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Abstract

Vector space models of words have long
been claimed to capture linguistic regulari-
ties as simple vector translations, but prob-
lems have been raised with this claim. We
decompose and empirically analyze the clas-
sic arithmetic word analogy test, to motivate
two new metrics that address the issues with
the standard test, and which distinguish be-
tween class-wise offset concentration (simi-
lar directions between pairs of words drawn
from different broad classes, such as France–
London, China–Ottawa, . . . ) and pairing con-
sistency (the existence of a regular transforma-
tion between correctly-matched pairs such as
France:Paris::China:Beijing). We show that,
while the standard analogy test is flawed, sev-
eral popular word embeddings do nevertheless
encode linguistic regularities.

1 Introduction

Vector semantic models saw a surge in interest after
embeddings trained under the word2vec architec-
ture (Mikolov et al., 2013a) were shown to encode
linguistic regularities (Mikolov et al., 2013b). The
demonstration relied on the arithmetic analogy test:
relations such as king + woman−man ≈ queen
were shown to hold for a variety of semantic and
grammatical relations. Evaluation of word embed-
dings on analogy tests and training on related loss
functions remains current. There is also continued
interest in theoretically grounding the success of
distributional embeddings on these tests (Allen and
Hospedales, 2019; Ethayarajh et al., 2019).

There is, however, a substantial literature point-
ing to problems with word analogies (see Section
2), leading to the conclusion that word analogies
are fragile in practice, and sometimes going so far
as to imply that the positive results were erroneous.
These critiques have been ambiguous as to whether
the problem is that the embeddings in question do

not really encode the relevant linguistic structure,
or whether the issue is merely that the arithmetic
analogy test as it is standardly defined, is flawed.

The current paper confirms that there are serious
problems with the standard analogy test, as it con-
founds three different properties of word vectors
while purporting to measure only one: class-wise
offset concentration (similar directions between
pairs of words drawn from different broad classes,
such as France–London, China–Ottawa), within-
pair similarity between test words (for example,
the similarity between Paris and France), as well
as the pairing consistency the test sets out to mea-
sure (the presence of a regular direction encoding
relations such as capital-of : France–Paris, China–
Beijing). We give an algebraic decomposition of
the standard analogy test that explains previous neg-
ative results in terms of within-pair similarity. Us-
ing new measures, we show that, in practice, offset
concentration, rather than true pairing consistency,
may account for part of word embeddings’ success.
Nevertheless, we show that several standard word
embeddings do show pairing consistency for the
relations tested by the BATS analogy benchmark
(Gladkova et al., 2016).1

2 Related work

The validity of the arithmetic analogy test has been
questioned in several papers, starting with Levy and
Goldberg (2014). We detail in Section 3 several
major issues with the test as raised by Levy and
Goldberg (2014), Linzen (2016), and Rogers et al.
(2017). Finley et al. (2017), Newman-Griffis et al.
(2017), Chen et al. (2017) and Schluter (2018) also
raised concerns about the test and its assumptions.
More recently, Nissim et al. (2020) argued against
this test as an inadequate tool for studying bias in

1Code is available at github.com/bootphon/
measuring-regularities-in-word-embeddings.
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word embeddings. Rogers (2019) observes that
many of the issues have been ignored.

Some works have proposed other measures of
linguistic relations in word embeddings. Levy
and Goldberg (2014), Vylomova et al. (2016), and
Rogers et al. (2017) all examined the similarity of
vector offsets in a more direct way than the stan-
dard analogy test (see Section 3 below). Drozd
et al. (2016) proposed a method based on predict-
ing the class of the unknown word, and Bouraoui
et al. (2018) relaxed the assumptions by allowing
probabilistic models to predict the relations.

We claim that these works still do not provide
a satisfactory measure of how well word vector
offsets encode linguistic relations. Without such
a measure, it is impossible to assess whether the
original conclusions are correct. We develop this
argument, and then develop a new measure, below.

3 The arithmetic analogy test

Mikolov et al. (2013b) proposed to measure the
presence of linguistic relations in the structure of
word embeddings using vector arithmetic. For two
pairs of words representing the same linguistic re-
lation, (a, a∗) and (b, b∗), the test assesses whether:

b + (a∗ − a) ≈ b∗ (1)

In practice, the test assesses whether b∗ is the
nearest neighbour to b + a∗ − a, using the cosine
similarity (cosine of the angle between x and y):

sim(x, y) =
x · y
‖x‖‖y‖

(2)

The assumption is that, if the offset oa=a∗−a is
parallel to the offset ob=b∗−b, then this common
offset direction encodes the same linguistic relation.
For example, if Paris minus France goes in the
same direction as Beijing minus China, and as other
capital–country pairs, the common offset direction
can be seen as encoding the relation capital-of.

Thus, the idea behind the arithmetic analogy
test is that offsets corresponding to the same lin-
guistic relation, if they are the same or roughly
the same, should be interchangeable. Therefore,
France + (Beijing − China) should be the same
as France + (Paris − France) (modulo the vector
magnitude, if we are hypothesizing that it is the
direction, and not the precise normed vector, that
encodes the relation capital-of: hence the use of
the cosine similarity).

The criticisms of Mikolov et al. (2013b) and the
research it inspired have often been characterized
as problems with “word analogies.” This is am-
biguous: it does not distinguish between problems
with the method of using the arithmetic test just
described for testing the presence of linguistic reg-
ularities, and the veracity of the conclusion that
there are linguistic regularities coded in word em-
beddings as vector offsets. In order to resolve this
ambiguity, one would need to know for sure, using
some better measure, whether linguistic regularities
are coded. We propose such a measure beginning
in Section 4. We first analyze the key problems that
have been previously raised.

3.1 Within-pair similarity

The analogy will be scored correct if b∗ is the
arg maxx sim(b + oa, x). Levy and Goldberg
(2014) call this objective 3COSADD. Let us call
sim(b + oa, b

∗) the “analogy score.” Putting aside
norms, the analogy score can be decomposed as:

sim(b + oa, b
∗) ∝ b · b∗ + oa · b∗

∝ b · b∗ + oa · ob + oa · b
(3)

The first term, the dot product of b and b∗, is pro-
portional to the within-pair similarity, sim(b, b∗).
The second term is proportional to the similarity
between the offsets, which would appear at first
glance, to be the term of principal interest in as-
sessing whether a linguistic relation is consistently
coded by the offsets. The third term is proportional
to the similarity between the start word b and the
offset oa, and does not depend on b∗.

We develop an analysis of the offset similarity
in sections 4–5, deriving from it the offset con-
centration and pairing consistency properties we
propose to measure. Previous work suggested that
offset similarity is not very high in practice, com-
pared to within-pair similarity. Levy and Gold-
berg (2014) showed that evaluating on the basis
of similarity between offsets, using PAIRDIREC-
TION to determine the nearest neighbours, leads
to failure on analogy tests that would otherwise
succeed using the 3COSADD objective. Rogers
et al. (2017) showed that within-pair similarity is
correlated with performance on the standard arith-
metic analogy test. Clearly, measuring whether
Paris is similar to France is not the same as mea-
suring whether the relation capital-of is present in
the word embedding. As Levy and Goldberg point
out, within-pair similarity is not irrelevant to the



question—if the idea is that there is a consistent
dimension capital-of which should constitute the
principal difference between Paris and France, then
the two words should otherwise be similar. But a
test dominated by within-pair similarity can lead
to spurious results, since pairs of words may be
similar without capturing the relation in question.

Using the Bigger Analogy Test Set (BATS)
(Gladkova et al., 2016) and the pre-trained Google
News skip-gram embeddings of Mikolov et al.
(2013a), we examine the role of the three terms
of (3). BATS consists of forty relations, each com-
posed of fifty word pairs, grouped into four broad
types: inflectional morphology, derivational mor-
phology, encyclopedic semantics (like capitals and
animal sounds), and lexicographic semantics (like
synonyms and antonyms). When multiple pairs
exist for the same input word, we only keep the
first. For each of the forty relations, we take the
mean for each term over all a :a∗ ::b :b∗ tuples.

Complementing previous analyses, we display
means for these three terms in Figure 1, confirming
that within-pair similarity is indeed positive and
large compared to the other terms. Notably, offset
similarities vary between relations, but are almost
always smaller. However, they are always positive.

3.2 Honest analogies: predicting input words

Linzen (2016) observes that the arithmetic anal-
ogy test, as practised, excludes a, a∗, and b from
the arg max—otherwise, one of these input words
tends (incorrectly) to be the response—most of the
time, b. Rogers et al. (2017) and Schluter (2018)
imply that part of the issue may be that ‖oa‖ is
small. This cannot be why: the offsets have simi-
lar magnitudes, so if ‖ob‖ is long enough to bring
b to b∗, then ‖oa‖ should be too. Importantly, if
we compute the decomposition in (3), but suppose
that b∗ is equal to b + oa (oa = ob: the analogy
score is thus always 1), we observe empirically
that the within-pair similarity- and offset similarity-
driven terms have similar values (Figure 8 in the
appendix). This means that ‖oa‖ is similar to ‖b‖.
The weakness of the offset-similarity term in the
score is not driven by the offsets being small.

Define ∆sim as the analogy score minus the sim-
ilarity of b + oa to the start word b, which must be
negative in order for the “honest” analogy test to
return b. We observe that ∆sim is equal to:

∆sim =
b+oa
‖b+oa‖

·( b∗

‖b∗‖
− b

‖b‖
) (4)

By replacing b∗ by b + oa, we can expand the
score, which is then proportional to:

‖b‖−‖b∗‖
‖b‖

·(b+oa)·b + oa ·ob + b·ob (5)

This decomposes ∆sim into three terms. The
first term is proportional to the difference between
the norms of b and b∗, which we have empirically
observed to be small, and which will be null for
normalized embeddings. The second term is pro-
portional to the offset similarity, and the third term
is proportional to the similarity between b and ob.
For normalized word vectors, the third term is equal
to sim(b, b∗)− 1, which is the negative cosine dis-
tance between b and b∗. Since ‖b‖ and ‖b∗‖ tend
to be similar, we find that this is a good approxi-
mation even for non-normalized vectors. ∆sim is
thus negative, roughly, whenever the offset similar-
ity is less than the cosine distance between b and
b∗. Intuitively, the similarity of the offsets must
compensate for the difference between b∗ and b.

In Figure 2, we plot means for the three terms
from (5). We observe that the first term is indeed
small and can be ignored. Importantly, we observe
that the offset similarity term is smaller in magni-
tude than the negative b–b∗ distance term).

Linzen’s observation that an input word is typ-
ically predicted under the 3COSADD objective—
and not an unrelated vocabulary word—implies
that not only is ∆sim negative, but that the equiva-
lent value is negative for all words in the vocabulary.
This in turn would imply (for normalized embed-
dings) that the similarity between oa and the offset
of b with respect to any other word is smaller than
the distance between b and that word. Far from
staying in the neighbourhood of b, oa moves b in a
direction far from every word in the vocabulary.

Our analysis of these known problems with word
analogies details the central problem: the pairs of
offsets tested are not similar enough to support the
kind of arithmetic demanded by the 3COSADD ob-
jective. An illustration of the dominance of within-
pair similarity is given in Figure 3. Note that we
present this figure only to illustrate the dominance
of within-pair similarity. Two-dimensional projec-
tions are misleading: the vectors in Figure 3 do
not have the property, discussed above, that the
offsets are of length similar to the word vectors
themselves—this is difficult to reconcile with high
within-pair similarity in two dimensions.

None of this, however, implies that word embed-



Figure 1: Decomposition of the analogy score in three terms, with only two depending on the word to predict. The
largest component is b · b∗, proportional to within-pair similarity. b ·oa is proportional to the similarity of the offset
to the start word b. ob · oa is proportional to the similarity between offsets. All terms are divided by the same
overall normalization term (not indicated in the legend).

Figure 2: Decomposition of ∆sim, the difference between the similarity of the analogy to b∗ and to b. The term
proportional to the dissimilarity of b to b∗ is greater than the one proportional to the offset similarity, which means
the common direction of the offset is not enough to bring the analogy closer to b∗ than to b.

dings do not show linguistic regularities. It simply
implies that the standard arithmetic analogy test
does not measure these regularities correctly, and
should not be used. While it may be true that the
quantity of interest, the similarity between offsets,
is generally insufficient to dominate the standard
analogy test, that does not mean it is too small to
be considered an encoding of a linguistic regularity.
How similar is similar enough? In the following
section, we propose an answer to this question.

4 Measuring Regularities

The similarity between offsets, sim(oa, ob), is the
quantity of primary interest to assess whether lin-
guistic relations are represented as consistent di-
rections. We seek a measure of whether they are.
As noted, Levy and Goldberg (2014) showed that

arg maxx sim(a∗ − a, x− b) does not tend to find
the right answer (b∗). However, the fact that b∗ does
not maximize offset similarity does not answer the
question of what a meaningful level of offset sim-
ilarity is. Rogers et al. (2017) analyzed examples
of correct and false analogies and showed them to
have comparable offset similarities. This makes
sense: a baseline level of offset similarity can be
found by looking at unrelated pairs. However, that
paper examined only one isolated example.

We propose an offset concentration score
(OCS) measuring the offset similarity among pairs
belonging to the same relation and a pairing con-
sistency score (PCS) measuring the distinctness of
the similarities from a baseline. We propose PCS
as the correct measure of linguistic regularity, with
OCS a source of supplementary information.



Figure 3: Schematic illustration of an analogy underlin-
ing the role of within-pair similarity in the arithmetic
analogy test. At left, China + (Paris − France) pre-
dicts Beijing in part for the “right” reason (offsets are
parallel). At right, the offsets are not parallel, but Bei-
jing is likely to be predicted, since its cosine similar-
ity to China is high. The problem is worse than the
2D schematic would suggests, since it can occur even
when the word vectors are normalized, and when the
offsets are quite long. China will be predicted if it is
not excluded, since it is also in the neighbourhood.

Perfectly parallel offsets would imply that
France and Paris differ on the same dimension as
China and Beijing—and on no other dimension—
and similarly for the other offsets of the same kind
(Canada−Ottawa, . . . ). Perfect parallelism is not
necessary for sim(oa, ob) to contribute to success
on the analogy test. By offset concentration, we
mean the degree to which, for an entire set of word
pairs, the offsets are parallel to one another (thus,
concentrated in a single direction).

Once we take into account that offsets need not
be perfectly parallel, we must bear in mind that
positive cosine similarity between offsets does not
imply that the embedding space captures linguistic
relations. For example, recalling Schluter (2018),
training embeddings to capture distributional reg-
ularities may group words into linguistic classes—
with, for example, country names such as France,
China. . . , occupying a region of the space distinct
from that of Paris, Beijijng. . . , due to distributional
commonalities. This by itself could yield offset
concentration: offsets would all come from a simi-
lar origin, and go to a similar destination. However,
sim(France-Paris,China-Beijing) would not nec-
essarily be larger than sim(France-Beijing,China-
Paris). We illustrate this issue in Figure 4.

In such an example, we might be able to assert
that the class of capital city names is distinct from
the class of country names. But asserting that the
relation capital-of is captured is a stronger prop-
erty. It would require that moving from the France

Figure 4: Schematic illustration of an analogy un-
derlining the pitfalls of offset concentration. At left,
Paris − France appears nearly orthogonal to Bei-
jing − China. At right, however, the offsets have
much greater cosine similarity, simply because Paris
and Beijing are far away. The similarity between
Paris − China and Beijing − France (dotted lines) is
almost as high. Unlike what might be suggested by the
2D schema, this can arise easily even for normalized
word vectors.

vector in the direction of the common capital-of
vector lead to Paris and not to Beijing, nor to any
other capital city—or, at least, that it passes closer
to Paris. We call this property pairing consistency.

4.1 Offset concentration

Figure 5 shows a histogram of the pairwise similar-
ities between all pairs of BATS analogy offsets for
the pre-trained word2vec embeddings used above,
grouped by broad BATS relation type. As above,
these similarities are small but generally positive.
We propose an offset concentration score:

OCS =
1

N(N − 1)

∑
i

∑
j 6=i

oi · oj (6)

which is the mean similarity between normalized
offsets within a single relation, where the nor-
malized offset vector oi of a given word pair is
oi =

a∗i−ai
‖a∗i−ai‖

. We discuss in the appendix the link
between the OCS and the mean direction of the
offsets.

4.2 Pairing consistency

To measure the pairing consistency, we compare
the direction of the offsets for a given set of word
pairs against comparable shuffled offsets from the
same BATS relation. Shuffled offsets are generated
by holding the start words constant but permuting
the end words (avoiding true pairs). We expect true
offsets to be more parallel than shuffled offsets.

We sample sets of shuffled offsets for each re-
lation. For each set, as for the true offsets, we



Figure 5: Distribution of the cosine similarities between vector offsets for word2vec embeddings, grouped by broad
relation type. The Offset Concentration Score is the mean offset similarity for all pairs within a single relation (e.g.,
country–capital).

compute all pairwise similarities between offsets.
Rather than averaging similarities as in the OCS,
we calculate the separation between distributions—
the true offset similarities versus each set of shuf-
fled offset similarities. We empirically construct
the receiver operating characteristic curve for lin-
early separating true versus shuffled similarities
(i.e., setting a criterion on the similarity dimen-
sion above which offsets are true offsets and below
which offsets are shuffled offsets). We calculate
the area under the curve (AUC). The AUC will be
1 for perfectly separable distributions, 0.5 for in-
distinguishable distributions, and below 0.5 when
true offsets are systematically less parallel than the
baseline. We average AUC over all shuffled sets.

For any set of offsets O , we refer to the set of its
offset similarities as sim(O) = {oi ·oj , ∀(oi, oj) ∈
O2, i < j}. For Ss a list of Ns sets of shuffled
offsets O′ (here Ns = 50), we define the following
pairing consistency score, where O are the true
offsets:

PCS =
1

Ns

∑
O′∈Ss

AUC
(
sim(O), sim(O′)

)
(7)

5 Exploration of word2vec

We perform a series of experiments to assess the
presence of linguistic regularities in the pre-trained
word2vec embeddings used above, and to show the
behavior of our new measures.

5.1 Random baselines
In addition to the real BATS test, we apply our
measures to artificial analogy sets, which we con-
struct to show no pairing consistency. We seek to
justify the use of pairing consistency, rather than di-
rectly using offset concentration, by demonstrating

that offset concentrations can remain non-zero even
for arbitrarily associated pairs. For each BATS re-
lation, we construct ten of each of the following
types of permuted relations. We calculate the mean
OCS and the mean PCS over the ten instances. We
expect the mean PCS to be 0.5 in each case.

First, we construct sets of word pairs derived
from the BATS by permutation within-category:
for each category, the end words are randomly re-
assigned to start words. In other words, we con-
struct categories for which shuffling should have
no effect (they are already shuffled). Comparing
the OCS to that of the real BATS also allows us to
measure the effect of shuffling on the OCS.

If permuted word pairs can show positive off-
set concentration simply because the start words
and/or the end words are found in a coherent region
of the embedding space, then positive OCS should
be found in word pairs drawn from mismatched
categories. For each pair of start/end word cate-
gories among the BATS relations (for example, the
noun–plural reg relation maps the start category
singular nouns to the end category regular plural
nouns), we randomly re-assign the end category
(yielding, for example, singular nouns–past tense
verbs). We then randomly construct fifty start/end
pairs. We compare mismatched categories from
within versus across broad BATS category types
(inflectional morphology, derivational morphology,
encyclopedic semantics, lexicographic semantics).

Finally, to assess the impact of the geometric
coherence of words within categories on the OCS,
we construct pairs without respect for category:
we compare word pairs with random start words,
random end words, and random start and end
words, with ten different random word sets.



5.2 Offset concentration

Table 1 shows the OCS and PCS scores on real and
randomized BATS relations using word2vec. The
OCS scores for the real BATS sets are not close to
one (as expected, given the results above).

The fully random set has an OCS of zero, con-
firming that offset concentration is unlikely to oc-
cur by chance, at least for these word vectors. The
other random analogy sets all show non-zero OCS.
Some random sets have even higher OCS scores
than the real BATS sets. Thus, as predicted, offset
concentration can exist even when linguistic rela-
tions are, by construction, not coded in any system-
atic way. Even the random-start and random-end
pairs show non-zero OCS,2 indicating that geo-
metric coherence within one category is sufficient
to give some degree of parallelism to the offsets.
Surprisingly, the OCS is systematically lower for
the permuted within-category baseline than for the
mismatched-category baselines. Mismatched cat-
egories may be further apart than matched cate-
gories, reducing the angles between offsets overall.

These results have important consequences for
how we measure meaningful regularities in vector
embeddings. Not only is the arithmetic analogy
test not fit to detect the presence of similar direc-
tions among related pairs, even if it were, similar
directions alone are not sufficient to deduce that
linguistic regularities are coded. The test can be
dominated by spurious within-pair similarity and
by spurious offset concentration—which can arise
even when matching against random words.

5.3 Pairing consistency

The real BATS sets show PCS above chance, con-
trary to all random analogy sets, which show PCS
of 0.5, as expected.3 The PCS scores are low for the
semantic (encyclopedic, lexicographic) relations.

In Section 3 above, we remarked that within-pair
similarity is not completely irrelevant to analogies,
as a higher within-pair similarity amplifies the com-
ponent along the common direction. Here, the re-
lations which show greater within-pair similarity
(Figure 1) also show higher PCS.

2We observe a systematic difference between the random
start and random end results, which seems to indicate a bias
in the BATS analogy sets, with the end words being more
susceptible to forming clusters.

3As noted, these scores are the mean over ten replications
of the random sets. Even where the mean is not precisely 0.5,
it is always within one half-interquartile-range of 0.5.

6 Comparing word embeddings

We evaluate the pairing consistency on the BATS
test for popular word embeddings. We include
Glove (Pennington et al., 2014), a purely distri-
butional model similar to word2vec; two embed-
dings making use of external semantic knowledge:
dict2vec (Tissier et al., 2017) and ConceptNet Num-
berbatch (Speer et al., 2017); and the static token
embeddings of BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019).

The left subfigure in Figure 6 presents the stan-
dard 3COSADD analogy test accuracy (input words
excluded). Within broad relation types, we see
similar results across embeddings, with a few ex-
ceptions (the static GPT-2 embeddings are poor
throughout, but much better than the others on
derivational morphology). Consistent with previ-
ous results using the arithmetic analogy test, deriva-
tional morphology and encyclopedic and lexical
semantic relations obtain lower scores than inflec-
tional morphology (Gladkova et al., 2016; Rogers
et al., 2017).

The PCS scores are presented at right in Figure 6.
The general picture is similar: there are systematic
differences between relation types, and inflectional
morphology tends to be well coded. However, con-
trary to the conclusions of the standard analogy test,
the PCS reveals that Numberbatch codes linguistic
relations better than the other embeddings, which
is more consistent with the evaluations presented
in Speer et al. (2017). The PCS also shows that
derivational morphology occupies an intermediate
position between inflectional morphology and se-
mantics: word2vec, Glove, and Numberbatch in
fact code derivational morphology better, in the
PCS sense, than encyclopedic semantic relations.
The elevated analogy test performance of some
embeddings on encyclopedic relations is likely an
artefact of the kind of category-level geometric co-
herence discussed in Section 5. As we show in the
appendix in Table 2 , encyclopedic relations show
higher OCS overall than derivational morphology
relations, in spite of lower PCS.

7 Contributions

We have made new arguments against the use of
the standard arithmetic analogy test in the evalua-
tion of word embeddings. We show in detail how
regularities in vector offsets, which are the object
of primary interest for the analogy test, are, on the
one hand, washed out by within-pair similarity, and,



Inflectional Derivational Encyclopedic Lexicographic
Analogy set OCS PCS OCS PCS OCS PCS OCS PCS
Real BATS .295 .851 .156 .679 .198 .559 .031 .539
Permuted within-category .111 .500 .088 .500 .170 .500 .015 .500
Mismatched category (within type) .147 .501 .120 .500 .260 .501 .093 .500
Mismatched category (across type) .175 .500 .173 .500 .223 .500 .134 .500
Random start .090 .500 .075 .500 .204 .499 .069 .500
Random end .063 .500 .060 .500 .137 .501 .059 .499
Random start and end .000 .500

Table 1: Offset Concentration Scores and Pairing Consistency Scores for the real and random baseline analogy
sets (higher is better; 0.5 is chance level for PCS). Random baseline scores are averaged across ten permutations.
All scores are then averaged across BATS relations. Mismatched categories (across broad BATS relation type) are
grouped along the start type. Random start and end is not assigned to a BATS type, as all the words are drawn
randomly. Bold indicates the highest OCS score in a given column: we see that OCS is not always highest for real
analogies. Random baseline PCS scores are always within a half-IQR of 0.5.

Figure 6: Left: accuracy on the standard arithmetic analogy test, across embeddings, averaged across BATS re-
lations (within the four broad types). Right: the same figure for the Pairing Consistency Score, starting at .5
(chance-level).

on the other, insufficient to establish the existence
of linguistic regularities. We explain the previously
observed phenomenon that arithmetic analogy tests
consistently predict the input words.

We propose a new measure of the presence of
linguistic relations in word embeddings, the pair-
ing consistency score, which measures the degree
to which offsets between related pairs are parallel
above chance, and the offset concentration score, a
complementary measure of the absolute degree of
parallelism. We show that a variety of word vectors
really do capture linguistic regularities, in spite of
distortions introduced by the arithmetic analogy
test. We show that these distortions lead to spu-
rious conclusions when comparing performance.
Arithmetic analogy tests and loss functions based
on them are deprecated and should be replaced by
direct evaluation of pairing consistency.
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A The offsets’ mean direction

For an offsets set, the OCS measures how concen-
trated the hypercone of the offsets is. The center of
this hypercone is the average normalized offset d,
the unit vector defined by

d ∝
∑
i

a∗i − ai
‖a∗i − ai‖

(8)

This vector has different interesting properties.
First, we can note that it is the unit vector maximis-
ing the sum of the similarities of the offsets with it.
With the normalized offsets oi=

a∗i−ai
‖a∗i−ai‖

,

d = arg max
u,‖u‖=1

∑
i

oi · u (9)

Furthermore, let’s define MSM, the mean simi-
larity of d to the offsets. We can first prove that the
MSM is equal to the norm of d before normaliza-
tion:

MSM =
1

N

∑
j

sim(
1
N

∑
i oi

‖ 1
N

∑
i oi‖

, oj)

=
1

N
·
∑

i oi
∑

j oj

‖
∑

i oi‖
=
∥∥∥ 1

N
·
∑
i

oi

∥∥∥
(10)

Indeed, the average offset will have a norm close
to 1 if the offsets are higly similar, but close to 0
if they are anisotropic. We can now go further and
link the MSM to the OCS.

1

N2

∥∥∥∑
i

oi

∥∥∥2 =
1

N2
(
∑
i

o2i +
∑
i

∑
j 6=i

oi · oj)

=
1

N
+

N(N − 1)

N2
· OCS

MSM =

√
1

N
+

(N − 1)

N
· OCS

(11)

This result shows that the MSM is a strict
(parabolic) improvement to the OCS, with a com-
putable baseline decreasing with N . For BATS,
N = 50 (if all words are in the vocabulary), and
thus the minimal MSM is

√
1/50≈0.14 even for

anisotropic offsets (with an OCS = 0). This score
shows that offset concentration can be quickly am-
plified in unrealistic ways. Still, we can consider
d as a close representation of the offsets’ relation.
We display in Figure 7 the distribution of the simi-
larities of the offsets to d.

B Additional figures



Figure 7: Distribution of the cosine similarity of vector offsets to the mean direction for the default word2vec
embeddings for each category, then grouped by broad type. The mean similarity improves the similarity even for
anisotropic offsets, as discussed. Variance changes seem category dependent.

Inflectional Derivational Encyclopedic Lexicographic
Embedding Analogy Metrics Analogy Metrics Analogy Metrics Analogy Metrics

N H OCS PCS N H OCS PCS N H OCS PCS N H OCS PCS
word2vec .686 .099 .295 .851 .158 .005 .156 .679 .198 .203 .198 .559 .063 .006 .031 .539
Glove .645 .224 .345 .860 .167 .022 .237 .710 .281 .122 .255 .623 .080 .008 .004 .550
dict2vec .503 .001 .099 .700 .127 .000 .079 .630 .162 .050 .213 .628 .030 .006 .024 .534
Numberbatch .360 .226 .357 .924 .060 .029 .224 .805 .056 .066 .251 .674 .004 .006 .034 .552
BERT tokens .568 .018 .217 .821 .288 .229 .178 .632 .041 .073 .151 .569 .002 .015 .016 .517
GPT-2 tokens .119 .019 .097 .651 .359 .248 .270 .732 .014 .050 .071 .513 .003 .011 .011 .508

Table 2: Comparison of analogy test scores and our OCS and PCS metrics for different word embeddings, grouped
by broad type. N designates the Normal analogy test scores, and H the Honest analogy test scores where the
input words are allowed to be predicted. OCS and PCS designate the Offsets Concentration Scores and Pairwise
Consistency Scores. Bold means highest score for this type.

Figure 8: Decomposition of the analogy score if oa =ob (the score being therefore equal to 1). The similar values
of b · (b + oa) and oa · oa indicates that the length of oa and b is similar, and thus that the offset length does not
explain the low value of oa ·ob in the real decomposition.


