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S U M M A R Y
In this paper, we compare two different methods for group velocity inversion: iterative,
least-squares subspace optimization and probabilistic sampling based on the transdimensional
(Trans-D) Bayesian method with tree-based wavelet parametrization. The wavelet parametriza-
tion used a hierarchical prior for wavelet coefficients which could adapt to the data. We applied
these inversion methods for ambient noise tomography of the western part of Java, Indonesia.
This area is an area prone to multiple geological hazards due to its proximity to the subduction
of the Australia Plate beneath Eurasia. It is therefore important to have a better understanding of
upper crustal structure to support seismic hazard and disaster mitigation efforts in this area. We
utilized a new waveform data set collected from 85 temporary seismometers deployed during
2016–2018. Cross-correlation of the waveform data was applied to retrieve empirical Rayleigh
wave Green’s functions between station pairs, and the spatial distribution of group velocity
was obtained by inverting dispersion curves. Our results show that, although computationally
expensive, the Trans-D Bayesian approach offered important advantages over optimization,
including more effective explorative of the model space and more robust characterization of
the spatial pattern of Rayleigh wave group velocity. Meanwhile, the iterative, least-square
subspace optimization suffered from the subjectivity of choice for reference velocity model
and regularization parameter values. Our Rayleigh wave group velocity results show that for
short (1–10 s) periods group velocity correlates well with surface geology, and for longer
periods (13–25 s) it correlates with centres of volcanic activity.

Key words: Asia; Tomography; Crustal structure; Seismic noise.

1 I N T RO D U C T I O N

The western part of Java lies near the centre of the Sunda Arc,
where the Australian Plate subducts beneath the Eurasian Plate
(Fig. 1a). It is a region of particular interest because it is near the
transition between the oblique convergence off Sumatra, where
the parallel component of subduction is mostly accommodated
by the right-lateral Great Sumatran Fault running the length of
Sumatra, to arc-normal convergence off Java (Malod et al. 1995).
This transition in convergence obliquity coincides with a transition
from relatively young (40–100 Ma) oceanic plate subducting off
Sumatra, to relatively old (100–135 Ma) subducting plate off Java,

with consequent steepening in the angle of subduction to 60◦–65◦

beneath Java (Hamilton 1979; Widiyantoro & van der Hilst 1996).
One important reason to study the crustal structure of Java is to

improve our knowledge of geohazard risk there. Java is the most
populated (over 140 million) and at the same time one of the most
densely populated islands on Earth. Western Java, the area con-
sidered in this study, is home to ∼70 million inhabitants living
within an area of ∼45 K km2. This includes the world’s 2nd largest
contiguous urban area, the urban agglomeration of Jakarta, Bogor,
Depok, Tangerang and Bekasi, with a population of 32 million
(DEMOGRAPHIA 2018), as well as another of Indonesia’s largest
cities, Bandung, Greater Bandung having a population of over 11
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ANT in the western part of Java 1261

Figure 1. (a) Map showing major tectonic plate boundaries in Indonesia
(from Bird 2003). (b) Physiography map (modified from van Bemmelen
1949) and station distribution in the study area. Inset in the top right corner
shows the position of the western part of Java. In (b), volcanoes are shown by
black triangles and stations are denoted by inverted red triangles. There are
three major active faults in the western part of Java: CF (Cimandiri Fault),
LF (Lembang Fault) and BF (Baribis Fault). We use the coordinate from the
National Earthquake Study Centre (PUSGEN) (2017). The colour in inverted
triangles shows the deployment period and area. Blue shows seismometers
deployed in Banten (WJA), yellow shows seismometers deployed in the
southern part of West Java (WJB), magenta shows seismometers deployed
in the northern part of West Java (WJC), red shows the additional deployment
in the northern part of West Java (WJD).

million. It is important to understand sources of seismicity and vol-
canic activity that may threaten this urban corridor since it includes a
huge amount of residential construction as well as the infrastructure
of crucial importance to Indonesia’s economy.

Although no extensive damage has been caused by earthquakes
in western Java since the beginning of the 20th century, historical
accounts suggest the occurrence of such events during 1677–1844.
Griffin et al. (2018) have shown that while several of these have
occurred on crustal faults, in some cases where active faults have
not been mapped. Active volcanoes are concentrated mainly in the
middle and south of the area, between Bandung City and South-
ern Mountain Zones (Fig. 1b). To the north of Bandung lies Mt
Tangkuban Perahu, which had a phreatic eruption in 2013, and Mt
Tampomas. To the south of Bandung, there are Mt Kendeng, Mt
Patuha, Mt Malabar, Mt Papandayan Mt Guntur (last eruption in
1847) and Mt Cikurai, which separate Bandung from the city of

Garut. Mt Galunggung, which had a major eruption in 1982, to-
gether with Mt Karacak, Mt Talaga Bodas lie between Garut and
the city of Tasikmalaya. In the northern part, the coastal plain of
Jakarta which composed of alluvial and young volcanic deposits
extends from west to east (van Bemmelen 1949).

By improving the resolution of seismic velocity structure in the
upper crust of western Java, we can facilitate precise hypocentre
and focal mechanism estimation (see, e.g. Hejrani et al. 2017; Nu-
graha et al. 2018) and provide useful initial models for fine-scale
seismic tomography studies to delineate seismogenic areas and mag-
matic plumbing of active volcanic systems (see, e.g. Widiyantoro
et al. 2018). Improved models of the crust’s seismic velocity struc-
ture also support the development of Indonesian earthquake ground
motion models, which are essential for improving seismic hazard
assessment (Ridwan et al. 2019).

In order to image the upper crustal velocity structure beneath
the western part of Java, we applied the ambient noise tomography
(ANT) method to data from a large-scale temporary seismograph
deployment. The ANT method is based on the principle of seis-
mic interferometry, introduced by Claerbout (1968) whose paper
spurred the development of the technique for seismic application.
Seismic interferometry generally refers to the extraction of em-
pirical Green’s functions (EGFs) through the cross-correlation of
ambient seismic noise recorded simultaneously at a pair of seismo-
graphs (Lobkis & Weaver 2001; Shapiro & Campillo 2004; Larose
et al. 2006; Snieder & Larose 2013). Some of the previous studies
using the ANT method have successfully imaged structure beneath
New Zealand (Lin et al. 2007), the northwestern United States (Gao
et al. 2011), Australia (Saygin & Kennett 2012), Central Java (Zul-
fakriza et al. 2014), Jakarta (Saygin et al. 2016), Bandung Basin
(Pranata et al. 2016), East Java (Martha et al. 2017) and south of
West Java (Rosalia et al. 2019).

The first step in determining crustal seismic velocity structure
with ANT is to estimate the spatial variation of group veloc-
ity at selected periods. This estimation must deal not only with
the strongly non-linear relationship between dispersion curves and
group velocity parameters, but also with the invariably mixed over-
/underdetermined character of the inverse problem. Broadly con-
sidered, there are two approaches to non-linear inverse problems:
optimization with regularization, and probabilistic sampling, tar-
geted at an objective function representing a misfit or likelihood.
In this study, we consider two specific methods, each represen-
tative of one of these approaches: for optimization, we use the
least-squares subspace method (FMST, see Rawlinson et al. 2006)
and for probabilistic sampling, we use a transdimensional Bayesian
method (Trans-D, see Hawkins & Sambridge 2015). We will discuss
the group velocity maps obtained from both inversion methods and
discuss their relative merits as applied to the inversion of crustal
group velocity maps for western Java.

2 DATA

The data used in this study are continuous seismic waveform data
recorded from the 2016 deployment, which we hereafter refer to
as the ITB-ANU Network. We installed 27 portable seismometers
in three areas of the western part of Java (Fig. 1b). The ITB-ANU
Network consists of three phases deployment: WJA, WJB and WJC.
We first deployed the instruments in the Banten area (WJA) and then
moved them to the southern part (WJB) and finally to the northern
part of western Java (WJC). The instrument deployments for WJA,
WJB and WJC began in June 2016 and ended in December 2016
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1262 S. Rosalia et al.

with a span of 2–8 weeks for each installation. An additional 15
stations (WJD) were deployed in October–November 2018 to im-
prove coverage of the northern part of the study area. In total, we
have deployed 85 stations in western Java. The instruments used in
this research are Nanometrics Trillium Compact seismometers, with
recorders produced by the Australian National University (ANU)
that use GPS for time synchronization and SD-card as storage me-
dia. Each station was deployed in a school, governmental building
or residential house to ensure the security of the instruments. The
deployment ran with a sampling rate of 250 Hz and the distance
between stations varies from about 20 km to over 300 km.

Before doing the data processing, we assess our waveform data
quality, paying especial attention to accurate timing. Accurate tim-
ing of seismograms is crucial for the cross-correlation processing
in ANT to produce accurate EGFs. Hence, in their ANT study of
La Réunion, Hable et al. (2018) investigated and corrected clock
errors in land and ocean bottom seismograms by utilizing cross-
correlograms of ambient noise for each day. If the day by day result
of interstation cross-correlation shows a shift in its peak, it suggests
a timing error at one of the stations, and by comparing these shifts
at multiple station pairs, time corrections for individual stations can
be determined.

We applied the method of Hable et al. (2018) to our data sets by
computing daily waveform cross-correlations between two nearby
stations and examining them over successive days. An example of
such a set of daily cross-correlograms between ITB-ANU network
stations WJA01 and WJA02, with an interstation distance of
23.35 km, appears in Fig. S1. We applied a long period multifilter
band of 10–20 s and 20–50 s to the data. The result in Fig. S1
shows a very stable alignment of cross-correlation peaks across
all days of the deployment, which suggests there is an accurate
time base that needs no correction. We obtained similar results
for all station pairs of the ANU-ITB network. Note that we
also considered including data from the permanent Indonesian
seismograph network operated by the Indonesian Agency for
Meteorology, Climatology and Geophysics (BMKG). We found
that the BMKG waveform data included many gaps that made it
difficult to compute cross-correlations, so we did not include the
BMKG network data in this study.

3 M E T H O D S

We utilized the waveform of the vertical component and followed
the ANT processing method described by Bensen et al. (2007) and
Yao et al. (2006) to obtain Rayleigh wave EGFs for all available
station pairs. We converted the miniseed files from each station
to SAC format, removed the instrument response, resampled the
data to 10 Hz and then applied demeaning, detrending, one-bit time
domain normalization, and bandpass filtering to reduce any earth-
quake signals recorded by the instruments. We calculated the cross-
correlation for daily time-series and stacked the results to produce
the EGFs. EGFs extracted from interstation pairs give information
about the surface wave traveltime and dispersion between the sta-
tions. The cross-correlograms provide clear surface wave signals
(Fig. 2). The EGFs are often asymmetrical, more clearly evident
in the acausal part of the correlogram, especially at larger intersta-
tion distances. Based on Wapenaar (2003), Wapeenar et al. (2005)
and Snieder (2007), the formulation of Green’s function extraction
assumes homogeneously distributed surface sources. However, the
real distribution of background seismic energy depends on ocean
waves and their coupling to the subsurface. Hence, the asymme-
try of the cross-correlation time-series suggests that ambient noise

Figure 2. Rayleigh wave EGFs between the station in the centre of area
study, WJA03 to other stations. Waveforms were filtered between 0.05 and
0.2 Hz. Red line shows the group velocity window of EGFs for estimating
the amplitude of the signal.

sources are not evenly distributed. The most energetic seismic noise
source of the ambient noise in this study area is in the acausal part
which can be inferred to be from the north, in the direction of the
Java Sea. The finding is in a good agreement with a previous study
in Central Java (Yudistira & Widiyantoro 2016).

We applied the dispersion curve analysis procedure of Yao et al.
(2011) using a traditional frequency–time analysis with a multiple
filtering technique (Dziewonski et al. 1969) to obtain the group
velocity by picking the maximum amplitude in the period range
1–30 s. We selected the highest quality dispersion curves based on
a minimum EGF signal-to-noise ratio (SNR) of 10 and a minimum
inter-station path length of 1.5 wavelengths. Although Yao et al.
(2006) recommend that an interstation distance should be at least
two wavelengths, Porritt et al. (2016), in their ANT study of the
Banda Arc, showed that the length of 1.5 wavelengths also could be
used to account for the number and coverage of raypaths. The ex-
ample of the dispersion curve of WJB07–WJB20 which is selected
using the criteria above is shown in Fig. 3. It shows a good and clear
dispersion curve with SNR > 10. For that station pair, we saved the
final dispersion points from period 1–24 s based on the 1.5 wave-
lengths criteria. From a total of 974 EGFs calculated by inter-station
cross-correlation, we obtained 449 good quality dispersion curves
to be used for the inversion of group velocity maps (Fig. 4).
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Figure 3. Group velocity dispersion analysis from station pair WJB07–
WJB17 (c) which has SNR > 10 (a) and clear EGF (b). The top black trace
in (b) is the symmetric component of the EGF and the bottom blue colour
is the signal part and the red colour is the noise part to calculate the SNR.
The yellow dashed line shows the station distance >2 wavelengths and the
white line shows the station distance >1.5 wavelengths, which used in this
study. Brown and blue colours show for high and low amplitudes. The red
line represents the final periods saved for group velocity dispersion data and
the blue open circles represent the periods with SNR > 10. We picked the
clear dispersion curve from 1 to 24 s.

Figure 4. Selected dispersion curve from 1 to 30 s used in the study. The
group velocity ranged from 1 to 4.5 km s–1.

To obtain the group velocity map in each period, we applied
two inversion methods, a conventional subspace (FMST) inversion
and the Trans-D Bayesian inversion. Both methods used the same
algorithm for the traveltime calculation which is the fast marching
method (FMM; Sethian 1999; Rawlinson & Sambridge 2005). The
FMM is an eikonal solver that tracks the wave fronts over a grid

using a finite difference solution. FMM offers robust solutions for
wave propagation, even in highly heterogeneous media. Because
both methods used the same forward model calculation, we can
reasonably compare the methods.

3.1 Subspace inversion using FMST

Subspace inversion is an iterative method in which an objective
functional is minimized by using successive quadratic approxima-
tions of the function in an n-dimensional subspace (Kennett et al.
1988). Once the minimum of the quadratic approximation is found
in the model subspace, a new quadratic approximation is made,
either in the same or a different model subspace, and the process
repeated. At each step, the rays are retraced using FMM, so the non-
linear relationship between velocity and traveltime is accounted for.
The method has been successfully applied to obtain the group ve-
locity structure in various regional studies (Saygin & Kennett 2012;
Martha et al. 2017). Regularization using damping and smoothing
is needed to stabilize the inversion, and in addition to dependence
on regularization parameters, it also requires a fixed parametrization
(i.e. grid size), and in principle depends also on the initial model
and the number of iterations.

From Saygin & Kennett (2012), the misfit function to be mini-
mized for each period is:

φ (m) = (g (m) − d)T C−1
e (g (m) − d) + ε (m − m0)T C−1

m

× (m − m0) + η mT DT Dm, (1)

where m is a vector of model parameters (i.e. the group velocity
map), g(m) are the predicted group traveltimes from the model, d
are the observed group traveltimes, Ce is the data error covariance
matrix, m0 is the reference model, Cm is the model parameter co-
variance matrix, D is a flatness/smoothness matrix, ε is the damping
parameter and η is the smoothing parameter. We take Ce = Iσ 2, so
that errors are assumed uncorrelated and follow a Gaussian distri-
bution with zero mean and standard deviation σ , which is taken
to have the value 1 s. As reference model m0, we chose a uniform
Rayleigh wave group velocity of 2.25 km s–1. To choose the damp-
ing and smoothing factor, we used the ‘L-curve’ test that trades off
data misfit with model variance and roughness, as shown for 5 s
period in Fig. 5. We varied the damping factor ε from 0 to 1000 and
plotted the traveltime misfit and model variance for each period.
Based on this test, the best value of ε, which produces a good data
fit and small model variance, is 10. We did the same analysis for
the smoothing factor η, but instead of model variance, we used the
model roughness. We chose 25 as the best value for η.

The model vector m is parametrized as group velocity values at
points on a rectangular grid that covers the study area. To assess what
grid spacing should be used for m, we conducted a checkerboard
resolution (CKB). We used a homogeneous velocity model with
perturbations of 35 per cent from the initial velocity model having
a uniform velocity of 2.25 km s–1. We used various grid sizes of
60 × 60 km, 30 × 30 km and 15 × 15 km to determine which size
can be resolved in the study area, as shown in Fig. 10. From the
CKB test, we can see that the 60 × 60 km grid size can recover the
initial velocity model, although this may not be the finest resolution
attainable with the data set. The CKB test result for a 15 × 15 km
grid size produces smearing in the inversion result, so it appears
out data set cannot resolve structure at this scale. The CKB test
for a 30 × 30 km grid size, on the other hand, achieves acceptable
recovery of the initial velocity model where ray path coverage is
high, so it is the most suitable for a target resolution in inverting the
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Figure 5. Damping and smoothing trade-off curve of period 5.0 s. We varied the value from 0 to 1000. The best value is the one that gives a good data fit and
small variance (red box).

Figure 10. The checkerboard test result of FMST (d–f) and Trans-D (g–i) with its corresponding initial velocity model (a–c). We added 35 per cent perturbation
from the initial velocity model of 2.25 km s–1 and varied the grid size of 60 × 60 km (a), 30 × 30 km (b) and 15 × 15 km (c).

data. Fig. 6 shows the CKB test results for selected periods and a
grid size of 30 × 30 km. The complete CKB results for each period
are available in the supplementary document (Fig. S2).

Fig. 7 shows the results of subspace inversion of our ANT disper-
sion curves for Rayleigh wave group velocities at selected periods
(results for all periods are shown in Fig. S4 and results for using
straight rays are shown in Fig. S8). An intuitive grasp of the abil-
ity of our ANT data to resolve spatial variations of Rayleigh wave
group velocity in western Java can be obtained by inspecting the ray
path coverage shown in the right panels of Fig. 7. These show that

at 1 s and greater than 20 s period, ray path coverage is relatively
sparse. However, for periods between 3 and 20 s, the density of ray
paths increases considerably, which is in good agreement with the
CKB test results in Fig. 6, showing good recovery of the 30 × 30 km
checkerboard pattern for the same period range. From the ray path
coverage and CKB test, we can also see that there is poor ray path
coverage along the easternmost part of the study area, and along
its western tip and parts of the northern and southern coasts. How-
ever, most of the study area has good ray path coverage and is well
resolved for periods 3–20 s.
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ANT in the western part of Java 1265

Figure 6. The checkerboard test result from period 1 to 30 s. A good result is obtained from period 3 to 20 s.

3.2 Trans-D Bayesian inversion

The probabilistic sampling approach we consider here as an alter-
native to subspace optimization is Trans-D Bayesian inversion. This
approach makes use of a simpler misfit function:

φ (mk) = (g (mk) − d)T C−1
e (g (mk) − d) , (2)

where all the parameters are the same as has been described for
the subspace inversion, but we note that the model vector mk

has been given a subscript k, which is an index to a particular
model parametrization as will be discussed below. We again as-
sume Ce = Iσ 2, so that data errors are uncorrelated and follow
a zero-mean Gaussian distribution with standard deviation σ . The
likelihood of realizing the data d for a given model mk is:

P (d|mk) = 1
√|Ce| (2π )n

e− φ(mk )
2 , (3)

where |Ce| is the determinant of the data error covariance matrix,
so that |Ce| = σ 2n when Ce = Iσ 2. The likelihood P(d|mk)
could now be used with Bayes’ Theorem to express the a posterior
conditional probably distribution function (PDF) for the model mk

given the data d:

P (mk |d) = P(d|mk)P (mk)

∫ P(d|m′
k)dm′

k
, (4)

where P(mk) is the a priori probability of the model expressing the
information available about the likelihood of the model mk before

the measurement of data d, and ∫ P(d|m′
k)dm′

k is the probability
of the data or the evidence. In Bayesian inversion, the evidence is
usually regarded as a normalization constant and can be ignored in
the probabilistic sampling of P(mk |d).

Green (1995) showed how Bayes’ Theorem could be used to
express not only the conditional probability for a model mk having
a fixed parametrization k, but also the probability that the model has
any one of a countable set of different parametrizations expressible
via the index k:

P (k, mk |d) = P (d|mk) P (k) P (mk)
∑

k′
∫

m′
k′ P(d|m′

k′ )dm′
k′

, (5)

where the evidence in the denominator is again regarded as a nor-
malization constant that can be ignored in the probabilistic sam-
pling of P(k, mk |d). Sampling of the a posterior probability (eq. 4)
can be undertaken using the Reversible Jump Markov chain Monte
Carlo (RJMcMC) algorithm, a procedure referred to as ‘transdimen-
sional’ (Trans-D) sampling that was introduced to geophysics by
Malinverno (2002). RJMcMC sampling is the basis for the Trans-D
Bayesian inversion that has been successfully applied to a number of
geophysical inverse problems (Sambridge et al. 2006; Agostinetti
& Malinverno 2010; Minsley 2011; Dettmer et al. 2012, among
others).

In previous tomographic studies, the Trans-D method with
Voronoi cell parametrization (Bodin & Sambridge 2009; Bodin et
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1266 S. Rosalia et al.

Figure 7. Tomography result from period 1–25 s using the FMM for forward modeling to calculate the traveltimes and subspace inversion to obtain the
subsurface image beneath the western part of Java (left-hand picture) and its ray paths (right-hand picture). Red colour indicates low group velocity and blue
colour indicates high group velocity. The green line is the active fault in West Java and the magenta triangle is the active volcano.

al. 2012) has been successfully applied to obtain the velocity struc-
ture in various regional studies (Young et al. 2011; Zulfakriza et al.
2014; Pilia et al. 2015; Saygin et al. 2016). In this study, the Trans-
D Bayesian method developed by Hawkins & Sambridge (2015),
which utilizes a tree-based wavelet parametrization (Fig. 8a), was
applied to a surface wave group velocity measurement of our west-
ern Java ANT study. Details of the method and implementation are
described in Hawkins & Sambridge (2015). This Trans-D Bayesian
with a tree-based wavelet parametrization, hereafter referred to as
‘Trans-D Tree’, has been applied to teleseismic body wave data in
South Australia and synthetic data for ANT (Hawkins & Sambridge
2015), as well as to the inversion of tsunami waveforms for initial
sea-surface displacement (Dettmer et al. 2016). These studies show
the Trans-D Tree method to be efficient and flexible because of the
utilization of wavelet parametrization for mapping to and from reg-
ular grids, and the construction of multiscale models in a top-down,
coarse-to-fine-scale fashion.

Since FMST and Trans-D Tree both use the FFM for the forward
model, the difference of the two methods is in the adaptability of the
Trans-D Tree method. In contrast to FMST, the equivalent to tuning

parameters in Trans-D Tree is the prior on the wavelet coefficients.
The Trans-D Tree method adapts both the mean velocity, which is
the analogue to the reference velocity, and the smoothness, which
relates to the number of wavelet coefficients, through the hierar-
chical prior. The number of wavelet coefficients in effect acts like
smoothing, with fewer coefficients resulting in a smoother model.
However, unlike the global smoothing applied in FMST, Trans-D
Tree can use many coefficients to represent fine-scale heterogeneity
in well-resolved parts of the model and vice versa, so smoothing
over the model domain is spatially variable and adapts to the data.
Also, rather than set the smoothing to a single value (as in FMST),
we sample over many reasonable numbers of coefficients to get a
probabilistic answer as to how smooth the estimated model is.

The hierarchical prior automatically adapts the prior width on the
wavelet coefficients in an attempt to remove any bias in the final
result caused by setting too wide or too narrow a prior. Trans-D
Tree’s hierarchical error scaling (i.e. adjusting the value of σ in the
matrix Ce of eq. 3) allows the data to decide what level of error
is appropriate. Without the hierarchical adjustment of the error, if
the estimated errors are too large, the final result may not reflect
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ANT in the western part of Java 1267

Figure 7. (Continued.)

Figure 8. (a) Tree structure for wavelet coefficients. (b) The effect that using a Laplacian prior for the Cohen–Daubechies–Feauveau wavelet coefficients has
on the mean group velocity values for various values of the width.
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the information content of the data (e.g. it may be too smooth),
and if the estimated errors are too small, the final result may have
spurious structure that is not required by the data (i.e. ‘fitting the
noise’). The hierarchical error interacts with the Trans-D Tree model
dimensional complexity so that the final result, model plus data
errors, is a balance between fitting the data and having reasonable
error estimates. In FMST by contrast, this is all controlled by the
damping and smoothing parameters.

The Trans-D Tree inversion with hierarchical errors and hier-
archical prior then has far fewer control parameters and therefore
less sensitivity to user input such as the reference model or values
for ε and η (eq. 1). Both the standard deviation of the error σ and
the model complexity (as indexed by k) are allowed to adapt to
the data in a way that produces a ‘parsimonious’ solution that does
not introduce more model complexity than is required by the data
(Malinverno 2002).

Although the prior P(mk) is used to express prior information
on the likelihood of Rayleigh wave group velocity values, the tree-
based wavelet parametrization requires that the prior be specified
in terms of wavelet coefficients. Because the tree structure forms a
multiresolution hierarchy in which finer-scale wavelets are perturba-
tions to a coarser-scale wavelet basis (see Fig. 8a), the relationship
between wavelet coefficients and velocity is not obvious. In this
study, we use a prior P(mk) on wavelet coefficients that is a Lapla-
cian distribution having a width of 0.2 that is suitable for a 7-level
wavelet hierarchy that describes group velocities in the range of
about 3.0 ± 1.0 km s–1 (see Fig. 8b, and Hawkins et al. 2018).
The wavelet-basis used was the Cohen–Daubechies–Feauveau 9/7
wavelet (Cohen et al. 1992).

We used both linearized (straight rays) inversion and non-linear
(rays traced with FMM) inversion, with the final model from the
linearized Trans-D inversion used as the starting model for the
non-linear inversion. The motivation for using the linear result for
initializing the non-linear inversion is to save computation time
in converging the non-linear inversion. The assumption is that the
linear inversion is a reasonable approximation of the physics and
therefore a reasonable starting position. Although the linearized
inversion can calculate the forward model quickly, the FMM is
useful when strong lateral heterogeneity is present, as we might
expect for shallow crustal structure in western Java.

The RJMcMC sampling method used here included multiple
chains and Parallel Tempering in order to improve the exploration
of the model space and accelerate convergence (see, e.g. Sambridge
2014). We use two chains at each of three temperatures and attempt
to exchange information between adjacent pairs of temperatures
at every 10th step. For the linearized inversion, we ran 1 500 000
Markov chain steps for each chain and period, while for the non-
linear inversion, we ran between 200 000 and 400 000 steps for
each chain and period, with the length depending on whether visual
inspection of the chain histories (see Fig. 9) indicated that conver-
gence had been achieved. We assumed the first half of the chain
steps as the burnin samples (skipped) and the last half of the chain
steps as the post-burnin to compute the mean model. We used half
of the chain because we assumed that as we run chain steps long
enough, the last half of the chain could be used to compute the mean
model.

The Trans-D inversion’s Markov chains can be assessed for con-
vergence by visual inspection of the histories of diagnostic parame-
ters like the likelihood and σ , the standard deviation of the data error
distribution. Fig. 9 shows these histories for the last 180 000 steps
of the Markov chains for selected periods, along with maps of the
average Rayleigh wave group velocities calculated over the Markov

chain ensemble. (pre-convergence ‘burn-in’ is mainly confined to
the linearized inversions, which are not shown). The chain histories
for the negative log likelihood and σ appear to exhibit random fluc-
tuations about a value that is constant over the chain history. While
convergence of Markov chains is difficult to establish conclusively,
we regard this ‘flat’ character of the chain histories as a good indi-
cation that they have converged. As a comparison, we plotted the
full chain histories in Fig. S6.

4 C O M PA R I S O N O F S U B S PA C E A N D
T R A N S - D I N V E R S I O N S

The Trans-D Bayesian approach to inversion described above is
much more computationally demanding than the subspace inver-
sion, but provides an a posteriori PDF that allows for rigorous error
appraisal and description of the spatial variation in group veloc-
ity using properties of the PDF such as its mean or median, that
are robust in the sense that they depend on an aggregation over
many models (and, in the Trans-D case used here, many model
parametrizations). The subspace inversion, on the other hand, is an
optimization that finds a single model that best fits the data using a
particular parametrization subject to regularization.

We perform the same CKB test of the subspace using Trans-D in-
version as comparison for the synthetic data inversion. The results
are shown in Figs 10(g)–(i). The Trans-D result for 60 × 60 km
grid (Fig. 10g) shows a good reconstruction except in the east part
where there is lack of ray path. The Trans-D result for 30 × 30 km
grid (Fig. 10h) shows a good reconstruction of the initial veloc-
ity throughout the study are. Meanwhile, the Trans-D result for
15 × 15 km grid (Fig. 10i) shows better reconstruction than the
FMST which prove that the FMST suffer from grid size parametriza-
tion.

A comparison of the results we obtained using Trans-D Bayesian
and subspace inversion for real data is shown in Fig. 11 for group
velocity at 20 s period. Figs 11(a) and (b) shows the lower and upper
bounds, respectively, of the 95 per cent credibility interval, which
has a width of 1–2 km s–1. These credible intervals are calculated
from the ensemble which could provide estimate of the uncertain-
ties. The 95 per cent credible intervals mean that we have a 95 per
cent probability of having a value between a minimum and maxi-
mum bound. The subspace (FMST) result is shown in Figs 11(c)
and (d), while the Trans-D mean group velocity model and its cor-
responding raypath is shown in Figs 11(e) and (f). Immediately
evident upon comparison of the FMST and Trans-D result is the
failure of FMST to update the reference model in areas of low ray
path coverage, particular on the eastern edge of the study area but
also along parts of the northern and southern coasts, and western
tip of Java, where the velocity of the final model is unchanged from
that of the reference model, 2.25 km s –1. Furthermore, the velocity
of the FMST model in Fig. 11(c) is almost everywhere lower than
that of the Trans-D model, and in many places approaches the lower
bound of the 95 per cent credibility interval of the Trans-D solution
(Fig. 11a). This suggests that a combination of the damping and
smoothing regularization (the 2nd and 3rd terms, respectively on
the right-hand side of eq. 1), have caused FMST to not only retain
the reference velocity along the edges of the model, but that this has
‘bled’ into the rest of the model, leading to velocities everywhere
biased to low values. This is also evident from the negative skew of
the traveltime residuals in Fig. 11(h).

We increased the reference velocity model to 2.75 km s–1, the
value of Trans-D model along its eastern edge and re-ran FMST.
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Figure 9. Tomography results for periods 1–25 s using non-linear Trans-D inversion. The left-hand side of each panel (a–j) image shows the Markov chain
histories for the negative logarithm of the likelihood and the standard deviation of data errors σ . The ‘flat’ character of these histories strongly suggests a
convergence of the Markov chains. The images on the right of panels (a–j) show maps of the Rayleigh wave group velocity calculated as the average of a
posteriori PDF sampled using RJMcMC. Red colour indicates low group velocity and blue colour indicates high group velocity. The green lines are active
faults in West Java and the magenta triangles are locations of active volcanoes.

The resulting model is shown in Fig. 11(d), which is almost identical
to the mean Trans-D model (Fig. 11e), and has a residual distribution
centred on zero (Fig. 11i) and slightly narrower than the residual
distribution in Fig. 11(h) (FMST reference velocity 2.25 km s –1)
but slightly wider than the Trans-D residual distribution (Fig. 11g).
We also note that the latter agrees well with a normal distribution
having σ = 2.75, the value estimated in the Trans-D inversion (Fig.
11e). While in this case both the reference model and the σ used
in the FMST inversion could have been manually adjusted using
visual inspection of only the FMST results and residual distribu-
tion, Trans-D finds appropriate values for these in a natural way
that is driven by the data, since it uses no regularization (either
to a reference model or for model smoothness) and the value of
mean velocity or reference velocity is automatically adjusted in the
inversion.

FMST’s dependence on the reference model was not as easy to
discern for all periods, however, Fig. 12 shows a comparison of
Trans-D and FMST results similar to that in Fig. 11, but for a period
of 3 s. Here we see that again the FMST model obtained using a
reference velocity of 2.25 km s–1 (Fig. 12c) has retained this value
along some of the poorly sampled edges of the model [note ray
path coverage in Fig. 12(g)]. In this case, the Trans-D result in Fig.
12(e) also has about 2.25 km s–1 along some of the poorly sampled
edges of the model, except for the eastern edge which has a velocity

of about 1.75 km s–1. A subsequent FMST inversion with reference
velocity 1.75 km s–1 produced the result in Fig. 12(d), which retained
this reference velocity along all the poorly sampled edges of the
model. Finally, we performed an FMST inversion using the Trans-
D mean model of Fig. 12(e) as the reference model, resulting in
the model of Fig. 12(f), which has velocity values in the unsampled
edges that are similar to those of the Trans-D model, and results
in smaller residuals than was the case for either inversion run with
uniform reference velocity [Fig. 12k versus Figs 12(h)–(i)].

The different values for group velocity obtained along the un-
sampled edges of the study area in Fig. 12. and S7 are of course not
particularly meaningful. However, all of the models in Figs 12(c)–(f)
(and S7a-r) also exhibit differences in the well-sampled parts of the
model not close to the edges, and these need to be understood. We
surmise that, for the FMST results in Figs 12(c)–(e), the structure
that gives rise to the differences between them in the well-sampled
regions is spurious, in the sense that it is driven by changes in our
choice for reference velocity model and regularization parameter
values. While the velocity in the poorly sampled regions of the
Trans-D model may not be meaningful, they are at least driven by
fits to the data in the well-sampled parts of the model, and not vice
versa. We also note that the Trans-D residuals are generally smaller
than the FMST residuals and that the FMST residuals tend to get
smaller when we incorporate information from the corresponding
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Figure 9. (Continued.)

Trans-D results [see e.g. Figs 11(g)–(i) and Figs 12(h)–(k)]. We
conclude from this that the Trans-D method is achieving a more
effective exploration of the model space, even though for FMST
convergence always seemed to be reached after only a few itera-
tions (see Fig. S3).

A simple and objective way to determine a suitable initial velocity
for FMST is to use the average velocity estimated from the Trans-D
inversion. We did this for each period and display the results in
Fig. S7, which show similar behaviour to that described above. For
the longest periods, 20–25 s (Fig. S7n–t), this new average velocity
represents the study area reasonably well, and the slight departures
of group velocity from this average value within the well-sampled
part of the study area are similar for FMST and Trans-D Tree. For
the remaining periods, however, the velocity is always lower in the
east than in the west, with notable differences between the FMST
and Trans-D Tree group velocities in the well-sampled part of the
model domain. In this case Trans-D Tree always accommodates a
more extensive spread of low velocity in the east than FMST, and
we believe this is due to the same combination of damping and
smoothing regularization in FMST as described above for the 3 s
group velocity results.

5 D I S C U S S I O N O F T H E G RO U P
V E L O C I T Y R E S U LT S

The results for Rayleigh wave group velocities maps for selected
periods obtained by regularized subspace inversion, and by Trans-D
Tree inversion are shown in Figs 7 and 9, 11, 12, respectively (the
corresponding maps for all periods are shown in the Supplementary

material, Figs S4 and S5, respectively). Both the subspace and the
Trans-D Bayesian results have a similar overall pattern. For periods
of 1–10 s, the northeastern half of western Java is characterized
by a low group velocity, 2 km s–1 or less, while high velocities
of 2.5 km s–1 or greater characterize the southwestern half [see
Figs 9(c)–(e), for 5–10 s period]. This high group velocity in the
southwest corresponds to an area of Eocene and Miocene sedimen-
tary and volcanic deposits that include the Ciletuh, Jampang and
Bayah Formations (some of the oldest rocks in western Java) as well
as Pliocene sediments in westernmost Java (Clements et al. 2009;
Clements & Hall 2011). The low velocity in the northeast proba-
bly reflects deep intermontane basins near the centre of the study
area and sedimentary basins and along the northern coastal plains
resulting from depositional processes associated with products of
late Tertiary and Quaternary volcanism (see Kartadinata et al. 2002;
Nasution et al. 2004; Daryono et al. 2019).

For longer periods of 13–25 s, the group velocity gradually in-
creases throughout western Java, which presumably reflects the
transition to the crystalline basement and eventually the Moho.
We also observed that some group velocity anomalies as low as
2.25 km s–1 persist to periods as long as 15–17 s [see Figs 9(g)–(h)],
and these may be correlated with centres of volcanic activity. One
large anomaly lies in the north of the central part of the study area,
just north of Tangkuban Perahu, an active volcano that experienced
a major eruption as recently as 40 ka, but which is a remnant of the
much larger Sunda volcano, that collapsed in a huge caldera erup-
tion lasting over 200–50 ka, whose eruptive products cover an area
of about 200 km2 with thickness varying from 8 to 180 m (Nasution
et al. 2004). Further south is a smaller anomaly centred on Guntur
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Figure 11. Comparison of tomography results for 20 s Rayleigh wave group velocity. (a,b) Minimum and maximum bounds, respectively, for the Trans-D
95 per cent credibility interval. (c,d) FMST results for reference velocities of 2.25 and 2.75 km s–1, respectively. (e) The Trans-D mean model. Panel (f) as
(e) but with ray path coverage. Panels (g–i) Residual histograms for the Trans-D, FMST with reference velocity = 2.25 km s–1, and FMST with reference
velocity = 2.75 km s–1, respectively. The orange curve in (g) is the normal PDF with σ = 2.75 and normalized to that of the Trans-D residual histogram.

volcano, whose frequent eruptions in the 19th century make it one
of the most active volcanoes in western Java.

6 C O N C LU D I N G R E M A R K S

In this study, we applied the ANT method to image the Rayleigh
wave group velocity structure in the western part of Java using 85
stations. We considered two approaches to the highly non-linear
problem of surface wave group velocity inversion, one a tradi-
tional optimization approach that used iterative, linearized (sub-
space or FMST, see Rawlinson et al. 2006) inversion, and the
other a probabilistic sampling (Trans-D Bayesian, see Hawkins
& Sambridge 2015) approach that allowed for data noise and
model parametrization to adapt to fit the data as part of the
inversion.

Our study found that, while computationally expensive, the
Trans-D approach offered important advantages over FMST, includ-
ing an apparently more extensive exploration of the model space as
evidenced by a reduced residual misfit, and rigorous quantification
of uncertainty. Also, Trans-D does not suffer from sensitivity to a
reference model and regularization parameters, which our results

suggest can introduce spurious structure into solutions obtained us-
ing FMST (and presumably similar optimization methods). While it
might be possible for methods like FMST to avoid such sensitivity
to regularization if the reference model and regularization parame-
ter values are judiciously chosen, we found that this choice was not
always obvious. Moreover, because Trans-D results can be aggre-
gated over an extensive sampling of the parameter space (e.g. mean
or median of the a postiori PDF), we believe it provides a more
robust characterization of spatial variation in Rayleigh wave group
velocity that better reflects the information content of the data than
is the case for optimization methods like FMST.

Our inversion for Rayleigh wave group velocity structure in west-
ern Java shows that for short periods (1–10 s), spatial variations in
group velocity closely follow the age of the sediments and volcanic
deposits that comprise the surface geology of western Java. For
longer periods (13–25 s), the group velocities increase to reflect the
transition to the crystalline basement and the Moho, but some low
group velocity anomalies for periods as long as 15–17 s correlate
well with centres of volcanic activity in western Java.

We hope that future work will see our ANT data set combined
with ANT data sets covering central and eastern Java (Zulfakriza
et al. 2014 and Martha et al. 2017, respectively). Also, we would
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Figure 12. Comparison of tomography results for 3 s Rayleigh wave group velocity. (a,b) minimum and maximum bounds, respectively, for the Trans-D 95
per cent credibility interval. (c,d) FMST results for reference velocities of 2.25 and 1.75 km s–1, respectively. (e) The Trans-D mean model and (f) FMST result
for reference velocities using the Trans-D model of (e). (g) as (f) but with ray path coverage. (h–k) Residual histograms of (c–f), respectively. The orange curve
in (h) is the normal PDF with σ = 2.90 and normalized to that of the Trans-D residual histogram.

like to use the Trans-D method in a multiscale approach that com-
bines these large-scale data sets with much more densely spaced
seismometer deployments targeted at basin structure and sources of
volcanic activity (e.g. Saygin et al. 2016; Widiyantoro et al. 2018).
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