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Abstract 

Background: Multiple types of surgical cameras are used in modern surgical practice and provide a 

rich visual signal that is used by surgeons to visualise the clinical site and make clinical decisions. This 

signal can also be used by artificial intelligence (AI) methods to provide support in identifying 

instruments, structures or activities both in real-time during procedures and post-operatively for 

analytics and understanding of surgical processes 

Summary: In this paper, we provide a succinct perspective on the use of AI and especially computer 

vision to power solutions for the surgical operating room (OR). The synergy between data availability 

and technical advances in computational power and AI methodology has led to rapid developments 

in the field and promising advances.  

Key Messages: With the increasing availability of surgical video sources and the convegence of 

technologies around video storage, processing and understanding, we believe clinical solutions and 

products leveraging vision are going to become an important component of modern surgical 

capabilities. Yet both technical and clinical challenges remain to be overcome to efficiently make use 

of vision-based approaches into the clinic. 
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1. Introduction 

Surgery has progressively shifted towards the minimally invasive surgery (MIS) paradigm. This means 
that today most operating rooms are equipped with digital cameras that visualise the surgical site. The 
video generated by surgical cameras is a form of digital measurement and observation of the patient 
anatomy at the surgical site. It contains information about the appearance, shape, motion and function 
of the anatomy and instrumentation within it. Once recorded over the duration of a procedure it also 
embeds information about the surgical process, actions performed, instruments used, possible hazards 
or complications and even information about risk. While such information can be inferred by expert 
observers, this is not practical for providing assistance in routine clinical use and automated techniques 
are necessary to effectively utilise the data for driving improvements in practice  [1, 2]. 

Currently, the majority of surgical video is either not recorded or it is stored for a limited period of time 
on the stack accompanying the surgical camera and then discarded at a later date. Perhaps some video 
is used in case presentations during clinical meeting discussions or society conferences or for 
educational purposes and on an individual level surgeons may choose to record their case history. 
Storage has an associated cost and hence it is sensible to reduce data stores to only relevant and 
clinically useful information. This is largely due to the lack of tools that can synthesise the surgical video 
into meaningful information, either about the process or about physiological information contained in 
the video observations. For certain diagnostic procedures, for example endoscopic gastroenterology, 
storage of images from the procedure into the patient medical record to document observed lesions 
is becoming standard practice but this is largely not done for surgical video. 

In addition to surgical cameras, it is also nowadays common for other operating room (OR) cameras to 
be present. These can be used to monitor activity throughout the OR and not just at the surgical site 
[3]. As such, opportunities are present to capture this signal and provide understanding of the entire 
room and activities or events that occur within it. This can potentially be used to optimise team 
performance or monitor room level events that can be used to improve the surgical process.To 
effectively make use of video data from the OR it is necessary to build algorithms for video analysis 
and understanding. In this paper, we provide a short review of the state-of-the-art in artificial 
intelligence (AI), and especially computer vision, for the analysis of surgical data and outline some of 
the concepts and directions for future development and practical translation into the clinic. 

2. Computer Vision 

The field of computer vision is a sub-branch of AI focused on building algorithms and methods for 
understanding information captured in images and video [4]. To make vision problems tractable, 
computational methods typically focus on sub-components of the human visual system, for example 
object detection or identification (classification), motion extraction or spatial understanding (please 
see Fig. 1). Developing these building blocks in the context of surgery and surgeons’ vision can lead to 
exciting possibilities for utilizing surgical video [4]. 

Computer vision has seen major improvements in the past two decades driven by breakthroughs in 
computing, digital cameras, mathematical modelling and most recently deep learning techniques. 
While previous systems required human intervention in the design and modelling of image features 
that capture different objects in a certain domain, in deep learning the most discriminant features are 
learnt autonomously from extensive amounts of annotated data. The increasing access to high 
volumes of digitally recorded image-guided surgeries is sparking a significant interest in translating 
deep learning to intraoperative imaging. Annotated surgical video datasets in a wide variety of 
domains are being made publicly available for training validating new algorithms in the form of 
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competition challenges [5], resulting in a rapid progress towards reliable automatic interpretation of 
surgical data. 

 

Fig. 1. The use of computer vision to process data from a wide range of intraoperative imaging 

modalities or cameras can be grouped into three main applications: Surgical Process Understanding, 

Computer Aided Detection, and Computer Assisted Navigation. We adopt this grouping for the 

purposes of this article although additional applications are also discussed in the text. 

3. Surgical Process Understanding 

Surgical procedures can be decomposed into a number of sequential tasks (e.g. dissection, suturing, 
anastomosis) typically called procedural phases or steps [6, 7, 8]. Recognising and temporally localising 
these tasks allows for process surgical modelling and workflow analysis [9]. This further facilitates the 
current trend in MIS practice towards establishing standardised protocols for surgical workflow and 
guidelines for task execution, describing optimal tool positioning with respect to the anatomy, setting 
performance benchmarks and ensuring operational safety and complication-free, cost-effective 
procedures [10, 11].  The ability to objectively quantify surgical performance could impact many 
aspects of user and patient experience, like reduced mental/physical load, increased safety and more 
efficient training and planning [12, 13]. Intraoperative video is the main sensory cue for surgical 
operators and provides a wealth of information about the workflow and quality of the procedure. 
Applying computer vision in the OR for workflow and skills analysis extends beyond the interventional 
video. Operational characteristics can be extracted from tracking and motion analysis of clinical staff 
using wall-mounted cameras and embedded sensors [14] and from tracking eye movements and 
estimating gaze patterns in MIS [15]. As in similar data science problems, learning-based AI has the 
potential to pioneer surgical workflow analysis and skills assessment and represents the focus of this 
section. 

3.1 Surgical Phase Recognition 

Surgical video has been used for segmenting surgical procedures into phases and the development of 
AI methods for workflow analysis (or phase recognition), facilitated by publicly annotated datasets [7, 



5 

 

8], has dramatically accelerated the stability and capability of recognising and temporally localising 
surgical tasks in different MIS procedures78. 12The EndoNet architecture introduced convolutional 
neural network (CNN) for workflow analysis in laparoscopic MIS, specifically laparoscopic 
cholecystectomy, with the ability to recognise the 7 surgical phases of the procedure with over 80% 
accuracy [16]. More complex AI models (SV-RCNet, Endo3D) have increased accuracy to almost 90%  
[17, 18]. One of the main requirements for learning techniques is data and annotations which are still 
limited in the surgical context. In robotic-assisted MIS procedures instrument kinematics can be used 
in conjunction with the video to add explicit information on instrument motion. The JHU-ISI Gesture 
and Skill Assessment Working Set (JIGSAWS) is a dataset of synchronised video and robot kinematics 
data from benchtop simulations of three (suturing, knot tying, needle passing) fundamental surgical 
tasks [6]. The JIGSAWS dataset has extended annotations at sub-task level. AI techniques learn 
patterns and temporal interconnections of the sub-tasks sequences from combinations of robot 
kinematics and surgical video, detect and temporally localised each sub-task [19-24]. Recently, AI 
models for activity recognition have been developed and tested on annotated datasets from real-cases 
of robotic-assisted radical prostatectomy and ocular microsurgery [18, 19, 20]. Future work in this area 
should focus on investigating the ability of AI methods for surgical workflow analysis to generalise with 
rigorous validation on multi-centre annotated datasets of real procedures.20 

3.2 Surgical Technical Skill Assessment 

Automated surgical skill assessment attempts to provide an objective estimation of the surgeons’ 
performance and quality of execution [25]. AI models analyse the surgical video and learn high-level 
features to discriminate different performance and experience levels during the execution of surgical 
tasks. In studies on robotic surgical skills, using the JIGSAWS dataset, such systems can estimate 
manually assigned OSATS-based scores with more than 95% accuracy [26, 27, 28]. In interventional 
ultrasound (US) imaging, AI methods can automatically measure the operator's skills by evaluating the 
image quality of the  captured US images with respect to their medical content [29, 30]. 

4. Computer Aided Detection 

Automatically detecting structures of interest in digital images is a well established field in computer 
vision. Its real-time application to surgical video provide assistance in visualising clinical targets and 
sensitive areas to optimise and increase the safety of a procedure,  

4.1 Lesion Detection in Endoscopy  

AI vision systems for Computer Aided Detection (CAD) can provide assistance during diagnostic 
interventions by automatically highlighting lesions and abnormalities that could otherwise be missed. 
CAD systems were firstly introduced in radiology, with existing food and drug administration (FDA) and 
european economic area (EEA) approved systems for mammography and chest computed tomography 
(CT) [31]. In the interventional context there has been particular interest in developing CADe systems 
for gastro-intestinal endoscopy. Colonoscopy has received the most attention to date, and prototype 
CAD systems for polyp detection report accuracies as high as 97.8% using magnified narrow band 
imaging [32]. Similar systems have also been developed for endocytoscopy, capsule endoscopy, and 
conventional white light colonoscopes [33]. Research on CADe systems is also targeting esophageal 
cancer and early neoplasia in Barret’s esophagus [34]. 

4.2 Anatomy Detection 
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Detection and highlight of anatomical regions during surgery may provide assisted guidance and avoid 
accidental damage to critical structures, such as vessels and nerves. While significant research on 
critical anatomy representation focuses on the registration and display of data from pre-operative 
scans (see Section 3), more recent approaches directly detect these structures from intraoperative 
images and video. In robotic prostatectomy, subtle pulsation of vessels can be detected and magnified 
to an extent that is perceivable by a surgeon [35]. In laparoscopic cholecystectomy, automated video 
retrieval can help in assessing if a Critical View of Safety (CVS) was achieved [36], with potential risk 
reduction and  a safer removal of the gallbladder. Additionally, the detection and classification of 
anatomy enables the automatic generation of standardised procedure reports for quality control 
assessment and clinical training [37]. 

4.3 Surgical Instrument Detection 

Automatic detection and localisation of surgical instruments,  when integrated with anatomy 
detection, can also contribute to accurate positioning and ensure critical structures are not damaged. 
In robotic minimally invasive surgery (RMIS), this information has the added benefit of making progress 
towards active guidance, for example, during needle suturing [38]. For this reason, research on surgical 
instrument detection has seen its largest share of research targeting the articulated tools in RMIS [39]. 
With RMIS there are interesting possibilities in using robotic systems to generate data for training AI 
models and bypassing the need for expensive manual labelling [40]. However, instrument detection 
has also received some attention in non-robotic procedures including colorectal, pelvis, spine and 
retinal surgery [41]. In such cases, vision for instrument analysis may assist in bulidng systems that can 
report analytics about instrument usage for reporting, or instrument motion and activity for surgical 
technical skill analysis or verificaiton. 

5 Computer Assisted Navigation 

Vision-based methods for localisation and mapping of the environment using the surgical camera have 
advanced rapidly in recent years. This is crucial in both diagnostic and surgical procedures because it 
may enable more complete diagnosis or fusion of pre- and intra-operative information to enhance 
clinical decision making. 

5.1  Enhancing Navigation in Endoscopy 

For providing physicians with navigation assistance in MIS, these systems must be able to locate the 
position of the endoscope within explored organs while simultaneously inferring their shape. 
Simultaneous localisation and mapping (SLAM) in endoscopy is however a challenging problem [42]. 
The ability of deep learning approaches to learn characteristic data features has proven to outperform 
hand-crafted features detectors and descriptors in laparoscopy, colonoscopy and sinus endoscopy 
[43]. These approaches have also demonstrated promising results for registration and mosaicking in 
fetoscopy with the aim of augmenting the fetoscope field of view [44]. Nonetheless, endoscopy image 
registration still remains an open problem due to the complex topological and photometrical 
properties of organs producing significant appearance variations and complex specular 
reflections.Deep learning-based SLAM approaches rely on the ability of neural networks to learn a 
depth map from a single image, overcoming the need for image registration. It has recently been 
shown that these approaches are able to infer dense and detailed depth maps in colonoscopy [45]. By 
fusing consecutive depth maps and simultaneously estimating the endoscope motion using geometric 
constraints, it has been demonstrated that long range colon sections could be reconstructed [46]. A 
similar approach has also been successfully applied to the 3D reconstruction of sinus anatomy from 
endoscopic video so as to propose an alternative to CT scans, expensive procedures using ionizing 
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radiation, for longitudinal monitoring of patients after nasal obstruction surgery [47]. However, critical 
limitations need to be overcome such as navigation within deformable environments.  

5.2 Navigation in Robotic Surgery  

Surgical robots such as da Vinci Surgical System generally use stereo endoscopes which have significant 
advantages over monocular endoscopes in their ability to capture 3D measurements. Estimating a 
dense depth map from a pair of stereo images generally consists in estimating dense disparity maps 
defining the apparent pixel motion between two images. Most of the stereo registration approaches 
rely on geometric methods [48]. It has however been shown that DL-based approaches could be 
successfully applied to partial nephrectomy outperforming state of the art stereo reconstruction 
methods [49]. Surgical tool segmentation and localisation contribute to safe tool-tissue interaction and 
are essential to visually guided manipulation tasks. Recent DL approaches demonstrate significant 
improvements over hand-crafted tool tracking methods offering a high degree of flexibility, accuracy 
and reliability [50]. 

5.3 Image Fusion and Image-guided Surgery 

A key concept in enhancing surgical navigation has been the idea of fusing multiple pre-operative and 
intra-operative imaging modalities in an Augmented Reality (AR) view of the surgical site [48]. Vision-
based AR systems generally involve mapping and localisation of the environment in addition to blocks 
that align any preoperative 3D data models to that reconstruction and then display the fused 
information to the surgeon [51]. The majority of surgical AR systems have been founded on geometric 
vision algorithms but deep learning methods are emerging, for example for US to CT in spine surgery 
[52] or to design efficient deformable registration in laparoscopic liver surgery [53]. Despite 
methodological advances significant open problems persist in surgical AR such as adding contextual 
information to the visualisation (e.g. identifying anatomical structures and critical surgical areas, 
detecting surgical phases and complications) [54], ensuring robust localisation despite occlusions and 
displaying relevant information to different stakeholders in the OR. Work is advancing to address these 
challenges and evaluation of the state-of-the-art learning based method for visual human pose 
estimation in the OR has recently been reported [55] alongside a review dedicated to face detection 
into the OR [56] and methods to estimate both surgical phases and remaining surgery durations [57] 
which can be used to alter information displayed at different times. 

6. Discussion 

In this paper, we have provided a succinct review of the broad possibilities for using computer vision 
in the surgical OR. With the increasing availability of surgical video sources and the convergence of 
technologies around video storage, processing and understanding, we believe clinical solutions and 
products leveraging vision are going to become an important component of modern surgical 
capabilities. Yet both technical and clinical challenges remain and we try to outline them below. 

Priorities for technical research and development: 

● Availability of datasets with labels and ground truth. Despite efforts from challenges, the 
quality and availability of large scale surgical datasets remains a bottleneck. Efforts are needed 
to address this and cause a similar catalyst effect as was observed in wider vision and AI 
communities; 

● Technical development in unsupervised methods. Developing aproaches that do not require 
any labelled sensor data (ground truth) is needed to bypass the need for large scale dataset or 
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adapt to new domains (i.e adapt method dedicated to non-medical data to medical imaging). 
Furthermore,  even if the data gap is bridged, the domain of surgical problems and axes of 
variation (patient, disease, etc) is huge and solutions need to be adaptive to be able to scale.  

Challenges for clinical deployment: 

● Technical challenges in infrastructure. Computing facilities in the OR, access to cloud 
computing using limited bandwidth, latency of delivering solutions, are all practical problems 
that require engineering resources beyond the core AI development; 

● Regulatory requirements around solutions. Various levels of regulation are needed for 
integrating medical devices and software within the OR. Because of their compexity, assesing 
the limitation and capabilities of AI-based solutions is difficult, particularly for problems in 
which human supervision cannot be used to validate their precision (e.g. SLAM). 

● User interfaces design. It is critical to ensure that only relevant information are provided to the 
surgical teams and, for advanced AI-based solution, a direct practitioner-surgical platform 
communication can be established. Integrating contextual information (e.g. surgical phase 
recognition, practitioner identification) is a major challenge for developing efficient user 
interfaces.  

Finally, this short and succinct review has focused on research directions that are in active 
development. Due to the limitations of space we have not discussed opportunities around using 
computer vision with different imaging systems or spectral imaging despite the opportunities in AI 
systems to resolve ill posed inverse problems in that domain [58]. Additionally, we have not covered 
in detail work in vision for the entire OR but this is a very active area of development with exciting 
potential for wider team workflow understanding [3]. 
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