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A B S T R A C T   

Background: MRI assessment in multiple sclerosis (MS) focuses on the presence of typical white matter (WM) 
lesions. Neurodegeneration characterised by brain atrophy is recognised in the research field as an important 
prognostic factor. It is not routinely reported clinically, in part due to difficulty in achieving reproducible 
measurements. Automated MRI quantification of WM lesions and brain volume could provide important clinical 
monitoring data. In general, lesion quantification relies on both T1 and FLAIR input images, while tissue 
volumetry relies on T1. However, T1-weighted scans are not routinely included in the clinical MS protocol, 
limiting the utility of automated quantification. 
Objectives: We address an aspect of this important translational challenge by assessing the performance of FLAIR- 
only lesion and brain segmentation, against a conventional approach requiring multi-contrast acquisition. We 
explore whether FLAIR-only grey matter (GM) segmentation yields more variability in performance compared 
with two-channel segmentation; whether this is related to field strength; and whether the results meet a level of 
clinical acceptability demonstrated by the ability to reproduce established biological associations. 
Methods: We used a multicentre dataset of subjects with a CIS suggestive of MS scanned at 1.5T and 3T in the 
same week. WM lesions were manually segmented by two raters, ‘manual 1′ guided by consensus reading of CIS- 
specific lesions and ‘manual 2′ by any WM hyperintensity. An existing brain segmentation method was adapted 
for FLAIR-only input. Automated segmentation of WM hyperintensity and brain volumes were performed with 
conventional (T1/T1 + FLAIR) and FLAIR-only methods. 
Results: WM lesion volumes were comparable at 1.5T between ‘manual 2′ and FLAIR-only methods and at 3T 
between ‘manual 2′, T1 + FLAIR and FLAIR-only methods. For cortical GM volume, linear regression measures 
between conventional and FLAIR-only segmentation were high (1.5T: α = 1.029, R2 = 0.997, standard error (SE) 
= 0.007; 3T: α = 1.019, R2 = 0.998, SE = 0.006). Age-associated change in cortical GM volume was a significant 
covariate in both T1 (p = 0.001) and FLAIR-only (p = 0.005) methods, confirming the expected relationship 
between age and GM volume for FLAIR-only segmentations. 
Conclusions: FLAIR-only automated segmentation of WM lesions and brain volumes were consistent with results 
obtained through conventional methods and had the ability to demonstrate biological effects in our study 
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population. Imaging protocol harmonisation and validation with other MS phenotypes could facilitate the 
integration of automated WM lesion volume and brain atrophy analysis as clinical tools in radiological MS 
reporting.   

1. Introduction 

Magnetic resonance imaging (MRI) assessment is fundamental for 
diagnosis and monitoring in multiple sclerosis (MS). MS is a demyelin-
ating disease of the central nervous system characterised by inflamma-
tion and neurodegeneration (Sand, 2015). A patient’s initial 
symptomatic demyelinating event is referred to as clinically isolated 
syndrome (CIS), and where brain MRI lesions have a pattern consistent 
with MS, these patients have a high probability of converting to 
relapsing-remitting MS in the future (Kappos et al., 2007). Radiological 
evaluation focuses on the presence of MS-typical white matter lesions, in 
terms of their morphology and location. Once MS has become estab-
lished, change in lesion load over time and in response to treatment is 
the focus of radiology reporting. Another component of MS pathology – 
namely neurodegeneration characterised by brain atrophy - has been 
recognised as an important prognostic factor for disease progression in 
the research field (Sastre-Garriga et al., 2017). It is not routinely re-
ported in the clinical setting and not included in diagnostic or moni-
toring guidelines (Thompson et al., 2018; Lublin et al., 2014), in part 
because of difficulty in achieving reproducible measurements (Sastre- 
Garriga et al., 2020). 

The interpretation provided by the radiologist could benefit from 
embedding automated volumetric lesion and brain volume assessments 
into the clinical routine setting. Efforts have recently been made towards 
clinically useful solutions that take into account image quality and 
acquisition heterogeneity that is common in clinical settings (Zivadinov 
et al., 2018; Dwyer et al., 2019), by using T2 weighted-Fluid Attenuation 
Inversion recovery, T2-FLAIR, to not only measure lesion volume but 
also determine central atrophy in a reproducible fashion using hetero-
geneous clinical data. 

Volumetric techniques for total lesion load and brain volume quan-
tification have been developed in the research and clinical trial settings, 
where image acquisition is more homogeneous and multiple contrasts 
are available (Lindig et al., 2018; Danelakis et al., 2018). In general, 
lesion segmentation techniques rely on the availability of multi-contrast 
source image data sets, i.e. requiring both T1- and T2-weighted (e.g. T2- 
FLAIR) images, with automated techniques typically reliant on isotropic 
three dimensional (3D) acquisitions but manual delineations often 
performed on two dimensional (2D) acquisitions (Simões et al., 2013; de 
Boer et al., 2009). Brain volume quantification solutions typically 
require a 3D T1-weighted image dataset. Segmentation accuracy is 
affected by the presence of white matter lesions and can be improved by 
detecting and correcting for them (Valverde et al., 2015). 

In the routine work-up of MS patients, a 3D T1-weighted scan is 
generally not part of the clinical MRI protocol (Schmierer et al., 2019). 
While there are several proprietary solutions available for lesion seg-
mentation and brain volume quantification, these require 3D T1- 
weighted, as well as T2-FLAIR images, and are variable in the infor-
mation they offer, some providing only lesion segmentation or brain 
volumetry (Jain et al., 2015). Moreover, it is difficult to gauge how these 
solutions have been validated and what gold standard they have been 
assessed against (Wilkinson and van Boxtel, 2019). All these problems 
present a substantial barrier for translation of valuable quantitative 
techniques for well-validated implementation for clinical radiological 
use in MS. 

In this study, we aim to address an aspect of this important trans-
lational challenge, namely that of non-standard sequence availability, 
which is one amongst the many required to achieve clinical imple-
mentation of an automated imaging biomarker tool (Goodkin et al., 
2019). We will do this by assessing the performance of T2-FLAIR-only 

simultaneous lesion segmentation and brain volume quantification 
and comparing against a conventional approach for lesion and brain 
tissue segmentation requiring a multi-contrast acquisition, namely T1 
and T2-FLAIR. We will investigate whether the output from an auto-
mated lesion segmentation tool is more reflective of manual segmenta-
tion of all white matter hyperintensities (WMH) or only typical MS 
lesions. We will explore the reproducibility of imaging biomarker 
extraction by applying the methods to a multi-centre, multi-vendor 
dataset of subjects with a CIS suggestive of MS scanned in both 1.5T and 
3T scanners within the same week (Hagens et al., 2018), which will 
allow us to evaluate the performance of automated lesion and brain 
segmentation at the two field strengths. 

We aim to establish the extent to which T2-FLAIR-only lesion and 
brain segmentation introduces more variability in performance 
compared with conventional segmentation. We will explore the effects 
of field strength and WM lesion inpainting (Chard et al., 2010; Prados 
et al., 2016); and whether the results reflect established biological as-
sociations, for example age-related changes in brain volume. We 
hypothesise that T2-FLAIR-only segmentation will achieve comparable 
results to conventional methods. 

2. Methods 

2.1. Dataset 

We used the dataset described by Hagens et al. (2018), which con-
sists of CIS subjects recruited between July 2013 and September 2015 
from six European MS centres in the Magnetic Resonance Imaging in 
Multiple Sclerosis (MAGNIMS) network (www.magnims.eu). For the 
purposes of this study we used a subset of 66 CIS subjects. 

Inclusion criteria for CIS subjects were defined by the international 
panel on MS diagnosis (Polman et al., 2011), and all subjects included 
were aged between 18 and 59 years at baseline, with no other immu-
nological, vascular or oncological medical history. Local institutional 
review boards approved the study at each centre and all participants 
gave their written informed consent to participate. 

2.2. MRI acquisition 

MRI was performed at both 1.5T and 3T, within the same week. 
Scanning parameters were applied in accordance with the MAGNIMS 
guidelines (Wattjes et al., 2015) using a multisequence scanner opti-
mised acquisition protocol (Hagens et al., 2018). In particular, acquisi-
tions included isotropic gradient echo 3-D T1-weighted (T1) and 3D 
turbo spin echo T2-FLAIR. Acquisition parameters for each centre can be 
found in the supplementary material. 

2.3. WM lesion detection 

Consensus joint reading was performed for all scans using a digital 
workstation (Sectra [Linköping, Sweden] IDS7 version 16.2.28) by three 
experienced readers in random order, with a minimum reading time 
interval of two weeks between 1.5T and 3T scans, as described (Hagens 
et al., 2018). Lesions were defined as all areas of abnormal white matter 
hyperintensity consistent with CIS apparent on T2-FLAIR images and 
larger than 3 mm diameter. The raters had knowledge of the localisation 
of initial symptoms and signs detected by the neurologist but they were 
not informed of subject age, gender or centre. 
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2.4. Manual WM lesion segmentation 

In order to assess whether automated lesion segmentation resembles 
segmentation of any WMH or typical MS lesions, we performed two 
types of manual segmentation. Rater 1 (OG) performed manual seg-
mentation of baseline lesions using NiftyMIDAS (Clarkson et al., 2015) 
guided by the expert consensus labelling described in 2.3, referred to in 
results as manual method 1. Rater 2 (SC) performed separate manual 
segmentation in 3D slicer (Pieper et al., 2004), a comparable toolkit 
(Gibson et al., 2018), on a subset of subjects, not guided by the expert 
consensus lesion labelling, to include any hyperintensity, referred to in 
results as manual method 2. 

2.5. Automated WM lesion segmentation 

Two sequence input segmentation was performed on baseline T1 and 
T2-FLAIR images using the Bayesian Method of Model Selection 
(BaMoS) (Sudre et al., 2015). Briefly, this is an unsupervised hierar-
chical model selection framework which enables the distinction between 
different types of expected and abnormal signal intensities within the 
white matter (after brain parcellation, see below). Single sequence 
lesion segmentation was repeated on the same dataset using BaMoS with 
the T2-FLAIR as the only input sequence. Similarly to the original 
method using jointly T1 and T2-FLAIR, a Gaussian mixture model was 
fitted to the data, optimising the number of components required for 
each tissue class and using the output of the parcellation obtained using 
a database uniquely composed of T2-FLAIR images to perform the post- 
processing dedicated to removal of false positives. 

2.6. Brain tissue segmentation 

Brain tissue segmentation was performed using a fully automated 
multi-atlas-based approach, Geodesic Information Flows (GIF), (Cardoso 
et al., 2015). 

This was done using 1) a 3D T1 image database (the original GIF 
database composed of images manually labelled by expert operators 
(Cardoso et al., 2015); or 2) a newly-constructed GIF database, con-
taining both 3D T1 and 3D T2-FLAIR images. This new database was 
constructed using 100 healthy control subjects’ (age range 46–90 years, 
mean age 72, 51.1% males) coregistered 3D T1 and 3D T2-FLAIR images 
from the SABRE study cohort (Tillin et al., 2012) with the following 
acquisition parameters: 3D sagittal T1 multishot, inversion-prepared 
gradient echo: repetition time 6.9 ms; echo time 3.1 ms; voxel size 
1.0×1.0×1.0 mm3; and 3D sagittal T2-FLAIR: repetition time 4800 ms; 
inversion time 1650 ms; echo time 125 ms; voxel size 1.0×1.0×1.0 
mm3. The new T1 images were automatically segmented using the 
original T1 labels which were then propagated to the T2-FLAIR images. 
The performance of the GIF algorithm with the original and new GIF 
databases were compared conventionally by segmenting the CIS co-
hort’s 3D T1 images for direct comparison of the effect of database 
change. GIF segmentation using the combined database was then tested 
with 3D T1 only, and T2-FLAIR only as the source images. In order to 
assess the performance of tissue segmentation in those subjects with 
high white matter lesion loads, we performed a subset analysis of the 
10% of cases with the largest lesion volumes. T2-FLAIR images were 
registered to T1 space before segmentation to allow for voxel-wise 
comparisons. Performance using these image inputs was tested with 
varying degrees of WM lesion inpainting (Chard et al., 2010) using a 
patch-based method (Prados et al., 2016): 1) uncorrected, 2) manual 
WM lesion filled and 3) BaMoS outlier filled. 

2.7. Statistical analysis 

2.7.1. WM lesions 
We assessed 1) median and interquartile range (IQR) of absolute 

lesion volume, and 2) percentage lesion volume difference, by seg-

mentation method and field strength. We also compared differences 
with related-samples Wilcoxon signed rank tests. We used the Dice 
similarity coefficient (DSC) to compare similarity between the reference 
(conventional multiple sequence input) and T2-FLAIR-only sample. DSC 
is calculated as: 

DSC =
2TP

2TP + FP + FN 

Where TP = true positive, FP = false positive, and FN = false 
negative. 

Proportion of lesion volume difference between conventional and 
T2-FLAIR-only BaMoS methods was calculated as (T2-FLAIR-only vol-
ume – conventional volume / conventional volume). Median percentage 
volume difference was calculated as median (conventional volume – T2- 
FLAIR-only volume / average volume)*100. 

2.7.2. Brain volumetry 
We used paired t-tests to compare brain volume group means be-

tween T1 and T2-FLAIR GIF. We compared brain volume results of tissue 
classes (GM, WM and CSF) between T1 and T2-FLAIR inputs into the GIF 
database using a no-intercept linear regression. Linear regression 
modelling was performed for 3 main tissue classes – cerebrospinal fluid 
(CSF), WM, and GM – and the combined total intracranial volume (TIV) 
for the same segmentation method comparisons. A no-intercept model 
was used in line with the expected unity between methods. Calculations 
were made for model fit (Akaike Information Criterion, AIC) for both 
intercept and no-intercept models. We also performed a subset analysis 
for the 10% of subjects with the highest WM lesion loads, to assess tissue 
segmentation performance in more radiologically advanced disease. 

The clinical utility of T2-FLAIR-only volumetry was assessed by 
evaluating the ability to demonstrate age differences. Since we used a 
CIS cohort with little disease-related atrophy developed, we used a 
general linear model to assess brain volume effects of age for both 
methods. We calculated effect sizes (Cohen’s f, 2013), where values 
0.10, 0.25 and 0.40 represent small, medium and large effect sizes 
respectively,) to demonstrate the number of cases that would be needed 
to show group differences for age using the adapted methods. Statistical 
analysis was performed using SPSS for Windows, Version 25.0. Armonk, 
NY: IBM Corp. 

3. Results 

66 patients with CIS were included in this study. Their mean age was 
34.7 years (±8.4), and 47 were female, with a median Expanded 
Disability Status Scale (EDSS) score of 2.0 (range 0–6.0). 

3.1. Manual and automated assessment of WMH and MS lesions 

Wilcoxon signed rank tests comparing total lesion volume between 
methods showed statistically significant differences between manual 
segmentation method 1 and all other methods, with method 1 producing 
lower lesion volumes at both 1.5T and 3T, p < 0.001. For 1.5T, lesion 
volumes segmented with manual method 2 were not significantly 
different to T2-FLAIR-only BaMoS (p = 0.239). Conventional (T1 + T2- 
FLAIR) and T2-FLAIR-only BaMoS produced significantly different 
lesion volumes at 1.5T (p = 0.01), with T2-FLAIR-only BaMoS producing 
larger lesion volumes. At 3T however, manual method 2 was not 
significantly different to conventional BaMoS (p = 0.231) as were con-
ventional and T2-FLAIR-only BaMoS methods, p = 0.819. Median lesion 
volume in ml (IQR) by segmentation method is shown in Table 1 and 
graphically represented in Fig. 2. An example of segmentations obtained 
using the four methods of WM lesion segmentation for one subject is 
shown in Fig. 1. 

Mean DSC (SD) between conventional BaMoS and T2-FLAIR-only 
BaMoS are 0.46 (0.24) for 1.5T and 0.57 (0.19) for 3T (Fig. 3). Dice 
similarity coefficients (DSC) between lesion segmentation methods are 
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shown in Table 2. 

3.2. Brain tissue volumes 

Mean cortical grey matter volume for each of three key segmentation 
methods are presented in Table 3 according to field strength. These re-
sults are for 1) original GIF database with T1 input, where GM volume 
(ml) was mean (SD) 503.4 (5.93) at 1.5T and 501.8 (6.10) at 3T, and for 
multi-modal GIF database with 2) T1 input (515.5 (6.04) at 1.5T and 
512.7 (6.12) at 3T) and 3) T2-FLAIR input (529.8 (7.30) at 1.5T and 
523.0 (6.77) at 3T. WM lesion inpainting results are shown in supple-
mentary material and did not significantly alter GM volume measure-
ments. All results presented in the main text have been processed with 
WM lesion inpainting using results from BaMoS WM segmentation. All 
three combinations of paired samples t-tests performed separately for 
1.5T and 3T showed significant differences, at p < 0.001, with higher 
mean GM values produced by T2-FLAIR input at both 1.5T and 3T. 
Examples of GM segmentation results are shown in Figs. 5 and 6. 

Linear regression modelling was performed for CSF, WM, and GM 
and the combined total intracranial volume (TIV) for the same seg-
mentation method comparisons. AIC calculations showed no evidence of 
model fit deterioration (see supplementary material). The results for T1 
and T2-FLAIR (using the new GIF database), demonstrating the effect of 
changing the inputted sequence, are shown in Table 4. For GM volume at 
1.5T R2 was 0.997, β (SE) 1.028 (0.007), and at 3T R2 was 0.998, β (SE) 
1.019 (0.006). For model results where there is a change of GIF database 
see supplementary material. GM correlations are illustrated in Figs. 7 
and 8, demonstrating the important comparisons – change of GIF 
database, and change of input sequence - by field strength. They show 
that there is a widening of the 95% confidence intervals for the corre-
lation between T1 and T2-FLAIR GM volumes. 

To address generalisability of our findings to the MS population at 
large, a subset analysis of tissue segmentation results was performed for 
those CIS cases with the top 10% of lesion loads. The mean (SD) lesion 
volume calculated using conventional BaMoS for this subset of cases was 
14.1 ml (5.8 ml) at 1.5T and 15.5 ml (6.5 ml) at 3T. GM linear regression 
results between T1 and T2-FLAIR input to the new GIF database were β 
(SE) 1.029 (0.024) and R2 0.997 for 1.5T and 1.022 (0.019), R2 0.998 for 
3T (Table 5). An example of GM segmentation performance in the case 
of high lesion load is presented in Fig. 9. 

The distribution of tissue segmentation volumes at the individual 
subject level in the T1 and T2-FLAIR groups are very similar, as 
demonstrated in violin plots by segmentation method for each of three 
tissue classes (CSF, WM and GM) and by field strength (Fig. 10). 

Univariate analyses were computed for GM volume versus age for 
each segmentation method. GM volumes were significantly associated 
with TIV and age, which were therefore included as covariates for all 
subsequent models. Field strength was included as a fixed factor. Age 
was a significant covariate for all three of conventional T1 GIF (R2 =

Table 1 
Median lesion volume and interquartile range (IQR) for each segmentation 
method and field strength.  

Lesion segmentation 
method 

Field 
strength 

Median lesion 
volume (ml) 

Inter-quartile 
range (IQR) 

Manual 1 1.5T  0.63  2.44 
3T  2.25  3.17 

Manual 2 1.5T  3.84  4.83 
3T  5.51  4.88 

BaMoS 1.5T  3.38  5.03 
3T  6.48  5.90 

T2-FLAIR-only BaMoS 1.5T  4.61  4.81 
3T  6.25  6.95  

Fig. 1. An example of WM lesion segmentation results for manual method 1, top left; manual method 2, top right; multi-sequence BaMoS, bottom left; and FLAIR- 
only BaMoS, bottom right. 
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0.999, standard error (SE) = 0.178, p = 0.001), T1 new GIF database 
(R2 = 0.999, SE = 0.182, p < 0.001), and T2-FLAIR new GIF database 
(R2 = 0.998, SE = 0.247, p = 0.005). Effect sizes for age, Cohen’s f, in 
each model were calculated for T1 GIF, effect size f = 0.36, and T2- 
FLAIR GIF, f = 0.27). 

4. Discussion 

In this study, we have investigated the performance of automated T2- 
FLAIR-only lesion and brain segmentation in a group of patients with CIS 
at different field strengths. It is common for clinical MS imaging pro-
tocols not to include a 3D-T1 sequence, limiting the use of conventional 

Fig. 2. Boxplots showing median, IQR and range for lesion volume in mm3 per segmentation method by field strength.  

Fig. 3. Boxplots representing dice similarity coefficient values between methods by field strength.  

O. Goodkin et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 29 (2021) 102542

6

T1 or multi-sequence automated quantification techniques in clinical 
neuroradiology. We hypothesised that results of T2-FLAIR-only seg-
mentation would provide comparable results to T1- and multi-sequence 
methods. Using a multi-centre population of CIS subjects, which 
benefitted from subjects having been scanned with 1.5T and 3T scanners 
in the same week, we compared the output of WM lesion and brain 
volume segmentation using conventional BaMoS and GIF algorithms 
with that from adapted T2-FLAIR-only versions. We showed that, with 
automated T2-FLAIR-only methods, lesion segmentation was compara-
ble to conventional segmentation at 3T, and that at both 1.5T and 3T 
brain tissue segmentation was robust, with high R2 linear regression 
values and maintained discrimination of age-related brain volume 

change. 

4.1. WM lesion segmentation 

We used two sets of manual segmentations of white matter lesions in 
our CIS dataset to compare with automated results: 1. based on expert 
consensus reading of MS-specific lesions and 2. of all white matter 
hyperintensities, i.e. not specifically MS-identified lesions, at 1.5T and 
3T. These varied quite considerably from each other, and automated 
segmentation reflected the latter manual scenario more closely. This 
indicates that automated segmentation algorithms can be limited in 
discriminating true MS lesions from any WMH. These other WMHs may 
include non-specific lesions more in keeping with vascular disease or 
normal aging, periventricular white matter bands and caps, or even 
image artefacts. They could also include true MS lesions, not captured by 
conservative criteria. 

It is important to consider that this may be an inherent disadvantage 
in applying intensity-based methods of automated lesion segmentation 
to quantify MS-specific pathology. However, since we have also shown 
that total lesion volume difference between methods is small, as long as 
eventual end-users are aware of this limitation and apply it consistently 
as an adjunct to the radiologist’s visual assessment the discrepancy 
should not be impactful. 

We demonstrated differences in lesion segmentation performance 
between field strengths, which we discuss further in section 4.3. At 1.5T, 
T2-FLAIR-only automated lesion segmentation was not significantly 
different from a manual segmentation method for all WM hyper-
intensities (manual method 2) and, at 3T, lesion volumes were compa-
rable between conventional and T2-FLAIR-only segmentation. 
Proportional lesion volume differences were very small between the two 
automated methods at 3T. This contrasted with the situation at 1.5T, 
where lesion volumes were not comparable between the two automated 
methods and volume difference was higher. 

As we were using a CIS subject population in this study, we expected 
WM lesion loads to be low, which made lesion segmentation method 
comparison challenging and produced dice scores which were relatively 
low. However, it is accepted that accurate automated lesion segmenta-
tion is easier where lesion load is higher (Carass et al., 2017). It will be 
important to expand on this study by applying our T2-FLAIR-only 
method to an MS population with higher lesion loads. 

4.2. Brain tissue segmentation 

We have shown that T2-FLAIR-only brain tissue segmentation pro-
vides similar results compared to the conventional T1 method, with very 

Fig. 4. Proportion of volume difference between conventional and T2-FLAIR-only BaMoS lesion segmentation at 1.5T and 3T.  

Table 2 
Dice similarity coefficients between lesion segmentation methods by field 
strength. SD, standard deviation.  

Lesion segmentation method 
comparison 

Field 
strength 

Dice similarity coefficient 
Mean (SD) 

Manual 1 vs Manual 2 1.5T 0.21 (0.20) 
3T 0.28 (0.21) 

Manual 1 vs BaMoS 1.5T 0.25 (0.23) 
3T 0.32 (0.22) 

Manual 2 vs BaMoS 1.5T 0.52 (0.25) 
3T 0.53 (0.24) 

Manual 1 vs T2-FLAIR-only 
BaMoS 

1.5T 0.21 (0.21) 
3T 0.29 (0.20) 

Manual 2 vs T2-FLAIR-only 
BaMoS 

1.5T 0.37 (0.23) 
3T 0.43 (0.19) 

BaMoS vs T2-FLAIR-only BaMoS 1.5T 0.46 (0.24) 
3T 0.57 (0.19) 

Proportion of lesion volume difference between conventional and T2-FLAIR- 
only BaMoS methods was median (IQR) 0.33 (− 1.75 – 1.45) for 1.5T, and 
− 0.13 (− 1.87 – 0.18) for 3T (Fig. 4). Median percentage volume difference was 
− 28.7% for 1.5T and 13.6% for 3T. 

Table 3 
GM volume in ml by GIF method (input and database). Mean volume, standard 
deviation (SD).  

Descriptive statistics Field strength Mean GM Volume (ml) SD 

Input GIF Database    
T1 original 1.5T  503.4  5.93 
T1 original 3T  501.8  6.10 
T1 new 1.5T  515.5  6.04 
T1 new 3T  512.7  6.12 
T2-FLAIR new 1.5T  529.8  7.30 
T2-FLAIR new 3T  523.0  6.77  
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high R2 values and low standard error. Having used a no-intercept linear 
regression model for comparison, the coefficients quoted in Tables 2–4 
can be interpreted as straightforward multiplicative factors and their 
raw sizes demonstrate very minimal differences in brain tissue volume 
between change of GIF database, sequence input, and a combination of 
both changes. A subset analysis of cases with high lesion loads demon-
strated maintained high tissue segmentation performance. 

T2-FLAIR-only GIF segmentation was also effective in demonstrating 
biological effects in our study population, i.e. age remained a highly 
significant association using the T2-FLAIR-only method. Similar 
magnitude age-related effect sizes are seen when using a T1 input to the 
two different GIF databases as when changing between T1 and T2-FLAIR 
input to the new GIF database. 

The encouraging results from this study point towards potential 
utility of T2-FLAIR-only automated brain tissue segmentation as a 
clinical tool for brain volume analysis, with further work needed to 
assess its validity in other MS phenotypes where more obvious 

Fig. 5. A subject’s cortical GM segmentation shown for 1.5T, using the multimodal GIF database. T1 segmentation is denoted in pink, and T2-FLAIR segmentation is 
shown in blue. An enlarged image overlaying both T2-FLAIR and T1 segmentations is included on the right of each series, showing areas of discrepancy, highlighted 
in the yellow boxes. 

Fig. 6. A subject’s cortical GM segmentation shown for 3T, using the multimodal GIF database. T1 segmentation is denoted in pink, and T2-FLAIR segmentation is 
shown in blue. An enlarged image overlaying both T2-FLAIR and T1 segmentations is included on the right of each series, showing areas of discrepancy, highlighted 
in the yellow boxes. 

Table 4 
Linear regression outputs for comparison of T1 and T2-FLAIR inputs into the 
new GIF database.  

Change of sequence input 
-T1 vs T2-FLAIR input β (SE) R2 

GM 1.5T 1.028 (0.007) 0.997  
3T 1.019 (0.006) 0.998 

WM 1.5T 0.995 (0.007) 0.997  
3T 1.055 (0.008) 0.996 

CSF 1.5T 0.944 (0.012) 0.989  
3T 0.859 (0.009) 0.994 

TIV 1.5T 0.973 (0.004) 0.999  
3T 0.999 (0.004) 0.999 

β = slope coefficient, SE = standard error. 

O. Goodkin et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 29 (2021) 102542

8

Fig. 7. Scatter plots for GM volumes in ml; T1 input into conventional and new GIF database. Left: 1.5T. Right: 3T. Coefficient shown in upper right-hand corner and 
95% CI shown with dotted lines. 
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Fig. 8. Scatter plots for GM volumes in ml; T2-FLAIR vs. T1 input into new GIF database. Left: 1.5T. Right: 3T. Coefficient shown in upper right-hand corner and 95% 
CI shown with dotted lines. 
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parenchymal atrophy may be present. Currently the neurodegenerative 
aspect of MS is not routinely reported clinically, whilst being recognised 
as an important biomarker in the research setting that faces practical 
barriers for clinical adoption (Sastre-Garriga et al., 2020). Utilisation of 
automated segmentation tools could help to identify pathological brain 
atrophy in MS at the individual patient level (Sormani et al., 2017), but 
several technical barriers exist. A large proportion of clinical centres still 
use a 2D T2-FLAIR sequence in their protocols, and tools are available 
that measure central atrophy accurately from heterogeneous 2D T2- 
FLAIR data (Zivadinov et al., 2018). However centres are increasingly 
adopting a 3D sequence in line with most current guidance (Sastre- 
Garriga et al., 2020; Saslow et al., 2020; Filippi et al., 2019), making this 
work timely and relevant to the developing change in clinical practice. 
Beyond current clinical practice, these algorithms could be useful for 
integration of analysis of grey matter topology in patients with MS, such 
the construction of cortical networks (Collorone et al., 2019). 

4.3. Field strength and acquisition 

Our results show that T2-FLAIR-only tissue segmentation can be 
performed to a high level of robustness, with the knowledge that there 
are small multiplicative differences between T2-FLAIR-based and T1- 
based volumes. We have also shown that there are variations in per-
formance between the field strengths, with different multiplicative 
factors and in general slightly lower variance at 3T than 1.5T, as seen in 
Table 4. Likewise for lesion volumetry, where we saw that lesion vol-
umes were overestimated at 1.5T, this should be considered when using 
automated segmentation tools in clinical practice; results for different 
patients and at different timepoints may not be directly comparable if 

not consistently scanned at the same field strength (Han et al., 2006; 
Lysandropoulos et al., 2016). 

Within a single field strength, differences in scanners and image 
acquisition parameters – which is a fundamental issue in the clinical 
setting - can impact on the performance of automated segmentation 
algorithms (Biberacher et al., 2016). At present there is limited experi-
ence in standardising T2-FLAIR acquisition protocols, in contrast to the 
advances that have been seen with T1 imaging (George et al., 2019; Jack 
et al., 2015). In the case of T1 imaging, automated segmentation 
methods have been shown to be sensitive to differences in sequence 
parameters contributing to volumetric errors of up to 4–5% at 1.5T on 
the same scanner, which would obscure biological effects (Haller et al., 
2016). Efforts have been led by the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) to standardise protocols and remove these sources of 
bias (Brewer, 2009). Work towards adoption and harmonisation of 3D 
T2-FLAIR acquisition, at least across a single clinical service, and ulti-
mately across centres to facilitate research and reference data sharing, 
may address a significant amount of the variability. MS-applicable T2- 
FLAIR harmonisation initiatives are being made in earnest by groups 
like MAGNIMS, NAIMS and CMSC (Saslow et al., 2020). Their adoption 
would greatly facilitate the validation and interpretation of automated 
segmentation algorithm outputs in the clinical setting. 

4.4. Limitations 

There were some limitations to this study. Whilst the dataset we used 
was multi-centre and multi-vendor, providing a good mimic of a clinical 
dataset, numbers of subjects from each centre were not balanced and 
image homogeneity was not guaranteed. However, this does mean that 
the results are likely to be more generalisable. Since we used a CIS 
cohort, we were not able to address the effect of disease-mediated brain 
atrophy on T2-FLAIR-only brain tissue segmentation. Whilst we did not 
include data from other MS phenotypes, a subset analysis of CIS cases 
with high lesion loads showed consistent segmentation performance. 
Further testing of T2-FLAIR GIF with other MS phenotypes is needed to 
establish its clinical utility across the disease spectrum. Additionally, we 
were not able to assess scan-rescan reproducibility within each field 
strength for brain segmentation measurements. 

4.5. Conclusions 

We have shown that T2-FLAIR-only automated segmentation of 

Table 5 
Linear regression outputs for comparison of T1 and T2-FLAIR inputs into the 
new GIF database, for the 10% of cases with the highest lesion loads.  

Change of sequence input-T1 vs T2-FLAIR input  β (SE) R2 

GM 1.5T 1.029 (0.024)  0.997 
3T 1.022 (0.019)  0.998 

WM 1.5T 1.031 (0.035)  0.993 
3T 1.080 (0.024)  0.997 

CSF 1.5T 0.905 (0.033)  0.992 
3T 0.821 (0.021)  0.996 

TIV 1.5T 0.979 (0.012)  0.999 
3T 0.982 (0.015)  0.999  

Fig. 9. GM segmentation performance in the context of high WM lesion load, using the new GIF database (pink = T1, blue = FLAIR).  
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brain volumes can be reproducible and comparable to conventional T1 
or dual-modality methods, although with lower lesion segmentation 
robustness at lower field strengths. Further validation with other MS 
phenotypes, as well as work towards clinical image acquisition harmo-
nisation, can further improve clinical validation and integration of T2- 
FLAIR-only WM lesion volume and brain atrophy analysis for radio-
logical MS reporting. 
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