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Abstract

Enzymes are central to both metabolism and information processing in cells. In both cases, an enzyme’s ability
to accelerate a reaction without being consumed in the reaction is crucial. Nevertheless, enzymes are transiently
sequestered when they bind to their substrates; this sequestration limits activity and potentially compromises infor-
mation processing and signal transduction. In this article we analyse the mechanism of enzyme-substrate catalysis
from the perspective of minimizing the load on the enzymes through sequestration, whilst maintaining at least a
minimum reaction flux. In particular, we ask: which binding free energies of the enzyme-substrate and enzyme-
product reaction intermediates minimize the fraction of enzymes sequestered in complexes, while sustaining a
certain minimal flux? Under reasonable biophysical assumptions, we find that the optimal design will saturate the
bound on the minimal flux, and reflects a basic trade-off in catalytic operation. If both binding free energies are
too high, there is low sequestration, but the effective progress of the reaction is hampered. If both binding free
energies are too low, there is high sequestration, and the reaction flux may also be suppressed in extreme cases.
The optimal binding free energies are therefore neither too high nor too low, but in fact moderate. Moreover, the
optimal difference in substrate and product binding free energies, which contributes to the thermodynamic driving
force of the reaction, is in general strongly constrained by the intrinsic free-energy difference between products
and reactants. Both the strategies of using a negative binding free-energy difference to drive the catalyst-bound
reaction forward, and of using a positive binding free-energy difference to enhance detachment of the product, are
limited in their efficacy.

1. Introduction

Enzymatic catalysts are ubiquitous in biology,
forming crucial parts of the networks that imple-
ment metabolism [1], signalling [2, 3], and the cen-
tral dogma of molecular biology [4]. Analysing the
mechanism by which they function is fundamental to
understanding the exquisite behaviour of natural net-
works, to engineering existing systems [5, 6], and to
developing synthetic analogs de novo [7, 8, 9].

A catalytic enzyme enhances the overall rate of a
molecular process by participating in reaction inter-
mediates. The enzyme, however, is recovered un-
scathed at the end of the process. This mechanism
of action allows a single enzyme to turn over a large
number of metabolites, but it has equally fundamental
consequences for signalling and information process-
ing systems.

Catalytic action allows an enzyme to modify its
substrates in a persistent way, so that the products
do not immediately convert back once they detach
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from the enzyme – unlike in simpler mechanisms of
direct allosteric action [10]. The importance of this
persistence is exemplified by kinase signalling net-
works, which are central to signal transduction and in-
formation processing in eukaryotes [11, 12]. In these
systems, kinase enzymes catalyse phosphorylation of
specific amino acid residues within protein substrates.
The phosphorylated products demonstrate a change in
activity, becoming, for example, activated transcrip-
tion factors or kinases that in turn activate further
downstream species. Crucially, the activated prod-
ucts do not need to remain bound to their upstream
enzymes to be functional - their activation persists be-
yond the timescale of the catalytic interaction.

In this way, catalytic mechanisms allow the forma-
tion of (meta)stable memories in the states of down-
stream molecules, which retain information on their
prior interactions [13]. These memories can sup-
press sensing noise through time-integration of sig-
nals [14]; underlie the calculation of time derivatives
of an input in the context of adaptive chemotaxis [15];
and are central to the measurement and feedback cy-
cles of recently-proposed molecular integral feedback
controllers [16, 17, 18]. Furthermore, since a single
catalyst can activate multiple downstream substrates,
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catalyst motifs can be used to split and amplify sig-
nals [19].

Although catalysts are not consumed by reactions,
they must transiently participate in the intermediate
complexes. In so doing they face a central paradox:
catalysts must bind strongly enough to participate in
the reaction, but weakly enough to be recovered at the
end. Moreover, whilst participating in a reaction, en-
zymatic catalysts are generally sequestered by their
binding partners and cannot act on additional sub-
strates. In some cases this sequestration may allow
novel, advantageous behaviour. For example, seques-
tration is necessary for the mechanism of “zero-order
ultrasensitivity” that allows for sharp responses of the
output substrate to small changes in concentration of
the input catalyst [20, 21, 22]. Frequently, however,
sequestration is a potential disadvantage [23]: it can
limit the maximal rate of substrate turnover, and can
cause “retroactive” loading effects in signalling net-
works that lead to breakdowns in assumptions of mod-
ularity [24, 25, 26, 27, 28, 29]. The latter is a partic-
ular concern in the rational design of synthetic sys-
tems [30].

The simple Michaelis-Menten model of enzymatic
kinetics illustrates the problem of sequestration for
substrate turnover [31, 32]. Consider the following
reaction scheme:

E + S
k+0
−−⇀↽−−
k−0

ES
k+cat
−−−→ E + P. (1)

Here E is the catalytic enzyme, S is the substrate, ES
is the enzyme-substrate complex, and P is the prod-
uct. The bimolecular rate constant k+0 describes the
speed with which substrates and enzymes bind; the
unimolecular rate constants k−0 and k+cat describe the
rates of unbinding and product generation and release,
respectively. Assuming the concentration of the ES
complex, [ES ], reaches a quasi-steady state rapidly
relative to any depletion of the substrate [33, 34],
one obtains k+0[E][S ] = (k−0 + k+cat)[ES ]. The
conservation law for the total enzyme concentration
gives [E] + [ES ] = [Etot], implying that the con-
centration of enzymes in complexes with the sub-
strate is [ES ] =

k+0[Etot][S ]
k+0[S ]+k−0+k+cat

. Therefore, the over-
all flux of substrates through the reaction is r =

k+cat[ES ] = k+cat
k+0[Etot][S ]

k+0[S ]+k−0+k+cat
= rmax

[S ]
[S ]+KM

, where
rmax = k+cat[Etot] is the limiting possible rate of the
reaction and KM = k−0/(k+0 + k+cat). The quantity

[S ]
[S ]+KM

≤ 1 reflects the effect of sequestration in quasi-
steady state. It is also known as the efficiency of the
enzyme catalyzed reaction [35, 36]. At low substrate
concentration [S ] → 0, the reaction flux is propor-
tional to [S ]; plenty of enzymes are available to pro-
cess additional substrates at the same rate per sub-
strate. For [S ] & KM , however, the reaction flux
plateaus because a substantial fraction of the enzymes
become sequestered, and fewer are available to pro-
cess additional substrates.

In this article, we analyse how properties of an en-
zyme might be tuned, either by evolution or bioengi-
neers, to achieve the goal of minimising sequestration
while maintaining a certain reaction flux. As shown
by the pioneering work of Terrell Hill [37, 38], and
emphasised in the more recent works of Beard, Qian
and coworkers [39, 40, 41], catalysts operate out of
equilibrium and understanding the fundamental con-
straints on their behaviour requires a thermodynamic
perspective. Numerous authors have considered the
implications of thermodynamics for catalytic function
in various contexts, from a generic relationship be-
tween free energy and one-way reaction fluxes [42] to
inherent trade-offs between thermodynamic cost and
performance in sensing and signalling [14, 19] and in-
sulating motifs that are designed to suppress retroac-
tive effects [29, 27]. In our case, we will assume a
fixed overall thermodynamic drive to a catalytic re-
action, and instead explore how the thermodynamic
stability of reaction intermediates determine whether
a catalyst can achieve high substrate turnover rates at
low levels of sequestration.

The manuscript is structured as follows: in sec-
tion 2, we justify the use of a specific thermodynami-
cally self-consistent model of enzyme-substrate catal-
ysis [43, 44, 45]. We then formulate our question as
an optimization problem. We ask: how do we choose
binding free energies of the intermediate enzyme-
substrate and enzyme-product complexes so that the
system minimises the number of enzyme-substrate
complexes whilst maintaining a required minimum
flux of reactants into products? In Section 3, we anal-
yse this optimization problem under the assumption
that association reactions are diffusion limited, find-
ing that there is an inherent trade-off in such motifs.
Choosing very high binding free energies for the inter-
mediate complexes reduces retroactivity, but also re-
duces the flux through the circuit. On the other hand,
choosing very low binding energies implies that the
system spends a large proportion of time in the in-
termediate states, increasing the retroactivity of the
system. We show that the optimal binding free en-
ergies are not only moderate as a consequence of this
trade-off, but they are strongly related to each other. In
particular, the difference between the optimal binding
free energies is a constant that is related to the intrin-
sic free energy difference between the products and
reactants. In addition, we also show that the optimal
circuit saturates the bound on the flux requirement. In
Section 3.2, we relax the assumption that binding rates
are diffusion limited. We find that many of our obser-
vations from the diffusion-limited regime carry over
qualitatively to this new regime. The optimal binding
free energies are still moderate and the difference be-
tween them is confined to a value close to the intrinsic
free energy difference between the products and reac-
tants.
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2. Model and methods

Figure 1: Markov chains for the evolution of an isolated enzyme’s
binding state in minimal models of catalysis. (a) Markov model for

the catalytic mechanism E + S
k+0
−−−⇀↽−−−
k−0

ES
k+cat
−−−−→ E + P. The single

ES→ E transition in the stochastic process includes two physically
distinct processes; ES→ E + S and ES→ E + P. (b) Markov chain
corresponding to the enzyme-substrate catalysis given by Equa-

tion 4: E + S
k+0
−−−⇀↽−−−
k−0

ES
k+cat
−−−−⇀↽−−−−
k−cat

EP
k+1
−−−⇀↽−−−
k−1

E + P. The completion of

single clockwise cycle converts a substrate molecule into a product.

We now introduce basic modelling assumptions,
in the process explaining why the classic Michaelis-
Menten model is insufficient for our purposes. Hence-
forth, we will use natural units in which kBT = 1,
all rates are defined dimensionlessly relative to 1 s−1,
and all concentrations given dimensionlessly relative
to 1M. We model dilute biochemical systems at the
level of molecular macrostates [46]; reactions are de-
scribed by mass-action kinetics with well-defined rate
constants. We consider an ensemble of enzymes in-
teracting with substrate S and product P molecules;
these substrates and products are assumed to have ap-
proximately constant concentrations [S ] and [P] on
the timescale of interest [47]. In this limit, the trajec-
tory of a single enzyme through its discrete binding
states can be analysed independently as a continuous
time Markov chain, with pseudo-first-order transition
rates that depend on [S ] and [P] [48]. The resultant
probabilities are proportional to the expected concen-
trations of enzymatic states in a bulk system. The
systems we consider form irreducible Markov chains,
and therefore tend toward a well-defined steady-state
probability distribution πi describing the occupancy of
enzyme binding states i.

We will first illustrate our approach with the
commonly-used model of Eq. 1, before arguing that
it is insufficiently rigorous to allow a meaningful op-
timisation. We will then present the extended model
that will form the basis of this work. The model of

Eq. 1 has a Markov chain representation shown in
Fig. 1 (a). The binding states of the enzyme are un-
bound (E) and substrate-bound (ES). Both the release
of the product and unbinding of the substrate con-
tribute to the same transition (ES to E) at the level
of the enzyme’s binding states. The probability of the
enzyme being unbound (equal to the fraction of un-
bound enzymes in an ensemble) is πE , and the net rate
of product output per enzyme is k+catπES .

We consider the challenge of optimizing the en-
zyme properties to achieve a desired steady state rate
of conversion of S into P per enzyme, Ψ, with a min-
imal steady-state fraction of sequestered enzymes, R,
at fixed concentrations [S ] and [P]. For the model in
Fig. 1 (a), these quantities are given by Ψ = k+catπES

and R = 1 − πE , respectively. Furthermore, since
πE =

k+cat+k−0
k+0[S ]+k+cat+k−0

and πES =
k+0[S ]

k+0[S ]+k+cat+k−0
, it is im-

mediately clear that the sequestration fraction R can
be made arbitrarily small, without compromising the
flux Ψ, by allowing the catalytic rate k+cat → ∞. To
obtain meaningful insight, it is therefore necessary to
consider physically-motivated constraints on the ki-
netic parameters.

The most important constraint is that since the en-
zyme E is not consumed in the reaction, its properties
cannot influence the overall free-energy change of re-
action, ∆G = ln [P]

[S ] − ∆µ. Here, ∆µ is the intrinsic
free-energy difference between S and P; by our sign
convention, a positive ∆µ implies P is more thermo-
dynamically stable than S, providing a forward drive
to the reaction. Note that ∆µ can also incorporate the
contribution to ∆G of the consumption of ancillary
fuel molecules, such as ATP, which are treated im-
plicitly in the model of Eq. 1. If the environment of
substrates and products is fixed, an optimization over
enzyme properties corresponds to optimizing at fixed
∆G.

For a single reaction step j, the principle of detailed
balance dictates that the free energy change is directly
related to the forwards and backwards transition rates
ν± j [46, 49]:

∆G j = − ln
ν j

ν− j
. (2)

For a multi-step reaction, one can simply add together
Eq. 2 for each step j, obtaining

∆G = − ln
∏

j

ν j

ν− j
. (3)

Since the catalytic step of the Michaelis-Menten
model has no reverse complement, ∆G is undefined,
making it impossible to perform an optimization at
fixed ∆G. It is therefore necessary to introduce a back-
wards transition, which would allow E and P to bind,
and be converted into ES [50, 51, 52, 53].

Having included this reaction, it is hard to justify
combining both the chemical conversion of substrate
into product, and its release from the enzyme, in a
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single step, as in Eq. 1. If both P and S can be con-
verted into each other by E, shouldn’t the binding and
unbinding of P also be treated explicitly using a bind-
ing state EP? Indeed, ignoring EP corresponds to as-
suming that the enzyme-product complex is arbitrarily
short-lived, yet does not present a barrier to the con-
version of S into P. This assumption seems to ignore
the very challenge of the optimization problem itself.
We therefore use the following model [43, 44, 45],

E + S
k+0
−−⇀↽−−
k−0

ES
k+cat
−−−⇀↽−−−
k−cat

EP
k+1
−−⇀↽−−
k−1

E + P, (4)

as the minimal description of catalysis in which we
can meaningfully ask how enzyme properties can be
adjusted to minimize sequestration R at fixed flux per
enzyme Ψ. This molecular model can be represented
as a continuous time Markov process over the enzy-
matic states E, ES and EP as shown in Fig. 1 (b);
within this description, we obtain

R = 1 − πE = πES + πEP, (5)

and

Ψ = k+0[S ]πE − k−0πES . (6)

The requirement of fixed ∆G equates to

k+0[S ]k+catk+1

k−0k−catk−1[P]
= exp(−∆G) = const. (7)

Even with the restriction to fixed ∆G, and fixed con-
centrations [S ] and [P], the optimization problem is
still poorly constrained. As it stands, all rate constants
in Eq. 7 could be increased by an arbitrary factor, al-
lowing an arbitrarily high Ψ whilst leaving the station-
ary distribution π (and hence R) unchanged. It would
therefore be possible to obtain any flux Ψ whilst en-
suring R → 0. In practice, molecular processes can-
not be arbitrarily fast due to basic constraints from
physical chemistry. In any case, it is far easier to
tune, whether by rational engineering or evolution,
the binding free energies of the metastable substrate-
bound and product-bound states than it is to further
optimise the precise chemistry of the ensemble of
transition states between the two. To reflect this fact,
we restrict ourselves to optimizing the two standard
binding free energies ∆GES and ∆GEP, which are re-
lated to the rate constants by

exp(−∆GES /kBT ) =
k+0

k−0
,

exp(−∆GEP/kBT ) =
k−1

k+1
,

exp ((−∆GEP + ∆GES + ∆µ)/kBT ) =
k+cat

k−cat
. (8)

A schematic representation of the the free energy pro-
file of this process, and its dependence on the param-
eters in Eq. 8, is given in Fig. 2.

Figure 2: Illustrative free-energy profile of the catalytic conversion
of S into P by E, with the number of S and P molecules present
explicitly accounted for. Chemical macrostates are shown as local
minima in the profile, separated by barriers. A full catalytic cycle
corresponds to moving from the leftmost E minimum to the right-
most, consuming S and producing P. Although the enzyme itself
returns to its original state, the process as a whole is thermodynam-
ically downhill (∆G = ln[P]/[S ] − ∆µ) because the final state has
one fewer substrate and one more product molecule. Optimization
corresponds to adjusting the heights of the metastable ES and EP
bound states to minimise sequestration whilst maintaining a fixed
flux.

A given set of binding free energies, along with
∆µ, therefore specifies ratios of forwards/backwards
rate constants. Absolute values remain ambiguous.
To make progress, we must make further assumptions
about how rate constants respond to changes in the
binding free energies. A similar issue was addressed
in Ref. [54], in which the authors attempted to opti-
mize the flux of trajectories through a series of states
by adjusting their energies (in that work, unlike this
one, there was no attempt to minimise occupancy of
intermediate states). In that case, one of the two tran-
sitions in a backwards/forwards pair was assumed to
be exponentially sensitive (“labile”) to the energy dif-
ference, whereas the other was assumed to be con-
stant.

In our system, we will initially assume (for sim-
plicity) that the binding reactions are diffusion-
controlled [55, 56]; i.e. the on-rate is fixed by the
diffusion time scales that are independent of the de-
tails of the enzyme’s interaction wih substrate and
product. In particular, we set k+0 = k0 = const and
k−1 = k1 = const. In the language of [54], the sub-
strate binding transition is “backwards labile” and the
product release transition is “forwards labile”. There
is no immediately obvious reason to make the inter-
mediate step of chemical catalysis either forward or
backward labile. We show in Section 3, however, that
both choices give pathological results for the question
we ask. Invoking the fact that a true chemical modifi-
cation cannot happen arbitrarily fast, we then consider
an alternative in which both the forward and backward
catalytic rate constants have a finite upper bound:

k+cat = kcat min(1, e−∆GEP+∆GES +∆µ+∆Gc ), (9)
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and

k−cat = kcate∆Gc min(1, e−∆GES +∆GEP−∆µ−∆Gc ), (10)

for some ∆GC ∈ R. The scheme is based on
“Metropolis dynamics”, in which reactions that are
downhill in free energy have a fixed rate and uphill re-
actions are slowed down [57]. This dynamics is equiv-
alent to assuming that, in an Arrhenius picture, the
transition state is a fixed free energy above the max-
imum free energy of the two metastable states on ei-
ther side. The inclusion of a finite ∆GC generalises
this approach to allow an offset between the maximum
forward and backward catalytic rate constants. The
overall effect is to split the ∆GES − ∆GEP plane into
two regions: region I in which the interconversion is
backwards labile and the backwards step is slow; and
region II in which the interconversion is forwards la-
bile while the forwards reaction is slow. A graphical
illustration of these different responses to the free en-
ergies of transition is given in Fig. 3. We are now able
to fully state our main optimization problem:

Question 2.1. How should binding free energies
∆GES and ∆GEP in the model of Eq. 4 be chosen
to minimize sequestration R, whilst maintaining a
product output rate of Ψ0, given fixed [S ], [P] and
∆µ, diffusion-limited binding reactions, and catalytic
steps with fixed and finite upper bounds on their rates
(Eqs. 9 and 10)?

3. Results and Discussion

3.1. Diffusion-controlled binding rates

To answer Problem 2.1, we seek the optimal bind-
ing free energies ∆Gopt

ES and ∆Gopt
EP that achieve a min-

imal sequestration Ropt, whilst maintaining an out-
put flux Ψopt ≥ Ψ0. Here Ψ0 ∈ R>0 is the target
seady-state net rate of substrate turnover. We will first
present a mathematical analysis, followed by a physi-
cal explanation and interpretation.

3.1.1. Detailed analysis of diffusion-controlled sys-
tem

We describe a target flux Ψ0 as achievable if
choices of ∆GES and ∆GEP exist that satisfy Ψ ≥ Ψ0.
We will show that solutions to Problem 2.1 for achiev-
able target fluxes Ψ0 lie on the line ∆Gopt

EP = ∆Gopt
ES +

∆µ+ ∆Gc, with ∆Gopt
ES and ∆Gopt

EP taken as high as pos-
sible to saturate the flux constraint, Ψopt = Ψ0. To
make these arguments, we require machinery from the
theory of Markov chains. To guide this derivation,
we illustrate the continuous time Markov chain cor-
responding to Eq. 4, with its explicit dependence on
the parameters ∆GES , ∆GEP, ∆µ and ∆Gc as laid out
in Eq. 8, in Fig. 4. We first solve for R and Ψ in terms
of basic properties of this Markov chain.

Figure 3: Graphical illustration of the dependence of the transition
rates ν of the Markov chain in Figure 1 (b) on binding free energies.
Binding rate constants are assumed to be fixed due to diffusion.
Catalytic rate constants are bounded, whilst maintaining k+cat

k−cat
=

e−∆GEP+∆GES +∆µ. In this case, the ∆Gc parameter fixes an offset
between the maximal rates.

Figure 4: Markov chain for Problem 2.1, showing the explicit de-
pendence of rate and the optimisation variables ∆GES and ∆GEP,
along with other parameters that are constant during the optimisa-
tion of a given system. The options inside the minimization state-
ment of the catalytic rate constants have been labelled correspond-
ing to appropriate regions (I or II) in the ∆GES − ∆GEP plane.
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Let us denote the expected lifetime of state i by
τi; and the expected time for the next arrival at j
given that the current state is i (the mean first passage
time) by τi→ j. The series of states visited by the en-
zyme form an embedded discrete-state, discrete-time
Markov chain [58]; let Pi→ j represent the transition
probabilities of this Markov chain. Pi→ j is then the
probability that j is the next state visited given that
the system is in state i. By the memoryless property
of continuous time Markov chains, the lifetime of a
state is exponentially distributed with parameter equal
to the total rate of outward transition from that state,
implying that τi = 1∑

j K ji
, where K ji is the rate of out-

ward transition from state i to j.
Since we have an irreducible Markov chain, using

[58, Theorem 3.8.1] and Equation 5, we obtain

R = 1 − πE = 1 −
τE

τE→E
. (11)

Using τE→E = τE + PE→ES τES→E + PE→EPτEP→E , and
noting that PE→ES = k0[S ]τE and PE→EP = k1[P]τE ,
we find

R = 1 −
1

1 + k0[S ]τES→E + k1[P]τEP→E
. (12)

Observing that

τES→E = τES + PES→EPτEP→E ,

τEP→E = τEP + PEP→ES τES→E , (13)

we can solve for the average first passage times as

τES→E =
τES + PES→EPτEP

1 − PEP→ES PES→EP
,

τEP→E =
τEP + PEP→ES τES

1 − PEP→ES PES→EP
, (14)

As a result, we can re-write the sequestered fraction in
Eq. 12 solely in terms of properties of single transition
steps:

R = 1−
1

1 + k0[S ]
(
τES +PES→EPτEP

1−PEP→ES PES→EP

)
+ k1[P]

(
τEP+PEP→ES τES

1−PEP→ES PES→EP

) .
(15)

For the flux Ψ, there are two cases:

1. Region I : ∆GEP < ∆GES + ∆µ+ ∆Gc, ES
 EP
backward labile,

Ψb =
(1 − R)k0k1kcat[Etot]([S ]e∆µ+∆Gc − [P])

k0k1e∆µ+∆Gc+∆GES + k0kcat + k1kcate∆µ+∆Gc

(16)

2. Region II : ∆GEP > ∆GES +∆µ+∆Gc, ES
 EP
forward labile,

Ψ f =
(1 − R)k0k1kcat[Etot]([S ]e∆µ+∆Gc − [P])

k0k1e∆GEP + k0kcat + k1kcate∆µ+∆Gc

(17)

The division of ∆GES −∆GEP space into these two re-
gions is shown schematically in Fig. 5. For the edge
case of ∆GEP = ∆GES + ∆µ + ∆Gc that divides the
two regions, both Ψb = Ψ f are valid. We now state a
few lemmas that describe the behaviour of retroactiv-
ity and flux with respect to changing binding energies
in regions I and II.

Lemma 3.1. In Region I, increasing ∆GEP decreases
R and increases Ψ.

Proof. The transition probabilities PES→EP and
PEP→ES are both independent of ∆GEP in region I,
since ∆GEP is irrelevant to the transitions out of state
ES, and contributes the same factor to all transitions
out of EP:

PES→EP =
kcat

k0e∆GES + kcat
,

PEP→ES =
kcate−∆GES−∆µ

k1 + kcate−∆GES−∆µ
. (18)

The expected lifetime of EP, τEP =
1

e∆GEP (k1+kcate−∆GES −∆µ) , decreases monotonically with
increasing ∆GEP, while τE = 1

k0[S ]+k1[P] and
τES = 1

kcat+k0e∆GES
remain unchanged. Eq. 15 therefore

shows that R must decrease as ∆GEP increases within
region I, and Eq. 16, shows flux Ψ increases with
∆GEP in region I.

Lemma 3.2. In Region II, increasing ∆GES de-
creases R and increases Ψ.

Proof. The transition probabilities PES→EP and
PEP→ES are both independent of ∆GES in region II,
since ∆GES is irrelevant to the transitions out of state
EP, and contributes the same factor to all transitions
out of ES:

PEP→ES =
kcate∆Gc

k1e∆GEP + kcate∆Gc
,

PES→EP =
kcate−∆GEP+∆µ+∆Gc

k0 + kcate−∆GEP+∆µ+∆Gc
(19)

The expected lifetime of ES, τES =
1

e∆GES (k0+kcate−∆GEP+∆µ+∆Gc ) , decreases monotonically
with increasing ∆GES , while τE = 1

k0[S ]+k1[P] and
τEP = 1

kcate∆Gc +k1e∆GEP
remain unchanged. Eq. 15 there-

fore shows that R must decrease as ∆GES increases
within region I, and Eq. 17, shows flux Ψ increases
with ∆GES in region II.

Theorem 3.3. ∆Gopt
EP = ∆Gopt

ES + ∆µ + ∆Gc.

Proof. For contradiction, assume not. Then, the opti-
mal solution either lies inside region I or region II.

Consider region I: assume an optimal pair of bind-
ing free energies

(
∆Gopt

ES ,∆Gopt
EP

)
, ∆Gopt

EP < ∆Gopt
ES +∆µ+

∆Gc, exists that gives a minimal R = Ropt while sat-
isfying Ψ ≥ Ψ0. By Lemma 3.1, it is always possible

6



Figure 5: Graphical illustration of the typical behaviour of the optimisation problem 2.1 within the ∆GES -∆GEP plane. Within regions I and
II, it is always favourable to move towards the separating line ∆Gopt

EP = ∆Gopt
ES + ∆µ + ∆Gc, as doing so both increases flux Ψ and reduces

sequestration R. Throughout the plane, including on the line, increasing both ∆GES and ∆GEP by the same amount reduces retroactivity.
These relationships are described in the box to the right of the figure. Both very positive and very negative values of ∆GES and ∆GEP suppress
flux leading to a maximal flux Ψmax at moderate values indicated by a ∗ on the plot. Optimal solutions (Gopt

ES ,G
opt
EP) are denoted by black dots

and are found on the line ∆Gopt
EP = ∆Gopt

ES + ∆µ + ∆Gc, to the right of the maximal flux, trading off flux against sequestration. The optimal
solutions tend towards the cross ∗ as the target flux Ψ0 increases towards Ψmax.

to add δG > 0 to ∆Gopt
EP and increase Ψ while reducing

R. The resulting pair
(
∆Gopt

ES ,∆Gopt
EP + δG

)
necessar-

ily satisfies Ψ > Ψ0, and has a sequestered fraction
R < Ropt. The optimality of

(
∆Gopt

ES ,∆Gopt
EP

)
is there-

fore contradicted.
An exactly analogous argument can be made for op-

timal solutions in region II. Using Lemma 3.2, it is
always possible to increase ∆Gopt

ES by δG > 0 and si-
multaneously reduce the sequestration fraction R and
increase the flux Ψ. Therefore no pair of binding free
energies

(
∆Gopt

ES ,∆Gopt
EP

)
within region II can be opti-

mal. As a result, optimal solutions must lie on the line
dividing the regions, ∆Gopt

EP = ∆Gopt
ES + ∆µ + ∆Gc.

We note in passing that had we modelled the cat-
alytic reaction as uniformly forwards labile (or uni-
formly backwards labile) throughout the ∆GES−∆GEP

plane, then pathological results would have been ob-
tained. This choice would correspond to setting the
whole of the plane to be region II (or region I). As a
result, it would always be possible to improve the de-
sign by increasing ∆GES (or ∆GEP), leading to diver-
gent solutions that require unphysical, infinitely-fast
transitions between ES and EP.

We now prove in Theorem 3.5 that if the flux con-
straint is achievable by the system, it is saturated:
Ψopt = Ψ0. To do so, we first prove the following
lemma

Lemma 3.4. R decreases if both binding free ener-
gies (∆GES ,∆GEP) are increased by the same amount
δG > 0.

Proof. First, note that if both binding free energies are
increased by the same δG, the new binding energies
are in the same region of the phase plane shown in

Fig. 5 as the old binding energies. Transition rates be-
tween ES and EP do not change, since the free energy
change between the two binding states is unchanged.
Transitions from EP and ES to E are accelerated by
exp(δG). As a result of these changes in rates, τES ,
τEP, PES→EP and PEP→ES all necessarily decrease for
δG > 0. It immediately follows from Eq. 15 that R
decreases if both binding energies (∆GES ,∆GEP) are
increased by δG > 0.

Lemmas 3.1, 3.2, 3.4 and Theorem 3.3 are sum-
marised in Fig. 5.

Theorem 3.5. Ψopt = Ψ0.

Proof. For contradiction, assume an optimal pair(
∆Gopt

ES ,∆Gopt
EP

)
with Ψopt > Ψ0 exists. By Lemma 3.4,

a pair with
(
∆Gopt

ES + δG,∆Gopt
EP + δG

)
with lower se-

questration R < Ropt can be found for arbitrary δG >
0. Since Ψ is a continuous function, it is always
possible to choose a sufficiently small δG such that
the new system has Ψ ≥ Ψ0, contradicting our ini-
tial assumption. Therefore an optimal pair with finite(
∆Gopt

ES ,∆Gopt
EP

)
and Ψopt > Ψ0 cannot exist. However,

it is still possible that divergent values of the binding
free energies lead to an ever decreasing value of Ψ

that nonetheless does not tend towards Ψ0. We now
argue that Ψ tends exponentially towards zero for suf-
ficiently large (∆GES ,∆GEP). As a consequence, the
procedure of iteratively adding δG > 0 to any candi-
date pair

(
∆Gopt

ES ,∆Gopt
EP

)
with Ψopt > Ψ0 > 0 is guar-

anteed to eventually reach an improved solution with
reduced R and Ψ = Ψ0.

In general, the net flux through the system is

Ψ = k+0πE × P(EP→ E occurs before ES → E)
− k−1πEP(ES → E occurs before EP→ E).

(20)
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This result follows from multiplying the rate of bind-
ing transitions in steady state by the probability
that those binding transitions actually lead to sub-
strate/product turnover.

In the limit ∆GES ,∆GEP → ∞ at an arbitrary
fixed offset, ∆GEP = ∆GES + ∆Goff , we have
πE → 1 since both ES and EP states are unsta-
ble. Moreover, the probability of transitioning be-
tween the EP and ES states (rather than to E) is
suppressed by a factor exp(−∆GES ). To first order
in the small quantity exp(−∆GES ), trajectories that
visit either EP or ES more than once before return-
ing to E can therefore be neglected when calculating
P(EP → E occurs before ES → E) and P(ES →
E occurs before EP→ E) .

Noting additionally that rate(E → ES ) = k0[S ] and
rate(E → EP) = k1[P], Equation 20 becomes

lim
∆GES→∞

Ψ = k0[S ]PES→EP − k1[P]PEP→ES . (21)

Moreover, since

lim
∆GES→∞

PES→EP = lim
∆GES→∞

const exp(−∆GES ) = 0,

lim
∆GES→∞

PEP→ES = lim
∆GES→∞

const exp(−∆GES ) = 0,

(22)

lim∆GES→∞Ψ = 0 and the flux constraint is always
saturated.

3.1.2. Qualitative physical discussion of diffusion-
controlled system

The general behaviour outlined in Fig. 5 is
exemplified by a specific system in Fig. 6, in
which we show contour plots of sequestration
R and flux Ψ as a function of ∆GES and
∆GEP. Numerical optimization (using the code in
https://doi.org/10.5281/zenodo.2656526) is used to
identify points that minimize R at specific target
fluxes Ψ0; these points are indicated on the contour
plots. As expected from the results in Section 3.1.1,
the optimization saturates the bound on the target
flux, and all optimal points lie on the line ∆Gopt

EP =

∆Gopt
ES + ∆µ + ∆Gc. In addition, it can be seen that

as the target flux Ψ0 is increased, the optimal points
move southwest towards the maximal flux, paying for
the increase in flux with an increase in sequestration.

The flux plot, shown in Fig. 6 b, illustrates the cen-
tral trade-off inherent to enzymatic operation. Fo-
cussing on just the substrate binding free energy
∆GES , we see that the flux Ψ is non-monotonic, with
a peak at moderate values of ∆GES . If ∆GES is too
high, Ψ vanishes because ES complexes immediately
dissociate before the catalytic reaction can occur. On
the other hand, if ∆GES is too low, ES complexes are
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Figure 6: Numerical calculations with a concrete example, exem-
plifying the behaviour predicted in Fig. 5. (a) Sequestration con-
tour plot as a function of binding free energies. (b) Flux contour
as a function of binding fee energies. The black dots in (a) and
(b) indicate optimal binding free energies corresponding to cer-
tain target fluxes. The green dot is the point corresponding to the
maximum flux; all optimal binding free energies lie on the line
that corresponds to ∆Gopt

EP = ∆Gopt
ES + ∆µ + ∆Gc to the right of

this point. Parameters used for optimization: [Etot] = 10, [S ] =

1, [P] = 3, k0 = 1, k1 = 1, kcat = 1,∆µ = 3,∆Gc = 1. Target
fluxes Ψ0 : (0.5, 0.9, 1.3, 1.7, 2.1, 2.5). (c) Illustration of a free en-
ergy landscape corresponding to an optimal network with ∆Gc ≈ 0.
Both ES and EP are moderately high in free energy, and at almost
equal height; as a result, the overall free-energy change of reac-
tion ∆G = − ln[S ]/[P] − ∆µ is essentially equal to the difference
between the substrate binding free energy (∆Gopt

ES − ln[S ]) and the
product binding free energy (∆Gopt

EP − ln[P]).
8



too stable and the reactions proceed to completion ex-
tremely slowly. By requiring the system to minimise
R, we force the system to the highest possible binding
free energies that can sustain the flux, since high free
energies tend to reduce binding and therefore seques-
tration.

This central trade-off is not apparent in the
Michaelis-Menten model of Eq. 1. In that model,
there is no penalty to the binding free energy of the ES
complex being arbitrarily low, because it is assumed
that the complex can always be converted to E + P
quickly. However, in our more complete model, if ES
is to be rapidly converted into EP, the EP state must
also be low in free energy. If this is the case, how-
ever, it will tend to frustrate the subsequent release of
the product. As a result, optimal values of ∆GES are
moderate.

Beyond this moderation of ∆Gopt
ES , we find a lin-

ear relationship between ∆Gopt
ES and ∆Gopt

EP: ∆Gopt
EP =

∆Gopt
ES + ∆µ + ∆Gc. In our simple model, this rela-

tionship means that reactions can occur arbitrarily fast
out of the ES and EP states, avoiding sequestration,
without compromising the tendency of the reactions
to proceed in the desired direction (ES→ EP rather
than E, EP→ E rather than ES). At a deeper level, it
reflects the fact that there is no point in making the
product bind arbitrarily more weakly to the catalyst
than the substrate does, or the catalytic step ES→ EP
will never occur. Similarly, however, there is no point
in driving the ES→ EP reaction forwards using a far
more favourable enzyme-product complex, since this
product would never be released. In fact, in the default
symmetric case in which the kinetic offset parameter
∆Gc = 0 (Fig. 6 c), the difference in standard binding
free energies is given by precisely the intrinsic free en-
ergy difference of the free product and substrate, ∆µ.
If ∆µ > 0, the released free energy can compensate for
a limited increase in ∆Gopt

EP relative to ∆Gopt
ES , allowing

a somewhat enhanced rate of product release.
Hitherto, we haven’t discussed the free-energy pro-

file for the optimal catalyst as it converts a single sub-
strate into a product in detail. Naı̈vely, one might as-
sume that to optimise the rate at which the system
moves through its states, the optimal free energies
would form a nice ladder of roughly evenly-spaced
states. However, in their paper, in which the sole aim
was to maximise flux, Brown and Sivak noted that un-
even free energy drops could “compensate for differ-
ences in bare rate constants” [54]. Whilst such an ef-
fect is doubtless also present in our system, we also
see that the additional need to minimise sequestra-
tion leads to the intermediate states being systemati-
cally pushed to higher free energies as illustrated in
Fig. 6 (c).

3.2. Non-diffusion controlled binding rates

With respect to Equation 4, we have assumed
hitherto that the binding rate constants k+0, k−1 are

diffusion-controlled and therefore fixed, independent
of the binding free energies ∆GES and ∆GEP. While
this approximation may be reasonable in many cases,
we have effectively assumed that dissociation reac-
tions ES → E + S and EP → E + P and can oc-
cur arbitrarily fast if ∆GES and ∆GEP are sufficiently
large, which is likely to be unphysical. Fortunately,
our solutions predict finite values of

(
∆Gopt

ES ,∆Gopt
EP

)
for any target flux Ψ0, so our optimal enzymes are not
inherently pathological in this fashion. Nonetheless,
it is reasonable to consider the possibility that suffi-
ciently large, positive values of ∆GES and ∆GEP cause
the assumption of diffusion-controlled binding rates to
break down, leading to a “reaction-limited” regime in
which association rates are suppressed as bonding be-
comes more and more unfavourable.

We incorporate this possibility by using the
same modified Metropolis dynamics applied to the
ES
 EP transition in Section 3.1. Specifically, we
assume that the E + S
 ES transition is backwards
labile (binding is diffusion limited) up until a bind-
ing free energy of ∆GES

c , and forwards labile (reaction
limited) above this point. Similarly, we assume that
the EP
 E + P transition is forwards labile (binding
is diffusion limited) up until a binding free energy of
∆GEP

c , and backwards labile (reaction limited) above
this point. Transition rates in the Markov model can
then be written

k+0 = k0[S ] min(1, e−(∆GES−∆GES
c )),

k−0 = k0e∆GES
c min(1, e∆GES−∆GES

c ),

k+1 = k1e∆GEP
c min(1, e∆GEP−∆GEP

c ),

k−1 = k1[P] min(1, e−(∆GEP−∆GEP
c )),

k+cat = kcat min(1, e−∆GEP+∆GES +∆µ+∆Gc ),

k−cat = kcate∆Gc min(1, e−∆GES +∆GEP−∆µ−∆Gc ). (23)

The resultant Markov process is illustrated graph-
ically in Fig 7. In this case, there are eight possible
combinations of forwards labile and backwards labile
options for the three reactions. However, for any par-
ticular set of parameters, only a maximum of seven
appear on the ∆GES − ∆GEP plane. This split into
seven regions, rather than two as in Section 3.1, is
illustrated schematically in Figure 8a. We will anal-
yse the resultant mathematical optimization problem
in Section 3.2.1, before turning to its biophysical in-
terpretation in Section 3.2.2.

3.2.1. Detailed analysis of non-diffusion-controlled
system

Our question in this setting amounts to the follow-
ing:

Question 3.6. How should binding free energies
∆GES and ∆GEP in the model of Eq. 4 be chosen to

9



Figure 7: Markov chain corresponding to Question 3.6 with rate constants governed by Equation 23. This model incorporates the idea of
non-diffusion based binding rates. Within the minimisation statement of a rate constant in the Markov chain, we label one option with a set
of regions in the ∆GES − ∆GEP plane in which it applies; the alternative is taken in the other regions. The Markov chain for each of the eight
regions can be obtained by applying the appropriate option corresponding to that region in the minimisation statement of the rate constants.

minimize sequestration R, whilst maintaining a prod-
uct output rate of Ψ0, given fixed [S ], [P] and ∆µ,
non-diffusion-controlled binding reactions, and cat-
alytic steps with fixed and finite upper bounds on their
rates given by (Eqs. 23)?

The analysis of regions I and II is identical to that
in Section 3.1.1. By similar approaches, we deduce
the directions on the ∆GES -∆GEP plane that are guar-
anteed to increase flux and/or decrease sequestration
in the different regions shown in Figure 8.

• Region III: Arguing as we did for Region II dur-
ing the proof of Lemma 3.2, one can show that
increasing ∆GES decreases retroactivity but in-
creases flux in this region.

• Region VI: Employing the same argument that
we used for Region I during the proof of
Lemma 3.1, one can show that increasing ∆GEP

decreases retroactivity but increases flux in this
region.

We have not found a direction in which R is guar-
anteed to decrease, and Ψ guaranteed to increase, for
regions IV , V VII and VIII. As a consequence, we
get a weaker result for the augmented system: the
optimal binding free energies either satisfy ∆Gopt

EP =

∆Gopt
ES +∆µ+∆Gc or lie in regions IV , V , VII or VIII.

Lemma 3.4, however, still holds for the augmented
system; if both binding free energies are increased by
the same δG > 0, R necessarily decreases. The result
can be separately verified for each region; increasing
both binding free energies reduces a non-zero subset
of lifetimes τES and τEP, and transition probabilities
PES→EP and PEP→ES . If adding δG to the binding free

energies causes the system to move between two re-
gions, the net effects can simply be added together.
The result then follows from Eq. 15.

Similarly, we can also show that the flux constraint
Ψopt ≥ Ψ0 is saturated for the augmented system.
Since, by Lemma 3.4, it is always possible to re-
duce R by increasing both binding free energies by
the same δG > 0, it only remains to be shown that
Ψ tends exponentially towards zero for sufficiently
large (∆GES ,∆GEP). As a consequence, the proce-
dure of iteratively adding δG > 0 to any candidate
pair

(
∆Gopt

ES ,∆Gopt
EP

)
with Ψ > Ψ0 > 0 is guaranteed to

eventually reach an improved solution with reduced R
and Ψ = Ψ0.

To perform this analysis, it is necessary to consider
regions IV and V . Within these regions, consider tak-
ing ∆GES ,∆GEP → ∞ at an arbitrary fixed offset,
∆GEP = ∆GES + ∆Goff . Then

lim
∆GES→∞

Ψ = k0[S ]e−∆GES +∆GES
c

PES→EPPEP→E

1 − PEP→ES PES→EP

−k1[P]e−∆GES−∆Goff+∆GES
c

PEP→ES PES→E

1 − PES→EPPEP→ES
.

(24)

This result follows from the fact that πE → 1 as
∆GES ,∆GEP → ∞. Therefore the flux can be calcu-
lated as the rate for E → ES multiplied by the proba-
bility that the transition EP→ E subsequently occurs
before ES → E, minus the equivalent term for the
conversion of P into S .

Within regions IV and V , the only effect of increas-
ing ∆GES ,∆GEP at a fixed offset is to reduce the rates
of the binding transitions by the same factor. All prob-
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Figure 8: Graphical illustration of the optimisation problem 3.6, in which, at sufficiently high binding free energies, binding is reaction-limited
(rather than diffusion-limited). The space of binding energies can be divided into multiple regions in which different reactions are forward and
backward labile. If the intersection between ∆GES = ∆GES

c and ∆GEP = ∆GEP
c instead occurs above the line ∆GEP = ∆GES + ∆µ + ∆Gc,

region VII would be replaced by region VIII, in which all reactions are forwards labile. The table to the right of the figure gives the relationship
between retroactivity and flux with respect to the change in binding free energies for various regions in the ∆GES − ∆GEP plane. In regions II
and III, one can always increase ∆GES to get to a state with higher flux and lower sequestration. In regions I and VI, one can always increase
∆GEP to get to a state with higher flux and lower sequestration. Throughout the plane, increasing ∆GES and ∆GEP by the same amount reduces
sequestration R; systems with lower target fluxes will therefore be found towards the top right of the graph. Consequently, optimal binding
energies lie either on ∆Gopt

EP = ∆Gopt
ES + ∆µ + ∆Gc or in the regions IV,V,VII,VIII.

abilities Pi→ j are unchanged. Therefore

lim
∆GES→∞

Ψ = const e−∆GES (25)

and the flux necessarily tends exponentially to zero
if ∆GES ,∆GEP → ∞ with an arbitrary, fixed offset.
We therefore conclude that it is always possible to
improve any candidate pair

(
∆Gopt

ES ,∆Gopt
EP

)
with Ψ >

Ψ0 > 0, and that continued improvements will even-
tually reach a solution with reduced R and Ψ = Ψ0.

3.2.2. Qualitative physical discussion of non-
diffusion-controlled system

The system with a crossover to reaction-controlled
binding kinetics reproduces most of the biophysics
observed in the simpler system of Section 3.1. Typ-
ical examples of R and Ψ contour plots are given in
Fig. 9, along with points indicating optimal designs
for a range of target fluxes Ψ0. The central trade-off

that limits ∆Gopt
ES to moderate values is still present,

and the need to suppress retroactivity pushes binding
free energies as high as possible whilst maintaining
Ψ0, leading to a free-energy profile that is not uni-
formly downhill.

The major difference is that optimal solutions are
no longer constrained to lie exactly on the line
∆Gopt

EP = ∆Gopt
ES +∆µ+∆Gc if the free energies are suf-

ficiently positive. To understand why, consider what
happens when we decrease ∆GES and move away
from the line ∆Gopt

EP = ∆Gopt
ES +∆µ+∆Gc into region IV .

Generally, decreasing binding free energies increases
sequestration. However, unlike in region II, such a
move can potentially increase the flux Ψ, because the

rate of substrate binding now increases exponentially.
Against this fact, the rate of transition for ES→ EP
will also be reduced, tending to reduce Ψ. Moving
away from the line is therefore now a potentially fruit-
ful way to trade sequestration for flux if the increase
in flux due to the binding rate outweighs the negative
contribution due to the decrease in the catalytic rate.

Qualitatively, the relative strength of the two contri-
butions depends on whether this reduction in the rate
of ES→ EP has a noticeable effect on the probability
to proceed to the EP state once bound in the ES state:

PES→EP =
kcate−∆GEP+∆GES +∆µ+∆Gc

kcate−∆GEP+∆GES +∆µ+∆Gc + k0e∆GES
c
. (26)

If the first term in the denominator of Eq. 26 is larger
the second, then transitions ES→ EP are sufficiently
rapid relative to ES→ E that decreasing ∆GES by a
certain amount affects PES→EP, and hence the flux, by
much less than the exponential increase in the binding
rate. Thus leaving the ∆Gopt

EP = ∆Gopt
ES + ∆µ+ ∆Gc line

to enter region IV can be beneficial.
This strategy, however, is clearly limited. A sig-

nificant decrease in ∆GES will quickly suppress the
catalytic step, and PES→EP will quickly tend towards
PES→EP ∝ exp∆GES . At this point, there will be negli-
gible gains in the flux by continuing to reduce ∆GES ,
while increases in R will continue. We thus expect
any deviation from the line ∆Gopt

EP = ∆Gopt
ES +∆µ+∆Gc

into region IV to be limited.
A similar explanation can be made for optimal solu-

tions in region V; in this case, a decrease in ∆GEP will
tend to increase sequestration, but unlike in region I
this decrease will tend to slow down unwanted back-
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Figure 9: Optimal solutions for the non-diffusion-controlled system can deviate from the line ∆Gopt
EP = ∆Gopt

ES + ∆µ + ∆Gc, but they do not
deviate that far from this line; they tend towards a parallel line with a constant offset between ∆Gopt

EP and ∆Gopt
ES black lines with a gradient of

unity are drawn as a guide to the eye. We show contour plots for sequestration and flux for two exemplar systems, with optimal binding free
energies for different target fluxes Ψ0 shown as points, and the maximal possible flux in the system is illustrated by a green dot. The solid red
diagonal line indicates ∆GEP = ∆GES + ∆µ + ∆Gc. In the limit of high optimal binding energies, optimal points converge to a line parallel to
∆GEP = ∆GES +∆µ+∆Gc, denoted by a solid balck line in the figure. In (a,b), the peak of flux Ψ is found on the line ∆GEP = ∆GES +∆µ+∆Gc
between regions I and II; some solutions are therefore found on this line to the right of the maximal flux point, but deviation is observed for
lower target fluxes which are maximised in regions V and VII. In (c,d), the maximal flux is found in region VII, and no solutions are found
on the line between regions I and II. Parameters used for (a,b): [Etot] = 4.87786, [S ] = 1.61829, [P] = 1.76047, k0 = 1.62906, k1 =

2.80739, kcat = 4.61582,∆µ = 1.92716, E1 = 3.60036, E2 = 7.15195,∆Gc = 2.72592. Target fluxes Ψ0 : (0.3, 0.5, 0.7, 1.1, 1.8, 2.5, 3.2, 3.9)
. Parameters used for (c,d): [Etot] = 4, [S ] = 7, [P] = 5, k0 = 3, k1 = 5, kcat = 10,∆µ = 3, E1 = 1, E2 = 3,∆Gc = 1. Target fluxes
Ψ0 : (12, 14, 16, 17.7, 18.2).
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wards steps EP→ ES without also slowing the release
of product from the EP state by the same amount.
This tactic is potentially effective in increasing the
flux Ψ only while the probability of backwards steps,

PEP→ES =
kcate∆GEP−∆GES−∆µ

kcate∆GEP−∆GES−∆µ + k1e∆GEP
c
, (27)

remains high. Again, however, the exponential reduc-
tion in the rate of backwards steps with ∆GEP will
quickly reduce the incentive to decrease ∆GEP further,
whereas the sequestration of the enzyme by the prod-
uct will continue to increase. We thus also expect any
deviation from the line ∆Gopt

EP = ∆Gopt
ES +∆µ+∆Gc into

region V to be limited.
Despite the breakdown of the tight constraint on

∆Gopt
EP and ∆Gopt

ES , we therefore still expect the free
energies to be closely linked. Moreover, this link is
due to the physical principles outlined in Section 3.1:
∆Gopt

ES shouldn’t be reduced too far relative to ∆Gopt
EP,

or it will compromise the ES→ EP transition; and
∆Gopt

EP shouldn’t be reduced too far relative to ∆Gopt
ES or

any favourable increase in the tendency for ES→ EP
to be unidirectional will be outweighed by increased
product binding. Randomly-generated example sys-
tems bear out the intuition of this semi-quantitative
analysis (Fig. 9). Optimal points stay relatively close
to the ∆Gopt

EP = ∆Gopt
ES +∆µ+∆Gc line, and importantly

do not appear to continue to move further and further
away from it as the target flux Ψ0 is taken to zero. In-
deed, optimal pairs

(
∆Gopt

EP,∆Gopt
ES

)
tend toward a line

parallel to ∆Gopt
EP = ∆Gopt

ES +∆µ+∆Gc, as would be pre-
dicted if the deviation from the line was constrained
by a system-specific limit on the fractions in Eq. 26
and 27.

4. Conclusions

We have addressed the question of how catalytic
enzymes might be designed or evolved to achieve a
target rate of substrate turnover whilst minimizing en-
zymatic sequestration. This goal maximises the effi-
ciency of metabolic enzymes, and is also helpful in
the context of signalling and information-processing
tasks. Our results, highlighting key trade-offs in
the structure of intermediate enzyme-substrate com-
plexes, should inform the way we rationalize the
operation of natural systems and design synthetic
analogs. These results are particularly relevant to the
design of synthetic information-processing networks
– eg. [59] – since sequestration-driven retroactivity
[24, 25, 26, 27, 28, 29] disrupts our ability to ratio-
nally design complex circuits from simple modular
components.

Specifically, we have demonstrated that investi-
gating this question meaningfully requires the use
of a more sophisticated model than the standard
Michaelis-Menten description of enzymatic kinetics.

Using a three-state model, with physically reasonable
assumptions on the dependence of reaction rates on
binding free energies, we have shown that this chal-
lenge centres around the key trade-off in enzymatic
kinetics. Namely, binding to substrates should neither
be too strong, since the substrate-bound states will act
as stable sinks, nor should it be too weak, since the
progress of the reaction will be hampered. The opti-
mal binding free energies are therefore moderate.

We also find that the optimal binding free energies
of the substrate and the product are closely related to
each other. In our simplest description, their differ-
ence ∆Gopt

ES − ∆Gopt
EP is a constant, related to the in-

trinsic free-energy difference between substrates and
products. This design principle runs counter to the
intuition that either: (a) ∆Gopt

ES − ∆Gopt
EP should be ex-

tremely negative to favour release of the product; or
(b) ∆Gopt

ES − ∆Gopt
EP should be very positive to favour

the enzyme-bound catalytic turnover. In fact, to max-
imise flux at fixed sequestration, an intermediate value
is preferred, with the intrinsic chemical free energy
difference between P and S potentially compensating
for a slightly negative ∆Gopt

ES − ∆Gopt
EP.

Interestingly, our model predicts that the difference
∆Gopt

ES − ∆Gopt
EP (unlike the individual optimal binding

free energies) is largely insensitive to [P] and [S ],
and is an intrinsic feature of the enzyme-substrate-
product chemistry. It would therefore be a natural
candidate for an experimental or bioinformatics inves-
tigation exploring the question of which, if any, natu-
ral enzymes are optimized to minimize sequestration
at fixed flux. It should be noted that even for biolog-
ical systems that would benefit from reduced seques-
tration, other constraints are present in a real environ-
ment. For example, we have not considered how min-
imising sequestration might affect the specificity with
which an enzyme interacts with one substrate rather
than alternatives.

One way to phrase the above result is that the free
energy released by product formation should be ex-
ploited to weaken the binding between the product
and the catalyst to optimize turnover while minimis-
ing sequestration. Although our work has focused on
a simple catalytic conversion of a single substrate into
a product, this idea is more general. Another im-
portant mechanism of cellular information process-
ing is the copying of template polymer sequences,
as in RNA transcription and protein translation [4].
The templates involved must act catalytically to ful-
fill their biological function [60, 61], but current at-
tempts to emulate these systems in synthetic contexts
have struggled to generate spontaneous detachment of
the products [62]; the templates effectively become
sequestered by the copy polymers formed. Our re-
sults here suggest that an effective strategy would
be to channel the free energy released by polymeri-
sation into weakening interactions between template
and copy, and we have recently presented a DNA reac-
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tion motif with exactly the required functionality [63].
In Ref. [54], Brown and Sivak considered the chal-

lenge of maximizing the flux of trajectories through
a 3-state system; they did not simultaneously con-
sider minimising the occupancy of the intermediate
states, as we do here. They found that the ideal di-
vision of free-energy drops was dependent on the de-
tailed functional dependence of the transition rates on
free-energy differences. To meaningfully tackle our
optimisation problem, it was necessary not only to
make some clear assumptions about these functional
forms. We had to go beyond the simple characterisa-
tion of reactions as “forwards labile” and “backwards
labile” [54], by introducing limits to the speed of any
one reaction – an approach that is likely to be relevant
to a broad class of optimization problems in molecular
systems.

By introducing these constraints, we found tighter
restrictions on the shape of free energy landscapes
than Brown and Sivak - in particular, the tendency of
the free energy difference between intermediate states
to be closely related to the overall free energy change
of reaction. Moreover, the challenge of optimizing
flux alone would give only the single point of maximal
flux highlighted in green in Figs. 6, 9. Demanding a
certain flux with minimal sequestration instead gives
a family of solutions, with lower required fluxes lead-
ing to higher binding free energies for both enzyme-
substrate and enzyme-product complexes. These fam-
ilies of optimal solutions tend to follow lines with
gradient 1 in ∆GES − ∆GEP-space, illustrating clearly
the close relationship between enzyme-substrate and
enzyme-product binding free energies in the context.

Our model of a catalyst with two discrete,
metastable intermediate states is highly simplified,
and more sophisticated descriptions with a higher
number or even a continuum of intermediate states are
possible. More complex descriptions of the depen-
dence of transition rates on system parameters could
also be considered, such as a smoothed version of the
current sharp transition between forwards and back-
wards labile as the free energy of reaction is changed.
A candidate would be transition rates proportional to
1 − tanh(∆G/2), where ∆G is the free energy change
assoicated with the transition. Our proofs, which rely
on the specific functional forms of the rates, may not
hold exactly in such a smoothed model. However, we
expect that smoothed models would produce results
that are consistent with the overall biophysics iden-
tified here, with the smoothing region making other-
wise exact results approximate. It wold also be inter-
esting to consider time-dependent concentrations of
substrate and product (rather than a fixed represen-
tative concentration for each). As a general point,
however, we have argued at our model is the simplest
in which the question of minimizing sequestration at
fixed flux has a meaningful answer, and our approach
therefore provides insight into the problem in general.

Any additional detail is probably best suited to the
study of specific systems in which the myriad choices
necessary can be justified by reference to the particu-
lar biochemistry.

It would perhaps be of greater interest to treat the
turnover of any ancillary fuel molecules, such as ATP,
explicitly. In particular, we have ignored the pos-
sibility of futile cycles in which fuel molecules are
consumed without converting substrate into product.
It is possible that such cycles might allow reduced
retroactivity at a given flux, at the expense of addi-
tion consumption of chemical free energy, analogous
to the increases in molecular recognition specificity
that can be achieved through “kinetic proofreading”
schemes [64, 65, 66]. It would be instructive to com-
pare such a strategy to the effect of simply increasing
the intrinsic chemical free energy difference between
substrates and products. Previous work [29, 27] has
shown that fuel consuming approaches can be effec-
tive at reducing retroactivity when optimising at the
level of the molecular network; we raise the question
of whether this strategy is also effective at the level of
individual enzyme-substrate-product interactions.

5. Codes

The codes for generating the figures are available at
https://doi.org/10.5281/zenodo.2656526.
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A. Zanghellini, J. Gallaher, J. Betker, F. Tanaka, C. Barbas,
et al. De novo computational design of retro-aldol enzymes.
Science, 319(5868):1387–1391, 2008.

[9] J. Siegel, A. Zanghellini, H. Lovick, G. Kiss, A. Lam-
bert, J. Clair, J. Gallaher, D. Hilvert, M. Gelb, B. Stod-
dard, et al. Computational design of an enzyme catalyst for
a stereoselective bimolecular diels-alder reaction. Science,
329(5989):309–313, 2010.

[10] L. E. Ulrich, E.V. Koonin, and I.B. Zhulin. One-component
systems dominate signal transduction in prokaryotes. Trends
Microbiol., 13(2):52–56, 2005.

[11] G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Su-
darsanam. The protein kinase complement of the human
genome. Science, 298:19121934, 2002.

[12] I. Herskowitz. MAP kinase pathways in yeast: For mating
and more. Cell, 80:187–197, 1995.

[13] T. E. Ouldridge, C. C. Govern, and P. R. ten Wolde. The ther-
modynamics of computational copying in biochemical sys-
tems. Phys. Rev. X, 7:021004, 2017.

[14] C. C. Govern and P. R. ten Wolde. Optimal resource alloca-
tion in cellular sensing systems. Proc. Nat. Acad. Sci. USA,
111:17486–17491, 2014.

[15] J. P. Armitage. Bacterial tactic responses. Adv. Microb. Phys-
iol., 41:229–289, 1999.

[16] C. Briat, A. Gupta, and Mustafa Khammash. Antithetic in-
tegral feedback ensures robust perfect adaptation in noisy
biomolecular networks. Cell Syst., 2:15–26, 2016.

[17] G. Encisco and J. Kim. Absolutely robust controllers for
stochastic chemical reaction networks. arXiv:1910.03208,
2019.

[18] D. Cappelletti, A. Gupta, and M. Khammash. A hidden
integral structure endows absolute concentration robust sys-
tems with resilience to dynamical concentration disturbances.
bioRxiv 830430, 2019.

[19] P. Mehta, A.H. Lang, and D.J. Schwab. Landauer in the age of
synthetic biology: Energy consumption and information pro-
cessing in biochemical networks. J. Stat. Phys., 162(5):1153–
1166, 2016.

[20] A. Goldbeter and D. Koshland. An amplified sensitivity aris-
ing from covalent modification in biological systems. Proc.
Natl. Acad. Sci. U.S.A., 78(11):6840–6844, 1981.

[21] C. Huang and J. Ferrell. Ultrasensitivity in the mitogen-
activated protein kinase cascade. Proc. Natl. Acad. Sci.
U.S.A., 93(19):10078–10083, 1996.

[22] J. Ferrell and S. Ha. Ultrasensitivity part I: Michaelian re-
sponses and zero-order ultrasensitivity. Trends Biochem. Sci.,
39(10):496–503, 2014.

[23] S. Jayanthi and D. Del Vecchio. Retroactivity Attenuation in
Bio-molecular Systems based on Timescale Separation. IEEE
Trans. Autom. Control, 56(4):748–761, 2011.
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