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Abstract

Learning from data owned by several parties, as in federated learning, raises chal-
lenges regarding the privacy guarantees provided to participants and the correctness
of the computation in the presence of malicious parties. We tackle these challenges
in the context of distributed averaging, an essential building block of distributed and
federated learning. Our first contribution is a novel distributed differentially private
protocol which naturally scales with the number of parties. The key idea underlying
our protocol is to exchange correlated Gaussian noise along the edges of a network
graph, complemented by independent noise added by each party. We analyze the
differential privacy guarantees of our protocol and the impact of the graph topology,
showing that we can match the accuracy of the trusted curator model even when
each party communicates with only a logarithmic number of other parties chosen at
random. This is in contrast with protocols in the local model of privacy (with lower
accuracy) or based on secure aggregation (where all pairs of users need to exchange
messages). Our second contribution is to enable users to prove the correctness of
their computations without compromising the efficiency and privacy guarantees
of the protocol. Our construction relies on standard cryptographic primitives like
commitment schemes and zero knowledge proofs.

1 Introduction

Individuals are producing ever growing amounts of personal data, which in turn fuel innovative
services based on machine learning (ML). The classic centralized paradigm consists in collecting,
storing and analyzing this data on a (supposedly trusted) central server or in the cloud. which poses
well documented privacy risks for the users. With the increase of public awareness and regulations,
we are witnessing a shift towards a more decentralized paradigm where personal data remains on
each user’s device, see the recent trend of federated learning [50]. In this setting, users do not trust the
central server (if any), or each other, which introduces new issues regarding privacy and security. First,
the information shared by the participants during the decentralized training protocol can reveal a lot
about their private data (see [59, 61] for inference attacks on federated learning). Formal guarantees
such as differential privacy (DP) [31] are needed to provably mitigate this and convince privacy-aware
users to participate in the protocol. Second, malicious users may send incorrect results to bias the
learned model in arbitrary ways [45, 10, 3]. Robustness to such adversaries is crucial to persuade
service providers to move to a more decentralized and privacy-friendly setting.

In this work, we tackle these challenges in the context of private distributed averaging. In this
canonical problem, the objective is to privately compute an estimate of the average of values owned
by many users who do not want to disclose them. Beyond simple data analytics, distributed averaging
is of high relevance to modern ML. Indeed, it is the essential primitive used to aggregate user
updates in gradient-based distributed and federated learning algorithms [56, 65, 58, 48, 2]. It also
allows to train ML models whose sufficient statistics are averages (e.g., linear models and decision

Preprint. Under review.

ar
X

iv
:2

00
6.

07
21

8v
1 

 [
cs

.C
R

] 
 1

2 
Ju

n 
20

20



trees). Distributed averaging with differential privacy guarantees has thus attracted a lot of interest in
recent years. In the strong model of local differential privacy (LDP) [53, 30, 51, 52, 49], each user
randomizes its input locally before sending it to an untrusted aggregator. Unfortunately, the best
possible error for the estimated average with n users is a factor ofO(

√
n) larger than in the centralized

model of DP where a trusted curator aggregates data in the clear and perturbs the output [22]. To fill
this gap, some work has explored relaxations of LDP that make it possible to match the accuracy of
the trusted curator model. This is achieved through the use of cryptographic primitives such as secret
sharing [32], secure aggregation [23, 64, 14, 48] and secure shuffling [34, 25, 6]. Many of these
primitives however assume that all users truthfully follow the protocol (they are honest-but-curious),
and they are generally intractable when the number of parties is large.

Our contribution is twofold. First, we propose a novel differentially private averaging protocol which
can match the accuracy of the trusted curator setting while naturally scaling to a large number of users.
Our approach, called GOPA (GOssip Noise for Private Averaging) by analogy with gossip protocols
[16], is simple and decentralized. The main idea is to have users exchange correlated Gaussian
noise along the edges of a network (represented as a connected graph) so as to mask their private
values without affecting the global average. This (ultimately canceling) noise is complemented by
the addition of independent (non-canceling) Gaussian noise by each user. We analyze the privacy
of GOPA by modeling the knowledge of the adversary (colluding malicious users) as a system of
linear equations and show that the privacy guarantees depend on the branching factor of a spanning
tree of the subgraph of honest-but-curious users. Remarkably, we establish that we can recover the
privacy-utility trade-off of the trusted curator setting as long as the graph of honest-but-curious users
is connected and the pairwise-correlated noise variance is large enough. We further show that if the
graph is well-connected, this variance can be significantly reduced. Finally, to ensure scalability and
robustness in practice, we propose an efficient randomized procedure to construct a graph in which
each user needs to communicate with only a logarithmic number of other users while still matching
the privacy-utility trade-off of the trusted curator model. We prove these guarantees by leveraging
and adapting results from random graph theory on embedding spanning trees in random graphs.

Our second contribution is a procedure to make GOPA verifiable by untrusted external parties, i.e., to
provide users with the means of proving the correctness of their computations without compromising
the efficiency or the privacy guarantees of the protocol. Our construction relies on commitment
schemes and zero knowledge proofs (ZKPs), which are very popular in auditable electronic payment
systems as well as cryptocurrencies. These cryptographic primitives, originally formalized in [43],
scale well both in network communication and computational requirements and are perfectly suitable
in our untrusted decentralized setting. We use classic and state-of-the-art ZKPs to design a procedure
for the generation of noise with verifiable distribution, and ultimately to prove the integrity of the
final computation (or detect malicious users who did not follow the protocol). Crucially, the privacy
guarantees of the protocol are not compromised by this procedure (not even relaxed through a
cryptographic hardness assumption), while the integrity of the computation relies on a standard
discrete logarithm assumption. In the end, our protocol offers correctness guarantees that are
essentially equivalent to the case where a service provider would itself hold the private data of users.

The paper is organized as follows. Section 2 introduces the problem setting as well as the adversary
and privacy models. Section 3 presents the GOPA protocol, and we analyze its differential privacy
guarantees in Section 4. We present our procedure to ensure correctness against malicious behavior in
Section 5, and summarize computational and communication costs in Section 6. Finally, we discuss
the related work in more details in Section 7, and conclude with future lines of research in Section 8.

2 Notations and Setting

We consider a set U = {1, . . . , n} of n ≥ 3 users (parties). Each user u ∈ U holds a private valueXu,
which can be thought of as being computed from the private dataset of user u. We assume thatXu lies
in a bounded interval of R (without loss of generality, we assume Xu ∈ [0, 1]). The extension to the
vector case is straightforward. We denote by X the column vector X = [X1, . . . , Xn]> ∈ [0, 1]n of
private values. Unless otherwise noted, all vectors are column vectors. The users communicate over
a network represented by a connected undirected graph G = (U,E), where {u, v} ∈ E indicates
that users u and v are neighbors in G and can exchange messages. For a given user u, we denote by
N(u) = {v : {u, v} ∈ E} the set of its neighbors.
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The users aim to collaboratively compute the average value Xavg = 1
n

∑n
u=1Xu without revealing

their individual private value. Such a protocol can be readily used to privately execute distributed ML
algorithms that interact with data through averages over values computed locally by the participants,
but do not actually need to see the individual values. We give two concrete examples below.
Example 1 (Linear regression). Let λ ≥ 0 be a public parameter. Each user u holds a private feature
vector φu = [φ1

u, . . . , φ
d
u] ∈ Rd and a private label yu ∈ R. The goal is to solve a ridge regression

task, i.e. find θ∗ ∈ arg minθ
1
n

∑
u∈U (φ>u θ − yu)2 + λ‖θ‖2. The solution θ∗ can be computed in

closed form from the quantities 1
n

∑
u∈U φ

i
uyu and 1

n

∑
u∈U φ

i
uφ

j
u for all i, j ∈ {1, . . . , d}.

Example 2 (Federated ML). In federated learning [50] and more generally distributed empirical
risk minimization, each user u holds a private dataset Du and the goal is to find θ∗ such that θ∗ ∈
arg minθ

1
n

∑
u∈U f(θ;Du) where f is some loss function. Popular algorithms [56, 65, 58, 48, 2] all

follow the same high-level procedure: at round t, each user u computes a local update θtu based on
Du and the current global model θt−1, and the updated global model is computed as θt = 1

n

∑
u θ

t
u.

Threat model. We consider two commonly adopted adversary models, which were formalized by
[42] and are used in the design of many secure protocols. An honest-but-curious (honest for short)
user will follow the protocol specification, but may use all the information obtained during the
execution to infer information about other users. In contrast, a malicious user may deviate from the
protocol execution by sending incorrect values at any point (we assume that they follow the required
communication policy; if not, this can be easily detected). Malicious users can collude, and thus will
be seen as a single malicious party (the adversary) who has access to all information collected by
malicious users (privacy with respect to a single honest user can be obtained as a special case). Our
privacy guarantees will hold under the assumption that honest users communicate through secure
channels, while the correctness of our protocol will be guaranteed under some form of the Discrete
Logarithm Assumption (DLA), a standard assumption in cryptography (see Appendix B for details).

Each user in the network is either honest or malicious. Honest users do not know whether other nodes
are malicious. We denote by UH ⊆ U the set of honest users, by nH = |UH | the number of honest
users and by ρ = nH/n their proportion in the network. We also denote by GH = (UH , EH) the
subgraph of G induced by the set of honest users UH , i.e., EH = {{u, v} ∈ E : u, v ∈ UH}. The
properties of G and GH will play a key role in the efficiency and privacy guarantees of our protocol.

Privacy model. Our goal is to design a protocol which satisfies differential privacy [31], which has
become a gold standard notion in privacy-preserving information release.
Definition 1 (Differential privacy). Let ε > 0, δ ≥ 0. A (randomized) protocol A is (ε, δ)-
differentially private if for all neighboring datasets X,X ′, i.e., datasets differing only in a single
data point, and for all sets of possible outputs O, we have:

Pr(A(X) ∈ O) ≤ eεPr(A(X ′) ∈ O) + δ. (1)

3 GOPA: Gossip Noise for Private Averaging

In this section we describe our protocol, called GOPA (GOssip noise for Private Averaging). The
high-level idea of GOPA is to have each user u mask its private value by adding two different types of
noise. The first is a sum of pairwise-correlated noise terms ∆u,v over the set of neighbors v ∈ N(u)
such that each ∆u,v cancels out with the ∆v,u of user v in the final result. The second type of noise
is an independent term ηu which does not cancel out in the final result. At the end of the protocol,
each user has generated a noisy version X̂u of his private value Xu, which takes the following form:

X̂u = Xu +
∑
v∈N(u) ∆u,v + ηu. (2)

Algorithm 1 presents the detailed steps. Neighboring nodes {u, v} ∈ E contact each other to draw a
real number from the Gaussian distribution N (0, σ2

∆), that u adds to its private value and v subtracts.
Each user thereby distributes noise masking his private value across several users, which will provide
some robustness to malicious parties. The idea is reminiscent of one-time pads in secure aggregation
(see [14], Section 3) but we use Gaussian noise rather than padding and restrict exchanges to the edges
of the graph instead of considering all pairs. As in gossip algorithms [16], the pairwise exchanges can
be performed asynchronously and in parallel. Additionally, every user u ∈ U adds an independent
noise term ηu ∼ N (0, σ2

η) to its private value. This noise will ensure that the final estimate of the
average satisfies differential privacy (see Section 4). σ2

∆ and σ2
η are public parameters of the protocol.

3



Algorithm 1 GOPA protocol
Input: graph G = (U,E), private values (Xu)u∈U , variances σ2

∆, σ
2
η ∈ R+

1: for all neighbor pairs (u, v) ∈ E s.t. u < v do
2: u and v draw a random x ∼ N (0, σ2

∆) and set ∆u,v ← x, ∆v,u ← −x
3: for all users u ∈ U do
4: u draws a random ηu ∼ N (0, σ2

η) and reveals noisy value X̂u ← Xu +
∑
v∈N(u) ∆u,v + ηu

Utility of GOPA. The protocol generates a set of noisy values X̂ = [X̂1, . . . , X̂n]> which are then
publicly released. They can be sent to an untrusted aggregator, or averaged in a decentralized
way via gossiping [16]. In any case, the estimated average is given by X̂avg = 1

n

∑
u∈U X̂u =

Xavg + 1
n

∑
u∈U ηu, which has expected value Xavg and variance σ2

η/n. Ideally, we would like the
total amount of independent noise to be of the same order as that needed to protect the average with
the standard Gaussian mechanism in the trusted curator model of DP [33], that is ηu = O(1/n).

Impact of σ2
∆. As we shall see in Section 4, the role of the pairwise noise terms is to compensate the

independent noise that would be needed to protect individual values in the local model of differential
privacy (where each user would release a locally perturbed input without communicating with other
users). While the variance σ2

∆ must be sufficiently large to serve this purpose, it should be kept to a
reasonable value. Indeed, a larger σ2

∆ induces a small (logarithmic) increase in communication costs
as the representation space of the real values needs to be large enough to avoid overflows with high
probability (we discuss these aspects in more details in further sections).

An important advantage of using centered Gaussian noise with bounded variance is to limit the impact
of some users dropping out during the protocol. In particular, any residual noise term ∆u,v (i.e.,
which does not cancel out due to either u or v dropping out) has expected value 0 and can be bounded
with high probability. The smaller σ2

∆, the smaller the impact on the accuracy of the final output in
the event of drop outs. If the accuracy is deemed insufficient, it is however possible to “roll back”
some of the faulty noise exchanges to regain precision at the expense of extra communication.

4 Privacy Guarantees of GOPA

In this section, we show that GOPA achieves (ε, δ)-DP as long as GH (the subgraph of honest users)
is connected and σ2

η, σ
2
∆ are large enough. More specifically, we will prove that (i) the variance σ2

η of
the independent (non-canceling) noise can be as small as in the trusted curator setting, and (ii) the
required variance σ2

∆ for the pairwise (canceling) noise depends on the topology of GH .

4.1 Privacy Guarantees for Worst and Best Case Graphs

The knowledge acquired by the adversary (colluding malicious users) during the execution of the
protocol consists of the following: (i) the noisy values X̂ of all users, (ii) the full network graph G,
(iii) the private value Xu and the noise ηu of the malicious users, and (iv) all ∆u,v’s for which u
or v is malicious. The only unknowns are the private value Xu and independent noise ηu of each
honest user u ∈ UH , as well as the ∆u,v’s exchanged between honest users {u, v} ∈ EH . From
the knowledge above, the adversary can subtract the sum of noise exchanges

∑
v∈N(u)\NH(u) ∆u,v

from X̂u to obtain X̂H
u = Xu +

∑
u∈NH(u) ∆u,v + ηu for every honest u ∈ UH . The view of the

adversary can be summarized by the vector X̂H = (X̂H
u )u∈UH and correlation between its elements.

Our goal is to prove a differential privacy guarantee for GOPA. Adapting Definition 1 to our setting,
for any input X and any possible outcome X̂ ∈ Rn, we need to compare the probability of the
outcome being equal to X̂ when a honest user v1 ∈ UH participates in the computation with private
value XA

v1
to the probability of obtaining the same outcome when the value of v1 is exchanged with

an arbitrary value XB
v1
∈ [0, 1]. For notational simplicity, we denote by XA the vector of private

values (Xu)u∈UH of honest users in which a user v1 has value XA
v1

, and by XB the vector where v1

has value XB
v1

. XA and XB differ in only in the v1-th coordinate, and their maximum difference is 1.

Our first result gives a differential privacy guarantee for the worst-case topology.
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Theorem 1 (Privacy guarantee for the worst-case graph). Let XA and XB be two databases (i.e.,
graphs with private values at the vertices) which differ only in the value of one user. Let ε, δ ∈ (0, 1)
and θ = 1

σ2
ηnH

+ nH
3σ2

∆
. If GH is connected and the following two inequalities hold:

ε ≥ θ/2 + θ1/2, (3)

(ε− θ/2)2 ≥ 2 log(2/δ
√

2π)θ, (4)

then GOPA is (ε, δ)-differentially private, i.e., P (X̂ | XA) ≤ eεP (X̂ | XB) + δ.

Crucially, Theorem 1 holds as soon as the subgraph GH of honest users is connected.1 In order to
get a constant ε, inspecting the term θ shows that the variance σ2

η must be of order 1/nH regardless
of the topology of GH . This is in fact optimal as it corresponds to the amount of noise required
when averaging nH values in the trusted curator setting. It also matches the amount of noise required
when using secure aggregation with differential privacy in the presence of colluding users, where
honest users need to add n/nH more noise to compensate for collusion [64]. In order to match the
privacy-utility trade-off of the trusted curator setting, further inspection of the equations in Theorem 1
shows that the variance σ2

∆ of the pairwise noise must be large enough. How large it must be depends
in fact on the structure of the graph GH . Theorem 1 describes the worst case, which is attained
when every node has as few neighbors as possible while still being connected, i.e., when GH is a
path. In this case, Theorem 1 shows that the variance σ2

∆ needs to be of order nH . Recall that this
noise cancels out, so it does not impact the utility of the final output but only has a minor effect the
communication cost and the robustness to drop out, as discussed in Section 3.

Intuitively, in graphs with higher connectivity, it should however be possible for σ2
∆ to be smaller

than O(nH). Before considering more practical topologies, we illustrate this on the complete graph
case, which provides a best-case scenario in terms of connectivity. Theorem 2 shows that for a fully
connected GH , σ2

∆ can be of order 1/nH , which is a quadratic reduction compared to the path case.

Theorem 2 (Privacy guarantee for the complete graph). Let ε, δ ∈ (0, 1) and let GH be the complete
graph. If ε, δ, ση and σ∆ satisfy the inequalities (3) and (4) in Theorem 1 with θ = 1

σ2
ηnH

+ 1
σ2

∆nH

then GOPA is (ε, δ)-differentially private.

4.2 Privacy Guarantees for Practical Random Graphs

Our results so far gives two options that are not fully satisfactory from the practical perspective
when the number of users n is large. One option is to come up with a graph G such that GH is
connected with high probability and use a large σ2

∆ of O(nH) as specified by the worst-case of
Theorem 1. Alternatively, we can work with the complete graph, which allows smaller O(1/nH)
variance (Theorem 2) but is intractable as all n2 pairs of users need to exchange noise.

Instead, we propose a simple randomized procedure to construct a sparse network graph G such that
GH will be well-connected with high probability, and prove a DP guarantee for the whole process
(random graph generation followed by GOPA) under much less noise than the worst-case. The idea is
to make each (honest) user select k other users uniformly at random among all users. Then, the edge
{u, v} ∈ E is created if u selected v or v selected u (or both). This is known as a random k-out graph
[13] or random k-orientable graph [36]. Such graphs are known for their very good connectivity
properties [36, 67] and are used for instance in creating secure communication channels in distributed
sensor networks [21]. We note that GOPA can be conveniently executed while constructing the
random k-out graph. We have the following privacy guarantees.
Theorem 3 (Privacy guarantee for random k-out graphs). Let ε, δ ∈ (0, 1) and let G be obtained
by letting all (honest) users randomly choose k ≤ n neighbors. Let k and ρ = nH/n be such that
ρn ≥ 81, ρk ≥ 4 log(2ρn/3δ), ρk ≥ 6 log(ρn/3) and ρk ≥ 3

2 + 9
4 log(2e/δ). If ε, δ, ση and σ∆

satisfy the inequalities (3) and (4) in Theorem 1 with

θ = n−1
H σ−2

η +
( 1

b(k − 1)ρ/3c − 1
+ (12 + 6 log(nH))/nH

)
σ−2

∆ ,

then GOPA is (ε, 3δ)-differentially private.

1Note that if GH is not connected, we obtain a similar but weaker result for each connected component
separately (nH is replaced by the size of the connected component).
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Complete Random k-out Worst-case
ρ = 1 ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1 ρ = 0.5

1.7 2.1 Theorem 3: 44.7 (k = 105) 34.4 (k = 203) 9655.0 6114.8Simulation: 34.7 (k = 20) 28.4 (k = 40)
Table 1: Value of σ∆ to ensure (ε, δ)-DP with trusted curator utility for n = 10000, ε = 0.1,
δ′ = 1/n2

H , δ = 10δ′ depending on the topology, as obtained from Corollary 1.

This result has a similar form as Theorems 1-2 but requires k to be large enough (of order log(ρn)/ρ)
so that GH is sufficiently connected. Importantly, it is sufficient to have σ2

∆ of order 1/kρ to ensure
that we match the utility of the trusted curator model. Furthermore, each user needs to exchange with
only 2k = O(log n) other users in expectation, which is much more practical than a complete graph.

Scaling the noise in practice. Using the above results, we can precisely quantify the amount of
independent and pairwise noise needed to achieve a desired privacy guarantee depending on the
topology, as illustrated by the following corollary.
Corollary 1. Let ε, δ′ ∈ (0, 1), and σ2

η = c2/nHε
2, where c2 > 2 log(1.25/δ′). Given some κ > 0,

let σ2
∆ = κσ2

η if G is complete, σ2
∆ = κσ2

ηnH( 1
b(k−1)ρ/3c−1 + (12 + 6 log(nH))/nH) if it is a

random k-out graph, and σ2
∆ = κσ2

ηn
2
H/3 for an arbitrary connected GH . Then, GOPA is (ε, δ)-DP

with δ ≥ a(δ′/1.25)κ/κ+1, where a = 3.75 for the random k-out graph and 1.25 otherwise.

In Corollary 1, σ2
η is set such that after all noisy values are aggregated, the variance of the residual

noise matches the one required by the standard Gaussian Mechanism [33] to achieve (ε, δ′)-DP for
an average of nH values in the centralized setting. The privacy-utility trade-off achieved by GOPA
is thus the same as in the trusted curator model up to a small constant in δ, as long as the pairwise
variance σ2

∆ is large enough. As expected, we see that as σ2
∆ → +∞ (that is, as κ→ +∞), we have

δ → δ′. Given the desired δ ≥ δ′, we can use Corollary 1 to determine a value for σ2
∆ that is sufficient

for GOPA to achieve (ε, δ)-DP. Table 1 shows a numerical illustration with δ only a factor 10 larger
than the δ′ of the trusted curator setting. For random k-out graphs, we report the values of σ∆ and k
given by Theorem 3, as well as smaller (yet admissible) values obtained by numerical simulation
(see Appendix A.5). We see that although the conditions of Theorem 3 are a bit conservative (we are
confident that constants in our analysis can be improved), they still lead to practical values. Clearly,
random k-out graphs provide a useful trade-off in terms of scalability and robustness.

Proof techniques. At the technical level, our analysis decomposes into a generic (ε, δ)-differential
privacy result, where we model the knowledge of the adversary as a system of linear equations, and a
topology-specific part. In the latter part, the generic result is instantiated by identifying a spanning
tree in GH with appropriate branching factor. While the optimal spanning tree is easy to construct for
the worst-case and complete graphs, the case of random graphs is more involved and requires specific
tools. We prove our result by leveraging and adapting results on embedding spanning trees in random
graphs [55]. The full derivations and more detailed explanations can be found in Appendix A.

5 Ensuring Correctness Against Malicious Users

While the privacy guarantees of Section 4 hold no matter what the malicious users do, the utility
guarantees of GOPA discussed in Section 3 are not valid if malicious users tamper with the protocol.
In this section, we add to our protocol the capability of being audited to ensure the correctness of
the computations while preserving privacy guarantees. While it is impossible to force a user to
give the “right” input to the algorithm, this also holds in the centralized setting. Our goal is thus
to guarantee that given the input vector X , GOPA will either generate a truthfully computed output
X̂avg or identify malicious behavior. Concretely, users will be able to prove the following properties:

X̂u = Xu + ∆u + ηu, ∀u ∈ U, (5)
∆u,v = −∆v,u, ∀{u, v} ∈ E, (6)

ηu ∼ N (0, σ2
η), ∀u ∈ U, (7)

Xu ∈ [0, 1], ∀u ∈ U. (8)

We also explain how to verify consistency over multiple runs of GOPA on the same/related data.
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Tools for verifying computations. Our approach consists in publishing an encrypted log of the
computation using cryptographic commitments and proving that it is performed correctly without
revealing any additional information using zero knowledge proofs. Commitments and ZKPs are
popular in a number of applications such as privacy-friendly auditable financial systems [68, 38].

Commitments, first introduced in [12], allow users to commit to chosen values while keeping them
hidden from others. After the commitment is performed, the committer cannot change its value,
but can later reveal it or prove properties of it. For our protocol we use an optimized version [39]
of the Pedersen commitment scheme [62]. A commitment is obtained by transforming the hidden
statement using a hard-to-invert injective function Com, so that the recipient cannot know the original
statement but can be sure that the committer cannot change the statement and still obtain the same
commitment. Pedersen commitments additionally satisfy the homomorphic property, meaning that
Com(v1 + v2) = Com(v1) + Com(v2) for all values v1, v2. This property facilitates verifying the
correctness of summations without revealing them: in our case, verifying Properties (5) and (6).

To verify other properties than the additive ones, we use another family of cryptographic operations
that are known as Zero Knowledge Proofs (ZKPs). Informally speaking, ZKPs allow a user (prover)
to effectively prove a true statement (completeness), but also allow the other user (verifier) to discover
with high probability if a cheating prover is trying to prove a statement which is not true (soundness),
in such a way that by performing the proof no information other than the proven statement is revealed
(zero knowledge). Here, we use classic [24, 57] and more recent [18] proof techniques as building
blocks. In particular, these building blocks support the verification of Properties (5) and (6), and
constitute the bulk of the verification of (7) and (8).

Roughly speaking, the only assumption needed to ensure the validity of the commitments and
ZKPs on which we rely is the Discrete Logarithm Assumption (DLA). We refer the interested
reader to Appendices B.1– B.3, where we provide a step-by-step, bottom-up presentation of DLA,
commitments, ZKPs, and of our own constructions over these existing building blocks.

Verification protocol. In a setup phase, users agree on a shared Pedersen commitment function Com.
Then, while executing GOPA, users publish commitments of Xu and ηu for all u ∈ U and of ∆u,v for
all {u, v} ∈ E. Due to the homomorphic property of the Pedersen commitments, everyone can then
verify the summation relations, i.e., Properties (5) and (6). In a second phase, ZKPs are performed
to prove the remaining parts of the verification. To limit the number of ZKPs while convincing all
involved users of the correctness of the computations, publicly randomly generated challenges can
be used. We implement the publication of commitments using a public bulletin board so that any
party can verify the validity of the protocol, avoiding the need for a trusted verification entity. Users
sign their messages so they cannot deny them. More general purpose distributed ledger technology
such as in Bitcoin [60] could be used here, but we aim at an application-specific, light-weight and
hence more scalable solution. Since the basic cryptographic operations are integer-based, we use a
fixed precision scheme (see Appendix E for a discussion), which is efficient as our computations are
mostly additive. More details on our verification protocol are provided in Appendix B.4.

It is easy to see that the correctness of the computation is guaranteed if Properties (5)-(8) are satisfied.
Note that, as long as they are self-canceling and not excessively large (avoiding overflows and
additional costs if a user drops out, see Appendix B.4), we do not need to ensure that pairwise noise
terms ∆u,v have been drawn from the prescribed distribution, as these terms do not influence the final
result and only those involving honest users affect the privacy guarantees of Section 4. In contrast,
Properties (7) and (8) are necessary to prevent a malicious user from biasing the outcome of the
computation. Indeed, (7) ensures that the independent noise is generated correctly, while (8) ensures
that input values are in the allowed range. The following result summarizes the security guarantees.

Theorem 4 (Security guarantees of GOPA). Under the DLA, a user u ∈ U that passes the verification
procedure proves that X̂u was computed correctly. Additionally, u does not reveal any additional
information about Xu by running the verification protocol, even if DLA does not hold.

Consistency across multiple runs. Many ML algorithms (see Examples 1 and 2), require computing
several averages involving the same or related private values. Additional security can be obtained by
(a) requiring users to commit once to a value and then use it during the complete run of one or several
algorithms, and (b) using state-of-the-art ZKP techniques [15, 18] to prove arithmetic relations.

We conclude by claiming that, with the above guarantees, we provide a similar control over the
correctness of computations as in the centralized setting. We further discuss this in Appendix B.4.
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6 Computation and Communication Costs

Our cost analysis, detailed in Appendix D, considers user-centered costs, which is natural as most
operations can be performed asynchronously and in parallel. The following summarizes our results.
Theorem 5 (Complexity of GOPA). Let B > 0 be the desired precision of the fixed precision
representation, e.g., the number 1 would be represented as the closest integer to 1/B. Then, in
the private averaging phase, every user u performs O(|N(u)| + log(1/B)) computations and
communications. In the verification phase, the protocol proves that all computations were performed
correctly, where the ηu are drawn from a Gaussian distribution approximated with 1/B equiprobable
bins and proved with precision B, with a cost of O(|N(u)|+ log(1/B) log(log(1/B))) per user.

Unlike other frameworks such as fully homomorphic encryption and secure multiparty computation,
the cost of computing Pedersen commitments and ZKPs is tractable, even in massive amounts, as
seen from production environment benchmarks [39, 18]. The above theorem assumes all users
complete their participation in the protocol. If a user u drops out (gets off-line), we can roll back all
computations where that user was involved (costing a broadcast and O(1) per neighbor), or accept a
potential bias or additional error in the result (corresponding to the ∆u,v random variables).

7 Related Work

Local differential privacy (LDP) [53, 30, 51, 52, 49] require users to locally randomize their input
before they send it to an untrusted aggregator. This very strong model of privacy comes at a significant
cost in terms of the accuracy of the resulting estimates, see [70, 66] for the limits of machine learning
in the local model. For the problem of averaging, the best possible error is of O(1/n) in the trusted
curator model while it is O(1/

√
n) in the local differential privacy model [22]. This makes the local

model useful only in large-scale industrial settings where the number of participants is huge [35, 28].

Our approach belongs to the recent line of work which attempts to relax the LDP model so as to
improve utility without relying on a trusted curator. Several papers have leveraged secret sharing
and/or secure aggregation schemes to recover the utility of the trusted curator model, see [32, 64,
14, 23] for protocols and [48] for a concrete application to distributed machine learning. These
approaches can be made robust to malicious parties, using for instance verifiable secret sharing [32].
However, they require O(n) communication per party, which is not feasible beyond a few hundred or
thousand participants. In contrast, our protocol requires only logarithmic communication. Recently,
the shuffle model of privacy [25, 34, 6, 44, 5, 41], where inputs are passed to a secure shuffler that
obfuscates the source of the messages, has been studied theoretically as an intermediate point between
the local and trusted curator models. For differentially private averaging, the shuffle model allows to
match the utility of the trusted curator setting. However, practical implementations of secure shuffling
are not discussed in these works. Existing solutions typically rely on multiple layers of routing servers
[29] with high communication overhead and non-collusion assumptions. Anonymous communication
is also potentially at odds with the identification of malicious parties. To the best of our knowledge,
all protocols for averaging in the shuffle model assume honest-but-curious parties. Finally, the recent
work by [47] uses correlated Gaussian noise to achieve trusted curator accuracy for averaging. A key
difference with our work is that the noise terms in their protocol are correlated at the global level (i.e.,
sums to zero once averaged over all users), requiring a call to a secure aggregation primitive that does
not scale well, as discussed above. In contrast, our pairwise-canceling noise can be easily generated
in a decentralized fashion. [47] also assume that all parties are honest-but-curious.

In summary, our protocol provides a unique combination of three important features: (a) accuracy of
trusted curator setting, (b) logarithmic communication per user, and (c) robustness to malicious users.

8 Conclusion

We proposed GOPA, a protocol to privately compute averages over the values of many users. GOPA
satisfies differential privacy, can match the utility of the trusted curator setting, and is robust to
malicious parties. It can be readily used in distributed and federated ML [48, 50] as an alternative
to more costly secure aggregation schemes. In future work, we would like to extend the scope of
our approach beyond averaging, e.g. to robust aggregation rules for distributed SGD [11] and to
U -statistics [8]. A promising direction is to combine GOPA with the functional mechanism [69].
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Broader Impact

Our work promotes increased privacy and security in distributed and federated ML. The potential
longer-term benefits of our work in this respect are a wider adoption of privacy-preserving ML
solutions by service providers (thanks to the improved utility and the correctness guarantees), as
well as better confidence of users and the general public in the ability of decentralized ML systems
to avoid catastrophic data leaks. With this in mind, we plan to implement an efficient prototype to
demonstrate the practicality of our approach.

Conversely, there are potential risks of accidental or deliberate misuse of our work in the sense that it
could give a false sense of privacy to users if weak privacy parameters are used in deployment. This
applies to all work on differential privacy. More applied research is needed towards developing a
methodology to choose appropriate privacy parameters in a data-driven manner and to reliably assess
the provided protection in practical use-cases. A good example of such work is a recent study by the
US Census to prepare their adoption of differential privacy [1].

As ML penetrates into many areas of society, manipulations of algorithms by malicious parties
could have (and have already had) serious societal and political consequences in the real world.
A contribution of our work is to guarantee the correctness of the computation to prevent such
manipulations. In contrast to the active and complementary research direction which aims to mitigate
adversarial attacks with more robust algorithms, ensuring correctness by proving that the computation
was done truthfully (without revealing the data) is not much studied in the ML community. This is
likely because it requires technical tools from other fields (in particular cryptography and formal
verification). We think our work, among others [46], could trigger more efforts in this direction.
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SUPPLEMENTARY MATERIAL

Appendix A Proofs of Differential Privacy Guarantees

Recall that each user u has a private value Xu, and generates X̂u by adding pairwise noise terms
∆̄u =

∑
v∈N(u) ∆u,v (with ∆u,v+∆v,u = 0) as well as independent noise ηu. All random variables

∆u,v (with u < v) and ηu are independent.

We have the system of linear equations

X̂ = X + ∆̄ + η,

where ∆̄ = (∆̄u)u∈U and η = (ηu)u∈U . An adversary may be able to determine all Xu, ∆u,v and
ηu for every non-honest user u. Such an adversary can hence fill part of the variables in the system of
linear equations. Let XH = (Xu)u∈UH be the vector of private values restricted to the honest users.
Let ∆̄H

u =
∑
v∈NH(u) ∆u,v and let X̂H

u = X̂u −
∑
v∈N(u)\NH(u) ∆u,v. In this way, the adversary

should now solve a new system of linear equations:

X̂H = XH + ∆̄H + ηH ,

where ∆̄H = (∆̄H
u )u∈UH and ηH = (ηu)u∈UH .

The expectation and covariance matrix of X̂H are respectively given by:

E
[
X̂H

]
= XH and Σ = ΣX̂H = σ2

ηIUH + σ2
∆Λ− σ2

∆A = σ2
ηIUH + σ2

∆L,

where IUH ∈ RnH×nH is the identity matrix, A ∈ RnH×nH is the adjacency matrix of GH (the
communication graph restricted to honest users), Λ is a diagonal matrix with Λu,u =

∑
v∈UH Au,v ,

and L is the graph Laplacian matrix of GH .

Now consider the real vector space Z of dimension nH + |EH | of all possible values of independent
and pairwise noise terms of honest users. For convenience, we will write (ηH ,∆H) ∈ Z to denote
that the independent noise terms take values ηH = (ηu)u∈UH and the pairwise noise terms take
values ∆H = (∆u,v){u,v}∈EH . Let K ∈ RnH×|EH | denote the oriented incidence matrix of the
graph GH such that KK> = L and for any pairwise noise values ∆H ∈ R|EH |, K∆H = ∆̄H . For
the sake of readability, in the following we drop the superscript H for (ηH ,∆H) ∈ Z as it will clear
from the context that we work in the space Z.

Let

Σ(g) =

[
σ2
ηIUH 0

0 σ2
∆IEH

]
.

We then have a joint probability distribution of independent Gaussians:

P ((η,∆)) = C1 exp

(
−1

2
(η,∆)>(Σ(g))−1(η,∆)

)
,

where C1 = (2π)−(nH+|EH |)/2|Σ(g)|−1/2.

Consider the following subspaces of Z:

ZA = {(η,∆) ∈ Z | η +K∆ = X̂H −XA},
ZB = {(η,∆) ∈ Z | η +K∆ = X̂H −XB}.

Assume that the (only) vertex for which XA and XB differ is v1. We can assume without loss of
generality that private values are in the interval [0, 1], hence XA

v1
− XB

v1
= 1. Now choose any

t = (tη, t∆) ∈ Z such that tη +Kt∆ = XA −XB . It follows that ZA = ZB + t, i.e., Y ∈ ZA if
and only if Y + t ∈ ZB .

We split the rest of our derivations into four parts. In Section A.1, we first prove a generic intermediate
result (Lemma 1) which gives differential privacy guarantees for GOPA that depend on the particular
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choice of t. Then, in Section A.2, we study the best and worst-case topologies and show how the
choice of t can be made intelligently depending on the graph structure, leading to Theorem 1 and
Theorem 2. Section A.3.4 presents the derivations for random k-out graphs leading to Theorem 3.
Finally, Section A.4 shows how these results can be instantiated to match the accuracy of the
centralized Gaussian mechanism (Corollary 1).

A.1 Generic Differential Privacy Result

Let t = (tη, t∆) ∈ Z such that tη + Kt∆ = XA − XB as defined above. We start by proving
differential privacy guarantees which depend on the particular choice of t.
Lemma 1. Let ε, δ ∈ (0, 1). Under the setting introduced above, if

ε ≥ (t>Σ(−g)t)1/2 + t>Σ(−g)t/2, (9)

and (
ε− t>Σ(−g)t/2

)2
t>Σ(−g)t

≥ 2 log

(
2

δ
√

2π

)
, (10)

where Σ(−g) =
(
Σ(g)

)−1
, then GOPA is (ε, δ)-differentially private, i.e.,

P (X̂ | XA) ≤ eεP (X̂ | XB) + δ.

Proof. It is sufficient to prove that ∣∣∣∣log
P ((η,∆))

P ((η,∆) + t)

∣∣∣∣ ≤ ε (11)

with probability 1 − δ over (η,∆). Denoting γ = (η,∆) for convenience, we need to prove that
with probability 1− δ it holds that | log(P (γ)/P (γ + t))| ≥ eε. We have∣∣∣ log

P (γ)

P (γ + t)

∣∣∣ =
∣∣∣− 1

2
γ>Σ(−g)γ +

1

2
(γ + t)>Σ(−g)(γ + t)

∣∣∣
=

∣∣∣1
2

(2γ + t)>Σ(−g)t
∣∣∣.

To ensure Equation (11) hold with probability 1− δ, since we are interested in the absolute value, we
will show that

P
(1

2
(2γ + t)>Σ(−g)t ≥ ε

)
≤ δ/2,

which is equivalent to
P (γΣ(−g)t ≥ ε− t>Σ(−g)t/2) ≤ δ/2. (12)

The variance of γΣ(−g)t is

var(γΣ(−g)t) =
∑
v

var
(
ηvσ
−2
η tv

)
+
∑
e

var
(
∆eσ

−2
∆ te

)
=

∑
v

var (ηv)σ
−4
η t2v +

∑
e

var (∆e)σ
−4
∆ t2e

=
∑
v

σ2
ησ
−4
η t2v +

∑
e

σ2
∆σ
−4
∆ t2e

=
∑
v

σ−2
η t2v +

∑
e

σ−2
∆ t2e

= t>Σ(−g)t.

For any centered Gaussian random variable Y with variance σ2
Y , we have that

P (Y ≥ λ) ≤ σY

λ
√

2π
exp

(
−λ2/2σ2

Y

)
. (13)

Let Y = γΣ(−g)t, σ2
Y = t>Σ(−g)t and λ = ε− t>Σ(−g)t/2 so satisfying

σY

λ
√

2π
exp

(
−λ2/2σ2

Y

)
≤ δ/2 (14)
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implies (12). Equation (14) is equivalent to

λ

σY
exp

(
λ2/2σ2

Y

)
≥ 2/δ

√
2π,

and taking logarithms we need

log

(
λ

σY

)
+

1

2

(
λ

σY

)2

≥ log

(
2

δ
√

2π

)
.

To make this inequality hold, we require

log

(
λ

σY

)
≥ 0 (15)

and
1

2

(
λ

σY

)2

≥ log

(
2

δ
√

2π

)
. (16)

Equation (15) is equivalent to
λ ≥ σY .

Substituting λ and σY we get

ε− t>Σ(−g)t/2 ≥ (t>Σ(−g)t)1/2,

which is equivalent to (9). Substituting λ and σY in Equation (16) gives (10).

Essentially, given some ε, Equation (9) provides a lower bound for the noise (the diagonal of Σ(g)) to
be added. Equation (9) also implies that the lefthandside of Equation (10) is larger than 1. Equation
(10) may then require the noise or ε to be even higher if 2 log(2/δ

√
2π) ≥ 1, i.e., δ ≤ 0.48394.

A.2 Worst and Best Case Topologies

Lemma 1 holds for all vectors t = (tη, t∆). There exist multiple vectors t such that tη + Kt∆ =
XA −XB , so we will select the vector t which allows us most easily to prove differential privacy
using the above.

Let us first consider the worst case, which corresponds to Theorem 1.

Proof of Theorem 1. Let T be a spanning tree of the (connected) communication graph GH . Let ET

be the set of edges in T . Let t ∈ RnH+|EH | be a vector such that:

• For vertices u ∈ UH , tu = 1/nH .

• For edges e ∈ EH \ ET , te = 0.

• Finally, for edges e ∈ ET , we choose te in the unique way such that tη +Kt∆ = (XA −
XB).

In this way, tη +Kt∆ is a vector with a 1 on the v1 position and 0 everywhere else. We can find a
unique vector t using this procedure for any communication graph.

It holds that

t>η tη = nH

(
1

nH

)2

=
1

nH
. (17)

In both Equations (9) and (10) of Lemma 1, a higher t>Σ(−g)t is ’worse’ in the sense that a higher
ε or δ is needed. Conversely, for a given ε and δ, t>Σ(−g)t must be sufficiently low to satisfy both

15



inequalities. We can see t>∆σ
−2
∆ t∆ is maximized (thus producing the worst case) if the spanning tree

T is a path (v1 v2 . . . vnH ), in which case t{vi,vi+1} = (nH − i)/nH . Therefore,

t>∆t∆ ≤
nH−1∑
i=1

(
nH − i
nH

)2

=
nH(nH − 1)(2nH − 1)/6

n2
H

=
(nH − 1)(2nH − 1)

6nH
. (18)

We now plug in the specific values of t in our general results of Lemma 1. Consider a given δ, ση and
σ∆. Substituting Equation (17) and ( 18) into Equation (9) yields

ε ≥ 1

2

(
σ−2
η

1

nH
+ σ−2

∆

(nH − 1)(2nH − 1)

6nH

)
+

(
σ−2
η

1

nH
+ σ−2

∆

(nH − 1)(2nH − 1)

6nH

)1/2

,

which is satisfied if

ε ≥ 1

2σ2
ηnH

+
nH
6σ2

∆

+

(
1

σ2
ηnH

+
nH
3σ2

∆

)1/2

. (19)

Substituting Equation (17) and ( 18) into Equation (10) yields(
ε−

(
σ−2
η

1
nH

+ σ−2
∆

(nH−1)(2nH−1)
6nH

)
/2
)2

σ−2
η

1
nH

+ σ−2
∆

(nH−1)(2nH−1)
6nH

≥ 2 log

(
2

δ
√

2π

)
,

which is satisfied if(
ε− 1

2σ2
ηnH

− nH
6σ2

∆

)2

≥ 2 log

(
2

δ
√

2π

)(
1

σ2
ηnH

+
nH
3σ2

∆

)
. (20)

We can observe that in the worst case σ2
∆ should be large (linear in nH ) to keep ε small, which has

no direct negative effect on the accuracy of the resulting X̂ . On the other hand, σ2
η can be small

(of the order 1/nH ), which means that independent of the number of participants or the way they
communicate a small amount of independent noise is sufficient to achieve differential privacy.

However, the necessary value of σ2
∆ depends strongly on the network structure. This becomes clear

in Theorem 2, which covers the case of the complete graph.

Proof of Theorem 2. If the communication graph is fully connected, we can use the following values
for the vector t:

• As earlier, for v ∈ UH , let tv = −1/nH .

• For edges {u, v} with v1 6∈ {u, v}, let t{u,v} = 0.

• For u ∈ UH \ {v1}, let t{u,v1} = 1/nH .

Again, one can verify that tη + Kt∆ = XA − XB is a vector with a 1 on the v1 position and 0
everywhere else. In this way, again t>η tη = 1/nH but now t>∆t∆ = (nH − 1)/n2

H is much smaller.
With this network structure, substituting into Equation (9) yields

ε ≥ 1

2

(
σ−2
η

1

nH
+ σ−2

∆

(nH − 1)

n2
H

)
+

(
σ−2
η

1

nH
+ σ−2

∆

nH − 1

n2
H

)1/2

,

which is satisfied if

ε ≥
σ−2
η + σ−2

∆

2nH
+

(
σ−2
η + σ−2

∆

nH

)1/2

. (21)
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Substituting into Equation (10) yields(
ε−

(
σ−2
η

1
nH

+ σ−2
∆

nH−1
n2
H

)
/2
)2

σ−2
η

1
nH

+ σ−2
∆

nH−1
n2
H

≥ 2 log

(
2

δ
√

2π

)
,

which is satisfied if (
ε−

(
σ−2
η + σ−2

∆

)
/2nH

)2 ≥ 2 log

(
2

δ
√

2π

)
σ−2
η + σ−2

∆

nH
. (22)

A practical communication graph will be between the two extremes of the path and the complete
graph, as shown by the case of random k-out graphs (see Appendix A.3).

A.3 Random k-out Graphs

In this section, we will study the differential privacy properties for the case where all users select
k neighbors randomly, leading to a proof of Theorem 3. We will start by analyzing the properties
of GH (Section A.3.1). Section A.3.2 consists of preparations for embedding a suitable spanning
tree in GH . Next, in Section A.3.3 we will prove a number of lemmas showing that such suitable
spanning tree can be embedded almost surely in GH . Finally, we will apply these results to proving
differential privacy guarantees for GOPA when communicating over such a random k-out graph G in
Section A.3.4, proving Theorem 3.

In this section, all newly introduced notations and definitions are local and will not be used elsewhere.
At the same time, to follow more closely existing conventions in random graph theory, we may reuse
in this section some variable names used elsewhere and give them a different meaning.

A.3.1 The Random Graph GH

Recall that the communication graph GH is generated as follows:

• We start with n = |U | vertices where U is the set of agents.

• All (honest) agents randomly select k neighbors to obtain a k-out graph G.

• We consider the subgraph GH induced by the set UH of honest users. Recall that nH =
|UH | and that a fraction ρ of the users is honest, hence nH = ρn.

Let kH = ρk. The graph GH is a subsample of a k-out-graph, which for larger nH and kH follows
a distribution very close to that of Erdős-Rényi random graphs Gp(nH , 2kH/nH). To simplify
our argument, in the sequel we will assume GH is such random graph as this does not affect the
obtained result. In fact, the random k-out model concentrates the degree of vertices more narrowly
around the expected value then Erdős-Rényi random graphs, so any tail bound our proofs will rely
on that holds for Erdős-Rényi random graphs also holds for the graph GH we are considering.
In particular, for v ∈ UH , the degree of v is a random variable which we will approximate for
sufficiently large nH and kH by a binomial B(nH , 2kH/nH) with expected value 2kH and variance
2kH(1− 2kH/nH) ≈ 2kH .

A.3.2 The Shape of the Spanning Tree

Remember that our general strategy to prove differential privacy results is to find a spanning tree in
GH and then to compute the norm of the vector t∆ that will “spread” the difference between XA

and XB over all vertices (so as to get a ση of the same order as in the trusted curator setting). Here,
we will first define the shape of a rooted tree and then prove that with high probability this tree is
isomorphic to a spanning tree of GH . Of course, we make a crude approximation here, as in the
(unlikely) case that our predefined tree cannot be embedded in GH it is still possible that other trees
could be embedded in GH and would yield similarly good differentially privacy guarantees. While
our bound on the risk that our privacy guarantee does not hold will not be tight, we will focus on
proving our result for reasonably-sized U and k, and on obtaining interesting bounds on the norm of
t∆.
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Let GH = ([nH ], EH) be a random graph where between every pair of vertices there is an edge with
probability 2kH/nH . The average degree of GH is 2kH .

Let kH ≥ 4. Let q ≥ 3 be an integer. Let ∆1, ∆2 . . . ∆q be a sequence of positive integers such that q∑
i=1

i∏
j=1

∆j

− (∆q + 1)

q−2∏
j=1

∆j < nH ≤
q∑
i=1

i∏
j=1

∆j . (23)

Let T = ([nH ], ET ) be a balanced rooted tree with nH vertices, constructed as follows. First, we
define for each level l a variable zl representing the number of vertices at that level, and a variable
Zl representing the total number of vertices in that and previous levels. In particular: at the root
Z−1 = 0, Z0 = z0 = 1 and for l ∈ [q − 2] by induction zl = zl−1∆l and Zl = Zl−1 + zl. Then,
zq−1 = d(nH − Zq−2)/(∆q + 1)e, Zq−1 = Zq−2 + zq−1, zq = nH − Zq−1 and Zq = nH . Next,
we define the set of edges of T :

ET = {{Zl−2 + i, Zl−1 + zl−1j + i} | l ∈ [q] ∧ i ∈ [zl−1] ∧ zl−1j + i ∈ [zl]}.
So the tree consists of three parts: in the first q − 2 levels, every vertex has a fixed, level-dependent
number of children, the last level is organized such that a maximum of parents has ∆q children, and
in level q− 1 parent nodes have in general ∆q−1− 1 or ∆q−1 children. Moreover, for 0 ≤ l ≤ q− 2,
the difference between the number of vertices in the subtrees rooted by two vertices in level l is at
most ∆q + 2. We also define the set of children of a vertex, i.e., for l ∈ [q] and i ∈ [zi−1],

ch(Zl−2 + i) = {Zl−1 + zl−1j + i | zl−1j + i ∈ [zl]}.

In Section A.3.3, we will show conditions on nH , ∆, kH and δ such that for a random graph GH on
nH vertices and a vertex v1 of GH , with high probability (at least 1− δ) GH contains a subgraph
isomorphic to T whose root is at v1.

A.3.3 Random Graphs Almost Surely Embed a Balanced Spanning Tree

The results below are inspired by [55]. We specialize this result to our specific problem, obtaining
proofs which are also valid for graphs smaller than 1010 vertices, even if the bounds get slightly
weaker when we drop terms of order O(log(log(nH))) for the simplicity of our derivation.

Let F be the subgraph of T induced by all its non-leafs, i.e., F = ([dnH/∆e], EF ) with EF =
{{i, j} ∈ ET | i, j ≤ Zq−1}.
Lemma 2. Let GH and F be defined as above. Let v1 be a vertex of GH . Let nH ≥ kH ≥ ∆ ≥ 3.
Let γ = maxq−1

l=1 ∆l/kH and let γ + 4(∆ + 2)−1 + 2n−1
H ≤ 1. Let kH ≥ 4 log(2nH/δF (∆q + 2)).

Then, with probability at least 1 − δF , there is an isomorphism φ from F to a subgraph of GH ,
mapping the root 1 of F on v1.

Proof. We will construct φ by selecting images for the children of vertices of F in increasing order,
i.e., we first select φ(1) = v1, then map children {2 . . .∆1 + 1} of 1 to vertices adjacent to v1, then
map all children of 2 to vertices adjacent to φ(2), etc. Suppose we are processing level l ∈ [q − 1]
and have selected φ(j) for all j ∈ ch(i′) for all i′ < i for some Zl−1 < i ≤ Zl. We now need to
select images for the ∆l children j ∈ ch(i) of vertex i (or in case l = q − 1 possibly only ∆l − 1
children). This means we need to find ∆l neighbors of i not already assigned as image to another
vertex (i.e., not belonging to ∪0≤i′<iφ(ch(i′))). We compute the probability that this fails. For any
vertex j ∈ [nH ] with i 6= j, the probability that there is an edge between i and j in GH is 2kH/nH .
Therefore, the probability that we fail to find ∆l free neighbors of i can be upper bounded as

Pr [FAILF (i)] = Pr

[
Bin

(
nH − Zl,

2kH
nH

)
< ∆l

]
≤ exp

−
(

(nH − Zl) 2kH
nH
−∆l

)2

2(nH − Zl) 2kH
nH

 . (24)

We know that nH − Zl ≥ zq. Moreover, (zq + ∆q − 1)/∆q ≥ zq−1 and Zq−2 + 1 ≤ zq−1, hence
2(zq + ∆q − 1)/∆q ≥ Zq−2 + Zq−1 + 1 = Zq−1 + 1 and 2(zq + ∆q − 1)/∆q + zq ≥ nH + 1.
There follows

zq(2 + ∆q) ≥ nH + 1− 2(∆q − 1)/∆q ≥ nH − 1.
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Therefore,
nH − Zl ≥ zq ≥ nH(1− 2(∆q + 2)−1 − n−1

H ). (25)

Substituting this and ∆l ≥ γkH in Equation ( 24), we get

Pr [FAILF (i)] ≤ exp

−
(
nH(1− 2(∆q + 2)−1 − n−1

H ) 2kH
nH
− kHγ

)2

2nH(1− 2(∆q + 2)−1 − n−1
H ) 2kH

nH


≤ exp

(
−k2

H

(
2(1− 2(∆q + 2)−1 − n−1

H )− γ
)2

4kH

)

≤ exp

(
−k2

H

4kH

)
= exp

(
−kH

4

)
,

where the latter inequality holds as γ+ 4(∆ + 2)−1 + 2n−1
H ≤ 1. As kH ≥ 4 log(2nH/δF (∆q + 2))

we can conclude that

Pr [FAILF (i)] ≤ δ(∆q + 2)

2nH
.

The total probability of failure to embed F in GH is therefore given by

Zq−1∑
i=2

FAILF (i) ≤ (Zq−1 − 1)
δF (∆q + 2)

2nH

≤
(
nH(2(∆q + 2)−1 + n−1

H )− 1
) δF (∆q + 2)

2nH

=
2nH

∆q + 2

δF (∆q + 2)

2nH
= δF ,

where we again applied (25).

Now that we can embed F in GH , we still need to embed the leaves of T . Before doing so, we
review a result on matchings in random graphs. The next lemma mostly follows [13, Theorem
7.11], we mainly adapt to our notation, introduce a confidence parameter and make a few less crude
approximations.2

Lemma 3. Let m ≥ 27 (in our construction, m = zq) and ζ ≥ 4. Consider a random bipartite
graph with vertex partitions A = {a1 . . . am} and B = {b1 . . . bm}, where for every i, j ∈ [m] the
probability of an edge {ai, bj} is p = ζ(log(m))/m. Then, the probability of a complete matching
between A and B is higher then

1− em−2(ζ−1)/3

1−m−(ζ−1)/3
.

Proof. For a set X of vertices, let Γ(X) be the set of all vertices adjacent to at least one member of
X . Then, if there is no complete matching between A and B, there is some set X , with either X ⊂ A
or X ⊂ B, which violates Hall’s condition, i.e., |Γ(X)| < |X|. Let X be the smallest set satisfying
this property (so the subgraph induced by X ∪ Γ(X) is connected). The probability that such sets X
and Γ(X) of respective sizes i and j = |Γ(X)| exist is upper bounded by appropriately combining:

• the number of choices for X , i.e., 2 (for selecting A or B) times
(
m
i

)
,

• the number of choices for Γ(X), i.e.,
(

m
i− 1

)
,

2In particular, even though Bollobas’s proof is asymptotically tight, its last line uses the fact that
(e logn)3an1−a+a2/n = o(1) for all a ≤ n/2. This expression is only lower than 1 for n ≥ 5.6 · 1010,
and as the sum of this expression over all possible values of a needs to be smaller than δF , we do not expect this
proof applies to graphs representing current real-life datasets.

19



• an upper bound for the probability that under these choices of X and Γ(X) there are at least

2i − 2 edges (as the subgraph induced by X ∪ Γ(X) is connected), i.e.,
(

ij
i+ j − 1

)
possible choices of the vertex pairs and pi+j−1 the probability that these vertex pairs all
form edges, and

• the probability that there is no edge between any of X ∪ Γ(X) and the other vertices, i.e.,
(1− p)i(m−j)+j(m−i) = (1− p)m(i+j)−2ij .

Thus, we upper bound the probability of observing such sets X and Γ(X) of sizes i and j as follows:

FAILB(i, j) ≤
(
m
i

)(
m
j

)(
ij

i+ j − 1

)
pi+j−1(1− p)m(i+j)−2ij

≤
(me
i

)i(me
j

)j (
ije

i+ j − 1

)i+j−1

pi+j−1(1− p)m(i+j)−2ij .

Here, in the second line the classic upper bound for combinations is used:
(
m
i

)
<
(
me
i

)i
. As

2j ≤ i+ j − 1, we get

FAILB(i, j) ≤
(me
i

)i(me
j

)j (
ie

2

)i+j−1

pi+j−1(1− p)m(i+j)−2ij

≤ mi+je2i+2j−1ij−1

jj2i+j−1
pi+j−1(1− p)m(i+j)−2ij . (26)

As 0 < p < 1, there also holds
(1− p)1/p < 1/e,

and therefore

(1− p)m(i+j)−2ij = (1− p)
1
pp(m(i+j)−2ij) < (1/e)p(m(i+j)−2ij).

We can substitute p = ζ(log(m))/m to obtain

(1− p)m(i+j)−2ij < (1/e)(ζ(log(m))/m)(m(i+j)−2ij)

=

(
1

m

)ζ(m(i+j)−2ij)/m

.

Substituting this and p < ζ log(m)/m into Equation ( 26), we get

FAILB(i, j) ≤ mi+je2i+2j−1ij−1

jj2i+j−1

(
log(m)ζ

m

)i+j−1(
1

m

)ζ(m(i+j)−2ij)/m

=
meij−1

jj

(
log(m)ζe2

2

)i+j−1(
1

m

)ζ((i+j)−2ij/m)

.

As j < i < m/2, 2 ≤ i < (i+ j)− 2ij/m < i+ j, there follows

FAILB(i, j) ≤ meij−1

jj

(
log(m)ζe2

2

)i+j−1(
1

m

)ζ((i+j)−2ij/m)

.

Given that mζ/3 ≥ ζ log(m)e2/2 holds for m ≥ 27 and ζ ≥ 4, we get

FAILB(i, j) ≤ meij−1

jj

(
log(m)ζe2

2m1/3

)i+j−1

m−ζ((i+j)−2ij/m)+ζ(i+j−1)/3

≤ eij−1

jj
m−ζ(

2
3 (i+j)+1/3−2ij/m)+1

≤ eij−1

jj
m−ζ(

1
3 i+

1
3 )+1.
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As ζ ≥ 4, this implies

FAILB(i, j) ≤ e

i

(
i

j

)j
m−

ζi
3 −

1
3 (27)

There holds:
i−1∑
j=1

(
i

j

)j
=

bi/3c∑
j=1

(
i

j

)j
+

i∑
j=bi/3c+1

(
i

j

)j

≤
bi/3c∑
j=1

(
i

j

)j
+

i∑
j=bi/3c+1

3j =

bi/3c∑
j=1

(
i

j

)j
+ 3bi/3c+1 3i−bi/3c − 1

3− 1

<

bi/3c∑
j=1

(
i

j

)j
+

3i+1

2
<

bi/3c∑
j=1

ii/3 +
3i+1

2

≤ i

3
ii/3 +

3i+1

2
.

Substituting in Equation (27) gives

FAILB =

m/2∑
i=2

i−1∑
j=1

FAILB(i, j)

<

m/2∑
i=2

i−1∑
j=1

e

i

(
i

j

)j
m−

ζi
3 −

1
3 <

m/2∑
i=2

(
ii/3+1

3
+

3i+1

2

)
e

i
m−

ζi
3 −

1
3

<

m/2∑
i=2

(
ii/3 + 3i+1

) e
2
m−

ζi
3 −

1
3 <

m/2∑
i=2

ii/3m−
ζi
3 −

1
3 + 3i+1 e

2
m−

ζi
3 −

1
3 .

As m ≥ 27 = 33 we can now write

FAILB <
e

2

m/2∑
i=2

m−
(ζ−1)i

3 − 1
3 +m(i+1)/3m−

ζi
3 −

1
3 <

e

2

m/2∑
i=2

m−
(ζ−1)i

3 − 1
3 +m−

(ζ−1)i
3

< e

m/2∑
i=2

m−
(ζ−1)i

3 = em−
2(ζ−1)

3

m/2−2∑
i=0

(
m−

ζ−1
3

)i
= em−

2(ζ−1)
3

1−
(
m−

ζ−1
3

)m/2−1

1−
(
m−

ζ−1
3

)
< em−

2(ζ−1)
3

1

1−
(
m−

ζ−1
3

) .
This concludes the proof.

Lemma 4. Let m ≥ 27 and δB > 0. Let

ζ = max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
.

Consider a random bipartite graph as described in Lemma 3 above. Then, with probability at least
1− δB there is a complete matching between A and B.

Proof. From the given ζ, we can infer that

ζ − 1 ≥ 3 log(2e/δB)
2 log(m)

ζ − 1 ≥ −3 log(δB/2e)
2 log(m)

− 2
3 (ζ − 1) log(m) ≤ log (δB/2e)

m−2(ζ−1)/3 ≤ δB/2e
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We also know that ζ ≥ 4 and m ≥ 27, hence (ζ − 1)/3 ≥ 1 and 1 −m−(ζ−1)/3 ≥ 26/27 ≥ 1/2.
We know from Lemma 3 that the probability of having a complete matching is at least

1− em−2(ζ−1)/3

1−m−(ζ−1)/3
≥ 1− e(δB/2e)

1/2
= 1− δB .

Lemma 5. Let δB > 0, ∆ ≥ 1 (in our construction, ∆ = ∆q) and m ≥ 27. Let d1 . . . dl be
positive numbers, with di = ∆ for i ∈ [l − 1], dl ∈ [∆] and

∑l
i=1 di = m. Let A = {a1 . . . al} and

B = {b1 . . . bm} be disjoint sets of vertices in a random graph GH where the probability to have an
edge {ai, bj} is 2kH/nH for any i and j. Let

p ≥ 1−
(

1−max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
log(m)

m

)∆

. (28)

Then with probability at least 1− δB , GH contains a collection of disjoint di-stars with centers ai
and leaves in B.

Proof. Define an auxiliary random bipartite graphG′ with sidesA′ = {a′1 . . . a′m andB = {b1 . . . bm.
For every i, j ∈ [m], the probability of having an edge between ai and bj inG′ is p′ = 1−(1−p)1/∆.
We relate the distributions on the edges of GH and G′ by requiring there is an edge between ai and
bj if and only if there is an edge between a′∆(i−1)+i′ and bj for all i′ ∈ [∆].

From Equation (28) we can derive

p′ ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
log(m)

m
. (29)

Setting

ζ = max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
,

this ensures p′ satisfies the constraints of Lemma 4:

p′ = ζ log(m)/m.

As a result, there is a complete matching in G′ with probability at least 1− δB , and hence the required
stars can be found in GH with probability at least 1− δB .

Lemma 6. Let δF > 0 and δB > 0. Let GH and T and their associated variables be as defined
above. Assume that the following conditions are satisfied:

(a) nH ≥ 27(∆q + 2)/∆q,

(b) γ + 2(∆q + 2)−1 + n−1
H ≤ 1,

(c) kH ≥ 4 log(2nH/δF (∆q + 2)),

(d) kH ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
∆q + 2

2
log

(
nH∆q

∆q + 2

)
,

(e) γ = max q−1
l=1 ∆l/kH .

Let GH be a random graph where there is an edge between any two vertices with probability p. Let
v1 be a vertex of GH . Then, with probability at least 1− δF − δB , there is a subgraph isomorphism
between the tree T defined above and GH such that the root of T is mapped on v1.

Proof. The conditions of Lemma 2 are clearly satisfied, so with probability 1 − δF there is a tree
isomorphic to F in GH . Then, from condition (d) above and knowing that the edge probability is
p = 2kH/nH , we obtain

p ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
1

nH∆q/(∆q + 2)
log

(
nH∆q

∆q + 2

)
∆q.

22



Taking into account that m = nH∆q/(∆q + 2), we get

p ≥ max

(
4, 1 +

3 log(2e/δB)

2 log(m)

)
1

m
log (m) ∆q,

which implies the condition on p in Lemma 4. The other conditions of that lemma can be easily
verified. As a result, with probability at least 1− δB there is a set of stars in GH linking the leaves of
F to the leaves of T , so we can embed T completely in GH .

A.3.4 Running GOPA on Random Graphs

Assume we run GOPA on a random graph satisfying the properties above, what can we say about the
differential privacy guarantees? According to Lemma 1, it is sufficient that there exists a spanning
tree and vectors tη and t∆ such that tη + Kt∆ = XA − XB . We fix tη in the same way as for
the other discussed topologies (see Section A.2) in order to achieve the desired ση and focus our
attention on t∆. According to Lemma 6, with high probability there exists in GH a spanning tree
rooted at the vertex where XA and XB differ and a branching factor ∆l specified per level. So
given a random graph on nH vertices with edge density 2kH/nH , if the conditions of Lemma 6 are
satisfied we can find such a tree isomorphic to T in the communication graph between honest users
GH . In many cases (reasonably large nH and kH ), this means that the lemma guarantees a spanning
tree with branching factor as high as O(kH), even though it may be desirable to select a small value
for the branching factor of the last level in order to more easily satisfy condition (d) of Lemma 6, e.g.,
∆q = 2 or even ∆q = 1.

Lemma 7. Under the conditions described above,

t>∆t∆ ≤ 1

∆1

(
1 +

1

∆2

(
1 +

|
∆3

(
. . .

1

∆q

)))
+

(∆q + 2)(∆q + 2 + 2q)

nH
(30)

≤ 1

∆1

(
1 +

2

∆2

)
+O(n−1

H ).

Proof. Let q be the depth of the tree T . The tree is balanced, so in every node the number of vertices
in the subtrees of its children differs at most ∆q + 2. For edges e incident with the root (a level 0
node), |te−∆−1

1 | ≤ n
−1
H (∆q+2). In general, for a node at level l (except leaves or parents of leaves),

there are
∏l
i=1 ∆i vertices, each of which have ∆l+1 children, and for every edge e connecting such

a node with a child, ∣∣∣∣∣te −
l+1∏
i=1

∆−1
i

∣∣∣∣∣ ≤ (∆q + 2)/nH .

For a complete tree (of 1 + ∆ + . . .+ ∆q vertices), we would have

t>∆t∆ =

q∑
l=1

l∏
i=1

∆i

(
l∏
i=1

∆−1
i

)2

=

q∑
l=1

(
l∏
i=1

∆i

)−1

,

which corresponds to the first term in Equation (30). As the tree may not be complete, i.e., there
may be less than

∏q
i=1 ∆i leaves, we analyze how much off the above estimate is. For an edge e

connecting a vertex of level l with one of its children,∣∣∣∣∣te −
l+1∏
i=1

∆i

∣∣∣∣∣ ≤ (∆q + 2)/nH ,
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and hence∣∣∣∣∣∣t2e −
(
l+1∏
i=1

∆i

)2
∣∣∣∣∣∣ ≤

(
t2e − te

(
l+1∏
i=1

∆i

))
+

te(l+1∏
i=1

∆i

)
−

(
l+1∏
i=1

∆i

)2


≤ te(∆q + 2)/nH +

(
l+1∏
i=1

∆i

)
(∆q + 2)/nH

≤ (

(
l+1∏
i=1

∆i

)
+ n−1

H )(∆q + 2)nH +

(
l+1∏
i=1

∆i

)
(∆q + 2)/nH

= (∆q + 2)2/n2
H + 2

(
l+1∏
i=1

∆i

)
(∆q + 2)/nH .

Summing over all edges gives

t>∆t∆ −
q∑
l=1

(
l∏
i=1

∆i

)−1

≤
q∑
l=1

zl

(∆q + 2)/n2
H + 2

(
l+1∏
i=1

∆i

)−1

(∆q + 2)/nH


= (∆q + 2)2/nH +

q∑
l=1

2zl

(
l+1∏
i=1

∆i

)−1

(∆q + 2)/nH

≤ (∆q + 2)2/nH +

q∑
l=1

2(∆q + 2)/nH

=
(∆q + 2)(∆q + 2 + 2q)

nH
.

So if we choose parameters ∆ for the tree T , the above lemmas provide a value δ such that T can be
embedded in GH with probability at least 1− δ and an upper bound for t>∆t∆ that can be obtained
with the resulting spanning tree in GH .

Theorem 3 in the main text summarizes these results, simplifying the conditions by assuming that
∆i = b(k − 1)ρ/2c for i ≤ q − 1 and ∆q = 2.

Proof of Theorem 3. Let us choose ∆i = b(k − 1)ρ/3c for i ∈ [q − 1] and ∆q = 1 for some
appropriate q such that Equation (23) is satisfied. We also set δ = δF = δB .

Then, the conditions of Lemma 6 are satisfied. In particular, condition (a) holds as nH = ρn ≥ 81 =
27(∆q + 2)/∆q . Condition (e) implies that

γ =
q−1
max
i=1

∆i/kH =
1

kH

⌊
(k − 1)ρ

3

⌋
.

Condition (b) holds as

γ + 2(∆q + 2)−1 + n−1
H =

1

kH

⌊
(k − 1)ρ

3

⌋
+

2

3
+ n−1

H

≤ 1

kH

(k − 1)ρ

3
+

2

3
+ n−1

H

≤ 1

3
− ρ

3kH
+

2

3
+ n−1

H =
1

3
− 1

3k
+

2

3
+ n−1

H

≤ 1

3
− 1

nH
+

2

3
+ n−1

H = 1.

Condition (d) holds because we know that ρk ≥ 6 log(ρn/3), which is equivalent to

kH ≥ 4
∆ + 2

∆
log

(
nH∆q

∆q + 2

)
,
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and we know that ρk ≥ 3
2 + 9

4 log(2e/δ), which is equivalent to

kH ≥
(

1 +
3 log(2e/δB)

2 log(nH∆q/(∆q + 2))

)
∆ + 2

∆
log

(
nH∆q

∆q + 2

)
.

Finally, condition (c) is satisfied as we know that ρk ≥ 4 log(ρn/3δ). Therefore, applying the lemma,
we can with probability at least 1− 2δ find a spanning tree isomorphic to T . If we find one, Lemma
7 implies that

t>∆t∆ ≤
q∑
l=1

(
l∏
i=1

∆i

)−1

+
(∆q + 2)(∆q + 2 + 2q)

nH

=

q−1∑
l=1

∆−l1 + ∆1−q
1 ∆−1

q +
3(3 + 2q)

nH
= ∆−1

1

1−∆1−q
1

1−∆−1
1

+ ∆1−q
1 ∆−1

q +
9 + 6q

nH

≤ 1

∆1 − 1
+

3

nH
+

9 + 6q

nH
=

1

b(k − 1)ρ/3c − 1
+

12 + 6q

nH

=
1

b(k − 1)ρ/3c − 1
+

12 + 6 log(nH)

nH

This implies the conditions related to σ∆ and t∆ are satisfied. From Lemma 1, it follows that with
probability 1 − 2δ GOPA is (ε, δ)-differentially private, or in short GOPA is (ε, 3δ)-differentially
private.

A.4 Matching the Utility of the Centralized Gaussian Mechanism

From the above theorems, we can now obtain a simple corollary which precisely quantifies the
amount of independent and pairwise noise needed to achieve a desired privacy guarantee depending
on the topology.

Proof of Corollary 1. In the centralized (trusted curator) setting, the standard centralized Gaussian
mechanism [33] (Theorem A.1 therein) states that in order for the noisy average ( 1

n

∑
u∈U Xu) + η

to be (ε′, δ′)-DP for some ε′, δ′ ∈ (0, 1), the variance of η needs to be:

σ2
gm =

c2

(ε′n)2
. (31)

where c2 > 2 log(1.25/δ′).

Based on this, we let the independent noise ηu added by each user in GOPA to have variance

σ2
η =

n2

nH
σ2
gm =

c2

(ε′)2nH
, (32)

which, for the approximate average X̂avg, gives a total variance of:

V ar
( 1

nH

∑
u∈UH

ηu

)
=

1

n2
H

nHσ
2
η =

c2

(ε′nH)2
. (33)

We can see that when nH = n (no malicious user), Equation (33) exactly corresponds to the variance
required by the centralized Gaussian mechanism in Equation (31), hence GOPA will achieve the
same utility. When there are malicious users, each honest user needs to add a factor n/nH more
noise to compensate for the fact that malicious users can subtract their own inputs and independent
noise terms from X̂avg . This is consistent with previous work on distributed noise generation under
malicious parties [64].

Now, given some κ > 0, let σ2
∆ = κσ2

η if G is the complete graph, σ2
∆ = 1

b(k−1)ρ/3c−1 + (12 +

6 log(nH))/nH for the random k-out graph, and σ2
∆ = κn2

Hσ
2
η/3 for an arbitrary connected GH . In

all cases, the value of θ in Theorems 1, 2 and 3 after plugging σ2
∆ gives

θ =
ε2

c2
+

ε2

κc2
=

(κ+ 1)ε2

κc2
.
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n = 100
ρ = 1

k = 3 σ∆ = 60.8
k = 5 σ∆ = 41.3

ρ = 0.5
k = 20 σ∆ = 26.8
k = 30 σ∆ = 17.2

n = 1000
ρ = 1

k = 5 σ∆ = 63.4
k = 10 σ∆ = 41.1

ρ = 0.5
k = 20 σ∆ = 45.4
k = 30 σ∆ = 27.3

n = 10000
ρ = 1

k = 10 σ∆ = 54.6
k = 20 σ∆ = 34.7

ρ = 0.5
k = 20 σ∆ = 55.5
k = 40 σ∆ = 28.4

Table 2: Examples of admissible values for k and σ∆, obtained by numerical simulation, to ensure
(ε, δ)-DP with trusted curator utility for ε = 0.1, δ′ = 1/n2

H , δ = 10δ′.

By setting ε = ε′, Equation (3) of Theorem 1 implies:

ε ≥ (κ+ 1)ε2

2κc2
+

√
(κ+ 1)

κ

ε

c

For d2 = κ
κ+1c

2 we can rewrite the above as

ε ≥ ε2

2d2
+
ε

d
.

Since ε ≤ 1, this is satisfied if d − ε
2d ≥ 1 and in turn when d ≥ 3/2, or equivalently when

c ≥ 3
2

√
κ+1
κ . Now analyzing the inequality in Equation (4) we have:

(
ε− (k + 1)ε2

2κc2

)2

≥ 2 log(2/δ
√

2π)
(ε2

c2
+

ε2

κc2

)
ε2 +

(κ+ 1)2ε4

4κ2c4
− (κ+ 1)ε3

κc2
≥ 2 log(2/δ

√
2π)
( (κ+ 1)ε2

κc2

)
1

2

( κc2

κ+ 1
+

(κ+ 1)ε2

4κc2
− ε
)
≥ log(2/δ

√
2π).

Again denoting d2 = κ
κ+1c

2 we can rewrite the above as

1

2

(
d2 +

ε2

4d2
− ε
)
≥ log(2/δ

√
2π).

For d ≥ 3/2 and ε ≤ 1, the derivative of d2 + ε2

4d2 − ε is positive, so d2 + ε2

4d2 − ε > d2 − 8/9.
Thus, we only require d2 ≥ 2 log(1.25/δ). Therefore Equation (4) is satisfied when:

κ

κ+ 1
log(1.25/δ′) ≥ log(1.25/δ),

which is equivalent to

δ ≥ 1.25
( δ′

1.25

) κ
κ+1

.

The constant 3.75 instead of 1.25 for the random k-out graph case is because Theorem 3 guarantees
(ε, 3δ)-DP instead of (ε, δ) in Theorems 1 and 2.

A.5 Smaller k and σ2
∆ via Numerical Simulation

For random k-out graphs, the conditions on k and σ2
∆ given by Theorem 3 are quite conservative.

While we are confident that they can be refined by resorting to tighter approximations in our analysis
in Section A.3, an alternative option to find smaller, yet admissible values for k and σ2

∆ is to resort to
numerical simulation.
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Given the number of users n, the proportion of honest nodes ρ and a value for k, we implemented a
program that generates a random k-out graph, checks if the subgraphGH of honest users is connected,
and if so finds a suitable spanning tree forGH and computes the corresponding value for t>∆t∆ needed
by our differential privacy analysis (see for instance Appendix A.2). From this, we can in turn deduce
a sufficient value for σ2

∆ using Corollary 1.

Table 2 gives examples of values obtained by simulations for various values of n, ρ and several
choices for k. In each case, the reported σ∆ corresponds to the worst-case value required across 105

random runs, and the chosen value of k was large enough for GH to be connected in all runs. This
was the case even for slightly smaller values of k. Therefore, the values reported in Table 2 can be
considered safe to use in practice.

Appendix B Cryptographic Framework

In this appendix, we provide an extended overview of the cryptographic notions involved in Section 5,
and give more details about our verification protocol. First, we give deeper intuitions on commitments
and ZKPs in Appendices B.1 and B.2. Next, using these building blocks, we present ZKPs on the
statistical distributions of uniform and Gaussian random variables in Appendix B.3. Finally, in
Appendix B.4, we show how these tools can be used to obtain the verification protocol of GOPA. For
simplicity, we sometimes abstract away some of the technical cryptographic details, but refer to the
corresponding bibliography for a more advanced treatment.

Public bulletin board. We implement the publication of commitments and proofs using a public
bulletin board so that any party can verify the validity of the protocol, avoiding the need for a trusted
verification entity. Users sign their messages so they cannot deny them. More general purpose
distributed ledger technology such as in Bitcoin transactions [60] could be used here, but we aim at
an application-specific, light-weight and hence more scalable solution.

B.1 Commitment Schemes

We start by defining formally a commitment and its properties. For clarity, we will use bold variables
to denote commitments.
Definition 2 (Commitment Scheme). A commitment scheme consists of a pair of (computationally
efficient) algorithms (Setup,Com). The setup algorithm Setup is executed once, with randomness t
as input, and outputs a tuple Θ← Setup(t), which is called the set of parameters of the scheme. The
algorithm Com with parameters Θ, denoted ComΘ, is a function ComΘ :MΘ ×RΘ → CΘ, where
MΘ is called the message space,RΘ the randomness space, and CΘ the commitment space. For a
message m ∈ MΘ, the algorithm draws r ∈ RΘ uniformly at random and computes commitment
c← ComΘ(m, r).

The security of a commitment scheme typically depends on t not being biased, in particular, it must
be hard to guess non-trivial information about t.

We now define some key properties of commitments.
Property 1 (Hiding Property). A commitment scheme is hiding if, for all secrets x ∈MΘ and given
that r is chosen uniformly at random fromRΘ, the commitment cx = ComΘ(x, r) does not reveal
any information about x.
Property 2 (Binding Property). A commitment is binding if there exists no computationally
efficient algorithm A that can find x1, x2 ∈ MΘ, r1, r2 ∈ RΘ such that x1 6= x2 and
ComΘ(x1, r1) = ComΘ(x2, r2).
Property 3 (Homomorphic Property). A homomorphic commitment scheme is a commitment scheme
such thatMΘ,RΘ and CΘ are abelian groups, and for all x1, x2 ∈MΘ, r1, r2 ∈ RΘ we have

ComΘ(x1, r1) + ComΘ(x2, r2) = ComΘ(x1 + x2, r1 + r2).

Please note that the three occurrences of the ’+’ sign in the above definition are operations in three
difference spaces, and hence may have different definitions and do not necessarily correspond to
normal addition of numbers.

Pedersen commitments. For our protocol we use the Pedersen commitment scheme, described in
[62]. For a given cyclic group G of large prime order q, Setup is a function that draws uniformly
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and independently at random from G a pair of elements g and h which form the set of parameters
Θ = (g, h) of the scheme. Additionally,MΘ = RΘ = Zq , and CΘ = G. We will refer to g and h as
bases. The commitment function ComΘ is defined as

ComΘ : Zq × Zq → G
ComΘ(x, r) = gx · hr, (34)

where (·) is the modular product of group G, x is the secret and r is the randomness. Pedersen
commitments are homomorphic (in particular, ComΘ(x+ y, r + s) = ComΘ(x, r) · ComΘ(y, s)),
unconditionally hiding, and computationally binding under the Discrete Logarithm Assumption,
which we informally describe below.
Assumption 1 (Discrete Logarithm Assumption). Let G be a cyclic multiplicative group of large
prime order q, and g and h two elements chosen independently and uniformly at random from
G. Then, there exists no probabilistic polynomial time algorithm A that takes as input the tuple
(G, q, g, h) and outputs a value b such that P (gb = h) is significant on the bit-size of q.

The DLA is a standard assumption widely used in production environments. A more detailed
description can be found in Chapter 7 of [54].

The Pedersen commitment scheme can be efficiently implemented with elliptic curves, as described
and benchmarked in [39]. To generate a common Pedersen scheme in our adversary model, the
generation of the unbiased random input t for Setup can be done as described in Section 4.4 of [18].
We provide a concrete method for this in Appendix C.

B.2 Zero Knowledge Proofs

On top of Pedersen commitments, we use a family of techniques called Zero Knowledge Proofs
(ZKPs), first proposed by [43]. In these proofs, a party P called the Prover, convinces another party
V , the Verifier, about a statement. For our scope and informally speaking, ZKPs3

• allow every P to successfully prove true a statement (completeness),

• allow every V to discover with arbitrarily large probability any attempt to prove a false
statement (soundness),

• guarantee that by performing the proof, no information about the knowledge of P other than
the proven statement is revealed (zero knowledge).

Importantly, the zero knowledge property of our proofs does not rely on any computational hardness
assumption.

Honest-verifier interactive ZKPs. In the following sections, we describe how our ZKPs can be
be performed as an interactive protocol between a Prover P and a honest Verifier V whose only task
in the conversation is to generate unbiased random numbers, that we will call challenges, and which
P must not be able to predict. In these proofs, the zero knowledge property holds only if V is honest
and does not try to generate biased challenges in order to guess private values of P . Such model
does not apply to our malicious adversary model. However, this can be easily overcome in most
cases with a generic transformation of the proofs that makes them suitable in adversarial settings,
called the Fiat-Shamir heuristic, which we describe at the end of Appendix B.3. Additionally, for a
particular case of a proof in the beginning of Appendix B.3 which, as we will see, cannot be made
non-interactive, we provide an efficient interactive method to generate unbiased challenges as an
honest verifier would do in Appendix C.

B.2.1 Zero Knowledge Proofs: Building Blocks

We now briefly review a number of ZKP building blocks present in literature and necessary for our
verification protocol. We illustrate the basic principles for a selection of relevant ZKPs, describing
their protocol and complexity, and refer to the literature for others.

3Strictly speaking, the proofs we will use are called arguments, as the soundness property relies on the
computational boundedness of the Prover P through the DLA described above, but as for general reference to
the family of techniques we use the term proofs.
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We base our proofs in a Pedersen commitment with parameters (g, h) chosen from G as described
above. For some building blocks, we use multiple pairs of bases as parameters, where bases belonging
to the same pair Θ are always assumed to be chosen independently at random from G. We denote
by r ←R S the operation of generating a random number r uniformly distributed over the set S,
and by a =? b the action of verifying the equality of a and b. Between elements of G, products and
exponentiations are implicitly modulo q.

When discussing complexity, the dominating computations are always discrete exponentiations in G.
We will refer to them just as exponentiations. For a ZKP, we call the size of a proof the sum of all the
values (numbers, commitments, challenges, etc.) exchanged between P and V .

Proof of equality. This first proof allows a prover P to prove that he committed to the same private
value x in two different commitments cx = gx1 · hr1 and c′x = gx2 · hr

′

2 . The pairs of bases (g1, h1)
and (g2, h2) might be different. This proof is a standard generalization of the one described in [24]
for single bases.

The protocol goes as follows:

1. P generates a, b, c←R Zq , computes cab ←R g
a
1h

b
1 and cac ← ga2h

c
2 and sends (cab, cac)

to V .
2. V draws a challenge t←R Zq and sends it to P .
3. P computes d ← a + xt (mod q), e ← b + rt (mod q) and f ← c + r′t (mod q) and

sends (d, e, f) to V .

At any time, to verify the proof (cab, cac, t, d, e, f), V checks that

gd1h
e
1 =? cab(cx)t and gd2h

f
2 =? cac(c′x)t.

If the equality holds, P proves the statement. We denote this proof as

ZKPEq(cx, c
′
x)
{

(x, r, r′) : cx = gx1h
r
1 ∧ c′x = gx2h

r′

2

}
,

where we use the convention that values outside the curly braces are public, while values private
to P and the proven statement are inside. The proof requires the computation of 4 exponentiations
by P , 6 exponentiations by V , and its size is the sum of the sizes of the 6 values exchanged in the
conversation between P and V .

Proof of linear relation. This is a key proof that will be used several times in our verification
procedure. Let x̄ = (xi)

k
i=1 for some k > 0 be a vector of private values, c̄ = (ci)

k
i=1 a public vector

of commitments such that ci is a commitment of xi, ā = (ai)
k
i=1 a public vector of coefficients, and

b a public scalar. The goal of P is to prove the equality 〈x̄, ā〉 = b (mod q), where 〈·, ·〉 is the inner
product. The proof is simple: first, note that, by the homomorphic property, cL =

∏k
i=1(ci)

(ai) is a
valid commitment of 〈x̄, ā〉. Then, P and V just perform ZKPEq(cL, cb) for cb = gb (the base h
for cb is not necessary as we use randomness equal to 0). We denote the proof as

ZKPLinear(c̄, ā, b)

{(
x̄, r̄ = (ri)

k
i=1

)
:

k∧
i=1

ci = gxhri ∧ 〈ā, x̄〉 = b (mod q)

}
.

To perform the proof, the amount of computations done by P is dominated by 3k+ 1 exponentiations
to compute the vector c̄ and the other commitments cL and cb. Both P and V perform one execution
of ZKPEq. V also has to compute cL and cb by performing k+1 exponentiations. The computational
complexity is then O(k) exponentiations for both parties. The proof size and therefore the load of the
network is also O(k) values, which for P , can be split into several messages if components of c̄ are
committed in different moments. Note that, with this proof, users can already prove the correctness
of Properties (5) and (6) for the verification of GOPA.

Proof that a secret lies in a given range (range proof ). Here, the statement to prove is that, for a
positive integer M < q − 1 and a commitment cx, P knows the secret x inside cx, and that it lies in
the range [0,M ]. Among the various constructions that exist for range proofs, we use the result by
[18] for intervals of the form [0, 2l − 1]. Then, our proof can be performed with 2 of these proofs,
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where P proves that x ∈ [0, 2l − 1] and that M − x ∈ [0, 2l − 1] (this involves another commitment
for M − x and a linear proof of this relation) for l = blog2Mc+ 1. We denote the proof by

ZKPRange(cx, [0,M ])
{

(x, r) : cx = gxhr ∧ x ∈ [0,M ]
}
.

It has a computational cost of O(log2M) exponentiations for both P and V and a proof size of
O(log2 log2M). With this proof, the verification of Property (8) can be done.

The verification of Property (7) is more elaborate as it involves proving that a value has been drawn
from a prescribed statistical distribution. We describe this proof in Appendix B.3, but first introduce
additional building blocks that will be needed for this proof.

Proof of product. In this proof, P wants to prove that for three secrets a, b, d committed in
ca = gahr1 , cb = gbhr2 and cd = gdhr3 , it holds that ab = d (mod q). This proof can be done in a
straightforward way based on ZKPEq. We use the fact that, by properties of cyclic groups, ca is not
only a commitment but also a base of G, and that cd = (ca)bh(r2−bra), which is a valid commitment
for b using bases (ca, h). Then we use ZKPEq(cb, cd) with the pairs of bases (g, h) and (ca, h). If
P does not know the commitment of a product of ab hidden in cd it would not pass the proof. We
denote this proof as

ZKPProd(ca, cb, cd)
{

(a, r1, b, r2, d, r3) : ca = gahr1 ∧ cb = gbhr2

∧ cd = gdhr3 ∧ ab = d (mod q)
}
.

The proof, first proposed in [40], has the same complexity as ZKPEq plus the computation of an
extra commitment (2 exponentiations).

Proof of OR-composition. This proof provides the possibility of constructing a ZKP on a statement
that is the disjunction of statements of other (already constructed) ZKPs. Concretely, given the proofs
ZKP1{(v̄) : S1(v̄)}, and ZKP2{(v̄) : S2(v̄)} where v̄ is a vector of private values and S1 and S2

are the verifiable statements, one can construct the proof

ZKPOr
{

(v̄) : S1(v̄) ∨ S2(v̄)
}
.

The proof is described in [27] and [63]. The complexity of ZKPOr is the sum of the complexities of
ZKP1 and ZKP2. Not exclusively but often, we will use the construction to prove that a secret b is
a bit, i.e. that b ∈ {0, 1}. The instantiation is described in [57](pages 66-67 therein) and requires
O(1) computations for P and V and as well as O(1) proof size complexity.

Proof of modular sum. Here, P wants to prove that, for a public modulus M < q/2, a public
value t ∈ [0,M − 1] and two secrets x, z ∈ [0,M − 1], the relation x = z + t mod M is
satisfied. Let cx and cz be the commitments of x and z respectively. For the proof, we perform
ZKPRange(cx, [0,M − 1]), ZKPRange(cz, [0,M − 1]), and we use an auxiliary commitment of a
bit bwhich we prove to be in {0, 1}. Then, we prove the arithmetic relation x = z + t− bM (mod q)
with ZKPLinear. Because of their range, we have that z + t < q, hence the modulus q does not
interfere and the linear equality holds if and only if the modular sum is satisfied. We denote this proof
as

ZKPMod(cx, cz,M, t)
{

(x, r1, z, r2) : cx = gxhr1 ∧ x ∈ [0,M − 1]

∧ cz = gzhr2 ∧ z ∈ [0,M − 1]

∧ x = z + t mod M
}
.

This proof is inspired by the more general proof of modular sum proposed in [20]. Its complexity
is given by the composition of the proofs mentioned above, where the dominant term is in the
range proofs, and amounts to O(log2M) exponentiations in the computation by both P and V , and
O(log2 log2M) in the published proof size.

Non-interactive ZKPs. There is a standard method to transform honest verifier interactive ZKPs
into a non-interactive protocol through the widely used Fiat-Shamir heuristic [37]. Roughly speaking,
the method replaces the interactive role of a verifier V by a cryptographic hash function (in theory,
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a random oracle) which generates our publicly verifiable challenges. Using this heuristic, P can
compute the proof by itself without compromising the soundness property, and publish it in the bulletin
board. The complexity of generating and verifying the proof is not changed by the transformation,
and the proof is established by the fictional interactive conversation between P and V . Once P has
published the proof in the bulletin board, any party can check its correctness.

B.3 Zero Knowledge Proofs for Uniform and Gaussian Random Variables

Given the building blocks in Appendix B.2, we can construct a proof that a random variable follows a
uniform or a Gaussian distribution.

Proof of uniform distribution. We prove that a secret random variable y is uniformly distributed
over the interval [0,M − 1] for M < q/2. As we are not proving any statement for a particular fixed
value but of a distribution, it is intuitive that we sample the value while the proof is generated. Essen-
tially, we use ZKPMod(cy, cz,M, t), and provide a protocol such that t guarantees the distribution
is not biased and z guarantees the secrecy of y. By the properties of modular sum, we can ensure that
y is uniformly distributed. The secure proof goes as follows:

1. P draws z ←R [0,M − 1], computes cz = gzhr for some r ←R Zq and sends cz to V .
2. V draws t←R [0,M − 1] (as described in Appendix C) and sends it to P .

3. P computes y ← z + t mod M and cy ← gyhr
′

for some r′ ←R Zq , and sends cy to V .

After this, P and V perform ZKPMod as mentioned above. We denote this proof as

ZKPUniform(cy, [0,M − 1])
{

(y, r′) : cy = gyhr
′
∧ y ∼ U([0,M − 1])

}
.

The complexity of ZKPUniform remains of the same order as ZKPMod, i.e. O(log2M) computa-
tion and O(log2 log2M) in the published proof size.

Note that this proof cannot be made non-interactive, as a malicious user can sample locally many
random values and pick the one he likes, biasing the distribution. We need to make sure all users
generate uniformly distributed numbers in the first attempt and do not have possibility to pick and
reject numbers as they see fit. We provide in Appendix C a decentralized method to generate unbiased
random challenges, which makes the proving user to “commit” to every generation of a random
number. This approach only requires O(1) additional computations and communication cost per user,
so the complexity of ZKPUniform remains of the same order.

Proof of Gaussian distribution. In our algorithm, every user u needs to generate a Gaussian
distributed number ηu, which he does not publish, but for which we need to verify that it is generated
correctly, as otherwise a malicious user could bias the result of the algorithm.

Proving the generation of a Gaussian distributed random number is more involved. We will start
from an integer y′, which is only known to a party P , for which P has published a commitment
ComΘ(y′) and for which the other agents know it has been generated uniformly randomly from an
interval [0,M − 1] (for large M ), as can be done with ZKPUniform. Then, P will compute x′ such
that ((2y′ + 1)/M)− 1 = erf(x′/

√
2). We know that x′ is normally distributed. The main task is

then to provide a ZKP that y = erf(x) for y = ((2y′ + 1)/M)− 1 and x = x′/
√

2.

The error function relates its input and output in a way that cannot be expressed with additive,
multiplicative or exponential equations. We therefore approximate erf using a converging series. In
particular, we will rely on the series

erf(x) =
2√
π

∞∑
l=0

(−1)lx2l+1

l!(2l + 1)
. (35)

As argued in [26], this series has two major advantages. First, it only involves additions and multi-
plications, while other known series converging to erf(x) often include factors such as exp(−x2/2)
which would require additional evaluations and proofs. Second, it is an alternating series, which
means we can determine more easily in advance how many terms we need to evaluate to achieve a
given precision.
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Nevertheless, Equation (35) converges slowly for large x. It is more efficient to prove either that

y = erf(x) or 1− y = erfc(x),

as for erfc(x) = 1− erf(x) there exist good approximations requiring only a few terms for large x.
An example is the asymptotic expansion

erfc(x) =
e−x

2

x
√
π
Serfc(x) +RL(x), (36)

where

Serfc(x) =

L−1∑
l=0

(−1)l(2l − 1)!!

(2x2)l
(37)

with l!! = 1 for l < 1 and (2l − 1)!! =
∏l
i=1(2i − 1). This series diverges, but if x is sufficiently

large then the remainder

RL(x) ≤ 2√
π

(2L− 1)!!

(2x2)L
(38)

after the first L terms is sufficiently small to be neglected. So the prover could prove either part of
the disjunction with ZKPOr depending on whether the erf or erfc approximations achieve sufficient
precision. In particular, for a fixed x, Equation (38) is minimal with L ≈ x2/2, so given x we can
achieve an error of

Eerfc(x) ≈ 2√
π

(2bx2/2c − 1)!!

(2x2)bx2/2c

=
2√
π

(2bx2/2c)!
bx2/2c!2bx2/2c(2x2)bx2/2c

≈ 2√
π

(2bx2/2c/e)2bx2/2c(2bx2/2c)1/2

(bx2/2c/e)bx2/2c(bx2/2c)1/22bx2/2c(2x2)bx2/2c

=
2√
π

(bx2/2c)bx2/2c21/2

ebx2/2c(x2)bx2/2c ≤
√

8√
π(2e)bx2/2c .

Approximating erfc(x) involves approximating exp(−x2). The common series exp(z) =
∑∞
i=0 z

i/i!
is known to converge quickly. Even if its terms first go up until z < i, for larger z where this could
slow down convergence one can simply divide z be a constant a (maybe conveniently a power of 2),
approximate exp(z/a) and then compute (exp(z/a))a, which can be done efficiently. We omit the
details here and focus in the following on the more difficult erf function.

In absolute value, terms of the erf approximation never get larger than∣∣∣∣ (−1)lx2l+1

l!(2l + 1)

∣∣∣∣ ≤ x2bx2c+1

bx2c!(2x2 − 1)

≈ x2x2+1

√
2πx2(x2/e)x2(2x2 − 1)

=
x√

2πxe−x2(2x2 − 1)
=

ex
2

√
2π(2x2 − 1)

<
ex

2

√
8πx2

(39)

Evaluating a term of one of the series (Equation (35) or Equation (37)) is possible by addition,
multiplication and a division. We have described above building blocks for providing ZKPs of
additions (ZKPLinear) and multiplications (ZKPProd). For the multiplication, please note that one
can compute xl by xl = xl−1x, reusing the result of earlier multiplications. For the division, proving
that a/b = c, where a and c are private, is possible by proving that −|b|/2 ≤ a− bc ≤ |b|/2, which
involves a range proof. The several range proofs for the several terms can be combined as indicated
in the description of ZKPRange.
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In the following, we will explicitly consider fixed precision representations. The implied rounding
does not cause major problems for several reasons. First, the Gaussian distribution is symmetric, and
hence the probability of rounding up and rounding down is exactly the same, making the rounding
error a zero-mean random variable. Second, discrete approximations of the Gaussian mechanism
such as binomial mechanisms have been studied and found to give similar guarantees as the Gaussian
mechanism [2]. Third, we can require the cumulated rounding error to be an order of magnitude
smaller than the standard deviation of the noise we are generating, so that any deviation due to
rounding has negligible impact.

We will use a fixed precision for all numbers (except for small integer constants), and we will
represent numbers as multiples of ψ. We assume 1/ψM to be an integer, so as the variable x is a
multiple of 1/M , we can represent x and x2 without rounding. Let

ti =
x2i+1

i!
.

We can compute recursively

ti+1 = ti
x2

i+ 1
,

where t0 = x. The multiplication with x2 and the division by i increase the relative error by less
than ψ. If we evaluate the first L terms of the series, the relative error due to rounding is thus at
most Lψ. Combining this with Equation (39) implies that the maximal absolute error of a term is
Lψex

2

/
√

8πx2, and the total error after summing these terms is

Erounderf =
L2ψex

2

√
8πx2

. (40)

Suppose we want to achieve an approximation where the error on y as a function of x is at most B. It
is natural to set M ≈ 1/B. We require that the rounding error is at most B/2 and the approximation
error is at most B/2. Then, if

B

2
≥

√
8√

π(2e)bx2/2c ≥ Eerfc(x),

the prover will use the erfc series, else the erf series. As the erf series more strongly constrains our
design choices, we will focus here on the erf case (the erfc case can be analyzed using the same
principles). We hence assume that

√
8√

π(2e)bx2/2c ≥
B

2
,

which implies √
32

B
√
π
≥ (2e)bx

2/2c,

from which
1

2
log

(
32

π

)
− log(B) ≥

⌊
x2

2

⌋
log(2e).

This implies
1.161− log(B)

1.693
≥ x2

2
− 1

and √
2.854− log(B)

0.846
≥ x. (41)

The series in Equation (35) is an alternating series too, so to reach an error smaller than B/2, it is
sufficient to truncate the series when terms get smaller than B/2 in absolute value. In particular, we
need L terms with

2x2L+1

√
πL!(2L+ 1)

≤ B

2
.
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Using Stirling’s approximation, this means

2x2L+1

√
π
√

2πL(L/e)L(2L+ 1)
≤ B

2
.

Taking logarithms, we get:

log(2) + (2L+ 1) log(x)− log(π
√

2)− (L+ 1/2) log(l)− L+ log(2L+ 1) ≤ log(B)− log(2).

For L ≥ 1, it holds that l ≥ 2 log(2) + log(2L+ 1)− log(π
√

2), so the above inequality is satisfied
if

(2L+ 1) log(x)− (L+ 1/2) log(L) ≤ log(B),

which is equivalent to
(2L+ 1) log(x/

√
L) ≤ log(B),

or, written differently:

(2L+ 1) log

(
1−
√
L− x√
L

)
≤ log(B).

As log(1 + α) ≤ α, the above inequality is satisfied if

−(2L+ 1)

√
L− x√
L
≤ log(B).

Further approximating, this is satisfied if

2L

√
L− x√
L

+ log(B) ≥ 0,

or equivalently
2L− 2

√
Lx+ log(B) ≥ 0.

It follows that we need
√
L ≥

2x+
√

4x2 − 8 log(B)

4
=
x+

√
x2 − 2 log(B)

2
.

Substituting the worst case value of x from Equation (41), we get

L ≥ 1

4

(√
2.854− log(B)

0.846
+

√
2.854− 2.692 log(B)

0.846

)2

. (42)

From Equation (40), we can now also determine what precision is needed. In particular:

Erounderf =
L2ψex

2

√
8πx2

≤ B

2

is satisfied if

ψ ≤
√

2πBx2

L2ex2 = O

(
B2

log(B)

)
.

Typically, one would like the total error (due to approximation and rounding) to be negligible with
respect to the standard deviation ση , so one could choose B = ση/106|UH |.

For any desired variance σ2, we denote the proof of Gaussian distribution by

ZKPNormal(cx, σ
2)
{

(x, r) : cx = gxhr ∧ x ∼ N (0, σ2)
}
.

We now briefly analyze its complexity. Recall that given parameter M = 1/B, generating a
uniformly distributed random number y′ has a cost of O(log2(1/B)) computations and a proof size
of O(log2(log2(1/B))) as described in ZKPUniform. The dominant cost of the computation is in
the computation of the erf or erfc series. We neglect lower order costs. The number of terms to
evaluate is a constant L = O(log2(1/B)) that the community computes once in advance. Computing
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Algorithm 2 Verification phase computations of GOPA

1: Input: All users have jointly generated a commitment scheme with parameters Θ and each user
u has published to the bulletin board:

2: • cXu = ComΘ(Xu, rXu) (before the execution of Algorithm 1)
3: • c∆u,v = ComΘ(∆u,v, r∆u,v ) (when exchanging with v ∈ N(u) during Algorithm 1)
4: • cηu = ComΘ(ηu, rηu) (after generating ηu)
5: • X̂u (at the end of Algorithm 1)
6: • ZKPLinear proofs for Properties (5) and (6)
7: • ZKPNormal and ZKPRange proofs for Properties (7) and (8)
8: for all user u ∈ U do
9: Verify that the value inside cXu is in [0, 1] (if not, add u to the cheaters list)

10: Verify that values inside cXu , (c∆u,v)v∈N(u), cηu sum to X̂u (if not, add u to cheaters list)
11: Verify that the value inside cηu has distribution N (0, ηu) (if not, add u to cheaters list)
12: for all user v ∈ N(u) do
13: Verify that values inside c∆u,v and c∆v,u sum to 0 (if not, add u and v to cheaters list)

a term requires three multiplications, a division and a range proof. Evaluating a series hence requires
O(log2(1/B)) multiplications, additions and range proofs. While the first two cost O(1), a range
proof costs O(log2(2L+ 1)) where 2L+ 1 is the size of the range. In this case, L = O(log2(1/B))
so the cost is O(log2(log2(1/B))). In total, the cost of the ZKP for the correct computation of the
series is therefore O(log2(1/B) log2(log2(1/B)). Depending on the value of x one of two series
will be evaluated, and a disjunction of two relations proven with ZKPOr (which simply doubles the
above cost). Regarding the proof size, the computation of erf or erfc (or the proof of its disjunction)
has size O(log2(1/B) log2(log2(log2(1/B)))), as each of the range proofs performed has a size
which is logarithmic in the complexity of its computation. The total proof size is therefore of
O(log2(1/B) log2(log2(log2(1/B)))).

B.4 GOPA Verification Protocol

We design our verification protocol based on the ZKPs described in Appendices B.2 and B.3.
Concretely, we rely on ZKPLinear to verify Properties (5) and (6), ZKPNormal to verify Property
(7) and ZKPRange to verify Property (8). Note that Property (6) involves secrets of two different
users u and v. However, this is not a problem as these pairwise noise terms are known by both involved
users, so they can use negated randomnesses r∆u,v

= −r∆v,u
in their commitments of ∆u,v and ∆v,u

such that everybody can verify that ComΘ(∆u,v, r∆u,v ) + ComΘ(∆v,u, r∆v,u) = ComΘ(0, 0).

At the beginning of the protocol, all users jointly generate parameters Θ for a shared Pedersen
commitment scheme (see Appendix C). Our verification protocol, described in Algorithm 2, requires
users to publish in the bulletin board all commitments and involved ZKPs as soon as the private
values involved are generated by the execution of the private averaging phase (Algorithm 1). The
verification can then be performed by any party interested in verifying the integrity of the computation.
By composition of ZKPs, every user prove the correctness of his/her computations, and thereby
Theorem 4. Completeness, soundness and zero knowledge properties for Theorem 4 are guaranteed
as they are preserved by the composition of ZKPs.

In the rest of this section, we give additional details regarding multiple executions and user drop out,
and conclude with a discussion of how the correctness guarantees of GOPA compare to the centralized
scenario.

B.4.1 Consistency over Multiple Executions

While the guarantees of Theorem 4 hold with respect to a single execution of GOPA, commitments to
private values can be used when multiple executions of the algorithm are performed over the same or
related data. In addition to linear relations, products and range proofs, a wide variety of arithmetic
relations can be proven between committed secrets. As an illustration, consider ridge regression
in Example 1. Every user u can publish commitments cyu = ComΘ(yu, r), cφi

u
= ComΘ(φiu, ri)

for i ∈ {1, . . . , d} (computed with the appropriately drawn randomness), and additionally commit
to φiuyu and φiuφ

j
u, for i, j ∈ {1, . . . , d}. Then, by the use of ZKPProd, it can be verified that all
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these commitments are computed coherently, i.e, that the commitment of φiuyu is the product of
secrets committed in cyu and cφi

u
for i ∈ {1, . . . , d}, and analogously for the commitment of φiuφ

j
u

in relation with cφi
u

and cφj
u

, for i, j ∈ {1, . . . d}. An efficient ZKP to check arbitrary arithmetic
relations, i.e, inner products of vectors of commitments, is provided in[15] and optimized in [18].
Additionally, ZKPs can be composed such that AND and OR composition of the proven statements
can be generated (see ZKPOr), and consequently any kind of logical monotone formula [27, 63].

B.4.2 Dealing with User Drop Out

As we are in a decentralized setting, the successful execution of the protocol relies on users remaining
active during the computation. In the context of a large number of users, the probability of a few
of them to drop out in the middle of the execution must be taken into account. Here, we consider
that a user drops out of the computation if he/she is off-line for a period which is too long for the
community to wait until his/her return. Malicious users may also intentionally drop out to bias the
outcome of the computation. Indeed, drop outs affect the outcome of the computation as we rely on
the self-canceling noise terms {∆u}u∈U for the correctness and accuracy of the computation.

We propose a three-step approach to handling user drop out. First, as a preventive measure, users
should exchange pairwise noise with a few more neighbors than strictly needed to satisfy the privacy
requirements, in order to have some margin in case a small number of neighbors drop out. Second,
as long as there is time, users attempt to repair as much as possible the problems induced by drop
outs. Finally, when circumstances require and allow it,4 we can ignore the remaining problems and
proceed with the algorithm, which will then output a slightly perturbed answer.

We now focus on the second of these three steps. Users can react to the drop-out of a neighbor (i.e., a
user with whom they already exchanged pairwise noise) in several ways. First, a user u who did not
publish X̂u yet can just remove the corresponding pairwise noise (and exchange noise with another
active user instead if needed). Second, a user u who did publish X̂u already but has still some safety
margin because he exchanged pairwise noise with more neighbors than strictly necessary can simply
reveal the noise exchanged with the user who dropped out, and subtract it from his published X̂u.

The third case, in which a user u published X̂u already but cannot afford to adjust it by removing
the noise exchanged by the user who dropped out, is the most difficult one, and should therefore be
avoided as much as possible by the preventive surplus of noise exchanges described above. If u is
lucky, he/she can still exchange additional noise with other users who did not publish their noisy
value yet. However, if u cannot trust that a sufficient fraction of these users are honest, the only
choice may be that user u drops himself/herself out. Note that this could cause a cascade of drop-outs
if other users also do not have sufficient margin, or a significant part of the pairwise noise exchange
procedure needs to be repeated. To avoid such problems, in addition to preventively exchanging
surplus pairwise noise, it is best to check which users went off-line just before publishing X̂ , and to
have penalties for users who (repeatedly) drop out at the most inconvenient times.

B.4.3 Comparison of Correctness Guarantees with the Centralized Setting

Consider the case of a centralized computation, where a central party is provided with the raw data to
compute the model. In general, this central party does not know whether the values it received as
input are truthful. However, it knows that all of its computations are performed correctly given the
received input data. In this sense, our commitments offer the same guarantees.

In some critical cases where reliable data is needed, the central party could require that the data
of users to be certified by a trusted third party. In such scenarios where credentials are required,
solutions exist to provide private credentials to users, that have the same zero knowledge logic as our
solution and also provide to the central party a certificate from a trusted third party that this data is
valid [19, 17].

We can conclude that GOPA is an auditable protocol that, through existing efficient cryptographic
primitives, can offer guarantees similar to the automated auditing which is possible for data shared
with a central party.

4For instance, only a few drop outs have not yet been resolved, there is not much time available, and the
corresponding pairwise terms ∆u,v are known to be not too large (e.g., by the use of range proofs).
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Appendix C Randomness for Setup and ZKPUniform

The generation of challenges in ZKPUniform cannot be made non-interactive as it provides an
opportunity for malicious users to execute many generations and choose a particular sample, which
would bias the distribution. Here, we provide a decentralized method to generate O(|U |) challenges
with a computational effort of O(1) per user, and only O(1) messages in the network. Additionally,
this algorithm can be used to generate the randomness to run the Setup algorithm and initialize the
Pedersen commitment scheme shared by all users.

For this purpose, we make use of a cryptographic hash function H : {0, 1}∗ → [0,M − 1] where M
is defined as in the interval of ZKPUniform. Cryptographic hash functions are easy to evaluate, but
their outcome is impossible to predict or to distinguish from random numbers. Practical instances
of such functions can be found in HMAC and Sponge-based constructions for random number
generators [7, 9].

To describe our procedure, we enumerate users from 1 to n = |U |. The procedure goes as follows:

1. Every user u generates a random number su ←R ZM , computes a commitment
cu ← Com(su) for some randomness and publishes cu to the bulletin board.

2. When all commitments are published, every user reveals su by publishing it such that all
users can check that the commitment cu was computed correctly.

3. By setting s′1 ← s1 and starting from user 2, user u+ 1 queries the bulletin board to get s′u,
computes s′u+1 ← su+1 + s′u mod M and publishes s′u+1 in the bulletin board.

4. Users set t0 ← s′n as an unbiased seed for H and sequentially, each user u queries the
bulletin board for tu−1, computes its challenge tu ← H(tu−1) and publishes it to the
bulletin board.

The “commit-then-reveal” protocol in Steps 1 and 2 is to avoid users from choosing the value su
depending on the choice of other users, which could bias the final seed s′n. As it is computed from
modular sums, this seed is uniformly distributed over [0,M − 1] if at least one user is honest. As
our seed is unpredictable and challenges are obtained by application of H , we make sure that the
sequence of challenges t1, . . . , tn is also unpredictable. To obtain more randomness, the protocol
above can be repeated.

If users have already initialized parameters Θ of the shared Pedersen scheme, the commitment function
Com used is the Pedersen function ComΘ as defined in Appendix B. Otherwise, a commitment
function which does not require the generation of common parameters (but is not suitable for other
tasks such as the generation of our ZKPs) can be used, see for example [12]. This happens if the
above protocol is used to generate the randomness t as input of the Setup function of the shared
Pedersen scheme. In this case, we obtain t by taking as many bits of the sequence t1, t2, . . . as
needed.

Note that the request for a challenge tu is blocking for the user u until all users request a challenge.
However, every user needs the same amount of random challenges to execute Setup or ZKPUniform.
Hence, all these challenges can be requested and used at initialization for Setup, and in a moment of
the computation fixed by all users for ZKPUniform. This prevents that users have to wait for a long
time after a request, as would happen in a setting where the requests are imbalanced.

Finally, to verify that a user u participated correctly, one needs to check that (1) the commitment
cu was properly computed from su, (2) s′u was correctly computed from su−1 and su, and (3) the
challenge tu was correctly computed from tu−1 by the application of H . This can be added to
the verification protocol with O(1) extra computations and messages for every random challenge
generated and the execution of Setup, and does not have a significant impact in the overall complexity.

Appendix D Complexity of GOPA

The complexity of the protocol in terms of computation and communication was summarized in
Theorem 5. This section presents a more detailed analysis of this complexity, relying in particular on
the complexity of the zero knowledge proofs discussed in Appendix B.
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For computation, we take into account regular operations such as floating point sum, product, division,
exponentiation, etc., as well as products and exponentiations in the Pedersen multiplicative group G
described in Appendix B, and cryptographic hash function evaluations. Often, the dominant terms
in the computations are discrete exponentiations in G, which still remain lightweight in current
implementations of Pedersen commitments [39]. For communication, three types of interactions in
the network are taken into account: (1) sending a message to another user in the context of a pairwise
exchange, (2) publishing a message or (3) querying the bulletin board for a set of publications. We
also measure the size of these messages in the number of values that they contain, which in most
cases are elements of Zq and G.

The costs break down as follows:

• The initialization of GOPA requires enrolling users for the computation and defining pa-
rameters of the Pedersen commitment scheme, which has a cost of O(1) per user. The
computation and publication of commitments of the vector X of private values, as well as
the verification that every one of its components is in the range [0, 1] (i.e. Property (8)) with
ZKPRange has a computational and communication cost that is logarithmic in the size of
the range [0, 1]. As the range proof size is small and constant, this cost is dominated by
other costs.

• Interacting with a neighbor to generate a noise term, and publishing a commitment of it
requires O(1) computations and messages for a user. Performing the ZKPLinear proof
to verify Property (6) require O(1) messages and computations (as the linear relation is
composed of 2 terms) for a user and its verifier. As |N(u)| pairwise noise terms are generated
by user u, this has a cost of O(|N(u)|) for communication and computation in total.

• Generating the private Gaussian distribution variable ηu and proving Property
(7) is done by performing ZKPNormal. Given parameter B, this requires
O(log2(1/B)) computations for the generation of ηu in the private averaging phase,
O(log2(1/B) log2(log2(1/B))) computations to generate and verify the ZKP, and O(1)
messages of size O(log2(1/B) log2(log2(log2(1/B)))).

• Finally, the computation and verification of the proof of Property (5) requires the compu-
tation of ZKPLinear over |N(u)| + 3 terms per user, which has a computational cost of
O(|N(u)|) both for the prover and the verifier. The communication cost is ofO(1) messages
of size O(1) as the private values involved in the proof have already been committed for
previous proofs.

The overall computational cost of the private averaging phase for a user u ∈ U is there-
fore O(|N(u)|+ log2(1/B)) and the cost of proving its computations in the verification phase
is O(|N(u)|+ log2(1/B) log2(log2(1/B))). The overall communication cost is composed of
O(|N(u)|) messages of sizeO(1) andO(1) messages of sizeO(log2(1/B) log2(log2(log2(1/B)))).
Additionally, the complexity of verifying the publications of u is the same as the cost of u proving its
computations mentioned above. Finally, the communication cost for the verification of u comes from
querying the bulletin board for all of u’s publications, i.e. the size of all commitments and ZKPs
published, which is O(|N(u)|+ log2(1/B) log2(log2(log2(1/B)))).

As discussed at the end of Appendix B.3, a reasonable value for B in practice is ση/106|UH |.

Appendix E Further Discussion on the Impact of Finite Precision

In practice, we cannot work with real numbers but only with finite precision approximations. We
provide here a brief discussion of the impact of this on the guarantees offered by the protocol. We
emphasize that there is already a large body of work which addresses most of the potential problems
which could arise because of finite precision. Here are the main points:

1. Finite precision can be an issue for differential privacy in general, see e.g. [4] for a study of
the effect of floating point representations. Issues can be overcome with some care, and our
additional encryption does not make the problem worse (in fact we can argue that encryption
typically uses more bits and in our setting this may help).

2. The issue of finite precision has been studied in cryptography. While some operations such
as multiplication can cause additional trouble in the context of homomorphic encryption, in
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our work we use a partially homomorphic scheme with only addition. As a result, we can
just represent our floating point numbers with as many bits (after the decimal dot) as our
variables also have in computer memory.

3. If bandwidth would dictate that we can transfer only at lower precision compared to the
internal representation, a conversion will be needed before encryption (e.g. from 10 digits
to 5 digits after the decimal dot). Still, (a) rounding has been well described in numerical
computing literature, (b) in our case it would not decrease privacy as all our operations are
linear (no sharp differences in behavior if a value changes less than machine precision), and
(c) we feel this would not gain much bandwidth: indeed, in practical applications with sums
over millions of parties (plus some random encryption bits), one would already require more
than 7 digits before the decimal dot, in comparison with which the number of less significant
bits gained is relatively small.
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