
HAL Id: hal-03104130
https://hal.inria.fr/hal-03104130

Preprint submitted on 8 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling SQL Nulls with Two-Valued Logic
Leonid Libkin, Liat Peterfreund

To cite this version:

Leonid Libkin, Liat Peterfreund. Handling SQL Nulls with Two-Valued Logic. 2021. �hal-03104130�

https://hal.inria.fr/hal-03104130
https://hal.archives-ouvertes.fr

ar
X

iv
:2

01
2.

13
19

8v
1

 [
cs

.D
B

]
 2

4
D

ec
 2

02
0

Handling SQL Nulls with Two-Valued Logic

Leonid Libkin
Univ. Edinburgh / ENS-Paris, PSL / Neo4j

libkin@inf.ed.ac.uk

Liat Peterfreund
ENS-Paris, PSL

liatpf.cs@gmail.com

ABSTRACT

The design of SQL is based on a three-valued logic (3VL), rather

than the familiar Boolean logic with truth values true and false,

to accommodate the additional truth value unknown for handling

nulls. It is viewed as indispensable for SQL expressiveness, but is at

the same time much criticized for leading to unintuitive behavior

of queries and thus being a source of programmer mistakes.

We show that, contrary to the widely held view, SQL could have

been designed based on the standard Boolean logic, without any

loss of expressiveness and without giving up nulls. The approach

itself follows SQL’s evaluation which only retains tuples for which

conditions in the WHERE clause evaluate to true. We show that

conflating unknown, resulting from nulls, with false leads to an

equally expressive version of SQL that does not use the third truth

value. Queries written under the two-valued semantics can be ef-

ficiently translated into the standard SQL and thus executed on

any existing RDBMS. These results cover the core of the SQL 1999

Standard, including SELECT-FROM-WHERE-GROUP BY-HAVING

queries extended with subqueries and IN/EXISTS/ANY/ALL condi-

tions, and recursive queries. We provide two extensions of this re-

sult showing that no other way of converting 3VL into Boolean

logic, nor any other many-valued logic for treating nulls could

have possibly led to a more expressive language.

These results not only present small modifications of SQL that

eliminate the source of many programmer errors without the need

to reimplement database internals, but they also strongly suggest

that new query languages for various data models do not have to

follow the much criticized SQL’s three-valued approach.

ACM Reference Format:

Leonid Libkin and Liat Peterfreund. 2020. Handling SQL Nulls with Two-

Valued Logic. In . ACM, New York, NY, USA, 13 pages. https://doi.org/...

1 INTRODUCTION

To process data with nulls, SQL uses a three-valued logic (3VL).

This is one of the most often criticized aspects of the language,

and one that is very confusing to programmers. Database texts are

full of damning statements about the treatment of nulls such as the

inability to explain them in a “comprehensible” manner [19], their

tendency to “ruin everything” [9] and outright recommendations

to “avoid nulls” [17]. The latter, however, is often not possible: in

large volumes of data, incompleteness is hard to avoid.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

, ,

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/...

Issues related to null handling stem from the fact that we do

not naturally think in terms of a three-valued logic; rather we try

to categorize facts as true or false. Once the third truth value –

in the case of SQL, unknown – enters the picture, our usual logic

often proves faulty leading to errors and unexpected behavior. We

illustrate this by two commonly assumed query rewriting rules.

The first of the rules is the translation of IN subqueries into

EXISTS queries, described in multiple textbooks. For example,

(Q_1): SELECT R.A FROM R WHERE R.A NOT IN

(SELECT S.A FROM S)

would be translated into

(Q_2): SELECT R.A FROM R WHERE NOT EXISTS

(SELECT S.A FROM S WHERE S.A=R.A)

(see e.g., [41] explaining in detail many translations presented in

database texts). This, however, is not an equivalent rewriting: if

' = {1,NULL} and (= {NULL} then the first query produces the

empty table while the latter returns ' itself. This presumed, but in-

correct, equivalence is known to be a trap many SQL programmers

are not aware of, see [7, 9].

Next, consider two queries presented as an illustration of the

HoTTSQL prover for showing equivalences among queries [12]

(Q_3): SELECT DISTINCT X.A

FROM R X, R Y WHERE X.A=Y.A

(Q_4): SELECT DISTINCT R.A FROM R

While claimed to be equivalent in [12], &3 and &4 are different:

if ' = {NULL} then &3 returns no rows while &4 returns a sin-

gle row with a NULL in it. In fairness to [12], it does not consider

databases with nulls, but it is illustrative nonetheless that an “easy”

equivalence example they chose is that of two non-equivalent queries

on the simplest possible database containing NULL.

Over the years two lines of thought emerged for dealing with

these problems. One is to provide a more complex logic for han-

dling nulls, accounting for more varied types of those than SQL

presents [8, 13, 18, 24, 34, 44]. These however did not take off, as

the logic is even harder for the programmer. An alternative is to

produce a language with no nulls at all, and thus resort to the usual

two-valued logic. This proposal found more success, for example

in the “3rd manifesto” [16] and the Tutorial D language, and in the

LogicBlox system [3] which used the 6th normal form to eliminate

nulls. But nulls do occur in many scenarios and need to be handled;

the world is not yet ready to dismiss them altogether.

What is missing in this picture is a different line of thought:

namely, a language that handles nulls but in doing so, uses the fa-

miliar two-valued Boolean logic, rather than a many-valued logic.

In this proof-of-concept paper we show that SQL indeed could

have been designed along these lines. To have a language that

uses nulls and handles them with the familiar two-valued logic,

we would need to fulfill the following criteria.

http://arxiv.org/abs/2012.13198v1
https://doi.org/...
https://doi.org/...

, , Leonid Libkin and Liat Peterfreund

(1) On databaseswithout nulls queries would bewritten exactly

as before, and return the same results (do not make changes

unless necessary).

(2) The version of SQL with nulls and two-valued logic will

have exactly the same expressiveness as its version based

on 3VL (do not lose any queries; do not invent new ones).

(3) For each query currently expressible in SQL, the size of the

equivalent query in the two-valued language should be of

the same order, e.g., atmost linear (do notmake queries overly

complicated).

Why dowe think this is achievable? After all, many years of SQL

practice taught generations of programmers that one needs a 3VL

to handle nulls. The main reason to believe that this is not so is two

recent results, that made steps in the right direction, albeit for sim-

pler languages. First, [28] showed that in the most basic fragment

of SQL corresponding to relational algebra (selection-projection-

join-union-difference), the truth value unknown can be eliminated

from conditions in WHERE. Essentially, it rewrote conditions by

adding IS NULL or IS NOT NULL, in a way that they could ever

evaluate to unknown. Following that, [15] considered many-valued

first-order predicate calculi under set semantics, and showed that

no many-valued logic gives us extra power over the Boolean logic.

Our goal is to see if these purely theoretical results are applica-

ble to the language that programmers actually use, SQL1 . We start

by looking at the core of it formalized in the 1992 version of the

Standard, that includes the following features:

• full relational algebra;

• arithmetic functions and comparison predicates (+, ·,≤ etc.);

• aggregate functions and GROUP BY;

• comparisons involving aggregates (HAVING);

• comparisons involving subqueries (IN, EXISTS, ALL, ANY);

• set operations (UNION, INTERSECT, EXCEPT, with or with-

out the ALL keyword);

• conditional statements.

A significant extension of the 1999 version of the Standard, also

known as SQL3, added recursion in the form of

• WITH RECURSIVE clause.

Our main result is as follows: for these languages – SQL 1992 or

SQL 1999 – our key goals 1–3 above are achievable, and SQL’s 3VL

can be eliminated in favor of the usual Boolean logic.

The core idea To explain it, consider where unknown appears in

SQL query evaluation. This happens when one evaluates a predi-

cate, such as R.A=S.A, and one or more arguments are NULL. Thus,

if we were to move to the Boolean logic, a minimal change is to as-

signed one of the Boolean truth values to such comparisons. And

SQL already does so, in a way. In fact, SQL conflates unknownwith

false upon exiting theWHERE clause. Indeed, only tuples for which

the condition inWHERE is true are selected, and thus at the end of

evaluating the condition, unknown is merged with false; in other

words, 3VL only exists while the WHERE clause is evaluated, and

afterwards it is all back to the standard Boolean logic.

1A note from the authors to the reviewers: this is the reason we chose category 3
in the rather loose classification of papers into three categories, that is likely to be
revamped or abolished soon.

Our main result says that changing the evaluation of conditions

in this way leads to a two-valued version of SQL that satisfies our

desiderata. Specifically, a language with the support for the usual

relational algebra operators, plus aggregation, plus recursion, re-

mains equally expressive to SQL based on the three-valued logic,

the conversions of queries are easy, and none are necessary on

databases without nulls.

We go even further and prove a number of extensions of this

result. First, we show that other ways of changing the evaluation

of conditions give us equally expressive languages. One of them is

of particular note as it is used in SQL. This is the syntactic equality,

in which NULL = NULL results in true. It is used in in set opera-

tions and grouping. For example, {1,NULL} EXCEPT {1} produces
{NULL}, and on a relation) = {(NULL, 2), (NULL, 3)}, the query
SELECT A, SUM(B) FROM T GROUP BY A results in {(NULL, 5)},
applying the syntactic equality to nulls.

Another result that we prove stems from the question whether

a different many-valued logic could have given us a more expres-

sive version of SQL. We provide a negative answer to this, further

strengthening the argument for using the familiar Boolean logic

for handling nulls.

Applicability of the results While the main conclusion is that SQL

could have been designed without the recourse to a many-valued

logic, we would like to use it as a proof of concept showing that:

• future languages can be designed using the familiar two-

valued logic; and

• they need not do it by eliminating nulls altogether.

There are multiple languages under design at all times, SQL itself

included as it constantly changes and each release of the Standard

adds features. There is much activity in the field of graph databases

[2, 20, 23, 42] with a new unifying standard called GQL emerging

[43]. This could be a good testbed, as well as addition of nulls to

languages that deliberately omitted them in order to avoid the ab-

normalities of the three-valued logic [3, 16].

Crucially, for RDBMSs, the changes we propose do not necessi-

tate changes to the underlying implementation. A user can write a

query under a two-valued Boolean semantics. Then it is translated

into an equivalent query under the standard SQL semantics, which

any of the existing engines can evaluate. The translated query itself

only marginally exceeds the size of the original in the worst case,

and in many cases, as we shall see, no changes are even needed.

Another potential application is in the design and verification of

query optimizers. As already mentioned, 3VL invalidates optimiza-

tion rules that one takes for granted in research papers. Thus, one

needs to build tools for verifying actual optimizers, to ensure their

rules are correct. This need is well recognized [11, 12]. However,

most existing verification tools are based on Boolean logic, and it

thus appears that such tools would be better suited for verifying a

query language itself based on a two-valued logic. In addition, we

shall see that two-valued languages are actually better behaved in

terms of query equivalences: some “false equivalences” (i.e., those

true only on databases without nulls) become true on all databases

when we pass from 3VL to two-valued logic. This is an additional

argument for using the logic programmers and DBMS implemen-

tors are more familiar with.

Handling SQL Nulls with Two-Valued Logic , ,

The choice of language We need to prove results formally, and thus

we need a language as closely resembling SQL as possible and yet

having a formal compositional semantics one can reason about. For

this purpose, we choose an extended relational algebra that resem-

bles very much the algebra into which SQL is translated into in

RDBMS implementations. It expands the standard textbook opera-

tions of relational algebra with several features. First, it is inter-

preted under bag semantics, and duplicate elimination is added.

Second, selection conditions are expanded significantly. They in-

troduce testing for nulls, use SQL 3VL and SQL’s rules for the in-

troduction of unknown, and have conditions of the form C̄ ∈ � and

empty(�) for directly encoding IN and EXISTS subqueries, as well

as conditions C = any(�) and C = all(�) (and likewise for other

comparisons) for encoding ANY and ALL subqueries. Third, the al-

gebra has aggregate functions and grouping operation. Fourth, it

allows function application to mimic expressions in the SELECT

clauses. And finally, it has an iteration operation with the seman-

tics of SQL recursive queries. For someone familiar with SQL, it

should be clear that the language faithfully captures SQL’s seman-

tics while allowing us to prove results formally.

Related work The idea of using Boolean logic for nulls predates

SQL; it actually appeared in QUEL [39] (see details in the latest

manual [32]). Afterwards however the main direction was in mak-

ing the logic of nulls more rather than less complicated, with pro-

posals ranging from three to six values [13, 18, 24, 34, 44] or pro-

ducing more complex classifications of nulls, e.g., [8, 45]. Elaborate

many-valued logics for handling incomplete and inconsistent data

were also considered in AI literature, see for example [4, 22, 25].

Proposals for eliminating nulls have appeared in [3, 16].

There is a large body of work on achieving correctness of query

results on databaseswith nulls where correctness assumes the stan-

dard notion of certain answers [31]. Among such works are [21,

26, 27, 35]. They assumed either SQL’s 3VL, or the Boolean logic

of marked nulls [31], and showed how query evaluation could be

modified to achieve correctness, but they did not question the un-

derlying logic of nulls. To the contrary, we are concerned with find-

ing a logic that makes it more natural for programmer to write

queries; once this is achieved, one will need to modify evaluation

schemes to produce subsets of certain answers if one so desires. For

connection between theoretical models such as marked or Codd

nulls used in much of such work and real SQL nulls, see [29].

Some papers looked into handling nulls and incomplete data in

bag-based data models as employed by SQL [14, 30, 37] but none

concentrated on the underlying logic of nulls.

Organization In Section 2 we present the syntax and the seman-

tics of the language. In Section 3 we explain how to eliminate un-

known to achieve our desiderata. Section 4 looks into other two-

valued semantics, while Section 5 shows that no othermany-valued

logic could have achieved additional expressiveness. Conclusions

are in Section 6. Complete proofs are in the appendix.

2 QUERY LANGUAGE: RAsql
We now settle on the language. Given the idiosyncrasies of SQL’s

syntax, it is not the ideal language – syntactically – to reason about.

We know however that its queries are all translatable into an ex-

tended relational algebra; indeed, this is what is done inside every

RDBMS, and multiple such translations are described in the litera-

ture [5, 10, 28, 36, 41].

Thus, we shall work with relational algebra, but not the text-

book version of it. Rather we look at the version of the language

called RAsql that is very close to what real-life SQL queries are

translated into. In particular it will be a typed relational algebra,

as we need to distinguish numerical attributes over which aggre-

gation is performed. It will include constructs for grouping and

computing aggregates, as well as comparing aggregates. Its condi-

tionswill include IN and EXISTS for direct expression of subqueries

rather than translating them via joins. This will cover the essential

SQL 1992 features. Then we add an iteration operation that works

in the same way as SQL’s WITH RECURSIVE, added in SQL 1999.

2.1 Data Model

The usual presentation of relational algebra assumes a countably

infinite domain of values. Since we handle languages with aggrega-

tions, we need to distinguish columns of numerical types. As not to

over-complicate the model, we assume two types: a numerical and

non-numerical one (we call it the ordinary type as it corresponds to

the presentation of relational algebra one ordinarily finds in text-

books). This will be without any loss of generality as the treatment

of nulls as values of all types is the same, except numerical as nulls

behave differently with respect to aggregation.

Towards that goal, we assume the following pairwise disjoint

countable infinite sets:

• Name of attribute names, and

• Num of numerical values, and

• Val of (ordinary) values.

Each of these has a type whose value is either o (ordinary) or n

(numerical). If# ∈ Name, then type(#) indicates whether columns

contain elements of ordinary type or numerical type; one can think

of this as the usual declarations in CREATE TABLE statements in

this simple type system. Furthermore, type(4) = n if 4 ∈ Num
and type(4) = o if 4 ∈ Val.

We use the fresh symbol NULL to denote the null value.

Typed records and relations are defined as follows. Let g :=
g1 · · · g= be a word over the alphabet {o, n}. A g-record 0̄ with arity

= is a tuple (01, · · · , 0=) where

• 08 ∈ Num ∪ {NULL} whenever g8 = n, and

• 08 ∈ Val ∪ {NULL} otherwise (whenever g8 = o).

Each =-ary relation symbol ' in the schema has an associated

sequence ℓ(') = #1 · · ·#= ∈ Name= of its attribute names. The

type of ' is then the sequence type(') = type(#1) · · · type(#=).
A relation R over ' is then a bag of type(')-records, i.e., records
compatiblewith the type of'. As in SQL, we use bag semantics, i.e.,

a record may appear more than once in a relation. We also speak

of bags of g-records as g-relations.

For a g-relation R write 0̄ ∈: R if 0̄ occurs : times in R. In

particular, 0̄ ∈0 R means that 0̄ does not occur in R.

A relation schema S is a set of relation symbols and their types,

i.e., a set of pairs (', type(')). A database� over a relation schema

S associatewith each (', type(')) ∈ S a relation of type(')-records.
The duplicate eliminating operator Y(R) turns R into set that

contains every g-record in R once. Formally, 0̄ ∈ Y(R) iff 0̄ ∈:
R for some : > 0. The cardinality Card(R) of R as the sum of

, , Leonid Libkin and Liat Peterfreund

Terms

C := = | 2 | NULL | # | 5 (C1, · · · , C:) = ∈ #D<, 2 ∈ Val, # ∈ Name, 5 ∈ Ω

Expressions

� := ' (base relation)

cC1 [�# ′
1], · · ·,C<[�# ′

<](�) (generalized projection with optional renaming)

f\ (�) (selection)

� × � (product)

� ∪ � (union)

� ∩ � (intersection)

� − � (difference)

Y(�) (duplicate elimination)

Group#̄ 〈�1(#1)[�# ′
1], · · · , �<(#<)[�# ′

<]〉(�) (grouping/aggregation with optional renaming)

Atomic conditions

02 := t | f | isnull(C) | C̄
.
= C̄ ′ | C̄ ∈ � | empty(�) | %(C̄) | C l any(�) | C l all(�)

% ∈ Ω l ∈ {=, 6=, <,>,≤, ≥}

Conditions

\ := 02 | \ ∨ \ | ¬\ | \ ∧ \

Figure 1: Syntax of RAsql

the number of occurrences of different g-records in it. Formally,

Card(R) :=
∑
0̄∈:R : . Inwhat follows, we omit the g from g-record

or g-relation if it is not significant or clear from the context.

Since we are dealing with bags rather than sets, we interpret

the operators union ∪, intersection ∩, difference −, and Cartesian

product × with the standard bag semantics:

• Union: 0̄ ∈: R ∪ S iff 0̄ ∈= R and 0̄ ∈< S and : = = +<;

• Intersection: 0̄ ∈: R ∩ S iff 0̄ ∈= R and 0̄ ∈< S and : =
min(=,<);

• Difference: 0̄ ∈: R − S iff 0̄ ∈= R and 0̄ ∈< S and : =
max(= −<, 0);

• Cartesian Product: (0̄, 1̄) ∈: R × S iff 0̄ ∈= R and 1̄ ∈< S

and : = = ·<.

Note that the first three correspond to SQL’s UNION ALL,

INTERSECT ALL, and EXCEPT ALL; without ALL, these are fol-

lowed by applying duplicate elimination.

2.2 Syntax

To define the syntax of our relational algebra, we define a term as

either a numerical value in Num, or an ordinary value in Val, or
NULL, or a name in Name, or an element of the form 5 (C1, · · · , C:)

where 5 is a :-ary numerical function, that is, 5 : Num: → Num,

and C1, · · · , C: are terms. For example, addition and multiplication

are binary numerical functions. As we shall see in the descrip-

tion of the semantics, it will be well-defined if the argument terms

C1, · · · , C: evaluate to values of the numerical type.

A :-ary numerical predicate is a relation symbol whose type is

n: for some positive integer : . For example, ≤ is a binary numerical

predicate. An aggregate function � is a function � that maps bags of

numerical values into a numerical value (i.e., it maps bags whose

elements are from Num into a single element in Num). For exam-

ple, SQL’s aggregates COUNT, AVG, SUM, MIN, MAX are such.

Relational algebra considered here is parameterized by a collec-

tionΩ of numerical predicates, functions, and aggregate functions.

We assume that the standard comparison predicates =, 6=, <, >,≤

, ≥ are always present over numbers. Our results on translationwill

be true for every possible collection of predicates and functions.

Given a schema S and such a collectionΩ, the syntax of RAsql
expressions and conditions over S ∪ Ω is given in Fig. 1, where

each C8 is a term, each #8 , #
′
8 is a name, each #̄ is a tuple of names,

and each �8 is an aggregate function. In the generalized projection

and in the grouping/aggregation, the parts in the squared brackets

(i.e., [�#8] and [�# ′
8]) are optional renamings.

The size of an expression is defined in the standard way as the

size of its parse tree.

In what follows, we restrict our attention to expressions with

well-defined semantics (e.g., we forbid aggregation over non-

numerical columns or functions applied to arguments of wrong

types). The next two sections present the semantics: first at the

intuitive level, and then formally.

2.3 Informal Semantics

We now offer an informal explanations of the semantics, with the

formal semantics presented in the next section. In RAsql expres-

sions, ' ranges over relation symbols in S.

Terms are either constants of numerical or ordinary type, or

NULL, or an attribute name, or function application. For example,

A, 2 are terms as are A+2 and A∗2.

Generalized projection corresponds to SQL’s SELECT clause. In

generalized projections, each term C8 is evaluated and added as a

column to the result. Such terms may refer to names from Name
that are among attributes of the result of the expression �. Optional

renaming allows us to rename such columns, simulating AS in SQL.

To see a concrete example, to express

SELECT A , B , A+2 ,A∗B FROM R

Handling SQL Nulls with Two-Valued Logic , ,

for a relation ' with attributes �, � we would use

c�,�,add2(�),mult(�,�)(')

where add2(G) = G + 2 and mult(G,~) = G · ~.

Names of columns are unique and can be specified explicitly by

#8 in case the optional [� #8] part appears. The content of these
square brackets corresponds to whats comes right after SQL’s re-

naming key word AS. (Names cam also be derived implicitly by the

function Name that we discuss later.) For example

SELECT A , B , A+2 AS C , A∗B AS D FROM R

would be translated into

c�,�,add2(�)��,mult(�,�)�� (')

Projection follows SQL’s bag semantics. That is, for tuple

(01, · · · , 0=) in the result of �, it computes the values of terms

C1, · · · , C< and outputs them as values of (optionally renamed) at-

tributes.

Selection, as usual, evaluates the condition \ for each tuple, and

only keeps tuples for which the condition is true (i.e., not false or

unknown). Operations of generalized projection and selection cor-

respond to sequential scans in query plans (with filtering in the

case of selection).

Other operations have the standard meaning under the bag se-

mantics: for union, intersection, difference, and Cartesian product,

it was described above. The operation Y eliminates duplicates and

keeps one copy of each record.

We follow SQL’s semantics of functions: if one of its arguments

is NULL, then the result is null. For example, 3 + 2 gives 5, but

NULL+ 2 gives NULL.

Before looking at grouping/aggregation, we deal with the con-

ditions. For each predicate % ∈ Ω we assume its meaning is well

defined when its arguments are not NULL (e.g., ≤ on numbers).

Then this is the meaning that is used when all arguments are

not NULL, and if one is NULL, then the value is unknown (u). A

special case of this is equality, in fact equality of tuples of terms

(C1, . . . , C<)
.
= (C ′1, . . . , C

′
<), which is the conjunction of C8

.
= C ′8 for

all 8 ≤ <. The condition isnull(C) tests if the value of term C is

NULL.

The condition C̄ ∈ �, not typically included in relational algebra,

tests whether a tuple belongs to the result of a query, and corre-

sponds to SQL’s IN subqueries. The condition empty(�) checks

if the result of � is empty, and corresponds to SQL’s EXISTS sub-

queries.

One might be tempted to say that these are expressible via joins

in traditional relational algebra. There is a good reason to include

them directly. First, we want to stay as close to SQL as possible.

Even more importantly, these conditions behave differently in the

presence of nulls, and their expressibility via joins would require

complex conditions checking which attributes values are NULL.

Indeed, as we shall see, they behave differently with respect to

treatment of nulls; in fact EXISTS subqueries follow the two-valued

logic, which IN subqueries are based on the three-valued logic.

Other predicates not typically included in relational algebra pre-

sentation, though included here for direct correspondence with

SQL, are ALL and ANY comparisons. Let � be an expression that

returns a table with a single numerical column, C a term, and l a

comparison. Then C l any(�)means that there exists a value C ′ in �

so that C l C ′ holds, and C l all(�)means that C l C ′ holds for each

value C ′ in � (in particular, if � returns no tuples, this condition is

true). If l is = or 6=, conditions with any and all are applicable

at either ordinary or numerical type; if l is one of <,≤, >,≥, then

C and � must be of numerical type.

Finally, we describe the operator

Group#̄ 〈�1(#1), · · · , �<(#<)〉(�). The tuple #̄ lists attributes

in GROUP BY, �8(#8) are aggregate functions �8 over numerical

columns #8 possibly named # ′
8 (when [� # ′

8] is specified). For

example, to express

SELECT A , COUNT(B) AS C , SUM(B) FROM R GROUP BY A

we would use

Group� 〈�count(�)[��], �sum(�)〉(')

where �count({01, . . . , 0=}) = = and �sum({01, . . . , 0=}) = 01 +
· · ·+0= . Note that #̄ could be empty; this corresponds to comput-

ing aggregates over the entire table, without grouping, for example,

as in SELECT COUNT (B), SUM (B) FROM R.

Example 1. We start by showing how queries &1–&4 from the

introduction are expressible in RAsql:

&1 = f¬('.�∈()(')

&2 = fempty(f'.�=(.�(())(')

&3 = Y
(
c- .� (f- .�=. .� (d'.�→- .�(') × d'.�→. .�(')))

)

&4 = Y (c'.��- .�('))

As a more complex example we look at query &5, which is a

slightly simplified (to fit in one column) query 22 from the TPC-

H benchmark [40]:

SELECT c_nat ionkey , COUNT(c _ cu s t key)

FROM customer

WHERE c _ a c c t b a l >

(SELECT avg (c _ a c c t b a l)

FROM customer WHERE c _ a c c t b a l > 0 . 0 AND

c_cu s t key NOT IN (SELECT o_custkey FROM o r d e r s))

GROUP BY c_na t i onkey

In translations below, we use abbreviations� for customer and$

for orders, and abbreviations for attributes like 2_= for c_nationkey

etc. The NOT IN condition in the subquery is then translated as

¬(2_2 ∈ c>_2($)), thewhole condition is translated as \ := (2_0 >

0) ∧ ¬(2_2 ∈ c>_2($)) and the aggregate subquery becomes

&066 = Group∅ 〈�avg(2_0)〉
(
c2_0(f\ (�))

)
.

Notice that there is no grouping for this aggregate, hence the

empty set of grouping attributes. Then the condition in theWHERE

clause of the query isNext condition\ ′ := 2_0 > any(&066)which
is then applied to � , i.e., f2_0>any(&066)(�), and finally grouping

by 2_= and counting of 2_0 are performed over it, giving us

Group2_= 〈�count(2_2)〉(f2_0>any(&066)(�)) .

, , Leonid Libkin and Liat Peterfreund

Putting everything together, we arrive at the final translation into

RAsql:

Group2_= 〈�count(2_2)〉
(
f
2_0>any

(
Group∅ 〈�avg(2_0)〉

(
c2_0(f\ (�))

))(�)
)
.

2.4 Formal Semantics

We next define the formal semantics of RAsql expressions. This is

done in the spirit of [5, 12, 28] and is necessary for formally prov-

ing the results about eliminating three-valued logic. That said, the

reader who wants to understand the result and rely on the infor-

mal explanation of the semantics given in the previous section can

skip these technical details.

We define the semantic function

J�K�,[

which is the result of evaluation of expression � on database� un-

der the environment [. The environment provides values of param-

eters of the query. Indeed, to give a semantics of a query with sub-

queries, we need to define the semantics of subqueries aswell. Con-

sider for example a subquery SELECT S.A FROM SWHERE S.A=R.A

of query &2 from the Introduction. Here R.A is a parameter, and

to compute the query we need to provide its value. Thus, an envi-

ronment [is a partial mapping from the set Name of names to the

union Val ∪Num ∪ {NULL}.

Recall that every relation ' is associated with a sequence ℓ(')
of attribute names. Just as SQL queries do, every RAsql expression

� produces a table whose attribute similarly have names. We start

by defining those in Fig. 2a. We make the assumption that names

do not repeat; this is easy to enforce with renaming. This differs

from SQL where names in query results can repeat, and this point

was rather extensively discussed in [28]. However, the treatment

of repeated names in the definition of the semantics of SQL queries

is completely orthogonal to the treatment of nulls, and thus we can

make this assumptionwithout loss of generality so as not to clutter

the description of our translations with the complexities coming

from treating repeated attributes.

Next, we define the semantics of terms: it is given by the envi-

ronment, see Fig. 2b.

After that we give the semantics of predicates % ∈ Ω and equal-

ity in Fig. 2c. We follow SQL’s three valued logic with true value

true (t), false (f) and unknown (u). The usual SQL’s rule is: evaluate

a predicate normally if no attributes are nulls; otherwise return u.

That is, for each predicate % such as <, we have its interpretation

P over Val ∪Num.

To provide the formal semantics of RAsql expressions, we need

some extra notation. We assume that there is a one-to-one func-

tion Name that maps terms into (unique) names (i.e., elements in

Name). Given U ∈ Name∗ and #̄ , #̄ ′ ∈ Name∗, the sequence

U#̄→#̄ ′ obtained from U by replacing each #8 with # ′
8 where

#̄ := (#1, · · · , #<) and #̄ ′ := (# ′
1, · · · , #

′
<).

Next, if 0̄ := (01, · · · , 0<) is a tuple of values overNum∪Val∪
{NULL} and #̄ := (#1, · · · , #<) a tuple of names over Name, we
denote by [0̄

#̄
the environment that maps each name #8 into the

value 08 . We say that 0̄ is consistent with #̄ if type(#8) = n implies

08 ∈ Num∪{NULL} and type(#8) = o implies 08 ∈ Val∪{NULL}

for each 8 . For two environments [and [′, by [;[′ we mean [

overridden by [′. That is, [;[′(#) = [(#) if [is defined on� and

[′ is not; otherwise [;[′(#) = [′(#).
For a bag �, let � 6=NULL be the same as � but with occurrences

of NULL removed. A tuple is called null-free if none of its compo-

nents is NULL.

With these, the semantics of expressions is defined in Fig. 2e.

Note that we omit the optional parts in the generalized projection

and grouping/aggregation as it do not affect the semantics but is

reflected only in the names as appear in Figure 2a.

Now given an expression � ofRAsql and a database� , the value

of � in � is defined as J�K�,∅ where ∅ is the empty mapping (i.e.,

the top level expression has no free variables).

2.5 Recursive queries

We now incorporate recursive queries, a feature added in the SQL

1999 standard. Extensions of relational algebra with various kinds

of recursion exists (e.g., with transitive closure [1] or fixed-point

operator [33]). We follow the same approach although stay closer

to SQL as it is, which uses a special type of iteration – in fact two

kinds depending on the syntactic shape of the query (see [38] as

well as explanation below) – to define recursive queries.

Syntax of RArecsql. Recall that ∪ stands for bag union, i.e., multi-

plicities of tuples are added up, as in SQL’s UNION ALL. We also

need the operation �1 ⊔ �2 defined as Y(�1 ∪ �2), i.e., union in

which a single copy of each tuple is kept. This corresponds to SQL’s

UNION.

An RArecsqlexpression is defined with the grammar of RAsql in

Fig. 1) with the addition of the following constructor:

`'.�

where ' is a fresh relation symbol (i.e., not in the schema) and � is

an expression of the form �1 ∪ �2 or �1 ⊔ �2 where both �1 and

�2 are RArecsqlexpressions and �2 may contain a reference to '.

Note that in SQL, various restrictions are imposed on query �2.

These typically include linearity of recursion (at most one refer-

ence to ' within �2, restrictions on the use of recursively defined

relation in subqueries, restrictions on the use of aggregation, etc.)

The reason for such restrictions is to eliminate some of the com-

mon cases of non-terminating queries.

We shall not impose such restrictions, as our result is more gen-

eral: passing from 3VL to two-valued logic is possible even if such

restrictions were not in place. Note that different RDBMSs use dif-

ferent restrictions on recursive queries (and sometimes even dif-

ferent syntax); hence showing this more general result will ensure

that it applies to all of them.

Semantics of RArecsql . Similarly to the syntactic definition, we dis-

tinguish between the two cases.

For `'.�1 ∪�2, the semantics J`'.�1 ∪ �2K�,[is defined by the

following iterative process:

(1) '�(0, '0 := J�1K�,[

(2) '8+1 := J�2K�∪'8 ,[
, '�(8+1 := '�(8 ∪ '8+1

with the condition that if '8 = ∅, then the iteration stops and '�(8
is returned.

Handling SQL Nulls with Two-Valued Logic , ,

ℓ
(
cC1[�#1], · · ·,C< [�#<](�)

)
:= #̃1 · · · #̃<

where #̃8 :=

{
#8 if [�#8]

Name(C8) otherwise

ℓ
(
f\ (�)

)
:= ℓ(�)

ℓ (�1 × �2) := ℓ(�1) · ℓ(�2)

ℓ (�1 op �2) := ℓ(�1) for op ∈ {∪,∩,−}

ℓ
(
Y(�)

)
:= ℓ(�)

ℓ(Group#̄ 〈�1(#1)[�# ′
1], · · · ,

�<(#<)[�# ′
<]〉(�))

:= #̄ · #̃1 · · · #̃<

where #̃8 :=

{
#8 if [�#8]

Name(�8(#8)) otherwise

(a) Names

JCK[:=

{
[(C) C ∈ Name
C C ∈ Val ∪Num ∪ {NULL}

J(C1, · · · , C<)K[:= (JC1K[, · · · , JC<K[)

J5 (C1, · · · , C<)K[:=

{
NULL ∃8 : JC8K[= NULL

5 (JC1K[, · · · , JC<K[) otherwise

(b) Terms

J%(C1, · · · , C=)K�,[:=

t ∀8 : JC8K[6= NULL, J(C1, · · · , C=)K[∈ %

f ∀8 : JC8K[6= NULL, J(C1, · · · , C=)K[6∈ %

u ∃8 : JC8K[= NULL

JC = C ′K�,[:=

t JCK[, JC
′K[6= NULL, JCK[= JC ′K[

f JCK[, JC
′K[6= NULL, JCK[6= JC ′K[

u JCK[= NULL or JC ′K[= NULL

(c) Predicates

Basic conditions

JtK�,[:= t JfK�,[:= f

Jisnull(C)K�,[:=

{
t JCK[= NULL

f otherwise

JC̄
.
= C̄ ′K�,[:=

=∧

8=1

JC8
.
= C ′8 K[

where C̄ := (C1, . . . , C=)

C̄ ′ := (C ′1, . . . , C
′
=)

JC̄ ∈ �K�,[:=
∨

C̄′∈J�K�,[

JC̄
.
= C̄ ′K[

JC l any(�)K�,[:=
∨

C′∈J�K�,[

JC l C ′K[

JC l all(�)K�,[:=
∧

C′∈J�K�,[

JC l C ′K[

Jempty(�)K�,[:=

{
t J�K�,[= ∅

f otherwise

Composite conditions

J\1 ∨ \2K�,[:= J\1K�,[∨ J\2K�,[

J\1 ∧ \2K�,[:= J\1K�,[∧ J\2K�,[

J¬\K�,[:= ¬J\K�,[.

Three-valued logic rules

∧ t f u

t t f u

f f f f

u u f u

∨ t f u

t t t t

f t f u

u t u u

¬

t f

f t

u u

(d) Conditions

0̄ ∈: J'K�,[if 0̄ ∈: '�

(01, . . . , 0<) ∈: JcC1, · · ·,C< (�)K�,[if : =
=∑

9=1

: 9 where 2̄ 9 ∈: 9
J�K�,[and for every 1 ≤ 8 ≤ <: 08 = JC8K

[;[
2̄ 9
ℓ(�)

J�1 op�2K�,[:= J�1K�,[op J�2K�,[for op ∈ {∪,∩,−,×}

0̄ ∈: Jf\ (�)K�,[if 0̄ ∈: J�K�,[and J\K�,[;[0̄
ℓ(�)

= t

0̄ ∈1 JY(�)K�,[if 0̄ ∈: J�K�,[and : > 0

(0̄, 0̄′) ∈1 JGroup"̄ 〈�1(#1), · · · , �<(#<)〉(�)K�,[if 0̄ ∈: Jc"̄ (�)K�,[, 0̄
′ = (J〈�1(#1)〉(�

′)K�,[;[0̄
ℓ(�)

, · · · , J〈�<(#<)〉(�′)K�,[;[0̄
ℓ(�)

)

where �′ = Jc#1, · · ·,#<
(f"̄ .

=0̄(�))K�,[and

(0̄, =) ∈: J〈Count(★)〉(�)K�,[if 0̄ ∈: J�K�,[, = = Card(J�K�,[)

(0̄, =) ∈: J〈�(#)〉(�)K�,[if 0̄ ∈: J�K�,[, = = �
(
(Jc# (�)K�,[) 6=NULL

)

(e) Expressions

Figure 2: Names of Expressions and Semantics of Terms, Predicates, Conditions, and Expressions

, , Leonid Libkin and Liat Peterfreund

For `'.�1 ⊔ �2 , the semantics is defined by the following itera-

tive process:

(1) '�(0, '0 := JY(�1)K�,[

(2) '8+1 := JY(�2)K�∪'8 ,[
− '�(8 , '�(8+1 := '�(8 ∪ '8+1

with the same stopping condition as before. Note that since '8+1

does not contain any tuples from '�(8 , we have '�(8 ∪ '8+1 =
'�(8 ⊔ '8 above. That is, either ∪ or ⊔ could be used in rule (2) of

this iterative process.

3 ELIMINATING UNKNOWN: CONFLATING
UNKNOWN AND FALSE

To eliminate the use of SQL’s three valued semantics, we need to re-

place the unknown truth value, and to do so, we need to see where

this value arises. In SQL, unknown arises in the WHERE clause; in

RAsql, in conditions. Specifically, it appears as the result of evalu-

ation of predicates such as equality or <. It also arises in the eval-

uation of IN subqueries, but checking C̄ ∈ � in RAsql boils down

to checking equalities, i.e., a disjunction of C̄
.
= C̄ ′ as C̄ ′ ranges over

tuples in �.

In applying basic predicates, unknown appears by following the

rule that if one parameter isNULL, then the value of the predicate is

u. Thus, we need to specify what we do in this case. SQL’s existing

features guide us in choosing our options. One is to conflate u and

f, which is what is done after computing conditions in WHERE,

as only those values for which the condition is t are kept. We shall

now discuss this semantics, but our main result on the equivalence

of query evaluation under 3VL and Boolean logic will extend not

only to this but also to many other ways of eliminating unknown,

see Section 4.

The new semantics, denoted by J K2VL2VL2VL, replaces every case when

u is produced by f. Since u only arises in evaluating predicates, it

means that we have the following two rules:

J%(C̄)K2VL2VL2VL

�,[:=

{
t ∀8 : JC8K 6= NULL, J(C1, · · · , C=)K[∈ P

f otherwise

JC = C ′K2VL2VL2VL

�,[:=

{
t JCK[, JC

′K[6= NULL, JCK[= JC ′K[
f otherwise

The rest of the semantics of expressions and conditions is ex-

actly as in Fig. 2. Note that the truth value u never arises, and the

rules of SQL’s 3VL are exactly the rules of the Boolean two-valued

logic when restricted to t and f.

Let us return to the example from the introduction of two

queries &1 and &2 expressing difference of two relations ' and

(using NOT IN and NOT EXISTS subqueries. On database with

' = {1,NULL} and (= {NULL} they produced different results:

the empty table for&1 and {1,NULL} for&2. Under the new J K2VL2VL2VL

semantics, both&1 and&2 return the same answer {1,NULL}. The

reason both elements 1 and NULL are returned is that all compar-

isons 1
.
= NULL and NULL

.
= NULL now evaluate to f, and then

under negation NOT they become t, and hence both elements are

returned. Previously, only the two-valued query with NOT EXIST

(since EXISTS does not recourse to 3VL) did so.

3.1 Capturing SQL with J K2VL2VL2VL

We now show that the two-valued semantics based on conflating

u with f fulfills our desiderata for a two-valued version of SQL.

Recall that it postulated three requirements: (1) that no expressive-

ness be gained or lost compared to the standard SQL; (2) that over

databases without nulls no changes would be required; and (3) that

when changes are required in the presence of nulls, they are small

and do not significantly affect the size of the query.

We now summarize these conditions that an alternative seman-

tics satisfies our desiderata in the following definition.

Definition 1. Given a query language L over relational

databases with nulls, and two semantics of it, J K and J K′, we say
that J K′ captures the semantics J K of L if the following conditions

are satisfied:

(1) for every expression � of L there exists another expression

� such that

J�K′� = J�K�

for every database �;

(2) for every expression � of L there exists another expression

� such that

J�K� = J�K′�

for every database �; and

(3) for every expression � of L, J�K� = J�K′� for every data-

base � without nulls.

Furthermore, J K′ captures J K efficiently if the size of expressions

� and � in items 1 and 2 above is at most linear in the size of

expression �. �

Our main result is that the two-valued semantics of SQL cap-

tures its standard semantics efficiently.

Theorem 2. The J K2VL2VL2VL semantics of RArecsql expressions, and of

RAsql expressions, captures their SQL semantics J K efficiently.

Note that the capture statement for RAsql is not a corollary

of the statement of RArecsql , as the capture definition states that

the equivalent query must come from the same language. Thus,

applying the statement about RArecsql to an RAsql expression �

would only yield expressions � and � of RArecsql .

In the absence of nulls the definitions of J K2VL2VL2VL and J K coincide.
Thus, condition (3) in the definition is satisfied. In the rest of this

section we discuss the proof outline partly – we present the trans-

lation schemes for (1) along with some examples. All the transla-

tions are defined by a mutual induction on expressions and condi-

tions. The key element is mimicking the conditions of one seman-

tics under the other. That is, for a condition \ is a truth value ggg ,

we have a condition \ggg so that J\K = ggg if and only if J\ggg K2VL2VL2VL = t.

We inductively propagate these changes through the query, as our

conditions can involve subqueries, e.g,. empty(�).

3.2 Translations from J K2VL2VL2VL to J K

Given an expression � of RAsql, we describe how to construct an

expression� such that J�K2VL2VL2VL

� = J�K� for every database � . To do

so, as explained earlier, we define three translations by a mutual

induction:

Handling SQL Nulls with Two-Valued Logic , ,

• from conditions \ to \t and \f such that:

J\K2VL2VL2VL

�,[= t if and only if J\tK�,[= t

J\K2VL2VL2VL

�,[= f if and only if J\fK�,[= t

(note that J\K2VL2VL2VL

�,[can only produce values t and f);

• from expression � to� by inductively replacing each condi-

tion \ with \t .

The full details of these construction are presented in Figure 3. We

note that the size of the resulting� is indeed linear in �.

Example 2. We now look at queries&1–&5 of Example 1 and pro-

vide their translations. That is, we assume these queries have been

written assuming the two-valued 2VL2VL2VL semantics, and we show how

they would then look in conventional SQL. To start with, queries

&2,&3, and &4 remain unchanged by the translation.

Query &1 is translated into & ′
1 given by

& ′
1 = fisnull('.�)∨¬('.�∈f¬isnull((.�)()(')

In SQL, this corresponds to

SELECT R . A FROM R WHERE R . A IS NULL

OR R . A NOT IN

(SELECT S . A FROM S WHERE S . A IS NOT NULL)

In the translation & ′
5 of query &5 , the condition (2_0 > 0) ∧

¬(2_2 ∈ c>_2($)) in the subquery is translated as

\ t := (2_0 > 0)∧
(
isnull(2_2)∨¬(2_2 ∈ f¬isnull(>_2)(c>_2$))

)

which is then used in the aggregate subquery&066 ; the rest of the

query does not change. In terms of SQL, in general these would be

translated into additional IS NULL and IS NOT NULL conditions in

the aggregate query as follows:

SELECT AVG(c_acctbal)

FROM customer WHERE c_acctbal > 0.0 AND

(c_custkey IS NULL OR

c_custkey NOT IN (SELECT o_custkey FROM orders

WHERE o_custkey IS NOT NULL))

This is a correct translation of&5 that makes no extra assumptions

about the schema. Having such additional information (e.g., the

fact that c_custkey is the key of customer) can simplify translation

even further (e.g., by removing the IS NULL condition).

3.3 Query equivalence under two-valued
semantics

Recall queries &1 and &2 from the introduction. Intuitively, one

expects them to be equivalent: indeed, if we remove the NOT from

both of them, then they are actually equivalent. And it seems that

if \1 and \2 are equivalent, then so must be ¬\1 and ¬\2. So what

is going on there?

Recall that the effect of the WHERE clause is to keep tuples for

which the condition evaluated to t. So equivalence of conditions

\1 and \2, from SQL’s point of view, means

J\1K = t ⇔ J\2K = t .

Thus, to state that the equivalence of \1 and \2 implies the equiv-

alence of ¬\1 and ¬\2 we need the following condition:
(
J\1K = t ⇔ J\2K = t

)
⇒

(
J¬\1K = t ⇔ J¬\2K = t

)
(1)

If (1) we true, we could conclude from the equivalence of queries
SELECT ...

FROM ...

WHERE \1

and

SELECT ...

FROM ...

WHERE \2

that queries
SELECT ...

FROM ...

WHERE ¬\1

and

SELECT ...

FROM ...

WHERE ¬\2

are equivalent. And this brings us to the reason why the two-

valued semantics restores the expected equivalences of queries&1

and &2.

Proposition 1. Implication (1) does not hold for SQL’s semantics

but holds for J K2VL2VL2VL.

The reason behind it is that in 3VL, the law of excluded middle,

\∨¬\ ↔ t, does not hold, and that is why (1) is invalidated. In two-

valued logic, on the other hand, this law does hold, which gives us

(1).

With the law of excluded middle we restore many more equiva-

lences, often assumed for granted as one thinks in terms of Boolean

logic, and yet programs in 3VL (perhaps accounting for some of the

typical programmer mistakes in SQL [7, 9]).

Proposition 2. The following equivalences hold:

(1) Jf\ (�)K
2VL2VL2VL

�,[= J� − f¬\�K2VL2VL2VL

�,[

(2) C̄ ∈ J�K2VL2VL2VL

�,[if and only if Jempty(fC̄=ℓ(�)(�))K
2VL2VL2VL

�,[
= f

(3) JC l any(�)K2VL2VL2VL

�,[if and only if Jempty(fC̄ l ℓ(�)(�))K
2VL2VL2VL

�,[
= f

(4) JC l all(�)K2VL2VL2VL

�,[if and only if

Jempty(f¬(C̄ l ℓ(�))(�))K
2VL2VL2VL

�,[
= t

for any RArecsqlexpression �, tuple C̄ , and condition \ .

Neither of those is true in general for SQL’s three-valued semantics

J K.

4 OTHER TWO-VALUED SEMANTICS

We now show that the result on the equivalence of two-valued

semantics with the usual SQL semantics is very robust. That is,

many other two-valued semantics could be used in place of J K2VL2VL2VL,

and with each of them we recover the equivalence with SQL’s 3VL

semantics.

What other two-valued semantics could be there? For a starter,

there is the syntactic equality semantics, already used in SQL in

connection with the GROUP BY operation as well as set opera-

tions, which treat NULL syntactically. In other words, for those

operations, NULL equals itself. Formally, the semantic equality se-

mantics J K=== is defined by changing the semantics of equality to

JC = C ′K===�,[:=

{
t JCK[= JC ′K[
f otherwise

and keeping the rest as in the definition of J K2VL2VL2VL. The only differ-

ence is that under this semantics, NULL
.
= NULL evaluates to t.

, , Leonid Libkin and Liat Peterfreund

Basic conditions

(t)t := t (t)f := f

(f)t := f (f)f := t

(
isnull(C)

)t
:= isnull(C)

(
isnull(C)

)f
:= ¬isnull(C)

(
C̄
.
= C̄ ′

)t := C̄
.
= C̄ ′

(
C̄
.
= C̄ ′

)f :=
=∨

8=1

(
¬(C8

.
= C ′8) ∨ isnull(C8) ∨ isnull(C ′8)

)

(
%(C̄)

)t
:= %(C̄)

(
%(C̄)

)f
:= ¬%(C̄) ∨

=∨

8=1

isnull(C8)

(C̄ ∈ �)t := C̄ ∈ � (C̄ ∈ �)f :=
=∨

8=1

isnull(C8) ∨ ¬(C̄ ∈ f¬isnull(#1)∧···∧¬isnull(#=)(�))

where C̄ :=(C1, · · · , C=), C̄
′ := (C ′1, · · · , C

′
=), and ℓ(�) := (#1, · · · , #=)

(
empty(�)

)t := empty(�)
(
empty(�)

)f := ¬empty(�)

(
C l any(�)

)t
:= C l any(�)

(
C l any(�)

)f
:= empty(f¬\ (�))

(
C l all(�)

)t
:= C l all(�)

(
C l all(�)

)f
:= ¬empty(f\ (�))

where ℓ(�) := # and \ := isnull(C) ∨ isnull(#) ∨ (¬isnull(C) ∧ ¬isnull(#) ∧ ¬C l #)

Composite conditions

(\1 ∨ \2)
t := (\1)

t∨(\2)
t (\1 ∨ \2)

f := (\1)
f∧(\2)

f (\1 ∧ \2)
t := (\1)

t∧(\2)
t (\1 ∧ \2)

f := (\1)
f∨(\2)

f (¬\)t := \f (¬\)f := \t

Figure 3: 2VL2VL2VL semantics to SQL semantics

Coming back to the example of queries &1 and &2 from the

introduction, under this semantics on ' = {1,NULL} and (=
{NULL} they produce {1} as the answer: in this case, it is the same

as we would have by applying ' EXCEPT (based on syntactic

equality. The semantics J K2VL2VL2VL and J K=== are, as expected, different,

but note that both of them make queries &1 and &2 produce the

same result, as they both satisfy condition (1) from Section 3.3 elim-

inating potential confusion of writing (supposedly) the difference

query in ways that produce different results.

Is this the only possible other two-valued semantics? Of course

not. Consider for example the predicate ≤. In both J K=== and J K2VL2VL2VL,

NULL ≤ NULL is f, but under the syntactic equality interpreta-

tion it is not unreasonable to say that NULL ≤ NULL is true, as ≤

subsumes equality. This gives a general idea of how different se-

mantics can be obtained: when some arguments of a predicate are

NULL, we can decide what the truth value based on other values.

Just for the sake of example, we could say that = ≤ NULL is f for

= < 0 and t for = ≥ 0.
To define such alternative semantics in a general way, we sim-

ply state, for each predicate, what happens when some of the argu-

ments are NULL. Formally, to define such semantics, we introduce

the notion of grounding of predicates in Ω, as well as equality and
comparison. It is a function gr that takes an an =-ary predicate %

of type g and a non-empty sequence I = 〈81, · · · , 8: 〉 of indices

1 ≤ 81 < · · · < 8: ≤ =, and produces a relation gr(%, I) that con-
tains g-records (C1, · · · , C=) where C8 = NULL for every 8 ∈ I, and
C8 6= NULL for every 8 6∈ I. In the above example, if % is ≤, then

gr(%, 〈1〉) = {(NULL, =) | = ≥ 0} while gr(%, 〈2〉) = {(NULL, =) |
= < 0} and gr(%, 〈1, 2〉) = {(NULL,NULL)}.

The semantics J Kgr based on such grounding is given by re-

defining the truth value of J%(C1, . . . , C=)K
gr as that of C̄ ∈ gr(%, I),

where I is the list on indices 8 such that JC8K
gr = NULL.

Such semantics generalize J K2VL2VL2VL and J K===. In the former, by set-

ting gr(%, I) = ∅ for each nonempty I; in the latter, it is the same

except that gr(=, 〈1, 2〉) would contain the tuple (NULL,NULL).
We say that a grounding is expressible if for each % ∈ Ω and each

I there is a condition \%,I such that C̄ ∈ gr(%, I) iff cĪ(C̄) satisfies
\%,I . Note that the projection on the complement Ī of Iwould only
contain non-null elements. The semantics seen previously satisfy

this condition.

Theorem 3. For every expressible grounding gr, the J Kgr seman-

tics of RArecsql or RAsql expressions captures their SQL semantics.

5 OTHER MANY-VALUED LOGICS

To further support the claim that two-valued logic is a very natural

alternative to 3VL in SQL, we now show that no othermany-valued

logic could have been used in its place in a way that would have

altered the expressiveness of the language. Thus, of all the logics

that give us equal expressive power it makes sense to choose the

simplest and the most familiar one.

We build upon a result of [15]which proved such an equivalence

between many-valued first-order logics under set semantics, and

also under restrictions on the behavior of the many-valued con-

nectives. We strengthen this by going from first-order logic to full

SQL, and by eliminating the restrictions the result of [15] required.

Handling SQL Nulls with Two-Valued Logic , ,

We first define extensions of RAsql based on different many-

valued logics and state the equivalence result, and then give a hint

of the proof.

5.1 Many-valued Interpretations

SQL’s 3VL is an example of a many-valued logic, known well be-

fore SQL as Kleene’s logic [6]. It is not the only logic proposed to

deal with null values; there were others with 3,4,5, and even 6 val-

ues [13, 24, 34, 44]; see the discussion in the introduction. Could

using one of them give us a more expressive language? We now

give the negative answer.

Recall that a many-valued (propositional) logicMVL is given by

a finite collection T of truth values with t, f ∈ T, and a finite set Γ
of logical connectors W : Tar(W) → T. We refer to ar(W) as the arity
of W , and assume that any many-valued logic includes at least the

unary connective ¬ for NOT, and the binary connectives ∨ and ∧

for OR and AND, whose restriction to the basic truth-values {t, f}

follows the rules of Boolean logic.

The only condition we impose on MVL is that ∨ and ∧ be as-

sociative and commutative; without those we cannot write con-

ditions like \1 OR · · · OR \: (and likewise for AND) in WHERE

without worrying about the order of conditions and parentheses

around them. Not having commutativity and associativity would

also break many optimizations. The ability to write conditions like

that is taken for granted by SQL programmers and is therefore a

requirement one cannot waive.

A semantics J KMVL of RAsql or RArecsql expressions is given

by defining the semantics of atomic conditions %(C̄) and equality,

and then following the connectives ofMVL for complex conditions.

Such a semantics of atomic conditions is expressible if it does not

deviate from the standard semantics in the absence of nulls (i.e.,

= is equality, ≤ is less-than-or-equal, etc), and if for each atomic

condition % , the fact that %(C̄) evaluates to a truth value ggg can be

expressed by a condition under SQL’s semantics J K. This excludes
pathological situations when conditions like 1 ≤ 2 evaluate to

truth values other than t, f, or when conditions like “NULL
.
= =

evaluates toggg” are not expressible in SQL (say, having a truth value

ggg so that NULL
.
= = is ggg if = is an encoding of a halting Turing ma-

chine). Anything reasonable is permitted by being expressible. For-

mally, a semantics J KMVL is SQL-expressible for atomic predicates

if:

(1) in the absence of nulls, the semantics of atomic conditions

is the same as SQL’s semantics J K;
(2) for each truth value ggg ∈ T and each atomic predi-

cate % there is a condition \%,ggg such that J%(C̄)KMVL

�,[=

ggg if and only if J\%,ggg K�,[= t, for all � and [.

Example 3. We consider a 4-valued logic from [13]. It has truth

values t, f, u just as SQL’s 3VL, and also a new value s. This value

means “sometimes”: under some interpretation of nulls the condi-

tion is true, but under some it is false. The semantics is then defined

in the same way as SQL’s semantics except u is replaced by s.

In this logic the unknown u appears when one uses complex

conditions. Suppose conditions \1 and \2 both evaluate to s. Then

there are interpretations of nulls where each one of them is true,

and when each one of them is false, but we cannot conclude that

there is an interpretation where both are true. Hence \1 ∧ \2 eval-

uates to u rather than s. For full truth tables of this 4VL, see [13].

The previously known equivalence result [15] considered first-

order logic under set semantics, and many-valued logics that are

idempotent (ggg∨ggg = ggg) or weakly idempotent (ggg∨ggg∨ggg = ggg∨ggg). For

example that the 4-valued logic from Example 3 is not idempotent

but weakly idempotent.

We now show amuch stronger result. As the query language we

take either RAsql or RArecsql . A many-valued logic does not have

idempotency restrictions. Even in this general setting, the resulting

semantics does not give any extra expressiveness compared to the

standard SQL semantics.

Theorem 4. For a many-valued logic MVL in which ∧ and ∨ are

associative and commutative, let J KMVL be a semantics of RAsql
or RArecsql expressions based on MVL. Assume that this semantics

is SQL-expressible for atomic predicates. Then it captures the SQL

semantics.

The translation from MVL semantics into SQL semantics may

add an application of the COUNT aggregate and basic arithmetic

(+, ∗). The idea of the translation is discussed below.

5.2 J KMVL to SQL semantics

The main difficulty that needs to be addressed is that we assume

practically nothing about the many-valued logic which makes the

evaluation of conditions such as C̄ ∈ � complicated. This is the

disjunction of truth values of conditions C̄ ′
.
= C̄ as C̄ ′ ranges over

tuples in the evaluation of �, and if we assume nothing about the

truth tables, how do we compute this? With idempotency, this is

easy: no matter how many times a truth value ggg occurs in this dis-

junction, it collapses to one occurrence. Withweak idempotency, it

collapses to one or two occurrences. But without these conditions,

we need to look for other mechanisms.

Continuing with this example, our goal is to construct a new

expression � , for a truth value ggg , such that JC̄ ∈ �KMVL = ggg if and

only if J�K = t. The most straightforward way to do this consists

of two steps. First, we compute for each tuple C̄ ′ ∈ � the truth

value JC̄ ′
.
= C̄KMVL. Second, we aggregate ∨ over these truth val-

ues. As our many-valued logic is expressible, we can assume that

the first step is expressible, by means of a condition denoted by

\ .=C̄ . Assume that we have an aggregate
∨

that takes a bag of truth

values {ggg1, · · · ,ggg<} to ggg1 ∨ · · · ∨ggg< . With that, � could be defined

as follows, assuming #̄ = ℓ(�):

Group∅ 〈
∨

(�)〉
(
c\ .=C̄ (#̄)��(�)

)

The problem is that we do not have such an aggregate function

in general; it would be unrealistic to expect it to exist for every

MVL. For the usual Boolean logic, it can be implemented as MAX

by associating t with 1 and f with 0, but in general we have no

such recourse to numerical aggregates. Thus, we need a different

approach, explained below.

Commutativity and associativity of disjunction allow us to

change the order of the disjuncts as wanted without affecting the

result. In fact, it implies that the result of the disjunction is only

determined by the number of disjuncts for each truth value, hence

, , Leonid Libkin and Liat Peterfreund

implying that we can view disjunction as a function 5∨ that maps

a vectors of integers of arity equals the number of truth values of

our many-valued logic into a single truth value. More precisely, for

a logic with truth values ggg1, · · · ,ggg< , we have 5∨(:1, · · · , :<) = ggg if

ggg = (ggg1 ∨ · · · ∨ ggg1)
︸ ︷︷ ︸

:1 times

∨ · · · ∨ (ggg< ∨ · · · ∨ ggg<)
︸ ︷︷ ︸

:< times

.

Note that by expressibility of conditions in SQL’s semantics, the

number :8 of how many times C̄ ′
.
= C̄ evaluates to ggg8 can be ex-

pressed in RAsql with the help of the COUNT aggregate.

The last missing bit is to calculate the disjunction of: gggs. SinceT

is of fixed size, we know that the sequence of truth valuesggg,ggg∨ggg,ggg∨

ggg ∨ggg, · · · eventually exhibits a periodic behavior. One can calculate

the period and explicitly list truth values of such disjunctions up

to the point fromwhich the periodic behavior starts (that would be

at most |T|+1). With this, and simple arithmetic operations, one

can calculate the value of the disjunction of : gggs, for each given

: that was computed by a counting aggregate. This explains the

main idea behind the proof; full details are in the appendix.

6 CONCLUSIONS

We have demonstrated that one of the most criticized aspects of

SQL, and one that is the source of confusion for numerous SQL

programmers – the use of the three-valued logic – was not re-

ally necessary, and perfectly reasonable two-valued semantics ex-

ist that achieve exactly the same expressiveness as the original

three-valued design. Of course there is so much existing SQL code

that operates under the three-valued semantics that changing that

aspect of the language as if it were never there is not realistic. Thus,

the questions are: what can we do with this now, and what can we

do in the future.

Regarding now, there are two directions. First, since we pro-

vided equivalence results, it is entirely feasible to let programmers

use two-valued SQL without changing the underlying DBMS im-

plementation. One simply translates a query written under the

two-valued semantics into standard SQL and runs it. Implement-

ing such a translation is one of our immediate goals. Thus, no new

implementation of query evaluation is necessary; we can reuse all

the existing technology while at the same time getting rid of one

of its most problematic aspects.

Second, as we explained in the introduction, this new point of

view may well be of interest to designers of new languages. This

activity is especially visible in the area of graph databases [43] and

an alternative to SQL’s confusing 3VL might well be considered.

For the future, the key direction to pursue is to make the transla-

tion more practical by taking into account additional semantic in-

formation. Such information is most likely to come in the form of

constraints such as keys, foreign keys, and NOT NULL constraints.

For now, translations we presented do not take them into account

but we already saw in one of the examples that they could be very

useful. We also plan to adapt works like [21, 27] to produce evalu-

ation schemes that return results with certainty guarantees, under

the two-valued approach.

Acknowledgments Part of this work was done when the second

author was at the University of Edinburgh and with FSMP (Foun-

dation Sciences Mathématiques de Paris) hosted by IRIF and ENS.

We acknowledge support of EPSRC grants N023056 and S003800,

and grants from FSMP and Neo4j.

REFERENCES
[1] R. Agrawal. Alpha: An extension of relational algebra to express a class of re-

cursive queries. IEEE Trans. Software Eng., 14(7):879–885, 1988.
[2] R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutiérrez, T. Lindaaker,

M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. G-COREA Core
for Future Graph Query Languages. In ACM SIGMOD, 2018.

[3] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veld-
huizen, and G. Washburn. Design and implementation of the LogicBlox system.
In SIGMOD, pages 1371–1382, 2015.

[4] O. Arieli, A. Avron, and A. Zamansky. What is an ideal logic for reasoning with
inconsistency? In IJCAI, pages 706–711, 2011.

[5] V. Benzaken and E. Contejean. A Coq mechanised formal semantics for realistic
SQL queries: formally reconciling SQL and bag relational algebra. In Proceed-
ings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, pages 249–261. ACM, 2019.

[6] L. Bolc and P. Borowik. Many-Valued Logics: Theoretical Foundations. Springer,
1992.

[7] S. Brass and C. Goldberg. Semantic errors in SQL queries: A quite complete list.
J. Syst. Softw., 79(5):630–644, 2006.

[8] K. S. Candan, J. Grant, and V. S. Subrahmanian. A unified treatment of null
values using constraints. Inf. Sci., 98(1-4):99–156, 1997.

[9] J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann,
2005.

[10] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization,
semantics, and equivalence of SQL queries. IEEE Trans. Software Eng., 11(4):324–
345, 1985.

[11] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu. Axiomatic foundations
and algorithms for deciding semantic equivalences of SQL queries. Proc. VLDB
Endow., 11(11):1482–1495, 2018.

[12] S. Chu, K. Weitz, A. Cheung, and D. Suciu. Hottsql: proving query rewrites with
univalent SQL semantics. In PLDI, pages 510–524. ACM, 2017.

[13] M. Console, P. Guagliardo, and L. Libkin. Approximations and refinements of
certain answers viamany-valued logics. In KR, pages 349–358. AAAI Press, 2016.

[14] M. Console, P. Guagliardo, and L. Libkin. On querying incomplete information
in databases under bag semantics. In IJCAI, pages 993–999, 2017.

[15] M. Console, P. Guagliardo, and L. Libkin. Propositional and predicate logics of
incomplete information. In KR, pages 592–601. AAAI Press, 2018.

[16] H. Darwen and C. J. Date. The third manifesto. SIGMOD Record, 24(1):39–49,
1995.

[17] C. J. Date. Database in Depth - Relational Theory for Practitioners. O’Reilly, 2005.
[18] C. J. Date. A critique of Claude Rubinson’s paper nulls, three-valued logic, and

ambiguity in SQL: critiquing Date’s critique. SIGMOD Record, 37(3):20–22, 2008.
[19] C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, 1996.
[20] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee. Aggregation support for modern graph

analytics in TigerGraph. In SIGMOD, pages 377–392. ACM, 2020.
[21] S. Feng, A. Huber, B. Glavic, and O. Kennedy. Uncertainty annotated databases

- A lightweight approach for approximating certain answers. In SIGMOD, pages
1313–1330. ACM, 2019.

[22] M. Fitting. Kleene’s logic, generalized. J. Log. Comput., 1(6):797–810, 1991.
[23] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-

tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query lan-
guage for property graphs. In SIGMOD, pages 1433–1445. ACM, 2018.

[24] G. H. Gessert. Four valued logic for relational database systems. SIGMOD Record,
19(1):29–35, 1990.

[25] M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence, 4:265–316, 1988.

[26] S. Greco, C.Molinaro, and I. Trubitsyna. Approximation algorithms for querying
incomplete databases. Inf. Syst., 86:28–45, 2019.

[27] P. Guagliardo and L. Libkin. Making SQL queries correct on incomplete
databases: A feasibility study. In PODS, pages 211–223. ACM, 2016.

[28] P. Guagliardo and L. Libkin. A formal semantics of SQL queries, its validation,
and applications. Proc. VLDB Endow., 11(1):27–39, 2017.

[29] P. Guagliardo and L. Libkin. On the Codd semantics of SQL nulls. Information
Systems, 86:46–60, 2019.

[30] A. Hernich and P. G. Kolaitis. Foundations of information integration under bag
semantics. In LICS, pages 1–12. IEEE Computer Society, 2017.

[31] T. Imielinski andW. Lipski. Incomplete information in relational databases. Jour-
nal of the ACM, 31(4):761–791, 1984.

[32] Ingres 9.3. QUEL Reference Guide, 2009.
[33] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaïda. On the optimization of recur-

sive relational queries: Application to graph queries. In SIGMOD, pages 681–697.
ACM, 2020.

Handling SQL Nulls with Two-Valued Logic , ,

[34] Y. Jia, Z. Feng, and M. Miller. A multivalued approach to handle nulls in RDB.
In Future Databases, volume 3 of Advanced Database Research and Development
Series, pages 71–76. World Scientific, Singapore, 1992.

[35] L. Libkin. SQL’s three-valued logic and certain answers. ACM Trans. Database
Syst., 41(1):1:1–1:28, 2016.

[36] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries. ACM
Trans. Database Syst., 16(3):513–534, 1991.

[37] C. Nikolaou, E. V. Kostylev, G. Konstantinidis, M. Kaminski, B. C. Grau, and
I. Horrocks. The bag semantics of ontology-based data access. In IJCAI, pages
1224–1230, 2017.

[38] PostgreSQLDocumentation, Version 9.6.1. www.postgresql.org/docs/manuals,
2016.

[39] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation
of INGRES. ACM Trans. Database Syst., 1(3):189–222, 1976.

[40] Transaction Processing Performance Council. TPC Benchmark™ H Standard
Specification, 2014. Revision 2.17.1.

[41] J. Van den Bussche and S. Vansummeren. Translating SQL into the relational
algebra. Course notes, Hasselt University and Université Libre de Bruxelles,
2009.

[42] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph
query language. In GRADES, page 7. ACM, 2016.

[43] Wikipedia contributors. GQL graph query language, 2020.
[44] K. Yue. A more general model for handling missing information in relational

databases using a 3-valued logic. SIGMOD Record, 20(3):43–49, 1991.
[45] C. Zaniolo. Database relations with null values. JCSS, 28(1):142–166, 1984.

	Abstract
	1 Introduction
	2 Query Language: RAsql
	2.1 Data Model
	2.2 Syntax
	2.3 Informal Semantics
	2.4 Formal Semantics
	2.5 Recursive queries

	3 Eliminating unknown: conflating unknown and false
	3.1 Capturing SQL with 62VL- .4
	3.2 Translations from 62VL- .4 to
	3.3 Query equivalence under two-valued semantics

	4 Other Two-valued Semantics
	5 Other many-valued logics
	5.1 Many-valued Interpretations
	5.2 MVL to SQL semantics

	6 Conclusions
	References

