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timsi Introduction

A controlled system can be thought as a dynamical system where an agent interacts
with an environment to maximize/minimize a cost function

J = min{drag}, max{lift}, min{noise} ...
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Limsi  Qptimal control: the nonlinear case

I

F(x(1),1) = maXJ' r(x, u)dt st x = f(x,u)

[

» The integrand of the cost function is called reward.
* The integral is the value function to be maximised
* The control law is usually referred to as policy

- Both the policy and the reward are functions (in the continuous case)
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Limsi Hamilton-Jacobi-Bellman (HJB) equation

+At

J(x(), 1) = max J' r(x, u)de + ¥ (x(t + Atr), t + Ar)

[ - v
future value function

The principle of optimality requires that the future value function has to be
maximised expanding in series and taking At — 0

— F(x(1), 1) = max{r(x,u) + V_F(x(), )f(x, u)}

The Hamilton-Jacobi-Bellman eq. (1954) is a functional equation.
The solution is the optimal policy © = 7(x)
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Limsi HJB In discrete form

We introduce in the HJB the term y = ¢ ”" where
p > 0 is the discount factor

pSf (x(1),1) = maxir(x,u) + V7 (x(0), )f(x, u) }

v

Discrete time observations

v

Discounted HJB

Bellman equation J(x,) = maxir(x,u) +yf (Xn+1)}
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Limsi  Actor based RL

S A(x,) =r(x,u) +yf (x,41) Value function
Actor-only methods (reinforce algorithms) 5
One policy is evaluated based on a long-time
trajectory, and explored by perturbing it
An improved version of Monte-Carlo searching
u = 7(x)

Pontryagin maximum principle a necessary
condition for optimality A
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Limsi  Critic based RL

O, u,) =r(x,u) +yQx, 1, U, 1) State-action, or Q-function

Critic-only methods (“human-level” algorithms)

The discounted infinite-horizon optimal problem is
decomposed In local optimal problems.

In principle, satisfies the optimal Bellman equation
If the case is Markovian. It is a sufficient and
necessary condition for optimality
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Cvitanovic, P, et al. (2010). SIAM Journal on Applied Dynamical Systems

Kuramoto-Sivashinsky (KS)
equation models diffusive
instabilities in flame front
and phase turbulence.

Different regimes: steadly,
periodic, chaos.

0 1
—x=—V4x—V2x——\Vx\2
ot 2

We consider a chaotic case,
where the critical parameter
(domain length)
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Limsi - KS system as a plant

Controller
Plant setup p )
A 4 > 2
8 sensors (local measurements) — ===V x=Vx——|Vx|"+f
4 actuators (Gaussian body forcing) ot 2
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timsi Deterministic Policy Gradient (DPG)

|

Actuators

I

Actor Policy

u, = n(x, | m)
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Limsi - Deterministic Policy Gradient (DPG)

Actor Policy g
POMDP: Partial u, = n(x ‘a)) s
A A =
Observable 2
Markov Decision &J
Process l
TD: Temporal
difference POMDP
X W T X Va)Q
Critic

D := Q(x,,u,|0) — r,— yOx,., n(x, ) |0) —> V, D —> QO(x,u,|6)
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timsi Deep D PG Critic update

Q.. are the weights of the Critic
Y Neural Network

Actor Neural Network

P 256 Neurons, 3 Layers
b
S
T Actor update
<
w;; are the weights of the Actor
l T Neural Network
POMDP C't' Neural Network
FitiC Neura etwor
{xt u, xt+1} 128 Neurons, 3 Layers
o1 Wy Tp X
Xy Up Ty X1} i‘ ;

Q(x;, uy)

Silver, D., et al. (2014, June). Deterministic policy gradient algorithms. In ICML.
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Critic update

Update of the models Y T

Actor Neural Network 00,
!

Lims

Actor update
00, on
Va)Q _ Ql‘ [

l T ou, 0w;

/ —
Critic Neural Network a)i — W; T anQ

L]

o1 Uy T Xd ;‘ ; Learn from the observation
X2 U Tp X_y) i‘
5 %

Explore the action-state space
O(x,, u,)

Actuators

Perturbation of the parameters of the
policy, Ornstein-Uhlenbeck process
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t’ms Controlled KS system
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Silver, D., et al. (2014, June), In ICML
Bucci, M.A. et al. (2019), 10.1098/rspa.2019.0351

Actor-Critic algorithm: deep
deterministic policy
gradient (DDPG)

Three policies are identified

Reward defined with
respect of the target states

Ve = _th o xTargetH

Discount factor y = 0.99

Max time: 1 hour training
(Intel I3 CPU, 2015)
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https://royalsocietypublishing.org/doi/full/10.1098/rspa.2019.0351
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msi  Controlled KS system
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The identified policies are robust with respect of the initial conditions due to the

Markiovanity of the Q-function, and the exploration
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\-ims Controlled KS system

Actuator Sensor

We identify complex control laws ;3, “1 |
L

Glass half full: Discovery of e "} ~l

new, nontrivial control laws 5 5

Glass half empty: It is not the

optimal solution obtained in KS o

by Riccati-based LQR. %3 ]
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Conclusions

Deep reinforcement learning is a powerful method for non-linear

control

u'F;E

'“"a»#
Elk .ai'ﬂ-

-Successfully tested on the KS chaotic system More info? Click here!

*Full knowledge of the system is not required
*In principle, the policy is a global optimum if the cost function is

solution of the Bellman equation. In practice this is not guaranteed.

—> Application to NS equations

Abstract: R01.00032 Control by Deep Reinforcement Learning of a
separated flow by Thibaut Guegan et al.
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