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Abstract

We analyze a stochastic process of the form (r ) X t = X t −
∑r

i=1 ∆
(i)
t , where (X t )t≥0 is a driftless,

infinite activity, subordinator on R+ with its jumps on [0, t] ordered as ∆
(1)
t ≥ ∆

(2)
t · · · . The r largest

of these are “trimmed" from X t to give (r ) X t . When r →∞, both (r ) X t ↓ 0 and ∆
(r )
t ↓ 0 a.s. for each

t > 0, and it is interesting to study the weak limiting behavior of
((r ) X t ,∆

(r )
t
)

in this case. We term
this “large-trimming" behavior, and study the joint convergence of

((r ) X t ,∆
(r )
t
)

as r →∞ under linear
normalization, assuming extreme value-related conditions on the Lévy measure of X t which guarantee
that ∆(r )

t has a limit distribution with linear normalization. Allowing (r ) X t to have random centering and
norming in a natural way, we first show that

((r ) X t ,∆
(r )
t
)

has a bivariate normal limiting distribution as
r → ∞; then replacing the random normalizations with deterministic normings produces normal, and
in some cases, non-normal, limits whose parameters we can specify.
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1. Introduction

Suppose (X t )t≥0 is a driftless subordinator with jump process (∆t := X t − X t−)t>0, having
infinite Lévy measure Π with tail function Π (x) := Π {(x,∞)}, x > 0. Thus, X t has Laplace
transform Ee−λX t = e−tψ(λ), t ≥ 0, where

ψ(λ) =
∫

(0,∞)
(1− e−λx )Π (dx), λ > 0.

Let ∆(r )
t be the r th largest jump of X t on [0, t], t > 0, r ∈ N := {1, 2, . . .}. The trimmed

subordinator is defined to be (r ) X t = X t −
∑r

i=1 ∆
(i)
t . See [3] for formal definitions of these

quantities. See [16] and [14] for some recent results on the relationship of a Lévy process
to its large jumps. In [4] and [15] we analyzed distributional properties of ∆(r )

t as a function
of r and here we continue those studies by considering the joint weak limiting behavior of(

(r ) X t ,∆
(r )
t
)

for fixed t as r →∞. As r →∞, (r ) X t ↓ 0 and ∆(r )
t ↓ 0 a.s. for each t > 0, and,

conditionally on ∆(r )
t , we may consider (r ) X t as a Lévy process with Lévy measure restricted

to (0,∆(r )
t ) (e.g., [18]), hence, with finite variance, conditionally. So as r →∞ and big jumps

are successively removed from (r ) X t , it is reasonable to expect that it may have a Gaussian
weak limit after centering and norming.

Clearly an important component in such a study will be the behavior of the ∆(r )
t , and in

what follows we begin in Section 2 by analyzing their convergence as r → ∞, for fixed
t > 0. The approach we take is to assume conditions on Π guaranteeing that ∆(r )

t has a
limit distribution under linear normalization, and then prove that a normal limit distribution for
(r ) X t , conditional on the value of ∆(r )

t , also exists as r → ∞. To obtain the normal limit for
the conditional distribution we initially apply a natural random centering and random norming.
Having established this, we then investigate replacing the random centering and norming with
deterministic versions.

We conclude this section with some more preliminary setting up. We always assume

Π (0+) = lim
x↓0

Π (x) = ∞ (1.1)

(“infinite activity”), for Π , so ∆(r )
t > 0 a.s. for r ∈ N, t > 0. The inverse function Π

←

to Π
is defined by

Π
←

(x) = inf{y > 0 : Π (y) ≤ x}, x > 0. (1.2)

Let (Γi )i∈N be distributed as the successive cumulative sums of i.i.d standard exponential
random variables. For Borel sets A ⊆ (0,∞), define point measures δx (·), x ∈ (0,∞), by
δx (A) = 1 or 0 depending on whether x ∈ A or x /∈ A. Then the random variable X t can be
constructed from the Poisson random measure

∑
∞

i=1 δΠ←(Γi /t), with mean measure tΠ , which
has the points written in decreasing order ([3,6,17,18] and [21, p.139, Ex. 3.38]). So we have,
for each t > 0, the distributional equivalences

X t
D
=

∞∑
i=1

Π
←

(Γi/t) and
(
∆(i)

t
)

i≥1
D
=
(
Π
←

(Γi/t)
)

i≥1. (1.3)

We make the simplifying assumption throughout that Π is atomless (equivalently, Π is
continuous on (0,∞)). This means that the inverse function Π

←

is strictly decreasing on
(0,∞) and the ordered jumps ∆X (1)

t ≥ ∆X (2)
t ≥ · · · are uniquely defined. We expect that

this assumption can be removed using, for example, the formulae in [14], but this would add
little of interest to the exposition, so we omit the details.
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With this continuity assumption, Prop. 2.3 of [18]2 gives that, conditional on ∆(r )
t ,

((r ) X t )t>0 is a subordinator whose Lévy measure is the measure Π restricted to (0,∆(r )
t ). So

the conditional characteristic function of (r ) X t is

E
(
eiθ (r ) X t

⏐⏐∆(r )
t
)
= exp

(
t
∫ ∆

(r )
t

0

(
eiθx
− 1

)
Π (dx)

)
, θ ∈ R. (1.4)

2. Convergence of ∆(r)
t as r → ∞

In this section Theorem 2.1 gives necessary and sufficient conditions for the convergence in
distribution of ∆(r )

t , linearly normed, as r →∞, for each t > 0. Part of the forward direction
of this result was proved in [4] (that (2.1) implies (2.2)). We add in the remaining parts of the
proof in Section 3. The symbol “⇒” is used to denote weak convergence of distributions.

Theorem 2.1. Assume (1.1) and suppose there exist norming functions ar > 0 and centering
functions br ∈ R such that, as r →∞,

∆(r )
1 − br

ar
⇒ ∆(∞), (2.1)

where ∆(∞) is a finite nondegenerate random variable. Then, for all x ∈ R such that
ar x + br > 0,

lim
r→∞

r −Π
(
ar x + br

)
√

r
= h(x), (2.2)

where h(x) ∈ R is a non-decreasing function having the form

h(x) = hγ (x) =

⎧⎨⎩2x, if γ = 0, x ∈ R,

−
2
γ

log(1− γ x), if γ ∈ R \ {0}, 1− γ x > 0,
(2.3)

with a parameter γ which must in our situation satisfy γ ≤ 0. The limit rv ∆(∞) in (2.1) has
distribution

P
(
∆(∞)

≤ x
)
= Φ

(
h(x)

)
, x ∈ R, (2.4)

where Φ(x) is the standard normal cdf. The functions ar and br may be chosen as follows:

(i) when γ < 0, we may take ar = |γ |Π
←

(r ) and br = Π
←

(r );
(ii) when γ = 0, we may take ar = 2(Π

←

(r −
√

r ) − Π
←

(r )) and br = Π
←

(r ), and then
ar = o(br ), as r →∞.

In either case, ar → 0 and br → 0 as r → ∞. Further, ar and br may be replaced by any
finite αr > 0 and βr ∈ R such that αr ∼ car for some c > 0, and (βr − br )/ar → 0, as
r →∞.

With the choices of ar and br in (i) and (ii), (2.1) implies, generally, for each t > 0,

lim
r→∞

P
(
∆(r )

t − br/t

ar/t
≤ x

)
= Φ

(√
th(x)

)
, x ∈ R. (2.5)

Conversely, suppose (2.2) holds for some ar > 0 and br ∈ R, with h(x) ∈ R a non-
decreasing function which takes values −∞ and +∞ at the left and right extremes of its

2 [18] only gives the case r = 1 but this is easily extended to r ∈ N.
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support. Then (2.1) holds for the same ar and br with a finite nondegenerate random variable
∆(∞) on the RHS.

Remark 2.1. (a) There is nothing special about the “1” in (2.1); we may replace ∆(r )
1 by

∆(r )
t0 for any given t0 > 0, and the results otherwise remain true as stated. This is clear from

the proof in [4].
(b) Expanding on Cases (i) and (ii) in Theorem 2.1, we can derive alternatively:

(i) when γ < 0, with br = Π
←

(r ), we have for each t > 0

∆(r )
t

br/t
⇒ eγ N∆/2

√
t , as r →∞; (2.6)

(ii) when γ = 0, with ar = 2(Π
←

(r −
√

r )− Π
←

(r )) and br = Π
←

(r ), we have for each
t > 0

∆(r )
t − br/t

ar/t
⇒

N∆

2
√

t
, as r →∞, (2.7)

where in (2.6) and (2.7) N∆ is a standard normal random variable. Further, in case
γ = 0, we have for each t > 0

ar = o(br ) and
∆(r )

t

br/t
⇒ 1, as r →∞. (2.8)

The results in (2.6)–(2.8) are derived in the course of the proof of Theorem 2.1.
(c) Also in the proof of Theorem 2.1 it is seen that (2.2) arises as the necessary and sufficient

condition for a distribution to be in the minimal domain of attraction of an extreme value
distribution. We show in Proposition 4.1 that (2.2) can only hold with γ < 0 when Π (x) is
slowly varying at 0. When γ = 0, it is shown in Theorem 5.2 that Π regularly varying at
0 with index α, 0 ≤ α ≤ 1, implies (2.2). Thus slow variation of Π at 0 can occur in both
cases, γ < 0 and γ = 0, and an index of regular variation alone does not suffice to distinguish
between the cases.

(d) In [4] it is shown that in (2.5) there is in fact the finite dimensional convergence(
∆(r )

t − br/t

ar/t

)
0<t≤T

⇒
(
h←(t−1 Bt )

)
0<t≤T , as r →∞, (2.9)

as random elements in the space of càdlàg functions on [0, T ] for each T > 0, where (Bt )t≥0

is a standard Brownian motion. The approach to the limit process, illustrated in Fig. 1, is
rather fascinating. Fig. 1 shows a realization of a point process generated from the measure
Π (x) = x−α , x > 0, with α = 0.9, on the interval [0, 1], with the processes of r th largest
indicated for various values of r . The corresponding centered and scaled processes are in Fig. 2.
The sample path can be compared for large r to that of {(2t)−1 Bt , 0 ≤ t ≤ 1}.

3. Proof of Theorem 2.1

Assume (1.1), and that (2.1) holds for functions ar > 0 and br ∈ R, with ∆(∞) finite and
nondegenerate. Then it was proved in [4, Section 4.2] that (2.2) holds for all x ∈ R such that
ar x + br > 0, with h(x) defined as in (2.3).
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Fig. 1. Realizations of Poisson points (with magnitude less than 0.05) for Lévy measure Π (x) = x−0.9. The
corresponding r th record processes (∆(r )

t , 0 ≤ t ≤ 1) with r = 25, 50, 100, 1000 are shown.

Fig. 2. The corresponding processes to Fig. 1 after centering and scaling by ar and br specified in (9.1). As r
increases, the rescaled sample path can be compared to that of rescaled Brownian motion {(2t)−1 Bt , 0 ≤ t ≤ 1} on
the last panel.
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We can identify the distribution of the limit random variable ∆(∞) in terms of the inverse
function h← of h. From (2.3) this function satisfies, for y ∈ R,

h←(y) = h←γ (y) =
1− e−γ y/2

γ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y/2, if γ = 0,
1− e−γ y/2

γ
, if γ > 0,

e|γ |y/2 − 1
|γ |

, if γ < 0.

(3.1)

But now note that, since we assume only positive jumps for the Lévy process, the case γ > 0
in (2.3) or (3.1) cannot occur. This is because (2.2) means that the function x ↦→ e−

√
Π {(x,∞)}

=

e−
√

Π (x), defined in [4], Sect 4.2, is a distribution function in the minimal domain of attraction,
which for the γ > 0 case would require that function to be regularly varying as x → −∞.
This is impossible of course because Π concentrates on (0,∞). So we can eliminate the case
γ > 0, and do so from now on.

We note then that h← : R ↦→ Rγ , where, for γ ≤ 0,

Rγ := {x ∈ R : 1− γ x > 0} =

⎧⎨⎩R, if γ = 0,(
−

1
|γ |
,∞

)
, if γ < 0.

Taking inverses in (2.2), we get an equivalent form

lim
r→∞

Π
←

(r − y
√

r )− br

ar
= h←(y), y ∈ R, (3.2)

From (3.1) we have h←(0) = 0, so from (3.2) we deduce for y ∈ R,

lim
r→∞

Π
←

(r − y
√

r )−Π
←

(r )
ar

= lim
r→∞

(Π←(r − y
√

r )− br

ar
−

Π
←

(r )− br

ar

)
= h←(y)− h←(0) = h←(y). (3.3)

We conclude from (3.3) that for centering constants we may always set br = Π
←

(r ). The
convergences in (2.2), (3.2) and (3.3) are locally uniform since they are convergences of
monotone functions to a continuous limit.

We may understand the form of the limit in (2.5) as follows. By the central limit theorem, we
know that the gamma random variable Gr := (Γr − r )/

√
r , as a standardized cumulative sum

of i.i.d standard exponential random variables, tends to a standard normal random variable,
as r → ∞. Assume (2.2), so that (3.2) and (3.3) hold. Then, owing to the local uniform
convergence in (3.3), we get from (1.3):

∆(r )
t − br/t

ar/t
=

Π
←

(Γr/t)− br/t

ar/t
=

Π
←(

r/t + (Gr/
√

t)
√

r/t
)
− br/t

ar/t

⇒ h←
(
−N∆/

√
t
)

D
= h←

(
N∆/
√

t
)
. (3.4)

This proves (2.5), and (2.5) of course implies (2.4). Thus in (2.1) we have ∆(∞) D
= h←(N∆).

For the next step we want to verify the claimed forms for ar and br . For this we need to
introduce some more machinery from regular variation theory.



2234 Y. Ipsen, R. Maller and S. Resnick / Stochastic Processes and their Applications 130 (2020) 2228–2249

3.1. Role of the de Haan classes Γ and Π

Introduce the function H : [0,∞) ↦→ [1,∞) defined by

H (x) = e2
√

x , x ≥ 0, (3.5)

and define the non-increasing function V by

V (x) = Π
←

◦ H←(x), x > 1. (3.6)

Changing variables gives the representation Π
←

(x) = V (H (x)).
The function H is the canonical example of a non-decreasing function in the de Haan class

Γ with auxiliary function f (y) =
√

y [1,7–9,12,21] satisfying

lim
y→∞

H (y + x f (y))
H (y)

= ex , x ∈ R. (3.7)

This can be verified directly or by reference to [9, p. 248, line −1]. The inverse function
H← : [1,∞) ↦→ [0,∞) to H is H←(y) = 1

4 log2 y, y > 1, and inverting (3.7) shows that H←

satisfies

lim
s→∞

H←(sy)− H←(s)
f (H←(s))

= log y, y > 0, (3.8)

so H← is an increasing function in de Haan’s function class Π ([1,8,21] or [11, p. 375]). It
has slowly varying auxiliary function g(s) = f ◦ H←(s) =

√
H←(s) = 1

2 log s which is the
denominator in (3.8). The convergence in (3.8) is uniform in compact intervals of y bounded
away from 0. The properties of V we need are in the next proposition. For convenience we
occasionally write ar = a(r ) and br = b(r ) in what follows.

Proposition 3.1. Assume (2.2) holds for some ar > 0 and br ∈ R. Then

(i) when γ < 0, V (x) is regularly varying at ∞ with index −|γ |/2 and

V (x) ∼ a ◦ H←(x)/|γ |, as x →∞; (3.9)

(ii) when γ = 0, we have −V ∈ Π at ∞ with slowly varying auxiliary function 1
2 a ◦ H←.

Remark 3.1. When −V ∈ Π we say, equivalently, V ∈ Π−, see [13].

Proof of Proposition 3.1. Assume (2.2), so we have (3.2) and (3.3) also. Use (3.6) to write,
for x > 0, s > 0,

V (sx)− V (s)
a ◦ H←(s)

=
Π
←

◦ H←(sx)−Π
←

◦ H←(s)
a ◦ H←(s)

=

Π
←
(

H←(s)+
{

H←(sx)−H←(s)
√

H←(s)

}√
H←(s)

)
−Π

←

◦ H←(s)

a ◦ H←(s)
.

Substitute H←(s) = y and let y→∞, applying the uniform convergence in (3.8) followed by
(3.3), we get the limit of the RHS as

lim
y→∞

Π
←

(y +
√

y log x)−Π
←

(y)
a(y)

= h←(− log x).
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Thus, for x > 0, using the form of h← in (3.1),

lim
s→∞

V (sx)− V (s)
a ◦ H←(s)

=

⎧⎨⎩−
1
2 log x, if γ = 0,

x−|γ |/2 − 1
|γ |

, if γ < 0.
(3.10)

Now keep γ < 0. From [11, Theorem B.2.1, p.372], we get V (x) ∼ a ◦H←(x)/|γ | ∈ RV−|γ |/2
at ∞. This proves (3.9) and the regular variation of V (x) at ∞ in Part (i) of Proposition 3.1.

For Part (ii), multiply the limit relation in (3.10) by −1 to see that the non-decreasing
function −V is in Π ([11, p. 375]), and in fact is extended regularly varying at ∞ ([11, p.
295]). □

Continuing with the proof of Theorem 2.1, we now apply the results of Proposition 3.1 to
get the required properties of ar and br . As derived from (3.3), we set br = Π

←

(r ).
(i) Take γ < 0. From (3.9), V (x) ∼ a ◦ H←(x)/|γ |, so from (3.6)

br = Π
←

(r ) = V (H (r )) ∼ ar/|γ |. (3.11)

Thus (3.4) can be written

∆(r )
t − br/t

|γ |br/t
⇒ h←(N∆/

√
t),

which gives the forms of the ar and br in Part (i) of Theorem 2.1. Using (3.1), the last relation
can be rewritten as

∆(r )
t

br/t
⇒ 1+ |γ |h←(N∆/

√
t) D
= eγ N∆/2

√
t ,

which gives (2.6).
(ii) Take γ = 0. From (3.1) with γ = 0 and (3.2) with y = 1 we get

lim
r→∞

2(Π
←

(r −
√

r )−Π
←

(r ))
ar

= 1,

and the choice of ar for Part (ii) of Theorem 2.1 and for (2.7) follows from the convergence
to types theorem. Since, by Proposition 3.1, V ∈ Π− with auxiliary function 1

2 a ◦ H←, and
the ratio of a non-negative Π-function to its auxiliary function tends to ∞ ([11], Cor. B.2.13),
we have in this case

lim
r→∞

br

ar
= lim

r→∞

Π
←

(r )
ar

= lim
r→∞

V (H (r ))
a ◦ H← ◦ H (r )

= ∞.

Finally, for the forward direction, multiplying (2.7) by ar/t/br/t , which tends to 0 as r →∞,
yields a limit of 0 which is tantamount to saying ∆(r )

t /br/t ⇒ 1, and completing the proof of
(2.8).

For the converse part of the proof of Theorem 2.1, suppose (2.2) holds with h(x) ∈ R a
non-decreasing function h(x) which takes values −∞ and +∞ at its left and right extremes.
Then from (1.3), for x ∈ R,

P
(∆(r )

1 − br

ar
≤ x

)
= P(∆(r )

1 ≤ xar + br )

= P

(
Γr − r
√

r
≥

Π (xar + br )− r
√

r

)
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→ P(N (0, 1) ≥ −h(x))
= P(N (0, 1) ≤ h(x)) = Φ(h(x)).

In view of the assumptions on h(x), Φ(h(x)) is the cdf of a proper distribution and so (2.1)
holds. □

4. Convergence of ((r) X t,∆
(r)
t ), random standardization

To begin this section we set out the steps we intend to follow to understand the joint limit
behavior of ((r ) X t ,∆

(r )
t ) as r →∞ under (2.2) or, equivalently, (3.2).

1. As discussed, we expect a normal limit as r → ∞ for (r ) X t with suitable linear
normalizations. We show that this happens for (r ) X t |∆

(r )
t under natural random centering

and norming (Theorem 4.1).
2. Following that, we extend asymptotic normality of (r ) X t |∆

(r )
t to a joint asymptotic weak

limit for ((r ) X t ,∆
(r )
t ) in which the limit has independent components. At this stage, (r ) X t

still has random centering and norming, though ∆(r )
t has non-random standardization

(Corollary 4.1).
3. In Section 5, we note there is a cost to replacing the random centering and norming

for (r ) X t by deterministic: dependencies and non-normality are introduced into the limit
(Theorems 5.1 and 5.2).

4. Proofs of the theorems and further discussion are deferred to Sections 6, 7 and 8. A
number of subsidiary propositions are also needed; these are proved in Section 4.1.
Section 9 gives an application to the stable subordinator in the case γ = 0. Section 10
concludes with some final thoughts.

Throughout, we fix t > 0 and write P∆
(r )
t (·) = P(·|∆(r )

t ) for the conditional distribution,
given ∆(r )

t . For detailed calculations of this and other conditional distributions in general cases
see [14].

We will also need truncated first and second moment functions, defined for x > 0 by

µ(x) =
∫ x

0
y Π (dy) and σ 2(x) =

∫ x

0
y2 Π (dy). (4.1)

Theorem 4.1. Suppose (X t ) is a driftless subordinator with atomless Lévy tail measure Π
that satisfies (2.1) for deterministic functions ar > 0 and br ∈ R. Then, for each t > 0,

lim
r→∞

P∆
(r )
t

( (r ) X t − µ(∆(r )
t )

√
t σ (∆(r )

t )
≤ x

)
= Φ(x), x ∈ R. (4.2)

Remark 4.1. By the dominated convergence theorem the convergence in (4.2) holds uncon-
ditionally as well, so we also have, when (2.1) holds,

(r ) X t − µ(∆(r )
t )

σ (∆(r )
t )

⇒ N (0, t) D
=
√

t N (0, 1), as r →∞, for each t > 0. (4.3)

Retaining the random centering and norming, Theorem 4.1 immediately leads to a joint
limit distribution for ((r ) X t ,∆

(r )
t ). In the following corollary, and throughout, NX and N∆ are

independent standard normal random variables, being the limits of the standardized (r ) X t and
∆(r )

t , with the subscripts on NX and N∆ serving to distinguish the components corresponding
to each.
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Corollary 4.1. Assume (2.1) holds for some deterministic functions ar > 0 and br ∈ R. Then
we have, in R2, for each t > 0 and γ ≤ 0,( (r ) X t − µ(∆(r )

t )

σ (∆(r )
t )

,
∆(r )

t − br/t

ar/t

)
⇒
(√

t NX , h←(N∆/
√

t)
)
, as r →∞. (4.4)

where h← = h←γ is defined in (3.1).

4.1. Further implications of the variation of Π
←

In this subsection we derive some additional, purely analytical, properties of the functions
µ(x) and σ (x) defined in (4.1), separating cases when γ < 0 or γ = 0.

Case (i): γ < 0. Suppose throughout that (2.2) holds with h(x) = hγ (x) for γ < 0 as in (2.3),
so by (3.11) we can take ar = |γ |br and br = Π

←

(r ), and have ∆(r )
t /br/t ⇒ eγ N∆/2

√
t as

stated in (2.6).

Proposition 4.1. Assume (2.2) holds for some deterministic functions ar > 0 and br ∈ R and
take γ < 0 in (2.3).

(a) For p ≥ 1,∫ x

0
y pΠ (dy) ∼

2
p|γ |

x p
√
Π (x), as x ↓ 0. (4.5)

In particular, when p = 2,

σ 2(x) ∼
1
|γ |

x2
√
Π (x), as x ↓ 0. (4.6)

(b) Π (x) is slowly varying at 0, σ 2(x) is regularly varying at 0 with index 2, and the
distribution function G(x) := e−

√
Π (x), x > 0, is regularly varying at 0 with index

1/|γ |.

Proof of Proposition 4.1. (a) Assume (2.2) holds with h = hγ and keep γ < 0 throughout.
To see (4.5), use that Π

←

= V ◦ H from (3.6), where V is regularly varying at ∞ with index
−|γ |/2 by (3.9), and H (x) = e2

√
x is a Γ function with auxiliary function f (t) =

√
t (see

(3.7)). Such a composition is again in the class Γ [1,8,9,11,20,21], so for z ∈ R

Π
←

(r +
√

r z)

Π
←

(r )
=

V
(

H (r +
√

r z)
H (r )

H (r )
)

V (H (r ))
→ e−z|γ |/2,

or, equivalently, after a change of variable to w = z|γ |/2,

Π
←

(r + 2
√

r
|γ |
w)

Π
←

(r )
→ e−w, w ∈ R. (4.7)

The limit relation (4.7) identifies the auxiliary function of the non-increasing Γ-varying
function Π

←

(x) as f1(r ) = 2
|γ |

√
r . Likewise for any p ≥ 1, (Π

←

)p
∈ Γ with auxiliary

function f p(r ) = 2
p|γ |

√
r . Auxiliary functions of Γ-functions are unique up to asymptotic

equivalence and also may be constructed in a canonical way (see for example,
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[11, p.19, eqn. 1.2.5], [1, p.177, Corollary 3.10.5(b)]). Therefore, we may identify the auxiliary
function of the Γ-function (Π

←

)p in two asymptotically equivalent ways:

f p(r ) ∼
2

p|γ |

√
r or f p(r ) ∼

∫
∞

r

(
Π
←

(u)
)pdu(

Π
←

(r )
)p , r →∞. (4.8)

Using the transformation theorem for integrals (e.g. [2, p. 301]) and (4.8), we can write∫
∞

r

(
Π
←

(y)
)pdy =

∫ Π
←(r )

0
y pΠ (dy) ∼ (Π

←

(r ))p f p(r ) ∼
2(Π

←

(r ))p√r
p|γ |

, r →∞,

and a change of variables to x = Π
←

(r ) ↓ 0 gives (4.5) and (4.6).
(b) Invert the limit relation (4.7) to get

lim
x↓0

Π (xy)−Π (x)

(2/|γ |)
√
Π (x)

= − log y, y > 0.

Dividing by Π (x) instead of
√
Π (x), we get zero on the right side in the limit, which shows

that Π (x) is slowly varying at 0, hence σ 2(x) is regularly varying at 0 with index 2 by (4.6).
Finally, factoring as

Π
1/2

(xy)−Π
1/2

(x) =
Π (xy)−Π (x)

Π
1/2

(xy)+Π
1/2

(x)
∼ −

1
|γ |

log y,

and using the slow variation of Π (x), hence of Π
1/2

(x), at 0, gives the regular variation of
e−
√

Π (x) at 0 with index 1/|γ |. □

Case (ii): γ = 0. Suppose (2.2) holds with h(x) = hγ (x) = 2x in (2.3). From Theorem 2.1
we know in this case we may take br = Π

←

(r ) and ar = 2(Π
←

(r −
√

r ) − br ), and
then (∆(r )

t − br/t )/ar/t ⇒ N∆/2
√

t , where N∆ is a standard normal random variable. Also
ar/br → 0 and ∆(r )

t /br/t ⇒ 1.
The following proposition parallels Proposition 4.1 for the γ = 0 case. Recall the functions

H from (3.5) and V = Π
←

◦ H← from (3.6), satisfying V← = H ◦ Π and V ∈ Π− with
slowly varying auxiliary function 1

2 a ◦ H←(s).

Proposition 4.2. Assume (2.2) holds for some deterministic functions ar > 0 and br ∈ R and
take γ = 0 in (2.3).

(a) For p ≥ 1, there exist Π-varying functions πp(·) such that∫ br

0
u pΠ (du) = πp(H (r )) = πp(e2

√
r ), (4.9)

where the slowly varying auxiliary function of πp is gp(x) = 1
2 V p(x) log x.

(b) As r →∞,

σ 2(∆(r )
t )

σ 2(br/t )
⇒ 1. (4.10)
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Proof of Proposition 4.2. (a) Take p ≥ 1 and y > 0, and recall H←(y) = 1
4 log2 y. Consider∫ y

0
u pΠ (du) =

∫
∞

Π (y)

(
Π
←

(s)
)pds =

∫
∞

Π (y)
(V ◦ H (s))pds =

∫
∞

H◦Π (y)
V p(v)d H←(v)

=

∫
∞

V←(y)
V p(v)

1
2

log v
dv
v
= πp

(
V←(y)

)
, (4.11)

where we define

πp(y) =
1
2

∫
∞

y
V p(v) log v

dv
v
. (4.12)

Now, V is Π−-varying at ∞ and hence slowly varying at ∞, so V p is slowly varying at ∞,
as is log v. Thus the function πp(·) is the integral of a −1-varying function. The indefinite
integral of a −1-varying function is Π-varying ([10,11], [21, p. 30]). Thus πp ∈ Π at ∞ and
the auxiliary function is gp(y) = 1

2 V p(y) log y.
(b) A Π-varying function is always of larger order than its auxiliary function ([11, p. 378]),

so

lim
y→∞

πp(y)
gp(y)

= ∞. (4.13)

Now we apply these results with p = 2. Because of the representation in (4.11), we invert
the Π−-variation of V (·) in (3.10) with γ = 0 by writing (3.10) as

−V (sx)− (−V (s))
1
2 a(H←(s))

= −
V (sx)− V (s)
1
2 a(Π (V (s)))

→ log x, as s →∞,

which inverts as (cf. (3.7) and (3.8))

lim
y↓0

V←
(
y − 1

2 xa(Π (y))
)

V←(y)
= ex .

Substituting y = br/t , so Π (y) = r/t , gives, for x > 0,

lim
r→∞

V←
(
br/t + xar/t

)
V←(br/t )

= e−2x . (4.14)

To show (4.10), use (4.11) with p = 2 to write

σ 2(∆(r )
t )− σ 2(br/t ) = π2

(
V←(∆(r )

t )
)
− π2

(
V←(br/t )

)
.

From (2.7) write (∆(r )
t − br/t )/ar/t = ξ

(r )
t , so that ξ (r )

t ⇒ N∆/2
√

t as r →∞, and remember
that br/t = Π

←

(r/t). The previous difference then becomes

π2
(
V←(br/t + ar/tξ

(r )
t )
)
− π2

(
V←(br/t )

)
= π2

(V←(br/t + ar/tξ
(r )
t )

V←(br/t )
V←(br/t )

)
− π2

(
V←(br/t )

)
.

Applying the definition of Π-variation and (4.14) we get

σ 2(∆(r )
t )− σ 2(br/t )

g2(V←(br/t ))
⇒

N∆
√

t
. (4.15)

Since
σ 2(br/t )

g2(V←(br/t ))
=
π2(V←(br/t ))
g2(V←(br/t ))

→∞,
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by (4.13), we have proved (4.10), since if we divide (4.15) by something of larger order
(namely, σ 2(br/t )), we get a limit of 0. □

5. Convergence of ((r) X t,∆
(r)
t ), deterministic standardization

Next we need to understand the effect of replacing the random centering and norming by
deterministic counterparts. The treatment is broken up according to the cases of the constant
γ in (2.3). Recall the definitions of µ(x) and σ (x) in (4.1).

Theorem 5.1. Suppose (2.2) holds for some deterministic functions ar > 0 and br ∈ R and
define γ as in (2.3). As before, t > 0 is fixed, and NX and N∆ are independent N (0, 1).

(i) When γ < 0, we have, as r →∞, with br = Π
←

(r ),( (r ) X t − tµ(∆(r )
t )

σ (br/t )
,
∆(r )

t

br/t

)
⇒

(√
t NX eγ N∆/2

√
t , eγ N∆/2

√
t
)
, (5.1)

and also a version with deterministic centering and norming:( (r ) X t − tµ(br/t )
br/t
√

r
,
∆(r )

t

br/t

)
⇒

( 2t
|γ |

(eγ N∆/2
√

t
− 1), eγ N∆/2

√
t
)
, as r →∞. (5.2)

(ii) When γ = 0, we have, as r →∞, with ar = 2(Π
←

(r−
√

r )−Π
←

(r )) and br = Π
←

(r ),

( (r ) X t − tµ(∆(r )
t )

σ (br/t )
,
∆(r )

t − br/t

ar/t

)
⇒

(√
t NX ,

N∆

2
√

t

)
, as r →∞. (5.3)

Remark 5.1.

(a) Note that when γ < 0, we no longer have independence of the components in the limits
in (5.1) and (5.2) when we replace the random norming by the deterministic one. The
norming constants are conveniently written in terms of br/t in (5.1) and (5.2), but recall
that br ∼ ar/|γ | (by (3.11)) in this γ < 0 case, and σ 2(x) is regularly varying with
index 2 as x ↓ 0 by (4.6), so they are easily rewritten in terms of ar/t .

(b) When γ = 0, we can always make the norming deterministic, as in (5.3); however, this
is not in general the case for the centering; replacing µ(∆(r )

t ) with µ(br/t ) in (5.3) is only
possible under some subsidiary conditions. A detailed discussion is given in Section 8.
For the special case when Π ∈ RV−α at 0 for 0 ≤ α ≤ 1, however, we can specify the
joint limiting distribution of (r ) X and ∆(r )

t precisely, as in the following theorem.

Theorem 5.2. Suppose Π is regularly varying at 0 with index −α for an α ∈ [0, 1].
Then (2.2) and (2.3) hold with the case γ = 0 in (2.3), for functions br = Π

←

(r ) and
ar = 2(Π

←

(r −
√

r )−Π
←

(r )) ∼ (2/α)r−1/2br .
Further, fix t > 0 and let cα := α/(2− α).
(i) Suppose 0 < α ≤ 1, so that 0 < cα ≤ 1. Then( (r ) X t − tµ(br/t )

σ (br/t )
,
∆(r )

t − br/t

ar/t

)
⇒

(√
t NX +

√
t N∆
√

cα
,

N∆

2
√

t

)
. (5.4)

(ii) Suppose α = 0, so cα = 0 and Π is slowly varying at 0. Then( (r ) X t − tµ(br/t )
√

r br/t
,
∆(r )

t − br/t

ar/t

)
⇒

(
NX ,

N∆

2
√

t

)
. (5.5)
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Remark 5.2. Restricting X to be a subordinator, as we do, requires
∫ 1

0 xΠ (dx) < ∞, or,
equivalently,

∫ 1
0 Π (x)dx < ∞, which forces 0 ≤ α ≤ 1 in Theorem 5.2. The case α = 1 is

possible, take for example Π (x) = 1{0<x<e−1}/x(log x)2.

Proofs of Theorems 5.1 and 5.2 are deferred to Sections 7 and 8.

6. Proofs of Theorem 4.1 and Corollary 4.1

In this section we first prove the conditioned limit theorem, Theorem 4.1, using random
centering and norming; this is followed by the proof of Corollary 4.1. Throughout, assume X
is a driftless subordinator on (0,∞) with atomless Lévy measure Π on (0,∞).

Proof of Theorem 4.1. Suppose (2.1), hence that the conclusions in Theorem 2.1, hold. From
(1.4), the conditional characteristic function of the centered and normed (r ) X t is

E
(

exp
(

iθ
(r ) X t − tµ(∆(r )

t )

σ (∆(r )
t )

) ⏐⏐⏐∆(r )
t

)

= exp
(

t
∫ ∆

(r )
t

0

(
eiθu/σ (∆(r )

t )
− 1− iθu/σ (∆(r )

t )
)
Π (du)

)
, θ ∈ R. (6.1)

Thus for (4.2) it is enough to show, for each t > 0, θ ∈ R,⏐⏐⏐t ∫ ∆
(r )
t

0

(
eiθu/σ (∆(r )

t )
− 1− iθu/σ (∆(r )

t )
)
Π (du)+

t
2
θ2
⏐⏐⏐→ 0, as r →∞. (6.2)

Noting that, by (4.1),

θ2

2σ 2(∆(r )
t )

∫ ∆
(r )
t

0
y2Π (dy) =

1
2
θ2,

the left hand side of (6.2) equals

t
⏐⏐⏐ ∫ ∆

(r )
t

0

(
eiθu/σ (∆(r )

t )
− 1− iθu/σ (∆(r )

t )
)
Π (du)−

∫ ∆
(r )
t

0

(
−

1
2
θ2
) u2

σ 2(∆(r )
t )

Π (du)
⏐⏐⏐.

Using the inequality |eiθ
− 1− iθ − (iθ )2

2 | ≤ |θ |
3/3!, θ ∈ R, this is bounded above by

t |θ |3

3!

∫ ∆
(r )
t

0

u3

σ 3(∆(r )
t )

Π (du) ≤
t |θ |3

3!
∆(r )

t

σ (∆(r )
t )
. (6.3)

So it suffices to show that ∆(r )
t /σ (∆(r )

t )⇒ 0 when (2.1) holds. When γ < 0, this is immediate
from (4.6), since Π

←

(0+) = ∞. When γ = 0, (2.8) and Proposition 4.2 yield ∆(r )
t /br/t ⇒ 1

and σ 2(∆(r )
t )/σ 2(br/t )⇒ 1. Therefore

(∆(r )
t )2

σ 2(∆(r )
t )
=

(∆(r )
t )2

b2
r/t
×

b2
r/t

σ 2(br/t )
×
σ 2(br/t )

σ 2(∆(r )
t )
= (1+ op(1))

b2
r/t

σ 2(br/t )
. (6.4)
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The RHS of (6.4) converges to 0 as r → ∞ for the following reason: we can use (4.9) (and
the definition of the function gp following (4.9)) to write

lim
r→∞

σ 2(br/t )
b2

r/t
= lim

r→∞

π2(H (r/t))

(Π
←

(r/t))2
= lim

x→∞

π2(x)
V 2(x)

= lim
x→∞

π2(x)
V 2(x) 1

2 log x

(1
2

log x
)

= lim
x→∞

π2(x)
g2(x)

(1
2

log x
)
= ∞ (by (4.13)).

Thus, via (6.4), the right hand side of (6.3) tends to 0, completing the proof of Theorem 4.1. □

Proof of Corollary 4.1. Recall that NX and N∆ are independent N (0, 1) and define

Z (r )
X (t) =

(r ) X t − tµ(∆(r )
t )

σ (∆(r )
t )

and Z (r )
∆ (t) =

∆(r )
t − br/t

ar/t
,

and suppose f, g are non-negative continuous functions bounded by 1. Then from (2.5) and
(4.2) we have, as r →∞,

E f
(
Z (r )

X (t)
)
→ E f (

√
t NX ) and Eg

(
Z (r )
∆ (t)

)
→ Eg(h←(N∆/

√
t)).

Writing⏐⏐E (g(Z (r )
∆ (t)) E∆(r )(

f (Z (r )
X (t))

))
− Eg(Z (r )

∆ (t)) E f (
√

t NX )
⏐⏐

=

⏐⏐⏐E(g(Z (r )
∆ (t))E∆(r )(

f (Z (r )
X (t))− E f (

√
t NX )

))⏐⏐⏐
≤ E

⏐⏐E∆
(r )
t
(

f (Z (r )
X (t))

)
− E f (

√
t NX )

⏐⏐→ 0, as r →∞,

we get by dominated convergence

E f (Z (r )
X (t)) g(Z (r )

∆ (t)) = E(g(Z (r )
∆ (t)) E∆(r )(

f (Z (r )
X (t))

)
→ E

(
f (
√

t NX )
)

E
(
g
(
h←(N∆/

√
t)
))
.

Using this we can complete the proof of (4.4). □

7. Proof of Theorem 5.1

Throughout, assume (2.2) and (2.3), hence the conclusions contained in Theorem 2.1.
(i) When γ < 0 we set br = Π

←

(r ) and ar = |γ |br , and then by (2.6)

∆(r )
t

br/t
⇒ Yt := eγ N∆/2

√
t , as r →∞. (7.1)

Now σ 2(x) is regularly varying at 0 with index 2 (see Proposition 4.1), so σ (∆(r )
t )/σ (br/t )⇒

Yt as r →∞. This together with the joint convergence in Corollary 4.1 implies via continuous
mapping that( (r ) X t − tµ(∆(r )

t )
σ (br/t )

,
∆(r )

t

br/t

)
=

( (r ) X t − tµ(∆(r )
t )

σ (∆(r )
t )

×
σ (∆(r )

t )
σ (br/t )

,
∆(r )

t

br/t

)
⇒
(√

t NX Yt , Yt
)
=
(√

t NX eγ N∆/2
√

t , eγ N∆/2
√

t),
where (NX , N∆) are i.i.d standard normal random variables, and (∆(r )

t − br/t )/ar/t in (4.4) can
be replaced by ∆(r )

t /br/t using that ar = br |γ | as we assumed. So we have replaced the random
with a deterministic norming.
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Now consider the effect of changing the random centering to a deterministic one in the first
component. Again using ar = |γ |br , convert (2.2) to vague convergence ([19] Section 3.4) on
(0,∞), as

Π (br/t du)
√

r/t
v
→

2
|γ |

du
u
, u > 0,

which gives, for each x > 0,∫ x

1
u
Π (br/t du)
√

r/t
→

∫ x

1

2
|γ |

du =
2
|γ |

(x − 1),

locally uniformly on (0,∞) since the LHS is a family of monotone functions converging to
a continuous limit. Since ∆(r )

t /br/t ⇒ Yt as r → ∞, we have by the continuous mapping
theorem,

µ(∆(r )
t )− µ(br/t )
br/t
√

r/t
=

∫ ∆
(r )
t /br/t

1
u
Π (br/t du)
√

r/t
⇒

2
|γ |

(Yt − 1).

From (4.6),

σ (br/t ) =
√
σ 2(br/t ) ∼ br/t

(r/t)1/4

√
|γ |

, as r →∞. (7.2)

Thus br/t
√

r/σ (br/t )→∞ and we have

(r ) X t − tµ(br/t )
br/t
√

r
=

( (r ) X t − tµ(∆(r )
t )

σ (br/t )

)
×
σ (br/t )
br/t
√

r
+ t
(µ(∆(r )

t )− µ(br/t )
br/t
√

r/t

)
= op(1)+ t

(µ(∆(r )
t )− µ(br/t )
br/t
√

r/t

)
⇒

2t
|γ |

(Yt − 1), as r →∞.

Since we have joint convergence with ∆(r )
t we get (5.2).

(ii) When γ = 0, by Proposition 4.2 we have σ (∆(r )
t )/σ (br/t )⇒ 1 with br = Π

←

(r ). Then
from Corollary 4.1,( (r ) X t − tµ(∆(r )

t )
σ (br/t )

,
∆(r )

t − br/t

ar/t

)
⇒
(√

t NX ,
N∆

2
√

t

)
, (7.3)

By Theorem 2.1 we may choose ar = 2(Π
←

(r −
√

r )−Π
←

(r )). □

8. Proof of Theorem 5.2

In the present section we investigate what happens when we attempt to replace the random
centering for (r ) X t by deterministic centering in the case γ = 0. Assume (2.2) holds with
h = hγ for γ = 0. As displayed in (7.3), we may replace the random norming for (r ) X t by
the deterministic norming σ (br/t ), and it is natural to try to replace µ(∆(r )

t ) with µ(br/t ) by a
method similar to the one used in the proof of (5.2). We begin with some preliminary remarks
to illustrate the issues arising.

With the notation in (4.11), and setting p = 1, we can write

µ(∆(r )
t )− µ(br/t ) = π1

(
V←(∆(r )

t )
)
− π1

(
V←(br/t )

)
.
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Recall from (3.4) that we may write (∆(r )
t − br/t )/ar/t = ξ

(r )
t ⇒ N∆/2

√
t . The previous

difference thus becomes

π1
(
V←(ar/tξ

(r )
t + br/t )

)
− π1

(
V←(br/t )

)
= π1

(V←(ar/tξ
(r )
t + br/t )

V←(br/t )
V←(br/t )

)
− π1

(
V←(br/t )

)
. (8.1)

By Proposition 4.2, π1(·) is Π-varying with auxiliary function g1(x) = 1
2 V (x) log x . Apply this

to the RHS of (8.1) in conjunction with (4.14) to get

µ(∆(r )
t )− µ(br/t )

g1(V←(br/t ))
⇒

N∆
√

t
. (8.2)

To replace µ(∆(r )
t ) with µ(br/t ) in (7.3) thus requires that the difference in (8.2) be compared

with σ (br/t ). The cleanest result would be if the difference were o(σ (br/t )) as r →∞, but this
is not always the case and the final form of the joint limit with deterministic centering and
norming in general depends on the behavior of the limit of

lim
r→∞

σ 2(br/t )
g2

1(H (r/t))
= lim

r→∞

π2(H (r/t))
g2

1(H (r/t))
, (8.3)

assuming there is indeed a limit. (Note that the Π-function π2(·) has auxiliary function g2 and
not g2

1 so we cannot rely on (4.13) here.) Recall that H (x) = e2
√

x and V (x) = Π
←

(H←(x))
(see (3.5) and (3.6)). In the numerator of (8.3), by (4.12)

π2(H (r/t)) =
1
2

∫
∞

H (r/t)
V 2(y) log y

dy
y

=
1
2

∫
∞

r/t
(Π
←

(v))2 log H (v)
dH (v)
H (v)

=

∫
∞

r/t
(Π
←

(v))2dv.

Also g1(x) = 1
2 V (x) log x , so the denominator in (8.3) is g2

1(H (r/t)) = (Π
←

(r/t))2(r/t). Thus
the limit in (8.2) is

lim
r→∞

π2(H (r/t))
g2

1(H (r/t))
= lim

z→∞

∫
∞

z

(
Π
←

(v)
)2dv

z
(
Π
←

(z)
)2 . (8.4)

An easy example to show that (µ(∆(r )
t ) − µ(br/t ))/σ (br/t ) does not always vanish is the

stable subordinator analyzed in detail in the next section. In this example we have

Π (x) = x−α1{x>0} and Π
←

(v) = v−1/α1{v>0}, for an α ∈ (0, 1). (8.5)

The ratio on the right of (8.4) is in fact constant now:∫
∞

z v−2/αdv

z(z−2/α)
=

α

2− α
.

More generally, if Π (x) is regularly varying at 0 with index −α, then (Π
←

(z))2 is regularly
varying at 0 with index −2/α, so by Karamata’s theorem for integrals (e.g., [1, p. 27])

lim
z→∞

∫
∞

z

(
Π
←

(v)
)2dv

z
(
Π
←

(z)
)2 = lim

x→0

∫ x
0 u2Π (du)

x2Π (x)
=: cα. (8.6)
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Since 0 < α < 1, we have 0 < cα < 1. Conversely, if for general Π the limit on the LHS
of (8.6) exists with value c ∈ (0,∞), the converse part of Karamata’s theorem ([1, p. 30])
tells us that

(
Π
←

(z)
)2 is regularly varying at ∞ with index −(c−1

+ 1), which implies Π
←

(z)
is regularly varying with index −(c−1

+ 1)/2 at ∞. Set 1/α = (c−1
+ 1)/2. Then for Π to

correspond to a subordinator, we need α ≤ 1, which makes c ≤ 1.
Following this path leads us to formulate Theorem 5.2 as we state it in Section 5, giving

the joint limiting distribution of (r ) X t and ∆(r )
t in this particular case. Based on the technology

previously developed we can now prove that theorem.

Proof of Theorem 5.2. Assume that Π is regularly varying at 0 with index −α, 0 ≤ α ≤ 1, or,
equivalently, Π

←

(z) is regularly varying at∞ with index −1/α (rapid variation if α = 0). With
the choice of functions ar = 2(Π

←

(r −
√

r )−Π
←

(r )) and br = Π
←

(r ), as suggested by Part
(ii) of Theorem 2.1, that (2.2) and (2.3) hold with γ = 0 in (2.3), and that ar ∼ (2/α)r−1/2br

as r →∞, are easily checked.
First keep 0 < α ≤ 1, so 0 < cα ≤ 1. Write

(r ) X t − tµ(br/t )
σ (br/t )

=

(r ) X t − tµ(∆(r )
t )

σ (br/t )
+

t
(
µ(∆(r )

t )− µ(br/t )
)

σ (br/t )
. (8.7)

The second term on the RHS equals

t(µ(∆(r )
t )− µ(br/t ))

g1(H (r/t))
×

g1(H (r/t))
σ (br/t )

⇒
t N∆
√

t
×

1
√

cα
, as r →∞,

where the convergence for the first term on the left follows from (8.2), and, for the second, we
have g1(H (r/t))/σ (br/t ) → 1/

√
cα by (8.3), (8.4) and (8.6). Together with (5.3), this proves

(5.4).
When (8.6) holds with α = cα = 0, then

(
Π
←

(z)
)2 is rapidly varying at infinity ([8, p. 26])

so the same is true for Π
←

(z). Then by (8.3) and (8.4) we find

lim
r→∞

σ 2(br/t )
g2

1(H (r/t))
= 0.

Divide on the left side of (8.7) by g1(H (r/t)) instead of σ (br/t ). Then by (8.2) we see that
(5.4) becomes( (r ) X t − tµ(br/t )

g1(H (r/t))
,
∆(r )

t − br/t

ar/t

)
⇒

(√
t NX ,

N∆

2
√

t

)
.

Unpacking the notation shows that g1 ◦ H (r/t) = br/t
√

r/t , so we deduce (5.5). □

9. Example: Stable subordinator, case γ = 0

In this section we derive some asymptotic properties of the means and variances of a driftless
subordinator (St ) having ordered jumps ∆S(1)

t ≥ ∆S(2)
t ≥ · · · and r -trimmed version ((r )St ).

With these we can replace the standardization in Part (ii) of Theorem 5.2 with one based on
means and variances, for this process. This is done in Theorem 9.1. It will be seen in the proof
of Proposition 9.1 that these moments are finite once r is large enough.3

3 In fact, (r ) St and ∆S(r )
t have finite moments of any order, if r is chosen large enough.
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Consider the stable subordinator having no drift and Lévy tail satisfying (8.5). The
numerator of the left side of (3.2) is then

(r − y
√

r )−1/α
− r−1/α

= r−1/α
((

1−
y
√

r

)−1/α
− 1

)
∼

r−1/α−1/2 y
α

, as r →∞,

for each y ∈ R, so (3.2) holds if we take

h←(y) = y/2, ar = 2r−1/α−1/2/α, and br = r−1/α, (9.1)

in it. Thus we are in the γ = 0 case.

Proposition 9.1. Suppose (St ) is a driftless subordinator with ordered jumps ∆S(1)
t ≥ ∆S(2)

t ≥

· · · and tail measure satisfying (8.5). Fix 0 < α < 1 and t > 0 throughout. Then
(i) we have

lim
r→∞

√
r
(
r1/αE(∆S(r )

t )− t1/α)
= 0 and lim

r→∞
r2/α+1Var(∆S(r )

t ) = 2t2/α/α2. (9.2)

Also, (ii),

lim
r→∞

√
r
(
r1/α−1E

((r )St
)
− t1/αα/(1− α)

)
= 0 (9.3)

and

lim
r→∞

r2/α−1Var((r )St ) =
t2/α(4− α)

2− α
. (9.4)

Proof of Proposition 9.1. (i) Keep 0 < α < 1 and r > 1/α. From (1.3) we find

E
(
∆S(r )

t
)
= E

(
Π
←

(Γr/t)
)
=

∫
∞

0
Π
←

(y/t))P(Γr ∈ dy)

=

∫
∞

0

( y
t

)−1/α yr−1e−y

Γ (r )
dy

= t1/α Γ (r − 1/α)
Γ (r )

.

(Note this shows E(∆S(r )
t ) = t1/αE(∆S(r )

1 ) are both finite for r > 1/α.) Similar calculations
give

Var(∆S(r )
t ) = t2/αVar(∆S(r )

1 ) = t2/α
(
Γ (r − 2/α)

Γ (r )
−

Γ 2(r − 1/α)
Γ 2(r )

)
.

Using a version of Stirling’s formula with remainder in the form

Γ (r ) =
√

2π (r − 1)r−1/2e−(r−1)eε(r ), where
1

12r
< ε(r ) <

1
12(r − 2)

(9.5)

(e.g., [5], p.66), gives (9.2) after some lengthy but routine calculations.

(ii) By differentiating (1.4) with respect to θ , then setting θ = 0, we get

E
((r ) X t

⏐⏐∆(r )
t
)
= t

∫ ∆
(r )
t

0
xΠ (dx) (9.6)

and

E
(
((r ) X t )2

⏐⏐∆(r )
t
)
= t

∫ ∆
(r )
t

0
x2Π (dx)+

(
t
∫ ∆

(r )
t

0
xΠ (dx)

)2
, (9.7)
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hence

Var
((r ) X t

⏐⏐∆(r )
t
)
= t

∫ ∆
(r )
t

0
x2Π (dx). (9.8)

Then using (1.3) and similar calculations as for Part (i) we find, once r > 1/α − 1,

E
((r )St

)
=

aαt1/α

Γ (r )

∫
∞

0
v1−1/αe−vvr−1dv = aαt1/α Γ (r + 1− 1/α)

Γ (r )
,

where aα := α/(1− α). Hence

√
r
(
r1/α−1 E

((r )St
)
− t1/αaα

)
= aαt1/αa

√
r
(

r1/α−1Γ (r + 1− 1/α)
Γ (r )

− 1
)
,

and (9.3) follows from this after use of Stirling’s formula again and more lengthy but routine
calculations.

Similar lengthy calculations give

Var((r )St )

=
t2/α

Γ (r )

∫
∞

0

(
α

2− α
v1−2/α

+ a2
αv

2−2/α
)

e−vvr−1dv − a2
αt2/α Γ

2(r + 1− 1/α)
Γ 2(r )

=
αt2/αΓ (r + 1− 2/α)

(2− α)Γ (r )
+ a2

αt2/α
(
Γ (r + 2− 2/α)

Γ (r )
−

Γ 2(r + 1− 1/α)
Γ 2(r )

)
. (9.9)

Use of Stirling’s formula (9.5) and more calculations give (9.4) from this. □

Theorem 9.1. Suppose (St ) is a driftless subordinator with tail measure satisfying (8.5). Keep
t > 0 fixed throughout. Then, as r →∞,⎛⎝ (r )St − E((r )St )√

Var((r )St )
,
∆S(r )

t − E(∆S(r )
t )√

Var(∆S(r )
t )

⎞⎠ D
−→ (N1, N2), (9.10)

where (N1, N2) is bivariate N(0,Σ) with

Σ :=

⎡⎢⎢⎢⎢⎢⎢⎣
2

4− α

√
2− α

2(4− α)√
2− α

2(4− α)
1
2

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.11)

Remark 9.1. Note that the limit distribution in (9.10) does not depend on t , so the natural
standardization produces a very easily interpretable result.

Proof of Theorem 9.1. Write
(r )St − E((r )St )√

Var((r )St )
=

( (r )St − tµ(br/t )
σ (br/t )

) σ (br/t )√
Var((r )St )

+
t
∫ br/t

0 xΠ (dx)− E((r )St )√
Var((r )St )

. (9.12)

From (4.1) and the regular variation of Π (x) we deduce

σ (x) ∼
√

α

2− α
x1−α/2, x ↓ 0
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(see also (8.6)). Thus, using (5.4), the expression in brackets on the RHS of (9.12) tends in
distribution to

√
t(NX + N∆/

√
cα), where cα = α/(2 − α). Recalling br = r−1/α and the

variance estimate in (9.4), the factor multiplying the bracket in (9.12) is

σ (br/t )√
Var((r )St )

∼
(r/t)−1/α+1/2√α/(2− α)

r−1/α+1/2t1/α
√

4− α/
√

2− α
=

√
α

√
4− α

t−1/2.

In the second summand on the RHS of (9.12), the integral is

t
∫ (r/t)−1/α

0
xΠ (dx) = αt

∫ (r/t)−1/α

0
x−αdx =

αt1/αr1−1/α

1− α
,

while from (9.3),

E
((r )St

)
= t1/αr1−1/αα/(1− α)+ o(r1/2−1/α).

This together with (9.4) shows that the second summand in (9.12) is o(1) and hence the LHS
of (9.12) tends to

√
α/(4− α)NX +

√
(2− α)/(4− α)N∆.

Next write

∆S(r )
t − E(∆S(r )

t )√
Var(∆S(r )

t )
=

(
∆S(r )

t − br/t

ar/t

)
ar/t√

Var(∆S(r )
t )
+

br/t − E(∆S(r )
t )√

Var(∆S(r )
t )

. (9.13)

By (5.4), the expression in brackets on the RHS tends to N∆/(2
√

t). Recalling ar =

2r−1/α−1/2/α and the variance estimate in (9.2), the factor multiplying the bracket is

ar/t√
Var(∆(r )

t )
∼

2r−1/α−1/2 t1/α+1/2/ α

r−1/α−1/2
√

2 t1/α/ α
=
√

2.

In the second summand on the RHS of (9.13), br = r−1/α and E(∆S(r )
t ) can be substituted by

the first moment estimate in (9.3). We deduce that the second summand in (9.13) is o(1) and
hence the LHS of (9.13) tends to N∆/

√
2. □

10. Final thoughts

It is tempting to conjecture that functional weak limit theorems may hold for standardized
versions of ((r ) X t ,∆

(r )
t ) as functions of t when r → ∞. As we noted in Remark 2.1, in

Proposition 4.2 of [4] it is shown that there is in fact finite dimensional convergence in (2.9).
But a proof of the full functional convergence seems hard.
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