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Purpose: To assess the repeatability of radiomic features in magnetic resonance (MR) imaging of
glioblastoma (GBM) tumors with respect to test–retest, different image registration approaches and
inhomogeneity bias field correction.
Methods: We analyzed MR images of 17 GBM patients including T1- and T2-weighted images (per-
formed within the same imaging unit on two consecutive days). For image segmentation, we used a
comprehensive segmentation approach including entire tumor, active area of tumor, necrotic regions
in T1-weighted images, and edema regions in T2-weighted images (test studies only; registration to
retest studies is discussed next). Analysis included N3, N4 as well as no bias correction performed on
raw MR images. We evaluated 20 image registration approaches, generated by cross-combination of
four transformation and five cost function methods. In total, 714 images (17 patients × 2 images ×
((4 transformations × 5 cost functions) + 1 test image) and 2856 segmentations (714 images × 4
segmentations) were prepared for feature extraction. Various radiomic features were extracted,
including the use of preprocessing filters, specifically wavelet (WAV) and Laplacian of Gaussian
(LOG), as well as discretization into fixed bin width and fixed bin count (16, 32, 64, 128, and 256),
Exponential, Gradient, Logarithm, Square and Square Root scales. Intraclass correlation coefficients
(ICC) were calculated to assess the repeatability of MRI radiomic features (high repeatability defined
as ICC ≥ 95%).
Results: In our ICC results, we observed high repeatability (ICC ≥ 95%) with respect to image pre-
processing, different image registration algorithms, and test–retest analysis, for example: RLNU and
GLNU from GLRLM, GLNU and DNU from GLDM, Coarseness and Busyness from NGTDM,
GLNU and ZP from GLSZM, and Energy and RMS from first order. Highest fraction (percent) of
repeatable features was observed, among registration techniques, for the method Full Affine transfor-
mation with 12 degrees of freedom using Mutual Information cost function (mean 32.4%), and
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among image processing methods, for the method Laplacian of Gaussian (LOG) with Sigma
(2.5–4.5 mm) (mean 78.9%). The trends were relatively consistent for N4, N3, or no bias correction.
Conclusion: Our results showed varying performances in repeatability of MR radiomic features for
GBM tumors due to test–retest and image registration. The findings have implications for appropriate
usage in diagnostic and predictive models. © 2020 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14368]

Key words: bias correction, image registration, glioblastoma, MRI, radiomics, repeatability,
test–retest

1. INTRODUCTION

Glioblastoma multiform (GBM) is a very heterogeneous can-
cer with poor prognosis and treatment outcome.1 The median
survival for GBM patients is about 15 months and its occur-
rence rate is two or three cases per 100 000 per year.2 Surgi-
cal resection followed by radiotherapy and chemotherapy is
the current standard approach to treat GBM.3 In this context,
magnetic resonance imaging (MRI) plays a critical role in
clinical diagnosis and treatment, particularly toward informed
surgery and radiotherapy treatment planning.3

For years, qualitative MR image sequences have been used
for GBM management. In recent years, quantitative image-
derived so-called radiomic features extracted from standard
MR images have been increasingly studied as powerful prog-
nostic tools to enhance patient management through improved
stratification.4 Studies have identified that MR image features
extracted from GBM tumors are highly correlated with tumor
heterogeneity, response failure and survival,5–7 metastasis, and
genomic parameters8–11 (as reviewed in Ref. [12]).

Radiomics is an active area of research, aiming to quantify
images using different feature categories toward improved clin-
ical tasks.13–17 In radiomics studies, a wide range of features
are extracted from high-quality images for several applications,
such as clinical correlations, therapy response prediction,
tumor characterization, and survival assessment.18–21 Radio-
mics is a multistep process applied to medical images involv-
ing image segmentation, feature extraction, feature selection,
and multivariate analysis.21,22 Variations in these main steps
and their substeps may result in notable alterations in radiomic
features as considered for final outcome analysis. Although
radiomic analyses are becoming increasing mature, there are a
number of important technical limitations, and many radiomic
features are vulnerable to significant variations based on image
acquisition, reconstruction, and processing methods, as
reported by ongoing radiomics studies.23–27 Moreover, as hun-
dreds of feature sets are available for consideration in medical
imaging, it is necessary to consider the reproducibility and
repeatability of radiomic features as a feasible measure to pres-
elect features for further analysis, such as classification and
clinical correlation.23

In image biomarkers development, there are two main
frontiers which should be assessed in regard to robustness of
radiomic features. Specifically, repeatability and reproducibil-
ity of radiomic features can be important toward the discov-
ery of high-performance image biomarkers for using in

preclinical or clinical settings. The Quantitative Imaging Bio-
marker Alliance (QIBA) Technical Performance Working
Group has defined repeatability as the “variability of the
image biomarker when repeated measurements are acquired
on the same experimental unit under identical or nearly iden-
tical conditions” and reproducibility as “the variability in the
image biomarker measurements associated with using the
imaging instrument in real-world clinical settings which are
subject to a variety of external factors that cannot all be
tightly controlled.”28

Although a number of studies have been conducted on
repeatability and reproducibility of radiomic features in dif-
ferent imaging modalities, some issues remain to be explored,
particularly for MRI radiomic features in GBM cancer.29,30

Gourtsoyianni et al.31 assessed day-to-day repeatability of
global and local-regional MRI texture features derived from
primary rectal cancer, and demonstrated that repeatability is
higher for global texture parameters relative to local-regional
texture parameters, indicating that global texture parameters
should be sufficiently robust for clinical practice. Baessler
et al.32 investigated the robustness of radiomic features in dif-
ferent MRI sequences. In that study, a phantom was scanned
on a clinical 3T system using FLAIR, T1w, and T2w
sequences, and scans were repeated after repositioning of the
phantom. The study showed that only 15 of 45 features had
good robustness across all MRI sequences. Including repeat-
able features in diagnostic and predictive models can be key
for ensuring model generalizability.33–35 As such, the present
study focuses on the study of repeatability, but in a novel con-
text of studying image registration methods for mapping ret-
est images to test images. As image registration plays a
critical role in several clinical settings, such as treatment
planning, we studied the temporal variations of MRI features
in two consecutive days.

2. MATERIALS AND METHODS

Figure 1 illustrates the various processes followed in this
work, as elaborated below. Repeatability assesses feature vari-
ability in the context of varying imaging times (test–retest)
under otherwise similar processes.

2.A. Patient data

We included 19 patients with pathologically confirmed
GBM. The RIDER-NEURO-MRI36 dataset were obtained
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from the cancer imaging archive (TCIA)36,37 were used
for this study. All patients had two MR images, including
T1- (gradient echo (GRE), gadolinium enhanced) and T2-
(fluid attenuation inversion recovery (FLAIR), gadolinium
enhanced) weighted sequences which had been acquired
in two consequent days with the same protocols on a 1.5
tesla MRI scanner (Siemens Healthcare, SYNGO MR
2004V 4VB11D). Image acquisition and reconstruction

parameter details are presented in Table I. After reviewing
all images, two patients were excluded: one patient
because of challenges on finding the tumor, and another
patient because of missing second day images. Finally,
we analyzed MR images of 17 (two patients were
excluded from 19 patients because of low-image quality
and miss one the image sequence) GBM patients includ-
ing T1- and T2-weighted images.

FIG. 1. Flowchart of the present study including data acquisition, image registration, image preprocessing, image segmentation, feature extraction, and statistical
analysis.
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2.B. Image segmentation

We performed all image segmentations manually using
the open source software ITK-Snap.38 For image segmenta-
tion, we used a comprehensive segmentation approach based
on BRATS39,40 including (a) entire tumor (enhanc-
ing + necrotic core), (b) active area of tumor (enhancing
core), (c) necrotic regions (necrotic core) in T1-weighted
images, and (d) edema regions (edema core) in T2-weighted
images (test studies only; registration to retest studies is dis-
cussed next). In total, the following segmentations were
obtained per patient: three segmentations in the T1-weighted
image and one segmentation in the T2-weighted image. This
was followed by reciprocal transfer of segmentations from
T1- (T2) to T2 (T1)-weighted images, arriving at eight seg-
mentations in total (four on T1 and four on T2) for each
patient.

2.C. Image registration

Each segmentation performed above for a given patient
image was naturally mapped to the subsequent follow-up
image following image registration of retest images to test
images. Overall, we performed 20 types of image registra-
tions obtained by cross-combination of four transformations
and five cost function methods, using Mango open source
software.41 For transformation, we applied full affine (FA),
full scale (FS), global scale (GS), and rigid-body (RB) with
12, 9, 7, and 6 degrees of freedom (DOF), respectively. Cost
functions consisted of correlation ratio (CR), mutual informa-
tion (MI), normalized mutual information (NMI), normalized
correlation (NC), and least squares (LS).

2.D. Feature extraction

In total, 714 images (17 patients × 2 images × ((4 trans-
formations × 5 cost functions) + 1 test image))) and 2856
segmentations (714 images × 4 segmentations) were pre-
pared for feature extraction. The N342 and N443 bias correc-
tion methods were additionally applied on raw MRI images.
For preprocessing, we applied filters including wavelet [all
possible combinations of applying either a high- or a low-
pass filter in each of the three dimensions, including HHH,
HHL, HLH, HLL, LHH, LHL, LLH, and LLL)] and Lapla-
cian of Gaussian (LOG) with different sigma values (0.5 to 5
with steps 0.5) all with 64 bins. Subsequently, images were
discretized into 16, 32, 64, 128, and 256 fixed bin count and
fixed bin widths (FBWs), Exponential, Gradient, Logarithm,

Square and Square Root scales. Three types of features,
namely first-order (FO), shape-based, and textural features,
were then extracted. Texture sets consisted of gray level co-
occurrence matrix (GLCM), gray level run length matrix
(GLRLM), gray level dependence matrix (GLDM), gray level
size zone matrix (GLSZM), and neighboring gray tone differ-
ence matrix (NGTDM). In sum, more than 26 million
(26,295,192) features were extracted from the original as well
as N3 and N4 bias-corrected images for further analysis.
Details on image features are shown in Table S1. Different
tools have been developed for extraction of radiomic fea-
ture.44–47 Our current study performs image feature extraction
using the Python library PyRadiomics44 which the feature
definition is compliant with the image biomarker standardiza-
tion initiative (IBSI). As an exception, the definition of Kur-
tosis from first-order features differs between PyRadiomics
and IBSI. IBSI and PyRadiomics calculates Kurtosis with –3
and +3 respectively, and this stem from the fact that a Gaus-
sian distribution has a kurtosis.

2.E. Statistics and data analysis

In the present work, we used applied intraclass correlation
coefficient (ICC) test for analysis of feature repeatability.

The intraclass correlation coefficient (ICC) is a widely
used reliability index in test–retest, interrater and interrater
reliability analyses. Intraclass correlation coefficient can be
defined as follows:

ICC¼ MSR�MSW
MSRþ k�1ð ÞMSW

(1)

where MSR denotes mean square for rows (each feature value
in test and retest), MSW indicates mean square for residual
source of variance, k is the number of observers involved,
and n is the number of subjects.

Based on ICC, robust features were categorized into five
categories, namely (a) ICC < 50%, (b) 50% < ICC < 80%,
(c) 80% < ICC < 90%, (d) 90% < ICC < 95%, and (e)
ICC > 95%. Features with ICC > 95% were defined as
highly robust features. For comparison of image registration
methods, we reported the peak value of the probability den-
sity function for each feature set. The R package, version
3.1.3 IRR, was used for ICC computations.

ICC results are shown by the probability density distribu-
tion (PDD), which is used to provide quantitative statistical
description of ICC. In PDD, shape and peak value can be
used to compare the ICC results. Specifically, in our work,
we use this framework to assess how radiomic features are
impacted against different image registration methods in the
test–retest setting.

3. RESULTS

Analyzing the large set of radiomic features obtained from
image types, different bias corrections, image registrations,
regions, as well as preprocessing and feature sets, here we

TABLE I. Image acquisition and reconstruction parameter details.

Images Magnet TE, TR Resolution Flip angle

Contrast-enhanced
3D FLASH

1.5 T TR: 8.6 ms
TE: 4.1 ms

256 × 256
1 mm isotropic

20°

T2-weighted 3D
FLAIR

1.5 T TR: 6000 ms
TE: 353 ms
TI: 2200 ms

256 × 256
1mm isotropic

180°
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report the most relevant findings, while other findings are
presented as supplementary data.

Figure 2 illustrates ICC values (categorized 1 to 5:
1 = low and 5 = highly robust) of radiomic features as
extracted from discretization with 64 gray level FBW for dif-
ferent image registration algorithms (N4 bias-corrected
images). The ICC values for all shape features were found to
be more than 95% due to the fact that same segmentations in
test images were mapped onto retest images. As such, these
features were excluded from further analysis. Several FO fea-
tures including RMS, Mean, TE, Energy and 90Percentile,
and RLNU from GLRLM had ICC > 95%. In addition, for
LOG with Sigma (3.5 mm) and Wavelet with LLL decompo-
sition preprocessing, as used prior to extraction of radiomic
features (Figs. 3 and 4 in N4 bias-corrected images, respec-
tively), the abovementioned FO features were found to be
robust. In contrast, as shown in Fig. 3, certain features,
including GLCM (CP, CT, IV, SS), GLDM (DNU, GLNU,
GLV, SDE, SDHGLE), GLRLM (GLNU, GLV, RLNU),
GLSZM (GLNU, SZNU, ZP), NGTDM (Busyness, Strength)
were commonly robust to different image registration algo-
rithms. Also, as shown in Fig. 4, certain features including
GLCM (DE), GLDM (DNU, GLNU), GLRLM (GLNU,
RLNU), GLSZM (GLNU, ZP) were highly robust to different
image registration algorithms. Tables S2, S5 and S8 present
the percent of each ICC group (for different image registra-
tion and image processing settings) for the original as well as
N4 and N3 bias-corrected images, respectively. Tables S3
and S4 show the highest (ICC > 95%) and lowest repeatable
features (ICC < 50%), respectively, for original images in
different image processing and registration settings. Tables
S6 and S7 show these for N4 bias-corrected images, while
Tables S9 and S10 show them for N3 bias-corrected images.
The other results for ICC values, including heat maps for
fixed bin count (16, 32, 64, 128, 256), FBW (16, 32, 128,
256), Exponential, Gradient, Logarithm, Square, Square
Root, LOG, and Wavelet are presented as Figures S1–S17
and S18–S33 and S33–S50 for the original, N4 and N3 bias-
corrected images, respectively.

In Fig. 5(a), we present bar plots depicting percent of five
ICC categories for different image preprocessing methods
(across all radiomic features and registration algorithms) in
N4 bias-corrected images. The results show LOG preprocess-
ing with medium sigma (2.5–4.5 mm) with highest fraction
(percent) of robust features (mean 78.9%). In addition,
Fig. 5(b) depicts ICC bar plots of different registration meth-
ods (across all radiomic features and image preprocessing
methods) for N4 bias-corrected images. As shown, the FA
method with MI cost function (mean 32.4%) vs GS registra-
tion method with LS cost function (mean 18.8%) depicted
highest vs. lowest fraction (percent) of robust features,
respectively. Similar bar plots for original and N3 bias-cor-
rected images are presented in Figures S75 and S77, respec-
tively.

In Figures S63–S66, S67–S70, and S71–S74, we illustrate
bar plots of ICC groups for radiomic features against applied
registration algorithms for the original, N4 and N3 bias-

corrected images, respectively. Interestingly, it is seen that the
reproducibility performances for each of these three sets of
images (i.e., original, N3, and N4) are relatively consistent
with respect to one another. Specifically, Figure S69 depicts
LOG preprocessing filter in N4 bias-corrected images, arriv-
ing at highest number of reproducible features among prepro-
cessing methods. As also seen, FA method with MI cost
function provided the highest number of reproducible fea-
tures (10.8–79.6% depending on LOG sigma value; opti-
mized for 2.5–4.5 mm), and GS method with LS methods
depicted lowest (5.4–36.6%) number of reproducible fea-
tures. Figures S75 and S77 show ICC bar plots for the origi-
nal and N3 bias-corrected images, respectively, for different
image preprocessing methods (across all radiomic feature and
registration algorithms), different registration methods
(across all radiomic features and image preprocessing meth-
ods), and different features (across all radiomic features and
image preprocessing methods), arriving at generally similar
observations.

Figure S76 shows ICC bar plots of different features in N4
bias-corrected images (different image preprocessing and reg-
istration algorithm). ICC results showed high repeatability for
RLNU (90.8%) and GLNU (88.8%) from GLRLM, GLNU
(76.1%), and DNU (69.2%) from GLDM, Coarseness
(65.8%) and Busyness (54.9%) from NGTDM, GLNU
(57.4%) and ZP (39.7%) from GLSZM, and Energy (65.5%)
and RMS (64.9%) from FO were most highly repeatable with
respect to image preprocessing and different image registra-
tion algorithms and test–retest analysis (ICC > 95%). Corre-
lation (24.4%) and AC (22.7%) from GLCM, HGLZE
(22.9%), LAE (22.6%), and ZV (22.5%) from GLSZM,
HGLRE (22.7%) from GLRLM, and HGLE from GLDM
(22.7%) had the lowest reproducibility with respect to image
preprocessing, different image registration algorithms and
test–retest analysis (with ICC < 50%).

Figure 6(a) shows ICC bar plots between original and N3
bias-corrected images (across all radiomic features and regis-
tration algorithms). All preprocessed images except FBW had
high reproducibility. Figure 6(b) ICC shows bar plots
between original and N4 bias-corrected images (across all
radiomic features and registration algorithms). It is essentially
seen that N4 bias correction alters images more significantly
than N3, with respect to original images. Nonetheless, as dis-
cussed above, reproducibility performances within these three
sets of images (original, N3, and N4), are relative consistent
with respect to one another.

Figures 7(a)–7(f) depicts the probability density of ICC
distribution for different types of radiomic features in N4
bias-corrected images. The ICC distributions are different in
several aspects, including peak values, ICC distribution per
image registration method and density values. In
Figs. 7(a)–7(b), the main peak values of probability density
for fixed bin count and FBW discretized radiomic features
(64 bin discretization) are ≥5, while in Figs. 7(c) and 7(d),
the peak values of features (Square and Square Root) are ≥5.
For LOG features [Fig. 7(e)], the peak values of probability
density are more than 18, while for Wavelet features, these
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FIG. 2. ICC heat map (fixed bin width discretization set to 64 bin-level preprocessing in N4 bias-corrected images); columns: different methods of image regis-
tration; rows: radiomic features. Black: ICC < 50%, red: 50% < ICC < 80%, yellow: 80% < ICC < 90%, soft blue: 90% < ICC < 95%, and blue: ICC> 95%.
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FIG. 3. ICC heat map (Laplacian of Gaussian (LOG) with Sigma (3.5 mm) preprocessing in N4 bias-corrected images); columns: different methods of image
registration; rows: radiomic features. Black: ICC < 50%, red: 50% < ICC < 80%, yellow: 80% < ICC < 90%, soft blue: 90% < ICC < 95%, and blue:
ICC> 95%.
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FIG. 4. ICC heat map (wavelet with LLL decomposition preprocessing in N4 bias-corrected images); columns: different methods of image registration; rows:
radiomic features. Black: ICC < 50%, red: 50% < ICC < 80%, yellow: 80% < ICC < 90%, soft blue: 90% < ICC < 95%, and blue: ICC> 95%.
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FIG. 5. ICC bar plots for: (a) Image preprocessing across all radiomic features and registration algorithms in N4 bias-corrected images; (b) Different registration
methods across all radiomic features and image preprocessing algorithms. FBC: Fixed Bin Count, FBW: Fixed Bin Width, LOG: Laplacian of Gaussian, S:
Sigma, W: Wavelet.
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FIG. 6. (a) ICC bar plot between original and N3 bias-corrected images across all radiomic features and registration algorithms. (b) ICC bar plot between original
and N4 bias-corrected images across all radiomic features and registration algorithms. FBC: Fixed Bin Count, FBW: Fixed Bin Width, LOG: Laplacian of Gaus-
sian, S: Sigma, W: Wavelet.
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FIG. 7. Probability density distribution (PDD) plots provide a comparison of different image registration methods in N4 bias-corrected images, by using peak val-
ues and shape of each plot. y-axis: density value; x-axis: ICC value. (a) 64 fixed bin count; (b) 64 fixed bin width; (c) square preprocessing; (d) square root pre-
processing; (e) Laplacian of Gaussian (LOG) preprocessing; (f) wavelet (W) preprocessing.
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values are more than 7.5. More details about the probability
density plot are presented in Figures S51–S54, S55–S58, and
S59–S62 for the original, N4 and N3 bias-corrected images,
respectively.

Table II shows our results for highly repeatable features
(ICC ≥ 0.95) against different registration schemes for N4
bias-corrected images (the highest value in each row is set to
bold). For all feature sets, highly repeatable features were
found for the registration method FA-MI (range; 17.2–32.3%
for BIN, 10.8–79.6% for LOG & 6.45–45.2% for wavelet).
For LOG features, the highest repeatability was found for the
RB-NMI registration scheme (82.8%). More details on
repeatability are provided in Tables S2, S5, and S8 for the
original, N4 and N3 bias-corrected images, respectively. The
results for features with ICC > 95% and ICC < 50% against
all registration methods are summarized in Tables S3, S4, S6,
S7, S9 and S10 for original, N4 and N3 bias-corrected
images, respectively. The number of high reproducible fea-
tures (ICC > 95%) were 243, 358, and 268 for original, N4
bias-corrected and N3 bias-corrected images, respectively
(across all radiomic features, image preprocessing methods
and registration algorithms).

4. DISCUSSION

The assessment of repeatability and reproducibility for
image features has garnered increasing interest.29 Accumulat-
ing evidence suggests the importance of taking such analyses
into account. Studies have emphasized that repeatable radio-
mic features must be used for predictive modeling.31 In the
present study, we aimed to assess test–retest repeatability of
MRI radiomic features in GBM cancer patients as well as
their repeatability against a wide range of image registration
schemes. Different tools have been developed for radiomic
feature extraction44–46; our study was conducted using the
PyRadiomics package according to consensus definitions of
the (IBSI.48,49 IBSI is an independent international collabora-
tion working toward standardization of image biomarkers. In
this approach, all image features are standardized in terms of
definitions, image processing, and reporting system.

In our ICC results, we observed high repeatability (ICC ≥
95%) with respect to image preprocessing, different image
registration algorithms and test–retest analysis for: RLNU
and GLNU from GLRLM, GLNU and DNU from GLDM,
Coarseness and Busyness from NGTDM, GLNU and ZP
from GLSZM, and Energy and RMS from FO features. In
addition, several FO wavelet and LOG were found to be high
ICC features (Figures S15 and S16). As comparison, Schwier
et al.50 recently also reported that FO features mean and med-
ian had ICC ≥ 95% in prostate MR image feature test–retest
analysis.

Image registration is a key consideration in treatment
response evaluation and adaptive radiotherapy. Our analysis
shows that different image registration schemes have different
effects on radiomic features. Depending on registration set-
tings including transformation and cost function, feature per-
formances vary. Highest percent of repeatable features were

observed, among registration methods for the method Full
Affine with 12 degrees of freedom with Mutual Information
cost function (mean 78.9%), and among image processing
methods for the method LOG with Sigma (2.5–4.5 mm;
mean 32.4%).

There are a number of feature robustness analysis studies
indicating that radiomic feature values vary with image
acquisition and reconstruction parameters. Ford et al.51 stud-
ied the impact of pulse sequence parameter selection on
MRI-based textural features of the brain. Pulse sequences
consisted of spin echo (SE), gradient echo (GRE), spoiled
gradient echo (SP-GRE), inversion recovery spin echo (IR-
SE), and inversion recovery gradient echo (IR-GRE). They
found that radiomic features varied considerably among
images generated by the five different T1-weighted pulse
sequences, and that deviations from those measured on the
T1 map varied among features, from a few percent to over
100%. Yang et al.52 examined the dependence of image tex-
ture features on MR acquisition parameters and reconstruc-
tion using a digital MRI phantom. They studied the effects
of varying levels of acquisition noise, three acceleration fac-
tors, and four image reconstruction algorithms on MRI fea-
tures. The investigators observed feature variance due to
reconstruction algorithm and acceleration factor to be gener-
ally smaller than the clinical effect size. In that study, it was
suggested that adequate precautions need to be taken
regarding the validity and reliability of texture features,
although some features had been preserved by changes in
MRI settings. Molina et al.53 studied potential variations of
textural measures due to changes in MRI protocols includ-
ing four different spatial resolution combinations and three
dynamic ranges. The results showed that no textural mea-
sures were robust under dynamic range changes, and
entropy was the only textural feature robust under spatial
resolution changes. Imaging-based changes including acqui-
sition and reconstruction should be considered and sepa-
rated from therapy-related and tumor biological changes. In
our study, we observed that several radiomic features change
significantly across scan times.

Other researchers have attempted to assess the robustness
of radiomic features in different imaging modalities including
CT. Cunliffe et al.54 demonstrated that registration altered the
values of the majority of CT texture features. They applied
their texture analysis on serial CT scans and showed that 19
features remained relatively stable after demons registration,
indicating their potential for detecting pathologic change in
serial CT scans. They also indicated that combined use of
accurate deformable registration using demons and texture
analysis may allow quantitative evaluation of local changes in
lung tissue due to disease progression or treatment response.
Chou et al.55 evaluated radiomic features stability when
deformable image registration was applied. They applied fea-
ture analysis on lung cancer four-dimensional computed
tomography (4DCT), and deformable image registration
(DIR) was applied between the inspiration and expiration
phases of 4DCT datasets. They concluded that many features
were unstable (mean variation > 50% or CCC < 0.5) when

Medical Physics, 0 (0), xxxx

13 Shiri et al.: Repeatability of MRI radiomic features 13



DIR is applied, caution is needed in radiomic feature analysis
when DIR is necessary.

A recent study performed by Lv et al.56 in nasopharyngeal
PET/CT showed that some radiomic features even with low
ICC may perform well in disease discrimination. They
demonstrated that poor absolute scale reproducibility of
radiomic features did not necessarily translate into poor dis-
ease differentiation. In other words, features may change sig-
nificantly due to different kinds of processing, but their
relative ordering may remain the same. Nonetheless, this was
a reproducibility study: in repeatability studies (including the
present work where for a given processing, test–retest values
of features are evaluated), including high-ICC repeatable
radiomic features in diagnostic and predictive models may be
critical for model generalizability.

Low-frequency in-homogeneity presence in MR images,
defined as field bias, could confound performance. To
address this bias, different algorithms have been proposed
including N342 and N4 bias correction.57 In the present
study, we used N3 and N4 bias correction and found that
these algorithms had considerable impact on radiomic fea-
tures. In reference to no bias correction, N3 bias correc-
tion produced higher number of reproducible features
compared to the N4 algorithm, that is, N3 algorithm had
less impact on radiomic features with respect to non-bias-
corrected images. In addition, we identified that LHL
decomposition from wavelet vs. exponential (as well as 64
FBW) preprocessing led to highest vs lowest number of
reproducible features, respectively.

Harmonization is also a critical issue in radiomics stud-
ies.58 Several studies have indicated that image features have
to be harmonized against parameters which have great impact
on feature values, such as scanner variations, reconstruction,
imaging protocols.59–61 In our study, all images were
acquired on the same scanner using the same imaging proto-
col. As such, there was no need to harmonize image features,
yet studies are needed to test or investigate methods to har-
monize features in test–retest and registration methods. With
regard to harmonization, Hu et al.62 demonstrated that nor-
malized features have more stability.62 In addition, Orlhac
et al.60 showed that harmonization can be efficient at remov-
ing multicenter effects on textural features.

Treatment response evaluation in GBM suffers from sev-
eral uncertainties in differentiation among pseudo-progres-
sion, pseudo-response, treatment-related necrosis, and true
progression.63,64 Although, single imaging studies have
found feasible results, several studies have indicated that
diagnosis of pseudo-progression could not be achieved by a
single imaging technique and suggested that serial imaging
will results in improved diagnosis accuracy.65,66 On the other
hand, there are several variations in the clinical definitions of
pseudo-progression based on the imaging reports which
require higher precision quantitative imaging.67 Some radio-
mics studies have shown the feasibility of MR image radio-
mic features to discriminate between pseudo-progression
compared to true progression68–70 and genomic mutation pre-
diction8–11,71,72 and treatment response assessments.5,6 In the

present image biomarker discovery era, our results would be
important, wherein radiomic features with greatest robustness
to image registration between images may be more beneficial
in clinical studies. Specifically, because studies have sug-
gested serial imaging for treatment response evaluation, serial
radiomics studies may benefit by integrating the identified
robust radiomic features and methods as candidate biomark-
ers for GBM response assessment and prediction.

The limitation of this work is mainly the number of
patients. The results of this study should be confirmed in a
larger, multicenter dataset. In addition, the present work can
be extended to other types of MR images, including diffusion
weighted and dynamic contrast enhanced, and in other organs
and diseases.

5. CONCLUSION

Repeatable radiomic features are potentially better candi-
dates for usage in diagnostic and predictive models. Our
results showed varying performance in repeatability of MR
radiomic features for GBM tumors due to test–retest and
image registration. The trends were relatively consistent for
N4, N3, or no bias correction. Full Affine with 12 degrees of
freedom with Mutual Information cost function and Lapla-
cian of Gaussian (LOG) image processing resulted in highest
percent of repeatable features in image registration and image
processing, respectively.
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