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Despite chemotherapy and novel androgen-receptor signalling inhibitors (ARSi) have been approved during the last decades,
metastatic castration-resistant prostate cancer (mnCRPC) remains a lethal disease with poor clinical outcomes. Several studies
found that germline or acquired DNA damage repair (DDR) defects affect a high percentage of mCRPC patients. Among DDR
defects, BRCA mutations show relevant clinical implications. BRCA mutations are associated with adverse clinical features in
primary tumors and with poor outcomes in patients with mCRPC. In addition, BRCA mutations predict good response to poly-
ADP ribose polymerase (PARP) inhibitors, such as olaparib, rucaparib, and niraparib. However, concerns still remain on the role
of extensive mutational testing in prostate cancer patients, given the implications for patients and for their progeny. The present
comprehensive review attempts to provide an overview of BRCA mutations in prostate cancer, focusing on their prognostic and

predictive roles.

1. Introduction

Prostate cancer (PCa) is the second most common neoplasm
in men worldwide and the second leading cause of cancer
deaths in Western countries [1]. In the USA, 165,000 new
cases and 29,000 deaths are estimated annually due to PCa
[2]. Despite a median overall survival (OS) of 42.1 months,
the failure-free survival (FFS) was only 11.2 months in
patients with metastatic hormone-sensitive PCa enrolled in
the control arm of the STAMPEDE trial [3]. Moreover, PCa
patients live most of their natural history of disease in the
castration-resistant setting, and in the last decade, the ap-
proval of six novel treatments for the management of
metastatic castration-resistant prostate cancers (mCRPC),
spanning from chemotherapy agents (docetaxel and cab-
azitaxel), androgen-receptor signalling inhibitors (ARS], i.e.,

enzalutamide and abiraterone), vaccines (sipuleucel-T), and
bone-seeking radiopharmaceuticals (radium-223), has dra-
matically changed the management of mCRPC [4]. Despite
meaningful advances in PCa care, the clinical outcome of
mCRPC patients is still poor, and the median OS is un-
satisfactory, ranging approximately between 18 and 36
months [4]. A better understanding of the molecular
characterization of mCRPC patients is an urgent medical
need in order to better define diagnosis and prognosis and to
deliver appropriate treatment. PCa is one of the most
heritable human tumors [5]; the integrative analysis of
advanced prostate cancer has revealed that approximately
90% of mCRPC patients harbor clinically actionable
germline and somatic alterations [6]. In this scenario, DNA
damage repair defects (DDR) represent 25% of these al-
terations, with BRCA2 mutations representing the most
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frequent event [6-8]. Inherited mutations in BRCA genes
are associated with an increased risk of developing breast,
ovarian, prostate, and other cancers [7, 8]. DDR genes are
involved in the mechanisms of genomic stability, repairing
DNA aberrations during the cell cycle, ensuring a correct
mitotic cell division, and distribution of the genomic ma-
terial to the daughter cells [9]. In order to solve threats
generated by DNA damage, cells have developed several
processes of DNA-damage response that detect DNA le-
sions, signal their presence, and promote the repair [10]. If
the extent of DNA damage is beyond repair capacity, al-
ternative signalling pathways lead to apoptosis of potentially
dangerous mutated cells [11]. Several DNA repair pathways
are involved to cope with different DNA lesions, and they
usually occur by a common general program [12]. BRCA1/2
is a protein encoded by the major oncogene responsible for
the susceptibility of breast and ovarian cancers and plays a
key role in the system of the homologous recombination
(HR), working simultaneously with several enzymes to
protect the genome from double DNA strand breaks [13].
BRCA2 mutations are a strong negative prognostic factor
associated with short metastasis-free survival (MFS) and
cancer-specific survival (CSS) in patients with mCRPC [14].
Moreover, BRCA mutations can predict response to poly-
ADP ribose polymerase (PARP) inhibitors and to platinum
salts [15, 16]. The following attempts to provide a com-
prehensive review of the literature on BRCA mutations in
patients suffering from PCa, highlighting their prevalence
and prognostic and predictive role, as well as their impli-
cations for hereditary cancer and genetic counselling.

1.1. Prevalence of BRCA Mutations in Prostate Cancers.
The incidence of germline mutation in DDR genes among men
with metastatic PCa varies between 11% and 33%, and it is
significantly higher compared to the incidence in men with
localized PCa [15, 17]. In a landmark study, Pritchard and
colleagues showed that 11% of 692 patients with metastatic PCa
harbored inherited mutations in 16 DDR genes [17]. The most
frequent aberration was BRCA2 (5.3%) followed by ATM
(1.6%), CHEK2 (1.9%), BRCA1 (0.9%), and RAD51 (0.4%).
Mutation frequency did not differ based on PCa family history
or age at diagnosis [17]. In a multi-institutional integrative
clinical sequencing analysis, 23% of 150 mCRPC biopsies were
found to be positive for DDR aberrations. BRCA2 was mutated
in 13% of samples followed by ATM (7.3%), MSH2 (2%),
BRCA1, FANCA, MLHI, and RADS5I1 (0.3%) [15].

Several studies showed a different genomic landscape in
mCRPC compared to localized PCa [6, 18]. In a large retro-
spective study, Robinson et al. analyzed 680 primary tumors
and 333 mCRPC biopsies [6]. The authors identified germline
and/or somatic DDR defects in 10% of primary tumors and
27% of metastatic samples. The different molecular profile
between localized PCa and metastatic lesions might be a direct
consequence of tumor evolution under the selective pressure of
ARSi or chemotherapy. However, small subpopulations of
variant clones might be already present in primary tumors and
might expand during the development of metastatic disease.
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In this regard, Mateo and colleagues profiled 470
treatment-naive PCa biopsies from patients who devel-
oped lethal mCRPC; of these, 61 patients had matched
samples of primary tumors and metastatic lesions [19].
DDR gene aberrations (BRCA2 7%; CDK12 5%; and ATM
4%), TP53 (27%), and PTEN (12%) were commonly de-
tected. Interestingly, while AR, TP53, and RB1 mutations
were more commonly found in mCRPC lesions compared
to primary tumors, DDR mutations had similar preva-
lence in primary and mCRPC settings [19]. These findings
suggested that the use of prostate biopsy might be useful to
profile patients for DDR mutations, avoiding rebiopsies of
metastatic lesions that are potentially dangerous and time-
consuming. Moreover, these data supported the testing for
DDR defects in earlier stages of PCa as many of these
alterations are already present during the initial phases of
PCa development. However, given the limits of the study
by Mateo and colleagues, further studies are needed. In
fact, the retrospective design of this study did not take into
account different treatments received in the mCRPC
setting and heterogeneity in primary tumors that might
have resulted in different profile between primary and
mCRPC lesions.

1.2. Clinical Implications of BRCA Mutations in Prostate
Cancers. PCais a clinically heterogeneous disease. Patients
commonly show variable responses to treatments that
result in different clinical outcomes. This clinical variability
may reflect molecular heterogeneity. Therefore, molecular
profiling could have a meaningful translational relevance,
allowing to distinguish PCa with indolent behaviour from
those with a lethal course. Several studies explored the
prognostic role of BRCA mutations in localized PCa and in
mCRPC patients treated with standard therapies [20]. In a
large retrospective study, BRCA1/2 mutations correlated
with higher Gleason score, nodal involvement, metastatic
disease at diagnosis, and T3/4 stage [14]. Moreover, BRCA2
was an independent prognostic factor that was associated
with poorer outcomes. In localized PCa, the 5-year CSS and
MEFS were significantly shorter in BRCA2 carriers than in
noncarriers (82% vs. 96%; 77% vs. 93%, respectively) [14].
Given conflicting results reported in retrospective studies,
it is currently uncertain whether BRCA2 mutation may
affect the clinical outcome of mCRPC patients treated with
standard treatments [21, 22]. Annala and colleagues ret-
rospectively analyzed 319 charts of mCRPC patients, in-
cluding 22 germline DDR (gDDR) carriers (16 BRCA2-
mutated). Interestingly, gDDR carriers had a significant
shorter progression-free survival (PFS) than noncarriers
(3.3 vs. 6.2 months, p = 0.01) when treated with first-line
ARSi [21].

Antonarakis et al. evaluated the clinical significance of
gDDR mutations in 172 mCRPC receiving first-line ARSi.
Notably, in contrast to what was reported by Annala et al.
[21], ATM-BRCA1/2 carriers had a trend towards longer
PES than noncarriers (15 vs. 10.8 months, p = 0.090) [23].
Conversely, Mateo et al. found no difference in PFS on first-
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line ARSi (8.3 months in both groups) between gDDR
carriers (n=330) and noncarriers (n=60) [22].

PROREPAIR-B was the first prospective trial designed
to elucidate the prognostic impact of BRCA1/2, ATM, and
PALB2 on CSS of mCRPC patients. All patients enrolled in
this trial have not been treated with platinum or PARP
inhibitors. Although the study failed to reach the primary
endpoint of improved CSS between gDDR carriers (n = 68)
and noncarriers (n = 351) (23.3 vs. 33.2 months; p = 0.264),
germline BRCA2 mutation (gBRCA2) was confirmed to be
an independent prognostic factor that negatively affected
CSS (17.4 months in gBRCA2 vs. 33.2 months in non-
mutated patients; p = 0.027) [24]. In a non-preplanned
subgroup analysis of PROREPAIR-B, gBRCA2 mutation
was also predicted for shorter CSS in mCRPC patients
treated with the sequence docetaxel-ARSi compared to
noncarriers (median 28.4 vs. 10.7 months, p = 0.0003) [24].
In contrast, CSS of gBRCA2 carriers did not differ from that
of noncarriers in patients treated with the sequence ARSi-
docetaxel (31.2 vs. 24 months, p = 0.901) [24]. This finding
suggests that the choice of first-line therapy may affect the
outcome of gBRCA2 patients, and these results may explain
the aforementioned conflicting results from the three
retrospective series [21, 22]. The multicenter and ambis-
pective BRCA2MEN study is currently planned to validate
the role of BRCA2 as a predictive biomarker to select the
first-line therapy (ARSi vs. taxane) in patients with
mCRPC.

1.3. Targeting BRCA Mutations in Prostate Cancer

1.3.1. Platinum Agents. Platinum-based chemotherapy,
alkylating DNA, induces genomic strand breaks that may
be translated in a synthetic lethality in tumor cells with
DDR mutation. Carboplatin is a standard treatment for
BRCA1/2 patients in breast [25, 26]. and ovarian cancer
[27]. Satraplatin provided a significant reduction in the risk
of progression or death (HR 0.67; 95% CI, 0.57 to 0.77;
p<0.001) in a randomized phase 3 trial that enrolled
unselected mCRPC patients who had progressed to prior
taxane [28]. However, this benefit did not translate in OS
advantage compared to placebo (HR =0.98; 95% CI, 0.84 to
1.15; p = 0.80).

Retrospective series and case reports also described
the potential efficacy of platinum-based chemotherapy in
mCRPC patients harboring gBRCA2 mutations [29, 30].
A retrospective study carried out at Dana-Farber Institute
assessed the activity of carboplatin AUC 3-5 and doce-
taxel 60-75mg/mq in 141 mCRPC patients who were
previously progressed to standard therapies [16]. The
combo significantly improved the rate of PSA decline in 6
out of 8 BRCA2 carriers compared to 23 out of 133
noncarriers (p = 0.001), and improved OS was also ob-
served (18.9 in BRCA2 carriers vs. 9.5 months in non-
carriers) [16].

Several ongoing trials are evaluating the efficacy of
platinum-based chemotherapy in mCRPC patients se-
lected for DDR mutations [31-33].

1.3.2. PARP Inhibitors. DDR defects cause the accumulation
of genomic mutations in cancer cells, eventually leading to
their proliferation, immortalization, and acquisition of an
aggressive phenotype [34].

In vitro models showed that BRCAI- and BRCA2-de-
fective cells are sensitive to PARP inhibitors, whereas
BRCA1- and BRCA2-proficient cells are resistant [34].

ADP-ribosylation is involved in several cellular pro-
cesses, including cell growth and differentiation, apoptosis,
and transcriptional regulation. However, ADP-ribosylation
has a significant role in DNA repair and genome stability,
promoting double-strand break repair via homologous re-
combination [35]. The blockade of PARPI1 through the use
of PARP inhibitors or alkylating agents causes accumulation
of DNA damages in DDR-defective tumor cells, resulting in
a synthetic lethality (Figure 1) [36]. Several PARP inhibitors
have been developed and are under investigation in clinical
research for mCRPC patients (see Table 1) [37]. Olaparib
was the first PARP inhibitor that showed significant activity
in patients with mCRPC who had progressed to standard
treatments. In a phase II trial, 50 heavily pretreated, mo-
lecularly unselected, mCRPC patients received olaparib
400 mg twice a day until progression or unacceptable tox-
icities [15]. The primary composite endpoint was the ob-
jective response rate (ORR), defined according to RECIST
1.1 criteria or as a reduction of at least 50% in PSA levels or a
confirmed reduction in the circulating tumor-cell count
from 5 or more cells to less than 5 cells per 7.5ml of blood
[15]. The prevalence of gDDR alterations was 33%. In the
whole population, 16 out of 49 evaluable patients had a
response (33%; 95% CI, 20 to 48). Among patients with
gDDR, 88% had a response to olaparib [15]. Moreover,
olaparib significantly improved PFS (median 9.8 vs. 2.7
months; p<0.001) and OS (median 13.8 months vs. 7.5
months p =0.05) of gDDR-mutated mCRPC patients
compared to biomarker-negative patients [15]. In the ran-
domized phase II TOPARP-B trial, 92 heavily pretreated
mCRPC patients, selected for the presence of gDDR mu-
tations, were randomized 1:1 to receive olaparib 400 mg
twice daily or olaparib 300 mg twice daily [38]. The primary
endpoint was defined as the presence of one of the following
outcomes: radiological ORR assessed by RECIST 1.1 criteria,
PSA response >50%, or circulating tumor-cell count con-
version (from >5 cells per 7.5 mL blood at baseline to <5 cells
per 7.5mL blood). The primary endpoint was met. Com-
posite response was achieved in 25 out of 46 patients re-
ceiving olaparib 400 mg (54.3%; 95% CI, 39.0-69.1) and in
18 out of 46 patients enrolled in olaparib 300 mg arm (39.1%;
25.1-54.6). The composite response was lower in patients
treated with olaparib 300 mg, not reaching the prespecified
criteria for success. However, almost 30% of patients treated
with a higher dose of olaparib discontinued the treatment or
reduced the schedule due to the development of grade 3-4
adverse events. Moreover, this trial showed that BRCA2-
mutated patients had the greatest benefit from olaparib
compared to those harboring CDK12 or ATM mutations.
This trial suggested that the type of DDR mutation and
olaparib dose had predictive implications. However, the type
of mutation was not a stratification criterion for
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FiGure 1: Mechanism of action of PARPi, platinum salts, and
topoisomerase I inhibitors in the BRCA-mutated cell.

randomization; therefore, an allocation bias might have
affected the results. The olaparib 300 mg arm was enriched of
CDK12 patients, and this unbalance may have caused a
lower benefit in this group of patients [38].

The role of DDR defects in predicting response to PARP
inhibitors was more consistently demonstrated in the phase
IIT PROFOUND trial, which randomized 387 mCRPC pa-
tients who were progressing to prior ARSi. Patients were
allocated in two cohorts based on the presence of specific
DDR defects (cohort A including BRCA1/2 or ATM and
cohort B including other DDR defects). Olaparib 300 mg
twice daily and second-line ARSi were administeredina 2:1
ratio [39]. The primary endpoint was radiological PFS
(rPES). Patients in cohort A treated with olaparib reported a
median rPFS of 7.4 months compared to 3.55 months in
those in the same cohort treated with ARSi (HR 0.34 (95%
CI, 0.25-0.47), p<0.0001). The PFS benefit was consistent
throughout all subgroups within the prespecified subgroup
analysis. Similar to that observed in the TOPARP-B trial
[38], BRCA2-mutant patients had a better benefit from
olaparib than patients harboring CDK12 or ATM mutations.
The interim OS analysis also favored the olaparib arm (HR
0.64, 0.43-0.97), despite more than 80% of patients in the
control group did crossover after disease progression. The
ORR was 33% and 2.3% for experimental and control
groups, respectively. Based on these findings, the US Food
and Drug Administration (FDA) granted approval for
olaparib in mCRPC patients with germline or somatic
deleterious homologous recombination repair gene muta-
tions who had progressed to prior ARSi on May 19, 2020.

The predictive value of DDR mutations was also con-
firmed in the preliminary findings from two phase II trials,
TRITON-2 [40, 41] and GALAHAD [42], which investigated
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the activity of two other PARP inhibitors in patients with
DDR-deficient mCRPC. In TRITON-2, mCRPC patients
who had previously progressed to at least one ARSi and a
taxane-based chemotherapy were screened for germline or
somatic alterations in DDR genes. A total of 190 patients
were treated with rucaparib 600 mg twice daily; the vast
majority (98 pts) had BRCA1/2 alterations; and the
remaining patients had alterations in ATM (57 pts), CDK12
(14), CHECK?2 (7), and other genes (14 patients). ORR was
43.9% for patients with BRCA alterations, 9.5% for ATM,
and 0% for the others. A similar pattern was observed for
PSA response [41, 42]. On the basis of the preliminary results
of the TRITON-2 trial, FDA announced on 15 May 2020 the
accelerated approval of rucaparib for BRCA1/2 mCRPC
patients progressing to prior ARSi or taxane.

In the GALAHAD trial, 165 patients with mCRPC and
DDR defects progressing to at least one prior ARSi and
taxane-based chemotherapy received niraparib 300 mg once
daily. DDR positivity was defined by biallelic alterations in
BRCA1/2, ATM, CHECK2, and other genes identified in
plasma or tissue. ORR was the primary endpoint of the
study. Patients who carried biallelic BRCA mutations
achieved higher ORR (41% vs. 9%) and rPES (8.2 months vs.
5.3) compared to those who did not harbor BRCA alter-
ations [42]. It should be highlighted that the PROFOUND
and the TRITON-2 trials evaluated mono- and biallelic
alterations in DDR genes in tumor tissue and tumor tissue or
plasma, respectively. Conversely, the GALAHAD trial re-
quired biallelic alterations in plasma samples to confirm
eligibility. It is currently unknown whether the type and
origin of BRCA mutations (germline vs. somatic and
monoallelic vs. biallelic) could affect the response to treat-
ment with PARP inhibitors.

1.4. Relevance of Germline Testing and Genetic Counselling.
The high prevalence of DDR mutations and the clinical
implications for their prognostic and predictive role have
progressively led the international guidelines to implement
recommendations for genetic and germline testing. The
Philadelphia consensus conference recommends to test all
patients with metastatic PCa, both in hormone-sensitive and
castration-resistant settings, and in all patients with a sig-
nificant family history of PCa or of tumors in the hereditary
breast and ovarian cancer (HBOC) syndrome or Lynch
syndrome spectrum. In metastatic PCa, both germline
testing and somatic testing can be performed, and large gene
panels can be used; however, the test should prioritize genes
with more relevant clinical implications such as BRCA2,
BRCA1, and mismatch repair (MMR). Furthermore, when
somatic mutations are identified in BRCA2 or BRCAI,
germline evaluation should also be performed due to the
implications for all related family members. For patients
with nonmetastatic PCa, the Philadelphia consensus sug-
gests to use reflex testing, which consists of initial testing of
priority genes followed by expanded testing, with a par-
ticular focus on BRCA2 results to personalize the strategies
of active surveillance [43]. The US National Comprehensive
Cancer Network (NCCN) guidelines recommend genetic
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TaBLE 1: Ongoing clinical trials assessing the role of PARPi in mCRPC.
Clinical trial ~ Phase Study drug Strategy Primary endpoint
NCT02861573 1 Olaparib Pembrolizumab + olaparib in postdocetaxel setting RR (PSA50)
NCT03874884 1 Olaparib Olaparib + 177Lu-PSMA in mCRPC DLFIL;SI’);I/I)TD’
NCT03205176 1 Olaparib Olaparib £+ AZD5153 (BRD4/BET bromodomain inhibitor) in mCRPC DLT
NCT02484404 I/II Olaparib Olaparib + ceridanib + MEDI4736 (anti-PD-1) in mCRPC RP2D, AE
NCT03317392 /11 Olaparib Ra223 + olaparib in mCRPC patients with bone metastases MTD, rPFS
NCT03787680 II Olaparib Olaparib + ATR inhibitor (AZD6738) in second-line setting RR
NCT03012321 1II Olaparib Olaparib + abiraterone/prednisone in first-line setting PES
NCTO03434158 1II Olaparib Olaparib for patients who are responding after docetaxel chemotherapy rPFS
NCT03263650 II Olaparib Olaparib for patients who are responding after cabazitaxel plus carboplatin PES
NCT03516812  1I Olaparib Olaparib + testosterone enanthate in postabiraterone/enzalutamide setting RR (PSA50)
NCT02893917 1I Olaparib Olaparib + cediranib in second-line setting rPES
NCT03732820 III Olaparib Abiraterone/prednisone + olaparib in first-line setting rPFS
NCT03834519 I Olaparib Olaparib plus pembrolizumab versus abiraterone acetate or enzalutamide after 0S and PES
chemotherapy and ARSI
NCT03076203 I Niraparib Niraparib + radium-223 MTD
NCT03431350 I/II Niraparib Niraparib + abiraterone/prednisone or JNJ-63723283 in post-ARSi setting AE, ORR
NCT02854436 1I Niraparib Niraparib in postdocetaxel and post-ARSi settings ORR
NCT03748641  III Niraparib Abiraterone/prednisone + niraparib in first-line setting rPFS
NCT04179396 1 Rucaparib Rucaparib + abiraterone or enzalutamide in mCRPC PK, AE
NCT03840200 1 Rucaparib Rucaparib + ipatasertib in mCRPC after ARSI AE}Z;E;’SSSA
NCT04253262 I/II Rucaparib Rucaparib + copanlisib (PI3K inhibitor) in mCRPC progressing after ARSi MTD, ORR
NCT03840200 I/II Rucaparib Rucaparib + ipatasertib after ARSi AE, (113;“:)’ RR
NCT03572478 1/1I Rucaparib Rucaparib vs. rucaparib + nivolumab vs. nivolumab DLT
NCT02952534 1II Rucaparib Rucaparib in postdocetaxel and post-ARSi settings ORR
NCT03338790 II Rucaparib Nivolumab + rucaparib or docetaxel or enzalutamide ORR
NCT03442556 1I Rucaparib ~ Rucaparib for patients who are responding after docetaxel plus carboplatin rPFS
NCT02975934 1III Rucaparib Rucaparib vs. abiraterone/enzalutamide/docetaxel in second-line setting rPES
NCT04019327 1/l Talazoparib Talazoparib + temozolomide in mCRPC without DNA damage repair mutation AE, ORR
after at least one ARSI
NCT04052204 I/II  Talazoparib Talazoparib + avelumab + bempegaldesleukin in mCRPC DLT, ORR
NCT03330405 1II Talazoparib Avelumab plus talazoparib in advanced solid tumors DLT, ORR
NCT03148795 1I Talazoparib Talazoparib in postdocetaxel and postabiraterone/enzalutamide settings ORR
NCT03395197 1III  Talazoparib Enzalutamide + talazaparib in first-line setting rPFS
NCTO04182516 I 031;]1(;/;2_93 NMS-03305293 (PARP inhibitor) in mCRPC First cycle DLTs

RR: response rate; PSA50: decline in PSA level >50% than baseline; MTD: maximum tolerated dose; rPFS: radiological progression-free survival; PES:
progression-free survival; OS: overall survival; AE: adverse events; ORR: objective response rate; DLT: dose-limiting toxicities; MTD: maximum tolerated

dose; RP2D: recommended phase II dose; and PK: pharmacokinetic.

testing (somatic and/or germline) for patients with high,
very-risk, regional, and metastatic PCa or with a significant
family history for cancer [44]. The recently published Eu-
ropean Society for Medical Oncology (ESMO) guidelines
recommend germline screening for all patients with mPCa
and to consider genetic testing in patients with localized PCa
and a family history suggestive for hereditary cancer pre-
disposition [45]. Multidisciplinary discussion and integra-
tion with genetic services are fundamental to decide when
and whether a genetic test should be performed and to select
the appropriate therapeutic and diagnostic strategies. The
IMPACT study is evaluating a screening strategy in men
with gBRCA1/2 in order to define how to manage the
population at a higher risk of PCa development in the
presence of the BRCA2 mutation [46]. Annual prostate-
specific antigen (PSA) tests and a biopsy for PSA >3 ng/ml
are performed. Preliminary results revealed a higher

incidence of PCa in gBRCA2 mutation carriers (3.3% vs.
2.6% in gBRCA1 mutation carriers, <2% for controls). Final
results are awaited to be aware of the optimal screening
strategies for this population.

2. Conclusions

Despite the development of several treatment options for
mCRPC patients, metastatic PCa remains a lethal disease
with poor prognosis [4]. Molecular characterization of
mCRPC patients should be routinely integrated into the
clinics in order to select patients who are more likely to
respond to targeted agents and to minimize toxicities from
unnecessary therapies. Furthermore, the emerging role of
BRCA2 underlines the growing importance of genetic
counselling and the multidisciplinary approach in the
management of PCa patients. Recent evidence highlights


https://clinicaltrials.gov/ct2/show/NCT02861573
https://clinicaltrials.gov/ct2/show/NCT03874884
https://clinicaltrials.gov/ct2/show/NCT03205176
https://clinicaltrials.gov/ct2/show/NCT02484404
https://clinicaltrials.gov/ct2/show/NCT03317392
https://clinicaltrials.gov/ct2/show/NCT03787680
https://clinicaltrials.gov/ct2/show/NCT03012321
https://clinicaltrials.gov/ct2/show/NCT03434158
https://clinicaltrials.gov/ct2/show/NCT03263650
https://clinicaltrials.gov/ct2/show/NCT03516812
https://clinicaltrials.gov/ct2/show/NCT2893917
https://clinicaltrials.gov/ct2/show/NCT03732820
https://clinicaltrials.gov/ct2/show/NCT03834519
https://clinicaltrials.gov/ct2/show/NCT03076203
https://clinicaltrials.gov/ct2/show/NCT03431350
https://clinicaltrials.gov/ct2/show/NCT02854436
https://clinicaltrials.gov/ct2/show/NCT03748641
https://clinicaltrials.gov/ct2/show/NCT04179396
https://clinicaltrials.gov/ct2/show/NCT03840200
https://clinicaltrials.gov/ct2/show/NCT04253262
https://clinicaltrials.gov/ct2/show/NCT03840200
https://clinicaltrials.gov/ct2/show/NCT03572478
https://clinicaltrials.gov/ct2/show/NCT02952534
https://clinicaltrials.gov/ct2/show/NCT03338790
https://clinicaltrials.gov/ct2/show/NCT03442556
https://clinicaltrials.gov/ct2/show/NCT02975934
https://clinicaltrials.gov/ct2/show/NCT04019327
https://clinicaltrials.gov/ct2/show/NCT04052204
https://clinicaltrials.gov/ct2/show/NCT03330405
https://clinicaltrials.gov/ct2/show/NCT03148795
https://clinicaltrials.gov/ct2/show/NCT03395197
https://clinicaltrials.gov/ct2/show/NCT04182516

that gBRCA2 is an independent prognostic factor associated
with shorter CSS in mCRPC patients, and the type of first-
line treatment might affect the outcome of gBRCA2 carriers
[24]. Moreover, it has been demonstrated that gBRCA2 is a
strong predictor of response to PARP inhibitors. The role of
PARP inhibitors in non-BRCA DDR mCRPC patients re-
mains less clear, and further studies should investigate this
specific issue.
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