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ABSTRACT - Tyre behavior is strongly nonlinear. This article presents the validation of a new 

polynomial tyre model with real test data, analyzing the convergence properties during the 

optimization process to calculate the values of the parameters. A multivariate model with 13 

parameters is shown, including normal load and camber angle. The article reviews the methods of 

getting polynomial approximations of the magic formula tyre model used to develop the new 

polynomial model, the numerical optimization methods who calculate the parameters of the model 

from real test data and it explains how the terms of the Jacobian matrix are modified when we 

impose constraints to the curve; this can be useful to improve the adjustment in some areas of the 

curve. The convergence properties are shown both for the magic formula tyre model and for this 

polynomial tyre model. 

The proposed model presents a fast convergence both in one and in 3 variables. This is an additional 

advantage to its excellent analytical properties, the model is very easy to compute and can be easily 

derived and integrated. It is very well adapted for real time computing.  

 

KEY WORDS: Polynomial tyre model, tyre model coefficients, nonlinear 

optimization. 
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1.- INTRODUCTION.  

 

Tyre models are important to evaluate the behavior of such an important component 

of a car. Those models calculate forces in the tyre-ground contact. Probably the most 

accurate and widely used by the community of automotive engineers is the so called 

Pacejka’s Magic formula tyre model [7], [8] and [9], (see 2.1). 

Due to the nonlinear behavior of the tyre, the optimization procedure required to 

calculate the parameters of those models for an optimum adjustment to test data is 

not a simple problem, because the forces in the contact depend on slip, slip angle, 

normal load and camber angle; thus the mathematical problem is a nonlinear 

multivariate optimization problem. The complexity of the mathematical formulation 

of the model can influence both the easiness of computing the model and the 

convergence properties during the nonlinear optimization process. The Pacejka’s 

magic formula tyre model uses a complex nested inverse tangent function. 

The authors of this paper have been looking for a simpler expression quicker and 

easier to process both during the optimization and during the direct computing of the 

model, more suitable for real time applications.  

The new polynomial model presented and validated in this article is obtained from 

the magic formula expression, by using theory of approximation, expanding the 

magic formula in series of Jacobi orthogonal polynomials. In the following section 

we summarize how that expansion was obtained. 

This article validates the new model with real test data and analyzes the convergence 

properties of the model during the optimization process, to calculate the values of the 

parameters. A multivariate model is proposed including the influence of camber 

angle and normal load. 

This work is integrated in a more general line of research, whose goal is to obtain 

fast computing solutions of the vehicle nonlinear equations, expanding them in 

orthogonal polynomial series (Chebyshev and Jacobi polynomials). The application 

is saving computing time in pre-collision situations for active safety devices, (see the 

two PhD Thesis of the authors [1, 2], [3] and the papers of Amirouche [4] and  Ferrara 

[5, 6]. 
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2.- THEORETICAL BACKGROUND. 

2.1.- The magic formula tyre model. 

The well-known tyre model proposed by Bakker, Nyborg and Pacejka [7], [8] and 

[9] , is a semi-empirical tyre model based on the “magic” formula: 

Y = D.sin[C.arctan(BX–E.[BX-arctan(BX)])] 

 
This model is widely used and accepted by the community of automotive engineers 

and is also considered the most accurate. For that reason we use it as the reference in 

this paper. 

The shape of the curve is controlled by four parameters: B, C, D and E. The equation 

can calculate the following:  

• Lateral forces in a tyre, Fy, as a function of the slip angle of the tire, α, (in 

degrees) 

• Braking force, Fx, as a function of longitudinal slip K (%). 

• Self-aligning torque, Mz, as a function of the slip angle α.   

 

Figure 3 shows the aspect of this magic formula model in the case of a longitudinal 

force. 

B, C, D and E are constants that describe the inclination of the curve at the origin 

(BCD), the peak value (D), the curvature (E) and the basic form (C) for each case 

(lateral, braking or self-aligning torque). In addition, the curve can have vertical (Sv) 

or horizontal (Sh) shifts at the origin. The full expression is: 

 

Y=D.sin[C.arctan(B(X+Sh)–E.[B(X+Sh) -arctan(B(X+Sh))])] + Sv 

 

 

Coefficients B, D and E are functions of the vertical load in the tyre, Fz: 
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BCD1 is valid for the longitudinal force and the self-aligning torque with C=1.65 and 

C=2.4, respectively. 

BCD2 is valid for the lateral force with C=1.3. 

The Camber angle γ in the wheel modifies the shifts Sh and Sv and the stiffness BCD: 

γ.9aSh =∆ ; yFaFaS zzv )...( 11
2

10 +=∆  ; BaB .. γ12−=∆  ; 

γ.( 13

0

1
1
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E
E

−
=  

E1 is the E value modified by the camber angle in the self-aligning torque calculation. 

In the next two sections we explain how to obtain a polynomial approximations to 

this magic formula model.  

 

 

 

2.2.- Approximation of a function in Chebyshev seri es.  

 

The Chebyshev polynomials, see [10], of the first kind are defined by

)]arccos(cos[)( xnxTn =  and are orthogonal regarding the function ( ) 2121
/
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−= xxw  

in the interval ]1,1[− .  

To work in different [a,b] intervals, shifted polynomials with the following change 

must be used: 

])[( baxabt ++−= 2
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Their general expression [11] is the following: 
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Chebyshev polynomials can be computed and manipulated using the MAPLE 

Orthopoly library. The expansion of a function in Chebyshev series (ACh) has the 

following form: 


∞
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The single comma in the summation indicates that the first term must be divided by 

2.  

This expansion usually converges faster than the power series and the coefficients 

get the value: 
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Where w(x) is the weight function ( ) 2121
/

)(
−

−= xxw  . If we truncate the series in 

degree N, we get an approximation to the function, the more accurate the higher N 

is. Due to properties of Chebyshev polynomials, truncating in N-1 is the best N-1 

degree polynomial approximation to the development at N degree.  rn is the norm of 

the function (p/2 for Chebyshev polynomials). 

 

The coefficients an can be assessed with the direct integration in some functions, but, 

in general, this is not possible and the previous integral must be approximated by 

some other quadrature formula. This research work has been implemented in 

MAPLE, which uses quadrature algorithms, which first analyse the singularities and 

then use Clenshaw-Curtis quadrature [12], [13]; if the result is not satisfactory, 

Newton-Cotes adaptative formulae are used. All this is carried out at the Chebpade 

function from MAPLE Numapprox library of approximation of functions. 

Chebyshev-Padé functions obtain good approximations, but not those of minimum-

maximum error (known as minimax). To find the latter, the Remez algorithm [14] is 

used, which fine-tunes the result by numeric iterations and converges to an improved 

minimax approximation.  

 

The Remez algorithm produces optimal results at the approximation. This method 

allows the calculation of minimum error of any given function f(t) weighted with any 
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weight term w(t). If w(t)=1/│f(t)│ is used, the minimum relative error is obtained. 

These methods are described in any good book on the approximation theory [15]. 

 

In MAPLE, the Remez algorithm is implemented by the minimax function included 

in the Numapprox library of approximation of functions. 

Next we introduce Jacobi polynomials because they introduce flexibility in the 

approximation. 

 

2.3. Expansion in series of Jacobi polynomials. 

 

Within the families of classic orthogonal polynomials generated from the Sturm-

Liouville differential equation, from which Chebyshev polynomials also derive, we 

consider now the Jacobi polynomials, see [16]. Jacobi polynomials can also be 

computed and manipulated using the MAPLE Orthopoly library. The expansion of a 

function in series of Jacobi polynomials uses a Jacobi weight function this time. The 

integral must be programmed, a library for expansions of functions in Jacobi series is 

not available in MAPLE. 
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The Jacobi weight function in this type of orthogonal polynomials is the following: 
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This function is controlled by two parameters δ and γ that allow choosing the area of 

a best approximation at the orthogonality interval. In practice, this is very interesting 

as it will allow us to improve the adjustment of the error at any area of the longitudinal 

force, lateral force, or self-aligning torque curves, depending on the application in 

which the approximation is used, for instance, looking either for a more reduced error 

in slip values close to zero, or in values close to the maximum stress, or in the 

maximum slip point (100%), (see Figure 3). 

The norm rn  in Jacobi polynomials is not constant but it is also a function of δ , γ  and 

the degree of the n polynomial. 
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The recurrence relation seen for the Chebyshev polynomials, now takes a more 

general expression in the case of Jacobi polynomials: 
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3.- THE NEW  POLYNOMIAL TYRE MODEL. 

3.1. - General description. 

 

As a result of the expansion of the magic formula in series of Jacobi polynomials, the 

authors obtained a very simple mathematical expression to calculate longitudinal and 

lateral forces in a tyre [17]: 

                   ;).().(. 3
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A simple degree N=3 polynomial in an easy rational function  x/(x+b).   

 

- F: Can be lateral (Fy) or longitudinal (Fx) force, the expression is valid 

for both. For self-aligning torque a degree 4 polynomial should be used 

to obtain good accuracy. 

- x : Can be longitudinal slip (s) o slip angle ( α) according to what force 

we are considering. 

- Ai  and b are the basic parameters of the model. Usual values of b are 

between 3 and 8;   Values around 5 are very common.  

 

This model shows excellent coincidence with the original magic formula, (the 

maximum difference is lower than 1 %  with N=3), both for Fx and Fy. Self-aligning 

torque requires a degree 4 polynomial. The model has excellent analytical properties, 

it is possible to obtain the position of extreme points, asymptotes, analytic derivatives 

and integrals of this expression in an easy manner (the last is not possible in the 

original magic formula). Finally, the main advantage is the facility of processing (test 

showed processing time 20 times faster than the magic formula tyre model). 

Obviously the inverse tangent nested functions of the magic formula are very 

inefficient in terms of computation. 

We have to calculate the term 
bx

x
v

+
=  only once, including it then in the polynomial, for 

more efficiency the Horner polynomial form can be used: 
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The work [17] was based in previous papers of the authors, [18], [19].  

 

In [17] we had published our theoretical polynomial formula, comparing it with the 

mathematic expression of the Magic Formula, but without any validation with real test 

data. 

But in the present paper, we tackle the problem of nonlinear optimization, that is, how to 

obtain the parameters of our model from test data and analyzing the convergence of our 

model comparing it with the speed of convergence of the MF Tyre model (this had not been 

analyzed in [17]. 

The approximate function proposed by the authors (1) presents a typical aspect like 

the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the horizontal axis the graph represents the longitudinal slip or the lateral slip. The 

vertical axis shows the longitudinal force Fx or the lateral force  Fy. The model is 

valid for both, with different values of the parameters obviously. 
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Figure 1. Curve of the proposed polynomial model. Lateral 

               or longitudinal force versus slip angle or slip. 

Slip or slip angle 

Fx, Fy 
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The different curve branches are shown in Figure 1. Obviously, and regarding the 

tyre model, only the branch from the minimum point to the right is used.  

 

In this useful area, the curve shows two local ends at the interval 0-100. A typical 

maximum around x= 15 (for the longitudinal force) and a minimum close to the 

origin. Depending on the values of the coefficients, this minimum point could be in 

any of the four quadrants. As it is a polynomial of a rational function, this function 

changes very quickly near the minimum; therefore, we must be very careful in the 

process of approximation to test data in order to keep the curve on the right of the 

minimum value. We will see how to achieve this in section 5. 

 

Depending on the coefficients, the position of both inflection points allows a very 

flexible adaptation to the curvature not only at the ascending branch on the right of 

the minimum, but also at the horizontal area on the right of the maximum.  

Obviously, the use of symmetry will allow symmetric or asymmetric branches 

describing equal or different behaviors in traction or braking, or in asymmetric lateral 

behavior on the right or left.  

 

Both vertical and horizontal shifts of the magic formula can evidently be applied in 

a natural form (already integrated in the equation itself), but in a more flexible way 

as an inflection point can be kept in the upwards section of every branch when 

working with two equations, one for each side of the symmetry, in case the tyre's 

behavior requires it.  

Let's see now the mathematical analysis of the curve. 
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3.3.- Maximum and minimum values. 

The position of the extrema in function of the coefficients is easily calculated as 

follows:  

3
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The positive value of the root corresponds to the local minimum close to x=0 and 

the negative one to the maximum close to x=15. 
 

3.4.- Inflection points.  

The position of the inflection points in function of the polynomial coefficients is the 

following: 
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The negative root corresponds to an inflection point placed in the ascending section 

on the right of the minimum, and the positive one to the point on the right of the 

maximum. R, S and T are intermediate auxiliary variables used in order to simplify 

the expressions, but without any conceptual interest. 

 

3.5.- Asymptotes. 

The curve represents a vertical asymptote in x=-b and an horizontal asymptote on the 

right of the origin in x=A0+A1+A2+A3 
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3.6.- Symmetries and shifts. 

The symmetric curve in the 2nd quadrant, which will be called F2, is obtained by 

simply changing the sign of parameter b, making u=x/(x-b). The symmetric curve in 

the 3rd quadrant is –F2 and the symmetric function in the 4th quadrant is -F. If the 

behavior of the tyre is symmetric, the same equation (with the same coefficients) can 

be used; if it is asymmetric, coefficients can be changed. 

The application of shifts Sx and Sy is also very easy: 

SySxxFFshifted ++= )(  

 

4.- GETTING COEFFICIENTS FROM TESTS. 

4.1.- Introduction. 

In [17] this polynomial formulation was achieved from the magic formula and the 

approximation theory implemented on symbolic calculation programs, in particular 

MAPLE.  In this paper we validate the model with real test data, using a nonlinear 

optimization method, in a multivariate domain, taking into account not only the slip 

or slip angle, but camber angle and normal load too. 

At this point, we review the different methods of optimization present in the 

bibliography and we explain the application to both the proposed new polynomial 

model and the magic formula tyre model. 

The main methods of nonlinear optimization used in the approximation of tyre 

models with test data, can be classified as follows: 

 

- Newton’s methods 

o Newton’s method 

o Gauss-Newton  method and the Marquardt-Levenberg variant 

o Quasi-Newton methods 

- SQP methods 

- Iterative methods from the simplex method (Nelder-Mead) 

- Genetic algorithms 



13 

 

We describe now the functioning of those methods. All of them have been 

applied to the estimation of the parameters of the presented polynomial tyre 

model with good convergence results. They have been applied to the magic 

formula tyre model too. 

 

4.2.- The Newton’s Method. 

The basic tenet of the Newton method for nonlinear least-squares optimization is 

the following [20]: 

If we have a set of m test points (xi,yi), where, in general, yi is the longitudinal or 

lateral force related to slip or lateral slip, which we also denote xi, as the m=55 test 

points that can be seen in the Figure 3 of section 7. 

The differences between the value predicted by our model and that presented in the 

test make up a residue vector  r  (with a size of 55 in the proposed example) where 

every residue has the form: 

iiiiiii uAuAuAAyFyr 3
3

2
210 ...( +++−=−=   ;  Being   ui=xi/(xi+b)  , with  i= 

1...m ; (55 points in our example).  
 

If  β (β 1 … β5) is the vector of the parameters of the model, β j, where (j=1,…,n) in 

this case  n=5,  being in our particular model (β 1=A0, β 2=A1,…, β 5=b), the sum of 

the quadratic deviations will be a function of  β: 
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The Newton’s method starts from the Taylor series expansion of the function, for 

simplicity, we assume that the function depends only on a unique parameter β at 

every point  i: 
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The Newton’s method establish that the function reaches its extrema when its 

derivative with respect to Δβ =0 , that means:  

011 =+ βββ ∆).,("),´( k
i

k
i xFxF  

Being as, in our model, the vector β contains now several parameters, the previous 
expression becomes: 
 

 0.Δ =+ βHG  

 

From the previous equation, we can obtain the step of the parameter’s vector in every 

iteration, the so called Newton’s step. 

                                   .GH 1−−=β∆       (3) 

and calculate the value of  β in the next iteration,   

βββ ∆+=+ s)1s(  

 G is the gradient vector of  S(β), whose terms are: 
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H is the Hessian matrix of  S,  obtained by differentiating the terms of the gradient: 
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This method and all its derived methods are iterative, and they need an initial value 

of the parameters’ vector. The quality of the final result will depend notably on the 

goodness of this initial value. 

 

4.3.- Gauss-Newton and Marquardt-Levenberg methods.  

The Gauss-Newton method, approximates the Hessian matrix, neglecting the second 

term of the previous equation as follows. 
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Jij    is the Jacobian matrix which contains the partial derivatives of the vector of 

residuals with respect of the parameters of the model. If we write G and H  in 

matrix notation we obtain:  

r2.JG T
r .= ; 

r.J2JH T
r≈ ; 0. =+=+ ββ ∆r

T
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T
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In every iteration, the new value of the parameters’ vector is the following:  
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In the most basic tyre polynomial model, which includes initially 5 parameters, the 

Jacobian matrix is a (NPt x 5) matrix, being NPt the number of data points (see the 

data vector in the example of section 5). For this tyre model, the rows in this Jacobian 

matrix have the following shape:  
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The Jacobian Matrix terms in the Magic formula are the following: 

������ = −1  ;    ����� = − sin���� ;   ����� = [−�. cos����] . arctan����  
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Being: 

 �� = ��"� + �#� − $. -��"� + �ℎ� − arctan*��"� + �ℎ�+.        and      �� = �. arctan ���� 

 

If convergence problems appear, there are several methods which modify the Gauss-

Newton method. The first and most simple method consist of reducing the length of 
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the step of the parameters’ vector Δβ, by multiplying it by a constant  α  lower than 

1. 

rJ)J(J T
r

1
r

T
r

−+ −= .α)s()1s( ββ  

In this manner, we can solve situations in which, the step of the parameters’ vector 

Δβ points to the right direction (which reduces the addition of quadratic deviations), 

but it’s too long.   

 

The second method is the so called Marquardt-Levenberg method, [21], in which, the 

step Δβ is modified by adding the term λ.D, where D is a positive diagonal matrix 

and λ is the so called Marquardt’s parameter. It’s also called the trust region method. 

The addition of this term, rotates the vector Δβ towards the maximum descending 

slope. 

rJDJJ T
rr

T
r

1)s()1s( ).( −+ +−= λββ  

In point 7, we will see the convergence of the Gauss-Newton method in our tyre 

example, which is very fast. The convergence of our model is compared with the 

convergence of the magic formula tyre model.   

 

4.4.- Quasi–Newton methods. 

According to [22], in order to estimate the parameters of the magic formula tyre 

model, the research team of the TNO (the research organization at the Netherlands), 

used the so called quasi-Newton method [23] and [24], implemented by the E04FDF 

subroutine of the NAG (Numerical Analysis Group) [25], (see  

http://www.nag.co.uk/).  This method is similar to the Gauss-Newton method, but its 

application is not specific for least-squares problems, but its application field is 

wider, actually it can be used to optimize any function. 

 

The family of quasi-Newton methods, avoid the inversion of the Hessian matrix  H  

in equation 2, by calculating directly the inverse of a pseudo-Hessian matrix B, which 

is obtained by successive approximations  of the gradient G in a  generalization of 

the secant method to the multivariate domain. In this way, these methods improve 

the computational efficiency of the whole calculation. In order to estimate the 
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pseudo-Hessian B, different iterative algorithms have been used and published along 

the history, DFP  (Davidon-Fletcher-Powell), [26], [27],  BFGS (Broyden-Fletcher-

Goldfarb-Shanno), see [20], SR1 (Symmetric Rank 1), see [28] and [20] and the class 

of Broyden methods, see [29], [30] and [20].  All of them use the Sherman-Morrison 

formula to invert the pseudo-Hessian matrix B, see [20]. 

 

4.5.- The sequential quadratic programing (SQP) met hod. 

SQP method [31], poses the general problem of nonlinear optimization for a given 

target function S(β) of a parameters’ vector β, but now with a set of constraint 

equations G(β)≥0, which can be both equality or inequality functions of the 

parameters’ vector too. 

G(β) = (G1(β),…,Gm(β)) 

SQP is an iterative method, and it models the nonlinear problem for a given iteration 

by a Quadratic Programming (QP) sub-problem, solves that QP sub-problem, and 

then uses the solution to find a new parameters’ vector β (s+1) . 

 

To find the solution, SQP uses the Lagrangian function that combines the objective 

function S(β)  and the constraints G(β) properly. The Lagrangian function of our 

problem is the following: 

L(β, u) = S(β) − uT G(β) 

Where u is the vector of Langrange’s multipliers of the nonlinear problem. SQP 

replaces the objective function S(β) by its local quadratic approximation, expanding 

it in a Taylor series and the constraint functions G(β) are replaced by their local linear 

approximations.  This construction is done in such a way that the algorithm sequence 

converges to a local minimum. Modern optimization textbooks have chapters 

devoted to SQP methods, see [31].  

 

4.6.- The Nelder-Mead method. 

This method was proposed by [32], see also [33], [34] and [35], and it allows to 

minimize a target function in a multidimensional space. The method uses the 
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“simplex” concept which uses elements of N+1 vertices, in a N dimensional space. 

In a one-dimensional space, the simplex element is just a line. In a bi-dimensional 

one, the simplex element is a triangle, in a tridimensional space, the element is a 

tetrahedron and so on. 

The algorithm generates a new test position by extrapolating the behavior of the 

target function in every vertex of the simplex. One of these vertices, is replaced with 

a new point and it progresses in this way. The easiest step is to replace the worst point 

with a new one obtained by reflecting it across the centroid of the N remaining points. 

If this new point is better than the best of all the current points, we can try to extend 

outwards the simplex element along this line. If the new point is not better than the 

previous one, it will probably be in a valley area and we should compress the simplex 

towards a better point. It is known that the method can converge at non stationary 

points. This method in implemented in the fminsearch  library of MATLAB. 

4.7.- Genetic algorithms. 

Recently, the group of the Department of Mechanical Engineering of the University 

of Malaga (IMMA) has developed a new optimization method to calculate the 

coefficients of the magic formula tyre model, see [36] and [37]. They propose the use 

of genetic algorithms, which work with high accuracy and efficiency, avoiding the 

use of initial values for the parameters. Genetic algorithms’ techniques were 

presented initially by [38] and [39]. The IMMA applied them to tyre models first. 

An interesting hybrid approach ca be found in [40] that combines genetic algorithms 

with classic gradient search methods applied to multi-parametric nonlinear systems. 

 

Several authors who have worked in nonlinear multivariate optimization in tyre 

models agree that when using Newton, Gauss-Newton, quasi-Newton and Nelder-

Mead methods, the selection of an adequate initial point of the parameters’ vector is 

an important issue for the quality of the final solution, and minor variations in this 

initial point can produce different final results, see for example [36],[37], [22] and 

[20].  

The reason for this is the nonlinear condition of the problem and the subsequent need 

for an iterative method with an initial point.  
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During this research work we have programmed tyre models optimizations (by hand, 

writing the code in a low level software) using Newton, Gauss-Newton and 

Marquardt-Levenberg methods, both for the Polynomial and Magic Formula models, 

with and without constraints. We also have used the libraries of MAPLE and 

MATLAB which combine Nelder-Mead and Quasi-Newton methods with the 

previous ones, and the results are always coincident, we could observe many times 

this problem, in certain combination of the parameters, a slight change in the initial 

point can yield different results. 

It is very difficult to give a general rule of when the optimization will not converge. 

A first factor is how big are the residues, that is, how far from the final curve is the 

initial values curve. But this is not the only factor, the shape of the initial values curve 

also can influence the possibility of convergence. In addition, the final result of the 

optimization can be apparently good, but actually, it could be a local minimum, and 

we could find a near combination of parameters with better optimization results (a 

lower sum of quadratic deviations) if we start with different initial values. Most 

optimization methods find local minima. Those problems are bigger when the 

number of parameters and the number of variables increases, because the number of 

possible combinations of data is bigger and we could find minima very close. As 

usual, a good knowledge of the physical fenomenum (the tyre behavior in this case) 

and the previous experience in optimization of similar tyres can help a lot. 

 

Therefore, this is not a well solved problem or at least not in a fully automatic way. 

 

From this point of view, the genetic algorithms method, whose approach is 

probabilistic, non-deterministic and very different from the rest, is very interesting 

because it doesn’t need an initial point.  

 

Added to the previous methods, we can mention the work of [41] and [42] who 

estimates the values of the Pacejka’s magic formula tyre model, using the so called 

TS (Two Stage) technique and compares it with different methods of observation and 

parameters estimation based on Kalman filters, using data obtained along the life 

time of the vehicle. 
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If we want to obtain a fast convergence in the optimization algorithms, the initial 

point should not be far from the optimum. The first step in a nonlinear optimization 

process is the search of a reasonably good initial point. We can use the previous 

results of a different tyre under similar load conditions to obtain this initial point. 

 

5.- OPTIMIZATION WITH CONSTRAINTS TO THE 

MODEL COEFFICIENTS. 

Sometimes it may be necessary to obtain the optimum curve under certain 

constraints, because we are more confident in some points of the test than in others 

or because we want to equate the value of the curve, or the value of its derivatives, 

at both sides of the origin, or because we want to give a fixed value to the derivative 

at the origin. If we have equality constraints, a direct and effective technique is to 

include the constraints in the original equation, before starting the optimization 

process, as we show below, instead of formulating  the constraint equations added,  

and using SQP algorithms, perhaps more adequate for inequality constraints. 

 

If no constraints are imposed, the optimization algorithms will calculate the 

coefficients so that the value of the sum of the quadratic deviations is the minimum. 

As constraints are imposed, the quadratic deviation will be bigger and bigger, but the 

curve will comply those constraints. As our model has 5 basic coefficients, in theory 

we could impose up to 5 constraints, although we must always keep in mind that the 

less constraints we impose, the better the adjustment of the test data and the lesser 

the sum of the quadratic deviations will be.  

Let's see now some typical constraint examples. All of them have been tested both 

with our polynomial tyre model and with the magic formula tyre model. We have 

obtained a fast convergence and moderate variations of the sum of quadratic 

deviations. 

 

R1.- The curve passes exactly through point (xp, yp). 

yp=A0+A1.up+A2.up
2+A3.up

3    ;   being    up= xp/(xp+b) 

 The resulting equation is the following: 
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ri = yi - Fi = yi - yp + ( A1.up+A2.up
2+A3.up

3 ) – ( A1.ui+A2.ui
2+A3.ui

3)    

The terms of the Jacobian matrix for our tyre model, are modified as follows:  
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This constraint calculates the optimal value of the coefficients so that the curve passes 

through a given point, for example, the end point (s=100), or through the first data of 

the series at Fx=0, which can be very reliable data from the test perspective: those 

two points can have a better measurement reliability than the points between the 

maximum value and the full slip point (s=100%).  

 

It can also be interesting that the curve passes exactly through the maximum test 

point. Generally, these three situations generate a small increase at the quadratic sum 

and adjust the curve at those points accurately.  

 

Nevertheless, if the chosen point is the maximum one (xmax, ymax), this constraint 

does not guarantee ymax to be the curve maximum value, as it could have an anterior 

or posterior maximum. 

The curve can be forced to pass exactly through up to 5 points, as it has 5 coefficients. 

 

Particularly, the curve can be forced to pass through (0,fy). Naturally, combined 

constraints can be imposed, so that they can pass through (xp,yp) and (0,fy). This is 

a combination of the two previous ones. 

R2.- The curve takes F=ymax as maximum value (even if it does not pass 

through xmax exactly). 

3
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A
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The resulting equation will be the following:  
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The terms of the Jacobian matrix will be: 
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R3.- The curve reaches its maximum value at xmax (even if it does not take 

value ymax) 

 

The resulting equation will be the following: ri = yi - Fi = yi -(A0+A1.ui+A2.ui
2+A3.ui

3)  

;   b= - (2.A2+A1+3.A3)/(A2+A1+K)  ; ui = xi/(xi+b)   
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The terms of the Jacobian matrix will be: 
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R4.- The inflection point is located at the origin. 

 

The inflection point is at the point  xinf 

The condition of the inflection point at the origin is:  
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R5.- The slope at a given point xp takes a given value y’p 

y’p=(A1 + 2.A2.up + 3.A3.up
2 ).up’  ;  up=xp/(xp+b) ;  up’=b/(xp+b)2  ;  

A1 = (y’p/u’p) - 2.A2.up - 3.A3.up
2    

ri = yi - Fi = yi  - ( A0 + [(y’ p/u’p) - 2.A2.up - 3.A3.up
2 ] . ui + A2.ui

2 + A3.ui
3 )   
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The terms of the Jacobian matrix this time are: 
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Particular case: the slope at the origin takes a given value. 

 

F’0=A1/b ;  In this case, the equation is    F=A0+b.F’0.u+A2.u2+A3.u3  . The terms of 

the Jacobian matrix are slightly modified: 
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The rest of the terms, remain equal than in the equation without constraints, except 

A1 that disappears. 

 

We could use this constraint to force the slope at the origin, to take the same value 

BCD of the magic formula tyre model.  

 

A combination could be imposed, so that the inflection point is at the origin and also 

at F’0 takes a given value.  

As a final consideration related to the constraint imposition, it must be stated that 

optimization algorithms converge when the imposed constraints make sense. If 

conditions are imposed to the curve that are far from the initial ones with the result 

of very distorted curve shapes, no final solution will be achieved. 

 

6.- STABILITY OF THE POLYNOMIAL AT THE 

ORIGIN. 

The main drawback of using polynomials, especially rational polynomials, is their 

trend to oscillation, in other words, their possible instability. If the distribution of real 

points shows an inflection point at the rise, the polynomial with the best interpolation 

by least-squares can have its minimum in the first quadrant (see Figure 1) between 

two test points, something definitely unwanted (see Figure 2). 
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To avoid it, we have to impose the constraint of a given value of the derivative at the 

origin, A1=F’0.b.  F’0 can be estimated by means of a parabolic regression from the 4 

first points and calculating the derivative of this parabola at the origin. This increases 

slightly the addition of quadratic deviations, but it solves in a simple manner the 

problem because it moves the minimum point to a different quadrant and stabilizes 

the curve in the first quadrant. The correct value of F’0,  may also be calculated by 

imposing  the same value of the function, and its derivative, at both sides of the origin 

if we have data of  forces in both sides. Figure 8 shows the solution in the multivariate 

case too. 

 

7.-  RESULTS OF THE MODEL WITH REAL TESTS 

AND ACCURACY. 

In [11], the adjustment of the proposed polynomial model was compared with the 

magic formula model in relation to both the longitudinal and lateral forces for 

different normal load values, and it could be seen that the deviations regarding that 

model were always very low, keeping a relative value below 1%. 

Now, we analyze the optimization to real test data, not the adjustment to a theoretical 

model. The results in real tests present the typical instability of the tyre material 

inequalities, the instruments measurement uncertainty and the difficulty to stabilize 
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the longitudinal or lateral slip at some areas of the curve. For this reason, 

mathematical models are exactly that, models adjusted to each type of tyre, but the 

resulting points always present the variability specific of tests, so that individual 

deviations may be produced at some point. 

Next, some modelling results from tests on a real tyre are presented, showing the test 

points, the polynomial modelling proposed in this article and its comparison with the 

magic formula model. 

 

Longitudinal force. 

 

data=[[0,276],[1,824],[2,1742],[3,2930],[4,4146],[5,4913],[6,5244],[7,5492],[8,5693],[9,5844], 
[10,5987],[11,6097],[12,6155],[13,6193],[14,6226],[15,6253],[16,6269],[17,6277],[18,6269], 
[19,6243],[20,6226],[21,6202],[22,6171],[23,6152],[24,6125],[25,6101],[26,6072],[27,6048], 
[28,6017],[29,5978],[30,5944],[31,5918],[32,5887],[33,5860],[34,5831],[35,5797],[36,5768], 
[37,5723],[38,5691],[39,5662],[40,5633],[41,5597],[45,5506],[50,5404],[55,5261],[60,5186], 
[65,5115],[70,5028],[75,4999],[80,4954],[85,4929],[90,4915],[95,4882],[99,4827],[100,4796]]: 
 

These are data from real longitudinal force tests on a 175/70 R13 tyre.  Normal load 

= 6 kN. Camber angle = 0 and pure slip conditions. 

 

In our model, we adjust the slope at the origin to the value 408 which is the value for 

the slope at the origin in a parabolic interpolation of the 4 first points. The obtained 

result in the optimization is the following: 

 

Fx = - 6.33 + 2199.78.u + 28102.83 . u2  - 26462.59 . u3 ;  being    u=s/(s+5.391) 

 

The adjustment to the magic formula is the following:  

fy=2035.56; fx=-2.055  ; B=0.13915  ;  d= 4226.87 ;  E=0,7019  ;  C=1,766 

Fx = 4226.87*sin(1.766*arctan(0.13915*(x-2.055) – 0.7019*(0.13915*(x-2.055) - 

arctan(0.13915*(x-2.055)))))  + 2035.56 

 

Let see now the convergence of both models using the Gauss-Newton’s Method for 
our example tyre with the previous data. 

In Table 1, we show the calculation of the parameters for the longitudinal braking 
force Fx. 
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 A0 A1 A2 A3 b 
Initial value 0 1000 45000 -40000 5.5 

Step      

1st  -8.06629 2212.796 28016.681 -26384.933 5.42352 

2nd  -6.91953 2198.965 28104.114 -26461.747 5.38962 

3td  -6.29362 2199.826 2810.723 -26462.611 5.39173 

4th  -6.33480 2199.777 28102.837 -26462.591 5.39161 

5th -6.33248 2199.781 28102.831 -26462.592 5.39162 

…      

Final value -6.33261 2199.781 28102.831 -26462.592 5.39162 

 

Table 1: Convergence of the polynomial tyre model parameters. 

 

The magic formula model also converges using the Gauss-Newton’s method, but 

very much slowly and the use of a step’s reduction factor  α = 1/5 in this case for a 

correct convergence. Anyway, the time of computing is very reduced. 

 

 d C B E fx fy 

Initial value 6000 1.5 0.1 0.5 0 0 
Step       
1st  5391.76309 1.55625 0.10651 0.57746 629.05012 -0.68770 
2nd  5095.2668 1.59421 0.11195 0.60858 952.19540 -1.03375 
5th 4649.90929 1.66874 0.12350 0.64867 1481.00715 -1.55596 
10th 4380.61616 1.73016 0.13279 0.67963 1834.55287 -1.87485 
25th 4237.11611 1.76466 0.13870 0.70050 2023.81211 -2.04387 
50th 4226.99866 1.76624 0.13914 0.70194 2035.43956 -2.05542 
75th 4226.87976 1.76625 0.13915 0.70195 2035.56032 -2.05555 
100th 4226.87842 1.76625 0.13915 0.70195 2035.56163 -2.05555 

…       
Final Value 4226.87840 1.76625 0.13915 0.70195 2035.56164 -2.05555 

 

Table 2: Convergence of the magic formula tyre model parameters. 

 

Then, we show the curves with the results. Firstly, we can see the longitudinal force; 

in Figure 3 we present the test points, and the curves of our polynomial model (dotted 

thick line) and the magic formula tyre model (thin line). Both models approximate 

the test points quite well. 
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If we analyze the deviations in Figure 4, we can observe that our polynomial model 

(circles) presents a better adjustment in the high area of the curve and in the final 

part, with moderate, medium and high values of slip. Pacejka’s magic formula tyre 

model (cross marks) presents a better adjustment in the first points of the test. The 

behavior of the polynomial tyre model is especially accurate in the area of the 

maximum value of the curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fx. Longitudinal force 

Longitudinal 
slip (%) 

Figure 4. Absolute deviations (N). Longitudinal force. 

o    Polynomial tyre model 
+    Magic formula tyre model 
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Lateral  Force 

 

Data test for the same previous tyre are the following:  

Slip Angle = -15  ..  15  (In this test we have taken the right hand side of the file 

from  0 to 15º (0,262 rad) 

Camber Angle = 0º.   Normal load Fz = 6 kN. Pure Lateral Force Fy is measured. 

 

Data =[[0,-98], [0.004,108], [0.009,253], [0.013,480], [0.017,700], [0.022,912], [0.026,1094], 
[0.031,1275],[0.035,1441],  [0.039,1641], [0.044,1820], [0.048,1984], [0.052,2163],[0.057,2357], 
[0.061,2531], [0.065,2675], [0.07,2823],  [0.074,2970], [0.079,3108],[0.083,3251], [0.087,3373], 
[0.092,3500], [0.096,3603], [0.1,3694],    [0.105,3790], [0.109,3877], [0.113,3957], [0.118,4031], 
[0.122,4097], [0.127,4159],[0.131,4203], [0.135,4256], [0.14,4293], [0.144,4329], [0.148,4366],  
[0.153,4411], [0.157,4438], [0.161,4475], [0.166,4505], [0.17,4527],  [0.174,4566],  [0.192,4646],  
[0.209,4725],  [0.227,4780],  [0.244,4773],  [0.262,4752]: 
 

 

 

 

 

 

 

 

The curves show a good adjustment to data test for both models. In the polynomial 

model we haven’t imposed constraints. If we look at the deviations, we can appreciate 

a slightly better result of the polynomial model, especially in the starting and final 

areas. 
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8.- MULTIVARIATE ANALYSIS. 

The main variables influencing the behavior of a tyre are, typically normal load (Fz), 

camber angle (ac) and of course longitudinal slip or slip angle. We’ll have a set of m 

= m1 . m2 . m3  test points in the variables x, Fz and ac, being x longitudinal slip or 

slip angle. Every test point is a vector of 4 elements (xi , Fzi , aci, yi).  From the 

observation of the cloud of test points, we build a model in which the normal load 

and camber influence the peak value and the shape factor b; in the multivariate 

domain we’ll denote it as B*. 
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Initially we assume a parabolic model for every factor of influence. After an analysis, 

we could simplify the models of F1 and B1 to linear, we make the mathematic 

development with degree 2. We have to avoid redundancy of parameters in the 

possible independent terms (d0 and e0,  b0 and g0), with the Ai terms because the 

optimization algorithms cannot converge if the parameters are redundant, for that 

reason, we propose finally the following models: 
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Figure 6. Absolute deviations (N). Lateral force. 
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The whole model includes 13 parameters. 
 
There is not a theoretical limit in the number of variables and parameters. The limit 

can be imposed by the computation times and the problem of finding a good initial 

point with a big number of variables and parameters. 

 
The residuals’ vector in this case is *

iFyiri −= ; with i=1..m; (495 test points in our 

tyre example).We will have 55 points in each of the 3 values of normal load (2 kN, 

4 kN y 6 kN) and in each of the 3 values of camber angle (-5º, 0º y 5º). In total, m = 

55.3.3= 495. The parameters’ vector will have 13 elements:  β (β 1, ..β 13). The 

addition of quadratic deviations S(β)  will have the same expression, (2)  but now 

m=495.  

The expressions of the Gradient, Jacobian matrix and Hessian matrix, are the same 

too (but now with j=13 parameters and m=495 points). Se expression (4) is the same. 

All methods described in section 3 are valid. 

Then, we present the results obtained with the same example tyre. Longitudinal force 

in pure slip conditions is presented with values of Fz equal to 2 kN, 4kN and 6 kN 

and camber angles of -5º, 0º y 5º. 
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The obtained values of the parameters are the following: 

 

A0 = 4.672;            A1 = -11.387;       A2 = 322.675;    A3 = -277.546;   

b1  = -0.2928e-1;    b2 = -0.86e-3;       e1 = -0.460e-2;   e2 = 0.113e-2;   

d1 = 18.455;   d2 = -.2288;   

g0  = 6.22766;        g1 = -0.4696e-1;   g2 = -0.2489e-1; 

 

The initial point has been the following: 

A0 = 5;   A1 = -10;   A2 = 300;   A3 = -300;  b1 = b2 = 0;   d1 = 20;  d2 =  e1 =  e2 =  g1 

= g2 = 0; g0=10; 

 

The addition of quadratic deviations is = 2.695. 106 

To obtain those results, we have used Quasi-Newton, Gauss-Newton, Nelder-Mead 

and Genetic algorithms, without constraints; All of them converge correctly, but the 

first three are sensitive to the initial point. The quadratic components of  F1(Fz)  and 

B1(Fz) are very low compared with the linear term, so that we could simplify the 

model, assuming a linear behavior for those two functions, by eliminating d2 and b2 

Fz=2 kN 

Fz=4 kN 

Fz=6 kN 

Camber=-5
o 

Camber=5
o 

Camber=0
o 

Figure 7.- Longitudinal Force (N), in pure slip conditions, versus slip. Multivariate model.  

Longitudinal Slip (%) 

Fx (N) 
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and repeating the optimization, however, the complete quadratic formulation is 

presented for a more general expression. We can observe a very good adjustment of 

the model in respect of test with this real tyre. Then, we present the convergence of 

those data, using the Gauss-Newton method without step modification. 

 

Step Cp0 Cp1 Cp2 Cp3 b1 b2 

Initial value 5 -10 300 -300 0 0 

1 2,3278 75,761 38,233 -78,112 -0,0291 0,000379 

2 3,8508 -35,201 342,114 -273,317 -0,02874 -0,001214 

3 5,2796 151,061 -44,590 -59,817 -0,00789 -0,004034 

4 4,5607 -16,555 334,262 -285,345 -0,02974 -0,000796 

5 4,5253 -3,505 296,722 -259,620 -0,03175 -0,000460 

6 4,7024 -10,901 323,034 -278,253 -0,02885 -0,000918 

7 4,6706 -11,413 322,679 -277,527 -0,02931 -0,000857 

8 4,6721 -11,386 322,677 -277,549 -0,02927 -0,000861 

9 4,6720 -11,388 322,675 -277,547 -0,02928 -0,000861 

10 4,6720 -11,387 322,675 -277,547 -0,02928 -0,000861 

…             

50 4,6720 -11,387 322,675 -277,547 -0,02928 -0,000861 

 

 

 

Step e1 e2 d1 d2 g0 g1 g2 

Initial value 0 0 20 0 10 0 0 

1 -0,006569 0,001446 24,717 -0,36417 8,2915 -0,02256 -0,01780 

2 -0,005044 0,001039 19,637 -0,26208 2,6606 -0,05481 -0,02375 

3 -0,004386 0,000992 13,518 -0,14467 6,0431 -0,11890 -0,04808 

4 -0,004694 0,001068 17,817 -0,21798 7,5201 -0,07438 -0,03072 

5 -0,004569 0,001127 18,767 -0,23390 6,1952 -0,03589 -0,02262 

6 -0,004589 0,001134 18,351 -0,22721 6,2423 -0,04775 -0,02515 

7 -0,004599 0,001131 18,458 -0,22886 6,2267 -0,04693 -0,02488 

8 -0,004599 0,001131 18,455 -0,22882 6,2277 -0,04696 -0,02489 

9 -0,004599 0,001131 18,456 -0,22883 6,2277 -0,04696 -0,02489 

10 -0,004599 0,001131 18,456 -0,22883 6,2277 -0,04696 -0,02489 

…               

50 -0,004599 0,001131 18,456 -0,22883 6,2277 -0,04696 -0,02489 

Table 3 : Convergence of the multivariate polynomial tyre model. 

We can observe that the proposed model converges easily, in the 8th step, the error is 

already under 1%. This is an additional advantage of the use of polynomials. 
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Figure 8. Adjustment of the slope at the 

Longitudinal slip 
 

Fx(
 

If we need to adjust the slope at the origin, according to the point 5, we would apply 

the constraint pointed in 5-R5, but for the multivariate case. The coefficient A1 would 

be modified with F’0 calculated from a parabolic regression with the first 4 points and 

calculating the slope at the origin. We repeat this 3 times, one for each of the values 

of normal load with camber 0 and finally a linear regression of the slope at the origin 

is obtained in function of Fz, with the three values of the slope. We assume that the 

slope al the origin changes with normal load Fz, but not with camber angle, for every 

value of Fz. A zoom of the slope at the origin is presented: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We apply the condition of fixed positive derivative for every value of Fz in 

equation (5). 
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F’0 . Fz = 90.Fz, is the estimation, for this tyre, of the slopes at the origin from the 

first 4 points of every curve (ac=0). The final model is the following:  
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This constraint adds very few computing load because B* and F* are used in the 

rest of the model too. 

9.- CONCLUSION. 

In this article a new tyre model is validated using test data of real tyres. Initially it 

has been presented the theoretical background of approximation of functions that 

allow to come up with the model, the mathematical analysis of the curve proposed as 

a tyre model by the authors, a degree 3 polynomial in a simple rational function (1). 

Then, the article reviews the nonlinear numerical optimization methods, which 

calculate the model parameters from real test data. Initially a basic model in 5 

parameters was used, and then the complete model in 13 parameters, including the 

effect of normal load and camber angle was also optimized. We could observe a very 

fast convergence in both cases. The technique of optimization with constraints in the 

function or its derivatives is applied to the tyre optimization, which it have to be used 

to avoid strange values of the slope at the origin.   

 

As a conclusion, it can be stated that, during the process of nonlinear multivariate 

optimization, to calculate its parameters, the new polynomial tyre model presents 

very good conditions of convergence, faster and simpler than in the magic formula 

tyre model.  

As we could see at section 4.3, there is a huge difference in the simplicity and computational 

efficiency between the Jacobian Matrix terms of the polynomial model and the Magic 

Formula model, and this is the reason why the observed convergence of the method is 

much faster in the polynomial model (see for example tables 1 and 2 in section 7, the MF 

model requires 10 times more steps to obtain stable values of the parameters) and of 

course, every step is computed very much faster because the terms are much simpler. 

This is an additional advantage added to its obvious properties of mathematical 

simplicity.  

As it’s a polynomial, the computing is very fast and easy, as we could see in sections 

4.3 and 3.1; It is also very accurate as we shown in the figures of sections 7 and 8. 

The error relative to the magic formula tyre model is always very reduced, the 
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reduced difference between the two mathematical formulae had been proven in [17] 

and in this paper we can see the similar optimization results compared with real test 

data, in the figures of section 7. 
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