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Abstract: A sketch map represents an individual’s perception of a specific location. However,
the information in sketch maps is often distorted and incomplete. Nevertheless, the main roads of
a given location often exhibit considerable similarities between the sketch maps and metric maps.
In this work, a shape-based approach was outlined to align roads in the sketch maps and metric maps.
Specifically, the shapes of main roads were compared and analyzed quantitatively and qualitatively
in three levels pertaining to an individual road, composite road, and road scene. An experiment was
performed in which for eight out of nine maps sketched by our participants, accurate road maps
could be obtained automatically taking as input the sketch and the metric map. The experimental
results indicate that accurate matches can be obtained when the proposed road alignment approach
Shape-based Spatial-Query-by-Sketch (SSQbS) is applied to incomplete or distorted roads present in
sketch maps and even to roads with an inconsistent spatial relationship with the roads in the metric
maps. Moreover, highly similar matches can be obtained for sketches involving fewer roads.

Keywords: cognitive map; sketch map; shape matching; Spatial-Query-by-Sketch; composite road
matching; scene matching for road networks

1. Introduction

With the widespread availability of the internet, people can create, publish, or query spatial data
through web-based geographic information systems (GIS), such as volunteered geographic information
(VGI) [1]. Geographic information systems can store, analyze, and visualize a variety of spatial
information. They help for resource management, navigation, decision making, etc. Spatial query
is one of the commonly used means of manipulating geographic information for individual citizens.
It refers to query based on object’s name, location, distance, etc. However, existing spatial query
methods for general users are usually based on single attributes, such as the feature’s name—finding
a building named “Hotel”, or distance between features–finding the nearest hotel. However, if you
want to find a hotel with amenities such as restaurants, shopping malls, etc. in its vicinity, a spatial
combination of multiple attributes (distance, name, etc.) is required. However, existing geographic
tools for common users cannot perform this query, such as Google Maps. Professional GIS tools, such as
QGIS (https://qgis.org/en/site/), implement this query by first creating the hotel’s buffer, and then
calculating the intersection of that buffer with the restaurants, shopping malls, etc. This process is
obscure for the average users.
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The key to solving this problem is whether it is possible to find ways of human-computer
interaction that are close to human’s daily communication methods and can be understood by GIS
systems, so that humans can communicate with computers in the same way as their counterparts [2].

A sketch map outlines a place/area/region in a drawing where the mappers represent the
more characteristic elements according to their point of view. In 1948, Tolman categorized sketch
maps as cognitive maps [3]. Sketch maps often reflect a strong correspondence between the spatial
relations in the map and the environment and the interaction interfaces between people and their
environment [4]. Individuals can create sketch maps simply by drawing an object on a paper or
on a touch-sensitive screen by using a drawing software. Spatial-query-by-sketch (SQbS) [5] aligns
the objects in a sketch map with those from different spatial databases. It translates a sketch map
into a symbolic representation and processes it against a geographic database [6]. For example,
the SketchMapia framework [7–9] can be used to identify seven invariant sketch features to find out a
correspondence between the sketch maps and metric maps. In this framework, qualitative constraint
networks based on existing qualitative calculi are compared to match the spatial objects and a new
structure involving the local compatibility matrices is used to ensure partial matching and high
accuracy. SQbS is a convenient tool for regular individuals owing to the following advantages:
(i) individuals can conduct a spatial query without any particular background technical knowledge;
(ii) in contrast to traditional query methods, which focus on a single attribute query, the approach
supports scene queries; and (iii) in contrast to text queries, this approach is a more intuitive and natural
query method that displays all the features. SQbS have the potential application in navigation [10],
3D shape retrieval [11], facilitating crime scene identification [12], etc.

However, according to Blaser [13], only a small quantity of objects (12–17) appears in a sketch,
where human-built objects (e.g., roads and buildings) are often given more relevance than natural
objects (e.g., green spaces). In addition, in Davies and Peebles [14]’s study, aspects that are
visibly, semantically, or emotionally significant for them are usually given more priority, and as
Meilinger et al. [15] pointed out, the aspects that mappers consider “uninteresting” are usually
simplified. The incomplete, distorted, and schematized features drawn in a sketch map are also
challenges for SQbS, because the data quality can significantly affect the computation results.
For example, Bindzárová Gergelóvá et al. [16] found that the given hydrodynamic modeling process
is sensitive to the changes of the qualitative aspect of the input data. Ślusarski and Jurkiewicz [17]
developed cartographic visualization techniques to visualizing data uncertainty in the Database
of Topographic Objects (DTO). In their work, three types of uncertainty (positional, attribute,
and temporal) were presented using expert know-how and experiences. Hátlová and Hanus [18]
reviewed 90 empirical studies published since 1960 to identify the factors which can influence the
quality of the sketch map. They found that among a lot of influence factors, some overlooked factors,
such as source map characteristics and geographical education, are also of importance to the quality of
sketch map.

So, how to achieve the accurate alignment of the sketch map and other data sources is the focus of
existing SQbS studies. Anyhow, most of the existing studies focus on the exact or constraint relaxation
matching [19] of the objects’ spatial relationships. For example, Egenhofer [6] advocated SQbS based
on 9-intersection model for the first time. Then Kurata and Egenhofer [20] and Kurata [21] further
demonstrated 9+-intersection relationships between directed line segments and between directed
line segments and regions. Nedas et al. [22] extended the 9-intersection model by capturing metric
details for line-line relations through splitting ratios and closeness measures. Lewis and Egenhofer [23]
examined the topological relationships through a description of the boundary intersections between
sets of objects. This approach preserved the ordering and qualitative length of these intersections.
In particular, quantitative characteristics reflect individuals’ direct cognition of places and play a key
role in realizing a SQbS.

Previous studies by Tang et al. [24] reported that the spatial relationships among objects,
including topological, order, and location relationships, are not completely consistent between sketch
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maps and metric maps owing to the presence of incorrectly sketched objects or those sketched in a
distorted manner. Nevertheless, main roads, as the principal routes of regional traffic, exhibit a high
similarity between sketch maps and metric maps, likely because people tend to draw main roads
more frequently and accurately than the rest of roads in a sketch map. This aspect can be attributed to
the fact that roads and paths connect places and are frequently used for navigation. This finding is
consistent with the visual judgement of individuals, specifically, two places are deemed to be similar
not only because they have similar spatial relationships but also because they have similar structural
characteristics, such as shapes. The roads produced by the participants in the study by Tang et al. [24]
were drawn at a planning conceptualization level according to Timpf et al. [25]. The instructional or
driver road conceptualizations did not appear maybe because participants were not asked to draw
roads, but a place, so detail about road lanes, exits, or entrances was missing. The main goal of this
paper is to enhance the correspondence between sketch maps and metric maps. For that, a novel
matching approach termed Shape-based Spatial-Query-by-Sketch (SSQbS) is presented, which is based
on a SQbS taking into account the road shape. A three-level road alignment model including individual
roads, composite roads, and road scenes is developed. This approach is suitable for application to
incomplete or distorted roads along with roads with an inconsistent topological relationship matching
between the sketched maps and the metric maps.

The remaining paper is structured as follows. Section 2 provides a review of the related work.
Section 3 presents the sketched road characteristics in the three considered levels and describes how
the main roads are extracted from a sketch. In addition, the descriptors and matching approaches
for individual roads, composite roads, and road scenes are also explained in this section, respectively.
Section 4 describes the conducted experiment and presents and discusses the matching results.
The conclusions and scope for future work are presented in Section 5.

2. Related Work

Shape-based query-by-sketch techniques have been widely used for image retrieval. Gottfried [26]
asserted that the shape of a sketched object is useful to identify other images containing similarly
shaped objects by considering their spatial structures. For that, Gottfried [27–29] proposed a global
feature scheme based on a qualitative representation in which tripartite line tracks were used to describe
polygons and bipartite arrangements were used to describe the relation between two disconnected
objects. Bai et al. [30] applied the discrete curve evolution (DCE, [31]) to decompose complete
contours and created the MPEG-7 (Moving Picture Experts Group) database of contour segments.
Their representation of object parts was invariant to scaling, rotation, and translation; moreover,
smaller misalignments in the contours have a robust shape context that allows shape matching.
Falomir et al. [32] presented a Qualitative Shape Descriptor (QSD) to describe the contour of an object
shape extracted from any digital image and also a computational approach to compare the QSDs
obtained in order to identify shape correspondences. Cao et al. [33] built the multimodal MindFinder
system, which can retrieve sketches from millions of images. Their system allowed users to outline
the main shapes by tagging and colouring. Xiao et al. [34] improved the MindFinder framework
using a shape word descriptors for sketch-based image retrieval and they employed the classical
Chamfer Matching Algorithm by [35] to address the shape word matching problems. Furthermore,
Xiao et al. [34] proposed the use of an inverted index structure to extend the shape word expression to
a wide range of image databases.

In addition, shape-based road alignment has been applied for vector road network matching.
Zhang [36] adopted a turning function as the descriptor of the road shapes. Touya et al. [37]
proposed a framework based on the least squares adjustment [38,39] and position constraints to
match object geographic shapes. Tong et al. [40] formulated a logistic regression matching method
named OILRM (Optimization and Iterative Logistic Regression Matching), which is used to determine
the distance between two lines based on their vertices for road matching. Kim et al. [41] compared
the angles and directions of linear features and obtained high accuracy results by further comparing
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the topological relationships between the matched features. To carry out shape comparison in images,
Ali Abbaspour et al. [42] studied three functions (turning, signature, and tangent functions) and three
shape descriptors (shape context, LORD, and shape signature). In addition, Ali Abbaspour et al. [42]
demonstrated that the turning function can be used to efficiently distinguish objects in terms
of their shapes. In particular, the existing studies on shape-based query-by-sketch for image
retrieval [26–31,33,34] focused on a small number of objects for comparison, whereas a sketch map
may contain typically 12–17 objects [13]. Furthermore, the spatial relationships among objects also
must be aligned to carry out Spatial-Query-by-Sketch. In the approach presented in this paper,
the main roads from sketch maps are extracted, because they have been demonstrated to exhibit
considerable similarities between sketch maps and metric maps [24]. In addition, the characteristics
of the main roads are further analyzed and compared quantitatively and qualitatively at three
levels: individual road, composite road, and road scene. Consequently, the approach presented
here is different from those reported by Zhang [36] and Tong et al. [40], in which only quantitative
characteristics (e.g., turning functions or distances between vortices) were adopted for road matching.
The proposed approach differs from the work by Kim et al. [41] as we surveyed more than one
spatial relationship (topological relationship). Moreover, owing to the particularity of sketch
maps, the approach presented in this paper varies from the traditional vector road data query
(e.g., Touya et al. [37], Ali Abbaspour et al. [42]) as it overcomes the following aspects: (1) inaccuracy
of drawn objects: in sketch maps, roads are often distorted, partially drawn, or missing local details;
(2) omitted objects: the number of objects in a sketch map is often not the same as that in a metric map
because people tend to sketch only the objects that are meaningful to them; and (3) the inaccurate
representation of spatial relationships (e.g., distance and orientation): for example, a sketch can
qualitatively indicate that one road is longer than another road; however, the quantitative distance
between the two roads may not be accurately described.

3. Materials and Methods

A multilevel road model is proposed for road alignment in Section 3.1. Based on this multilevel
road model, the characteristics of individual road (Section 3.2), composite road (Section 3.3),
and road scene (Section 3.4) are described and compared between the sketch map and the metric
map, respectively.

3.1. Multilevel Road Classification

The multilevel road model employed in the approach presented in this paper includes three levels:
individual road, composite road, and road scene.

1. A individual road refers to a road in a given location. For example, R0’, R1’, R2’, and R3’ are
individual roads in the road network shown in Figure 1a.

2. A composite road contains two individual and intersected roads. For example, the yellow line
composed of R0’ and R1’ is a composite road in the road network shown in Figure 1a.

3. A road scene represents the combination of all the roads in a given location. The green line composed
of R0’, R1’, R2’, and R3’ in Figure 1a represents a road scene.

First, the individual roads are extracted from a sketch map. Then, roads in sketch maps are
aligned with those in a metric map progressively in three levels. In the first level, individual roads are
compared between the sketch maps and the metric map, based on three characteristics: shape distance,
number of critical turning points, and circulation direction. Next, according to the matching results
of the individual roads and considering the first matching priority, composite roads from the sketch
maps and metric map are matched in terms of the topological relationship among their characteristics,
order of appearance along one intersection, and relative positions of the intersections. In the third level,
road scene matching is performed with respect to (w.r.t.) the road with the second matching priority,
characteristics’ frequency for a matched road, intersection order along the road, and topological
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relation between the roads without matching priorities. The details are presented in the following
subsections.

P0

P2

P1 P3

P4

R1'

R2'

R3'

(a)

 P0 P1 P2 P3 P4 
P0 - R0’ R0’, R1’ R0’ , R2’ R0’ , R2’ , R3’ 
P1 - - R1’ R2’ R2’, R3’ 
P2 - - - R1’, R2’ R1’, R2’, R3’ 
P3 - - - - R3’ 
P4 - - - - - 

(b)

Figure 1. Representation of a road scene and its corresponding connectivity matrix. (a) A road scene
showing four individual roads (black line segments: R0’, R1’, R2’, and R3’); one composite road
(yellow line: R0’ and R1’); and five individual road endpoints (blue circles) and their IDs (black and
blue colors correspond to roads and endpoints, respectively). (b) Connectivity matrix of the road
network shown in Figure 1a.

The framework used for sketched road matching is illustrated in Figure 2.

Sketched 
Roads

Match Individual Roads

1. Shape distance
(Vatavu et.al, 2012) 

2. Number of 
    critical turning points
3. Circulation direction
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2. Topological relationship
3. Order of appearance along 
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4. Relative positions of  
    intersections
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4. Topological relation btw roads 
    without matching priorities

Match Road Scene

1. Second matching priority
2. Frequency of a matched road
3. Intersection order along the  
    road 
4. Topological relation btw roads 
    without matching priorities

Figure 2. Framework for sketched road matching.

3.2. Characteristics and Matching Approach for Individual Roads

In this section, the descriptors that represent a individual road are introduced. Furthermore,
the approach of matching individual roads between a sketch map and a metric map is presented.
The extraction of main roads from the sketch map is described in Section 3.2.1. To represent a individual
road, the following three features are adopted: (i) shape distance, which indicates the distance between
two roads in terms of the shape (Section 3.2.2); (ii) number of critical turning points, which describes
the curvature of individual roads (Section 3.2.3); and (iii) circulation direction, which indicates the
direction of two adjacent road segments (Section 3.2.4). The calculation for individual road matching
is described in Section 3.2.5.

3.2.1. Extraction of Main Roads

Main roads are the principal routes for regional traffic. According to analysis by Tang et al. [24],
main roads exhibit a high similarity between a sketch map and a metric map. The proposed approach
attempts to extract the main roads from sketch maps and match them with the roads shown in a metric
map. The method reported by Jiang and Claramunt [43] is considered, which is an expansion of the
approach proposed by Freeman [44] to classify streets in an urban street network using three factors:

1. The degree centrality (DC), also known as the connectivity, indicates the number of roads connected
to a certain road. A given road is considered more important if a larger number of roads are
connected to it. In Figure 1a, R2’ has three roads connected to it (R0’, R1’, and R3’); therefore, the DC
of R2’ is 3. R3’ has only one road (R2’) connected to it, and therefore, the corresponding DC is 1.
Consequently, R2’ is more important than R3’ in terms of DC.
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2. The betweenness centrality (BC) is a measure of the frequency at which a certain road is passed
in all the shortest paths of a given location. A higher frequency indicates a greater connectivity
of a road. In the proposed approach, BC is determined by calculating the shortest path from one
endpoint of a certain road to the endpoints of all the other roads and considering the occurrence
frequency of a road in all the shortest paths as the BC in that road in a given location. According to
Figure 1b, the occurrence frequencies for each road that appeared in all the shortest paths are 4 (R0’),
4 (R1’), 6 (R2’), and 4 (R3’). This demonstrates that R2’ is more important than the other roads in
this location, in terms of the BC.

3. The closeness centrality (CC), in graph theory, is based on the degree to which a point is close to
all the other points. In terms of roads, the CC indicates the shortest distance from a given road to
all the other roads. Because the objective of this study is to determine the main roads in a given
location, this factor is not calculated when extracting the main roads.

Specifically, the proposed approach adopts the DC and BC to extract the main roads from a sketch
map. Roads with higher values of DC and BC can be considered as the main roads in a location.
For example, according to the above analysis, R2’ is a main road in the considered location, as it
corresponds to the highest DC and BC values.

Figure 3 shows a road from a sketch (represented by R0) and the corresponding road from
OpenStreetMap (OSM, OpenStreetMap: https://www.openstreetmap.org/). Note that, OSM is a map
of the world, and the roads in it are models of real-world roads.

(a) Sketched road R0. (b) Corresponding OSM road.

Figure 3. A road from a sketch and the corresponding road from OSM.

Certain roads extracted from OSM (represented by R1, R2, R3, R4, and R5 in Figure 4) were
extracted for further calculation and comparison, as discussed in the subsequent sections.

R1 R2 R3 R4 R5

Figure 4. Individual roads extracted from OSM.

3.2.2. Shape Distance

The shape distance (SD) describes the shape difference between two roads. The approach
proposed by Vatavu et al. [45] was adopted, in which unordered points are used to represent the
stroke shape, and the stroke number, order, and direction are ignored. To match two point clouds,
an approximation of the Hungarian algorithm [46] is used to obtain the aligned points. Subsequently,
the Euclidean distance between each aligned point is computed, and the sum of the distances is

https://www.openstreetmap.org/
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considered as the dissimilarity between the two points. Based on this method, in the proposed
approach, the dissimilarity is calculated as the SD between two roads, as shown in Formula (1):

SD(Sketch,OSM) = dis(RSketch, ROSM) (1)

where SD(Sketch,OSM) represents the SD between two roads, RSketch represents a road from a sketch;
ROSM represents a road from OSM, and dis(RSketch, ROSM) represents the dissimilarity of the roads
from the sketch map and OSM, based on the approach of Vatavu et al. [45]. When comparing two
roads, a smaller value of SD indicates that the shapes of two roads are more similar. Table 1 lists the
SD between R0 and R1–R5. Of the five roads (R1–R5), R3 and R4 are the most similar to R0 because
they have smaller SD (4.21 and 4.74). In addition, R3 and R4 in Figure 4 have higher visual similarities
to R0 in Figure 3a.

Table 1. SD between R0 and R1–R5. Note that 4.21 and 4.74 are in bold because R3 and R4 have the
smaller SD w.r.t. R0.

Road ID R1 R2 R3 R4 R5

SD btw the sketched

road (R0) and roads from OSM
6.94 7.58 4.21 4.74 5.00

3.2.3. Number of Critical Turning Points

The number of critical turning points (NCTP) outlines the structure of a road. A critical turning
point is a point at which the direction difference (represented by α in Figure 5) between two neighboring
line segments is greater than a certain threshold, as represented by the blue circle in Figure 5.
The threshold is based on the features of the road itself, and the minimum value of all the large
corner points along a road line is typically selected as the threshold.

Critical 
Turning Point

Figure 5. Direction difference (represented by α) of two neighboring road segments. The blue circle
represents a critical turning point; the two red circles represent two adjacent points of the critical
turning point.

It is reasonable to consider that two roads are likely to be similar only when the NCTP of one
road from OSM is equal to or exceeds that of a road from a sketch, as shown by Formula (2):

SimNCTP(Sketch,OSM) ← NCTPOSM ≥ NCTPSketch ? True : False (2)

where SimNCTP(Sketch,OSM)) represents the similarity in terms of the NCTP between two roads;
NCTPOSM and NCTPSketch respectively represent the NCTP of a road from OSM and that of a road
from a sketch. Table 2 shows the NCTP for R0–R5, considering a threshold of 36◦. It can be observed
that R3–R5 (which can be visually observed to be more similar to the sketched road) have NCTP
values that are equal to or more than those of R0.
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Table 2. NCTP of R0 and R1–R5. (The threshold of the direction difference is 36◦).

Road from a Sketch Roads from OSM

Road ID R0 R1 R2 R3 R4 R5

NCTP 2 0 1 2 4 3

SimNCTP(Sketch,OSM) - No No Yes Yes Yes

3.2.4. Circulation Direction

The circulation direction [29] of a individual road (CD) identifies the direction of each road
segment w.r.t. to its previous road segment. The proposed approach firstly computes the direction
difference for two adjacent road segments with Formula (3) and then obtains the circulation direction
of one road segment as depicted in Figure 6.

v = (xp0 − xp1) ∗ (yp1 − yp2)− (xp1 − xp2) ∗ (yp0 − yp1) (3)

where p0 represents the start vertex of the first road segment; p1 is the end vertex of the first segment
and also the start vertex of next road segment; p2 is the end point of the next road segment.

Direction of one road segment

Straight Right Left

if 
v 

< 
0

Figure 6. Direction of one road segment. Note that, v is the difference value in direction of two adjacent
road segments obtained in Formula (3).

The left and right directions for each road segment are represented as “l” and “r”, respectively.
Figure 7 shows the CD of two roads. The road in Figure 7a turns right, then left, then right, and finally
right again. The road in Figure 7b turns left, then right, then left, and finally left again.

(a) The CD for this road is (r, l, r, r). (b) The CD for this road is (l, r, l, l).

Figure 7. CD of two roads. Note that V0–V4 represent the vertices of the roads. V0 and V4 respectively
represent the starting and end vertices of the road.

If the CD of one road is the same as that of another road, the two roads are considered to be
similar in terms of the CD. If the CD of one road is part of that of another road, the two roads are
considered to be partially similar. Formula (4) shows the computation of similarity in terms of the CD.

SimCD(Sketch,OSM) ← CDSketch j CDOSM ? True : False (4)
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where SimCD(Sketch,OSM) represents the similarity between two roads in terms of the CD; CDSketch and
CDOSM represent the CD of a road from a sketch and that of a road from OSM, respectively. Table 3
presents the CD of R0 and R1–R5. The CD of R1 is null, as it is a straight road. The CD of R0 is the
same as that of R3 and R4. Moreover, the CD of R0 is part of that of R5, which means that R0 is partially
similar to R5. These findings are consistent with those of a visual inspection.

Table 3. CD of R0 and R1–R5.

A Road
in a Sketch

Roads from OSM

Road ID R0 R1 R2 R3 R4 R5

CD l, r - r l,r l,r r,l,r

SimCD(Sketch,OSM) - No No Yes Yes Yes

3.2.5. Computation of Similarity between Individual Roads

The similarity between two individual roads is the sum of the similarities w.r.t. the shape distance
(SD), number of critical turning points (NCTP), and circulation direction (CD) described in the above
sections. Formula (5) can be used to compute the similarity between two roads:

SimR = w1 · (SampleNUM − SD) + w2 · SimNCTP + w3 · SimCD (5)

where SimR represents the similarity between two individual roads. SampleNUM is the number of
sampling points involved in the SD computation, which was assigned a value of 32 in the approach
by Vatavu et al. [45]. w1, w2, and w3 respectively represent the weight assigned to the similarity in
terms of the SD, NCTP, and CD. It holds that w1 + w2 + w3 = 1.0. SimNCTP and SimCD respectively
represent the similarity between two roads in terms of the NCTP and CD. Furthermore, a larger value
of SimR indicates a higher similarity between two roads. In this work, as all the features in Formula (5)
have the same importance, the weights are assigned the same value: 1

3 . These weights may be tuned
according to different research needs.

3.3. Characteristics and Matching Approach for Composite Roads

A composite road is formed by two individual and intersected roads. The characteristics of a
composite road include: (i) the first matching priority (Section 3.3.1); (ii) the topological relationship
between the roads (Section 3.3.2); (iii) the order of appearance along an intersection (Section 3.3.3);
and (iv) the relative intersection positions in the roads (Section 3.3.4). The approach to compute the
similarity between composite roads is described in Section 3.3.5.

3.3.1. First Matching Priority

The first matching priority (FMP) refers to the priority of a individual road during the process
of matching a composite road. The accuracy of the matching results obtained by different individual
roads differs owing to the particularities of individual roads. The FMP is thus adopted to narrow the
search range and increase the matching accuracy. The FMP can be assigned to an individual road
that has a higher shape specificity and a higher degree centrality. For example, in Figure 8, R2 and R19
are more curved than R1 and R16; therefore, the FMP will be assigned to R2 or R19. Furthermore,
the degree centrality of R19 is 5 and that of R2 is 3, so FMP can be assigned to R19.
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Figure 8. Main roads (in color) with different curves.

3.3.2. Topological Relationship of Composite Roads

The topological Relationship (TR) characterizes the connection between two individual roads.
According to analysis by Tang et al. [24], the topological relationships of main roads are highly similar
between sketch maps and the metric map. The 9-intersection model reported by Egenhofer and
Herring [47] is adopted to describe the topological relationship between roads. This model uses a 3× 3
intersection matrix to describe the relationship between two features in the inner part (I), boundary (B),
and external part (E). Figure 9 shows an example of two topological relationships, namely, touching and
disjoint. Open source lib geos (geos: https://github.com/libgeos/geos/) is adopted to compute the
topological relationship between two vector roads.

Figure 9. Topological relationships between roads. TR between the green and red roads corresponds
to the touching facet. TR between the blue road and the two other roads (green and red) corresponds to
a disjoint relationship.

If the topological relationships between the two roads that constitute a composite road are the
same between the sketch map and metric map, the two composite roads are considered to be similar
in terms of the TR. Formula (6) can be used to calculate the similarity in terms of the TR between
two roads:

SimTP(Sketch,OSM) ← TPOSM ≡ TPSketch ? True : False (6)

where SimTP(Sketch,OSM) represents the similarity in TR between two composite roads derived from a
sketch and OSM; TPSketch represents the TR of the composite road from a sketch; and TPOSM represents
the TR of the composite road from OSM.

3.3.3. Order of Appearance of Roads along an Intersection

The order of appearance of connected roads along an intersection (OD), as defined by Herring [48],
describes the orientation relationship between connected roads.

As shown in Figure 10, the proposed approach first computes the buffer (represented by Buffer) of
a certain radius at the intersection (represented by P) of two roads.

https://github.com/libgeos/geos/
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Figure 10. P is the intersection of two roads RSketch1 and RSketch2. Buffer is the buffer of a certain radius
at P. Points p1, p2, and p3 indicate the intersections between Buffer and the two roads. x1, x2, x2 are the
x-coordinate values of points p1, p2, and p3, respectively.

In this case, the order of appearances of the connected roads along P are represented by the
x-coordinate values (represented by x1, x2, and x3) of the intersections (represented by p1, p2, and p3)
between the roads and Buffer. In Figure 10, the OD along P is RSketch2, RSketch1, and RSketch1, because the
corresponding x-coordinate values of the intersections between Buffer and the roads are x1, x2,
and x3, respectively.

If the orders of appearance along an intersection are the same between the roads from the
sketch and those from OSM, the roads are considered to be similar in terms of the OD, as shown
in Formula (7):

SimOD(Sketch,OSM) ← ODOSM ≡ ODSketch ? True : False (7)

where SimOD(Sketch,OSM) represents the similarity between two composite roads from a sketch
and OSM, in terms of the OD; ODOSM represents the OD of one composite road from the sketch;
and ODSketch represents the OD of one composite road from OSM.

3.3.4. Relative Positions of Intersections

The relative positions of the intersections (RPI) in two connected roads can further clarify the
connection between two roads. As shown in Figure 11, P is the intersection of two connected roads
(green and blue lines). L1 and L2 refer to the lengths of two parts of the road (in green) separated at P.

L1

L2

P

Figure 11. P (yellow circle) is the intersection of two roads (green and blue). L1 and L2 denote the
lengths of two parts of one road (green) separated at P.

The similarity between two roads in terms of the RPI can be determined using the
following process:

• The lengths of two parts of a road separated by P are computed for both the sketch and OSM
aspects to obtain L1OSM, L2OSM, L1Sketch, and L2Sketch;

• The absolute distances ∆dOSM and ∆dSketch are computed using Formulas (8) and (9):

∆dOSM = |L1OSM − L2OSM| (8)

∆dSketch = |L1Sketch − L2Sketch| (9)
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• ∆dOSM and ∆dSketch are normalized on the basis of the length of the roads in OSM and sketches to
obtain NorOSM and NorSketch (see Formulas (10) and (11)), respectively:

NorOSM = ∆dOSM/LOSM (10)

NorSketch = ∆dSketch/LSketch (11)

• The distance DNor between NorOSM and NorSketch is compared to obtain SimPI(Sketch,OSM) in terms
of the RPI. If DNor is smaller than or equal to ThresholdPI , the composite roads from a sketch and
OSM are considered similar, as expressed in (12) and (13):

DNor = |NorOSM − NorSketch| (12)

SimRPI(Sketch,OSM) ← DNor ≤ ThresholdPI ? True : False (13)

where SimRPI(Sketch,OSM) represents the similarity between two composite roads from the sketch
and OSM, in terms of the RPI, and ThresholdPI is the threshold defined to compare the similarity
in terms of the RPI.

3.3.5. Computation of Similarity between Composite Roads

The similarity between two composite roads is the sum of the similarities in terms of topological
relationship (TR), order of appearance of connected roads along one intersection (OD) and relative
positions of intersections (RPI) depicted in the above sections. Formula (14) can be used to compute the
similarity between composite roads from OSM and a sketch.

SimCR = w4 · SimR1 + w5 · SimR2 + w6 · SimTP + w7 · SimOD + w8 · SimRPI (14)

where SimCR represents the similarity between two composite roads. SimR1 and SimR2 denote the
similarities between two individual roads that constitute the composite road. w4 and w5 denote
the weights assigned to SimR1 and SimR2, respectively. SimTP, SimOD, and SimRPI respectively
represent the similarity between two composite roads in terms of the TR, OD, and RPI. w6, w7,
and w8 respectively represent the weights assigned to SimTP, SimOD, and SimRPI . It holds that
w4 + w5 + w6 + w7 + w8 = 1.0. A larger SimCR corresponds to a higher similarity between two
composite roads. As all the features in Formula (14) have the same relevance, the weights are assigned
the same value 1

5 . In other works, these weights may be tuned differently.

3.4. Characteristics and Matching Approach for Road Scenes

A road scene consists of all the roads in a given location. The characteristics of a road scene
include:(i) the second matching priority (Section 3.4.1); (ii) the frequency of a matched individual road
appearing in all the resulting composite road matches (Section 3.4.2); (iii) intersections ordered along
a individual road with priority (Section 3.4.3); and (iv) the topological relationship between roads
without matching priorities (Section 3.4.4). The computation of the road scene similarity is described
in Section 3.4.5.

3.4.1. Second Matching Priority

The second matching priority (SMP) is adopted to assign a matching priority to the second road
that forms the composite road with the road that has the first matching priority (FMP, see Section 3.3.1),
to reduce the matching range. For example, in Figure 12, R19 and R2 are more curved than R1 and R16;
therefore, SMP can be assigned to R2 if FMP is assigned to R19. Scene matching is performed on the
basis of a composite road with FMP and SMP.
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Figure 12. Roads (in color) with different curves.

3.4.2. Frequency of a Matched Road

The frequency of a matched road (FMR) represents the frequency of a matched individual road
that appears in all the resulting composite road matches. If a individual road from OSM appears in the
composite road matches with a higher frequency, it is more likely that the road scene including this
road is similar to the road scene from the sketch. For example, in Figure 13, R156137559 appears in all
the composite road matches: “Sketch R19 Touches R2”, “Sketch R19 Touches R1”, and “Sketch R19
Touches R16”. It can be inferred that the road scene that includes R156137559 in OSM is more similar
to that including R19 in the sketch.

Composite Roads 
Matching Results

Road Scenes  
Matching Results

Figure 13. R156137559 appears in all the composite road matches. The first level of each tree view in
the resulting composite road matches represents each composite road from the sketch. The child nodes
represent the matched composite roads from OSM sorted according to the roads’ similarities to the
parent composite road from the sketch.

3.4.3. Intersection Order of Roads along One Main Road

The intersections order (IO) represents the orientation relationship of other roads along the
road with the first matching priority. If the IO along the road with the first matching priority (FMP,
see Section 3.3.1) is consistent between two road scene, the two road scenes are considered to be similar
in terms of the IO. If the IO of a road scene is part of that of another road scene, the two road scene are
considered to be partially similar.

First, the intersections between all the other roads and the road with FMP are determined. Then,
all the other roads are sorted according to the coordinate values of these intersections. For example,
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in Figure 14a, IO along road R19 is {R1, R16, R2}. In Figure 14b, IO along road R19 is {R1, R16, R2, R1}.
Because {R1, R16, R2} is part of {R1, R16, R2, R1}, it can be inferred that IO along R19 in Figure 14a
is part of IO along R19 in Figure 14b; therefore, the two road scenes are considered to be partially in
similar terms of the IO.

The similarity of two road scenes in terms of the IO can be computed as follows.

SimIO(Sketch,OSM) ← IOSketch j IOOSM ? True : False (15)

where SimIO(Sketch,OSM) represents the similarity in IO between two road scenes from a sketch and
OSM; IOSketch represents the IO of a road scene from a sketch; and IOOSM represents the IO of a road
scene from OSM.

(a) Roads (in color) from the sketch.

R

R
(b) Corresponding roads (in color) from OSM.

Figure 14. Roads R1, R2, and R16 (red, yellow, and blue lines, respectively) intersect with road R19
(green line) at I1, I2, I3, and I4, respectively.

3.4.4. Topological Relationship between Roads without Matching Priorities

The topological relationship between roads without matching priorities (TRMP) describes the
spatial relationship between roads without matching priorities and can further distinguish the
similarity between road scenes in terms of the topological relationships. For example, in Figure 15,
the green road is a road assigned with matching priority, and the yellow and blue roads are roads
without matching priorities. The TRMP between the yellow and blue roads in Figure 15b (touching) is
the same as that between the yellow and blue roads in Figure 15a (touching) and different from that
between the yellow and blue roads in Figure 15c (disjoint). The similarity between two road scenes in
terms of the TRMP can be computed as follows:

SimTRMP(Sketch,OSM) ← TRMPSketch ≡ TRMPOSM ? True : False (16)

where SimTRMP(Sketch,OSM) represents the similarity in TRMP between two road scenes from a sketch
and OSM; TRMPSketch represents the TRMP of a road scene from a sketch; and TRMPOSM represents
the TRMP of a road scene from OSM.
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(a) (b) (c)

Figure 15. Road scene from the sketch (left), and two road scenes from OSM (middle and right).
The topological relationship between the roads with TRMP in Figure 15a is the same as that in
Figure 15b and different from that in Figure 15c. (a) Road scene from a sketch. The green road has
matching priority. The topological relationship between the yellow and blue roads is that of touching.
(b) Candidate road scene from OSM. The topological relationship between the yellow and blue roads is
that of touching. (c) Another candidate road scene from OSM. The topological relationship between the
yellow and blue roads is disjoint.

3.4.5. Computation of Similarity between Road Scenes

The similarity of two road scenes is the sum of the similarities in each composite road that
constitute the road scene, intersection order (IO) and topological relationship between roads without matching
priorities (TRMP) detailed in above sections. The similarity between two road scenes can be obtained
as follows:

SimSR = w9 · ∑
i⊆n

SimCRi + w10 · SimIO + w11 · SimTRMP (17)

where SimSR represents the similarity between two road scenes; SimCRi represents the similarity of
the i-th composite road that constitutes the road scene; and n is the number of composite roads that
constitute the road scene. w9 is the weight assigned to the sum of all SimCRi. SimIO and SimTRMP
respectively represent the similarity of two road scenes in terms of the IO and TRMP. w10 and w11

respectively represent the weight assigned to SimIO and SimTRMP. It holds that w9 + w10 + w11 = 1.0.
A larger SimSR corresponds to more similar road scenes. In our paper, the weights in Formula (17)
have been all assigned the same value ( 1

3 ) since all the features have the same relevance. Other studies
may turn these weights differently.

4. Results and Discussion

We invited participants to draw a sketch of the northern campus of the Xianlin University
District of Nanjing Normal University, Nanjing, China (see https://www.openstreetmap.org/relation/
9356340#map=17/32.11603/118.91191), as shown in Figure 16. Eleven participants (four male and
seven female participants) with ages ranging from 20 to 30 years sketched the same experimental area.
Nine participants had geographical knowledge as their major was in the GIS domain, whereas two
participants had no geographical background but had used Google Maps before. Figure 17 shows the
sketches, numbered S1–S11, drawn by the 11 participants. OpenStreetMap (OSM) data was taken as
the reference data for alignment. The sketches were digitized manually to build the road network.
Main roads in each sketch were extracted and adopted for the test application. The approach described
above was used to do matching experiments between each sketch and OSM data, as discussed
in Section 4.2.

https://www.openstreetmap.org/relation/9356340#map=17/32.11603/118.91191
https://www.openstreetmap.org/relation/9356340#map=17/32.11603/118.91191
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(a) (b)

(c) (d)

Figure 16. Experiment area and the roads in the experiment area. (a) Northern campus of Xianlin
University District of Nanjing Normal University (taken by Da-Jiang unmanned aerial vehicle Phantom 4).
(b) Metric map of the experiment area in Chinese (from OSM c© OpenStreetMap) contributors. (c) Metric
map of the experiment area in English (from OSM c© OpenStreetMap contributors). The annotations
in (c) are the English explanations of corresponding objects’ annotations in (b). (d) Roads from OSM.
The numbers represent the road IDs. The green and blue roads are two main roads.

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11

Figure 17. Sketches drawn by participants. Note that, the Chinese annotations in the sketches are
the categories or names of the objects labeled by volunteers. S10 and S11 were not included in the
subsequent analysis because the sketched roads in these two sketches were schematic and did not
reflect the road shapes.

https://www.openstreetmap.org
https://www.openstreetmap.org
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4.1. Extracting Main Roads

All these sketch maps refer to the same place, but their similarity is low. This might be due to
the fact that each participant reflected his/her particular understanding of the place [49]. Therefore,
it was necessary to extract the main roads from the sketch maps. It should be noted that certain
sketched roads such as those appearing in sketches S10 and S11 are schematic and do not reflect the
shapes of the roads. These schematic roads only represent the accessibility or connection between
two places/buildings. Therefore, the roads in these sketches were not included in our subsequent
road-related matching calculations.

The parameters of degree centrality (DC) and betweenness centrality (BC) were adopted, as described
in Section 3.2.1, to extract the main roads from the sketches. Roads with high values of both DC and
BC were considered as the main roads. Figure 16d presents all the roads in the experimental area,
as extracted from OSM, and the main roads, which are central roads in the experiment area. Table 4
shows all the roads drawn in each sketch except sketch S7, and the main roads extracted from each
sketch according to their DC and BC. Only two roads were drawn in sketch S7, so both of them were
extracted as main roads.

From Table 4, the following observations could be made:

• R2 and R19 were most frequently extracted as the main roads. These roads are consistent with the
main roads in OSM, as shown in Figure 16d. The same ID was assigned to the same roads in each
sketch to facilitate the analysis.

• The number of main roads extracted from each sketch was different, as shown in the lower part
of the second column in Table 4. The maximum number was 6 (S5), and the minimum number
was 2 (S7); however, almost half the roads in each sketch were extracted as the main roads.

• In sketches S3, S4, and S7, all the roads were extracted as the main roads. In S3, the DC and BC
values were the same for R2 and R19 and for R0 and R21. In S4, all the roads except for R19 had
the same DC and BC. In S7, only two roads were drawn.

• In S5, R0, R1, R2, R3, R6, and R19 were selected as the main roads as they had the same values of
DC and BC. In S9, although R1, R2, R3, R6, and R15 had similar DC values, R1 was not chosen as
a main road owing to its lower BC. This aspect also holds for R0 and R16 in S8.
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Table 4. Main roads extracted from each sketch w.r.t. DC and BC. Note that roads in sketch S7 were all extracted as main roads, because there are only two roads in
the sketch.

Roads in
each sketch

S1 S2 S3 S4
S5

S6 S8 S9

DC and BC

Road ID DC BC 
R1 3 15 
R2 4 61 
R6 1 13 
R8 2 7 
R10 2 6 
R12 2 15 
R16 3 40 
R19 5 93 
R20 1 0 
R21 1 13 

   
  

  
  

  
  

Roads extracted:
4/10

cai 
Road ID DC BC 

R0 2 23 
R1 3 33 
R2 3 28 
R3 2 0 
R12 2 14 
R16 2 43 
R19 5 129 
R21 1 13 

   
  

  
  

Roads extracted:
4/8

chen 
Road ID DC BC 

R0 1 7 
R2 2 22 
R19 2 29 
R21 1 7 

   
  Roads extracted:

4/4

 
Road ID DC BC 

R0 1 9 
R2 1 9 
R8 1 9 
R16 1 9 
R19 4 85 

 
Roads extracted:

5/5

huangyi 
Road ID DC BC 

R0 2 12 
R1 2 12 
R2 2 12 
R3 3 0 
R6 2 12 
R8 1 12 
R16 1 12 
R19 8 162 
R20 1 12 

   
  
  

  
  

 

Roads extracted:
6/9

 
Road ID DC BC 

R2 2 38 
R3 2 20 
R4 1 11 
R8 2 11 
R15 1 11 
R16 2 11 
R19 4 89 

   
  

 
Roads extracted:

5/7

  
Road ID DC BC 

R0 2 10 
R2 5 150 
R4 1 18 
R5 2 47 
R6 1 18 
R8 2 51 
R15 2 21 
R16 2 8 
R19 7 270 
R20 1 18 
R21 1 18 

  

Roads extracted:
5/10

  
Road ID DC BC 

R0 1 14 
R1 2 3 
R2 2 34 
R3 2 50 
R4 1 14 
R6 2 11 
R15 2 6 
R19 6 237 

Roads extracted:
5/8

Main roads
(in color)
Extracted

R
1
9

R2

R
0

R8
R
16

R2

R
1
9

R8

R3

R16 R
1
9

R2

R
1
5

R5R8

R
1
9
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6

R
1
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R2
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4.2. Road Scene Matching

After extracting the main roads from each sketch, as shown in Table 4, matching experiments
were performed between each sketch and OSM to compute the road similarities. The experiments
included three steps: individual road matching, composite road matching, and road scene matching.
A shapefile containing 15,242 roads of Nanjing, China, from OSM was used as a matching database.
The computation time was between 58.2 s and 1803 s. Table 5 presents the matching results from
this database.

• Each row in Table 5 shows the main roads extracted from each sketch, the matching parameters,
and the matching results from OSM.

• The first column in Table 5 lists the IDs of the sketches, corresponding to those in Figure 17.
• The second column lists the main roads extracted from the sketches. In addition, the matching

parameters are listed, including MaxMN, which represents the maximum number of roads from
OSM involved in the matching of the road from one sketch with the first matching priority (FMP,
see Section 3.3.1), and ThresholdCon, which represents the threshold of the direction difference for
comparing the circulation direction (CD, see Section 3.2.4) values.

• The remaining columns show the top-ranked matching results from the database based on the
main roads extracted from each sketch. The similarity between each road scene from OSM and
that from each sketch is also presented. The greater the similarity, the more similar are the roads
between the sketch and OSM.

Table 5. Matching results for all sketches. FMP is assigned to the green road. MaxMN is the maximum
number of matched individual roads from OSM involved in the process of composite road matching.
ThresholdCon is the threshold of the direction difference for computing CD of the green road.

Sketch ID Main Roads Extracted
and Matching Parameters

Top Three Matching Results from the Roads of Nanjing,
China, in OSM and Their Similarities

S1

MaxMN = 30
ThresholdCon = 36 146.899 145.066 144.987

S2

MaxMN = 30
ThresholdCon = 36 141.254 141.216 134.499

S3

MaxMN = 10
ThresholdCon = 37 143.231 143.039 141.137
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Table 5. Cont.

Sketch ID Main Roads Extracted
and matching parameters

Top three matching results from the roads of Nanjing,
China, in OSM and their similarities

S4

MaxMN = 50
ThresholdCon = 20 152.982 152.933 152.751

S5

MaxMN = 50
ThresholdCon = 16 201.744 195.268 195.061

S5

MaxMN = 50
ThresholdCon = 16 166.823 153.623 140.423

S6

MaxMN = 70
ThresholdCon = 8 177.137 172.321 172.296

S7

MaxMN = 200
ThresholdCon = 32

82.505
82.479 76.577

S8

MaxMN = 10
ThresholdCon = 15 165.756 145.922 145.640

S9

MaxMN = 5
ThresholdCon = 22 160.303 153.783 153.652

Formula (17) was used to align roads between the sketch map and the metric map. A value
of 100 was adopted to quantitatively compute the similarity if the similarity between two roads in
Formulas (2)–(4), (6), (7), (13), (15) and (16) was True. In contrast, a value of 0 was used if the similarity
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between two roads in these formulas was False. The weights involved in in Formulas (5), (14) and (17)
were averaged: the values of w1, w2, and w3 in Formula (5) were set to 0.33; the values of w4, w5, w6,
w7, and w8 in Formula (14) were set to 0.2; and the values of w9, w10, and w11 in Formula (17) were set
to 0.33.

Furthermore, it should be noted that two different matching results are shown for S5 in Table 5,
as the topological relationships of the red and green roads are varied between OSM (disjoint) and S5
(touching). The matching results of the first row for S5 corresponds to the top three results obtained
without considering the topological relationship of these two roads. The matching results for the
second row for S5 correspond to the top three results obtained considering the topological relationship
of these two roads.

Figure 18 shows the whole time cost of each sketch in roads matching. It can be found that:

• matching of sketch S9 costs the shortest time, because the quantity of main roads extracted in
sketch S9 is the least (3), and also two main sketched roads in scene S9 are curved. Note that there
are only two sketched roads in sketch S7, so the time cost for matching of sketch S7 is just used
for composite road matching.

• matching of sketch S6 costs the longest time. As it can be seen from Table 4, sketch S6 has only one
curved main road, and the remaining main roads in sketch S6 are all nearly straight. Moreover,
there were five roads extracted as main roads in sketch S6 for matching, which correspondingly
increased the matching time.

S1 S2 S3 S4 S6 S7 S8 S9
0

1000

2000

3000
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6000

7000

8000

Ti
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e 
Co

st 
(s

)

Sketch ID

Figure 18. Time cost for roads matching in each sketch.

4.3. Discussion

As indicated in Table 5, all the sketch maps could be used to query the accurate corresponding
roads from OSM, except for S7. The key experimental results are as follows.

Although the roads were drawn partially or distorted in several sketch maps, accurate matching
results could be obtained, including those for sketches S1, S2, S4–S6, S8, and S9. In Table 5, S1 has one
partially drawn road (red line), but an accurate metric road map was observed in the top matching
result. This finding also holds for S2, S4, S5, and S9 (having a partially drawn road in red, blue, green,
and purple, respectively). Furthermore, the accurate matching results of these sketch maps were in the
top three results.

Accurate matching results could also be obtained for sketch maps with distorted roads.
For example, in S4, all the main roads were drawn in a distorted manner except for the one in
blue; nevertheless, the exact match was in the second place (see Table 5). S6 (distorted road in green)
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and S8 (distorted road in purple) also exhibited accurate matching results in the third and first places,
respectively.

Accurate matching results could be obtained for sketch maps involving inconsistent topological
relationships between roads with those in the metric map. In S5, two roads (in red and blue) were
drawn inconsistently with those in the metric map, which led to an inconsistent topological relationship
see Figure 19. Thus, two rows of matching results were shown for sketch S5, in which one row shows
the matching results obtained considering the topological relationship between these two roads,
while the other row shows the results obtained not considering this relationship (see the two rows of
matching results for S5 in Table 5). Nevertheless, an accurate matching result (SimSR = 201.744) was
obtained, even when the topological relationship between the two roads was not considered (see the
first row of matching results for S5 in Table 5).

Accurate road maps could not be obtained for S7 from OSM, as shown in Table 5. This can be
attributed to the small number of roads (only 2) drawn in the sketch and the fewer curves of these
roads (see Table 4).

In particular, the characteristic first matching priority (FMP, see Section 3.3.1) can be assigned to
a road with more shape curves and a higher degree centrality value in one sketch map. More curved
shape can improve the similarity in computing shape distance. A higher degree centrality value means
more roads connected to this road as we discussed in Section 4.1 and correspondingly involves more
composite roads matchings. For example, in sketch S1, green road is more curved than other main
roads extracted. Furthermore, its degree centrality value (3) is the highest as Table 5 shows. This holds
for the same road in sketches S2–S7 and S9. Whereas in sketch S8, the same road (in purple) is a straight
line, so FMP was assigned to the road in green. Characteristic FMP can help narrow the search range,
as demonstrated in Section 3.3.1.

disjoint

(a) Roads in red and blue are disjoint in OSM.

touching

(b) Roads in red and blue are touching in S5.

Figure 19. Different topological relationships of the corresponding two roads in OSM and S5.

5. Conclusions and Future Work

This paper proposes a shape-based approach for spatial-query-by-sketch, known as Shaped-based
Spatial-Query-by-Sketch. In the work by Tang et al. [24], it was noted that main roads exhibit
considerable similarities between the sketch maps and the metric map. Considering this aspect, in this
work, the data for main roads were obtained from sketch maps based on two factors, namely, the degree
centrality and betweenness centrality. Subsequently, the main roads were compared in three levels
quantitatively and qualitatively—individual road, composite road, and road scene. In the first level,
we calculated the similarities between two individual roads considering quantitative characteristics,
such as the shape distance, and qualitative characteristics such as the circulation direction. In the second
level, the topological relationship and quantitative characteristics of a composite road (i.e., composed of
two individual roads), such as the relative positions of the intersections, were aligned between the sketch
maps and the metric map. In the third level, all the main roads extracted from a sketch map were
further quantitatively and qualitatively compared with those in the metric map based on the road
scene characteristics, e.g., the frequency of a matched road. Next, the matching results were sorted based
on the sum of the characteristic similarities. An experiment was performed, in which nine sketch
maps drawn by nine participants were aligned with the metric map derived from OSM. The results
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indicated that for eight out of nine sketch maps, accurate road maps could be obtained from the metric
map. The inaccurate matching of the remaining sketch map was a result of the small number of roads
in the sketch (only 2) and the presence of only a few shape curves in the roads. Furthermore, it was
noted that accurate matching results could be obtained for sketch maps with partially drawn roads
or distorted roads and even for roads with an inconsistent topological relationship with those in the
metric map.

The following aspects are expected to be a part of future work:

• Comparison of the spatial relationship between roads and buildings, such as the orientation
relationship, topological relationship, and ordering relationship. In particular, in some sketches,
only a few roads are drawn, which makes it challenging to match these roads. Combining the
sketched roads with buildings may improve the accuracy of matching.

• Development of a method to match the sketched places with discrete sketched roads.
Discrete sketched roads are road segments generated during the process of digitization.
Specifically, in this work, the roads in the sketch maps were digitized manually and the road
integrity was guaranteed. In future work, the digitization will be conducted automatically,
by decomposing the roads in the sketch maps into several line segments. Note that the shape
of a discrete sketched road may be different from that of a completely sketched road, and the
topological relationship between such roads may also be different. Therefore, in future work, we
intend to realize matching between discrete sketched roads and complete roads in the metric map.

• Application of the proposed model to an unknown experimental area. In this study, the road
similarity was examined considering roads in familiar places. An objective of future work is to
study the characteristics and consistency of roads in unfamiliar scenes.
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Abbreviations

The following abbreviations are used in this manuscript:

VGI Volunteer Geographic Information
GIS Geographic Information System
SQbS Spatial-Query-by-Sketch
SSQbS Shape-based Spatial-Query-by-Sketch
DCE Discrete Curve Evolution
QSD Qualitative Shape Description
DC Degree Centrality
BC Betweenness Centrality
CC Closeness Centrality
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OSM OpenStreetMap
SD Shape Distance
NCTP Number of Critical Turning Points
CD Circulation Direction
FMP First Matching Priority
TR Topological Relationship
OD Order of Appearance of connected roads along one intersection
RPI Relative Positions of Intersections
SMP Second Matching Priority
FMR Frequency of a Matched Road
IO Intersection Order
TRMP Topological Relationship between roads without Matching Priorities
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