to tap water and pellet food in a temperature-controlled room with a 

12 hours artificial day/night cycle. The animal experiments were carried out according 

to the European Directive (2010/63/EU) and the national Spanish law (RD 53/2013). 

Besides, the Ethical Committee of University of Salamanca approved surgical protocols 

(register number: 035). All animals were acclimatized for at least 2 weeks prior surgery. 

For the experimental model of osteoarthrosis, collagenase type II (Clostridium 

histolyticum type II, activate enzyme 425 U/mg, Sigma-Aldrich) was dissolved in PBS 

at a concentration of 4 mg/mL and the solution was filtrated with a 0.22 µm membrane. 

Animals were pre-anesthetized with an intramuscular injection of midazolam (5mg/ml) 

(Midazolam Normon) followed by general anesthesia by inhalation of 1.5% isofluorane 

(Forane®). After shaving with an electric shaver and sterilizing with 2% alcoholic 

chlorhexidine (Bactiseptic Orange) the knee joint was injected intra-articularly 

following the timeline proposed by Kikuchi et al. [26]  

- Control group (n=6): two injections of PBS at 0 and 3 days. 

- Osteoarthrosis group (n=2): three collagenase injections at 0, 3 and 21 days 
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Animals of control group were euthanized by lethal injection of sodium pentobarbital 

(120 mg/kg, Dolethal®) after 3 weeks. OA group was used to evaluate the degree of 

osteoarthrosis evoked and animals were sacrificed after 4 weeks. 

2.8. Treatment of the osteoarthrosis process with IHDDS 

Three different treatments were applied on previously described osteoarthrosis model 

which were divided in three groups, considering the initial experimentation time as the 

time of the first collagenase injection: : 

- OA evolution group (n=2): two injections (0.3 mL) of PBS at 4 and 6 weeks 

of experimentation time. 

- IHDDS-Nap group (n=2): two injections (0.6 mL) of naproxen loaded 

hydrogel at 4 and 6 weeks of experimentation time. 

- IHDDS-Dex group (n=2): two injections (0.6m L) of dexamethasone loaded 

hydrogel at 4 and 6 weeks of experimentation time. 

Before infiltration, both hydrogel components were mixed and heated at 37 ºC for 25 

min. After this time, the studied hydrogels were injected intra-articularly. During the 

immediate postoperative period, all animals were kept under electric blanket, to prevent 

hypothermia. Control and observation of pain was treated with subcutaneous injection 

of tramadol (50 mg/ml, 12h Adolonta, Grünenthal Pharma) and antibiotic therapy of 

enrofloxacin (Ganadexil Enrofloxacin 5%, Invesa). All animals were euthanized at 8 

weeks of experimentation time. 

Macroscopic study of the osteoarthrosis process: A visual analysis was made to follow 

the degree of osteoarthrosis obtained after infiltration with collagenase. Likewise, the 

repair of osteochondral lesions at a macroscopic level was studied following the 

Yosioka scale [27] that assesses the state of the articular surface at a morphological 
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level, as is shown in Table 2. The images were obtained with a Sony digital camera 

(model DSCW800B). 

Table 2. Yosioka scale of osteoarthrosis: macroscopic evaluation of articular cartilage. 

Grade Description 

1 Articular surface intact 

2 Minimal fibrillation 

3 Evident fibrillation 

4 Erosion with exposed subchondral bone 

 

In addition, the osteoarthrosis grade was assessed following a modification of the 

histological scale described by Wakitani S. et al. adapted for our study [28]. The images 

were analyzed and evaluated according to 5 parameters (see Table 3). By adding up the 

score given to each parameter, we obtained the histological score for each subject 

individually, which represents the sum of all evaluated parameters, with the maximum 

potential value being 14.  

Table 3: Histological grading scale for cartilage degeneration 

Category  

Cartilage morphology  

          Hyaline cartilage 0 

          Mostly hyaline cartilage 1 

          Mostly fibrocartilage 2 

          Mostly non-cartilage 3 

          Non-cartilage only 4 

Cell morphology  

          Intact, appropriate orientation                         0 

          Proliferation (clusters), hypertrophy, superficial zone 1 

          Proliferation (clusters), hypertrophy, mid zone 2 

Matrix-staining (safranin-O)  

          Normal (compared with control group: normal cartilage) 0 

          Slightly reduced 1 

          Marked reduced 2 

          No stain 3 

Surface regularity  
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          No discontinuity 0 

          Irregularities at the superficial zone 1 

           Progression into mid zone 2 

           Progression into deep zone 3 

Thickness of cartilage  

           >2/3 0 

           1/3-2/3 1 

           <1/3 2 

Total maximum 14 

 

 

Histological study: Once rabbits were sacrificed at each experimentation time, the knees 

joints were resected. The distal metaphysis of the femur was dissected and sawed 

sagittally at the level of the medial condyle. Bone samples were fixed in 4% 

paraformaldehyde and decalcified in DC3 reactive (VWR Chemicals Prolabo®, France) 

during 48 hours. After decalcification, bone samples were embedded in paraffin. Five 

micrometer-thin sections were stained with Hematoxylin and Eosin (H/E) to study 

cellular cartilage components and with Safranin-O/Fast green (S-O) to detect 

proteoglycan loss in cartilage by light microscopic examination. 

Immunohistochemical technique for detection of type II collagen: Paraffin sections were 

deparaffinized and incubated in 10 mM citrate-based buffered solution (pH 6.0) during 

1 min for antigen unmasking (Vector Laboratories, Inc., USA). Immunostaining was 

performed using a mouse monoclonal collagen type II antibody (mouse mAb II.4C11, 

Calbiochem, USA), dilution of 1:100 overnight and revealed with the Vectastain® ABC 

Kit (Vector Laboratories, Inc., USA) following manufacturer instructions. 

Immunostained sections were counterstained with Hematoxylin.  
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Stained sections were evaluated and photographed by a bright field microscope (Nikon 

Eclipse 90i) equipped with a Nikon Digital Sight DS-smc camera (Nikon Corporation, 

Japan). 

3. Results and discussion 

3.1. Design and characterization of an injectable hydrogel-based drug delivery system 

(IHDDS) 

Partially oxidized dextran with a molecular weight (Mw) of 70 kDa (Dex70-ox) was first 

prepared using sodium periodate (NaIO4) as oxidant. To quantify the aldehyde groups in 

Dex70-ox, the hydroxylamine hydrochloride titration method was used, getting a 40 % 

of oxidation degree. 
1
H-NMR spectrum corroborates the formation of aldehyde groups 

by the new peaks appeared between 3.9 ppm and 6.0 ppm that correspond with the 

hemiacetal formation in Dex70-ox [29] (Figure S1 in supplementary data). 

The degradation of Dex70-ox and its stability with the time in phosphate saline buffered 

solution (PBS) at 37ºC were evaluated by GPC (Figure 1). 

 

Figure 1: Results of the GPC analysis comparing Dex70 and Dex70-ox (a) and the 

hydrolysis of Dex70-ox with time in PBS at 37ºC (b). 

After oxidation (Figure 1a), the molecular weight obtained from the principal signal in 

the chromatogram of Dex70 decreases from a Mw= 62 kDa to 40 kDa due to the 
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periodate oxidation, but it also appears a new signal at lower retention time with a 

molecular weight (around 250 kDa). Maia et al.  described this behavior due to that the 

oxidation process favors the inter-chain hemiacetals formation, resembling a molecular 

weight increasing [29]. 

The hydrolysis of Dex70-ox (Figure 1b) decreases the principal Mw, but increases the 

number of low molecular weight species, attributed to a rise in the interactions between 

hemiacetals groups. For this reason, there is an increase in the relation between high 

molecular weight species/low molecular weight species [29]. The study of the NMR of 

the Dex70-ox incubated at different times showed that there is not changes in the 

chemical structure (Figure S2 in supplementary data), therefore the hydrolysis only 

affects the molecular weight. 

The injectable hydrogel (IH) was designed as two components ready to use system 

(Table 1 in Experimental Section and Figure S3 in supplementary data) loaded with 

naproxen (IHDDS-Nap) or dexamethasone (IHDDS-Dex). Hydrogels were prepared by 

mixing equal volumes of PBS solutions containing gelatin and the anti-inflammatory 

drug (Component A) with hyaluronic acid and Dex70-ox (Component B). The 

crosslinking reaction is due to Schiff’s base formation between the amino groups of the 

gelatin and the aldehyde groups of Dex70-ox trapping the hyaluronic acid among the 

crosslinked gelatin and forming a semi-interpenetrated network (semi-IPN). The 

gelation process takes around 20 minutes. 

3.2. Hydration/degradation behavior (H/D) and in vitro anti-inflammatory release 

experiments 

The administration of NSAID [30] and corticoids [31] into the synovial cavity is 

performed in clinical practice to treat OA but this route involves several drawbacks 

[32]. Therefore, the in situ administration of the drug embedded in a hydrogel structure 
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[33, 34] is expected to provide some benefits such as reduce the low in situ retention 

time. Consequently, research on this topic is nowadays increasing [32, 35]. In this 

sense, recently Feng et al. developed cell-infiltratable and injectable gelatin hydrogels 

physically and chemically crosslinked that can mediate release of small hydrophobic 

drugs such as icaritin to promote differentiation of stem cells [36]. Zhang et al. 

developed injectable bioactive nanocomposites based on hyaluronic acid and 

pamidronate-magnesium nanoparticles for the release of dexamethasone  to stimulate 

bone regeneration [37]. In this context, the IHDDS hydrogels loaded with naproxen or 

dexamethasone can be considered as a novel approach in the treatment of OA. To 

investigate the in vivo fate of the developed cargo systems, swelling, degradation and 

drug release behavior were first analyzed. 

The swelling capacity of the hydrogels is an indication of the degree of hydrophilicity 

[38]  and influences cellular behavior [39]. In this work, the stability of the hydrogels 

was analyzed in vitro by soaking the samples in PBS (pH of 7.4) at 37 ºC up to 15 days. 

Results of the hydration /degradation ratio are displayed in Figure 2a. In the first 180 

min an increase in the H/D ratio occurs indicating that hydration prevails over 

degradation as a consequence of the water absorption. At this point (180 min) the 

maximum H/D value for the nude hydrogel (IH) is 1.2 whereas is 1.1 for those charged 

with drugs. Next, the H/D ratio decreases because of the degradation phenomenon and 

the release of the drug. The fastest H/D decrease is for the IHDDS-Nap sample which 

completely degrades within 16 days, followed by the IH sample that totally disintegrates 

after 24 days. The IHDDS-Dex sample degrades progressively and maintains its 

integrity even up to 30 days (data not shown) 
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Figure 2 (a). Variation of hydration/degradation with immersion time of the different 

hydrogels soaked in PBS of pH 7.4 at 37 ºC (n=3). (b) Release profiles of naproxen and 

dexamethasone from the IHDDS-Nap and IHDDS-Dex hydrogels respectively, in PBS 

of pH=7.4 at 37 ºC (n=3).  

Similar results are reported in literature. Kurisawa et al., found that the degradation of 

gelatin and dextran IPN hydrogels occurs approximately in the first 24 h [40] and in 

relation to hydrogels loaded with corticoid, Fan et al. observed a degradation of a HA 

and furan hydrogel charged with dexamethasone in a period of 21 days [41].  In our 

study, the stability of the hydrogels loaded with naproxen or dexamethasone is good for 

2 and, at least 4 weeks, respectively. Particularly, the hydrogels loaded with 

dexamethasone are much more stable and, taking into consideration the application in 

regeneration of cartilage defects, these hydrogels seem to be much more appropriate. 

Even, it is very likely that they are stable for longer times, considering that at one-

month period, the samples still maintain good dimensional stability.  

Drug release and degradation are two phenomena that take place simultaneously and 

therefore, their corresponding mechanisms are inter-related. On the one hand, 

degradation of hydrogels crosslinked via Schiff-based reaction can occurred due to the 
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dynamic nature of these linkages [42] [43], and on the other hand, release mechanism of 

entrapped drugs is mediated via diffusion in which solubility of the drug plays a crucial 

role. Moreover, in the semi-IPN systems the release of HA over time will also 

contribute to degradation of the system. Release profiles of the anti-inflammatory drugs 

in PBS of pH 7.4 at 37 ºC is shown in Figure 2b. For the IHDDS-Nap hydrogels nearly 

the initial total content of naproxen is released in the first 240 min. These results 

correlate with those published by Peng et al., who studied the release of naproxen from 

chitosan hydrogels with carbon nanotubes, and observed a release of more than 50% of 

the drug in the first 30 min [44]. 

However, the release profile for the IHDDS-Dex hydrogels is sustained from the 

beginning, and a content of 22 % of initial drug is released in five days. Accordingly, 

for a dexamethasone HA hydrogel, Fan et al., reported a release of 26% of the 

dexamethasone loaded in 24 h reaching a plateau [41]. 

In our systems the very different degradation and drug release behavior between the 

naproxen and dexamethasone loaded systems may be ascribed to the different 

hydrophilic/hydrophobic character of the drugs and hence, to their different solubility, 

but also to the different interactions of the drugs with the polysaccharides via hydrogen 

bonds. Naproxen presents higher solubility in PBS than dexamethasone due to the 

carboxylic acid in its structure, whereas the more hydrophobic dexamethasone is more 

prone to interact through hydrogen bonds with dextran and hyaluronic acid due to the 

three hydroxyl groups of its structure. Moreover, hydrogen interactions among 

dexamethasone/HA/dextran/gelatin can reinforced the higher integrity of this hydrogel. 

This approach opens a window of IHDDS that can be formulated by changing 

composition of the semi-IPN and/or the drug, tuning the degradation and release profile 

of the system for each specific case. 
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3.3. In vitro cytotoxicity analysis 

The toxicity of components A and B of the IH can derived from that of Dex70-ox due to 

the presence of aldehyde groups. Therefore, the cytotoxicity of Dex70-ox was tested in 

the first place (Figure S4 in supplementary data). Dex70-ox presents a half maximal 

inhibitory concentration (IC50) of 20 mg/mL. Taken into account that the residual 

concentration of aldehyde groups will decrease markedly after the crosslinking reaction 

with gelatin it is expected that the biocompatibility of the injectable hydrogels, once the 

semi-interpenetrated network is formed, will not be compromised. 

The toxicity of the IH and IHDDS was tested in chondrocytes and osteoblasts cultures, 

using the leachates of hydrogels taken at different periods after the immersion of the 

hydrogels in culture medium. (Figure 3). 

IH and IHDDS present a significant decrease in cell viability (CV) on chondrocytes due 

to the release of unreacted Dex70-ox and the release of the drugs; nonetheless, the cell 

viability is always higher than 80% and is partially recovered with the time. In the case 

of osteoblasts, a significant effect on cell viability is only observed in IHDDS samples, 

mainly due to the release of the drugs. In the IHDDS-Nap sample there is a significant 

decrease only in the first 24 hours due to the fast release of naproxen, but cell viability 

recovers with the time. Instead, as IHDDS-Dex sample presents a slower release of 

dexamethasone, the decrease of cell viability is evident at longer times (7 and 14 days) 

but it recovers at 21 days. 
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Figure 3. Cytotoxicity of the leachates of the different systems on chondrocytes (a) and 

osteoblasts (b) compared with the TMX control (n = 4, * p < 0.05, ** p < 0.005, *** p 

< 0.001) 

3.4. In vitro cell viability studies 

Alamar Blue assay was used to study the cell viability of chondrocytes and osteoblasts 

directly seeded on the different IHDDS. . The hydrogel without drug (IH) was used as 

control and the cell viability results were normalized with it. The results are shown in 

Figure 4: 
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Figure 4. Cell viability of the different systems using chondrocytes (a) and osteoblasts 

(b) compared with the behavior in the IH (n = 6, * p < 0.05, ** p < 0.005, *** p < 

0.001) 

Wu et al claim that hyaluronic acid hydrogels are not cytotoxic and stimulate cell 

proliferation [45]. In our case, chondrocytes and osteoblasts viability is high in presence 

of both IHDDS at long times (14 days) .IHDDS-Nap shows a significant decrease in 

cell viability in the first 2 days due to the rapid release of naproxen. After 7 days the 

viability in both cell lines is comparable to the IH, the CV being slightly higher for 

chondrocytes. Summarizing, the in vitro results indicate that the developed injectable 

systems are not cytotoxic and support good cell viability in chondrocytes and 

osteoblasts cultures; hence, they can be adequate candidates to be used in the 

osteoarthrosis process. 

3.5. In vivo macroscopic study of the osteoarthrosis process treated with IHDDS 

The efficacy of the IHDDS systems was tested in vivo by intra-articular injection in 

New Zeeland rabbits using an osteoarthrosis (OA) model. The evolution of the 

osteoarthrosis was studied macroscopically. The control knee (three injections of PBS) 

(Figure 5a) presents a normal external appearance without macroscopic change of the 

articular cartilage. On the other hand, the OA group (three injections of collagenase) 

(Figure 5b) presented greater joint swelling, hematoma and, inflamed and hyperemic 

synovial membrane (Figure 5b.1 and 5b.2). Considering the scale of Yosioka [27] in the 

macroscopic study of articular cartilage, the OA group presented hemarthrosis and 

minimal joint fibrillation in the internal femoral condyle without exposing the 

subchondral bone (Grade 2-3 of Yosioka scale (Table 3). Figure 5b.3, indicated with *).  
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Figure 5. Macroscopic study of the osteoarthrosis evolution. (a) Control group, (b) OA 

group, (c) OA evolution group, (d) IHDDS-Nap group and (e) IHDDS-Dex group. (1) 

Macroscopic view of the joint capsule. (2) Macroscopic view of the synovial membrane. 

(3) Macroscopic view of the articular cartilage  

 

The evolution of the osteoarthrosis without treatment (OA evolution group. Figure 5c) 

presents more severe degenerative changes. The knee presents a greater hypertrophy of 

the joint capsule (Figure 5c.1) with the synovial membrane more congestive, inflamed 

and thickened (Figure 5c.2).  The articular cartilage is affected with presence of 

osteophytes in the tibial plateau (* in Figure 5c.3) and the external femoral condyle 

presents an irregular appearance with a clear exposure of subchondral bone (+ in Figure 

5c.3). These results are similar to those obtained by Kikuchi et al. [26] and can be 

evaluated as Grade 3 of Yosioka scale. 
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The treated knees with naproxen loaded hydrogel (IHDDS-Nap group) present capsular 

hypertrophy with a lower proportion of hemarthrosis and lower degree of fibrosis in the 

soft tissues (Figure 5d.1 and 5d.2). The articular cartilage does not present osteophytes 

but a femoral chondral lesion without subchondral bone exposure can be observed 

(Grade 2 of Yosioka scale. Figure 5d.3). In the case of dexamethasone loaded hydrogels 

(IHDDS-Dex group), this group presents a higher level  of fibrosis of the soft tissues 

(Figure 5e.1 and 5e.2) but not clear chondral injury can be observed in the joint (Figure 

5e.3) 

The knees treated with the IHDDS present a lower macroscopic degree of osteoarthrosis 

with a better recovery in the case of IHDDS-Dex group. 

In addition, the osteoarthrosis grade was evaluated following a modification of the 

histological scale described by Wakitani S. et al [28]. Thus, the qualitative histological 

observations were scored according to the parameters included in Table 3, and the 

obtained values of cartilage degeneration were represented in Table 4. It can be seen 

that the cartilage treated with the anti-inflammatory drugs gave rise to the lower score 

grades, the one loaded with dexamethasone being the lowest which correlated with 

previous findings. 

 

 

Table 4.  Results of the histological grading scale 

 Grade (points) 

 
Cartilage 

morph. 

Cell 

morph. 

Matrix-

staining 

Surface 

regularity 

Thickness of 

cartilage 
Total 

OA group 1.8 1.7 1.5 1.8 0.4 7.2 

OA evolution 2.5 2 1.8 2.5 1.5 10.3 
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IHDDS-Nap 1.6 1.6 1.3 1.3 0.7 6.5 

IHDDS-Dex 1.2 1.5 2 1 0.5 6.2 

 

3.6. Histological study of the osteoarthrosis process treated with IHDDS 

Results of the histopathological studies are represented in Figure 6. H/E stained sections 

of the control group (Figure 6a.1 and a.2) revealed no histological changes in the 

articular cartilages. Articular surface was smooth and continuous. Normal hyaline 

cartilage is distinguished by the presence of homogeneous and amorphous ECM. No 

fissures were present. Cartilage showed normal architecture of chondrocytes, aligned in 

vertical rows, inside lacunae and forming isogenic groups. Subchondral bone presented 

a normal morphology and homogeneous vascularization.  

In the case of OA group, microscopic images showed a degenerative cartilage (Figures 

6b.1 and b.2). The articular surface was broken and cracked, with isolated fragments of 

cartilage detached from the articular surface. Notable and deep fissures were evident. 

The cellular disposition was disrupted, showing chondrocytes hypertrophy and 

hypercellularity. Nevertheless, subchondral bone appeared preserved with unaltered 

vascularization.  

OA evolution group presented a remarkable cartilage degeneration (Figure 6c.1 and 

c.2). Notable surface irregularity was evident, where numerous fissures and erosions 

could be noticed. Deep fissures extended down to the deep zone reaching the tidemark. 

The thickness of the articular cartilage layer was greatly reduced. Isolated detached 

cartilage fragments were also observed. Chondrocytes density was decreased and 

morphologically changed, being hypertrophic, disorganized and forming clusters in 

order to adjust to the changing microenvironments [46]. Subchondral bone showed 

altered and irregular tidemark disposition with several calcification fronts. Tidemark 

changes were characterized by duplication and penetration, where tidemark suffered 
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multiple episodes of advancement and appeared breached due to vascular invasion, 

losing its integrity. This tidemark changes were classified into different degrees of 

severity in an osteoarthrosis model [47]. Tidemark breaching was recognized in end-

stage OA in both animal [48] and human models [49]. Furthermore, subchondral bone 

presented a higher vascularization degree.  These processes are related to tidemark 

multiplication and vascular invasion in human OA [50]. 

In the IHDDS-Nap group a relative cartilage repair response could be seen (Figure 6d.1 

and d.2). Articular surface showed little fragmentation and fissures were shallow. The 

thickness of the articular cartilage layer was similar to the normal cartilage. Both 

extracellular matrix and chondrocytes showed a preserved structure, although 

hypocellularity was observed. Chondrocytes parallel disposition and forming columns 

reminded normal articular cartilage. Isolated hypertrophic chondrocyte clusters were 

present but never at the superficial zone. Duplication and vascular penetration of the 

tidemark could be seen.  

Finally, IHDDS-Dex group, as the previous group, presented a relative conserved 

articular cartilage (Figure 6e.1 and e.2). Increased thickness of the cartilage regeneration 

occurred. Surface zone was partly smooth with little and shallow fissures. Scarce 

detached cartilage fragments were observed. Extracellular matrix showed a 

heterogeneous stain. Hypertrophic chondrocytes forming clusters showed an augmented 

basophilic stain at the territorial matrix being more evident at superficial zone. 

Chondrocyte density was increased in comparison with IHDDS-Nap group, but no 

organization in columns occurred. Both tidemark and subchondral bone were preserved, 

and normal vascularization was appreciated. 

In both IHDDS groups, articular cartilage was more preserved in comparison with OA 

groups. IHDDS-Nap group presented superficial fissures and mild surface 
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discontinuities, whereas IHDDS-Dex group showed surface undulation, without 

irregularities, being more conserved. In both groups, increased thickness of the cartilage 

regeneration occurred. Chondrocyte hypocellularity was more evident in IHDDS-Nap 

group. In addition, cellular distribution was different between hydrogels groups. In 

IHDDS-Nap group, linear chondron columns were aligned in parallel whereas in 

IHDDS-Dex group, chondron clusters, formed by numerous chondrocytes, were radially 

distributed. As previously said, proliferative chondrocytes form clusters in order to 

adjust to the changing microenvironments and to promote reparation processes [46]. 

 

Figure 6. Hematoxylin/Eosin (1 and 2) and Safranin-O (3) stain micrographs of rabbit 

articular cartilage of studied groups: (a) control group, (b) OA group, (c) OA evolution 

group, (d) IHDDS-Nap group and (e) IHDDS-Dex group. Hematoxylin/Eosin stain at 

(1) 10x and (2) 20x. Scale bars: 100 µm. T: Tidemark. V: Vascularization. (3) Safranin-

O stain, 10x, scale bars: 100 µm 

The cartilage extracellular matrix composition could be determined through the 

Safranin-O (S-O) staining method. An absence or decrease in staining (red color) 

revealed the loss of proteoglycans, which was significantly reduced in the IHDDS-Dex 

group (Figure 6e.3 and S5) compared to the normal cartilage (Figure 6a.3). The other 

three groups: OA group (Figure 6b.3), OA evolution group (Figure 6c.3) and IHDDS-
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Nap group (Figure 6d.3) showed a slightly reduced S-O stainability, not resulting in a 

marked loss of proteoglycans.  

In particular, normal cartilage showed homogeneous S-O stain through the articular 

cartilage, representing the normal presence of proteoglycans at ECM in physiological 

conditions (Figure 6a.3). OA group manifested a loss of staining at the surface cartilage 

layer. The rest of cartilage extracellular matrix showed a weak stain, being more intense 

at the calcified zone (Figure 6b.3). OA evolution group showed a reduction of S-O stain 

down to the transitional layer. In comparison with previous group, the stain of calcified 

layer was reduced, sign of PG loss (Figure 6c.3). Proteoglycans loss at the upper-zone 

evoked an alteration in mechanical properties of articular cartilage at this level [51, 52]. 

The alteration of cellular configuration, such the evidence of proliferative chondrocytes 

forming clusters in OA evolution group, also changes the quantity and composition of 

the ECM secreted by the cells. The reduced proteoglycans content decreases 

compressive modulus of cartilage and consequently exposes the tissue to greater strains 

when exposed to mechanical stress [46, 53]. 

IHDDS-Nap group showed a homogeneous S-O stain through the entire ECM except at 

the surface layer. Compared with the control group, the stain is less intense (Figure 

6d.3). Finally, IHDDS-Dex group showed a severe reduction of stain revealing loss of 

PG. Only a poor staining in the calcified layer could be observed (Figure 6e.3 and S5).  

Corticosteroids can function as inhibitors of proteoglycans synthesis, worsening 

cartilage lesions or even causing a degenerative lesion in healthy joint cartilage [54, 55]. 

In our study, we observed similar results in which IHDDS-Dex had a negative effect in 

relation to PG content, which was clearly reduced.  However, in relation with 

preservation of superficial cartilage zone, in IHDDS-Dex group it was relative 

maintained. Nevertheless, Pelletier et al. [56, 57] in different studies in osteoarthrosis 
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model in dogs, demonstrated that low doses of intra-articular corticosteroids could 

normalize the synthesis of proteoglycans and could significantly decrease the incidence 

and severity of osteophyte formation and cartilage lesions. 

 

3.7. Immunohistochemical study of the osteoarthrosis process treated with IHDDS 

The immunohistochemical detection of type II collagen allows to assess the quality of 

the extracellular matrix synthesized by chondrocytes, assigning it characteristics of 

hyaline cartilage and distinguishing it from the fibrous tissue repair synthesized by the 

fibroblasts [58]. The immunostaining expression of collagen type II was represented in 

Figure 7. The positive immunostaining for collagen type II was intense throughout the 

totality of cartilage matrix in control group (Figure 7.a). In OA group, the 

immunoreactivity showed a marked reduction in almost the totality of the articular 

cartilage, being only the calcified layer positively immunostained (Figure 

7.b).Accordingly, OA evolution group showed no collagen type II immunoreactivity 

(Figure 7.c). Regarding IHDDS-Nap group, the positive immunostain was weak at the 

interterritorial matrix, whereas it was moderate at the calcified zone (Figure 7.d). 

Finally, in IHDDS-Dex group the immunoreactivity was positive in the interterritorial 

areas, especially delimiting the chondrocytes clusters. Besides, the calcified layer was 

intensely immunostained (Figure 7.e). 

 

Figure 7.  Anti-collagen II immunostaining micrographs of articular cartilage from 

rabbit femoral condyles. (a) Control group, (b) OA group, (c) OA evolution group, (d) 

IHDDS-Nap group and (e) IHDDS-Dex group. 10x, scale bars: 100 µm. 
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Especially, in the OA evolution group we have appreciated the articular cartilage 

degeneration development, altering ECM composition to the detriment of the presence 

of collagen type II. This behavior was also appreciable in an established osteoarthritic 

model [59, 60]. 

However, immunoreactive collagen type II expression was significantly higher in 

IHDDS groups compared with OA evolution group. This increased collagen type II 

expression reflects an ECM recovery from the damaged cartilage, being more evident in 

IHDDS-Dex group especially at the matrix surrounding chondron. Also, the increase of 

collagen type II indicates a regenerative effort by chondrocytes to compensate the 

collagen type II lost. The use of dexamethasone decreases the inflammatory reaction 

and the production of metalloproteinases resulting in an increase expression of type II 

collagen [61, 62]. 

4. Summary and Conclusions 

In this work, injectable hydrogels loaded with an anti-inflammatory drug, naproxen 

(IHDDS-Nap) or dexamethasone (IHDDS-Dex) have been developed based on a simple 

two components system. The drug release profile strongly depended on the degradation 

pattern which differed for each IHDDS. The injection of the loaded hydrogels in New 

Zealand rabbits knees after created an osteoarthrosis (OA) indicate that IHDDS 

presented low macroscopic degree of OA, with a better recovery for the IHDDS-Dex 

group. The histological analysis revealed preservation of the cartilage in both drug 

loaded systems and collagen type II expression in the ECM, more evident for the 

IHDDS-Dex group. These promising results suggest that the IHDDS can be considered 

an alternative to currently used treatments in OA and should be analyzed in further 

studies. 
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Osteoarthrosis is a chronic degenerative disease that constitutes a public health problem 

Semi-IPN hydrogels loaded with anti-inflammatory drugs are developed for drug 

delivery 
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