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Introduction

A controlled system can be thought as a dynamical system where an agent interacts 
with an environment to maximize/minimize a cost function

𝒥 = min{drag}, max{lift}, min{noise} . . .
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Optimal control: the nonlinear case

st ·x = f(x, u)𝒥(x(t), t) = max
u ∫

T

t
r(x, u)dt

• The integrand of the cost function is called reward. 
• The integral is the value function to be maximised

• The control law is usually referred to as policy

• Both the policy and the reward are functions (in the continuous case)
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The principle of optimality requires that the future value function has to be 
maximised expanding in series and taking

4

Hamilton-Jacobi-Bellman (HJB) equation

Δt → 0

future value function

𝒥(x(t), t) = max
u ∫

t+Δt

t
r(x, u)dt + 𝒥(x(t + Δt), t + Δt)

− ·𝒥(x(t), t) = max
u

{r(x, u) + ∇𝒥(x(t), t)f(x, u)}

The Hamilton-Jacobi-Bellman eq. (1954) is a functional equation. 

The solution is the optimal policy u = π(x)
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We introduce in the HJB the term                 where

           is the discount factor


Bellman equation

5

ρ > 0

ρ𝒥(x(t), t) = max
u

{r(x, u) + ∇𝒥(x(t), t)f(x, u)}

𝒥(xn) = max
u

{r(x, u) + γ𝒥(xn+1)}

γ = e−ρt

γ ∈ (0,1)

HJB in discrete form

Discrete time observations 

Discounted HJB
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A

𝒥π(xn) = r(x, u) + γ𝒥π(xn+1) Value function

u = π(x)

BActor-only methods (reinforce algorithms)


One policy is evaluated based on a long-time 
trajectory, and explored by perturbing it


An improved version of Monte-Carlo searching


Pontryagin maximum principle a necessary 

condition for optimality

Actor based RL
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State-action, or Q-function

Critic-only methods (“human-level” algorithms)


The discounted infinite-horizon optimal problem is 
decomposed in local optimal problems.


In principle, satisfies the optimal Bellman equation 
if the case is Markovian. It is a sufficient and 
necessary condition for optimality

Q(xn, un) = r(x, u) + γQ(xn+1, un+1)

A

B

π1(x)
π2(x)

π3(x)

π4(x)

πn(x)

Critic based RL
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KS system Kuramoto-Sivashinsky (KS) 
equation models diffusive 
instabilities in flame front 
and phase turbulence.


Different regimes: steady, 
periodic, chaos. 


We consider a chaotic case, 
where the critical parameter 
(domain length)

∂x
∂t

= − ∇4x − ∇2x −
1
2

|∇x |2

Cvitanović, P., et al. (2010). SIAM Journal on Applied Dynamical Systems
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Plant setup 
8 sensors (local measurements)

4 actuators (Gaussian body forcing)


∂x
∂t

= − ∇4x − ∇2x −
1
2

|∇x |2 +f

9

KS system as a plant
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Controller
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Deterministic Policy Gradient (DPG)

ut = π(xt |ω)
Actor Policy
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Deterministic Policy Gradient (DPG)
Actor Policy

ut = π(xt |ω)

TD := Q(xt, ut |θ) − rt − γQ(xt+1, π(xt+1) |θ) Q(xt, ut |θ)∇θTD

∇ωQ
     POMDP

rtxt ut xt+1

Critic

      
POMDP: Partial 
Observable 
Markov Decision 
Process


TD: Temporal 
difference
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Actor update 

are the weights of the Actor 
Neural Network 

128 Neurons, 3 Layers

Critic update 
  


are the weights of the Critic 
Neural Network 

256 Neurons, 3 Layers

Critic Neural Network

12

Deep DPG

{xt ut rt xt+1}
{xt−1 ut−1 rt−1 xt}
{xt−2 ut−2 rt−2 xt−1}

xt ut

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

θij

Q(xt, ut)

θij

θij

θij

θij

θij

θij

θij

θij

Se
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Actor Neural Network

…

     POMDP

Silver, D., et al. (2014, June). Deterministic policy gradient algorithms. In ICML.
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Update of the models

{xt ut rt xt+1}
{xt−1 ut−1 rt−1 xt}
{xt−2 ut−2 rt−2 xt−1}

xt ut

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

ωij

Critic update 

  


Actor update 

Q(xt, ut)

θij

θij

θij

θij

θij

θij

θij

θij
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Actor Neural Network

Critic Neural Network

…

     POMDP

∇θTD =
∂∥Qt − (rt + Qt+1)∥

∂θi

θ′ i = θi − α∇θTD

∇ωQ =
∂Qt

∂ut

∂πt

∂ωi

ω′ i = ωi + α∇ωQ

Learn from the observation 

Explore the action-state space 
Perturbation of the parameters of the 
policy, Ornstein-Uhlenbeck process
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Controlled KS system
Body Level One

Body Level Two

Body Level Three

Body Level Four

Body Level Five

Silver, D., et al. (2014, June), In ICML 
Bucci, M.A. et al. (2019), 10.1098/rspa.2019.0351

Actor-Critic algorithm: deep 
deterministic policy 
gradient (DDPG)


Three policies are identified


Reward defined with 
respect of the target states


Discount factor 


Max time: 1 hour training 
(Intel I3 CPU, 2015)

γ = 0.99

rt = −∥xt − xTarget∥

https://royalsocietypublishing.org/doi/full/10.1098/rspa.2019.0351
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Controlled KS system

The identified policies are robust with respect of the initial conditions due to the 
Markiovanity of the Q-function, and the exploration
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Controlled KS system
Actuator Sensor
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We identify complex control laws


Glass half full: Discovery of 
new, nontrivial control laws


Glass half empty: It is not the 
optimal solution obtained in KS 
by Riccati-based LQR.
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Conclusions

More info? Click here!

Deep reinforcement learning is a powerful method for non-linear 

control


•Full knowledge of the system is not required


•In principle, the policy is a global optimum if the cost function is 

solution of the Bellman equation. In practice this is not guaranteed.


•Successfully tested on the KS chaotic system


—> Application to NS equations


Abstract: R01.00032 Control by Deep Reinforcement Learning of a 

separated flow by Thibaut Guegan et al.


