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ABSTRACT Defect inspection in pipes at the early stage is of crucial importance to maintain the ongoing 

safety and suitability of the equipment before it presents an unacceptable risk. Due to the nature of 

detection methods being costly or complex, the efficiency and accuracy of results obtained hardly meet the 

requirements from industries. To explore a rapid and accurate technique for surface defects detection, a 

novel approach QDFT (Quantitative Detection of Fourier Transform) has been recently proposed by authors 

to efficiently reconstruct defects. However, the accuracy of this approach needs to be further improved. In 

this paper, a modified QDFT method with integration of an integral coefficient updating strategy, called as 

QDFTU, is developed to reconstruct the defect profile with a high level of accuracy throughout iterative 

calculations of integral coefficients from the reference model updated by a termination criteria (RMSE, root 

mean square error). Moreover, dispersion equations of circumferential guided waves in pipes are derived in 

the helical coordinate to accommodate the stress and displacement calculations in the scattered field using 

hybrid FEM. To demonstrate the superiority of the developed QDFTU in terms of accuracy and efficiency, 

four types of defect profiles, i.e., a rectangular flaw, a multi-step flaw, a double-rectangular flaw, and a 

triple-rectangular flaw, are examined. Results show the fast convergence of QDFTU can be identified by no 

more than three updates for each case and its high accuracy is observed by a smallest difference between 

the predicted defect profile and the real one in terms of mean absolute percentage error (MSPE) value, 

which is 6.69% in the rectangular-flaw detection example. 

INDEX TERMS Circumferential guided wave, Hybrid FEM, Reconstruction, Reference model, Updating 

strategy

I. INTRODUCTION 

Defects have a significant impact on the product quality and 

load-carrying capacity of structures and directly deteriorate 

effective material properties, which will lead to structural 

failure[1-3]. Therefore, defect detection is a key step to 

maintain structures with a long service life and has been 

paid more attentions in recent years. As one of the main 

detection techniques, ultrasonic guided waves have been 

widely used to detect defection in structures by many 

researchers (for example, Leonard et al.[4]; Huthwaite[5,6]; 

Jing et al.[7]; Hosoya et al.[8]). To comply with the 

enhanced inspection requirements, research on improving 

the accuracy and reliability of inspection has become 

necessary. Damage imaging is one of the approaches 

available for damage inspection, and a sub-branch of this 

approach is image reconstruction. The traditional image 
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reconstruction method is applied in the areas of optics and 

acoustics to solve wave-field reconstruction problems. 

However, the results obtained are not very satisfactory due 

to its single reconstruction mechanism. Therefore, iterative 

reconstruction methods have been proposed to improve the 

quality of the reconstruction results in optical fields[9-13]. 

In order to obtain the reconstruction results with a high 

level of accuracy, the forward problem has to be solved 

repeatedly. Since the computational time required to find 

the solution to forward problems is expensive, this reduces 

the efficiency and the ease of use of the iterative 

reconstruction methods. To overcome these limitations, 

many researchers have contributed their efforts to develop 

fast iterative methods. Sauer and Boouman[14] presented a 

local updater strategy for iterative reconstructions, which 

can enhance the reconstruction efficiency depending on 

updates of single pixel values rather than the entire image. 

Wang et al.[15] investigated and implemented two iterative 

image reconstruction methods in three dimensional 

optoacoustic tomography. With the availability of more 

powerful computing capacities, a model-based iterative 

reconstruction algorithm implemented on a modern 

graphics adapter (GPU) was proposed by Beister et al.[16].  

    Recently, the iterative technique has also been applied to 

the defect reconstruction using guided wave tomography. 

Huthwaite and Simonetti[17] extended HARBUT (the 

Hybrid Algorithm for Robust Breast Ultrasound 

Tomography) to generate thickness maps for guided wave 

tomography, and used the iterative HARBUT to improve 

the accuracy of reconstructions of defects. Yang et al.[18] 

developed an iterative S-wave velocity inversion method 

guided by image registration. Rao et al.[19] proposed a 

guided wave tomography method based on full waveform 

inversion (FWI), which was iteratively applied to discrete 

the frequency components from low to high frequencies.  

    Defect reconstruction based on the boundary integral 

equation (BIE) of ultrasonic waves is an effective 

quantitative detection approach[20-22] in the field of non-

destructive testing. In this method, most of defects are 

approximately reconstructed using simplified total fields, 

which are normally obtained by Born approximation, Rytov 

approximation and Kirchhoff approximation[23-27]. 

However, these approximate reconstructions cannot be 

improved by iteration method due to the failure of updating 

total fields in the defected structures. Recently, QDFT 

(Quantitative Detection of Fourier Transform) proposed by 

authors[28] has overcome this disadvantage and shed light 

on the application of iterative methods for reconstruction of 

defects. 

 It is well known that the guided waves can be employed 

to detect defects in plate-like or bending structures. The 

applications of guided waves were described in non-

cylindrical structures [29-33], such as railway rails and 

structural ‘I’ beams. Liu et al.[34] proposed a method to 

detect radial cracks in annular structures and its 

methodology built on guided circumferential waves and 

continuous wavelet transform. Sanderson et al.[35] adopted 

finite element analysis and experiments to explain the 

received signal changes caused by the pipe bending. Leinov 

et al.[36] investigated the propagation and attenuation of 

guided waves in pipe buried in sand. Based on the existing 

investigations of circumferential guided waves[37-44], it is 

necessary to derive the general dispersion equations of 

circumferential guided waves using an equidistant surface 

coordinate so that the stress and displacement calculations 

can be easily accommodated in the scattered field. There 

are mainly two difficulties for the defect detection on 

pipelines. The numerical simulation of circumferential 

scattered waves is studied. And the analytical fundamental 

solution in pipelines, which is often used to build the 

mapping relationship between the defect function and the 

signal of scattered waves, is hardly found. 

In this paper, a modified QDFT (Quantitative Detection 

of Fourier Transform) method with integration of an 

integral coefficient updating strategy, called the QDFTU, is 

proposed to reconstruct the defect profile. QDFT is a 

quantitative reconstruction method based on the reference 

model, which demonstrates that the defect profile in the two 

dimensional problem can be formulated as an inverse 

Fourier transform of the product of reflected coefficients 

from the detected structure and integral coefficients from 

the reference model, where the referred defect can be 

arbitrarily selected. The research mainly contains two parts 

of forward problems and inverse problems. For forward 

problems, a semi-analytical FEM is applied to solve the 

dispersion equations of circumferential guided waves, 

which are derived in the equidistant surface coordinate. 

Then, the scattered fields in a circular annulus are 

calculated using the developed hybrid FEM technique. To 

reconstruct defects in the phase of inverse problems, the 

proposed QDFTU is applied to reconstruction defects with 

high levels of accuracy and efficiency throughout iterative 

calculations of integral coefficients from the updated 

reference model, where the termination is controlled by a 

convergence criterion. Finally, its correctness has been 

verified by four numerical examples.  

II. DISPERSION EQUATIONS OF CIRCUMFERENTIAL 

GUIDED WAVES AND CALCULATION OF SCATTERED 

FIELDS 

The analysis of guided wave dispersion is of great 

importance to grasp the propagation mechanism in the 

structure. It can help to select effective modes of guided 

waves in the calculation of scattered fields caused by 

defects. In this paper, our aim is the detection of surface 

defect in the cross section of hollow cylinder (i.e. circular 

annulus). Therefore, the circumferential guided waves are 

mainly focused. Even so, we try to solve this problem in the 

3D curved coordinate system ( )1 2 3, ,   as shown in Fig.1. 
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And an improved semi-analytical finite element method 

(SAFEM) is introduced to deal with it. Taking into account 

this coordinate system, various helical guided waves must 

exist due to different incident angle   of guided waves. 

Therefore, this model in the curved coordinate system 

( )1 2 3, ,    is more universal for studying possible guided 

waves in a hollow cylinder. In this opinion, for the 

circumferential guided waves that is particularly concerned, 

they can be viewed as a special case from the helical guided 

waves as 0 = . Consequently, generalized helical guided 

waves are firstly analyzed by the improved SAFEM, and 

then the result of circumferential guided waves can be 

extracted from the solution of helical guided waves. For 

helical guided waves propagating with an arbitrary angle in 

a hollow cylinder, the curvatures for the geodesics[45], 

which are spirals on the surface of the hollow cylinder, can 

be expressed 

2 2

1 1 2cos sin    = +% , 2 2

2 1 2sin cos    = +%  (1) 

where 
1 out1/ r =  and 

2 0 = , which are the principal 

curvatures of the outside surface with the radius 
outr  in a 

cylindrical system. The curvatures of the generalized 

coordinate 
1  and 

2  are denoted as 
1%  and 

2% , 

respectively. Hence, Lame coefficients[45] (scale factors) 

can be written as follows  

1 1 31h  = + %   , 
2 2 31h  = + %  ,

3 1h =  (2) 

where the outsider surface is considered as the reference 

surface of equidistant surface. 

Thus, the relationships between the particle 

displacements 
iu  and strains 

ij  are represented as 
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FIGURE 1.  Helical guided waves propagating along 

1  direction in a 

pipe. 
outr  represents the outer radius of a pipe, the range of 

2  is  

 )out0,2π sinr  ,  and   denotes the incident angle defined by the axis 
1  

and the circumferential direction of the pipe. 

 
Rewriting (3) in a matrix form, one has 
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The partial derivative 
i




, where 1,2,3i = , expresses 

displacement derivative along the axis 
i , and 
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Discretizing the hollow cylinder along the wall thickness 

direction (
3 ), the displacements are represented as: 

( )   ( ) ( )1 2 3 1 2 3 3 1 2, , ,
T

u u u     = = Uu N   (6) 

where N  is a matrix of shape functions of an element.  

The relationship between strains and displacements can 

be obtained by substituting (5) and (6) into (4),  
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It is noted that the mapping relationship between the 

helical coordinate system and cylindrical coordinate system 

implies the effective interval of the axis 
2  in Fig. 1, which 

is in the range of  )out0,2π sinr   except 0 = , and the 

variable 
1 . In order to formulate the displacement along 

the axis 
2 , the periodic extension in which the defined 

interval l  equates 
out2π sinr   along the axis 

2  must be 

introduced to achieve Fourier series. Therefore, the 

expression of the displacement ( )1 2,U    can be written as 

( ) ( ) ( )
2

2

2π   
i

i

1 2 1 1, e e ,

2, 1,0,1,2,

n
nl

n n

n n

n


   = =

= − −

 U U U
%

%

L L

  (8) 

where 2πn n l=% ,
n  represents a wavenumber, and 

i 1= − . It is explained that the subscript n  represents the 

order number of Fourier series. 

    It is noted that (8) can describe the displacement field for 

plane problems by setting 0n n= =% . For the special case 

0 = , it represents that the guided waves propagate along 

the circumferential direction of the pipe shown in Fig. 1. 

This propagation of guided waves is mainly considered for 

defect detection in this paper. 

Hamilton’s principle[46] is used to establish the motion 

equation, 

( )
   

T T Tδ ρ δ δ
V V

dV dV+ = &&u u ε σ u P   (9) 

where   is material density, σ  is stress tensor, &&u  means 

the second time derivative of the displacement, 

P represents the external loads, V represents the structure 

volume, and δ  denotes a variational symbol. Substituting 

(7) and (8) into (9), and applying inverse Fourier transform 

over the axis 
1 , i.e.,  ( ) ( ) 1i

1 1

1
e

2π
n

n n nU U d
   =  . The 

final equation is expressed in the term of the eigen equation 
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  is the circular frequency; 
nU  represents displacements 

in the wavenumber domain, which are obtained by inverse 

Fourier transform of ( )1n U  in (8); and 
nF  is the loads in 

the wavenumber domain and its definition is the same as 

nU ; D  represents a matrix of elastic moduli. In order to 

obtain the nontrivial solutions of the dispersion equations, 

the determinant of the matrix in (10) should be equal to 

zero as follows: 

( ) ( ), , 0nn n  − =% %A B   (12) 

Solving (12), the left eigenvectors L

nm and right 

eigenvectors R

nm  are obtained as functions of different 

eigenvalues 
nmk  (wavenumber), in which the subscript m  

means the order number of guided wave modes and n  

represents the number of the order of Fourier expansion 

along the axis 
2  direction in (8). Combining with 

Zhuang’s work[47], the displacement and stress formulas 

(
nU and

nσ ) are derived as, in which the Fourier transform 

of displacements and stresses and Cauchy's integral 

theorem are adopted,  

( ) ( )1 0 1 0

H

i i i
e
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t

  (13) 

where 
0  is the position of load 

nP  in axis 
1 . By 

numerically solving the dispersion equations of helical 

guided waves in pipes with material properties shown in 

TABLE I, characterization of the hollow cylinder using the 

frequency dependence of the wave phase velocity can be 

observed in Fig. 2. It is emphasized that all numerical 

examples in this paper are simulated with 0n = .  

Then the circumferential guided waves can be solved 

following above equations by letting 0 = , and the 

corresponding results described by blue points can be found 

in Fig. 2. Because of non-dispersion of the first anti-plane 

mode 
st

1$ , it is chosen as the incident guided waves to detect 

flaws. With this understanding, calculations of the 

displacement and stress scatted fields can be correctly 

conducted by the hybrid FEM[28]. The hybrid FEM divides 

the integrity structure into two components. The 
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displacements and stresses in the component without 

defects are expressed by the results calculated in (13). And 

for the other component involving defects, the traditional 

FEM is adopted to simulate. At the interface of these 

components, the continuous conditions of displacement and 

traction are utilized. 

It is noted that without lost of generality, the dispersion 

equations of guided waves propagating in arbitrary 

direction are derived in a helical coordinate system. 

However, the circumferential guided waves propagating 

along the direction 0 =  are applied to solve all numerical 

examples in this work. 
TABLE I 

MATERIAL PROPERTIES OF THE PIPE MODEL 

Density Inner 

radius  

Outer 

radius  

Wall 

thickness  

Lame constants   

( )3ρ, kg / m  ( )in , mr  ( )out , mr  ( )out inh r r= −  ( ),Paand   

38.232 10

 

23.881 10−

 

24.440 10−

 

35.590 10−

 

11

10

,1.089 10

8.430 10




  

 

FIGURE 2. The dispersion curves of guided waves with difference 

incident angles  ( 0,π / 6,π / 4,π / 3,π / 2 =  and ‘ ^ ’ represents the anti-

plane mode) 

 

III. DEFECT RECONSTRUCTION APPROACH WITH AN 

INTEGRAL COEFFICIENT UPDATING STRATEGY 

In following sections, the 
st

1$ circumferential guided wave 

calculated in Section 2 is adopted as the incident wave to 

detect 2D flaws in a circular annulus. QDFT proposed by 

Da et al.[28] is suitable for the detection of 2D structures. It 

demonstrates that the defect depth ( ( )1  ) depending on 

the propagation direction (
1 ) of guided waves can be 

written as the Fourier transform of the product of reflection 

coefficients ( ( )refC k ) of guided waves and integral 

coefficients ( ( )0B k ) obtained from the reference model. 

When the incident angle   is zero in Fig. 1, i.e., the current 

guided waves propagate along the circumferential direction, 

considering the 2D defect within cross section of hollow 

cylinder (i.e. circular annulus), the function ( )1   of 

defect depth can be expressed as 

( ) ( ) ( ) 1iref

1 0

1
e

2π

k
C k B k dk

 
+

−

   (14) 

where 
nmk k=  is the wavenumber of guided waves along 

the axial direction 
1  of the structure. In the following 

defect detection 0n =  and m represents the first anti-plane 

mode 
st

1$ . ( )refC k  is the reflection coefficients of guided 

waves traveling in the tested structure, ( )0B k  represents 

the integral coefficient of the initial reference model, and 

( )1   denotes the profile of defects. Here, it is noted that 

the initial reference model can be chosen randomly, which 

was demonstrated in the previous paper[28]. 

However, the potential issue arising from this method is 

the accuracy of the predicted defect profiles. This is 

because the defect used in reference model cannot be 

selected as the same as the unknown flaw in inspected 

models, which leads to the discrepancy between the real 

defect and predicted one. To tackle this problem, a 

modified QDFT with the integration of an integral 

coefficient updating strategy (QDFTU) is proposed in this 

paper to reconstruct the defect profile with high levels of 

accuracy and efficiency throughout iterative calculations of 

integral coefficients from the reference model updated by a 

convergence criterion. Although an iteration method was 

successful applied in guided wave tomography[17,19], to 

the best of our knowledge, this is the first time to improve 

defect detection based on boundary integral equation (BIE). 

In QDFTU, the formula for defect reconstruction can be 

written as 

( ) ( ) ( ) 1iref

1 1

1
e , 1,2,3,

2π

k

i iC k B k dk i
 

+

−

−

 = L  (15) 

i  represents the number of iteration reconstruction, 
1iB −

is 

the integral coefficient of the ( )
th

1i − reference model, and 

( )1i   denotes the ( )
th

i  reconstruction results.  

The flowchart of QDFTU is shown in Fig. 3. The left 

block diagram provides an overview of defect detection, 

which mainly contains original data, scattering data, defect 

reconstruction, signal processing, and convergence 

verification. The original data are usually gained from 

testing or numerical simulation. The right diagram, which is 

the detailed description for the left one, includes two parts: 

a forward problem depicted in red box and an inverse 

problem described in purple box. Its methodology can be 

described as follows: 

①   Forward problem 

Firstly, the selection of a simple reference model with 

one rectangular defect ( )1i   is suggested, and the 
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reflection coefficients ( )refC k  of the tested circular 

annulus are calculated using hybrid FEM, which is used to 

replace the results from the experiment testing. Then, the 

defect profile ( )1 1i −  of the reference model is converted 

into a defect function of ( )1iH k−  in the wavenumber 

domain by employing Fourier transform, where  

( ) ( ) 1i

1 1 1 1e
k

i iH k d
  

+

− −

−

=  . Finally, the integral 

coefficients 
1iB −
 of the reference model are obtained using 

the equation ( ) ( ) ( )ref

1 1 1/i i iB k H k C k− − −= . It is noted that the 

subscript ‘i’ represents the number of the updates by the 

reference model so that the defect profile obtained from 

reconstruction of defects described in the following section 

‘Inverse problem’ converges. 

②  Inverse problem and the updating strategy 

Based on our previous work, it is emphasized that the 

peak values of integral coefficients ( )1iB k−  must be 

modified when the reconstruction results show strong noise 

in non-defective region[28]. The modified integral 

coefficients ( )1iB k−
%  are used in the reconstructive formula 

( ) ( ) ( ) 1iref

1 1

1
e

2π

k

i iC k B k dk
 

+

−

−

  %  to obtain a new result. 

It is noted that ( )1iB k−  need not to be filtered when the 

noise in non-defect region is weak. Therefore, ‘the signal 

processing I’ described in the flowchart will be triggered 

only if the noise reaches a certain level of significance. To 

ensure the recognition of the defect’s boundary and 

distinguish it from the whole inspected section, the values 

of ( )1i   in the non-defective zone are set to zeros in the 

phase of ‘the signal processing II’ due to the negligible 

noise. It is noted when the noise energy in non-defect zone 

is less than a quarter of the signal energy in defect zone, the 

noise is weak. Otherwise, it is considered as a strong noise 

signal. 

In the process of defect reconstruction, the key problem 

is that how to estimate the correctness of the current 

reconstruction. Theoretically, a surface defect has unique 

reflection coefficients of guided waves and reconstruction 

of the defect should converge to the real defect, given the 

adequate resolution of guided waves. However, the 

reconstructed defect profile cannot be exactly the same as 

the real one. In this situation, to enhance the detection 

precision, a convergence criterion shown in (16) is used to 

evaluate the discrepancy between two consecutive 

reconstructions of defects. 

( )( ) ( )( )( )
2

1 1 11

N m m

i im

N

   −=

 
−  

=


ò  (16) 

where N  denotes the total sample number in the axis 
1 , 

the subscript i indicates the number of reconstruction times,  

ò  means the root mean square error (RMSE), to which 
0ò  

is assigned as a threshold value in this paper. ( )1i  , 

( )1 1i − , and ( )10   denote the current, previous and 

reference defect profiles, respectively. If 
0ò ò , the current 

result will be considered as the final profile. Otherwise, the 

current defect profile will replace the reference model and 

update the defect profile for the next iteration until the 

convergence criterion is satisfied. In this paper, the value 

0ò is identical to 
max0.1d , where 

maxd represents the largest 

depth of predicted defects.” 

 
FIGURE 3. Flowchart of QDFTU method for surface defect 
reconstruction 

VI. NUMERICAL EXAMPLES 

A. RECTANGULAR FLAW 

A representative example is examined in this section to 

demonstrate the capability of the proposed QDFTU 

approach to defect detection. Two simple annuli with 

different rectangular defects, a reference model shown in 

Fig. 4 and a predicted model in Fig. 5, are studied. By 

applying the hybrid FEM technique, reflection coefficients 

of guided waves in these two models have been calculated. 

It is noted that the frequency range of incident guided 

waves is from 6.159KHz to 683.702KHz, in which 112 

equal frequency points are adopted to numerical simulation 

by the hybrid FEM in frequency domain. Defect 

reconstruction by QDFTU in the first iteration has been 

shown in Fig. 6(a), in which the integral coefficients ( )iB k  

have been calculated using the reference model shown in 

Fig. 4. The data for construction of the defect profile can be 

obtained in the second column of TABLE Ⅱ. The first and 

last columns in TABLE Ⅱ represent the coordinates of the 

defect in the extent and radial directions. In the practical 

engineering testing, it is difficult to evaluate the defect 

profile using a single reconstruction owing to the unknown 

defect in structures. To improve the reliability of the 
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reconstruction, the proposed QDFTU approach works 

towards the converged defect profile. The first 

reconstruction result in Fig. 6(a) is adopted as the updated 

reference model in the second reconstruction, which is 

shown in Fig. 6(b) and the coordinate in the defect extent 

direction is given in the third column of TABLE Ⅱ. It is 

noted that the updating of the reference model terminates 

until the discrepancy ò  is less than 0.03h, where 

0 0.030h=ò and h means the thickness of the annulus. In 

TABLE Ⅱ , the discrepancies from the first and second 

reconstructions, i.e.  2i = , is equal to 0.080h, which is 

more than 0.030h. This is why the third reconstruction is 

triggered. Obviously, the third discrepancy (0.026h) 

between the second and third results is less than 0.030h and 

the result in the fourth column in TABLE Ⅱ is considered 

as the final defect profile. All defect profiles obtained from 

each reconstruction are shown in Fig. 6, which 

demonstrates the efficiency and effectiveness of the 

proposed QDTFU approach to reconstruction of defects. 

 
FIGURE 4. The reference model with a single rectangular defect. The 
area enclosed by the red lines represents defect. 
 

 
FIGURE 5. The tested model with a single rectangular defect. The area 
enclosed by the red lines represents defect. 

TABLE Ⅱ 

THE DATUM OF DEFECT SHAPE FROM THE ITERATIVE RECONSTRUCTION 

Coordinate 

(rad) 

Result  

(1st )*h 

Result 

 (2nd )*h 

Result  

(3rd  )*h 

Real defect 

*h 

1.158 0.068 0.086 0.108 0.333 

1.187 0.124 0.218 0.211 0.333 

1.215 0.181 0.328 0.296 0.333 

1.243 0.239 0.368 0.334 0.333 

1.271 0.291 0.352 0.315 0.333 

1.299 0.328 0.316 0.290 0.333 

1.328 0.343 0.314 0.306 0.333 

1.356 0.333 0.353 0.343 0.333 

1.384 0.294 0.381 0.350 0.333 

1.413 0.226 0.339 0.307 0.333 

1.441 0.144 0.211 0.214 0.333 

1.469 0.065 0.064 0.10 0.333 

ò   0.080 0.026  

 

 

 
FIGURE 6. Reconstruction results of rectangular defect by the iterative 
method: (a) the first reconstruction result; (b) the second reconstruction 
result; (c) the third reconstruction result. 

 

B. THREE TYPES OF DEFECTS 

To further demonstrate the performance of QDFTU method 

for solving complex reconstruction problems, structures 

with different defects shown in Figs. 7, 9 and 11, are 

studied. Types of defects considered for reconstruction are: 

a multi-step flaw, a double-rectangular flaw, and a triple-

rectangular flaw. Again, the initial reference model adopted 

is depicted in Fig. 4. To reconstruct a multi-step defect 

shown in Fig. 7, three iterations are required to obtain a 

converged result by applying the criterion defined in (14). 

The initial reconstruction is shown in Fig. 8(a), which can 

approximately identify the defect in the circumferential 
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extent and radial directions. After updating the reference 

model with initial reconstruction of the defect, the second 

reconstruction shown in Fig. 8(b) presents better 

circumferential and radial distributions, which reflects the 

main features of the multi-step defect. The third and fourth 

results in Fig. 8(c) and (d) depict more details of the defect, 

and the discrepancy of the fourth calculation ( 0.026h=ò ) 

also meets the RMSE criteria. Hence, the fourth result in 

Fig. 8(d) is deemed as the final solution to reconstruction of 

the multi-step defect.  

The pipe structure with a double-rectangular defect in 

Fig. 9 is considered as a more complicated example to test 

the efficiency and accuracy of the developed QDFTU 

approach and the results are shown in Fig. 10. It is noted 

that the fluctuations in the first reconstruction (Fig. 10(a)) 

deteriorate the identification accuracy of the defect profile. 

This is because the integral coefficients ( )iB k  obtained 

from the reference model include redundant frequency 

components (or peak values), which was mentioned in Da 

et al.[28]  Updating the reference model with the first result 

in the second reconstruction, the accuracy of the 

reconstructed defect profiles in Fig.10(b) is much 

improved. Due to the large difference between the first and 

second reconstruction results, the third reconstruction has to 

be performed. Since the discrepancy in the second iteration 

is less than the threshold value ( 0.029h=ò ), the final 

reconstruction of a double-rectangular defect shown in Fig. 

10(c) is obtained.  

In the fourth example, a triple-rectangular defect profile 

is described in Fig. 11. Employing the proposed QDFTU 

method, the reconstruction of such defect is achieved by 

updating the reference model three times. Defect profile 

after the initial reconstruction is given in Fig. 12(a). It is 

observed that the first reconstruction exhibits an acceptable 

agreement with the real defect profile. However, the gap 

length between two adjacent defects and the width of the 

defect cannot be predicted accurately. Similarly, to some 

extent the first and second updates of the reference model 

shown in Fig. 12(b and c) during the reconstruction process 

can improve the quality of defect detection, nevertheless, 

the defect depth by the reconstruction cannot be accurately 

obtained. Thus, the third update is activated and the defect 

profile is finally reconstructed with 0.028h=ò .  

By comparisons of the first reconstruction and the last 

reconstruction results with the real defects in four 

numerical examples, the MSPE (mean absolute percentage 

error) values are shown in TABLE Ⅲ . Averagely, the 

accuracy of defect reconstruction results has been improved 

by the proposed method. The maximum enhancement of the 

precision for the multi-step defect problem is up to 17.18%, 

which is obtained from 30.93% in the first reconstruction to 

13.75% in the last reconstruction; the minimum 

improvement in a triple-rectangular defect reconstruction 

example is 2.48%. Due to limitations from various sources 

on defect reconstruction, such as the initial reference 

model, the resolution of guided waves and the element size, 

it is difficult to obtain much improved results in all four 

examples. To further improve the accuracy of the 

reconstruction, future research on these factors is suggested. 

 
FIGURE 7. The tested model with a multi-steps defect. The area 
enclosed by the red lines represents defect. 
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FIGURE 8. The reconstruction results of a multi-step defect by the 
iterative method: (a) the first reconstruction result; (b) the second 
reconstruction result; (c) the third reconstruction result; (d) the fourth 
reconstruction result. 

 

FIGURE 9. The tested model with a double-rectangular defect. The area 
enclosed by the red lines represents defect. 

 

 

 

FIGURE 10. The reconstruction results of a double-rectangular defect 
by the iterative method: (a) the first reconstruction result; (b) the 
second reconstruction result; (c) the third reconstruction result. 

 

FIGURE 11. The tested model with a triple-rectangular defect. The area 
enclosed by the red lines represents defect. 
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FIGURE 12. The reconstruction results of a triple-rectangular defect by 
the iterative method: (a) the first reconstruction result; (b) the second 
reconstruction result; (c) the third reconstruction result; (d) the fourth 
reconstruction result. 

TABLE Ⅲ 

THE MSPE (MEAN ABSOLUTE PERCENTAGE ERROR) VALUES IN ALL FOUR 

EXAMPLES 

MSPE  
A single 

rectangular 
defect 

A 
multi-

step 
defect 

A double-

rectangular 
defect 

A triple-

rectangular 
defect 

The first 
reconstruction 

20.76% 30.93% 31.09% 23.77% 

The last 
reconstruction 

6.69% 13.75% 21.06% 21.29% 

V. CONCLUSION 

In this paper, a modified QDFT (Quantitative Detection of 

Fourier Transform) method with integration of an integral 

coefficient updating strategy (QDFTU) has been proposed 

to improve the defect detection precision. QDFTU 

overcomes the problem that the iteration reconstruction 

method cannot be introduced to the traditional boundary 

integral equation. And comparing other general methods, 

this investigation avoids the difficulty of solving the 

analytical fundamental solution in pipeline structure. 

Reconstructions of four types of defects in pipe structures 

have been examined. The entire reconstruction must 

include signal processing, reference model update, and 

convergence judgment so that the accurate and efficient 

defect detection can be conducted. To update the reference 

model by the proposed strategy, root mean square error 

measured by the difference between two consecutive 

reconstruction profiles is adopted as a convergence criterion. 

It is concluded that the more complex the defect is, the 

more the number of updates for reconstruction is required. 

In the detection of complex defected structures for example, 

pipes with a multi-step flaw or a triple-rectangular flaw, the 

proposed QDFTU approach outperforms QDFT in terms of 

predictions on the details, e.g., the step length, the gap 

length, and the defect extent. Although there is noise 

disturbance during the reconstruction of defects, the results 

converge after just three updates of the reference model. 

The maximum and minimum enhancements of the 

reconstruction precision is up to 17.18% for the multi-step 

defect example and 2.48% in the triple-rectangular defect 

case study, respectively. This proves the proposed QDFTU 

approach has ability to reconstruct defects with high levels 

of efficiency and accuracy. To further improve the 

reconstruction results, the increased resolution of guided 

waves and number of elements for the model are suggested. 

In conclusion, the proposed QDFTU can accurately and 

efficiently reconstruct complex defects using ultrasonic 

guided waves and provide insights into the mechanism of 

defect detections using a general reference model. 
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