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A Top-level Model of Case-based Argumentation for
Explanation

Henry Prakken1

Abstract. This paper proposes a formal top-level model of explain-
ing the outputs of machine-learning-based decision-making applica-
tions. The model draws on AI & law research on argumentation with
cases, which models how lawyers draw analogies to past cases and
discuss their relevant similarities and differences. The model is top-
level in that it can be extended with more refined accounts of simi-
larities and differences between cases.

1 INTRODUCTION

There is currently an explosion of interest in automated explana-
tion of machine-learning applications [1, 16, 20]. Some methods as-
sume access to the learned model (model-aware explanation) while
other methods assume no such access (model-agnostic explanation).
This paper presents a model-agnostic method for explaining learned
classification models, motivated by the fact that access to a learned
model often is impossible (since the application is proprietary) or
uninformative (since the learned model is not transparent). We only
assume access to the training data and the possibility to observe a
learned model’s output given input data. We take an example-based
approach, in which case outcomes are explained by comparing the
case to similar cases in the training set. We in particular draw on
AI & law research on argumentation with cases, which models how
lawyers draw analogies to past cases and discuss their relevant sim-
ilarities and differences. A case-based approach is natural since the
training data of machine-learning algorithms can be seen as collec-
tions of cases. Our explanation model is top-level in that it can be
extended with more refined accounts of case similarity.

There is so far little work on argumentation for model-agnostic
explanation of machine-learning algorithms but recent research sug-
gests the feasibility of an argumentation approach. We are inspired
by the work of Čyras et al. [30, 29], also applied by [14]. They de-
fine cases as sets of binary features plus a binary outcome. Then they
explain the outcome of a ‘focus case’ in terms of a graph structure
that essentially utilises an argument game for grounded semantics of
abstract argumentation semantics [15, 21]. We want to use the latter
idea while overcoming some limitations of Čyras et al.’s approach.
First, they do not consider the tendency of features to favour one side
or another, while in many applications information on these tenden-
cies will be available. Second, their features are binary, while many
realistic applications will have multi-valued features. Finally, they
leave the precise nature in which their graph structures explain an
outcome somewhat implicit. We want to address all three limitations
in terms of recent AI & law work on case-based reasoning.
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This paper is organised as follows. We present preliminaries in
Section 2 and outline our general approach in Section 3. We then
present a boolean-factor-based definition of case-based explanation
dialogues in Section 4 and extend it to multi-valued factors or ‘di-
mensions’ in Section 5. We then briefly discuss how our top-level
model can be extended with more refined accounts of similarities
and differences between cases in Section 6, after which we conclude.

2 PRELIMINARIES

Many AI & law accounts of argumentation with cases (for an ex-
cellent overview see [8]) are applied to problems that are not de-
cided by a clear rule but by weighing sets of relevant factors pro
and con a decision. Legal data-driven algorithms are often applied
to such factor-based problem domains [6, 13]. The seminal work is
Rissland & Ashley’s [28, 4, 5] work on the HYPO system for US
trade secrets law. HYPO generates argument moves for analogizing
or distinguishing precedents and hypothetical cases. Precedents can
be cited to argue for the same outcome in the current case. Citations
can then be distinguished by pointing at relevant differences between
the precedent and the current case, and counterexamples, i.e., prece-
dents with the opposite outcome, can be cited.

In AI & Law research, factors are legally relevant fact patterns as-
sumed to favour one side or the other. Factors can be boolean (e.g.
‘the secret was obtained by deceiving the plaintiff’, ‘a non-disclosure
agreement was signed’ or ‘the product was reverse-engineerable’)
or multi-valued (e.g. the number of people to whom the plaintiff
had disclosed the secret or the severity of security measures taken
by the plaintiff). Multi-valued factors are often called dimensions;
henceforth the term ‘factor’ will be reserved for boolean factors. In
a factor-based approach, cases are defined as two sets of factors pro
and con a decision (for example, there was misuse of trade secrets)
plus (in case of precedents) the decision. Dimensions are not simply
pro or con an outcome but are stronger or weaker for a side depending
on their value in a case. Accordingly, in dimension-based approaches
cases are defined as collections of value assignments to dimensions
plus (for precedents) the decision. While HYPO-style work mainly
focuses on rhetoric (generating persuasive debates), other work ad-
dresses the logical question how precedents constrain decisions in
new cases. An important idea here is that precedents are sources of
preferences between factor or dimension-value sets [25, 17, 9, 27, 18]
and that these preferences are often justified by balancing underlying
legal or societal values [12, 11].

An abstract argument framework, as introduced by Dung [15]
is a pair AF = 〈A, attack〉, where A is a set of arguments and
attack a binary relation on A. A subset B of A is conflict-free if no
argument in B attacks an argument in B and it is admissible if it is



conflict-free and defends itself against any attack, i.e., if an argument
A1 is in B and some argument A2 inA but not in B attacks A1, then
some argument in B attacks A2. The theory of AFs identifies sets
of arguments (called extensions) which are all admissible but may
differ on other properties. In this paper we focus on the grounded ex-
tension, which is always unique. In particular, our explanations will
take the form of an argument game between a proponent and oppo-
nent of an argument (in our approach a case citation for an outcome
to be explained) that can be used to verify whether an individual
argument is in the grounded extension. The game is sound and com-
plete with respect to grounded semantics [23, 21]. The game starts
with an argument by the proponent and then the players take turns
after each argument: the opponent must attack the proponent’s last
argument while the proponent must one-way attack the opponent’s
last argument (i.e., the attacked argument does not in turn attack the
attacker). A player wins an argument game iff the other player can-
not move. An argument is justified (i.e., in the grounded extension)
iff the proponent has a winning strategy in a game about the argu-
ment, i.e., if the proponent can make the opponent run out of moves
in whatever way the opponent plays. A strategy for the proponent
can be displayed as a tree of games which only branches after the
proponent’s moves and which contains all attackers of this move. A
strategy for a player is winning if all games in the tree end with a
move by that player.

For describing factor-based models of precedential constraint
we first recall some notions concerning factors and cases often used
in AI & law (e.g. in [17, 27, 18]), although sometimes with some
notational differences. Let o and o′ be two outcomes and Pro and
Con two disjoint sets of atomic propositions favouring, respectively,
outcome o and o′. The variable s (for ‘side’) ranges over {o, o′} and s
denotes o′ if s = owhile it denotes o if s = o′. A set F ⊆ Pro∪Con
favours side s (or F is pro s) if s = o and F ⊆ Pro or s = o′ and
F ⊆ Con . For any set F of factors the set F s ⊆ F consists of all
factors in F that favour side s. A fact situation is any subset of Pro∪
Con . A case is then a triple (pro(c), con(c), outcome(c)) where
outcome(c) ∈ {o, o′}. Moreover, pro(c) ⊆ Pro if outcome(c) =
o and pro(c) ⊆ Con if outcome(c) = o′. Likewise, con(c) ⊆ Con
if outcome(c) = o and con(c) ⊆ Pro if outcome(c) = o′. Finally,
a case base CB is a set of cases.

We next summarise Horty’s [17] factor-based ‘result’ model of
precedential constraint (the differences with his ‘reason model’ are
for present purposes irrelevant, which we therefore do not discuss).

Definition 1 [Preference relation on fact situations [17].] Let X and
Y be two fact situations. ThenX ≤s Y iffXs ⊆ Y s and Y s ⊆ Xs.

X <s Y is defined as usual as X ≤ Y and Y 6≤ X . This definition
says that Y is at least as good for s as X iff Y contains at least all
pro-s factors that X contains and Y contains no pro-s factors that
are not in X .

Definition 2 [Precedential constraint with factors [17].] Let CB be
a case base and F a fact situation. Then, given CB, deciding F for
s is forced iff there exists a case c = (X,Y, s) in CB such that
X ∪ Y ≤s F .

Horty thus models a fortiori reasoning in that an outcome in a fo-
cus case is forced if a precedent with the same outcome exists such
that all their differences make the focus case even stronger for their
outcome than the precedent. As for terminology, a case base CB is
inconsistent if and only if there exists a fact situation F such that,
given CB, both deciding F for s and deciding F for s is forced.

As our running example we use a small part of the US trade secrets
domain of the HYPO and CATO systems. We assume the following
six factors along with whether they favour the outcome ‘misuse of
trade secrets’ (π for ‘plaintiff’) or ‘no misuse of trade secrets’ (δ
for ‘defendant’): the defendant had obtained the secret by deceiv-
ing the plaintiff (π1) or by bribing an employee of the plaintiff (π2),
the plaintiff had taken security measures to keep the secret (π3), the
product is not unique (δ1), the product is reverse-engineerable (δ2)
and the plaintiff had voluntarily disclosed the secret to outsiders (δ3).
We assume the following precedents:

c1(π): deceivedπ1, measuresπ3, not-uniqueδ1, disclosedδ3
c2(δ): bribedπ2, not-uniqueδ1, disclosedδ3

Clearly, deciding a fact situation F for π is forced iff it has at least
the π-factors {π1, π3} and at most the δ-factors {δ1, δ3} (by prece-
dent c1), since then we have {π1, π3} ⊆ Fπ and F δ ⊆ {δ1, δ3}.
Likewise, deciding a fact situation for δ is forced iff it has at least the
δ-factors {δ1, δ3} and at most the π-factor {π2} (by precedent c2).

Consider next the following fact situation:

F1: bribedπ2, measuresπ3, reverse-engδ2, disclosedδ3
Comparing F1 with c1 we must check whether {π1, π3, δ1, δ3} ≤π
{π2, π3, δ2, δ3}. This is not the case, for two reasons. We have
{π1, π3} 6⊆ Fπ1 = {π2, π3} and we have F δ1 = {δ2, δ3} 6⊆
{δ1, δ3}. Next, comparing with precedent c2 we must check whether
{π2, δ1, δ3} ≤δ {π2, π3, δ2, δ3}. This is also not the case for two
reasons. We have {δ1, δ3} 6⊆ F δ1 = {δ2, δ3} and we have Fπ1 =
{π2, π3} 6⊆ {π2}. So neither deciding F1 for π nor deciding F1 for
δ is forced. Henceforth we will assume it was decided for π.

We finally recall some ideas and results of [24] and add a new re-
sult to them. In [24] a similarity relation is defined on a case base
given a focus case and a correspondence is proven with Horty’s
factor-based model of precedential constraint. The similarity rela-
tion is defined in terms of the relevant differences between a prece-
dent and the focus case. These differences are the situations in which
a precedent can be distinguished in a HYPO/CATO-style approach
with factors [4, 2], namely, when the new case lacks some factors
pro its outcome that are in the precedent or has new factors con its
outcome that are not in the precedent. To define the similarity rela-
tion, it is relevant whether the two cases have the same outcome or
different outcomes.

Definition 3 [Differences between cases with factors [24].] Let c
and f be two cases. The set D(c, f) of differences between c and
f is defined as follows.

1. If outcome(c) = outcome(f) thenD(c, f) = pro(c)\pro(f)∪
con(f) \ con(c).

2. If outcome(c) 6= outcome(f) thenD(c, f) = pro(f)\con(c)∪
pro(c) \ con(f).

Consider again our running example and consider first any focus
case f with outcome π and with a fact situation that has at least the π-
factors {π1, π3} and at most the δ-factors {δ1, δ3}. Then D(c, f) =
∅. Likewise with any focus case f with outcome δ and with a fact
situation that has at least the δ-factors {δ1, δ3} and at most the π-
factor {π2}. Next, let f be a focus case with fact situation F1 and
outcome π. We have

D(c1, f) = {deceivedπ1, reverse-engδ2}
D(c2, f) = {measuresπ3, not-uniqueδ1}

The following result, which yields a simple syntactic criterion for
determining whether a decision is forced, is proven in [24].
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Proposition 1 Let CB be a case base CB and f a focus case with
fact situation F . Then deciding F for s is forced given CB iff there
exists a case c with outcome s in CB such that D(c, f) = ∅.

We call a case citable given f iff it shares at least one factor pro its
outcome with f and they have the same outcome [4]. Then clearly
every case c such that D(c, f) = ∅ is citable. A new result is that
for any two cases with opposite outcomes that both have differences
with the focus case, their sets of differences with the focus case are
mutually incomparable (as with c1 and c2 in our running example).

Proposition 2 Let CB be a case base, f a focus case and c and c′

two cases with opposite outcomes and with non-empty sets of differ-
ences with f . Then D(c, f) 6⊆ D(c′, f) and D(c′, f) 6⊆ D(c, f).

3 Approach and assumptions
We next sketch our general approach and its underlying assumptions.
For a given classification model resulting from supervised learning
we assume knowledge of the set of the model’s input features, i.e.,
factors or dimensions and a binary outcome, plus the ability to ob-
serve the output of the learned model for given input. We also as-
sume knowledge about the tendency of the input factors or dimen-
sions towards a specific outcome, plus access to the training set from
which the classification model was learned (data plus label). We then
want to generate an explanation for a specific input-output pair of the
classification model (the focus case) in terms of similar cases in the
training set. Later we will briefly discuss a more general task where
further domain specific information may be used to generate the ex-
planation.

Since we have no access to the classification model, we do not
know how the decision makers reasoned when deciding the cases in
the training set. All we can do is generate the explanations in terms
of a reasoning model that is arguably close to the domain, such as
the above-described AI & law models of case-based argumentation.
Accordingly, our aim is to investigate to what extent an explanation
can be given in terms of these argumentation models.

It may happen that the outcomes of the classification and argumen-
tation models disagree for a given input. Such a discrepancy does not
imply that the argumentation model is wrong. It may also be that the
learned classification model is wrong, since such models are rarely
100% accurate. If the two models disagree, it may be informative to
show the user under which assumptions the outcome of the learned
model is forced according to the argumentation model. The user can
then decide whether to accept these assumptions. Accordingly, the
information our explanations should provide is twofold: whether the
focus case is forced, and if not, then what it takes to make it forced.
Our explanation model can thus not only provide understanding of
the learned model but also grounds to critique it.

4 EXPLANATION WITH FACTORS
We now present our top-level model for case-based explanation di-
alogues with factors, formalised as an application of the grounded
argument game to a case-based abstract argumentation framework.
The idea is that the proponent starts a dialogue for the explanation of
a given focus case f by citing a most similar precedent in the case
base CB with the same outcome as the focus case. Then the oppo-
nent can cite counterexamples and can distinguish the initial prece-
dent on its differences with the focus case. The proponent then replies
to the distinguishing moves with arguments why these differences are
irrelevant and to the counterexamples in a way explained below.

Definition 4 formalises these ideas. We first informally introduce
it. The set A of arguments consists of a case base of precedents as-
sumed to be citable given a focus case, plus a setM of arguments
about precedents. Conflicts between precedents are resolved by us-
ing the similarity relation as a preference ordering on A. The at-
tack relations from members ofM on members of A orM implic-
itly define the flow of the dialogue. The first two moves in M are
meant as ‘distinguishing’ attacks on an initial citation of a prece-
dent c. MissingPro(c, x) says that the focus case f lacks pro-s
factors x of precedent c, while NewCon(c, x) says that the focus
case f contains new con-s factors x that are not in precedent c.
These moves correspond to the two ways of distinguishing a case
in [4, 2]. In our running example a citation of c1 can be a attacked
by MissingPro(c1, {deceivedπ1}) and by NewCon(c1, {reverse-
engδ2}) (all moves in our running example are shown in Figure 1).

The next six moves are meant as replies to such distinguishing
moves. They are inspired by the ‘downplaying a distinction’ moves
from [2] (although that work does not contain counterparts of our
cSubstitutes and cCancels moves). The first two downplay a Miss-
ingPro move. First, a pSubstitutes(y, x, c) move says that the miss-
ing pro-s factors x are in a sense still in f , since they can be substi-
tuted with the new, similar pro-s factors y, so that the old preference
in c for pro(c) over con(c) also holds for pro(f) over con(c). For
example, in the US trade secrets domain both bribing an employee of
the plaintiff and deceiving the plaintiff are questionable means to ob-
tain the trade secret [2]. So in our running example the proponent can
reply with pSubstitutes({bribedπ2}, {deceivedπ1}, c1). Second, a
cCancels(y, x, c) reply says that the negative effect of the missing
pro-s factors x in f is cancelled by the positive effect of the miss-
ing con-s factors y in f , so that the old preference in c for pro(c)
over con(c) still holds for pro(f) over con(f). For example, the
MissingPro(c1, {deceivedπ1}) attack can be counterattacked with
cCancels(c1, {not-uniqueδ1}, {deceivedπ1}).

There are also two ways to downplay a NewCon distinction. The
cSubstitutes(y, x, c) move says that the new con-s factors y in f are
in a sense already in the old case since they are similar to the old con-
s factors x in c, so that the old preference in c for pro(c) over con(c)
also holds for pro(c) over con(f). This move mirrors a p-substitutes
move. In the US trade secrets domain, the two pro-δ factors that the
product was not unique and that it was reverse-engineerable can both
be seen as cases where the piece of trade information was known
or elsewhere available [2]. So in our running example the proponent
can reply with cSubstitutes({reverse-engδ2}, {not-uniqueδ1}, c1).
Second, pCancels(y, x, c) says that the negative effect of the new
con-s factors x in f is cancelled by the positive effect of the new pro-
s factors y in f , so that the old preference in c for pro(c) over con(c)
also holds for pro(f) over con(f). This moves mirrors a c-cancels
move. For example, the NewCon(c1, {reverse-engδ2}) attack can be
counterattacked with pCancels(c1, {bribedπ2}, {reverse-engδ2}).

For now all these moves will simply be formalised as statements.
Later, in Section 6, we briefly discuss how full-blown arguments can
be constructed with premises supporting these statements. To this
end, our formal definition of the set of arguments assumes an un-
specified set sc of definitions of p- and c-substitution and p- and c-
cancellation relations, as placeholders for explicit accounts of these
notions. Note that all downplaying moves allow the factor sets used
to downplay a distinction to be empty, as ways of saying that the
differences between the precedent and the focus case do not matter.

A complication is that a MissingPro or NewCon argument can be
attacked in different ways on different subsets of the missing pro-s
or new con-s factors. For instance, two different missing pro factors
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may be p-substituted with two different new pro factors, or one sub-
set of the missing pro-factors can be p-substituted by new pro-factors
while another subset can be c-cancelled by missing con-s factors.
The first situation can be accounted for in definitions in the set sc
and will therefore be left implicit below. To deal with the second sit-
uation, the downplaying attacks will be formalised as combinations
of an elementary p(c)-substitutes and/or c(p)-cancels move.

The last move is meant as a reply to a counterexample. For now
its underlying idea can only be outlined. It is meant to say that an
initial citation of a most similar case for the outcome of f can be
transformed by the downplaying moves into a case with no relevant
differences with f and which can therefore attack the counterexam-
ple. A more formal explanation can only be given after Definition 5.

Definition 4 [Case-based argumentation frameworks for explana-
tion with factors.] Given a finite case baseCB, a focus case f 6∈ CB
such that all cases in CB are citable given f , and definitions sc of
substitution and cancellation, an abstract argumentation framework
for explanation with factors eAFCB,f,sc is a pair 〈A, attack〉where:

• A = CB ∪M whereM =
{MissingPro(c, x) | x 6= ∅ and x = D(c, f) ∩ pro(c)} ∪
{NewCon(c, x) | x 6= ∅ and x = D(c, f) ∩ con(f)} ∪
{pSubstitutes(y, x, c) | x = D(c, f)∩pro(c) and y ⊆ pro(f)\
pro(c) and y p-substitutes x according to sc} ∪
{cSubstitutes(y, x, c) | x = con(c)\con(f) and y ⊆ D(c, f)∩
con(f) and y c-substitutes x according to sc} ∪
{pCancels(y, x, c) | x = D(c, f) ∩ con(f) and y ⊆ pro(f) \
pro(c) and y p-cancels x according to sc} ∪
{cCancels(y, x, c) | x = D(c, f) ∩ pro(c) and y ⊆ con(c) \
con(f) and y c-cancels x according to sc} ∪
{pSubstitutes(y, x, c)&{cCancels(y′, x′, c) |
pSubstitutes(y, x, c) ∈ A and cCancels(y′, x′, c) ∈ A} ∪
{cSubstitutes(y, x, c)&{pCancels(y′, x′, c) |
cSubstitutes(y, x, c) ∈ A and pCancels(y′, x′, c) ∈ A} ∪
{Transformed(c, c′) | c ∈ CB and c can be transformed into c′}

• A attacks B iff:

– A,B ∈ CB and outcome(A) 6= outcome(B) and
D(B, f) 6⊂ D(A, f);

– B ∈ CB and outcome(B) = outcome(f) and A is of the
form MissingPro(B, x) or NewCon(B, x);

– B is of the form MissingPro(c, x) and:

∗ A is of the form pSubstitutes(y, x, c) or cCancels(y, x, c)
and in both cases x = D(c, f) ∩ pro(c); or

∗ A is of the form pSubstitutes(y, x, c)&cCancels(y′, x′, c)
and x ∪ x′ = D(c, f) ∩ pro(c);

– B is of the form NewCon(c, x) and

∗ A is of the form cSubstitutes(y, x, c) or pCancels(y, x, c)
and in both cases x = D(c, f) ∩ con(f); or

∗ A is of the form cSubstitutes(y, x, c)&pCancels(y′, x′, c)
and y ∪ x′ = D(c, f) ∩ con(f);

– B ∈ CB and outcome(B) 6= outcome(f) and A is of
the form Transformed(c, c′) and c ∈ CB is a case with
outcome(c) 6= outcome(f) and a subset-minimal D(c, f)
among the cases with the same outcome.

Henceforth the arguments that attack a MissingPro or NewCon
move are sometimes called downplaying moves.

The grounded argument game now directly applies. The idea (in-
spired by [30, 29]) now is to explain the focus case f by showing
a winning strategy for the proponent in the grounded game, which
guarantees that the citation of the focus case is in the grounded ex-
tension of the argumentation framework defined in Definition 4. In
our approach, the game should start with a ‘best’ precedent c in CB
with the same outcome s as the focus case f (best in that there is
no c′ ∈ CB with the same outcome as f and such that D(c′, f) ⊂
D(c, f)). Moreover, any Transformed(c, c′) move must have as c
the dialogue’s initial move and as c′ the transformation of c into c′

during the dialogue according to Definition 5 below. Any strategy for
the proponent that satisfies these constraints is called an explanation
for f . As will become clear below, these further constraints do not
affect the existence of a winning strategy.

For a focus case with outcome s, three situations are relevant.
(1) s is forced and s is not forced. Then the proponent has a trivial

winning strategy, namely, to move a precedent with no relevant dif-
ferences with the focus case, after which the opponent has no reply.

(2) Neither s nor s is forced. Then the proponent has a winning
strategy if sc is explanation complete in that it always contains at at
least one legal reply in the grounded game to a MissingPro(c, x)
or NewCon(c, x) move. Then in a winning strategy T all branches
are three moves deep: either citation - distinction - downplaying the
distinction or citation - counterexample - attacking the counterexam-
ple. Moreover, the root of T has at most one MissingPro reply and
at most one NewCon reply and at least one such reply, plus zero or
more counterexample replies.

(3) s is forced. Then the proponent also has a winning strategy
if if there is a citable precedent with outcome s and if sc is expla-
nation complete, since any counterexample with no differences with
the focus case that the opponent can move can be attacked with a
Transformed move. This follows from Proposition 3 below since a
substituting or cancelling set can, as explained above, be empty. Ad-
mittedly, such a justification of the outcome of the focus case is weak,
but at least it informs a user that justifying the outcome of the focus
case requires making the case base inconsistent.

One idea of our approach is that all moves in an explanation di-
alogue receive their meaning from (or are thus justified by) the for-
mal theory of precedential constraint. To make this formal, we now
specify the following operational semantics of the downplaying argu-
ments inM as functions on the set of cases. The idea is that together
these moves modify the root precedent of a strategy for the propo-
nent into a case that makes f forced. Below Sy/x stands for the set
obtained by replacing subset x of S with y.

Definition 5 [Downplaying with factors: operational semantics]
Given an eAFCB,f,sc and a case c ∈ CB with outcome s:

• pSubstitutes(y, x, c) = (pro(c)y/x, con(c), s);
• cSubstitutes(y, x, c) = (pro(c), con(c)y/x, s);
• pCancels(y, x, c) = (pro(c) ∪ {y}, con(c) ∪ {x}, s);
• cCancels(y, x, c) = (pro(c) \ {x}, con(c) \ {y}, s);
• pSubstitutes(y, x, c)&cCancels(y′, x′, c) =

pSubstitutes(y, x, cCancels(y′, x′, c));
• cSubstitutes(y, x, c)&pCancels(y′, x′, c) =

pCancels(y, x, cSubstitutes(y′, x′, c)).

A sequence m1(y1, x1, c1), . . . ,mn(yn, xn, cn) of downplay-
ing moves is an explanation sequence iff for every pair
mi(yi, xi, ci),mi+1(yi+1, xi+1, ci+1) (1 ≤ i < n) it holds that
ci+1 = mi(yi, xi, ci).

In our running example we henceforth assume that O1a is attacked
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Figure 1. Example dialogue game tree.

with P2a and O1c with P2c. Then c1 is transformed into a case c′1 as
follows. First, pSubstitutes({bribedπ2}, {deceivedπ1}, c1) yields

c′′1 (π): bribedπ2, measuresπ3, not-uniqueδ1, disclosedδ3
Then cSubstitutes({reverse-engδ2}, {not-uniqueδ1}, c1) gives

c′1(π): bribedπ2, measuresπ3, reverse-engδ2, disclosedδ3
Note that D(c′, f) = ∅, so adding c′ to the case base would make
deciding F1 for π forced. The following result shows that this holds
in general for when the proponent has a winning strategy.

Proposition 3 Let T be a winning strategy for P in an explanation
dialogue and let M = m1, . . . ,mn be any explanation sequence
of all downplaying moves in T . Then the output of mn is a case
(X,Y, s) such that pro(f) ∪ con(f) ≤s X ∪ Y .

PROOF. (Sketch) According to Definition 1 it must be shown that
X ⊆ pro(f) and con(f) ⊆ Y . Four cases must be considered. If T
contains just one move, then f is forced and the result follows imme-
diately by Definition 2. Otherwise, either T contains a MissingPro
reply but no NewCon reply, or T contains a NewCon reply but
no MissingPro reply, or T contains both a MissingPro reply and
NewCon reply. In all three cases it is straightforward to verify that
the initially cited case is gradually transformed into a case that makes
the focus case forced, by successively applying the functions from
Definition 5. QED

This proposition formally captures the sense in which the focus case
is explained (for consistent case bases). If the focus case is forced,
then any precedent with no relevant differences explains the focus
case. Otherwise, an explanation sequence of downplaying moves de-
rived from the winning strategy explains what has to be accepted to
make the focus case forced; this information can be used to critique
the explanation.

5 EXPLANATION WITH DIMENSIONS
We next adapt the above-defined factor-based explanation model to
cases with dimensions. We first outline some formal preliminaries.

5.1 Dimension-based precedential constraint
We adopt from [18] the following technical ideas (again with some
notational differences). A dimension is a tuple d = (V,≤o,≤o′)

where V is a set (of values) and ≤o and ≤o′ two partial orders on
V such that v ≤o v′ iff v′ ≤o′ v. Given a dimension d, a value
assignment is a pair (d, v), where v ∈ V . The functional notation
v(d) = x denotes the value x of dimension d. Then given a set
D of dimensions, a fact situation is an assignment of values to all
dimensions inD, and a case is a pair c = (F, outcome(c)) such that
F is a fact situation and outcome(c) ∈ {o, o′}. Then a case base is
as before a set of cases, but now explicitly assumed to be relative to
a setD of dimensions in that all cases assign values to a dimension d
iff d ∈ D. As for notation, F (c) denotes the fact situation of case c
and v(d, c) denotes the value of dimension d in case or fact situation
c. Finally, v ≥s v′ is the same as v′ ≤s v.

Note that the set of value assignments of a case is unlike the set
of factors of a case not partitioned into two subsets pro and con the
case’s outcome. The reason is that with value assignments it is often
hard to say in advance whether they are pro or con the case’s out-
come. All that can often be said in advance is which side is favoured
more and which side less if a value of a dimension changes, as cap-
tured by the two partial orders ≤s and ≤′

s on a dimension’s values.
In HYPO [28, 5], two of the factors from our running example

are actually dimensions. Security-Measures-Adopted has a linearly
ordered range, below listed in simplified form (where later items in-
creasingly favour the plaintiff so decreasingly favour the defendant):

• Minimal-Measures, Access-To-Premises-Controlled, Entry-By-
Visitors-Restricted, Restrictions-On-Entry-By-Employees

Moreover, disclosed has a range from 1 to some high number, where
higher numbers increasingly favour the defendant so decreasingly
favour the plaintiff. For the remaining four factors we assume that
they have two values 0 and 1, where presence (absence) of a factor
means that its value is 1 (0) and where for the pro-plaintiff factors we
have 0 <π 1 (so 1 <δ 0) and for the pro-defendant factors we have
0 <δ 1 (so 1 <π 0).

Accordingly, we change our running example as follows.
c1(π): deceivedπ1, measures = Entry-By-Visitors-Restricted,

not-uniqueδ1, disclosed = 20
c2(δ): bribedπ2, measures = Minimal, not-uniqueδ1,

disclosed = 5
F1: bribedπ2, measures = Access-To-Premises-Controlled,

reverse-engδ2, disclosed = 10

In Horty’s [18] dimension-based result model of precedential con-
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straint a decision in a fact situation is forced iff there exists a prece-
dent c for that decision such that on each dimension the fact situation
is at least as favourable for that decision as the precedent. He for-
malises this idea with the help of the following preference relation
between sets of value assignments.

Definition 6 [Preference relation on dimensional fact situations
[18].] Let F and F ′ be two fact situations with the same set of di-
mensions. Then F ≤s F ′ iff for all (d, v) ∈ F and all (d, v′) ∈ F ′

it holds that v ≤s v′.

In our running example we have for any fact situation F ′ that
F (c1) ≤π F ′ iff F ′ has π1 but not δ3 and v(measures, F ′) ≥π
Entry-By-Visitors-Restricted and v(disclosed , F ′) ≥π 20 (so ≤
20). Likewise, F (c2) ≤δ F ′ iff F ′ has δ1 but not π1 and
v(measures, F ′) = Minimal and v(disclosed , F ′) ≥δ 5 (so ≥ 5).

Then adapting Definition 2 to dimensions is straightforward.

Definition 7 [Precedential constraint with dimensions [18].] LetCS
be a case base and F a fact situation given a set D of dimensions.
Then, given CB, deciding F for s is forced iff there exists a case
c = (F ′, s) in CB such that F ′ ≤s F .

In our running example, deciding F1 for π is not forced, for two rea-
sons. First, v(deceived , c1) = 1 while v(deceived , F1) = 0 and
for deceived we have that 0 <π 1. Second, v(measures, c1) =
Entry-By-Visitors-Restricted while v(measures, F1) = Access-To-
Premises-Controlled and Access-To-Premises-Controlled <π Entry-
By-Visitors-Restricted. Deciding F1 for δ is also not forced, since
v(measures, c2) = Minimal while v(measures, F1) = Access-
To-Premises-Controlled and Minimal <δ Access-To-Premises-
Controlled.

We next recall [24]’s adaptation of Definition 3 to dimensions.
Unlike with factors, there is no need to indicate whether a value as-
signment favours a particular side, since we have the ≤s orderings.

Definition 8 [Differences between cases with dimensions [24].] Let
c = (F (c), outcome(c)) and f = (F (f), outcome(f)) be two
cases. The set D(c, f) of differences between c and f is defined as
follows.

1. If outcome(c) = outcome(f) = s then D(c, f) = {(d, v) ∈
F (c) | v(d, c) 6≤s v(d, f).

2. If outcome(c) 6= outcome(f) where outcome(c) = s then
D(c, f) = {(d, v) ∈ F (c) | v(d, c) 6≥s v(d, f).

Let c be a precedent and f a focus case. Then clause (1) says that
if the outcomes of the precedent and the focus case are the same,
then any value assignment in the focus case that is not at least as
favourable for the outcome as in the precedent is a relevant differ-
ence. Clause (2) says that if the outcomes are different, then any value
assignment in the focus case that is not at most as favourable for the
outcome of the focus case as in the precedent is a relevant difference.
In our running example, we have:

D(c1, f) = {(deceived , 1), (reverse-eng,0),
(measures, Entry-By-Visitors-Restricted)}

D(c2, f) = {(measures,Minimal),(not-unique,0)}
The following counterpart of Proposition 1 is proven in [24].

Proposition 4 Let, given a set D of dimensions, CB be a case base
and f a focus case with fact situation F . Then deciding F for s is
forced given CB iff there exists a case in CB with outcome s such
that D(c, f) = ∅.

The counterpart of Proposition 2 can be proven as a new result.

Proposition 5 Let, given a setD of dimensions, CB be a case base,
f a focus case and c and c′ be two cases with opposite outcomes and
both with a non-empty set of differences with f . Then D(c, f) 6⊆
D(c′, f) and D(c′, f) 6⊆ D(c, f).

PROOF. Suppose first that c and f have the same outcome and sup-
pose that (d, v) ∈ D(c, f). Then v(d, c) 6≤s v(d, f), so v(d, c) 6≥s
v(d, f), so (d, v) 6∈ D(c′, f). Suppose next that c and f have dif-
ferent outcomes and suppose that (d, v) ∈ D(c, f). Then v(d, c) 6≥s
v(d, f), so v(d, c) 6≤s v(d, f), so (d, v) 6∈ D(c′, f). QED

5.2 Adding dimensions to the top-level model of
explanation

When extending our explanation model with dimensions, it would at
first sight seem that factors are simply a special case of dimensions
with just two values 0 and 1 where 0 <s 1 while 1 <s 0. However,
upon closer inspection this is not the case, since with factors there
is more to say then just that the two sides have opposed preferences
over the presence or absence of a factor. Consider, for example, in
the trade-secrets domain the factor bribed. That the defendant bribed
one of the plaintiff’s employees surely is a factor pro misuse of trade
secrets, but that the defendant did not bribe any of the plaintiff’s em-
ployees does not have to be regarded as a factor con that outcome: it
can also be regarded as neutral with respect to that outcome. There-
fore, it makes sense to treat factors differently than dimensions.

Accordingly, we introduce some new terminology. Each two-
valued dimension in D comes with a partial function td : V −→
{o, o′} that assigns to zero, one or both values of the dimension an
outcome subject to two constraints (henceforth if d is two-valued and
v is one value of d then v denotes the other value of d):

1. if td(v) = o then td(v) = o′ or td(v) is undefined.
2. if td(v) = o then v <o v.

The td function captures which outcome is favoured by a value of
d, if any. Any value assignment (d, v) to a two-valued dimension
d such that td(v) = o is called a pro-o factor. The terminology of
Section 4 also applies to such factors. Then Dt is the subset of D of
two-valued dimensions for which td is defined for at least one value,
and Dm = D \Dt. A dimensional fact set F t (Fm) assigns values
to all dimensions in Dt (Dm).

In our running example, we assume that td(v) = π for deceived
and bribed with value 1 and td(v) = δ for not-unique and reverse-
eng with value 1. In all other cases td(v) is undefined.

It can be proven that if Dm is empty, that is, we only have factors,
then Definition 7 of dimension-based precedential constraint reduces
to its factor-based counterpart.

Proposition 6 Let AFCB,f = 〈A, attack〉 given D be such that
Dm = ∅, let Pro = {(d, v) | td(v) = o}, let Con = {(d, v) |
td(v) = o′} and for any dimensional fact situation F , let F s be
{dv | v(d) ∈ F and td(v(d)) = s}. Then f is forced according to
Definition 7 iff f is forced according to Definition 2.

Next, we adapt Definition 4 of case-based argumentation frameworks
for explanation to dimensions as follows. The idea of extending the
explanation model with dimensions is to treat relevant differences
differently according to whether they concern ‘factors’, i.e. elements
of Dt, or ‘dimensions’, i.e., elements of Dm. First, that a precedent
is citable given a focus case f now means that they have the same
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outcome s and at least one dimension has a value in f that is at is at
least as favourable for s as in the precedent and if all such dimensions
are two-valued, then at least one yields a pro-s factor in the precedent
and f . Next, the set A of arguments still includes the arguments of
Definition 4 for when the sets x and y are in Dt, while for sets of
value assignments in Dm the following arguments are added:

Definition 9 [Case-based argumentation frameworks for explana-
tion with dimensions.] Given a finite case base CB, a focus case
f 6∈ CB such that all cases in CB are citable given f and defini-
tions sc of substitution and cancellation, an abstract argumentation
framework for explanation with dimensions eAFCB,f,sc is a pair 〈A,
attack〉 where:

• A = CB ∪M whereM =
{m ∈ M from Definition 4 | x, y in m assign values to dimen-
sions in Dt} ∪
{Worse(c, x) | x 6= ∅ and x = {(d, v) ∈ Fm(f) |
v(d, f) <outcome(f) v(d, c)}} ∪
{Compensates(y, x, c) | y = {(d, v) ∈ Fm(f) |
v(d, c) <outcome(f) v(d, f)}}

• A attacks B iff:

– A attacks B according to Definition 4; or

– B ∈ CB and outcome(B) = outcome(f) and A is of the
form Worse(B, x);

– B is of the form Worse(c, x) and A is of the form
Compensates(y, x, c); or

– B ∈ CB and outcome(B) 6= outcome(f) and A is of the
form Compensates(y, x, c).

The Compensates move is an additional downplaying move. It says
that the factors on which the focus case is not at least as good for
its outcome than the precedent are compensated by the factors on
which the focus case is better for its outcome than the precedent.
Like with the factor-based downplaying moves, a compensating set
can be empty, as a way of saying that the values in the Worse set are
still not bad enough to change the outcome. In our running example,
a citation of c1 by the proponent can now additionally be attacked
by Worse(c1, {measures}), since Access-To-Premises-Controlled
<π Entry-By-Visitors-Restricted. This attack can be downplayed by
Compensates({disclosed}, {measures}, c1), since 20 <π 10.

Definition 5 is now extended as follows.

Definition 10 [Downplaying with dimensions: operational seman-
tics] Given an eAFCB,f,sc and a case c ∈ CB with outcome s:

• The semantics of the moves from Definition 4 is as in Definition 5;
• Compensates(y, x, c) = (F t(c) ∪ F cm(c), s), where (d, v) ∈
F cm(c) iff (d, v) ∈ Fm(c) \ x ∪ y or else (d, v) ∈ x ∪ y.

In other words, on the dimensions with relevant differences, the
precedent’s values are replaced with the focus case’s values. This
way of downplaying dimensional differences is admittedly some-
what crude but more refined ways can only be defined if additional
information is available (cf. Section 6 below). With this semantics
for Compensates moves, the proof of Proposition 3 can easily be
adapted to the explanation model with dimensions. We omit the
proposition and its proof for reasons of space.

6 EXTENDING THE TOP-LEVEL MODEL
So far we have modelled explanation dialogues that only use in-
formation from the case base, that is, from the training set of the

machine-learning application. However, more relevant information
may be available, provided in advance by a knowledge engineer or
during an explanation dialogue by a user. It is for this reason that our
explanation model contains a thus far undefined set sc of definitions
of why downplaying arguments can be played (hence the qualifica-
tion ‘top-level’ model). We now briefly discuss how explicit defini-
tions of this set can be given and how they can be used to provide the
premises of downplaying arguments.

AI & law provides many insights here [8]. For example, the
premises of pSubstitutes and cSubstitutes claims can be founded on
a ‘factor hierarchy’ as defined for the CATO system [3, 2]. We gave
examples of this above. Furthermore, the pCancels and cCancels ar-
guments can be said to express a preference for a set of pro factors
over a set of con factors. In AI & law accounts have been developed
of basing such preferences on underlying legal, moral or societal val-
ues. Arguments according to these accounts can provide the premises
for the pCancels and cCancels claims. For example, move P ′

2c from
our running example could be based on a preference for promoting
honesty over stimulating economic competition.

Applying these ideas requires that arguments have a richer inter-
nal structure, where the various claims become conclusions of infer-
ences from sets of premises. One way to achieve this is to formalise
relevant argument schemes in a suitable structured formal account
of argumentation [19]. This approach was followed in the context
of the ASPIC+ framework [22] in [26, 10, 7]. It can be straightfor-
wardly adapted to the present context in any formalism suitable for
modelling reasoning with argument schemes. In ASPIC+ the attacks
defined in the present paper would reduce to the three general AS-
PIC+-types of rebutting, undercutting and undermining attacks.

7 CONCLUSION

In this paper we have presented an argumentation-based top-level
model of explaining the outcomes of machine-learning applications
where access to the learned model is impossible or uninformative.
The argumentation model can be used to explain but also to critique
the outcome of the learned model (the latter in cases where the out-
comes of the learned model and the argumentation model disagree).
The presented model is still theoretical groundwork. It is top-level
in that it can be extended with more refined accounts of similarities
and differences between cases. Its suitability as an explanation model
must still be tested. We have built on earlier work of [30, 29] but ex-
tended it to multi-valued features and to (boolean or multi-valued)
features with a tendency towards a particular outcome. We have also
discussed links with more refined case-based argumentation models
and added a formally precise account of the sense in which argumen-
tation dialogues explain an outcome.

Research to test our approach faces several challenges. Our run-
ning example was kept small for ease of explanation but with
many features our approach might become unmanageable or non-
informative. Techniques can be studied for focusing on subsets of a
feature set, and other distance measures or functions can be studied
as alternatives to our rather coarse similarity relation between cases.
It would also be interesting to investigate whether it is realistic to
allow users to add relevant information during an explanation dia-
logue. Another topic is adapting the present approach to contrastive
explanation styles [20], in which an outcome is explained by con-
trasting it with similar cases with the opposite outcome. Finally, the
ultimate test is whether our method helps users to better understand
or to better critique outcomes of machine-learning applications.
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