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One-relator groups with torsion are coherent

Larsen Louder and Henry Wilton*

August 11, 2020

Abstract

We show that any one-relator group G = F/{w}) with torsion is coher-
ent — i.e., that every finitely generated subgroup of G is finitely presented
— answering a 1974 question of Baumslag in this case.

1 Introduction

Definition 1.1. A group G is coherent if every finitely generated subgroup of
G is finitely presentable.

A well known question of Baumslag asks whether every one-relator group
F/{w) is coherent [Bau74, p. 76]. It is a curious feature of one-relator groups
that the case with torsion, in which the relator w is a proper power, is often
better behaved than the general case; most famously, one-relator groups with
torsion are always hyperbolic [New68|, and Wise proved that one-relator groups
with torsion are residually finite, indeed linear [Wis12|. In this note we answer
Baumslag’s question affirmatively for one-relator groups with torsion.

Theorem 1.2. If G is a one-relator group with torsion — that is, G = F/{w™),
forn>1 — then G is coherent.

In 2003, Wise circulated [Wis03], including a purported proof of the following
conjecture, stated as Theorem 4.13 of that paper.

Conjecture 1.3. If X is a compact 2-complex with non-positive immersions
then m X is coherent.

The reader is referred to, for instance, [LW17] or [HW16] for the definition
of non-positive immersions. On his webpage, Wise acknowledges that there
is a gap (found by Mladen Bestvina) in the proof of [Wis03, Theorem 4.13].
In [Wis05], Wise used Conjecture (stated as Theorem 1.5 of that paper)
in a proof that Theorem follows from the Strengthened Hannah Neumann
Conjecture. The latter conjecture has more recently been proved independently

by Friedman [Fril5] and Mineyev [Min12].
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In summary, the results of [Wis05] are conditional on Conjecture [[.3], which
remains open, and therefore Theorem was not hitherto known uncondition-
ally. After our proof was circulated, we learned from Wise that he has also given
an unconditional proof of Theorem [[2]in [Wis18], a revised version of [Wis03].

Our proof (and also that of [Wis18]) uses Wise’s w-cycles conjecture (Theo-
rem [3.1]), which was proved independently by the authors [LW17] and by Helfer—
Wise [HW16].

The outline of the proof is as follows. We realize G as the fundamental group
of a compact, aspherical orbicomplex X. Since one-relator groups are virtually
torsion-free, there is a finite-sheeted covering map Xy & X so that Gy = m X
is torsion free. We then use the w-cycles conjecture to show that, whenever
Y % Xy is an immersion from a compact two-complex without free faces, the
number of two-cells in Y is bounded by the number of generators of 71 (Y).
In the final step, a folding argument expresses an arbitrary finitely generated
subgroup H of G as a direct limit of fundamental groups of 2-complexes with
boundedly many 2-cells, and we deduce that H is finitely presented.
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2  One-relator orbicomplexes

Let F be a finitely generated free group, and G = F/{w™)) a one-relator group,
where w € F' is not a proper power. In the usual way, F' can be realized as the
fundamental group of some finite topological graph I', and w by a continuous
map w : St — T'. (Since we are only interested in w up to conjugacy, we ignore
base points.) Let D,, C C be the closed unit disk equipped with a cone point
of order n at the origin. The orbicomplex

X =TUy, Dy,

provides a natural model for G, in the sense that G is the (orbifold) fundamental
group of X. We call X a one-relator orbicomplex. (There is a much more general
theory of orbicomplexes — see, for instance, [Hae91] or [BH99, Chapter III.C] —
but the one-relator orbicomplexes defined here are sufficient for our purposes.)
When n =1, X is a one-relator complex.

A map of 2-complexes is a morphism if it sends n-cells homeomorphically
to n-cells, for n = 0,1,2. A morphism of 2-complexes Y — Z is an immersion
if it is a local injection; in this case, we write Y & Z. If Y is a 2-complex and
X is the one-relator orbicomplex defined above, a continuous map ¥ — X is a
morphism if it sends vertices to vertices, edges homeomorphically to edges, and
restricts, on each 2-cell, to the standard degree-n map p,, : D1 — D,, given by
prn(z) = 2™ A morphism Y — X is an immersion if it is locally injective away
from the cone points in the 2-cells (again, we write Y & X), and a covering if



it is locally a homeomorphism except at the cone points. The next definition
plays a crucial role in our argument.

Definition 2.1 (Degree). If f : Y & X is an immersion of two-dimensional
(orbi)complexes, then the degree of f, denoted by deg f, is the minimum number
of preimages of a generic point in a 2-cell of X. That is: if X is a 2-complex,
then deg f is the minimum number of preimages of any point in the interior of
a 2-cell of X; and if X is a one-relator orbicomplex with 2-cell D,,, then deg f
is the number of preimages of any point in the interior of D,, except 0.

Every one-relator group is virtually torsion free [FKS72], and it follows that
the orbi-complex X is finitely covered by a genuine 2-complex. This can be seen
using the covering theory for complexes of groups developed in [BH99|, but we
give a low-tech proof below.

Theorem 2.2 (Unwrapped covers of one-relator complexes). Let G = F/{w™)
be a one-relator group with w not a proper power, and X the orbicomplex defined
above. Then there is a finite-sheeted covering map

Xo+ X
where Xo is a compact, connected 2-complez.

Proof. Let X’ be T' Uy,n D, the (genuine) two-complex that is the result of
gluing a disc D to the graph I' along the map w™. Note that there is a natural
morphism X’ — X that induces an isomorphism of fundamental groups. Let
Gy be a torsion-free subgroup of finite index in G, and let X) — X’ be the
corresponding covering space. Since w has order n in G [MKS04, Corollary 4.11],
the 2-cells of X} come in families of cardinality n, such that all the 2-cells in each
family have the same attaching map. Let Xy be the quotient of X obtained
by collapsing each family to a single 2-cell. Picking one 2-cell from each family
specifies an inclusion Xy — X|, and the quotient map X{j — Xy is then visibly
a retraction, and an isomorphism on fundamental groups by the Seifert—van
Kampen theorem. The composition

Xo= X+ X' =X
is the required covering map. O

We emphasize that the complex X in the above theorem is a 2-complex,
not just an orbicomplex. That is, the covering map Xg — X restricts to p, on
each 2-cell. We will call such a cover Xy unwrapped.



3 A bound on the number of 2-cells

A two-complex Y is reducible if it has a free face[] Writing
ay : H Sl — Y(l)

for the disjoint union of the attaching maps of the 2-cells, this means that there
is an edge e of the 1-skeleton Y1) such that 8;1(6) consists of a single edge in
[T S!. If e is such an edge and Y’ is the 2-complex obtained by collapsing the
face of Y incident at e, then the natural inclusion map Y’ < Y is a homotopy
equivalence, and induces an isomorphism on fundamental groups. Of course, if
Y is not reducible it is called irreducible.

The main theorem of [LW17] (or [HW16]) can be restated as a result about
immersions to one-relator orbicomplexes, as follows.

Theorem 3.1. Let X be a one-relator orbicomplex, Y a finite 2-complex and
f:Y % X an immersion. If Y is irreducible then x(Y ")) 4+ deg f < 0.

Proof. This follows from [LWT7, Theorem 1.2], with T'= X TV = Y1) p the
restriction of f to IV, A = w, and S the disjoint union of the boundaries of the
2-cells of Y. If some edge of YV is not hit by a 2-cell, then we may remove
that edge, increasing x(Y'(")). Otherwise, Y is reducible in the sense of [LW17],
so [LW17, Theorem 1.2] applies, taking A’ = dy and o the induced map from
the boundaries of the 2-cells of Y to the boundary of the 2-cell of X. O

Here, we apply Theorem Bl to relate the number of 2-cells of Y to the
rank of its fundamental group. (By the rank of a group, we mean the minimal
cardinality of a generated set.)

Corollary 3.2. Let f: Y & X be an immersion from a finite, irreducible 2-
complex Y to a one-relator orbicomplex X . Then

X(Y)+ (n—1){2-cellsin Y} <0 .
In particular,

% < rk(m (Y))

[{2-cells in Y}| < - ;

ifn > 1.

Proof. By Theorem B3I x(Y (") + deg(f) < 0. Since f restricts to p, on each
2-cell of Y, it follows that

deg f = n|{2-cells in Y'}|

INote that this definition is slightly stronger than the definition given in [LW17], where
a 2-complex was called ‘reducible’ if it has a free face or a free edge. The definition given
here is more convenient in this context, since the complexes Y; produced by Lemma 4] are
irreducible in this sense, but not in the sense of [LW17].



since X is one-relator.

The Euler characteristic of Y is the Euler characteristic of Y1) plus the
number of two-cells in Y, so Theorem [3.T]implies the first assertion. The second
assertion now follows from the first, using the trivial fact that

1= 1k(mY) < x(Y)
for any connected 2-complex Y. O

In the case with torsion, Corollary gives a bound on the the number of
2-cells of an immersion in terms of the rank of the fundamental group. In order
to make a connection to arbitrary finitely generated subgroups of G, we use
folding, in the spirit of Stallings.

4 Folding

Folding was introduced by Stallings to study free groups and their subgroups.
The next lemma extends [Sta83, Algorithm 5.4] to the context of 2-complexes
and their morphisms.

Lemma 4.1. Any morphism of finite 2-complezes A — B factors as
A—-C*B

where A — C' is surjective and m-surjective. Furthermore, if A — B factors as
A—-D+ B

then there is a unique immersion C' & D so that the following diagram com-
mutes.

A D 9 B

Proof. Folding shows that the map of 1-skeleta factors as
AL 5 o) o, B

where AW — O™ is surjective and 7-surjective. We now construct C' by
pushing the attaching maps of the 2-cells of A forward to C!) and identifying
any 2-cells with the same image in B and equal attaching maps. The resulting
map A — C is surjective and m-surjective. We next check that the natural
map C' — B is an immersion.

Since C' — B is a morphism, it can only fail to be locally injective at a point
p € C if two higher-dimensional cells incident at p have the same image in B.
The map of 1-skeleta is an immersion, so this can only occur if two 2-cells ¢y, co
in C, incident at p, have the same image in B. Because the attaching maps



of ¢; and ¢y agree at p and C(Y) — B() is an immersion, it follows that the
attaching maps of ¢; and co agree everywhere. Therefore, ¢; and co are equal
in C by construction.

It remains to prove the universal property. This fact is standard for graphs,
which defines the required immersion of 1-skeleta C") - DM uniquely. Let
c be a 2-cell in C and let a1,as be preimages of ¢ in A. By construction, a;
and as have the same boundary in C(*) and the same image in B. Therefore,
their images di,ds respectively in D have the same boundary in D) and the
same image in B. But D & B is an immersion, and it follows that d; = ds.
Therefore, we may extend the map C) — DM across ¢ in a unique way, as
required. O

A free edge of a 2-complex is an edge of the 1-skeleton that is not in the image
of the attaching map of any 2-cell. The next result appeals to the Scott lemma
(which plays a crucial role in the proof of coherence for 3-manifold groups) to
represent a finitely generated, freely indecomposable subgroup by an immersion
from a compact 2-complex without free edges or faces.

Lemma 4.2. Let X be a 2-complez, G = m1(X), and H a non-trivial, finitely
generated, freely indecomposable subgroup of G. There is an immersion from a
compact irreducible 2-complex without free edges f :Y & X such that fomY is
conjugate to H.

Proof. By the Scott lemma [Sco73, Lemma 2.2], there is a surjection from a
finitely presented group H' — H that does not factor through a free product.
Since H’ is finitely presented, there is a morphism of combinatorial 2-complexes
7' — X that represents the composition H — H — G. By Lemma 4] this
morphism factors as

Z' -7+ X

where Z' — Z is m-surjective. By the conclusion of the Scott lemma, m Z is
freely indecomposable. Let Y’ C Z be a deformation retract of Z obtained by
iteratively collapsing free faces. Since m1Y’ = m; Z is freely indecomposable, any
free edges of Y/ are separating, and one complementary component of each free
edge is simply connected. Let Y be the unique non-simply-connected component
obtained from Y’ by deleting free edges, and let f : ¥ & X be the natural
immersion. Then Y is as required: f.mY is conjugate to f,mY’ = H, and Y
has neither free faces nor free edges. O

The next two lemmas show that a finitely generated subgroup can be rep-
resented by a direct limit of immersions of irreducible 2-complexes. We start
with the freely indecomposable case.

Lemma 4.3. Let X be a 2-complez, G = m1(X), and H < G a finitely gener-
ated, freely indecomposable subgroup. Then there is a sequence of 71 -surjective
immersions of compact, connected two-complexes

with the following properties.



(i) Fach'Y; is irreducible.
(1)) H = lingi
(i11) The number of free edges of Y; is uniformly bounded.

Proof. If H is trivial then so is the result. Otherwise, let f : Y & X be
the immersion guaranteed by Lemma [£.2] so that f,mY is conjugate to H. Let
fo: Yo 3 X be a wedge of Y with an interval I so that, fixing a basepoint at the
end of the interval, fo.m Yy = H. Let (r;) be an enumeration of representatives
of the conjugacy classes of ker fo., where each r; is an immersed combinatorial
loop in the 1-skeleton of Y C Y.

We now construct the immersions Y; 3~ Y;;; inductively, assuming that
{ro,...,m;} represent elements of the kernel of m;Y; — G. Let E;11 — X be a
reduced van Kampen diagram for r;;1, and let Z = Y; U,,,, ;1. Since 741
did not cross any free edges of Y;, Z does not have any free faces. We now apply
Lemma 1] to the natural map Z — X, which yields

Z—=Yir1 X

for the desired 2-complex Y;;1. Next, we prove properties (i), (i) and (iii).

By construction, Yy has no free faces. Therefore, we may prove (i) by induc-
tion: assuming that Y; has no free faces, we claim that Y;;; has no free faces.
Suppose by way of contradiction that an edge e is a free face of a 2-cell ¢ in
Yi+1. Since Y; immerses into Y; 1, and Y; has no free faces, it follows that e is
not in the image of Y;. Therefore, e is the image of an edge €’ in the interior
of E;i+1. The two neighbouring 2-cells of F; 11 both map to ¢ folding across €/,
contradicting the hypothesis that E;,; is reduced.

Property (ii) is immediate by construction. For (iii), simply note that any
free edges of Y; are the image of an edge in the interval I. O

Finally, we deal with possibly freely decomposable subgroups, by appealing
to the Grushko decomposition.

Lemma 4.4. Let X be a 2-complex, G = m1(X), and H < G a finitely generated
subgroup. Then there is a sequence of mi-surjective immersions of compact,
connected two-complezes

VorYie -+ Yie - X
with the following properties.
(i) Fach'Y; is irreducible.
(i) H = hﬂﬂ'lYi

(iii) The number of edges of Y; that are not incident at a 2-cell is uniformly
bounded.



Proof. Let H = Hy*---% Hp* F, be the Grushko decomposition of H. For each
1<r<p,let
Y(Jrqqyqu_)...q_)}/i’”q_)...X

be the sequence provided by applying Lemma[3lto H,. Let Z & X be a graph
immersed in the 1-skeleton with m Z = Fj,. For each ¢, let

/=Y v---vYPVZ
and let Y; & X be the immersion obtained by applying Lemma 1] to Y.

The required immersion Y; 3 Y;;1 exists by the universal property of
Lemma [T} see the following commutative diagram.

N

1+1 9

/

Properties (i), (ii) and (iii) are clear from the construction. O

/
ml

We are now ready to prove our main result.

Proof of Theorem[L.2, Realize G as the fundamental group of a one-relator or-
bicomplex X. Let H be a finitely generated subgroup of G. Let Gy < G be
a torsion-free subgroup of finite index, corresponding to the unwrapped cover
Xo + X provided by Theorem Since a finite extension of a finitely pre-
sented group is finitely presented, we may replace H by H N Gy, and so assume
that H < G. Consider the sequence of immersions

YoY%+ Y% X

provided by Lemma [£4] taking X, for X. By Corollary 3.2 the number of
2-cells of each Y; is bounded. Each 2-cell of Y; is a copy of the unique 2-cell
of X, hence has boundary of bounded length. Combining this with item (iii)
of Lemma [£.4] we see that the number of 1-cells (and hence also 0-cells) of Y;
is also bounded. Since X is finite, there are only finitely many combinatorial
types of immersions Y; & Xy. Because Y; & X factors through Y;11 & X,
there is an infinite subsequence

Y;lq_,}/;zq_,...q_,yijq_,...Xo

so that each map Y;, & Y;,,, is a homeomorphism; therefore, H = hﬂinj =
m1(Y;, ) is finitely presented, as required. O



5 Groups with good stackings

The results of [LW17] apply equally well to a class of groups which is rather
larger than the class of one-relator groups.

Definition 5.1 (Stacking). Let X be a 2-dimensional orbicomplex and let
A H st x (™

be the coproduct of the attaching maps of the 2-cells. A stacking of X is a lift
of A to an embedding

K:SEHSl‘%X(l)XR;

write A(z) = (A(z), h(z)). A stacking is called good if, for each component S of
the domain of A, there is a point a € S so that h(a) > h(z) for all z € S with
A(a) = A(z), and there is also a point b € S so that so that h(b) < h(z) for all
x € S with A(b) = A(z).

The results of [LW17] apply to the fundamental groups of orbicomplexes
with good stackings.

Definition 5.2. We say that a group has a good stacking if it is the fundamental
group of a compact, 2-dimensional orbicomplex that admits a good stacking. We
say it has a good branched stacking if it has a good stacking, and every 2-cell
has a cone point of index at least 2.

Every one-relator group admits a good stacking [LW17, Lemma 3.4], which
is branched if the group has torsion. Corollary 3.2l applies to groups with a good
branched stacking. The proof of Theorem applies verbatim to groups with
good branched stackings, except that groups with good branched stackings are
not known to admit unwrapped covers — that is, the analogue of Theorem
is unknown.

However, we conjecture that Wise’s proof that one-relator groups with tor-
sion are residually finite goes through for groups with branched good stackings.

Conjecture 5.3. If G has a good branched stacking then G is hyperbolic, and
has a virtual quasiconvex hierarchy, in the sense of [Wis1Z)].

By the results of [Wis12], Conjecture 5.3 would imply that every such group
is virtually torsion-free, and hence coherent by the same proof as Theorem
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