
HAL Id: hal-03099913
https://hal.inria.fr/hal-03099913

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trying Again Instead of Trying Longer: Prior Learning
for Automatic Curriculum Learning

Rémy Portelas, Katja Hofmann, Pierre-Yves Oudeyer

To cite this version:
Rémy Portelas, Katja Hofmann, Pierre-Yves Oudeyer. Trying Again Instead of Trying Longer: Prior
Learning for Automatic Curriculum Learning. ICLR 2020 BeTR-RL (Beyond “Tabula Rasa” in Re-
inforcement Learning) workshop, Apr 2020, Addis Abeba / Virtual, Ethiopia. �hal-03099913�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/370419844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03099913
https://hal.archives-ouvertes.fr

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

TRYING AGAIN INSTEAD OF TRYING LONGER: PRIOR
LEARNING FOR AUTOMATIC CURRICULUM LEARNING

Rémy Portelas
INRIA (FR)
remy.portelas@inria.fr

Katja Hofmann
Microsoft Research (UK)

Pierre-Yves Oudeyer
INRIA (FR)

ABSTRACT

A major challenge in the Deep RL (DRL) community is to train agents able to
generalize over unseen situations, which is often approached by training them
on a diversity of tasks (or environments). A powerful method to foster diver-
sity is to procedurally generate tasks by sampling their parameters from a multi-
dimensional distribution, enabling in particular to propose a different task for each
training episode. In practice, to get the high diversity of training tasks necessary
for generalization, one has to use complex procedural generation systems. With
such generators, it is hard to get prior knowledge on the subset of tasks that are
actually learnable at all (many generated tasks may be unlearnable), what is their
relative difficulty and what is the most efficient task distribution ordering for train-
ing. A typical solution in such cases is to rely on some form of Automated Cur-
riculum Learning (ACL) to adapt the sampling distribution. One limit of current
approaches is their need to explore the task space to detect progress niches over
time, which leads to a loss of time. Additionally, we hypothesize that the induced
noise in the training data may impair the performances of brittle DRL learners. We
address this problem by proposing a two stage ACL approach where 1) a teacher
algorithm first learns to train a DRL agent with a high-exploration curriculum, and
then 2) distills learned priors from the first run to generate an ”expert curriculum”
to re-train the same agent from scratch. Besides demonstrating 50% improve-
ments on average over the current state of the art, the objective of this work is
to give a first example of a new research direction oriented towards refining ACL
techniques over multiple learners, which we call Classroom Teaching.

1 INTRODUCTION

Automatic CL. The idea of organizing the learning sequence of a machine is an old concept
that stems from multiple works in reinforcement learning (Selfridge et al., 1985; Schmidhuber,
1991), developmental robotics (Oudeyer et al., 2007) and supervised learning (Elman, 1993; Bengio
et al., 2009), from which the Deep RL community borrowed the term Curriculum Learning (CL).
Automatic CL refers to approaches able to autonomously adapt their task sampling distribution to
their evolving learner with minimal expert knowledge. Several ACL approaches have recently been
proposed (Florensa et al., 2018; Racanire et al., 2019; OpenAI et al., 2019; Portelas et al., 2019;
Colas et al., 2019; Pong et al., 2019; Jabri et al., 2019; Laversanne-Finot et al., 2018).

ACL and exploration. One of the limits of ACL is that when applied to a large parameterized
task space with few learnable subspaces, as when considering a rich procedural generation system,
they loose a lot of time finding the ”optimal parameters” at a given point in time (e.g. the niches of
progress in Learning Progress-based approaches) through task exploration. We also hypothesize that
these additional tasks presented to the DRL learner have a cluttering effect on the gathered training
data, which adds noise in its already brittle gradient-based optimization and leads to sub-optimal
performances.

Proposed approach. Given this hypothesized drawback of task exploration, we propose to study
whether ACL techniques could be improved by having a two stage approach consisting in 1) a
preliminary run with ACL from which prior knowledge on the task space is extracted, and 2) a

1

ar
X

iv
:2

00
4.

03
16

8v
1

 [
cs

.L
G

]
 7

 A
pr

 2
02

0

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

second independent run leveraging this prior knowledge to propose a better curriculum to the DRL
agent. For its simplicity and versatility, we choose to develop such an approach with ALP-GMM
(Portelas et al., 2019), a recent ACL algorithm for continuous task spaces.

Related work. Within DRL, Policy Distillation (Czarnecki et al., 2019) consists in leveraging
a previously trained policy, the ”teacher”, and use it to perform behavior cloning by training a
”student” policy to jointly maximize its reward on one or several tasks while minimizing the distance
between its action distribution compared to the teacher’s. This allows to speed up the learning of
bigger architectures and/or to leverage task-experts to train a single learner on a set of tasks. From
this point of view, this work can be seen as a complementary approach interested in how to perform
Curriculum Distillation when considering a continuous space of tasks.

Similar ideas where developed for supervised learning by Hacohen & Weinshall (2019). In their
work, authors propose an approach to infer a curriculum from past training for an image classifica-
tion task: they use a first network trained without curriculum and use its predictive confidence for
each image as a difficulty measure that a subsequently trained network uses for curriculum genera-
tion. The idea that a knowledge distillation procedure can be beneficial even when the teacher and
student policies have identical architectures has also been studied in supervised learning (Furlanello
et al., 2018; Yim et al., 2017). In this work, we propose to extend these concepts to DRL scenarios.

2 METHODS

ALP-GMM
task exploration: high

1) Train policy on tasks
selected by ALP-GMM AGAIN

ALP-GMM
task exploration: low

IN +C

Send episodic
 rewards

Propose tasks

Deep RL
Learner

First run

Deep RL
Learner

Second run

3) Re-train policy from scratch using tasks
selected by combined IN and ALP-GMM

2) Get list C of high-LP
task distributions over
time

0 5 10 15 20Million steps
0

5

10

15

20

25

%
 M

as
te

re
d

en
v

ALP-GMM
IN-R

AGAIN-R
Oracle

Figure 1: Left: Schematic pipeline of Alp-Gmm And Inferred progress Niches (AGAIN), our proposed ap-
proach, which first leverages a preliminary run with a high-exploration ALP-GMM curriculum generator to
infer an expert curriculum combined with a low-exploration ALP-GMM in a second run with the initial Deep
RL learner, re-trained from scratch. Right: Given identical training time, our combined approach outperforms
regular ALP-GMM and even matches Oracle curriculum in a complex parametric BipedalWalker environment.

ALP-GMM ALP-GMM (Portelas et al., 2019) is a Learning Progress (LP) based ACL technique
for continuous task spaces that does not assume prior knowledge on the task space. It is inspired
by previous works in developmental robotics (Baranes & Oudeyer, 2009; Moulin-Frier et al., 2014).
ALP-GMM frames the task sampling problem into an EXP-4 non-stationary Multi-Armed bandit
setup (Auer et al., 2002) in which arms are Gaussians spanning over the space of tasks’ parameters
whose utility is defined with a local LP measure. The essence of ALP-GMM is to periodically fit
a Gaussian Mixture Model (GMM) on recently sampled tasks’ parameters concatenated with their
respective LP. Then, the Gaussian from which to sample a new task is chosen proportionally to its
mean LP dimension. Task exploration happens initially through a bootstrapping period of random
task sampling and during training by occasional random task sampling with probability ρrnd.

Inferred progress Niches (IN) Using ALP-GMM is convenient for our target experiments as
deriving an expert curriculum from an initial run is straightforward: one simply needs to gather the
sequence of GMMs Craw that were periodically fitted along training:

Craw = {p(1), ..., p(T)} | p(t) =
Kt∑
i=1

LPktN (µti,Σti), (1)

with T the total number of GMMs in the list, Kt their respective number of components and LPkt
the Learning Progress of each Gaussian. By keeping only Gaussians with LPkt above a predefined

2

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

threshold δLP , we can get a curated list C. We name the resulting ACL approach Infered progress
Niches (IN) and propose 3 variants to select which GMM from C is used to sample tasks over time
during the second run:

• Pool-based (IN-P) A rather crude approach is to disregard the ordering of C and consider
the entire trajectory of GMMs as one single pool P of Gaussians, ie. one big mixture
having Kp =

∑T
t=1Kt components.

• Time-based (IN-T) In this version C is stepped in periodically at the same rate than the
preliminary ALP-GMM run (ie. a new GMM every 250 episodes in our experiments).

• Reward-based (IN-R) Another option is to iterate over C only once the mean episodic
reward over tasks recently sampled from the current GMM matches or surpasses the mean
episodic reward recorded during the initial run (on the same GMM).

Regardless the selection process, given a GMM, a new task is selected by sampling a tasks’ param-
eter on a Gaussian selected proportionally to its LPkt value.

Mixing both in AGAIN. Simply using one of the 3 proposed IN algorithms directly for the sec-
ond run lacks adaptive mechanisms towards the characteristics of the second agent, whose initial
parameters and data training stream are different from the first, which could lead to failure cases
where the expert curriculum and the second learner are no longer ”in phase”. Additionally, if the
initial run failed to discover progress niches, IN is bound to fail. As such we propose to combine IN
with an ALP-GMM teacher (with low task-exploration) in the second run. The resulting Alp-Gmm
And Inferred progress Niches approach, AGAIN for short, samples tasks from a GMM that is com-
posed of the current mixture of both ALP-GMM and IN. See figure 1 for a schematic pipeline and
appendix B for details.

3 EXPERIMENTS AND RESULTS

Evaluation procedure. We propose to test our considered variants and baselines on a parametric
version of BipedalWalker proposed by Portelas et al. (2019), which generates walking tracks paved
with stumps whose height and spacing are defined by a 2-D parameter vector used for the procedural
generation of tasks. This continuous task space has boundaries set in such a way that a substantial
part of the space consists in unfeasible tracks for the default walker. As in their work, we also test
our approaches with a modified short-legged walker, which constitutes an even more challenging
scenario (as the task space is unchanged). All ACL variants are tested when paired with a Soft-
Actor Critic (Haarnoja et al., 2018) policy. Performance is measured by tracking the percentage of
mastered tasks from a fixed test set. See appendix C for details.

Is re-training from scratch beneficial? The end performances of all tested conditions are sum-
marized in table 1. Interestingly, for all tested variants, retraining the DRL agent from scratch in the
second run gave superior end performances than fine-tuning using the weights of the first run in all
tested variants. This showcase the brittleness of gradient-based training and the difficulty of transfer
learning. Despite this, even fine-tuned variants reached superior end-performances than classical
ALP-GMM, meaning that the change in curriculum strategy in itself is already beneficial.

Is it useful to re-use ALP-GMM in the second run? In the default walker experiments, AGAIN-
R, T and P conditions mixing ALP-GMM and IN in the second run reached lower mean perfor-
mances than their respective IN variants. However, the exact opposite is observed for IN-R and
IN-T variants in the short walker experiments. This can be explained by the difficulty of short
walker experiments for ACL approaches, leading to 16/30 preliminary 10M steps long ALP-GMM
runs to have a mean end-performance of 0, compared to 0/30 in the default walker experiments. All
these run failures led to many GMMs lists C used in IN to be of very low-quality, which illustrates
the advantage of AGAIN that is able to emancipate from IN using ALP-GMM.

Highest-performing variants. Consistently with the precedent analysis, mixing ALP-GMM with
IN in the second run is not essential in default walker experiments, as the best performing ACL
approach is IN-P. This most likely suggests that the improved adaptability of the curriculum when

3

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

using AGAIN is outbalanced by the added noise (due to the low task-exploration). However in
the more complex short walker experiments, mixing ALP-GMM with IN is essential, especially for
AGAIN-R, which substantially outperforms ALP-GMM and other AGAIN and IN variants, reaching
a mean end performance of 19.0. The difference in end-performance between AGAIN-R and Oracle,
our hand-made expert using privileged information who obtained 20.1, is not statistically significant
(p = 0.6).

Condition Short walker Default walker

AGAIN-R 19.0± 12.0∗ 41.6± 6.3∗

AGAIN-R(fine-tune) 11.4± 12.9 39.9± 4.6
IN-R 13.4± 14.4 43.5± 9.6∗

IN-R(fine-tune) 11.2± 12.3 40.8± 5.6
AGAIN-T 15.1± 11.9 40.6± 11.5
AGAIN-T(fine-tune) 11.4± 11.8 40.6± 3.8∗

IN-T 13.5± 13.3 43.5± 6.1∗

IN-T(fine-tune) 10.7± 12.3 40.3± 7.6
AGAIN-P 13.6± 12.5 41.9± 5.1∗

AGAIN-P(fine-tune) 11.1± 12.0 41.5± 3.9∗

IN-P 14.5± 12.6 44.3± 3.5∗

IN-P(fine-tune) 12.2± 12.5 41.1± 3.8∗

ALP-GMM 10.2± 11.5 38.6± 3.5
Oracle 20.1± 3.4∗ 27.2± 15.2−

Random 2.5± 5.9− 20.9± 11.0−

Table 1: Experiments on Stump Tracks
with short and default bipedal walkers.
The average performance with standard de-
viation after 10 Millions steps (IN and
AGAIN variants) or 20 Million steps (oth-
ers) is reported (30 seeds per condition).
For IN and AGAIN we also test variants
that do not retrain the weights of the pol-
icy used in the second run from scratch but
rather fine-tune them from the preliminary
run.∗/− Indicates whether performance dif-
ference with ALP-GMM is statistically sig-
nificant ie. p < 0.05 in a post-training
Welch’s student t-test (∗ for performance ad-
vantage w.r.t ALP-GMM and − for perfor-
mance disadvantage).

4 CONCLUSION AND DISCUSSION

In this work we presented Alp-Gmm And Inferred progress Niches, a simple yet effective approach
to learn prior knowledge over a space of tasks to design a curriculum tailored to a DRL agent.
Instead of following the same exploratory ACL approach over the entire training, AGAIN performs
a first preliminary run with ALP-GMM, derives a list of progress niches from it, and uses this list
to build an expert curriculum that is combined with a low task-exploration ALP-GMM teacher for a
second run of the same DRL agent, trained from scratch.

Beyond tabula rasa? In this work we showed that a non-tabula rasa curriculum generator that
leveraged prior knowledge over the task space (from a preliminary run) outperformed the regular
approach that learned to generate an entire curriculum from scratch. However, we also demonstrated
that, from the point of view of the DRL learner, it is actually better to restart tabula rasa (with a non-
tabula rasa curriculum generator), which is a very interesting perspective and opens several lines for
future work.

Classroom Teaching Beyond proposing a two-stage ACL technique for a single DRL agent, the
experimental setup of this work could be seen as a particular case of a broader problem we pro-
pose to name Classroom Teaching (CT). CT defines a family of problems in which a meta-ACL
algorithm is tasked to either sequentially or simultaneously generate multiple curricula tailored for
each of the learning students, all having potentially varying abilities. CT differs from the prob-
lems studied in population-based developmental robotics (Forestier et al., 2017) and evolutionary
algorithms (Wang et al., 2019) as in CT the number and characteristics of learners are predefined,
and the objective is to foster maximal learning progress over all learners rather than iteratively con-
structing high-performing policies. Studying CT scenarios brings DRL closer to human education
research problems and might stimulate the design of methods that alleviate the expensive use of ex-
pert knowledge in current state of the art assisted education (Clément et al., 2015; Koedinger et al.,
2013).

4

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Adrien Baranes and Pierre-Yves Oudeyer. R-IAC: robust intrinsically motivated exploration and
active learning. IEEE Trans. Autonomous Mental Development, 1(3):155–169, 2009. doi: 10.
1109/TAMD.2009.2037513.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,
Montreal, Quebec, Canada, June 14-18, 2009, pp. 41–48, 2009. doi: 10.1145/1553374.1553380.

Hamparsum Bozdogan. Model selection and akaike’s information criterion (aic): The general theory
and its analytical extensions. Psychometrika, 52(3):345–370, Sep 1987. ISSN 1860-0980. doi:
10.1007/BF02294361.

Benjamin Clément, Didier Roy, Pierre-Yves Oudeyer, and Manuel Lopes. Multi-Armed Bandits
for Intelligent Tutoring Systems. Journal of Educational Data Mining (JEDM), 7(2):20–48, June
2015.

Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed Chetouani. Cu-
rious: Intrinsically motivated modular multi-goal reinforcement learning. In International Con-
ference on Machine Learning, pp. 1331–1340, 2019.

Wojciech Marian Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant M. Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. CoRR, abs/1902.02186, 2019.

Jeffrey L. Elman. Learning and development in neural networks: the importance of starting small.
Cognition, 48(1):71 – 99, 1993. ISSN 0010-0277. doi: 10.1016/0010-0277(93)90058-4.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1514–1523,
2018.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal explo-
ration processes with automatic curriculum learning. CoRR, abs/1708.02190, 2017.

Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti, and Anima Anand-
kumar. Born-again neural networks. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp.
1602–1611, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2535–2544, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
supervised curricula for visual meta-reinforcement learning. In Advances in Neural Information
Processing Systems 32, pp. 10519–10530. Curran Associates, Inc., 2019.

Kenneth R. Koedinger, Emma Brunskill, Ryan Shaun Joazeiro de Baker, Elizabeth A. McLaughlin,
and John C. Stamper. New potentials for data-driven intelligent tutoring system development and
optimization. AI Magazine, 34(3):27–41, 2013.

Adrien Laversanne-Finot, Alexandre Pere, and Pierre-Yves Oudeyer. Curiosity driven exploration
of learned disentangled goal spaces. In Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pp. 487–504. PMLR, 29–31 Oct 2018.

5

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

Clément Moulin-Frier, Sao Mai Nguyen, and Pierre-Yves Oudeyer. Self-organization of early vocal
development in infants and machines: The role of intrinsic motivation. Frontiers in Psychology
(Cognitive Science), 4(1006), 2014. ISSN 1664-1078. doi: 10.3389/fpsyg.2013.01006.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jadwiga Tworek, Peter Welinder, Lilian Weng, Qi-Ming Yuan, Wojciech Zaremba,
and Lefei Zhang. Solving rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. CoRR, abs/1903.03698, 2019.

Rmy Portelas, Cdric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for cur-
riculum learning of deep rl in continuously parameterized environments, 2019.

Sbastien Racanire, Andrew Lampinen, Adam Santoro, David Reichert, Vlad Firoiu, and Tim-
othy Lillicrap. Automated curricula through setter-solver interactions. arXiv preprint
arXiv:1909.12892, 2019.

Jrgen Schmidhuber. Curious model-building control systems. In In Proc. International Joint Con-
ference on Neural Networks, Singapore, pp. 1458–1463. IEEE, 1991.

Oliver G. Selfridge, Richard S. Sutton, and Andrew G. Barto. Training and tracking in robotics. In
Proceedings of the 9th International Joint Conference on Artificial Intelligence. Los Angeles, CA,
USA, August 1985, pp. 670–672, 1985.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer (POET):
endlessly generating increasingly complex and diverse learning environments and their solutions.
CoRR, abs/1901.01753, 2019.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7130–7138, 2017.

6

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

A ALP-GMM

ALP-GMM relies on an empirical per-task computation of Absolute Learning Progress (ALP), al-
lowing to fit a GMM on a concatenated space composed of tasks’ parameters and respective ALP.
Given a task τnew ∈ T whose parameter is pnew ∈ P and on which the policy collected the episodic
reward rnew ∈ R, Its ALP is computed using the closest previous tasks τold (Euclidean distance)
with associated episodic reward rold:

alpnew = |rnew − rold| (2)

All previously encountered task’s parameters and their associated ALP, parameter-ALP for short,
recorded in a history database H, are used for this computation. Contrastingly, the fitting of the
GMM is performed every N episodes on a window W containing the N most recent parameter-
ALP. The resulting mean ALP dimension of each Gaussian of the GMM is used for proportional
sampling. To adapt the number of components of the GMM online, a batch of GMMs having from
2 to kmax components is fitted onW , and the best one, according to Akaike’s Information Criterion
(Bozdogan, 1987), is kept as the new GMM. In our experiments we use the same hyperparameters as
in Portelas et al. (2019) (N = 250, kmax = 10), except for the percentage of random task sampling
ρrnd which we set to 10% (we found it to perform better than 20%) when running ALP-GMM alone
or 2% when combined with IN in the second phase of AGAIN. See algorithm 1 for pseudo-code and
figure 2 for a schematic pipeline. Note that in this paper we refer to ALP as LP for simplicity (ie.
LPkt in C from eq. 1 is equivalent to the mean ALP of Gaussians in ALP-GMM).

Algorithm 1 Absolute Learning Progress Gaussian Mixture Model (ALP-GMM)

Require: Student policy πθ, parametric procedural environment generator E, bounded parameter
space P , probability of random sampling ρrnd, fitting rate N , max number of Gaussians kmax

1: Initialize πθ
2: Initialize parameter-ALP First-in-First-Out windowW , set max size to N
3: Initialize parameter-reward history databaseH
4: loop N times . Bootstrap phase
5: Sample random p ∈ P , send E(τ ∼ T (p)) to πθ, observe episodic reward rp
6: Compute ALP of p based on rp andH (see equation 2)
7: Store (p, rp) pair inH, store (p,ALPp) pair inW
8: loop . Stop after K inner loops
9: Fit a set of GMM having 2 to kmax kernels onW

10: Select the GMM with best Akaike Information Criterion
11: loop N times
12: ρrnd% of the time, sample a random parameter p ∈ P
13: Else, sample p from a Gaussian chosen proportionally to its mean ALP value
14: Send E(τ ∼ T (p)) to student πθ and observe episodic reward rp
15: Compute ALP of p based on rp andH
16: Store (p, rp) pair inH, store (p,ALPp) pair inW
17: Return πθ

7

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

Figure 2: Schematic view of an ALP-GMM teacher’s workflow from Portelas et al. (2019)

8

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

B AGAIN

IN variants. In order to filter the list Craw (see eq. 1) of GMMs collected after a preliminary
run of ALP-GMM into C and use it as an expert curriculum, we remove any Gaussian with a LPkt
below δLP = 0.1 (the LP dimension is normalized between 0 and 1, which requires to choose an
approximate potential reward range, set to [−150, 350] for all experiments). When all Gaussians of a
GMM are discarded, the GMM is removed from C. In practice, it allows to remove non-informative
GMMs corresponding to the initial exploration phase of ALP-GMM, when the learner has not made
any progress (hence no LP detected by the curriculum generator). C is then iterated over to generate
a curricula with either of the Time-based (see algo 2), Pool-based (see algo 3) or Reward-based (see
algo 4) IN. The IN-P approach does not require additional hyperparameters. The IN-T requires an
update rate N to iterate over C, which we set to 250 (same as the fitting rate of ALP-GMM). The
IN-R approach requires to extract additional data from the first run, in the form of a listRraw:

Rraw = {µ1
r, ..., µ

t
r, µ

T
r } s.t |Rraw| = |Craw|, (3)

with T the total number of GMMs in the first run (same as in Craw), and µtr the mean episodic
reward obtained by the first DRL agent during the last 50 tasks sampled from the tth GMM. R is
simply obtained by removing any µtr that corresponds to a GMM discarded while extracting C from
Craw. The remaining rewards are then used as thresholds in IN-R to decide when to switch to the
next GMM in C.

AGAIN In AGAIN (see algo. 5), the idea is to use both IN (R,T or P) and ALP-GMM (without
the random bootstrapping period) for curriculum generation. We combine the changing GMM of
IN and ALP-GMM over time, simply by building a GMM G containing Gaussians from the current
GMM of IN and ALP-GMM. By selecting the Gaussian inG from which to sample a new task using
their respective LP, This approach allows to adaptively modulate the task sampling between both,
shifting the sampling towards IN when ALP-GMM does not detect high-LP subspaces and towards
ALP-GMM when the current GMM of IN has low-LP Gaussians. Additionally, to have minimal
task-exploration, which benefits ALP-GMM (allowing it to detect new progress niches), we sample
random tasks with probability ρlow = 2% (compared with ρhigh = 10% used for the preliminary
ALP-GMM run).

Algorithm 2 Inferred progress Niches - Time-based (IN-T)

Require: Student policy πθ, task-encoding parameter space P , LP threshold δLP , update rate N ,
experimental budget K, random sampling ratio ρhigh, parametric procedural environment gen-
erator E

1: Init πθ, train it for K/2 env. steps with ALP-GMM(ρhigh,P) and collect Craw . First run
2: Get C from Craw by removing any Gaussian with LPkt < δLP .
3: Re-initialize πθ . Second run
4: Initialize expert curriculum index ic to 0
5: loop . Stop after K/2 environment steps
6: Set ic to min(ic + 1, len(C))
7: Set current GMM GIN to ithc GMM in C
8: loop N times
9: Sample p from a Gaussian in GIN chosen proportionally to its LPkt

10: Send E(τ ∼ T (p)) to student πθ
11: Return πθ

9

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

Algorithm 3 Inferred progress Niches - Pool-based (IN-P)

Require: Student policy πθ, task-encoding parameter space P , LP threshold δLP , experimental
budget K, random sampling ratio ρhigh, parametric procedural environment generator E

1: Init πθ, train it for K/2 env. steps with ALP-GMM(ρhigh,P) and collect Craw . First run
2: Get C from Craw by removing any Gaussian with LPkt < δLP .
3: Re-initialize πθ . Second run
4: Initialize pool GMM GIN , containing all Gaussians from C
5: loop . Stop after K/2 environment steps
6: Sample p from a Gaussian in GIN chosen proportionally to its LPkt
7: Send E(τ ∼ T (p)) to student πθ
8: Return πθ

Algorithm 4 Inferred progress Niches - Reward-based (IN-R)

Require: Student policy πθ, task-encoding parameter space P , LP threshold δLP , memory size
N , experimental budget K, random sampling ratio ρhigh, parametric procedural environment
generator E

1: Init πθ, train it for K/2 env. steps with ALP-GMM(ρhigh,P) and collect Craw . First run
2: Get C from Craw by removing any Gaussian with LPkt < δLP .
3: Additionally, collect list of inferred reward thresholdsRraw, and getR . See eq. 3
4: Re-initialize πθ . Second run
5: Initialize reward First-in-First-Out windowW , set max size to N
6: Initialize expert curriculum index ic to 0
7: loop . Stop after K/2 environment steps
8: IfW is full, compute mean reward µw fromW
9: If µw superior to ithc reward threshold inR, set ic to min(ic + 1, len(C))

10: Set current GMM GIN to ithc GMM in C
11: Sample p from a Gaussian in GIN chosen proportionally to its LPkt
12: Send E(τ ∼ T (p)) to student πθ and add episodic reward rp toW
13: Return πθ

Algorithm 5 Alp-Gmm And Inferred progress Niches (AGAIN)

Require: Student policy πθ, task-encoding parameter space P , random sampling ratio ρlow and
ρhigh , LP threshold δLP , experimental budgetK, parametric procedural environment generator
E

1: Init πθ, train it for K/2 env. steps with ALP-GMM(ρhigh,P) and collect Craw . First run
2: Get C from Craw by removing any Gaussian with LPkt < δLP
3: re-initialize πθ . Second run
4: Setup new ALP-GMM(ρ = 0,P) . See algo. 1
5: Setup either IN-T, IN-P or IN-R . See algo. 2, 3 and 4
6: loop . Stop after K/2 environment steps
7: Get composite GMM G from the current GMM of both ALP-GMM and IN
8: ρlow% of the time, sample a random parameter p ∈ P
9: Else, sample p from a Gaussian chosen proportionally to its LP

10: Send E(τ ∼ T (p)) to student πθ and observe episodic reward rp
11: Send (p, rp) pair to both ALP-GMM and IN
12: Return πθ

10

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

C EXPERIMENTAL DETAILS

Soft Actor-Critic In our experiments, we use an implementation of Soft Actor-Critic provided by
OpenAI1. We use a 2 layered (400,300) network for V, Q1, Q2 and the policy. Gradient steps are
performed each 10 environment steps, with a learning rate of 0.001 and a batch size of 1000. The
entropy coefficient is set to 0.005.

Parametric BipedalWalker Our proposed ACL variants choose parameters of tasks that encode
the procedural generation of walking tracks paved with stumps in the BipedalWalker environments.
As in Portelas et al. (2019), we bound the height dimension to [0, 3] and the spacing dimension to
[0, 6] (regardless the walker morphology). The agent is rewarded for keeping its head straight and
going forward and is penalized for torque usage. The episode is terminated after 1) reaching the end
of the track, 2) reaching a maximal number of 2000 steps, or 3) head collision (for which the agent
receives a strong penalty). See figure 3 for visualizations.

Baselines The Random curriculum baseline samples tasks’ parameters randomly over the param-
eter space. The Oracle condition is a hand-made curriculum that is very similar to IN-R, except that
the list C is built using expert knowledge, and all reward thresholds µir in R are set to 230, which
is an episodic reward value often used in the literature as characterizing a default walker having
a ”reasonably efficient” walking gate (Wang et al., 2019). Basically, Oracle starts proposing tasks
from a Gaussian (with std of 0.05) located at the simplest subspace of the task space (ie. low stump
height and high stump spacing) and then gradually moves the Gaussian towards the hardest sub-
spaces (high stump height and low stump spacing) by small increments (50 steps overall) happening
whenever the mean episodic reward of the DRL agent over the last 50 proposed tasks is superior
to 230. In our experiments, consistently with (Portelas et al., 2019), which implements a similar
approach, Oracle is prone to forgetting due to the strong shift in task subspace (which is why it is
not the best performing condition for default walker experiments (see table 1).

Computational resources. To perform our experiments, we ran each condition for either 10 (IN
and AGAIN variants) or 20 (others) Millions environment steps (30 repeats) using one cpu and
one GPU (the GPU is shared between 8 runs), for approximately 30 hours of wall-clock time. It
amounts to 16200 CPU-hours and 2025 GPU-hours. The preliminary ALP-GMM runs used in IN
and AGAIN variants correspond to the first 10 Million steps of the ALP-GMM condition (whose
end-performance after 20 Million steps is reported in table 1.

Figure 3: Parameterized BipedalWalker environment. Left: Examples of generated tracks. Right: The two
walker morphologies tested on the environment. One parameter tuple (µh, δs) actually encodes a distribution
of tasks as the height of each stump along the track is drawn from N (µh, 0.1).

1https://github.com/openai/spinningup

11

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

D ADDITIONAL VISUALIZATIONS

ALP-GMM AGAIN-P AGAIN-P(fine-tune) IN-P IN-P(fine-tune) Random Oracle0

20

40

60
%

 M
as

te
re

d
en

v

(a) with Pool-based IN

ALP-GMM AGAIN-T AGAIN-T(fine-tune) IN-T IN-T(fine-tune) Random Oracle0

20

40

60

%
 M

as
te

re
d

en
v

(b) with Time-based IN

ALP-GMM AGAIN-R AGAIN-R(fine-tune) IN-R IN-R(fine-tune) Random Oracle0

20

40

60

%
 M

as
te

re
d

en
v

(c) with Reward-based IN

Figure 4: Box plots of the final performance of each condition with default bipedal walker after 20M
environment steps. Gold lines are medians, surrounded by a box showing the first and third quartile, which
are then followed by whiskers extending to the last datapoint or 1.5 times the inter-quartile range. Beyond
the whiskers are outlier datapoints. From top to bottom, each box plot presents results when using either
Pool-based, Reward-based, or Time-based IN, respectively.

12

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

ALP-GMM AGAIN-P AGAIN-P(fine-tune) IN-P IN-P(fine-tune) Random Oracle0

10

20

30
%

 M
as

te
re

d
en

v

(a) with Pool-based IN

ALP-GMM AGAIN-T AGAIN-T(fine-tune) IN-T IN-T(fine-tune) Random Oracle0

10

20

30

%
 M

as
te

re
d

en
v

(b) with Time-based IN

ALP-GMM AGAIN-R AGAIN-R(fine-tune) IN-R IN-R(fine-tune) Random Oracle0

10

20

30

%
 M

as
te

re
d

en
v

(c) with Reward-based IN

Figure 5: Box plots of the final performance of each condition with short bipedal walker after 20M
environment steps. Gold lines are medians, surrounded by a box showing the first and third quartile, which
are then followed by whiskers extending to the last datapoint or 1.5 times the inter-quartile range. Beyond
the whiskers are outlier datapoints. From top to bottom, each box plot presents results when using either
Pool-based, Reward-based, or Time-based IN, respectively.

13

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

0 5 10 15 20
Million steps

0

20

40

60

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-P
AGAIN-P(fine-tune)
IN-P

IN-P(fine-tune)
Random
Oracle

(a) Pool-based IN

0 5 10 15 20
Million steps

0

20

40

60

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-T
AGAIN-T(fine-tune)
IN-T

IN-T(fine-tune)
Random
Oracle

(b) Time-based IN

0 5 10 15 20
Million steps

0

20

40

60

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-R
AGAIN-R(fine-tune)
IN-R

IN-R(fine-tune)
Random
Oracle

(c) Reward-based IN

Figure 6: Evolution of performance across 20M environment steps of each condition with default bipedal
walker. Each point in each curve corresponds to the mean performance (30 seeds), defined as the percentage
of mastered tracks (ie. r > 230) on a fixed test set. Shaded areas represent the standard error of the mean.

0 5 10 15 20
Million steps

0

10

20

30

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-P
AGAIN-P(fine-tune)
IN-P

IN-P(fine-tune)
Random
Oracle

(a) Pool-based IN

0 5 10 15 20
Million steps

0

10

20

30

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-T
AGAIN-T(fine-tune)
IN-T

IN-T(fine-tune)
Random
Oracle

(b) Time-based IN

0 5 10 15 20
Million steps

0

10

20

30

%
 M

as
te

re
d

en
v

ALP-GMM
AGAIN-R
AGAIN-R(fine-tune)
IN-R

IN-R(fine-tune)
Random
Oracle

(c) Reward-based IN

Figure 7: Evolution of performance across 20M environment steps of each condition with short bipedal
walker. Each point in each curve corresponds to the mean performance (30 seeds), defined as the percentage
of mastered tracks (ie. r > 230) on a fixed test set. Shaded areas represent the standard error of the mean.

14

	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Conclusion and Discussion
	A ALP-GMM
	B AGAIN
	C Experimental details
	D Additional Visualizations

