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CHAPTER 1 INTRODUCTION

Energy efficiency of Information and Communications Technology (ICT) systems has doubled

roughly every nineteen months since the invention of the first computer in 1946 [2]. However,

the growth in ICT systems over the years has outpaced this improvement in energy efficiency due

to the affordable price and availability. According to the International Telecommunication Union

(ITU), worlds two-third population lives in an area covered by the mobile broadband network and

95% of the population has access to a mobile network which has resulted in more number of

mobile-cellular subscriptions than the human population. Around 47% of the world household has

a computer today and 52% of the human population is using the internet [3], which requires either

a PC or hand-held device access. All of these ICT systems are driven by energy resulting in a

severe load on the electric grid and contributing to greenhouse gas emissions.

Most of the energy is generated using fossil fuels which release various greenhouse gases in

the atmosphere. As fossil fuels will vanish one day, it is very important to integrate sustainability

into daily life. Sustainability is defined as the use of products in such a way that they can meet the

needs of the present without impacting the ability of future generation to satisfy their own needs.

Today, ICT amounts for 10% of the world energy which will keep on growing in future [4] and

3% of the overall carbon footprint which is now more than the level of CO2 emission as that of

aviation industry [5]. Each personal computer generates a ton of carbon dioxide every year [6].

Watching an hour of video weekly on a single mobile or tablet consumes annually more electricity

than two new refrigerators consume in a year [4]. Increase in carbon footprint is causing several

environmental changes over the world like unusual droughts, flood, storms, and higher average

temperature.

ICT systems are driven by hardware and software. Most of the green IT initiatives concentrate

on the hardware side. Earlier works on energy efficiency proposed different hardware technologies

like low-power circuits, chip multiprocessors, fine grain clock gating, power gating, and dynamic

voltage/frequency scaling [7, 8, 9, 10, 11]. The amount of electricity consumed by different hard-

ware components has been significantly reduced over the years. However, when we look at the
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Table 1.1: RAPL domains

Domain Component

Package CPU package

PP0 All cores and caches

PP1 GPU

DRAM DRAM

software side, a lot has to be done to improve its energy efficiency. There has been a lot of research

in estimating software energy consumption, however software developers still lack the knowledge

necessary to improve the energy efficiency of software. Software energy savings are considered

to be greater than the energy savings in hardware, but they are harder to achieve [12] as there is

no technology that can ascertain the energy consumption of all the components in any of the ICT

systems. Without accurate energy consumption measurements, it is not possible to optimize the

energy efficiency at the software level.

1.1 Problem Statements & Plans

In this section, we discuss different problems that we have worked on to make software energy-

efficient.

1.1.1 Calculating idle energy

Idle energy is defined as the amount of energy consumed by a system when it is not performing

any task. As defined in [13], it is the sum of static and dynamic energy, as systems have a different

number of background processes running all the time. In this work, we try to reduce the dynamic

energy to stabilize and calculate the idle energy. The active energy is defined as the amount of

energy consumed by a system while performing a specific task such as web browsing, printing,

emailing, listening to music or playing a game.

Intel introduced the Running Average Power Limit (RAPL) feature starting with their Sandy

Bridge processors, for measuring the energy consumption of onboard hardware components. It

provides energy consumption information of different hardware components as listed in Table 1.1.

It uses a software power model which estimates the energy consumption by leveraging hardware
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Figure 1.1: Idle energy consumption of Ubuntu Desktop.

performance counters. A user can configure and read RAPL information through Mode Specific

Registers in privileged kernel mode. We use the Linux perf tool, which leverages RAPL technol-

ogy, to measure energy consumption. However, it doesn’t stabilize the idle energy consumption

before performing energy measurements. Not stabilizing the idle energy consumption results in

outliers as shown in Fig. 1.1, which causes inaccurate measurements. systemd is a critical suite

of software for the Linux operating system that manages and operates various units like service,

target, path, mount, etc [14]. Some of these units can trigger other units and work together to add

functionality. In this work, we utilize the service unit to stabilize and calculate the idle energy con-

sumption of the whole system as it is the most commonly utilized unit by system administrators.

We use systemctl command to stop a service [15] and to stabilize the idle energy. We then

calculate the active energy by subtracting the idle energy form the total energy consumed by the

system.

1.1.2 Analyzing Java programs energy

Software developers are not aware of how to improve energy consumption. Therefore, we

conduct a comprehensive study of the Java programs to provide software developers with energy

saving suggestions. Java is one of the most commonly-used languages in ICT systems. We evaluate

the energy consumption of data types, operators, control statements, String, exceptions, objects,

and Arrays in Java using Intel RAPL technology. For data types, we evaluate primitive data types,
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access modifiers, local and static variables, and scientific notations. For operators, we evaluate

arithmetic, assignment, compound, pre- and post-increment, pre- and post-decrement, and short-

circuit operators. For control statements, we evaluate if-then-else, conditional operator and loops.

For exceptions, we evaluate try-catch block calls with and without exception. For String, we

evaluate various ways of concatenating, converting and comparing String. For objects, we compare

wrapper classes. For threads, we investigate different types of thread implementations. For Arrays,

we compare different ways to copy and traverse Arrays. The key findings of this work are:

• For smaller iteration and variable sizes, different Java code statements consume the same

energy as compare to their counterparts. We analyze different iteration and variable sizes

and find out when the energy consumption differs.

• int is the most energy-efficient primitive data type. Static variables consume significantly

high energy than local variables. Representing float and double number in scientific

notation result in lesser energy consumption.

• Modulus operation is the most costly arithmetic operator. Conditional operator results in

lower energy consumption than if-then-else statement. Loops initialization and termination

expression can significantly impact a loop energy consumption.

• Try-catch block scope can impact its energy consumption. StringBuilder

append method is the most energy-efficient way to concatenate String in Java.

String equals method consumes lesser energy than String compareTo method.

System.arraycopy() results in the least energy consumption for copying an array. Ar-

ray column traversal results in higher energy consumption.

• Different JDKs results in almost the same energy consumption of different Java code state-

ments. Execution time shows a high correlation to energy consumption.
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1.1.3 Analyzing Java command-line options energy

Java has different command-line options that can be used to tune the JVM. These op-

tions can significantly affect the energy behavior of Java applications. However, there is

no study characterizing the energy behavior of these command-line options. Therefore,

we conduct a comprehensive study to evaluate the energy efficiency of Java command-

line options. We use Intel RAPL technology to log the energy consumption values.

We evaluate the active energy consumption of SPECjvm2008 benchmarks using different

JDKs (Open and Oracle) and Java command-line options. The Java command-line op-

tions include client, server, Xbatch, Xcomp, Xfuture, Xint, Xmixed, Xrs,

AggressiveOpts, AggressiveHeap, Inline, AlwaysPreTouch, Xnoclassgc,

UseSerialGC, UseParallelGC, UseConcMarkSweepGC, and UseG1GC. The following

are the key findings of our work:

• For most of the command-line options, Oracle JDK is more energy-efficient than Open JDK.

Open JDK consumes up to 9% more energy than Oracle JDK.

• Xint command-line option results in the lowest energy efficiency of most benchmarks with

up to 125% increase in energy consumption as compared to the default server command-

line option.

• UseG1GC command-line option results in the highest energy efficiency of most bench-

marks with up to 14% decrease in energy consumption as compared to the default server

command-line option.

• Energy and time show a high correlation with a maximum value of 0.98 and a minimum

value of 0.94.

1.1.4 Eclipse plugin for Java energy-saving suggestions

The only tool available for Java energy-saving suggestions [16] is limited to Java collections.

Therefore, we present an Eclipse IDE plugin named Java Energy Profiler and Optimizer (JEPO)
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which can provide suggestions for various Java code statements. JEPO can not only help in giving

suggestions to software developers to change the source code for better energy efficiency but also

can automatically measure the energy of Java source code at method granularity. JEPO leverages

the Linux rdmsr tool to measure energy consumption. JEPO supports the energy consumption

measurements at method granularity only while running Eclipse on a Linux operating system. For

other operating systems, JEPO support only the energy-saving suggestions for source code.

JEPO has one toolbar button and two pop-up menu buttons. The software developer can see the

real-time energy-saving suggestions in JEPO view by clicking on the toolbar button. JEPO pop-

up menu buttons provide functionality for measuring energy consumption at method granularity

and to provide suggestions for the whole project. The energy measurement at method granularity

is achieved by injecting code at the start and end of the method using the Javassist library [17].

We make changes to various machine learning classifiers in Waikato Environment for Knowl-

edge Analysis (WEKA) machine learning software and run the classifiers on Massive Online Data

to find out how effective is our changes. We are able to achieve up to 14.46% improvement in

package energy consumption, up to 14.19% improvement in core energy consumption, and up to

12.93% improvement in execution time. The changes result in only 0.48% drop in accuracy of the

classifiers.

1.1.5 Summary of contributions

The contributions of our work are:

1. We stabilize the idle energy to measure the active energy accurately. We are able to achieve

a standard variation of 0.0006 in the idle energy consumption of ICT systems.

2. We analyze Java programming language for data types, operators, control statements, excep-

tions, objects, collection classes, and map classes. We compare different Java JDKs for Java

code statements.

3. We evaluate Java command-line options client, server, Xbatch, Xcomp,

Xfuture, Xint, Xmixed, Xrs, AggressiveOpts, AggressiveHeap,
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Inline, AlwaysPreTouch, Xnoclassgc, UseSerialGC, UseParallelGC,

UseConcMarkSweepGC, and UseG1GC. We compare these Java command-line options

for both Open and Oracle JDKs. We also calculate the correlation between active energy

consumption and execution time.

4. We present an Eclipse plugin that a software developer can use for source code energy-

efficiency optimization suggestions and energy measurements.

1.2 Outline

The rest of the document is organized as follows:

Chapter 2 discusses various terms, units to understand energy consumption in ICT systems.

It also describes different type of ICT systems, different ways to estimate energy demand in ICT

systems, hardware performance counters, energy efficiency benchmarks, software role in energy

consumption and different ways to measure power in ICT systems.

Chapter 3 stabilizes the idle energy of two ICT systems. We first describe the tool used to

measure the energy consumption and then stabilize the ICT systems by masking all the enabled

and disabled services.

Chapter 4 investigates the energy efficiency of the Java programming language by evaluating

data types, operators, control statements, String, exceptions, objects, and Arrays. We compare dif-

ferent Java components for JDK 7,8,9,10,11, and 12 in terms of energy consumption and execution

time.

Chapter 5 analyzes various Java command-line options using Open and Oracle JDK on two

different ICT systems. We compare all Java command-line options based on energy consumption

and execution time.

Chapter 6 presents JEPO, an Eclipse IDE plugin to provide suggestions and energy measure-

ments at method granularity to software developers. We evaluate JEPO using the WEKA library

and MOA dataset.

Chapter 7 provides the conclusion of this dissertation. Chapter 8 ends it with a discussion on

the future work in software energy efficiency.
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CHAPTER 2 BACKGROUND

As energy efficiency can play an important role in reducing the carbon footprint of ICT sys-

tems, its better to understand how these systems consume energy. In this section, we will first go

over the different terms that will help us to measure the energy consumption of a system. Then, we

will explain different type of ICT systems, their energy demand and their role in energy consump-

tion. After that, we will describe hardware performance counters that are used to measure energy

consumption. Next, we will explain the benchmarks that are generally used to evaluate the energy

efficiency of a system. Finally, we will illustrate different ways to measure power.

2.1 Energy & Power

Before defining energy, we need to understand four key terms force, newton, joule, and watt.

A force is a push or pull upon an object resulting from the objects interaction with another

object. A force is measured in the SI unit of newton. A newton is defined as the amount of force

required to accelerate a mass of one kilogram at a rate of one meter per second squared.

F = 1N = 1
kg ∗m
s2

A joule is a unit of energy defined as the amount of work done to move an object through a

distance of meter using a force of one newton. It is also defined as the energy dissipated as heat

when an electric current of 1 meter passes through a resistance of one ohm for one second.

1J = 1N ∗m = 1
kg ∗m2

s2

A watt is a unit of power and defined as the amount of work done to hold the velocity of an

object constant at one meter per second against a constant opposing force of one newton.

1W = 1
J

s
= 1

N ∗m
s

= 1
kg ∗m2

s3

Power is the amount of energy consumed per unit time and energy is the energy to do work. A
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Table 2.1: Energy Consumption Units

Joules Unit
1 joule 1 watt second

3.6 joules 1 watt milliHour or mWHr
60 joules 1 watt minute

3600 joules 1 watt hour
3,600,000 joules 1 watt kilohour or 1 kWHr

more energy-efficient device will consume less energy per unit of time. For example, a laptop that

consumes energy at a rate of 15 W is more efficient than one that consumes energy at a rate of 20

W. The amount of energy consumed by a system is calculated in watt. Table 2.1 shows different

energy consumption units that are used to measure the energy consumption of ICT systems.

Power can be categorized as Idle or Active power. Idle Power is defined as the amount of

power consumed by a system when its not performing any task or in other words, it is the power

consumed when the system sits idle in wait of next task. As defined in [13], it is a sum of static

and dynamic power as systems are not found to be in the fully static state while measured. Idle

power plays a significant role in the total power consumption of a system. For future energy-

efficient ICT systems, it is very crucial to minimize the idle power of a system. Active Power is

defined as the amount of power consumed by a system while performing a specific task. A task

can be web browsing, printing, emailing, web browsing, listening to music or playing a game. The

energy consumed by a system should be proportional to the system computation. Voltage scaling

and improved circuit designs have been used to minimize the active power of components in ICT

systems.

The total energy consumption of ICT systems annually is expressed in kWHr whereas the

energy consumed by systems on a daily basis is measured in wattours (WHrs) or milliwattHours

(mWHrs)[1]. Notebooks, laptops, tablets, and mobiles use lithium-ion batteries and each strives

for the best battery life. The capacity of these batteries is expressed in WHrs or mWHrs. Many

factors influence the battery life of these systems like CPU, GPU, display, and memory. Heat

dissipation also plays a major role in total energy consumption of these systems. Heat is a natural
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byproduct of the electricity running through metal pathways in these systems. High computation

needs cause more energy use, resulting in more heat production. Half of the energy at data centers

is attributed to heat dissipation [18], raising a serious question on the energy efficiency of the

cooling infrastructures in data centers.

2.2 ICT systems classification

ICT systems configuration varies significantly from low computation power embedded devices

to high computation power Supercomputer. In this section, we will explain the different categories

of ICT systems.

2.2.1 Embedded Systems

Embedded system is a microcomputer designed to perform a specific function or a set of func-

tions with real-time performance constraints. It can be a part of bigger hardware machinery or

a standalone device. We interact with a lot of embedded systems in our daily life from a small

device like microwave, mp3 players to a large appliance like a refrigerator. A user cant change the

functions of an embedded system but can select pre-defined functions [19]. Around 98% of the

processors manufactured every year belong to the embedded systems [20]. Embedded systems are

very energy-efficient as their CPU can keep working in an idle state at one-tenth or less power than

the usual power drawn at peak computation [21]. An increase in temperature of embedded devices

can double the chances of device failure [22]. Embedded systems have a very restricted power

budget from a few milliwatts to two watts [5], however, a very high-performance requirement.

2.2.2 Handheld Devices

Handheld devices have shown an enormous growth in the past few years. One of the important

reason for this growth is the decline in cost. There are two major sections of the handheld devices

in the market: cell phones and tablets. The first commercial cell phone was launched in 1983 [23],

at a price of $3995. Over the years, technological innovations have helped to reduce the price of

multimedia cell phones to $30, making them affordable to a large part of the community. This

has resulted in more than four billion mobile phone users worldwide. However, this comes with

an increase in carbon footprint. Manufacturing and transporting a cell phone results in around
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eighteen KG of CO2. Afterward, the average annual use can lead to an electricity consumption of

up to two kWh [24]. Global tablet sales have been on a decline in 2015 [25], which can be bad

news as a tablet consumes far less energy than a personal computer and can be as productive as a

personal computer.

2.2.3 Personal Computer

Desktops, nettops, laptops, and netbooks fall under personal computer category and the num-

bers of personal computer sold in 2019 are reaching two billion [26] and expected to hit four billion

counts in 2020 [27]. Operating one computer for thirty-two hours at a consumption rate of sixty

Watt adds one Kg of carbon to the environment. PC has the same trend in cost and performance

as handheld devices where the cost keeps on declining and the performance keeps on getting bet-

ter. Apple has done significant improvement in power consumption of their products, as MacBook

only consumes 0.5W in sleep mode, but still reported a carbon footprint of 25,200,000 metric tons

in 2018 [28].

2.2.4 Data Center

Data centers can be found as server rooms in small-to-medium sized organizations, to the en-

terprise data centers in big corporations, to the server farms that run cloud computing hosted by

Amazon, Facebook, Google, and others. Data centers are dedicated to the centralized accommo-

dation, interconnection, and operation of IT and network telecommunication equipment providing

data storage, processing, and transport services. The utilization of a server in a datacenter is quite

a low ranging between 10% to 50% of their maximum utilization level [21]. The energy cost per

square meter of the data center is up to a hundred times higher than for office accommodations

[18]. Techniques like virtualization and work consolidation have been proposed to achieve energy-

efficient data centers [29]. Aggregating the workload on a single machine increases the utilization

and the efficiency rate of a machine ensuring the mitigation of greenhouse gasses. Kwasinski

et al.[30] proposes Distribution Green Data Centers (DGDC) which are small distributed centers

spread over a geographical region for better energy efficiency. DGDC uses local power resources

and the emphasis is given to renewable energy. Even less amount of energy waste in transmitting
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Table 2.2: ICT Systems TDP rating [1]

ICT System TDP
Embedded Systems <5 W

Smart Phone and Tablets 4-12 W
Laptop 45-60 W

Desktop 90-130 W
Small Server 80-165 W

Supercomputer and Data Center servers 300W to thousands

energy from the power station to local data centers results in more energy saving. DGDC have

simplified cooling system which consumes less energy than one in big data centers.

2.2.5 Supercomputer

Supercomputers have the highest computation power which helps the community in several

ways weather forecasting, financial analysis, disaster prediction, scientific applications, and na-

tional defense. However, this scale of computation requires enormous power consumption, not

only to run the supercomputer but also to cool it [31]. Since 1992, there has been a 10,000-fold

increase in the performance of the supercomputers whereas performance per watt has seen an only

300-fold improvement [32]. The fastest supercomputer Summit in TOP500 at a speed of 148

petaFLOPs requires 10 megawatt of peak power whereas the most energy-efficient system DGX

SaturnV Volta in GREEN500 requires 97 kilowatt but has a speed of 1 petaFlops. Annual power

cost is on the verge of exceeding the acquisition cost of supercomputers, which will change the

performance above all mindset in the supercomputing community. Energy efficiency is also one

of the bottlenecks in developing next-generation exascale systems [33]. The one way to achieve

this is by improving the energy efficiency of the hardware, but its not sufficient to design exascale

systems [34]. Energy-efficient Software will be a major breakthrough in designing next-generation

exascale systems.

2.3 ICT systems energy demand

ICT systems have a variable energy demand. There are two ways to estimate it.
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Table 2.3: Performance Counter in Processor Family

Processor Number of PMC
AMD Athlon 64 4
Intel Xeon 7500 7

Power 8 6
R10000 2

2.3.1 Thermal Design Power (TDP)

TDP is the maximum amount of heat generated in a system that the system can dissipate. Lower

TDP systems like embedded systems and mobiles use passive cooling like radiation heat transfer,

conduction, and convection. Higher TDP systems like PC, HPC or data centers use active cooling

like fans, water cooling or thermoelectric coolers. Table 2.2 shows the TDP rating for different

ICT systems.

2.3.2 Performance per Watt

Performance per watt is the maximum amount of computation achieved for every watt of power

consumed by the system. It does not only represents the power consumed for computation but also

for the heat dissipation. The Green 500 uses performance per watt to evaluate the energy efficiency

of Supercomputers. There has been a little growth in performance per watt in Supercomputers as

compared to performance increase over the years [32].

2.4 Hardware Performance Counters

Hardware Performance Counters are special registers that are located on microprocessors to

monitor hardware-related activities [35]. A lot of work is done in estimating power consumption

using Hardware Performance Counters [36, 37, 38, 39]. Each microprocessor has a different set of

Hardware Performance Counters. Hardware performance counters can be used in two ways: for

aggregate measurement and for statistical sampling [40]. Aggregate measurement is used to get

information while running a specific program or part of a program. At the start of the program or

in between of the program, counters start collecting different events data and show the gathered

results when the program finishes. Statistical sampling is used to gather information from specific
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performance counters, at regular intervals using timer or overflow interrupts. The advantage of

using statistical sampling is that the program need not to be changed while taking a measurement,

however, the disadvantage is that it is hard to match the recorded values to any particular appli-

cation or program. Some performance counters are programmable which can be used to collect

user-specific events. A user can select at most the same number of events concurrently as the

number of hardware counters available. Table 2.3 shows the number of performance counters in

different types of processor family.

2.5 Benchmarks

Benchmarks are the software that has been developed to measure the energy consumption of

ICT systems. The most important associations for energy efficiency measurement are the Trans-

action Processing Performance Council (TPC), the Standard Performance Evaluation Corporation

(SPEC) and Storage Performance Council (SPC) [41]. SPEC announced the first industry-standard

benchmark to measure the energy efficiency of server-class computers - SPECpower ssj2008, it

measures the power consumption in relation to performance. SPC published SPC-1C/E as its first

energy consumption benchmark in 2009 and provides the linkage between power consumption

and performance for their existing benchmark SPC-1C. TPC-Energy benchmark was announced

in 2010 and measures the energy consumption in relation to the amount of work completed.

2.6 Software Role

Software plays a major role in the total power consumption of an ICT system[13, 34, 37]. In

one of the experiments conducted at Intel, the idle power of system changed from 8.6 W to 13.1

W due to the addition of software [1]. For this study, the idle power of the system was measured

with a change in software in three ways.

In the first scenario, the idle power was measured on a brand new 100% charged OEM notebook

of 56 WHr battery that has an operating system and minimal drivers. The LCD display was set

to the lowest brightness with sleep mode disabled. The Ethernet cable was plugged in, which was

connected to corporate LAN. The system was then left idle until the battery drains out. It took a

total of 6 hours and 32 minutes to get the notebook turned off. As it was a 56 WHr battery, the
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average power was 8.6W.

In the second scenario, IT build was added on the notebook and the same process is repeated.

IT build is the software that the corporate IT department put on a new system before issuing it to the

new employee. This software includes office applications, system state monitoring applications,

virus protection and utilities which help IT department to manage the system. In this case, the

battery ran out in 4 hours and 43 minutes giving an idle power of 11.9 W.

In the third scenario, more software was added to the system that is specific to an employee

work such as text editors, IDEs, weather gadget or news feed. These applications were started and

kept idle with no user interaction until the whole battery drained out. In this case, the battery ran

out in 4 hours and 30 minutes giving an idle power of 13.1 W.

The addition of software on the above system causes the reduction of battery life of 33%. This

shows that the software can severely impact the power consumption of a system.

Pinto et al. [42] conducted a study to understand what application programmers think about

software energy consumption problems. They collected data from StackOverflow of 300 questions,

550 answers from 800 users to know:

1. Whether the application programmers are aware of the energy consumption problem in soft-

ware?

2. What are the software energy questions they are asking?

3. What do developers think are the main reasons of the software energy consumption?

4. What are the steps taken by application developers to save energy?

The study shows that the application programmers’ interest in software energy consumption is

increasing over the years. It has increased by 100% in 2012 as compared to the number of questions

in 2011 and 183% in 2013 as compared to 2012. This is interesting because more the programmers

asked the question, more they are serious about this issue. Application developers were asking

questions regarding measurement, knowledge, code design, and context-specific questions about
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software energy consumption. Programmers think that unnecessary resource usage, faulty GPS

usage, background activities, excessive synchronization, high GPU usage, background wallpapers

and advertisement in mobile applications are the reasons for software high energy consumption.

The solutions implied by programmers are keeping I/O to the minimum, perform bulk operations,

avoid polling, use concurrent programming, race to idle, efficient data structures, lazy initialization,

and hardware coordination.

2.7 Power Measurement

Power measurement approaches are very crucial for the optimization of both hardware and

software energy-efficiency. Power measurement can be categorized into three parts: hardware-

based method, software-based method, and hybrid method.

2.7.1 Hardware-Based methods

Hardware-based methods can be divided into two groups direct power measurement and in-

tegrated power sensors. Direct power measurement method uses meters to directly measure the

power of any specific hardware. Joseph et al. use this method to measure the power consumption

of individual components of a microprocessor and compare it to the estimated power consumption

calculated using hardware performance counters [43]. Kamil et al. use inline and clamp meters to

measure power consumption in single nodes to a full-scale supercomputer [44]. They were able to

model the power consumption of the whole system from a subset of the system. This method is

good to evaluate software-based method of power estimation but can not be used to estimate the

power of software applications. Integrated power sensors are used to estimate the power of high-

performance servers. Its hard to estimate the power of low-level hardware using this technique due

to its complexity. One of the drawbacks of using an integrated circuit is that it dissipates a lot of

energy.

2.7.2 Software-Based Methods

Software-based methods are less accurate but less complex in estimating power consumption.

Software methods use power models that are developed at various levels circuit, instruction, com-

ponent, etc. Software methods can be grouped as architectural-level power models and system-
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level power models. Architectural level models are used to estimate the power dissipation during

the architecture design stage. Several models have been proposed to estimate the power dissipa-

tion of chips, microprocessor, registers, memory, on-chip buses, disks, routers, etc. Brooks et al.

come up with Wattch to estimate the CPU power consumption [45]. Liu et al. developed a tool for

power estimation in CMOS VLSI chips by leveraging gate count, memory size, logic, and layout

style [46]. The power estimation at register-transfer level is proposed in [47] using measures based

on entropy and informational energy. Ye et al. developed Simplepower, a framework to estimate

power consumption of register-transfer level, memory system, and on-chip buses [48]. Softwatt

was developed as a complete system power simulator to capture the interaction between different

components in [49]. It was used to estimate the power consumption in CPU, memory, disk, appli-

cation and operating system. The advantage of the architectural level models was that they were

more efficient in power estimation, however, less accurate.

System level power models are used to supply live power information to OS and applications.

These models are very helpful in virtual environments where the guest OS dont have direct control

over the hardware resources. A lot of models in the system level group use PMC to estimate the

power dissipation [37, 39, 50, 51]. In [52], Joulemeter was created to provide same power metering

functionality for VM that is available on physical server hardware. Hypervisor-observable states

were used to track the hardware usage of a single VM. Joulemeter power capping functionality

was used to manage the power consumption of individual VM. Dhiman et al. developed an on-

line power prediction model for virtualized environments using Gaussian mixture models [53]. It

outperformed the linear and multivariate regression model with an average prediction error of less

than 10%. JouleUnit, an energy profiling framework was proposed in [54] for estimating power

consumption of applications using workload and sensors values for different ICT devices. Wang

et. al. proposes two-level power model in [55], where they used the fewest PMC to estimate the

power dissipation of application source code. Using the power model, they implement SPAN to

find out the power dissipation of the source code in an application. SPAN can be used to find the

more power-hungry part of a source code. The only problem in the SPAN approach is that the
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developers need to add SPAN source code to the application source code for power estimation.

Mair et al. present the misconception in estimating power consumption using CPU performance

monitoring counters [56]. They discuss five myths in PMC power estimation research. First, the

previous work in power estimation doesnt provide with PMC sampling rate and time for which

the samples were taken. Second, there was no mention of the temperature at which sampling was

done. However, temperature plays a significant in affecting the power consumption of a system.

Third, memory events like cache misses are a good indicator of power consumption of ICT sys-

tems, which is not the case in a multicore architecture. Fourth, compiler optimization doesnt affect

power consumption. Fifth, there is no way to compare the previous research studies as there is no

common metrics to compare it.

2.7.3 Hybrid-Based Methods

Hybrid methods take data at both hardware level and software level to estimate the power

dissipation. Flinn et al. designed PowerScope which used hardware instrumentation and kernel

software support to estimate power consumption of applications [57]. It has been shown to reduce

46% of the power consumption of a video playing application. Isci and Martonosi proposed a tech-

nique for measuring power consumption by combining real total power measurement calculated

using a multimeter with per unit power consumption estimation using performance counters [58].

Ge et al. designed a framework PowerPack that can measure the power consumption of different

components of a system like disks, memory, NICs, and processors and map these measurements to

application functions [59]. It also supported multicore and multiprocessor based node and parallel

applications in HPC systems.

2.8 Summary

This chapter introduces various terms to define energy and power. It discusses different type of

ICT systems like embedded systems, handheld devices, personal computer, data center, and super-

computer. It explains TDP and performance per watt which are used to estimate energy demand

in ICT systems. It talks about hardware performance counters and energy efficiency benchmarks.

It describes the role of software in ICT systems energy consumption. Finally, it presents various
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approaches to measure power in ICT systems.
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CHAPTER 3 CALCULATING IDLE ENERGY

Same as power, energy can be classified as idle and active energy. Unstabilized idle energy

results in outliers which can cause inaccurate measurements. In this chapter, we stabilize the idle

energy on two ICT systems to calculate their idle energy consumption.

3.1 Set Up

We leverage two different ICT systems to conduct our experiments: Intel Fog Node and Laptop.

The configuration of these two systems is presented in Table 3.1. For the Laptop, the charger is

plugged in a wall outlet all the time. Both systems are disconnected from the internet all the time.

We use the Linux perf tool to gather energy consumption values of package and core domains.

The sampling rate is set to 10Hz. The following command is executed for each run:

$ sudo perf stat -a -r 1 -I 100\

-e 'power/energy-pkg/'\

-o pack.txt\

java programFile

where -a specifies collection from all CPUs, -r indicates how many times the command will be

repeated, -I specifies the time interval (msec), -e specifies the event selector, and -o specifies

the name of the output file.

3.2 Idle Energy

The total energy consumption is the sum of active and idle energy. As perf reports the total

energy, one can subtract the idle energy out of the total energy to find the active energy of an

application. However, the idle energy of a system can vary a lot due to the background services

running on an operating system. These variations make it hard to measure an accurate idle energy

of a system. To measure the idle energy of both systems consider here, we conduct an experiment

in which we first stabilize the idle energy and then calculate the idle energy of both systems by

removing outliers and computing the mean of values. We first measure the idle energy of both

systems without any stabilization for 24 hours with a sampling rate of 10Hz to determine how the
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Table 3.1: System specification

System Component Intel Fog Node Configuration Laptop Configuration

CPU Intel(R) Xeon(R) E3-1275 v5 Intel(R) Core(TM) i5-3317U v5

Socket 1 1

Number of cores 4 2

Number of threads 8 4

Architecture x86 64 x86 64

Kernel 4.13.0-37-generic 4.4.0-116-generic

OS Ubuntu Server 16.04.4 LTS Ubuntu Server 16.04.3 LTS

CPU governor powersave powersave

Memory 32GB SODIMM 2133 MHz 4GB DDR3 1600 MHz

L1d cache 32KB 32KB

L1i cache 32KB 32KB

L2 cache 256KB 256KB

L3 cache 8MB 3MB

JDK 64-Bit Server VM 64-Bit Server VM

JDK build 25.151-b12 25.151-b12

JDK version 1.8.0 151 1.8.0 151

Initial Heap Size 526MB 63MB

Maximum Heap Size 8.4GB 1GB

idle energy varies. In Fig. 3.1a and 3.2a, we show the idle energy consumption of the two systems.

We can see that the idle energy can change abruptly at any time for both systems.

3.3 Stopping System Services

Next, we stop the background services using systemctl command to stabilize the idle en-

ergy of the systems. For both systems, we disable all the enabled services. We again measure the

idle energy and we observe that there is a lot of variation. The reason is that the disabled services

can still be enabled because if a service is disabled, then it is not loaded during boot time but it

can be loaded if a service is started and it depends on the disabled service. Next, we mask all the

enabled services using systemctl command to stabilize the idle energy. If a service is masked,

then it cannot be loaded even if it is required by some other service. This time we are able to

stabilize the idle energy with a very few outliers as shown in Fig. 3.1b and 3.2b. We go one step

further and mask all the disabled services and then obtain fewer outliers, as shown in Fig. 3.1c

and 3.2c. However, outliers were still there as we can’t mask some of the services like log in, user
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Figure 3.1: Intel Fog Node package idle energy consumption: (a) with all services unmasked; (b)
with enabled services masked, and (c) with all services masked.
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Figure 3.2: Laptop package idle energy consumption: (a) with all services unmasked; (b) with
enabled services masked, and (c) with all services masked.
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Figure 3.3: Intel Fog Node dataset: (a) with outliers, and (b) without outliers.

manager and dbus.

The next step is to remove the outliers from the 24-hour dataset shown in Fig. 3.1c and 3.2c
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Figure 3.4: Laptop dataset: (a) with outliers, and (b) without outliers.

and calculate the mean of the values. We use Tukey’s method to remove the outliers [60]. For Intel

Fog Node and Laptop, the outliers represent 0.001% and 0.002% of the total data set, respectively.

We remove the outliers from both datasets. The histogram and boxplot before and after removing

outliers for the Intel Fog Node are shown in Fig. 3.3a and 3.3b, and for the Laptop in Fig. 3.4a and

3.4b. The standard deviation for Intel Fog Node is 0.0006, and for Laptop is 0.0007. The standard

deviation indicates that both datasets have low variation. The mean idle energy consumption per

one-tenth of a second for Intel Fog Node and Laptop is found to be 0.025 J and 0.229 J, respectively.

We can now calculate the active energy by subtracting the idle energy from the total energy.

One of the drawbacks of masking all the services is that it can make the system unstable as

it stops some services that are essential for the systems. Even when we unmask all the masked

services, we were not able to restart the system. In such cases, we have to reinstall the operating

system. Due to this problem, we limit the stabilization of idle energy to measure the energy con-

sumption of Java command-line options. For Java programming language components and JEPO,

we rely on taking multiple measurements, removing outliers and calculating mean of the values.

3.4 Summary

In this chapter, we are able to stabilize the idle energy of two ICT systems by masking all the

enabled and disabled services of Ubuntu Server OS. The stabilization helps us to achieve a standard
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deviation of 0.0006 in idle energy. However, stabilization also makes the system unstable which

limits the application of this stabilization technique.
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CHAPTER 4 ENERGY EFFICIENCY OF JAVA PROGRAMS

In this chapter, we conduct a comprehensive study to evaluate the energy efficiency from the

perspective of the Java programs. Java is one of the most commonly-used languages in ICT sys-

tems. We leverage two ICT systems to evaluate the energy consumption of data types, operators,

control statements, String, exceptions, objects, and Arrays in Java using Intel RAPL technology

for different iteration size of micro-benchmarks. For data types, we evaluate primitive data types,

access modifiers, local and static variables, and scientific notations. For operators, we evaluate

arithmetic, assignment, compound, pre- and post-increment, pre- and post-decrement, and short-

circuit operators. For control statements, we evaluate if-then-else, conditional operator and loops.

For exceptions, we evaluate try-catch block calls with and without exception. For String, we eval-

uate various ways of concatenating, converting and comparing String. For objects, we compare

wrapper classes. For threads, we investigate different types of thread implementations. For Ar-

rays, we compare different ways to copy and traverse Arrays.

We use the jRAPL [61] framework to gather energy consumption values of package and core

domains. For better accuracy, we measure the total energy consumption of each code hundred

times. We then check for outliers in those hundred measurements using Tukey’s method. We

remove the outliers and calculate the mean of remaining values to come up with the final value

of energy consumption. In cases where the means are close, we use the independent sample t-test

(two means) or one-way ANOVA test (more than two means) to determine whether the means are

the same. For both tests, we consider alpha value as 0.05 which means that if the p-value is smaller

than or equal to 0.05, we reject the null hypothesis that the mean values are the same. If the p-value

is greater than 0.05, it means that the mean values are the same. If the means are the same, we

conclude that there is no difference in energy consumption. Next, we present a detailed analysis of

all these Java components. Part of this work is published in [62, 63].

4.1 Energy Consumption Traits

In this section, we evaluate the energy consumption of different Java code snippets. Each plot

in the next subsections of the chapter represents the total energy consumption of a single iteration
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Figure 4.1: Primitive data types: (a) Intel Fog Node, and (b) Laptop package energy consumption.

1 do ub l e [ ] b e f o r e = E n e r g y C h e c k U t i l s . g e t E n e r g y S t a t s ( ) ;
2 s t a r t = System . nanoTime ( ) ;
3 b y t e v a r = 0 ;
4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 v a r *= j % 2 == 0 ? v a r ++ : var−−;
6

7 }
8 f i n i s h = System . nanoTime ( ) ;
9 do ub l e [ ] a f t e r = E n e r g y C h e c k U t i l s . g e t E n e r g y S t a t s ( ) ;

Code 4.1: byteVariable.java

of a code snippet. The number of iterations in each code is adjusted to support the default heap size.

We logged the package, core, and dram energy but only present the package energy consumption

values as the core and dram energy measurements values are negligible compared to those of the

package. For some of the results, we do not present the code used to obtain them since the code

can be found in our previous work [62].

4.1.1 Variables

In Fig. 4.1a and 4.1b, we compare all of the primitive data types except boolean in terms of

energy consumption. For each data type, we declare a variable and execute a conditional operator

statement for various iteration. The code for byte is shown in Code 4.1. Line 1,2,8, and 9 relates

to the code to measure energy consumption and execution time. For the rest of the codes in this

chapter, we don’t show these lines. Other primitive data types code are shown in Code 4.2, 4.3,

4.4, 4.5, 4.6, and 4.7. For iteration size 1e1, 1e3 and 1e6, all primitive data types consume the same
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1 s h o r t v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.2: shortVariable.java

1 i n t v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.3: intVariable.java

1 l ong v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.4: longVariable.java

1 f l o a t v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.5: floatVariable.java

amount of energy for both systems. For other iterations, int consumes the least amount of energy

whereas double consumes the most amount of energy for both systems same as in [64] and [65].

However, for smaller iteration sizes of up to 1e6, all primitive data types consume the same energy.

double consumes up to 67% more energy than int. The higher energy for long is expected

because long has a size of 64 bits, whereas int has a size of 32 bits. As long has more storage

overhead, we conclude that the code using long consumes more energy. The reason for the higher

energy consumption of byte, short, and char is the implicit conversion of byte, short, and

char variables to int in bytecode. The float and double consume significantly more energy

than any other data types due to the extra overhead to store decimal numbers. According to these

results, int is the most energy-efficient where as double is the least energy-efficient primitive

data type.

Variables in Java can be declared as local and static variables. Local variables of a method

are stored in the stack and lead to lower execution times. They can be changed in their specific



28

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

1e1 1e3 1e6 1e9 2e9
Iterations

Static
Instance

(a)

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

1e1 1e3 1e6 1e9 2e9
Iterations

Static
Instance

(b)

Figure 4.2: Instance and static variables: (a) Intel Fog Node, and (b) Laptop package energy
consumption.

1 do ub l e v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.6: doubleVariable.java

1 c h a r v a r = 0 ;
2 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
3 v a r *= j % 2 == 0 ? v a r ++ : var−−;
4 }

Code 4.7: charVariable.java

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r = j % 2 == 0 ? v a r ++ : var−−;
5 }

Code 4.8: localVariable.java

scope during the program execution. Static variables are stored in the heap and have a global

scope. For the local and static variable experiments, we create a local and static variable and

assign conditional operator result to it as shown in Code 4.8 and 4.9. The results of the energy

consumption measurements for both cases are shown in Fig. 4.2a and 4.2b. For iteration size 1e1,

1e3 and 1e6, local and static variable consume the same amount of energy for both systems. For
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1 s t a t i c i n t v a r = 0 ;
2

3 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h row s IOExcep t ion {
4

5 f o r ( i n t i = 0 ; i < r e p e a t ; i ++) {
6

7 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
8 v a r = j % 2 == 0 ? v a r ++ : var−−;
9 }

10

11 }

Code 4.9: staticVariable.java

1 p u b l i c c l a s s p u b l i c V a r i a b l e {
2

3 p u b l i c long v a r = 0 ;
4

5 p u b l i c s t a t i c vo id main ( S t r i n g a r g s [ ] ) {
6

7 i n t i t e r = I n t e g e r . p a r s e I n t ( a r g s [ 0 ] ) ;
8 p u b l i c V a r i a b l e o b j = new p u b l i c V a r i a b l e ( ) ;
9

10 f o r ( i n t i = 0 ; i < i t e r ; i ++) {
11

12 o b j . v a r *= o b j . v a r ;
13 }
14 }
15 }

Code 4.10: publicVariable.java

one billion iteration size, the code using static variable consumes 8,300% and 7,100% more energy

than the one using local variable for the Intel Fog Node and Laptop, respectively. For two billion

iteration size, the code using static variables consumes 17,700% and 14,300% more energy than

the one using local variable for the Intel Fog Node and Laptop, respectively. The slower heap

memory and more overhead due to extra instructions in bytecode is the reason for the behavior of

the code with the static variables.

Encapsulation in Java allows the control of access for members of a class. A member can

have four types of modifiers - public, private, protected, and default. For all types, we execute

the compound multiplication assignment statement on each member type two billion times. The

public variable code is shown in Code 4.10. The other access modifiers are implemented in the

same way. However, when we check the bytecode for each access modifier, we find them to be
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Figure 4.3: Float and Double scientific notation: (a) Intel Fog Node, and (b) Laptop package
energy consumption.

1 do ub l e v a r = 1 2 3 4 5 6 7 . 0 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r += j ;
5 }

Code 4.11: doubleNormal.java

1 do ub l e v a r = 1 .234567 e6 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r += j ;
5 }

Code 4.12: doubleScientific.java

same. Therefore, access modifiers do not have any effect on energy consumption of a variable.

Scientific notation is another way to write a decimal number. In scientific notation, e or E is

used to express the decimal number. Both float and double numbers can be written as scien-

tific notation. We compare the decimal and float number to their counterparts scientific notation.

The code for double number and its scientific counterpart are shown in Code 4.11 and 4.12. For

float, the same is shown in Code 4.13 and 4.14 . For iteration size 1e1, 1e3, and 1e5, float

and double numbers consume the same amount of energy as scientific notation for both systems

as shown in Fig. 4.3a and 4.3b. For iteration size 1e7 and 1e9, double and float numbers con-
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1 f l o a t v a r = 1234567 .0 f ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r += j ;
5 }

Code 4.13: floatNormal.java

1 f l o a t v a r = 1 .234567 e 6 f ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r += j ;
5 }

Code 4.14: floatScientific.java

1 l ong a = 0 ;
2

3 f o r ( l ong j = 1 ; j < i t e r ; j ++) {
4 f o r ( l ong k = 1 ; k < i t e r ; k ++) {
5 a = j + k ;
6 }
7 }

Code 4.15: add.java

1 l ong a = 0 ;
2

3 f o r ( l ong j = 1 ; j < i t e r ; j ++) {
4 f o r ( l ong k = 1 ; k < i t e r ; k ++) {
5 a = j − k ;
6 }
7 }

Code 4.16: subtract.java

sume up to 14% more energy than the scientific notation. Simplifying the arithmetic operations

helps scientific notation to consume less energy.

4.1.2 Operators

Java programming language provides arithmetic operators for addition, subtraction, multipli-

cation, division, and modulus. These operators are also called binary operators as they take two

operands. The operands of these operators can be integers or real numbers. For each arithmetic

operator, we perform arithmetic operations using different long and double operands and store

the value in the same long and double variable. The code for different operators are shown in

Code 4.15, 4.16, 4.17, 4.18, and 4.19. For iteration size 1e1, 1e3 and 1e4, all operators consume the
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1 l ong a = 0 ;
2

3 f o r ( l ong j = 1 ; j < i t e r ; j ++) {
4 f o r ( l ong k = 1 ; k < i t e r ; k ++) {
5 a = j * k ;
6 }
7 }

Code 4.17: multiply.java

1 l ong a = 0 ;
2

3 f o r ( l ong j = 1 ; j < i t e r ; j ++) {
4 f o r ( l ong k = 1 ; k < i t e r ; k ++) {
5 a = j / k ;
6 }
7 }

Code 4.18: divide.java

1 l ong a = 0 ;
2

3 f o r ( l ong j = 1 ; j < i t e r ; j ++) {
4 f o r ( l ong k = 1 ; k < i t e r ; k ++) {
5 a = j % k ;
6 }
7 }

Code 4.19: modulus.java

same amount of energy for both systems using long operands as shown in Fig. 4.4a and Fig. 4.4b.

For iteration size 1e5, the modulus and division operator consume a significantly higher amount

of energy. The addition operator consumes the least whereas the modulus operator consumes the

highest and up to 1,620% more energy. For double operands, iteration size 1e1, 1e3, and 1e4

shows the same results. For iteration size 1e5, the modulus operator shows the same behavior for

double operands, but division operator consumes lesser amount of energy as the other operators.

The reason for faster divison of double operands is the faster execution of exponent part. The

modulus operator consumes up to 277% more energy than the addition operator. When we check

the bytecode for differences between mod and add, the only difference was the change from drem

to dadd instruction. Higher number of CPU cycles consume by these instructions result in higher

energy consumption of division and modulus operator.

‖ and && operators are called short-circuit operators in Java. When the first operand of the &&
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Figure 4.4: Arithmetic operators using long variables: (a) Intel Fog Node, and (b) Laptop package
energy consumption.

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 i f ( v a r > −1 | | v a r > 1 | | v a r > 1)
5 v a r = j ;
6 }

Code 4.20: circuitLeftOr.java

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 i f ( v a r < −1 | | v a r < −1 | | v a r > −1)
5 v a r = j ;
6 }

Code 4.21: circuitRightOr.java

operator evaluates to false, the result of the whole condition is false, and when the first operand

of the ‖ operator evaluates to true, the result of the whole condition is true. We compare the two

cases where the true operand of the ‖ operator is in the first and last position. We create a for loop

with various iteration sizes, with the if condition having two ‖ operators and three operands. For

the first case (First), the result is returned after the evaluation of the first operand as shown in Code

4.20. For the second case (Last), the result is returned after evaluation of the last operand as shown

in Code 4.21. The first and second cases are shown in Fig. 4.5a and 4.5b. For iteration size 1e1,

1e3 and 1e6, both cases consume the same amount of energy for both systems. For other iteration
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Figure 4.5: First operand as true and last operand as true in ‖ operator expression: (a) Intel Fog
Node, and (b) Laptop package energy consumption.

sizes, the Or Last case consumes up to 100% more energy than the Or First case for both systems.

Therefore, it is better to always put those cases first in short circuit operators that are the most

common. The higher energy consumption is due to extra operands execution in Or Last case. The

&& operator shows the same behavior.

The assignment operator and arithmetic operators can be combined in two ways - normal and

compound. In the normal assignment, the operands are first evaluated on the right and then the

result is assigned to a variable on the left. In the compound assignment, an arithmetic operator is

combined with an assignment operator. We compare these two cases. However, when we check the

bytecode, we find that both cases have the same bytecode. Therefore, it does not matter whether

the normal or compound assignment is used in Java. Next, we compare the compound addition

and subtraction with post-increment, pre-increment, post-decrement, and pre-decrement operators

for various iterations. As shown in Fig. 4.6a and 4.6b, all operators consume the same energy

for different iteration sizes. The code for compound addition, post-increment and pre-increment is

shown in Code 4.22, 4.23, and 4.24.
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Figure 4.6: Increment and decrement operators: (a) Intel Fog Node, and (b) Laptop package energy
consumption.

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r += 1 ;
5 }

Code 4.22: compoundAddition.java

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r ++;
5 }

Code 4.23: postIncrement.java

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 ++ v a r ;
5 }

Code 4.24: preIncrement.java

1 S t r i n g v a r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r = j % 2 == 0 ? ” Even ” : ” odd ” ;
5 }

Code 4.25: conditional.java
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Figure 4.7: Conditional operator and if-then-else: (a) Intel Fog Node, and (b) Laptop package
energy consumption.

1 S t r i n g v a r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4

5 i f ( j % 2 == 0)
6 v a r = ” Even ” ;
7 e l s e
8 v a r = ”Odd” ;
9

10 }

Code 4.26: ifThenElse.java

4.1.3 Control Statements

Conditional or ternary operators in Java allow assigning a value to a variable based on the

boolean expression value. It allows writing an if-then-else statement in one line. It is called

ternary operator because it takes three operands. In Code 4.25, we execute various iteration sizes

in a for loop and test whether the iteration number is even or odd using the conditional operator.

We do the same for the if-then-else case in Code 4.26. For the if-then-else case, the bytecode has

an extra instruction astore to store a reference into a local variable. Fig. 4.7a and 4.7b, show

the energy consumption of the two cases for the Intel Fog Node and the Laptop. For iteration size

1e1, 1e3 and 1e6, both the cases consume the same amount of energy for both systems. For the
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Figure 4.8: Iteration variable (different data types): (a) Intel Fog Node, and (b) Laptop package
energy consumption.

1 i n t v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r ++;
5 }

Code 4.27: loopInt.java

1 i n t v a r = 0 ;
2

3 f o r ( l ong j = 0 ; j < i t e r ; j ++) {
4 v a r ++;
5 }

Code 4.28: loopLong.java

Intel Fog Node, conditional operator consumes 25% and 37% more energy for one billion and two

billion iteration size, respectively. For the Laptop, conditional operator consumes less than 1%

higher energy for the two iteration sizes.

Loops are frequently used to execute a block of statements or a single statement several times.

For our analysis, we first change the iteration variable of a for loop to a different data type - int,

long, and double, and then execute post-increment operator for various iteration sizes for each.

The code for int, long, and double iteration variable is shown in Code 4.27, 4.28, and 4.29.

The results for these cases are shown in Fig. 4.8a and 4.8b. For iteration size 1e1, 1e3 and 1e6,
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1 i n t v a r = 0 ;
2

3 f o r ( do ub l e j = 0 ; j < i t e r ; j ++) {
4 v a r ++;
5 }

Code 4.29: loopDouble.java

1 A r r a y L i s t<I n t e g e r > l oop = new A r r a y L i s t<I n t e g e r >() ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 l oop . add ( j ) ;
5 }
6

7 f o r ( i n t j = 0 ; j < l oop . s i z e ( ) ; j ++) {
8 l oop . g e t ( j ) ;
9 }

Code 4.30: methodTerminate.java

1 A r r a y L i s t<I n t e g e r > l oop = new A r r a y L i s t<I n t e g e r >() ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 l oop . add ( j ) ;
5 }
6

7 i n t s i z e = loop . s i z e ( ) ;
8

9 f o r ( i n t j = 0 ; j < s i z e ; j ++) {
10 l oop . g e t ( j ) ;
11 }

Code 4.31: varTerminate.java

both the cases consume the same amount of energy for both systems. The int consumes the least

amount of energy whereas the double consumes the most and up to 573% more energy.

We also examine two different ways of initializing the termination expression in a for loop:

using a variable and using a method call. In both cases, we first initialize an ArrayList and

add different number of integers to it. Then, in the method case, we use the size method to

specify the termination expression of the for loop, as shown in Code 4.30, whereas in the variable

case, we first store the size of the list in an integer variable and then use that variable in the for

loop termination expression to avoid multiple calls to the size method as shown in Code 4.31.

For iteration size 1e1, 1e3 and 1e5, both the cases consume the same amount of energy for both

systems. For iteration size 1e7, the energy consumption in the method termination case is up to 3%
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Figure 4.9: Termination expression variable and method: (a) Intel Fog Node, and (b) Laptop
package energy consumption.

1 i n t v a r = 1 , j = 0 ;
2

3 do {
4

5 v a r *= j ;
6 j ++;
7

8 } w h i l e ( j < i t e r ) ;

Code 4.32: doWhile.java

more than the variable case for both systems, as shown in Fig. 4.9a and 4.9b. When we check the

bytecode for both cases, the variable case result in additional instructions, however, it consumes

lesser energy due to the removal of method calls overhead. A different method with significant

overhead can result in higher energy consumption in the method case than in the variable case.

for, while and do-while are the loop statements in Java. In our experiments, each type of

loop executes a compound multiplication assignment statement for different iteration sizes. Code

4.32, 4.33, and 4.34 show the implementation for the do-while, while, and for loop. All

loop statements consume the same amount of energy as shown in Fig. 4.10a and 4.10b. However,

when we check the bytecode for each loop, the one corresponding to the for loop is found to

have the most number of instructions, while the one for the do-while loop is found to have the

least number of instructions. Next, we compare the for statement to the enhanced for statement
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Figure 4.10: For, while and do-while: (a) Intel Fog Node, and (b) Laptop package energy
consumption.

1 i n t v a r = 1 , j = 0 ;
2

3 w h i l e ( j < i t e r ) {
4

5 v a r *= j ;
6 j ++;
7

8 }

Code 4.33: while.java

1 i n t v a r = 1 ;
2

3 f o r ( i n t j =0 ; j < i t e r ; j ++) {
4

5 v a r *= j ;
6

7 }

Code 4.34: for.java

which is mainly used to iterate over a collection. It does not contain the termination and increment

expression and allows traversing through the collection without explicitly knowing the index. It

can only be used when one needs to iterate from the first to the last value in a collection. We

access various sizes array using the for loop and the enhanced for loop. The enhanced for loop

implementation is shown in Code 4.35. We find that both cases have the same energy consumption.
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1 i n t a = 0 ;
2

3 i n t [ ] a r r = new i n t [ i t e r ] ;
4

5 f o r ( i n t i = 0 ; i < a r r . l e n g t h ; i ++) {
6

7 a r r [ i ] = i ;
8

9 }
10

11 f o r ( i n t i : a r r ) {
12

13 a *= i ;
14

15 }

Code 4.35: enhancedVsFor.java

1 i n t v a r = 1 ;
2

3 f o r ( i n t j = 1 ; j < i t e r ; j ++) {
4 t r y {
5 v a r = v a r / j ;
6 } c a t c h ( E x c e p t i o n E ) {
7 System . o u t . p r i n t l n ( ” Denominator can ' t be z e r o ! ! ! ” ) ;
8 }
9 }

Code 4.36: exceptionInLoop.java

1 i n t v a r =1 ;
2

3 t r y {
4 f o r ( i n t j = 1 ; j < i t e r ; j ++) {
5 v a r = v a r / j ;
6 }
7 } c a t c h ( E x c e p t i o n E ) {
8 System . o u t . p r i n t l n ( ” Denominator can ' t be z e r o ! ! ! ” ) ;
9 }

Code 4.37: exceptionOutLoop.java

4.1.4 Exceptions

Java uses try-catch blocks to handle exceptions. We examine whether a try-catch block has

any associated energy cost when it is used in a program with no exception thrown. We compare

the energy consumption of multiple calls of the try-catch block inside a loop with a single call

(Code 4.36) to a try-catch block outside the loop (Code 4.37). The first case results in various size

executions of a try-catch block, while the second case results in the single execution of a try-catch
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Figure 4.11: Try-catch in loop and not in loop: (a) Intel Fog Node, and (b) Laptop package energy
consumption.

1 i n t a =1 , b =1;
2

3 f o r ( i n t i =0 ; i <2000000000; i ++){
4 t r y {
5 a=a / 0 ;
6 } c a t c h ( E x c e p t i o n E ) {
7 a=a / b ;
8 }
9 }

Code 4.38: exceptionThrownLoop.java

block. For iteration size 1e1, 1e3 and 1e6, both the cases consume the same amount of energy for

both systems. However, for iteration size 1e9 and 2e9, we find that the single execution of try-catch

block result in up to 24% more energy consumption as shown in Fig. 4.11a and 4.11b. When we

check the bytecode, both cases have almost the same bytecode with a small difference in the order

of the instructions. The higher energy consumption can be a result of scope difference.

Executing a catch block has a major overhead as it involves reading the stack for the thrown

exception. We measure the impact of the catch block by running two cases - exception thrown

and no exception thrown - using the Exception class. All exceptions in Java are subtypes of the

Exception class. In the exception thrown case, we put a try-catch block inside a for loop which

iterate two billion times as shown in Code 4.38. For each iteration, an exception is thrown due to
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1 i n t a =1 , b =1;
2

3 f o r ( i n t i =0 ; i <2000000000; i ++){
4 t r y {
5 a=a / b ;
6 } c a t c h ( E x c e p t i o n E ) {
7 a=a / b ;
8 }
9 }

Code 4.39: exceptionNotThrown.java

1 S t r i n g s t r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r += j + ” ” ;
5 }

Code 4.40: concatenationOperator.java

division by zero. Then, we write the same statements with no exception thrown as shown in Code

4.39. The exception case consumes 2.46% and 3.29% more energy for the Intel Fog Node and the

Laptop, respectively. The results can differ for a different exception type as different exceptions

have different overheads.

4.1.5 String

String is immutable and cannot be altered once created in Java. Applying different methods

on a String does not change the original String. For example, String.substring (int

beginIndex) returns a new String that is a substring of the original String. String sup-

ports the concatenation operator (+) which combines two or more strings. The concatenation

operator is resolved at compile time if all the strings that need to be combined can be resolved

at compile time. However, if an expression cannot be resolved at compile time, the concate-

nation operator will execute at run time and causes extra overhead [66]. String has function

named concat, StringBuilder and StringBuffer has function named append which

we compare with the String concatenation operator in Fig. 4.12a and 4.12b. For each case, we

concatenate an integer variable and string for various iteration sizes. The code using the concate-

nation operator, concat method, StringBuilder append method and StringBuffer

append method is shown in Code 4.40, 4.41, 4.42, and 4.43. For iteration size 1e1, 1e3 and 1e4,
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Figure 4.12: String concatenation: (a) Intel Fog Node, and (b) Laptop package energy con-
sumption.

1 S t r i n g s t r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r . c o n c a t ( j + ” ” ) ;
5 }

Code 4.41: concatMethod.java

both the cases consume the same amount of energy for both systems. The concatenation opera-

tor consumes up to 1,48,069% more energy than other methods after iteration size 1e3 for both

systems. StringBuilder append method consumes the least amount of energy same as in

[64] and [65], however, concatenation of up to 1e4 String values result in same energy con-

sumption of all methods. The reason for the higher energy consumption of concatenation operator

is multiple calls to StringBuilder append method, creating a new String object on each

iteration, whereas the StringBuilder append method use resizable array to store the strings

and change it to String only when required. The String concat method result in higher en-

ergy consumption than StringBuilder append method due to copying the String values

to char array and creating a new String object on each iteration. StringBuilder performs

better than StringBuffer as StringBuffer is synchronized.

Java provides various methods to covert a String to a primitive data type. For example, to
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Figure 4.13: String conversion: (a) Intel Fog Node, and (b) Laptop package energy consump-
tion.

1 S t r i n g B u i l d e r s t r = new S t r i n g B u i l d e r ( ) ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r . append ( j + ” ” ) ;
5 }

Code 4.42: StringBuilder.java

1 S t r i n g B u f f e r s t r = new S t r i n g B u f f e r ( ) ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r . append ( j + ” ” ) ;
5 }

Code 4.43: StringBuffer.java

convert a String variable var to integer one can use following methods - Integer.toString(var),

String.valueOf(var) and new Integer().toString(var). For each method, we convert various number

of integers as shown in Code 4.44, 4.45, and 4.46. For iteration size 1e1, 1e3 and 1e4, both

the cases consume the same amount of energy for both systems. For both systems, all methods

consume same energy for all iterations as shown in Fig. 4.13a and 4.13b. The reason for the same

energy consumption is using the same functionality to convert the int variable to String. First

the int variable is converted to char buffer using the char array and then this char array is

converted to String using String class constructor.
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1 S t r i n g s t r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r += I n t e g e r . t o S t r i n g ( j ) ;
5 }

Code 4.44: integerToString.java

1 S t r i n g s t r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r += S t r i n g . va lueOf ( j ) ;
5 }

Code 4.45: stringValueOf.java

1 S t r i n g s t r = ” ” ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 s t r += new I n t e g e r ( j ) . t o S t r i n g ( ) ;
5 }

Code 4.46: newIntegerToString.java

String has various methods to compare whether two strings are equal. A developer can use

String equals or compareTo method, or Objects equals method for String compar-

ison. String equals first check whether the two String objects are same or not. If they are

same, then the equals method return true. If they are not equal, both String object are com-

pared for each character. String compareTo compares two String objects lexicographically

and return 0 if the two String objects are equal. Objects equals method check whether

the two String objects refer to same object or not. It doesn’t check for String objects con-

tents. For String equals and compareTo method, we compare various String as shown

in Code 4.47 and 4.48. We don’t compare Objects equals method to String equals or

compareTo method as we have to compare String objects content. For iteration size up to

1e3, all methods consume the same energy for both systems as shown in Fig. 4.14a and 4.14b.

For other iteration sizes, String compareTo method consumes up to 33% more energy than

String equals method. The higher energy consumption for String compareTo method is

due to extra overhead to compare String objects lexicographically.
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Figure 4.14: String comparison: (a) Intel Fog Node, and (b) Laptop package energy consump-
tion.

1 S t r i n g [ ] s t r 1 = new S t r i n g [ i t e r ] ;
2 S t r i n g [ ] s t r 2 = new S t r i n g [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 s t r 1 [ j ] = j + ” ” ;
6 s t r 2 [ j ] = j + ” ” ;
7 }
8

9 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
10 s t r 1 [ j ] . e q u a l s ( s t r 2 [ j ] ) ;
11 }

Code 4.47: stringEqual.java

1 S t r i n g [ ] s t r 1 = new S t r i n g [ i t e r ] ;
2 S t r i n g [ ] s t r 2 = new S t r i n g [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 s t r 1 [ j ] = j + ” ” ;
6 s t r 2 [ j ] = j + ” ” ;
7 }
8

9 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
10 s t r 1 [ j ] . compareTo ( s t r 2 [ j ] ) ;
11 }

Code 4.48: stringCompareTo.java

4.1.6 Objects

Wrapper classes in Java are used to convert a primitive data type into an object and vice-versa.

For example, Integer wrapper class is used to convert primitive data type int into an object.
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Figure 4.15: Wrapper variables: (a) Intel Fog Node, and (b) Laptop package energy consumption.

1 I n t e g e r v a r = 0 ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r *= j % 2 == 0 ? v a r ++ : var−−;
5 }

Code 4.49: Integer.java

It is used in cases such as storing int values in a collection as they only accept objects as values.

We compare Integer, Long, Float and Double wrapper classes to analyze their energy

consumption values. We initialize a variable of each type to zero and execute a conditional operator

statement for various iteration sizes. The code for Integer Long, Float and Double wrapper

classes are shown in Code 4.49, 4.50, 4.51, and 4.52. For iteration size up to 1e6, all wrapper

classes consumes same energy for both systems as shown in Fig. 4.15a and 4.15b. Integer

class consumes the least amount of energy where as Double class consumes the most amount

of energy for higher iteration sizes for both systems. Therefore, developers can prefer to use

Integer wrapper class when dealing with collections. Double consumes up to 115% more

energy than Integer.

4.1.7 Threads

Threads allow dividing a task into smaller parts and then each part is executed concurrently.

This way of executing multiple threads at the same time is called multithreaded programming.
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1 Long v a r = 0L ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r *= j % 2 == 0 ? v a r ++ : var−−;
5 }

Code 4.50: Long.java

1 F l o a t v a r = 0F ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r *= j % 2 == 0 ? v a r ++ : var−−;
5 }

Code 4.51: Float.java

1 Double v a r = 0D;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 v a r *= j % 2 == 0 ? v a r ++ : var−−;
5 }

Code 4.52: Double.java

Threads can be used in Java either by implementing a Runnable interface or extending Thread

class. The Runnable interface allows sharing of the same object instance but the Thread class

results in unique objects for each thread. As a Java class can only extend a single class, it is better

to use the Runnable interface to allow the class to extend any other class. The Runnable

interface and the Thread class consume the same energy when we create three different threads

and execute the compound multiplication assignment statement various times for each thread.

4.1.8 Arrays

Arrays are very commonly used in a programming language to store or operate on data. Many

a time, an array is copied to other to avoid making changes to original array. An array can be

either copy manually or using the methods in Java - clone(), System.arraycopy() and

Arrays.copyOf(). We compare all these ways of copying array for different array sizes.

The code for manually copying, clone(), System.arraycopy() and Arrays.copyOf()

are shown in Code 4.53, 4.54, 4.55, and 4.56. For both systems, array size of up to 1e5

result in the same energy consumption as shown in Fig. 4.16a and 4.16b. For array size

1e7, System.arraycopy() results in the least amount of energy consumption where as
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Figure 4.16: Array copy: (a) Intel Fog Node, and (b) Laptop package energy consumption.

1 i n t [ ] v a r = new i n t [ i t e r ] ;
2 i n t [ ] varC = new i n t [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 v a r [ j ] = j ;
6 }
7

8 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
9 varC [ j ] = v a r [ j ] ;

10 }

Code 4.53: manualArrayCopy.java

Arrays.copyOf() result in the most amount of energy consumption. Arrays.copyOf()

consumes 14% more energy than System.arraycopy(). Arrays.copyOf() utilizes

System.arraycopy() to copy an array, however, it creates a new array and uses extra instruc-

tions to calculate arguments for System.arraycopy() method. clone() method results in

higher energy consumption as it creates a new array object and copies the values of an existing array

to it. System.arraycopy() was found to consume lesser energy when compared to manual

copy in [64]. From this study, we get to know that Array size of smaller than 1e5 consume same

energy and System.arraycopy() performs better than clone() and Arrays.copyOf().

Accessing an array of more than one dimension is possible either by row or column. We

compare the energy consumption of various array sizes while traversing them by row and column.
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1 i n t [ ] v a r = new i n t [ i t e r ] ;
2 i n t [ ] varC = new i n t [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 v a r [ j ] = j ;
6 }
7

8 varC = v a r . c l o n e ( ) ;

Code 4.54: clone.java

1 i n t [ ] v a r = new i n t [ i t e r ] ;
2 i n t [ ] varC = new i n t [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 v a r [ j ] = j ;
6 }
7

8 System . a r r a y c o p y ( var , 0 , varC , 0 , i t e r ) ;

Code 4.55: systemArrayCopy.java

1 i n t [ ] v a r = new i n t [ i t e r ] ;
2 i n t [ ] varC = new i n t [ i t e r ] ;
3

4 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
5 v a r [ j ] = j ;
6 }
7

8 varC = A r ra ys . copyOf ( var , i t e r ) ;

Code 4.56: arraysCopyOf.java

We want to know at what array size it matters whether we are traversing array by row or column.

The code for row and column traversal is shown in Code 4.57 and 4.58. For array size up to 1e3 in

a two dimension matrix, both row and column traversing consumes same energy as shown in Fig.

4.17a and 4.17b. However, an array size of 1e4 result in up to 793% more energy consumption for

column traversing. The reason for higher energy consumption for column traversal is the out of

order access of memory locations. The same result were shown by a matrix of 1024x1024 in [64],

however, the smaller size matrix shows same energy consumption for row and column traversal.

4.2 Energy And Execution Time

In this section, we analyze the relation between the energy and execution time for JDK 7,

8, 9, 10, 11 and 12. Each JDK release a number of new features. We calculate the correlation
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Figure 4.17: Matrix traversal row and column: (a) Intel Fog Node, and (b) Laptop package energy
consumption.

1 i n t [ ] [ ] v a r = new i n t [ i t e r ] [ i t e r ] ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 f o r ( i n t k = 0 ; k < i t e r ; k ++) {
5 v a r [ j ] [ k ] = j + k ;
6 }
7 }

Code 4.57: rowTraversal.java

1 i n t [ ] [ ] v a r = new i n t [ i t e r ] [ i t e r ] ;
2

3 f o r ( i n t j = 0 ; j < i t e r ; j ++) {
4 f o r ( i n t k = 0 ; k < i t e r ; k ++) {
5 v a r [ k ] [ j ] = j + k ;
6 }
7 }

Code 4.58: columnTraversal.java

between the energy and execution time for both systems using the values of each code snippet

from Section 4 on different JDKs. The results for the Intel Fog Node and the Laptop are shown

in correlation matrix in Fig. 4.18a and 4.18b. E denotes the energy, T denotes the execution time,

F denotes the Intel Fog Node and L denotes the Laptop. For the Intel Fog Node, the correlation

for energy consumption is at least 0.97, whereas, for the Laptop, the correlation is 0.96. Execution

time shows the same behavior which means that there is a high linear relation between the energy
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Figure 4.18: Energy and time correlation for different JDKs: (a) Intel Fog Node, and (b) Laptop.

and execution time. The high correlation between different JDKs energy consumption and time

execution values shows that our results are stable for the different JDKs.

4.3 Threats to Validity

The results of our earlier work [62] can vary from this work due to the measurement set up

difference and various Java command-line options. In this section, we go over various threats to

the validity of this work. These threats can have a big impact on the results.

JVM type: JVM is offered in two flavors - server and client. These two types of JVM have

different compilers that are appropriate to the performance needs of the client and server applica-

tions. JDK contains both types which can be enabled by specifying -client or -server. The

server JVM is suited for running server applications which require the fastest possible operating

speed instead of a fast start-up. Client JVM is specifically adjusted to execute less of the complex

optimizations resulting in reduced application start-up time and smaller memory footprint. For our

experiments, we use the server JVM. For most of the codes, using the client JVM will result in the

same energy consumption as most of our codes are lightweight. However, for codes such as those
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for LinkedList deletion, the server JVM is more energy-efficient.

Garbage Collector type: The type of garbage collector used to remove unused objects in

heap memory can impact both processing time and energy consumption. Java offers four types

of garbage collectors: serial (-XX:+UseSerialGC), parallel (-XX:ParallelGCThreads),

concurrent mark sweep (-XX:+UseConcMarkSweepGC) and garbage first (-XX:+UseG1GC).

The serial garbage collector uses a single thread and freezes all the application threads during

garbage collection. The parallel garbage collector is the default garbage collector and works the

same as the serial garbage collector but uses multiple threads for garbage collection. The con-

current mark sweep garbage collector minimizes the pauses during the garbage collection by per-

forming the garbage collection concurrently with the application threads. The garbage first garbage

collector is parallel, concurrent and compacts the free heap space as soon as it reclaims the memory.

For our experiments, we use the default parallel garbage collector. Again, as most of our codes are

lightweight, using any of the garbage collectors will result in almost the same energy consumption

values for most of the codes. However, for codes like that for LinkedList deletion, the selection

of best garbage collector is not only code dependent but also hardware dependent. For the Intel

Fog Node, the concurrent mark sweep garbage collector and for the Laptop, the parallel garbage

collector result in the lowest energy consumption values for the LinkedList deletion code.

JIT compilation type: JIT compilation helps improve the performance of Java applications

at run time. Depending on the application performance need, JIT compilation can be changed

to always used (-Xcomp), disabled (-Xint), or just on hot methods (-Xmixed). The last one

is the default JIT compilation. An interpreter is used to execute the bytecode whenever JIT is

disabled. As JIT produces faster execution of Java code, turning it off and on can impact the total

energy consumption of the code. For our experiments, we use the default just on hot methods JIT

compilation. Changing the compilation to -Xint results in higher energy consumption values for

almost all codes in our experiments.
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Table 4.1: A summary of the observations

Component Observation

Variables

int is the most efficient primitive data type. Static variables consume
up to 17,700% more energy compared to local variables. Access modi-
fiers have no impact on a variable energy consumption. Scientific nota-
tion results in lower energy consumption of decimal numbers.

Operators

Modulus arithmetic operator consumes up to 1,620% more energy than
other arithmetic operators. Putting the most common cases first in
short circuit operators can save up to 87% energy. Normal and com-
pound assignments have the same amount of energy consumption. Post-
increment, pre-increment , post- decrement and pre-decrement opera-
tors consume same energy.

Control
Statements

Ternary operator consumes up to 37% more energy than if-then-else
statement. int is the most energy-efficient iteration variable in a for
loop. for, while and do-while loop statements consume same
energy. Enhanced for statement consumes the same energy as the for
statement. Method termination expression can consume higher energy
than the variable termination expression.

Exception
Try-catch block scope can change how it consumes energy. Executing
a catch block results in higher energy consumption.

String

StringBuilder append method consumes up to 1,48,069% lower
energy than String concatenation operator. Integer toString,
and String valueOf consume same energy. String compareTo
method consumes up to 33% more energy than String equals
method.

Object
Wrapper classes object are more energy-expensive as compared to
primitive data types. Double wrapper class object consume up to
115% more energy than Integer wrapper class object.

Thread
Creating Threads by implementing a Runnable interface or extend-
ing Thread class consume same energy.

Arrays
System.arraycopy() is the most energy-efficient way to copy Ar-
rays. Two-dimensional Array column traversal result in up to 793%
more energy.

4.4 Related Work

Application programmers were shown to be aware of software energy consumption problems

in [42]. In this study, the researchers analyzed 300 questions and 550 answers from 800 users on

StackOverflow. The questions asked regarding the energy consumption problems were found to

be diverse, interesting and challenging. However, the researchers found the answers to these ques-
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tions to be often flawed or vogue. In another study, thousands of energy related questions, posted

on StackOverflow, are analyzed to understand the issues faced by software developers while devel-

oping energy-efficient code [67]. In this study, the software developers are found to be concerned

about energy consumption issues when there were issues related to improper implementations,

sensor and radio utilization. A survey of more than 100 programmers has shown that software

developers have limited knowledge about how software consumes energy and how the energy con-

sumption among software can be reduced [68]. In their study, more than 80% of the programmers

didn’t consider the energy consumption of the software while developing it. Even interesting is

that only 3% of the programmers received a complaint about the software energy consumption of

the software they developed. It tells that even the users of the software are not aware of the energy

consumption of a software. The reason for such results can be that the demand for energy-efficient

computing is not a part of the education, knowledge, and training of programmers. Software energy

efficiency research challenges are discussed in [69]. Some of these challenges include characteriz-

ing software behavior and energy consumption relationship, measurement of energy consumption

of highly heterogeneous systems, insufficient generalized principles and lack of a unified approach.

The energy consumption of sorting algorithms in embedded and mobile environments was ex-

amined in [70]. No correlation was found between the time complexity of the sorting algorithms

and their energy consumption. However, the sorting algorithms for memory requirements were

found related to energy consumption. Quality contracts that express dependencies between soft-

ware and hardware components for energy efficiency of software systems were used in [71, 72].

The impact of languages (C/C++/Java/Python), compiler optimization (GNU C/C++ compiler with

O1, O2, and O3 flags), and implementation choices (e.g. using malloc instead of new to create dy-

namic arrays and using vector vs. array for Quicksort) on Fast Fourier Transform, Linked List

Insertion/Deletion, and Quicksort was examined in [73]. The analysis found that improvement

in serial code performance resulted in better energy efficiency, choice of programming languages

was found to impact the energy use of program, and compiler options and data structure found

to significantly impact the energy consumption of program. Java thread management constructs
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- explicit thread creation, fixed-size thread pooling, and work stealing - relation to energy con-

sumption was explored in [74]. In this study, energy consumption is found related to the choice

of thread management constructs, the number of threads, the granularity of tasks, the size of the

data, and the nature of data access. Energy-efficient multithreaded program runtimes are shown

to save 11-12% of energy in [75]. 6 commonly-used refactoring techniques have shown to impact

the energy consumption of 197 applications in [76]. Refactoring not only just impact the energy

consumption but also result in increase and decrease in the amount of energy consumption of the

applications. The change in the energy efficiency of software by using different classes that im-

plement the same interface was investigated in [77]. The study showed that the use of dynamic

data structures in software applications leads to energy savings between 16.95% and 97.50%. The

authors used machine learning tools to select the right data structure for the right workload and

modify the classes for adaptive green data structures which resulted in better energy efficiency.

Java collections were studied in terms of energy efficiency in [78], [79] and [80]. In those stud-

ies, the selection of a wrong collection type led to 300% more energy consumption than the most

efficient type. Intelligent light-weight scheduler, Neurosurgeon, shown to reduce mobile energy

consumption by 59.5% in [81]. Haskell, a pure functional language, is shown to save 60% energy

while changing one data sharing primitive to another [82]. In this study, the relationship between

energy efficiency and performance was not clear. Advanced software engineering methods like

Dynamic Software Product Lines (DSPLs) [83] and Aspect-Oriented Software Development [84]

are utilized to develop self-adaptive applications for energy efficiency in [85]. Performance-based

guidelines have shown a saving of battery life of mobile applications for up to an hour in [86].

Object Oriented Programming (OOP) features and design patterns impact on software is investi-

gated in [87]. In this study, inheritance was found to have no impact on energy efficiency and

virtual functions, dynamic binning, overloading resulted in lower energy efficiency. For design

patterns, impact of façade, prototype, and template method design patterns had no effect on en-

ergy efficiency, flyweight design pattern resulted in better energy efficiency and decorator design

pattern resulted in lower energy efficiency. In one of our earlier work [62], we investigated Java’s
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energy consumption on data types, access modifiers, arithmetic operators, compound assignment,

conditional operators, loop statements, exception, threads and all the classes in Java Collections

Framework in terms of energy efficiency. In this chapter, we perform a rigorous analysis of data

types, operators, control statements, String, exceptions, objects, and Arrays in terms of energy

efficiency. None of the works described above has performed an exhaustive analysis of the Java

components like us for energy consumption analysis.

4.5 Summary

Software energy efficiency research still has a long way to go as most of the energy efficiency

research concentrates on hardware. Software developers have been oblivious to application energy

efficiency for years. They do not pay much attention to the energy consumption of the software

they develop. There are no well-established guidelines that they can follow to write energy-efficient

code. We hope that this work will stimulate the development of such guidelines for developing

energy-efficient software. We measure and compare the energy efficiency of data types, operators,

control statements, String, exceptions, objects, and Arrays in Java as summarized in Table 4.1.

We find a strong linear relationship between energy consumption and execution time for different

JDKs. We hope that these results will help software developers to build more energy-efficient Java

applications in the future.
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CHAPTER 5 ENERGY CONSUMPTION ANALYSIS OF JAVA COMMAND-LINE OP-

TIONS

Java has different command-line options that can be used to tune the JVM. These

options can significantly affect the energy behavior of Java applications. However,

there is no study characterizing the energy behavior of these command-line options.

We evaluate the active energy consumption of SPECjvm2008 benchmarks using different

JDKs (Open and Oracle) and Java command-line options. The Java command-line op-

tions include client, server, Xbatch, Xcomp, Xfuture, Xint, Xmixed, Xrs,

AggressiveOpts, AggressiveHeap, Inline, AlwaysPreTouch, Xnoclassgc,

UseSerialGC, UseParallelGC, UseConcMarkSweepGC, and UseG1GC. This work is

published in [88].

SPECjvm2008 consists of 11 benchmarks which are split into sub-benchmarks as shown

in Table 5.1. Compiler benchmark has two sub-benchmarks - compiler.compiler and

compiler.sunflow. compiler.compiler compiles javac itself. compiler.sunflow

compiles the sunflow sub-benchmark from SPECjvm2008. This benchmark has its own File-

Manger to manage memory. compress benchmark uses a modified Lempel-Ziv method to com-

press data. It is deterministic as it first finds common substrings and then replaces them with a

variable size code. This benchmark is ported from 129.compress benchmark from CPU95, how-

ever, it is modified to compress real data from files instead of compressing synthetically gener-

ated data. Crypto benchmark consists of three sub-benchmarks - crypto.aes, crypto.rsa

and crypto.signverify - which focuses on different areas of crypto. crypto.aes per-

forms encryption and decryption using the AES and DES protocols with an input data of size 100

bytes and 713 KB. crypto.rsa performs encryption and decryption using the RSA protocol

with an input data of size 100 bytes and 16 KB. crypto.signverify sign and verify using

MD5withRSA, SHA1withRSA, SHA1withDSA and SHA256withRSA protocols with an input

data size of 1 KB, 65 KB, and 1 MB. derby benchmark focuses on BigDecimal computations

and database logic using an open-source database written in pure Java. MPEGaudio benchmark
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utilizes JLayer, an LGPL mp3 library, for mp3 decoding and is floating-point heavy. Scimark

benchmark is a floating point benchmark which is consist of five sub-benchmarks - fft, lu, sor,

sparse, and monte carlo. Each sub-benchmark has two versions with different dataset size,

except monte carlo (as it uses only scalars). The large dataset has a size of 32MB for stressing

the memory whereas the small dataset has a size of 512 KB to stress the JVM. serial bench-

mark utilizes data from the JBoss benchmark to serialize and deserialize primitives and objects.

sunflow benchmark utilizes half the number of hardware threads to test graphics visualization.

Each of the hardware thread results in four internal threads inside the benchmark. XML benchmark

has two sub benchmarks - xml.transform and xml.validation. xml.transform

stresses the JRE’s implementation of javax.xml.transform by applying style sheets to XML doc-

uments. xml.validation stresses the JRE’s implementation of javax.xml.validation by val-

idating XML instance documents against XML schemata. startup benchmark starts each of

the above-discussed benchmarks for one operation. For every benchmark run, a new JVM is

launched and time is measured from starting the JVM to finishing off the benchmark iteration.

SPECjvm2008 has two run categories - Base and Peak. Base category run doesn’t allow the tuning

of the JVM. Therefore, in this work, we utilize the Peak category as we evaluate various command-

line options to tune the JVM. Except for startup, each benchmark goes through one iteration in

which several operations (each invocation of a benchmark is one operation) are executed for cer-

tain duration, by defaults 240 seconds. Each iteration finishes at least 5 operations. The duration of

an iteration is never less than the specified time, however, it increases if at least five operations are

not executed within the specified duration of time. For this work, we utilize the default duration of

the iteration. The warmup is skipped as it is not possible to remove the warmup energy from the

total energy of a benchmark run.

5.1 Energy Consumption Analysis

In this section, we evaluate the energy consumption of different Java command-line options.

For better accuracy, we measure the total energy consumption of each command-line option ten

times. We then check for outliers in those ten measurements using Tukey’s method. We replace
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Table 5.1: SPECjvm2008 benchmarks

Benchmarks Sub-Benchmarks

Compiler compiler.compiler, compiler.sunflow

Compress compress

Crypto crypto.aes, crypto.rsa, crypto.signverify

Derby derby

MPEGaudio mpegaudio

Scimark.X.large
Scimark.X.small

scimark.fft.large, scimark.lu.large, scimark.sor.large,

scimark.sparse.large, scimark.fft.small, scimark.lu.small,

scimark.sor.small, scimark.sparse.small, scimark.monte carlo

Serial serial

Sunflow sunflow

XML xml.transform, xml.validation

Startup

startup.helloworld, startup.compiler.compiler, startup.compiler.sunflow,

startup.compress, startup.crypto.aes, startup.crypto.rsa,

startup.crypto.signverify, startup.mpegaudio, startup.scimark.fft,

startup.scimark.lu, startup.scimark.monte carlo, startup.scimark.sor,

startup.scimark.sparse, startup.serial, startup.sunflow,

startup.xml.transform, startup.xml.validation

the outliers measurements with new measurements and again check for outliers. We repeat this

process until no outlier is left. The reason for outlier removal is two-fold: (i) the active systemd

units or the garbage collector does not interfere with the active energy measurements, and (ii) the

variation in measurements remain low. Next, we subtract the idle energy from the total energy

consumption to determine the active energy of each benchmark. We then calculate the mean of

all the ten observations to determine the total energy consumption and the execution time of each

benchmark. In cases where the means are close, we use the independent sample t-test (two means)

or one-way ANOVA test (more than two means) to determine whether the means are the same.

For both tests, we consider alpha value as 0.05 which means that if the p-value is smaller than or

equal to 0.05, we reject the null hypothesis that the mean values are not the same. If the p-value

is greater than 0.05, it means that the mean values are the same. If the means are the same, we

conclude that there is no difference in energy consumption. We log the package, and the core

energy but only present the package energy consumption values as the core energy measurements

values are negligible compare to those of the package. compiler benchmark is not shown in
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Table 5.2: Energy consumption for client option

Benchmark

client
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10409.24 243.06 2535.53 244.24 10396.71 242.90 2537.34 244.81
crypto

crypto.aes 10314.78 246.68 2596.89 250.46 10377.92 246.22 2599.21 248.59
crypto.rsa 10074.29 242.02 2439.42 243.55 9623.52 241.80 2346.07 242.31

crypto.signverify 9715.88 241.96 2469.04 243.58 9700.36 241.76 2446.63 243.17
derby 10916.68 259.56 2600.44 422.25 10953.10 259.51 2606.55 421.16

mpegaudio 10464.72 243.77 2517.06 245.30 10450.29 243.43 2511.49 246.42
scimark
fft.small 11456.44 241.94 2689.68 242.97 11447.94 241.81 2684 243.46
lu.small 14771.78 241.61 2854.29 243.27 14645.49 241.54 2857.34 242.95

monte carlo 9982.14 242.52 2367.98 244.66 9947.21 242.21 2348.31 244.54
sor.large 7639.63 247.87 2491.90 257.20 7580.28 252.00 2459.64 254.95
sor.small 8166.53 242.57 2066.18 244.06 8123.92 243.06 2063.16 244.18

sparse.large 6130.27 264.51 2695.02 253.13 6148.83 251.79 2630.65 255.68
sparse.small 9754.74 243.24 2845.30 245.05 11143.90 242.62 2793.65 243.7

serial 11149.01 243.58 2573.32 247.05 11198.22 243.47 2568.53 246.29
sunflow 10111.17 242.71 2587.03 245.25 10115.83 243.43 2581.64 243.38

xml
xml.transform 11362.00 254.01 2748.23 267.81 11356.21 253.84 2753.63 267.16
xml.validation 11742.37 241.67 2535.31 243.22 11741.60 241.65 2536.2 242.89

startup
compress 32.81 1.66 23.41 3.80 32.22 1.70 22.78 3.04
crypto.aes 48.27 2.67 38.13 5.21 50.41 2.80 40.87 5.57
crypto.rsa 28.68 1.26 21.63 2.50 25.90 1.05 20.19 2.33

crypto.signverify 28.62 1.30 21.7 2.61 25.92 1.27 20.17 2.47
mpegaudio 51.49 2.04 38.82 4.78 53.26 2.12 39.52 4.62
scimark.fft 26.43 1.26 19.92 2.43 24.78 1.29 19.37 2.48
scimark.lu 22.64 0.7 18.33 2.27 21.80 1.00 17.77 2.30

scimark.monte carlo 32.91 1.89 24.96 3.42 32.24 1.90 24.28 3.38
scimark.sor 31.05 1.87 23.11 3.29 30.18 1.93 22.51 3.21

scimark.sparse 30.32 1.54 23.50 3.07 29.67 1.53 23.06 2.97
serial 56.27 2.20 43.66 5.20 56.34 2.23 44.91 5.20

sunflow 54.51 1.80 42.13 4.46 54.92 1.81 42.46 4.40
xml.transform 264.16 13.33 207.03 27.06 269.16 13.52 211.76 27.51
xml.validation 48.94 1.62 41.22 4.43 48.88 1.61 42.28 4.53

any of the result tables as it is not supported by Java SE 8. Also, fft.large and lu.large

benchmark results are not shown as they abort when run on both systems. Each table in the

next subsections of this chapter represents the total active energy consumption and the execution

time of SPECjvm2008 benchmarks. For each table, Open and Oracle represent the different JDKs.

Under each JDK we have the two ICT systems - IFN and Laptop. Under each ICT system is the

measurement of energy consumption (E) and execution time (T). server command-line option

refers to default mode as both systems use server JVM by default.
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Table 5.3: Energy consumption for server option

Benchmark

server
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10446.44 242.68 2533.75 244.61 10409.98 242.7 2532.61 244.36
crypto

crypto.aes 10368.44 246.26 2599.44 250.21 10366.61 246.16 2597.92 247.87
crypto.rsa 10125.59 242.22 2440.72 243.51 9636.60 241.82 2345.5 242.41

crypto.signverify 9740.42 242.04 2458.03 243.66 9725.98 241.76 2452.33 243.24
derby 10948.96 258.71 2603.97 430.39 10949.42 259.49 2603.04 422.69

mpegaudio 10474.17 243.76 2519.12 245.18 10443.40 243.68 2516.17 245.40
scimark
fft.small 11474.26 241.95 2684.87 243.51 11430.56 241.91 2683.26 243.50
lu.small 14698.87 241.61 2852.07 242.88 14697.20 241.61 2856.52 242.68

monte carlo 9974.18 242.57 2365.7 244.86 9949.61 242.27 2349.11 244.32
sor.large 7591.76 249.50 2469.21 250.93 7567.83 248.40 2462.37 251.50
sor.small 8158.51 243.03 2063.81 244.01 8123.63 243.15 2060.24 243.63

sparse.large 6073.82 262.46 2658.77 250.84 5965.71 255.23 2635.06 261.88
sparse.small 9739.27 242.70 2821.39 244.70 11109.87 242.70 2786.7 244.95

serial 11157.09 243.07 2572.46 246.17 11168.14 243.15 2570.49 245.76
sunflow 10134.22 243.56 2581.23 244.03 10113.49 242.89 2579.16 243.59

xml
xml.transform 11359.57 253.98 2740.60 266.96 11355.62 253.96 2744.93 267.07
xml.validation 11738.44 241.72 2532.73 242.67 11735.22 241.66 2529.64 242.94

startup
compress 32.56 1.68 23.51 3.01 32.00 1.63 22.84 3.01
crypto.aes 48.46 2.62 38.44 5.09 50.32 2.74 40.92 5.36
crypto.rsa 29.38 1.27 21.78 2.64 25.72 1.06 20.47 2.42

crypto.signverify 28.24 1.28 22.05 2.68 25.77 1.24 20.23 2.52
mpegaudio 52.42 2.10 37.7 4.20 52.09 2.17 39.61 4.63
scimark.fft 26.17 1.25 19.73 2.56 24.73 1.26 19.43 2.49
scimark.lu 22.69 0.7 18.47 2.25 21.90 1.06 17.87 2.20

scimark.monte carlo 33.21 1.92 24.70 3.38 32.11 1.90 24.22 3.37
scimark.sor 31.36 1.94 23.07 3.16 29.98 1.94 22.5 3.24

scimark.sparse 31.05 1.50 23.58 3.14 29.71 1.48 22.97 2.97
serial 56.24 2.13 44.22 4.98 56.70 2.28 44.67 5.07

sunflow 54.29 1.83 42.11 4.17 53.77 1.83 42.10 4.50
xml.transform 265.36 13.31 209.15 26.45 268.01 13.34 211.96 26.81
xml.validation 49.18 1.58 41.63 4.40 48.23 1.55 41.82 4.68

5.1.1 -client and -server

The JDK supports two type of JVM - client and server. These two JVMs have the same

runtime environment code base, however, they use a different type of compilers. client JVM

compiler offers lesser optimization, which results in faster compiling for short-running applica-

tions. server JVM offers an advance adaptive compiler, which supports complex optimiza-

tion for maximizing peak operating speed of long-running applications. We compare the energy

consumption of these two options in Table 5.2 and 5.3. For the client, we can see that 20

benchmarks on the IFN and 19 benchmarks on the Laptop have lower energy consumption when

executed on Oracle JDK instead of Open JDK. For the server, these number jump to 25 and
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Table 5.4: Energy consumption for Xbatch option

Benchmark

Xbatch
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10446.58 244.73 2539.76 248.89 10434.53 244.26 2531.36 247.81
crypto

crypto.aes 10357.00 247.71 2564.25 252.54 10334.18 247.00 2604.10 256.38
crypto.rsa 9963.95 244.33 2441.61 248.16 9611.29 243.56 2335.73 247.88

crypto.signverify 9678.07 243.68 2460.32 247.92 9709.19 243.37 2452.40 248.01
derby 10900.72 264.74 2590.83 449.60 10909.60 265.00 2603.77 443.09

mpegaudio 10474.96 244.82 2516.81 250.02 10462.94 244.51 2507.13 248.26
scimark
fft.small 11481.31 243.83 2687.80 247.76 11397.42 243.72 2688.03 247.19
lu.small 14771.46 243.39 2861.04 247.37 14698.83 243.27 2855.71 247.43

monte carlo 9965.10 244.19 2356.34 249.05 9955.24 243.79 2376.20 247.84
sor.large 7581.93 248.75 2519.88 259.17 7601.54 251.06 2488.45 258.56
sor.small 8140.68 244.62 2064.47 248.15 8128.72 243.94 2061.62 247.44

sparse.large 6184.37 263.10 2672.73 270.11 6121.03 260.16 2658.01 264.90
sparse.small 9855.46 243.94 2849.72 249.40 11056.37 244.24 2814.7 247.37

serial 11142.34 244.74 2578.36 250.48 11163.01 244.68 2568.80 250.58
sunflow 10126.31 244.62 2576.64 248.32 10115.35 243.67 2572.80 248.19

xml
xml.transform 11379.61 263.44 2776.10 296.92 11370.77 264.01 2783.25 298.86
xml.validation 11715.73 243.92 2550.41 248.66 11702.98 243.34 2543.29 248.30

startup
compress 36.51 2.54 26.25 6.47 35.83 2.48 24.84 5.87
crypto.aes 50.91 3.65 41.12 8.79 53.47 3.72 42.60 8.77
crypto.rsa 32.90 2.27 24.76 6.48 29.58 2.24 22.53 5.30

crypto.signverify 32.89 2.30 24.41 6.28 29.33 2.23 22.20 5.52
mpegaudio 54.97 3.18 41.40 8.22 55.72 2.98 41.44 7.32
scimark.fft 29.91 2.22 22.36 5.90 27.83 2.15 21.34 5.35
scimark.lu 26.53 1.98 20.58 5.97 25.38 1.87 19.76 5.35

scimark.monte carlo 35.59 2.93 27.27 6.98 34.80 2.91 26.30 6.54
scimark.sor 33.77 2.88 25.30 6.82 32.90 2.79 24.43 6.09

scimark.sparse 34.01 2.68 25.93 6.81 32.50 2.38 24.77 6.13
serial 59.89 3.21 46.05 8.51 59.29 3.06 48.90 8.70

sunflow 57.07 2.68 44.22 7.77 57.42 2.71 44.54 7.34
xml.transform 265.59 14.34 212.21 32.17 270.47 14.34 214.65 30.17
xml.validation 51.67 2.57 44.68 8.16 52.48 2.62 44.51 7.51

24 benchmarks. For the IFN, 18 benchmarks consume more energy for server option while

using Open JDK. Using Oracle JDK instead causes client option to consume more energy for

23 benchmarks. For the Laptop, 18 and 17 benchmarks consume lesser energy for server option

while using Open and Oracle JDK, respectively.

Two benchmarks - crypto.rsa and sparse.small - stands out with large variation in en-

ergy consumption for different JDK types on the IFN. sparse.small not only shows the high-

est variation on the IFN but also shows higher energy efficiency using Open JDK. For the Laptop,

crypto.rsa shows the highest variation for different JDK versions, however, sparse.small

doesn’t show the same behavior as on the IFN. For both systems, sparse results in higher energy
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Table 5.5: Energy consumption for Xcomp option

Benchmark

Xcomp
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10611.87 262.40 2606.01 292.46 10483.43 259.89 2614.30 293.03
crypto

crypto.aes 10525.60 265.32 2735.97 298.14 10583.84 263.58 2748.83 304.45
crypto.rsa 10393.64 261.92 2563.34 289.22 9874.67 261.46 2359.65 284.86

crypto.signverify 9932.05 256.80 2587.29 290.16 9864.95 258.57 2585.08 294.11
derby 11302.56 295.97 2677.06 556.63 11322.94 294.7 2706.95 553.45

mpegaudio 10378.80 260.51 2556.23 285.86 10493.28 261.15 2553.31 287.57
scimark
fft.small 12301.04 260.72 2786.22 287.36 12034.09 260.44 2804.43 293.74
lu.small 14689.45 261.11 2965.53 289.95 14720.60 258.77 2973.35 292.54

monte carlo 10122.55 259.9 2564.05 291.25 10109.62 262.09 2554.14 295.78
sor.large 7811.18 265.49 2580.44 301.82 7699.60 272.76 2598.38 305.03
sor.small 8302.24 259.26 2183.70 291.01 8302.74 256.19 2179.22 294.08

sparse.large 6031.19 269.54 2795.32 313.87 6039.10 276.13 2781.01 314.29
sparse.small 9810.80 263.58 2940.89 292.31 11103.12 259.24 2969.39 294.35

serial 11170.7 258.73 2624.39 288.52 11202.40 263.36 2636.49 292.11
sunflow 10470.78 262.77 2710.41 291.93 10467.30 263.32 2704.47 295.31

xml
xml.transform 11698.98 292.24 2898.32 356.25 11724.08 288.04 2877.7 364.46
xml.validation 11720.61 263.75 2527.70 303.53 11726.44 263.51 2550.24 305.47

startup
compress 173.49 16.23 132.53 48.40 189.49 18.80 141.66 51.57
crypto.aes 181.54 21.06 146.91 50.23 199.52 20.13 158.88 54.68
crypto.rsa 161.61 18.33 130.52 48.21 177.62 23.06 139.68 52.15

crypto.signverify 162.42 15.96 129.90 47.12 178.91 17.45 139.40 51.49
mpegaudio 189.38 17.48 147.01 50.06 204.50 16.61 157.37 54.91
scimark.fft 162.67 16.10 128.35 48.38 166.74 22.05 137.50 52.20
scimark.lu 143.20 21.20 126.76 47.66 171.23 18.35 135.88 51.55

scimark.monte carlo 166.19 16.51 133.11 49.18 179.74 18.18 142.60 51.80
scimark.sor 169.31 16.44 131.15 48.34 177.95 20.85 140.72 52.27

scimark.sparse 161.31 14.24 131.80 50.05 177.07 18.25 141.14 52.59
serial 190.74 20.27 152.52 51.73 202.96 18.60 162.44 54.47

sunflow 192.46 18.42 149.84 50.89 199.74 18.18 160.82 54.13
xml.transform 392.74 27.69 314.66 72.65 406.46 29.74 330.58 76.82
xml.validation 178.5 22.72 150.06 51.53 198.12 20.34 161.27 53.48

consumption for the smaller dataset instead of the larger dataset. Most of the command-line op-

tions that we are going to discuss next show the same behavior for energy consumption variation

of different benchmarks.

5.1.2 -Xbatch, -Xcomp, -Xint, -Xfuture, and -Xmixed

JVM runs a method in interpreted mode until the background compilation is finished. Xbatch

option disables this background compilation and runs the compilation in the foreground. As shown

in Table 5.4, for the Xbatch option, Oracle JDK results in better energy efficiency for 21 bench-

marks, for both systems. Xbatch also results in the lower energy efficiency on both systems for

at least 21 benchmarks as compared to the default mode for both JDKs.
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Table 5.6: Energy consumption for Xint option

Benchmark

Xint
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10262.54 305.11 3582.90 344.55 10448.47 300.76 3594.33 331.08
crypto

crypto.aes 14236.14 371.68 5906.80 585.48 13826.80 353.63 5856.40 611.91
crypto.rsa 11185.43 280.84 3321.55 326.19 10255.85 268.66 3215.92 310.36

crypto.signverify 10191.72 299.46 3774.37 376.81 10865.56 313.89 3695.84 360.63
derby 13474.05 517.50 5815.05 946.75 13401.37 514.11 5932.39 953.83

mpegaudio 11605.41 283.70 3288.36 326.60 11439.94 282.00 3247.07 319.73
scimark
fft.small 11358.65 255.44 2825.84 272.91 11261.74 252.42 2780.51 278.73
lu.small 10467.14 268.97 2925.48 284.71 10462.62 266.74 2869.83 277.54

monte carlo 12170.18 291.06 4291.29 417.89 12357.51 315.08 4067.55 393.57
sor.large 13097.32 334.18 3851.68 364.24 13065.95 333.69 3837.35 363.64
sor.small 10237.10 265.26 3019.37 284.22 10199.15 263.83 2806.69 268.06

sparse.large 13592.60 347.62 4016.89 401.54 13457.79 344.92 4004.76 389.23
sparse.small 10268.71 261.65 3172.02 300.26 10228.77 261.84 3150.17 294.87

serial 12284.70 297.22 4011.33 376.96 11750.90 298.43 4084.54 384.48
sunflow 12701.02 290.03 3103.53 286.03 12706.04 290.76 3154.03 291.20

xml
xml.transform 12082.03 317.74 3823.75 391.98 11668.35 328.32 3890.64 397.48
xml.validation 10913.75 268.58 2942.64 276.54 10362.28 270.72 2959.56 280.39

startup
compress 39.25 2.52 30.51 4.74 37.79 2.37 29.63 4.73
crypto.aes 54.69 3.50 45.58 6.72 56.09 3.58 47.37 6.97
crypto.rsa 35.48 2.09 29.52 4.47 31.95 1.81 27.00 3.86

crypto.signverify 34.74 2.21 29.57 4.59 31.77 2.00 27.01 4.12
mpegaudio 57.88 2.97 46.05 6.43 58.12 2.86 46.30 6.34
scimark.fft 32.77 2.10 27.06 4.36 30.61 1.93 26.03 4.13
scimark.lu 28.98 1.83 25.66 3.90 27.86 1.74 24.50 3.82

scimark.monte carlo 39.39 2.76 32.05 5.26 37.35 2.62 31.00 5.01
scimark.sor 37.54 2.74 29.60 4.92 35.80 2.62 29.17 4.75

scimark.sparse 36.76 2.41 30.52 4.71 35.52 2.25 29.50 4.61
serial 61.13 3.01 50.56 6.79 62.09 2.91 51.76 6.84

sunflow 59.39 2.61 49.14 6.12 59.49 2.56 48.41 6.04
xml.transform 268.57 14.30 214.08 28.14 271.84 14.30 219.26 28.58
xml.validation 54.83 2.42 48.09 5.91 54.32 2.38 48.65 6.19

Xcomp forces the compilation of a method on the first invocation instead of doing that after

a set threshold of interpreted method invocations. As shown in Table 5.5, for the Xcomp option,

Open JDK results in better energy efficiency for 24 benchmarks on the IFN and 23 benchmarks

on the Laptop. For both systems, Xcomp results in higher energy consumption of at least 27

benchmarks than the default mode for both JDKs.

Xint causes the JVM to run in interpreted-only mode. This option disables the just-in-time

compilation, resulting in a considerable slow down in execution. As shown in Table 5.6, for 22

benchmarks on the IFN and 20 benchmarks on the Laptop, Oracle JDK results in higher energy

efficiency than Open JDK. Open JDK results in up to 9% increase in energy consumption. For
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Table 5.7: Energy consumption for Xfuture option

Benchmark

Xfuture
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10394.09 243.05 2536.62 245.07 10369.21 243.15 2533.96 245.00
crypto

crypto.aes 10346.48 245.14 2625.90 249.74 10299.94 247.55 2601.46 252.78
crypto.rsa 10056.32 242.21 2441.36 243.33 9639.41 241.92 2347.92 242.78

crypto.signverify 9705.03 242.17 2464.92 244.15 9727.14 241.95 2449.93 243.47
derby 10959.62 258.34 2608.21 435.27 10946.01 258.81 2612.46 424.62

mpegaudio 10470.29 243.85 2522.02 245.86 10457.07 243.74 2519.61 246.65
scimark
fft.small 11424.82 241.96 2685.79 243.83 11419.80 241.94 2685.09 243.56
lu.small 14679.49 241.77 2858.47 243.37 14681.57 241.72 2855.75 242.78

monte carlo 9970.07 242.46 2359.31 245.06 9960.79 242.47 2352.46 244.16
sor.large 7617.49 251.00 2485.74 251.57 7563.82 247.45 2473.90 253.00
sor.small 8155.82 243.37 2064.69 244.29 8128.50 243.19 2063.80 244.14

sparse.large 6132.48 250.70 2674.36 255.54 6043.13 256.17 2649.74 259.37
sparse.small 9775.73 242.90 2807.79 245.59 11050.43 242.80 2794.86 245.47

serial 11139.7 243.57 2569.92 245.65 11173.81 243.74 2565.62 246.15
sunflow 10106.49 242.64 2575.90 244.70 10112.79 243.27 2583.61 243.16

xml
xml.transform 11356.15 254.01 2748.04 267.33 11365.67 254.20 2751.01 267.05
xml.validation 11714.47 241.97 2527.02 243.28 11733.48 241.88 2531.30 243.10

startup
compress 34.33 1.79 24.60 3.33 33.70 1.84 24.19 3.23
crypto.aes 49.90 2.81 39.11 5.41 52.69 2.95 42.37 5.85
crypto.rsa 30.12 1.36 23.15 2.80 27.17 1.21 21.51 2.61

crypto.signverify 29.58 1.45 22.98 2.89 27.36 1.39 21.70 2.83
mpegaudio 52.76 2.20 39.92 4.89 54.12 2.28 40.41 4.46
scimark.fft 27.70 1.38 21.18 2.81 26.50 1.35 20.57 2.76
scimark.lu 24.59 1.09 19.49 2.47 23.41 1.10 19.10 2.46

scimark.monte carlo 34.81 2.06 26.11 3.64 33.38 2.06 25.68 3.64
scimark.sor 32.53 2.00 24.07 3.40 31.59 2.04 23.80 3.44

scimark.sparse 31.86 1.68 24.53 3.26 31.27 1.70 24.18 3.25
serial 56.82 2.26 45.82 5.31 56.17 2.39 46.38 5.32

sunflow 54.95 1.83 43.29 4.52 55.89 1.93 43.68 4.83
xml.transform 265.90 13.44 210.44 27.57 269.91 13.55 213.29 27.82
xml.validation 50.60 1.74 42.17 4.52 50.44 1.84 42.87 4.55

both systems, Xint results in higher energy consumption of at least 27 benchmarks than the

default mode for both JDKs. For crypto.aes and derby, Xint results in significant increase

in energy consumption. Xint also causes different variation in energy consumption than the

default mode for most benchmarks. Xint causes the highest energy consumption for most of the

benchmarks with up to 125% increase in the energy than the default mode. Interestingly, Xint

consumes up to 28% lesser energy than the default mode for lu.small benchmark.

Xfuture results in stricter class-file format checks. As shown in Table 5.7, for the Xfuture

option, Oracle JDK results in higher energy efficiency as compared to Open JDK for 20 bench-

marks on the IFN and 21 benchmarks on the Laptop. For the IFN, Xfuture results in the higher
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Table 5.8: Energy consumption for Xmixed option

Benchmark

Xmixed
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10412.87 243.00 2535.40 244.94 10410.38 243.17 2528.90 244.03
crypto

crypto.aes 10349.72 245.37 2604.51 249.28 10358.89 247.81 2618.19 249.28
crypto.rsa 10144.64 242.00 2445.81 243.75 9636.84 241.68 2344.38 242.40

crypto.signverify 9734.62 242.06 2463.22 243.28 9711.01 241.86 2452.12 242.87
derby 10911.19 258.93 2603.35 430.80 10940.34 259.07 2606.34 422.52

mpegaudio 10455.64 243.78 2516.12 246.16 10447.77 243.92 2513.7 245.13
scimark
fft.small 11422.21 241.91 2690.15 243.73 11425.55 241.86 2684.52 242.86
lu.small 14705.27 241.57 2856.53 243.14 14695.62 241.60 2856.24 243.29

monte carlo 9958.54 242.23 2363.33 244.79 9980.80 242.35 2349.21 245.10
sor.large 7596.7 246.39 2472.88 255.33 7603.19 248.96 2464.89 255.7
sor.small 8154.84 242.65 2063.56 243.90 8131.51 243.07 2061.87 243.88

sparse.large 6099.36 252.24 2650.87 267.47 6016.54 249.78 2662.98 256.73
sparse.small 9776.10 242.83 2814.26 245.49 11016.73 242.85 2792.74 244.48

serial 11133.65 243.38 2572.63 247.06 11191.42 243.30 2564.04 244.58
sunflow 10123.55 242.98 2583.79 243.63 10118.13 242.62 2582.20 244.44

xml
xml.transform 11365.7 253.69 2745.34 267.87 11363.58 254.01 2746.62 267.79
xml.validation 11751.53 241.81 2533.82 242.75 11735.05 241.84 2531.37 243.23

startup
compress 32.70 1.67 23.60 3.07 31.7 1.66 22.83 2.7
crypto.aes 48.15 2.68 38.04 5.14 51.00 2.81 41.05 5.49
crypto.rsa 28.60 1.21 21.74 2.57 25.81 1.05 20.63 2.42

crypto.signverify 28.24 1.25 21.68 2.61 26.07 1.28 20.38 2.48
mpegaudio 51.11 2.08 38.58 4.27 52.81 2.18 38.47 4.49
scimark.fft 25.88 1.23 19.7 2.59 24.82 1.26 19.33 2.44
scimark.lu 22.58 1.00 18.36 2.19 22.03 1.00 17.87 2.32

scimark.monte carlo 33.47 1.94 24.80 3.40 31.97 1.91 24.33 3.40
scimark.sor 31.23 1.88 23.31 3.24 29.95 1.91 22.46 3.24

scimark.sparse 30.70 1.55 23.54 3.05 29.7 1.57 22.75 2.95
serial 56.37 2.19 44.24 4.91 56.33 2.16 45.04 4.85

sunflow 54.75 1.80 42.24 4.42 54.01 1.79 42.14 4.39
xml.transform 263.83 13.54 207.74 27.72 270.76 13.55 213.17 27.62
xml.validation 48.31 1.59 41.36 4.44 48.52 1.64 41.13 4.41

energy efficiency of most benchmarks for both JDKs, except startup benchmark where the de-

fault mode is more energy-efficient. For the Laptop, the default mode results in the higher energy

efficiency of most benchmarks for both JDKs, except startup benchmark where the default

mode is more energy-efficient for each sub-benchmarks.

Xmixed option executes all bytecode except hot-methods in interpreter mode. Hot methods

are those methods which are invoked very often. As shown in Table 5.8, for the Xmixed option,

Oracle JDK results in the higher energy efficiency than Open JDK for 20 and 24 benchmarks on

the IFN and the Laptop, respectively. For the IFN, Xmixed results in the better energy efficiency

of 20 benchmarks than the default mode for Open JDK. Using Oracle JDK instead results in the
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Table 5.9: Energy consumption for Xrs option

Benchmark

Xrs
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10442.01 243.00 2528.27 244.79 10429.60 242.80 2525.96 244.12
crypto

crypto.aes 10405.48 246.46 2619.23 249.22 10346.92 246.43 2591.94 252.55
crypto.rsa 10035.57 242.07 2435.52 243.40 9641.12 241.86 2345.29 242.35

crypto.signverify 9694.70 242.12 2460.80 243.16 9728.37 241.57 2446.26 243.11
derby 10905.30 258.40 2601.79 435.10 10921.05 258.83 2598.22 425.60

mpegaudio 10460.76 243.83 2516.83 244.71 10465.81 243.67 2516.50 245.76
scimark
fft.small 11439.55 242.01 2688.53 243.71 11444.42 241.86 2684.7 243.56
lu.small 14720.97 241.61 2856.01 242.66 14717.31 241.59 2855.5 242.7

monte carlo 9992.65 242.31 2360.74 244.47 9957.83 242.25 2360.58 244.21
sor.large 7607.56 247.17 2481.50 250.70 7572.94 246.40 2460.91 257.59
sor.small 8150.23 242.76 2064.86 243.94 8124.78 243.18 2056.23 243.78

sparse.large 6037.07 256.66 2662.32 260.41 6132.02 263.25 2638.53 262.74
sparse.small 9838.93 242.72 2792.12 245.33 11053.89 242.84 2835.85 244.56

serial 11149.11 243.51 2574.58 246.27 11180.89 243.54 2564.95 245.16
sunflow 10099.54 242.45 2583.31 244.28 10119.73 242.88 2578.49 243.86

xml
xml.transform 11357.36 253.87 2745.24 267.72 11376.51 254.09 2741.90 267.19
xml.validation 11742.74 241.74 2539.13 242.86 11755.26 241.63 2527.3 243.14

startup
compress 32.61 1.62 23.28 3.05 32.10 1.68 22.88 30
crypto.aes 48.17 2.62 38.13 5.22 49.96 2.78 40.86 5.59
crypto.rsa 28.58 1.22 22.03 2.70 26.03 1.06 20.48 2.47

crypto.signverify 28.21 1.30 21.63 2.58 25.70 1.23 20.25 2.57
mpegaudio 51.77 2.11 38.34 4.40 52.71 2.12 38.98 4.68
scimark.fft 25.98 1.21 19.96 2.58 24.79 1.26 19.39 2.46
scimark.lu 22.30 0.96 18.50 2.29 21.98 1.02 17.77 2.34

scimark.monte carlo 33.39 1.95 24.82 3.43 31.95 1.94 24.14 3.41
scimark.sor 31.01 1.90 23.05 3.26 30.17 1.95 22.49 3.21

scimark.sparse 31.04 1.55 23.76 3.11 29.77 1.58 22.82 2.7
serial 57.32 2.22 44.29 5.37 56.02 2.20 45.35 5.54

sunflow 54.91 1.73 41.60 4.37 54.45 1.88 43.25 4.59
xml.transform 264.13 13.33 208.24 26.85 270.02 13.48 212.29 27.02
xml.validation 48.44 1.54 41.75 4.50 48.75 1.65 41.80 4.62

lower energy efficiency of Xmixed option for 20 benchmarks. For the Laptop, Xmixed results in

higher energy consumption than the default mode for 18 benchmarks for both JDKs.

5.1.3 -Xrs

Xrs option prevents JVM from using some of the operating system signals. In this option, an

operating system handles any raised signal. Enabling this option can reduce JVM performance.

Table 5.9 shows the energy consumption and execution time results for -Xrs option. Oracle JDK

consumes lesser energy than Open JDK for 17 and 24 benchmarks, on the IFN and the Laptop,

respectively. For the IFN, Xrs causes lower energy consumption for most of the benchmarks on

Open JDK than the default mode but higher on Oracle JDK. For the Laptop, Xrs causes higher
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Table 5.10: Energy consumption for AggressiveOpts option

Benchmark

AggressiveOpts
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10430.77 242.60 2540.69 244.55 10446.31 242.94 2525.14 245.29
crypto

crypto.aes 10333.82 245.09 2615.09 251.18 10391.75 246.89 2596.48 252.30
crypto.rsa 10093.55 241.96 2439.61 243.30 9641.81 241.77 2342.88 242.55

crypto.signverify 9721.19 241.90 2474.61 243.24 9702.15 241.79 2445.39 243.41
derby 10942.01 258.77 2603.10 433.45 10936.14 258.83 2600.19 425.79

mpegaudio 10460.21 243.75 2520.20 245.51 10440.90 243.85 2516.63 244.85
scimark
fft.small 11424.15 241.93 2693.13 243.67 11444.15 241.93 2688.13 243.45
lu.small 14758.23 241.68 2860.70 242.71 14728.42 241.59 2854.33 242.89

monte carlo 9992.69 242.49 2364.50 245.65 9944.9 242.17 2357.29 244.30
sor.large 7669.47 251.96 2481.66 251.74 7595.13 250.37 2462.48 252.39
sor.small 8157.59 243.08 2061.68 244.17 8116.87 242.41 2060.24 243.88

sparse.large 6189.28 249.26 2653.89 262.56 6078.00 260.25 2663.21 255.50
sparse.small 9712.78 242.89 2814.82 244.20 10988.66 242.63 2784.59 245.83

serial 11130.45 243.82 2575.49 246.80 11187.19 243.50 2569.68 246.46
sunflow 10112.11 243.05 2577.39 244.31 10107.84 242.95 2573.23 244.67

xml
xml.transform 11350.89 253.70 2744.11 266.43 11358.90 253.87 2743.37 267.37
xml.validation 11714.22 241.79 2557.16 243.02 11756.98 241.79 2551.59 242.81

startup
compress 33.25 1.61 24.07 3.05 32.29 1.72 23.15 3.04
crypto.aes 48.42 2.61 38.52 5.21 50.86 2.80 40.93 5.58
crypto.rsa 28.81 1.25 22.16 2.65 26.19 1.11 20.70 2.43

crypto.signverify 28.94 1.35 22.26 2.74 26.28 1.26 20.63 2.59
mpegaudio 51.62 2.09 38.96 4.69 53.09 2.14 39.50 4.33
scimark.fft 26.29 1.25 20.15 2.54 25.21 1.26 19.65 2.59
scimark.lu 22.96 0.98 18.66 2.27 22.42 1.00 18.09 2.26

scimark.monte carlo 33.56 1.95 25.34 3.48 32.18 1.93 24.44 3.46
scimark.sor 31.35 1.89 23.28 3.23 30.60 1.96 22.89 3.24

scimark.sparse 30.93 1.53 23.97 3.09 30.15 1.53 23.39 3.11
serial 56.84 2.18 43.86 5.06 56.77 2.29 46.49 5.26

sunflow 54.8 1.81 42.23 4.38 54.66 1.81 43.01 4.47
xml.transform 263.97 13.43 206.16 26.44 270.16 13.40 211.65 26.85
xml.validation 49.07 1.61 40.77 4.55 49.50 1.63 42.15 4.65

energy consumption for most of the benchmarks on Open JDK than the default mode but lower on

Oracle JDK. This shows that the same JDK shows different behavior on different ICT systems.

5.1.4 -XX:+AggressiveOpts and -XX:+AggressiveHeap

AggressiveOpts option enables the use of aggressive performance optimization features.

As shown in Table 5.10, for the AggressiveOpts option, Oracle JDK results in lower energy

consumption of 20 benchmarks on the IFN and 24 benchmarks on the Laptop as compared to

Open JDK. For the IFN, AggressiveOpts is more energy-efficient for 20 benchmarks than

the default mode for Open JDK, however, lesser energy-efficient for 24 benchmarks for Oracle

JDK. For the Laptop, AggressiveOpts results in higher energy consumption of at least 18
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Table 5.11: Energy consumption for AggressiveHeap option

Benchmark

AggressiveHeap
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10407.54 242.97 2537.29 244.98 10416.00 242.89 2525.05 244.23
crypto

crypto.aes 10249.63 245.43 2573.7 249.30 10235.92 246.02 2605.50 247.62
crypto.rsa 10073.65 242.20 2442.98 243.15 9688.7 241.94 2345.88 242.27

crypto.signverify 9753.18 242.17 2465.89 243.54 9750.24 241.98 2445.65 243.27
derby 10949.53 259.68 2613.11 433.98 10987.98 260.52 2609.35 418.84

mpegaudio 10440.66 244.21 2521.82 246.49 10463.16 242.98 2517.00 247.28
scimark
fft.small 11571.20 242.02 2695.13 243.66 11564.80 242.03 2687.07 243.86
lu.small 14870.19 241.74 2861.60 242.92 14843.28 241.69 2860.90 243.09

monte carlo 9978.09 242.58 2349.23 244.41 9944.95 242.30 2351.55 244.44
sor.large 7655.9 251.27 2497.60 256.06 7625.09 251.11 2473.34 252.77
sor.small 8149.71 242.72 2070.35 243.54 8136.85 242.75 2066.24 243.26

sparse.large 5976.62 252.19 2655.32 251.43 5887.32 253.05 2658.93 263.67
sparse.small 10062.75 242.45 2834.97 244.35 11301.00 242.78 2825.09 244.39

serial 11185.55 243.54 2617.61 246.13 11223.04 243.09 2612.01 247.04
sunflow 10206.38 242.65 2574.84 244.46 10196.53 242.75 2575.83 243.72

xml
xml.transform 11402.89 254.13 2755.03 267.87 11410.07 254.23 2755.15 267.27
xml.validation 11672.28 241.76 2583.13 242.55 11695.09 241.66 2585.27 243.13

startup
compress 32.81 1.67 23.47 3.09 32.12 1.65 22.68 2.92
crypto.aes 48.27 2.64 37.96 5.15 50.63 2.82 40.37 5.51
crypto.rsa 28.61 1.25 21.69 2.44 26.03 1.07 20.13 2.33

crypto.signverify 28.08 1.31 21.58 2.83 25.89 1.28 20.03 2.49
mpegaudio 51.74 2.07 37.80 4.52 52.89 2.11 38.96 4.67
scimark.fft 26.16 1.21 19.83 2.55 25.17 1.27 19.27 2.48
scimark.lu 22.91 1.01 18.12 2.25 22.04 1.01 17.72 2.17

scimark.monte carlo 33.07 1.94 24.71 3.42 32.46 1.95 24.00 3.35
scimark.sor 31.20 1.90 22.89 3.16 30.29 1.92 22.44 3.18

scimark.sparse 30.74 1.50 23.40 3.03 30.10 1.58 22.79 3.05
serial 56.49 2.12 43.73 5.12 56.75 2.30 43.83 4.84

sunflow 54.88 1.72 41.66 4.29 54.49 1.84 41.91 4.32
xml.transform 263.7 13.33 206.61 26.53 270.64 13.52 212.68 26.86
xml.validation 48.45 1.60 40.65 4.56 48.56 1.59 41.20 4.20

benchmarks than the default server option for both JDKs.

AggressiveHeap option enables Java heap optimization which is optimal for long-running

computation-intensive jobs. As shown in Table 5.11, for the AggressiveHeap option, Or-

acle JDK results in the higher energy efficiency of 19 benchmarks than Open JDK for both

systems. For both systems, AggressiveHeap results in higher energy consumption of most

of the benchmarks than the default mode for both JDKs, except startup benchmark where

AggressiveHeap is more energy-efficient for both systems.
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Table 5.12: Energy consumption for Inline Disable option

Benchmark

Inline Disable
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10434.79 243.65 3030.05 248.06 10414.35 243.21 3024.35 245.80
crypto

crypto.aes 10378.38 246.17 3110.30 252.31 10379.53 246.73 3108.63 250.46
crypto.rsa 10072.85 242.20 2936.91 244.05 9655.23 241.90 2834.60 242.34

crypto.signverify 9726.55 242.06 2953.80 243.62 9698.98 241.88 2946.22 243.61
derby 10903.47 259.28 3445.68 429.97 10931.76 259.10 3450.74 431.14

mpegaudio 10456.94 243.84 3016.61 245.58 10453.94 243.85 3011.79 245.35
scimark
fft.small 11431.71 242.01 3178.46 243.57 11446.43 242.03 3175.47 243.04
lu.small 14754.71 241.66 3344.78 242.82 14697.10 241.58 3346.30 243.01

monte carlo 9970.15 242.39 2849.19 244.60 9967.81 242.28 2839.42 244.42
sor.large 7623.28 250.64 3001.62 252.86 7585.27 248.10 2976.80 251.93
sor.small 8164.23 243.13 2558.16 244.91 8136.93 242.93 2556.43 244.07

sparse.large 6131.77 264.39 3158.25 271.35 6111.49 259.71 3205.46 251.79
sparse.small 9727.94 242.76 3282.65 244.32 11026.88 242.80 3296.45 245.84

serial 11135.55 243.38 3070.38 245.93 11196.62 243.56 3064.13 246.26
sunflow 10113.05 242.35 3067.92 244.85 10131.76 243.26 3077.20 245.21

xml
xml.transform 11368.50 254.15 3289.82 267.80 11381.00 254.00 3288.54 267.86
xml.validation 11718.17 241.78 3029.50 243.27 11753.22 241.74 3027.53 242.95

startup
compress 32.63 1.65 30.15 3.10 32.22 1.65 29.17 3.02
crypto.aes 48.57 2.66 48.85 5.08 50.89 2.81 52.02 5.54
crypto.rsa 29.11 1.28 27.36 2.61 26.18 1.08 25.33 2.44

crypto.signverify 28.47 1.34 27.69 2.67 25.80 1.24 25.77 2.53
mpegaudio 52.50 2.14 48.33 4.59 52.56 2.08 48.25 4.74
scimark.fft 26.49 1.27 25.43 2.44 24.7 1.28 24.56 2.45
scimark.lu 22.93 1.03 23.14 2.29 22.07 1.03 22.44 2.31

scimark.monte carlo 33.97 1.91 32.29 3.51 32.08 1.95 31.31 3.40
scimark.sor 31.69 1.90 29.92 3.26 30.26 1.92 29.18 3.24

scimark.sparse 30.83 1.53 30.25 3.13 30.03 1.58 28.96 3.03
serial 55.67 2.13 54.7 5.1 56.63 2.16 55.00 5.30

sunflow 54.24 1.76 50.91 4.37 54.84 1.82 51.81 4.65
xml.transform 262.27 13.27 262.49 27.26 269.94 13.55 268.42 27.45
xml.validation 49.04 1.58 50.49 4.48 48.96 1.65 50.68 4.70

5.1.5 -XX:-Inline

Inline option enables replacing of a function call with function body. It is by default enabled

in JVM and can be disabled by -XX:-Inline option. Disabling inline results in higher energy

consumption than the default mode for at least 19 benchmarks on both systems for Oracle JDK as

shown in Table 5.12. Open JDK shows the opposite behavior for both systems. For JDKs, Oracle

JDK is more energy-efficient for 21 benchmarks on the Laptop but for only 14 benchmarks on the

IFN.
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Table 5.13: Energy consumption for AlwaysPreTouch option

Benchmark

AlwaysPreTouch
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10379.10 243.22 2534.91 244.20 10423.53 242.91 2528.15 243.82
crypto

crypto.aes 10367.45 246.44 2577.97 254.28 10346.94 246.94 2619.45 250.73
crypto.rsa 10042.52 241.94 2445.96 243.49 9650.14 241.89 2343.86 242.35

crypto.signverify 9678.86 242.15 2453.09 243.75 9695.43 241.82 2454.00 243.14
derby 10901.13 259.24 2595.76 426.66 10931.72 259.14 2606.50 421.26

mpegaudio 10440.50 243.69 2508.82 244.55 10469.7 243.91 2519.61 245.94
scimark
fft.small 11390.29 242.07 2688.41 243.31 11415.37 242.07 2682.22 243.39
lu.small 14658.59 241.70 2852.86 243.30 14622.22 241.70 2853.19 243.01

monte carlo 9966.89 242.38 2371.91 244.69 9965.64 242.52 2367.01 244.33
sor.large 7603.25 247.61 2476.25 255.64 7571.01 251.92 2468.06 253.98
sor.small 8118.3 243.08 2063.21 244.14 8111.08 243.14 2061.25 244.04

sparse.large 6189.71 257.42 2685.37 257.34 6032.74 253.41 2664.37 257.84
sparse.small 9756.30 242.97 2814.36 244.49 11154.84 242.89 2815.48 244.47

serial 11111.93 243.23 2574.10 245.96 11157.64 243.47 2567.58 245.94
sunflow 10079.48 243.45 2577.17 243.94 10079.77 243.43 2582.21 244.55

xml
xml.transform 11298.66 253.89 2742.39 266.67 11345.92 254.02 2749.49 267.27
xml.validation 11670.95 241.84 2523.88 242.82 11739.68 241.72 2530.84 242.84

startup
compress 34.11 1.79 23.34 2.7 33.53 1.72 22.75 2.96
crypto.aes 49.32 2.76 38.01 5.10 52.42 2.95 40.72 5.47
crypto.rsa 29.7 1.36 21.95 2.55 27.62 1.20 20.49 2.58

crypto.signverify 29.39 1.39 21.65 2.75 27.33 1.40 20.26 2.56
mpegaudio 53.26 2.14 38.54 4.46 54.17 2.20 39.67 4.63
scimark.fft 27.90 1.38 20.05 2.57 26.63 1.40 19.33 2.46
scimark.lu 24.20 1.11 18.39 2.29 23.49 1.14 17.71 2.23

scimark.monte carlo 34.21 2.00 24.97 3.42 33.33 2.01 24.28 3.40
scimark.sor 32.08 2.01 23.03 3.14 31.47 2.04 22.43 3.16

scimark.sparse 31.81 1.62 23.78 3.14 31.28 1.67 23.10 2.97
serial 56.65 2.23 44.59 5.26 57.44 2.33 44.64 5.48

sunflow 55.50 1.88 42.10 4.35 55.58 1.95 42.24 4.35
xml.transform 264.62 13.41 210.59 27.74 272.31 13.54 214.44 27.44
xml.validation 49.83 1.72 42.29 4.70 50.42 1.63 40.97 4.51

5.1.6 -XX:+AlwaysPreTouch

AlwaysPreTouch is disabled by default as it results in a delay in JVM start up. It enables the

touching of every page on the Java heap during JVM initialization which causes memory allocation

in heap memory. For AlwaysPreTouch, Open JDK is more energy-efficient for the 16 bench-

marks on the IFN and Oracle JDK is more energy-efficient for the 17 benchmarks on the Laptop

as shown in Table 5.13. For the IFN, AlwaysPreTouch results in the higher energy efficiency

of most benchmarks for both JDKs, except startup benchmark where all sub-benchmarks have

lower energy efficiency than the default mode. For the Laptop, AlwaysPreTouch consumes

higher energy for at least 17 benchmarks than the default mode for both JDKs.
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Table 5.14: Energy consumption for Xnoclassgc option

Benchmark

Xnoclassgc
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E TT

compress 10397.13 242.71 2530.63 244.90 10430.03 242.76 2531.67 243.79
crypto

crypto.aes 10356.70 246.17 2581.25 248.68 10344.17 246.96 2598.35 248.25
crypto.rsa 10067.18 242.11 2441.48 243.56 9647.78 241.77 2347.02 242.26

crypto.signverify 9718.36 242.06 2456.49 243.03 9713.18 241.77 2453.8 243.18
derby 10922.57 259.43 2607.89 432.50 10952.82 259.19 2611.02 422.42

mpegaudio 10444.41 243.52 2517.83 246.71 10453.01 243.87 2517.06 245.04
scimark
fft.small 11432.51 241.88 2683.80 243.34 11423.12 241.88 2684.92 243.59
lu.small 14731.55 241.65 2854.90 242.88 14674.87 241.50 2853.61 242.86

monte carlo 9964.75 242.68 2356.48 244.24 9968.50 242.33 2364.60 244.35
sor.large 7582.58 250.42 2476.26 251.85 7556.39 247.56 2490.24 253.65
sor.small 8156.63 243.03 2064.72 243.90 8132.93 242.57 2061.13 243.54

sparse.large 6151.81 249.79 2663.50 254.04 6116.82 256.45 2645.58 258.08
sparse.small 9678.32 243.33 2800.84 245.30 11118.20 242.95 2793.22 244.56

serial 11121.66 243.46 2571.04 245.01 11189.05 243.36 2565.15 246.44
sunflow 10103.37 243.26 2581.16 244.26 10097.69 243.21 2581.75 245.08

xml
xml.transform 11348.86 254.12 2741.08 266.76 11356.83 253.7 2752.30 266.75
xml.validation 11734.66 241.79 2528.40 243.01 11730.62 241.67 2537.71 242.89

startup
compress 32.78 1.62 23.40 3.02 32.14 1.67 22.90 2.95
crypto.aes 48.56 2.71 37.97 5.15 51.00 2.78 41.01 5.52
crypto.rsa 28.87 1.21 21.93 2.69 26.02 1.07 20.29 2.44

crypto.signverify 28.60 1.32 21.64 2.68 25.83 1.24 20.18 2.52
mpegaudio 52.20 2.08 38.04 4.45 52.37 2.15 38.73 4.82
scimark.fft 26.31 1.25 20.11 2.54 24.64 1.23 19.28 2.48
scimark.lu 22.85 1.00 18.38 2.23 21.90 0.7 17.72 2.30

scimark.monte carlo 32.96 1.88 24.98 3.40 32.23 1.90 24.16 3.43
scimark.sor 31.16 1.89 23.04 3.27 30.34 1.91 22.42 3.20

scimark.sparse 30.64 1.51 23.65 3.04 29.91 1.58 23.01 3.04
serial 55.96 2.14 43.38 5.00 56.89 2.24 46.65 5.57

sunflow 53.81 1.76 42.14 4.43 54.93 1.82 42.49 4.32
xml.transform 264.63 13.49 205.88 27.39 269.17 13.36 210.41 26.39
xml.validation 49.08 1.57 39.82 4.37 49.04 1.65 42.32 4.55

5.1.7 -Xnoclassgc, -XX:+UseSerialGC, -XX:+UseParallelGC,

-XX:+UseConcMarkSweepGC, and -XX:+UseG1GC

Xnoclassgc option disables garbage collection of classes. Using Xnoclassgc, Oracle

JDK results in the higher energy efficiency of 19 benchmarks on the IFN and 15 benchmarks on

the Laptop as shown in Table 5.14. However, Open JDK consumes up to 12% less energy as

compared to Oracle JDK. For the IFN, Xnoclassgc results in the higher energy efficiency of 24

benchmarks for Open JDK but lower energy efficiency of 22 benchmarks for Oracle JDK than the

default mode. The same behavior is shown by the Laptop.

UseSerialGC option uses a single thread and freezes all the application threads during
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Table 5.15: Energy consumption for UseSerialGC option

Benchmark

UseSerialGC
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10434.73 242.77 2533.53 244.50 10396.33 243.00 2531.67 244.33
crypto

crypto.aes 10383.46 246.83 2592.25 254.10 10359.77 246.56 2604.08 248.48
crypto.rsa 10132.89 242.07 2440.25 243.71 9649.29 241.83 2340.35 242.45

crypto.signverify 9723.60 242.06 2458.82 243.64 9712.7 241.79 2446.01 243.10
derby 10610.54 259.63 2584.04 425.52 10632.77 259.73 2591.75 424.28

mpegaudio 10450.01 243.81 2514.19 245.03 10440.95 243.04 2514.28 245.44
scimark
fft.small 11437.74 241.90 2690.38 243.57 11409.61 241.88 2685.78 243.04
lu.small 14616.01 241.66 2817.72 243.30 14544.15 241.63 2812.33 242.83

monte carlo 9971.67 242.36 2353.34 244.63 9960.36 242.32 2357.95 245.40
sor.large 7751.69 249.95 2489.94 252.70 7692.43 249.77 2483.87 255.12
sor.small 8138.79 242.92 2072.7 244.83 8098.71 242.79 2071.87 244.94

sparse.large 5761.24 255.90 2651.00 245.90 5696.68 248.81 2639.79 256.19
sparse.small 9945.33 242.86 2787.57 244.62 11407.97 242.61 2765.67 244.79

serial 11045.67 243.13 2559.38 245.65 11081.10 243.12 2564.25 246.19
sunflow 9774.58 243.62 2491.17 244.21 9759.61 242.54 2500.23 245.94

xml
xml.transform 10734.84 253.83 2635.95 266.7 10728.55 253.7 2640.31 267.42
xml.validation 8918.29 241.62 2336.65 242.88 8834.73 241.66 2336.21 243.41

startup
compress 31.91 1.63 23.52 2.98 31.15 1.69 22.55 3.02
crypto.aes 47.40 2.61 37.76 5.15 49.66 2.78 40.84 5.48
crypto.rsa 28.18 1.19 21.69 2.64 25.48 1.03 20.36 2.39

crypto.signverify 27.52 1.33 21.83 2.66 25.44 1.27 20.19 2.52
mpegaudio 50.59 2.04 38.03 4.70 51.84 2.09 39.06 4.72
scimark.fft 25.60 1.22 19.85 2.51 24.30 1.22 19.21 2.53
scimark.lu 22.34 0.97 18.24 2.23 21.59 1.01 17.66 2.19

scimark.monte carlo 32.44 1.89 24.7 3.49 31.28 1.89 24.08 3.43
scimark.sor 30.28 1.89 22.81 3.23 29.42 1.89 22.32 3.23

scimark.sparse 29.83 1.53 23.57 3.02 29.17 1.55 22.86 3.08
serial 55.10 2.13 44.03 5.18 55.52 2.24 45.36 4.85

sunflow 53.20 1.80 41.80 4.43 53.79 1.79 42.25 4.50
xml.transform 260.23 13.52 205.33 26.51 267.14 13.50 212.71 27.01
xml.validation 47.36 1.60 40.35 4.34 47.93 1.68 41.08 4.72

garbage collection. As shown in Table 5.15, for the UseSerialGC option, Oracle JDK results in

the higher energy efficiency than Open JDK for 22 benchmarks on the IFN and 18 benchmarks on

the Laptop. For both systems, UseSerialGC results in the higher energy efficiency of at least 22

benchmarks than the default mode for both JDKs.

UseParallelGC option uses multiple threads for garbage collection and has the same en-

ergy consumption as the server command-line option because parallel garbage collector is the

default garbage collector of JVM. UseConcMarkSweepGC option minimizes the pauses dur-

ing the garbage collection by performing the garbage collection concurrently with the application

threads. For UseConcMarkSweepGC, Oracle JDK results in the higher energy efficiency than
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Table 5.16: Energy consumption for UseConcMarkSweepGC option

Benchmark

UseConcMarkSweepGC
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 10433.09 243.32 2529.27 244.08 10401.93 243.31 2525.31 243.91
crypto

crypto.aes 10321.06 247.11 2598.34 252.60 10363.69 246.52 2591.85 249.45
crypto.rsa 10123.12 242.11 2439.91 242.96 9660.88 241.84 2347.97 242.33

crypto.signverify 9739.67 242.06 2452.01 243.92 9743.21 241.87 2445.81 243.04
derby 10500.20 258.57 2530.31 418.63 10510.22 258.57 2529.02 425.87

mpegaudio 10453.13 243.90 2514.94 245.01 10430.84 243.10 2515.18 245.70
scimark
fft.small 11487.74 241.87 2685.34 243.54 11484.40 241.84 2684.68 243.57
lu.small 14679.32 241.72 2830.50 243.03 14592.90 241.58 2823.12 242.67

monte carlo 9977.62 242.69 2351.60 245.48 9984.29 242.34 2361.1 244.83
sor.large 7593.93 249.11 2502.64 258.87 7598.94 247.84 2461.65 252.11
sor.small 8176.51 242.73 2083.28 243.80 8130.51 242.40 2068.68 244.69

sparse.large 7103.00 257.31 2704.88 264.26 6896.17 259.73 2714.60 261.12
sparse.small 10088.55 242.67 2769.37 244.70 11293.53 242.54 2792.31 244.58

serial 11100.34 243.72 2564.73 246.82 11149.12 243.52 2562.00 246.21
sunflow 10074.91 243.05 2496.52 244.60 10057.33 242.76 2484.38 244.95

xml
xml.transform 11228.96 254.12 2682.14 268.13 11259.29 253.94 2691.19 267.97
xml.validation 11337.46 241.86 2491.38 243.34 11389.85 241.62 2487.62 243.00

startup
compress 32.98 1.72 23.68 3.03 32.20 1.66 22.79 3.00
crypto.aes 48.30 2.64 37.96 5.22 51.39 2.83 40.64 5.43
crypto.rsa 28.78 1.24 21.88 2.60 26.34 1.06 20.28 2.30

crypto.signverify 28.47 1.36 21.65 2.72 26.01 1.27 20.20 2.52
mpegaudio 51.67 2.08 38.71 4.42 52.85 2.21 39.39 4.67
scimark.fft 26.58 1.28 19.96 2.52 25.51 1.33 19.29 2.48
scimark.lu 22.91 0.7 18.40 2.24 22.31 1.05 17.74 2.27

scimark.monte carlo 32.83 1.89 24.83 3.44 32.25 1.95 24.29 3.42
scimark.sor 31.52 1.90 23.00 3.21 30.37 1.93 22.42 3.20

scimark.sparse 30.55 1.46 23.60 3.08 30.10 1.59 22.93 3.05
serial 55.19 2.13 45.13 5.39 57.52 2.26 44.11 5.01

sunflow 53.93 1.83 42.42 4.40 54.81 1.83 43.05 4.52
xml.transform 262.96 13.41 207.96 26.85 271.08 13.44 209.95 27.59
xml.validation 49.92 1.62 41.41 4.26 50.32 1.67 41.61 4.58

Open JDK for 16 benchmarks on the IFN and 21 benchmarks on the Laptop as shown in Table

5.16. For the IFN, UseConcMarkSweepGC results in the higher energy efficiency of 19 bench-

marks for Open JDK but only for 9 benchmarks for Oracle JDK as compared to the default mode.

The Laptop shows higher energy efficiency for UseConcMarkSweepGC for both JDKs for at

least 19 benchmarks.

UseG1GC is parallel, concurrent and compacts the free heap space as soon as it reclaims

the memory. For the IFN, Open JDK is more energy-efficient for 22 benchmarks whereas, for

the Laptop, Oracle JDK is more energy-efficient for 16 benchmarks as shown in Table 5.17.

For both systems, UseG1GC consumes up to 14% lesser energy than the default mode for 17
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Table 5.17: Energy consumption for UseG1GC option

Benchmark

UseG1GC
Open Oracle

IFN Laptop IFN Laptop
E T E T E T E T

compress 9880.35 243.56 2463.06 244.67 10020.79 243.57 2461.73 244.60
crypto

crypto.aes 10303.34 246.20 2587.50 251.22 10329.26 246.66 2608.38 249.10
crypto.rsa 10055.39 242.13 2425.68 243.70 9656.16 241.83 2303.61 242.44

crypto.signverify 9751.27 242.04 2464.59 243.02 9771.50 241.96 2453.31 243.29
derby 10913.00 259.61 2638.94 422.53 10932.28 260.29 2682.52 438.71

mpegaudio 10466.92 243.94 2456.13 245.69 10456.34 243.00 2470.6 246.70
scimark
fft.small 11320.12 241.90 2693.62 243.61 11304.78 241.93 2692.59 243.40
lu.small 14559.84 241.66 2854.7 243.02 14632.02 241.66 2846.57 243.13

monte carlo 9913.28 242.66 2356.13 244.14 9913.89 242.84 2353.92 244.25
sor.large 7583.39 247.91 2485.21 255.76 7613.76 250.91 2464.48 253.23
sor.small 8292.91 243.26 2089.08 244.76 8292.73 243.29 2097.27 245.12

sparse.large 6166.40 251.40 2660.11 258.88 6057.50 254.89 2651.66 251.48
sparse.small 9459.37 242.56 2644.83 245.97 9503.92 243.32 2630.37 245.27

serial 10955.61 243.49 2537.92 246.64 10870.44 243.20 2550.76 246.78
sunflow 11058.25 242.81 2560.67 243.88 11153.35 242.67 2561.94 243.54

xml
xml.transform 11344.32 254.29 2735.98 268.48 11382.41 254.31 2748.81 269.31
xml.validation 11619.79 241.77 2493.87 243.45 11627.28 241.78 2497.92 243.20

startup
compress 34.05 1.72 24.20 3.11 34.41 1.72 24.17 3.06
crypto.aes 48.91 2.74 38.79 5.30 52.94 2.83 42.10 5.58
crypto.rsa 29.76 1.32 22.83 2.65 28.17 1.11 21.81 2.64

crypto.signverify 29.10 1.38 22.52 2.76 28.12 1.34 21.67 2.61
mpegaudio 52.43 2.19 39.75 4.73 54.39 2.17 40.48 4.75
scimark.fft 26.88 1.31 20.62 2.56 27.12 1.30 20.65 2.64
scimark.lu 24.04 1.09 19.07 2.31 24.28 1.08 18.7 2.34

scimark.monte carlo 33.41 1.96 25.78 3.50 34.02 1.98 25.51 3.55
scimark.sor 32.08 2.02 23.88 3.34 32.17 1.98 23.83 3.32

scimark.sparse 31.86 1.63 24.30 3.08 31.80 1.58 24.20 3.15
serial 56.65 2.21 44.81 5.11 59.50 2.34 46.44 5.61

sunflow 55.84 1.79 43.28 4.42 56.59 2.02 43.74 4.51
xml.transform 263.56 13.37 207.10 26.76 271.50 13.47 213.63 27.87
xml.validation 50.33 1.63 42.38 4.64 51.13 1.71 43.25 4.67

benchmarks. We select it as the most energy-efficient command-line option because for bench-

marks except startup (lightweight version of other benchmarks), it consumes lesser energy than

UseSerialGC. crypto.rsa results in the highest energy consumption variation of different

JDKs on the IFN.

5.2 Energy & Time

In this section, we analyze the correlation between energy and time for each command-line

option for each JDK and system. The values for the correlation are shown in Fig. 5.1. The first

thing we notice is that Energy and Time have a high correlation (strong linear relationship) which

varies with a maximum value of 0.98 for Oracle JDK on the IFN and a minimum value of 0.94 for
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Figure 5.1: Energy & Time correlation.

Open JDK on the Laptop. The high correlation is expected because we stabilize the idle energy.

Second, Open and Oracle JDK for the two systems results in almost same correlation. Third,

for the IFN, Open JDK shows a higher correlation, whereas, for the Laptop, Oracle JDK shows

a higher correlation. Last, XComp and Xfuture show a big difference between the correlation

values of the two ICT systems.

5.3 Related Work

Most of the Java performance improvement work mention tuning JVM command line options

[66, 89, 90]. JVM command line options show up to 5% improvement in Hadoop performance in

[91]. Other works focus on refactoring of software to improve Java performance [73, 74, 77, 78,

80, 65, 62, 63].

OpenJDK and IBM I9 performance-power analysis is presented in [92] using SPECjvm2008

Base run category. It is the closest work we can find, however, it neither stabilize the idle energy

and nor analyze Java command-line options in terms of energy efficiency.

5.4 Summary

In this chapter, we show how various command-line options cause Java applications to consume

different energy. We evaluate these command-line options for active energy efficiency on two

different ICT systems using the SPECjvm2008 benchmarks for Open and Oracle JDK. We stabilize

the idle energy to get an accurate measurement of the active energy. For each command-line
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options, we check which JDK performs better. Oracle JDK results in better energy efficiency for

most of the command-line options. Next, we compare each command-line option to default JVM

settings or server command-line option. We show that Xint causes the lowest energy efficiency

and UseG1GC causes the highest energy efficiency. We find a strong linear relationship between

active energy and execution time. We hope these results will help software users to choose between

command-line options for a better energy efficiency of Java applications.
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CHAPTER 6 JEPO: JAVA ENERGY PROFILER AND OPTIMIZER

Software is one of the most critical bottlenecks while trying to optimize the energy consump-

tion of any ICT system. In this work, we present our JEPO* tool to help software developers to

write energy-efficient code. This tool is an Eclipse IDE plugin and provides energy-efficient sug-

gestions for Java programming language. It can provide suggestions dynamically while writing

code or statically to refactor already written code. For providing suggestions, it analyzes each

line of Java file and matches it to the pool of suggestions that we gather from the findings in our

earlier work [62, 63]. JEPO can also help the software developers to measure energy consumption

automatically at method granularity to determine the energy-hungry Java methods in a software.

For measuring the energy, it injects energy and time measurement code at the start and end of

each method in the project. This injected code leverage Intel RAPL technology to measure energy

consumption.

6.1 JEPO

JEPO is an Eclipse plugin developed to provide suggestions for software developers to write

energy-efficient code in real-time or to use suggestions to refactor already written code. It is a mix

of a static and dynamic tool as it can not only give real-time suggestions while writing the code

but also can be used to get suggestions for already written code. The suggestions are a result of

our earlier work in which we analyze various components of Java programming language [62, 63].

These suggestions are hardcoded in the tool and displayed whenever the tool detect specific Java

components like data types, operators, control statements, String, exceptions, objects, and Arrays.

JEPO analyzes each line of the code and checks for specific patterns to generate suggestions.

These patterns relate to various components of Java programming language and are shown with

suggestions in Table 6.1. For primitive data types - byte, short, int, long, float, double

and char - int primitive data type is recommended for the best energy efficiency. Decimal

numbers when typed as scientific notation consumes lesser energy. Wrapper classes are object

representation of primitive data types. Integer wrapper class object consumes lesser energy than

*https://github.com/mohitkumar14/JEPO

https://github.com/mohitkumar14/JEPO
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Table 6.1: Java Components & Suggestions

Java Components Suggestions

Primitive data types
int is the most energy-efficient primitive data type. Replace
if possible.

Scientific notation
Scientific notation results in lower energy consumption of
decimal numbers.

Wrapper classes
Integer Wrapper class object is the most energy-efficient.
Replace if possible.

Static keyword
static keyword consumes up to 17,700% more energy.
Avoid if possible.

Arithmetic operators
Modulus arithmetic operator consumes up to 1,620% more
energy than other arithmetic operators.

Ternary operator
Ternary operator consumes up to 37% more energy than if-
then-else statement.

Short circuit operator Put most common case first for lower energy consumption.
String concatenation

operator
StringBuilder append method consumes much lower energy
than String concatenation operator.

String comparison
String compareTo method consumes up to 33% more en-
ergy than String equals method.

Arrays copy
System.arraycopy() is the most energy-efficient way to copy
Arrays.

Array traversal
Two-dimensional Array column traversal results in up to
793% more energy.

any other wrapper class. Static keyword result in up to 17,700% increase in energy consumption of

variables. Modulus is the most energy expensive arithmetic operator. Ternary operator consumes

higher energy than if-then-else option. Putting most common cases in a short-circuit operator

helps in saving energy. For string concatenation, StringBuilder append is the best way to

concatenate string. String comparison method compareTo result in higher energy consumption

than equals method. System.arraycopy() is the best way to copy array. Array column

traversal is energy expensive than row traversal. All these suggestions work better when the above

java components are used repeatedly in a program. More general suggestions can be found in our

earlier work [62, 63].

JEPO can also help software developers to determine the energy-hungry methods in a Java

project. This is achieved by injecting code in bytecode to read the machine specific registers

(MSR) at the start and end of each method in the Java project using Javassist library [17]. We first
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Figure 6.1: JEPO toolbar button

Figure 6.2: JEPO dynamic suggestion

search for all classes that has a main method in the project. If there is only one main class, then

we choose it as our main class. If there are more than one, then we take user input to determine

the correct main class for the project. After we finalize the main class, we create a new Java file

named JEPOInsert in com.mist.jepo package. The purpose of this class is to inject the energy

measurement code for each method in the project and then run the earlier selected main class. The

injected code measure and store the MSR and the execution start or stop time whenever a method

is executed. When the execution end, the energy consumption and execution time for all the

executed methods are stored in a result.txt file in Java project directory and shown in JEPO view.

If one method is executed more than once, then the measurements are stored for each execution.

JEPO include one toolbar button and two pop-up menu buttons. The toolbar button (shown in

Fig.6.1) open JEPO view if it’s not already open and then show the suggestions for the already

open Java file. If the Java file is not already open then JEPO will show an empty view. The toolbar
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Figure 6.3: JEPO pop-up menu buttons

Figure 6.4: JEPO profiler view

button view provides dynamic suggestions as shown in Fig. 6.2. The pop-up menu button can

be accessed by doing right-click on any Java project. The pop-up menu will then show a button

named JEPO with two sub-menu button - JEPO profiler and JEPO optimizer (Fig. 6.3). The JEPO

profiler creates the JEPOInsert.java file to measure the energy consumption at method granularity.

It shows the energy consumption for each method executed while running a Java project in JEPO

view Fig. 6.4. The JEPO profiler functionality is limited to Intel processors that support RAPL

and Ubuntu OS. The JEPO optimizer provides suggestions for all the classes in a Java project.
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Table 6.2: WEKA classifiers metrics calculated using Eclipse Metrics Plug-in [93] and Class De-
pendency Analyzer (CDA) [94]

Classifiers Dependencies Attributes Methods Packages LOC
J48 684 3263 7746 41 101172

Random Tree 668 3235 7611 41 99938
Random Forest 673 3270 7736 42 101812

REP Tree 668 3235 7619 41 100074
Naive Bayes 668 3229 7582 40 99221

Logistic 666 3216 7553 40 98812
SMO 677 3305 7796 43 102250
SGD 669 3222 7585 40 99304
KStar 671 3282 7576 41 99421
IBk 671 3268 7703 41 100339

6.2 Validation

For evaluating JEPO, we leverage WEKA an open-source machine learning software. We first

make changes to WEKA as per JEPO suggestions and then evaluated the different classifiers on

the Laptop described in Section 3.1.

WEKA software has 3373 classes in total. Its different classifiers specifications are shown in

Table 6.2. Dependencies, attributes, methods, packages, and line of code (LOC) has almost the

same properties for all classifiers. J48 implements a modified version of C4.5 which uses deci-

sion tree for classification. For building trees, RandomTree takes in account a given number of

random features at each node without performing any pruning. RandomForest uses bagging on

ensemble of random trees. REPTree uses information gain and variance reduction for constructing

decision or regression tree. For pruning, reduced-error pruning method is used. Naive Bayes is

a probabilistic classifier which is based on Bayes theorem. Logistic builds a multinomial logistic

regression that uses a ridge estimator to guard against overfitting by penalizing large coefficients

based on [95]. SMO uses polynomial or Gaussian kernels to implement the sequential minimal

optimization algorithm for training a support vector qualifier [96, 97]. SGD is a stochastic gradient

descent learning model with various loss functions. KStar and IBK are lazy classifiers which work

only during the classification tome. KStar implements a nearest-neighbor classifier with general-
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Table 6.3: MOA airlines data

Attributes Type
Airline Nominal
Flight Numeric

Airport From Nominal
Airport To Nominal

Day Of Week Nominal
Time Numeric

Length Numeric
Delay Binary

ized distance function based on transformations whereas IBk implements a k-nearest-neighbour

classifier.

The data used for classification is Massive Online Analysis (MOA) data [98], which is used to

predict whether a flight will be delayed or not. The data has 8 attributes and 539,383 instances. We

reduce the number of instances to 10,000 due to limited heap memory. The attributes are shown

in Table 6.3. The attributes refer to the airline name, flight name, airport from where the flight

departs, airport to which flight arrives, day of the week, time of the flight, distance of the flight,

and whether the flight get delayed or not. There are 4 nominal, 3 numeric and one binary attribute.

For airline and airports nominal values, the distinct values are 18 and 293, respectively.

Next, we make changes to the dependent classes as per JEPO suggestions and evaluated var-

ious classifiers using stratified 10-fold cross-validation. We first run each classifier 10 times to

measure Package energy, CPU energy, and execution time using perf Linux tool. After that, we

detect outliers using Tukey’s method [60] from each metric, replace the outliers measurements

with new measurements and again check for outliers. We repeat this process until no outlier is left.

When no outlier is left, we calculated the mean of values. The final values are shown in Table 6.4.

As expected, the changes made are almost same due to the same number of dependencies. How-

ever, other metrics do not agree with the number of changes. For Package energy consumption,

CPU energy consumption and execution time, Random Forest shows the highest improvement of

14.46%, 14.19% and 12.93%, respectively. Random Tree shows the most amount of accuracy drop

of 0.48%.
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Table 6.4: WEKA evaluation

Classifiers Changes
Package

Improvement
(%)

CPU
Improvement

(%)

Execution Time
Improvement

(%)

Accuracy
Drop (%)

J48 877 4.44 4.68 3.96 0.00
Random Tree 709 0.02 0.01 0.01 0.48

Random Forest 719 14.46 14.19 12.93 0.00
REP Tree 723 3.70 3.49 2.01 0.00

Naive Bayes 711 3.58 3.82 0.00 0.00
Logistic 711 0.10 0.10 0.00 0.00

SMO 713 0.05 0.08 0.04 0.17
SGD 713 7.48 5.76 5.56 0.05
KStar 711 6.82 5.31 0.00 0.00
IBk 711 5.50 5.34 6.01 0.00

These results shows increase in metrics improvement when we increase the number of instances

of MOA data to 20,000. For autonomous vehicles, data centers, and supercomputers, where huge

amount of data is analyzed in short time, JEPO can help to significantly reduce the energy con-

sumption of software.

6.3 Related Work

Software energy measurement challenges like lack of energy measurement tools, lack of in-

strumentation to estimate energy consumption for various OS and processors is presented in [99].

SEEDS and Chameleon frameworks for automating code-level changes and optimizing Java ap-

plications were introduced in [100] and [101]. These frameworks can select the most efficient

collection for improving the energy efficiency of an application. SEEDS resulted in 17% energy

consumption improvement. Software change-impact analysis tool, GreenAdvisor, help software

developers to estimate the change in energy profiles due to change in an application system calls

[102]. Eco, a programming model, is introduced in [103] to provide support for energy-aware ap-

plications. A similar tool, EnSights, provides energy change information by analyzing the change

in the structure of a code [104]. It can estimate the change in energy consumption with F-scores

of up to 86%. jStanley - an Eclipse plugin - provides a suggestion for energy consumption usage

of collections in Java [16]. The software developers can use the suggestion to replace a collection
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with a better collection. It shows to improve energy consumption between 2% and 17%. In this

chapter, we present an Eclipse plugin which gives suggestions about data types, operators, con-

trol statements, String, exceptions, objects, and Arrays. It can also help software developers in

measuring the energy consumption of software applications automatically at method granularity.

6.4 Summary

Software energy research has been around for some years. Researchers have performed anal-

ysis on various languages. However, there is a lack of tool which can disseminate these software

power savings findings to software developers. Therefore, in this work, we present an Eclipse

plugin JEPO to help software developers write energy-efficient code, dynamically and statically.

JEPO can also provide measurements for energy consumption automatically at method granularity.

Using JEPO we were able to achieve up to 14.46% improvement in package energy consumption,

up to 14.19% improvement in CPU energy consumption, up to 12.93% in execution time and with

only 0.48% drop in accuracy.
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CHAPTER 7 CONCLUSION

Software energy efficiency research still has a long way to go as most of the energy efficiency

research concentrate on hardware. Software developers have been oblivious to application energy

efficiency for years. They do not pay much attention to the energy consumption of the software

they develop. There are no well-established guidelines that they can follow to write energy-efficient

code. We try to stimulate the development of such guidelines for developing energy-efficient soft-

ware. We measure and compare the energy efficiency of data types, operators, control statements,

String, exceptions, objects, and Arrays in Java. We find a strong linear relationship between energy

consumption and execution time for different JDKs. These results will help software developers to

build more energy-efficient Java applications in the future.

Java command-line options cause Java applications to consume different energy. We evaluate

these command-line options for active energy efficiency on two different ICT systems using the

SPECjvm2008 benchmarks for Open and Oracle JDK. We stabilize the idle energy to get an accu-

rate measurement of the active energy. For each command-line options, we check which JDK per-

forms better. Oracle JDK results in better energy efficiency for most of the command-line options.

Next, we compare each command-line option to default JVM settings or server command-line op-

tion. We show that Xint causes the lowest energy efficiency and UseG1GC causes the highest

energy efficiency. We find a strong linear relationship between active energy and execution time.

These results will help software users to choose between command-line options for a better energy

efficiency of Java applications.

Researchers have performed analyses on various languages. However, there is a lack of tools

that can disseminate these software power savings findings to software developers. Therefore, we

present an Eclipse plugin JEPO to suggest software developers in writing energy-efficient code,

dynamically and statically. JEPO can also provide energy consumption measurements automat-

ically at method granularity. Using JEPO we were able to achieve up to 14.46% improvement

in package energy consumption, up to 14.19% improvement in CPU energy consumption, up to

12.93% in execution time and with only 0.48% loss in accuracy. We hope software developers can
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use JEPO to make their software energy-efficient.
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CHAPTER 8 FUTURE WORK

Java programming language is one of the many languages used today for software development.

In the future, we can evaluate other programming languages at the code level and command-line

options level. We can also work on improving JEPO to add more suggestions.

For other programming languages, we can evaluate components that are same as Java program-

ming language like primitive data types, operators, conditional statements and threads. We can also

evaluate methods that have different names but can perform the same functionalities. Like Java,

every programming language has several versions that we can compare for consistency of energy

consumption and execution time.

Programming languages lack tools like JEPO which can provide suggestions to software devel-

opers for improving the energy consumption of software. Such tools can also help in measuring the

energy consumption of software. Software developers can use such tools to not only find energy-

hungry locations at different granularity like methods and classes but also to apply energy-savings

suggestions automatically to such locations. We hope, we can provide JEPO like tools for other

programming languages in the future.
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Information and Communications Technologies (ICT) amounts for 10% of the world energy

which will keep on growing in the future and 3% of the overall carbon footprint which is now

more than the level of CO2 emission as that of the aviation industry. For many past years, the fo-

cus was on hardware to optimize the energy consumption of ICT systems. This includes dynamic

adaptation of hardware techniques such as fine-grain clock gating, power gating, and dynamic

voltage/frequency scaling. However, recent demands of exascale computation, as well as the in-

creasing carbon footprint, require new breakthroughs to make ICT systems more energy-efficient.

This is not possible by only making the hardware energy-efficient. As a result, the focus is shifting

on software now. Software is one of the most critical bottlenecks while trying to optimize the

energy consumption of any ICT system.

Software energy consumption can be optimized in several ways like choosing the energy-

efficient option in a programming language, using an energy-efficient programming language or

choosing an energy-efficient compiling option. In this work, we concentrate on the energy-efficient

options and command-line options to optimize software energy consumption. Today’s program-

ming languages provide software developers with several options to perform the same task. For

example, in Java, an Array can be copied to other Array either manually or using Java methods.

However, not every option available is energy-efficient and the software developers lack the knowl-

edge to choose the best energy-efficient option. We perform various analyses to decide on choos-
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ing the best option for different components of Java programming language. These components

include data types, operators, control statements, String, exceptions, objects, and Arrays.

Java has different command-line options that can be used to tune the JVM. These options can

significantly affect the energy behavior of Java applications. We conduct a comprehensive study to

evaluate the energy efficiency of Java command-line options. We first stabilize the idle energy con-

sumption of two ICT systems and then evaluate the active energy consumption of SPECjvm2008

benchmarks using different JDKs (Open and Oracle) and Java command-line options. The

Java command-line options include client, server, Xbatch, Xcomp, Xfuture, Xint,

Xmixed, Xrs, AggressiveOpts, AggressiveHeap, Inline, AlwaysPreTouch,

Xnoclassgc, UseSerialGC, UseParallelGC, UseConcMarkSweepGC, and UseG1GC.

Next, we present Java Energy Profiler and Optimizer (JEPO) tool to help software developers

to write energy-efficient code. This tool is an Eclipse IDE plugin and provides energy efficiency

suggestions for Java programming language. It can provide suggestions dynamically while writing

code or statically to refactor already written code. For providing suggestions, it analyzes each line

of Java file and matches it to the pool of suggestions. JEPO can also help the software developers to

automatically measure energy consumption at method granularity to determine the energy-hungry

Java methods in software. We hope our findings and tool can help software developers to write

energy-efficient code in the future.
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