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The thesis contains original results with respect to the
set of real-valued sequences and with respect to some of its
subsets. These results are obtained by defining operations
on the sets by means of which algebraic structures are imposed.
Emphasis is given to the limit function producing theorems and
lemmas of interest. Among these are two theorems of especial

interest, viz.,

Theorem 12
feals = porrtarey
Theorem 18

There exists 2 basis for the set of 2ll convergent
sequences which contains only one sequence converging to

some value other than O,
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INTRODUCTION

It is my purpose to examine the set of all real valued
sequences with respect to certain 2lgebraic structures.
Particular consideration will be given to the set of all
convergent sequences. Several of the results will be ob-
tained by examining the properties of limit and restricting
the domain of limit to the set of sequences converging to
zZero.

The motivation for doing research in this area arose
from the idea that limit might be 2 ring homomorphism and
a linear transformation.

Search at Appalachian failed to disclose information
on this topic. Therefore, the following results are regarded
as being original:

I. Lemmas 1, 2, 3 and 4
II. Theorems 2, 3, 6, 9, 10, 11, 12, 13, 14, 16, 18,
19, 20 and 21
ITI. Propositions 1, 2 and 3.



AN INVESTIGATION OF REAL VALUED SEQUENCES

Definition 1
A sequence is a function whose domain is the positive

integers.

Hereafter all sequences will have a range that ig a sub-
set of the real numbers.

Definition

A sequence {a,} converges to its limit a, a real number,
if and only if given £> 0 then there exists = positive inte-
ger N such that n > N implies 'lan-a | < €,

Definit
A sequence diverges if and only if it does not converge.

Definition 4

A sequence {an} diverges to +oc if and only if given a
real number B there exists a positive integer N such that
n 2 N implies a, > B.

A sequence {a,} diverges to - if and only if given a
real number B there exists o positive integer N such that
n 2> N implies a, < B.




Theorem 1

The limit of a2 convergent sequence is unique.’
Proof':

Suppose the sequence {an} converges to &, and {a,} con-
verges to a' such that a # a', Put { = |a=a'| > 0. Since
the sequence {a,} converges to 2, there exists o positive
integer N, such that n > N, implies |ap=o| <§ . Also there
exists N, such that n > N, implies ]an-a[ <£‘ +» Let N equal
the maximum {N,,N,}. Then n > N implies |a-a'| = |ama  +ap=at |
< la=ag| + Jag-a’| <§*§w6. Thus we have a = a', This
is a contradiction to a ¥ a', Hence the limit of & convergent

sequence is unique.

Definition 5
Let {ay} and {b,]} be sequences and k a real number, then

lap} @ {bp} = {ag+by}, kiag} = {keay} and {2y} © {by} = {an-bp}.

Lemm: 1
The set of all sequences is an abelian group under @ .
Proof':
Let 5 be the set of all sequences.
1. Clearly ® is a function and @ : §X § => 8,
2. (ap} @ {by}) @ {ey} = {ay+by} @ {ep} = {(ap+bylrey) =
{agt(bpren)l = {ag) @ {byrey} = {ag) ® ({by} @ {ep} ).
3. Let ap = 0 for all n, and denote {a,} = {Op} . Then

{0} @ {by} = {Op+by} = {by}.

YJohn M, H. Olmsted, ngemd%ag Ang (New York:
Appleton-Century-Crofts, Inc., sy Pe 34.
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he ={ag} @ {ay} = {=87) @ {8y} = {=2p+a,} = {Op}.
5. {an} @ {by} = {ag+by} = {bptay} = {by} @ {ap}.

Lemma 2

The set of all sequences is a commutative monoid under
Proof:
Let 5 be the set of all sequences.
1, Clearly (v is 2 function and * : 8 X § = §.
2. ({ag} = {bpl) o {ep} = {an+dy} ¢ {eq} = {lag+byleen} =
{ap+(bpeen)} = {ap} ¢ {bprep} = {2z} & ({by} & {ep)).
3. Clearly {a,) where ap = 1 for all n is the identity.

ke {on} = {bp} = {ap<by} = {byran} = {by}-{ay}.

Comment :
A commutative monoid is the strongest conclusion since
the set of 21l sequences has divisors of zero. That is,

given {apn} # {0y} we cannot say {a,}~' exists.

Lemma 3
The left and right distributive laws of (+ over (- hold
for all sequences.
Proof:
1. ({ap}+{by}) @ {ey} = {ap+by} ¢ {ep} = {(ap+by)ecy} =
{apsepibpren} = {apee } @ {byeepn} = ({ag} @ {ex}) @
({by} © {en}).
2. Right distributive property is similar to 1.

Theorem 2
The set of a2ll sequences is 2 commutative ring with identity.



Proof':

Lemms 1, lemm2 2, and lemma 3,

Theorem 3

The set of 2ll sequences is a vector space over the reals.
Proof':

Let S be the set of all sequences. Dy lemma 1, S is an
abelian group under ® . Clearly ®: RX 8 =» §. For all
{ap}s {by} ¢ & and 2,b ¢ I we have:

1. (a+b){by} = {(a+b)eby} = {asbp+beby} = {a+by} @ {beby} =

a® {by} + bO® {by}.

2. a@® ({ag} @ {by}) = a® ({ap+by}) = {alay+by)} =

{arapvaby)} = {asay) @ {asby} = a ® {aq} ® a ® {by} .

3. (aeb) @ {ag) = {(asb)eay} = {albeay)) = & @ {beay) =

a® (b® {ag}).

be 1@ {apl = {Leap} = (ap}.

theorem U

The sum of two convergent sequences is convergent and
the limit of the sum is the sum of the limits.
Proof':

Let € be given grester than zero. Suppose {2,} converges
to & and {b,} converges to b. Then there exists N, such that
n 2> N, implies |ap-a| < % and there exists N, such that n > N,
implies |by=b| < & . Let N equal meximm {N,,N,}. Then

[ (ap#b, )=(a+b) | = |(ag=a)+(by=b)| < |ag=a| + |by=b] <.§;+ gsg,z

“Ibid., p. 35.



Theorem 5

If {a,} converges to &, then for ke R, k @©{a,} converges
to kea,?
Proof':

Let £> 0, There is a positive integer N such that n > N
implies |ap=a| < -ﬁ-(-,%-l- « Thus n 2 N implies |kap=ka| = |k(ap-a)
« E£XE,

= 1kl lag=al < [kl = ,-{-cfl-i

Theorem 6

Let S be the set of all sequences snd S, be the set of
all convergent sequences then S, is & subspace of S.
Proof':

For all {an} ’{bn} e 8 and @a ¢ R we have, by theorem 4,
that {ag} ®{by} ¢ S, and by theorem 5 that a ®{ay) ¢ S
It follows that S, is a subspace of S.*

Theoren

If sequence {a,} is convergent, then {a,} is bounded.®
Proof':

Suppose {an} converges to a. There exists N such that
n > N implies [ag-a| < 1. Thus |ay| - |a| £ [|eg|=|2|] <
lan-al <1l. Son 2N implies |a,| < [a|+1l., Let B equal the
maximum {|a,|,lazl, *++ ,|ay_,],]a[+1}. Then {ap} < B for
all n.

3Ibid., p. 37.
“p. I, Mal'cev, Foundat of Linear Algebra (San
Francisco: W. H. Freeman and aampany, )s Pe &7.

501msted, op. git., p. 35.



Theorem 8
The product of two convergent sequences is convergent

and the limit of the product is the product of the limit.®
Proof':

Suppose {an} converges to 2 and {bn} converges to b.
By theorem 7, there exists B > 0 such that | b, < B for all
n. Let £> 0. Now pick N > 0 such that n 2 N implies |[by=b|
< i'ﬂ?aéﬁ'ﬂ and n > N implies lag-a| < k. Then n > N implies
lapbp=ab| = |apbp-abp+ab =ab| = [(ag=a)by + alby=b)| <
[(ap=a)bn| + lalby=b)| = |by|lap=a| + |a||by=b| < |a -a|B +

|a| [bp=b| < %% - ,&IETT;%:IT'Slg + Tﬁ?%I . §§<.§;+'§ = C,

Theorem 9

Let S5 be the set of all sequences and S, the set of all
convergent sequences. Then Sc is a commutative subring of
S with identivy.
Proof':

Suppose {a,} and {bn} belong to S, then, by theorem &
and theorem 5, {op}={by} = {a }®{~b,} € 85. By theorem 8,
{a,} © {by} = {ap*by} e S5« It follows that S, is a subring
of 5.7 Commutativity is inherited, and {a,} = {1} is the
identity.

Theorem 10

Let S be the set of all convergent sequences. Then

®Ibid.
"Wilfred E. Barnes émd_ugt%% to Abstract Algebra
(Boston: D. C, Heath and ompany, BT?' P .
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limit is & ring homomorphism mapping the set of 2ll conver-
gent sequences onto the real numbers.
Proof':

By theorem 1, limit is 2 function. The fact that the
reals are complete implies limit: S5, —> i, Clearly limit
maps S, onto the reals. Let &, , by belong to S,, then by
theorem 4, ({2} ® {by})limit = ({ay})limit + ({by})limit,
and by theorem 8, ({a,}®{b,})linit = ({ap})limit « ({b,})limit.

Theorem 11

Limit is 2 linear transformation mapping the set of all
convergent sequences onto the real numbers.
Proof':

Let S, be the set of all convergent sequences. OSuppose
{an}s (b, } belong to S, and a,b belong to R, then (a{ay} @
b{by })limit = ({asap} @ {bebylimit = ({asa })limit +
({beby })1limit = (a ® {a, Hlimit + (b © {by })1limit =
a » (({ap Plimit) + b « (({by})limit). Limit is a function
by theorem 1. Thus limit belongs to JS(Sg,k). Clearly limit

maps onto the real numbers.

Theorem 12
S
R = 2C.
sals = porTiinic)
Proof

By theorem 10, limit is 2 ring homomorphism mapping S,

onto the reals. DBy fundamental theorem of ring homomorphism,

Sc N 8

®Ibid., p. 90.



Theorem 13
The set of all sequences is 2 linear algebra over K.

Proof':

Let S be the set of all sequences. By theorem 3, S is
a vector space over the reals, and by lemma 2, O : 8 X § =» 8
and is associative. Let {ap},{b,},{cp} belong to 8 and a,b
belong to F. Then {an} ® (a{ep) @ bibp}) = {8} ® ({aen} @
{bbn}) = {an}<:)({acn+bbn}) = {aplaey) + ap(bb,)} =
{alapnen) + blapby)} = {alapep)} @ {blayby)} = a ® {apen} ®
b©® {apbp} = a ® ({ap}*{en}) ® b O ({23} © {by}). Similarly,
(a{an} @ bi{by}) @ {en} = a({ay)} © {ey}) @ bl{by} © {ex}).

Theorem 1

The set of 211 convergent sequences is & linear algebra
over the reals.
Proof':

Let S, be the set of 2ll convergent sequences. By
theorem 6, S5, is a subspace of the set of 2ll sequences.
By theorem 9, ® : 8g X 8, =% S, and is associative. The
bilinear property is inherited.

Theorem 15
Let R be 2 commutative ring with identity 1 # 0. An
jdeal I in " is proper meximal if and only if %»ia a field.®

Theorem 16
The kernel of limit is proper maximal in the set of all
convergent sequences.

9 d., p! 1260
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Proof:
Let Sg be the set of all convergent sequences. The
S
4110 c
kernel of limit of S; is an ideal.'® By theorem 12, kor (1imit)
is a field since the reals is a field. We have S, a com- \

mutative ring with identity. Thus by theorem 15, the theorem

follows.

Let V and W be vector spaces with f a linear transfor-

mation mapping V into W. Let C = {vg}‘eA be a basis for the
null space of £f. If D = {V*}*EB is a set of vectors such
that CUD is a basis for V with CND = J, then {(v*)f}*eB i
a basis for the range of f.
Proof':

Let w belong to the range of f. There exists a v e V

such that (v)f = w., lNow v = 12ia1 4q® Then w = (v)f =
n
Tagv,, |f= ): (v If (v, )f, since <, ¢ A implies
(1-1 . "i) = R "1”' Ny i
(V*i)f =0, Seo {(v&)f}‘e spans the range of f. Let 12:181(1!,(1)1'
= 0 with e B, Let v = 2 SAME Then (v)f =( Z a £ =
"4 =l <1 a i i)

n
iZiai(v )f = 0, So v is in the null space of f. Thus there

n
exists ‘J e A such that v = Jz byv, = 2 3 with <3 ¢ B,

194 4
n
Hence 2 va*J + 121-a1v&i = 0 implies a; = O for all i. 5o

101bid., p. 90.
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{(v‘)fh<€g is a linearly independent set.
Comment :
The linear transformation f, restricted to {N&} cp’ is
A

one Lo one.

Theorem 18

There exists a basis for the set of all convergent
sequences which contains only one sequence converging to
some value other than 0,

Proof':

Consider the basgis {v*}AsAuB in theorem 17. We have
shown that {(v*)fh<eB is o basis for the range. Now consi-
dering £ = limit and {vx}stuB o basis for the set of conver-
gent sequences, we have {(v‘)limit}*sB is 2 basis for the
reals. The basis for the reals consists of one number # 0.
Thus there exists a single N_ ¢ {N.(}.(eB since limit restricted
to {N'(}_<eB is one to one. Hence there exists only one

sequence in {v_} which converges to something other

<EAUB
than zero.

Comment :

A sequence converges if and only if it can be written
as a finite linear combination of convergent sequences with
at most one sequence in the combination not converging to

2ero.

Propogition 1

The identity sequence would serve as the sequence in

theorem 12 not converging to zero.
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Definition 6
The cardinality of the natural numbers is No and the

cardinality of the real numbers is [ .

Theorem 19
The dimension of the null space of limit is at least Nge

Proof':

Let A be the set of all sequences having the number 1
in exactly one entry and zeros elsewhere. Clearly A is a
linearly independent subset of the set of all sequences
converging to zero and the cardinality of A is N,.

Lemma 4

Let 5 be the space of all sequences, then S has car-
dinality [ .

Proof':

The cardinality of the reals is [ . Let S be the set
of 21l sequences, then 8§ = RX RX R *** (N, times). Thus
8] = C* Ce+ Coee (N, times) = [0 = (2M0)To = 2Mo™o _
2b-.

Theorem 20
Let S be the space of all sequences, 5, the space of

21l convergent sequences, and SN the null space of limit,
then the cardinality for the basis of each is at least N,
and at most [ .

Proof:

Apply theorem 19, and lemma 4.
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ITheorem 21

Let SN be the null space of limit and S, the set of all
convergent sequences, then the dimension of Sy is equal to
the dimension of Sg.
Proof':

If dimension of Sy = N, then by applying theorem 18,
Ng + 1 = Ny is the dimension for S,. If dimension of Sy = [
then [+ 1 = [is the dimension for S,.

Proposition 2
The dimension for the null space of limit is Ny,

Proposition 3
The dimension for the space of all sequences is [ .
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