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0 One-relator groups with torsion are coherent
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Abstract

We show that any one-relator group G = F/〈〈w〉〉 with torsion is coher-

ent – i.e., that every finitely generated subgroup of G is finitely presented

– answering a 1974 question of Baumslag in this case.

1 Introduction

Definition 1.1. A group G is coherent if every finitely generated subgroup of
G is finitely presentable.

A well known question of Baumslag asks whether every one-relator group
F/〈〈w〉〉 is coherent [Bau74, p. 76]. It is a curious feature of one-relator groups
that the case with torsion, in which the relator w is a proper power, is often
better behaved than the general case; most famously, one-relator groups with
torsion are always hyperbolic [New68], and Wise proved that one-relator groups
with torsion are residually finite, indeed linear [Wis12]. In this note we answer
Baumslag’s question affirmatively for one-relator groups with torsion.

Theorem 1.2. If G is a one-relator group with torsion – that is, G ∼= F/〈〈wn〉〉,
for n > 1 – then G is coherent.

In 2003, Wise circulated [Wis03], including a purported proof of the following
conjecture, stated as Theorem 4.13 of that paper.

Conjecture 1.3. If X is a compact 2-complex with non-positive immersions
then π1X is coherent.

The reader is referred to, for instance, [LW17] or [HW16] for the definition
of non-positive immersions. On his webpage, Wise acknowledges that there
is a gap (found by Mladen Bestvina) in the proof of [Wis03, Theorem 4.13].
In [Wis05], Wise used Conjecture 1.3 (stated as Theorem 1.5 of that paper)
in a proof that Theorem 1.2 follows from the Strengthened Hannah Neumann
Conjecture. The latter conjecture has more recently been proved independently
by Friedman [Fri15] and Mineyev [Min12].
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In summary, the results of [Wis05] are conditional on Conjecture 1.3, which
remains open, and therefore Theorem 1.2 was not hitherto known uncondition-
ally. After our proof was circulated, we learned from Wise that he has also given
an unconditional proof of Theorem 1.2 in [Wis18], a revised version of [Wis03].

Our proof (and also that of [Wis18]) uses Wise’s w-cycles conjecture (Theo-
rem 3.1), which was proved independently by the authors [LW17] and by Helfer–
Wise [HW16].

The outline of the proof is as follows. We realize G as the fundamental group
of a compact, aspherical orbicomplex X . Since one-relator groups are virtually
torsion-free, there is a finite-sheeted covering map X0 # X so that G0 = π1X0

is torsion free. We then use the w-cycles conjecture to show that, whenever
Y # X0 is an immersion from a compact two-complex without free faces, the
number of two-cells in Y is bounded by the number of generators of π1(Y ).
In the final step, a folding argument expresses an arbitrary finitely generated
subgroup H of G0 as a direct limit of fundamental groups of 2-complexes with
boundedly many 2-cells, and we deduce that H is finitely presented.

Acknowledgements

Thanks to Jim Howie and Hamish Short for pointing out an error in Section 4
of an earlier version.

2 One-relator orbicomplexes

Let F be a finitely generated free group, and G = F/〈〈wn〉〉 a one-relator group,
where w ∈ F is not a proper power. In the usual way, F can be realized as the
fundamental group of some finite topological graph Γ, and w by a continuous
map w : S1 → Γ. (Since we are only interested in w up to conjugacy, we ignore
base points.) Let Dn ⊆ C be the closed unit disk equipped with a cone point
of order n at the origin. The orbicomplex

X = Γ ∪w Dn

provides a natural model for G, in the sense that G is the (orbifold) fundamental
group ofX . We callX a one-relator orbicomplex. (There is a much more general
theory of orbicomplexes – see, for instance, [Hae91] or [BH99, Chapter III.C] –
but the one-relator orbicomplexes defined here are sufficient for our purposes.)
When n = 1, X is a one-relator complex.

A map of 2-complexes is a morphism if it sends n-cells homeomorphically
to n-cells, for n = 0, 1, 2. A morphism of 2-complexes Y → Z is an immersion
if it is a local injection; in this case, we write Y # Z. If Y is a 2-complex and
X is the one-relator orbicomplex defined above, a continuous map Y → X is a
morphism if it sends vertices to vertices, edges homeomorphically to edges, and
restricts, on each 2-cell, to the standard degree-n map pn : D1 → Dn given by
pn(z) = zn. A morphism Y → X is an immersion if it is locally injective away
from the cone points in the 2-cells (again, we write Y # X), and a covering if
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it is locally a homeomorphism except at the cone points. The next definition
plays a crucial role in our argument.

Definition 2.1 (Degree). If f : Y # X is an immersion of two-dimensional
(orbi)complexes, then the degree of f , denoted by deg f , is the minimum number
of preimages of a generic point in a 2-cell of X . That is: if X is a 2-complex,
then deg f is the minimum number of preimages of any point in the interior of
a 2-cell of X ; and if X is a one-relator orbicomplex with 2-cell Dn, then deg f
is the number of preimages of any point in the interior of Dn except 0.

Every one-relator group is virtually torsion free [FKS72], and it follows that
the orbi-complex X is finitely covered by a genuine 2-complex. This can be seen
using the covering theory for complexes of groups developed in [BH99], but we
give a low-tech proof below.

Theorem 2.2 (Unwrapped covers of one-relator complexes). Let G = F/〈〈wn〉〉
be a one-relator group with w not a proper power, and X the orbicomplex defined
above. Then there is a finite-sheeted covering map

X0 # X

where X0 is a compact, connected 2-complex.

Proof. Let X ′ be Γ ∪wn D, the (genuine) two-complex that is the result of
gluing a disc D to the graph Γ along the map wn. Note that there is a natural
morphism X ′ → X that induces an isomorphism of fundamental groups. Let
G0 be a torsion-free subgroup of finite index in G, and let X ′

0 → X ′ be the
corresponding covering space. Since w has order n in G [MKS04, Corollary 4.11],
the 2-cells of X ′

0 come in families of cardinality n, such that all the 2-cells in each
family have the same attaching map. Let X0 be the quotient of X ′

0 obtained
by collapsing each family to a single 2-cell. Picking one 2-cell from each family
specifies an inclusion X0 →֒ X ′

0, and the quotient map X ′

0 → X0 is then visibly
a retraction, and an isomorphism on fundamental groups by the Seifert–van
Kampen theorem. The composition

X0 →֒ X ′

0 # X ′ → X

is the required covering map.

We emphasize that the complex X0 in the above theorem is a 2-complex,
not just an orbicomplex. That is, the covering map X0 → X restricts to pn on
each 2-cell. We will call such a cover X0 unwrapped.
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3 A bound on the number of 2-cells

A two-complex Y is reducible if it has a free face.1 Writing

∂Y :
∐

S1 → Y (1)

for the disjoint union of the attaching maps of the 2-cells, this means that there
is an edge e of the 1-skeleton Y (1) such that ∂−1

Y (e) consists of a single edge in∐
S1. If e is such an edge and Y ′ is the 2-complex obtained by collapsing the

face of Y incident at e, then the natural inclusion map Y ′ →֒ Y is a homotopy
equivalence, and induces an isomorphism on fundamental groups. Of course, if
Y is not reducible it is called irreducible.

The main theorem of [LW17] (or [HW16]) can be restated as a result about
immersions to one-relator orbicomplexes, as follows.

Theorem 3.1. Let X be a one-relator orbicomplex, Y a finite 2-complex and
f : Y # X an immersion. If Y is irreducible then χ(Y (1)) + deg f ≤ 0.

Proof. This follows from [LW17, Theorem 1.2], with Γ = X(1), Γ′ = Y (1), ρ the
restriction of f to Γ′, Λ = w, and S the disjoint union of the boundaries of the
2-cells of Y . If some edge of Y (1) is not hit by a 2-cell, then we may remove
that edge, increasing χ(Y (1)). Otherwise, Y is reducible in the sense of [LW17],
so [LW17, Theorem 1.2] applies, taking Λ′ = ∂Y and σ the induced map from
the boundaries of the 2-cells of Y to the boundary of the 2-cell of X .

Here, we apply Theorem 3.1 to relate the number of 2-cells of Y to the
rank of its fundamental group. (By the rank of a group, we mean the minimal
cardinality of a generated set.)

Corollary 3.2. Let f : Y # X be an immersion from a finite, irreducible 2-
complex Y to a one-relator orbicomplex X. Then

χ(Y ) + (n− 1)|{2-cells in Y }| ≤ 0 .

In particular,

|{2-cells in Y }| ≤
rk(π1(Y ))− 1

n− 1
< rk(π1(Y ))

if n > 1.

Proof. By Theorem 3.1, χ(Y (1)) + deg(f) ≤ 0. Since f restricts to pn on each
2-cell of Y , it follows that

deg f = n|{2-cells in Y }|

1Note that this definition is slightly stronger than the definition given in [LW17], where
a 2-complex was called ‘reducible’ if it has a free face or a free edge. The definition given
here is more convenient in this context, since the complexes Yi produced by Lemma 4.4 are
irreducible in this sense, but not in the sense of [LW17].
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since X is one-relator.
The Euler characteristic of Y is the Euler characteristic of Y (1) plus the

number of two-cells in Y , so Theorem 3.1 implies the first assertion. The second
assertion now follows from the first, using the trivial fact that

1− rk(π1Y ) ≤ χ(Y )

for any connected 2-complex Y .

In the case with torsion, Corollary 3.2 gives a bound on the the number of
2-cells of an immersion in terms of the rank of the fundamental group. In order
to make a connection to arbitrary finitely generated subgroups of G, we use
folding, in the spirit of Stallings.

4 Folding

Folding was introduced by Stallings to study free groups and their subgroups.
The next lemma extends [Sta83, Algorithm 5.4] to the context of 2-complexes
and their morphisms.

Lemma 4.1. Any morphism of finite 2-complexes A → B factors as

A → C # B

where A → C is surjective and π1-surjective. Furthermore, if A → B factors as

A → D # B

then there is a unique immersion C # D so that the following diagram com-
mutes.

A D B

C

"→

"
→∃!

"

→

Proof. Folding shows that the map of 1-skeleta factors as

A(1) → C(1)
# B(1)

where A(1) → C(1) is surjective and π1-surjective. We now construct C by
pushing the attaching maps of the 2-cells of A forward to C(1) and identifying
any 2-cells with the same image in B and equal attaching maps. The resulting
map A → C is surjective and π1-surjective. We next check that the natural
map C → B is an immersion.

Since C → B is a morphism, it can only fail to be locally injective at a point
p ∈ C if two higher-dimensional cells incident at p have the same image in B.
The map of 1-skeleta is an immersion, so this can only occur if two 2-cells c1, c2
in C, incident at p, have the same image in B. Because the attaching maps
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of c1 and c2 agree at p and C(1) → B(1) is an immersion, it follows that the
attaching maps of c1 and c2 agree everywhere. Therefore, c1 and c2 are equal
in C by construction.

It remains to prove the universal property. This fact is standard for graphs,
which defines the required immersion of 1-skeleta C(1)

# D(1) uniquely. Let
c be a 2-cell in C and let a1, a2 be preimages of c in A. By construction, a1
and a2 have the same boundary in C(1) and the same image in B. Therefore,
their images d1, d2 respectively in D have the same boundary in D(1) and the
same image in B. But D # B is an immersion, and it follows that d1 = d2.
Therefore, we may extend the map C(1) → D(1) across c in a unique way, as
required.

A free edge of a 2-complex is an edge of the 1-skeleton that is not in the image
of the attaching map of any 2-cell. The next result appeals to the Scott lemma
(which plays a crucial role in the proof of coherence for 3-manifold groups) to
represent a finitely generated, freely indecomposable subgroup by an immersion
from a compact 2-complex without free edges or faces.

Lemma 4.2. Let X be a 2-complex, G = π1(X), and H a non-trivial, finitely
generated, freely indecomposable subgroup of G. There is an immersion from a
compact irreducible 2-complex without free edges f : Y # X such that f∗π1Y is
conjugate to H.

Proof. By the Scott lemma [Sco73, Lemma 2.2], there is a surjection from a
finitely presented group H ′

։ H that does not factor through a free product.
Since H ′ is finitely presented, there is a morphism of combinatorial 2-complexes
Z ′ → X that represents the composition H ′ → H → G. By Lemma 4.1, this
morphism factors as

Z ′ → Z # X

where Z ′ → Z is π1-surjective. By the conclusion of the Scott lemma, π1Z is
freely indecomposable. Let Y ′ ⊆ Z be a deformation retract of Z obtained by
iteratively collapsing free faces. Since π1Y

′ = π1Z is freely indecomposable, any
free edges of Y ′ are separating, and one complementary component of each free
edge is simply connected. Let Y be the unique non-simply-connected component
obtained from Y ′ by deleting free edges, and let f : Y # X be the natural
immersion. Then Y is as required: f∗π1Y is conjugate to f∗π1Y

′ = H , and Y
has neither free faces nor free edges.

The next two lemmas show that a finitely generated subgroup can be rep-
resented by a direct limit of immersions of irreducible 2-complexes. We start
with the freely indecomposable case.

Lemma 4.3. Let X be a 2-complex, G = π1(X), and H ≤ G a finitely gener-
ated, freely indecomposable subgroup. Then there is a sequence of π1-surjective
immersions of compact, connected two-complexes

Y0 # Y1 # · · · # Yi # · · ·X

with the following properties.
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(i) Each Yi is irreducible.

(ii) H = lim
−→

π1Yi

(iii) The number of free edges of Yi is uniformly bounded.

Proof. If H is trivial then so is the result. Otherwise, let f : Y # X be
the immersion guaranteed by Lemma 4.2, so that f∗π1Y is conjugate to H . Let
f0 : Y0 # X be a wedge of Y with an interval I so that, fixing a basepoint at the
end of the interval, f0∗π1Y0 = H . Let (ri) be an enumeration of representatives
of the conjugacy classes of ker f0∗, where each ri is an immersed combinatorial
loop in the 1-skeleton of Y ⊆ Y0.

We now construct the immersions Yi # Yi+1 inductively, assuming that
{r0, . . . , ri} represent elements of the kernel of π1Yi → G. Let Ei+1 → X be a
reduced van Kampen diagram for ri+1, and let Z = Yi ∪ri+1

Ei+1. Since ri+1

did not cross any free edges of Yi, Z does not have any free faces. We now apply
Lemma 4.1 to the natural map Z → X , which yields

Z → Yi+1 # X

for the desired 2-complex Yi+1. Next, we prove properties (i), (ii) and (iii).
By construction, Y0 has no free faces. Therefore, we may prove (i) by induc-

tion: assuming that Yi has no free faces, we claim that Yi+1 has no free faces.
Suppose by way of contradiction that an edge e is a free face of a 2-cell c in
Yi+1. Since Yi immerses into Yi+1, and Yi has no free faces, it follows that e is
not in the image of Yi. Therefore, e is the image of an edge e′ in the interior
of Ei+1. The two neighbouring 2-cells of Ei+1 both map to c folding across e′,
contradicting the hypothesis that Ei+1 is reduced.

Property (ii) is immediate by construction. For (iii), simply note that any
free edges of Yi are the image of an edge in the interval I.

Finally, we deal with possibly freely decomposable subgroups, by appealing
to the Grushko decomposition.

Lemma 4.4. Let X be a 2-complex, G = π1(X), and H ≤ G a finitely generated
subgroup. Then there is a sequence of π1-surjective immersions of compact,
connected two-complexes

Y0 # Y1 # · · · # Yi # · · ·X

with the following properties.

(i) Each Yi is irreducible.

(ii) H = lim
−→

π1Yi

(iii) The number of edges of Yi that are not incident at a 2-cell is uniformly
bounded.
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Proof. Let H = H0 ∗ · · ·∗Hp ∗Fq be the Grushko decomposition of H . For each
1 ≤ r ≤ p, let

Y r
0 # Y r

1 # · · · # Y r
i # · · ·X

be the sequence provided by applying Lemma 4.3 to Hr. Let Z # X be a graph
immersed in the 1-skeleton with π1Z = Fq. For each i, let

Y ′

i = Y 1
i ∨ · · · ∨ Y p

i ∨ Z

and let Yi # X be the immersion obtained by applying Lemma 4.1 to Y ′

i .
The required immersion Yi # Yi+1 exists by the universal property of

Lemma 4.1: see the following commutative diagram.

Y ′

i+1

Y ′

i Yi+1 X

Yi

"→

"

→∃!

"

→

Properties (i), (ii) and (iii) are clear from the construction.

We are now ready to prove our main result.

Proof of Theorem 1.2. Realize G as the fundamental group of a one-relator or-
bicomplex X . Let H be a finitely generated subgroup of G. Let G0 ≤ G be
a torsion-free subgroup of finite index, corresponding to the unwrapped cover
X0 # X provided by Theorem 2.2. Since a finite extension of a finitely pre-
sented group is finitely presented, we may replace H by H ∩G0, and so assume
that H ≤ G0. Consider the sequence of immersions

Y0 # Y1 # · · · # Yi # · · ·X0

provided by Lemma 4.4, taking X0 for X . By Corollary 3.2, the number of
2-cells of each Yi is bounded. Each 2-cell of Yi is a copy of the unique 2-cell
of X , hence has boundary of bounded length. Combining this with item (iii)
of Lemma 4.4, we see that the number of 1-cells (and hence also 0-cells) of Yi

is also bounded. Since X0 is finite, there are only finitely many combinatorial
types of immersions Yi # X0. Because Yi # X0 factors through Yi+1 # X0,
there is an infinite subsequence

Yi1 # Yi2 # · · · # Yij # · · ·X0

so that each map Yij # Yij+1
is a homeomorphism; therefore, H = lim

−→
π1Yij =

π1(Yi1 ) is finitely presented, as required.
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5 Groups with good stackings

The results of [LW17] apply equally well to a class of groups which is rather
larger than the class of one-relator groups.

Definition 5.1 (Stacking). Let X be a 2-dimensional orbicomplex and let

Λ :
∐

S1 → X(1)

be the coproduct of the attaching maps of the 2-cells. A stacking of X is a lift
of Λ to an embedding

Λ̂ : S ≡
∐

S1 →֒ X(1) × R ;

write Λ̂(x) = (Λ(x), h(x)). A stacking is called good if, for each component S of
the domain of Λ, there is a point a ∈ S so that h(a) ≥ h(x) for all x ∈ S with
Λ(a) = Λ(x), and there is also a point b ∈ S so that so that h(b) ≤ h(x) for all
x ∈ S with Λ(b) = Λ(x).

The results of [LW17] apply to the fundamental groups of orbicomplexes
with good stackings.

Definition 5.2. We say that a group has a good stacking if it is the fundamental
group of a compact, 2-dimensional orbicomplex that admits a good stacking. We
say it has a good branched stacking if it has a good stacking, and every 2-cell
has a cone point of index at least 2.

Every one-relator group admits a good stacking [LW17, Lemma 3.4], which
is branched if the group has torsion. Corollary 3.2 applies to groups with a good
branched stacking. The proof of Theorem 1.2 applies verbatim to groups with
good branched stackings, except that groups with good branched stackings are
not known to admit unwrapped covers – that is, the analogue of Theorem 2.2
is unknown.

However, we conjecture that Wise’s proof that one-relator groups with tor-
sion are residually finite goes through for groups with branched good stackings.

Conjecture 5.3. If G has a good branched stacking then G is hyperbolic, and
has a virtual quasiconvex hierarchy, in the sense of [Wis12].

By the results of [Wis12], Conjecture 5.3 would imply that every such group
is virtually torsion-free, and hence coherent by the same proof as Theorem 1.2.
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