

Closed-loop optimal control for shear flows using reinforcement learning

O. Semeraro¹, M.A. Bucci², L. Mathelin¹

semeraro@limsi.fr

- 1) LIMSI, CNRS, Université Paris-Saclay, Orsay (FR)
- 2) TAU, Inria, Université Paris-Saclay, CNRS, LRI, Orsay, (FR)

Limsi Introduction

A controlled system can be thought as a dynamical system where an **agent** interacts with an **environment** to maximize/minimize a **cost function**

$$\mathcal{J} = \min\{drag\}, \max\{lift\}, \min\{noise\}...$$

Limsi Optimal control: the nonlinear case

$$\mathcal{J}(x(t), t) = \max_{u} \int_{t}^{T} r(x, u) dt \qquad st \qquad \dot{x} = f(x, u)$$

- The integrand of the cost function is called reward.
- The integral is the value function to be maximised
- The control law is usually referred to as policy
- Both the **policy** and the **reward** are **functions** (in the continuous case)

Limsi Hamilton-Jacobi-Bellman (HJB) equation

$$\mathcal{J}(x(t), t) = \max_{u} \int_{t}^{t+\Delta t} r(x, u)dt + \mathcal{J}(x(t+\Delta t), t+\Delta t)$$
 future value function

The principle of optimality requires that the future value function has to be **maximised** expanding in series and taking $\Delta t \rightarrow 0$

$$-\mathcal{J}(\dot{x(t)},t) = \max_{u} \{ r(x,u) + \nabla \mathcal{J}(x(t),t) f(x,u) \}$$

The Hamilton-Jacobi-Bellman eq. (1954) is a functional equation. The solution is the **optimal policy** $u = \pi(x)$

Limsi HJB in discrete form

We introduce in the HJB the term $\gamma = e^{-\rho t}$ where $\rho > 0$ is the **discount factor**

Discounted HJB

$$\rho \mathcal{J}(x(t), t) = \max_{u} \{ r(x, u) + \nabla \mathcal{J}(x(t), t) f(x, u) \}$$

Discrete time observations

Bellman equation

$$\mathcal{J}(x_n) = \max_{u} \{ r(x, u) + \gamma \mathcal{J}(x_{n+1}) \}$$

Limsi Actor based RL

$$\mathcal{J}_{\pi}(x_n) = r(x, u) + \gamma \mathcal{J}_{\pi}(x_{n+1})$$

Value function

Actor-only methods (reinforce algorithms)

One **policy** is evaluated based on a long-time trajectory, and explored by perturbing it

An improved version of Monte-Carlo searching

Pontryagin maximum principle a necessary condition for optimality

Limsi Critic based RL

$$Q(x_n, u_n) = r(x, u) + \gamma Q(x_{n+1}, u_{n+1})$$

State-action, or Q-function

Critic-only methods ("human-level" algorithms)

The discounted infinite-horizon optimal problem is decomposed in local optimal problems.

In principle, satisfies the optimal **Bellman equation** if the case is **Markovian**. It is a **sufficient** and **necessary** condition for optimality

Limsi KS system

Kuramoto-Sivashinsky (KS) equation models diffusive instabilities in flame front and phase turbulence.

Different regimes: steady, periodic, chaos.

$$\frac{\partial x}{\partial t} = -\nabla^4 x - \nabla^2 x - \frac{1}{2} |\nabla x|^2$$

We consider a **chaotic case**, where the critical parameter (domain length)

Cvitanović, P., et al. (2010). SIAM Journal on Applied Dynamical Systems

Limsi

KS system as a plant

Plant setup

8 sensors (local measurements)

4 actuators (Gaussian body forcing)

$$\frac{\partial x}{\partial t} = -\nabla^4 x - \nabla^2 x - \frac{1}{2} |\nabla x|^2 + f$$

Limsi

Deterministic Policy Gradient (DPG)

Limsi Deterministic Policy Gradient (DPG)

POMDP: Partial

Observable

Markov Decision

Process

TD: Temporal difference

Critic

$$TD := Q(x_t, u_t | \theta) - r_t - \gamma Q(x_{t+1}, \pi(x_{t+1}) | \theta) \longrightarrow \nabla_{\theta} TD \longrightarrow Q(x_t, u_t | \theta)$$

Limsi Deep DPG

Critic update

 θ_{ij} are the weights of the Critic Neural Network

256 Neurons, 3 Layers

Actor update

 ω_{ij} are the weights of the Actor Neural Network

128 Neurons, 3 Layers

Silver, D., et al. (2014, June). Deterministic policy gradient algorithms. In ICML.

Limsi Update of the models

Critic update

$$\nabla_{\theta} TD = \frac{\partial \|Q_t - (r_t + Q_{t+1})\|}{\partial \theta_i}$$
$$\theta_i' = \theta_i - \alpha \nabla_{\theta} TD$$

Actor update

$$\nabla_{\omega} Q = \frac{\partial Q_t}{\partial u_t} \frac{\partial \pi_t}{\partial \omega_i}$$
$$\omega_i' = \omega_i + \alpha \nabla_{\omega} Q$$

Learn from the observation

Explore the action-state space

Perturbation of the parameters of the policy, Ornstein-Uhlenbeck process

Limsi Controlled KS system

Silver, D., et al. (2014, June), In *ICML* Bucci, M.A. et al. (2019), <u>10.1098/rspa.2019.0351</u> Actor-Critic algorithm: deep deterministic policy gradient (DDPG)

Three policies are identified

Reward defined with respect of the target states

$$r_t = -\|x_t - x_{Target}\|$$

Discount factor $\gamma = 0.99$

Max time: 1 hour training (Intel I3 CPU, 2015)

Limsi Controlled KS system

The identified policies are **robust** with respect of the initial conditions due to the **Markiovanity** of the **Q-function**, and the **exploration**

Controlled KS system

We identify complex control laws

Glass half full: Discovery of new, nontrivial control laws

Glass half empty: It is not the optimal solution obtained in KS by Riccati-based LQR.

Limsi Conclusions

Deep reinforcement learning is a powerful method for non-linear control

- Full knowledge of the system is not required
- •In principle, the policy is a global optimum if the cost function is solution of the Bellman equation. In practice this is not guaranteed.
- Successfully tested on the KS chaotic system

-> Application to NS equations

Abstract: R01.00032 *Control by Deep Reinforcement Learning of a separated flow* by Thibaut Guegan et al.