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CHAPTER 1 INTRODUCTION  

Experiments are the most accurate method for the determination of liquid structure and 

vapor−liquid equilibrium properties such as, vapor and liquid density, vapor pressure, heat of 

vaporization, compressibility factor, boiling point, and critical properties. Nonetheless, 

experimentally measuring these properties for some compounds can be extremely dangerous, 

expensive, and difficult. For example, hazardous compounds that require high pressure and 

temperature conditions make these measurements dangerous; thermal decomposition at higher 

temperatures and the difficulty of separating similar isomers make such measurements 

expensive and unreliable[1-4]. Molecular simulations provide another route to the prediction 

of equilibrium properties.  

Given a molecular structure, and an accurate description of interactions between atoms, 

or groups of atoms, computer simulations may be used to calculate nearly any physical property 

associated with a specified molecule. While molecular simulations are computationally 

intensive, computer simulations are safe and much less expensive. Using simulations, it is 

possible to determine relationships between atomic-level interactions, nanoscale structure, and 

macroscopic properties. Hence, computer simulations are able to provide insight that may 

otherwise be impossible to obtain from experiments. Notable examples include self-assembly 

of nanoscale structures[5-8], understanding biological structure-function relationships[9-11], 

drug design[12-14], and materials design for separation and storage of gases[15-20]. Advances 

in the use of molecular simulation for materials design have been driven by simultaneous 

advances in force fields[21-29], algorithms[30-35], computer hardware, and software designed 

to take advantage of parallel computer architectures, such as multi-core CPUs, and graphics 

processing units (GPUs)[36-42].  

Quantum mechanics (QM) and classical mechanic simulation are common techniques 

in molecular modeling. Molecular mechanics simulations, using classical force field-based, 
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may be divided into two categories: molecular dynamics (MD), where the system evolves 

according to Newton’s equations of motion, and Monte Carlo (MC), where the system evolves 

through sequential trial moves accepted according to probabilities defined by statistical 

mechanics.  

To simulate a equilibrium system (e.g. vapor-liquid equilibria, solid-liquid equilibria, 

and adsorption isotherm), it’s often more efficient to use MC simulation, rather than MD 

simulation, because the MC simulation is capable of performing unrealistic moves, such as 

large translation, rotation, change in molecular configuration, and molecule transfer, to hop 

between microstates and satisfy the equilibrium convergence. However, MD algorithm is 

usually more efficient to simulate a system at high density, low temperature, and strong inter-

molecular interaction (e.g. hydrogen bonds). 

Examples of commonly used MD codes include NAMD[37], AMBER[43], 

CHARMM[42, 44], GROMACS[41], LAMMPS[38, 45] and HOOMD[40, 46]. Example of 

commonly used open-source MC codes include Towhee[47, 48], HOOMD[49], Etomica[50], 

FEASST[51], MS2[52-54], RASPA[55], Cassandra[56], and GOMC[57]. GOMC (GPU-

Optimized Monte Carlo) is an object-oriented, general purpose Monte Carlo simulation engine, 

developed by Dr. Potoff and Dr. Schwiebert research group in department of Chemical 

Engineering and Computer Science at Wayne State University, respectively. GOMC is capable 

of performing simulations in canonical, isobaric-isothermal, and grand canonical ensembles, 

as well as Gibbs ensemble Monte Carlo. GOMC is designed for the simulation of large system, 

complex molecular topologies, and supports a variety advanced Monte Carlo algorithms and  

potential functions. GOMC utilize the OpenMP and NVIDIA CUDA to allow for execution on 

multi-core CPU and GPU architectures. 
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1.1 Thesis Motivation 

1.1.1 Force Field Optimization 

Alkynes are unsaturated hydrocarbons with at least one triple carbon-carbon bond and 

a general formula of CnH2n-2. Heavier alkynes are commercially synthesized from condensing 

acetylene (ethyne) via formaldehyde[58]. Acetylene and propylene are commercially 

synthesized from oxidation of methane, and thermal cracking of hydrocarbons, 

respectively[58]. Alkynes have various pharmaceutical and industrial applications, such as 

drugs for cancer treatment[59], torches, rocket fuel, and polyethylene production. Alkynes are 

used as base stock to synthesize acrylic acid, which is used in the manufacturing of paints, 

plastics, and adhesives. Alkynes are commonly used as a starting material in synthesis, since 

the triple bond is easily broken.  

The highly reactive nature of alkynes motivates the development of computational 

methods for the accurate prediction of physical properties and phase behavior, and the 

application of computer simulation to these compounds requires high quality, transferable, 

intermolecular potentials. To date, however, a limited number of molecular models have been 

published for ethyne (acetylene), the smallest alkyne[60-62]. Parameters were optimized via 

corresponding states theory[60], regression to experimental data[61], and fitting to reproduce 

ab initio derived interaction energies[62]. For longer alkynes, only one force field (SPEAD), 

which is based on step potentials, has been published[63]. This force field does not have 

parameters for ethyne and propyne. The reported average absolute deviation in the liquid 

densities and vapor pressures were 3.0% and 7.0%, respectively, for compounds in the training 

set. 

The lack of transferability in the developed intermolecular potential parameters for 

alkynes and high error in the reproduction of experimental saturated liquid density, vapor 

densities, and vapor-pressures, motivated this work to develop an optimized Mie potential 
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parameters for sp hybridized C, and CH groups and the sp2 hybridized C group in propadiene 

to accurately reproduce experimental saturated liquid and vapor densities and vapor pressures. 

The result of this work has been published in Journal of Molecular Physics[64]. 

1.1.2 Advanced Monte Carlo Sampling Method 

In Monte Carlo simulations in the grand canonical ensemble (GCMC), the chemical 

potential, volume, and temperature are fixed (𝜇𝑉𝑇 = constant), while in the Gibbs ensemble 

Monte Carlo simulation (GEMC), the total number of molecules,  volumes, and temperature 

are fixed (𝑁𝑉𝑇 = constant). Sampling of phase space is achieved through a variety of trial 

moves, such as displacement, molecule insertion and deletion (in GCMC simulation), and 

molecule transfer (in GEMC simulation). Perhaps the greatest challenge with GCMC and 

GEMC simulations, however, is achieving a sufficient number of accepted molecular 

insertion/deletion or molecule transfer moves to ensure adequate sampling of phase space. 

Therefore, significant effort has been expended to develop algorithms that improve the 

acceptance percentage for molecule insertions, deletions, and transfer.  

Biasing methods, such as rotational, energy, and cavity-bias, has been developed to 

improve the efficiency of GCMC simulations[65]. The introduction of configurational-bias 

Monte Carlo enabled the successful simulation of chain molecule adsorption in zeolites[66], 

which was followed by the coupled-decoupled[67]. These aforementioned biasing methods 

have greatly extended the complexity of systems that may be simulated with GCMC or GEMC 

simulations, however, at high densities and low temperatures, the acceptance rate for molecule 

transfers is still unacceptably low due to the difficulty in finding a favorably sized cavity to 

insert a molecule. Others have sought to address these issues through the use of cavity-bias[68-

70], to identify favorable locations to attempt molecule insertions, or continuous fractional 

component Monte Carlo[71, 72], and expanded ensembles[73, 74], where molecules are 
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gradually inserted while the system is allowed to relax locally to minimize steric and energetic 

penalties due to molecule insertion. 

For mixtures, a straightforward approach is to introduce a trial move where the identity 

of one molecule is changed to that of another[75]. The benefit of such a move is that steric 

overlaps are reduced significantly, leading to enhanced acceptance for the particle exchange. 

The methodology has been extended to allow for the exchange of multiple solvent molecules 

with a polymer chain composed of solvent monomers without changing the coordinates of 

either polymer or solvent[76]. While a number of publications state that an identity exchange 

move was used for molecular systems[77-79], a detailed description of the algorithm and the 

acceptance criteria have not been published to date. The previously described methods for 

identity exchange were generally applicable to only the special cases for which they were 

developed, e.g. single particle exchanges[80], a polymer composed of solvent monomers[76], 

or large hard particles or disks in a solvent of smaller hard particles[81, 82].  

These methods are difficult to generalize to molecular systems of arbitrary molecular 

topology, and their computational performance is expected to be highly correlated with the 

type of system for which the move was originally developed. To address these issues, a 

generalized identity exchange move for simulations in the grand canonical and Gibbs 

ensemble, referred to as Molecular Exchange Monte Carlo (MEMC), is presented that works 

for systems of any molecular topology. The result of this work has been published in Journal 

of Chemical Physics[83] and Fluid Phase Equilibria[84]. 

1.1.3 Effect of Fluorination on the Partitioning of Alcohols 

Perfluoroalkyl substances (PFAS) are a broad class of compounds where fluorine has 

been substituted for hydrogen on the alkyl chains. The most widely used and industrially 

relevant PFAS are surfactants, where fluorination of the alkyl tails renders them both 

hydrophobic and oleophobic, giving rise to unusual properties, such as exceptional chemical 
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and thermal stability and very low interfacial tension at the air-water interface[85-87]. Owing 

to their unique properties,  PFAS are used in a broad array of consumer applications, including 

coatings for non-stick cookware[88], grease-resistant paper[89], and stain resistant fabrics. 

Industrial applications include fire-fighting foams[90] and mist-suppressants in hard chrome 

plating[91]. The strength of the C-F bond, which contributes to the stability of fluorinated 

surfactants, also makes them extremely resistant to thermal, chemical, or photo degradation; 

experiments have shown that perfluorinated surfactants are highly resistant to biological 

degradation[92]. Numerous studies have shown widespread distribution of PFAS in the 

environment[93, 94]. As a result, PFAS are now considered to be a significant environmental 

threat[95]. 

Environmental fate models rely on numerous physical property data, two of the most 

important of which are the Henry’s law constant and the octanol-water partition coefficient, 

log𝐾𝑜𝑤[96]. Given the breadth of PFAS chemistry and the lack of available experimental data, 

predictive methods are needed to fill these critical knowledge gaps. Prior work on the 

partitioning of fluorotelomer alcohols showed that common tools, such as EPISuite[97], 

CLOGP[98], SPARC[99] and COSMOTherm[100], produce a wide variety of results, with 

some predictions 2-5 orders of magnitude different than experiment[101]. Alternatively, 

atomistic computer simulations, combined with free energy methods such as thermodynamic 

integration[102], free energy perturbation[103, 104], or adaptive biasing force[30, 105], have 

been used with great success in the prediction of free energies of hydration and solvation in 

organic solvents for a wide variety of compounds[106-109]. While most work has focused on 

applications to drug[12, 13, 110] discovery, other calculations have focused on predicting the 

environmental fate of potentially toxic compounds, such as energetic materials[111, 112], ionic 

liquids[113], and fluorinated alcohols[114].  
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While molecular dynamics simulations are widely used for the calculation of free 

energies of solvation, systems with large energy barriers to configurational and/or 

conformational change may exhibit biased sampling, leading to incorrect free energies if care 

is not taken[115]. On the other hand, Monte Carlo simulations allow the system to hop between 

states and in some cases, may offer conformational sampling advantages over molecular 

dynamics. Free energies can be determined directly from Gibbs ensemble Monte Carlo 

simulations from the ratio of number densities of the solute in each phase[77, 84, 116]. 

Gibbs ensemble Monte Carlo provides a straightforward way of determining free 

energies of transfer as long as a sufficient number of successful exchanges of the solute 

between phases occurs, which usually requires the use of advanced configurational-bias 

sampling methods[83, 84, 116, 117]. For dense liquids with strong electrostatic interactions, 

obtaining adequately converged results for certain solutes may be challenging, even with state-

of-the-art sampling algorithms, the molecular exchange Monte Carlo (MEMC). The fluoro-

alcohol systems of interest in this work present a perfect storm of sampling problems: the 

hydroxyl group has strong electrostatic interactions with the solvent (water or octanol) and it 

is difficult to find a favorably sized cavity to insert the bulky fluorinated alkyl tail. With enough 

intermediate states, nearly any molecule exchange between phases is possible[118], but if free 

energies of transfer are the quantity of interest, it may be more effective to perform standard 

thermodynamic integration or free energy perturbation. Therefore, this work describes the 

implementation of thermodynamic integration (TI) and free energy perturbation (FEP) 

methods into the Monte Carlo simulation engine GOMC[57], and the application of TI and 

FEP to determine the air-water, air-oil, air-octanol, and octanol-water partition coefficients for 

eight carbon alcohols with varying degrees of fluorination. The result of this work has been 

published in Journal of Molecular Physics[119]. 
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1.2 Thesis Organization 

The accuracy of calculated physical properties using molecular simulation, depends on 

accurate description of molecular interaction and topology. In this work, classical force field 

has been used to describe the inter- and intra-molecular energy for all Monte Carlo simulations. 

Inter-molecular energy consists of Van Der Waals and coulombic interaction, while the intra-

molecular energy includes, bond, angle, dihedral, and nonbonded-intra energy. Hence, Chapter 

2 is focused on defining bonded and nonbonded energy functions, in the classical force field. 

Van Der Waals interaction can be describe using standard Lennard-Jones potential 

function or Mie potential function. Mie potential function utilize the repulsion exponent as a 

variable, which provides additional degree of freedom for optimization. In previous works by 

our group, it has been shown that Mie potential parameters can be optimized to simultaneously 

reproduce experimental vapor pressures, liquid, and vapor densities. In Chapter 3,  the detailed 

procedure of optimizing Mie potential parameters for sp hybridized C, and CH groups in 

alkynes and sp2 hybridized C group in propadiene, is provided, followed up with prediction of 

vapor-liquid coexistence curve for propadiene and alkynes from ethyne to nonyne. To 

understand the impact of dipole and quadrupole moments, additional Mie potential parameters 

were optimized for ethyne and propyne that included electrostatic potential. The result of these 

model can be found in Appendix A. 

In Chapter 4, the generalized identity exchange move for simulations in the grand 

canonical ensemble, referred to as Molecular Exchange Monte Carlo (MEMC), is presented. 

Three different approaches for the insertion of the large molecule are presented and the 

derivation of acceptance criteria and the algorithms for performing the MEMC move is 

provided for each of the three approaches. The utility of the three methods and their 

computational efficiency is illustrated for selected binary mixtures. The detailed computational 

procedure, mathematical calculations, and additional results are included in the appendix B. 
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In Chapter 5, MEMC methods are extended to the Gibbs ensemble simulation and the 

derivation of acceptance criteria and the algorithms for performing the MEMC move in GEMC 

are provided. The simulation details for determining the binary mixture phase diagrams and 

Gibbs free energies of transfer are provided, followed up with pressure-composition diagrams 

for the methane+n-butane and n-butane+perfluorobutane, and free energies of transfer for n-

alkanes in 1-octanol, hexadecane, and 2,2,4-trimethylpentane. Additional results with their 

numerical values, and the schematic of ME-3 algorithm are presented in Appendix C.  

Gibbs ensemble Monte Carlo provides a straightforward way of determining free 

energies of transfer as long as a sufficient number of successful exchanges of the solute 

between phases occurs. For dense liquids with strong electrostatic interactions, obtaining 

adequately converged results for certain solutes may be challenging, even with state-of-the-art 

sampling algorithms, the MEMC. The more effective way to calculate the free energies of 

transfer for such a system is to perform standard thermodynamic integration or free energy 

perturbation. Therefore, Chapter 6 describes the implementation of thermodynamic integration 

(TI) and free energy perturbation (FEP) methods into the Monte Carlo simulation engine 

GOMC, and the application of TI and FEP to determine the air-water, air-oil, air-octanol, and 

octanol-water partition coefficients for eight carbon alcohols with varying degrees of 

fluorination. The bonded parameters used in this chapter and comparison of predicted free 

energies of hydration/solvation using TI, BAR, and MBAR are presented in Appendix D. 

The key findings of the works described in Chapters 3, 4, 5, and 6 are summarized in 

Conclusions chapter.  
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CHAPTER 2 FORCE FIELD 

The total energy of the system with N molecules can be defined as summation of 

bonded, nonbonded, and long-range corrections (LRC) energies.  

 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑈𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑈𝐿𝑅𝐶 (2.1) 

2.1 Nonbonded Energies 

The nonbonded energies (intra-molecule interaction) includes Van Der Waals and 

coulombic interaction. Van Der Waals interaction can be described by Lennard-Jones or 

general version of it, the Mie potential.  

 

𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =∑∑𝑈𝐿𝐽(𝑟𝑖𝑗) + 𝑈𝐶𝑜𝑢𝑙(𝑟𝑖𝑗)

𝑁

𝑗>𝑖

𝑁

𝑖=1

 (2.2) 

where 𝑟𝑖𝑗 is the separation distance for the pair of interaction sites i and j. 

The Van Der Waals interaction described by Mie potential is defined as: 

 𝑈𝐿𝐽(𝑟𝑖𝑗) = 𝐶𝑛휀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

𝑛𝑖𝑗

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (2.3) 

where 휀𝑖𝑗, 𝜎𝑖𝑗, and 𝑛𝑖𝑗 are the well depth, collision diameter, and repulsion exponent, 

respectively, for the pair of interaction sites i and j. The constant 𝐶𝑛 is a normalization factor 

used such that the minimum of the potential remains at −휀𝑖𝑗 for all 𝑛𝑖𝑗.  

 𝐶𝑛 = (
𝑛𝑖𝑗

𝑛𝑖𝑗 − 6
) (
𝑛𝑖𝑗

6
)
6 (𝑛𝑖𝑗−6)⁄

 (2.4) 

For the 12-6 potential, 𝐶𝑛 reduces to the familiar value of 4. Parameters governing 

interactions between unlike interaction sites were determined using the Lorentz-Berthelot 

combining rules[120, 121]. 
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 𝜎𝑖𝑗 = (𝜎𝑖𝑖 + 𝜎𝑗𝑗) 2⁄  (2.5) 

 휀𝑖𝑗 = √휀𝑖𝑖휀𝑗𝑗 (2.6) 

To determine repulsion exponents for cross interactions, an arithmetic average was 

used. 

 𝑛𝑖𝑗 = (𝑛𝑖𝑖 + 𝑛𝑗𝑗) 2⁄  (2.7) 

The coulombic interaction using the Ewald summation method[122] is defined as: 

 𝑈𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖𝑜𝑟𝑖𝑗
𝑒𝑟𝑓𝑐(𝛼𝑟𝑖𝑗) (2.8) 

where 𝜖𝑜, 𝛼, 𝑞𝑖, and 𝑞𝑗 are the permittivity of vacuum, partitioning parameter, and partial 

charges for the pair of interaction sites i and j, respectively. 

2.2 Bonded Energies 

Bonded energies includes bond, angle bending, and dihedral energies: 

 

𝑈𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝑈𝑏𝑜𝑛𝑑(𝑏)

𝑏𝑜𝑛𝑑𝑠

𝑏

+ ∑ 𝑈𝑎𝑛𝑔𝑙𝑒(𝜃)

𝑎𝑛𝑔𝑙𝑒𝑠

𝜃

 + ∑ 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙(𝜙)

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝜙

 (2.9) 

 The energy associated with bond stretches can be described using harmonic potential, 

defined as: 

 𝑈𝑏𝑜𝑛𝑑(𝑏) = 𝑘𝑏(𝑏 − 𝑏0)
2 (2.10) 

where b is the measured bond, b0 is the equilibrium bond, and 𝑘𝑏 is the bond force constant. 

However, in this work, all simulation were performed using rigid bonds, with no bond energies. 

 Similar to the bond energies, the angle bending energies can be described using 

harmonic potential: 

 𝑈𝑎𝑛𝑔𝑙𝑒(𝜃) = 𝑘𝜃(𝜃 − 𝜃0)
2 (2.11) 

where θ and θ0 is the measured and equilibrium angle between three bonded atoms, 
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respectively, and 𝑘𝜃 is the angle force constant. 

 The dihedral energies can be represented by cosine series: 

 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =∑𝑐𝑛(1 + cos (𝑛𝜙 − 𝛿𝑛))

𝑛=0

 
(2.12) 

where 𝜙 is the dihedral angle, 𝑐𝑛 are dihedral force constants, n is the multiplicity, and 𝛿𝑛 is 

the  phase shift. 

2.3 Long-range Correction Energies 

To accelerate the simulation performance, the nonbonded potential is usually truncated 

at specific cut-off distance. To compensate the missing potential energy, beyond the cut-off 

distance (𝑟𝑐𝑢𝑡), the long-range correction for Lennard-Jones and coulombic interaction must be 

calculated and added to the total energy of the system. 

 𝑈𝐿𝑅𝐶 = 𝑈𝐿𝑅𝐶(𝐿𝐽) + 𝑈𝐿𝑅𝐶(𝐶𝑜𝑢𝑙𝑜𝑚𝑏) (2.13) 

 For homogeneous system, the long-range correction for Mie potential can be 

analytically calculated: 

 
𝑈𝐿𝑅𝐶(𝐿𝐽) =

2𝜋𝑁2

𝑉
∫ 𝑟2
∞

𝑟=𝑟𝑐𝑢𝑡

𝑈𝐿𝐽(𝑟)𝑑𝑟  

 
𝑈𝐿𝑅𝐶(𝐿𝐽) =

2𝜋𝑁2

(𝑛 − 3)𝑉
𝐶𝑛휀 𝜎

3 [(
𝜎𝑖𝑗

𝑟𝑐𝑢𝑡
)
(𝑛−3)

− (
𝑛 − 3

3
) (

𝜎𝑖𝑗

𝑟𝑐𝑢𝑡
)
3

] (2.14) 

where 𝑁 and 𝑉 are the number of molecule and volume of the system, respectively. 

The long-range correction for Ewald summation method[122] is defined as: 

 𝑈𝐿𝑅𝐶(𝐶𝑜𝑢𝑙) = 𝑈𝑠𝑒𝑙𝑓 + 𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (2.15) 

 

𝑈𝑠𝑒𝑙𝑓 = −
𝛼

4√𝜋3𝜖𝑜
∑ 𝑞

𝑖
2

𝑁

𝑖

 (2.16) 
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𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −
1

4𝜋𝜖𝑜
∑∑∑𝑞𝑖𝑎𝑞𝑖𝑏

𝑒𝑟𝑓(𝛼𝑟𝑖𝑎,𝑖𝑏)

𝑟𝑖𝑎,𝑖𝑏
𝑏>𝑎𝑎

𝑁

𝑖

 (2.17) 

 

𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 =
1

2𝑉𝜖𝑜
∑

1

|�⃗⃗� |
2

�⃗⃗� ≠0

𝑒
−
|�⃗⃗� |

2

4𝛼2 [|∑𝑞𝑖  cos(�⃗⃗� . 𝑟𝑖⃗⃗ )

𝑁

𝑖

|

2

+ |∑𝑞𝑖  sin(�⃗⃗� . 𝑟𝑖⃗⃗ )

𝑁

𝑖

|

2

] (2.18) 

where 𝑟𝑖𝑎,𝑖𝑏, 𝑞𝑖𝑏, and 𝑞𝑖𝑏 are the separation distance, and partial charges for atom a and b in 

molecule i, respectively, and �⃗⃗⃗�  is the wave-vectors. 
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CHAPTER 3 OPTIMIZED MIE POTENTIALS FOR PHASE EQUILIBRIA: 

APPLICATION TO ALKYNES 

3.1 Introduction 

Alkynes are unsaturated hydrocarbons with at least one triple carbon-carbon bond and 

a general formula of CnH2n-2. Alkynes can be found in nature in the form of plants, fungi, 

bacteria, marine sponges, and corals[123], however, commercially heavier alkynes are 

synthesized from condensing acetylene (ethyne) via formaldehyde[58]. Acetylene and propyne 

are commercially synthesized from oxidation of methane, and thermal cracking of 

hydrocarbons, respectively[58]. Alkynes have various pharmaceutical and industrial 

applications, such as drugs for cancer treatment[59], torches, rocket fuel, and polyethylene 

production. Alkynes are used as base stock to synthesize acrylic acid, which is used in the 

manufacture of paints, plastics, and adhesives. Alkynes are commonly used as a starting 

material in synthesis, since the triple bond can be broken easily. Pure alkynes are very unstable 

and reactive compared to alkenes and alkanes. Alkynes are usually mixed with other 

compounds to form a solution that limits material degradation. For example, propyne is mixed 

with propadiene to form methylacetylene-propadiene propane (MAPP) gas.  

The highly reactive nature of alkynes motivates the development of computational 

methods for the accurate prediction of physical properties and phase behavior, and the 

application of computer simulation to these compounds requires high quality, transferable, 

intermolecular potentials. To date, however, a limited number of molecular models have been 

published for ethyne (acetylene), the smallest alkyne[60-62]. These models are based on a 

variety of potential functions, such as Lennard-Jones + point quadrupole[60], two-center 

Lennard-Jones plus point quadrupole[61], and Morse-C6 potentials combined with point 

charges[62]. Parameters were optimized via corresponding states theory[60], regression to 

experimental data[61], and by fitting to reproduce ab initio derived interaction energies[62]. 
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While a rigorous error analysis was not performed on any of the force fields, the model of 

Vrabec et al. appears to give the best reproduction of the experimental vapor-liquid coexistence 

curve to date[61]. For longer alkynes, only one force field (SPEAD), which is based on step 

potentials, has been published[63]. This force field does not have parameters for ethyne and 

propyne. The reported average absolute deviation in the liquid densities and vapor pressures 

were 3.0% and 7.0%, respectively, for compounds in the training set. 

The results from the SPEAD model illustrate a typical problem in the development of 

intermolecular potentials, which is achieving high accuracy in both the reproduction of 

experimental saturated liquid densities and vapor-pressures. For united-atom force fields, the 

limitations of the standard Lennard-Jones potential function are now well known, even when 

applied to non-polar systems, such as n-alkanes[24]. Our group has shown that through the use 

of Mie potentials, it is possible to produce significant improvements in the simultaneous 

reproduction of saturated liquid densities and vapor pressures for n-alkanes[24], branched 

alkanes[124], alkenes[125], perfluorocarbons[24], and noble gases[126, 127]. In addition, Mie 

potentials shows significant improvement in predicting the viscosities for saturated and 

compressed liquids[128, 129].  

Nonbonded potential parameters can be optimized using brute-force algorithm in grand 

canonical simulations, combined with histogram-reweighting methods[130, 131] to calculate 

vapor-liquid equilibria properties for each nonbonded parameters. In addition, nonbonded 

potential parameters can be optimized using the post-simulation analysis technique in 

canonical or grand canonical ensemble simulations, combined with the isothermal-isochoric 

integration (ITIC)[132] or histogram-reweighting methods, respectively, to predict the vapor-

liquid equilibria properties, without performing additional simulations[133, 134]. 

In this Chapter, the optimized Mie parameters are developed for alkynes as well as 

propadiene, using brute-force algorithm in grand canonical simulations. Parameters are 
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introduced for sp hybridized C, and CH groups and the sp2 hybridized C group in propadiene. 

These parameters are optimized to reproduce experimental saturated liquid densities and vapor 

pressures. Vapor-liquid coexistence curves are predicted for propadiene, and alkynes from 

ethyne to nonyne using grand canonical histogram-reweighting Monte Carlo simulations. The 

transferability of the models, and the reliability of available experimental data, are assessed. 

Radial distribution functions are used to provide insight on the effect of the sp hybridized 

carbon group on liquid phase structure. The result of this work has been published in Journal 

of Molecular Physics[64]. 

3.2 Force Field Parameters 

In this work, the Mie potential parameters for unlike interaction sites were determined 

using, Eq. 2.5-2.7. The use of an arithmetic average of repulsion exponents for the combing 

rule is consistent with past optimization efforts for n-alkanes, perfluoroalkanes[24], 

alkenes[125] and noble gases[126] using Mie potentials. This is supported by recent work by 

Stiegler and Sadus, who examined the effect of combining rules on the physical properties 

predicted by non-identical potentials[135], and comparisons of interaction energies predicted 

by Mie potentials for noble gases to MP2/aug-cc-PVTZ ab initio calculations[126]. 

All non-bonded parameters used in this work are listed in Table 3.1. Parameters for 

CH3 and CH2 (sp3), CH2 (sp2), and CH (sp2) pseudo-atoms were taken from our previous work 

on n-alkanes[24] and n-alkenes[125] and used without modification. During the optimization 

process, it was recognized that it was impossible to develop a single set of transferable 

parameters for the C(sp) group. Therefore, unique C(sp) parameters were optimized for 1-

alkynes and 2-alkynes. As shown in Table 3.1, the optimal 휀 for C in 1-alkynes is over 40% 

larger than in 2-alkynes. A single set of parameters for the CH(sp) group was optimized for use 

in all alkyne compounds.  
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Table 3.1: Non-bonded parameters for alkanes, alkenes and alkynes. 

Pseudo-atom 휀𝑖/𝑘𝑏(𝐾) 𝜎𝑖  (Å)̇ 𝑛𝑖 

CH3[24] 121.25 3.783 16 

CH2 (sp3)[24] 61.00 3.990 16 

CH2 (sp2)[125] 104.20 3.705 16 

CH (sp2)[125] 60.00 3.810 16 

C (sp2) 189.00 2.950 16 

CH(sp) 148.50 3.570 28 

C(sp) (1-alkyne) 206.00 2.875 16 

C(sp) (2-alkyne) 118.00 3.120 16 

 

Fixed bond lengths were used to connect pseudo-atoms, and are listed in Table 3.2. 

Equilibrium bond lengths were taken from previous work for alkanes[24] and alkenes[125] , 

except for bonds that included CH(sp) or C(sp) groups. Equilibrium bond lengths for CH≡CH, 

C≡CH, and CHx−C(sp) were determined from geometry optimizations performed with 

MP2/aug-cc-PVTZ ab initio calculations using Gaussian 09[136]. Bond lengths predicted from 

ab initio calculations were found to be in close agreement with the microwave spectrum 

results[137], as well as prior ab initio calculations[138] and empirical force fields[62]. 

Equilibrium bond angles and force constants are listed in Table 3.2. 

Table 3.2: Bonded parameters for alkynes. 

Bond type Bond length (Å) Angle type 𝜃0(degrees) 𝑘𝜃/𝑘𝑏(K ⋅ rad
−2)  

CH2−CH3 1.54 CH3−CH2−CH2 114 31250 

CH2−CH2 1.54 CH2−CH2−CH2 114 31250 

C−CH3 1.46 CH3−CH2−C 112 31250 

C−CH2 1.46 CH2−CH2−C 112 31250 

CH≡CH 1.21 CHx−C≡CH 180 30800 

C≡CH 1.21 CHx−C≡C 180 30800 

C=CH2 1.33 CH2=C=CH2 180 36200 
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The dihedral constants are listed in Table 3.3. Fourier constants for the CHx—(CH2)—

(CH2)—CH2 dihedral were taken from the OPLS-UA force field[139, 140]. Missing Fourier 

constants were optimized to reproduce ab initio rotational barriers calculated from relaxed 

potential energy scans of the dihedral of interest. Ab initio calculations were performed with 

MP2 theory and the 6-31+G(d,p) basis set in Gaussian 09[136]. Rotational barriers around 

bonds next to a triple bond were approximately 50 K, therefore, Fourier constants for these 

dihedrals were set to zero. 

Table 3.3: Fourier constants for alkyne dihedral potentials. 
torsion n cn/kb (K) n 

CHx—(CH2)—(CH2)—CH2 1 335.03 0 

2 -68.19 π 

3 791.32 0 

CHx—(CH2)—(CH2)—C 0 94.88 0 

1 162.00 0 

2 -205.40 π 

3 980.40 0 

CHx—(CH2)—(C) ≡CH 0 0.00 0 

CHx—(CH2)—(C) ≡C 0 0.00 0 

CHx—(C) ≡ (C)—CHx
 0 0.00 0 

 

3.3 Simulation Methodology 

Vapor-liquid coexistence curves, vapor pressures, and heats of vaporization were 

determined from histogram-reweighting Monte Carlo simulations in the grand canonical 

ensemble[130, 131, 141]. Simulations were performed with the development version of GPU 

Optimized Monte Carlo (GOMC)[57]. GOMC is an object-oriented Monte Carlo simulation 

engine, capable of performing simulations in canonical, isobaric-isothermal, grand canonical 

ensembles, as well as Gibbs ensemble Monte Carlo. GOMC is designed for the simulation of 

complex molecular topologies, and supports a variety of potential functions, such as Lennard-

Jones and Mie potentials. Coulomb interactions are also supported via the Ewald summation 



 

 

19 

method[122]. GOMC is capable of parallel computation, either on multicore CPUs or GPUs. 

Using the development version of GOMC, simulations of 1-pentyne (nch,LJ(1st)=8, nch,LJ=4, 

nch,tor=10, nch,bend=100) for the vapor phase, near critical point bridge and liquid phase required 

41, 137 and 246 seconds, respectively, per 1 million Monte Carlo steps on a single core of an 

Intel i5 3.30 GHz CPU. 

For propadiene and short alkynes (acetylene and propyne), a cubic cell size of 25 Å was 

used. For butyne and pentyne, a cell size of 30 Å x 30 Å x 30 Å was used. A cell size of 35 Å 

x 35 Å x 35 Å was used for longer alkynes. Initial configurations were generated with 

Packmol[142]. Psfgen was used to generate coordinate (*.pdb) and connectivity (*.psf) 

files[143]. Potentials were truncated at 10 Å and analytical tail corrections were applied[144]. 

A move ratio of 30% displacements, 10% rotations, and 60% molecule transfers was used. The 

coupled-decoupled configurational-bias Monte Carlo (CBMC) algorithm was used to improve 

sampling efficiency during the simulation[67]. For all simulations, CBMC parameters were: 

100 angle trials, 10 dihedral trials, 8 trial locations for the first site, and 4 trial locations for 

secondary sites. For simulations near the normal boiling point, the number of trial locations 

was increased to 12 and 10 for the initial and secondary sites, respectively. Acceptance rates 

for molecule insertions in liquid phase simulations were between 0.1% and 12%, depending on 

molecule type, chemical potential, and temperature.  

To generate the phase diagrams predicted by each parameter set, 9 to 10 simulations 

were performed; one simulation to bridge the gas and liquid phases near the critical 

temperature, two in the gas phase, and 6 to 7 liquid simulations. For all compounds, 5x106 

Monte Carlo steps (MCS) were used for equilibration, followed by a data production period of 

2.5x107 steps, except for simulations near boiling points, where the data production period was 

increased to 4.5x107 steps. Histogram data were collected as samples of the number of 

molecules in the simulation cell and the non-bonded energy of the system. Samples were taken 
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on an interval of 200 MCS. Averages and statistical uncertainties were determined from five 

independent sets of simulations, where each simulation was started with a different random 

number seed.  

In grand canonical Monte Carlo simulations, the pressure is related to the partition 

function through equation 3.1. 

 
𝑃 =

kB𝑇

𝑉
lnΞ(𝜇, 𝑉, 𝑇) + 𝐶 (3.1) 

The pressure is determined through integration of the area under the probability 

distributions extracted from the GCMC simulations. The additive constant 𝐶 is determined by 

extrapolating the predicted partition function to very low densities where the system exhibits 

ideal gas behavior. In the ideal gas regime, the plot of ln Ξ(𝜇, 𝑉, 𝑇) vs. particle number is linear 

with a unit slope. The additive constant is determined from the y-intercept[141]. For Gibbs 

ensemble Monte Carlo simulations, pressures were calculated from the virial expression. 

The heat of vaporization (ΔHV) was calculated from the energies and molar volumes in 

each phase[145] 

 
Δ𝐻𝑉 = (𝑈𝑉 − 𝑈𝐿) + 𝑃(𝑉𝑉 − 𝑉𝐿) (3.2) 

where P is the saturation pressure, UV, UL, VV and VL are the energy per mole and molar 

volumes of the vapor and liquid phases, respectively. 

The critical temperature 𝑇𝑐 and density 𝜌𝑐 for each model were calculated by fitting the 

saturated liquid and vapor densities to the law of rectilinear diameters[146] 

 
𝜌𝑙𝑖𝑞 − 𝜌𝑣𝑎𝑝

2
= 𝜌𝐶 + 𝐴(𝑇 − 𝑇𝐶) (3.3) 

and to the density scaling law for the critical temperatures[147] 

 𝜌𝑙𝑖𝑞 − 𝜌𝑣𝑎𝑝 = 𝐵(𝑇 − 𝑇𝐶)
𝛽 (3.4) 
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where 𝛽 = 0.325 is critical exponent for Ising-like fluids in three dimensions[148]. A and B 

were constants fit to the saturated vapor and liquid densities. A two-step process was used to 

determine the critical temperatures. An estimate of the critical temperature predicted by the 

model was produced by fitting Eq. 3.3 and Eq. 3.4 to phase coexistence data on the range 

0.7𝑇𝑐,expt to  0.9𝑇𝑐,expt. The estimated critical point was used to set the range of temperatures 

that were used to determine the true critical point predicted by each model (0.7𝑇𝑐,est ≤ 𝑇 ≤

𝑇𝑐,est − 25 K). This approach ensured that the temperature range used in the calculation was 

close enough to the true critical point to provide an accurate application of equations 3.3 and 

3.4, while avoiding finite size effects near the critical point. 

Critical pressures Pc and boiling points 𝑇𝑁𝐵𝑃 were calculated by fitting vapor pressure 

data to the Clausius-Clapeyron equation 

 ln 𝑃 = −
Δ𝐻𝑉
𝑅𝑇

+ 𝐶 (3.5) 

where P is the vapor pressure, ΔHV is the heat of vaporization, R is the gas constant, and C is 

a constant.  

Pressure composition diagrams for binary mixtures of propyne with propane, propene, 

and propadiene were determined from NVT Gibbs ensemble Monte Carlo simulations[32]. 

Calculations were performed on systems containing 2000 molecules. Simulations were 

equilibrated for 1  108 MCS and production data were taken from a second 1  108 MCS 

simulation. Statistical uncertainties were determined from three independent sets of 

simulations, where each simulation was initiated with a different random number seed. The 

distribution of Monte Carlo moves was 69% displacement, 10% rigid body rotations, 1% 

volume exchange, and 20% molecule exchange. 

Radial distribution functions were determined from isobaric-isothermal Monte Carlo 

simulations, which were performed on cubic boxes containing 1000 molecules. Simulations 
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were performed at the predicted normal boiling point and 1 bar. All simulations were 

equilibrated for 1  108 MCS and production data were taken from a second 1  108 MCS 

simulation. Radial distribution functions were calculated using VMD[143]. 

3.4 Results and Discussion 

3.4.1 Parameter Optimization 

Experimental vapor-liquid equilibrium (VLE) data for alkynes is very limited. 

Experimental saturated liquid and vapor densities and vapor pressures are available for 

ethyne[149] and propyne[150, 151]. These data were used in the optimization process. For 1-

alkynes longer than propyne, and all 2-alkynes, vapor-liquid coexistence data are limited to 

temperatures at or below the normal boiling point[151-153]. Therefore, VLE predictions from 

simulation for longer alkynes were compared to correlations from the DIPPR database[154]. 

The DIPPR correlations were reported to have errors of < 1% compared to experimental 

saturated liquid data. Critical points for 1-alkynes have been determined experimentally for 

ethyne, propyne and 1-butyne[155], and these were used for comparison to simulation. 

Recommended experimental data for the critical temperatures of many alkynes were given by 

Owczarek and Blazej, however, the authors report that no information was available regarding 

the experiments used to determine Tc[156]. To maintain consistency with the saturated liquid 

density data, critical parameters for alkynes longer than 1-butyne were taken from the DIPPR 

database, which uses a modified version of the Ambrose method for their prediction[154]. The 

resulting critical temperatures listed in the DIPPR database have suggested maximum errors of 

3-5%.  

Force field parameters were first optimized for the CH group in ethyne, followed by 

the C group in propyne and 1-butyne. Preliminary calculations revealed that transferability of 

C group parameters from 1-alkynes to 2-alkynes was poor. Therefore, unique parameters were 
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optimized for C in 2-alkynes using simulations of 2-butyne. The same CH parameters were 

used for all alkynes. In addition, parameters for the C (sp2) group found in alkenes were 

optimized from calculations performed on propadiene. Alkynes have a small dipole moment 

of approximately 0.7D, while ethyne has a quadrupole  moment of 20.4x10-40 C-m2[157]. To 

understand the impact of neglecting the small dipole and quadrupole moments on the predictive 

capability of the force field, additional parameters were optimized for ethyne and propyne 

models that included point charges. The results of these calculations are provided in the 

Appendix A, Figures A4-A6, and support the decision to neglect modeling multipole moments 

explicitly with partial charges. 

A scoring function was used to evaluate the performance of specific parameters for 

each optimized compound in the alkyne series. 

 

𝑆𝑖 =
1

𝑛
[0.757∑𝐸𝑟𝑟(𝜌𝐿(𝑇𝑖))

𝑛

𝑖=0

+ 0.152∑𝐸𝑟𝑟(𝑃𝑉(𝑇𝑖))

𝑛

𝑖=0

+ 0.076∑
𝑑 (𝐸𝑟𝑟(𝜌𝐿(𝑇𝑖)))

𝑑𝑇

𝑛

𝑖=0

+ 0.015∑
𝑑 (𝐸𝑟𝑟(𝑃𝑉(𝑇𝑖)))

𝑑𝑇

𝑛

𝑖=0

] 

(3.6) 

where 

 
𝐸𝑟𝑟(〈𝑋(𝑇𝑖)〉) = |

〈𝑋𝑆𝐼𝑀(𝑇𝑖)〉 − 〈𝑋𝐸𝑋𝑃𝑇(𝑇𝑖)〉

〈𝑋𝐸𝑋𝑃𝑇(𝑇𝑖)〉
| ∗ 100 

(3.7) 

One key difference between the objective function used in this work and those used in 

other efforts is the use of unequal weights for various physical properties. By weighting the 

liquid density more heavily than other factors, it is possible to reliably evaluate the effect of 

different potential functions, or repulsion exponents, on the vapor pressure. This is especially 

true in cases where it is not possible to achieve accuracies to within 1% of experimental data 

for all properties of interest. In these cases, large errors in certain properties, such as vapor 
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pressures or heats of vaporization, can bias the results so that one is simply trading lower error 

in vapor pressure for greater error in liquid densities. The larger weight for the liquid density 

limits the maximum error to approximately 1%. 

Preliminary calculations were used to identify optimal repulsive exponents and regions 

of parameter space on which an exhaustive grid-based search should be applied. For the CH(sp) 

group, simulations of ethyne were used to identify ni=28 as the optimal repulsion exponent. 

The larger repulsion exponent increases the range of interaction, and compensates for the lack 

of an explicit hydrogen or electrostatic interactions. Simulations of 1-propyne and 1-butyne 

identified ni=16 as the optimal repulsion exponent for the C(sp) group. With the region of 

search space identified and the repulsive exponent selected, an exhaustive grid-based search of 

the surrounding parameter space (σi, εi) was performed. For ethyne, 63 parameter sets were 

evaluated, spaced on 0.005 Å increments along σi on the range 3.550 ≤ 𝜎𝑖 ≤ 3.580 Å, and 

spaced on 0.5 K increments along εi on the range 146.0 ≤ 휀𝑖 ≤ 150.0 K. For propyne and 1-

butyne, 105 parameter sets were evaluated over the same range of 2.825 ≤ 𝜎𝑖 ≤ 2.925 Å and 

190 ≤ 휀𝑖 ≤ 230 K. The parameter space for these compounds was explored in increments of 

0.025 Å for 𝜎𝑖 and 2.0 K for 휀𝑖. For 2-butyne, 121 parameter sets were evaluated, spaced on 

0.02 Å increments along 𝜎𝑖 on the range 3.00 ≤ 𝜎𝑖 ≤ 3.20 Å, and spaced on 2.0 K increments 

along 휀𝑖 on the range 110 ≤ 휀𝑖 ≤ 130 K. Phase diagrams were produced for each parameter 

set and used to calculate an average error score, Si.  

Normalized values of the scoring function for ethyne, 1-propyne, 1-butyne, 2-butyne, 

and propadiene are presented as heat maps in Figure 3.1. Examination of the heat maps for the 

individual compounds shows some interesting trends. For ethyne, a well-defined optimal 

solution was found, which is similar to prior work on noble gases[126]. For all other 

compounds, however, a broad band of optimal values was observed. This arises as a result of 

the unique linear geometry around the triple bond, which limits the impact of changing 𝜎𝑖 on 
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saturated liquid densities, and the slope of the saturated liquid curve. Creating a single optimal 

region (a well) on the heat map would require treating the C≡CH bond length as an optimizable 

parameter. Comparison of heat maps for propyne and 1-butyne shows overlap between optimal 

regions of parameter space, however, the optimal band of 𝜎𝑖 and 휀𝑖 values for propyne were 

shifted to slightly lower values of 휀𝑖. The combined normalized scores for propyne and 1-

butyne were used to identify the final optimized parameters for the C (sp) group in 1-alkynes. 

More weight was placed on the propyne results because of the greater availability of 

experimental data[150] compared to 1-butyne where most of the data were generated via 

correlation[154]. Optimal regions on the heat maps for 1-butyne and 2-butyne differ by 

approximately 90 K in 휀𝑖 and 0.2 Å in 𝜎𝑖, showing clearly that C(sp) parameters are not 

transferable between 1-alkynes and 2-alkynes. Significant differences were observed in the 

electrostatic potential energy surfaces determined from HF/6-31+g(d,p) ab initio calculations 

for 1-alkanes and 2-alkynes (Appendix A, Figure A1), further confirming the need for unique 

Mie parameters for each class of molecules.  
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Figure 3.1: Heat map of average error scores for alkyne compounds. Red depicts the best fit to 

experimental data or correlation[34, 36, 39], blue depicts the worst fit. 

3.4.2 Pure Fluid Vapor-Liquid Equilibria 

Vapor-liquid coexistence curves for ethyne to 1-nonyne, 2-butyne, 2-pentyne, 2-

hexyne, and propadiene are presented in Figure 3.2. Predictions of the two center Lennard-

Jones plus quadrupole (2CLJQ) model for ethyne, propyne, and propadiene are included for 

comparison[61]. In Table 3.4, the average absolute deviations (AAD) from experiment and 

correlations are presented for predictions of the optimized Mie potentials and the SPEAD 

model[63]. The AAD of simulation from experiment for saturated liquid densities shows an 

unusual peak in the homologous series for 1-hexyne (3.0% AAD). The non-monotonic 

behavior of the AAD observed for saturated liquid densities suggests possible inconsistencies 

in the DIPPR correlations for 1-alkynes. Based on past work on n-alkanes, it was expected that 

deviations of simulation from experiment should increase monotonically with increasing 

number of carbon atoms[24]. The monotonic increase in error for n-alkanes results from the 
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accumulation of small errors due to the inability of the force field to account for non-additive 

effects, and similar behavior was expected, but not observed, for simulations of 1-alkynes.  
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Figure 3.2: Vapor-liquid coexistence curves predicted by the optimized Mie potentials (red 

symbols) and 2CLJQ model (green symbols)[61] compared to experiment or correlation (solid 

line)[149, 151, 154] for alkynes and propadiene. Experimental critical points (black stars)[154, 

155] and predictions of simulation (filled symbols). Figure 3.2A: ethyne (circles); propyne 

(triangles up); 1-butyne (squares); 1-pentyne (plus); 1-hexyne (triangles down); 1-heptyne 

(crosses); 1-octyne (diamonds); 1-nonyne (triangles right); Figure 3.2B:  propadiene (circles); 

2-butyne (triangles up); 2-pentyne (squares); 2-hexyne (diamonds).  
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The optimized Mie potentials produce significant improvements in the prediction of 

liquid densities, compared to SPEAD for 2-alkynes, where the Mie potentials are 3-4 times 

more accurate. Similar results were achieved by both models for the 1-alkynes, with differences 

likely due to the choice of compounds used in the optimization process. For example, the Mie 

potentials predicted saturated liquid densities with an AAD for 1-pentyne of 1.25%, compared 

to 3.98% for SPEAD. On the other hand, for 1-hexyne, the Mie potentials have an AAD of 

3.01%, compared to 0.52% for SPEAD. 

Claussius-Clayperon plots are presented in Figure 3.3. Vapor pressures for all 1-alkynes 

are predicted with an AAD of 3.4% or less, except 1-pentyne, which had an AAD of 7.57%. 

Vapor pressures for 2-butyne were in close agreement with experiment, while 2-pentyne and 

2-hexyne show significant errors, with 21.5 and 23.8% AAD, respectively. Comparing these 

results to the predictions of the SPEAD model highlights some of the tradeoffs of using an 

objective function with equal weights vs. the one used in this work. While errors in the vapor 

pressures for 2-pentyne are reduced from 21.5% (Mie) to 5% (SPEAD), SPEAD trades 

improved vapor pressures for significantly worse reproduction of saturated liquid densities[63]. 

For example, for 2-pentyne the AAD in the liquid densities was 2.15% (Mie) vs. 9.99% 

(SPEAD). 
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Figure 3.3: Clausius-Clapeyron plots predicted by the optimized Mie potentials (red symbols) 

and 2CLJQ model (green symbols)[61] compared to experiment or correlation (solid line)[149, 

151, 154] for alkynes and propadiene. Experimental critical points (black stars)[154, 155] and 

predictions of simulation (filled symbols). Figure 3.3A: ethyne (circles); propyne (triangles 

up); 1-butyne (squares); 1-pentyne (plus); 1-hexyne (triangles down); 1-heptyne (crosses); 1-

octyne (diamonds); 1-nonyne (triangles right); Figure 3.3B:  propadiene (circles); 2-butyne 

(triangles up); 2-pentyne (squares); 2-hexyne (diamonds). 
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Critical temperatures 𝑇𝑐, pressures 𝑃𝑐, densities 𝜌𝑐, and normal boiling points 𝑇𝑁𝐵𝑃 

predicted by the optimized Mie potentials are listed in Table 3.5. For ethyne, propyne, and 1-

butyne, experimental data were used for comparison[155, 158], while predictions of group 

contribution methods listed in the DIPPR database were used for all other compounds[154]. 

For all compounds, normal boiling points were predicted to within 1.1% of experiment[158]. 

Critical temperatures were reproduced to within 1.4% of reported values for all 1-alkynes. For 

2-alkynes, the critical temperature of 2-butyne was with 0.4% of the DIPPR value, but 𝑇𝑐 for 

2-pentyne and 2-hexyne were under-predicted by about 4.4%. Critical temperatures and 

densities predicted by the Mie potentials for 1-alkynes, 1-alkenes, and n-alkanes as a function 

of number of carbon atoms are shown in Figure 3.4. As expected, the critical temperatures 

predicted by simulation for all three classes of molecules increase monotonically and converge 

for C6 and larger molecules. Simulations also correctly reproduced the ordering of critical 

temperatures for propyne, propene, and propane. 
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Table 3.4: Average absolute deviation (%AAD) from experiment or correlations[34, 36, 39] 

for vapor pressure and saturated liquid density predicted by optimized Mie and SPEAD 

models[7]. 

Compound 
𝑃 𝜌𝐿 

Mie SPEAD Mie SPEAD 

ethyne 1.20 --- 0.77 --- 

propyne 2.60 --- 0.31 --- 

1-butyne 2.12 4.74 2.05 1.71 

2-butyne 1.52 5.23 0.36 13.45 

1-pentyne 7.57 9.57 1.25 3.98 

2-pentyne 21.48 5.02 2.15 9.99 

1-hexyne 3.39 6.62 3.01 0.52 

2-hexyne 23.78 1.87 2.64 7.07 

1-heptyne 3.08 --- 1.75 --- 

1-octyne 2.04 --- 1.59 --- 

1-nonyne 1.34 5.00 0.96 0.87 

propadiene 6.17 --- 0.40 --- 

 

 

Table 3.5: Critical parameters and normal boiling points predicted by the optimized Mie 

potentials for propadiene and alkynes. Numbers in parenthesis correspond to the uncertainty in 

the last digit. 

Compound 

𝑇𝑐 (K) 𝜌𝑐(g/cm
3) 𝑃𝑐 (bar) 𝑇𝑁𝐵𝑃 (K) 

Sim. Lit.[154, 

155]  

Sim. Lit[154, 155] Sim. Lit[154, 

155] 

Sim. Lit[158]  

ethyne 312.1(1) 308.3(1) 0.2301(3) 232(4) 66.04(7) 61.4(1) 187.78(3) 189.0(6) 

propyne 402.74(8) 402.4(2) 0.2491(2) 245(5) 57.28(6) 56.3(2) 251.22(4) 250.0(5) 

1-butyne 436.6(1) 440(2) 0.2460(2) 260(30) 46.35(9) 46(2) 280.43(8) 283(7) 

2-butyne 471.5(2) 473.2 0.2530(4) 245 50.16(5) 48.7 300.26(5) 300(1) 

1-pentyne 474.6(2) 481.2 0.2468(3) 246 40.13(7) 41.7 311.52(6) 313.0(7) 

2-pentyne 496.1(1) 519 0.2508(3) 247 41.06(7) 40.3 327.14(7) 329.0(9) 

1-hexyne 513.1(1) 516.2 0.2461(2) 255 35.9(1) 36.2 343.9(1) 344.3(9) 

2-hexyne 525.5(1) 549 0.2483(2) 248 36.35(9) 35.3 353.1(1) 357.1(8) 

1-heptyne 547.60(8) 547 0.2432(1) 249 33.22(9) 32.1 372.7(1) 372(1) 

1-octyne 575.8(1) 574 0.2412(2) 249 30.1(1) 28.8 399.3(1) 399(2) 

1-nonyne 601.1(1) 598.05 0.2395(2) 250 27.52(9) 26.1 424.3(1) 423(1) 

propadiene 387.59(9) 394 0.2478(2) 0.2428 53.95(4) 52.5 238.29(3) 240(2) 
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Figure 3.4: Critical properties predicted by Mie potentials versus molecule length for n-alkanes, 

1-alkenes, and 1-alkynes. Figure 3.4A: critical temperature; 1-alkynes (black circles); 1-

alkenes (red squares); n-alkanes (green triangles); Figure 3.4B: critical density; 1-alkynes 

(black circles); 1-alkenes (red squares); n-alkanes (green triangles). 
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3.4.3 Liquid Phase Structure 

Radial distribution functions (RDF) were calculated from NPT simulations and used to 

provide insight into how liquid structure impacts the critical temperatures of hydrocarbons. 

RDFs for CH3-CH3 interactions in propyne are compared to propane, propene, 1-hexyne, and 

hexane in Figure 3.5A. The first peak of propyne is located at 3.95 Å compared to 4.15 Å for 

propene, propane, 1-hexyne, and n-hexane. The first peak height for propyne is approximately 

25% higher than propene and propane, which have similar peak heights. These results illustrate 

how propyne molecules are able to pack more efficiently, leading to stronger intermolecular 

forces and ultimately increased critical temperatures and densities compared to n-alkenes and 

n-alkanes. The similarity of the RDF for 1-hexyne and n-hexane is consistent with the critical 

temperatures presented in Figure 3.4A, which show convergence of the critical temperature 

curves for alkynes, alkenes, and alkanes.  

Additional radial distribution functions for second atom interactions in propane (CH2-

CH2), propene (CH-CH), propyne (C-C), 1-hexyne (C-C), and n-hexane (CH2-CH2) are 

presented in Figure 3.5B. Propane and propene have similar peak heights and locations (5.35 

Å), while the first peak for C-C interactions in propyne is shifted by 1.4 Å to 3.95 Å. The first 

peak of the C-C RDF for 1-hexyne is at 4 Å, compared to 5.35 Å for the CH2-CH2 RDF in n-

hexane. The closer approach of the C(sp) groups in alkynes is consistent with the increased 

critical density predicted by simulation compared to n-alkanes and alkenes. 
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Figure 3.5: Radial distribution functions for propane, propene, propyne, 1-hexyne, and hexane. 

Figure 3.5A: radial distribution functions for CH3-CH3 interactions; propane (black line); 

propene (red line); propyne (green line); 1-hexyne (blue line); n-hexane (dashed orange); 

Figure 3.5B: radial distribution functions for second pseudo-atom in alkane, alkene, and 

alkyne; CH2-CH2 in propane (black line); CH-CH in propene (red line); C-C in propyne (green 

line); C-C in 1-hexyne (blue line); CH2-CH2 in n-hexane (dashed orange). 
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3.4.4 Binary Mixture Vapor-Liquid Equilibria 

As mentioned earlier, pure alkynes are very reactive and are usually mixed with other 

compounds to form a stable solution. Propyne is usually mixed with propadiene to form MAPP 

gas. Therefore, it is important for the Mie potentials to yield reliable predictions for the pressure 

composition behavior of propadiene+propyne. The pressure composition diagram predicted by 

simulation for propadiene+propyne over the temperature range 303.15 to 353.15 K is shown 

in Figure 3.6. The optimized Mie potentials predict vapor pressures and liquid and vapor mole 

fractions that are in close agreement with experimental data[159]. Small deviations are 

observed for calculations performed at higher temperatures and for large concentrations of 

propadiene due to limitations in the propadiene force field, which over-predicts the vapor 

pressure by 9% at 358 K. 

 

Figure 3.6: Pressure-composition diagram for propadiene+propyne over the temperature range  

303.25 ≤ 𝑇 ≤ 353.15 K. Data are represented by: experiment (black lines)[159], optimized 

Mie potentials (red symbols). 
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As an additional test of transferability the Mie potentials were used to predict the 

pressure composition behavior of propane+propyne and propene+propyne over a wide 

temperature range (278.15 to 353.15 K). The pressure-composition diagram for 

propane+propyne is shown in Figure 3.7. The Mie potentials were unable to reproduce the 

azeotropic behavior observed experimentally. These results show that interactions between 

propane and propyne are over-predicted by approximately 4%. Additional calculations were 

performed with a propyne force field that included explicit representation of the dipole moment 

via partial charges. The results of these calculations are presented in the Appendix A, Figure 

A7, and show that the inclusion of electrostatic interactions does not improve agreement with 

experiment. 

 

Figure 3.7: Pressure-composition diagram for propane+propyne over the temperature range 

278.25 ≤ 𝑇 ≤ 353.15 K. Data are represented by: experiment (black lines)[159], optimized 

Mie potentials (red symbols). 
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The pressure composition diagram for propene+propyne is shown in Figure 3.8, and 

the predictions of simulation are in close agreement with experiment[159]. Small deviations 

were observed at higher temperatures, which indicate that unlike molecule interactions are 

slightly too strong. 

 

Figure 3.8: Pressure-composition diagram for propene+propyne binary system over the 

temperature range 278.25 ≤ 𝑇 ≤ 353.15 K. Data are represented by: experiment (black 

lines)[159], optimized Mie potentials (red symbols). 
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CHAPTER 4 MOLECULAR EXCHANGE MONTE CARLO: A GENERALIZED 

METHOD FOR IDENTITY EXCHANGES IN GRAND CANONICAL MONTE 

CARLO SIMULATION 

4.1 Introduction 

In Monte Carlo simulations in the grand canonical ensemble (GCMC), the chemical 

potential, volume and temperature are fixed (𝜇𝑉𝑇 = constant). Sampling of phase space is 

achieved through a variety of trial moves, such as displacement, and molecule insertion and 

deletion. For complex molecular typologies, additional trial moves, such as rigid body rotation 

and configurational-bias regrowth[160, 161], may be included to improve the sampling of 

conformational degrees of freedom. During the course of the simulation, the conjugate 

variables N (number of molecules) and E (potential energy) fluctuate. Because GCMC allows 

for the simulation of an open system, it has been used extensively to study the adsorption of 

gases in porous materials[15-18]. When combined with histogram-reweighting methods[130, 

131], GCMC simulations provide precise predictions of vapor-liquid equilibria for pure fluids 

and mixtures[124, 162], and have been used to determine critical micelle concentrations for 

model surfactants[163]. 

Perhaps the greatest challenge with GCMC simulations, however, is achieving a 

sufficient number of accepted molecular insertion/deletion moves to ensure adequate sampling 

of phase space. Therefore, significant effort has been expended to develop algorithms that 

improve the acceptance rate for molecule insertions and deletions. Biasing methods, such as 

rotational, energy and cavity-bias, were used to improve the efficiency of simulations for the 

adsorption of benzene and p-xylene in silicalite[65]. The introduction of configurational-bias 

Monte Carlo enabled the successful simulation of chain molecule adsorption in zeolites[66], 

which was followed by the coupled-decoupled[67] and reservoir methods[164, 165], which 
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extended the complexity of systems that could be simulated to include molecules with branch 

points and rings. 

These aforementioned biasing methods have greatly extended the complexity of 

systems that may be simulated with GCMC simulations, however, at high densities and low 

temperatures, the acceptance rate for molecule transfers is still unacceptably low due to the 

difficulty in finding a favorably sized cavity to insert a molecule. For example, in simulations 

of branched alkanes acceptance rates for molecule transfers at 0.7𝑇𝑐 were approximately 

0.3%[124]. Others have sought to address these issues through the use of cavity-bias[68-70], 

to identify favorable locations to attempt molecule insertions, or continuous fractional 

component Monte Carlo[71, 72], and expanded ensembles[73, 74], where molecules are 

gradually inserted while the system is allowed to relax locally to minimize steric and energetic 

penalties due to molecule insertion. 

For mixtures, a straightforward approach is to introduce a trial move where the identity 

of one molecule is changed to that of another[75]. The benefit of such a move is that steric 

overlaps are reduced significantly, leading to enhanced acceptance for the particle exchange. 

The identity exchange move has been used in many simulations of single particles in various 

ensembles, such as semi-grand[80, 166], Gibbs[75, 167, 168] and grand canonical[76, 81, 82]. 

The methodology has been extended to allow for the exchange of multiple solvent molecules 

with a polymer chain composed of solvent monomers without changing the coordinates of 

either polymer or solvent[76]. For the simulation of mixtures of colloids and solvent, it is 

necessary to swap a large colloid particle for multiple smaller solvent particles. By swapping 

multiple solvent particles, it is possible to create large enough voids such that a reasonable 

acceptance rate may be obtained for the insertion of colloid particles[81, 82]. For the exchange 

of a large particle with multiple small ones, Vink et al. used simple random insertions to 

determine the coordinates for the solvent particles. When inserting a large number of solvent 
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particles, the potential for overlap increases, reducing the efficiency of the method. To address 

this issue, Kindt introduced the idea of “solvent repacking” for two-dimensional hard-disk and 

size asymmetric three-dimensional Lennard-Jones systems, where configurational-bias was 

used to determine the positions of solvent particles in the large-small particle identity 

exchange[82, 169]. While a number of publications state that an identity exchange move was 

used for molecular systems[77-79], a detailed description of the algorithm and the acceptance 

criteria have not been published to date.  

The previously described methods for identity exchange were generally applicable to 

only the special cases for which they were developed, e.g. single particle exchanges[80], a 

polymer composed of solvent monomers[76], or large hard particles or disks in a solvent of 

smaller hard particles[81, 82]. These methods are difficult to generalize to molecular systems 

of arbitrary molecular topology, and their computational performance is expected to be highly 

correlated with the type of system for which the move was originally developed. To address 

these issues, a generalized identity exchange move for simulations in the grand canonical 

ensemble, referred to as Molecular Exchange Monte Carlo (MEMC), is presented that works 

for systems of any molecular topology. Three different approaches for the insertion of the large 

molecule are presented. A derivation of acceptance criteria and the algorithms for performing 

the MEMC move is provided in the next section for each of the three approaches, while the 

detailed computational procedure and mathematical calculations are included in the Appendix 

B. The utility of the three methods and their computational efficiency is illustrated for selected 

binary mixtures in the Results and Discussion. The key findings of the work are summarized 

in the Chapter 7. The result of this work has been published in Journal of Chemical Physics[83].  
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4.2 Methods 

To describe the MEMC move in the grand canonical ensemble, it is helpful to consider 

the case of a large molecule that is exchanged with multiple smaller molecules. However, the 

methods may be applied without modification to the exchange of molecules of similar size. 

The original state is called the 𝑜𝑙𝑑 state, while the state created by the attempted exchange 

move is called the 𝑛𝑒𝑤 state. For a given configuration, with 𝑁𝐿 large and 𝑁𝑆  small molecules, 

an ‘insertion move” is an attempt to exchange one large molecule with 𝑁𝐸𝑋 small molecules 

inside a predefined exchange sub-volume 𝑉𝐸𝑋, and a “deletion move” is an attempt to exchange 

𝑁𝐸𝑋 small molecules for a large one. The exchange sub-volume is defined as an orthogonal 

box, where the length of the box in the x and y dimensions are set to the same values for 

simplicity and the z dimension is set independently. If desired, all three sub-volume box 

dimensions could be set independently. An orthogonal sub-volume is used instead of a cube or 

sphere to accommodate large molecules with different aspect ratios. Depending on the method 

used, the orientation of the exchange sub-volume z-axis may also be varied. Although not used 

in this work, it is also possible to optimize 𝑁𝐸𝑋 and 𝑉𝐸𝑋 “on the fly” during a simulation to 

maximize the acceptance rate. 

The acceptance criterion for a molecular exchange move that satisfies the detailed 

balance equation is written as 

 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = Κ(𝑛𝑒𝑤 → 𝑜𝑙𝑑) (4.1) 

where Κ(𝑖 → 𝑗) is the flux of probability from state i to state j. The probability flux is 

equal to the product of the probability of finding the system in state i, the probability of 

generating a move that takes state i to state j, and the probability of accepting the move: 

 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝒩(𝑜𝑙𝑑) × 𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) (4.2) 
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Based on the detailed balance Eq. 4.1, the ratio of the probability of accepting the move 

from 𝑜𝑙𝑑 → 𝑛𝑒𝑤 to that of its reverse move 𝑛𝑒𝑤 → 𝑜𝑙𝑑 is: 

 
𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤)

𝑎𝑐𝑐(𝑛𝑒𝑤 → 𝑜𝑙𝑑)
=
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
 ×
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
 (4.3) 

In the deletion move, where one large molecule is exchanged for 𝑁𝐸𝑋 small molecules, 

the ratio of the probability of being in the 𝑛𝑒𝑤 configuration to the probability of being in the 

𝑜𝑙𝑑 configuration is 

 
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
=
𝑒−𝛽𝑈(𝑛𝑒𝑤)𝑒𝛽[𝜇𝐿(𝑁𝐿−1)+𝜇𝑆(𝑁𝑆+𝑁𝐸𝑋)]

𝑒−𝛽𝑈(𝑜𝑙𝑑)𝑒𝛽[𝑁𝐿𝜇𝐿+𝑁𝑆𝜇𝑆]
=

𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿]

𝑒𝛽[𝑈(𝑛𝑒𝑤)−𝑈(𝑜𝑙𝑑)]
 (4.4) 

where 𝛽 = 1 𝑘𝐵𝑇⁄ , 𝜇𝐿 and 𝜇𝑆 are the imposed chemical potentials of large and small 

molecules, respectively. 𝑈(𝑜𝑙𝑑) and 𝑈(𝑛𝑒𝑤) are the potential energies of the system in 

configuration 𝑜𝑙𝑑 and configuration 𝑛𝑒𝑤, respectively.  

For the insertion move, where 𝑁𝐸𝑋 small molecules are exchanged for one large 

molecule, the ratio of the probability of being in the 𝑛𝑒𝑤 configuration to the probability of 

being in the 𝑜𝑙𝑑 configuration is 

 
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
=
𝑒−𝛽𝑈(𝑛𝑒𝑤)𝑒𝛽[𝜇𝐿(𝑁𝐿+1)+𝜇𝑆(𝑁𝑆−𝑁𝐸𝑋)]

𝑒−𝛽𝑈(𝑜𝑙𝑑)𝑒𝛽[𝑁𝐿𝜇𝐿+𝑁𝑆𝜇𝑆]
=

𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆]

𝑒𝛽[𝑈(𝑛𝑒𝑤)−𝑈(𝑜𝑙𝑑)]
 (4.5) 

The probability of generating the 𝑛𝑒𝑤 state, for both insertion and deletion of the large 

molecule, is given by the product of the probability of locating the center of the exchange sub-

volume at a particular point within the simulation box, the probability of choosing 𝑁𝐸𝑋 

particular small molecules, the probability of choosing a particular large molecule, the 

probability of generating trial configurations for 𝑁𝐸𝑋 small molecules, and the probability of 

generating trial configurations for the large molecule, 

 

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑃𝑠𝑢𝑏−𝑣(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑖𝑐𝑘−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 

𝑃𝑝𝑖𝑐𝑘−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) 
(4.6) 
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Depending on how the center of the exchange sub-volume is located, the molecules to 

be exchanged are chosen, and how trial positions are generated, different algorithms to perform 

the MEMC move may be devised. 

4.2.1 ME-1 

For the large molecule insertion move, the exchange sub-volume 𝑉𝐸𝑋 with a random 

geometric center and a random orientation is defined within the simulation box. For a large 

molecule deletion move, the geometric center of 𝑉𝐸𝑋 is located at the centroid of the selected 

large molecule and its z-axis is aligned with the backbone of the large molecule. See Figure 

4.1 for more details. 
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Figure 4.1: Schematic of the ME-1 algorithm. Selected or inserted molecule (green), trial 

position (light red), and actual position of the molecule (solid red). Top row, represents the 

exchange of two small molecules with one large molecule (insertion). The exchange sub-

volume is defined as the orange box. (A) Identifying small molecules within the sub-volume 

with a random geometric center and orientation. (B) Generating CBMC trials (rotation and 

centroid location) for one of the small molecules and then removing it. (C) Generating CBMC 

trials (rotation and centroid location) for the second small molecule and then removing it. (D) 

Aligning the backbone of the large molecule with the sub-volume and performing CBMC 

rotational trials around the z-axis of the sub-volume. Bottom row, represents the exchange of 

a large molecule (deletion) with two small molecules. (A) Aligning the sub-volume with large 

molecule’s backbone with geometric center placed at centroid of the large molecule, and 

identifying the small molecules within the sub-volume. (B) Generating CBMC rotational trials 

around the z-axis of the sub-volume and then removing it. (C) Generating CBMC trials 

(rotation and centroid location) for the first small molecule and then inserting it into the sub-

volume. (D) Generating CBMC trials (rotation and centroid location) for the second small 

molecule and then inserting it into the sub-volume. 

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows:  

1. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋, with its geometric center located 

randomly within the simulation box of volume 𝑉 (with the probability proportional to 𝑉−1 ) 

and a random orientation. Determine the total number of small molecules within the 

exchange sub-volume (𝑁𝑆,𝑉𝐸𝑋) based on their geometric center. 

2. Reject move if 𝑁𝑆,𝑉𝐸𝑋 < 𝑁𝐸𝑋, otherwise continue. 
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3. Select 𝑁𝐸𝑋 small molecules out of 𝑁𝑆,𝑉𝐸𝑋 found in the exchange sub-volume with the 

probability of 𝑁𝐸𝑋! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)! 𝑁𝑆,𝑉𝐸𝑋!⁄ . 

4. Repeat steps a and b for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … ,𝑁𝐸𝑋) to delete the selected small 

molecules. 

a. Generate 𝑗 − 1 random trial positions for the centroid of the 𝑖𝑡ℎ small molecule within 

the exchange sub-volume 𝑉𝐸𝑋. The original position of the centroid of the 𝑖𝑡ℎ small 

molecule will be included as the 𝑗𝑡ℎ term. 

b. For each trial position 𝑝, generate 𝑘 random trial orientations around the molecule’s 

centroid (except the 𝑗𝑡ℎ centroid, where 𝑘 − 1 random trial orientations are generated 

and the original orientation of the molecule will be included as the 𝑘𝑡ℎ term) and 

calculate the Rosenbluth weight 𝑊𝑖,𝑜𝑙𝑑 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)
𝑘
𝑟=1

𝑗
𝑝=1 , were 𝑈𝑖,𝑝,𝑟 is the 

interaction energy of the 𝑖𝑡ℎ molecule to be removed in position 𝑝 and orientation 𝑟 with 

all other molecules, excluding those removed in the earlier cycles of the move. Finally, 

remove the molecule from the simulation box. Calculate 𝑃𝑖,𝑜𝑙𝑑 =

𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑗,𝑘)

 𝑊𝑖,𝑜𝑙𝑑
 , were 𝑈𝑖,𝑗,𝑘 is the interaction energy of the 𝑖𝑡ℎ small molecule at its original 

centroid position and orientation with all other molecules remaining in the simulation 

box. 𝑃𝑖,𝑜𝑙𝑑 is the probability of inserting the 𝑖𝑡ℎ small molecule back in its original 

configuration in the reverse move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). 

5. Insert the centroid of the large molecule at the geometric center of the exchange sub-volume 

𝑉𝐸𝑋 and align the backbone of the large molecule with the z-axis of the exchange sub-

volume. Generate 𝑘 random trial orientations for the large molecule around the z-axis of 

the sub-volume (two-dimensional rotation). Calculate the Rosenbluth weight 𝑊𝑛𝑒𝑤 =
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∑ 𝑒𝑥𝑝(−𝛽𝑈𝑟)
𝑘
𝑟=1 , where 𝑈𝑟 is the interaction energy of the inserted large molecule at 

orientation 𝑟 with all other molecules in the simulation box. 

6. Select one of the generated trial configurations with the probability 𝑃𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈𝑟)

 𝑊𝑛𝑒𝑤
 and 

insert the large molecule. 

 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 

1. Select a large molecule out of 𝑁𝐿  large molecules within the simulation box with 

probability of 1 𝑁𝐿⁄ .  

2. Define an orthogonal exchange sub-volume with its geometric center placed at the centroid 

of the selected large molecule, and its z-axis aligned with the backbone of the large 

molecule. Determine the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within the exchange sub-

volume. 

3. Generate 𝑘 − 1 random trial orientations around the z-axis of the sub-volume The original 

orientation will be included as the 𝑘𝑡ℎ term in the Rosenbluth weight. The Rosenbluth 

weight is calculated as  𝑊𝑜𝑙𝑑 = ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑟)
𝑘
𝑟=1  , where 𝑈𝑟 is the interaction energy of 

the large molecule in orientation 𝑟 with all other molecules in the simulation box. Calculate 

the probability 𝑃𝑜𝑙𝑑 =
𝑒𝑥𝑝(−𝛽𝑈𝑘)

 𝑊𝑜𝑙𝑑
, where 𝑈𝑘 is the interaction energy of the large molecule 

at the original orientation with all other molecules in the simulation box. 𝑃𝑜𝑙𝑑 is the 

probability of inserting the large molecule at its original configuration in the reverse move 

(𝑛𝑒𝑤 → 𝑜𝑙𝑑). Then remove the large molecule from the simulation box. 

4. Repeat the steps a→c for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … ,𝑁𝐸𝑋) to insert the small molecules with 

the probability of 𝑁𝐸𝑋! 𝑉𝐸𝑋
𝑁𝐸𝑋⁄ . 
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a. Generate 𝑗 random trial positions for the centroid of the 𝑖𝑡ℎ small molecule within 𝑉𝐸𝑋. 

b. For each trial position 𝑝, generate 𝑘 random trial orientations around the molecule’s 

centroid (three-dimensional rotation) and calculate the Rosenbluth weight 𝑊𝑖,𝑛𝑒𝑤 =

∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)
𝑘
𝑟=1

𝑗
𝑝=1 , where 𝑈𝑖,𝑝,𝑟 is the interaction energy of the 𝑖𝑡ℎ inserted 

small molecule at position 𝑝 and orientation 𝑟 with all the other molecules, including 

those added in the earlier cycles of the move. 

c. Pick one of the generated trial configurations with probability 𝑃𝑖,𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈𝑖,𝑝,𝑟)

 𝑊𝑖,𝑛𝑒𝑤
 and 

insert the small molecule. 

 

Based on the two algorithms described above, for the large molecule insertion, the ratio 

of the probability of generating the move 𝑛𝑒𝑤 (𝑁𝐿 + 1,𝑁𝑆 − 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of 

the reverse move is:  

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁𝐿 + 1
1
𝑉

×

𝑁𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋

𝑁𝐸𝑋! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!
𝑁𝑆,𝑉𝐸𝑋!

×
∏ 𝑃𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋
𝑖=1

𝑃𝑛𝑒𝑤
 (4.7) 

 

Simplifying Eq. 4.7 and substituting into Eq. 4.3, produces the acceptance criteria for 

the large molecule insertion. 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
𝑉

 𝑁𝐿 + 1
×

𝑁𝑆,𝑉𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋(𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

×
 𝑊𝑛𝑒𝑤

∏  𝑊𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋
𝑖=1

× 𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆] } (4.8) 

For the large molecule deletion move, the ratio of the probability of generating the 

move 𝑛𝑒𝑤 (𝑁𝐿 − 1,𝑁𝑆 + 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of the reverse move is: 
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𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑉
1
𝑁𝐿

×

𝑁𝐸𝑋! 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋)!

𝑁𝐸𝑋!

𝑉𝐸𝑋
𝑁𝐸𝑋

×
∏ 𝑃𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

𝑃𝑜𝑙𝑑
 (4.9) 

Simplifying Eq. 4.9 and substituting into Eq. 4.3, produces the acceptance criteria for 

the large molecule deletion move. 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿
𝑉
×
𝑉𝐸𝑋
𝑁𝐸𝑋 × 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 +𝑁𝐸𝑋)!
×
∏  𝑊𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

 𝑊𝑜𝑙𝑑
× 𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿] } (4.10) 

The energy difference between configuration 𝑛𝑒𝑤 and 𝑜𝑙𝑑, 𝑈(𝑛𝑒𝑤) − 𝑈(𝑜𝑙𝑑), does 

not appear directly in the acceptance criteria because their Boltzmann weight is already 

included in the probabilities used for selecting the position of the molecules. 

The acceptance criterion derived for ME-1 is identical to the one introduced by Vink 

and Horbach[81]. This move performs well for binary mixtures with low concentrations of 

large molecules. However, the acceptance rate of the move decreases significantly as the 

concentration of large molecules increases, and the chance of finding 𝑁𝐸𝑋 small molecules in 

the exchange sub-volume becomes very low. To address this limitation, ME-2 was developed.  

4.2.2 ME-2  

In ME-1, for the insertion of a large molecule, the exchange sub-volume 𝑉𝐸𝑋 is defined 

with a random orientation and position. However, as the mole fraction of small molecules 

decreases, the required number of small molecules are frequently not available within the 

exchange sub-volume. Therefore, a large fraction of the attempted ME-1 moves will be 

rejected. In the ME-2 approach, the geometric center of 𝑉𝐸𝑋 is placed on the centroid of a 

randomly selected small molecule. If the small molecule is monoatomic, the orientation of 𝑉𝐸𝑋 

is assigned randomly, otherwise its z-axis is aligned with the backbone of the small molecule. 

The large molecule deletion is identical to ME-1. An illustration of the ME-2 algorithm is 

provided in Figure 4.2. 



 

 

50 

 

Figure 4.2: Schematic of the ME-2 algorithm. Selected or inserted molecule (green), trial 

position (light red), and actual position of the molecule (solid red). Top row, represents the 

exchange of two small molecules with one large molecule (insertion). The sub-volume is 

defined as the orange box. (A) Aligning the sub-volume with a randomly selected small 

molecule’s backbone with geometric center placed at centroid of the selected small molecule, 

and identifying the small molecules within the sub-volume. (B) Generating CBMC trials 

(rotation and centroid location) for one of the small molecules and then removing it. (C) 

Generating CBMC rotational trials around the z-axis of the sub-volume and then removing it. 

(D) Aligning the backbone of the large molecule with the sub-volume and performing CBMC 

rotational trials around the z-axis of the sub-volume. Bottom row represents the exchange of 

one large molecule with two small molecules (deletion). (A) Aligning the sub-volume with 

large molecule’s backbone with geometric center placed at centroid of the large molecule, and 

identifying the small molecules within the sub-volume. (B) Generating CBMC rotational trials 

around the z-axis of the sub-volume and then removing it. (C) Placing the centroid of the first 

small molecule at the geometric center of the sub-volume and generate the CBMC rotational 

trials around the z-axis of the sub-volume and then inserting it into the sub-volume. (D) 

Generating CBMC trials (rotation and centroid location) for the second small molecule and 

then inserting it into the sub-volume.  

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows: 

1. Select one molecule out of 𝑁𝑆 small molecules in the simulation box with the probability 

of 1 𝑁𝑆 ⁄ . This molecule will be the last molecule to be removed from the system. 

2. Define 𝑉𝐸𝑋 with its geometric center placed at the centroid of the small molecule selected 

in step 1. The z-axis of the exchange sub-volume is aligned with the backbone of the small 

molecule. If the small molecule is monoatomic, the orientation of 𝑉𝐸𝑋 is assigned randomly. 
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Determine the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within 𝑉𝐸𝑋 (𝑁𝑆,𝑉𝐸𝑋 includes the molecule 

selected in step 1). 

3. Reject the move if 𝑁𝑆,𝑉𝐸𝑋 < 𝑁𝐸𝑋, otherwise continue.  

4. Select 𝑁𝐸𝑋 − 1 small molecules out of 𝑁𝑆,𝑉𝐸𝑋 − 1, with probability 

(𝑁𝐸𝑋 − 1)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)! (𝑁𝑆,𝑉𝐸𝑋 − 1)!⁄ . 

5. Repeat steps a and b of the large molecule insertion move of ME-1 for NEX − 1 cycles (i =

1, 2, … , NEX − 1) to delete the selected small molecules. 

6. For the last small molecule to be deleted, generate 𝑘 − 1 random trial orientations around 

the z-axis of the sub-volume. If the small molecule is monoatomic, orientations are 

generated around its centroid. The original orientation will be included as the 𝑘𝑡ℎ term in 

the Rosenbluth weight. The Rosenbluth weight is calculated from  𝑊𝑁𝐸𝑋,𝑜𝑙𝑑 =

∑ 𝑒𝑥𝑝(−𝛽𝑈𝑁𝐸𝑋,𝑟)
𝑘
𝑟=1  , where 𝑈𝑁𝐸𝑋,𝑟 is the interaction energy of the last small molecule in 

orientation 𝑟 with all other molecules in the simulation box. Finally, remove the last small 

molecule from the simulation box and calculate 𝑃𝑁𝐸𝑋,𝑜𝑙𝑑 =
𝑒𝑥𝑝(−𝛽𝑈𝑁𝐸𝑋,𝑘)

 𝑊𝑁𝐸𝑋,𝑜𝑙𝑑
 , where 𝑈𝑁𝐸𝑋,𝑘 is 

the interaction energy of the last small molecule at its original configuration with all other 

molecules remaining in the simulation box. 𝑃𝑖,𝑜𝑙𝑑 is the probability of inserting the 𝑖𝑡ℎ small 

molecule back at its original configuration in the reverse move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). 

7. Insert the large molecule according to steps 5 and 6 of ME-1. 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 

1. Follow steps 1-4 of the ME-1 large molecule deletion move. 

2. Insert the centroid of the first small molecule at the geometric center of  𝑉𝐸𝑋 and align its 

backbone with the z-axis of the exchange sub-volume. Generate 𝑘 random trial orientations 

around the z-axis of the sub-volume. If small molecules are monoatomic, the orientation is 
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assigned randomly around its centroid. Calculate the Rosenbluth weight 𝑊1,𝑛𝑒𝑤 =

∑ 𝑒𝑥𝑝(−𝛽𝑈1,𝑟)
𝑘
𝑟=1 , where 𝑈1,𝑟 is the interaction energy of the first small molecule inserted 

at orientation r with all other molecules in the simulation box. 

3. Select one of the trial orientations with the probability 𝑃1,𝑛𝑒𝑤 =
𝑒𝑥𝑝(−𝛽𝑈1,𝑟)

 𝑊1,𝑛𝑒𝑤
. 

4. Repeat steps a→c of the large molecule deletion move of ME-1 for 𝑁𝐸𝑋 − 1 cycles (𝑖 =

2, … , 𝑁𝐸𝑋) to insert the small molecules with probability (𝑁𝐸𝑋 − 1)! 𝑉𝐸𝑋
(𝑁𝐸𝑋−1)⁄ . 

 

Based on the two algorithms described above, for the large molecule insertion move, 

the ratio of the probability of generating move 𝑛𝑒𝑤 (𝑁𝐿 + 1,𝑁𝑆 − 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that 

of the reverse move is: 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁𝐿 + 1
1
𝑁𝑆

×

(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

(𝑁𝐸𝑋 − 1)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

(𝑁𝑆,𝑉𝐸𝑋 − 1)!

×
∏ 𝑃𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋
𝑖=1

𝑃𝑛𝑒𝑤
 (4.11) 

Simplifying Eq. 4.11 and substituting into Eq. 4.3 results in the acceptance criterion for 

the large molecule insertion move: 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
𝑁𝑆

 𝑁𝐿 + 1
×

(𝑁𝑆,𝑉𝐸𝑋 − 1)!

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)(𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

×
 𝑊𝑛𝑒𝑤

∏  𝑊𝑖,𝑜𝑙𝑑
𝑁𝐸𝑋
𝑖=1

× 𝑒𝛽[𝜇𝐿−𝑁𝐸𝑋𝜇𝑆] } (4.12) 

 

For the large molecule deletion move, the ratio of the probability of generating 

configuration 𝑛𝑒𝑤 (𝑁𝐿 − 1,𝑁𝑆 +𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁𝐿 , 𝑁𝑆) to that of the reverse move is: 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
(𝑁𝑆 +𝑁𝐸𝑋)

1
𝑁𝐿

×

(𝑁𝐸𝑋 − 1)!𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!

(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
(𝑁𝐸𝑋−1)

×
∏ 𝑃𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

𝑃𝑜𝑙𝑑
 (4.13) 

Simplifying Eq. 4.13 and substituting into Eq. 4.3 results in the acceptance criterion for 

the large molecule deletion move. 
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 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿

(𝑁𝑆 + 𝑁𝐸𝑋)
×
𝑉𝐸𝑋
(𝑁𝐸𝑋−1) × 𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!
×
∏  𝑊𝑖,𝑛𝑒𝑤
𝑁𝐸𝑋
𝑖=1

 𝑊𝑜𝑙𝑑
× 𝑒𝛽[𝑁𝐸𝑋𝜇𝑆−𝜇𝐿] } (4.14) 

If 𝑁𝐸𝑋 = 1, the acceptance criteria given in Eqs. 4.13 and 4.14 simplifies to that of the 

standard identity-exchange acceptance move[80]. 

 𝑎𝑐𝑐( 𝑁𝐿 →  𝑁𝐿 + 1) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝑆

(𝑁𝐿 + 1)
×
 𝑊𝑛𝑒𝑤
 𝑊𝑜𝑙𝑑

× 𝑒𝛽[𝜇𝐿−𝜇𝑆] } (4.15) 

 𝑎𝑐𝑐( 𝑁𝐿 →  𝑁𝐿 − 1) = 𝑚𝑖𝑛 { 1 ,
 𝑁𝐿

(𝑁𝑆 + 1)
×
 𝑊𝑛𝑒𝑤
 𝑊𝑜𝑙𝑑

× 𝑒𝛽[𝜇𝑆−𝜇𝐿] } (4.16) 

4.2.3 ME-3 

For the large molecule insertion move in ME-2, the large molecule is inserted as a rigid 

body and its backbone is aligned with the z-axis of the 𝑉𝐸𝑋. This move performs well for large 

molecules with a straight backbone. However, the acceptance rate decreases for a large 

molecule with nonlinear geometry as it becomes significantly more difficult to fit a complex 

rigid body into the void space created after deleting the small molecule(s). Therefore, a 

modification to ME-2 was developed to address this limitation. 

In the ME-3 algorithm, a predefined atom of the large molecule is first placed at the 

geometric center of 𝑉𝐸𝑋 and the molecule is built segment by segment using the coupled-

decoupled configurational-bias Monte Carlo (CBMC) algorithm[67]. For the large molecule 

deletion move, the exchange sub-volume is defined with a random orientation, with its 

geometric center placed at the same predefined atom of the large molecule to be deleted. Next, 

the Rosenbluth weight 𝑊𝑜𝑙𝑑 of the large molecule is calculated. Insertion and deletion of 𝑁𝐸𝑋 

small molecules are identical to the ME-2 method. Figure 4.3 illustrates the ME-3 algorithm. 
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Figure 4.3: Schematic of the ME-3. Selected or inserted molecule (green), trial position (light 

red), and actual position of the molecule (solid red). Top row, represents the exchange of two 

small molecules with one large molecule (insertion). The sub-volume is defined as the orange 

box. (A) Defining the sub-volume with a random orientation, where its geometric center is 

placed at a randomly selected small molecule’s centroid, and identifying the small molecules 

within the sub-volume. (B) Generating CBMC trials (rotation and centroid location) for one of 

the small molecules and then removing it. (C) Generating CBMC rotational trials around its 

centroid of the selected small molecule and then removing it. (D) Placing the predefined atom 

of the large molecule at the geometric center of the sub-volume and growing the large molecule 

using coupled-decoupled CBMC technique. Bottom row, represents the exchange of a large 

molecule with two small molecules (deletion). (A) Defining the sub-volume with a random 

orientation with geometric center placed at the predefined atom of the large molecule, and 

identifying the small molecules within the sub-volume. (B) Generating coupled-decoupled 

CBMC trials and then removing it. (C) Placing the centroid of the first small molecule at the 

geometric center of the sub-volume, generating CBMC rotational trials around its centroid and 

then inserting it into the sub-volume. (D) Generating CBMC trials (rotation and centroid 

location) for the second small molecule and then inserting it into the sub-volume. 

 

The algorithm for the insertion of a large molecule after deletion of small molecule(s) 

is as follows: 

1. Select one molecule out of 𝑁𝑆 small molecules in the simulation box with probability 1 𝑁𝑆 ⁄ . 

This molecule will be the last molecule to be removed from the system. 

2. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋 with a random orientation and its 

geometric center placed at the centroid of the small molecule selected above. Then 
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determine the number of small molecules 𝑁𝑆,𝑉𝐸𝑋 within 𝑉𝐸𝑋 (𝑁𝑆,𝑉𝐸𝑋 includes the molecule 

selected in step 1). 

3. Repeat steps 3-6 of the ME-2 method to delete 𝑁𝐸𝑋 small molecules from simulation box. 

4. Insert the predefined atom of the large molecule at the center of 𝑉𝐸𝑋 and perform coupled-

decoupled configurational-bias Monte Carlo to grow the large molecule segment by 

segment. Calculate the Rosenbluth weight  𝑊𝑛𝑒𝑤.  

5. Insert the large molecule by selecting one of the generated trial configurations with the 

probability 𝑃𝑛𝑒𝑤. 

 

The algorithm for the deletion of a large molecule and subsequent insertion of small 

molecule(s) is as follows: 

1. Within the simulation box of volume 𝑉, pick one large molecule out of 𝑁𝐿  with probability 

of 1 𝑁𝐿⁄ .  

2. Define an orthogonal exchange sub-volume 𝑉𝐸𝑋 with a random orientation and place its 

geometric center at the predefined atom of the selected large molecule. Determine the 

number small molecules 𝑁𝑆,𝑉𝐸𝑋 within the exchange sub-volume. 

3. Perform coupled-decoupled CBMC for the large molecule and calculate the Rosenbluth 

weight 𝑊𝑜𝑙𝑑 and 𝑃𝑜𝑙𝑑. 

4. Repeat steps 2-4 of ME-2 to insert 𝑁𝐸𝑋 small molecules within 𝑉𝐸𝑋. 

The forward to reverse probability ratios for generating the large molecule insertion 

and the large molecule deletion moves are identical to those given in Eq. 4.11 and 4.13, 

respectively. The acceptance criteria for the ME-3 algorithm is identical to that of ME-2 and 

are given by Eq. 4.12 and 4.14.  
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4.3 Simulation Methodology 

The three molecular exchange algorithms described in this chapter were implemented 

in the development version of GPU Optimized Monte Carlo[57] (GOMC), which is available 

to the public on GitHub[170]. GOMC is an object-oriented Monte Carlo simulation engine, 

capable of performing simulations in canonical, isobaric-isothermal, and grand canonical 

ensembles, as well as Gibbs ensemble Monte Carlo. GOMC is designed for the simulation of 

complex molecular topologies and supports a variety of potential functions, such as Lennard-

Jones and Mie potentials. Coulomb interactions are also supported via the Ewald summation 

method[122]. GOMC is capable of parallel computation, either on multicore CPUs or GPUs. 

Phase diagrams were determined from histogram-reweighting Monte Carlo simulations 

in the grand-canonical ensemble[42]. A cubic box size of 25 Å × 25 Å × 25 Å was used for 

methane+ethane, methane+propane, methane+n-butane, and water+impurity. For 

perfluorobutane+n-butane and methane+n-pentane, a box size of 30 Å × 30 Å × 30 Å was used, 

while for 2,2,4-trimethylpentane+neopentane a box size of 40 Å × 40 Å × 40 Å was used. 

Initial configurations were generated with Packmol[142]. Psfgen was used to generate 

coordinate (*.pdb) and connectivity (*.psf) files[143]. Potentials were truncated at 10 Å and 

analytical tail corrections were applied[144]. To enhance the acceptance rate for molecule 

insertions, the coupled-decoupled configurational-bias Monte Carlo (CBMC) algorithm was 

used[67]. For all liquid phase simulations, unless otherwise noted in the Results and 

Discussion, configurational-bias parameters were: 100 angle trials, 100 dihedral trials, 10 trial 

locations for the first site, and 8 trial locations for secondary sites. For standard GCMC 

simulations, a move ratio of 20% displacements, 10% rotations, 10% regrowth, and 60% 

molecule transfers was used. For simulations that included the molecular exchange move, 30% 

molecular exchanges were performed with a corresponding reduction in the percentage of 

attempted molecule transfers.  
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Uncertainties used in the calculation of the statistical efficiency of the methods were 

calculated as the standard deviation determined from five unique simulation trajectories, each 

started from a unique initial configuration and random number seed. All simulations, except 

those used to generate phase diagrams, were run for 2x107 Monte Carlo steps (MCS), without 

equilibration period. Simulations used to generate phase diagrams were run for 5x107 MCS 

with a 5x106 MCS equilibration period. Every 200-500 MCS, the instantaneous state of the 

system (N1, N2, E) was saved as a histogram. Every one million MCS, the natural log of 

distribution of large particle ln(𝑃𝑁) for each simulation was determined, and the standard 

deviation and efficiency were calculated for each binary system for a variety of compositions 

along the vapor-liquid coexistence curve. Calculations were performed on one core of an Intel 

Xeon E5-4627v4 2.6 GHz CPU. 

The efficiency was computed using the calculated standard deviation and the CPU time. 

 𝜂 = (𝜎2𝑠)−1 (4.17) 

where 𝜎 is average uncertainty in natural log of large particle distribution and 𝑠 is the CPU 

time in seconds.  

4.4 Results and Discussion 

In this chapter, a number of examples are provided to illustrate the effect of molecular 

exchange moves on the statistical sampling in grand canonical histogram reweighting Monte 

Carlo simulations. Mixtures simulated include perfluorobutane+n-butane, and methane 

+ethane, +propane, +n-butane, and +n-pentane. Additional calculations were performed to 

generate pure fluid phase diagrams for water and 2,2,4-trimethylpentane to demonstrate the 

utility of the method and to provide comparisons to prior work[171-173]. For binary mixture 

phase diagrams, all calculations were performed at temperatures below 0.7𝑇𝑐. For pure fluid 

phase diagrams, calculations were performed from the critical temperature to 0.44𝑇𝑐 − 0.51𝑇𝑐. 
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Performing grand canonical Monte Carlo simulations, using standard configurational-bias 

methods[67], below 0.7𝑇𝑐 is a challenging task, and therefore a good test to evaluate the 

improvement in sampling of phase space provided by the proposed algorithms.  

4.4.1 Methane+n-alkane 

Methane+n-alkane systems are well studied and extensive experimental data may be 

found in the literature[174-181]. In general, the determination of vapor-liquid coexistence for 

these systems at temperatures above 0.7𝑇𝑐 can be done using standard configurational-bias 

methods in grand canonical or Gibbs ensemble Monte Carlo simulations[24, 124, 141, 182]. 

However, below 0.7𝑇𝑐, acceptance rates for the insertion of n-alkanes into a liquid phase drops 

to approximately 0.1%, which necessitates long simulations to obtain convergence of the 

simulations. In this section, the effect of the three ME algorithms on the convergence of grand 

canonical Monte Carlo simulations is assessed for mixtures of methane +ethane, +propane, +n-

butane, and +n-pentane, and the effectiveness of performing a two for one exchange is 

evaluated.  

The methane+n-butane mixture is presented first as an example of the validation 

process used in the development of the molecular exchange methods. Grand canonical Monte 

Carlo (GCMC) simulations were performed for a variety of temperatures, chemical potentials, 

and move ratios using both standard configurational-bias insertions/deletions and the ME-1, 

ME-2, and ME-3 methods. Probability distributions of states sampled during the simulation 

were collected and compared to reference distributions determined using standard 

configuration-bias insertions. An example of this is shown in Figure 4.4, for gas 

(𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =

−2000 ) phase simulations at 277 K. As expected, the probability distributions produced by 

the ME-3 algorithm are an exact match to the reference distributions. Additional data for the 

ME-1 and ME-2 algorithms are presented in the Appendix B, Figures B1 and B2. 
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Figure 4.4: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-3 algorithm. 

 

In Figure 4.5, the pressure vs. composition diagram for methane+n-butane at 277 K, 

predicted using both the coupled-decoupled configurational-bias method[67] and the ME-3 

algorithm, is shown. Interactions between molecules were described with Optimized Mie 

Potentials for Phase Equilibria[24]. In addition to showing excellent agreement with 

experimental data[181], the ME-3 algorithm produced results that are statistically 

indistinguishable from standard configurational-bias insertions, providing further validation of 

the method.  
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Figure 4.5: Pressure composition diagram for methane+n-butane at 277 K predicted from 

GCMC+histogram reweighting simulations using Mie potentials[24]. Experimental data 

(circles)[181], standard configurational-bias insertions (red lines), ME-3 algorithm (green 

lines). 

 

In Table 4.1, the acceptance rate for molecule transfers as a function of composition is 

presented for each methane+n-alkane binary mixture. Calculations were performed for liquid 

phase simulations along the coexistence curve at 186 K (methane+ethane), 213 K 

(methane+propane), 225 K (methane+n-butane), and 273 K (methane+n-pentane). The systems 

exhibit similar general trends, with acceptance rates climbing as the critical point of the mixture 

is reached. For 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 < 0.5, acceptances rates for the insertion of the larger n-alkane using 

configurational-bias were less than 1%. When performing a one to one exchange, ME-3 was 

found to produce the largest improvement in acceptance rates for the large molecule, producing 

improvements of 2X for methane+n-pentane at 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.7 to 70X for methane+ethane at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1. The ME-2 algorithm also produced significant enhancement in the 
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acceptances rates for the insertion of the longer n-alkane, while the ME-1 algorithm was found 

to yield significantly lower acceptance rates than traditional configurational-bias insertions. 

Because the ME-2 algorithm uses a rigid swap and the centroid of the large molecule is placed 

at the geometric center of the exchange sub-volume, only a fraction of the sub-volume is 

guaranteed to be empty. In most of the ME-2 exchanges, it is likely that some atoms from the 

large molecule will overlap with existing molecules, lowering acceptance rates compared to 

ME-3. The ME-3 algorithm uses the same initial placement for the central atom as ME-2, but 

grows the rest of the large molecule, allowing it to find more energetically favorable 

configurations than are possible through a rigid molecule insertion, leading to greater 

acceptance rates for the exchange move. As expected, the more similar the large and small 

molecule were in terms of excluded volume, the greater the success of the molecular exchange. 

It is also interesting to note that even for the highly asymmetric mixture of methane+n-pentane, 

acceptance rates for molecule transfers were improved substantially through the inclusion of 

the molecular exchange move.  

The molecular exchange algorithm allows for trial moves where any number of small 

molecules may be exchanged for one large molecule. An example of this is shown in Table 1, 

where acceptance rates are presented for exchange of two methanes with one n-butane or n-

pentane (𝑁𝐸𝑋 = 2). For the ME-3 algorithm, acceptance rates are always lower than the one 

for one exchange, although, this difference decreases as the chain length of the large molecule 

increases. Part of the decrease in the acceptance rate stems from the reduced probability of 

finding two methane molecules in the sub-volume to exchange at low methane concentrations. 

For ME-2, acceptance rates are slightly lower for the exchange of two methanes with one n-

butane, compared to the one for one exchange. However, for the exchange of two methanes 

with one n-pentane, slight improvements in the acceptance rates were observed. The ME-1 

algorithm shows a slight improvement in acceptance rates for the exchange of two methanes 
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with one n-butane or n-pentane, although in all cases, acceptance rates for the ME-1 algorithm 

are lower than configurational-bias insertions.  

While size of the sub-volume does not have an effect on the acceptance rates for the 

ME-2 and ME-3 algorithms for a one to one exchange, it was found to have an effect on the 

acceptance rates for the two to one exchange, as shown in Table 1. Increasing the size of the 

sub-volume increases the probability that a second small molecule will be found within the 

sub-volume, leading to an increased overall acceptance rate for the MEMC move. Therefore, 

it is possible to optimize acceptance rates for the two to one exchange ratio by performing a 

series of short simulations for a range of sub-volume box lengths, and by using a heuristic that 

the sub-volume should be large enough to contain the entire large molecule. For methane+n-

butane, the optimum exchange sub-volume size for a two for one exchange was found to be 

8.8 Å × 8.8 Å × 11.8 Å for ME-3 and ME-2, while for ME-1 it was 5 Å × 5 Å × 8 Å.  
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Table 4.1: n-alkane insertion/removal acceptance percentages in GCMC liquid phase 

simulations of methane+n-alkane mixtures for CBMC, ME-1, ME-2, and ME-3 methods. 
Binary system Sub-volume size (Å) 𝑁𝐸𝑋 𝑥𝐶𝐻4 CBMC ME-1 ME-2 ME-3 

methane+ethane 5 × 5 × 6 1 0.1 0.33 0.11 11.68 23.62 

0.5 1.47 0.96 16.20 33.33 

0.9 8.3 4.18 24.09 47.84 

methane+propane 5 × 5 × 7 1 0.1 0.08 0.05 3.42 4.13 

0.4 0.38 0.40 5.67 7.21 

0.8 5.18 3.36 13.56 18.36 

methane+n-butane 5 × 5 × 8 1 0.1 0.14 0.025 0.835 2.373 

0.3 0.33 0.099 1.207 3.421 

0.6 2.52 0.948 3.378 8.128 

5 × 5 × 8 2 0.1 0.14 0.019 0.196 0.362 

0.3 0.33 0.144 0.557 0.928 

0.6 2.52 1.262 2.288 3.160 

8.8 × 8.8 × 11.8 2 0.1 0.14 0.022 0.398 0.984 

0.3 0.33 0.086 0.821 1.860 

0.6 2.52 0.621 2.682 5.252 

methane+n-pentane 

 

5 × 5 × 9 1 0.1 0.064 0.007 0.209 0.824 

0.5 0.397 0.116 0.638 2.163 

0.7 2.461 0.666 1.72 4.814 

5 × 5 × 9 2 0.1 0.639 0.006 0.086 0.189 

0.5 0.397 0.270 0.736 1.160 

0.7 2.461 1.332 2.389 3.170 

8.8 × 8.8 × 13 2 0.1 0.639 0.008 0.145 0.455 

0.5 0.397 0.102 0.675 1.806 

0.7 2.461 0.473 2.054 4.133 

 

A more detailed analysis of the statistical uncertainty and efficiency for an exchange 

ratio of one to one is provided in Figure 4.6 for the methane+n-butane mixture. A direct 

comparison between the efficiencies obtained for the one to one and one to two exchange ratios 

are presented in the Appendix B, Figure B3. Uncertainties were determined from probability 

distributions collected from liquid phase grand canonical Monte Carlo simulations performed 

along the vapor-liquid coexistence curve. For all mole fractions investigated, the ME-3 

algorithm shows the fastest convergence of the n-particle probability distribution, converging 
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in approximately half the number of Monte Carlo steps of ME-2. Both the ME-3 and ME-2 

algorithms produce similarly converged probability distributions after 2x107 MCS, with 

average uncertainties of approximately 0.05. The ME-1 algorithm and configurational-bias 

insertions show similar convergence properties. However, with 2x107 MCS each produced 

uncertainties that were approximately double those of the ME-3 and ME-2 methods. 
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Figure 4.6: Efficiency and standard deviation in methane+n-butane at 255 K. Lines represent 

the efficiency and average uncertainty in probability distributions generated from GCMC 

simulations. Standard configurational-bias insertions (black), ME-1 (red), ME-2 (green), and 

ME-3 (blue). The MEMC move was performed with the exchange ratio of one butane with one 

methane.  
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In Figure 4.7, the probability distributions resulting from GCMC simulations with the 

various ME methods using an exchange ratio of one to one are presented for 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3, 

while data for other mole fractions are given in Appendix B, Figures B4 and B5. The 

probability distributions resulting from GCMC simulations with the various ME methods using 

an exchange ratio of one to two are presented in Appendix B, Figure B6-8 for a range of mole 

fractions. All MEMC methods converge to the same distribution. ME-3 shows rapid 

convergence, and within only 5x106 MCS the correct distribution is obtained. The ME-2 

algorithm shows slightly slower convergence compared to ME-3, but is still more efficient that 

ME-1 or configurational-bias trial insertions.  

 

Figure 4.7: Probability distributions for methane+n-butane at 255 K and 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3. After 

simulations of: 1x106 MCS (magenta), 5x106 MCS (green), 1x107 MCS (blue), 1.5x107 MCS 

(red), and 2x107 MCS (black) (A) Standard configurational-bias insertions, (B) ME-1 (C) ME-

2 and (D) ME-3. 
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4.4.2 Perfluorobutane+n-butane 

The perfluorobutane+n-butane system is an interesting case study because of its large 

deviations from Raoult’s law, despite the fact that perfluorobutane and n-butane have very 

similar normal boiling points (270.96 K for C4F10 and 272.61 K for C4H10) and both are non-

polar with similar molecular geometries. This system has been modeled in the past with SAFT-

VR[183], PC-SAFT[184] and GC-SAFT-VR[185], which showed close agreement with 

experimental data[186]. Gibbs ensemble Monte Carlo simulations using an identity exchange 

move have been used to study liquid-liquid equilibria for n-heptane+perfluoheptane[187], 

otherwise, grand canonical and Gibbs ensemble methods have rarely been applied to these 

kinds of mixtures. This is due, in part, to the difficulty in achieving an adequate number of 

accepted molecule transfers. For example, at 260 K, acceptance rates for the insertion of 

perfluorobutane in the neat liquid phase was approximately 0.075%.  

In Figure 4.8, the pressure vs. composition diagram for perfluorobutane+n-butane at 

260 K, predicted using the ME-3 algorithm and the Mie potentials developed by our group[24], 

is shown. The force field for perfluorobutane was modified slightly from the original work to 

use a more accurate seven term cosine series, which is described in detail in the Appendix B. 

Using standard Lorentz-Berthelot combining rules[120, 121] and no adjustable parameters for 

the cross interaction, very good agreement was achieved with experiment. The largest deviation 

results from the limitation in the united-atom force field for perfluorobutane, which over-

predicts the vapor pressure at 260 K by approximately 0.1 bar. 
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Figure 4.8: Pressure-composition diagram for perfluorobutane+n-butane at 259.95 K. The 

predictions from GCMC+histogram reweighting simulations using the ME-2 algorithm are 

given by (red line) while experiment data[186] are represented by (black circles). The line 

connecting the experimental data points is provided as a guide to the eye. 

 

To evaluate the effectiveness of the molecular exchange move with a one to one 

exchange ratio and an exchange sub-volume of 6 Å × 6 Å × 9 Å, acceptance rates, uncertainties 

in the probability distributions, and efficiencies produced from the grand canonical Monte 

Carlo simulations were determined for liquid phase simulations at selected points along the 

coexistence curve. The effect of various simulation parameters on the performance of the 

CBMC and MEMC acceptance rates and efficiencies were also evaluated for liquid phase 

simulations containing 50 mol% n-butane, and are shown in Appendix B, Figure B9. Using the 

coupled-decoupled configurational-bias method[67], the probability of successfully inserting 

one perfluorobutane into a simulation box containing 10 mol%, 50 mol%, and 90 mol% of n-
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butane was 0.073%, 0.026%, and 0.011%, respectively. The ME-1 algorithm increased 

acceptance rates approximately 4 times that of standard trial insertions for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 > 0.50, 

however, for lower concentrations of n-butane, no improvement was observed. For the ME-2 

algorithm, acceptance rates of 4.92%, 4.17%, and 3.15% were obtained, while for ME-3, 

acceptance rates were 3.52%, 2.73 %, and 1.69%, respectively. For this system, the ME-2 

algorithm produces the best acceptance rates because it works by aligning the backbone of 

perfluorobutane with the cavity left by the leaving n-butane. Acceptance rates were slightly 

lower for ME-3 since it grows the molecule using coupled-decoupled configurational-bias 

without requiring the backbone of the molecule to be aligned with the cavity created by the 

molecule that was removed. 

The efficiency of the various molecular exchange algorithms is shown in Figure 4.9 as 

a function of Monte Carlo step for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1, 0.5, and 0.9. Uncertainties shown are the 

average over uncertainties for each histogram bin in the probability distribution. Both the ME-

2 and ME-3 algorithms show that convergence of the probability distributions was achieved 

within 10 million MCS, while for ME-1 and configurational-bias insertions, convergence was 

not achieved within 20 million MCS. Depending on composition, ME-3 provides efficiencies 

that are between 12 and 200 times greater than configurational-bias insertions for the insertion 

of perfluorobutane. Based on the trajectory of the uncertainties, it is unlikely that convergence 

of the probability distributions using standard Monte Carlo insertions would ever occur. 

Despite the fact that the ME-2 method provides slightly better acceptance rates for the 

molecular exchange move, at most compositions, ME-3 produces slightly faster convergence 

and better efficiencies. By growing the inserted molecule with coupled-decoupled 

configurational-bias[67], larger rearrangements take place in the system, even though more of 

the trial moves are rejected than in ME-2.  
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Figure 4.9: Efficiency and standard deviation in the perfluorobutane+n-butane binary mixture 

at 259.95 K. Lines represent the efficiency and average uncertainty in the perfluorobutane 

probability distribution; standard configurational-bias insertions(black), ME-1 (red), ME-2 

(green), and ME-3 (blue). The MEMC moves were performed with an exchange ratio of one 

to one.  
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In Figure 4.10, the probability distributions resulting from GCMC simulations with the 

various ME methods are presented for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.5, while data for 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1 and 0.9 are 

given in Appendix B, Figures B10 and B11. The figure shows rapid convergence of the 

probability distributions for the ME-2 and ME-3 methods, while ME-1 and standard GCMC 

have not converged in 20 million MCS, although, the uncertainties calculated for ME-1 are 

approximately half those of standard GCMC. In Figure 4.11, heat maps are presented for the 

particle numbers and potential energies sampled during a liquid phase GCMC simulation. The 

heat maps illustrate how simulations with only configurational-bias insertions/deletions may 

become trapped in metastable states, resulting in poor sampling. Inclusion of the ME-3 

algorithm produced a short equilibration period and a much broader sampling of the N1, N2, E 

phase space.  
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Figure 4.10: Molecule probability distribution for perfluorobutane+n-butane at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.5 

and 259.95 K. After simulations of: 1x106 MCS (magenta), 5x106 MCS (green), 1x107 MCS 

(blue), 1.5x107 MCS (red), and 2x107 MCS (black) (A) Standard configurational-bias 

insertions, (B) ME-1 (C) ME-2 and (D) ME-3. 
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Figure 4.11: Heat maps of particle numbers (left panel) and potential energies (right panel) 

sampled during liquid phase grand canonical Monte Carlo simulations of perfluorobutane+n-

butane at 259.95 K. Upper figures correspond to GCMC simulations with standard 

configurational-bias insertions/deletions, while the bottom figures correction to GCMC 

simulations with the ME-3 algorithm. 

4.4.3 Water 

In order to compare the performance of the MEMC move with other advanced sampling 

techniques, such as CBMC swap + identity switch[171](IS), continuous fractional component 

Monte Carlo (CFCMC)[172, 173], and configurational-bias continuous fractional component 

Monte Carlo (CB-CFCMC)[172], the vapor-liquid coexistence curve for SPC/E water[188] 

was predicted from the critical temperature to 0.44𝑇𝑐. To enhance the acceptance rate for 

insertions and deletions of water and to provide a uniform basis for comparison, the strategy 

of Bai and Siepmann was used[171]. For regular CBMC swaps, oxygen is inserted first, 

followed by the two hydrogen atoms. 16 trials were used for the first atom and 8 trials for all 

remaining atoms. Simulations were performed as a mixture that contained approximately 0-10 
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“impurity” molecules, where the impurity molecule had an identical geometry to the SPC/E 

water model, but with partial charges reduced by a factor of 2 and the oxygen atom Lennard-

Jones epsilon reduced by a factor of 4 compared to SPC/E water. Swap moves were performed 

only for impurity molecules, while the MEMC move is performed to exchange the impurity 

with water and vice versa. Move frequencies were adjusted to yield approximately to the same 

number of accepted molecule transfers for the swap and MEMC moves. Due to the poor 

performance of the ME-1 method in prior calculations, only the performance of the ME-2 and 

ME-3 methods were evaluated. An exchange ratio of one to one was used for all calculations.  

The phase diagram for SPC/E water predicted from GCMC simulations using the ME-

2 or ME-3 algorithm is shown in Figure 4.12, with a comparison to prior simulations[189]. 

Additional information on vapor pressure is provided in Appendix B, Figure B12. Excellent 

agreement was observed, validating both the MEMC algorithms and the simulation code used 

to perform the calculations.  
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Figure 4.12: Vapor-liquid coexistence curve for SPC/E water predicted from 

GCMC+histogram reweighting simulations. NIST Chemistry WebBook[158] (solid lines), 

values obtained by Boulougouris et al.[189] (green circles), ME-2 algorithm (red squares), and 

ME-3 algorithm (blue triangles). 

 

To compare the performance of MEMC with other methods, the effective number of 

molecule transfers was calculated. The effective number of molecule transfers was defined as 
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the insertion of an impurity molecule by the swap move and its conversion to a regular water 

molecule by the MEMC move, or the conversion of regular water to impurity via MEMC and 

then deletion of impurity by the swap move. Exchanges of impurity to water and back to 

impurity were not counted. The effective acceptance rate was calculated from the effective 

number of molecule transfers divided by the sum of attempted swap and MEMC moves. The 

results of these calculations are summarized in Table 4.2, with comparisons to the work of Bai 

and Siepmann[171], and Torres-Knoop et al.[172]. At 283 K, the effective acceptance rates for 

the ME-2 and ME-3 algorithms are 7.6 and 1.4 times greater, respectively, than the IS 

algorithm[171]. While the S+IS method reuses atomic coordinates of the molecule to be 

removed, the MEMC methods perform multiple trial orientations to insert the water molecule. 

In ME-2, first the center of the sub-volume was placed at the geometric center of the impurity, 

second the z-axis of the sub-volume was aligned with the O-H bond of impurity, and then 

multiple rotational trials were performed around the z-axis of the sub-volume. Aligning the O-

H bond of water and the sub-volume allows some of the original hydrogen bonding to be 

maintained, while finding an energetically favorable position for the oxygen atom through 

rotational trials around the z-axis of the sub-volume, leading to significant improvements in 

the effective acceptance. In the ME-3 method, the oxygen atom of water was placed at the 

geometric center of the impurity molecule, and multiple rotational trials were performed on a 

sphere to find the most energetically favorable position. In order to maintain the hydrogen 

bonding formed by the impurity molecule, a large number of rotational trials are required, 

leading to a significant decrease in the acceptance efficiency compared to ME-2 method.  

Compared to the original CFCMC method of Shi and Maginn[173], at 280 K, the ME-

2 method exhibits twice the effective acceptance rate, while the ME-3 method is approximately 

40% lower. The continuous fractional component Monte Carlo (CFCMC) and configurational-

bias continuous fractional component Monte Carlo (CB-CFCMC) methods of Torres-Knoop 
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et al.[172] produced the largest acceptance rates of all methods. At 280 K, CFCMC and CB-

CFCMC had acceptance rates that were 2.25 and 3.6 times larger, respectively, than the ME-2 

method. 

 

Table 4.2: Comparison of Swap + MEMC move acceptance percentages with standard CBMC, 

S+IS[171], CFCMC[172, 173], and CB-CFCMC[172] for SPC/E water. 
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐 

(𝐶𝐵𝑀𝐶) 

%𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐  %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐  %𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐵𝑀𝐶) 

%𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐹𝐶𝑀𝐶) 

%𝑃𝑤𝑎𝑡𝑒𝑟−𝑎𝑐𝑐  

(𝐶𝐵

− 𝐶𝐹𝐶𝑀𝐶) 

 This 

Work 

Bai 

et al. 

ME-2 ME-3 IS ME-2 ME-3 S+IS This 

work 

Bai 

et al. 

Torres-

Knoop 

et al. 

Shi. 

et al. 

Torres-

Knoop 

et al. 

Torres-

Knoop 

et al. 

280 5.7 - 5.70 0.59 - 2.73 0.51 - 0.063 - 0.027 1.38 6.16 9.86 

283 5.9 4.3 6.07 0.61 1.4 2.94 0.53 0.36 0.076 0.06

1 

- - - - 

313 6.3 - 6.74 0.98 - 3.35 0.83 - 0.167 - 0.068 1.00 7.49 11.7 

343 6.8 7.8 6.61 1.10 3.1 3.28 0.91 0.73 0.35 0.37 - - - - 

348 7.0 - 6.47 1.28 - 2.94 1.07 - 0.423 - 0.155 2.18 9.52 14.93 

375 9.8 - 8.67 2.11 - 4.55 1.71 - 0.761 - 0.286 - 10.14 16.53 

473 20.5 22 14.84 6.31 7.3 8.48 4.84 2.2 3.989 3.5 1.374 1.98 15.17 21.82 

500 23 - 15.95 7.49 - 9.29 5.62 - 5.556 - 1.964 - 15.23 21.5 

 

The acceptance efficiency was defined as the effective number of molecules 

transferred, divided by the total CPU time spent on swap and MEMC moves. In order to have 

a fair comparison between the acceptance efficiency of MEMC and S+IS, CFCMC, and CB-

CFCMC methods, this quantity was normalized with respect to the acceptance efficiency of 

the standard CBMC method, minimizing the impact of CPU choice on the relative performance 

of the algorithms. The results of these calculations are listed in Table 4.3. At 280 K, the ME-2 

method outperformed S+IS by 3.8 times, while the S+IS method is 23.9% better than ME-3. 

The performance of CFCMC and CB-CFCMC is 5-6 times greater than ME-2, although, it 

should be noted that the acceptance rates reported by Torres-Knoop et al. for standard swaps 

of water were approximately 2.4 times lower than those reported in this work, or Bai and 

Siepmann[171].  
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Table 4.3: Comparison of relative acceptance efficiency for the MEMC, S+IS[171], 

CFCMC[172] and CB-CFCMC[172] methods. 
T (K) ME-2 ME-3 S+IS CFCMC[172] CB-CFCMC[172] 

280 38.8 7.61 - 243.47 195.28 

283 34.1 6.49 10 - - 

313 19.33 4.91 - 97.07 85.27 

343 11.04 3.32 3.45 - - 

348 7.97 3.02 - 52.18 42.69 

375 6.39 2.47 - 33.16 27.59 

473 2.08 1.25 1.23 7.74 6.85 

500 1.65 1.04 - 6.52 5.18 

4.4.4 2,2,4-Trimethylpentane 

As mentioned earlier, achieving a statistically valid number of molecule insertions in 

low temperature (𝑇 < 0.7𝑇𝑐) simulations of branched alkanes can be challenging. Here, 2,2,4-

trimethylpentane is used as an example to highlight how the MEMC move can significantly 

extend the range of temperatures where GCMC simulations may be used to predict vapor-liquid 

coexistence for a highly branched molecule. In this case, neopentane is used as the impurity 

molecule based on its similar structure to part of 2, 2, 4-trimethylpentane. This also illustrates 

the general nature of the MEMC algorithm, which does not require the molecules to be 

exchanged to be an integer numbers of each other. In Figure 4.13, the vapor-liquid coexistence 

curve for 2,2,4-trimethylpentane, using ME-2 algorithm and GCMC+histogram reweighting 

Monte Carlo simulations, is presented. Additional data for the ME-3 algorithms is presented in 

Appendix B, Figure B13. Using the ME-2 or ME-3 algorithms, it is possible to predict vapor-

liquid coexistence to 280 K (0.51𝑇𝑐), while prior simulations using only coupled-decoupled 

configurational bias were limited to 390 K (0.7𝑇𝑐). In Table 4.4, a detailed comparison is 

presented for the acceptance rates for direct swaps of neopentane and 2,2,4-trimethylpentane, 

MEMC moves, effective acceptance rates and effective acceptance rates per CPU time. 

Effective acceptance rate and acceptance efficiency is calculated using a similar method 

explained in the water section. The results of additional calculations performed with different 
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CBMC parameters are given in Appendix B, Table B6. At all temperatures, the combination 

of impurity swap plus ME-2 or ME-3 method outperforms standard configurational-bias Monte 

Carlo. At 280 K, the relative acceptance efficiency (impurity swap+MEMC/standard CBMC) 

was 409 for ME-2 and 154 for ME-3. ME-2 is more effective than ME-3 for branched 

molecules because it inserts the entire molecule at the same time and aligns the backbone of 

the molecule to be inserted with the backbone of the molecule to be removed. ME-3 regrows 

the entire molecule using coupled-decoupled CBMC, however, many of these regrowths fail 

because they are unable to satisfy the internal molecular constraints due to the bond bending 

and torsional potentials[190]. In future work, it may be possible to improve the performance 

of the ME-3 algorithm for branched molecules by inclusion of the Jacobian-Gaussian 

scheme[191] for generating bending angle trials in the CBMC growth.  

Table 4.4: Comparison of acceptance rates for swaps of the impurity molecule (neopentane), 

identity exchange via the MEMC algorithm, and swaps performed with standard 

configurational-bias Monte Carlo for 2,2,4-trimethylpentane. 
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐   %𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐 %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐 %𝑃𝑎𝑐𝑐 Effective acceptance 

per CPU time (s-1) 

Relative acceptance  

efficiency 

 swap ME-2 ME-3 ME-2 ME-3 CBMC CBMC ME-2 ME-3 ME-2 ME-3 

280 0.013 0.89 0.03 0.013 0.008 0.00008 0.0003 0.109 0.041 409.2 153.7 

330 0.10 2.21 0.15 0.096 0.057 0.0008 0.0026 0.917 0.288 356.9 112.0 

390 0.85 5.69 0.55 0.653 0.274 0.022 0.0769 5.727 1.135 74.5 14.8 

450 4.09 9.84 1.27 2.645 0.837 0.225 0.838 24.12 3.497 28.8 4.17 

510 13.50 21.07 2.89 6.613 1.894 1.026 4.120 55.74 7.210 13.5 1.75 
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Figure 4.13: Vapor-liquid coexistence curve for 2,2,4-trimethylpentane predicted from 

GCMC+histogram reweighting simulations using Mie potentials[124]. Experimental data 

(solid lines)[151], ME-2 algorithm (red circles), and prior calculations using only 

configurational-bias Monte Carlo (green circles)[124]. 
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CHAPTER 5 PREDICTION OF PHASE EQUILIBRIA AND GIBBS FREE 

ENERGIES OF TRANSFER USING MOLECULAR EXCHANGE MONTE CARLO 

IN THE GIBBS ENSEMBLE  

5.1 Introduction 

The Gibbs ensemble Monte Carlo (GEMC) method, developed by 

Panagiotopoulos[32], provides a robust, direct method for the calculation of phase equilibria 

from molecular simulation. The Gibbs ensemble method uses two simulation boxes that 

represent a sample taken deep from within each phase. These boxes are in thermodynamic 

contact, and the algorithm relies on three basic movements to achieve equilibrium. These 

moves are configurational or conformational movement within a cell (thermal equilibration), 

the transfer of molecules between boxes (chemical equilibrium) and the transfer of volume 

from one box to the other (mechanical equilibrium). 

While originally proposed as a means to simulate the vapor-liquid equilibria of 

Lennard-Jones spheres[32, 167], numerous advances in Monte Carlo sampling methodology 

for the molecule swap move have been developed since its introduction, enabling GEMC to be 

used on increasingly complex and difficult to sample systems. The introduction of 

configurational-bias Monte Carlo (CBMC) sampling techniques to GEMC[192] enabled the 

simulation of VLE for n-alkanes up to C48[193]. By decoupling the various intra- and inter-

molecular degrees of freedom, the coupled-decoupled configurational-bias method allowed for 

the efficient  simulations of highly branched molecules[67]. Work by Martin[190], and Sepehri 

et al.[194, 195], focused on improving the success rate for molecule growths by using smarter 

methods for sampling intramolecular degrees of freedom. Methods such as, reservoir[164, 196, 

197], rebridging configurational-bias[198], and self-adapting fixed end-point Monte 

Carlo[199] have been created that allow rings to be exchanged between simulation boxes. For 

systems with high densities and/or strong electrostatic interactions, which may preclude 
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successful insertions of molecules via bead-by-bead growth, expanded ensemble methods have 

been developed[71, 172, 173, 200-202], where a molecule is slowly deflated in one phase and 

inflated in another. Martin and Siepmann suggested that by swapping the identity of molecules 

between phases (a “swatch” move), significant improvements in sampling could be achieved 

in mixtures[77]. This technique has been used in a number of studies, such as: the simulation 

of water[171], liquid-liquid equilibria for hexane-perfluorohexane[187], and CO2-polymer 

phase behavior[79]. In previous work, our group introduced a variation of the combined 

swap+identity exchange (swatch) move called molecular exchange Monte Carlo (MEMC) for 

grand canonical Monte Carlo simulations[83]. MEMC can be thought of as a generalized 

version of Siepmann’s swatch move, where the molecules to be exchanged do not have to share 

any common atom types or coordinates. 

In this Chapter, MEMC methods are presented for simulations in the Gibbs ensemble. 

A derivation of acceptance criteria and the algorithms for performing the MEMC move in 

GEMC are provided in the next section. The simulation details for determining the binary 

mixture phase diagrams and Gibbs free energies of transfer are provided in Simulation 

Methodology. In the Results and Discussion, the MEMC algorithm is validated with 

predictions of the methane+n-butane and n-butane+perfluorobutane pressure-composition 

diagrams, and free energies of transfer for n-alkanes in 1-octanol, hexadecane and 2,2,4-

trimethylpentane. The key findings of the work are summarized in the Chapter 7. Additional 

results with their numerical values are provided in Appendix C. The result of this work has 

been published in Journal of Fluid Phase Equilibria[84]. 

5.2 Methods 

In this Chapter, the molecular exchange Monte Carlo (MEMC) method, originally 

developed in the context of the grand canonical ensemble, is extended to Gibbs ensemble 

Monte Carlo. To describe the MEMC move in the Gibbs ensemble, box 1 is assumed to be the 
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higher density liquid phase, and box 2 is assumed to be the lower density gas phase. Attempts 

are made to exchange a large molecule with multiple smaller molecules in the dense phase (box 

1). 

For a given configuration, with 𝑁1
𝐿, 𝑁2

𝐿 large and 𝑁1
𝑆, 𝑁2

𝑆 small molecules in box 1 with 

volume 𝑉1 and box 2 with volume of 𝑉2, a “deletion move” is an attempt to remove one large 

molecule and insert𝑁𝐸𝑋 small molecules inside a predefined exchange sub-volume 𝑉𝐸𝑋 in box 

1. An “insertion move” is an attempt to remove𝑁𝐸𝑋 small molecules, and insert one large 

molecule in box 1. The exchange sub-volume is defined as an orthogonal box, where the length 

of the box in the x-,y-, and z-dimensions can be set independently, however, in this work x=y, 

while z is set independently. An orthogonal sub-volume is used instead of a cube or sphere to 

accommodate large molecules with different aspect ratios. A heuristic for setting good values 

of the x-, y-, and z-dimensions is to use the geometric size of the large molecule plus 1-2 Å in 

each dimension. Although not used in this work, it is also possible to optimize  𝑁𝐸𝑋 and 𝑉𝐸𝑋 

“on the fly” during a simulation to maximize the acceptance rate.  

The acceptance criterion for a molecular exchange move that satisfies the detailed 

balance equation is written as 

 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = Κ(𝑛𝑒𝑤 → 𝑜𝑙𝑑) (5.1) 

where Κ(𝑖 → 𝑗) is the flux of probability from state i to state j. The probability flux is equal to 

the product of the probability of finding the system in state i, the probability of generating a 

move that takes state i to state j, and the probability of accepting the move: 

 Κ(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝒩(𝑜𝑙𝑑) × 𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) (5.2) 

where, 𝒩(𝑜𝑙𝑑) is the probability of finding the system in state old, 𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) is the 

probability of generating a move that takes the system from state old to state new, and 

𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) is the probability of accepting the move that takes the system from state old 
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to state new. Based on the detailed balance Eq. 5.1, the ratio of the probability of accepting the 

move from 𝑜𝑙𝑑 → 𝑛𝑒𝑤 to that of its reverse move 𝑛𝑒𝑤 → 𝑜𝑙𝑑 is: 

 
𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤)

𝑎𝑐𝑐(𝑛𝑒𝑤 → 𝑜𝑙𝑑)
=
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
 ×
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
 (5.3) 

The Gibbs ensemble partition function for 𝑁 distinguishable molecules and regular 

Cartesian (unscaled) coordinates is  

 

𝑄𝐺(𝑁, 𝑉, 𝑇) =
1

Λ3𝑁
∑ ∫[∫ 𝑒𝑥𝑝[−𝛽𝑈(𝒓1

𝑛1)]
𝑣1

𝑑𝒓1
𝑛1]

𝑉

0

𝑁

𝑛1=0

× [∫ 𝑒𝑥𝑝[−𝛽𝑈(𝒓2
𝑁−𝑛1)]

𝑉−𝑣1

𝑑𝒓2
𝑁−𝑛1] 𝑑𝑣1 

(5.4) 

where, Λ is the thermal de Broglie wavelength, 𝑁 = 𝑛1 + 𝑛2 is the total number of molecules 

in the system, 𝑛1 is the number of molecules in box 1, 𝑛2 is the number of molecules in box 2, 

𝑉 = 𝑣1 + 𝑣2 is to the total volume of the system, 𝑣1 is the volume of box 1, 𝑣2 is the volume 

of box 2, and 𝒓𝑏
𝑖  represents the coordinates of molecule i, in box b. The probability of finding 

a configuration with  𝑛1 molecules in box 1 with volume  𝑣1 and specific positions 𝒓1
𝑛1 and 

𝒓2
𝑁−𝑛1 is 

 𝒩(𝑛1, 𝑣1, 𝒓1
𝑛1 , 𝒓2

𝑁−𝑛1) ∝ 𝑒𝑥𝑝{−𝛽[𝑈(𝒓1
𝑛1) + 𝑈(𝒓2

𝑁−𝑛1)]}  (5.5) 

In both the insertion and deletion moves, the ratio of the probability of being in the 

configuration 𝑛𝑒𝑤 to the probability of being in the configuration 𝑜𝑙𝑑 is simplified to 

 
𝒩(𝑛𝑒𝑤)

𝒩(𝑜𝑙𝑑)
=
𝑒−𝛽(𝑈1(𝑛𝑒𝑤)+𝑈2(𝑛𝑒𝑤))

𝑒−𝛽(𝑈1(𝑜𝑙𝑑)+𝑈2(𝑜𝑙𝑑))
 (5.6) 

where 𝛽 = 1 𝑘𝐵𝑇⁄ , 𝑈1(𝑜𝑙𝑑), 𝑈2(𝑜𝑙𝑑), 𝑈1(𝑛𝑒𝑤), and 𝑈2(𝑛𝑒𝑤) are the potential energies of 

the system in configuration 𝑜𝑙𝑑 and configuration 𝑛𝑒𝑤 in box 1 and box 2, respectively. 

The probability of generating the 𝑛𝑒𝑤 state, for both insertion and deletion of the large 

molecule, is given by the product of the probability of locating the center of the exchange sub-
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volume at a particular point within the simulation box 1, the probability of choosing 𝑁𝐸𝑋 

particular small molecules, the probability of choosing a particular large molecule, the 

probability of generating trial configurations for 𝑁𝐸𝑋 small molecules, and the probability of 

generating trial configurations for the large molecule, 

 

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑃𝑠𝑢𝑏−𝑣(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑖𝑐𝑘−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 

𝑃𝑝𝑖𝑐𝑘−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝑆(𝑜𝑙𝑑 → 𝑛𝑒𝑤) × 𝑃𝑝𝑜𝑠−𝐿(𝑜𝑙𝑑 → 𝑛𝑒𝑤) 
(5.7) 

5.2.1 ME-2 

For the large molecule insertion move, the geometric center of 𝑉𝐸𝑋 is placed on the 

centroid of a randomly selected small molecule in box 1. If the small molecule is monoatomic, 

the orientation of 𝑉𝐸𝑋 is assigned randomly, otherwise its z-axis is aligned with the backbone 

of the small molecule. For a large molecule deletion move, the geometric center of 𝑉𝐸𝑋 is 

located at the centroid of the selected large molecule in box 1 and its z-axis is aligned with the 

backbone of the large molecule. To improve acceptance rates for the MEMC move, multiple 

trial positions (𝑗) and orientations (𝑘) are performed. 

Insertion of large molecule into box 1: The algorithm for the insertion of a large 

molecule into box 1 after the deletion of small molecule(s) is identical to ME-2 method 

described previously for grand canonical Monte Carlo[83]. Resolving the move requires 

accounting for the removal of the large molecule from box 2 and the insertion of small 

molecule(s) into box 2. An illustration of the large molecule insertion into box 1 in ME-2 

algorithm is provided in Figure 5.1. 
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Figure 5.1: Schematic for the ME-2 algorithm for the transfer of a  large molecule from box 2 

(gas phase) into box 1 (liquid phase), and corresponding transfer of small molecules from box 

1 into box 2. Selected or inserted molecule (green), trial position (light red), and actual position 

of the molecule (solid red). Top row, represents the exchange of two small molecules with one 

large molecule in box 1. The sub-volume is defined by the orange box. (A) Aligning the sub-

volume z-axis with the backbone of a randomly selected small molecule, with geometric center 

placed at centroid of the selected small molecule, identifying the small molecules within the 

sub-volume, and randomly picking one small molecule for transfer. (B) Generating CBMC 

trials (3D rotation and centroid location) for the second small molecule, and then removing it. 

(C) Generating CBMC 2D rotational trials around the z-axis of the sub-volume for the first 

small molecule and then removing it. (D) Placing the large molecule’s centroid at the geometric 

center of the sub-volume, aligning the backbone of the large molecule with the sub-volume z-

axis, performing CBMC 2D rotational trials around the z-axis of the sub-volume, and inserting 

it to the sub-volume. Bottom row, represents the exchange of one large molecule with two 

small molecules in box 2. (A) Selecting a random large molecule. (B) Generating CBMC trials 

(3D rotation and centroid location) for the selected large molecules and then removing it. (C) 

Generating CBMC trials (3D rotation and centroid location) for the first small molecules and 

then inserting it. (D) Generating CBMC trials (3D rotation and centroid location) for the second 

small molecule and then inserting it. 

 

The algorithm for doing this follows:  

1. Select a large molecule out of 𝑁2
𝐿 large molecules within the simulation box 2 with the 

probability of 1 𝑁2
𝐿⁄ .  

2. Generate 𝑗 − 1 random trial positions for the centroid of the selected large molecule within 

simulation box 2 (𝑉2). The original position of the centroid of the large molecule will be 

included as the  𝑗𝑡ℎ term. 
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3. For each trial position 𝑝, generate 𝑘 random trial orientations around the large molecule’s 

centroid (except the 𝑗𝑡ℎ centroid, where 𝑘 − 1 random trial orientations are generated, and 

the original orientation of the molecule will be included as the 𝑘𝑡ℎ term). Trial orientations 

are generated keeping all internal degrees of freedom for the molecule fixed. The 

Rosenbluth weight is calculated as 𝑊𝑜𝑙𝑑
𝐿 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈2

𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1  , where 𝑈2

𝑝,𝑟
 is the 

interaction energy of the large molecule in position 𝑝 and orientation 𝑟 with all other 

molecules in the simulation box 2. 

4. Calculate the probability 𝑃𝑜𝑙𝑑
𝐿 =

𝑒𝑥𝑝(−𝛽𝑈2
𝑗,𝑘
)

𝑊𝑜𝑙𝑑
𝐿 , where 𝑈2

𝑗,𝑘
 is the interaction energy of the 

large molecule at the original position and orientation with all other molecules in the 

simulation box 2. 𝑃𝑜𝑙𝑑
𝐿  is the probability of inserting the large molecule at its original 

configuration in the reverse move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). Then remove the large molecule from 

simulation box 2. 

5. Repeat steps a→c for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … ,𝑁𝐸𝑋) to insert the selected small molecules 

in box 2 with the probability of 𝑁𝐸𝑋! 𝑉2
𝑁𝐸𝑋⁄ . 

a. Generate 𝑗 random trial positions for the centroid of the 𝑖𝑡ℎ small molecule within 

simulation box 2 (𝑉2). 

b. For each trial position,  𝑝, generate 𝑘 random trial orientations around the molecule’s 

centroid, and calculate the Rosenbluth weight 𝑊𝑖,𝑛𝑒𝑤
𝑆 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈2

𝑖,𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1 , 

where  𝑈2
𝑖,𝑝,𝑟

 is the interaction energy of the 𝑖𝑡ℎ inserted small molecule at position 𝑝 

and orientation 𝑟 with all the other molecules in box 2, including those added in the 

earlier cycles of the move. 
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c. Pick one of the generated trial configurations with the probability 𝑃𝑖,𝑛𝑒𝑤
𝑆 =

𝑒𝑥𝑝(−𝛽𝑈2
𝑖,𝑝,𝑟

)

𝑊𝑖,𝑛𝑒𝑤
𝑆  

and insert the small molecule. 

Deletion of large molecule from box 1: The algorithm for the deletion of a large molecule 

and subsequent insertion of small molecule(s) in box 1 is identical to ME-2 method described 

previously for simulations in the grand canonical ensemble[83]. Resolving the move requires 

accounting for the removal of small molecule(s) from box 2 and the insertion of the large 

molecule into box 2. An illustration of the large molecule deletion from box 1 in ME-2 

algorithm is provided in Figure 5.2. 
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Figure 5.2: Schematic for the ME-2 algorithm for transfer of a large molecule from box 1 

(liquid phase) into box 2 (gas phase) and transferring two small molecules from box 2 into box 

1.. Selected or inserted molecule (green), trial position (light red), and actual position of the 

molecule (solid red). Top row, represents the exchange of one large molecule with two small 

molecules in box 1. The sub-volume is defined as the orange box. (A) Aligning the sub-volume 

with the backbone of the large molecule with geometric center placed at centroid of the large 

molecule and identifying the small molecules within the sub-volume. (B) Generating CBMC 

2D rotational trials around the z-axis of the sub-volume and then removing the large molecule. 

(C) Placing the centroid of the first small molecule at the geometric center of the sub-volume, 

aligning the backbone of the small molecule with the z-axis of the sub-volume, generate the 

CBMC 2D rotational trials around the z-axis of the sub-volume, and then inserting it into the 

sub-volume. (D) Generating CBMC trials (3D rotation and centroid location) for the second 

small molecule and then inserting it into the sub-volume. Bottom row, represents the exchange 

of two small molecules with one large molecule in box 2. (A) Selecting two random small 

molecules. (B) Generating CBMC trials (3D rotation and centroid location) for the first small 

molecule and then removing it. (C) Generating CBMC trials (3D rotation and centroid location) 

for the second small molecule and then removing it. (D) Generating CBMC trials (3D rotation 

and centroid location) for the large molecules and then inserting it. 

 

The algorithm for doing this follows:  

1. Select 𝑁𝐸𝑋 small molecule(s) out of 𝑁2
𝑆 small molecules in the simulation box 2 with the 

probability of 𝑁𝐸𝑋! (𝑁2
𝑆 − 𝑁𝐸𝑋)! 𝑁2

𝑆!⁄ .  

2. Repeat steps a and b for 𝑁𝐸𝑋 cycles (𝑖 = 1, 2, … ,𝑁𝐸𝑋) to delete the selected small 

molecules from simulation box 2. 
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a. Generate 𝑗 − 1 random trial positions for the centroid of the 𝑖𝑡ℎ small molecule within 

simulation box 2 (𝑉2). The original position of the centroid of the 𝑖𝑡ℎ small molecule 

will be included as the  𝑗𝑡ℎ term. 

b. For each trial centroid position 𝑝, generate 𝑘 random trial orientations around the 

molecule’s centroid (except the 𝑗𝑡ℎ centroid, where 𝑘 − 1 random trial orientations are 

generated and the original orientation of the molecule will be included as the 𝑘𝑡ℎ term), 

and calculate the Rosenbluth weight 𝑊𝑖,𝑜𝑙𝑑
𝑆 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈2

𝑖,𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1 , where  𝑈2

𝑖,𝑝,𝑟
 

is the interaction energy of the 𝑖𝑡ℎ molecule to be removed in position 𝑝 and orientation 

𝑟 with all other molecules in box 2, excluding those removed in the earlier cycles of the 

move. Finally, remove the molecule from simulation box 2. Calculate 𝑃𝑖,𝑜𝑙𝑑
𝑆 =

𝑒𝑥𝑝(−𝛽𝑈2
𝑖,𝑗,𝑘

)

𝑊𝑖,𝑜𝑙𝑑
𝑆  , where 𝑈2

𝑖,𝑗,𝑘
 is the interaction energy of the 𝑖𝑡ℎ small molecule at its 

original centroid position and orientation with all other molecules remaining in the 

simulation box 2. 𝑃𝑖,𝑜𝑙𝑑
𝑆  is the probability of inserting the 𝑖𝑡ℎ small molecule back in its 

original configuration in the reverse move (𝑛𝑒𝑤 → 𝑜𝑙𝑑). 

3. Generate 𝑗 random trial positions for the centroid of the selected large molecule within 

simulation box 2 (𝑉2). For each trial position 𝑝, generate 𝑘 random trial orientations around 

the large molecule’s centroid. 

4.  Calculate the Rosenbluth weight 𝑊𝑛𝑒𝑤
𝐿 = ∑ ∑ 𝑒𝑥𝑝(−𝛽𝑈2

𝑝,𝑟)𝑘
𝑟=1

𝑗
𝑝=1  , where 𝑈2

𝑝,𝑟
 is the 

interaction energy of the inserted large molecule in position 𝑝 and orientation 𝑟 with all 

other molecules in simulation box 2. 

5. Select one of the generated trial configurations with the probability 𝑃𝑛𝑒𝑤
𝐿 =

𝑒𝑥𝑝(−𝛽𝑈2
𝑝,𝑟
)

𝑊𝑛𝑒𝑤
𝐿  and 

insert the large molecule. 
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Based on the two algorithms described above, for the large molecule insertion move, the 

ratio of the probabilities for generating the move 𝑛𝑒𝑤 (𝑁1
𝐿 + 1,𝑁1

𝑆 − 𝑁𝐸𝑋;  𝑁2
𝐿 − 1,𝑁2

𝑆 +

𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁1
𝐿 , 𝑁1

𝑆; 𝑁2
𝐿 , 𝑁2

𝑆) to that of the reverse move is:  

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁1
𝐿 + 1

×
𝑁𝐸𝑋! 𝑁2

𝑆!
(𝑁2

𝑆 + 𝑁𝐸𝑋)!

1
𝑁1
𝑆 ×

(𝑁𝐸𝑋 − 1)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

(𝑁𝑆,𝑉𝐸𝑋 − 1)!
×
1
𝑁2
𝐿

×

1
𝑉2
×
(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
𝑁𝐸𝑋−1

𝑁𝐸𝑋!

𝑉2
𝑁𝐸𝑋

×∏(
𝑃𝑖,𝑜𝑙𝑑
𝑆

𝑃𝑖,𝑛𝑒𝑤
𝑆 )

𝑁𝐸𝑋

𝑖=1

×
𝑃𝑜𝑙𝑑
𝐿

𝑃𝑛𝑒𝑤
𝐿  (5.8) 

where, 𝑁𝑆,𝑉𝐸𝑋 is the number of small kind molecules found within the the exchange sub-volume 

(𝑉𝐸𝑋). Simplifying Eq. 5.8 and substituting into Eq. 5.3, produces the acceptance criteria for 

the large molecule insertion and small molecule(s) deletion in box 1. 

 𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1  ,
𝑁2
𝐿𝑁1

𝑆

𝑁1
𝐿 + 1

×
(𝑁𝑆,𝑉𝐸𝑋 − 1)!𝑁2

𝑆!

(𝑁2
𝑆 + 𝑁𝐸𝑋)! (𝑁𝑆,𝑉𝐸𝑋 − 𝑁𝐸𝑋)!

× (
𝑉2
𝑉𝐸𝑋

)
𝑁𝐸𝑋−1

×∏(
𝑊𝑖,𝑛𝑒𝑤

𝑆

𝑊𝑖,𝑜𝑙𝑑
𝑆 )

𝑁𝐸𝑋

𝑖=1

×
𝑊𝑛𝑒𝑤

𝐿

𝑊𝑜𝑙𝑑
𝐿   } (5.9) 

For the large molecule deletion move, the ratio of the probabilities for generating the 

move 𝑛𝑒𝑤 (𝑁1
𝐿 − 1,𝑁1

𝑆 +𝑁𝐸𝑋;  𝑁2
𝐿 + 1,𝑁2

𝑆 − 𝑁𝐸𝑋) → 𝑜𝑙𝑑 (𝑁1
𝐿 , 𝑁1

𝑆; 𝑁2
𝐿 , 𝑁2

𝑆) to that of the 

reverse move is: 

 
𝛼(𝑛𝑒𝑤 → 𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑 → 𝑛𝑒𝑤)
=

1
𝑁2
𝐿 + 1

×
1

𝑁1
𝑆 + 𝑁𝐸𝑋

×
(𝑁𝐸𝑋 − 1)!𝑁𝑆,𝑉𝐸𝑋!

(𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!

1
𝑁1
𝐿 ×

𝑁𝐸𝑋! (𝑁2
𝑆 −𝑁𝐸𝑋)!

𝑁2
𝑆!

×

𝑁𝐸𝑋!

𝑉2
𝑁𝐸𝑋

1
𝑉2
×
(𝑁𝐸𝑋 − 1)!

𝑉𝐸𝑋
𝑁𝐸𝑋−1

×∏(
𝑃𝑖,𝑜𝑙𝑑
𝑆

𝑃𝑖,𝑛𝑒𝑤
𝑆 )

𝑁𝐸𝑋

𝑖=1

×
𝑃𝑜𝑙𝑑
𝐿

𝑃𝑛𝑒𝑤
𝐿  (5.10) 

Simplifying Eq. 5.10 and substituting into Eq. 5.3, produces the acceptance criteria for 

the large molecule deletion and small molecule(s) insertion in box 1. 

 

𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 { 1  ,
𝑁1
𝐿

(𝑁2
𝐿 + 1)(𝑁1

𝑆 + 𝑁𝐸𝑋)
×

𝑁𝑆,𝑉𝐸𝑋! 𝑁2
𝑆!

(𝑁2
𝑆 − 𝑁𝐸𝑋)! (𝑁𝑆,𝑉𝐸𝑋 + 𝑁𝐸𝑋 − 1)!

× (
𝑉𝐸𝑋
𝑉2
)
𝑁𝐸𝑋−1

×∏(
𝑊𝑖,𝑛𝑒𝑤

𝑆

𝑊𝑖,𝑜𝑙𝑑
𝑆 )

𝑁𝐸𝑋

𝑖=1

×
𝑊𝑛𝑒𝑤

𝐿

𝑊𝑜𝑙𝑑
𝐿   } 

(5.11) 

The energy difference between configuration 𝑛𝑒𝑤 and 𝑜𝑙𝑑, does not appear directly in 

the acceptance criteria because their Boltzmann weight is already included in the probabilities 

used for selecting the position of the molecules. 
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For 𝑁𝐸𝑋 = 1, the acceptance criteria given in Eqs. 5.9 and 5.11, simplifies to that of the 

standard identity-exchange acceptance move[75, 168]. 

 

𝑎𝑐𝑐(𝑁1
𝐿 , 𝑁1

𝑆; 𝑁2
𝐿 , 𝑁2

𝑆 → 𝑁1
𝐿 + 1,𝑁1

𝑆 − 1; 𝑁2
𝐿 − 1,𝑁2

𝑆 + 1)

= 𝑚𝑖𝑛 { 1  ,
𝑁2
𝐿𝑁1

𝑆

(𝑁1
𝐿 + 1)(𝑁2

𝑆 + 1)
×
𝑊𝑛𝑒𝑤

𝐿

𝑊𝑜𝑙𝑑
𝐿   ×

𝑊𝑛𝑒𝑤
𝑆

𝑊𝑜𝑙𝑑
𝑆 } 

(5.12) 

 

𝑎𝑐𝑐(𝑁1
𝐿 , 𝑁1

𝑆; 𝑁2
𝐿 , 𝑁2

𝑆 → 𝑁1
𝐿 − 1,𝑁1

𝑆 + 1; 𝑁2
𝐿 + 1,𝑁2

𝑆 − 1)

= 𝑚𝑖𝑛 { 1  ,
𝑁1
𝐿𝑁2

𝑆

(𝑁2
𝐿 + 1)(𝑁1

𝑆 + 1)
×
𝑊𝑛𝑒𝑤

𝐿

𝑊𝑜𝑙𝑑
𝐿   ×

𝑊𝑛𝑒𝑤
𝑆

𝑊𝑜𝑙𝑑
𝑆   } 

(5.13) 

5.2.2 ME-3 

The major difference between the ME-2 and ME-3 algorithms is that while ME-2 uses 

a rigid body insertion, in the ME-3 algorithm, the molecules to be exchanged are grown bead 

by bead using the coupled-decoupled configurational-bias Monte Carlo (CD-CBMC) 

algorithm[67]. The forward to reverse probability ratios for generating the large molecule 

insertion and the large molecule deletion moves are identical to those given in Eq. 5.8 and 5.10, 

respectively. The acceptance criteria for the ME-3 algorithm is identical to that of ME-2 given 

by Eq. 5.9 and 5.11. An illustration of the large molecule insertion and deletion in box 1 in 

ME-3 algorithm is provided in Appendix C, Figures C1 and C2, respectively. 

5.3 Force Field Parameters 

Calculations were performed with the Transferable Potentials for Phase Equilibria 

(TraPPE)[203, 204] and the Mie potentials of Potoff et al.[24, 124]. Both TraPPE and the Mie 

potentials use a similar potential function, which is presented in Eq. 2.3. Simulations of 1-

octanol include electrostatic interactions that are modeled via partial charges. All non-bonded 

parameters used in this work are listed in Table 5.1, and were taken from their original sources 

without modification.  
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Table 5.1: Non-bonded parameters for alkanes, perfluoroalkanes, and 1-alcohols. 

Model Pseudo-atom 휀𝑖/𝑘𝑏(K) 𝜎𝑖  (A)̇ 𝑞𝑖(e) 𝑛𝑖 

Mie-alkanes[24, 124] CH4 161.00 3.740 0.000 14 

CH3 121.25 3.783 0.000 16 

CH2 61.00 3.990 0.000 16 

CH (CN > 4) 14.00 4.700 0.000 16 

C (CN > 4) 1.20 6.200 0.000 16 

Mie-perfluoroalkanes[24, 83] CF3 155.75 4.475 0.000 36 

CF2 72.20 4.750 0.000 44 

TraPPE-alkanes[67, 203] CH4 148.00 3.730 0.000 12 

CH3 98.00 3.750 0.000 12 

CH2 46.00 3.950 0.000 12 

CH 10.00 4.680 0.000 12 

C 0.50 6.400 0.000 12 

TraPPE-alcohols[204] CH3-(OH) 98.00 3.750 0.265 12 

CH2-(OH) 46.00 3.950 0.265 12 

O 93.00 3.020 -0.700 12 

H 0.00 0.000 0.435 12 

 

All bonded parameters for alkanes, perfluoroalkanes, and 1-octanol, were taken from 

previous work[24, 67, 83, 124, 203, 204]. Fixed bond lengths were used to connect pseudo-

atoms and are listed in Table 5.2. Equilibrium bond angles and bending constants are listed in 

Table 5.2. 

Table 5.2: Equilibrium bond lengths, bond angles, and bending constants for alkanes, 

perfluoroalkanes, and alcohols. 

Bond type Bond length/ Å Angle type 𝜃0/degree 𝑘𝜃/ K-rad-2 

CFx−CFy 1.540 CFx−CF2−CFy 114.00 62500 

CHx−CHy 1.540 CHx−CH2−CHy 114.00 62500 

CHx−C 1.540 CHx−CH−CHy 112.00 62500 

CHx−O 1.430 CHx−C−CHy 109.47 62500 

O−H 0.945 CHx−CH2−O 109.47 50400 

  CHx−O−H 108.50 55400 
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The cosine series in dihedrals, accounts for the total rotational barrier, and no 1-4 

Lennard-Jones interactions were included in the model. The dihedral parameters used in this 

work are listed in Table 5.3. 

Table 5.3: Torsional parameters for alkanes, perfluoroalkanes, and alcohols. 

Torsion n cn/K n 

CFx—(CF2)—(CF2)—CFy 0 -1577.68 0 

1 791.61 0 

2 333.65 0 

3 854.01 0 

4 349.25 0 

5 211.51 0 

6 117.66 0 

7 -83.44 0 

CHx—(CH2)—(CH2)—CHy 1 355.03 0 

2 -68.19 180 

3 791.32 0 

CHx—(CH2)—(CH)—CHy 0 -251.06 0 

1 428.73 0 

2 -111.85 180 

3 441.27 0 

CHx—(CH2)—(C)—CHy 3 461.29 0 

CHx—(CH2)—(CH2)—O 1 176.62 0 

2 -53.34 180 

3 769.93 0 

CHx—(CH2)—(O)—H 1 209.82 0 

 2 -29.17 180 

 3 187.93 0 

 

5.4 Simulation Methodology 

The molecular exchange Monte Carlo algorithms described in Section Methods were 

implemented for Gibbs ensemble simulations in the development version of GPU Optimized 

Monte Carlo (GOMC), which is available to the public via GitHub[170]. GOMC is an object-
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oriented Monte Carlo simulation engine, capable of performing simulations in canonical, 

isobaric-isothermal, grand canonical ensembles, as well as Gibbs ensemble Monte Carlo. 

GOMC is designed for the simulation of complex molecular topologies, and supports a variety 

of potential functions, such as Lennard-Jones and Mie potentials. Coulomb interactions are 

also supported via the Ewald summation method[122]. GOMC is capable of parallel 

computation, either on multicore CPUs or GPUs.  

Initial configurations were generated with Packmol[142], and Psfgen was used to 

generate coordinate (*.pdb) and connectivity (*.psf) files[143]. Parameters for the 

configurational-bias swap move were: 100 angle trials, 100 dihedral trials, 10 trial locations 

for the first site, and 8 trial locations for secondary sites. In calculations using the MEMC 

move, the first and last carbon atoms in a molecule were used to define the backbone of the 

large and small molecules. Non-bonded potentials were truncated at 10 Å and 14 Å for Mie[24, 

124] and TraPPE[67, 203, 204] force fields, respectively, and analytical tail corrections were 

applied to the energy and pressure[124]. For all simulations with polar molecules, the real part 

of electrostatic potential was truncated at 14 Å and 120 Å for the liquid and vapor phase, 

respectively, and an Ewald convergence tolerance of 1x10-5
 was used. For NVT-GEMC 

simulations, the pressure was calculated with frequency of 1x103 MCS. 

5.4.1 Pressure-Composition Diagrams 

The pressure-composition phase diagrams of methane+n-butane and 

perfluorobutane+n-butane were predicted using NPT-GEMC and NVT-GEMC simulations, 

respectively. NVT-GEMC simulations were used for the perfluorobutane+n-butane system due 

to the narrow range of pressures for which vapor-liquid phase coexistence exists at 260 K. 

Calculations were performed on systems containing 1000 molecules, with a move ratio of 38% 

displacements, 10% rotations, 2% volume transfers, 10% coupled-decoupled configurational-

bias regrowth, 20% MEMC, and 20% coupled-decoupled configurational-bias (CD-CBMC) 
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molecule transfers. 4x107 Monte Carlo steps (MCS) were used for equilibration, followed by 

a data production period of 6x107 MCS. Statistical uncertainties were determined from three 

independent sets of simulations, where each simulation was initiated with a different random 

number seed. For the MEMC move, an exchange sub-volume of 8.8 Å x 8.8 Å x 11.8 Å was 

used[83]. 

5.4.2 Free Energies of Transfer 

To calculate the Gibbs free energies of transfer for n-alkanes (C1-C8) from vapor phase 

to liquid 1-octanol, n-hexadecane, or 2,2,4-trimethylpentane, the initial vapor phase consisted 

of 580 methane, 50 ethane, 10 propane, 2 n-butane, 2 n-pentane, 2 n-hexane, 2 n-heptane, and 

2 n-octane molecules, packed in a cubic box with side length of 300 Å. The liquid phase 

contained 240 1-octanol, 150 n-hexadecane or 250 2,2,4-trimethylpentane molecules,  packed 

in cubic box with side length of 30 Å. Each phase was equilibrated for 1x107 MCS with 

isobaric-isothermal (NPT) simulations, with a move ratio of 38% displacements, 20% 

rotations, 2% volume transfers, 20% CD-CBMC regrowth, and 20% crankshaft[205, 206].  

Starting from the equilibrated configurations, NPT-GEMC simulations were performed 

at 298 K and 1 atm pressure, with a move ratio of 29% displacements, 10% rotations, 1% 

volume transfers, 10% CD-CBMC regrowth, 10% crankshaft, 20% MEMC, and 20% CD-

CBMC molecule transfer. Seven large-small molecule pairs were defined for the MEMC move, 

with an exchange ratio of 1:1: (ethane, methane), (propane, ethane), (n-butane, propane), (n-

pentane, n-butane), (n-hexane, n-pentane), (n-heptane, n-hexane), and (n-octane, n-heptane). 

Pairs were chosen with equal probability to exchange the large molecule with the small 

molecule in the liquid phase. Each simulation was run for 1x108 Monte Carlo steps, and 

statistical uncertainties were determined from ten independent sets of simulations, where each 

simulation was initiated with a different random number seed. All molecule types were allowed 
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to be transferred between vapor and liquid phases, except for 1-octanol, n-hexadecane, and 

2,2,4-trimethylpentane, due to the very low vapor pressure of these molecules at 298 K. 

5.5 Results and Discussion 

In this section, a number of examples are provided to validate the molecular exchange 

move in GEMC simulations, and to illustrate how the MEMC move can be used to significantly 

enhance acceptance rates for the molecule transfer move. Binary mixture phase diagrams were 

calculated for methane+n-butane and perfluorobutane+n-butane. Additional calculations were 

performed to calculate the Gibbs free energy of transfer for n-alkanes from vapor phase to 

liquid 1-octanol, n-hexadecane, and 2,2,4-trimethylpentane, to highlight the efficiency of the 

combination of MEMC and GEMC for the calculation of free energies of transfer.  

5.5.1 Pressure-Composition Diagrams 

In Figure 5.3, the pressure vs. composition diagram for methane+n-butane at 277 K, 

predicted using the ME-2 and the ME-3 algorithm, is compared with prior GCMC+histogram 

reweighting simulations[83]  and experimental[181] data. Interactions between molecules were 

described with the Optimized Mie Potentials of Potoff et al.[24]. Calculations were performed 

with an exchange ratio of one n-butane with one methane. In addition to showing excellent 

agreement with experimental data, GEMC simulations with the ME-2 and ME-3 algorithm 

produced results that were statistically indistinguishable from prior simulations, validating the 

method. Additional calculations were performed with an exchange ratio of one n-butane to two 

methane molecules, and the resulting pressure-composition diagram is shown in Appendix C, 

Figure C3. 

In Table 5.4, the average acceptance percentage for molecule transfers as a function of 

composition in liquid phase is presented for the methane+n-butane mixture at 277 K. When 

performing a one to one exchange, ME-3 was found to produce the largest improvement in 
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acceptance rates. Acceptance rates for the MEMC move were 3-10 times larger than 

configurational-bias swaps. The ME-2 algorithm produced acceptance rates that were 2-3 times 

configurational-bias swaps for 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 > 0.5.  

Because the ME-2 algorithm uses a rigid swap and the centroid of the large molecule 

is placed at the geometric center of the exchange sub-volume, only a fraction of the sub-volume 

is guaranteed to be empty. This is especially true when swapping molecules that differ greatly 

in size, such as methane and n-butane. In most of the ME-2 exchanges, it is likely that some 

atoms from the large molecule will have overlaps with existing molecules, lowering acceptance 

rates compared to ME-3. The ME-3 algorithm uses the same initial placement for the central 

atom as ME-2, but it grows the rest of the large molecule using configurational-bias. This 

allows the algorithm  to find more energetically favorable configurations than are possible 

through a rigid molecule insertion, leading to greater acceptance rates for the exchange move 

in this system. 

When performing a one to two exchange for methane+n-butane, ME-3 was found to 

produce up to a factor of three times improvement in acceptance rates at 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.95, 

while the ME-2 algorithm produced acceptance rates similar to configurational-bias swaps. For 

all methane compositions, the acceptance rate for a one to two exchange is less than a one to 

one exchange due to the difficulty in finding two methane molecules within the exchange sub-

volume.  
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Figure 5.3: Pressure composition diagram for methane+n-butane at 277 K predicted from NPT-

GEMC simulations using Mie potentials[24]. Experimental data (black circles)[181], 

GCMC+histogram reweighting[83] (green lines), ME-2 algorithm (red squares), and ME-3 

algorithm (blue triangles). Calculations were performed with an exchange ratio of one n-butane 

with one methane. The uncertainties in the predicted methane mole fractions were less than 

0.01 and 0.004 in liquid and vapor phase, respectively. 

 

In Figure 5.4, the pressure vs. composition diagram for perfluorobutane+n-butane at 

260 K, predicted using GEMC simulations with the ME-2 and ME-3 algorithm is shown. 

Simulations were performed with the Mie potentials[24], which include an update to the 

perfluorocarbon force field[83]. The predictions of GEMC simulations are in close agreement 

with prior GCMC+histogram-reweighting calculations[83], validating the algorithm and its 

implementation in GOMC. Using standard Lorentz-Berthelot combining rules[120, 207] and 

no adjustable parameters for the cross interaction, very good agreement was achieved with 

experiment[186]. The largest deviation results from the limitation in the united-atom force field 

for perfluorobutane, which over-predicts the vapor pressure at 260 K by approximately 0.1 bar.  
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Figure 5.4: Pressure-composition diagram for perfluorobutane+n-butane at 260 K predicted 

from NVT-GEMC simulations using Mie potentials[24]. Experimental data (black 

circles)[186], GCMC+histogram reweighting (green lines)[83], ME-2 algorithm (red squares), 

and ME-3 algorithm (blue triangles), with an exchange ratio of one perfluorobutane with one 

n-butane. The line connecting the experimental data points is provided as a guide to the eye. 

 

In Table 5.4, the average acceptance percentages for molecule transfers as a function 

of composition in liquid phase are presented for the perfluorobutane+n-butane mixture at 260 

K. Using coupled-decoupled configurational-bias (CD-CBMC) swaps, the probability of 

successfully inserting one perfluorobutane into the liquid phase, containing 14 mol%, 51 

mol%, and 87 mol% of n-butane was 0.112%, 0.068%, and 0.018%, respectively. For the ME-

2 algorithm, depending on composition, acceptance rates for the transfer of perfluorobutane 

were 47-204 times greater than CD-CBMC, while for ME-3, acceptance rates were 34-105 

times greater than CD-CBMC. The MEMC move has approximately twice the computational 

cost of a standard CD-CBMC swap move, and therefore provides substantial improvements in 



 

 

101 

computational efficiency. For an extensive discussion of the computational efficiency of the 

MEMC algorithm readers are directed to Chapter 4. For this system, the ME-2 algorithm 

produces the largest acceptance rates because it works by aligning the backbone of 

perfluorobutane with the cavity left by the leaving n-butane and, in this case, the two molecules 

to be exchanged have similar size and shape. Acceptance rates were slightly lower for ME-3, 

since it grows the molecule using coupled-decoupled configurational-bias, without requiring 

the backbone of the molecule to be aligned with the cavity created by the molecule that was 

removed.  

Table 5.4: Average acceptance percentages for molecule swaps of n-butane and 

perfluorobutane in GEMC simulations of methane+n-butane and perfluorobutane+n-butane, 

respectively.  

Binary system 
Sub-volume size 

(Å) 
𝑁𝐸𝑋 𝑥𝐶4𝐻10

𝑙𝑖𝑞𝑢𝑖𝑑
 𝑥𝐶4𝐻10

𝑣𝑎𝑝𝑜𝑟
 

CD-

CBMC 
ME-2 ME-3 

methane+n-butane  - 1 0.50 0.05 2.56 3.15 7.68 

0.75 0.05 0.87 1.67 5.53 

0.95 0.13 0.45 1.24 4.34 

8.8 × 8.8 × 11.8 2 0.50 0.05 2.56 2.30 4.63 

0.75 0.05 0.87 1.12 2.88 

0.95 0.13 0.45 0.44 1.27 

perfluorobutane+ 

n-butane  

- 1 0.14 0.27 0.112 5.267 3.832 

0.51 0.49 0.068 4.696 3.024 

0.87 0.66 0.018 3.675 1.887 

 

5.5.2 Free Energies of Transfer 

Understanding the partitioning of compounds between phases is important for a wide 

variety of applications, such as drug design[110, 208, 209], design of separation 

processes[210], and prediction of environmental fate of toxic industrial chemicals[211, 212]. 

The most widely used partition coefficient describes the distribution of a solute between 1-

octanol and water, which may be determined from the differences in the Gibbs free energies of 

hydration Δ𝐺ℎ𝑦𝑑 and solvation in 1-octanol Δ𝐺𝑠𝑜𝑙𝑣. 
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log𝐾𝑂𝑊 =

∆𝐺ℎ𝑦𝑑 − Δ𝐺𝑠𝑜𝑙𝑣

2.303𝑅𝑇
 

(5.14) 

Therefore, it is possible to determine log Kow, and other partition coefficients, directly 

from computer simulations as long as a suitable methodology exists for the determination of 

∆G.  

The most common method to calculate free energy changes from atom-based computer 

simulations is to use molecular dynamics simulations coupled with techniques, such as 

thermodynamic integration (TI)[110, 213-215], free energy perturbation (FEP)[216, 217], or 

adaptive biasing force (ABF)[30, 105, 218, 219]. To achieve reliable sampling, these methods 

require the reaction coordinate to be divided into multiple smaller windows, where each 

window corresponds to a specific scaling of the Lennard-Jones and electrostatic interactions. 

Depending on the techniques used, and the level of accuracy desired, the number of discrete 

windows may vary from 16[220] to over 60[215, 221]. Typical simulation run lengths vary 

from 2-10 ns per window[215]. 

Alternatively, recognizing that the Gibbs free energy of transfer could be calculated 

from the average number density of the solute in each phase[222], Martin and Siepmann 

proposed an elegant and computationally efficient means for calculating free energies of 

transfer using Gibbs ensemble Monte Carlo simulations[77]  

 
∆𝐺𝑖

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
= −𝑅𝑇 𝑙𝑛 (

< 𝜌𝑖
𝑙𝑖𝑞𝑢𝑖𝑑 >

< 𝜌𝑖
𝑔𝑎𝑠

>
)

𝑒𝑞

 (5.15) 

where, 𝑅 and 𝑇 are the molar gas constant and absolute temperature in K, respectively, <

𝜌𝑖
𝑙𝑖𝑞𝑢𝑖𝑑 > and < 𝜌𝑖

𝑔𝑎𝑠
> are the ensemble averaged number density (molecule/ Å3) for solute 𝑖 

in liquid and gas phase at equilibrium, respectively. This methodology was used to determine 

air-water, air-octanol and water-octanol free energies of transfer for alkanes and alcohols with 

four or fewer carbons using the OPLS[116] and TraPPE[223] force fields. 
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A critical issue in the use of Gibbs ensemble Monte Carlo for the calculation of free 

energies of transfer is achieving sufficient numbers of molecule transfers between phases. In 

the past, this has been addressed by application of the “swatch” move, used extensively by 

Siepmann and co-workers[77], and more recently by inclusion of continuous fractional 

component methods[224]. In this section, the effectiveness of the combination of GEMC and 

the MEMC move is demonstrated through calculations of free energies of transfer of n-alkanes 

from vapor into liquid 1-octanol, n-hexadecane, and 2,2,4-trimethylpentane.  

The octanol-air partition coefficient is used in environmental fate modeling[225], and 

has been shown to correlate well with air-soil[226, 227] and air-particle partitioning[228]. In 

Figure 5, the free energies of transfer for n-alkanes (C1-C8) from vapor to liquid 1-octanol at 

298 K and 1 atm are shown. Tabulated values of the free energies are listed in Table 5.5. GEMC 

calculations were performed with the ME-2 and ME-3 algorithms, and the TraPPE force 

field[203, 204]. The predicted free energies of solvation are in close agreement with 

experiment[229] and prior calculations using molecular dynamics and the adaptive biasing 

force method[230]. The results also agree with prior molecular dynamics simulations using 

thermodynamic integration (TI) for methane through hexane, but differences of up to 0.7 

kcal/mol in Δ𝐺𝑠𝑜𝑙𝑣were observed for n-octane[220]. The trend in the data suggests that the TI 

generated free energy data for longer alkanes in 1-octanol may not have been adequately 

converged. 
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Figure 5.5: Free energy of solvation for n-alkanes in liquid 1-octanol predicted from NPT-

GEMC simulations at 298 K and 1 atm using the TraPPE forcefield[203, 204]. Experimental 

data (black circles)[229], adaptive biasing force (green stars)[230], thermodynamic integration 

(cyan diamonds)[220], ME-2 algorithm (red squares), and ME-3 algorithm (blue triangles). 

The line connecting the experimental data points is provided as a guide to the eye. The TI and 

ABF data points are shifted slightly along the x-axis for clarity. 

 

Table 5.5: Free energies of transfer for n-alkanes from gas phase to liquid 1-octanol at 298 K 

and 1 atm calculated with the TraPPE force field[203, 204]. Number in parenthesis corresponds 

to the statistical uncertainties in the last digit determined from ten independent simulations. 

Free energy of solvation (kcal mol⁄ ) 

Solute \ Method ME-2 ME-3 ABF[230] TI[220] GEMC[223] Experiment[229] 

methane 0.44(11) 0.46(06) 0.70(10) 0.5(1) 0.44(1) 0.51 

ethane -0.54(16) -0.49(11) -0.50(10) -0.4(2) -0.54(2) -0.64 

propane -1.18(22) -1.09(16) -1.20(15) -1.0(2) -1.18(2) -1.26 

n-butane -1.82(29) -1.70(25) -1.60(15) -1.4(2) -1.82(2) -1.86 

n-pentane -2.42(35) -2.31(30) -2.10(15) -2.2(2) - -2.45 

n-hexane -3.02(35) -2.94(35) -2.70(10) -2.7(2) - -3.01 

n-heptane -3.63(37) -3.52(41) -3.40(20) -3.2(2) - -3.74 

n-octane -4.25(40) -4.13(39) -4.00(10) -3.4(2) - -4.18 
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The air-hexadecane partition coefficient provides a measurement of non-specific 

interactions between molecules and plays an important role as a compound descriptor used in 

linear solvation energy relationships (LSER). LSER models are used for prediction of solute 

partitioning in a variety of process, providing data that are needed for transport and 

environmental fate modeling[231, 232].  

Free energies of solvation for n-alkanes (C1-C8) in liquid n-hexadecane Δ𝐺𝐶16 at 298 

K and 1 atm, predicted using the TraPPE[203] and Mie[24] force fields, are shown in Figure 

5.6. Tabulated numerical data are provided in Table 5.6. The predicted free energies of 

solvation using the Mie potential are in excellent agreement with experiment[229]. Predictions 

of the TraPPE force field are in close agreement with experiment for methane through n-butane, 

however, for longer alkanes TraPPE over-predicts Δ𝐺𝐶16 by up to 0.4 kcal/mol for n-octane, 

which is consistent with prior work[233]. 
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Figure 5.6: Free energies of solvation for n-alkanes in liquid n-hexadecane at 298 K and 1 atm 

predicted from NPT-GEMC simulations using TraPPE[203] and Mie[24] potentials. 

Experimental data (black circles)[229], thermodynamic integration (green stars)[234], ME-2 

algorithm (red squares), and ME-3 algorithm (blue triangles). The line connecting the 

experimental data points is provided as a guide to the eye. 
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Like the air-hexadecane partition coefficient, the air-2,2,4-trimethylpentane partition 

coefficient provides a measurement of non-specific solute-solvent interactions. In this case, 

calculations are performed to demonstrate the consistency of parameterization and 

transferability of potential parameters for the TraPPE and Mie force fields. Free energies of 

solvation for n-alkanes (C1-C8) in liquid 2,2,4-trimethylpentane at 298 K and 1 atm, predicted 

using the TraPPE[67] and Mie[124] force fields, are shown in In Figure 5.7. Tabulated 

numerical data are provided in Table 5.6. The predicted free energies of solvation using the 

Mie potential are in excellent agreement with experiment for all solutes[229], while TraPPE 

force field over-predicts the free energy of solvation by 0.5 kcal/mol for n-octane. The reported 

experimental value for the free energy of solvation for n-hexane does not follow the trend of 

other alkanes, and appears to be erroneous. The calculated free energy of solvation for n-

hexane, using the SM5.42R/PM3 solvation model, was found to be -4.14 kcal/mol[229], which 

is consistent with the trends predicted by simulation. Considering that the SM5.42R/PM3 

solvation model under-predicts the experimental solvation free energies of n-pentane and n-

octane by 0.19 kcal/mol, it can be assumed that the experimental free energy of solvation for 

n-hexane should be around -3.95 kcal/mol, which is in exact agreement with the predictions of 

the Mie potentials. 
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Figure 5.7: Free energies of solvation for n-alkanes in liquid 2,2,4-trimethylpentane at 298 K 

and 1 atm predicted from NPT-GEMC simulations using TraPPE[67] and Mie[124] force 

fields. Experimental data (black circles)[229], ME-2 algorithm (red squares), and ME-3 

algorithm (blue triangles). The line connecting the experimental data points is provided as a 

guide to the eye. 
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Table 5.6: The free energies of transfer for n-alkanes from gas phase to liquid n-hexadecane 

and 2,2,4-trimethylpentane at 298 K and 1 atm. Calculations were performed with the 

TraPPE[67, 203] and Mie[24, 124] potentials. Number in parenthesis corresponds to the 

statistical uncertainties in the last digit determined from ten independent simulations. 

Free energy of solvation (kcal mol⁄ ) 

Solvent n-hexadecane 2,2,4-trimethylpentane 

Force field TraPPE Mie Expt.[229]. TraPPE Mie Expt. 

Solute  ME-2 ME-3 ME-2 ME-3 - ME-2 ME-3 ME-2 ME-3 - 

methane 0.34(05) 0.29(04) 0.50(10) 0.48(09) 0.45 0.04(03) 0.03(02) 0.10(04) 0.07(03) - 

ethane -0.67(07) -0.74(07) -0.58(15) -0.61(11) -0.67 -0.94(04) -0.95(04) -0.95(06) -1.00(05) - 

propane -1.32(11) -1.40(11) -1.30(21) -1.33(19) -1.43 -1.62(06) -1.63(05) -1.70(08) -1.75(08) -1.61 

n-butane -1.99(13) -2.06(11) -2.05(26) -2.05(27) -2.20 -2.31(06) -2.32(07) -2.47(09) -2.51(10) - 

n-pentane -2.66(15) -2.73(09) -2.80(30) -2.74(32) -2.95 -2.98(06) -3.00(09) -3.20(12) -3.25(12) -3.21 

n-hexane -3.30(21) -3.39(11) -3.45(33) -3.46(34) -3.64 -3.64(08) -3.65(10) -3.90(16) -3.95(16) -3.08 

n-heptane -3.95(26) -4.05(17) -4.13(40) -4.25(30) -4.33 -4.28(08) -4.32(11) -4.59(25) -4.62(21) - 

n-octane -4.58(29) -4.76(18) -4.86(46) -4.94(35) -5.02 -4.92(09) -4.98(10) -5.27(34) -5.33(30) -5.44 

 

In Table 5.7, the average acceptance percentage for insertion/deletion of n-alkane 

solutes in liquid 1-octanol, n-hexadecane, and 2,2,4-trimethylpentane phase is presented for 

coupled-decoupled configurational-bias swap, ME-2, and ME-3 methods using the TraPPE 

potential[67, 203, 204]. Additional data for the average acceptance percentage for 

insertion/deletion of n-alkane solutes in liquid n-hexadecane and 2,2,4-trimethylpentane phase, 

using Mie potential[24, 124], are presented in Appendix C, Table C1. As expected, the direct 

transfer of the solute from gas to liquid phase using the coupled-decoupled configurational-

bias method decreases as the solute size increases. The methane transfer acceptance percentage 

in 1-octanol, n-hexadecane, and 2,2,4-trimethylpentane is 1.73%, 2.02%, and 5.41%, 

respectively, while the n-octane transfer acceptance percentage is near zero in each solvent. 

Due to the near zero acceptance rate for transferring solutes longer than n-butane, the 

insertion/deletion of these molecules depends completely on the MEMC move, which swaps 

n-butane for n-pentane,  n-pentane for n-hexane, n-hexane for n-heptane, n-heptane for n-

octane, and vice versa. For all solute exchange pairs, ME-2 algorithm acceptance percentages 

are 2-10X higher than ME-3 algorithm, except for methane-ethane exchange pair, where ME-
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3 acceptance percentages are larger than ME-2. The greater acceptance rate for ME-2 vs. ME-

3 can be attributed to the use of a rigid body insertion and rotation, which avoids the need to 

regrow the entire molecule. While regrowing the molecule helps find favorable regions for the 

molecule, growths can fail if the intramolecular geometric constants (angle bending and 

dihedral rotation) are not satisfied. Modification of the configurational-bias algorithm to use a 

Jacobian-Gaussian scheme for the generation of bond angles, for example, may lead to 

improved acceptance rates for the ME-3 algorithm[194]. 
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Table 5.7: Average solute transfer acceptance percentages in GEMC simulations for mixtures 

of n-alkane +1-octanol, +n-hexadecane, and +2,2,4-trimethylpentane, using the TraPPE 

potential[67, 203, 204]. The coupled-decoupled configurational-bias swap acceptance 

percentages are presented for the small solute swap. The acceptance percentages for ME-2 and 

ME-3 are for exchanging a small solute with a large one. 

Solvent Solute (small) Solute (large) CD-CBMC ME-2 ME-3 

1-octanol methane ethane 1.7260 9.1609 13.5644 

ethane propane 0.7913 7.1385 3.8629 

propane n-butane 0.1575 3.5902 1.1005 

n-butane n-pentane 0.0528 2.9461 0.6285 

n-pentane n-hexane 0.0211 4.5830 0.6617 

n-hexane n-heptane 0.0078 4.7709 0.6131 

n-heptane n-octane 0.0026 3.0222 0.2565 

n-octane - 0.0007 - - 

n-hexadecane methane ethane 2.0225 11.5058 19.8150 

ethane propane 0.9813 9.4266 6.4551 

propane n-butane 0.2083 4.7896 2.0233 

n-butane n-pentane 0.0720 3.9912 1.1219 

n-pentane n-hexane 0.0282 5.8574 1.0091 

n-hexane n-heptane 0.0097 5.1392 0.6763 

n-heptane n-octane 0.0026 2.6326 0.2237 

n-octane - 0.0006 - - 

2,2,4-trimethylpentane methane ethane 5.4096 18.2207 28.1561 

ethane propane 3.2777 15.3756 11.5313 

propane n-butane 1.0048 8.6308 4.3540 

n-butane n-pentane 0.4399 7.3336 2.5794 

n-pentane n-hexane 0.2166 9.6328 2.0855 

n-hexane n-heptane 0.0879 6.8203 1.1186 

n-heptane n-octane 0.0268 2.7057 0.2887 

n-octane - 0.0062 - - 

 

In Figure 5.8, the effect of run length on the statistical uncertainties of the free energies 

of transfer is shown as a function of number of carbon atoms for both the ME-2 and ME-3 

methods. Calculations were performed with the TraPPE force field. In most cases, the ME-3 

method produces lower statistical uncertainties for all solutes, despite having lower acceptance 

rates than the ME-2 method. While greater numbers of molecule identity exchanges occur with 
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ME-2, because ME-3 regrows the solute, the ME-3 method leads to faster sampling of phase 

space for linear molecules. Only when there is a large difference in acceptance rates does the 

performance of ME-2 surpass that of ME-3. An example of this is shown for alkane solvation 

in 2,2,4-trimethylpentane, where ME-2 produces slightly lower statistical uncertainties than 

ME-3. In this case, acceptance rates for ME-3 were 2-10 times lower than ME-2. For the case 

of solvation in 1-octanol, for methane to n-butane, the short (5x107 Monte Carlo steps) and 

long simulations (1x108 Monte Carlo steps) have similar statistical uncertainties. For molecules 

longer than butane, increasing the run length by a factor of two reduces the statistical error 

significantly. 
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Figure 5.8: Standard deviation of predicted free energies of transfer for simulations of 5x107 

Monte Carlo steps (black circles) and 1x108 Monte Carlo steps (red squares). 
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5.5.3 Evaluation of Computational Performance 

To compare the efficiency of the GEMC-MEMC algorithm as implemented in GOMC 

with other methods for the calculation of free energies, the solvation free energy for ethane in 

1-octanol and n-octane in 2,2,4-trimethylpentane were calculated using GOMC for Monte 

Carlo, and GROMACS version 2018.2 for thermodynamic integration in molecular dynamic 

simulations[41]. All calculations were performed on an Intel(R) i5-8600K 3.60GHz CPU. 

Calculations in GROMACS followed the protocol given by Garrido et al.[220], and used the 

same number of solvent molecules in the liquid phase as the Monte Carlo calculations. 

Lennard-Jones interactions were truncated at 1.0 nm and included dispersion corrections for 

the energy and pressure. Electrostatic interactions were calculated with the particle mesh Ewald 

with a converge tolerance of 1E-4. 16 discrete 𝜆 values were used, 𝜆 ∈

{
0.0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.65,

0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00
}, and NVT molecular dynamics simulations 

of 5 ns in length were performed for each 𝜆 value at 298 K. Molecular dynamics simulations 

were run using 6 CPU-threads and required a total of 50 CPU hours for ethane-1-octanol 

(Δ𝐺𝑂𝐴 = −0.54 kcal/mol) and 35 CPU-hours for n-octane-2,2,4-trimethylpentane (Δ𝐺224 =

−5.00 kcal/mol). These free energy results are in exact agreement with the predictions of 

GOMC for the TraPPE force field listed in Tables 5.5 and 5.6. The timing data for the 

molecular dynamics simulations correspond to the free energy calculations, only, and do not 

include the CPU time required to equilibrate the system. Calculations with GOMC used 4 

threads for ethane+1-octanol, and 2 threads for n-octane+2,2,4-trimethylpentane. These 

calculations generated free energy data for all eight solutes from a single simulation, and 

required a total of 234 CPU hours for ethane in 1-octanol and 50 CPU hours for n-octane in 

2,2,4-trimethylpentane. Considering that Monte Carlo calculations produced data for 8 solutes 

from a single simulation, while the MD simulations produced only a single data point, the 

Monte Carlo and molecular dynamics simulations show similar computational performance. 
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CHAPTER 6 EFFECT OF FLUORINATION ON THE PARTITIONING OF 

ALCOHOLS 

6.1 Introduction 

Perfluoroalkyl substances (PFAS) are a broad class of compounds where fluorine has 

been substituted for hydrogen on the alkyl chains. The most widely used and industrially 

relevant PFAS are surfactants, where fluorination of the alkyl tails renders them both 

hydrophobic and oleophobic, giving rise to unusual properties, such as exceptional chemical 

and thermal stability and very low interfacial tension at the air-water interface[85-87]. Owing 

to their unique properties,  PFAS are used in a broad array of consumer applications, including 

coatings for non-stick cookware[88], grease-resistant paper[89], and stain resistant fabrics. 

Industrial applications include fire-fighting foams[90] and mist-suppressants in hard chrome 

plating[91].  

The strength of the C-F bond, which contributes to the stability of fluorinated 

surfactants, also makes them extremely resistant to thermal, chemical, or photo degradation; 

experiments have shown that perfluorinated surfactants are highly resistant to biological 

degradation[92]. Numerous studies have shown widespread distribution of PFAS in the 

environment[93, 94]. As a result, PFAS are now considered to be a significant environmental 

threat[95]. 

Concerns about the environmental impact of PFAS lead to the phase-out of the two 

most common surfactants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate 

(PFOS); however, the development of new fluorinated surfactants, some with reduced potential 

for bioaccumulation, is on-going[235, 236]. Analysis of fire sites where aqueous film forming 

foams (AFFF) had been used in Ontario, Canada, identified 103 different PFAS[237]. Fast 

atom bombardment and high resolution quadrupole-time-of-flight mass spectrometry 

performed on seven AFFF formulations used by the United States Military identified 10 unique 
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classes of compounds, with perfluoroalkyl chain lengths ranging from 4 to 12 carbon 

atoms[238]. The physicochemical properties, environmental fate, and toxicity of these 

compounds are largely unknown[238].  

Environmental fate models rely on numerous physical property data, two of the most 

important of which are the Henry’s law constant and the octanol-water partition coefficient, 

log𝐾𝑜𝑤[96]. Given the breadth of PFAS chemistry and the lack of available experimental data, 

predictive methods are needed to fill these critical knowledge gaps. Prior work on the 

partitioning of fluorotelomer alcohols showed that common tools, such as EPISuite[97], 

CLOGP[98], SPARC[99] and COSMOTherm[100], produce a wide variety of results, with 

some predictions 2-5 orders of magnitude different than experiment[101]. 

Alternatively, atomistic computer simulations, combined with free energy methods 

such as thermodynamic integration[102], free energy perturbation[103, 104], or adaptive 

biasing force[30, 105], have been used with great success in the prediction of free energies of 

hydration and solvation in organic solvents for a wide variety of compounds[106-109]. While 

most work has focused on applications to drug[12, 13, 110] discovery, other calculations have 

focused on predicting the environmental fate of potentially toxic compounds, such as energetic 

materials[111, 112], ionic liquids[113], and fluorinated alcohols[114]. Additionally, computer 

simulations provide information on atomic-level structure, supporting the development of 

structure-property relationships. 

While molecular dynamics simulations are widely used for the calculation of free 

energies of solvation, systems with large energy barriers to configurational and/or 

conformational change may exhibit biased sampling, leading to incorrect free energies if care 

is not taken[115]. On the other hand, Monte Carlo simulations allow the system to hop between 

states and in some cases, may offer conformational sampling advantages over molecular 
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dynamics. Free energies can be determined directly from Gibbs ensemble Monte Carlo 

simulations from the ratio of number densities of the solute in each phase[77, 84, 116]: 

 
∆𝐺𝑖

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
= −𝑅𝑇 𝑙𝑛 (

< 𝜌𝑖
𝑙𝑖𝑞𝑢𝑖𝑑 >

< 𝜌𝑖
𝑔𝑎𝑠

>
)
𝑒𝑞

 (6.1) 

where 𝑅 and 𝑇 are the molar gas constant and absolute temperature in K, respectively, and <

𝜌𝑖
𝑙𝑖𝑞𝑢𝑖𝑑 > and < 𝜌𝑖

𝑔𝑎𝑠
> are the ensemble averaged number density (molecule/ Å3) for solute 𝑖 

in liquid and gas phase at equilibrium, respectively. 

Gibbs ensemble Monte Carlo provides a straightforward way of determining free 

energies of transfer as long as a sufficient number of successful exchanges of the solute 

between phases occurs, which usually requires the use of advanced configurational-bias 

sampling methods[83, 84, 116, 117]. For dense liquids with strong electrostatic interactions, 

obtaining adequately converged results for certain solutes may be challenging, even with state-

of-the-art sampling algorithms for the molecule exchange move. The fluoro-alcohol systems 

of interest in this work present a perfect storm of sampling problems: the hydroxyl group has 

strong electrostatic interactions with the solvent (water or octanol) and it is difficult to find a 

favorably sized cavity to insert the bulky fluorinated alkyl tail. With enough intermediate 

states, nearly any molecule exchange between phases is possible[118], but if free energies of 

transfer are the quantity of interest, it may be more effective to perform standard 

thermodynamic integration or free energy perturbation. Therefore, this work describes the 

implementation of thermodynamic integration (TI) and free energy perturbation (FEP) 

methods into the Monte Carlo simulation engine GOMC[57], and the application of TI and 

FEP to determine the air-water, air-oil, air-octanol, and octanol-water partition coefficients for 

eight carbon alcohols with varying degrees of fluorination. Partitioning of fluorotelomer 

alcohols is of interest because they can degrade to form perfluorooctanoic acid (PFOA)[239]. 

The local solvation structure around C8 alcohols is determined and used to explain the impact 
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of fluorination of the alkyl tail on partitioning. The key founding of this work is presented in 

Chapter 7. Force Field parameters and additional results are provided in Appendix D. The result 

of this work has been published in Journal of Molecular Physics[119]. 

6.2 Force Field Parameters 

Calculations were performed using the SPC water model[240], and the Transferable 

Potentials for Phase Equilibria (TraPPE) force field[187, 203, 204] to represent a variety of 

fluorinated analogues of 1-octanol and n-hexadecane, which are listed in Table 6.1. All non-

bonded force field parameters are listed in Table 6.2.  

Table 6.1: Fluorinated 1-octanol analogues studied in this work. 

Molecular structure Molecular formula Molecular name 

 

CH3(CH2)7OH H8 

 

CH3(CH2)6CF2OH F1H7 

 

CH3(CH2)5(CF2)2OH F2H6 

 

CF3(CF2)5(CH2)2OH H2F6 

 

CF3(CF2)6CH2OH H1F7 

 

CF3(CF2)7OH F8 

 

In TraPPE, a united-atom representation is used for all CFx and CHx groups; i.e. 

hydrogen or fluorine atoms bonded to carbon atoms are not represented explicitly and are, 
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instead, combined with carbon atoms to form a single interaction site or “pseudo-atom”. 

Interactions between pseudo-atoms are described by pairwise-additive 12-6 Lennard-Jones 

potentials, combined with partial charges to represent Coulombic interactions. Non-bonded 

parameters for alkyl[203], perfluoro[187], and hydroxyl groups[204] were taken from the 

original TraPPE papers and are listed in Table 6.2. Parameters for unlike interactions were 

determined using the Lorentz-Berthelot combining rules[120, 121]. 

Table 6.2: Non-bonded parameters for alcohols, fluoroalcohols and fluorotelomer alcohols. 

Group  휀/𝑘𝐵 (K) 𝜎 (Å) 𝑞𝑖 

TraPPE-UA 

CH3  98.0 3.75 0.0/0.265* 

CH2  46.0 3.95 0.0/0.265* 

CF3  87.0 4.36 0.0/0.265* 

CF2 27.5 4.73 0.0/0.265* 

O (alcohol) 93.0 3.02 -0.700 

H (alcohol) 0.0 0.0 0.435 

SPC 

O 78.21 3.167 -0.820 

H 0.0 0.0 0.410 

*partial charges for the 𝐶𝛼 bonded to oxygen. 

United-atoms were connected with rigid bonds, for which the parameters are listed in 

the Table D1 of the Appendix D. Bond bending constants were taken from TraPPE[187, 203, 

204], and are listed in the Table D1 of the Appendix D. Existing torsional potentials for the C-

C-C-C backbone for n-alkanes and perfluoroalkanes in TraPPE were refit to use the form of 

equation (2.12) or taken from prior work[114]. Constants for all dihedral potentials are listed 

in the Table D2 of the Appendix D. 

New Fourier coefficients for torsions in CH3(CH2)5(CF2)2OH (F2H6) and 

CH3(CH2)6CF2OH (F1H7) were optimized to reproduce rotational barriers determined from 

relaxed potential energy scans generated from MP2/6-31+g(d,p) ab initio calculations. All ab 

initio calculations were performed in Gaussian 09[136]. 
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6.3 Calculation of Solvation Free Energies 

This section describes key details of the implementation of free energy perturbation and 

thermodynamic integration in GOMC. Free energy perturbation is discussed, first, followed by 

thermodynamic integration. Computational details for the calculations are given in Simulation 

Methodology.  

In free energy perturbation (FEP)[103, 104], the free energy difference between two 

states A (e.g. non-interacting solute) and state B (e.g. fully interacting solute) is given by 

 
∆𝐺(𝐴 ⟶ 𝐵) = −

1

𝛽
ln〈exp(−𝛽∆𝑈𝐴,𝐵)〉𝐴 (6.2) 

where ∆𝑈𝐴,𝐵 = 𝑈𝐵 − 𝑈𝐴 is the energy difference between the system in state A and B, and 

〈exp(−𝛽∆𝑈𝐴,𝐵)〉𝐴 is the ensemble average for simulation in state A. For most systems, there 

is limited phase-space overlap between state A and B, leading to poor convergence of the free 

energy. By constructing an artificial pathway through multistage sampling[241], satisfactory 

phase-space overlap can be achieved, greatly improving the accuracy and precision of the free 

energy calculation[242, 243]. Using the multistage sampling approach, the free energy 

difference between two states A and B, with 𝑁 − 2 intermediate states given by[244]  

 

∆𝐺(𝐴 ⟶ 𝐵) = −
1

𝛽
∑ ln〈exp(−𝛽∆𝑈𝑖,𝑖+1)〉𝑖

𝑁−1

𝑖=0

 (6.3) 

where ∆𝑈𝑖,𝑖+1 = 𝑈𝑖+1 −𝑈𝑖 is the energy difference of the system between states i and i+1, and 

〈exp(−𝛽∆𝑈𝑖,𝑖+1)〉𝑖 is the ensemble average for simulation performed in intermediate state i. A 

coupling parameter 0.0 ≤ 𝜆 ≤ 1.0 is used to smoothly transform the simulated system between 

states A (𝜆 = 0.0) and B (𝜆 = 1.0), where 

 𝑈𝑖 = 𝜆𝑖𝑈𝐵 + (1 − 𝜆𝑖)𝑈𝐴 (6.4) 
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Naive linear scaling of the intermolecular interactions with respect to 𝜆 produces a well-

known numerical instability (end-point catastrophe) in the limit of 𝜆 → 0 and 𝜆 → 1 for 

Lennard-Jones potentials[245, 246], which can be avoided by shifting and scaling the Lennard-

Jones potential via the soft-core scheme[247, 248]. Electrostatic interactions do not have the 

same numerical instability if a two-step transformation is applied[249], and it has been shown 

that it is computationally efficient to scale them linearly[250]. 

Therefore, in this work, soft-core scaling is used for the Lennard-Jones interactions, 

while linear scaling is used for the Coulombic interactions. Separate 𝜆𝐿𝐽 and 𝜆𝐶𝑜𝑢𝑙 were used 

to independently control the scaling of Lennard-Jones and Coulombic interactions, 

respectively. The energy of the solute interacting with the solvent is given by 

 𝑈𝑖(𝑟𝑖𝑗) = 𝜆𝐿𝐽𝑈𝐿𝐽(𝑟𝑠𝑐−𝑖𝑗) + 𝜆𝐶𝑜𝑢𝑙𝑈𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) (6.5) 

where   

 
𝑟𝑠𝑐−𝑖𝑗 = (𝛼(1 − 𝜆𝐿𝐽)

𝑝
𝜎𝑖𝑗

6 + 𝑟𝑖𝑗
6)
1/6

 (6.6) 

𝑟𝑠𝑐−𝑖𝑗, 𝛼, and 𝑝 are the scaled distance, softness parameter, and soft-core power, respectively. 

To improve numerical convergence of the calculation, a minimum interaction diameter 𝜎𝑚𝑖𝑛 =

3.0 Å was defined for any atom with a diameter less than 𝜎𝑚𝑖𝑛, e.g. hydrogen atoms attached 

to oxygen in water or alcohols[249]. 

The effect of long-range corrections on predicted free energies were determined for 

Lennard-Jones and Coulombic interactions via a linear coupling with 𝜆.  

 𝑈𝐿𝑅𝐶(𝐿𝐽) = 𝜆𝐿𝐽∆𝑈𝐿𝑅𝐶(𝐿𝐽) (6.7) 

 𝑈𝐿𝑅𝐶−𝐶𝑜𝑢𝑙 = 𝜆𝐶𝑜𝑢𝑙[∆𝑈𝑠𝑒𝑙𝑓 + ∆𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ∆𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙] (6.8) 
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where ∆𝑈𝐿𝑅𝐶(𝐿𝐽), ∆𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙, ∆𝑈𝑠𝑒𝑙𝑓, ∆𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 are the change in the long-range correction 

energy due to adding a fully interacting solute to the solvent for both the Lennard-Jones and 

Coulombic interactions. 

In thermodynamic integration, the free energy change is calculated from  

 

∆𝐺(𝐴 ⟶ 𝐵) = ∫ 〈
𝑑𝑈

𝑑𝜆
〉𝜆 𝑑𝜆

𝜆=1

𝜆=0

 (6.9) 

where 𝑑𝑈 𝑑𝜆⁄  is the derivative of energy difference with respect to 𝜆, and 〈
𝑑𝑈

𝑑𝜆
〉𝑖 is the ensemble 

average for a simulation run at intermediate state 𝜆. To calculate the free energy using 

thermodynamic integration, the derivative of the intermolecular energy with respect to 𝜆 must 

be evaluated for both the Lennard-Jones and Coulombic interactions of the solute with the 

solvent. 

 𝑑𝑈𝐿𝐽(𝑟𝑖𝑗)

𝑑𝜆𝐿𝐽
= 𝑈𝐿𝐽(𝑟𝑠𝑐−𝑖𝑗) +

𝜆𝐿𝐽𝑝𝛼

6
(1 − 𝜆𝐿𝐽)

𝑝−1
(
𝜎𝑖𝑗

6

𝑟𝑖𝑗5
)𝐹𝐿𝐽(𝑟𝑠𝑐−𝑖𝑗) (6.10) 

 𝑑𝑈𝐶𝑜𝑢𝑙(𝑟𝑖𝑗)

𝑑𝜆𝐶𝑜𝑢𝑙
= 𝑈𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) (6.11) 

 
𝐹𝐿𝐽(𝑟𝑖𝑗) = −

𝑑𝑈𝐿𝐽(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗
=
4휀𝑖𝑗

𝑟𝑖𝑗
[12 (

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− 6(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (6.12) 

The derivative of the long-range correction energies with respect to 𝜆 is given by 

 𝑑𝑈𝐿𝑅𝐶(𝐿𝐽)

𝑑𝜆𝐿𝐽
= ∆𝑈𝐿𝑅𝐶(𝐿𝐽) (6.13) 

 𝑑𝑈𝐿𝑅𝐶−𝐶𝑜𝑢𝑙
𝑑𝜆𝐶𝑜𝑢𝑙

= ∆𝑈𝑠𝑒𝑙𝑓 + ∆𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + ∆𝑈𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (6.14) 
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6.4 Simulation Methodology 

6.4.1 Free Energy Calculations 

The free energy calculations described in previous Section, were implemented in the 

development version of the open-source Monte Carlo simulation engine GOMC[57], which is 

available to the public via GitHub[170]. To calculate the free energy of solvation/hydration, all 

intermediate 𝜆 states were equilibrated independently in the canonical ensemble (NVT) for 

5x106 Monte Carlo steps (MCS) at 298 K, followed by a 3x107 MCS isobaric-isothermal (NPT) 

ensemble simulation at 1 bar and 298 K. Production data were taken from a subsequent 5x107 

MCS NPT simulation, which used the final configuration of the prior NPT simulation as the 

initial configuration. For production runs, all 𝜆 states were simulated independently in parallel. 

During the production run, the change in energy (∆𝑈𝑖,𝑗) between the current lambda state and 

all other lambda states, and the derivative of potential with respect to lambda (𝑑𝑈𝐶𝑜𝑢𝑙 𝑑𝜆𝐶𝑜𝑢𝑙⁄ , 

𝑑𝑈𝐿𝐽 𝑑𝜆𝐿𝐽⁄ ), were evaluated and stored for post-simulation analysis every 5x103 MCS. A 

sample of GOMC free energy output is provided in Table D3 of the Appendix D. The 

implementation of free energy methods into GOMC was validated through calculations of free 

energies of solvation for various n-alkanes in 1-octanol. A comparison with prior calculations 

performed with NPT-Gibbs ensemble Monte Carlo simulations[84] is provided in Table D4 of 

the Appendix D, and shows that all methods produce free energies that are within 0.1 kcal/mol 

of each other. 

To calculate the free energy of solvation in water and 1-octanol, 23 intermediate lambda 

states, as shown in Figure 1, were used 

 𝜆𝑐𝑜𝑢𝑙,𝐿𝐽 ∈

{
 
 

 
 
(0.0, 0.0), (0.0, 0.05), (0.0, 0.1), (0.0, 0.15), (0.0, 0.2),
(0.0, 0.25), (0.0, 0.3), (0.0, 0.35), (0.0, 0.4), (0.0, 0.45),
(0.0, 0.5), (0.0, 0.6), (0.0, 0.7), (0.0, 0.8), (0.0, 0.9),
(0.0, 1.0), (0.2, 1.0), (0.4, 1.0), (0.6, 1.0), (0.7, 1.0),

(0.8, 1.0), (0.9, 1.0), (1.0, 1.0) }
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while 16 intermediate states were used to calculate the free energies of solvation in n-

hexadecane. 

 𝜆𝑐𝑜𝑢𝑙,𝐿𝐽 ∈ {

(0.0, 0.0), (0.0, 0.05), (0.0, 0.1), (0.0, 0.15), (0.0, 0.2),
(0.0, 0.25), (0.0, 0.3), (0.0, 0.35), (0.0, 0.4), (0.0, 0.45),

(0.0, 0.5), (0.0, 0.6), (0.0, 0.7), (0.0, 0.8), (0.0, 0.9), (0.0, 1.0)
} 

 

Figure 6.1: The transformation pathway starting from non-interacting solute (0.0, 0.0) to fully 

interacting solute (1.0, 1.0) in 𝜆 vector space, which is shown as an orange square on the 

Cartesian plane formed by the axes 𝜆𝐶𝑜𝑢𝑙𝑜𝑚𝑏 and 𝜆𝐿𝐽, which control the solute Coulombic and 

Lennard-Jones interactions, respectively. Intermediate states are denoted by the arrowheads. 

 

While it is possible to alter the Lennard-Jones and Coulomb interactions 

simultaneously, recent work suggests it is more efficient to first turn on the full Lennard-Jones 
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interactions before scaling the Coulombic interactions[250, 251]. For liquid phase systems 

containing 1-octanol or water, the 𝜆 vectors were defined to turn on the full Lennard-Jones 

interaction, first, before introducing Coulombic interactions between the solute and the solvent, 

as shown in Figure 1, to avoid the direct interaction of atoms with “naked” charges[249, 252]. 

The soft-core parameters used for Lennard-Jones interactions were, 𝛼 = 0.5, 𝑝 = 2, and  

𝜎𝑚𝑖𝑛 = 3.0 [249, 253]. 

A variety of methods were used to analyze the resulting data, including thermodynamic 

integration (TI)[254], Bennett acceptance ratio (BAR)[255], and multistate Bennett acceptance 

ratio (MBAR)[256], as implemented in the software alchemlyb[257] and alchemical-

analysis[258]. A parser for GOMC output was implemented for both alchemlyb and the 

alchemical-analysis. Since alchemical-analysis is no longer supported by its authors, the 

GOMC parser for it was stored in a separate GitHub repository[77]. 

To determine the free energy of solvation/hydration accurately, the data points used in 

the calculation must be sampled at equilibrium conditions and be uncorrelated. Several 

techniques have been developed[259, 260] to detect uncorrelated samples; both 

alchemlyb[257] and alchemical-analysis[258] use an autocorrelation time analysis, as 

implemented in pymbar[256]. In autocorrelation time analysis, the autocorrelation function 

𝐶𝐴(𝑖) is determined for a data point i in a given data series (in this work 𝑑𝑈 𝑑𝜆⁄ ), and the 

autocorrelation time (𝜏) is calculated as the integral of 𝐶𝐴(𝑖)[261]. Once the autocorrelation 

time (𝜏) is obtained, the 𝑔th element of the data series is treated as an uncorrelated sample, 

where 𝑔 = 1 + 2𝜏. In pymbar, a data point is defined as statistically independent if 𝐶𝐴(𝑖) = 0; 

however, the autocorrelation function becomes noisy as 𝐶𝐴(𝑖) → 0, making it difficult to 

rigorously determine uncorrelated samples. In practice, pymbar provides a conservative 

estimate of uncorrelated data, and tends to under-predict the number of uncorrelated samples. 
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In addition to using only uncorrelated samples, care must be taken to ensure that data 

used in the free energy calculation are collected from simulations that have reached 

equilibrium. Prior molecular dynamics simulations have shown, for example, challenges in 

converging liquid phase densities and free energies of solvation in 1-octanol[262]. In this work, 

NPT simulations of  3x107 MCS were used to equilibrate the system at each 𝜆𝑖 prior to the 

production run, ensuring stability of the density during free energy calculations, as shown in 

Figure S2 for perfluorooctanol in 1-octanol. Once free energy data were collected, convergence 

of the data were assessed by calculating free energies of hydration/solvation in both the forward 

and reverse directions with alchemical-analysis[258]. In the forward direction, the free energy 

was calculated using data in the order in which they were collected, while in the “reverse” 

direction, the free energy was calculated  from the data ordered in the reverse of which it was 

collected. As shown in Figure 6.2 for F2H6, the forward and reverse calculations match within 

the statistical uncertainty of the data, suggesting convergence of the free energy 

calculations[221, 258]. Free energies were calculated from simulation data using a variety of 

thermodynamic integration methods (trapezoidal rule (TI) and cubic spline (TI-CUBIC)), and 

free energy perturbation techniques (Bennett acceptance ratio (BAR) and multi-state Bennett 

acceptance ratio (MBAR)). MBAR results are discussed in the body of the paper, while results 

for TI and BAR may be found in Table D5 of the Appendix D. For simulations that have high 

quality sampling, and sufficient overlap between energy difference distributions, it is expected 

that all methods will produce similar results. As shown in Figure 6.3, good agreement for all 

intermediate states was achieved with all methods. 

Additional insight is provided by the overlap matrix, as shown in Figure 6.4. The 

overlap matrix quantifies the overlap of the ∆𝑈𝑖,𝑗 distributions between neighboring 

intermediate states (i and j) and gives the probability of observing a sample from state i in state 

j, which can be used to detect intermediate states with insufficient overlap. In this case, the data 
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shown in Figure 6.4 conform to the recommendations of Klimovich et al.[258]. Neighboring 

states along the main diagonal have overlap values significantly above the recommended value 

of 0.03, indicating sufficient overlap between states has been achieved to obtain reliable free 

energy predictions. 

 

Figure 6.2: Solvation free energy for F2H6 in n-hexadecane plotted as a function of simulation 

steps. The agreement between the forward and reverse calculation is within the standard error 

bar (purple bar), indicating convergence of the free energy simulations. 
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Figure 6.3: Intermediate free energy differences for solvation of F2H6 in n-hexadecane, 

calculated by a variety of thermodynamic integration and free energy perturbation techniques. 
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Figure 6.4: Overlap matrix for the solvation of F2H6 in n-hexadecane. 

 

6.4.2 Monte Carlo Simulations 

NVT ensemble simulations were performed with a move ratio of 50% displacements, 

20% rotations, 20% coupled-decoupled configurational-bias (CD-CBMC) regrowth[67], and 

10% crankshaft[205, 206]. Parameters for the configurational-bias regrowth move were 100 

angle trials, 50 dihedral trials, and 10 trial locations for grown pseudo-atoms. NPT ensemble 

simulations were performed with similar move ratios, except for the addition of 1% volume 

changes, while the percentage of displacement moves was reduced to 49%. Non-bonded 

potentials were truncated at 14 Å[187, 203, 204] and analytical tail corrections were applied to 
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the energy[124]. For simulations with electrostatic interactions, the real space part of 

electrostatic potential was truncated at 14 Å and an Ewald convergence tolerance of 1x10-5
 was 

used[263]. 

During grand canonical and Gibbs ensemble Monte Carlo simulations, molecule swap 

moves are frequently used to sample phase-space. Intra-box swap moves may also be used to 

enhance the sampling of phase-space in NVT and NPT ensemble simulations. For polar 

molecules, where an atom has a naked charge, such as hydrogen in many alcohol and water 

models, during a swap move it is possible to a place opposing charges in close proximity. This 

produces very large negative energies that overwhelm the repulsive component of the Lennard-

Jones potential, leading to the sampling of unphysical states. A common workaround is to 

introduce a hard inner cut-off and reject any trial moves that bring atom centers closer than 1 

Å[264]. Using a hard inner cut-off in free energy simulations, however, produces incorrect 

sampling of the solvent structure in the limit of  𝜆 → 0, leading to inaccurate free energies. 

Therefore, intra-box swap moves were not used during free energy simulations. 

Liquid phase systems contained one solute in a solvent box of 200 1-octanol, 150 n-

hexadecane, or 1000 water molecules. Initial cubic box sizes were selected to produce densities 

that were close to equilibrium, with a side length of 37.6, 41.6, and 31.3 Å for 1-octanol, n-

hexadecane, and water, respectively. Initial configurations were generated with Packmol[142], 

and Psfgen was used to generate coordinate (*.pdb) and connectivity (*.psf) files[143]. 

Radial distribution functions for solute-solvent systems were determined by performing 

a 5x106 MCS equilibration in the canonical ensemble at 298 K, followed by 7x107 MCS NPT 

ensemble simulation at 1 bar and 298 K, where production data were taken from the last 5x107 

MCS of the simulation. Atomic coordinates for all atoms in the system were stored every 

2.5x103 MCS. Radial distribution functions were calculated from saved configurations with 

the gofr tool in VMD[265]. 
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6.5 Results and Discussion 

6.5.1 Free Energies of Hydration 

Free energies of hydration predicted by simulation for each solute in SPC water are 

listed in Table 6.3. From trends in the data, where Δ𝐺water(H8) < Δ𝐺water(H2F6) <

 Δ𝐺water(H1F7) < Δ𝐺water(F8), it was hypothesized that fluorination near the head group has 

the greatest impact on the solubility of fluorinated alcohols in water. This was confirmed 

through free energy calculations for two additional molecules: F1H7 and F2H6. For each of 

these molecules, 𝐶𝛼 (F1H7) or 𝐶𝛼 and 𝐶𝛽 (F2H6) were fluorinated, while the remaining carbon 

atoms were CH2 or CH3 groups. Fluorinating 𝐶𝛼 produces a 1.5 kcal/mol increase (less 

negative) in the free energy of hydration compared to 1-octanol, while fluorination of 𝐶𝛽 and 

𝐶𝛼 produces only an additional 0.1 kcal/mol change in Δ𝐺water. This free energy change, due 

to fluorination of only 𝐶𝛼, accounts for almost half of the difference in Δ𝐺water between 1-

octanol and perfluorooctanol. 

Table 6.3: Calculated free energies of hydration and solvation for alcohols predicted with the  

MBAR method, with a comparison to experimental data. Numbers in parenthesis correspond 

to the uncertainty in the last digit. 
  Δ𝐺𝐶16(kcal/mol) Δ𝐺1−𝑜𝑐𝑡𝑎𝑛𝑜𝑙(kcal/mol) Δ𝐺𝑤𝑎𝑡𝑒𝑟(kcal/mol) log𝐾𝑜𝑤 

Molecule 𝜌𝑙𝑖𝑞(298 𝐾) Sim. Exp. Sim. Expt. Sim. Expt. Sim.  Expt. 

CH3(CH2)7OH(H8) 826(5) -5.15(5) -6.3[229] -8.6(2) -8.13[229] -2.9(2) -4.09[266] 4.2(2) 3.0[267] 

CF3(CF2)5(CH2)2OH 

(H2F6) 

1743(13) -4.16(7) -4.0(1)[268] -7.1(2) -7.2(3)[268] 

-6.01[269] 

-1.7(2) -0.76(3)[268], 

-2.01[269], 

0.50[270] 

4.0(2) 4.7(3)[101] 

CF3(CF2)6CH2OH 

(H1F7) 

1847(14) -4.10(7)  -6.0(2)  -1.6(2)  3.2(2)  

CF3(CF2)7OH(F8) 1897(15) -3.32(7)  -5.2(2)  0.0(3)  3.8(2)  

CH3(CH2)6CF2OH 

(F1H7) 

971(7) -4.38(6)  -6.1(2)  -1.4(2)  3.4(2)  

CH3(CH2)5(CF2)2OH 

(F2H6) 

1124(7) -4.34(6)  -5.7(2)  -1.3(2)  3.2(2)  
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Further insight into the role fluorination near the hydroxyl group plays in the altering 

the free energy of hydration, was obtained by calculating the separate Lennard-Jones and 

Coulombic contributions to the free energy for each solute, which are listed in Table 6.4. For 

solutes where 𝐶𝛼 is hydrogenated, the Coulombic contribution to the free energy is between -

6.5 and -6.1 kcal/mol, while for solutes where 𝐶𝛼 is fluorinated, the Coulombic contribution is 

reduced to -5.6 to -5.4 kcal/mol. This provides evidence that fluorination of 𝐶𝛼 reduces 

hydrogen bonding of the solute with water compared to 1-octanol. H1F7 and F1H7 have similar 

Δ𝐺𝑤𝑎𝑡𝑒𝑟 of -1.6 and -1.4 kcal/mol, respectively, which is a result of competing changes in the 

Lennard-Jones and Coulombic interactions. Compared to 1-octanol, fluorinating the last seven 

carbon atoms (H1F7), increases the Lennard-Jones contribution to Δ𝐺water by 0.9 kcal/mol, 

while the Coulombic interaction is decreased by 0.8 kcal/mol. Fluorinating 𝐶𝛼 only (F1H7) 

results in a 1.1 kcal/mol decrease in the Coulombic contribution, with a 0.4 kcal/mol increase 

in the Lennard-Jones contribution to the free energy of hydration. 

Table 6.4: Contribution of Lennard-Jones and Coulombic energy to the  free energies of 

hydration/solvation predicted by MBAR[257]. Numbers in parenthesis correspond to the 

uncertainty in the last digit. 

Molecule 
Δ𝐺1−𝑜𝑐𝑡𝑎𝑛𝑜𝑙(kcal/mol) Δ𝐺𝑤𝑎𝑡𝑒𝑟(kcal/mol) 

LJ Coulomb Total LJ Coulomb Total 

CH3(CH2)7OH (H8) -4.84(7) -3.8(2) -8.6(2) 3.6(2) -6.47(9) -2.9(2) 

CF3(CF2)5(CH2)2OH (H2F6) -3.85(7) -3.3(2) -7.1(2) 4.8(2) -6.48(9) -1.7(2) 

CF3(CF2)6CH2OH (H1F7) -3.5(1) -2.6(2) -6.0(2) 4.4(2) -6.08(9) -1.6(2) 

CF3(CF2)7OH (F8) -3.06(9) -2.1(1) -5.2(2) 5.4(3) -5.30(8) 0.0(3) 

CH3(CH2)6CF2OH (F1H7) -4.15(6) -1.9(1) -6.1(2) 4.0(2) -5.4(1) -1.4(2) 

CH3(CH2)5(CF2)2OH (F2H6) -3.84(6) -1.8(2) -5.7(2) 4.3(2) -5.59(9) -1.3(2) 

 

It should be noted that a key difference between this work and past calculations with 

NAMD[37] for the same molecules and models is that in this work long-range corrections for 

Lennard-Jones interactions are included in the free energy calculation, whereas, in past work, 

they were not[114]. In preliminary calculations, the contribution of long-range corrections to 
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the free energy of hydration for these molecules was found to be approximately -1.0 to -0.8 

kcal/mol, which is consistent with prior calculations for n-alkanes[271]. Accounting for this 

difference in the treatment of long-range corrections to the Lennard-Jones interactions brings 

the results shown in Table 6.3 in good agreement with prior calculations[114]. Inclusion of 

long-range corrections for the Lennard-Jones interactions substantially improves the agreement 

of Δ𝐺water predictions of simulation with experiment for 1-octanol, but makes agreement with 

the most reliable experimental data for H2F6 worse[268]. 

To further understand how fluorination near the head group affects the solubility of 

alcohols in water, radial distribution functions (RDF) were calculated for O(solute)-O(solvent) 

and 𝐶𝛼(solute)-O(solvent), and are presented in Figure 6.5. For all molecules, for O(solute)-

O(solvent) interactions, a peak is observed at approximately 2.75 Å corresponding to hydrogen 

bonding between water and the solute. Peak heights varied, depending on the degree of 

fluorination near the hydroxyl group. Similar peak heights were observed for the O-O RDF for 

1-octanol and H2F6 interacting with water, while a slightly lower peak height was observed 

for H1F7. The lowest peak heights were observed for perfluorooctanol, F1H7, and F2H6, 

which all have a fluorinated 𝛼 carbon. For the 𝐶𝛼(solute)-O(water) radial distribution functions, 

perfluorooctanol, F1H7, and F2H6 all show similar behavior with a first peak at approximately 

3.9 Å, while the first peak in the RDF for 1-octanol, H1F7, and H2F6 occurs at 3.7 Å. These 

results for the O-O and 𝐶𝛼-O RDFs are consistent with prior calculations with the OPLS-AA 

force field[114], and show clearly that fluorination of 𝐶𝛼 creates steric hindrance to solute-

solvent hydrogen bond formation, strongly impacting on hydration free energies. These results 

are consistent with the work of Dalvi and Rossky, which concluded for perfluoroalkanes, that 

increased hydrophobicity was due to the increased volume occupied by fluorine compared to 

hydrogen atoms[272]. 



 

 

134 

 

Figure 6.5: Radial distribution function for solute interactions with water: (A) O(solute)-

O(water) and (B) 𝐶𝛼(solute)-O(water). Data are represented by: octanol (solid black line), 

H2F6 (solid green line), H1F7 (solid red line), and perfluorooctanol (solid blue line), F1H7 

(dashed orange line), and F2H6 (dashed indigo line). 
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6.5.2 1-octanol Free Energies of Solvation 

Free energies, predicted by the TraPPE-UA force field for each solute in 1-octanol, are 

listed in Table 6.3 and individual contributions of Lennard-Jones and Coulombic interactions 

to solvation free energies are listed in Table 6.4. Free energies of solvation for 1-octanol and 

H2F6 in 1-octanol were found to be in excellent agreement with experiment, with errors of 

0.47 and 0.1 kcal/mol, respectively. Calculated free energies of solvation show a monotonic 

increase (become less negative) as fluorination of the alkyl tail increases. This is similar to the 

phenomena observed for hydration free energies, though fluorination of the alkyl tail has a 

larger impact on solvation free energies in octanol than in water, as evidenced by the calculated 

octanol-water partition coefficients for all fluorinated alcohols being lower than that of 1-

octanol, despite also having lower hydration free energies. 

The peak height in radial distribution functions for O(solute) with O(1-octanol), shown 

in Figure 6.6, follow a similar trend as the solvation free energies. The largest peak height was 

observed for 1-octanol in 1-octanol, while the lowest peak height was for perfluorooctanol. 

These results suggest that 𝐶𝛼 fluorination state plays a significant role in in the predicted free 

energy, since fluorination near the hydroxyl group sterically hinders the solvent’s ability to 

form hydrogen bonds with the solute. These results were confirmed by additional free energy 

calculations performed for F1H7 and F2H6. Fluorination of both the 𝛼 and 𝛽 carbons (F2H6) 

produces a free energy of solvation that is within 0.5 kcal/mol of perfluorooctanol, while 

fluorinating only the 𝛼 carbon produces a free energy of solvation that is similar to H1F7. 

Fluorination of 𝐶𝛼 produced a marked decrease in the Coulombic contribution to the 

free energy. For F1H7, F2H6, and perfluorooctanol, the Coulombic contribution varied from -

2.1 to -1.8 kcal/mol, compared to -3.8 kcal/mol for 1-octanol. Unlike solvation in water, 

fluorination of 𝐶𝛽 and later carbons also impacted the hydrogen bonding of solutes with 1-

octanol. Coulombic contributions to the free energy decrease with increasing fluorination, 
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regardless of position on the alkyl tail; for H2F6 Δ𝐺𝐶𝑜𝑢𝑙 = -3.3 kcal/mol, while for H1F7 

Δ𝐺𝐶𝑜𝑢𝑙 = −2.6 kcal/mol. Radial distribution functions for 𝐶𝛼(solute)-O(solvent) interactions 

show decreased height of the first peak going from 1-octanol to H2F6 and H1F7. While both 

water and 1-octanol form complex hydrogen bonded networks, the alkyl tail of 1-octanol 

creates additional constraints on the microstructures that may form. Adding bulky fluorine 

atoms to the alkyl tail of solutes, beyond 𝐶𝛼 and 𝐶𝛽, appears to be capable of creating steric 

hindrance to hydrogen bond formation between the solute and the 1-octanol solvent. 
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Figure 6.6: Radial distribution function for solute interactions with 1-octanol: (A) O(solute)-

O(1-octnaol) and (B) 𝐶𝛼(solute)-O(1-octanol). Data are represented by: octanol (solid black 

line), H2F6 (solid green line), H1F7 (solid red line), and perfluorooctanol (solid blue line), 

F1H7 (dashed orange line), and F2H6 (dashed indigo line). 
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6.5.3 n-hexadecane Free Energies of Solvation 

The air-hexadecane partition coefficient provides a measurement of non-specific 

interactions between molecules and plays an important role as a compound descriptor used in 

linear solvation energy relationships (LSER). LSER models are used for prediction of solute 

partitioning in a variety of process, providing data that are needed for transport and 

environmental fate modeling[231, 232]. Additionally, water-hexadecane partition coefficients 

are used to model lipophilic systems, such as the core of lipid bilayers[273, 274]. Predicting 

solvation free energies of fluorinated 1-octanol analogues in n-hexadecane provides additional 

insight into the role of fluorine in altering Lennard-Jones interactions between the solute and 

organic solvents, without the complications of hydrogen bonding present in the solvent 1-

octanol. 

Free energies predicted by the TraPPE-UA force field for each solute in n-hexadecane 

are listed in Table 6.3. Experimental data for these compounds is limited to 1-octanol and 

H2F6. For H2F6, simulations predicted Δ𝐺C16 = −4.16 kcal/mol, which is in close agreement 

with the experimental value of -4.0 kcal/mol from Goss et al.[268]. For 1-octanol, simulations 

predict Δ𝐺C16 = −5.15 kcal/mol vs. the experimental value of -6.3 kcal/mol. 

Interestingly, the data follow the same trend with increasing fluorination as the free 

energies of hydration (Δ𝐺C16(H8) < Δ𝐺C16(H2F6) <  Δ𝐺C16(H1F7) < Δ𝐺C16(F8)), despite 

the absence of specific hydrogen bonding interactions. Fluorinating only 𝐶𝛼 (F1H7) produces 

a 0.77 kcal/mol increase in the free energy of solvation compared to 1-octanol, while 

fluorination of 𝐶𝛽 and 𝐶𝛼 (F2H6) produces only an additional 0.04 kcal/mol change in Δ𝐺𝐶16. 

The free energy change due to fluorination of only 𝐶𝛼 accounts for almost half of the difference 

in Δ𝐺𝐶16 between 1-octanol and perfluorooctanol. Fluorination of 𝐶𝛽 and later carbons (H2F6) 

produces only an additional 0.18 kcal/mol change in Δ𝐺𝐶16, as compared to F2H6. 
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Radial distribution functions for each solute interacting with n-hexadecane are 

presented in Figure 6.7. For O(solute)-CHx(n-hexadecane), 1-octanol and H2F6 have similar 

behavior, while, for all other solutes, the first peak is slightly lower and shifted to larger 

distances, illustrating the additional space occupied by the fluorine atoms near the hydroxyl 

group. For the CHx or CFx(solute)-CHx(n-hexadecane) radial distribution functions, the most 

highly fluorinated molecules, H1F7 and perfluorooctanol, display similar behavior, while a 

reduction in the number of fluorine atoms (i.e. F1H7 and F2H6), causes the first peak in the 

RDF to shift to smaller distances. 



 

 

140 

 

Figure 6.7: Radial distribution function for solute interactions with n-hexadecane: (A) 

interaction of O(solute)-CHx(n-hexadecane) and (B) CHx or CFx(solute)-CHx(n-hexadecane). 

Data are represented by: octanol (solid black line), H2F6 (solid green line), H1F7 (solid red 

line), and perfluorooctanol (solid blue line), F1H7 (dashed orange line), and F2H6 (dashed 

indigo line). 
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CHAPTER 7 CONCLUSIONS 

7.1 Mie Potential For Alkynes 

In Chapter 3, the Mie potentials were extended to alkynes. Through an exhaustive 

search of parameter space, it was determined that it was not possible to transfer C(sp) 

parameters from 1-alkynes to 2-alkynes, and unique C(sp) parameters for these compounds 

were developed. Predicted critical properties and liquid structure show the expected 

convergence of alkyne properties to n-alkanes with increasing chain length. Overall, the 

predictions of simulation for 1-alkynes were found to be in reasonable agreement with 

experiment and correlations with the notable exception of 1-hexyne. Saturated liquid densities 

for 1-hexyne were under-predicted with an AAD of 3%, while saturated liquid densities for all 

other 1-alkynes were within 1-2% AAD of experiment. The non-monotonic behavior of the 

deviation between simulation and the DIPPR correlations suggests possible inconsistencies in 

the correlations, although resolving this issue will require new experimental measurements to 

be performed. 

Transferability of the Mie potentials was further evaluated through simulations of the 

binary mixtures of propadiene+propyne, propene+propyne, and propadiene+propyne. The 

phase behavior of propadiene+propyne was in close agreement with experiment. Predictions 

for mixtures of propyne with propene or propane under-predicted mixture vapor pressures 

indicating that unlike molecule interactions were over-predicted by 2-4%.  

7.2 Molecular Exchange Monte Carlo in GCMC Simulation 

In Chapter 4, three variants of the molecular exchange method were developed, which 

could be used to evaluate the efficiency of various aspects of the algorithms. Locating the 

exchange sub-volume randomly (ME-1) was found to have the lowest efficiency, since 

frequently, no small molecules were found in the sub-volume that could be used for the 
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molecular exchange, resulting in immediate rejection of the move. The ME-1 method is 

suitable only for systems that are very dilute with respect to the concentration of the large 

molecule. By identifying a small molecule at random first, placing the center of the sub-volume 

at the geometric center of the small molecule (ME-2), and aligning the backbone of the large 

molecule to be inserted with the small molecule to be removed, acceptance rates for the 

exchange move increased substantially. For water, the acceptance efficiency of the ME-2 

method was found to be nearly 40 times greater than standard configurational-bias insertions, 

while for 2,2,4-trimethylpentane a 410 times improvement in acceptance efficiency was 

achieved. In the latter case, this was due to the use of a rigid-body insertion in ME-2, which 

eliminated the need to regrow the molecule in place. Finally, the inclusion of coupled-

decoupled configurational-bias methods[67] to grow sections of the molecule from a central 

atom (ME-3) placed at the center of the sub-volume resulted in the greatest improvement in 

statistical efficiency compared to standard configurational-bias insertions for linear molecules 

without strong directional interactions. Improvements in efficiency of up to 200 times were 

observed for the perfluorobutane+n-butane system.  

The algorithms presented in this work are notable because they were designed to work 

for any molecular topology over a wide range of compositions. Substantial performance gains 

were observed for ME-2 and ME-3 for all systems and compositions studied. As shown through 

the various case studies, however, each method has its strengths and weaknesses. For linear 

non-polar molecules, ME-3 is generally more efficient than ME-2, while ME-2 offers better 

performance for small polar molecules, such as water, and highly branched molecules. Each 

algorithm has been implemented, and is now available, in the open-source Monte Carlo 

simulation engine GOMC, which is available to the public at GitHub[170]. 
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7.3 Molecular Exchange Monte Carlo in GEMC Simulation 

In Chapter 5, the molecular exchange Monte Carlo (MEMC) method has been adapted 

for use in Gibbs ensemble Monte Carlo simulations. Calculations of pressure-composition 

diagrams for methane+n-butane and perfluorobutane+n-butane show exact agreement with 

prior grand canonical Monte Carlo simulations[83]. The combination of GEMC and MEMC 

was used to predict the free energies of transfer for n-alkanes in 1-octanol, n-hexadecane and 

2,2,4-trimethylpentane. In comparison to more traditional methods for the calculation of free 

energies of solvation (thermodynamic integration in molecular dynamics), the GEMC-MEMC 

method shows similar computational efficiency. The GEMC-MEMC method has some 

potential advantages over molecular dynamics simulations for calculation of free energies of 

solutes which have large energy barriers between conformers. These solutes require either 

biased sampling techniques or very long molecular dynamics simulations to sample all relevant 

states[115]. In the GEMC-MEMC, the coupled-decoupled configurational-bias algorithm 

allows the simulation to rapidly jump between minimum energy conformers, leading to faster 

sampling of the relevant conformational space.  

Free energy calculations for alkanes-1-octanol were performed with only the TraPPE 

force field, and were in excellent agreement with prior simulations and experimental data. For 

n-alkane solvation in n-hexadecane and 2,2,4-trimethylpentane, simulations were performed 

with both the TraPPE and Mie potentials. The Mie potentials were found to offer superior 

performance compared to TraPPE, being in close agreement with experimental data for all 

solutes from methane to n-octane. TraPPE displayed good agreement with experiment for n-

alkane solutes with four or fewer carbons, but for larger n-alkanes, TraPPE under-predicted 

free energies of transfer with the difference increasing with solute size. 
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7.4 Partitioning of Fluorinated Alcohols 

In Chapter 6, free energies of solvation in water, 1-octanol, and n-hexadecane were 

calculated with Monte Carlo simulations in the isobaric-isothermal ensemble for a variety of 

fluorinated analogues of 1-octanol. The combination of SPC water and TraPPE-UA were found 

to provide a good qualitative reproduction of experimental data.  

Davli and Rossky concluded that the molecular basis for hydrophobicity exhibited by 

perfluoroalkanes was due to the larger volume occupied by fluorine compared to hydrogen 

atoms[272]. Similarly, this work has shown that the larger volume of fluorine atoms compared 

to hydrogen leads to the oleophobic behavior of fluoroalcohols. Fluorination of the 𝛼 and 𝛽 

carbons was found to have the greatest impact on the free energy of hydration and the free 

energy of solvation in 1-octanol. The addition of fluorine atoms to the alpha and beta carbons 

creates a steric hindrance to hydrogen bonding between the solute and the solvent. In 1-octanol 

and n-hexadecane, subtle effects of fluorination of methyl groups further away from the 

hydroxyl group on hydrogen bonding were observed. Down-chain fluorination increases the 

volume occupied by the solute, while intramolecular geometrical constraints and barriers to 

dihedral rotation limit the ability of 1-octanol to reorient to form hydrogen bonds with the 

solute. In n-hexadecane, reductions in the free energy of solvation with fluorination are largely 

due to increases volume occupied by fluorine atoms and their lower energy density.  
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APPENDIX A 

In this section, additional results with their numerical values for Mie potential in 

alkynes are provided. 

 
Figure A1: Electrostatic potential isosurfaces (ESP) determined from HF/6-31+g (d, p) ab initio 

calculations using Gaussian 09[136] in the plane formed by carbons in the molecule’s back 

bone. 
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Figure A2: Heats of vaporization predicted by the optimized Mie potentials (red symbols) and 

2CLJQ model (green symbols)[61] compared to experiment or correlation (solid line)[149, 

151, 154] for alkynes and propadiene. Figure S2A: ethyne (circles); propyne (triangles up); 1-

butyne (squares); 1-pentyne (plus); 1-hexyne (triangles down); 1-heptyne (crosses); 1-octyne 

(diamonds); 1-nonyne (triangles right); Figure S2B:  propadiene (circles); 2-butyne (triangles 

up); 2-pentyne (squares); 2-hexyne (diamonds).   
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Figure A3: Rotational barrier for the CHx–CH2–CH2–C(sp) torsion in alkynes. Predictions of 

MP2/aug-cc-PVTZ ab initio calculations (red circles); fit of cosine series (black solid line); 

OPLS cosine series for CHx–CH2–CH2– CHx torsion[139, 140] (green solid line). 

 

Effect of electrostatic interactions on the phase behavior and structure of short alkynes: 

 

Alkynes have a small dipole moment of approximately 0.7D, while ethyne has a 

quadrupole  moment of 20.4x10-40 C-m2[157]. To understand the impact of neglecting the small 

dipole and quadrupole moments on the predictive capability of the force field, additional 

parameters were optimized for ethyne and propyne models that included point charges. Partial 

charges for ethyne and propyne were determined from a CHELPG[275, 276] analysis of ab 

initio potential energy surfaces, generated with MP2 theory and the aug-cc-PVTZ basis set. Ab 

initio calculations were performed with Gaussian 09[136]. The resulting partial charges 

produce quadrupole and dipole moments that are in close agreement with experiment. Partial 

charges were placed on the nuclei of the hydrogen and carbon atoms. Then, Lennard-Jones 

parameters were optimized to reproduce experimental vapor pressures and saturated liquid 

densities. The resulting partial charges and Lennard-Jones parameters are listed in Table A1. 
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The hydrogen-carbon bond length was set at 1.062 Å, which was taken from prior empirical 

force fields[62] and ab initio calculations[138]. 

Table A1: Non-bonded parameters for ethyne and propyne force fields with electrostatic 

interactions. 

molecule pseudo-atom 휀𝑖/𝑘𝑏(𝐾) 𝜎𝑖  (Å)̇ 𝑛𝑖 qi 

ethyne H 0.0 0.0 - 0.26 

CH(sp) 87.50 3.590 16 -0.26 

propyne H 0.0 0.0 - 0.30 

CH(sp) 87.50 3.590 16 -0.40 

C(sp) 188.00 2.960 16 0.10 

 

 
Figure A4: Vapor-liquid coexistence curves predicted by the optimized Mie potentials without 

electrostatic interactions (red symbols) and with electrostatic interactions (green symbols), 

compared to experiment (solid line)[149] for ethyne and propyne. Experimental critical points 

(black stars)[151, 155] and predictions of simulation (filled symbols). Predictions of simulation 

are represented as ethyne (circles) and propyne (triangles).  
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Figure A5: Clausius-Clapeyron plots predicted by the optimized Mie potentials without 

electrostatic interactions (red symbols) and with electrostatic interactions (green symbols), 

compared to experiment (solid line)[149] for ethyne and propyne. Experimental critical points 

(black stars)[151, 155] and predictions of simulation (filled symbols). Predictions of simulation 

are represented as ethyne (circles) and propyne (triangles).  
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Figure A6: Comparison of radial distribution functions for propyne force fields with (dashed 

red) and without (solid black) explicit electrostatic interactions. Figure A6A: radial distribution 

functions for CH3-CH3 interactions; Figure A6B: radial distribution functions for C-C 

interactions.  
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Figure A7: Pressure-composition diagram for propane+propyne at 353.15 K. Data are 

represented by: Experiment (black lines)[159], Mie potentials without electrostatic interactions 

(red symbols) and with electrostatic interactions (green lines). 
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Table A2: Vapor-liquid coexistence data predicted by the optimized Mie potentials for ethyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

290 0.420(1) 0.0693(2) 40.84(6) 8.81(2) 0.636(3) 

280 0.4505(5) 0.05068(3) 32.00(8) 10.26(1) 0.706(2) 

270 0.4755(5) 0.03767(6) 24.69(7) 11.40(1) 0.760(3) 

260 0.4980(5) 0.02795(3) 18.68(6) 12.38(1) 0.805(3) 

250 0.5182(6) 0.02054(2) 13.81(6) 13.23(2) 0.843(4) 

240 0.5366(8) 0.01483(4) 9.95(5) 13.97(3) 0.875(6) 

230 0.5537(5) 0.01047(3) 6.95(5) 14.64(2) 0.904(8) 

220 0.570(1) 0.00718(2) 4.69(5) 15.26(4) 0.93(1) 

 

Table A3: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 

propyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

380 0.4417(9) 0.0821(2) 38.39(6) 10.99(2) 0.593(2) 

370 0.4728(2) 0.0626(2) 31.63(5) 12.84(2) 0.658(3) 

360 0.4982(1) 0.0486(1) 25.84(4) 14.34(1) 0.712(3) 

350 0.5200(3) 0.03808(9) 20.89(3) 15.586(9) 0.755(2) 

340 0.5394(7) 0.02985(5) 16.68(2) 16.65(2) 0.792(2) 

330 0.5569(7) 0.02329(4) 13.14(2) 17.60(3) 0.824(2) 

320 0.5734(8) 0.01801(3) 10.19(2) 18.46(4) 0.852(2) 

310 0.590(1) 0.01375(3) 7.77(2) 19.28(5) 0.878(3) 

300 0.605(1) 0.01035(2) 5.80(1) 20.04(4) 0.901(3) 

290 0.620(1) 0.00765(1) 4.24(1) 20.73(4) 0.921(3) 
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Table A4: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

butyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

410 0.4459(4) 0.0762(3) 29.58(5) 12.795(7) 0.616(4) 

400 0.4728(5) 0.0594(2) 24.65(3) 14.61(1) 0.674(3) 

390 0.4953(4) 0.0471(1) 20.37(2) 16.083(9) 0.721(2) 

380 0.5155(2) 0.03759(6) 16.68(1) 17.36(1) 0.760(2) 

370 0.5341(4) 0.02994(5) 13.51(1) 18.50(3) 0.793(2) 

360 0.5513(7) 0.02373(4) 10.80(1) 19.53(3) 0.823(2) 

350 0.5672(8) 0.01866(4) 8.52(1) 20.46(4) 0.849(2) 

340 0.5823(5) 0.01452(3) 6.62(1) 21.33(2) 0.872(3) 

330 0.5964(4) 0.01116(2) 5.06(1) 22.13(2) 0.893(3) 

320 0.6099(8) 0.00845(2) 3.79(1) 22.87(4) 0.912(3) 

310 0.623(1) 0.00629(2) 2.780(8) 23.57(5) 0.928(4) 

 

Table A5: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 2-

butyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

450 0.434(2) 0.096(2) 36.3(1) 11.7(1) 0.55(1) 

440 0.466(1) 0.0747(5) 30.73(5) 13.90(4) 0.609(5) 

430 0.491(1) 0.0592(1) 25.88(4) 15.67(3) 0.662(2) 

420 0.5120(6) 0.04754(8) 21.65(3) 17.11(3) 0.705(2) 

410 0.5311(5) 0.03838(5) 17.96(3) 18.38(3) 0.743(2) 

400 0.5490(5) 0.03097(4) 14.77(2) 19.52(3) 0.776(2) 

390 0.5654(3) 0.02491(4) 12.03(2) 20.54(2) 0.806(2) 

380 0.5809(2) 0.01992(4) 9.69(2) 21.49(2) 0.832(2) 

370 0.5958(5) 0.01582(3) 7.70(2) 22.38(2) 0.856(2) 

360 0.6100(9) 0.01244(1) 6.04(1) 23.20(3) 0.878(2) 

350 0.6229(8) 0.00967(1) 4.67(1) 23.95(3) 0.897(3) 

340 0.6346(7) 0.00742(2) 3.55(1) 24.62(3) 0.915(4) 

330 0.6464(7) 0.00561(2) 2.65(1) 25.26(3) 0.930(5) 
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Table A6: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

pentyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

450 0.434(2) 0.086(1) 27.32(4) 13.1(1) 0.58(1) 

440 0.4623(5) 0.0669(4) 23.03(2) 15.31(6) 0.641(4) 

430 0.4855(4) 0.0531(2) 19.31(2) 17.08(3) 0.693(2) 

420 0.5055(6) 0.04260(7) 16.07(2) 18.55(2) 0.736(2) 

410 0.5236(6) 0.03433(4) 13.26(2) 19.82(3) 0.772(2) 

400 0.5403(6) 0.02764(3) 10.84(2) 20.98(3) 0.803(2) 

390 0.5559(5) 0.02215(3) 8.77(2) 22.03(2) 0.831(2) 

380 0.5705(2) 0.01763(3) 7.01(1) 22.99(1) 0.857(2) 

370 0.5841(7) 0.01391(3) 5.53(1) 23.88(3) 0.880(3) 

360 0.597(1) 0.01086(2) 4.30(1) 24.71(6) 0.901(3) 

350 0.610(1) 0.00838(1) 3.29(1) 25.51(5) 0.919(3) 

340 0.6229(7) 0.006371(9) 2.47(1) 26.28(3) 0.935(4) 

 

Table A7: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 2-

pentyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

470 0.4446(5) 0.0825(5) 27.52(7) 14.14(5) 0.581(5) 

460 0.4728(6) 0.0651(3) 23.32(5) 16.28(3) 0.638(4) 

450 0.4961(4) 0.0522(2) 19.65(4) 18.056(8) 0.686(3) 

440 0.5162(3) 0.0422(1) 16.44(3) 19.559(9) 0.726(3) 

430 0.5345(4) 0.03418(8) 13.65(2) 20.88(2) 0.761(3) 

420 0.5511(5) 0.02767(7) 11.23(2) 22.06(3) 0.791(3) 

410 0.5663(7) 0.02231(6) 9.14(2) 23.13(4) 0.819(3) 

400 0.5805(7) 0.01789(4) 7.37(1) 24.10(4) 0.844(3) 

390 0.5942(6) 0.01424(3) 5.87(1) 25.02(4) 0.866(3) 

380 0.6074(6) 0.01123(2) 4.61(1) 25.89(3) 0.886(3) 

370 0.6201(8) 0.008755(7) 3.573(9) 26.70(4) 0.904(3) 

360 0.6322(9) 0.006740(6) 2.724(9) 27.46(5) 0.920(3) 

350 0.6439(9) 0.005113(8) 2.040(8) 28.18(5) 0.934(4) 
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Table A8: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

hexyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

490 0.426(1) 0.0891(3) 25.33(8) 14.10(4) 0.573(3) 

480 0.4542(4) 0.0701(2) 21.63(7) 16.51(2) 0.635(3) 

470 0.4773(4) 0.0564(1) 18.37(6) 18.44(2) 0.685(3) 

460 0.4971(3) 0.04596(7) 15.51(6) 20.03(2) 0.725(3) 

450 0.5149(3) 0.03759(7) 12.99(5) 21.42(2) 0.759(4) 

440 0.5312(5) 0.03072(7) 10.80(4) 22.68(3) 0.789(4) 

430 0.5466(6) 0.02503(6) 8.89(4) 23.85(4) 0.816(4) 

420 0.5611(5) 0.02028(5) 7.25(3) 24.92(4) 0.841(5) 

410 0.5748(4) 0.01633(4) 5.84(3) 25.92(3) 0.863(5) 

400 0.5878(4) 0.01303(3) 4.66(3) 26.86(2) 0.882(6) 

390 0.6001(7) 0.01030(3) 3.66(2) 27.73(4) 0.900(7) 

380 0.612(1) 0.00805(3) 2.83(2) 28.54(7) 0.915(8) 

370 0.623(1) 0.00621(3) 2.16(2) 29.33(7) 0.93(1) 

360 0.635(1) 0.00472(3) 1.62(2) 30.10(6) 0.94(1) 

 

Table A9: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 2-

hexyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

500 0.437(1) 0.0853(5) 24.90(6) 14.97(4) 0.577(5) 

490 0.4641(4) 0.06757(8) 21.27(6) 17.30(1) 0.635(2) 

480 0.4865(4) 0.05462(7) 18.08(5) 19.18(1) 0.681(3) 

470 0.5057(7) 0.04461(8) 15.28(5) 20.75(3) 0.720(3) 

460 0.5232(8) 0.03654(8) 12.81(5) 22.14(4) 0.753(4) 

450 0.5396(5) 0.02990(7) 10.66(5) 23.41(2) 0.783(4) 

440 0.5550(4) 0.02439(5) 8.80(4) 24.59(2) 0.810(5) 

430 0.5694(3) 0.01980(3) 7.19(4) 25.67(2) 0.834(5) 

420 0.5831(4) 0.01597(2) 5.81(4) 26.67(2) 0.856(6) 

410 0.596(1) 0.01278(2) 4.64(3) 27.61(6) 0.875(7) 

400 0.608(1) 0.01013(3) 3.66(3) 28.50(9) 0.893(8) 

390 0.621(1) 0.00794(3) 2.85(3) 29.35(8) 0.91(1) 

380 0.6329(4) 0.00614(4) 2.18(2) 30.19(3) 0.92(1) 

370 0.6443(6) 0.00469(4) 1.64(2) 30.96(3) 0.94(1) 
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Table A10: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

heptyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

520 0.4295(8) 0.0859(8) 22.25(5) 15.74(8) 0.576(7) 

510 0.4550(4) 0.0680(4) 19.08(4) 18.24(5) 0.636(5) 

500 0.4767(2) 0.0550(2) 16.29(4) 20.27(3) 0.685(4) 

490 0.49567(9) 0.0450(1) 13.83(3) 21.97(2) 0.725(3) 

480 0.5127(1) 0.0370(1) 11.66(3) 23.46(3) 0.759(4) 

470 0.5282(2) 0.0305(1) 9.76(3) 24.79(3) 0.788(4) 

460 0.5426(3) 0.02503(9) 8.11(3) 26.00(3) 0.814(4) 

450 0.5564(3) 0.02046(6) 6.67(3) 27.13(3) 0.838(5) 

440 0.5700(3) 0.01663(4) 5.44(3) 28.23(3) 0.860(5) 

430 0.5831(2) 0.01341(2) 4.38(3) 29.27(1) 0.879(6) 

420 0.5955(3) 0.01071(2) 3.49(2) 30.24(3) 0.897(7) 

410 0.6072(5) 0.00848(2) 2.74(2) 31.14(4) 0.913(8) 

400 0.6182(5) 0.00663(3) 2.13(2) 31.99(4) 0.93(1) 

390 0.6290(3) 0.00512(3) 1.62(2) 32.81(2) 0.94(1) 

 

 

Table A11: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

octyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

550 0.418(1) 0.0893(4) 20.84(6) 16.31(8) 0.563(4) 

540 0.4446(7) 0.0713(4) 17.96(5) 18.96(6) 0.618(5) 

530 0.4672(5) 0.0576(3) 15.42(4) 21.24(5) 0.669(5) 

520 0.4866(4) 0.0472(2) 13.17(4) 23.16(5) 0.711(4) 

510 0.5039(2) 0.0389(2) 11.19(3) 24.82(3) 0.746(4) 

500 0.5199(2) 0.0322(1) 9.44(3) 26.31(1) 0.777(4) 

490 0.5346(4) 0.02657(8) 7.90(2) 27.67(2) 0.805(4) 

480 0.5483(1) 0.02187(6) 6.57(2) 28.92(1) 0.829(4) 

470 0.5613(5) 0.01791(5) 5.41(2) 30.08(4) 0.851(4) 

460 0.5738(4) 0.01459(4) 4.41(1) 31.18(4) 0.871(4) 

450 0.5858(1) 0.01180(4) 3.56(1) 32.22(1) 0.889(5) 

440 0.5975(5) 0.00946(3) 2.84(1) 33.22(3) 0.905(5) 

430 0.6088(6) 0.00751(3) 2.241(9) 34.17(4) 0.919(5) 

420 0.6197(4) 0.00590(3) 1.742(8) 35.07(2) 0.932(6) 

410 0.6300(2) 0.00457(2) 1.334(6) 35.93(2) 0.943(6) 
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Table A12: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 1-

nonyne. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

570 0.4294(9) 0.0814(8) 17.73(6) 18.50(9) 0.571(7) 

560 0.4521(7) 0.0646(3) 15.27(5) 21.27(5) 0.630(5) 

550 0.4724(6) 0.0523(2) 13.11(4) 23.60(3) 0.681(4) 

540 0.4904(5) 0.0430(1) 11.20(4) 25.54(3) 0.721(4) 

530 0.5067(5) 0.0355(1) 9.51(3) 27.23(4) 0.754(4) 

520 0.5219(4) 0.0294(1) 8.03(3) 28.77(3) 0.784(5) 

510 0.5362(3) 0.02435(9) 6.73(3) 30.18(3) 0.810(5) 

500 0.5496(3) 0.02007(7) 5.60(2) 31.49(3) 0.833(5) 

490 0.5621(3) 0.01647(6) 4.61(2) 32.70(2) 0.854(5) 

480 0.5741(3) 0.01344(5) 3.77(2) 33.84(2) 0.873(6) 

470 0.5856(3) 0.01089(4) 3.05(2) 34.92(2) 0.890(6) 

460 0.5967(2) 0.00875(3) 2.44(1) 35.95(2) 0.905(6) 

450 0.6075(2) 0.00697(3) 1.93(1) 36.93(2) 0.919(7) 

440 0.6180(3) 0.00549(2) 1.50(1) 37.89(3) 0.931(8) 

430 0.6283(4) 0.00427(2) 1.157(8) 38.81(4) 0.942(8) 

420 0.6383(5) 0.00328(2) 0.876(7) 39.70(4) 0.951(9) 

 

Table A13: Vapor-liquid coexistence data predicted by the optimized Mie potentials for 

propadiene. 

T (K) ρ
l
 (g/cm3) ρ

v
 (g/cm3) P (bar) ΔH

v
 (kJ/mol) Z 

360 0.4561(4) 0.0704(2) 33.19(3) 11.08(2) 0.631(2) 

350 0.4831(4) 0.0543(1) 27.26(2) 12.58(2) 0.691(2) 

340 0.5058(4) 0.04256(6) 22.17(2) 13.79(1) 0.738(1) 

330 0.5260(2) 0.03347(4) 17.82(1) 14.819(6) 0.777(1) 

320 0.5443(3) 0.02623(3) 14.13(2) 15.72(2) 0.811(2) 

310 0.5613(7) 0.02041(2) 11.04(2) 16.53(3) 0.841(2) 

300 0.577(1) 0.01571(2) 8.48(2) 17.26(4) 0.867(2) 

290 0.592(1) 0.01192(2) 6.39(2) 17.93(4) 0.890(3) 

280 0.6065(9) 0.00890(2) 4.71(2) 18.56(3) 0.911(4) 
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Table A14: Deviation of vapor pressures and saturated liquid densities predicted by the 

optimized Mie potentials from experiment and correlations[149, 151, 154]. 

 %ERR P %ERR ρL 

compound min. max. avg. med. min. max. avg. med. 

ethyne 0.37 2.40 1.20 1.16 0.17 1.39 0.77 0.74 

propyne 0.08 6.67 2.60 2.00 0.00 0.86 0.31 0.13 

1-butyne 0.64 3.01 2.12 2.34 1.58 2.99 2.05 1.88 

2-butyne 0.00 3.28 1.52 1.42 0.13 0.66 0.36 0.32 

1-pentyne 6.07 8.19 7.57 7.93 0.19 2.45 1.25 1.14 

2-pentyne 10.85 31.85 21.48 21.58 0.78 5.98 2.15 1.38 

1-hexyne 1.35 4.22 3.39 3.86 2.54 3.81 3.01 2.91 

2-hexyne 15.67 31.91 23.78 23.81 1.27 5.96 2.64 2.03 

1-heptyne 0.11 4.34 3.08 3.83 1.47 2.62 1.75 1.69 

1-octyne 0.03 3.00 2.04 2.44 1.36 2.61 1.59 1.46 

1-nonyne 0.51 2.77 1.34 0.99 0.89 1.05 0.96 0.96 

propadiene 2.29 10.50 6.17 5.94 0.12 1.03 0.40 0.22 
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Table A15: Absolute error in critical temperature (TC), pressure (PC), density (ρC), and normal 

boiling point (TNBP), predicted by the optimized Mie potentials, compared to experiment and 

correlations[154, 155, 158]. 

Compound %ERR TC %ERR PC %ERR ρC %ERR TNBP 

ethyne 1.22 7.55 0.82 0.65 

propyne 0.08 1.74 1.67 0.49 

1-butyne 0.77 0.75 5.37 0.91 

2-butyne 0.37 2.99 3.38 0.09 

1-pentyne 1.37 3.77 0.34 0.47 

2-pentyne 4.41 1.90 1.64 0.56 

1-hexyne 0.60 0.92 3.51 0.04 

2-hexyne 4.29 2.97 0.04 1.13 

1-heptyne 0.11 3.48 2.14 0.19 

1-octyne 0.31 4.56 3.24 0.07 

1-nonyne 0.50 5.45 4.19 0.31 

propadiene 1.63 2.76 2.07 0.71 

     

 

Table A16: Selected phase coexistence data for propane(1)+propyne(2) predicted by NVT 

Gibbs ensemble Monte Carlo simulations for  the optimized Mie potentials. The maximum 

uncertainty in the mole fractions is 0.009. 
278.15 K 303.15 K 328.15 K 353.15 K 

P (bar) x1 y1 P (bar) x1 y1 P (bar) x1 y1 P (bar) x1 y1 

2.80(2) 0.000 0.000 6.2(1) 0.000 0.000 12.4(2) 0.000 0.000 22.3(1) 0.000 0.000 

3.56(4) 0.199 0.332 6.9(1) 0.099 0.160 13.2(1) 0.099 0.141 23.7(3) 0.098 0.125 

3.77(1) 0.299 0.455 7.31(2) 0.198 0.294 14.06(2) 0.198 0.266 24.4(3) 0.197 0.242 

4.10(4) 0.399 0.563 8.01(7) 0.299 0.417 14.9(3) 0.297 0.378 25.3(1) 0.298 0.353 

4.33(5) 0.499 0.654 8.43(1) 0.398 0.519 15.56(7) 0.396 0.482 26.2(2) 0.398 0.455 

4.62(3) 0.599 0.733 8.84(1) 0.498 0.613 16.28(4) 0.497 0.580 27.6(1) 0.498 0.553 

4.90(2) 0.699 0.807 9.43(9) 0.598 0.701 17.0(1) 0.597 0.672 28.3(2) 0.598 0.647 

5.12(5) 0.799 0.874 9.90(6) 0.699 0.782 17.67(6) 0.698 0.758 29.2(1) 0.698 0.736 

5.46(1) 0.900 0.940 10.27(3) 0.799 0.857 18.54(2) 0.798 0.842 30.3(1) 0.798 0.826 

5.71(2) 1.000 1.000 10.68(2) 0.899 0.930 19.0(1) 0.899 0.921 31.2(1) 0.899 0.913 

   11.08(1) 1.000 1.000 19.87(2) 1.000 1.000 32.6(2) 1.000 1.000 
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Table S17: Selected phase coexistence data for propene(1)+propyne(2) predicted by NVT 

Gibbs ensemble Monte Carlo simulations for  the optimized Mie potentials. The maximum 

uncertainty in the mole fractions is 0.009. 
278.15 K 303.15 K 328.15 K 353.15 K 

P (bar) x1 y1 P (bar) x1 y1 P (bar) x1 y1 P (bar) x1 y1 

2.8(2) 0.000 0.000 6.48(9) 0.000 0.000 12.4(1) 0.000 0.000 22.15(6) 0.000 0.000 

4.0(2) 0.198 0.373 7.10(6) 0.099 0.181 13.36(6) 0.098 0.159 23.9(2) 0.098 0.137 

4.18(6) 0.299 0.509 7.9(1) 0.198 0.331 14.61(9) 0.197 0.292 25.30(9) 0.195 0.262 

4.69(6) 0.399 0.604 8.56(9) 0.298 0.454 15.92(6) 0.297 0.412 27.1(2) 0.296 0.375 

4.80(1) 0.499 0.691 9.34(4) 0.398 0.556 16.9(2) 0.397 0.515 28.7(3) 0.395 0.477 

5.4(1) 0.599 0.766 9.98(5) 0.498 0.648 17.94(8) 0.497 0.608 30.3(3) 0.495 0.573 

5.72(5) 0.699 0.832 10.69(4) 0.598 0.730 19.15(9) 0.597 0.696 31.79(1) 0.595 0.663 

6.15(4) 0.799 0.892 11.33(3) 0.698 0.805 20.06(4) 0.697 0.777 33.8(1) 0.695 0.749 

6.58(6) 0.900 0.948 12.00(5) 0.799 0.873 21.3(1) 0.798 0.854 34.9(3) 0.796 0.834 

7.04(3) 1.000 1.000 12.74(4) 0.899 0.938 22.7(2) 0.899 0.928 36.4(2) 0.898 0.917 

   13.4(1) 1.000 1.000 23.43(4) 1.000 1.000 38.06(3) 1.000 1.000 

 

 

Table A18: Selected phase coexistence data for propadiene(1)+propyne(2) predicted by NVT 

Gibbs ensemble Monte Carlo simulations for  the optimized Mie potentials. The maximum 

uncertainty in the mole fractions is 0.009. 
278.15 K 328.15 K 353.15 K 

P (bar) x1 y1 P (bar) x1 y1 P (bar) x1 y1 

6.3(3) 0.000 0.000 12.6(2) 0.000 0.000 22.37(6) 0.000 0.000 

6.7(3) 0.099 0.138 12.91(9) 0.099 0.128 23.22(4) 0.099 0.119 

6.9(1) 0.199 0.266 13.47(8) 0.199 0.248 23.9(3) 0.198 0.232 

7.22(8) 0.299 0.380 13.9(2) 0.299 0.359 24.5(2) 0.298 0.340 

7.6(1) 0.399 0.480 14.80(6) 0.399 0.459 24.96(8) 0.398 0.443 

7.9(2) 0.499 0.579 15.23(3) 0.499 0.558 25.88(8) 0.498 0.541 

8.36(3) 0.599 0.668 15.69(9) 0.599 0.651 26.5(2) 0.598 0.636 

8.4(1) 0.699 0.757 16.33(3) 0.699 0.741 27.03(9) 0.699 0.728 

8.86(3) 0.800 0.842 16.3(1) 0.799 0.830 27.8(1) 0.799 0.820 

8.94(9) 0.900 0.920 16.8(3) 0.900 0.916 28.4(1) 0.900 0.910 

9.22(9) 1.000 1.000 16.93(3) 1.000 1.000 28.99(1) 1.000 1.000 
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APPENDIX B 

In this section, the detailed computational procedures, mathematical methods of 

Molecular Exchange Monte Carlo (MEMC) move, and additional results are provided.  

 

Defining the exchange sub-volume vectors and transformation matrix 𝑻𝑽𝑬𝑿: 

An exchange sub-volume is a rectangular cuboid defined by three mutually orthogonal 

vectors 𝒂, 𝒃, and 𝒄. Vector 𝒄 is either defined by the backbone orientation of the selected 

molecule or randomly defined according to a uniform distribution. For a given vector 𝒄, vectors 

𝒂 and 𝒃 are generated based on the following Gram-Schmidt algorithm. 

1- Set 𝒂 and 𝒃 to two independent vectors, such as 𝒊 and 𝒋. (if 𝒄 was in the same plane as 𝒂 

and 𝒃, set either of 𝒂 or 𝒃 to 𝒌). 

2- 𝒆𝟑 =
𝒄

|𝒄|
 

3- 𝒃 = 𝒃 − (𝒃. 𝒆𝟑)𝒆𝟑  

4- 𝒆𝟐 =
𝒃

|𝒃|
 

5- 𝒂 = 𝒂 − (𝒂. 𝒆𝟑)𝒆𝟑 − (𝒂. 𝒆𝟐)𝒆𝟐  

6- 𝒆𝟏 =
𝒂

|𝒂|
 

where |𝒂| is the norm of vector 𝒂, and (𝒂. 𝒃) represent scalar product of the two vectors. 

To perform MEMC operations such as, counting the number of small molecules in sub-volume 

𝑉𝐸𝑋, inserting small molecules in 𝑉𝐸𝑋, and aligning small and large molecules backbones with 

z-axis of the sub-volume, we need to define a new coordinate system based on the three unit 

vectors 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑. To transform the coordinates from the simulation box reference frame 

to the one defined by 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑, we apply the transformation matrix 𝑻𝑽𝑬𝑿
−1 and for the 

inverse transformation we apply 𝑻𝑽𝑬𝑿 as defined below: 
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 𝑻𝑽𝑬𝑿 = [

𝑒11 𝑒21 𝑒31
𝑒12 𝑒22 𝑒32
𝑒13 𝑒23 𝑒33

]  (B1) 

 𝑻𝑽𝑬𝑿
−1 = 𝑻𝑽𝑬𝑿

𝑇  =  [

𝑒11 𝑒12 𝑒13
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

] (B2) 

Defining a 2D random rotation matrix 𝑹𝒛 about the z-axis of the sub-volume: 

In an MEMC move, the backbone of the molecule is aligned with 𝒆𝟑 (z-axis of the sub-

volume). To perform random rotation around the backbone, a rotation matrix 𝑹𝒛 is defined 

according to the following procedure: 

1- Set 𝜃 to a random number between 0 and 1. 

2- 𝜃 = 𝜃 × 2 × 𝜋 

3- 𝜃 = 𝜃 − 𝜋 

 𝑹𝒛 = [
cos 𝜃 − sin𝜃 0
sin 𝜃 cos𝜃 0
0 0 1

] (B3) 

Defining a 3D random rotation matrix 𝑹𝒔: 

In the MEMC move, to perform rotation on a sphere uniformly, the fast random rotation 

matrices algorithm by Arvo is used. To construct the rotation matrix, perform the following 

steps. 

1- Set 𝜃 to a random number between 0 and 1. 

2- 𝜃 = 𝜃 × 2 × 𝜋 

3- 𝜃 = 𝜃 − 𝜋 

4- Set 𝜑 to a random number between 0 and 1. 

5- 𝜑 = 𝜑 × 2 × 𝜋 

6- Set 𝑟 to a random number between 0 and 1. 

7- Construct the 2D rotation 𝑹𝒛, using 𝜃. 

8- Define 𝒗 as 
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 𝒗 = [

√𝑟 sin𝜑

√𝑟 cos𝜑

√1 − 𝑟

]  (B4) 

 

9- Defining the Householder matrix 𝑯 = 𝑰 − 2 𝒗 𝒗𝑇 

10- The final rotation matrix can be expressed as 

 𝑹𝒔 = −𝑯 𝑹𝒛 = 2 𝒗 𝒗
𝑇𝑹𝒛 − 𝑹𝒛 (B5) 

Defining the random orientation vector 𝒄 for the exchange sub-volume 𝑽𝑬𝑿: 

To generate a random orientation for the exchange sub-volume 𝑉𝐸𝑋, we generate the 

vector 𝒄 according to the following algorithm: 

1- 𝒄 =  𝒌  

2- Construct the 3D rotation matrix 𝑹𝒔 

3- 𝒄 = 𝑹𝒔 𝒄  

Finding the number of small molecules within the sub-volume 𝑽𝑬𝑿: 

To count the number of small molecules inside the 𝑉𝐸𝑋, with the geometric center 

defined as vector 𝒓𝒄 and dimensions of 𝑤 × 𝑤 × 𝑙, the following steps are performed. Repeat 

steps 1-3 for all the small molecules within the simulation box. 

1- Calculate the minimum image distance between the geometric center of the sub-volume 

and centroid of the molecule: 𝚫𝒓 = 𝒓𝒄 − 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅. 

2- Transform the vector to the sub-volume coordinate system: 𝚫𝒓′ = 𝑻𝑽𝑬𝑿
−1 𝚫𝒓 

3- If Δ𝑟1
′ < 0.5𝑤 and Δ𝑟2

′ < 0.5𝑤 and Δ𝑟3
′ < 0.5𝑙, the molecule is located within the sub-

volume. 

Finding a random location for centroid of small molecule, within the sub-volume 𝑽𝑬𝑿: 

1- Set 𝑢1, 𝑢2, and 𝑢3 to a random number between 0 and 1, independently. 

2- 𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑢1 × 𝑤 − 0.5 𝑤, 𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑢2 ×𝑤 − 0.5 𝑤, 𝑧𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑢3 × 𝑙 − 0.5 𝑙 



 

 

164 

3- Transform the centroid coordinate vector 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅, to the sub-volume coordinate system: 

𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅
′ = 𝑻𝑽𝑬𝑿 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅 

4- Shift the 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅
′  to the geometric center of the sub-volume 𝒓𝒄: 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅

′′ = 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅
′ +

𝒓𝒄 

Generate Rotational trial around centroid: 

1- Construct the 3D rotation matrix 𝑹𝒔 

2- Repeat the following steps, for all atoms in the molecule (𝑖 = 0, 1, … , 𝑛) 

a. Shift the atom 𝑖 to the origin with respect of its centroid: 𝒓𝒊
′ = 𝒓𝒊 − 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅 

b. Rotate the atom 𝑖 around origin: 𝒓𝒊
′′ = 𝑹𝒔 𝒓𝒊

′ 

c. Shift the atom 𝑖 back to its location: 𝒓𝒊
′′′ = 𝒓𝒊

′′ + 𝒓𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅  

Generate Rotational trial around the molecule’s backbone (aligned with z-axis of the sub-

volume): 

To generate the rotational trial around backbone of the molecule, the molecule’s 

backbone must be aligned with predefined sub-volume 𝑉𝐸𝑋 system coordinate, 𝑻𝑽𝑬𝑿. To align 

the molecule with the 𝑉𝐸𝑋, the transformation matrix of molecule system coordinate 𝑻𝑴 is 

defined as follow: 

1- Shift the molecule coordinates to the origin with respect to its centroid. 

2- Calculate the minimum image vector of two specific atoms of the molecule 𝚫𝒓 that 

represent the orientation of the molecule’s backbone. 

3- Set 𝒄 to this vector: 𝒄 =  𝚫𝒓 

4- Construct transformation matrix 𝑻𝑴 of the molecule using the Gram-Schmidt algorithm. 

5- Transform the molecule coordinates to the simulation box coordinate system, where 𝒄 is 

aligned with the z-axis. Repeat the following step for all atoms in the molecule (𝑖 =

0, 1, … , 𝑛) 

a. 𝒓𝒊
′ = 𝑻𝑴

−1 𝒓𝒊 
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Once the molecule coordinates are transformed, rotational trials around the z-axis are 

generated, molecule coordinates are transformed to 𝑉𝐸𝑋 system coordinate, and shifted to the 

geometric center of the sub-volume 𝒓𝒄, as follows: 

6- Construct the 2D rotational matrix 𝑹𝒁. 

7- Repeat the following step for all atoms in the molecule (𝑖 = 0, 1, … , 𝑛) 

a. 𝒓𝒊
′′ = 𝑹𝒁 𝒓𝒊

′ 

b. 𝒓𝒊
′′′ = 𝑻𝑽𝑬𝑿 𝒓𝒊

′′ 

c. 𝒓𝒊
′′′ = 𝒓𝒊

′′′ + 𝒓𝒄 

Forcefield: 

Mie potential has been optimized for noble gases[126, 127], linear and branched 

alkane[24, 124], n-alkyne[64]. All non-bonded parameters used in this work are listed in Table 

B1. 

Table B1: Non-bonded parameters for n-alkanes, perfluoro-alkanes[24], branched 

alkanes[124], and SPC/E water[188]. 

Pseudo-atom 휀𝑖/𝑘𝑏(𝐾) 𝜎𝑖  (Å) 𝑛𝑖 𝑞𝑖 

CH4 161.00 3.740 14 0.00 

CH3 121.25 3.783 16 0.00 

CH2 61.00 3.990 16 0.00 

CH (CN > 4, S/L) 14.00 4.700 16 0.00 

C (CN ≤ 4, S/L) 1.45 6.100 16 0.00 

C (CN > 4, S/L) 1.20 6.200 16 0.00 

CF3 155.75 4.475 36 0.00 

CF2 72.20 4.750 44 0.00 

O 78.21 3.167 12 -0.8476 

H 0.00 0.00 0.00 0.4238 
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Fixed bond lengths for n-alkanes, perfluoro-alkane[24], branched alkanes[124], and 

SPC/E water[188] were used to connect pseudo-atoms and are listed in Table B2. Equilibrium 

bond angles and force constants are listed in Table B2. 

Table B2: Bonded parameters for n-alkanes, perfluoro-alkane[24], branched alkanes[124], and 

SPC/E water[188]. 

Bond type Bond length (Å) Angle type 𝜃0(degree) 𝑘𝜃/𝑘𝑏 (K.rad-2) 

CH2−CH3 1.54 CH3−CH2−CH2 114 31250 

CH2−CH2 1.54 CH2−CH2−CH2 114 31250 

CH2−CH2 1.54 C−CH2−CH 114 31250 

CH−CH3 1.54 CH3−CH−CH3 112 31250 

CH−CH2 1.54 CH3−CH−CH2 112 31250 

C−CH3 1.54 CH3−C−CH3 109.47 31250 

C−CH2 1.54 CH3−C−CH2 109.47 31250 

CF2−CF3 1.54 CF3−CF2−CF2 114 31250 

CF2−CF2 1.54 CF2−CF2−CF2 114 31250 

O−H 1.00 H−O−H 109.47 Fixed 

 

Dihedral parameters are listed in Table B3. Fourier constants for alkanes were taken 

from OPLS-UA[139, 140] and for perfluoroalkanes, more accurate seven term cosine series 

were used.   
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Table B3: Torsional parameters for n-alkanes, perfluoro-alkane[24], branched alkanes[124], 

and SPC/E water[188]. 

torsion 𝑛 𝑐𝑛/𝑘𝑏 (K) 𝛿𝑛 

CHx—(CH2)—(CH2)—CH2 1 335.03 0 

2 -68.19 π 

3 791.32 0 

CHx—(CH2)—(CH)—CHy 0 -251.06 0 

 1 428.73 0 

 2 -111.85 π 

 3 441.27 0 

CHx—(CH2)—(C)—CHy 3 461.29 0 

CFx—(CF2)—(CF2)—CFy 0 -1577.68 0 

1 791.61 0 

2 333.65 0 

3 854.01 0 

4 349.25 0 

5 211.51 0 

6 117.66 0 

7 -83.44 0 
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Additional Results: 

In this section, the numerical results and additional data are provided.  

Table B4: Selected phase coexistence data for perfluorobutane(1)+n-butane(2) predicted by 

grand canonical Monte Carlo simulations using Mie potentials[24]. Uncertainty in data are 

presented by the numbers in parenthesis.  

P (bar) x1 y1 

0.68(3) 0.02(1) 0.10(5) 

0.87(2) 0.12(1) 0.34(2) 

0.92(1) 0.20(2) 0.40(1) 

0.97(1) 0.36(2) 0.472(8) 

0.981(5) 0.50(3) 0.517(5) 

0.980(3) 0.59(3) 0.553(3) 

0.963(5) 0.709(7) 0.610(1) 

0.928(6) 0.802(2) 0.680(1) 

0.855(4) 0.908(3) 0.806(1) 

0.747(3) 1.000 1.000 
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Table B5: Vapor-liquid coexistence data predicted from GCMC+histogram reweighting 

simulations using ME-2 method for SPC/E water. 

T (K) ρ
l
 (kg/m3) ρ

v
 (kg/m3) P (bar) ΔH

v
 (kJ/mol) 

600 535(3) 90(2) 102.7(7) 15.6(2) 

580 615(2) 52.1(8) 74.7(2) 21.4(2) 

560 675(2) 33.0(1) 53.54(9) 25.76(3) 

540 720(1) 21.51(6) 37.54(6) 29.09(3) 

520 756(1) 14.11(5) 25.71(5) 31.77(4) 

500 787(1) 9.17(4) 17.12(4) 34.01(3) 

480 818(1) 5.86(2) 11.04(2) 36.01(6) 

460 846(2) 3.64(1) 6.84(2) 37.97(8) 

440 871(1) 2.173(5) 4.05(2) 39.69(4) 

420 896(2) 1.241(3) 2.26(1) 41.31(6) 

400 917(2) 0.669(4) 1.19(1) 42.92(4) 

380 935(1) 0.336(3) 0.576(5) 44.29(5) 

360 953(2) 0.155(1) 0.255(3) 45.59(3) 

340 969(1) 0.065(1) 0.101(1) 46.74(4) 

320 984(1) 0.024 0.035 47.94(4) 

300 996(2) 0.007 0.010 49.19(5) 

280 1007(5) 0.002 0.003 50.4(1) 
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The acceptance rate of inserting or removing neopentane was 68 times lower than the 

acceptance rate for exchanging neopentane with 2,2,4-trimethylpentane and vice versa via the 

ME-2 algorithm. This shows that insertion of neopentane is the rate limiting step in the process. 

In order to improve the acceptance rate for insertions of neopentane, CBMC angle and dihedral 

trials were increased to 500, and the number of CBMC trials for the first atom and remaining 

atoms were increased to 16 and 10, respectively. In Table B6, a detailed comparison is 

presented for the acceptance rates for direct swaps of neopentane and 2,2,4-trimethylpentane, 

MEMC moves, effective acceptance rates and effective acceptance rates per CPU time. 

 

Table B6: Comparison of acceptance rates for swaps of the impurity molecule (neopentane), 

identity exchange via the MEMC algorithm, and swaps performed with standard 

configurational-bias Monte Carlo for 2,2,4-trimethylpentane.  
T (K) %𝑃𝐼𝑚𝑝−𝑎𝑐𝑐  %𝑃𝑆𝑤𝑖𝑡𝑐ℎ−𝑎𝑐𝑐 %𝑃𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒−𝑎𝑐𝑐 %𝑃𝑎𝑐𝑐 Effective acceptance 

per CPU time (1/s) 

Relative acceptance  

efficiency 

 swap ME-2 ME-3 ME-2 ME-3 CBMC CBMC ME-2 ME-3 ME-2 ME-3 

280 0.017 1.19 0.05 0.039 0.099 0.0002 0.0005 0.244 0.042 520.2 90.0 

330 0.168 2.60 0.18 0.183 0.077 0.0023 0.0047 1.312 0.250 278.7 53.3 

390 1.30 5.89 0.71 0.878 0.393 0.036 0.0745 5.504 1.023 73.9 13.7 

450 6.05 10.26 1.56 3.466 1.067 0.338 0.745 22.40 2.779 30.1 3.73 

510 18.0 21.76 3.43 7.887 2.337 1.510 3.520 49.02 5.576 13.9 1.58 
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Figure B1: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-1 algorithm. 
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Figure B2: Probability distributions predicted from gas (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2960, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =
−2000) and liquid (𝜇𝑏𝑢𝑡𝑎𝑛𝑒 = −2840, 𝜇𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = −2000 ) phase GCMC simulations of 

methane+n-butane at 277 K. Solid lines denote the probability distributions for n-butane 

(black) and methane (blue) using standard configurational-bias insertions and deletions. 

Dashed lines denote the probability distributions for n-butane (red) and methane (green) using 

the ME-2 algorithm. 
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Figure B3: Efficiency and standard deviation in methane+n-butane binary mixture at 255 K. 

Lines represent the efficiency and uncertainty in n-butane distribution probability; standard 

CBMC method (black), ME-1 (red), ME-2 (green), and ME-3 (blue). MEMC move with 

exchanging one n-butane with one methane represented by solid lines, exchanging one n-

butane with two methane molecules represented by dashed lines.  
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Figure B4: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of one methane with one n-butane, 

respectively. 

 

 



 

 

175 

 

Figure B5: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.6 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of one methane with one n-butane, 

respectively. 
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Figure B6: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.1 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 
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Figure B7: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.3 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 
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Figure B8: Molecule probability distribution in methane+n-butane binary mixture system at 

𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 = 0.6 and 255 K. Lines in magenta, green, blue, red, and black represent the 

probability distribution of n-butane after 1, 5, 10, 15, and 20 million MC steps, respectively. 

(A) represent probability distribution using standard insertion and deletion with coupled-

decoupled CBMC technique, (B), (C), and (D) represent probability distribution using ME-1, 

ME-2, and ME-3 method with exchanging ratio of two methane molecules with one n-butane, 

respectively. 

 

In Figure B9, the effect of CBMC parameters on perfluorobutane insertion/deletion 

acceptance and acceptance efficiency of standard CBMC and ME methods are provided. For 

perfluorobutane+butane with an exchange ratio of 1, both ME-2 and ME-3 are independent 

from first site atom trials, while ME-1 and standard CBMC are dependent to this variable. The 

maximum acceptance 0.09% and acceptance efficiency 0.91 (1/sec) for standard CBMC is 

achieved at 18 trials for the first atom site and 12 trials for remaining atoms. In the ME-1 

method, increasing both variables would lead to increases in acceptance but decreases in the 

acceptance efficiency. Using 2 trials for the centroid position and 1 trial for molecular rotation 
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results in an acceptance rate of 0.008% and acceptance efficiency of 0.45 (1/sec). In the case 

of ME-2, by increasing the number of secondary site trials, the acceptance increases while 

acceptance efficiency decreases. The maximum acceptance efficiency of 114 (1/sec) is 

achieved by using 1 trial for molecular rotation, which leads to 1.65% acceptance. The behavior 

of the ME-3 method is similar to the standard CBMC method, where the maximum acceptance 

of 3.85% and acceptance efficiency of 26.3 (1/sec) was achieved by using 18 trials for the first 

atom and 12 trials for the remaining atoms. Comparing acceptance efficiency of ME methods 

with standard CBMC using the optimum CBMC parameters, ME-2 and ME-3 are 120 and 28 

more efficient, respectively. For ME-1, acceptance efficiency decreases by a factor of 2. 
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Figure B9: Acceptance and acceptance efficiency in perfluorobutane+n-butane binary mixture 

at 259.95 K and composition of 0.5. Lines represents acceptance and acceptance efficiency of 

perfluorobutane insertion in various CBMC trials for the site. Standard CBMC (black), ME-1 

(red), ME-2 (green), and ME-3 (blue), 2 trials(circle), 6 trials (squares), 12 trials (triangles), 18 

trials (diamonds). MEMC moves were performed with an exchange ratio of one to one.  
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Figure B10: Molecule probability distribution in perfluorobutane+n-butane binary mixture 

system at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.1 and 259.95 K. Lines in magenta, green, blue, red, and black represent 

the probability distribution of perfluorobutane after 1, 5, 10, 15, and 20 million MC steps, 

respectively. (A) represent probability distribution using standard insertion and deletion with 

coupled-decoupled CBMC technique, (B), (C), and (D) represent probability distribution using 

the ME-1, ME-2, and ME-3 method with exchanging ratio of one n-butane with one 

perfluorobutane, respectively.  
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Figure B11: Molecule probability distribution in perfluorobutane+n-butane binary mixture 

system at 𝑥𝑏𝑢𝑡𝑎𝑛𝑒 = 0.9 and 259.95 K. Lines in magenta, green, blue, red, and black represent 

the probability distribution of perfluorobutane after 1, 5, 10, 15, and 20 million MC steps, 

respectively. (A) represent probability distribution using standard insertion and deletion with 

coupled-decoupled CBMC technique, (B), (C), and (D) represent probability distribution using 

ME-1, ME-2, and ME-3 method with exchanging ratio of one n-butane with one 

perfluorobutane, respectively. 
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Figure B12: Clausius-Clapeyron plot for SPC/E water predicted from GCMC+histogram 

reweighting simulations. NIST Chemistry WebBook[158] (solid lines), values obtained by 

Boulougouris et. al.[189], (green circles) ME-2 algorithm (red squares), and ME-3 algorithm 

(blue triangles). 
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Figure B13: Vapor-liquid coexistence curve for 2,2,4-trimethylpentane predicted from 

GCMC+histogram reweighting simulations using Mie potentials[124]. Experimental data 

(solid lines)[151], ME-3 algorithm (red circles), and prior calculations using only 

configurational-bias Monte Carlo (green circles)[124]. 
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Figure B14: Standard deviation (left panel) and efficiency (right panel) for GCMC simulations 

for 2,2,4-trimethylpentane in the liquid phase. Configurational-bias insertions (black), ME-2 

(red) and ME-3 (green). 
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APPENDIX C 

In this section, additional results with their numerical value for Molecular Exchange 

Monte Carlo move in GEMC simulation, are provided. 

 

Figure C1: Schematic of the ME-3 algorithm for large molecule transfer from box 2 (gas phase) 

into box 1 (liquid phase) and transfer of two small molecules from box 1 into box 2. Selected 

or inserted molecule (green), trial position (light red), and actual position of the molecule (solid 

red). Top row, represents the exchange of two small molecules with one large molecule in box 

1. The sub-volume is defined as the orange box. (A) Defining the sub-volume with a random 

orientation, where its geometric center is placed at a randomly selected small molecule’s 

centroid, identifying the small molecules within the sub-volume, and randomly pick one small 

molecule. (B) Generating CBMC trials (3D rotation and centroid location) for the second small 

molecules and then removing it. (C) Generating CBMC 3D rotational trials for the first small 

molecule and then removing it. (D) Placing the predefined atom of the large molecule at the 

geometric center of the sub-volume and growing the large molecule using coupled-decoupled 

CBMC technique, and inserting it. Bottom row, represents the exchange of one large molecule 

with two small molecules in box 2. (A) Selecting a random large molecule. (B) Generating 

coupled-decoupled CBMC trials and then removing it. (C) Generating CBMC trials (3D 

rotation and centroid location) for the first small molecules and then inserting it. (D) Generating 

CBMC trials (3D rotation and centroid location) for the second small molecule and then 

inserting it.  
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Figure C2: Schematic of the ME-3 algorithm for large molecule transfer from box 1 (liquid 

phase) into box 2 (gas phase) and transfer of two small molecules from box 2 into box 1. 

Selected or inserted molecule (green), trial position (light red), and actual position of the 

molecule (solid red). Top row, represents the exchange of one large molecules with two small 

molecules in box 1. The sub-volume is defined as the orange box. (A) Defining the sub-volume 

with a random orientation with geometric center placed at the predefined atom of the large 

molecule and identifying the small molecules within the sub-volume. (B) Generating coupled-

decoupled CBMC trials for the large molecule and then removing it. (C) Placing the centroid 

of the first small molecule at the geometric center of the sub-volume, generating the CBMC 

3D rotational trials, and then inserting it into the sub-volume. (D) Generating CBMC trials (3D 

rotation and centroid location) for the second small molecule and then inserting it into the sub-

volume. Bottom row, represents the exchange of two small molecules with one large molecule 

in box 2. (A) Selecting two random small molecules. (B) Generating CBMC trials (3D rotation 

and centroid location) for the first small molecule and then removing it. (C) Generating CBMC 

trials (3D rotation and centroid location) for the second small molecule and then removing it. 

(D) Generating coupled-decoupled CBMC trials for the large molecule and then inserting it.  
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Figure C3: Pressure composition diagram for methane+n-butane at 277 K predicted from NPT-

GEMC simulations using Mie potentials[24] using an exchange ratio of one n-butane with two 

methane molecules. Experimental data (black circles)[181], reference data[83] (green lines), 

ME-2 algorithm (red squares), and ME-3 algorithm (blue triangles). Uncertainty for methane 

composition is less than 0.01 and 0.004 in liquid and vapor phase, respectively. 
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Table C1: Average solute transfer acceptance percentages in GEMC simulations for n-alkane 

solvation in 1-octanol, n-hexadecane, or +2,2,4-trimethylpentane, using Mie potentials[24, 

124]. The coupled-decoupled configurational-bias swap acceptance percentages are presented 

for the small solute swap. The acceptance percentages for ME-2 and ME-3 are for exchanging 

a small solute with a large one. 

Solvent Solute (small) Solute (large) CD-CBMC ME-2 ME-3 

n-hexadecane methane ethane 0.9948 6.2464 12.6108 

ethane propane 0.3492 6.6767 3.7927 

propane n-butane 0.0564 3.3728 1.1677 

n-butane n-pentane 0.0175 2.9190 0.5999 

n-pentane n-hexane 0.0054 3.6609 0.4923 

n-hexane n-heptane 0.0015 2.6971 0.2993 

n-heptane n-octane 0.0002 1.1158 0.0706 

n-octane - 0.0000 - - 

2,2,4-trimethylpentane methane ethane 3.5123 12.6102 24.2642 

ethane propane 1.7650 13.4010 9.2419 

propane n-butane 0.4625 7.5406 3.5138 

n-butane n-pentane 0.1920 6.2619 1.8375 

n-pentane n-hexane 0.0771 6.6660 1.1497 

n-hexane n-heptane 0.0231 3.5472 0.4711 

n-heptane n-octane 0.0054 1.0811 0.1042 

n-octane - 0.0009 - - 
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APPENDIX D 

In this section, the bonded and nonbonded potential parameters that has been used in 

Chapter 6, followed up with additional results, are provided. 

 

Table D1: Bonded parameters for alcohols, fluoroalcohols and fluorotelomer alcohols[187, 

203, 204]. 

Bond type 
Bond length 

(Å) 
Angle type 

𝜃0 

(Degrees) 

𝑘𝜃/𝑘𝑏 

 (kcal/mol/rad2) 

CHx-CHy 1.54 CHx-CH2-CHy 114.0 62.1 

CFx-CFy 1.54 CHy-CH2-O 109.5 50.1 

CHx-CFy 1.54 CHx-O-H 108.5 55.0 

CHx-O 1.43 CFx-CF2-CFy 114.0 62.1 

CFx-O 1.43 CFx-CF2-O 109.5 62.1 

O-H 0.945 CFx-O-H 108.5 55.0 

O-H (water) 1.00 CFx-CH2-CHy 114.0 62.1 

  CFx-CF2-CHy 114.0 62.1 

  CFx-CH2-O 109.5 62.1 

  CHx-CFy-O 109.5 62.1 

  H-O-H 109.47 Fix 
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Table D2: Dihedral parameters for alcohols, fluoroalcohols and fluorotelomer alcohols[187, 

203, 204]. 

Torsion type 𝑛 𝑐𝑛/𝑘𝑏 (kcal/mol) 𝛿𝑛 (Degrees) 

CHx-CH2-CH2-CHy 1 0.705513 0 

2 -0.135507 180 

3 1.572510 0 

O-CH2-CH2-CHx 1 0.350977 0 

2 -0.105997 180 

3 1.529998 0 

H-O-CH2-CHx 1 0.416952 0 

2 -0.057966 180 

3 0.373453 0 

CFx-CF2-CF2-CFy 1 1.588 0 

2 -0.6481 180 

3 1.712 0 

4 -0.6791 180 

O-CF2-CF2-CFx 1 -0.0178 0 

2 0.0836 0 

3 1.6976 0 

4 0.0392 0 

H-O-CF2-CFx 1 0.8392 0 

2 -0.1096 180 

3 0.6556 0 

CH2-CH2-CF2-CFx 1 0.8945 0 

2 -0.5789 180 

3 1.8605 0 

4 -0.1634 180 

*Optimized dihedral in this work. 
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Table D2: Continuation of dihedral parameters for alcohols, fluoroalcohols and fluorotelomer 

alcohols[187, 203, 204]. 

Torsion type 𝑛 𝑐𝑛/𝑘𝑏 (kcal/mol) 𝛿𝑛 (Degrees) 

CH2-CF2-CF2-CFx 1 1.588 0 

2 -0.6481 180 

3 1.712 0 

4 -0.6791 180 

*CH2-CH2-CH2-CFx 1 1.5522 0 

2 -0.8265 180 

3 1.4588 0 

4 -0.1063 180 

O-CH2-CH2-CFx 1 1.5951 0 

2 -1.0807 180 

3 1.6495 0 

O-CH2-CF2-CFx 1 -0.0421 0 

2 -0.0604 180 

3 2.3476 0 

*O-CF2-CF2-CHx 1 -0.2315 0 

2 0.0881 180 

3 2.7794 0 

4 0.1366 0 

*O-CF2-CH2-CHx 3 2.0187 0 

4 0.0800 0 

H-O-CH2-CFx 1 -0.5760 0 

2 0.9738 0 

3 0.8986 0 

4 0.2396 0 

*H-O-CF2-CHx 1 1.793 0 

2 0.6984 180 

3 0.5409 0 

*Optimized dihedral in this work. 
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Using the specified 𝜆 vectors, initial lambda state, free energy parameters, and free 

energy calculation frequency in the configuration file, GOMC will output the necessary 

information for free energy analysis. In addition to the simulation parameters, such as 

temperature and current lambda value (𝜆𝑐𝑜𝑢𝑙, 𝜆𝐿𝐽), GOMC will output the total energy of the 

system, derivative of energy with respect to lambda for coulomb and LJ potential (for TI free 

energy method), energy difference between current 𝜆 vector and all other 𝜆 vectors (for free 

energy perturbation method), and 𝑃𝑉 term (for NPT ensemble). In Table D3, a sample of free 

energy data outputted by GOMC is provided. 

Table D3: Sample of GOMC free energy data for first 10,000 Monte Carlo Steps of perfluoro-

octanol in octanol. The temperature and 𝜆 state used in simulation is printed in the first line, 

while the header of the each column is provided in the second line with energy unit of kJ/mol. 

The column’s headers from left to right are, the simulation steps, the total energy of the system, 

energy derivative with respect to 𝜆 for coulomb and LJ, the total energy difference evaluated 

between current lambda state (𝜆2) and all other lambda states (𝜆0, 𝜆1, 𝜆2, … , 𝜆16 in this case), 

and pressure x volume information for NPT ensemble. 

𝑇 = 298 (K) 𝜆2 = (0.0, 0.2)       

Steps 𝑈𝑡𝑜𝑡𝑎𝑙  
𝑑𝑈𝑐𝑜𝑢𝑙
𝑑𝜆2,𝑐𝑜𝑢𝑙

 
𝑑𝑈𝐿𝐽
𝑑𝜆2,𝐿𝐽

 ∆𝑈2→0 ∆𝑈2→1 ∆𝑈2→2 … ∆𝑈2→16 𝑃𝑉 

1000 -8877.456 -3.231 8.077 10.004 2.624 0.000 … 2266.677 3.181 

2000 -8835.898 2.683 110.732 -0.256 -4.425 0.000 … 47079.538 3.164 

3000 -8827.969 1.666 245.945 -14.514 -14.142 0.000 … 19780.139 3.188 

4000 -8841.234 8.217 61.476 3.994 -1.296 0.000 … 6005.224 3.170 

5000 -8830.506 -5.707 127.468 -1.455 -5.509 0.000 … 47112.336 3.173 

6000 -8809.501 -14.851 35.057 6.910 0.617 0.000 … 1235.585 3.183 

7000 -8824.169 5.971 50.141 5.522 -0.361 0.000 … 18668.941 3.176 

8000 -8814.229 2.230 9.339 9.444 2.385 0.000 … 1126.329 3.190 

9000 -8826.988 7.380 60.722 4.220 -1.148 0.000 … 13442.642 3.172 

10000 -8819.957 -11.471 37.901 6.680 0.422 0.000 … 1383.572 3.171 
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Table D4: Comparison of solvation free energies for n-alkanes in 1-octanol at 298 K and 1 atm, 

calculated with the TraPPE force field[187, 203, 204] using TI, MBAR methods, and NPT 

Gibbs ensemble Monte Carlo (NPT-GEMC) simulations. Number in parenthesis corresponds 

to statistical uncertainties in the last digit. 

Free energy of solvation (kcal mol⁄ ) 

Solute \ Method MEMC-2[84] MEMC-3[84] TI MBAR Experiment[229] 

n-pentane -2.42(35) -2.31(30) -2.48(5) -2.42(4) -2.45 

n-hexane -3.02(35) -2.94(35) -3.05(6) -3.00(5) -3.01 

n-heptane -3.63(37) -3.52(41) -3.79(7) -3.71(5) -3.74 

n-octane -4.25(40) -4.13(39) -4.36(8) -4.27(6) -4.18 

 

Table D5: Predicted free energies of hydration/solvation using TI, BAR, and MBAR method 

implemented in alchemlyb[257]. 

Molecule 
Δ𝐺𝐶16(kcal/mol) Δ𝐺1−𝑜𝑐𝑡𝑎𝑛𝑜𝑙(kcal/mol) Δ𝐺𝑤𝑎𝑡𝑒𝑟(kcal/mol) 

TI BAR MBAR TI BAR MBAR TI BAR MBAR 

CH3(CH2)7OH (H8) -5.14(6) -5.14(6) -5.15(5) -8.8(2) -8.7(2) -8.6(2) -3.1(2) -2.9(2) -2.9(2) 

CH3(CH2)6CF2OH (F1H7) -4.41(7) -4.35(7) -4.38(6) -6.3(2) -6.1(2) -6.1(2) -1.8(3) -1.7(3) -1.4(2) 

CH3(CH2)5(CF2)2OH (F2H6) -4.29(8) -4.26(8) -4.34(6) -6.0(2) -5.8(2) -5.7(2) -1.3(2) -1.2(2) -1.3(2) 

CF3(CF2)5(CH2)2OH (H2F6) -4.20(8) -4.16(8) -4.16(7) -6.7(3) -6.8(3) -7.1(2) -2.3(3) -2.0(3) -1.7(2) 

CF3(CF2)6CH2OH (H1F7) -4.06(8) -4.06(8) -4.10(7) -6.0(2) -5.9(2) -6.0(2) -1.7(3) -1.6(3) -1.6(2) 

CF3(CF2)7OH (F8) -3.38(8) -3.34(8) -3.32(7) -5.3(2) -5.2(2) -5.2(2) 0.3(5) 0.0(3) 0.0(3) 
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Figure D1: The 〈
𝑑𝑈

𝑑𝜆
〉 versus 𝜆 plot for F2H6 solvation free energy in hexadecane, with filled 

areas indicating free energy estimates from the trapezoid rule, and silver curve indicating 

interpolation via cubic spline.  
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Figure D2: Accumulative average density for perfluorooctanol in 1-octanol. 
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ABSTRACT 

FORCE FIELD OPTIMIZATION, ADVANCED SAMPLING, AND FREE ENERGY 

METHODS WITH GPU-OPTIMIZED MONTE CARLO (GOMC) SOFTWARE 

by 

MOHAMMAD SOROUSH BARHAGHI 

December 2019 

 

Advisor:  Dr. Jeffrey Potoff 

Major:  Doctor of Philosophy 

Degree: Chemical Engineering 

 

In this work, to address the sampling problem for systems at high densities and low 

temperatures, a generalized identity exchange algorithm is developed for grand canonical 

Monte Carlo simulations. The algorithm, referred to as Molecular Exchange Monte Carlo 

(MEMC), is implemented in the GPU-Optimized Monte Carlo (GOMC) software and may be 

applied to multicomponent systems of arbitrary molecular topology, and provides significant 

enhancements in the sampling of phase space over a wide range of compositions and 

temperatures. Three different approaches are presented for the insertion/deletion of the large 

molecules, and the pros and cons of each method are discussed. Next, the MEMC method is 

extended to Gibbs ensemble Monte Carlo (GEMC). The utility of the MEMC method is 

demonstrated through the calculation of the free energies of transfer of n-alkanes from vapor 

into liquid 1-octanol, n-hexadecane, and 2,2,4-trimethylpentane, using isobaric-isothermal 

GEMC simulations.  

Alternatively, for system with strong inter-molecular interaction (e.g. hydrogen bonds), 

it’s more efficient to calculate the free energies of transfer, using standard thermodynamic 

integration (TI) and free energy perturbation (FEP) methods. The TI and FEP free energy 
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calculation methods are implemented in GOMC and utility of these methods are demonstrated 

by calculating the hydration and solvation free energies of fluorinated 1-octanol, to understand 

the role of fluorination on the interactions and partitioning of alcohols in aqueous and organic 

environments.  

Additionally, using GOMC, a transferable united-atom (UA) force field, based on Mie 

potentials, is optimized for alkynes to accurately reproduce experimental phase equilibrium 

properties. The performance of the optimized Mie potential parameters is assessed for 1-

alkynes and 2-alkynes using grand canonical histogram-reweighting Monte Carlo simulations. 

For each compound, vapor-liquid coexistence curves, vapor pressures, heats of vaporization, 

critical properties, and normal boiling points are predicted and compared to experiment. 
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