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ABSTRACT 

 
 
This monograph aims to survey a range of econometric techniques that are currently being 
used by experimental economists.  It is likely to be of interest both to experimental economists 
who are keen to expand their skill sets, and also the the wider econometrics community who 
may be interested to learn the sort of econometric techniques that are currently being used 
by Experimentalists.  Techniques covered range from the simple to the fairly advanced.  The 
monograph starts with an overview of treatment testing.  A range of treatment tests will be 
illustrated using the example of a dictator-game giving experiment in which there is a 
communication treatment.  Standard parametric and non-parametric treatment tests, tests 
comparing entire distributions, and bootstrap tests will all be covered.  It will then be 
demonstrated that treatment tests can be performed in a regression framework, and the 
important concept of clustering will be explained.  The multilevel modelling framework will 
also be covered, as a means of dealing with more than one level of clustering.  Power analyisis 
will be covered from both theoretical and practical perspectives, as a means of determining 
the sample size required to attain a given power, and also as a means of comuting ex-post 
power for a reported test.  We then progress to a discussion of different data types arising in 
Experimental Economics (binary, ordinal, interval, etc.), and how to deal with them.  We then 
consider the estimation of fully structural models, with particular attention paid to the 
estimation of social preference parameters from dictator game data, and risky choice models 
with between-subject heterogeneity in risk aversion.  The method maximum simulated 
likelihood (MSL) is promoted as the most suitable method for estimating models with 
continuous heterogeneity.  We then consider finite mixture models as a way of capturing 
discrete heterogeneity; that is, when the population of subjects divides into a small number 
of distinct types.  The application used as an example will be the level-k model, in which 
subject types are defined by their levels of reasoning.  We then consider other models of 
behaviour in games, including the Quantal Response Equilibrium (QRE) Model.  The final area 
covered is models of learning in games. 
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1. Introduction 
 
Experimetrics1 comprises the body of econometric techniques that are customised to 
experimental applications.  This monograph is aimed principally at two types of reader.  The 
first is the experimental economist who is interested in expanding their skill set in econometric 
techniques.  In particular, experimental researchers who rely heavily on straightforward 
treatment testing techniqes will hopefully be persuaded that more sophisticated econometric 
techniques are more suitable in many settings.  The second type of target reader is the  
researcher from the wider econometrics community who may be interested to discover the 
sort of econometric techniques that are currently being used by Experimentalists.  Of 
particular interest to this type of reader may be the techniques that have not traditionally 
been part of the standard Econometrics toolkit, for example, power analysis and optimal 
experimental design.  Possibly the best possible end result from this Monograph would be the 
cross-fertilisation of ideas from Applied of Theoretical Econometrics resulting in new and 
improved techniques in Experimetrics. 
 
The most widely used approach in the experimental economics literature is the treatment 
testing approach.  The treatment test often simply amounts to a comparison of some 
behavioural outcome between two samples: a control sample and a treatment sample, drawn 
randomly from the population of experimental subjects.  Justification of this approach is 
usually provided in terms of subjects being assigned randomly to treatments, and all 
influences on behaviour other than the treatment of interest being held fixed by virtue of the 
experimental environment.  These arguments are often used to explain away many of the 
types of problem that econometricians have traditionally been interested in, such as sample 
selection bias, measurement error, and endogeneity. 
 
However, there are a number of compelling reasons why the level of econometrics required 
in the analysis of experimental data goes beyond simple treatment testing.  Firstly, in planning 
a treatment test, issues of experimental design are important.  The most basic feature of the 
design is the sample size, and the use of power analysis is becoming routine in the process of 
setting this design feature.  Power analysis has underpinnings in statistical theory, and 
conducting a thorough power analysis is facilitated by an understanding of this underlying 
theory.  It must be said that this interest in the use of power analysis is relatively new in 
econometrics and has taken hold mainly as a consequence of the rise of Experimental 
Economics. 
 
Second, there are many different ways of conducting the treatment test itself.  A choice must 
be made over parametric and non-parametric tests, between-subject and within-subject tests, 
and so on.  Which approach is best suited in a particular situation is often far from obvious.  
Once again power analysis is important.  Testing approaches vary widely in terms of power.  
However, a theme of this monograph is that there are other considerations relating to human 
behaviour which sometimes distort theoretical prescriptions, and the test with the highest 
power is not always the most suitable. 
 

 
1 The word “Experimetrics” was (to the best of my knowledge) coined by Camerer (2003, p.42).  The 
first article containing the word in the title was Bardsley and Moffatt (2007), and a textbook bearing 
the title Experimetrics was produced by Moffatt (2015). 
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Third, the structure of experimental data is frequently such that straightforward application 
of treatment tests is invalid.  Data is often clustered, sometimes at more than one level.  It is 
very common for each subject to engage in a sequence of experimental tasks, and hence there 
is clustering (or dependence) at the subject-level.  In some types of experiment, subjects 
interact in groups, and it is natural to expect clustering at the group level.  Finally, an 
experiment may be divided into sessions taking place in different places or at different times, 
and we may expect clustering at the session level.  It is well-known (Moulton, 1986) that any 
combination of these different levels of clustering invalidates any test that assumes 
independence between observations.  One way of dealing with these problems is to conduct 
the treatment tests as tests of significance in regressions with clustered standard errors, but 
a superior approach is to use a multilevel model that fully incorporates all levels of clustering. 
 
Fourth, most treatment tests are performed on the assumption that if agents respond to a 
treatment, they all respond to it in the same way.  That is, there is an implicit assumption of 
homogeneity.  It may be that a proportion of subjects respond to the treatment in the 
expected way, but the remainder are not affected by the treatment.  In this case, a test that 
assumes homogeneity will underestimate the treatment effect for those who respond to it.  A 
more extreme possibility is that half of the population respond positively to the treatment 
while the other half respond negatively, and in this case the homogeneous treatment test may 
completely fail to detect any effect. 
 
The importance of subject heterogeneity extends far beyond treatment effects.  In many 
experiments, the focus is on “home-grown” characteristics of experimental subjects, such as 
risk aversion, ambiguity aversion, discount rate, inequity aversion, aversion to lying, and depth 
of reasoning.  All of these characteristics are likely to exhibit wide variation over the 
population of subjects.  Any model of any aspect of behaviour in which such characteristics 
are relevant must allow for this variation.  Often, the most natural way to allow for such 
variation is to construct a fully structural model in which the distributional parameters of the 
varying characteristics are estimated along with the treatment effects of interest. 
 
A good example of this is the modelling of social preference data.  In some settings, individuals 
face repeated tasks in each of which they decide how to divide an endowment between 
theirself and and another player, with the endowment and price of transferring varying 
between tasks.  This sort of data set provides an opportunity to estimate social preference 
parameters such as aversion to inequity and preference for efficiency – parameters which are 
almost certain to exhibit between-subject heterogeneity. 
 
Another example is the modelling of risky choice data.  Here, data on repeated choices 
between lottery pairs may be used to estimate preference parameters such as risk aversion 
and probability weighting.  Again, these are parameters for which between-subject 
heterogeneity is expected.  This sort of heterogeneity is allowed for in estimation using the 
method of maximum simulated likelihood. 
 
Some sorts of heterogeneity may be referred to as discrete heterogeneity, meaning that, 
instead being characterised by continuously varying preference parameters, it takes the form 
of the population subjects dividing into discrete “subject-types”, with discretely different 
models of behaviour.  One example is behaviour in public goods games, in which the 
population might be assumed to divide between free-riders (who follow the Nash prediction 
by contrinuting zero), reciprocators (who are willing to contribute only if they see others 
contributing), selfish contributors (who contribute in anticipation of reciprocity by others), 
and altruists (who contribute regardless).  Note that these four types are each defined by a 
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different sub-model, and the econometric objective is to use the experimental data to 
estimate the parameters of these four models, along with a set of mixing proportions, which 
reveal the proportions of the population who are of each type.  The econometric framework 
used for this purpose is the finite mixture model.  A variety of methods are available for the 
estimation of finite mixture models, including machine learning techniques. 
 
Another application of the finite mixture model which is used for illustrative purposes in this 
monograph is to depth of reasoning models.  Here, the objective is to use data from behaviour 
in one-shot interactive games in order to estimate the proportion of the population who act 
at each level of reasoning. 
   
Also of interest is behaviour in repeated games, where the initial questions to be addressed 
are how closely subject choices adhere to the Nash-equilibrium prediction, and whether 
sequences of choices appear random.  More sophisticated analysis of repeated-game data 
reveals whether and how decision-makers learn to optimise their behaviour in repeated 
games.  Are they attracted to strategies that have proved beneficial in previous tasks 
(reinforcement learning), or do they go further and form beliefs about the other players’ 
actions and then make optimal decisions based on these beliefs (belief learning)? 
 
The purpose of this monograph is to survey these techniques.  However, it aims to be more 
than just a survey of the literature because it also aims to explain the techniques and evaluate 
them with illustrations, sometimes using data sets from previously published studies. 
 
Section 2 provides an overview of treatment testing.  A range of treatment tests are illustrated 
using the example of a dictator-game giving experiment in which there is a communication 
treatment.  Standard parametric and non-parametric treatment tests, and also tests 
comparing entire distributions, are surveyed briefly.  Then bootstrap tests are proposed as a 
way of avoiding the disadvantages of both parametric and non-parametric tests.  Then it is 
explained how a treatment tests can be performed in a regression framework, as the test of 
significance of the effect of a dummy variable representing the treatment, one considerable 
advantage of this approach being that it becomes possible to correct the test for clustering of 
the data that inevitably arises at the subject-level and/or the session level.  The final part of 
the section covers multi-level modelling, in which subject-specific and session-specific random 
effects are both incorporated in estimation. 
 
Section 3 covers power analysis, an area of growing importance in experimental economics.  
The question of central interest is usually: what sample is required in a treatment test to attain 
a benchmark level of power (e.g. 0.8)?  Tailor-made routines are outlined, but it is made clear 
that these methods are only applicable to a fairly limited range of treatment testing problems.  
The Monte Carlo method is proposed as a useful method for performing power calculations 
in situations in which ready-made routines are not available.  The method is be applied to 
investigate questions including: how much more powerful is a within-subject test with n 
subjects than a between-subject test with 2n subjects?  Then the method is applied to 
consider the problem of how to choose both n and T simultaneously in order to attain a 
required power in a panel data context. 
 
Section 4 covers the different types of data arising in Experimental Economics, and the reasons 
why they arise in the form they do.  Decision-making under risk is the chosen context in which 
these are considered.  This choice of context is convenient because different data types arise 
depending on the elicitation method used: binary data arises when the subject chooses 
between lotteries; ordinal data arises when the subject makes a choice and also reports 
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strength of preference; interval data arises when the subject is faced with a sequence of 
choice problems and decides on their switch-point, that is, where in the sequence they switch 
from the safe to the risky choice or vice versa; exact data arises when the subject has been 
asked to report a certainty equivalent of a single lottery. 
 
The remainder of the monograph is concerned mainly with the estimation of fully structural 
models.  Section 5 considers methods for the structural estimation of social preference 
parameters.  Section 6 considers ways of dealing with continuous heterogeneity.  The method 
of maximum simulated likelihood (MSL) is be used for all examples, and this method is 
explained in reasonable detail.  Models with one dimension of heterogeneity, such as the 
Fechner and RP models of risky choice, in which only risk aversion varies between subjects, 
are be considered first.  We then move on to settings in which there is more than one 
dimension of heterogeneity, for example: models in which subjects vary in both risk aversion 
and probability weighting; models in which subjects vary in risk aversion and time preference; 
models in which subjects vary in risk aversion and inequity aversion. 
 
Section 7 considers finite mixture models as a way of capturing discrete heterogeneity; that 
is, when the population of subjects divides into a small number of distinct types.  The 
application used as an example will be the level-k model, in which subjects are defined by 
their levels of reasoning, with the level of reasoning typically ranging from 0 up to 3 or 4.  
Section 8 considers other models of behaviour in games, including the Quantal Response 
Equilibrium (QRE) Model.  Section 9 considers models of Learning.  Section 10 concludes. 
 
 

2. Treatment Testing 
 
No survey of Experimetrics would be complete without a section on treatment testing.  This 
is because a surprisingly large part of Experimental Economics relies exclusively on this 
approach in the analysis of data and the testing of hypotheses.  The essence of the approach 
is very simple, and normally amounts to the comparison of two data samples.  However, 
within the area of treatment testing, many different methods are available to choose from: 
between-subject versus within-subject; parametric versus non-parametric; and so on.  Hence 
a key question to be addressed is which method should be used in any given situation. 
 
Another set of questions intimately related to treatment testing are those of power analysis.  
Power analysis is the set of techniques used to compute the statistical power of a treatment 
test in a given situation, and perhaps more usefully in the context of Experimental Economics, 
to find the sample size that is required to attain a given required power.  One purpose of this 
section is to prepare the ground for Section 3 which is on the topic of power analysis. 
 
2.1. Key Concepts and definitions 
 
Here we provide a brief review of the central concepts underlying treatment testing, and in 
doing so we introduce the terminology that is used in this section and again in Section 3 when 
power analysis is discussed.  For further detail on these concepts see Siegel and Castellan 
(1988). 
 
We assume that the experiment consists of two treatments, 1 and 2.  One of the treatments 
(treatment 1 say) is sometimes referred to as “control”.  We are interested in the value of a 

scalar valued parameter .  Let us assume that this parameter has (population) value 1 under 
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treatment 1 and 2 under treatment 2.  The difference between the parameter values under 

the two treatments is δ = 2 - 1, and δ is known as the “true effect size”. 
 
A treatment test always has a null hypothesis, labelled H0, and an alternative hypothesis, 
labelled H1. The null hypothesis is typically the hypothesis that there is no effect, that is, the 
true effect size, δ defined above, equals zero. The alternative hypothesis is that there is an 
effect.  If the alternative hypothesis specifies the direction of the effect (i.e. δ >0 or δ <0), it is 
a one-sided alternative and we conduct a one-tailed test.  If the alternative does not specify 

the direction of the effect (i.e. δ 0) it is a two-sided alternative and we conduct a two-tailed 
test.  One-sided alternatives are usually proposed when the researcher has a prior belief about 
the direction of the effect, the prior belief perhaps coming from economic theory, or some 
behavioural theory. 
 
In some situations, for example when performing power calculations, it is necessary to fix the 
effect size under the alternative at a particular value.  Hence the test becomes a test of H0: δ 
=0 against H1: δ = δ1 where δ1 is some pre-determined non-zero value, perhaps obtained from 
the results of a previous study. 
 
The first stage of the application of the hypothesis test is to compute the test statistic which 
is a function of the n data values in the sample.  n is the sample size.  The second stage is to 
compare the test statistic to the null distribution (i.e. the distribution that the statistic would 
in theory follow if the true effect size were zero). The tails of this distribution form the 
rejection region of the test, and if the test statistic falls in this region, the null hypothesis is 
rejected in favour of the alternative.  If the test statistic falls elsewhere, the null hypothesis is 
not rejected, and it may be concluded that the test result is consistent with the null 
hypothesis.  
 
The rejection region is determined by whether the test is two-tailed or one-tailed, and by the 

chosen size of the test. The size, usually denoted as , is the probability of rejecting the null 
hypothesis when it is true, and this is normally set to 0.05. The point at which the rejection 
region starts is referred to as the critical value of the test. 
 
The p-value of the test is the probability of obtaining a test statistic that is at least as extreme 
as the one obtained.  One reason why the p-value is useful because it allows a conclusion to 
be drawn without comparing a test statistic to a critical value (i.e. it avoids the need to consult 
statistical tables).  A more important reason why the p-value is useful is because it is a measure 
of the strength of evidence against the null, and in favour of the alternative (i.e. the strengh 
of evidence of an effect).  The words used to represent strength of evidence are a matter of 
individual taste.  According to popular convention: if p<0.10, there is mild evidence of an 
effect; if p<0.05, there is evidence; if p<0.01, there is strong evidence; if p<0.001, there is 
overwhelming evidence. 
 
As mentioned above, a prior belief about the direction of an effect leads to a one-tailed test. 
For a one-tailed test (assuming the test statistic has the expected sign) the p-value is half of 
the p-value for the corresponding two-tailed test. Hence one-tailed tests are more likely to 
find evidence of an effect.  In this sense prior beliefs are very useful because they can be used 
to boost the chances of obtaining a conclusive result. 
 
Rejecting the null hypothesis when it is true is known as a type 1 error.  As noted above, the 

probability of a type 1 error is denoted as , and is usually set to 0.05.  The other type of error 
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is a type 2 error: failing to reject the null hypothesis when it is false. The probability of a type 

2 error is denoted as .   
 
The power of a test is the probability of rejecting the null hypothesis when it is false. The 

power is denoted as .  Note that =1-.  The power of a test is determined by a number of 
factors, including the true effect size, the sample size (n), and whether the test is one-tailed 

or two-tailed.  It also depends on the chosen value of .  The higher  is, the higher the 
probability of type 1 error, which has the benefit of higher power.  Power analysis is the name 
given to the set of techniques used to compute the power of a given test, and to find the 
sample size required to meet a given power requirement. 
 
Because the power of a test depends on the true effect size, and the true effect size is typically 
unknown, power is often depicted graphically using a power function.  This is power plotted 
against true effect size.  It is also informative to plot power against sample size, for a given 
true effect size.  Examples of such plots will be presented in Section 3.2. 
 

2.2 Choosing the values of  and  
 

The close relationship between size and power clearly implies that the choice of size () is an 
important decision.  This choice depends to a large extent on the type of hypothesis under 
test.  For a well-known example, first consider a situation in which the null hypothesis is that 
a crime suspect is not-guilty, and the alternative is that the suspect is guilty. In this situation, 
a type 1 error is finding an innocent person guilty, while a type 2 error is letting a guilty person 
go free. Many people view the first error as more serious than the second.  Hence we should 

choose a very low value of  in this situation. How low? This is another question, although it 

must be noted that  cannot be lowered all the way to zero, since this would mean that every 
suspect must be declared not-guilty. 
 
For a second well-known example, that is particularly topical in 2020, consider a situation in 
which the null hypothesis is that a patient is healthy, and the alternative is that they are 
suffering from a contagious disease.  In this situation, declaring a diseased patient healthy 
(type 2 error) might be considered much more serious than telling a healthy patient that they 

have the disease (type 1 error).  Hence, in this situation we could allow a higher value of , 
since this would give rise to a higher probability of detecting infected patients (i.e. higher 
power). 
 
In Experimental Economics, we are perhaps fortunate that the errors that might be made in 
the interpretation of results from hypothesis tests rarely have consequences that are as 
serious as those arising in the above examples.  Hence it seems reasonable to follow 

convention and set the value of  to 0.05 as a standard.  Closely related to the choice of  are 
a number of important recommendations - relating to the “scientific quality debate” – that 
should be followed in the conduct of tests.  These recommendations are discussed in Section 
3.3 below. 
 
Although there are no formal standards for power, many researchers assess the power of their 

tests using =0.80 as a standard for adequacy.  The corresponding value of  is 0.2. These 
conventions imply a four-to-one ratio between the probability of type II error and the 
probability of type I error.  So, returning to the example of the suspect in court, the number 
of guilty suspects set free should be approximately four times the number of innocent 
suspects imprisoned. 
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2.3 Treatment tests illustrated 
 
In this Section, we will demonstrate a number of standard treatment testing techniques in a 
context that is very popular in Experimental Economics: dictator game giving.  The dictator 
game was first introduced by Forsythe et al. (1994) with the objective of investigating how 
much individuals are willing to give to others, and identifying the determinants of giving 
behaviour.  The game has two players, A (dictator) and B (recipient).  Player A has the task of 
dividing some fixed endowment ($100 say) between themselves and Player B.  Player A’s 
decision takes the form: I get $90; you get $10.  The role of Player B is entirely passive.  
Observed behaviour in this game allows a very straightforward test of the homo economicus 
model of individual behaviour: if individuals were only concerned with their own economic 
well-being, Player A would allocate the entire amount to themselves and transfer zero to 
Player B.  In game theoretic terms, zero giving is the Nash Equilibrium prediction in this game.  
There is a vast amount of experimental evidence to reject this model: on average dictators 
give about 20% of the endowment to the receiver (Camerer, 2003). 
 
We are clearly interested in why dictators depart from the theoretical prediction of zero 
giving.  We are also interested in ways in which giving behaviour may be manipulated by 
altering the setting.  The vast literature on the Dictator game has not only found that some 
individuals give to others, but also that giving behaviour is highly sensitive to certain design 
features.  Engel (2011) provided a thorough meta analysis of dictator games, pooling the 
results of more than 100 studies.  Factors he found to have a positive effect on giving include 
“endowment earned by recipient” and “deserving recipient”.  Factors having a negative effect 
include “endowment earned by dictator” and “repeated game”. 
 
For the purpose of this monograph, we are not so much interested in the effects of design 
features on giving, as simply in the statistical methods used in individual studies in order to 
test these effects.  Some specific examples are useful at this point.  Cherry et al. (2002) focus 
on the effect of whether the endowment is earned by the dictator, using Fisher’s exact test to 
analyse the effect on the decision of whether or not to give, and using the Mann-Whitney test 
for the effect on the amount given.  Eckel and Grossman (1998) focus on the effect of the 
gender of the dictator, and use the independent samples t-test to compare the means of 
giving by gender, and the Kolmogorov-Smirnov and Epps-Singleton tests to compare the entire 
distribution of giving by gender.  Bardsley (2008) investigates the effect of a “taking 
treatment” on the propensity to give, using a bootstrapped difference-in-proportions test. 
 
Even on the basis of this small number of examples, it is clear that a fairly wide range of tests 
are available and have been used for the purpose of treatment testing.  Here, the objective 
will be to demonstrate and evaluate each of these tests in a chosen context, with a fixed test 
data set.  The example chosen for illustration of treatment testing is communication.  The 
question of interest is: does the behaviour of the dictator change if the responder is permitted 
to communicate with them, by sending a message before the giving decision is made?  
Although such a message must be classified as “cheap talk” and does not alter the theoretical 
prediction of zero giving, there is clearly a potential for communication to influence 
behaviour. 
 
There are broadly two ways of testing whether communication has an impact on giving.  An 
independent-samples test assigns some dictators to a control group (no communication) and 
other dictators to a treatment group (with communication), and then investigates the 
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difference in behaviour between the two groups.2  A within-subject test carries out both 
procedures on each dictator.  That is, each dictator’s behaviour is observed both without and 
with the treatment.  Again, behaviour is compared between treatments. 
 
The application is particularly useful for the demonstration of treatment tests because a range 
of different types of test are required, and can therefore be demonstrated naturally. 
 
2.4  Dictator game data 
 
Let us assume that a dictator game experiment has been carried out on a sample of subjects.  
The dictator’s endowment is $100, and the decision variable is the number of dollars 
transferred from the dictator to the receiver.  Let us assume that the giving data is as 
presented in Table 2.1.3  Since the purpose is simply to illustrate the use of key tests, this data 
set is simulated, in such a way as to exhibit the key stylised facts of dictator game experiments. 

 
Table 2.1: Simulated Dictator game giving for 30 dictators.  y1 is giving with no communication; y2 is 
giving with communication.   

 
The simulated data set presented in Table 2.1 is from a within-subject experiment.  That is, 
there are 30 dictators, and each dictator has performed the task twice, with a different 
recipient on each occasion.  On the first occasion (y1), the dictator and recipient have no 
opportunity to communicate; on the second occasion (y2), they have such an opportunity. 
 

 
2  Note that only half of the subjects in a Dictator Game task are dictators.  The other half are 
recipients.  Although recipients have no active role in the experiment, their participation is essential 
for the dictators’ task to have meaning.  
3 The simulated data is presented here for the benefit of readers who wish to reproduce the results 
reported. 

                

 30.    0    0  

 29.   30   50  

 28.   30   28  

 27.    0    0  

 26.   26   50  

                

 25.   21   26  

 24.   28   32  

 23.    0    0  

 22.    0   50  

 21.    0    0  

                

 20.   18   22  

 19.    0    0  

 18.    5   17  

 17.    1    0  

 16.   22   19  

                

 15.    0    0  

 14.   50   50  

 13.    1    3  

 12.   36   36  

 11.    6   16  

                

 10.   17   20  

  9.   10   25  

  8.    3   10  

  7.   27   43  

  6.   22   26  

                

  5.    0    0  

  4.   31   28  

  3.   11   12  

  2.   20   20  

  1.    0    0  

                

       y1   y2  
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Although this data is within-subject data, it will be used to illustrate both within-subject tests 
and independent-sample tests.  For the independent-sample tests, the pairing of observations 
will simply be disregarded, and the two colums of Table 2.1 will be treated as two independent 
samples.  Disregarding the pairing is clearly inadvisable since valuable information is being 
ignored.  However, using the same data set for both within and between tests allows a sharp 
comparison between the outcomes of the two types of test, and in particular allows an 
assessment of the advantages from using paired data over independent samples. 
 
For the independent-sample tests, the data will therefore be treated as if there are 30 
dictators in each group, with the first column showing the giving behaviour of the 30 dictators 
in the control group (no communication), and the second column showing that of the 
treatment group (communication).   
 
Table 2.2 presents descriptive statistics for the data shown in Table 2.1.  We find that the 
sample means of the two columns (Control and treatment) are $13.83 and $19.43 
respectively.  The key question to be asked is whether this difference is statistically significant. 
 
It is useful to start by plotting the two distributions in histograms.  This is done in Figure 2.1.  
This is useful because it gives clues to the precise nature of the treatment effect.  We see that 
although the treatment appears to have little effect on the number of zero-givers, there 
appears to be a shift to the right among positive givers, with a clear increase in the number of 
“equal splitters”. 
 

 n mean sd 

No communication 30 13.83 14.04 

Communication 30 19.43 17.45 

Pooled 60 16.63 15.95 

correlation 0.7830 

Table 2.2: Descriptive statistics for simulated sample presented in Table 1 

 

 
Fig.  2.1:  Frequency histograms of (simulated) dictator game giving without (n1=30) and with (n2=30)  
communication.  Normal densities superimposed. 
 

Histograms of the type shown in Figure 2.1 are useful for comparing two independent 
samples.  Given that the data shown in Table 2.1 is actually paired data, it is perhaps more 
informative to obtain a scatter plot of the second column against the first.  This is done in 
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Figure 2.2.  The observation that most of the points lie above the 45-degree line is consistent 
with the hypothesis that communication increases giving.  
 

 
Figure 2.2: Giving in communication treatment against giving in no-communication treatment.  Paired 
data (n=30).  45-degree line superimposed. 
 

Test Test statistic p-value Conclusion 

    

Normality tests:    

    

Skewness  0.0525 Mild evidence of skewness 

Kurtosis  0.2405 No evidence of non-normal kurtosis 

Joint (sktest) 2(2)=5.05 0.0802 Mild evidence of non-normality 

Shapiro-Wilk test Z=2.423 0.0077 Strong evidence of non-normality 

    

Independent-sample 
tests: 

   

    

Indep samples t-test t(58)=-1.3956 0.0881 Mild evidence of difference in means 

Sd test F(29,29)=0.6480 0.2486 No evidence of difference in variances 

t-test (unequal 
variances) 

t(.) = -1.3695 0.0882 Mild evidence of difference in means 

Permutation t-test t=-1.3956 0.0916 Mild evidence of difference in means 

Mann-Whitney test z = -0.907 0.1821 No evidence of difference in medians 

Bootstrap t (B=9,999)  0.0895 Mild evidence of difference in means 

Kolmogorov-Smirnoff 0.1167 0.435 No evidence of different distributions 

Epps-Singleton  0.5643 No evidence of different distributions 

Chi-squared test (+ vs 0) 2(1)=0.30 0.584 No difference in propensity to give 

Fisher’s exact test N/A 0.392 No difference in propensity to give 

    

Within-subject tests:    

    

Paired t-test  t (29) = -2.8248 0.0042 Strong evidence of difference in means 

Wilcoxon test z = -2.929 0.0034 Strong evidence of difference in 
medians 

Sign test  0.0096 Strong evidence of difference 

McNemar test 2(1)=0 1 No difference in propensity to give 
positive amount 
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Table 2.3:  Results from tests applied to simulated dictator game data presented in Table 2.1.  For the 
independent-sample tests, the pairing of observations is disregarded, and the two columns of data are 
treated as two independent samples of size 30.   

 
Table 2.3 presents the results from a range of tests applied to the simulated data shown in 
Table 2.1.  Obviously, some of these tests are more appropriate than others, and the choice 
of which test to use depends on the experimental design, the nature of the data, and the 
research question.  The purpose of Table 2.3 is to present the range of tests that are typically 
applied in the Experimental Economics literature, when the focus of analysis is a single 
treatment effect.  Perhaps the most striking feature of Table 2.3 is that most of the within-
subject tests all result in strong evidence of a treatment effect, while the independent-sample 
tests result in at most mild evidence. 
 
In the remainder of Section 2, we consider each of these tests in more detail, and in Section 3 
we go further by investigating their power properties.  There, we find that within-subject tests 
tend to have considerably higher power than independent-sample tests, and this is consistent 
with the differences seen in Table 2.3. 
 
2.5 Tests of Normality 
 
An important issue to address is whether the data is normally distributed.  Referring back to 
Figure 2.1, we see that neither of the two distributions appears close to the superimposed 
normal densities.  This is partly a consequence of the significant accumulations of observations 
zero (the Nash prediction) and at 50 (equal splitting of the endowment).  Although the 
skewness-kurtosis test (see Table 2.3) finds only mild evidence of non-normality,4 the Shapiro-
Wilk test finds strong evidence (p=0.0077) to reject normality. 
 
The question of normality is important because the independent samples t-test, considered 
in the next section, is based on the assumption of normality of the two distributions whose 
means are being compared.  The test may not be valid if the distributions are non-normal.  Of 
course, it is conventional to appeal to the Central Limit Theorem (CLT) when the samples being 
compared are sufficiently large.  According to the CLT, the (standardised) mean of a 
sufficiently large sample follows a  standard normal distribution even when the sample is 
drawn from a sample that is not normal (see e.g. Berenson et al., 1988).  Here “sufficiently 
large” is often considered to be 30 and above.  This requirement is (marginally) met in the 
present case, so it may be that we are justified in relying on the t-test result. 
 
2.6 Parametric (independent-ssample) Treatment Tests 
 
As explained in Section 2.4, for the purpose of demonstrating independent-sample tests, the 
pairing of the data in Table 2.1 will be disregarded, and the data will be treated as if there are 
30 dictators in each of two groups, with the first column showing the giving behaviour of the 
30 dictators in the control group (no communication), and the second column showing that 
of the treatment group (communication).   
 
We commence with the independent samples t-test of the null hypothesis that the two means 
are equal.  We will refer to the two population means as 2 and 1 , and hence the null 

hypothesis under test is 0 2 1:H  =  , and the alternative is 0 2 1:H   .  Note importantly 

 
4 It is often found that tests of normality appear deficient in power. 
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that the alternative hypothesis is one-sided since our behavioural model predicts that 
communication has a positive effect on giving.  The test statistic is given by: 
 

 2 1

1 2

1 1
p

y y
t

s
n n

−
=

+

  (2.1) 

 

where sp is the pooled standard deviation.  The test statistic (2.1) follows a ( )1 2 2t n n+ −  

distribution under H0, and hence H0 is rejected in favour of H1 if 
1 2 2,0.05n nt t + − .  

 
When applied to the present data set, this test results in a t-statistic of +1.36 and a one-tailed 
p-value of 0.088, leading us to conclude that there is only mild evidence that communication 
increases giving. 
 
The version of the independent samples t-test performed above is based on the assumption 
that the two distributions being compared have equal variances.  This can be checked using 
the variance-ratio test: 

 2
2
1

ss
F

s
=   (2.2) 

The test statistic F in (2.2) has a 
2 11, 1n nF − −  distribution under the null hypothesis of equal 

(population) variances.  Here, we find that F=1.54, with (2-tailed) p-value 0.25.  This indicates 
that we have no reason to believe the variances to be unequal, and that we are justified in 
using the equal-variances version of the t-test. 
 
 
2.7 Non-parametric (independent-sample) Treatment Tests 
 
In the interests of conservativeness, we shall assume that we have reason to believe that the 
t-test considered in Section 2.6 may be unreliable.  Given this assumption, the natural 
alternative is a non-parametric test.  Perhaps the most popular non-parametric treatment test 
among Experimental Economists is the Mann-Whitney test.  It is classified as non-parametric 
because it does not rely on any strong distributional assumptions (such as normality of the 
data).  It must be recognised however, that the test does depend on the assumption of equal 
variances between the two populations (which has already been checked for the present 
sample).   
 
A useful way of viewing the Mann-Whitney test is as a comparison of the medians of two 
samples, as distinct from the independent samples t-test which is based on the comparison 
of two means. 
 
To implement the Mann-Whitney test, all of the observations from both samples are ranked 
by their value, with the highest rank being assigned to the largest value, and with ranks 
averaged in the event of a tie.  Then the sum of ranks are found for each sample, and 
compared. The test is based on this comparison.  See Siegel and Castellan (1988) for further 
detail. 
 
For the test sample, a z-statistic of 0.907 is computed from the rank sums, and the (one-tailed) 
p-value is 0.1821.  It appears that there is no evidence of a treatment effect on the basis of 
this test.  The fact that the evidence of a treatment effect is weaker with the Mann-Whitney 
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test than with the t-test (reported above as p=0.0882) is an expected result: evidence of an 
effect tends to be weaker, the less is assumed about the process generating the data. 
 
2.8 The Bootstrap 
 
In Section 2.7 the Mann-Whitney test was introduced as a non-parametric analogue to the 
two-sample t-test used in Section 2.6, indicating that the former may be preferred in 
situations in which one doubts the assumption of normality of the data.  However, one 
drawback of non-parametric tests of this type is that they are based solely on the ordinality of 
the data, and hence they completely disregard the (possibly) rich cardinal information in the 
data. 
 
The “bootstrap” technique (Efron and Tibshirani, 1993) provides a means of conducting a 
parametric test such as the two-sample t-test (which definitely respects cardinality), without 
making any assumptions about the distribution of the data.5  To apply the bootstrap 
procedure to the t-test requires the following five steps: 
 

1. Apply the parametric test on the data set, obtaining a test statistic, 𝑡̂. 
2. Generate a healthy number, B, of “bootstrap samples”.  These are samples of the 

same size as the original sample.  They are also drawn from the original sample, but 
the key point is that they are drawn with replacement.  For each bootstrap sample, 
compute the test statistic, 𝑡̂𝑗

∗ 𝑗 = 1, … , 𝐵. 

3. Compute the standard deviation 𝑠𝐵 of the bootstrap test statistics , 𝑡̂𝑗
∗ 𝑗 = 1, … , 𝐵. 

4. Obtain the new test-statistic 𝑧𝐵 = 𝑡̂/𝑠𝐵. 
5. Compare 𝑧𝐵 against the standard normal distribution in order to find the “bootstrap 

p-value”. 
 
According to Mackinnon (2002) the number of bootstrap samples, B, should be chosen so that 

𝛼(𝐵 + 1) is a whole number, where  is the chosen test size.  Since   is usually set to 0.01, 
0.05, or 0.10, this requirement essentially means that B should be either 99 or 999 or 9999, 
etc.  With B=9,999 bootstrap samples of the t-test on the example data set, the (one-tailed) 
p-value is 0.0895, which is slightly larger than the one obtained by applying the t-test directly 
(0.0881).  Again, there is only mild evidence of a treatment effect. 
 
An obvious drawback of the bootstrap approach is that it is a random procedure and therefore 
results in a different p-value each time the procedure is applied.  The obvious remedy is to 
use a larger value of B.  Another way of addressing this problem is to use a random number 
seed in the implementation of the bootstrap procedure.  The chosen seed exactly determines 
the bootstrap samples generated, and is therefore a way of fixing the results of the 
bootstrapping procedure. 
   
2.9 Tests comparing entire distributions 
 
As suggested by Forsythe et al. (1994), tests comparing entire distributions are useful in 
situations in which economic theory does not predict the precise nature of the treatment 
effect.  In the context of the current example, since (homo economicus) theory only predicts 
that the amount transferred by the dictator is zero, the same theory is not useful in predicting 

 
5     The range of applications of the bootstrap technique is very wide.  It can be applied in the way 

described here to almost any test, and is also a standard method for obtaining measures of 
accuracy (standard error, bias, confidence interval, prediction error, etc.) to sample estimates. 
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the nature of any deviation from zero, and in particular it is not useful in predicting the nature 
of the impact of  treatments such as communication.  More precisely, theory does not predict 
which functional of the distribution may be expected to shift in response to the treatment.  Is 
it (as usually assumed) the mean of the distribution that shifts? Or is it the median?  Or is it 
the spread of the distribution?  This problem is solved by applying tests that are based on a 
comparison of the entire distributions under the two treatments, rather than a comparison of 
a particular functional such as mean or variance. 
 
One popular test that compares two entire distributions is the Kolmogorov-Smirnov (KS) test.  
In order to understand this test, it is useful to present the two cumulative distribution 
functions (cdf’s) on the same graph.  Such a graph is shown in Figure 2.3.6  The observation 
that the with-cummunication cdf lies below and to the right of the no-communication cdf is 
consistent with giving being higher in the communication treatment.  The KS test statistic is 
used to judge whether this difference is significant.  With reference to Figure 2.3, the KS test 
statistic is seen to be something very simple: it is the maximum vertical distance between the 
two cdf’s.  This is in fact +0.1667.  The corresponding p-value is found to be 0.435.  Once again 
no treatment effect is found. 
 

 
Figure 2.3: The cdf’s of dictator’s transfer under the no-communication treatment (higher line) and the 
communication treatment (lower line).  The Kolmogorov-Smirnov test statistic is the maximum vertical 
distance between the two lines. 

 
Another test for comparing entire distributions that has become popular among Experimental 
Economists is the Epps-Singleton test (Epps and Singleton, 1986).  In fact, this test does not 
compare the two distributions directly, but instead compares the empirical characteristic 
functions.7  This test is believed to perform similarly to the Kolmogorov-Smirnov test in terms 
of power, and has the added advantage of being applicable when the outcome has a discrete 
distribution (e.g. if the outcome is the number of questions answered correctly in a quiz).  The 
test is implemented in STATA using the user-written command escftest (Georg, 2009).  When 
applied to the present problem, the p-value is 0.56, indicating no evidence of a treatment 
effect. 
 
2.10  Independent-sample tests with binary outcomes 

 
6 The graph shown in Figure 2.3 is obtained using the user-written STATA command cdfplot. 

7 For a sample of size n, X1…Xn, the empirical characteristic function is defined as ( ) ( )
1

1
exp

n
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j

t itX
n


=

=   , 

where = −1i  . 
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In all tests discussed thus far, the outcome variable (giving) is continuously distributed.  In this 
section we consider the situation in which the outcome is binary.  This situation would arise if 
we were only interested in whether dictators give, and not how much they give.  The decision 
variable is 1 if the dictator gives a positive amount, and zero otherwise.  We then ask if this 
binary variable is associated with the binary treatment variable.  The most popular test in this 

situation is the chi-squared test (see Siegel and Castellan, 1988).  This test is based on the 22 
cross-tabulation shown in Table 2.4.  From the column percentages, we see that 63.33% of 
subjects give under no communication, while 70% give under communication.  The chi-
squared test essentially compares these two percentages.  It does this by comparing the 
number in each cell with the number that would be expected if there were no treatment 
effect. 

 
Table 2.4.  Cross-tabulation of positive giving indicator against treatment indicator, with column 
percentages. 

 
For completeness, the chi-squared test statistic may be computed easily as (O stands for 
“observed” and E “expected”): 
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  (2.3) 

 

Under the null hypothesis of no treatment effect, the test statistic has a 2(1) distribution.8  

The test statistic of 0.30 computed in (2.3) does not fall in the upper tail of the 2(1) 
distribution.  Hence there is no evidence of a treatment effect.  
 
An alternative to the chi-squared test which is also popular in Experimental Economics is 
Fisher’s Exact test.  This test asks what is the probability of obtaining the combination of 
numbers in the tabulation, or a more extreme combination (i.e. a combination that favours 
the alternative hypothesis more), for the given row totals and column totals.  This probability 
is the p-value for the test.  For the above tabulation, the p-value is 0.392.  Again we see no 
evidence of a treatment effect. 
 
As the name suggests, Fisher’s Exact test is an exact test, in contrast to the chi-squared test 
which relies on an approximation.  Fisher’s Exact test should be used in situations in which the 

 
8  The degrees of freedom for the chi-squared test is the number of entries in the cross-tabulation 

that are “free”, given knowledge of the row sums and column sums.  In a mn cross-tabulation this is 

(m-1)(n-1).  Hence for a test involving a 22 tabulation, the degrees of freedom is 1. 

                100.00     100.00      100.00 

     Total          30         30          60 

                                             

                 63.33      70.00       66.67 

         1          19         21          40 

                                             

                 36.67      30.00       33.33 

         0          11          9          20 

                                             

  positive           0          1       Total

      give       communication
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chi-squared approximation is likely to fail, for example when the sample size is small, or when 
the numbers in some cells are very small. 
 
2.11 Within-subject tests 
 
In previous sections, it has been assumed that the two treatments in a treatment test have 
been administered to two samples separately.  We referred to these tests as independent 
samples tests, but they are sometimes also called between-subject tests.  Within-subject tests 
are used to test the effect of a treatment in the contrasting situation in which each subject is 
observed both with and without the treatment.   
 
From a theoretical point of view, within-subject tests are preferred to between-subject tests, 
for the obvious reason that they have greater statistical power (see later Section 3 on power 
analysis).  The obvious reason for this difference in power is that within-subject tests 
incorporate the additional information of the pairing of observations.  However, there are 
various reasons why within-subject designs are not favoured by experimental economists.  
The issue of “order effects” is much discussed (see, for example, Harrison et al., 2005; Holt 
and Laury, 2005).  An order effect is present if the result of the test depends on the order in 
which two treatments are administered.  More generally, there are concerns that the 
experience of one treatment impacts on behaviour in the treatment that follows. 
 
We will continue to use the same example data set used above to illustrate the independent-
sample tests.  However, we will now correctly recognise that there are only 30 dictators in 
total, and each dictator has been observed twice, without and with treatment.  Although there 
are only 30 rows in the data set, it is sometimes useful to treat the data as a sample of 60 
observations that are clustered9 at the subject-level. 
 
To test formally for a treatment effect, we may, as usual, choose between a parametric and a 
non-parametric test. The standard parametric test is the paired comparisons t-test. This test 
computes the difference in amount given between the two treatments for each subject, and 
then applies the t-test to test whether these differences have mean zero.  Applied to the test 
data, this results in a t-statistic of 2.82 and a p-value of 0.0042.  This represents strong 
evidence that giving is higher in the communication treatment.   
 
A non-parametric test appropriate in this situation is the Wilcoxon signed ranks test (see Siegel 
and Castellan, 1988).  As with the parametric test, this test is based on the differences in 
amount given between the two treatments, for each subject.  The absolute differences are 
ranked from lowest to highest, so that the largest difference gets the highest value.  Then 
these ranks are summed separately for the positive differences and the negative differences.  
If there is no difference between the two treatments, these two rank sums should be roughly 
equal.  The test is therefore based on a comparison of these two numbers.  Applied to the test 
data, this results in a test statistic of z=2.929 and a p-value of 0.0034.  This represents even 
stronger evidence of a treatment effect than that from the paired t-test. 
 
The Wilcoxon signed ranks test is not completely distribution-free.  It relies on the assumption 
that the distribution of paired differences is symmetric around the median.  A test which 
avoids this assumption is the paired-sample sign test.  This test simply compares the number 
of positive differences to the number of negative differences, and asks if this difference is 
significantly different from one half according to a binomial distribution.  This test may be 

 
9  The concept of clustering is explained in more detail in Section 2.18 below. 
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viewed as a fully non-parametric test.  The p-value from this test is 0.0096.  The evidence from 
this test is still strong, but unsurprisingly weaker than the other two tests. 
 
 
2.12  Within-subject tests with binary outcomes 
 
In Section 2.11 we considered the problem of within-subject testing in a situation in which the 
outcome variable (giving) is continuously distributed.  In this section we consider the situation 
in which the outcomes are binary. 
 
If we are only interested in whether dictators give, and not how much they give, the outcome 

of interest is binary and the data can be presented in a 22 cross-tabulation, as in Table 2.5. 

 
Table 2.5: Cross tabulation for binary variables for giving positive amounts in two treatments.  Within-
subject data. 

 
The question we are asking here is: is a particular subject more likely to give a positive amount 
with communication than without communication.  To answer this question, we compare the 
two off-diagonal elements of the cross-tabulation.  If the number of subjects who change from 
not giving to giving as a result of communication is significantly greater than the number 
changing in the opposite direction, there is evidence in favour of our hypothesis.  The test 
which formalises this comparison is in McNemar change test (see Siegel and Castellan, 1988).  
In this situation, the two elements in question are both 1, and hence the test will result in no 
evidence whatsoever in favour of the hypothesis.  For this reason, it is appropriate to digress 
to more interesting applications of the McNemar test in other areas of experimental 
Economics.  This is the purpose of the next sub-section.  
 
The conclusion that there is no evidence of communication affecting the probability of giving 
a positive amount may at first sight appear at odds with the conclusions of Section 2.11, in 
which three tests unanimously found strong evidence that communication increases the 
amount given.  This apparent contradiction suggests that a hurdle model might be 
appropriate.  The hurdle model, originally due to Cragg (1971), separates the decision-making 
process into two stages: deciding whether or not to give; and deciding how much to give.  The 
two stages are termed “hurdles”, and being a “zero-type” or a “selfish type” is characterised 
by “falling at the first hurdle”.  This modelling framework is particularly useful in situations in 
which the two decisions are determined differently.  Note that this is what precisely what we 
are seeing in the present example: the communication treatment has no effect on the 
probability of giving, but a large effect on the amount given. 
 
The most interesting results from the estimation of hurdle models are those where an effect 
in the first hurdle is contradicted by an effect with the opposite sign in the second hurdle.  One 
example of this contradiction is uncovered by Andreoni and Vesterlund (2001) who find that 
males are less likely than females to give a positive amount in dictator games, but that males 
who do give, tend to give more than females. 
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2.13  Within-subject tests with binary outcomes: other applications 
 
The McNemar Change test (see Siegel and Castellan, 1988) is very popular in particular areas 
of Experimental Economics.  One is the testing of Allais paradox (Allais, 1953), which is perhaps 
the most well-known contradiction of expected utility (EU) theory.  The paradox is 
demonstrated by addressing a sequence of two (usually hypothetical) questions to a sample 
of subjects. The first question asks which they would prefer out of the lotteries A and A* 
below. The second question asks them to choose between B and B*. 
 
Lottery A: Certainty of $1 million 
Lottery A*:  0.01 chance of nothing 

0.89 chance of $1 million 
0.10 chance of $5 million 

 
Lottery B: 0.89 chance of nothing 

0.11 chance of $1 million 
Lottery B*: 0.90 chance of nothing 

0.10 chance of $5 million 
 
If a subject chooses A in the first question, and B in the second, we shall label their sequence 
of answers as “AB”.  There are clearly four different ways in which a subject can answer the 
two questions: AB, AB*, A*B, A*B*. Of these four possibilities, AB and A*B* are consistent 
with EU; AB* and A*B both indicate a violation of EU.  In practice, a significant number of 
subjects do violate EU by choosing either AB* or A*B.  However, what is of particular interest 
is the pattern, known as “Allais behaviour”, of AB* violations being much more frequent than 
A*B violations. 
 
In order to develop tests for the presence of Allais behaviour, we will use the notation n(.) to 
represent the number of subjects who answer with a particular sequence, for example, n(AB*) 
is the number of subjects who answer AB*. 
 
The McNemar change test is conducted as follows. The null hypothesis is that AB* and A*B 
are equally likely.  That is, we expect n(AB*) and n(A*B) to be approximately equal.10 To test 
this null, we apply the chi-squared test to these two groups.  The numbers in the other two 
groups are irrelevant.  The test statistic is, after simplification: 
 

𝜒2 =
[𝑛(𝐴𝐵∗) − 𝑛(𝐴∗𝐵)]2

𝑛(𝐴𝐵∗) + 𝑛(𝐴∗𝐵)
               (2.4) 

 
The distribution of (2.4) is 𝜒2(1) under the null hypothesis of no Allais behaviour.11 
 
Conlisk (1989) presented the two choice problems to 236 subjects. The numbers providing 
each response combination are given in Table 2.6.  Applying (2.4) to the numbers in Table (2.6) 
yields a test statistic 𝜒2 = 63.6, which, when compared to critical values of the 𝜒2(1) leads 
to the conclusion of overwhelming evidence of Allais behaviour. 

 
10 Note that we are assuming a simple error specification here, and a homogeneous population.  
Wilcox (2008, p.224-231) provides interesting examples in which populations satisfying EU can display 
Allais behaviour as a consequence of patterns of heterogeneity in which agents vary in “noisiness”.  
11 If the two numbers being compared in the McNemar test are small, the approximation by the 2(1) 
distribution may become poor, since a continuous distribution is being used to approximate a discrete 
distribution.  To deal with this problem, a “continuity correction” may be applied (see Yates, 1934).   
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 B B* 

A 18 103 

A* 16 99 
Table 2.6: Results from Conlisk’s (1989) Allais experiment. 

 
Conlisk (1989) suggested an alternative test statistic for detecting Allais behaviour, and this 
has come to be known as the Conlisk test.  The statistic is given by: 
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where N is the total number of subjects, V is the proportion of subjects who violate EU by 
giving AB* or A*B answers, that is: 
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And S is the proportion of violators who answer AB* rather than A*B, that is: 
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The test statistic (2.5) has a standard normal distribution under the null hypothesis of no Allais 
behaviour, with a value in the upper tail providing evidence that the proportion S given in (2.7) 
is significantly greater than one-half, that is evidence of Allais behaviour.  Applied to the above 
data from Conlisk (1989), the test statistic is 9.32, which is certainly in the upper tail of the 
standard normal, and confirms the strong evidence of Allais behaviour in this sample. 
 
Another setting in which the McNemar change test is popular is the testing of the preference 
reversal (PR) phenomenon (Grether and Plott, 1979).  This is the phenomenon of subjects 
choosing the safer of two lotteries (the “p-bet”) when asked to choose between them, but to 
contradict this choice by placing a higher valuation on the riskier lottery when asked to value 
them separately (that is, to provide a certainty equivalent for each). 
 
As an example, consider the very first pair of lotteries considered by Tversky et al. (1990): 
 
p-bet: 0.97 chance of $4; 0.03 chance of $0 
$-bet: 0.31 chance of $16; 0.69 chance of $0 
 

 Value p higher Value $ higher 

Choose p 43 106 

Choose $ 4 26 
Table 2.7.  Results from Tversky at al. (1990), study 1, set 1, triple 1. 

 
There were 179 subjects, distributed as shown in Table 2.7.  If a subject chooses p and values 
$ more highly, they are said to be making a “standard reversal”.  If they choose $ and value p 
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more highly, they are said to be making a “non-standard reversal”.  The PR phenomenon is 
detected if the number of subjects making standard reversals is significantly greater than the 
number making non-standard reversals. 
 
With reference to Table 2.7, the number of standard reversals (106) is clearly much higher 
than the number of non-standard reversals (4).  The two tests used above to detect Allais 
behaviour can be used here to formalise this comparison.  The McNemar change test gives a 

2(1) value of 94.58.  The Conlisk test gives a Z-statistic of +14.07.  Both represent 
overwhelming evidence of the PR phenomenon. 
 
 
2.14  Treatment testing using regression models and multilevel models 
 
Treatment tests can also be conducted in the context of a regression.  In an independent-
samples setting, if a regression is performed with the decision variable as the dependent 
variable, and with the treatment dummy as a single explanatory variable, and the regression 
includes an intercept, then the regression t-statistic associated with the treatment variable 
will be equivalent to the independent samples t-statistic discussed above. 
 
The paired t-test can also be performed in the context of a linear regression.  However, it is 
imperative to allow for the dependence between observations.  A paired sample can be 
viewed as a collection of clusters of size 2.  If a regression is performed with standard errors 
adjusted for this form of clustering, the result of the t-test will be very similar to that of the 
paired t-test discussed earlier.  
 
In fact, one of the important advantages of the regression approach is that it allows this sort 
of adjustment for the dependence between observations.  Dependence usually takes the form 
of clustering, either at the level of the individual subject (as with paired data), or at the level 
of the group of subjects that are interacting with each other, or at the level of the 
experimental session.  It is well known that default OLS standard errors that ignore such 
clustering can greatly underestimate the true OLS standard errors, as emphasized by Moulton 
(1986). 
 
Broadly, there are three ways of adjusting for dependence: ultra-conservative testing; 
clustering; and multilevel modelling.  Ultra-conservative testing simply amounts to taking 
averages over the dependent observations at the highest level of clustering, and then 
performing treatment tests using this averaged data, which automatically satisfies 
independence.  The glaring drawbacks of this approach are the neglect of the large amount of 
information in the individual-level data, and the greatly reduced sample size, inevitably 
leading to lower power.  The term “clustering” is, in the treatment-testing context, usually 
taken to represent the process of obtaining “cluster-robust” standard errors for OLS 
estimates.  These standard errors are obtained by assuming a block-diagonal covariance 
matrix for the regression error term.  For a detailed discussion of the importance of clustering 
in Experimental Economics, see Frechette (2012).  Multilevel modelling (Rabe-Hesketh and 
Skrondal, 2008) is a superior approach because it fully respects the clustered structure in 
estimation, and hence results in an efficient estimator of the model parameters, as well as 
unbiased standard errors.  The multilevel model includes both the OLS model and the random 
effects model as special cases. 
 
There are a number of other reasons why the regression framework might be the best 
approach to treatment testing.  One is that it allows more than one treatment effect to be 
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tested at the same time.  Another is that the regression context allows explanatory variables 
other than the treatment variable to be controlled for.  For example, Ben-Ner et al. (2004) use 
dictator game data from 111 subjects, in which the focus of the analysis is the effect of the 
gender-combination of the two players.  Using regression analysis, they find that female-to-
female giving tends to be lowest, but they also control for personality traits such as religiosity, 
agreeableness, openness and cognitive ability. 
 
Let us consider the multilevel model that is appropriate when there is dependence at the 
subject and group levels.  Let yijt be the decision made by subject i in group j in task t.  The 
model takes the following form: 

   
 𝑦𝑖𝑗𝑡 = 𝛽′𝑥𝑖𝑡 + 𝛿𝑑𝑖 + 𝑢𝑖 + 𝑣𝑗 + 𝜀𝑖𝑗𝑡  

𝑖 = 1, ⋯ , 𝑛   𝑗 = 1, ⋯ , 𝐽   𝑡 = 1, ⋯ , 𝑇 

                                                𝑉(𝑢𝑖) = 𝜎𝑢
2;  𝑉(𝑣𝑗) = 𝜎𝑣

2;  𝑉(𝜀𝑖𝑗𝑡) = 𝜎𝜀
2  (2.8) 

 
In (2.8), di is the dummy variable indicating treatment,12 and hence the parameter δ 
represents the treatment effect, xit is a vector containing conditioning variables, ui is the 

subject-specific random effect, vj is the group-specific random effect, and ijt is the 
observation-specific error term. 
 
The model defined in (2.8) is a 3-level model.  Note that if the highest level (group) is ignored, 
the model becomes a 2-level model, also known as a random effects model.  If the highest 
level (group) and next highest level (subject) are both ignored, the model becomes a 1-level 
model, or just a linear regression model. 
 
The multilevel modeling framework also allows random slopes.  For example, if it is suspected 
that the treatment effect δ in (2.8) varies between subjects, it is possible to replace the 
subject-specific random effect ui, by u0i + u1idi, where u1i is the random component of the 
coefficient associated with di.  Then V(u1i) would be estimated and would indicate whether 
there is indeed heterogeneity in the treatment effect. 
 
Gächter and Renner (2010) used a multilevel model of form (2.8) to test the effect of 
incentivising the elicitation of beliefs in public goods games, including psychological traits as 
conditioning variables.  There were 204 subjects divided into 51 groups of 4, each facing 10 
tasks.  They found that when the elicitation of beliefs is incentivised (that is, when subjects 
are rewarded for accurately predicting the contributions of other group members), the 
subject tends to contribute more.  Their explanation is that the incentivisation of beliefs has 
the effect of reducing the measurement error in beliefs, and hence enhancing the apparent 

effect of beliefs on contributions.  Their estimates of the variance components are: u = 3.23; 

v = 2.93;  4.50, suggesting that, although the equation error has the highest variance of the 
three error components, the between-subject and between-group variances also appear to 
be important, vindicating the choice of the multilevel model for their analysis. 
 

3. Power Analysis 
 
In recent years, Experimental Economists have become increasingly interested in the use of 
power analysis.  Power analysis (Cohen, 2013) is used to find the power of a test that has been 
performed, power being defined as the probability of detecting an effect given that the effect 

 
12 Since the treatment variable di in (2.10) only has an i subscript, it represents a between-subject 
treatment.  If the treatment were within-subject, there would also be a t subscript. 
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really exists.  It is also used to find the sample size required to perform a test with a given 
power. 
 
As evidence of the seriousness with which power analysis is now being taken, in the Editor's 
Preface of the very first issue (July, 2015) of the Journal of the Economic Science Association, 
the message is very clear: “A necessary (but not sufficient) condition for publishing a 
replication study or null result will be the presentation of power calculations.” 
 
3.1  Power Analysis - Theory 
 
We will consider the standard situation in experimental economics, in which there are two 
samples, a control and a treatment, and the objective of the study is to discover whether there 
is a significant difference in the outcome between the two samples. Power analysis can be 
used to determine the sample size that is required to meet this objective. 
 

Let 1 and 2 be the population means of the control group and the treatment group 

respectively. The null hypothesis of interest is 2 = 1 (i.e. the treatment has no effect), and 

the alternative is 2 - 1 = δ (i.e. the treatment has an effect of magnitude δ).13  δ is known as 
the effect size and it is necessary to specify its value at the outset in order for the problem of 
finding the required sample size to be properly defined.  The chosen value of δ is assumed to 
be derived either from prior beliefs, from a previous study, or from a pilot study.  If none of 
these are feasible, Zhang and Ortmann (2013) suggest that the chosen effect size should be 
the smallest effect size with “economic significance”. 
 
The plan is to collect samples of size n1 and n2 (control and treatment respectively) for the 
purpose of conducting this test, and we need to decide what n1 and n2 should be.  Recall that, 

before we do this, we need to set two quantities.  The first is the test size, , which is the 
probability of rejecting the null hypothesis when it is true (or the probability of type I error). 
The second is the probability of failing to reject the null hypothesis when it is false (or the 

probability of type II error). This second probability is conventionally labelled . Note that the 

probability of rejecting the null hypothesis when it is false is 1- and this is the power of the 

test. We shall denote power by . 
 

As mentioned earlier, it has become standard to set  to 0.05, unless there are compelling 

reasons to do otherwise. For power, many researchers use  = 0.80 as a standard for 
adequacy. 
 

Having decided on these values of  and , we proceed to apply power analysis. The test that 
will be performed is the independent samples t-test, which is based on the following test 
statistic: 
 

 2 1

1 2

1 1
p

y y
t

s
n n

−
=

+

  (3.1) 

 

 
13 Alternative hypotheses nearly always involve inequalities, for example, 1  2  or 1 > 2.  However, 
in the context of power analysis, it is necessary for both the null and the alternative hypotheses to be 
equalities, in order for the problem to be properly defined. 
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where n1 and n2 are the sample sizes in each group, 
1y  and 

2y , are the two sample means, 

and sp is the pooled standard deviation.   
 
For the sake of simplicity, we will constrain n1=n2=n.  That is, we will require that the number 
of observations in each treatment will be the same and given by n.14  With this constraint, the 
test statistic (3.1) becomes: 
 

 𝑡 =  
𝑦̄2−𝑦̄1

𝑠𝑝√
2

𝑛

  (3.2) 

 
 
Under the null hypothesis, t defined in (3.2) has a t(2n-2) distribution. Hence, the rejection 

rule, given our chosen value of , is − 2 2,nt t . 

 
A complication arising here is that the rejection rule is different for every sample size.  
However, based on the anticipation that the value of n eventually chosen will be reasonably 

large, the normal approximation may be used and the rejection rule becomes t z , where 

zα is the upper  critical value of the standard normal.15  This simplifies the analysis 
considerably. 
 
The power of the test is then given by: 
 

 𝑃(𝑡 > 𝑧𝛼|𝜇2 − 𝜇1 = 𝛿) = 𝑃 (
𝑦2−𝑦1

𝑠𝑝√
2

𝑛

> 𝑧𝛼| 𝜇2 − 𝜇1 = 𝛿) = Φ (
𝛿−𝑧𝛼𝑠𝑝√

2

𝑛

𝑠𝑝√
2

𝑛

)  (3.3) 

 
 

If the desired power of the test is 1-, we have: 
 

 
𝛿−𝑧𝛼𝑠𝑝√

2

𝑛

𝑠𝑝√
2

𝑛

= 𝑧𝛽  (3.4) 

 
Rearranging (3.4) we obtain the required sample size: 
 

 𝑛 =
2𝑠𝑝

2(𝑧𝛼+𝑧𝛽)
2

𝛿2   (3.5) 

 

Once again applying our chosen values of  and , we have z = 1.645 and z = 0.84, the 
formula (3.5) for the required sample size becomes: 
 

 𝑛 =
12.37𝑠𝑝

2

𝛿2   (3.6) 

 
 

 
14 One reason for having different sample sizes different between treatment and control is if sampling 

costs differ between the two.  Simple rules of thumb for such situations are summarized by List et al. 
(2011).  
15 In Section 3.2, we verify that this approximation makes very little difference to computed power, 
even when n is small. 
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3.2 Power Analysis - Practice 
 
Let us use (3.3) and (3.6) to conduct a power analysis on the t-test we conducted earlier on 
the simulated dictator game data in Section 2.6.  Recall that: there were 30 subjects in each 
treatment; the means of giving in the no-communication and communication treatments 
were 13.8 and 19.4 respectively, implying a treatment effect of +5.6; the pooled standard 
deviation was 15.9. 
 
Using (3.3), we find the power of this test to be: 
 

 ( )
( )

( )

5.6 1.645 15.9 2 / 30
| 5.6 0.39

15.9 2 / 30
P t z d

 −
 = = = 

 
 

  (3.7) 

 
This clearly falls well short of the benchmark power of 0.80.  The next question is what would 
the sample size need to be to bring the power up to 0.80.  To answer this we use (3.6): 
 

 
( )

2

2

12.37 15.9
99.7

5.6
n = =   (3.8) 

Since we require the power of the test to be at least 0.80, it is appropriate to round this 
number upwards, and conclude that the required sample size is 100 subjects in each 
treatment, and therefore the required total sample size is 200. 
 
The two calculations performed above may be performed using the immediate16 command 
“power” in STATA (StataCorp, 2019).17  To obtain the power of the test, the following 
command is used: 
 
power twomeans 13.8 19.4, sd(15.9) n(60) oneside 
 
To obtain the required sample size, the n(.) option in the command is replaced by the power(.) 
option: 
 
power twomeans 13.8 19.4, sd(15.9) power(0.8) oneside 
 
Graphs of power functions can easily be obtained in STATA by using the graph option with the 
power command.  Figure 3.1 (upper panel) presents the graph obtained when the graph 
option is used with the first power function above (specifying a range of values in the n(.) 
option).  It shows power against total sample size, and shows that this relationship is concave.  
Figure 3.1 (lower panel) presents the graph obtained from the second power command above 
(with a range of values in the power(.) option).  This graph shows the required sample size 
against the desired power, and shows that this relationship is convex.  Both graphs can be 
used to verify that a total sample size of 200 corresponds to a power of 0.80. 
 

 
16 An “immediate” command in STATA is one which simply performs a calculation using numbers 
inputted to the command line, and does not use any data stored in memory. 
17 The STATA power command assumes the t-distribution and therefore provides exact solutions.  
Hence it can be expected to provide answers slightly different from (3.7) and (3.8) which rely on the 
normal approximation. 
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Figure 3.1: Upper panel: Power against total sample size; Lower Panel: Total required sample 
size against desired power. 
 
Graphs of power functions are also useful for comparing approximate power (power obtained 
using the normal approximation as described in Section 3.1) with exact power (obtained in 
STATA which uses the exact distribution of the test statistic).  This is done in Figure 3.2.  We 
see that the approximation may be considered a touch inaccurate (i.e. slightly too high) when 
the sample size is very low.  However, when the total sample size is greater than about 30, 
there is very little difference between approximate and exact power. 
 

 
Figure  3.2: Comparison of approximate power (based on normal approximation; higher curve) with 
exact power (based on t-distribution), against sample size.  Test parameters same as in previous 
examples. 
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The power of the paired-comparison test can also easily be found using the power command 
in STATA, and an important question is whether this test provides more power than the 
corresponding independent samples test.  With the following command, 
 
power pairedmeans 13.8 19.4, sd(15.9) n(30) oneside corr(0) 
 
we find that the power of the paired test with 30 subjects is 0.38 – exactly the same as the 
power of the independent samples test with two groups of 30 subjects.  However, note the 
option corr(0).  This indicates that the correlation in giving between the two treatments is 
assumed to be zero.  It is natural to assume that if a subject gives generously in one treatment, 
they are also likely to give generously in the other treatment; hence it should be assumed that 
the correlation is positive.  In Table 2.2, we see that this correlation is +0.78.  This is the 
number we should use in the power command: 
 
power pairedmeans 13.8 19.4, sd(15.9) n(30) oneside corr(0.78) 
 
When this simple change is made, we find that the power of the test rises from 0.38 to 0.88.  
We further find that a sample size of 24 (down from 30) would be sufficient to reach the 
benchmark power of 0.80. 
 
It is easy to understand why an increase in this correlation causes a reduction in the required 
sample size, if we consider an extreme case.  Imagine that every subject has exactly the same 
treatment effect, so that the correlation between the two responses is the maximum +1. If 
we know that all subjects have the same treatment effect, then obviously we only need to 
observe one subject in order to find what the treatment effect is. 
 
The huge potential advantages of the paired-comparison approach over the independent-
samples approach are made very clear by this example.  We have just seen that for an 
independent samples test, the total number of subjects required is 200 (100 in each 
treatment), while for a paired-comparison test of the same hypothesis, a (total) sample of 
only 24 is required to achieve the same (benchmark) power. 
 
In summary, paired tests are desirable because they allow at least a 50% saving in the number 
of subjects required for a given power, and the saving can be much greater than 50% in 
situations in which the paired responses are highly correlated. 
 
As mentioned in Section 2, a much-discussed disadvantage of paired designs is the possibility 
of “order effects”, that is, the behaviour of subjects depending on the order in which the 
treatments are experienced (see Holt and Laury, 2005). “Crossover designs” are a way of 
countering this problem: half of subjects see control followed by treatment; the other half see 
treatment followed by control. Differences between these two groups would confirm the 
existence of an order effect, which would then need to be controlled for in treatment tests.  
Also popular are “ABA designs”, which start with a baseline period in which no treatment is 
given (A), followed by a period in which the treatment is introduced (B), and then a period in 
which the treatment is removed (A).  This makes it possible to measure behaviour before 
treatment, during treatment, and once treatment is removed. 
 
In this Section, we have illustrated the use of the very useful STATA power command as a 
means of performing power calculations applying to between-subject (“twomeans”) and 
within-subject (“pairedmeans”) t-tests.  It may be useful to mention at this stage that there 
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are many other applications of this command in STATA, including the chi-squared test, Fisher’s 
exact test, and the t-test for a slope in a regression.18   
 
 
3.3 Power and the scientific quality debate 
 
There has recently been fierce debate in the Experimental Economics literature on the subject 
of scientific quality.  See for example Camerer et al. (2016).  The central question is under 
what circumstances and to what extent can published experimental results be trusted.  The 
concept of power in tests plays a key role in this debate. 
 
Low power appears to be common in Experimental Economics.  Zhang and Ortmann (2013) 
report that average power in a sample of dictator game experiments is only 0.38.  Although 
this statistic may be perceived as an embarassment to Experimental Economists, it does not 
seem too bad when placed in perspective.  Ioannidis et al. (2018) surveyed 6,700 studies 
spread over 159 different topics from Empirical Economics generally, and found that median 
power is only 0.18.  Power of a typical published study is clearly woefully lower than the 
received benchmark of 0.80. 
 
Zhang and Ortmann (2013) emphasise the importance of calculating a sample size ex ante 
which is powerful enough to detect an effect size of economic significance (i.e., an effect size 
that reflects the implied economic benefits and costs).  The importance of choosing the 
sample size ex ante is that failing to do this leaves scope for the practice of continuing to 
collect new data until a statistically significant effect is found.  It can be demonstrated that 
this practice greatly inflates the probability of type I error.19  This is one major cause of “false 
positive” results in experimental economics. 
 
Another important cause of false positives is what is known as the “desk-drawer effect”, which 
is closely related to the problem of publication bias.  Consider a study that fails to find a 
significant treatment effect as a consequence of low power.  Such a study is less likely to be 
written up, less likely to be submitted for publication, and less likely to be accepted for 
publication.  By the same token, the under-powered studies that reach publication tend to be 
the ones that find a high effect size by chance.  Hence, for both of these reasons, there is a 
tendency for published effect sizes to be exaggerations of true effect sizes. 
 
This has important implications for the replicability debate.  If a replication study is planned, 
and a power analysis is performed on the basis of the effect size obtained in the original 
published study, and if that effect size is biased upwards for the reasons suggested in the last 
paragraph, the replication study will inevitably be under-powered. 
 
Camerer et al. (2016) make two specific recommendations to address these problems;   pre-
registration; and registration and reporting of all study results.  Pre-registration of analysis 
plans is likely to reduce the over-incidence of false positives in initial experiments.  
Registration of study results is likely to reduce the effects of publication bias on effect sizes. 
 
3.4 The Monte Carlo Method in power calculations 

 
18  To obtain a complete list of applications of the power command in STATA (StataCorp, 2019), select 
“Statistics” from the toolbar and then select “Power, precision and sample size” from the dropdown 
menu. 
19  Kruschke (2011) uses the analogy of coin flips.  If one flips a coin up to 20 times, and stops each 
time to test the hypothesis that the coin is fair, the false rejection rate is 17.1% rather than 5%. 
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The STATA power command, demonstrated in previous sections, is very useful for carrying out 
power calculations for simple parametric tests, particularly tests based on the t-distribution.  
If we require to find the power of a parametric treatment test in a complex model, or the 
power of a non-parametric test, the Monte Carlo method is often required.  The Monte Carlo 
method has been previously used by Forsythe et al. (1994) to compare the performance of a 
range of treatment tests. 
 
Here, we will use the following simple data generating process: 
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  (3.9) 

 
In (3.9), yi is the decision variable which is assumed to have a mean of 10 under the control.   
di is a dummy variable representing treatment: 1 for treatment; 0 for control.  The first half of 

the sample is control; the second half treatment.  The total sample size is n.  The parameter  
is the treatment effect. 
 
We set the sample size to n=100, so that there are 50 in each treatment.  We assume three 

different distributions for i: normal; uniform; and skewed (2(3)).  All distributions are 
standardised to have mean zero and variance 1. 
 
We use a simulation with 10,000 replications to find the actual size of each test – that is, the 
proportion of replications for which the test rejects the null hypothesis of no effect when 
there is no effect.  We then use a fresh simulation with 10,000 replications to find the power 

of each test when the true effect size is =0.5 – that is, the proportion of replications in which 
the null hypothesis is correctly rejected. 
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 Normal Uniform Skew (2(3))   

 size power size power size power 

t-test 0.051 0.692 0.051 0.570 0.051 0.710 

MW 0.050 0.672 0.051 0.534 0.052 0.880 

KS 0.041 0.533 0.040 0.303 0.039 0.880 

ES 0.054 0.488 0.065 0.782 0.053 0.970 
Table 3.1.  Monte Carlo estimates of size and power of four tests: t-test; Mann-Whitney (MW); 
Kolmogorov-Smirnoff (KS); Epps-Singleton (ES).  All tests have nominal size 0.05.  Data generating 
process in (3.9).  Three different distributions assumed for the error term in (3.9): normal; uniform; 

skew (2(3)).  50 observations per treatment. 

 
The results are reported in Table 3.1.  Firstly, note that the power of 0.692 estimated for the 
t-test applied to normally distributed data is a power that can be obtained using the power 
command in STATA.  For all of the other powers in the Table, the Monte Carlo method is 
required.   
 
From Table 3.1, we see that all tests are close to being correctly sized, with the exception of 
the KS test which is possibly undersized.20  Which test has the best power performance 
depends crucially on the distribution of the data.  With normally distributed data, the t-test 
performs best with the Mann-Whitney test a close second.  With uniform data, the Epps-
Singleton test appears to overtake the others in performance.  With skewed data, the original 
order appears to be completely reversed, the Epps-Singleton test performing best (with a 
power close to 1) and the t-test performing worst. 
 
The clear message here is that the distribution of the data is very important in the choice of 
treatment test.  As theory informs us, the t-test can be relied upon if the data is normally 
distributed.  However, if the data is non-normal, and particularly if the distribution of the data 
is asymmetric (as is very common in the experimental setting) other tests are likely to perform 
better.  Of particular interest is the strong performance of the Epps-Singleton test in 
conditions of non-normality, and this is an important issue for further investigation. 
  
 
3.5   Power of Treatment tests in multilevel models 
 
As discussed in Section 2.15, it is unusual for experimental data to consist of independent 
observations. There is often dependence at different levels. For example, if each subject 
makes a sequence of decisions, there is dependence at the level of individual subjects. In 
interactive experiments, there is also likely to be dependence at the level of the group of 
subjects, or at the level of the session in which the groups of subjects perform their tasks. 
 
Many methods are available for dealing with the complicated structure of an experimental 
data set.  In this section we use Monte Carlo analysis in an attempt to assess how useful some 
of such methods are.  For example, how serious is it to ignore the clustering in the data, and 
just proceed with OLS and OLS standard errors? Which model performs best under the 

 
20  An “under-sized” test is one whose actual size is less than nominal size, meaning that the 
frequency of type I error is lower than it should be in theory.  The reason why this is considered a 
problem is because size is inseparably related to power: low size implies low power.  An extreme 
example is useful in illustrating this: a test that never rejects has an actual size of zero, but also has 
zero power implying that it is useless as a test. 
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complicated structure?  The use of Monte Carlo to address such questions has been made 
previously by Cameron et al. (2008). 
 
The data generating process will contain both subject level and group-level clustering.  We are 
once again interested in tests of a treatment effect.  Seven different testing procedures are 
used.  Each is a t-test from a particular regression model.  The seven models are: 
 

• OLS no clustering  

• OLS with clustering at the subject level 

• OLS with clustering at the group level 

• Random effects, no clustering 

• Random effects, with clustering at the subject level 

• Random effects, with clustering at the group level 

• Multi-level model (subject random effect and group random effect) 
 
We will consider both between-subject and within-subject tests. In this context: “between-
subject” means applying the treatment to half of the subjects; “within-subject” means 
applying the treatment to half of the tasks. 
 
The questions we set out to answer with the Monte Carlo are: Which of these testing methods 
are correctly sized?  Of those which are correctly sized, which has highest power? 
 
The data generating process is a three-level model of the form (2.8) in Section 2.14. 
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In (3.10) i represents subject, t represents task, and j represents group.  The treatment test of 

interest is a t-test applied to the treatment effect .  The treatment dummy di has only an i 
subscript.  This implies that the treatment is being applied between-subject: some subjects 
are exposed to the treatment throughout the experiment; others are not.  Of course, it would 
be possible to apply the treatment within-subject, that is, for all subjects to experience the 
treatment for (say) half of the tasks. In this case, the treatment variable appearing in (3.10) 
would be dit, that is, it would have both i and t subscripts. 
 
We assume n=40 subjects and T=50 rounds.  We also assume that the 40 subjects are divided 
into J=10 groups of 4.  We use 100 replications in the Monte Carlo. 
 
 

 Between-subject test Within-subject test 

 Size Power(=0.5) Size Power(=0.05) 

OLS no clustering 0.46 0.68 0.02 0.07 

OLS with clustering at subject level 0.15 0.41 0.09 0.31 

OLS with clustering at group level 0.07 0.25 0.09 0.33 

Random effects no clustering 0.13 0.41 0.05 0.31 

Random effects with clustering at 
subject level 

0.15 0.41 0.09 0.31 

Random effects with clustering at 
group level 

0.07 0.25 0.08 0.33 

Multi-level model 0.06 0.27 0.05 0.31 

Table 3.2: Results from Monte Carlo experiment with DGP (3.10).  All tests have nominal size 0.05. 
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Results from the Monte Carlo are presented in Table 3.2.  For the between-subject tests, we 
see that only three of the seven testing procedures result in tests that are correctly sized. 
Some are seriously over-sized. Most spectacularly, the test size under ols without clustering is 
0.46. This means that when clustering is completely ignored, a significant treatment effect is 
found nearly half of the time, even though the true effect of the treatment is zero. Hence the 
importance of dealing with clustering is clear. 
 
Interestingly, the clustering models that result in unbiased tests (i.e. with actual size 
significantly different from nominal size) are the ones that deal with clustering at the group 
level.  Dealing with clustering at the lower level of the individual appears to be inadequate. 
 
When deciding which of the testing procedures is best, we restrict attention to the three 
unbiased (i.e. correctly-sized) procedures, and then look at power.  We see that of the three, 
the multi-level model gives the highest power of 0.27 (although the difference in power 
between the three is not great). On this basis, we may conclude that the multi-level model is 
the best framework in which to conduct the between-subject treatment test. 
 
We next turn to the within-subject tests, in which all subjects experience the treatment in half 
of the rounds.  Since within-subject tests can detect smaller treatment effects, we shall 

assume a much smaller treatment effect of =0.05 under the alternative hypothesis.  We see 
very different results from the between-subject tests. All seven tests appear to be unbiased.  
The testing procedure that ignores clustering has very low power. The other six have modest 
power, and there is very little difference between them. 
 
The key results of this section summarised as follows.  In the between-subject context, only 
three of the seven tests are correctly sized: the two that use group-level clustering, and the 
multi-level model.  Of these three tests, the most powerful is the one performed in the 
framework of the multi-level modelling.  Failure to deal with clustering has very serious 
consequences in terms of massively excessive test size.  In the within-subject context, the 
results are very different. Firstly, within-subject tests are able to detect much smaller 
treatments than within-subject tests.  Secondly , all of the approaches perform well on both 
size and power, except OLS without clustering. 
 
Recommendations that follow from these results are as follows.  In the between-subject 
context, the multi-level model is the best model in which to conduct treatment tests.  If 
clustering is to be used, it is preferable to cluster at the highest possible level (e.g. group rather 
than subject).  In the within-subject context, all that appears to matter is that OLS without 
clustering is avoided. 
 
 
3.6  Choosing number of subjects and number of tasks 
 
Power analysis provides a framework for deciding on the required number of subjects (n) for 
an experiment.  But since most experiments require subjects to engage in a sequence of tasks, 
we also need to consider what is the appropriate number of tasks (T).  Related questions 
follow.  For example, given that the experimenter is working subject to a budget constraint, it 
is plausible that they might face a trade-off between n and T.  For example, given an increase 
in the budget, is it more beneficial to increase the number of subjects, or to increase the 
number of tasks (and to provide higher incentives to compensate)?  Or, should one of n and T 
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be increased at the expense of the other?  Although List et al. (2011) provide useful rules of 
thumb that relate to these questions, it certainly seems to be un under-researched area. 
 
Since in the last section the multi-level model was established as the best framework in which 
to conduct a treatment test, in this section we shall restrict attention to this model, and 
investigate the effect of varying n and T on power. 
 
The DGP is again based on (3.10), and we consider both a between-test and a within-test.  n 
takes values of 40, 80 and 120, and T takes values of 50, 100, 150.  Power for each test and 
for each combination of n and T are presented in Table 3.3.   
 

 Between-subject test (=0.50) Within-subject test (=0.05) 

 T=50 T=100 T=150 T=50 T=100 T=150 

n=40 0.24 0.26 0.28 0.20 0.47 0.75 

n=80 0.25 0.34 0.35 0.44 0.71 0.91 

n=120 0.39 0.38 0.35 0.67 0.81 0.97 
Table 3.3: Monte Carlo results using (3.10) as DGP.  Power of between-subject test (with true effect size 
0.50) and within-subject test (with true effect size 0.05), at different combinations of number of 
subjects (n) and number of tasks (T). 

 
For between-subject tests, we see that increases in n and T do tend to bring about increases 
in power, but these increases to not appear to be very steep.  In fact, if we go on increasing 
both n and T, power seems to level off at a ``power ceiling'' of around 0.40. 
 
Again we see results that are very different in the within-subject setting.   Aside from the 
ability of the within-sample test to detect the much smaller treatment effect, it seems that 
increases in n and T both bring about steep increases in the power of the test.  At the highest 
values of n and T considered, power is almost 1.  Notice also that increases in T appear to be 
slightly more beneficial than increases in n. 
 

 
 
 
4. Experimental Data types 
 
A variety of data types present themselves in Experimental Economics.  These include binary 
data, ordinal data, interval data, exact data, and censored data.  We shall consider each of 
these.  The context in which each of these data types are introduced is principally the 
measurement of risk attitude.  This is a convenient context because many different data types 
can be used for this purpose. 
 
For most of this section, we restrict attention to the situation of a single observation per 
subject.  In a later section, we will consider models suitable for settings in which there are 
multiple observations per subject. 
 
4.1 Binary data 
 
There are many examples in experimental economics of binary data models (usually logit or 
probit) being used in the estimation of preference parameters.  A very popular example is the 
modelling of behaviour under risk.  Binary data on choices between pairs of lotteries are used 
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to estimate subjects’ levels of risk aversion, and in some cases also probability weighting 
parameters.  See, for example, Hey and Orme (1994), Loomes et al. (2002), Harrison and 
Rutstrom (2009), and Conte et al. (2011).  Another popular example is the analysis of 
intertemporal choice: subjects choose between different money amounts to be received at 
different future dates.  Such data can be used to estimate subjects’ individual discount rates, 
and to test for hyperbolic discounting versus exponential discounting (see Andersen at al., 
2008).  A third example is the analysis of the recipient’s decision in the ultimatum game.  In 
this game the recipient makes a binary decision on whether to accept or reject the proposer’s 
allocation of a pie.  Analysis of this decision can be used to model the dependence of 
propensity to accept an offer on the amount of the offer, and conclusions can be drawn about 
subjects’ aversion to disadvantageous inequality (see Roth et al., 1991). 
 
Moffatt (2015) considers a very simple setting in which subjects choose between two lotteries 
S and R, where: 
 
S: $5 with certainty 
R: (0.5, $0; 0.5, $10) 
 
S is the “safe” lottery and it pays $5 with certainty.  R is the “risky” lottery and represents a 
50:50 gamble involving the outcomes $0 and $10.  Note that both lotteries have the same 
expected value of $5, and hence, assuming expected utility (EU) maximisation, choice of S 
implies risk aversion, choice of R implies risk seeking, and indifference between S and R implies 
risk neutrality.  Before making the choice, each subject was endowed with an amount $w 
(wealth), and the focus of the investigation is the effect of w on risk attitude.  The hypothesis 
under test is the “house-money effect” (Thaler and Johnson, 1990; Keasey and Moon, 1996), 
according to which behaviour becomes less risk-averse as the wealth endowment increases. 
 
Popular models that are useful for the analysis of this sort of experimental data are binary 
probit and binary logit.  Binary probit is defined by: 
  

 ( ) ( )0 11| 1, ,i i iP y w w i n = = + =   (4.1) 

 
where yi is the binary dependent variable (1 if subject i chooses S, 0 if R), and Φ(. ) is the 
standard normal cdf.  Binary logit is defined by: 
 

 ( ) ( )0 11| 1, ,i i iP y w w i n = = + =   (4.2) 

 
where (. ) is the logistic function. 
 
The parameters of (4.1) and (4.2) are typically estimated by maximum likelihood.  The results 
provide a direct test of the house money effect: a significantly negative estimate of the 
coefficient of w provides strong evidence that an increase in endowment causes a fall in the 
probability of choosing S, that is, evidence in favour of the house money effect. 
 
In the context of this example, Moffatt (2015) also demonstrates the use of the margins 
command in STATA 16 (StataCorp, 2019) to obtain marginal effects and predicted probabilities 
following estimation of these models.  He also demonstrates the use of the delta method 
(Oehlert, 1992) to deduce an estimate of the wealth level that induces risk-neutrality.21   

 
21 The wealth level that induces risk neutrality in the context of models (4.1) and (4.2) is given by  
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4.2 Optimal design of binary choice problems 
 
An interesting problem from the viewpoint of an experimental economist is how a set of risky 
choice problems (or other types of choice problem) should be designed (i.e. how the 
probabilities and outcomes defining each choice problem should be decided) in order to 
optimise with respect to the efficiency in estimation of the parameters of interest.  This is 
another problem in experimental design.  However, to solve it requires a very different 
approach to that of power analysis which was used to determine the required sample size. 
 
In the statistical literature, the concept of an optimal experimental design is frequently taken 
to mean a “D-optimal design”; that is, one that maximises the determinant of Fisher’s 
information matrix (see e.g. Atkinson, 1996).  Maximising this quantity is equivalent to 
minimising the volume of the “confidence ellipsoid” surrounding the point estimates, and is 
hence equivalent to maximising estimator precision. 
 
In a linear regression context with a single independent variable, the solution to this problem 
takes the trivial form of choosing values of the independent variable that occupy the “corners 
of the design space”.  That is, there are only two design points: the lowest and highest 
permissible values of the independent variable. 
 
The binary data setting is more complicated.  The information matrix for the probit and logit 
models, defined in the last Section, both have the same form, which is: 
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For the probit model, wi in (4.3) is given by: 
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For the logit model: 
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For both models, the determinant of the information matrix (4.3) may be written as (see 
Kanninen, 1993): 
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I w w x x
= = +

= −   (4.6) 

 
The optimal design problem amounts to choosing values of x to maximise (4.6).  As with the 
linear model, there are only two design points.  However, in (4.6) we see that det(I) is weighted 

by the wi’s.  These weights are maximised when (in the probit case) ( )0 1 0.5ix  + = , that 

is, when the probabilities of the two outcomes are equalised.  So, the objective of having 
design points as far from each other as possible is countered by the objective to have design 

 
-0/1.  The STATA command for applying the delta method is nlcom.  The major advantage from 
using the delta method is that it provides a standard error and confidence interval for the quantity 
being estimated. 



38 

 

points giving rise to perfect indifference.  The latter is the requirement of “utility balance” 
(Huber and Zwerina, 1996). 
 

 
Figure 4.1: Determinant of information matrix against percentile of larger design point; probit 
and logit. 
 
In Figure 4.1, det(I), given in (4.6), is plotted against the percentile of the upper design point, 
for both probit and logit.  The design will be symmetric, so the lower design point will be an 
equal distance from the centre.  We see that when both design points are in the centre 
(percentile = 0.5), the information is zero.  The intuition for this is that if the tasks are designed 
so that subjects are exactly indifferent, the spread of the distribution will not be identifiable.   
We also see that when both design points are the maximum distance from the centre 
(percentile = 1), the information is again zero.  The intuition for this is that when subjects are 
presented with problems for which their responses can be predicted with certainty, the data 
will be of no value.  The most important features of Figure 4.1 are that, for the probit model, 
information is maximised at 0.87, implying that the optimal design points are at the 13th and 
87th percentiles, while for the logit model, information is maximised at 0.82, implying that the 
optimal design points are at the 18th and 82nd percentiles. 
 
It is perhaps surprising that the optimal design points for probit are 5 percentage points 
further into the tails than those for logit, given that we are often led to believe that the two 
models are very similar.22 
 
An important point is that, in order to apply these optimal design rules, the values of the 
parameters of interest must be known.  Moffatt (2015) assumes a Random Preference 
model23 with EU, in which  that the power utility parameter, r, has the following distribution 
for a typical subject: 
 

ln(𝑟) ~𝑁(−0.89, 0.162)                    (4.7) 

 
22  For example, according to Greene (2008, p.774), “in most applications the choice between [probit 
and logit] seems not to make much difference”.  
23  See Section 6.9 for a full explanation of the Random Preference Model. 
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If the probit model is to be used for estimation, the two optimal design points are at the 13th 
and 87th percentiles of this distribution, which correspond to r-values of 0.34 and 0.49.  All 
that remains is to reverse-engineer choice problems which have these threshold r-values.24  
Of course, for any given threshold r-value, there are an infinity of possible choice problems.  
Hence Moffatt restricts these possibilities by requiring that the safer outcome is a certainty of 
10, and the riskier involves only the outcomes 0 and 20.  For a threshold r-value of 0.34, the 
probability of the higher outcome (20) in the riskier lottery must be 0.79, while for the 
threshold value of 0.49, the said probability is 0.70.  Thus two optimal choice problems are 
created for the subject whose preferences are defined by (4.7). 
 
Subjects to not all have identical prefrences, and subject heterogeneity may be introduced by 
allowing each subject to have a different mean in (4.7).  A further assumption therefore needs 
to be made about the between-subject distribution of this mean.  Since no prior information 
is available on the risk attitude of individual subjects, Moffatt (2015) recommends a strategy 
of deriving the optimal choice problems, in the way outlined above, over a range of subject 
preferences (i.e. over a grid of values of the mean in (4.7)).  See Moffatt (2015) for further 
details, and for the resulting optimal design of a risky choice experiment.  
 
While the design of Moffatt (2015) is optimal for the objective of estimating the within-subject 
and between-subject distributions of risk attitude under EU, Moffatt (2007) goes further by 
considering optimal designs where the objective is the estimation of probability weighting 
parameters (i.e. allowing departures from EU). 
 
A problem that may have become apparent in the reading of this section is that, in non-linear 
models such as those considered, the parameters of the model need to bo known in advance 
in order find the D-optimal design.  This presents a logical problem:25 an experiment cannot 
be designed without knowledge of the parameters whose values the experiment’s purpose is 
to discover!  Apart from the obvious solution of using parameter estimates from a previous 
study or pilot study, a possible remedy is a sequential design, in which choice problems are 
tailored to individual subjects, using their choices in early problems to identify their risk 
attitude, and then set later problems using an optimal design rule for that risk attitude.  The 
obvious drawback of this approach is the potential violation of incentive compatibility: 
subjects may manipulate the experiment by deliberately making false responses in an effort 
to steer the problem sequence in the direction of the most desirable problem types.  Johnson 
et al. (2019) have developed a sequential design in such a way as to meet the requirement of 
theoretical incentive compatibility.  
 
4.3  Ordinal Data 
   
Ordinal data can be seen as a generalisation of binary data to a situation in which the 
dependent variable can take more than two possible values.  Consider the examples of binary 
data used at the start of Section 4.1.  Let us suppose that, having chosen between the two 
options in the choice problem, subjects are then asked how sure they are about their choice: 
“not sure”, “fairly sure”, or “completely sure”.  This gives a set of six possible ordered 
outcomes, shown in Table 4.1.  The variable containing the ordered outcome is named ys.  The 
variable ys may be seen to represent “strength of preference”, a concept that has been 
studied in Experimental Economics by Connolly and Butler (2006) and Butler et al. (2014).  The 

 
24  The threshold r-value for a choice problem is the value of r that makes a subject indifferent 
between the riskier and safer choices. 
25 This problem is often referred to as the “chicken-and-egg” problem. 



40 

 

measurement scheme used to obtain variables such as ys is often referred to as a Likert scale 
(Likert, 1932). 
 

Binary 
choice 

y=0 y=0 y=0 y=1 y=1 y=1 

Sureness Completely 
sure 

Fairly sure Not sure Not sure Fairly sure Completely 
sure 

Ordered 
outcome 

ys=1 ys=2 ys=3 ys=4 ys=5 ys=6 

Table 4.1: Obtaining an ordinal variable from a binary choice variable.  

 
To model ys, two very useful estimation frameworks are ordered probit and ordered logit 
(Daykin and Moffatt, 2002; Greene and Hensher, 2010).  These models assume an underlying 
latent variable 𝑦𝑖

∗(−∞ < 𝑦𝑖
∗ < ∞) representing respondent i’s propensity to respond 

positively.  The variable 𝑦𝑖
∗ may be perceived as the dependent variable in a linear regression 

model.  However, 𝑦𝑖
∗ is not fully observed.  All that is known about 𝑦𝑖

∗is that it falls in an interval 
corresponding to the observed ordinal response.  
 
The inderlying latent variable is assumed to depend linearly on a set of independent variables 
contained in the vector xi, as follows: 
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 is a vector of parameters, not containing an intercept.  The assumption of normality of the 
error term in (4.8) is for ordered probit; for ordered logit, the error term is assumed to be 
logistic.  The relationship between the latent variable y* and the observed variable y is: 
 

 y=1 if - < y* < 1 

 y=2 if 1 < y* < 2 

 y=3 if 2 < y* < 3 
 : 

 y=J if J-1 < y* <  (4.9) 
 

The parameters j, j=1,…,J-1, are known as the “cut-point” parameters. 
 
Based on a sample (yi, xi, i=1,…,n), the log-likelihood function is (for ordered probit): 
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where (.)  is the standard normal cumulative distribution function.  The log-likelihood (4.10) 

is maximised with respect to the elements of  along with the cut-points 1, 2, …,J-1, to give 
maximum likelihood estimates (MLEs) of both sets of parameters.   
 
Note that when there are only two possible outcomes on the Likert scale, for example 
agree/disagree, ordered probit (resp. ordered logit) simplifies to the more familiar binary 
probit model (resp. binary logit) covered in Section 4.2 with the only difference that the single 
cut-point, although equal in magnitude to the intercept arising from binary probit, is opposite 
in sign. 
 



41 

 

It is useful to compare the regression parameters estimated using the ordered probit model 
with sureness as the dependent variable, to those estimated using the binary probit model 
with the choice as the dependent variable.  The former estimate is clearly more efficient since 
ordinal data embodies more information than binary data.  However, there is a reason to be 
wary when modelling ordinal outcomes.  This is that asking subjects for strength of preference 
cannot be incentive compatible, and hence, in the view of many economists, the ordinal data 
analysed above cannot be trusted.26  In contrast, the straightforward binary choice between 
the two lotteries is - assuming that the prize will be paid out – incentive compatible. 
 
These considerations lead to the question of whether there is a way of testing consistency 
between the ordinal data and the binary data, in order to judge whether the ordinal data is 
reliable.  Moffatt (2015) has argued that the Hausman specification test (Hausman, 1978) is 
suitable for this purpose.  The null and alternative hypotheses are: 
 
H0: Subjects respond truthfully when asked for their strength of preference. 
H1: Subjects do not respond truthfully when asked for their strength of preference. 
 
The intuition of the Hausman test is as follows.  Estimation of the preference parameters using 
binary choice data may be assumed to be consistent, since the binary choice is incentive 
compatible.  However, this estimator is not efficient because it does not make use of all 
available information.  Estimation using the ordinal data is both consistent and efficient, 
provided H0 is true.  If H0 is false, this estimator is inconsistent.  Hence the two estimators 
satisfy the conditions required for the Hausman test.  The Hausman test statistic is based on 
the difference between the two sets of estimates, with a large difference representing 
evidence against H0.  
 
Moffatt (2015) provides Monte Carlo evidence of the power of the Hausman Test when 
applied in this setting.  With a sample size of 1000, and with 30% of the sample mis-reporting 
their strength of preference, the probability of the Hausman test correctly detecting the 
departure from truthful reporting is found to be 0.714. 
 
Another area of experimental economics in which ordinal data arises is in the elicitation of 
emotions.  Bosman and van Winden (2002) measure subjects’ emotions in the course of a 
“power-to-take” game.  This game involves a “taker” and a “responder”.  The essence of the 
game is that the taker is free to take as much of the responders endowment as she desires, 
while the responder is free to retaliate by reducing the amount that will be taken, at the cost 
of reducing his own final payoff.  Clearly the emotions stirred in the respondent are highly 
important in this setting.  On completion of the game, emotions such as anger, irritation, and 
surprise, are elicited on a seven-point Likert scale (Likert, 1932).  The ordered logit model 
reveals that the take-rate (proportion taken by taker) has a significantly positive effect on 
some of these emotions. 
 
Once again there is a problem of incentive compatibility: there is no logical reason for a self-
interested subject to reveal his or her emotions truthfully.  However, as with data on strength 
of preference, there is a way of assessing the extent of this problem.  The emotion data can 
be compared to observed behaviour in the game.  For example, two of the emotions which 
are stirred by high take-rates (irritation and contempt) are the same two emotions that bring 

 
26 According to some economists, results from economic experiments cannot be taken seriously in the 
absence of task-related incentives.  See, for example, Grether and Plott (1979).  Consider also the 
well-known “precepts” of Smith (1982). 
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about an increase in the destroy rate.  This agreement is, to an extent, consistent with the 
validity of the emotion data. 
   
4.4  Interval Data 
 
Interval data arises when a variable is not exactly observed, but each observation is known to 
fall in a particular range.  When a dependent variable has this feature, the appropriate model 
is the interval regression model.  This model is applied in many areas of economics, such as 
models of income determination (see e.g. Daniels and  Rospabé, 2005). 
 
Interval data is similar to ordinal data, with the important difference that with interval data 
the positions of the cut-points are known, and hence they do not need to be estimated.  Some 
researchers have been known to apply the ordered probit model to interval data; this is, of 
course, inefficient because it involves the unnecessary estimation of the known cut-points.  
Other researchers have been known to convert the observations of the dependent variable 
into midpoints of the interval in which the observation is known to lie, and then proceed with 
linear regression.  The resulting estimator is known to be inconsistent (Stewart, 1983). 
 
Interval data arises when a multiple price list (MPL) has been used for the elicitation of risk 
attitude.27  A very popular MPL is the one designed by Holt and Laury (2002).  The Holt-Laury 
MPL is presented in Table 4.2.  There are 10 choice problems listed in order, in each of which 
the subject is required to choose between a safe lottery (S) and a risky lottery (R).  In Problem 
1, we expect all subjects to choose S; in Problem 10, we expect all subjects to choose R (in 
fact, R stochastically dominates S in Problem 10).  What is interesting is where in the sequence 
a subject switches from S to R, since this will indicate their attitude to risk.28   
 

Problem Safe Risky r* 

1 (0.1, $2.00;  0.9, $1.60) (0.1, $3.85;  0.9, $0.10) -1.72 
2 (0.2, $2.00;  0.8, $1.60) (0.2, $3.85;  0.8, $0.10) -0.95 
3 (0.3, $2.00;  0.7, $1.60) (0.3, $3.85;  0.7, $0.10) -0.49 
4 (0.4, $2.00;  0.6, $1.60) (0.4, $3.85;  0.6, $0.10) -0.15 
5 (0.5, $2.00;  0.5, $1.60) (0.5, $3.85;  0.5, $0.10) 0.15 
6 (0.6, $2.00;  0.4, $1.60) (0.6, $3.85;  0.4, $0.10) 0.41 
7 (0.7, $2.00;  0.3, $1.60) (0.7, $3.85;  0.3, $0.10) 0.68 
8 (0.8, $2.00;  0.2, $1.60) (0.8, $3.85;  0.2, $0.10) 0.97 
9 (0.9, $2.00;  0.1, $1.60) (0.9, $3.85;  0.1, $0.10) 1.37 
10 (1.0, $2.00;  0.0, $1.60) (1.0, $3.85;  0.0, $0.10)  

Table 4.2:  The Holt and Laury (2002) multiple price list, with threshold risk aversion parameter 
for each choice problem. 
 
We will assume that subjects have the constant relative risk aversion (CRRA) utility function 
(see Section 6.1 for a more detailed explanation of this and related concepts): 

 
27 The advantages and disadvantages of various types of MPL when used as elicitation devices are 
discussed by Andersen et al. (2006). 
28 A potential complication with MPLs such as that shown in Table 4.2 is the possibility that subjects 
may switch more than once.  This presents an obstacle to the analysis of the data.    An obvious solution 
to this problem is that subjects are induced to report a single switch-point (i.e. switching back and forth 
is not permitted).  If the investigator is interested in within-subject variability, a different sort of design 
should be used, in which the choice problems are presented to subjects one at a time and in a random 
order.  The analysis of data resulting from this sort of design is in fact the subject of a later section of 
the monograph. 
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In (4.11) r is the coefficient of relative risk aversion.  We shall assume that each subject has 
their own coefficient of relative risk aversion, r, and for this reason we shall refer to the model 
as the “heterogeneous agent model”.  We only need to make an assumption about how r 
varies over the population.  An obvious choice is: 
 

 ( )2~ ,r N     (4.12) 

 
In the fourth column of Table 4.2, a value r* is shown.  This is known as the “threshold risk 
attitude” for the choice problem.  It is the risk attitude (i.e. the coefficient of relative risk 
aversion) that would make a subject indifferent between S and R for the choice problem, 
assuming that subjects maximise expected utility (EU).  As an example, if a subject chooses S 
on problems 1-3, and chooses R on problems 4-10, they are revealing that their risk attitude 
(r) is somewhere between -0.49 and -0.15. 
 
When each subject reveals their switch-point, the sort of data that results is known as “interval 
data”.  The method appropriate for estimating the parameters of (4.12) is the interval 
regression model.  For each subject, i, we have a lower bound (li) and an upper bound (ui) for 
their r-value, taken from the final column of Table 4.2.  The sample log-likelihood for the 
interval regression model is: 
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(4.13) is maximized to give MLEs of  and .  This is a regression model with no explanatory 
variables.  If explanatory variables (such as gender and age of the subject) are included, then 
the mean parameter is allowed to depend on these variables, and their coefficients reveal the 
effect of these characteristics on risk aversion.   
 
A similar application of interval regression was implemented by Bacon et al. (2020).  They use 
data from the German Socio-Economic Panel (SOEP, Goebel et al., 2019).  As part of this 
survey, respondents were asked the following hypothetical lottery investment question.  
 

Imagine that you have won €100,000 in the lottery.  Immediately after 
receiving your winnings you receive the following offer: You have the 
chance to double your money.  But it is equally possible that you will lose 
half the amount invested.  You can participate by staking all or part of your 
€100,000 on the lottery, or choose not to participate at all.  What portion 
of your lottery winnings are you prepared to stake on this financially risky, 
yet potentially lucrative lottery investment?  
 
€100,000 (i.e. all of it);  
€80,000; 
€60,000;  
€40,000;  
€20,000;  
Nothing: I would decline the offer 
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As with the Holt-Laury MPL, and again assuming EU, an individual’s response to this question 
may be taken to imply that that individual’s coefficient of risk aversion lies in a particular 
interval. Consequently, the interval regression model is again used for the analysis of this 
outcome. 
 
Because the SOEP is conducted at different time periods, it is possible to include time-varying 
explanatory variables in this interval regression model.  The hypothetical lottery question was 
used in two different years: 2004 and 2009.  Conveniently, these two years lie either side of 
the global financial crisis.  Distributions of the responses in the two years are shown in Figure 
4.2.  We see that in both years the responses are skewed towards the most risk averse choice, 
but that this skewness is more pronounced in 2009, suggesting that the crisis had the effect 
of increasing risk aversion. 
 
One of the independent variables used by Bacon et al. (2020) is the VDAX, the standard 
measure of volatility in the German stock market.  VDAX may be interpreted as a measure of 
“background risk”, and is seen to be much higher, on average, in 2009 than in 2004.  A positive 
coefficient on this variable may be interpreted as evidence of “risk vulnerability” (Gollier and 
Pratt, 1996).  Bacon et al. (2020) indeed find strong evidence of risk vulnerability, and also 
obtain an estimate of the coefficient of risk vulnerability: a doubling of background risk causes 
in increase in the coefficient of absolute risk aversion of between 1.03 and 1.27. 
 
 

 
Figure 4.2:  Distribution of responses to SOEP’s hypothetical lottery question in 2004 (left panel) and 
2009 (right panel).  

 
4.5  Multivariate Interval Data  
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In order to estimate the distribution of risk attitudes over the population using MPL data, as 
discussed in the last section, it is necessary to assume EU maximisation.  However, if subjects 
are given two different MPLs and asked for their switch point on each, it becomes possible to 
relax the assumption of EU, and to estimate the distribution of both risk attitude and 
probability weighting.29  To model the resulting data, it is necessary to generalise the interval 
regression model to two dimensions. 
 
Bivariate interval data is encountered in areas unrelated to experimental economics.  It is 
useful for motivational purposes to consider a particular example.  Sun and Ding (2019) 
consider the progression of a bilateral eye disease, and are interested in the timing of the 
onset of the disease.  Two eyes from the same patient are perodically examined for the 
presence of the disease.  Let t1 and t2 be the timing of the onset of the disease in the left and 
right eyes respectively.  With reference to Figure 4.3, let us suppose that patients are 
examined after 1 year, 2 years and 3 years.  For Patient 1 the disease is detected after 2 years 
in the left eye and after three years in the right.  Since examinations are only administered 
once per year, the exact time of onset is unknown.  Hence, for Patient 1, the intervals 𝑡1 ∈
(1,2); 𝑡2 ∈ (2,3) are implied, represented by the light-shaded rectangle.  For Patient 2, the 
disease is detected after 2 years in the right eye, but is undetected in the left eye.  Hence the 
implied intervals  for Patient 2 are 𝑡1 ∈ (3, ∞); 𝑡2 ∈ (1,2), represented by the dark-shaded 
rectangle. 
 
 

 
Figure 4.3: Regions implied for timing of onset of disease in left eye (t1) and right eye (t2) for 
two hypothetical patients, in the framework of Sun and Ding (2019). 
 
The important point about the example illustrated in Figure 4.3 is that the regions of (𝑡1 , 𝑡2) 
space implied by the data from a single patient are rectangles with horizontal and vertical 
sides.  Hence, given assumptions about the bivariate distribution of t1 and t2, it is a relatively 
simple matter to obtain the probability of falling in the implied region, this probability being 
the likelihood contribution used in the estimation of the parameters of the bivariate 

 
29 Probability weighting is one of the two concepts that are central to Prospect Theory (Kahneman 
and Tversky, 1992), the most popular framework for modelling departures from EU.  The other is loss 
aversion.  For a more detailed discussion of the concept of probability weighting, see Section 6.2. 
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distribution.  This point is important because for the application of interest in this section, the 
bivariate data implies regions that are non-rectangular with curved sides.  This gives rise to a 
rather interesting econometric challenge. 
 
The problem of the simultaneous estimation of risk attitude and probability weighting using 
two MPL series has previously been considered by a number of researchers including  Tanaka 
et al. (2010).  In those studies, approximate values for the two parameters are obtained by 
taking the midpoints of the ranges applying to the two parameters.  While computationally 
straightforward, this approach has a number of shortcomings.  First, the method for obtaining 
the two parameter values can only be seen as a rough approximation, inducing the problem 
of measurement error.  Second, observations corresponding to switches occurring at the 
beginning or the end of the MPL give rise to “open intervals”, for which the choice of mid-
point is arbitrary.  This choice can have an important effect on estimation if a sizeable 
proportion of the observations fall in these open intervals.  Finally, and most importantly, the 
process of replacing intervals with mid-points amounts to the discarding of a significant 
amount of information, and this inevitably results in a loss of precision in the estimation of 
the parameters.   
 
Conte et al. (2019) use data from two MPL’s to estimate the joint distribution of risk attitude 
and probability weighting in a way that makes maximal use of the available information.  Their 
model is known as the Bivariate Random Preference (BRP) Model.  The two MPL’s are 
presented in the Appendix. 
 

They assume the CRRA utility function U(x) = x, >0, for which a value of <1 represents risk 

aversion, =1 represents risk neutrality, and >1 represents risk seeking.  They assume the 

probability weighting function due to Prelec (1998), w(p)=exp(-(ln(p))).  If =1, we have EU.  If 

<1, the weighting function is inverse S-shaped, with low-probability outcomes being 
overweighted, and high probability outcomes underweighted.30  Since both parameters are 
strictly positive, a bivariate lognormal distribution (between-subject) is assumed: 
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  (4.14) 

 
Conte et al.’s (2019) objective is to use the switchpoint data from the two MPLs to estimate 

the distributional parameters in (4.14), with the mean parameters  and   being allowed to 
depend on subject characteristics and treatment variables. 

For each of the two MPL’s (see Appendix), the subject reports a switch point.  The combination 

of two switch points indicates a set of combinations of the two parameters  and .  These 
sets are shown in Figure 4.4 (left panel).  It is important to note that, as alluded to earlier, the 
boundaries of the sets shown in Figure 4.4 are not, as in Figure 4.3, horizontal or vertical and 
nor are they even straight lines.  The region may be described as a curvilinear quadrilateral.  It 
is this feature that gives rise to the aforementioned modelling challenge.  To estimate the 
parameters of (4.14) consistently, a likelihood function needs to be constructed in which each 
contribution is the volume under the bivariate lognormal density function over the irregularly-
shaped region indicated by the observed pair of switch points.  Conte et al. (2019) use Monte 
Carlo integration (Hammersley and Handscomb, 1964) for this purpose.   

 
30 See Section 6.2.for a more detailed discussion of the concept of probability weighting. 
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Figure 4.4. Left panel: Areas indicated by pairs of switch-points in the design of Conte et al. (2019).  The 
numbers in brackets indicate the switch points in the first and second sequence. ns indicates the “no 
switch” cases.  Right panel: Magnification of the area identified by the switch-point combination (6, 3).  

 
 
A problem encountered when using a straightforward Monte Carlo integration technique for 
this purpose is rare-event sampling cases (see, for example, Rubinstein and Kroese, 2007).  
Some of the regions shown in Figure 4.4 (left panel) may be too small for the required 
probability to be estimated with any accuracy, with a modest number of simulations.  For this 
reason, the importance sampling technique (Gourieroux and Monfort, 1996) is used.  To 
illustrate, consider the case displayed in the right panel of Figure 4.4, which magnifies one of 
the curvilinear quadrilaterals from the left panel.  A rectangle is drawn in the figure which is 
the smallest rectangle that completely contains the curvilinear quadrilateral.  Under 
importance sampling, simulation is restricted to this rectangle in the evaluation of the 
required volume, leading to huge computational savings. 
 
Conte et al. (2019) find that this consistent estimation method gives markedly different results 
from those obtained when OLS regression on midpoints is used. 
 
One possible drawback with the bivariate random preference model is that there is no 
allowance for subjects to make random errors in reporting their switch-points.  For a given 
subject, the two switch-points are used to infer a single region in which the subject’s 
parameter pair is assumed to lie with certainty.  If a third MPL were added to the sequence, it 
would result in an over-identification problem in the sense that a subject’s third switch-point 
could easily contradict the information provided by the first two.  This sort of contradiction 
would need to be interpreted in terms of within-subject randomness in decision making, and 
a different sort of model would be required. 
 
4.6  Continuous (exact) data 
 
An obvious way to eliciting the risk attitude of a subject is to present them with a lottery, and 
ask them for their “certainty equivalent”, that is, the amount of money such that they would 
be exactly indifferent between receiving this sum of money and playing the lottery (WTA), or, 
alternatively, the amount they would be willing to pay to play the lottery (WTP).   
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For example, if the lottery is: 
 

(0.3, $3.85;  0.7, $0.10) 
 
and the subject claims that their certainty equivalent is $0.75, then we can deduce that their 
coefficient of relative risk aversion is exactly 0.41.  This is because 0.41 is the only value of r 
that satisfies the following inequality: 
 

 
1 1 13.85 0.10 0.75

0.3 0.7
1 1 1

r r r

r r r

− − −

+ =
− − −

  (4.15) 

 
Suppose we have the values of r elicited in this way for a sample of subjects.  This is “exact” 
data in the sense that the value of r is exactly observed.  
 
We return to the assumption: 
 

 ( )2~ ,r N     (4.16) 

How do we estimate  and   when exact data is available?  The answer is very simple: we 
find the sample mean and sample standard deviation of the observed r.  If we wish to allow r 
to depend on subject characteristics, so that, for example, (4.16) becomes: 
 

 ( )0 1 2
2~ ,age maler N   + +   (4.17) 

 
then the parameters of (4.17) could be estimated directly by applying a least squares 
regression of r on age and male. 
 
Apart from being easier to work with, exact data leads to greater estimation efficiency relative 
to discrete data (such as binary, interval or ordinal data).  Knowledge of the exact value taken 
by a variable clearly embodies more information that the knowledge that the value lies in an 
interval.  
 
However, there are a number of problems with the use of exact data.  Firstly, it is well known 
that when subjects are asked to value a lottery, there is a tendency for the response to be 
biased towards the expected value of the lottery.31  Hence there is likely to be an 
underestimation of the degree of risk aversion when this form of elicitation is used.  Secondly, 
as is well known (see e.g. Isoni et al., 2011), the value that is reported depends on whether 
the framing is in terms of willingness-to-pay (WTP) or willingness-to-accept (WTA).  Thirdly, it 
is hard to incentivise the elicitation of valuations.  The most popular technique for this is the 
Becker-DeGroot-Marschak mechanism (Becker et al. 1964),32 but this is often considered to 
be too complicated for subjects to understand, and to divert attention from the valuation task 
itself (Bardsley et al., 2010, Section 6.5). 
 

 
31 The tendency for subjects to provide valuations close to the expected value of the lottery is itself an 
explanation for the preference reversal phenomenon (Grether and Plott, 1979) considered earlier in 
section 2.13. 
32 The Becker-DeGroot-Marschak (BDM) scheme is described as follows.  The subject is asked to place 
a value on the lottery (i.e. to report their certainty equivalent).  They are told that after they have 
done this a random “price” will be generated.  If the randomly generated price is higher than their 
reported valuation, they will be given an amount of money equal to this price, and they will not play 
the lottery; if the price is lower than their valuation, they will play the lottery.  
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This is clearly another case in which the idiosyncrasies of human decision making are pulling 
in the opposite direction from issues of statistical efficiency in informing the most suitable 
choice of experimental design. 
 
 
4.7  Censored data 
 
Censored data is a mixture of continuous and discrete data (see Maddala, 1983).  It often 
arises in settings in which subjects are required to make a transfer (e.g. dictator games) or 
contributions to a public fund (e.g. public goods games).  In these settings, it is obvious that 
there is a lower limit to the subject’s contribution, usually zero,33 and an upper limit which is 
the subject’s endowment.  The model that is required in this case is the 2-limit tobit model 
(Nelson, 1976).  The importance of allowing for censoring is that when OLS is used in the 
presence of censored data, the slope estimates tend to be seriously biased towards zero. 
 
Another model which has become popular in Experimental Economics is the hurdle model 
(see Moffatt, 2015, Chapter 11), mentioned in Section 2.12 above in the context of dictator 
game giving.  This is a generalisation of the tobit model that allows two distinct types of zero 
observation: censored zeros, as in the tobit model; and “zero types”.  A zero type is a subject 
who is destined to contribute zero whatever the circumstances.  In the context of public goods 
games, a zero type is labelled a “free rider”, and in the context of dictator games, they are 
“selfish”. 
 
Engel and Moffatt (2012) use a hurdle model to test for the presence of a “house money 
effect” in the context of a public goods game.  The effect of house money is seen to be 
significant in the first hurdle: specifically, house money makes a subject less likely to be a free 
rider.  Hence the effect of house money is more than just an effect on behaviour; it has the 
effect of changing a subject from one type to another.  This result is potentially important in 
the external validity debate, since it suggests that “house money” – nearly always present in 
economic experiments – causes subjects to adopt a different persona during experiments 
from that used in everyday decisions. 
 

5   Structural Estimation of social preference parameters 
 
In the context of Experimetrics, structural estimation is often taken to mean the use of 
experimental data to estimate the parameters of a representative subject’s utility function.  
One particular type of utility function that has been the focus of a good deal of attention is 
the utility function over own payoff and other’s payoff in the context of a social preference 
experiment.  Clearly an individual’s utility depends positively on their own payoff.  And if they 
are altruistic, it also depends positively on the other player’s payoff.  The utility function 
conveys the subject’s relative concern for self and other (that is, their degree of altruism), and 
also their concern for efficiency (that is, the importance they attach to total welfare of both 
players).  The purpose of this section is to describe methods that have used to estimate the 
parameters of utility functions of this form. 
 
5.1 The Modified Dictator Game 
 

 
33 An interesting recent development is the emergence of “take games” – dictator games in which 
some treatments allow dictators to take money away from the recipient, i.e. to “give” less than zero.  
See Bardsley (2008) and List (2007).  Of course, the issue of censoring is still relevant, but the 
censoring point is no longer zero. 
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In the modified34 dictator game of Andreoni and Miller (2002), each subject is given an 
endowment (m) which they are required to allocate between “self” and “other”, with both of 
these “goods” having a “price”.  For example, if the price of giving to “other” is 0.5, the amount 
actually received by “other” will be twice the amount allocated. 
 
The following variables are defined: 
 
x1 = amount received by self 
x2 = amount received by other 
m = endowment 
p1 = price of x1  
p2 = price of x2 
 
Although x1 and x2 are the two arguments of the dictator’s utility function, U(x1,x2) say, they 
are not the decision variables.  The decision variables are: 
 
p1x1 = amount directed to self 
p2x2 = amount directed to other 
 
The two decision variables are not both free variables.  They are constrained by the budget 
constraint: 

 1 1 2 2p x p x m+    (5.1) 

 
In Andreoni and Miller’s (2002) experiment, there were 176 subjects, each of whom faced a 
sequence of decision problems in the form of budgets.  Each budget had a different 
combination of m, p1 and p2.  The sequence of budgets are presented in Table 5.1. 
 

Budget m p1 p2 observations Mean amount directed to other 

1 40 0.33 1 176 8.02 

2 40 1 0.33 176 12.81 

3 60 0.5 1 176 12.67 

4 60 1 0.5 176 19.40 

5 75 0.5 1 176 15.51 

6 75 1 0.5 176 22.68 

7 60 1 1 176 14.55 

8 100 1 1 176 23.03 

9 80 1 1 34 13.5 

10 40 0.25 1 34 3.41 

11 40 1 0.25 34 14.76 

Table 5.1: Andreoni and Miller’s (2002) design 
 
The task required for each budget is to decide how much of the endowment (m) to keep for 
oneself (p1x1), and how much to direct to the other player (p2x2).  The mean of p2x2 is shown 
in the final column of Table 5.1.  Note that budgets 7, 8 and 9 represent standard dictator 
games because both prices are unity.  Note further that in these three tasks, the amount given 
by the dictator is around 20% of the endowment, in agreement with the average seen in the 
literature (Camerer, 2003). 
 

 
34  The term “modified dictator game” is typically used for dictator games in which the prices of giving 
and keeping take values other than one. 
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Figure 5.1: Jittered scatterplot of amount received by other (x2) against amount received by 
self (x1) in Andreoni and Miller’s (2002) experiment. 
 
Figure 5.1 shows a (jittered)35 scatter plot of amount received by other against amount 
received by self from Andreoni and Miller’s (2002) data.  Note firstly that all points appear on 
one of 11 downward-sloping straight lines.  These are, of course, the budget lines 
corresponding to the 11 budgets listed in Table 5.1.  Note secondly that there is a 
concentration of points on the horizontal axis indicating selfishness, and a concentration of 
points on the 45-degree line (x2=x1) indicating concern for fairness  The objective of the 
current exercise is to consider ways of using this data set to estimate the parameters of a 
utility function over own and other’s payoff, and to interpret these parameters in terms of 
selfishness and concern for fairness. 
 
5.2 Estimation of Social Preference Parameters 
 
Following Andreoni and Miller (2002) and Jakiela (2013), we first assume the constant 
elasticity of substitution (CES) utility function: 
 

 ( ) ( )
1

1 2 1 2, 1 0 1 1U x x x x
     = + −   −     (5.2) 

 

In (5.2), the parameter  indicates selfishness: it is the proportion of the budget that an 

individual would take for themselves in a standard dictator game.  The parameter  indicates 
willingness to trade off equity and efficiency in response to price changes.  It is more usual to 

interpret the elasticity of substitution, which is deduced from  using: 
 

 
1

1



=

−
  (5.3) 

 

Elasticity of substitution, , defined in (5.3), is between 0 and .  Values close to zero 
indicate that indifference curves are close to being L-shaped, and hence that all that 
matters to the individual is the equality of payoffs, that is, there is a concern for equity.  

 
35 A “jittered” scatterplot is a scatterplot in which the position of each point is randomly perturbed by 
a small amount.  This is useful in situations in which multiple points occupy exactly the same position 
in the plot. 
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Values close to infinity indicate that indifference curves are downward sloping straight 
lines, and hence that all that matters to the individual is total payoff, that is, there is a 
concern for efficiency. 
 
Maximising (5.2) subject to the budget constraint (5.1) leads to the Marshallian demand 
function for own payoff: 
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Where w1 is the share of the total allocation that is allocated to “self”, that is, 1 1

1

p x

m
w = .  A 

stochastic term has been appended to (5.4) in order to turn the deterministic budget share 
equation into an estimable model.  An equation for other’s payoff is not needed because 

w1+w2  1. 
 

It is possible to obtain estimates of the two parameters  and  by applying non-linear least 
squares to (5.4).  That is: 
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When applied to Andreoni and Miller’s (2002) data, the estimates (and cluster-robust 
standard errors) thus obtained are ˆ ˆ0.69(0.02); 0.27(0.05) = = .  Applying (5.3) using the 

delta-method, we obtain an estimate of the elasticity of substitution ˆ 1.37(0.09) = . 

 

The estimate of  is significantly greater than 0.5, indicating a degree of selfishness.   The 
estimate of the elasticity of substitution is significantly greater than 1, indicating that the 
subjects in this sample attach more importance to efficiency than to equity. 
 
One feature of the data that is not incorporated in the above estimation is the accumulation 
of observations at the lower and upper limits of giving.  Of the 1510 observations in Andreoni 
and Miller’s (2002) data, 238(41.6%) represent zero giving, while 51 (3.4%) represent maximal 
giving.  Hence the data is both upper and lower censored.  Andreoni and Miller deal with this 
problem by estimating a 2-limit Tobit model (Nelson, 1976). 
 
Moffatt and Zevallos-Porles (2020) go a step further by treating the boundary observations as 
corner solutions in the dictator’s constrained optimisation problem, using a version of the 
Kuhn-Tucker theorem (Arrow and Enthoven, 1961).   In their experiment, each dictator faces 
a sequence of tasks, in half of which only giving is possible, and in the remaining half only 
taking (from the recipient’s endowment) is possible.  A significant proportion of the 
observations lie at the extremes of the opportunity space, for example giving zero, or maximal 
taking, and this is why the Kuhn-Tucker approach is particularly apt.  They focus on the 
difference between the estimated parameters in the giving and taking treatment.  They find 
that the parameter representing selfishness is lower under the taking treatment, and this is 
interpreted in terms of the dictator being prepared to settle for a lower payoff when the task 
is a taking task, to allay the guilt associated with the task.  In terms coined by Andreoni (1995), 
they are finding evidence that the “cold prickle” of taking is stronger than the “warm glow” of 
giving.   
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5.3  Estimation of Social Preference Parameters using Stated Choice Data 
 
A very different approach to the estimation of social preference parameters is taken by 
Engelmann and Strobel (2004).  They conduct surveys in which each respondent is asked to 
choose between three different (hypothetical) allocations, of the type shown in Table 5.2.  
Importantly, the respondent is given the identity of “Person 2”. 
 

Allocation A B C 

Person 1 8 6 10 

Person 2 8 6 7 

Person 3 4 6 7 

Total 20 18 24 

Table 5.2: An example of three hypothetical allocations similar to those used by Engelman and 
Strobel (2004).  The survey respondent is given the identity of “Person 2”. 
 
The allocations in the example shown in Table 5.2 provide a useful example because all three 
have both attractions and drawbacks, and it is reasonable to expect the population to divide 
between the three when asked to choose between them.  A purely selfish individual would 
choose allocation A, since, given their assumed identity as “Person 2”, allocation A gives them 
the highest payoff.  An individual who is strictly egalitarian is likely to choose B, since this 
allocation is the only one that gives rise to perfect equity.  An individual who is concerned with 
efficiency is likely to choose C, since this is the allocation that gives the highest total payoff. 
 
Engelmann and Strobel (2004) use the choices of 586 respondents to estimate a conditional 
logit model (Maddala, 1983).  This model directly estimates the parameters of the utility 
function of a representative individual.  The utility function assumed is (for allocation j): 
 

 1 2 3 1 1j j j j j j j j j jU EFF MM self FS FS ERC V        = + + + + + +  +   (5.6) 

 
Where: 
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In (5.6), EFF is the measure of efficiency mentioned above.  MM stands for minimax, and 

represents concern for the worst-off person.  SELF is the individual’s own payoff.  FS and FS 
are the two measures of inequity aversion distinguished famously by Fehr and Schmidt (1999).  

FS represents concern for disadvantageous inequity (e.g. allocation C in Table 5.2), while FS 
represents concern for advantageous inequity (e.g. allocation A).  Finally, ERC embodies the 
“Equity, Reciprocity and Competition” theory of Bolton and Ockenfels (2000).  This measure 
penalises allocations for which the individual’s own payoff is far (in either direction) from one 
third of the total. 
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In (5.6), Vj is the deterministic component of utility, and j is the random component, and it is 

assumed that the alternative with the highest utility ( )1 2 3max , ,jU U U U=  is chosen.  For 

convenience, it is assumed that the j’s are independent and identically distributed with type 
I extreme value distribution (also known as the Gumbel distribution), defined by the density 
function: 
 

 ( ) ( )exp expf    = − − −  −     (5.7) 

 
With assumption (5.7), it is well known (see Maddala, 1983) that the probability of alternative 
j being chosen is: 
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( )
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= =
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  (5.8) 

 
The likelihood function for the conditional logit model is constructed using (5.8). 
 
The key findings of Engelman and Strobel (2004) are that EFF and MM are the most important 
determinants of utility, and they both have the expected sign in the utility function.  On the 
basis of this hypothetical choice data set, they find little support for the theories of either Fehr 
and Schmidt (2002) or Bolton and Ockenfels (2000). 
 
 

6. Continuous Heterogeneity: Maximum Simulated Likelihood 
 
We will now return to the setting of choice under risk.  However, while in earlier sections we 
were concerned with data sets containing only one decision per subject, now we are 
interested in the more usual setting in which each subject (i=1,…,n) faces a sequence of 
(t=1,…,T) choice problems.  Econometrically, this leads us into the realms of panel data 
analysis. 
 
The focus of this section will be methods for estimating the population distribution of risk 
attitude and also the probability weighting parameters, and the various stochastic 
specifications that are available for pursuing this objective. 
 
6.1 Theoretical background for choice under risk 
 
We commence with a brief outline of the theoretical concepts that are central to the 
modelling of choice under risk.  A key feature of many such models is the utility function that 
is assumed.  We first assume that the outcome of the task is an amount of income, or 
“wealth”, which we shall label x.  The utility function, U(x), is defined over this variable.  A 
number of different specifications of U(x) are possible.  An important point is that the type of 
utility function required here is unique up to positive affine transformations.  It is not 
permitted to apply any order-preserving transformation, as is possible for utility functions 
defined over consumption quantities.  This essentially means that the shape of the utility 
function (e.g. its curvature) is important. 
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Two concepts, attributable to Pratt (1964), are central to the modelling of behaviour under 
risk: absolute risk aversion; and relative risk aversion.  Both of these measures of risk aversion 
relate closely to the curvature of the utility function.  The coefficient of absolute risk aversion 
is defined by: 
 

 ( )
( )

( )

U x
A x

U x


= −


  (6.1) 

 
The coefficient of relative risk aversion is defined by: 
 

 ( )
( )

( )

xU x
R x

U x


= −


  (6.2) 

Note that if the Utility function is linear, e.g. ( )U x x= , then both of the above measures of 

risk aversion are zero, and the decision-maker is classified as risk neutral.  We would normally 
expect risk aversion, that is, we expect both measures to take positive values.  A risk-seeking 
decision-maker would have negative values for the two measures. 
 
A utility function that is very popular in decision theory and also throughout the subject of 
economics is the constant relative risk aversion (CRRA) utility function.  The most popular way 
of parameterising this utility function is as follows: 
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 (6.3) 

 

Applying (6.2) to (6.3), it is seen that the coefficient of relative risk aversion is .  Note that 

the function appearing in the first line of (6.3) is not defined when =1.  The limit of the 

function as  approaches 1 is ln(x), and hence this is what is used when =1. 
 
A simpler way of parameterising CRRA is using the “Power” utility function, defined by: 
 

 ( )

( ) 0; 0

ln 0

0

r

r

U x x x r

x r

x r

=  

= =

= − 

  (6.4) 

 
Applying (6.2) to (6.4), it is seen that the coefficient of relative risk aversion under this 
parameterisation is 1-r. 
 
One problem with both of the CRRA functions (6.3) and (6.4) is that they do not fully 
accommodate zero outcomes.  It is very common for the lowest outcome in a lottery to be 
zero, and hence we need to be able to evaluate U(0).  However, when the power parameter 

is non-positive, i.e. if   1 in (6.3) or r<0 in (6.4), U(0) is not defined.  This does not mean that 
the CRRA utility function cannot be used when the lowest outcome is zero.  It simply means 
that, when the lowest outcome is zero, the function is incapable for explaining high degrees 
of risk aversion.  
 
A different sort of utility function that avoids this problem is the Constant Absolute Risk 
Aversion (CARA) function, defined by: 
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 ( )( ) 1 exp 0; 0U x rx x r= − −     (6.5) 

 
Applying (6.1) to (6.5), it is seen that the coefficient of absolute risk aversion r.  Note that in 
(6.5), r must be positive to ensure that U(x) is increasing in x.  Note also that (6.5) is defined 
for all values of x including zero.   Hence the CARA function avoids the problem identified 
above relating to the CRRA: the CARA is able to explain high degrees of risk aversion even 
when the lowest outcome is zero. 
 
A more general utility function that has become popular in applications is the expo-power 
utility function (Saha, 1993; Holt and Laury, 2002), defined as follows: 
 

𝑈(𝑥) = 1 − 𝑒𝑥𝑝(−𝛽𝑥𝛼)   𝑥 ≥ 0;  𝛼 ≠ 0;  𝛽 ≠ 0;  𝛼𝛽 > 0        (6.6) 
 
The attractive feature of (6.6) is that is combines CARA and CRRA, with absolute risk aversion 
represented by α, and relative risk aversion by β.  However, note that 𝛽 ≠ 0, which implies 
that exact CRRA is not included as a special case. 
 
6.2 Decision-Theoretical Framework: EU and RDU 
 
Here we introduce a general framework and a set of notational conventions that are useful 
for the modelling of choice under risk.  Comparable frameworks have been used by Hey and 
Orme (1994), Loomes et al. (2002), Conte et al. (2011), and others. 
 
Let us assume that all choice tasks in the experiment involve combinations of the M money 

outcomes: 0  x1<x2<<xM.  We index the tasks by t (t=1,…,T).  For most choice tasks, one of 
the two lotteries may be classified as the “riskier” lottery, and the other as the “safer” lottery.  
When this is not possible, the task is one of “dominance”, since one lottery first-order 
stochastically dominates the other.36  If task t is a non-dominance task, we will label the riskier 
lottery as pt, and the safer as qt.  For a dominance task, pt will be the dominating lottery, and 

qt the dominated.  pt = (p1t p2t pMt) and qt = (q1t q2t qMt) are vectors containing 
probabilities corresponding to the M possible outcomes. 
 
We index subjects by i (i=1,…,n), and, for the sake of convenience, we shall assume the power 
utility function introduced in (6.4) above, for subject i: 
 

 ( ) 0; 0ir
i iU x x x r=     (6.7) 

 
Recall that (6.7) is a simple version of the Constant Relative Risk Aversion (CRRA) utility 

function, and the coefficient of relative risk aversion (for subject i) is 1 ir− .  

 
Under the assumption of Expected Utility (EU) maximisation, subject i’s valuations of the two 
lotteries in choice problem t are, using (6.7): 
 

 
36 To establish dominance, it is necessary to obtain, for each lottery, the function representing the 
probability of receiving an outcome of at least X as a function of X.  One lottery dominates the other if 
its function so-obtained is sometimes above, and never below, that of the other lottery. 
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We define the valuation differential of pt over qt under EU, ( )EU

it ir , as follows.   

 

 ( ) ( ) ( )  −; ;EU

it i i i i ir V r V rt tp q   (6.9) 

 
Under a deterministic version of EU, subject i chooses pt over qt if this valuation differential is 

positive, that is, if ( )  0.EU

it ir  

 
The decision theory literature contains a considerable volume of evidence of violations of EU 
(see Starmer, 2000).  A natural way of relaxing EU within the present framework is to assume 
a form of Rank-Dependent Utility (RDU) theory (Quiggin, 1982).  RDU Theory is based on the 
concept of a probability weighting function, which is one of the key building blocks of Prospect 
Theory (Kahneman and Tverky, 1979; Tversky and Kahneman, 1992). 
 

As above, consider the lottery p = (p1 p2 pM).  According to RDU, a decision maker does 
not use the true probabilities contained in p when evaluating the lottery, but rather uses the 

transformed probabilities 1 2, , , Mp p p .  The transformed probabilities are obtained from the 

true probabilities as follows: 
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where w(.) is the weighting function, with the properties w(0)=0, w(1)=1.  Note that (6.10) 

ensures that the transformed probabilities sum to one, i.e. that 
=

=
1

1
M

j

j

p . 

 
It is useful to consider the case with only three possible outcomes, for which (6.10) becomes: 
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  (6.11) 

 
The three-outcome case is illustrated in Figure 6.1, in which the curve is the weighting 
function.  The inverse-S shape of this curve  causes the probabilities of the best and worst 

outcomes to be overweighted (i.e. 3 3p p  and 1 1p p  respectively), implying that the 

probability of the middle outcome is underweighted (i.e. 2 2p p ).  Note that, if the weighting 

function coincided with the 450-line (i.e. if w(p)=p), the probabilities would be correctly 
weighted, and we would be back to EU. 
 



58 

 

 
Figure 6.1: An inverted S-shaped weighting function.  Three outcomes assumed.  

 
Three popular parametric weighting functions are specified as follows:37 
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The first of these, the power weighting function, might be seen as undesirably restrictive since 

it does not allow an inverse S-shape; it is either completely above (if  <1) or completely below 

(if  >1) the 45° line.  The second function is due to Tversky and Kahneman (1992).  Despite 

having only one parameter, this function has the required inverse-S shape (if 0.279< <1).  The 

lower limit of   is required for monotonicity.  We have EU when  = 1.  The third function is 
due to Prelec (1998) and also has an inverse-S shape.  It has two parameters.38  The parameter 

 reflects pessimism (with values less than 1 indicating optimism) and the parameter  

determines the pronouncedness of the inverse-S shape (the lower the value of , the more 

pronounced the inverse-S; >1 would instead indicate an S-shape).  When both of these 
parameters are equal to one, we have EU.  It is typically found that both parameters are 
somewhat less than one. 
 
It is reasonable to assume that probability weighting, like risk aversion, varies between 

subjects.  For simplicity, let us assume there is one weighting parameter  which is i for 
subject i.  Having used the chosen weighting function to find the transformed probabilities of 

the two lotteries pt and qt for subject i, we may compute this subject’s valuation of each 
(under RDU) as: 

 
37  A useful survey of probability weighting functions appearing in the literature is provided by Stott 
(2006). 
38 α is sometimes referred to as the “elevation parameter” and is said to reflect “attractiveness” 
(Gonzalez and Wu 1999), while γ reflects “a-insensitivity” (Tversky and Fox 1995). 
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As with EU, we define the valuation differential of pt over qt under RDU, ( ) ,RDU

it i ir , as 

follows.   
 

 ( ) ( ) ( )    −, ; , ; ,RDU

it i i i i i i i ir V r V rt tp q   (6.13) 

 

Under a deterministic version of RDU, subject i chooses pt over qt if ( ) , 0.RDU

it i ir  

 
To allow estimation, we need to incorporate a stochastic element to (6.9) or (6.13).  Broadly, 
there are two approaches to this: the Fechner approach, and the random preference (RP) 
approach.  Here, we focus on the Fechner approach; the RP approach is considered later in 
Section (6.10). 
 
6.3 The Fechner Model (Random Utility Model) 
 
Consider the RDU model developed in the last sub-section.  Assume that each subject (i) has 

a risk-attitude parameter (ri) and probability weighting parameter(s) (i say) that are constant 
between tasks.  The Fechner model (Fechner, 1860; Hey and Orme, 1994), also known as the 
Random Utility Model, is obtained by appending a homoscedastic error term to (6.13), 
whereupon the condition for the choice of pt becomes: 
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Defining the binary indicator yit =1(-1) if subject i chooses pt (qt), the probabilities of the two 
choices (conditional on subject-specific parameters) are given by: 
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  (6.15) 

where (.) is the standard normal c.d.f. 
 
6.4  The tremble parameter 
 
The Fechner model clearly allows subjects to make “incorrect” choices when they are close to 
indifference (i.e. when the valuation differential is close to zero).  However, assuming that the 

noise parameter, , is relatively small, the Fechner model has problems explaining major 
errors, such as dominance violations.39  The choice of a dominated alternative may require an 
astronomically high value of the Fechner error term, and hence dominance violations 
appearing in the data have the potential to distort estimates.  This leads us to consider the 
addition to the model of a different type of error: the “tremble”. 

 
39 Loomes and Sugden (1998) report that around 1.5% of choices made in dominance problems are 
violations of dominance. 
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We shall follow Loomes et al (2002) by introducing a tremble parameter ω to the choice 
model.  ω is the probability that on any task a subject loses concentration and chooses 
randomly between the two alternatives, with equal probability.  Issues surrounding the 
estimation of and testing for tremble effects have been discussed in some detail by Moffatt 
and Peters (2001).   
 
Applying this extension to the Fechner model (6.15), we obtain: 
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6.5  The role of experience 
 
It is possible that subjects’ behaviors may change systematically in the course of the 
experiment, revealing the effect of experience.  In order to allow for this, certain parameters 
may be allowed to depend on the amount of experience accumulated, which may be 
measured using the position of the current task in the sequence of tasks.  For this purpose we 

define a variable it  to be the position of task t in the sequence of tasks undertaken by subject 

i.  Note that a sensible feature of a design is that each subject encounters the sequence of 
tasks in a different order, that is, ,it jt i j   .  This feature is a generalisation to the 

multiple-task setting of the concept of the “crossover design” used in a two-task setting and 
discussed in Section 3.2 above. 
 
One of Loomes et al.’s (2002) most striking findings is the change with experience in their 
probability weighting parameters.  Their key weighting parameter (termed the “bottom-edge 
effect”, and labeled b) is one that represents the over-weighting of a small probability of the 
best outcome.  Under EU, b=0.  They allow this parameter to depend on task number with the 
following specification: 
 

 ( )0 1exp 1, ,it itb t T  = =   (6.17) 

 
The parameter 0 in (6.17) is interpreted as the probability weighting parameter at the start 

of the experiment, that is, when the subject has zero experience.  The parameter 1, if 
negative, represents the rate of decay towards zero of the parameter.  Loomes et al. (2002) 

indeed find that 1 is significantly negative, implying that probability weighting decays 
dramatically in the course of the experiment, although not all the way to zero.  They conclude 
that decision makers use distorted probabilities in early tasks, but undergo a learning process 
that moves them closer to EU with experience. 
 
Another parameter which it may be considered natural to allow to change with experience is 
the tremble parameter.  This parameter has been defined as the probability that a subject 
loses concentration when undertaking a particular task.  This interpretation may be 
broadened:  another reason why a subject might choose randomly between the two 
alternatives is a lack of understanding of the task.  We might hypothesise that such a lack of 
understanding is more likely to arise earlier in the sequence than later; hence we would expect 
the tremble probability to start off at a relatively high value, but to decay towards zero over 
the course of the experiment. 
 
A suitable specification would therefore be: 
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 ( )  = 0 1expit it   (6.18) 

 
In (6.18), ω0 represents the tremble probability at the start of the experiment, while ω1 
(assuming it is negative) represents the speed of its decay.  The specification (6.18) has been 
usefully applied by Loomes et al. (2002) and Bardsley and Moffatt (2007).   
 
6.6  Between-subject variation and the sample log-likelihood 
 
The Fechner models under EU and RDU were constructed above in terms of the behavior of 
an individual subject.  The choice probabilities were derived, conditional on the subject’s 

preference parameters, 
ir  (and i in the case of RDU).  It is of course essential to allow for 

between-subject variation in one or both of these preference parameters.   
 
Let us consider the Fechner-RDU model with tremble, defined in (6.16) above.  Since both risk 

aversion (
ir ) and probability weighting (i) parameters are constrained to be positive, it is 

natural to assume that they vary over the population according to a bivariate lognormal 
distribution: 
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The likelihood contribution associated with the T decisions of subject i is: 
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where f(r, ; 1, 2, 1, 2, )  is the bivariate lognormal density function associated with (6.19). 

 

The sample log-likelihood function is then: 
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The model defined in (6.19)-(6.21) is a version of the random effects probit model, of the type 
estimated by Conte et al. (2010, 2018). 
 
6.7  The method of Maximum Simulated Likelihood (MSL) 
 
The key practical problem encountered when attempting to maximise likelihood functions 
such as that defined in (6.16)-(6.18) is how to evaluate the double integral appearing in (6.17).  
It is a double integral because two dimensions of subject-heterogeneity are assumed: risk 
aversion and probability weighting.  A method that has become very popular in recent years 
is based on simulation, and the resulting estimation method is known as the method of 
maximum simulated likelihood (MSL, see Train, 2003). 
 
The method of MSL essentially involves replacing the integral with a mean of values of the 
function evaluated at a set of simulated values.  The choice of simulation routine is commonly 
a Halton sequence (Halton, 1960). 
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Let I be the value of the double integral appearing in the log-likelihood for the Fechner RDU 
model (6.20): 
 

 𝐼 = ∫ ∫ ∏ [(1 − 𝜔𝑖𝑡)Φ (𝑦𝑖𝑡 ×
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∞

0
 

  (6.22) 
 
The method of evaluation of I in (6.22) is to use the following average as an approximation to 
it: 

 𝐼 =
1

𝐽
∑ ∏ [(1 − 𝜔𝑖𝑡)Φ (𝑦𝑖𝑡 ×

𝛻𝑖𝑡
𝑅𝐷𝑈(𝑟𝑗,𝛾𝑗)

𝜎
) +

𝜔𝑖𝑡

2
]𝑇

𝑡=1
𝐽
𝑗=1   (6.23) 

 

where rj, j=1,…,J; j, j=1,J, are two sets of Halton draws, transformed in such a way as to 
resemble variates from the bivariate lognormal distribution specified in (6.19).  Note that the 
double integral in (6.22) has been replaced by a single summation in (6.23).  Even if the 
dimensionality of the integral were greater than two, it would still be replaced by a single 
summation, and this is the sense in which the method of MSL overcomes the “curse of 
dimensionality”.  
 
Halton (1960) draws, in raw form, follow a uniform distribution.  To highlight their properties 
it is informative to plot two Halton sequences against oneanother.40  Such a plot is shown in 
the right panel of Figure 6.2.  In the left panel is shown a pair of random uniforms, obtain using 
a pseudo-random number generator. 
 
The two properties of Halton draws that make them particularly useful for numerical 
integration of the type being considered here are coverage and covariance.  The coverage 
issue is as follows.  With independent random draws (see left panel of Figure 6.2) it is 
inevitable that draws are clumped together in some areas, with a scarcity of draws in other 
areas.  In contrast, the right panel of Figure 6.2 clearly illustrates the property of even 
coverage of Halton draws, and draws with even coverage are known to provide a more 
accurate approximation to the integral. 
 
The covariance issue is as follows.  With independent draws, the autocovariance between 
draws is zero.  The variance of a simulator would therefore be the variance based on a single 
draw divided by J (the number of draws).  Halton draws are negatively autocorrelated instead 
of independent, that is, a high draw tends to be followed by a low draw, and vice versa.  This 
means that a draw that gives rise to an over-estimate of I will be immediately followed by one 
that gives an under-estimate, and vice versa, and this gives rise to a lower variance of the 
average, and hence faster convergence of the average to the true I. 
 
The uniform draws need to be transformed in accordance with the distributional assumptions 
regarding the random terms within the model.  If the two uniform sequences are u1 and u2, 

they would be transformed to r and , whose distribution are specified in (6.19), using: 
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  (6.24) 

 
40  Here “two Halton sequences” means, for example, the Halton sequence used to represent (after 
being transformed) the risk aversion of subject 1, and that used to represent that of subject 2. 
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Figure 6.3 shows two series for r and  generated using (6.24). 

 

 
Figure 6.2.  Left panel: two random uniforms; Right panel: two Halton sequences 
 
 

 
 
Figure 6.3.  Two Halton sequences transformed to two log-normals with (underlying) 
correlation +0.60.  Both means zero; both s.d.s 1. 
  
Further detail on the use of MSL to estimate risky choice models, including complete STATA 
programs, is provided by Moffatt (2015).  The sort of risky choice model considered here has 
been estimated using MSL by Conte et al. (2010, 2018).  In both cases they find wide 
heterogeneity in both risk aversion and probability weighting, and in both cases they find a 
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positive correlation: more risk-averse subjects exhibit greater probability distortion.  Von 
Gaudecker et al. (2011) go further and assume between-subject heterogeneity in four 
different preference parameters: utility curvature, loss aversion, preferences toward the 
timing of uncertainty resolution, and the propensity to choose randomly rather than on the 
basis of preferences.  Estimation of such a model by MSL clearly requires four sets of Halton 
draws. 
 
6.8 Post-Estimation 
 
Having estimated the Fechner-RDU model, it is possible to obtain posterior estimates of the 
preference parameters for each subject in the sample.  This is done using Bayes’ Rule.  For 
example, the posterior estimate of risk attitude for subject i is: 
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  (6.25) 

 
where hats indicate that parameters have been replaced by estimates.  
 
 
 
6.9 The Random Preference (RP) Model 
 
The Random Preference (RP) Model was introduced by Loomes and Sugden (1998) and 
subsequently estimated econometrically by Loomes et al. (2002) and others.  It is an 
alternative approach to the Fechner approach outlined above, and it is partly motivated by a 
problem with the Fechner model has recently come to the fore in the decision theory 
literature (Wilcox, 2011; Blavatskyy, 2011; Apesteguia and Ballester, 2016).   
 
This problem with the Fechner model is that when risk aversion reaches high values, the 
valuation differential ( )   approaches zero, and the choice probabilities approach one half.  
A consequence of this is that the probability of choosing the risky alternative may not be a 
monotonically decreasing function of risk aversion.  This leads to a number of practical 
problems, most obviously, an identification problem arising from the fact that the same choice 
probabilities may be associated with two different levels of risk aversion. 
 
A simple example is useful to illustrate this problem.  Consider the choice between a 50:50 
gamble of 1 and 3 (the risky lottery), and a certainty of 2 (the safe lottery).  Assume that the 
decision maker has power utility, is an EU maximiser, and makes decisions subject to a Fechner 
error with variance 0.04.  Their probability of choosing the risky lottery against their risk 
attitude (power) parameter is shown in Figure 6.4.  Logically, we expect the probability of 
choosing the risky alternative to be monotonically increasing in the power parameter.  As seen 
in Figure 6.4, this is definitely not the case, and hence the problems raised in the last 
paragraph are clearly seen even in the context of this very simple example. 
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Figure 6.4: Probability of risky choice against risk attitude (power) parameter, assuming EU.  Risky 
choice: (0.5, $1; 0.5, $3); Safe choice: (1, $2).  Fechner error variance = 0.04. 

 
One way of viewing the Fechner model is to recognise that each of the two alternatives in the 
choice problem has an error term, and these two errors distort the utilities independently.  An 
alternative modelling approach is to allow within-subject variation in the preference 
parameters, but to assume that for given values of these parameters, the choice problem is 
solved without error.  This strategy avoids the problem identified in the previous paragraphs 
because the evaluation of each alternative is not distorted independently of the other.   
 
This alternative modelling strategy is known as the Random Preference (RP) approach 
(Loomes and Sugden, 1998; Loomes et al., 2002), explained as follows.  For the sake of 
simplicity, let us assume that subjects are EU maximisers, and that only a subject’s risk-
attitude parameter (r) varies between tasks.  So, we assume that the risk attitude of subject i 
in task t comes from the distribution: 

  

 ( ) ( ) 2ln ~ ,it ir N m  (6.26)  

 
The parameter σ2 in (6.26) represents the within-subject variance in risk attitude.  We are 
further assuming that each subject i has a different “mean” risk attitude, mi. 
 
Recall that the valuations of the two lotteries (assuming EU) are given by: 
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In the context of the RP model, what is required in order to proceed with estimation is, for 
each task t, a range of values of r for which the riskier lottery pt will be chosen over the safer 
lottery qt.  That is, we require to find the value rt* for which: 
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The interpretation of 
tr
  is the risk-attitude parameter that would make a subject exactly 

indifferent between the two lotteries in task t, and we shall refer to it as the “threshold risk 
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attitude” associated with task t.  An immediate problem is that there is no general closed-
form solution for rt* in (6.28).  To progress with estimation of the RP model, we need to restrict 
attention to special cases. 
 
Consider, for example, the case with only three possible money outcomes, 0, 1, and 2.  In this 
case: 
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If we define 

2 2 2t t td p q= −  and 
2 3 3t t td p q= − , then the condition for choosing pt over qt is: 
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which may be rearranged to give: 
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In (6.31), by virtue of the simplicity of the setting, we have a closed form expression for the 
threshold risk aversion.  If the subject’s current risk attitude is larger than this threshold, they 

will choose the riskier lottery pt.  Note that 
tr
  is not defined if task t is a dominance problem.  

However, the decision rule for a dominance problem in the RP model is simple: the dominating 
alternative, pt will be chosen with certainty. 
 
For a non-dominance problem, the probability that the riskier lottery is chosen, conditional 
on the subject’s mean risk attitude, mi, is: 
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  (6.32) 

  

where (.) is the standard normal c.d.f.  Note that Z is being used to represent a standard 
normal random variable.  
 
If we again define the binary indicator yit =1(-1) if subject i chooses pt (qt), the probabilities of 
the two choices (conditional on mi) are then given by: 
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  (6.33) 

 
Between-subject heterogeneity is captured by assuming a between-subject distribution for 
mi.  Because mi is the mean parameter for a lognormal distribution (6.26), there is no 
requirement for mi to be positive, and a natural choice is therefore: 
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 ( )2~ ,m N     (6.34) 

 
The parameter η2 represents between-subject variation in risk-attitude.  Similarly to the 
Fechner model in Section 6.8, (6.33) and (6.34) may be combined to constuct a log-likelihood 
function that can be maximised using MSL. 
 
One further drawback with the RP model is that, as mentioned above, it cannot explain 
violations of dominance.  This is because, if RP is the true model, dominating alternatives will 
always be chosen.  Since many risky choice data sets contain dominance violations, this may 
appear to be a serious shortcoming of the RP model.  However, introducing a tremble 
parameter, as done in Section 6.5 for the Fechner model, addresses this problem, since 
dominance violations can be attributed to trembles.   
 
6.10  Non-nested Tests 
 
Having estimated both the Fechner and RP models on the same data set, an obvious question 
is which model fits the data better.  Because the two models are non-nested, we need to 
consider non-nested tests.   
 
A particular non-nested test that has become popular in these situations is the Vuong Test 
(Vuong, 1989).  In (6.20) we presented the per-subject likelihood contribution for the Fechner 

model.  Let ˆ , 1, ,if i n=  be these contributions with parameters replaced by MLEs.  Similarly, 

let ˆ , 1, ,ig i n= be the corresponding for the RP model.   The Vuong Test test is based on the 

quantity D, defined by: 
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The quantity D defined in (6.35) is similar to the log-likelihood ratio of the two models, but 
since the models are non-nested, it can be of either sign.  An estimate of the variance of D is 
given by: 
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The Vuong test statistic is given by: 
 

 
ˆ

D
Z

V
=   (6.37) 

 
As proved by Vuong (1989), the test statistic Z in (6.37) has a limiting standard normal 
distribution under the null hypothesis that the two models are equivalent.  A significantly 
positive value of Z would indicate that the Fechner model is closer to the true data generating 
process than the RP model.  A significantly negative value would indicate the converse. 
 
Loomes et al. (2002) compare Fechner and RP models using Vuong’s (1989) non-nested test.  
They find clear superiority of RP over Fechner, in the context of the choice experiment they 
work with. 
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Clarke (2003) considered non-parametric alternatives to the Vuong test.  Either the Wilcoxon 
signed ranks test or the sign test (for both see Section 2.11) can be applied to the paired 
likelihood contributions.  Clarke (2003) argues that there is no reason to expect symmetry to 
hold in differences of log-likelihoods of competing models, so the sign test is preferred. 
 
     
 
 

7. Discrete Heterogeneity: Finite Mixture Models 
 
Finite Mixture modelling has become very important in Experimetrics, as a way of dealing with 
discrete heterogeneity, that is, a situation in which the population is made up of a finite set of 
distinct types.  The framework has been applied to a number of areas in Experimental 
Economics, for example probabilistic updating rules (El-Gamal and Grether, 1995), 
contributions to public goods (Bardsley and Moffatt, 2007), and Fairness experiments 
(Cappelen et al., 2007; Conte and Moffatt, 2014). 
 
Another very useful application of mixture modelling is to depth of reasoning models (see e.g. 
Bosch-Domènech et al., 2010), in which subjects are divided between levels of cognitive 
ability.  This application is used for illustration in this section. 

 
7.1 Finite mixture models 
 
Finite mixture models, or just mixture models, are a class of model that offer a means of 
separating subjects into different types.  A thorough general treatment of this framework is 
provided by McLachlan and Peel (2000).  These models are labelled as “finite” mixture models 
because a finite number of types is being assumed.  An “infinite” mixture model, if such a label 
were used, would correspond to a random coefficient model, or random effects model, in 
which it is assumed that there is continuous variable in some parameter indexing behavioural 
type. 
 
In this section, we will derive the log-likelihood functions for various types of mixture model 
in a general context.  The formulae derived below are the ones that are used in specific 
contexts in later sections. 
 
There are broadly two approaches to mixture modelling.  The first, and the one to which we 
restrict attention here, amounts to deciding on the number of types, K say, at the outset, and 
also specifying the “model” applying to each type.  The econometric objective is to estimate 
the parameters of each of the K models, along with the K “mixing proportions” (that is, the 

proportion of each type in the population).  The mixing proportions are denoted as 1 … K.  
The other approach is to allow the data to determine the number of types, as well as the 
equations defining them.  The resulting models fall under the heading of “latent class models” 
which have been surveyed by Collins and Lanza (2009).  The reason for avoiding these models 
here is that they tend to identify types for which there is no meaningful label, and hence it 
can be hard to draw useful conclusions following estimation. 
 
The structure of the log-likelihood function depends on whether the decision variable is being 
treated as discrete or continuous.  Consider first a discrete outcome Y taking a finite number 
of possible values y1, y2 ,…,yJ, each of these values representing one of J possible strategies or 
actions.  Consider a K-type mixture model, with types labelled as T1…TK.  Let 
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1, ; 1, ,j
kp j J k K= = be the probability (according to the assumed model) that a Lk player 

chooses action jy .  Then the sample Log-likelihood function, based on an observed sample 

y1,…,yn may be constructed as: 
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where I(.) is the indicator function.  If 1,jn j J=  is the number of subjects choosing value 

jy , then (7.1) may be written more simply as: 
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Maximising (7.2) with respect to the K mixing proportions gives maximum likelihood estimates 

(MLEs) of these parameters.41  Let the MLEs be  1ˆ , , ˆK . 

 
Having estimated the model, the posterior type probabilities for a player choosing yj can be 
obtained (using Bayes’ Rule) as: 
 

 ( )

1

ˆˆ | 1, ,

ˆ

j
j k k

K
j

k k
k

p
P Tk y k K

p



  

=

= =


 (7.3) 

 
Next, consider the continuous case.  Again let Y be the decision variable, but now assume it 

has continuous distribution with density f(y;), where  is a vector of distributional 

parameters.  We need to define the density functions conditional on each type: f(y|T1; ), …, 

f(y|TK; ).  Then the sample log-likelihood may be constructed as: 
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Maximisation of (7.4) gives MLEs of the mixing proportions, and also of the distributional 

parameters contained in . 
 
The posterior type probabilities for the continuous case, for a Player choosing the value y, are 
obtained, again using Bayes’ Rule, as: 
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where hats again denote MLEs.  The posterior type probabilities defined in (7.3) and (7.5) are 
useful for categorising players into types.  However, note that there is no claim to be able to 
identify any individual subject as belonging to any particular type with certainty, although, in 
situations where data is informative, posterior type-probabilities can be very close to one. 

 
41  Since the mixing proportions sum to 1, (7.2) is maximised with respect to K-1 of them, and the K-th 
estimate is deduced. 
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As usual, we also need to consider the case in which there are multiple observations per 
subject.  In the continuous case, let yit be subject i’s decision in task t, t=1,…T.  Then the Log-
likelihood function (7.4) becomes: 
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Note that there is an assumption implicit in (7.6) that a given subject is of the same type for 
all tasks.  This is another important feature of the mixture modelling framework.  If subjects 
are required to be allowed to switch between types, a different sort of model is required, 
namely the Markov-switching model (see e.g. Shachat et al., 2015). 
  
 
7.2 Depth of Reasoning Models 
 
Depth of Reasoning models have become very popular in the analysis of behaviour in 
interactive games (see Stahl and Wilson, 1995; Nagel, 1995).  The key feature of the approach 
is the assumption that agents divide between different, discrete, levels of reasoning.  Each 
player is assumed to form a belief about the levels of reasoning (and therefore the strategies) 
of other players, and adopts a strategy which is the best response to these assumed strategies.  
Of course, in many settings, the majority of players have incorrect beliefs about the other 
players’ strategies, and this fact is embraced in the modelling strategy.  The approach is most 
useful for the modelling of initial responses, that is, behaviour observed when a game is 
played only once, with no opportunity for players to learn what to expect.  This is, of course, 
the situation that applies in many real life applications of game theory such as international 
conflicts. 
 
Perhaps the most well-known depth of reasoning model is the Level-k model, in which the 
different levels of reasoning are characterised as follows.  A completely non-strategic player 
will choose actions without regard to the actions of other players.  Such a player is said to 
have zero-order beliefs and may also be called a level-zero player (L0).  A slightly more 
sophisticated (level-one, L1) player believes that all other players will act non-strategically, 
that is, that all others are L0; his or her action will be the best response consistent with this 
first-order belief.  An even more sophisticated (level-two, L2) player best-responds to the 
belief that all other players are L1.  This pattern continues for higher-level players, but each 
player has only a finite depth of reasoning, meaning that individual players have a limit to the 
depth to which they can reason strategically.  This is the sense that level-k models lie squarely 
within in the realms of “bounded rationality” theory.  Of course if a player has immaculate 

powers of reasoning, they may be classified as “level-infinity” (L) and their behaviour will 
correspond to the Nash prediction. 
 
The finite mixture model, explained in Section 7.1, is a natural method for dividing subjects 
between levels of reasoning.  The “types” are simply levels of reasoning.  The number of 
reasoning levels is usually assumed to be quite low, on the basis that we do not expect agents 

to operate at levels beyond 3 or 4.  However, we sometimes include a “level-” type whose 
behaviour corresponds to the Nash equilibrium prediction.   
 
An important issue is what value of K should be chosen.  That is, how many types should the 
mixture contain.  This is clearly a model selection issue, since the value of K can be varied and 
the model that best fits the data can be adopted.  When assessing a model’s fit to the data, it 
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is clear that an adjustment needs to be made for the number of parameters, and for this 
reason Akaike’s Information Criterion (AIC) is an appropriate choice of model selection 
criterion.  AIC is given by 2k-2logL where k is the number of parameters in the model.  The 
preferred model is the one with the lowest AIC. 
 
7.3   The 11-20 Money Request Game 
 
The 11-20 Money request game (Arad and Rubinstein, 2012) has two players.  Each player 
requests an amount of money.  The amount of money must be a whole number between 11 
and 20.  Each player receives the amount that he or she requests.  However, if one player’s 
request is exactly one unit less than that of the other player, the player requesting the smaller 
amount receives a bonus of 20.  The game has a mixed strategy Nash equilibrium covering 
requests between 16 and 20.42 
 
This game is particularly well-suited to studying level-k reasoning, for the following reasons.  
First, the maximal request of 20, being the instinctive choice, provides a natural anchor for 
the iterative reasoning process.  It is accordingly assumed that L0 players choose 20.  Second, 
best-responding is straighforward and likely to be error-free: for a L1 player, it is obvious that 
the best response to L0 play is 19; for a L2 player, it is obvious that the best response to L1 
play is 18; and so on.  Third, level-k reasoning is unlikely to be distorted by social preferences.  
This is because, if a player ever receives the bonus of 20, it is not at the expense of the other 
player. 
 
Arad and Rubinstein (2012) played the version of the game as described above on 108 
subjects.  The distribution of requests is shown in Table 1.  As expected, the majority of 
requests are towards the top of the 11-20 range.  A small number of requests appear in the 
lower part of the range. 
 

request 11 12 13 14 15 16 17 18 19 20 

Frequency (%) 4 0 3 6 1 6 32 30 12 6 
Table 7.1: Distribution of requests in the 11-20 Game (n=108).  Extracted from Arad and Rubinstein 
(2012) Table 1. 

 
Apart from asking players for their requests, players were also asked to provide a written 
explanation for their decision.  These explanations were very useful in verifying the use of 
level-k reasoning.43  An important point stressed by Arad and Rubinstein (2012) is that no 
players who requested less than 16 provided an explanation that suggested a level-k 
reasoning process.  Instead, these (14) players making low requests tended to provide 
explanations suggesting that their choice was essentially random.  In view of this, it was 
considered sensible to add a “random” type to the level-k model.  The definition of a “random” 
type is a player who chooses between the 10 possible requests, 11-20, with equal probability 
1/10. 
 
Let us consider estimation of level-k models using the data presented in Table 1, following the 
approach of Moffatt (2020).  We will start by assuming K=4.  That is, we assume there are six 

 
42 According to Arad and Rubinstein (p.3545, top row of Table 1), the mixed strategy Nash equilibrium 
consists of: 15 with prob 0.25; 16 with prob 0.25; 17 with prob 0.20; 18 with prob 0.15; 19 with prob 
0.10; 20 with prob 0.05. 
43 For example, it appears that one player identified themselves clearly as a L2 reasoner by 
explaining that “I request 18 shekels since many people believe that the majority will 
request 20 and thus they will request 19” (Arad and Rubinstein, 2012, p.3566). 
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types in total: L0, L1, L2, L3, L4, and “random”.  The mixing proportions will be 0, 1, 2, 3, 

4, and r respectively. 
 
To construct the log-likelihood function, we need to consider the probability of each request.  
The request of 20 occurs if the player is L0, but it also occurs with probability 1/10 if the player 
is “random”.  Hence the probability of a request of 20 is: 
 

 ( ) 020
10

rP request


= = +  (7.7) 

 
The probabilities of requests of 19, 18, 17 and 16 are obtained similarly to (7.7), since these 
requests correspond to L1, L2, L3 and L4 respectively.  Since we are assuming no types above 
L4, any request below 16 can only be explained using the random type.  Hence each request 
below 16 has probability 10r . 

 
Using the probabilities just derived, together with the frequencies shown in Table 7.1, we 
obtain the following sample log-likelihood function: 
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 (7.8) 

 
The Log-likelihood function (7.8) is maximised with respect to the five mixing proportions 

1 2 3 4, , , , r     .  The results are shown in the “K=4” column of Table 7.2.  

 

 K=4 K=3 K=3 (no L0) 

0 0.037(0.025) 0.031(0.025)  

1 0.093**(0.033) 0.086**(0.033) 0.082*(0.033) 

2 0.269**(0.046) 0.262**(0.046) 0.258**(0.047) 

3 0.287**(0.050) 0.281**(0.047) 0.276**(0.048) 

4 0.037(0.025)   

r 0.278**(0.067) 0.340**(0.065) 0.384**(0.061) 

    

n 108 108 108 

LogL -197.80 -199.32 -200.30 

AIC(=2k-2logL) 407.60 408.64 408.60 
Table 7.2: MLEs of parameters of three Level-k models applied to data from the 11-20 Money Request 
Game.  Asymptotic standard errors in parentheses.  The preferred model is the one with the lowest 
AIC.   

 
We see from the “K=4” column of Table 2 that the majority of subjects divide roughly equally 

between L2, L3 and “random”.  In fact, the mixing proportions 0 and 4 are insignificantly 
different from zero.  This suggests estimating models without these types.  The column “K=3” 
shows results of the model with L4 excluded.  This model has a noticeably higher estimate of 

r, indicating that players previously recognized as L4 are now recognized as random.  Akaike’s 
Information Criterion (AIC) indicates that model “K=3” is inferior to model “K=4”.  Removing 

L0 as well (final column) brings about a further rise in r, but this model is also found to be 
inferior to model “K=4” according to AIC. 
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We are led to conclude that the best model for explaining this data set is a level-k model 
including all levels from 0 to 4, and also a random type.  We are also led to conclude that the 
majority of players divide between L2, L3 and “random”. 

 
7.4 Guessing games  

 

Nagel’s (1995) guessing game, sometimes called the “-Beauty Contest game”44, takes the 
following form.  Each player chooses a whole number between 0 and 100.  The winner (with 

the usual choice of =2/3) is the player whose number is closest to 2/3 of the average for the 
entire group. 
 
This is another setting in which the level-k model is a highly appropriate framework for 
describing behaviour.  Level-0 reasoners are assumed to select a number completely at 
random, from a (discrete) uniform distribution on [0,100].  Level-1 reasoners are assumed to 
believe that all other players are level-0 reasoners, inferring that the mean guess will be 
around 50, and therefore that the best guess is 33 (being the closest integer to 2/3 of 50).  
Level-2 reasoners are assumed to believe that all others are Level-1, with a mean guess of 33, 
so that the best guess for this type of individual is 22. This sequence continues. Level-3 
reasoners will guess 15. Level-4 reasoners will guess 10, and so on. 
 

Note that if every player had immaculate powers of reasoning (i.e. L), and believed that all 
other players had the same powers, they would all supply a guess of 0, and they would all be 
correct and share the prize.  This is the Nash Equlilibrium prediction for the guessing game.  
However, needless to say, this is not what happens when the game is played with real 
subjects. 
 
Bosch-Domènech et al. (2010) collected a large amount of data on guesses in beauty contest 
games played by newspapers with their readers as contestants.  We will work with these data 
in this section.  The distribution of guesses is shown in Figure 7.1. We see that the distribution 
is multi-modal, with one clear mode at around 33 and another around 22. Note that there is 
another mode close to zero.  These modes will be explained using the level-k model. 
 
 

 
44 Although the Beauty Contest Game was first introduced to the Experimental Economics literature by 
Nagel (1995), it appears to have been invented in a popular computing magazine in the late 1970’s.  See 
Nagel et al. (2017) for an inspiring account of the history of the game.  The name “Beauty Contest 
Game” derives from a paragraph on p. 156 of Keynes’ (1936), General Theory of Employment, Interest 
and Money, in which the problem of choosing stocks for a portolio is likened to “those newspaper 
competitions in which the competitors have to pick out the six prettiest faces from a hundred 
photographs, the prize being awarded to the competitor whose choice most nearly corresponds to the 
average preferences of the competitors as a whole”.  In essence, the competition described here by 

Keynes is a guessing game with =1. 
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Figure 7.1: The distribution of guesses from the newspaper guessing games; collected by  Bosch-
Domènech et al. (2010).  Sample size: 7,892. 

  
 
 
The estimation problem is to use the data shown in the histogram of Figure 1 to estimate the 
proportion of the population who are at each level of reasoning.  We will once again assume 
that there are a finite number K+1 of types, with the maximum level of reasoning K. 
 
Apart from Level-0 reasoners, who are assumed to choose from a (discrete) uniform 
distribution, we assume that each player’s choice is the best guess for a player of their 
reasoning level, plus a random normally distributed error with mean zero and standard 

deviation .  That is, we assume that if 
ky  is the best guess for Lk, then the actual guess y will 

be determined by (following Bosch-Domènech et al., 2010; Runco, 2013; Moffatt, 2020): 
 

 ( ) ( )  = + =2| ~ 0, 1, ,k ky Lk y N k K  (7.9) 

 
In (7.9) it is assumed that observed guesses are random departures (due to computational 

error) from the best guess, with  =2 , 1, ,k k K  representing the extent of computational 

errors made by a player of Lk.  If we set K=4, the “best guesses” are y1*=33.3, y2*=22.2, 

y3*=14.8, y4*=9.9.  For a Nash (i.e. L) type, we need to allow for the fact that the Nash 
prediction is at the limit of the range of possible guesses.  Hence we assume a censored normal 
distribution for the Nash type, as follows: 
 

 ( ) ( )  = 2| ~ 0,Nash Nashy L CN  (7.10) 

where ( ) 20, NashCN  represents a distribution consisting of a probability mass of one half at 

zero, and a half normal density above zero.  Strictly speaking, we should also allow for 
censoring at zero (and perhaps 100 also) for other reasoning levels.  However, the best 
guesses for most reasoning levels are typically sufficiently far from the limits for censoring to 
make any difference in estimation. 
 
The distributional assumptions (7.9) and (7.10) give us the conditional density/probability 
functions for each type: 
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where ( ).I is the indicator function.  Combining the the conditional densities (7.11) with the 

mixing proportions 0 1, , , ,K Nash    , gives the sample log-likelihood (for a sample of 

guesses , 1, ,iy i n= ): 

 

( ) ( )


 

 

 
 

=

=

  −
+   

  
=  

   
+ = +     

   





*
0

1

1

1

100
ln

1 1
0 0

2

K
i k

k
n

k k k

i i
Nash i i

Nash Nash

y y

LogL
y

I y I y

 (7.12) 

 
Maximisation of (16) gives MLEs of the mixing proportions and also the variance parameters.   
 
Estimation has been performed on the data set of Bosch-Domènech et al. (2010), for various 
values of K, by Moffatt (2020) and the results are reproduced in Table 7.3. 
 

 K=1 K=2 K=3 K=4 

     

0 0.138(0.008) 0.169(0.007) 0.172(0.007) 0.173(0.007) 

1 0.586(0.013) 0.062(0.003) 0.073(0.003) 0.070(0.003) 

2  0.634(0.010) 0.355(0.018) 0.441(0.021) 

3   0.291(0.018) 0.061(0.039) 

4    0.151(0.026) 

Nash 0.277(0.009) 0.136(0.006) 0.109(0.006) 0.103(0.006) 

     

1 14.676(0.279) 0.459(0.018) 0.482(0.020) 0.475(0.020) 

2  12.457(0.199) 13.978(0.352) 12.536(0.367) 

3   8.375(0.267) 7.994(0.610) 

4    6.299(0.322) 

Nash 7.276(0.337) 2.452(0.132) 1.986(0.102) 1.861(0.096) 

     

n 7,892 7,892 7,892 7,892 

LogL -33,859.76 -32,424.59 -32,242.84 -32,217.31 

AIC (=2k-2logL) 67,727.52 64,859.18 64,497.68 64,448.62 
Table 7.3: MLEs of parameters of various Level-k models applied to Bosch-Domènech et al.’s (2010) 
Guessing Game data.  Results previously reported by Moffatt (2020).  The preferred model is the one 
with the lowest AIC.  KS is the Kolmogorov-Smirnov test, and the numbers in this row are KS test 
statistics.  

 
We again use AIC to choose between models.  Here it seems that the model fit improves every 
time a new level of reasoning is added.  We will therefore interpret results from the model 
with the highest number of levels, K=4.  We see that the modal level appears to be L2, with 
44% of players estimated to be of this type.  We also see that around 17% of players are L0, 
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while around 10% are “Nash”.  The dispersion parameter appears to be very low for L1, very 
high for L2, and then to decrease when level rises beyond this.   
 
Post-estimation, we may generate posterior type probabilities using Bayes’ rule (7.5).  These 
are plotted against the subject’s guess in Figure 7.2.  The dashed curve represents the 
posterior probability of Level-0.  Note that this is close to 1 for any subject whose guess is 
greater than about 60.  The other posterior probabilities peak in different positions, as 
expected.  The curve peaking at 33 is the level-1 posterior probability; the one peaking at a 
slightly lower value but with much wider dispersion is that for level-2; the one peaking at 
around 10 is for level-3; the one at 5 is for level 4.  The curve peaking at zero (or one) is for 
the “Nash” type.  The position of this last curve indicates that subjects whose guess is zero or 
a very small positive number may be categorised as “Nash”. 
 

 
Figure 7.2: Posterior type probabilities in the level-k model for the Guessing Game.   

 
 
7.5  Other Depth of Reasoning Models 
 
A shortcoming of the version of the level-k model constucted and estimated in the last section 
is that it assumes that all players believe that all other players are exactly one level below 
themselves.  An obvious reason to doubt this assumption is that if a player possesses the 
cognitive ability associated with level 2 or above, they are surely not naïve enough to believe 
that all other subjects are only one level below. 
 
The Cognitive Hierarchy (CH) model, developed by Camerer at al. (2004), addresses this issue 

by assuming that the distribution of the population over reasoning levels is Poisson (), and 
that a player of type k believes other members of the population to be distributed between 

types 0…(k-1) according to an upper truncated Poisson () distribution.  That is, the (true) 
distribution of types over the population is given by: 
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and a player of type k believes that the probability distribution of other subjects between 
types is: 
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On the basis of these probabilities, the “best guesses” for each type may be computed 
recursively as: 
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  (7.15) 

As in the level-k model, we also assume the existence of a Nash type whose best guess is zero.  
This is achieved by setting a value of K and assuming that all players with level greater than K 

are Nash types.  The proportion of players who are Nash types is then ( )
0

1
K

k

p k
=

− . 

 
The Log-likelihood function is then constructed by combining the observed guesses (y) with 
the type probabilities (p(k) given by (7.5) above) and the best guesses, bk: 
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 (7.16) 

 
Note that there are only two parameters to estimate in this model: the computational error 

parameter () and the Poisson mean (). 
 
Moffatt (2020) has applied the cognitive hierarchy model (7.16) to the data of Bosch-

Domènech et al. (2010).  The Poisson mean () is estimated as 2.75 with a small standard error.  
The interpretation is that the mean reasoning level over the population of players is 2.75.  This 
seems rather high in the light of Camerer et al.’s (2003) assertion that this parameter is usually 
around 1.5.  Moffatt (2020) finds that the model fit of the CH model, estimated as in (7.16) is 
inferior to that of the level-k models estimated in the last section.  However, if the dispersion 

parameter () were allowed to vary between levels, as done in the level-k model, this would 
be likely to improve the fit of the CH model. 
 
Other ways of improving the fit of the CH model have been explored.  Chong et al. (2016) 
consider a generalised cognitive hierarchy model that nests CH and level-k models.  Stahl and 
Wilson (1995) extend the CH model to allow for a rational expectations (RE) type.   An RE-
player is one who realises that the population is divided between lower level types and Nash 
types, but also realises that there exist other RE types.  In the context they consider, they do 
not find evidence of the existence of RE.   
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Moffatt et al. (2020), introduce a “sophisticated” type to the level-k model.  A “sophisticated” 
player is similar to Stahl and Wilson’s (1995) RE type, but, although a sophisticated player 
recognises the presence of other sophisticated players in the population, they do not 
necessarily hold correct beliefs about the proportion of such players.  In fact, this turns out to 
be important.  Moffatt et al. (2020) find that the proportion of sophisticated agents in the 
population is quite small (around 10%), but these sophisticated players tend to believe that 
this proportion is much higher than this, and this incorrect belief leads to guesses that are too 
low to win the prize.  The discrepancy of beliefs is interpreted as a manifestation of the 
Dunning-Kruger effect,45 a behavioural anomaly that predicts that experts overestimate the 
ability of those around them.  
 
7.6 Other Applications of the Finite Mixture Model 
 
Depth of reasoning models were relatively simple to estimate because the types were clearly 
identified by the best responses which come directly from the theoretical model. 
 
Some other types of finite mixture model are more complicated, in the sense that types are 
defined by regression equations.  For example Bardsley and Moffatt (2007) estimate a 4-type 
mixture model with data from a public goods experiment.  Type 1 is the free-rider (mixing 
proportion: 25%) who tends to contribute zero in every round regardless of others’ 
contributions or their own position in the sequence.  Type 2 is the reciprocator (30%) whose 
contribution depends positively on the contributions of others placed earlier in the sequence.  
Type 3 is the selfish contributor (39%) who contributes in anticipation of reciprocity by others, 
and whose contribution therefore depends negatively on position in the sequence.  Type 4 is 
the altruist (6%) whose contribution is positive and does not depend on others’ contributions 
or their own position in the sequence. 
 
Conte and Moffatt (2014) consider data from a fairness experment, in which pairs of players 
engage in an effort task to earn a pie, and then decide how the pie should be divided between 
them.  Although the results are sensitive to the choice of econometric specification, a robust 
finding is that the population divides roughly equally between those who consider the source 
of the endowment relevant to the decision of the final allocation, and those who do not.   
     
7.7 Machine Learning Models 
 
Very recently, machine Learning Models have gained popularity as a means of dividing 
subjects into types. 
 
Fallucchi et al. (2020) reports on the analysis of two previously published contest experiments, 
one with fixed matching, the other with random matching.  The novel feature of the analysis 
is the use of the classifier-Lasso (C-Lasso) method (Su et al., 2016) extended to the Tobit 
model.  We will summarise this estimation framework here. 
 
First consider the following version of the Tobit model: 
 

 ( ) ( )2max 0, ' ~ 0, 1, , 1, ,it i it it ity N i N t T   = + + = =ix β   (7.17) 

 

 
45 Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing one's 
own incompetence lead to inflated self-assessments. Journal of personality and social 
psychology, 77(6), 1121. 
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In (7.17) yit is the effort of subject i in task t, and xit is a vector of explanatory variables.  Note 

that all subjects have a subject-specific intercept (i) and a subject-specific slope vector (i).    
 
The purpose of the C-Lasso method is to shrink the set of N subject-specific coefficient vectors 

i to a smaller set of K<N group-specific coefficients k: 
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This is achieved by minimising the penalised nonlinear likelihood (PNL) function: 
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The first term in (7.19) represents the log-likelihood function for the Tobit model, and the 

second term is a penalisation term.  The parameter  acts as a shrinkage parameter on the i 

coefficients.  If =0, the model represents maximal heterogeneity, while a large value of  
leads to perfect homogeneity.  Hence the minimisation (7.19) is accompanied by an 

optimisation over .  The choice of  addresses the overfitting/underfitting tradeoff. 
 
Fallucchi et al. (2020) consider an experiment with fixed matching and another with random 
matching.  For each, they obtain a coefficient vector for each subject, and use the C-Lasso 
method just outlined to shrink the set of vectors to just three, corresponding to 
“Reciprocators” (58%), “Gamesmen” (9%), and “Others” (32%).  Their most significant finding 
is that the estimated proportion of reciprocators is much lower under random matching than 
under fixed matching. 
 
A similar approach is followed by Engel (2020), who adopts the Classification and Regression 
Tree (CART) framwork to address the problem of patterned heterogeneity in experimental 
data.  The method consists of two steps: estimation of a linear regression separately by 
subject; then assignment of subjects to types using the coefficients in these regressions.  The 
optimal partition of subjects into types is found using machine learning techniques.  Engel 
(2020) claims that the method overcomes problems associated with ml estimation of finite 
mixture models: non-convergence in likelihood maximisation; the need to deal with 
dependence; and the need to fix the number of types before estimation. 
 
Fallucchi et al. (2019) use  hierarchical clustering analysis to identify types in public goods 
voluntary contribution games.  They construct a typology of behaviour based on a similarity 
measure.   They identify four types with distinct stereotypical behaviours, which together 
account for about 90% of participants.  Compared to the previous approaches, their method 
produces a classifcation in which different types are more clearly distinguished in terms of 
strategic behaviour and the resulting economic implications. 
 
Penczynski (2019) uses a combination of Natural Language Processing and Machine Learning 
to infer levels of reasoning in games.  The data consist of text from transcripts of 
communications between team members.  He finds that Machine Learning models of 
classification closely match out-of-sample the human classification that was previously the 
norm.  This is promising because it opens the way for the reliable analysis of large-scale textual 
data sets for similar purposes. 
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8.  Other models for behaviour in games 
 
In Section 7 we were mainly interested in the analysis of data from one-shot games.  Here  we 
progress to consider methods for modelling data from repeated games.  Hence we are shifting 
the focus from the “short run” to the “long run”, and we are mainly interested in the extent 
to which long-run behaviour matches theoretical predictions.    
 
We start this section by considering simple non-parametric procedures for testing adherence 
to the mixed strategy equilibrium in repeated games, and for testing randomness in players’ 
choices.  Then we progress to parametric models.  The focal point of this section is the Quantal 
Response Equilibrium (QRE) model, which is an econometric model built on the assumption 
that agents depart from the Nash prediction in a random manner.  The basic version of the 

model contains only one parameter, , representing the amount of “noise” in subjects’ 
decisions.  The estimation problem is non-standard because, while for standard models, 
choice probabilities can be computed in closed form for given parameter values, for this 

problem computation of the choice probabilities for any given value of  requires the use of 
non-linear optimisation routine.  Hence this non-linear optimisation routine is being called 
within the function evaluation program. 
 
8.1 Modelling choices in repeated games 
 
We shall use the “pursue-evade” game as an example, with data from Rosenthal et al. (2003).  
Subjects are arranged in pairs.  In each pair, one player takes the role of “Pursuer”, the other 
of “Evader”.  The game is then played many times.  In each repetition of the game, each player 
has two choices, Left and Right.  If they choose differently, the Evader has successfully evaded, 
and no money is transferred.  If they choose the same, the Pursuer has “found” the Evader, 
and an amount of money is transferred from the Evader to the Pursuer.  The amount 
transferred depends on where the choices coincide: if they both choose Left, one unit is 
transferred; if they both choose Right, two units are transferred.   
 
The pay-off matrix for the pursue-evade game as just described is as follows: 
 

 
Pursuer 

Evader 

 Left Right 

Left 1,-1 0,0 

Right 0,0 2,-2 

 
There is a mixed-strategy Nash equilibrium which is solved as follows.46  The key is to find a 
pair of strategies that make both players indifferent between the two choices.  Suppose 
Pursuer plays L with probability pPL and R with probability 1-pPL, while Evader plays L with 
probability pEL and R with probability 1-pEL.  Then, for Pursuer, the expected values from 
playing L and R are (in self-explanatory notation): 
 

 
( ) ( )

( ) ( ) ( )

1 1 0

0 1 2 2 1

P EL EL EL

P EL EL EL

EV L p p p

EV R p p p

=  + −  =

=  + −  = −
  (8.1) 

 
Hence Pursuer is indifferent between the two choices if: 

 
46 The method for solving for a mixed-strategy Nash equilibrium is explained well in Appendix A1.1 of 
Camerer (2003).   
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 ( )
2

2 1
3

EL EL ELp p p= −  =   (8.2) 

 
For Evader, the expected values from playing L and R are: 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0

0 1 2 2 1

E PL PL PL

E PL PL PL

EV L p p p

EV R p p p

=  − + −  = −

=  + −  − = − −
  (8.3) 

 
Hence Evader is indifferent if: 

 ( )
2

2 1
3

PL PL PLp p p− = − −  =   (8.4) 

The mixed-strategy Nash equilibrium is therefore characterised by the pair of best responses: 
 

 ( ) ( )  
2 1 2 1
3 3 3 3

, , ,L R L R   (8.5) 

 
Therefore, in the pursue-evade game described above, we might expect both players to 
randomise between L and R in such a way that in the long-run, two-thirds of their decisions 
are L. 
 
8.2 Non-parametric tests on repeated game data 
 
The data used for demonstration purposes is from Rosenthal et al. (2003).  In their 
experiment, the pursue-evade game described exactly as above is played by the 14 pairs, 21-
34.  Each pair plays the game 100 times.  Table 8.1 presents summary statistics for the choices 
made by the players in these pairs.  Analysis of this data set in the ways described in this 
section has already been reported by Moffatt (2015). 
 
Perhaps the most obvious thing to check is how closely each player conforms to the mixed-
strategy Nash equilibrium derived above.  We do this by simply observing how close their 
proportion of “L” choices (shown in columns 2 and 3 of Table 8.1) is to the prediction of 0.67.  
We see that some of the evaders are remarkably close to the Nash prediction of 0.67.  We 
also see that pursuers are typically below the Nash prediction of 0.67 (i.e. they do not choose 
L frequently enough).   
 
To test formally for a subject’s adherence to the Nash prediction, the null hypothesis is that 
the proportion of the subject’s “left” choices equals 0.6667, and the appropriate test is the 
binomial test.  The p-values for these tests are shown in columns 4 and 5 of Table 8.1, with 
stars indicating significant departures from Nash.  On the evidence of this test, we see that 
roughly half of all players (whether Pursuer or Evader) have choices that are consistent with 
the Nash prediction. 
 
A second theoretical prediction that can be tested is randomness in the player’s sequence of 
choices.  Clearly, any pattern in the sequence of choices could potentially be exploited by the 
opponent, so the optimal strategy is to produce as random a sequence as possible. 
 
Consider the choices of the players in pair 21 of Rosenthal et al. (2003) (1 indicates “L”): 
 
Pursuer in pair 21: 
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10010001000100001001001010101011000101001011001001010110101110000101001000
10110001001100111011110010 
 
Evader in pair 21: 
 
11101000110111111111011111110111101111101111101111101111110111111011111101
11111111111101111101111111 
 
 

Pair Pur_L Eva_L Binomial(Pur) Binomial(Eva) Runs(Pur) Runs(Eva) 

21 .43 .84 0.000** 0.000** 0.01* 0.67 

22 .62 .59 0.340 0.112 0.05 0.74 

23 .55 .59 0.015* 0.112 0.36 0.02* 

24 .76 .78 0.056 0.019* 0.00** 0.09 

25 .59 .86 0.112 0.000** 0.13 0.97 

26 .66 .82 0.916 0.001** 0.00** 0.61 

27 .53 .67 0.006** 1.000 0.01* 0.69 

28 .62 .70 0.340 0.525 0.54 0.63 

29 .67 .78 1.000 0.019* 0.10 0.62 

30 .53 .59 0.006** 0.112 0.01* 0.90 

31 .55 .69 0.015* 0.672 0.76 0.96 

32 .56 .69 0.026* 0.672 0.09 0.01* 

33 .42 .55 0.000** 0.015* 0.79 0.03* 

34 .46 .66 0.000** 0.916 0.34 0.05 
Table 8.1: proportions of L-choices in 100 plays of the Pursue-Evade game of Rosenthal et al. (2003); p-
values from binomial tests; p-values from runs tests. 
 

 
In order to test whether these two sequences of 100 numbers are random, we consider the 
number of “runs”, that is, the number of groups of consecutive digits that are the same.  The 
number of runs in the two sequences shown above are 62 and 29 respectively.  A natural test 
of randomness would be one that asks whether the number of runs is approximately what is 
expected if the sequence is indeed random.  If the number of runs is too high, this would imply 
negative serial correlation (switching too often), while too few runs would imply positive serial 
correlation (not switching often enough). 
 
The test which does this is the runs test (see Siegel and Castellan, 1988).  The null hypothesis 
implicit in this test is that the sequence of choices is random, and also that the underlying 
mixed strategy (i.e. the probability of L) is fixed over time.  Let m be the number of L-choices 
and n be the number of R-choices, in a sequence of N=m+n decisions.  Let r be the number of 
runs in the sequence.  Provided both m and n are larger than about 20, a good approximation 
to the sampling distribution of r, under the null hypothesis of randomness of the sequence, 
is: 
 

 
( )

( )2

2 22
~ 1 ,

1

mn mn Nmn
r N

N N N

 − 
+  

−   

  (8.6) 

 
It follows that the null hypothesis of randomness may be tested using the statistic: 
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=
−

−

  (8.7) 

 
Values of z obtained using (8.7) are approximately standard normal under the null hypothesis. 
 
Applying (8.7) to the sequences shown above for pursuer and evader in pair 21, we obtain 
2.46 and 0.42 respectively.  These results provide evidence that pursuer is switching too often 
while evader is switching about the right number of times to appear random.  Results of the 
runs test for all players are shown in the final two columns of Table 8.1.  While some players 
appear to violate randomness, the majority appear to produce apparently random sequences. 
 
It has been stressed that the runs test is a test of not only randomness but also of the 
constancy over time of the mixed strategy.  It is conceivable that a random sequence of 
choices appears non-random if the underlying mixed strategy is changing over time.  Shachat 
et al. (2012) and Ansari et al. (2012) estimate hidden Markov models in which players are 
assumed to switch between pure and mixed strategies.  Their estimation results lead to the 
conclusions that there are significant amounts of both pure and mixed strategy play, and that 
there are low transition probabilities between mixed and pure strategies. 
 
8.3   Quantal Response Equilibrium (QRE): Theory 
 
The Quantal Response Equilibrium (QRE) model was developed by McKelvey and Palfrey 
(1995).  It is based on the idea that best responses are not played with certainty.  Each player 
is assumed to calculate the expected value of each of her available actions given her (correct, 
in equilibrium) belief about her opponent’s choice probabilities, and she attempts to respond 
optimally, but makes random errors in the process.  Thus QRE replaces the perfectly rational 
expectations equilibrium embodied in Nash equilibrium with an imperfect, or “noisy”, rational 
expectations equilibrium.  The principle of an equilibrium is maintained by assuming that 
players estimate expected payoffs in an unbiased way. 
 
The QRE model follows in the tradition of early models of individual choice behavior (Luce, 

1959).  The key parameter is the “noise parameter”, .  =0 indicates no error, and = 
indicates “all error”.  Let us return to the pursue-evade game considered in Section 8.1.  To 
derive the QRE for this game, we first need to apply a stochastic term to each of the expected 
values: 
 

 
( )

( ) ( )

*

* 2 1

P EL PL

P EL PR

EV L p

EV R p





= +

= − +
  (8.8) 

 

 
( )

( ) ( )

*

* 2 1

E PL EL

E PL ER

EV L p

EV R p





= − +

= − − +
  (8.9) 

 
For convenience, we assume that each of the stochastic terms are independently distributed 

with the type-I extreme value distribution with scale parameter , whose cdf is given by: 
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 ( )


 


  
= − −  

  
; exp expF   (8.10) 

 
With this distributional assumption, together with the assumption that each player selects the 
alternative with the higher (stochastic) expected value, it is possible to derive the following 
choice probabilities for the two players (see Maddala, 1983, for further details of this 
derivation): 
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− + −  
   

  (8.11) 

  

From these probability formulae, the role of the parameter , as the extent of “noise” in 

decision-making, is clear: when  is close to zero, the choice probabilities are close to those 

dictated by the mixed strategy Nash equilibrium; when  is large, the probabilities become 
0.5, meaning that players divide their choices equally between L and R. 
 
8.4   Computing the probabilities in the QRE model 
 
To compute the probabilities of each player’s choices, it is required to solve the two equations 

(8.11) simultaneously for the two unknowns pPL and pEL, for any given value of .  Since the 
two equations are clearly non-linear in pPL and pEL, this is a numerical problem.  An approach 
suggested by Moffatt (2015) is to find the values of pPL and pEL that simultaneously minimize 
the two quantities: 
 

( ) ( )

2 2

exp exp

and
2 1 2 1

exp exp exp exp

EL PL

PL EL

EL PLEL PL

p p

p p
p pp p

 

   

      
−      

      − −
    −   −    
   + − + −         

         

 

Both of these quantities have a minimum of zero, and the unique pair values of pPL and pEL 
that make them both equal to zero will be the required values of pPL and pEL. 
 
Using a suitable optimising algorithm,47 these probabilities can be computed for a range of 

values of .  The resulting probabilities are plotted against  in Figure 8.1.  As expected both 

probabilities are 0.67 when  is close to zero.  This corresponds to the mixed-strategy Nash 
equilibrium with zero noise.  As the noise-level increases both probabilities gradually approach 
0.5, as expected. 
 

 
47  The optimiser used by Moffatt (2015) is the “Optimize” command in Mata. 
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Figure 8.1: Probabilities of Pursuer choosing L and Evader choosing L against “noise level” (). 
 
 
8.5   Estimation of the QRE Model 
 

Having obtained the two probabilities, pPL() and pEL(), by the procedure described in Section 
8.4, it is a simple matter to construct the log-likelihood function.  Let yP,it = 1 if the proposer in 
pair i chooses L in round t, and 0 otherwise.  Define yE,it  likewise for the evader in pair i and 
round t.  Then the log-likelihood function for the complete sample of nT realisations of the 
game is: 
 

 

( )

( ) ( ) ( )( )  ( ) ( ) ( )( ) , , , ,
1 1

ln 1 1 1 1
n T

P it PL P it PL E it EL E it EL
i t

LogL

y p y p y p y p



   
= =

 = + − − + − −
 

 (8.12) 

  
If nPL is defined as the number of times, out of the total number of rounds played, n, that 
Pursuers choose L, and nPR, nEL and nER are defined similarly, then the log-likelihood function 
(8.12) may be written much more compactly as: 
 

 ( ) ( ) ( ) ( ) ( )ln ln 1 ln ln 1PL PL PR PL EL EL ER ERLogL n p n p n p n p    = +  − + +  −       (8.13) 

 
The presentation of the log-likelihood function in the form (8.13) makes it clear that the only 

pieces of information that are required to estimate the parameter  are the frequencies of 
the choices; no information is required on the actual sequences of choices.  Accordingly, we 

may say that the choice frequencies are sufficient statistics for the estimation of . 
 
What is unusual about the estimation process for QRE is that it consists of one optimisation 
routine inside another.  The probabilities used in the construction of the log-likelihood 
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function (8.13) are themselves computed by the numerical optimisation routine outlined in 
Section 8.4 
 
 

9.   Models of Learning 
 
The last section was concerned with the modelling of repeated game data, and in particular 
how to allow for departures from equilibrium.  The models considered there were static, in 
the sense that there was no scope for strategies to change over time.  In this Section, we allow 
for the possibility that players are far from equilibrium in the early rounds of a game, but, in 
the course of the experiment, adapt or evolve, either part of the way or all of the way, towards 
the equilibrium.  The process which causes this evolution towards the equilibrium is a learning 
process. 
 
Learning is defined as an observed change in behaviour on account of the accumulation of 
experience.  Learning processes have already been modelled in earlier sections.  For in the 
risky choice model of Section 6.6, we considered ways of allowing probability weighting 
parameters and tremble parameters to change over the course of the experiment.  However, 
in that context, learning was only about the task, not about the behaviour of other players, 
nor even about the outcomes of previous tasks.  This is why, in those situations, the modelling 
of a learning process simply involved allowing particular parameters to depend in some way 
on the task number. 
 
The situation in repeated interactive games is very different, because subjects typically receive 
direct feedback in every round.  In each round, they observe both the chosen strategy of the 
opponent, and the outcome in terms of their and others’ pay-offs.  Hence they learn directly 
about the behaviour of others, and also about the type of strategies that are most profitable 
for themselves.  The process of learning about other players is complicated by the fact that 
other players’ behaviour changes as they, too, gain experience.  A comprehensive model of 
learning should therefore incorporate the effects of a players past pay-offs, and also the 
effects of past choices by other players. 
 
Here we will consider a number of different learning models that are popular in Experimental 
Economics. 
 
9.1 Directional Learning 
 
Directional learning theory was proposed by Selten and Stoecker (1986).  It is relatively simple 
and highly intuitive.  It is built on the idea that subjects adjust their behaviour in each period 
in response to the outcome of the previous period. 
 
Consider the well known prisoner’s dilemma game.  It is well known that this game has a 
dominant solution of non-cooperative behaviour, despite cooperation being to the players’ 
mutual advantage.  However, cooperation is often seen when the game is played repeatedly.  
In Selten and Stoecker’s (1986) experment, pairs of players play “supergames” consisting of a 
sequence of ten plays of the game.  What is typically observed is cooperation for the majority 
of the supergame, but defection by one or both players near the end of the sequence.  Of 
interest is how a subject decides in which round to defect.  Clearly, the player who defects 
first secures a payoff advantage over their opponent.  However, the player defecting first may 
feel that they might have enjoyed a greater total payoff by defecting later, since they do not 
know in which later round their opponent would have defected.  Similarly, the player who 
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does not defect first must realise that they would have needed to defect earlier in order to 
secure the payoff advantage for themselves.  If the two players happen to defect in the same 
round, it is likely that they would both feel that they should have defected one round earlier 
in order to secure the advantage. 
 
In Selten and Stoecker’s (1986) experment, 35 subjects participated in 25 supergames.  Players 
were randomly rematched between supergames.  They model their data using a Markov 
learning model, with changes in defection period determined by transition probabilities which 
depend on experience in the previous period.  Moffatt (2015) adopts a more direct method 
for capturing the learning process, by simply performing a linear regression with the change 
in intended defection period as the dependent variable, and variables representing the 
outcome of the previous period as axplanatory variables.  The results from this regression are: 
 
 1 1 10.36** 0.16* 0.61**t t t tdefect before same after− − − = − −   (9.1) 

 
where  tdefect  is the change in defection period between supergames t-1 and t, and the 

three explanatory variables are dummy variables indicating respectively whether the player 
defected before, at the same time, or after, their opponent in the previous supergame.  Note 
that the regression exludes an intercept to allow all three of these variables to be present.  
Stars indicate significance, and double-stars strong significance. 
 
All three estimates in (9.1) are significantly different from zero.  The largest coefficient in 
absolute value is on the lag of “after”, and this indicates that if a player’s intended defection 
period is later than their opponent’s, they make their own deviation period (on average) 0.61 
periods earlier in the following supergame.  The coefficient of “before” indicates that if the 
player deviates earlier than their opponent, they deviate 0.36 periods later in the following 
supergame.  If the players defect in the same period, they defect 0.16 periods earlier in the 
following supergame.  As expected, this coefficient is the smallest (in magnitude) of the three. 
 
These results are similar to those obtained by Selten and Stoecker (1986), and they strongly 
support directional learning theory: the decision variable changes in a direction predicted by 
the outcome of the previous round.   
 
9.2 Reinforcement Learning 
 
Reinforcement learning (RL) models (Erev and Roth, 1998) have been used primarily by 
psychologists.  These models are built on the assumption that strategies are “reinforced” by 
their previous payoffs, and the propensity to choose a strategy depends on the cumulative 
amount of “reinforcement” attributed to the strategy.  Note that players who learn by 
reinforcement do not pay attention to the decisions that other players have made, only to the 
realised outcomes of their own decisions. 
 
We continue to consider two-player games.  The two players are indexed by i (i=1,2).  The 
game is repeated over several rounds indexed t (t=1,…,T).  Assume that, as in the pursue-

evade game considered earlier, there are two possible strategies for each player 0
is  and 1

is .  

Let si(t) be the strategy chosen by player i in round t, and let s-1(t) be that chosen by the other 

player.  Player i’s payoff in round t is given by the scalar-valued function ( ) ( )( ),i i is t s t −  . 

 
The central feature of the RL model (and other learning models) is a set of variables known as 

“attractions” which are updated following each round.  ( ) , 0,1j
iA t j =  represents Player i’s 
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attraction to strategy j, following round t.  Players are likely to have relevant experience before 

the start of the game, and this experience is represented by the “initial attractions” ( )0j
iA  

which are parameters to be estimated. 
 
In RL, the updating rule for each attraction variable is: 
 

 ( ) ( ) ( )( ) ( )( ) 
−

= − + = = = =1 , 1,2; 0,1; 1, ,j j j j

i i i i i i iA t A t I s t s s s t i j t T  (9.2) 

   
where I(.) is the indicator function.  The important feature of (9.2) is that, due to the presence 
of the indicator function in the final term, a player’s attraction to a strategy can only increase 
if that strategy is chosen, and the attraction increases by the amount of the payoff received 

from the chosen strategy.  The parameter  appearing in the first term is known as the 

“recency parameter” and indicates the speed at which past payoffs are forgotten.  If =0, only 

the payoff from the last round matters; if =1, payoffs from all previous rounds matter equally. 
 
The choice probabilities in round t are obtained from the attractions in t-1 using the logistic 
transformation (see Camerer and Ho, 1999): 
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( )( )

( )( ) ( )( )
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= = = =
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A t
P t i j t T

A t A t
  (9.3) 

   
Note that (9.3) satisfies the basic requirement that (for example) the probability of choosing 
strategy 0 is monotonically increasing in the attraction to strategy 0, and monotonically 

decreasing in the attraction to strategy 1.  The parameter  represents the sensitivity to 

attractions: if  is a large positive number, attractions are important; if =0, attractions are 
irrelevant and the choice probabities are both 0.5. 
 

In total, there are four free parameters in the RL model: ( ) ( )0 0
1 2, , 0 , 0A A  .  These four 

parameters are estimated by ML, where the likelihood contributions are provided by (9.3). 
 
9.3 Belief Learning 
 
Belief learning (BL) models, or belief-based models (Cheung and Friedman, 1997) have been 
used primarily by decision and game theorists.  These models are, in contrast to reinforcement 
models, built on the assumption that players keep track of their opponents’ decisions, and 
form beliefs about their future play based on this observed history.  They then select a best 
response given these beliefs.  Note that belief learners do not pay attention to past successes, 
only to past behaviour by opponents. 
 
The only difference of BL from RL is the way in which attractions are updated.  A simple version 
of the BL updating rule is: 
 

 ( ) ( ) ( )( )
−

= − + = = =1 , 1,2; 0,1; 1, ,j j j

i i i i iA t A t s s t i j t T  (9.4) 

 
According to (9.4), following each round (t), player i’s attraction to strategy j simply increases 

by the pay-off that was, or would have been, received, given the choice ( )− is t made by the 

other player.  Model (9.4) is known as the Cournot learning model. 
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It is, of course, likely that players take account of more than just the behaviour of the other 
player in the previous round.  According to the “fictitious play model”, players take account 
of the other player’s behaviour in all previous rounds, with equal importance attached to each 
previous round.  More realistic still is the “weighted fictitious play model”, in which the 
experience of recent rounds carries more weight than that of rounds further back in the past.  
In this, most general form of BL, there are five free parameters: the initial attractions 

( ) ( )0 0
1 20 , 0A A ; an “initial experience” parameter N(0); a “recency parameter”  indicating the 

weighting of past observations; and the sensitivity parameter  appearing in the probability 
formula (9.3). 
   
 
9.4  The Experience Weighted Attraction (EWA) Model 
 
The Experience Weighted Attraction (EWA) model (Camerer and Ho, 1999) is a model that 
nests RL and BL.  It contains a total of seven free parameters: the same parameters as in RL 

and BL, and also an additional parameter  that indicates which of RL and BL is closer to the 
true model. 
 
Wilcox (2006) reports Monte Carlo evidence of the effect of parameter heterogeneity in EWA.  
He finds that when certain parameters vary across subjects, but such heterogeneity is 

neglected in estimation, it results in severe bias in the estimation of the parameter  in such 
a way as to favour RL over BL.  There is a strong hint here that between-subject heterogeneity 
should be incorporated into learning models, although this may well result in a problem of 
over-parameterisation. 
 
One obvious way to introduce heterogeneity is to use a mixture model combining RL and BL.  
Note that EWA is not a mixture model; it is a representative agent model built on the 
assumption that all players learn according to the same weighted combination of RL and BL.  
A mixture model would instead assume that some players learn by RL, and others by BL.  This 
is for future research. 
 
Moffatt (2015) has explained in detail how EWA can be estimated using STATA.  Since RL and 
BL are both nested within EWA, he also demonstrates that both theories can be tested easily 
using LR tests of restrictions on the EWA parameters. 
 
 

10.  Conclusion 
 
The purpose of this concluding section is to provide a summary of the Monograph, and, more 
importantly, to attempt to identify emerging themes. 
 
The first part of the survey was concerned with straightforward treatment testing and the 
closely related topic of power analysis.  There is no doubt that power analysis is rapidly taking 
hold in experimental economics as it appears that many researchers are now treating it as a 
routine step, both at the design stage, and again in the statistical analysis of the results.  One 
reason for the growing importance of power analysis is its key role in the scientific quality 
debate, which has recently had a major impact across disciplines.  It is possible that power 
analysis is an unfamiliar concept to mainstream econometricians, since the subject of 
econometrics has developed largely on the basis of passive data collection.  For such 
researchers, Part 3 of the Monograph may hopefully serve as a useful introduction to the 
topic. 
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The power command in STATA is very useful (and other useful packages for power analysis 
are available, such as G*power).  However, a point that was stressed is that such off-the-shelf 
packages are only useful for in relatively simple settings.  In more complex settings the Monte 
Carlo approach is required for power calculations, and this has been demonstrated in various 
ways.  Some of the findings may be considered surprising, and this is perhaps something that 
should also become more routine. 
 
Another sense in which basic power analysis might be considered inadequate is that it simply 
provides a “required sample size”, while in many experimental settings, the sample size is at 
least a two-dimensional concept: number of subjects and number of tasks.  Monte Carlo 
results presented in Section 3 suggest that there are situations in which increasing the number 
of tasks is more beneficial than increasing the number of subjects.  This is a useful result.  
There are other compelling reasons for using repeated tasks.  It provides an opportunity for 
subjects to learn, and it is likely (although by no means obvious) that the researcher is more 
interested in the behaviour of experienced than inexperienced subjects.  However, other 
behavioural considerations are relevant.  For example, the number of tasks should not be 
increased without considering how many tasks the typical subject may be reasonably required 
to perform before losing concentration or losing interest. 
 
There are other examples in which behavioural considerations appear to be pulling in the 
opposite direction from theoretical analysis.  An obvious one is the choice between a 
between-sample and within-sample test.  Within-sample tests are clearly more efficient, but 
researchers prefer between-sample tests because of order effects.  Perhaps more work is 
required assessing how important order effects really are. 
 
Another straighforward example where the most efficient design is not necessarily the best 
design arises in the analysis of risk attitude.  From a theoretical perspective, the most efficient 
way of eliciting risk attitude is to ask for a certainty equivalent, but for various behavioural 
reasons this method of elicitation is thought to distort true risk attitudes, and choice between 
lotteries is the preferred elicitation method.  One obvious reason for this is that, for many 
subjects, lottery valuation is likely to be an unfamiliar task, while the choice between lotteries 
is a task that resembles many everyday situations. 
 
Yet another example which has been discussed is a situation in which ordinal data on strength 
of preference has been elicited.  Clearly – from a theoretical perspective - ordinal data with 
many categories leads to more efficient estimation than binary data.  But, as discussed, it is 
hard, or impossible, to incentivise ordinal responses, and the question therefore arises of the 
validity of such responses.  
 
The point that is emerging here is that in the design of behavioural experiments, there is 
perhaps a broader range of considerations than for scientific experiments. 
 
We also considered optimal designs for binary choice experiments.  This amounts to the 
design of the choice problems themselves, e.g. the probabilities defining the lotteries.  A 
problem here, and a problem for experimental design in the context of nonlinear models 
generally, is that the parameters of interest need to be known in order to constuct the optimal 
choice problems (the well-known “chicken-and-egg” problem).  This problem is analogous to 
the problem of needing to know the true effect size in order to find the required sample size 
for a treatment test.  The message is that researchers need to look for priors, from previous 
research whenever available, to inform design decisions. 



91 

 

 
Another theme has been decisions of stochastic specification.  Choice of stochastic 
specification is particularly important in the modelling of risky choice decisions.    The Fechner 
Model seems to be a useful approach, but the non-monotonicity problem outlined in Section 
6.9 appears at first sight to be quite damning.  It is possible that this problem is avoided by 
altering the stochastic specification and this suggests an important area for research.  The 
Random Preference model avoids the non-monotonicity problem, but also as discussed in 
Section 6.9, it is hard to apply it to complex designs. 
 
Yet another theme has been the modelling of heterogeneity.  When the decision variable has 
a continuous distribution, such as bids in auctions or effort in contests, the multilevel model 
provides a relatively straightforward, and reliable, means of allowing for the between-subject, 
between-group, and between-session heterogeneity that is a feature of so many such 
experiments.  In situations in which the decision variable has more complicated features (e.g. 
choices between alternatives), the method of maximum simulated likelihood has been 
proposed as a suitable method for dealing with heterogeneity, and one that is particularly 
useful when there is more than one dimension of heterogeneity (e.g. risk aversion and 
probability weighting).  The finite mixture framework has been demonstrated as a means of 
separating subjects into discrete types.   
 
One theme that was only touched upon is that of the process of decision making.  Thoughout 
most of the monograph we have been concerned only with the decisions made by 
experimental subjects.  There is a growing interest in Experimental Economics in the process 
leading to the decision.  One obvious means of capturing process is to analyse decision times 
(Moffatt, 2005; Alós-Ferrer et al., 2016).  But other aspects of process such as the use of eye-
tracking to predict choices (e.g. Jiang et al., 2016) are rapidly gaining popularity. 
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Appendix A. MPL Lottery Choice Problems from Conte et al. (2019) 
 
 
 
 
 
 
 

Row

probability 

($400) Payoff

probability 

($100) Payoff

probability 

($?) Payoff

probability 

($50) Payoff Choose A Choose B

1 0.3 $400 0.7 $100 0.1 $680 0.9 $50 A B

2 0.3 $400 0.7 $100 0.1 $750 0.9 $50 A B

3 0.3 $400 0.7 $100 0.1 $830 0.9 $50 A B

4 0.3 $400 0.7 $100 0.1 $930 0.9 $50 A B

5 0.3 $400 0.7 $100 0.1 $1,060 0.9 $50 A B

6 0.3 $400 0.7 $100 0.1 $1,250 0.9 $50 A B

7 0.3 $400 0.7 $100 0.1 $1,500 0.9 $50 A B

8 0.3 $400 0.7 $100 0.1 $1,850 0.9 $50 A B

9 0.3 $400 0.7 $100 0.1 $2,200 0.9 $50 A B

10 0.3 $400 0.7 $100 0.1 $3,000 0.9 $50 A B

11 0.3 $400 0.7 $100 0.1 $4,000 0.9 $50 A B

12 0.3 $400 0.7 $100 0.1 $6,000 0.9 $50 A B

13 0.3 $400 0.7 $100 0.1 $10,000 0.9 $50 A B

14 0.3 $400 0.7 $100 0.1 $17,000 0.9 $50 A B

Lottery A Lottery B
Please Circle EITHER A or B Stop 

when First B Circled

Row

probability 

($400) Payoff

probability 

($300) Payoff

probability 

($?) Payoff

probability 

($50) Payoff Choose A Choose B

1 0.9 $400 0.1 $300 0.7 $540 0.3 $50 A B

2 0.9 $400 0.1 $300 0.7 $560 0.3 $50 A B

3 0.9 $400 0.1 $300 0.7 $580 0.3 $50 A B

4 0.9 $400 0.1 $300 0.7 $600 0.3 $50 A B

5 0.9 $400 0.1 $300 0.7 $620 0.3 $50 A B

6 0.9 $400 0.1 $300 0.7 $650 0.3 $50 A B

7 0.9 $400 0.1 $300 0.7 $680 0.3 $50 A B

8 0.9 $400 0.1 $300 0.7 $720 0.3 $50 A B

9 0.9 $400 0.1 $300 0.7 $770 0.3 $50 A B

10 0.9 $400 0.1 $300 0.7 $830 0.3 $50 A B

11 0.9 $400 0.1 $300 0.7 $900 0.3 $50 A B

12 0.9 $400 0.1 $300 0.7 $1,000 0.3 $50 A B

13 0.9 $400 0.1 $300 0.7 $1,100 0.3 $50 A B

14 0.9 $400 0.1 $300 0.7 $1,300 0.3 $50 A B

Lottery A Lottery B
Please Circle EITHER A or B 

Stop when First B Circled
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