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ABSTRACT 

 

Advanced methods for the analysis of performance and injury in elite soccer 

Edward Leng, University of Bath, 2020 

 

In elite soccer, monitoring training and match load using Global Navigation Satellite System 

(GNSS) devices is well established and provides insight to assist practitioners to plan training 

that optimises performance and minimises injury risk. The influx in available GNSS data 

enables practitioners and researchers to more easily interrogate data and push the boundaries 

of performance. However, it also introduces communication challenges to provide coaches 

with succinct messages to effect training decisions. This thesis aims to investigate the 

applicability of GNSS devices to accurately provide data and instigate the subsequent analysis 

process to provide insight to the association between training load, injury and performance. 

Results showed position tracking devices to acceptably measure team-sport specific 

movement with caution recommended when measuring high complexity movements. This 

element of the thesis was carried out early in the PhD and the author notes that providers can 

now externally certify accuracy through FIFA standardised testing.  

Training load data from an English Premier League club was contextualised using a match 

data reference method and then simplified using dimensionality reduction which identified 

three pertinent components of training load. This methodology was used using data from 

Australian A-League soccer players and showed that conscious manipulation of training loads 

over an extended multi-season period may be able to influence team injury rates in professional 

soccer. Analysis on the same group of player across the same time period showed that training 

load did not offer any additional insight into performance estimation over simple forecasting 

models. Additionally, none of the models within the study performed well enough to be a 

useful practical tool to predict performance. 

This research offers insight into training analysis techniques and applied case studies of load, 

providing practitioners with examples of how to manipulate GNSS data for effective use to 

inform strategic decisions.  

  

 

 

  



3 
 

ACKNOWLEDGEMENTS 

 

I am indebted to a number of people for their support and encouragement throughout the past 

seven years, without which, this challenging yet enjoyable project would never have been 

completed.  

Firstly, thank you to Professor Keith Stokes, Dr Dario Cazzola, Dr Grant Trewartha and the 

wider staff at the University of Bath. Grant and Dario have supported me throughout, always 

available to offer patient advice and have kept me motivated through many tough periods. 

Keith has expertly guided me through my journey and his learned experience has provided the 

needed direction at every key turn. 

I would also like to thank staff and players at Tottenham Hotspur Football Club and City 

Football Group for their vision to firstly instigate the project and then progress the research as 

my employment changed. Particularly, I would like to thank Wayne Diesel (formally 

Tottenham Hotspur), Nathan Gardiner (Tottenham Hotspur), Sam Erith and Andrew 

McKenzie (City Football Group). Additionally, I would like to thank the staff at La Trobe 

University, particularly David Carey. The support David provided, firstly in conjunction with 

my applied role, had a huge influence on the research direction and the subsequent statistical 

support and advice he provided was invaluable.  

Finally, I would like to thank my family for their belief in me throughout the past seven years. 

I would like to give particular acknowledgement to my wife Hannah; your support, patience, 

level of understanding and ability to find a way to keep me going is unrivalled. When I 

selfishly took this project on you encouraged me, when I moved us to the other side of the 

world you helped guide me and during the final push you have been there for me in every way 

possible. 

 

  



4 
 

TABLE OF CONTENTS 

 

ABSTRACT ..............................................................................................................2 

ACKNOWLEDGEMENTS ........................................................................................3 

TABLE OF CONTENTS ...........................................................................................4 

LIST OF FIGURES ...................................................................................................7 

LIST OF TABLES .....................................................................................................9 

CHAPTER 1: INTRODUCTION ............................................................................. 10 

CHAPTER 2: LITERATURE REVIEW .................................................................. 13 

2.1 Introduction ..................................................................................................... 13 

2.2 Match analysis in elite soccer ............................................................................ 13 

2.2.1 Match analysis technology .................................................................................... 13 

2.2.2 The physical profile of elite soccer ....................................................................... 14 

2.2.3 The trends of physical profile in elite soccer ........................................................ 17 

2.3 Technology measuring athletic movement............................................................ 18 

2.3.1 Introduction ........................................................................................................... 18 

2.3.2 Evolution of satellite positioning technology ....................................................... 18 

2.3.2 Accuracy of satellite technology ........................................................................... 21 

2.3.3 Validity and reliability of GNSS devices .............................................................. 23 

2.4 Monitoring load in elite soccer .......................................................................... 25 

2.4.1 Introduction ........................................................................................................... 25 

2.4.2 The monitoring of soccer player load using external load metrics ....................... 26 

2.4.3 The monitoring of soccer player load using internal load metrics ........................ 26 

2.4.4 Analysing training load data ................................................................................. 27 

2.5 Epidemiology of injury in elite soccer ................................................................. 30 

2.5.1 Introduction ........................................................................................................... 30 

2.5.2 Load monitoring and injury .................................................................................. 33 

2.5.3 Injury prediction .................................................................................................... 35 

2.6 Measuring performance in elite soccer................................................................ 36 

2.6.1 Introduction ........................................................................................................... 36 

2.6.2 Metrics to measure performance ........................................................................... 37 

2.6.3 The association between physical metrics and performance ................................ 38 

CHAPTER 3: THE VALIDITY OF GLOBAL POSITIONING SYSTEM (GPS) 

DEVICES FOR MEASURING DISTANCE OF TEAM-SPORT SPECIFIC 

MOVEMENT .......................................................................................................... 40 

3.1 Chapter summary ............................................................................................. 40 



5 
 

3.2 Introduction ..................................................................................................... 41 

3.3 Methods .......................................................................................................... 44 

3.3.1 Participants ............................................................................................................ 44 

3.3.2 Technologies used ................................................................................................. 44 

3.3.3 Experimental procedures ....................................................................................... 46 

3.3.4 Qualisys data processing ....................................................................................... 47 

3.3.5 Statistical analysis ................................................................................................. 48 

3.4 Results ............................................................................................................ 49 

3.5 Discussion ....................................................................................................... 53 

3.6 Practical applications ....................................................................................... 55 

3.7 Conclusion ...................................................................................................... 55 

CHAPTER 4: THE USE OF DIMENSIONALITY REDUCTION TO DESCRIBE 

TRAINING LOAD METRICS IN ELITE SOCCER ................................................. 56 

4.1 Chapter summary ............................................................................................. 56 

4.2 Introduction ..................................................................................................... 57 

4.3 Methods .......................................................................................................... 58 

4.3.1 Participants ............................................................................................................ 58 

4.3.2 Equipment ............................................................................................................. 58 

4.3.3 Study design .......................................................................................................... 58 

4.3.4 Data analysis ......................................................................................................... 60 

4.4 Results ............................................................................................................ 61 

4.5 Discussion ....................................................................................................... 64 

4.6 Practical applications ....................................................................................... 67 

4.7 Conclusion ...................................................................................................... 67 

CHAPTER 5: SEASON-TO-SEASON TRAINING LOAD CHANGE IN ELITE 

SOCCER ................................................................................................................ 68 

5.1 Chapter summary ............................................................................................. 68 

5.2 Introduction ..................................................................................................... 69 

5.3 Methods .......................................................................................................... 72 

5.3.1 Data collection ...................................................................................................... 72 

5.3.2 Injury definition .................................................................................................... 72 

5.3.3 Principal component analysis ................................................................................ 72 

5.3.3 Survival analysis ................................................................................................... 73 

5.4 Results ............................................................................................................ 73 

5.4.1 Principal component analysis ................................................................................ 74 

5.4.2 Distribution of cumulative loads over a season .................................................... 75 

5.4.3 Distribution of load within micro-cycles .............................................................. 76 



6 
 

5.4.4 Relationship between pre-season load and injury rate .......................................... 78 

5.5 Discussion ....................................................................................................... 79 

5.5.1 Dimensionality reduction of training load data ..................................................... 79 

5.5.2 Pre-season load and injury rate ............................................................................. 80 

5.5.3 Strategies for increasing training load................................................................... 80 

5.6 Practical applications ....................................................................................... 83 

5.7 Conclusion ...................................................................................................... 83 

CHAPTER 6: PREDICTIVE MODELLING OF TRAINING LOADS AND 

PERFORMANCE IN ELITE SOCCER ................................................................... 84 

6.1 Chapter summary ............................................................................................. 84 

6.2 Introduction ..................................................................................................... 85 

6.3 Methods .......................................................................................................... 87 

6.3.1 Data collection ...................................................................................................... 87 

6.3.2 Relationship between InStat player ratings and match performance .................... 87 

6.3.2 Estimation of player performance ......................................................................... 88 

6.4 Results ............................................................................................................ 89 

6.4.1 InStat Index to quantify soccer performance ........................................................ 89 

6.4.2 Comparison of forecasting methods ..................................................................... 90 

6.4.3 Distribution of fitted Banister parameters ............................................................. 92 

6.5 Discussion ....................................................................................................... 93 

6.5.1 InStat Index to quantify soccer performance ........................................................ 93 

6.5.2 Selection of models and metrics ........................................................................... 94 

6.5.3 Performance prediction model comparison .......................................................... 94 

6.5.4 Critique of Banister model .................................................................................... 95 

6.6 Practical applications ....................................................................................... 95 

6.7 Conclusion ...................................................................................................... 96 

CHAPTER 7: GENERAL DISCUSSION ................................................................. 97 

7.1 Introduction .................................................................................................. 97 

7.2 Overall discussion ......................................................................................... 98 

7.2.1 The validity of global positioning system (GPS) devices for measuring distance of 

team-sport specific movement ....................................................................................... 98 

7.2.2 The use of dimensionality reduction to describe training load metrics in elite 

soccer ........................................................................................................................... 100 

7.2.3 Season-to-season training load change in elite soccer ........................................ 101 

7.2.4 Predictive modelling of training loads and performance in elite soccer ............. 103 

7.3 Future directions ......................................................................................... 104 

7.4 Thesis conclusion ........................................................................................ 105 



7 
 

REFERENCE LIST............................................................................................... 106 

 

LIST OF FIGURES 

 

Figure 2.1: Football match and training analysis papers published in the Journal of Sports 

Sciences 

Figure 2.2: Cartesian coordinates indicated by (X, Y, Z) used to compute satellite location  

Figure 2.3: Relationship between the two signal times during the GPS pseudorange 

calculation process 

Figure 2.4: Theoretical framework of the training process  

Figure 2.5: Schematic diagram summarising technologies used to measure internal load 

Figure 2.6: Athlete Management System (AMS) development steps in team sports 

Figure 2.7: Example codes to classify sports injury surveillance 

Figure 2.8: The workload–injury aetiology model 

Figure 2.9: Growth in research including the keywords ‘training’ and ‘injury’ since 2000 

Figure 2.10: Common statistical terms used to distinguish between associations and 

prediction 

Figure 2.11: Venn diagram depicting a generalised integrated approach to quantifying and 

interpreting the physical match performance of soccer players 

Figure 3.1: Experimental set-up and device configuration in custom made vest during an 

acceleration trial 

Figure 3.2: Motion capture system (Qualisys) set up configuration 

Figure 3.3: Motion capture system (Qualisys) identification of marker model 

Figure 3.4: Schematic of validity trial protocols 

Figure 3.5: Linear regression plots for Qualisys and Viper GPS device distance measurement 

of three trial protocols 

Figure 3.6: Linear regression plots for Qualisys and Minimax GPS device distance 

measurement of three trial protocols 

Figure 3.7: Linear regression plots for Qualisys and SPI-ProX GPS device distance 

measurement of three trial protocol 



8 
 

Figure 4.1: Visual representation of training load metrics for one training session expressed 

as percentage of match load 

Figure 4.2: Multiple-metric training data for one soccer player for all completed training 

sessions during the 2013/14 season 

Figure 4.3: Scree plot of Eigenvalues for each principal component 

Figure 5.1: PCA Scree plot showing percentage of variance explained by each principal 

component 

Figure 5.2: Variable factor maps showing how each training load metric is related to principal 

components (a) PC1 and PC2, (b) PC1 and PC3, (c) PC2 and PC3 

Figure 5.3: Cumulative training load plots across three seasons. PC1, PC2 and PC3 rolling 

average over 4 days and 21 days 

Figure 5.4: Box Whisker plot showing distribution of training load (represented by (a) PC1, 

(b) PC2 and (c) PC3) within micro-cycles across each season 

Figure 5.5: Hazard ratios and 95% confidence intervals for the effects of pre-season training 

(quantified using principal component scores) on in-season injury rate 

Figure 5.6: Rolling 21-day average volume load scores compared to the pooled mean and 

SD for all players 

Figure 6.1: Relationship between team InStat Index score differential and (a) goal difference, 

(b) expected goal difference 

Figure 6.2: Median and interquartile range of InStat Index prediction error (absolute) for each 

prediction method 

Figure 6.3: Median and interquartile range of InStat Index prediction error percentage 

(relative) for each prediction method 

Figure 6.4: Variation of InStat Index prediction errors for different amounts of player match 

performance observations 

Figure 6.5: Distribution of banister model parameters as the number of player matches 

increases 

 



9 
 

LIST OF TABLES 

 

Table 3.1: Descriptive data for validity trial protocols (ACC, COD and ZIG) 

Table 3.2: Criterion validity statistics for Viper, Minimax and SPI GPS Devices for each 

validity trial protocol 

Table 4.1: STATSports Viper training load metrics explained 

Table 4.2: Descriptive data of position specific match output from 16 elite soccer players 

across one competitive season  

Table 4.3: Eigenvalues and percentage of variance explained for each component from the 

principle component analysis  

Table 4.4: Component correlation matrix from the principal component analysis of training 

data 

Table 5.1: Raw correlation values for each metric across each principal component (PC). PC1 

– PC3 were selected as new components 

Table 5.2: Mean component values comparing match load between three seasons for PC1, 

PC2 and PC3 

Table 5.3: Descriptive injury data for all and definition specific injuries highlighting total 

incidence, relationship to exposure incidence for match play  

Table 6.1: Player performance forecasting models 

Table 6.2: InStat Index descriptive data 

 

 

 

 

 

 

 

 

 

 



10 
 

CHAPTER 1: INTRODUCTION 

 

‘Football as we know it’ describes the establishment of the original rules of association 

football, commonly known as soccer, by the United Kingdom Football Association in 1863 

(FIFA, 2018). Soccer is the most popular sport worldwide, with an estimated 500 million 

players (Krustrup and Krustrup, 2018) including 300 million formally registered with clubs 

(Kahn et al., 2012).  

A key reason for the popularity of soccer is its simplicity to participate - a ball and flat area 

offer the simple backdrop for anyone across the world to play. Football associations publish 

the laws of the game which establish pitch dimensions, ball size and officiating. The 

standardised laws of the game have created a multi-tiered competitive system across the world 

culminating in the most globally viewed sport, with over 3.5 billion fans watching the 2014 

world cup matches on television (Huffingtonpost.com, 2018).  

Success for elite soccer is measured through various metrics including fan popularity, 

commercial power and financial profit margin but the ultimate measure of success, impacting 

all other areas, is the ability to win respective local and international competitions. Soccer 

economics is a widely researched subject (Dabscheck, 2010; Littlewood, 2015) that shows the 

magnitude and significance of finance within the industry. Elite clubs collect substantial 

revenues from commercial partners and television rights which in turn, have increased player 

salaries and transfer fees. The English Premier League (EPL) television rights (2016-2019) 

were sold for £8.4 billion, a contributing factor to what is the richest league in the world 

(Guardian.com, 2017). The increase in monies available to clubs mean that players have 

become expensive assets and investment in their well-being and performance has grown 

substantially. It was apparent that the industry could no longer rely on the traditional methods 

of previous decades (Reilly, 2007), contributing to a significant shift towards sports science 

as a field to support the development of elite players for fitness, strength, nutrition, workload 

and recovery (Kennedy and Kennedy, 2016) in order to maximise output.  

The field of sports science dates back to the pioneering work of Hill, Meyerhof and Kroch 

who shared the 1922 Nobel prize for their work on muscular exercise (Powers and Howley, 

2012). There has been a remarkable expansion in sports science as an academic discipline and 

field of applied practice (Reilly and Williams, 2003). Throughout the 20th and 21st centuries; 

universities, sports teams and elite athletes have explored innovative research and applied 

recommendations to maximise human performance. The close relationship between research 

and applied environment within elite clubs has facilitated the use of multi-disciplinary 

performance teams to utilise knowledge gained to enhance player physical performance. The 

development of soccer-specific scientific research was buoyed by the introduction of the 
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World Congress of Science and Football in 1987 (Reilly and Williams, 2003). Since then, 

boundaries have been pushed across various disciplines including physiology, performance 

analysis, biomechanics and pedagogy. 

The significant changes in the modern game style and physical output (Barnes et al., 2014) 

reflect the knowledge gained from experience and research to change training practices 

ensuring players can produce high performance outputs across fifty-plus matches per season 

(Walker and Hawkins, 2018). This thesis aims to continue to bridge the gap between research 

and applied practice - it is the author’s opinion that the relationship can be embraced both 

ways - practitioners should continuously review their practice to ensure their work is 

scientifically supported and equally there is a need for research in applied work to drive the 

industry forward.  

The focus throughout this thesis is the monitoring of player workload, specifically through the 

use of Global Navigation Satellite System (GNSS) technology. Workload in sport is defined 

as the cumulative amount of stress placed on an individual from single or multiple training 

sessions and matches (Soligard et al., 2016; Eckard et al., 2018). Whilst this definition is 

specific to physical loads, it is important to acknowledge other types of loads that are 

imperative to understanding athlete performance (e. g. psychological and social). The 

increased use of GNSS devices has led to increased access to data for applied practitioners 

(Aughey, 2011); however, this presents challenges with data complexity and subsequent issues 

with presentation to coaches and players. It is critical for practitioners to process data 

effectively to make meaningful inferences on the training process and importantly, present to 

coaches to ultimately improve performance and reduce the risk of any adverse effect of 

training and match-play (Bourdon et al., 2017). 

A major adverse effect of training and match workload is injury, which is defined in soccer as 

‘any physical complaint sustained by a player that results from a football match or football 

training, irrespective of the need for medical attention or time loss from football activities. An 

injury that results in a player receiving medical attention is referred to as a ‘‘medical 

attention’’ injury, and an injury that results in a player being unable to take a full part in 

future football training or match play as a ‘‘time loss’’ injury’ (Fuller et al., 2006). Injury 

typically impacts player availability for matches, subsequently impacting team selection 

continuity (Hagglund, Walden and Ekstrand, 2013); this has substantial financial implications 

(Gallo et al., 2006) and is ultimately associated with team performance (Árnason et al., 2004; 

Eirale et al., 2013; Hagglund et al., 2013b). 

With the exponential rise in available data, practitioners require simple methods of monitoring, 

interpreting and presenting information. Exploring the methods and the subsequent association 
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of load, injury and performance in soccer is the foundation of this research. The current thesis 

aims to: 

 Investigate the applicability of GNSS devices to accurately provide data and the 

subsequent methods to provide simple and contextualised information supporting 

informed decisions to improve elite soccer performance. 

 Analyse longitudinal training and match data in elite soccer to provide insight into 

association with injury and performance. 

To investigate these aims, this thesis will: 

1. Assess the validity of GPS devices to measure the distance of team-sport specific 

movement 

2. Provide context to training load data and simplify the description of training by 

identifying pertinent metrics 

3. Provide insight into the statistical analysis of training load used in elite teams  

4. Analyse the influence of training load on the risk of injury in elite soccer players 

5. Establish whether an existing metric is appropriate to measure individual match 

performance 

6. Analyse the influence of multiple factors, including training load, to assess the 

subsequent success to predict performance  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

This review will firstly provide a synopsis of the body of literature exploring the physical 

demands and physiological requirements of a soccer match and present the technologies used 

to measure athletic movement. A key theme throughout will consider how research is linked 

to the applied environment and how outcomes affect day-to-day decisions of coaches and 

performance staff to improve player performance. Specific reference will be given to the use 

of Global Navigation Satellite System (GNSS) technology through an analysis of the validity 

and reliability as well as discussing the challenges met and advances made in elite sport today.  

Interest in research investigating athlete training load has increased in recent years (Halson, 

2014); however, much of what is utilised still comes from personal experience, anecdotal 

information and remains unpublished (Bourdon et al., 2017). This research will be discussed 

with consideration of the definition of load, categorising load metrics and how these are 

analysed and modelled to facilitate coach decision-making.  

There has been considerable research exploring the relationship between training load and 

injury (Eckard et al., 2018). An appreciation of the physiological profile of soccer players, the 

match demands of the sport and an exploration into the injury epidemiology research in elite 

soccer provides an overview to this subject, including an appreciation of the potential 

association to injury risk. Injury risk modelling explores how data analysis is used to 

investigate training load and injury patterns to predict injury and help inform load planning. 

Current research on injury risk modelling will be evaluated to explore the power and 

effectiveness of these monitoring technologies and the subsequent data analyses. Gaps and 

inefficiencies in the analysis process or practices will also be addressed.  

Performance responses to training are influenced by a myriad of training and non-training 

related factors and are difficult to accurately predict (Bourdon et al., 2017). Methods of 

measuring elite soccer performance will be considered and a review of the data analysis 

techniques used to predict performance evaluated.  

2.2 Match analysis in elite soccer 

 

2.2.1 Match analysis technology  

The study of motion analysis has been applied in soccer for over 30 years (Reilly and Thomas, 

1976). Traditional methods utilised video cameras to analyse individual players with 

researchers coding footage from match playback to quantify physical and technical actions 

(Carling et al., 2008). These time-consuming methods were replaced by superior video 
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technology where footage was digitised and synchronised from manual to automatic coding 

which automatically calculates movement activities. These methods, although detailed, 

continued to be time consuming and laborious (Bloomfield, Polman and O’Donoghue, 2007). 

Technological advancement has led to the development of electronic systems including 

automatic video tracking, local positioning measurement and GNSS (Cardinale, 2006; Linke 

et al., 2018; Beato et al., 2018).  

Thomas Reilly predicted ‘as sport and exercise grew in popularity and commercial impact, 

they are increasingly influenced by modern technology, novel applications of science being 

promoted to help solve some of the questions presented by intense activity, and to enhance 

performance’ (Reilly and Williams, 2003). Figure 2.1 shows the influx of studies published 

by the Journal of Sports Sciences, a journal with a strong history of publishing applied research 

in soccer, linked to the onset of available data from emerging technologies (Coutts, 2014). 

 

Figure 2.1 Football match and training analysis papers published in the Journal of Sports 

Sciences presented in 'Evolution of football match analysis research' (Coutts, 2014) 

 

GNSS data collected by electronic performance and tracking systems (EPTS) has been 

available to performance departments in elite sport since the early 21st century and FIFA 

sanctioned the use of EPTS in competitive match-play in 2015 (FIFA, 2019). GNSS 

technology has evolved in multiple ways, fuelled by the hunger from elite clubs for devices 

that are smaller, lighter and more accurate.  

2.2.2 The physical profile of elite soccer 

 

When designing a training programme for any sport, the first priority is to identify the physical 

demands and match to the skill abilities which an athlete needs to be successful. A common 

pitfall when performing this type of analysis is to simply describe the sport’s physical demands 
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(Cleather, 2018). Incorporating knowledge of the physiological requirements of elite soccer 

players can help practitioners design training strategies and therefore maximise performance 

potential.  

Time-motion analysis characterises soccer as high intensity, intermittent, non-continuous 

exercise that varies across playing position, competition level, country, team playing style and 

has elicited longitudinal physical demand shifts (Ekblom, 1986; Carling, Williams and Reilly, 

2005). More recently, analysis shows soccer is characterised by brief bouts of high-intensity 

linear and multidirectional activity interspersed with longer, variable recovery periods 

(Varley, Gabbett and Aughey, 2013). No criterion measure to distinguish physical 

performance in elite soccer matches has been identified but the total distance (m) covered to 

represent volume and subsequent breakdown into speed bands to represent intensity are useful 

initial indicators (Krustrup et al., 2018). Recent research also explores high-velocity 

movement along with acceleration in a bid to understand the high-intensity movement patterns 

of players during competition (Varley, Gabbett and Aughey, 2013). There is a consensus in 

sport science that effective training should closely replicate competitive performance 

conditions; therefore, training prescriptions in soccer should be based on the specific 

requirements of the playing positions (Di Salvo et al., 2007).  

 

Distance covered is used as an indicator of volume of work completed and can provide a crude 

representation of energy expenditure, shaping work-to-rest ratios and intensities of play 

(Bloomfield, Poleman and O’Donoghue, 2007). It is well researched that outfield players 

cover on average between 9,000 and 12,000 m during a full soccer match (Ekblom, 1986; 

Stolen et al., 2005; Bangsbo, Mohr and Krustrup, 2006; Di Salvo et al., 2007; Bradley, 2009). 

A soccer training programme is designed to allow a player to be able to cope with this volume 

without the adverse effects of fatigue.  

 

Midfield players cover significantly more distance (p < 0.0001) than both defenders and 

forwards with central defenders covering on average the least (Di Salvo et al., 2007), a trend 

which is in agreement with other studies (Ekblom, 1986; Bangsbo,1994; Bloomfield, Poleman 

and O’Donoghue, 2007; Bradley, 2013). Central defenders were shown to cover significantly 

less (p < 0.0001) distance than any other outfield position in a study assessing elite players 

competing in the European Champions League (Di Salvo et al., 2007). Positional variations, 

whilst maintaining importance on preparing players to cope with the full volume of a soccer 

match, provide specific physical information about each position and its demands, which could 

impact individual programming. 

 

Total distance covered does not holistically illustrate the work rate profiles of soccer athletes 

(Reilly, 1997). Analysis of distance covered within specific speed zones broadens the activity 
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profile analysis and can further inform and direct training design and prescription. Player 

activities are coded by research studies into speed thresholds for example; standing (0–0.6 

km.h-1), walking (0.7–7.1 km.h-1), jogging (7.2–14.3 km.h-1), running (14.4–19.7 km.h-1), 

high-speed running (19.8–25.1 km.h-1), and sprinting (>25.1 km.h-1) (Bangsbo, 1994; Mohr, 

Krustrup and Bangsbo, 2003; Rampinini et al., 2007; Bradley, 2009). These thresholds, albeit 

common, are not universal, so caution is advised when comparing research data. In the applied 

environment, the use of changeable intensity thresholds will have an impact on comparative 

analysis. 

English Premier League players accumulate on average 350 ± 139 m (>25.1 km.hr-1) of sprint 

distance and 1151 ± 337 m of high-intensity running distance (>19.8 km.hr-1) (Barnes et al., 

2014). These high-intensity running zones are of interest to practitioners as they correlate well 

with physical capacity (Bradley, 2011) and hamstring injury risk (Duhig et al., 2016). Central 

defenders cover the lowest distance at high intensity (>19.8 km.hr-1) and spend significantly 

more time (p < 0.0001) walking and jogging (0–11 km/h) (Di Salvo et al., 2007). The same 

study, analysing data from the European Champions League, revealed both wide midfield and 

wide defender positions complete more sprints than corresponding central formations. The 

capability to execute bouts of high intensity exercise repeatedly during a match is of major 

importance in soccer (Bangsbo, 1994) and the data informing practitioners of positional 

variation can shape the individualisation of training programmes to improve match output and 

reduce the risk of injury.  

Technological advancement has allowed researchers to investigate the output and demands of 

the change of speed and direction. Physical testing shows a high correlation between maximal 

acceleration and maximal velocity; however, research has shown there is a need to distinguish 

between these physical metrics as during match-play a player is not always required to 

maximally accelerate to achieve maximal velocity, and performing a maximal acceleration 

will not always lead to maximal or high-velocity running (Varley and Aughey, 2013). 

Additionally, soccer players undertake an 8-fold greater number of accelerations than sprints 

during match-play (Varley and Aughey, 2013). Performing an acceleration from a lower 

velocity can match or even exceed the power output required to maintain a higher velocity 

(Osgnack et al., 2010) and high levels of accelerations in matches and training over a 4-week 

period can lead to a significant increase in the risk of injury (RR=3.84, 95% CI 1.57 to 9.41, 

p=0.003) (Bowen et al., 2017). The number of maximal accelerations was homogenous across 

all outfield positions with the exception of wide defenders who performed the greatest number 

of maximal accelerations and low velocity accelerations across all playing periods (P < 0.006 

and P < 0.001 respectively) (Varley and Aughey, 2013). This could be due to wide defenders 

often being required to perform both defensive and offensive duties resulting in constant back 
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and forth movement which may explain the high number of accelerations and sprints 

undertaken.  

Other actions performed during match play contributing to total energy expenditure include 

heading, blocking (Bloomfield, Poleman and O’Donoghue, 2007), tackling, jumping 

(Bangsbo, Mohr and Krustrup, 2006) kicking and dribbling (Bangsbo, 1994). The exertional 

cost from dribbling a soccer ball has been reported at 5.2 kJ·min-1 (Reilly and Gilbourne, 

2003) and alongside time-motion information, these actions need to be acknowledged when 

planning training programmes to prepare players for regular match exposure. 

An appreciation of the physiological requirements of elite soccer players can help practitioners 

design training strategies. It has been shown that it is beneficial for elite players to have a high 

VO2max, typically between 55 and 65 ml.kg.min-1 (Bangsbo, 1994, Magalhaes Salas et al., 

2001); have high anaerobic capacities to perform the high-speed actions impacting on soccer 

performance (Little and Williams, 2005) (peak lactate levels of 14 mmol.L-1 have been 

recorded during a match) (Stolen et al., 2005); and show high levels of a range of strength 

based physical qualities including acceleration, maximal speed and agility (Little et al., 2005). 

Knowledge of the physiological and biomechanical factors that determine performance will 

allow specific training programmes to be designed to address player weaknesses, and 

ultimately, to improve match performance (Little et al., 2005). 

2.2.3 The trends of physical profile in elite soccer 

 

Soccer has been described as stochastic, intermittent, acyclical, variable and unpredictable 

(Nicholas et al., 2000). Physical profiles can vary between playing position, competition level 

and change longitudinally (Carling et al., 2008). 

There is a general trend that a higher standard of soccer elicits a higher intensity output of 

physical work with European Champions League players eliciting significantly higher high-

intensity running and sprint distances than Danish top league players (p < 0.05). In addition, 

Champions League teams cover more total distance and high-intensity running (19.8 to 25.2 

km.h–1) when playing against top ranked teams compared to teams in lower leagues (p < 0.05). 

A second trend is the evolution of physical output and how the modern-day soccer match is 

played very differently. Distance covered (m) in the English Premier League was relatively 

constant between 2006-07 (10679 ± 956 m) and 2012-13 (10881 ± 885 m); however, there 

was a clear increase in high-intensity distance (m > 19.8 km.h–1) 890 ± 299 m to 1151 ± 337 

m (p < 0.001, ES 0.82) in the same period (Barnes et al., 2014). Sprinting (m > 25.1 km.h–1) 

also increased by ~35%, attributed to more frequent shorter sprints completed. These data 

suggest current players can produce higher intensity actions on a more consistent basis. 
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Therefore, the preparation and training of players should be appropriately designed to allow 

for pre-conditioning of these actions. 

Cultural differences may exist across professional soccer leagues and playing positions. There 

were significant differences reported for high-intensity running (m > 19.8 km.h–1) between 

English Premier League (EPL) and Spanish La Liga players irrespective of playing position 

(Dellal et al., 2011). This and further data from this study, highlight the cultural differences in 

performance which may have an impact on transfers to different leagues, as they suggest that 

players moving between countries need to adapt both physically and technically (Dellal et al., 

2011). 

These data provide feedback on physical performance and trends which practitioners can 

subsequently evaluate, interpret and eventually transform into informed planning. Effective 

training should closely replicate competitive performance conditions and therefore training 

prescriptions in soccer should be based on the specific requirements of the playing positions 

(Di Salvo et al., 2007). As well as training intervention and planning, knowledge of the 

physical demands and requirements is being used to objectively identify key performance 

indicators to then be used during the scouting and recruitment process (Barron et al., 2014). 

2.3 Technology measuring athletic movement  

 

2.3.1 Introduction 

 

This section will look specifically at the evolution of satellite technology to measure position, 

from the development of the American Global Positioning System (GPS) through to current 

collaborative GNSS. Further to this, the use of this technology for measuring human 

locomotion, particularly the developments to track soccer actions in training and match play 

will be outlined. Additionally, the accuracy of the systems involved is discussed and the 

validity and reliability of specific devices to measure sports specific movement will be closely 

scrutinised. 

2.3.2 Evolution of satellite positioning technology 

 

Early navigation system developments through the 1960s and 1970s produced varying degrees 

of accuracy and usability. These developments culminated in the U.S. Department of Defense 

funding the first global satellite system in 1973, now known as the global positioning system 

(GPS). This US-managed navigation system used 27 satellites, each housing an atomic clock 

to provide timing accuracy to within a nanosecond (Theiss, Yen and Ku, 2005). As of October 

17, 2017, there were thirty-one operational satellites in the GPS constellation, not including 

the decommissioned or on-orbit spares and the US Government is committed to maintaining 
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the availability of at least 24 operational satellites, 95% of the time (US Government, 2018). 

Originally developed for military use, now increasingly used for aviation, marine and 

recreational outdoor purposes (Larsson, 2003), GPS has been adopted in sports settings to 

collect training load data using integrated devices combining accelerometers, gyroscopes and 

global position receiving chips (Dellaserra et al., 2014). 

GPS consists of a space segment of operational satellites, a control segment (a series of ground 

facilities to monitor the operation of the space segment) and a user segment consisting of 

hardware and processing software needed to measure location (Pace, 1996). Satellites have a 

life goal of 7.5 years and are therefore replaced regularly to maintain operational numbers. 

Housing atomic clocks (2 rubidium and 2 cesium), the satellites are solar powered and 

constantly adjust their orientation to ensure panels face the sun and antennas face the earth. 

The control segment consists of special monitoring systems which receive signals from the 

satellites and subsequently update orbital information hourly. The associated ground segment 

is used to minimise error that accompanies positioning systems (Blewitt, 1997) 

The GPS signal starts in the satellite as a voltage which oscillates at the fundamental clock 

frequency of 10.23 Mhz. After frequency multiplication, the L1 and L2 carrier signals are 

transmitted as a stream of digits (linear feedback register sequence). Unique to each satellite, 

the C/A code (course acquisition code contained in L1 signal transmitted signal transmission 

time) and the P-Code (precise code contained in L1 and L2, a high resolution transmission 

time stamp) are bundled with the navigation message, boosted by an amplifier and sent 

towards earth where they pass through the earth’s atmosphere to the receiver antenna 

(Blewitt,1997).  

Satellite location data uses Cartesian coordinates in a geocentric system (Figure 2.2). 

Originating at the Earth centre of mass, Z-axis pointing towards the North Pole, X pointing 

towards the prime meridian (which crosses Greenwich, UK), and Y at right angles to X and Z 

to form a right-handed orthogonal coordinate system. 
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Figure 2.2 Cartesian coordinates indicated by (X, Y, Z) used to compute satellite location 

(Royal Observatory of Belgium GNSS Research Group, Accessed September, 2019) 

 

The process of autocorrelation computes the time difference between the actual GPS signal 

and a replica signal (transmitted by the receiver). Figure 2.3 shows the crossover relationship 

between the two signals - this time difference (inferred time displacement between these two 

signals) is used to calculate what is known as a ‘pseudorange’ (Blewitt, 1997). 

𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑔𝑒 =  (𝑇 − 𝑇𝑠)  ×  (𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡) 

These simplified workings of the pseudorange calculation use T as the known reading of the 

receiver clock when signal is received and TS as the reading of the satellite clock when the 

signal was transmitted. 

 

 

Figure 2.3 Diagram showing the relationship between the two signal times during the GPS 

pseudorange calculation process (Blewitt, 1997) 

 

After accounting for clock bias (using ‘differencing techniques’) the receiver position (x, y, z) 

can be calculated using the pseudoranges from 4 satellites (Larsson, 2003; Terrier and Schutz, 

2005). The dilution of precision (DOP) is used to describe the error for the various portions of 

location calculations - if fewer than four satellites are available then the DOP values are 

infinity and position dilution of precision (PDOP) values of 5 are considered poor. If DOP had 

a value of 5, pseudorange errors of 1 metre and vertical position errors of 5 metres are expected 

(Blewitt, 1997). Contributing to error, the quality of geodetic results present absolute (global) 

positioning at the level of 1 cm, tropospheric delay estimated to a few mm, GPS orbits 

determines to 10 cm, earth pole position determined to 1 cm and clock synchronisation 

(relative bias estimation) to 100 ps (Blewitt, 1997). 

This explanation outlines the basics of GPS positioning observation models and parameter 

estimation citing the work presented by Geoffery Blewitt from the Department of Geomatics 

- University of Newcastle, (1997). Today, most receiver devices have accessibility to many 

more satellites due to the development of the global navigation satellite system (GNSS) 
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(Garzia et al., 2016). GNSS incorporates a constellation of orbiting satellites working in 

conjunction with a network of ground stations and each system is developed and managed by 

separate countries. Current operational systems are GPS (United States), the Global 

Navigation Satellite System (GLONASS - Russia), Galileo (European Union), the BeiDou 

Navigation Satellite System (BDS - China), and Indian Regional Navigation Satellite System 

(IRNSS - India) (Zimbelman and Keefe, 2017). GNSS receivers have become a common tool 

to assess players’ physical activity during competition and training in team sports (Padulo et 

al., 2019), having the advantage to access multiple satellites, proving enhanced accuracy, 

redundancy and availability.  

The rapid advancements of satellite technologies to measure activity in sport has led to a much 

deeper understanding of athlete activity profiles (Aughey, 2011) and allows investigations to 

be made into relationships between training load and outcomes like injury and performance. 

This data integration has allowed for an expanding field in data analytics within professional 

sports teams which will greatly develop the body of knowledge of athlete movement (Aughey, 

2011).  

2.3.2 Accuracy of satellite technology 

 

Advances in satellite position tracking technology have meant that the goal for GNSS is to 

achieve decimetre or centimetre level accuracy. Many factors contribute to increased position 

error which in turn impact the accuracy of training and match data. These error sources have 

guided the continuous development of GNSS devices to measure athlete movement. 

Initial modernisation of GPS saw the intentional degradation of the GPS Standard Positioning 

Service known as selective availability, be discontinued on May 1, 2000 (Shaw, 2004). Since 

SA was discontinued, GPS users have routinely observed horizontal positioning accuracy 

values of less than 10 m. After selective availability, the next biggest contributor to positioning 

error is the signal delay caused by the earth’s atmosphere. Ionospheric delay varies with solar 

activity, time of year, season, time of day and location. This makes it very difficult to 

predict how much ionospheric delay is impacting the calculated position. A receiver which is 

in a moving vehicle or where ionospheric scintillation (rapid temporal fluctuations in both 

amplitude and phase of trans-ionospheric GNSS signals caused by the scattering of 

irregularities in the distribution of electrons encountered along the radio propagation path) is 

present, may lose its ability to track incoming signals and take several minutes to recover the 

signal needed for precise positioning. The same is true when the receiver must view satellites 

through foliage or in the presence of multipath signals due to high buildings. Multipath is an 

error tied to satellite geometry which is due to the antenna also sensing signals from the 

satellite which reflect and refract from nearby objects which can be verified because 

observation residuals have a pattern that repeats every sidereal day (Blewitt, 1997). Ideal 
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conditions for GNSS accuracy would be away from large buildings or foliage (topography) to 

reduce reflected signals. However, if this is not possible, access to additional coded signals 

will enable improved accuracy in sub-optimal environments and also through ionospheric 

corrections (Shaw, 2004). 

The atomic clocks in the GNSS satellites are very accurate, but a small inaccuracy in the 

satellite clock results in a significant error in the position calculated by the receiver. For 

example, 10 nanoseconds of clock error results in 3 metres of position error (Hexagon 

Positioning Intelligence, 2019). Another source of inaccuracy derives from orbit error, where 

satellites vary from their normally very precise course. Continuously controlled and adjusted 

by the ground segment, orbit error can result in up to ±2.5 metres of position error. Other 

sources of inaccuracy include signal disruption due to weather/atmospheric conditions 

(tropospheric delay) and receiver quality (signals used, antenna quality and algorithms used) 

(Terrier and Schutz, 2005).  

Resolving positioning error has been approached in different ways including the ability for 

GNSS receivers to handle multiple frequencies from multiple satellite constellations. As 

discussed, comparing the delays of two GNSS signals, L1 and L2, can correct the effect of 

ionospheric error (Hexagon Positioning Intelligence, 2019). Additionally, the development of 

GNSS compared to the original GPS has allowed access to multiple constellations operated 

by different countries, which also cover varying orbital space around the earth.  

The use of differential GNSS (utilising a fixed, ground-based receiver) to determine the ranges 

to the satellites and to send correction signals to the receiver can enhance the precision of 

location positioning (Larsson, 2003), resolving the inaccuracies created by clock error. The 

NDGPS is an example of a differential GPS system operated by the U.S. Coast Guard 

Navigation Service consisting of a control centre and thirty-eight remote broadcast sites, 

aiming to improve the accuracy and integrity of GPS (US Department of Homeland Security, 

2018). 

Other large-scale, satellite-based augmentation systems improve the accuracy, reliability and 

availability of GNSS signals by transmitting wide-area error correction. Examples of these 

systems include wide area augmentation system (WAAS, Operated by the United States), the 

European Geostationary Navigation Overlay Service (EGNOS), MTSAT Satellite Based 

Augmentation Navigation System (MSAS – Japan), GPS-Aided GEO Augmented Navigation 

System (GAGAN – India) and the System for Differential Corrections and Monitoring (SDCM 

- Russia). 

Other techniques to improve positioning accuracy include real-time kinematic (RTK), precise 

point positioning (PPP) and if real-time transmission is not required, GNSS data post-

processing can result in a more accurate positioning solution (Hexagon Positioning 



23 
 

Intelligence, 2019). Working with these accuracy-boosting strategies, current GNSS 

monitoring boasts <10cm positioning accuracy (NASA, 2018). 

With receiver quality playing a role in the accuracy of data collected, there will always be 

variation between systems. Due to the time taken to publish studies to test the validity and 

reliability of GNSS devices, they are often used in sport before essential independent 

information on measurement precision is available (Malone et al., 2017a).  

2.3.3 Validity and reliability of GNSS devices 

 

Validity is the ability of the measurement tool to reflect what it is designed to measure 

(Atkinson and Nevill, 1998). Reliability is the consistency of measurements, or of an 

individual’s performance, on a test; or ‘the absence of measurement error’ (Safrit and Wood, 

1989). For any testing results to be considered valid, the testing protocol and assessment tool 

used firstly needs to be considered valid and reliable through well-constructed study design 

(Atkinson and Nevill, 1998).  

Studies are carried out on GNSS devices to measure athlete movement in order to separate the 

‘signal’ from the ‘noise’ (error) to confidently make evidence-based decisions (Malone et al., 

2019). As athlete monitoring should be conducted at an individual level to identify meaningful 

change, it is important to understand the accuracy and reliability of the devices used as this 

will allow practitioners to determine the athlete’s day-to-day variation in these measures and 

confidently determine meaningful changes in load (Cardinale and Varley, 2018). Due to the 

time taken to publish studies to test the validity and reliability of GNSS devices, they are often 

used in sport before essential independent information on measurement precision is available 

(Malone et al., 2017a). 

The FIFA Quality Programme for wearable EPTS devices was launched in 2017 with the aim 

of ensuring that wearable tracking systems used in football do not pose a danger to the players 

and ensure accuracy standards. In order to obtain the international match standard (IMS) and 

be listed as an approved wearable technology, each system must be tested by an accredited 

independent test institute (FIFA, 2019). A FIFA driven study explored the validity of 16 

different Electronic Performance Tracking Systems (EPTS) (FIFA, 2018) and if the devices 

were deemed accurate and safe, they became a certified EPTS to measure output of soccer 

training and matches. The study provided a platform for manufacturers to have their devices 

tested and certified against a gold standard criterion measure. Testing dates can now be 

regularly accessed, ensuring devices can be certified before going to market, therefore holding 

providers accountable to industry-wide accuracy levels and allowing club practitioners to 

make informed decisions on technologies to invest in.  
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GNSS validation studies (inclusive of those just using GPS) cover a breadth of sports and 

show vast variation in experimental design dating back to the early 2000’s (Aughey, 2011). 

Prevailing conclusions support the use of devices in team sport activities but recommend 

caution with measurement of rapid acceleration over short distances (Rawstorn et al., 2014). 

Decreased reliability during increased movement intensity is a common finding (Petersen et 

al., 2009; Coutts and Duffield, 2010; Gray et al., 2010; Jennings et al., 2010; Akenhead et al., 

2013a). Establishing the degree of accuracy of modern GNSS devices to measure distance and 

speed during high-intensity, short-distance actions is vital for practitioners working with team 

sports. This is especially key in elite soccer as match play has been shown to elicit around 220 

high speed runs (Mohr, Krustrup and Bangsbo, 2003), 178 ± 38 accelerations above 3 m-s2 

and 162 ± 29 decelerations above 3 m-s2 (Akenhead et al., 2013a) with a change in activity 

every 4-6 seconds (Bangsbo, 1994). 

Summarising the research, GNSS technology has been shown to be a valid and reliable tool to 

measure distance in team sports (Peterson et al., 2009; Coutts and Duffield, 2010; Varley et 

al., 2012; Beato et al., 2016; Beato et al., 2018). Data error increases when movement increases 

in complexity and change of direction (Portas et al., 2010; Rawstorn et al., 2014) and when 

the athlete is moving at high velocities (Grey et al., 2010). Additionally, accuracy is 

compromised during increased acceleration (Varley and Aughey, 2013; Akenhead et al., 

2013a). Whilst GNSS devices have been shown to be valid to measure distance in team sports 

regardless of sample rate, higher sampling frequency devices (10- and 15-Hz) have been 

shown to be more accurate and reliable than 1- and 5-Hz units (Scott, Scott and Kelly, 2016). 

Recent studies have since shown that technological developments have elicited accuracy 

improvement at an even greater (18-Hz) sampling rate (Beato et al., 2018). 

Practitioners should be mindful that whilst manufacturer-recommended upgrades in device 

firmware will improve certain operational aspects (e.g. bug fixes), they may also affect data 

output, and thus interpretations of longitudinal data (Varley et al. 2017). With ever-developing 

technologies, it is important to gain independent information on measurement precision.  

Number of visible satellites and HDOP are two contributors to GNSS accuracy, since there is 

a moderate negative correlation between the distance error and these measures (Scott, Scott 

and Kelly, 2016). Practitioners are encouraged to ensure that they adhere to the recommended 

guidelines for data collection, processing and reporting (Malone et al., 2017a) and relevant 

information such as the number of satellites visualised (and horizontal dilution of precision, 

<1 is seen as ideal) is now provided in the latest devices (Beato et al, 2018).  

Practitioners are encouraged to conduct their own in-house validity and reliability assessments 

on the specific device and metrics used (Malone et al., 2019); however, the FIFA certification 
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and testing system gives practitioners confidence to monitor training and match load and 

accurately.  

2.4 Monitoring load in elite soccer  

 

2.4.1 Introduction 

 

The increased use of GNSS-enabled devices with inertial sensors has led to an increased access 

to data for applied practitioners to monitor training and match activity and investigate 

relationships between physical capacity and match performance (Aughey, 2011). This increase 

in available information is mirrored by exponential growth in research from 3 to 136 articles 

per year between 2001 and 2018 (PubMed) investigating these relationships (Malone et al., 

2019) and a recent PubMed Search (July 2016) identified 488 papers with the keywords 

training load monitoring (Cardinale and Varley, 2018). Interest resides in the need to improve 

and individualise the design of training programmes to maximise the improvements in athletic 

performance and avoid overtraining or overreaching. 

Metrics used to measure training load can be categorised as either internal (the relative 

biological stress incorporating both physiological and psychological) or external (objective 

measures of the work performed by the athlete during training or competition and assessed 

independently of internal workloads) (Bourdon et al., 2017). Metrics should relate to the 

training outcome that is of interest and ultimately linked to the sporting demands (Impellizzeri, 

Marcora and Coutts, 2019). Monitoring the training load of an athlete is important to determine 

whether an athlete is adapting to the training programme and to minimise the risk of non-

functional overreaching (fatigue lasting weeks to months), injury, and illness (Halson, 2014). 

The concepts of internal and external training load were presented in 2003 (Impellizzeri, 2003) 

and featured in research, practice in the context of team sports (Impellizzeri, Marcora and 

Coutts, 2019).  

To obtain specific performance adaptations, training of athletes needs to target the systems 

that determine performance, which will incorporate the relationship between the programmed 

external load and the subsequent internal load response (Figure 2.4) leading to adaptation 

(Impellizzeri et al., 2019). 
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Figure 2.4 Theoretical framework of the training process presented in 'Internal and External 

Training Load: 15 Years On' (Impellizzeri et al., 2019) 

 

2.4.2 The monitoring of soccer player load using external load metrics 

 

The organisation, quality, and quantity of exercise (training plan) determine the external load 

measures monitored to ensure they are specific to the nature of training undertaken 

(Impellizzeri et al., 2019). Common measures of external load are time, training frequency, 

distance (m), training mode, power output (W), and metrics which can be produced by GNSS 

devices such as speed (km h−1), acceleration (m/s2) along with subsequent aggregates derived 

from these metrics (Bourdon et al., 2017; Clemente et al., 2018; Newton et al., 2019). 

Technologies used to measure external load include the aforementioned integrated electronic 

performance tracking systems (GNSS devices, accelerometers, gyroscopes and 

magnetometers), power output measuring devices such as Power Tap and neuromuscular 

function measures such as jump mats (countermovement/squat jump), timing gates (sprint 

performance), and isokinetic and isoinertial technologies to measure muscular strength 

(Halson, 2014).  

2.4.3 The monitoring of soccer player load using internal load metrics 

 

Irrespective of how it is quantified, coaches prescribe training according to external load to 

elicit the desired psychophysiological response. It is this response which corresponds to the 

internal training load (Impellizzeri et al., 2019). Common measures of internal load are rate of 

perceived exertion (RPE), training impulse (TRIMP – using heart rate to consider the intensity 

of exercise as calculated by the HR reserve method and the duration of exercise – Banister, 
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1991), heart rate indices, biological assessments (creatine kinase, blood lactate), wellness 

questionnaires and psychological inventories (Bourdon et al., 2017). 

Where external load measures can be relatively easy and non-invasive to collect, a 

comprehensive quantification of internal training load is impractical due to the limitation of 

current technology and logistics. Holistic internal load assessment would require athletes to 

wear multiple, some intrusive, monitoring devices (Figure 2.5) whilst training (Cardinale and 

Varley, 2018). 

 

Figure 2.5 Schematic diagram summarising technologies used to measure internal load from 

'Wearable training-monitoring technology: Applications, challenges and opportunities' 

(Cardinale and Varley, 2018) 

 

It is noted that the internal training load determines the training outcome (impact of external 

load can vary depending on specific contextual factors and other stressors either between or 

within athletes – Vellers et al., 2018) and is therefore an important part of the monitoring 

process (Impellizzeri et al., 2019). These factors appear to be important moderators of the 

relationship training load has with performance and injury (Coyne et al., 2018). 

2.4.4 Analysing training load data 

 

One of the major challenges for practitioners who analyse training data is to make meaningful 

inferences on the efficacy of the training processes for individual athletes and coaches 

(Bourdon et al., 2017). There is limited research exploring how key metrics should be selected, 

how such data should be analysed, aggregated, how meaningful information can be extracted 

and which methods present these data most effectively (Thornton et al., 2019). Given the large 

quantity of data available to performance practitioners, selection of which data best help to 



28 
 

answer the questions of coaches and athletes is vital (Buchheit, 2017). There are several steps 

with various considerations to developing an effective data analysis process (Figure 2.6), with 

practitioners needing to be aware of factors such as collection logistics, data accuracy and 

reporting processes (Thornton et al., 2019).  

 

Figure 2.6 Athlete Management System (AMS) development steps in team sports. ACWR 

indicates acute-to-chronic-workload ratio; EWMA, exponentially weighted moving averages; 

STEN, standard tens; SWC, smallest worthwhile change; CV. coefficient of variation; MBI, 

magnitude-based inferences from ‘Developing Athlete Monitoring Systems in Team Sports: 

Data Analysis and Visualization Fitness fatigue model’ (Thornton et al., 2019) 

 

A variety of analysis methods arise from computer-based support systems to provide objective 

evidence relating to the decision making of organisations (Robertson et al., 2017). The fitness-

fatigue model is one which is used to analyse the response to fitness training. As outlined by 

Hellard et al., (2006), the below depicts an equation described by two antagonist transfer 

functions (fitness and fatigue). pt is the modelled performance at time t; p0 is the initial 

performance level; ka and kf are the respective fitness and fatigue magnitude 

factor; τa and τf represent the decay time constants and wt is the known training load per week 

(or day) from the first week of training to the week (or day) preceding the performance. 

(Banister et al., 1975; Busso et al., 1994; Hellard et al., 2006): 

𝑃𝑡 = 𝑃0 + 𝐾𝑎 ∑ 𝑒−(𝑡−𝑠)/𝜏𝑎

𝑡−1

𝑠=0

𝑤𝑠 − 𝑘𝑓 ∑ 𝑒−(𝑡−𝑠)/𝜏𝑓𝑤𝑠

𝑡−1

𝑠=0
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This model has been the cornerstone for subsequent models to analyse training load 

relationships and the evolution and refining steps are outlined by Hayes and Quinn (2009). 

Each model suggests that the training impulse (or training load) elicits fitness responses that 

increase performance and also produce fatigue responses that decrease performance (Bourdon 

et al., 2017). The popularity of this model is evident with researchers and practitioners using 

the principles to guide training planning and predict future performance. Critique of this 

method cite the oversimplification of the training-performance relationship (Hellard et al., 

2006), particularly as it assumes a single measure to represent performance which in team 

sports, especially soccer, is limited due to the multifactorial nature of performance.  

Using the principles of Banister’s model, the acute-chronic workload ratio (ACWR) uses 

rolling averages to relate recent (acute) load with load over a longer period (chronic) (Hulin 

et al., 2016). Used to identify injury risk in different sports including rugby league (Hulin et 

al., 2016), Australian football (Murray et al., 2016) and soccer (Bowen et al., 2017), initial 

studies suggested injury risk increases as acute workload outweighs chronic workload and that 

the greater the increase in acute workload relative to chronic workload, the larger the increase 

in injury risk in the following week (Hulin et al., 2014, Hulin et al., 2016). A common 

emerging message is when the ACWR is within a ‘sweet spot’ of 0.8 – 1.3, risk of injury was 

relatively low and when the ratio increased (≥ 1.5), the risk of injury increased markedly 

(Hulin et al., 2014; Blanch and Gabbett, 2016; Murray et al., 2017b; Malone et al., 2017b). 

Developments of the ACWR modelling method suggest different acute:chronic durations 

should be used to better fit the specificity of training/competitive patterns (Carey et al., 2017; 

Malone et al., 2018; Stares et al., 2018). The optimal duration of both the chronic (2 vs 3 vs 4 

weeks, based on off-season and preseason durations) and acute (3 vs 7 days, based on matches 

occurrence) explores whether analysis is specific to soccer (Buchheit, 2017). Caution is still 

advised when using this ratio to predict injury; therefore, it is important to report as association 

rather than prediction (Franchini et al., 2018). 

Further critique of these modelling methods includes the theory that rolling averages fail to 

account for the decaying nature of fitness and fatigue effects over time (Menaspà, 2017). The 

use of exponentially weighted moving averages (EWMA) is an alternative method, assigning 

a decreasing weighting to compensate for the latency effects of loads (Williams et al., 2016b). 

Other critical research highlighted evidence of spurious correlation as the numerator and 

denominator in the ACWR are mathematically coupled (Lolli et al., 2018). Additionally, using 

discrete metrics to model the continuous U-shaped risk profile between ACWR and injury can 

result in inflated false discovery and false rejection rates (Carey et al., 2018). This process of 

discretisation is the practice of transforming continuous data into discrete categories and is 
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prevalent in studies of training load and injury risk. Critically examined in other fields (Altman 

and Royston, 2006; Bennette and Vickers, 2012), the practice has been recently critiqued with 

specific reference to modelling training load and injury (Carey et al., 2017) as it results in loss 

of information (Bennette and Vickers, 2012), reduces ability to detect metric relationships and 

increases likelihood of a false-negative result (Altman and Royston, 2006; Bennette and 

Vickers, 2012; Kahan et al., 2016). It was recently suggested that previously used discrete 

methods are unsuited to modelling the risk profile between ACWR and injury and the use of 

continuous modelling methods (spline regression and fractional polynomials) demonstrated 

by a lower root mean square error (RMSE) when analysing their relationship to injury (Carey 

et al., 2018).  

Combining internal and external load aims to understand how athletes are coping with training 

and competition (Bourdon et al., 2017). Preliminary results using data from amateur soccer 

players suggest the use of these ratios present advancement from the use of external load alone 

in the assessment of aerobic fitness, and detection of ratio change may help in the assessment 

of fatigue (Akubat et al., 2014). Another method, assessing the relationship between training 

and match play can highlight discrepancies and guide coaches to programme training to bridge 

the gap or manage fatigue references through to match load (Clemente et al., 2019). 

Training load is the input metric into a training system and as such, quantifying and analysis 

training load should be the corner-stone of athlete monitoring (Coutts et al., 2018). There has 

been an exponential increase in the quantity of athlete monitoring data collected within team 

sports and analytical methods can be used to investigate any meaningful change that has 

occurred (Thornton et al.,2019). It is important data can be communicated efficiently to allow 

informed decisions regarding athlete status to ultimately improve performance and reduce the 

risk of any adverse effect of sport training and match-play.  

2.5 Epidemiology of injury in elite soccer 

 

2.5.1 Introduction  

 

Injury in sport can be defined and categorised in different ways; however, a consensus in 

soccer is: 

 ‘Any physical complaint sustained by a player that results from a football match or football 

training, irrespective of the need for medical attention or time loss from football activities. An 

injury that results in a player receiving medical attention is referred to as a ‘‘medical 

attention’’ injury, and an injury that results in a player being unable to take a full part in 

future football training or match play as a ‘‘time loss’’ injury’ (Fuller et al., 2006).  
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Most soccer studies use the ‘time loss’ definition for injury (Nielsen and Yde, 1989; Hawkins 

and Fuller, 1999; Junge, Chomiak and Dvorak, 2000; Hawkins et al., 2001; Árnason et al., 

2004; Ekstrand et al., 2004). This definition is preferred over medical definitions as the latter 

can introduce observer and patient bias due to the subjectivity of examination and injury 

underestimation could occur if clubs don’t employ full time medical personnel (Hägglund et 

al., 2005).  

Classification of injury is important to classify diagnoses accurately for research or injury 

surveillance, maintaining diagnostic detail and also permitting easy grouping into parent 

classifications for summary and to create a database from which cases can be extracted for 

research on particular injuries (Rae and Orchard, 2007). The Orchard Sports Injury 

Classification System (OSICS) is one of the world’s most commonly used systems (Hammond 

et al., 2009), developed in 1992, originally for assessing injury incidence at the elite level of 

Australian rules football, rugby league, and rugby union in Australia. The OSICS has now 

progressed to iteration 10.1 (Figure 2.7) and used across many sports due to being free from 

copyright, its universal availability of use and being specific to sports medicine allowing 

diagnoses to be easily classified and grouped therefore encouraging more generalised analysis 

of injury patterns (Rae and Orchard, 2007). 

 

 

 

Figure 2.7 Example codes to classify sports injury surveillance data from ‘Has version 10 of 

the Orchard Sports Injury Classification System improved the classification of sports medicine 

diagnoses? (Hammond et al., 2009) 

  

Player availability is associated with team performance (Árnason et al., 2004; Eirale et al., 

2013; Hägglund et al., 2013; Podlog et al., 2016; Raysmith and Drew, 2016). Injury or illness 

impacts team selection, path of match success and results in negative psychological effects for 

the injured player or whole squad (Hägglund et al., 2013). Injuries also affect sports teams 

financially due to rises in medical fees and insurance premiums (Gallo et al., 2006) and the 

effect on longer-term quality of life for the player (King et al., 2013). 
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An injury aetiology model (example in Figure 2.8) can show the potential risk pathway to 

injury (Windt and Gabbett, 2017). The workload-injury relationship relates workload, 

perceptual well-being and physical preparedness (Gabbett, 2018). It collaborates factors like 

age, injury history, training history, lower body strength, aerobic fitness and heart rate 

variability, therefore highlighting the multi-factorial nature of injury. Additionally, this model 

illustrates how biomechanical factors, academic and emotional stress, anxiety and sleep can 

influence training adaptation (Gabbett, 2018).  

 

 

 

Figure 2.8 The workload–injury aetiology model presented in ‘How do training and 

competition workloads relate to injury? The workload— injury aetiology model’ (Windt and 

Gabbett, 2017) 

 

Injury rates in soccer, expressed in various formats (most commonly number of injuries per 

1000 hours), are known to be relatively high (between 3.4 and 5.9 per 1000 training hours and 

25.9 and 34.8 per 1000 match hours) compared with participants in other sports and other 

occupations (Hawkins and Fuller, 1999; Arnason et al., 2004; Ekstrand, Waldén and 

Hägglund, 2004; Waldén, Hagglund and Ekstrand, 2005; Ekstrand, Hägglund and Waldén, 

2011). Muscle injury is one of the major problems, often categorised as ‘preventable injuries’, 

representing 20% to 37% of all time-loss injuries at elite soccer clubs (Ekstrand, Hägglund 

and Waldén, 2011). Further categorisation of muscle injury demonstrates that 92% of all 

muscle injuries sustained by professional soccer players occur in one of four areas: hamstrings, 

adductors, quadriceps or calf, with the majority (37%) occurring in the hamstrings (Hawkins 

and Fuller, 1999; Arnason et al., 2004; Ekstrand et al., 2011). Multifactorial modelling (Figure 
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2.8), developed to help explain injury incidence (Meeuwisse, 1994; Windt and Gabbett, 2017) 

highlights that although certain external risk factors such as opponent behaviour cannot be 

accounted for, the importance of identifying the modifiable risk factors for injury will 

encourage the implementation of preventative strategies. A considerable proportion of injuries 

are as a result of excessive training loads, inadequate recovery and overtraining (Gabbett and 

Domrow, 2007; Gabbett, 2010) and the analysis of training load is critical to ensure that 

players receive a progressive training programme to maximise performance without unduly 

increasing injury incidence. 

2.5.2 Load monitoring and injury  

 

The association between training load, defined as the cumulative amount of stress placed on 

an individual from single or multiple training sessions over a period (Soligard et al., 2016; 

Eckard et al., 2018) and injury incidence is an area of increasing research activity due to rising 

levels of competition and the impact of player availability on success (Drew et al., 2017). An 

important modifiable risk factor and a part of the injury occurrence pathway (Figure 2.8), 

research has recently collated and evaluated several training load and injury relationship 

review articles (Drew and Finch, 2016; Jones et al., 2017; Jaspers et al., 2017; Eckard et al., 

2018, Gabbett, 2018). 

It is well established that measuring and managing training loads should be part of an injury 

prevention programme (Drew and Finch, 2016). A recent review highlighting a ‘PubMed’ 

search of keywords ‘training load’ and ‘injury’ shows that in the past 18 years, there has been 

a rapid growth (Figure 2.9) in published articles (Gabbett, 2018). 

 

 

Figure 2.9 Growth in research including the keywords ‘training’ and ‘injury’ since 2000 from 

'Debunking the myths about training load, injury and performance: empirical evidence, hot 

topics and recommendations for practitioner’ (Gabbett, 2018) 
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Early reviews show there was ‘emerging moderate evidence’ for a relationship between 

training load and injury risk (Jones et al., 2017; Drew et al., 2017). More recently the evidence 

for the existence of this relationship has shifted from emerging to established at a ‘moderate’ 

level (Eckard et al., 2018). It was noted that randomised control trials (RCTs) will allow for 

the relationship strength to be further established (Van Tulder et al., 2003). 

Assessing internal, external, absolute and relative load measures in basketball (Weiss et al., 

2017), rugby (Williams et al., 2016a), and soccer (Malone et al., 2018), it is suggested that 

low load may not be enough to elicit protective physiological adaptations in athletes, while 

high loads may result in overloading of tissue or decreased injury resistance by some other 

mechanism. Gabbett’s ‘training load–injury paradox’ states that athletes accustomed to high 

chronic loads have fewer injuries than those accustomed to lower loads, supporting the 

assertion that higher chronic loads can act as a protective ‘vaccine’ against future injury 

(Gabbett, 2016).  

There are a number of misconceptions about the evidence supporting training load, its role in 

injury incidence and the actual training programmes prescribed (Gabbett, 2018). Load cannot 

explain all injuries and it is important to highlight the multifactorial determinants of injury, 

pertinently, the two strongest risk factors being age and injury history (Arneson et al., 2004; 

Hagglund et al., 2007; Ekstrand et al., 2011). Rapid change in training load increases the risk 

of injury (Gabbett, 2016); however, caution is recommended when using guidelines to 

implement load progression to make sure load increase is not necessarily delayed (Gabbett, 

2018). The previously discussed ACWR has highlighted across many sports that rapid 

increases in workload have been associated with increased injury risk (Hulin et al., 2014; 

Erhmann et al., 2016; Murrey et al., 2017; Carey et al., 2017; Bowen et al., 2017; Cross et al., 

2017; Stares et al., 2018; Malone et al., 2018). However, due to the multifactorial nature of 

injury, just because an athlete is at risk due to load increase, injury may not occur and often it 

is necessary to elicit greater physiological adaptations through big increases in load for 

enhanced performance (Gabbett, 2018). The protective effect of training appears to arise from 

exposure, allowing the body to tolerate load and subsequently develop specific physical 

qualities like strength, prolonged high-intensity running ability and aerobic fitness (Malone et 

al., 2017b; Gabbett et al., 2012; Gabbett, 2018). It is key for sport science practitioners to 

understand that physically hard training is required to prepare athletes for the demands of 

competition, but also to be aware that excessive loading can result in increased injury risk 

(Bourdon et al., 2017). 

With the rate of development in technology and wearable analytic tools, practitioners have 

access to more solutions for analysing load, which brings the aforementioned challenges of 



35 
 

validity and reliability and raises significant issues around the interpretation of data (Bourdon 

et al., 2017). Studies that evaluate the ability of training load monitoring to predict future 

injury are not currently well established (Carey et al., 2018). The ability to ‘predict’ outcomes 

such as performance, talent, or injury is arguably sports science and medicine’s modern-day 

equivalent of the ‘Quest for the Holy Grail’ (McCall, Fanchini and Coutts, 2017). 

2.5.3 Injury prediction 

 

Early injury prediction research utilising screening tests conclude that injury prediction with 

sufficient accuracy is unlikely (Bahr, 2016). The prediction debate can be linked to 

terminology used (Figure 2.10) by authors, often resulting in a mismatch between statistical 

modelling and subsequent interpretation of findings (i.e. analysing association and interpreting 

this as prediction) (McCall, Fanchini and Coutts, 2017). This misinterpretation is created by 

an absence of a clear definition of terms and a lack of understanding of the difference between 

association, explanatory power and predictive power (Shmueli, 2011). Within elite sport, due 

to the potential impact of the advice provided, care must be taken to ensure that our own 

understanding of the information being provided is correct. Misinterpretation of the use of 

load metrics to predict injury occurrence may result in a misclassification of players 

(indicating that a player will incur an injury and he or she does not) (Soligard et al., 2016) and 

a loss of practitioner ‘credibility’ to advise based on prediction data and the indicator itself 

(McCall et al., 2017). 

 

Figure 2.10 Common statistical terms used to distinguish between associations and prediction 

from ‘Prediction: The Modern-Day Sport-Science and Sports-Medicine ‘Quest for the Holy 

Grail’ (McCall, Fanchini and Coutts, 2017) 

 

Explanatory power (association) and predictive power have different interpretation qualities, 

and prediction of musculoskeletal injury risk is an area of increasing research activity due to 

the impact of player availability on success in elite sports organisations (Soligard et al., 2016; 

Drew et al., 2017; Eckard et al., 2018). A pertinent study investigating predictive modelling 
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of training loads and injury in Australian football used relative and absolute training loads, 

player ages and session types as predictors to run univariate and multivariate predictive models 

(logistical regression, random forest, general estimating equations and support vector 

machines) on two years of player monitoring data and then on one year of unseen future data 

(Carey et al., 2017). Models were compared using the area under the receiver operator 

characteristic (AUC). A perfect model would have an AUC of 1.0 and random guessing an 

AUC = 0.5. Univariate models performed worse than multivariate models for each injury 

outcome and the best performing multivariate model used regularised linear regression to 

model hamstring injuries (mean AUC 0.72). In general, models provided predictions only 

marginally better than chance (Carey et al., 2017) and similar results were found in a study in 

rugby league (AUC 0.64 - 0.74). Implementing such a model in practice would require 

practitioners to consider how much modification of player training they are willing to accept 

in an attempt to prevent injuries (false positive rate).  

Similar results were found in soccer with the predictive model performance not significantly 

better than random classifiers (Kampakis, 2016). More recently however, a study used a multi-

dimensional approach that considered injury prediction as the problem of forecasting that a 

player will get injured in the next training session or official match, given their recent training 

workload (Rossi et al., 2018). The use of decision tree modelling detected approximately 80% 

of the injuries at 50% precision. This, coupled with a small false positive rate, is better than 

the baseline and injury risk estimation techniques (Rossi et al., 2018). The study states the 

usage of forecasting models allows for the prevention of more than half of the injuries in a 

soccer season once an initial period of data collection has commenced. Conclusions from this 

study are certainly positive to reaching the ‘holy grail’ of injury prediction however it is only 

based on data from one team, would benefit from multiple seasons and a deep understanding 

of machine learning techniques is required to implement models to elicit decision-making 

outcomes.  

2.6 Measuring performance in elite soccer  

 

2.6.1 Introduction  

 

Soccer is the most popular sport world-wide, but at the same time it is one of the least 

quantified in analysis of performance and the measurement of player contribution to success 

(Pelechrinis and Winston, 2019). The task of objectively quantifying the impact of the actions 

performed by individual players during matches, used in a variety of tasks within a soccer 

club, such as player acquisition, player evaluation, fan engagement, media reporting and 

scouting, remains largely unexplored (Decroos et al., 2019). Soccer analytics is lacking a 

comprehensive approach to address performance-related questions due to the low-scoring and 
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dynamic nature of the sport (Fernandez et al., 2019). It is suggested that analysis methods that 

incorporate several facets of soccer, within a dynamic context, would appear to be superior 

and most appropriate to use (Ali, 2011). Selecting valid performance metrics, especially on an 

individual player level, provides a significant challenge to researchers and practitioners alike 

and much of the current research measure match performance in other team-sports. The 

measurement of performance can support the identification of talent, strategies for acquisition 

training interventions (Ali, 2011) and also opposition analysis to improve match preparedness.  

2.6.2 Metrics to measure performance  

 

Current performance metrics used can be characterised as subjective (Cormack et al., 2008; 

Mooney et al., 2013; Rowell et al., 2018) and objective (Mooney et al., 2011; Sullivan et al., 

2014; Lazarus et al., 2017; Graham et al., 2018; Egidi and Gabry, 2018; Pelechrinis and 

Winston, 2019; Decroos et al., 2019; Fernandez et al., 2019). The predominant subjective 

metrics utilised are variations of a coach rating scale, used in Australian Rules football 

(Cormack et al., 2008; Mooney et al., 2013) and soccer (Rowell et al., 2018). Use of these 

metrics assumes a scale along with consistency of feedback timing and personnel to ensure 

representative data. A Likert scale (1 = poor through to 5 = excellent) is a common scale used 

(Cormack et al., 2008; McLean et al., 2010; Rowell et al., 2018; Samuel et al., 2018). 

External load metrics can easily focus on isolated aspects of the sport (Fernandez et al., 2019), 

for example in soccer, common metrics include tracking successful passes, shots, defensive 

duels and ball carries (Sarmento et al., 2014). These can be used in isolation to assess player 

performance but quantifying the impact of the individual actions performed remains largely 

unexplored (Decroos et al., 2019) 

An integrated approach recently presented (Figure 2.11) contextualises match demands by 

assimilating physical and tactical data effectively (Bradley and Ade, 2018) and opens up the 

theory to use an integrated approach to assess team performance and the impact of individual 

performance on team success. 
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Figure 2.11 Venn diagram depicting a generalised integrated approach to quantifying and 

interpreting the physical match performance of soccer players from 'Are Current Physical 

Match Performance Metrics in Elite Soccer Fit for Purpose or Is the Adoption of an Integrated 

Approach Needed’ (Bradley and Ade, 2018) 

 

The concept of metric integration is adopted by analytics organisations that provide 

performance feedback to clubs and media. These platforms quickly and accurately provide a 

large range of match performance data, allowing the simultaneous analysis of the physical 

eff orts, movement patterns, and technical actions of players (Dellal et al., 2011). Champion 

Data provide the official statistics to the Australian Football League (AFL) and have created 

the player ranking system which assesses the impact of the players (Mooney et al., 2011) based 

on effective and ineffective skill execution throughout a match (Sullivan et al., 2014). In 

soccer, a similar data platform (InStat), presents a unique algorithm to provide an accurate 

assessment of a player’s performance (InStat Index), recently used to analyse the association 

between running and match performance (Modric et al., 2019). This automatic algorithm 

considers the contribution of the player to team success the significance of their actions, 

opponent level and the level of the championship they play in (InStat, 2019).  

2.6.3 The association between physical metrics and performance  

 

The ultimate goal of any sports coach and athlete is to produce optimal performance at a 

specific time with the role of scientific research becoming more important in order to prescribe 

optimal training programmes that prevent both under- and overtraining and increase the 

chance of achieving desired performances (Borensen and Lambert, 2009). The ‘holy grail’ for 

coaches and performance practitioners is to use information gathered through various metrics 

to predict and therefore effect subsequent performance. Match performance and physical 
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performance metrics are often investigated separately; however, recent studies investigate 

them synonymously to identify possible associations which might exist between different 

parameters of players’ conditioning status and indicators of real match performance (Modric 

et al., 2019). The use of linear mixed modelling of load and fitness data can assist in reducing 

injury and illness, subsequently increasing player availability for training programming; 

however, it does not necessarily facilitate enhanced football performance. Due to the complex 

nature of training, quadratic modelling appears valuable when examining the training-

performance relationship (Lazarus et al., 2017), highlighting that performance staff should 

avoid prescribing substantially high weekly and sustained increases in load during the 

competitive period in AFL. A study in Australian soccer shows that the impact of training load 

on performance in A-League players appears to be position specific (Rowell et al., 2018), also 

a finding from the AFL study group (Lazarus et al., 2017). 

Variable dose-response models can retrospectively predict performance in AFL matches 

(Player Ranking) using both external and internal quantitative input (Graham et al., 2018). It 

was commented future research should aim to cross-validate application of variable dose-

response models in other high-performance team sports - this is yet to be established in soccer.  

Elite soccer clubs continually strive for success and seek ways to optimise preparedness, 

covering every facet of what is a complex and demanding sport. Coaches, technical analysts, 

physiologists, sports scientists, conditioning specialists and medical practitioners such as 

doctors and physiotherapists make up extensive and expanding teams that are employed to 

support player performance and wellbeing. In recent years the influx in available data from 

new technology, pertinently to this thesis utilising the GNSS, has allowed sports science 

practitioners and data analysts to provide clubs with training and match output data at relative 

ease. This thesis aims to bring together this current body of research and subsequently 

contribute to further knowledge in this field to guide both research and applied practitioners, 

specifically focussing on the outlined thesis aims.  
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CHAPTER 3: THE VALIDITY OF GLOBAL POSITIONING SYSTEM (GPS) 

DEVICES FOR MEASURING DISTANCE OF TEAM-SPORT SPECIFIC 

MOVEMENT 

 

3.1 Chapter summary 

 

Elite soccer clubs across the world now have relative ease of access to GNSS devices to 

monitor training and match load. This study, commenced in 2014, assesses the criterion 

validity, of the (then) current GPS-enabled devices used by elite soccer clubs (STATSports, 

GPSports and Catapult). Criterion validity was established using an optoelectronic motion 

capture system (Qualisys), calibrated to 2.6mm in an outside space large enough to replicate 

soccer specific movement. Methods from this study are now utilised in the FIFA EPTS testing 

protocol allowing manufacturers the opportunity to certify device accuracy specifically the 

used of motion capture system as the criterion measure. The main findings of the study were 

that all three GPS devices reported moderate to large bias, generally overestimating distance 

and showed a weak linear relationship relative to a gold-standard measure. This was especially 

evident measuring actions with an increased change of direction, illustrating the limitations of 

this technology. The study corroborates with previous research that even with this knowledge 

of specific areas of inaccuracy, GPS devices are useful tools to measure team-sport specific 

movement and can therefore aid practitioners to guide the training process. The devices tested 

were used to investigate dimensionality reduction as a method to simplify training analysis 

(Chapter 4), provided insight into the statistical analysis used in elite teams and to analyse the 

influence of training load on the risk of injury (Chapter 5). During this study, new hardware 

utilising GNSS (certified by FIFA) was available and introduced (STATSports, Apex). The 

study documented through Chapter 3 used technology which presented challenges with both 

hardware and software. From planning, set up, data processing, data analysis through to 

documentation, it posed many challenges to be resolved with new skills learnt.   



41 
 

3.2 Introduction 

 

The global navigation satellite system (GNSS) is a general term that encompasses all global 

satellite-based positioning systems including GPS, GLONASS, Galileo, and BeiDou 

(Zimbelman and Keefe, 2017). Commercially available navigational technology is commonly 

used with team sports to measure the movement demands of training and match-play (Waldron 

et al., 2011; Wehbe et al., 2012; McLellan et al., 2013). With the advancement of technology, 

access to objective data to understand player movement output over a given training session 

have advanced (Beato et al., 2018). It is commonly agreed GNSS device data provides greater 

practicality and time efficiency compared with other monitoring technologies, for example 

video analysis (Carling et al., 2008; Petersen et al., 2009). It is well documented however, that 

devices utilising GNSS positioning have technological and practical limitations most notably 

the accuracy of the data collected, particularly with increased movement complexity (Scott, 

Scott and Kelly, 2016).  

Accuracy of position data is determined by the precision of each satellite used for calculation, 

the accuracy of pseudorange measurements and actual satellite geometry (Januszewski, 2017). 

The user position error is a function of both the pseudorange error called UERE (User 

Equivalent Range Error), often called the signal in space (SIS) error and user-satellite 

geometry expressed by the dilution of precision (DOP) coefficient (Misra and Enge, 2006). 

The average SIS error for the GPS constellation was 0.9m in 2011 and the GLONASS SIS 

error was 1.6m in 2012 (Groves, 2013). Other factors contributing to error include atomic 

clock error, ephemeris error (cause by gravitational pull on satellites), weather conditions, 

local topography, foliage and building structures interfering with satellite signals (Shaw, 2004; 

Misra and Enge, 2006; Groves, 2013). A comprehensive explanation of the evolution and 

accuracy of satellite technology is described in Chapter 2.  

Practitioners working with team-sports increasingly seek to investigate data, aiming to 

optimise the training environment and gain a competitive advantage over rivals (Buchheit et 

al., 2014b). The main applications of GNSS devices in team sports are collection and analysis 

of physical output metrics including total distance, high-speed running and accelerations 

(Varley, Gabbett and Aughey, 2013; Varley and Aughey, 2013; Varley, Gabbett and Aughey, 

2014; Clark, 2014; Hodgson, Akenhead and Thomas, 2014). The information gained allows 

for greater analysis and planning of periodised external training load. The addition of match 

data provides an understanding of the specific movement demands, allowing the tailoring of 

match-specific training programmes (Scott, Scott and Kelly, 2016). The approved use of 

GNSS devices in official matches by FIFA, has accelerated research and development on 

position-tracking technology use (Pettersen et al., 2018).  
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Since the first evaluation of a GPS-enabled device in 1997 (Schutz and Chambaz, 1997), a 

large number of GPS/GNSS devices have been assessed for accuracy across different sport-

specific trials (MacLeod et al., 2009; Petersen et al., 2009; Duffield et al., 2010; Gray et al., 

2010; Jennings et al., 2010; Castellano et al., 2011; Waldron et al., 2011; Varley et al., 2012; 

Johnston et al., 2014; Rawston et al., 2014; Vickery et al., 2014; Beato et al., 2016; Beato et 

al., 2018). Devices have been shown to accurately quantify distances during team sport 

simulations and therefore their use during team sports matches and training that simulate 

match play movements can be justified (Scott, Scott and Kelly, 2016). GNSS devices are under 

continuous development and it is important that new devices are externally validated prior to 

being released to the market (Pettersen et al., 2018). 

Percentage bias is a common statistical method of assessing criterion validity of GNSS device 

data against a known measure. A 5-Hz GNSS device produced good (3.7 ± 0.6%) accuracy 

when measuring distance of a team sport-specific circuit (Jennings et al., 2010). Testing 

shorter distances, 10-Hz GNSS devices produced moderate (6.5 ± 3.9%) accuracy for a 30 m 

trial protocol (Castallano et al., 2011). It is useful for practitioners to understand the accuracy 

and limitations of the technology they are utilising and how it affects their analysis in real 

terms. The real-terms error of a GPS enabled unit measuring a full soccer match (10881 ± 885 

m) (Barnes et al., 2014), shown to be 3.17% (Rawstorn et al., 2014), equating to 340 – 380 m. 

Validation studies have exposed GNSS devices to show poor accuracy when measuring high 

intensity running, high velocity measures, increased acceleration, short linear running and 

increases in changes of direction (Grey et al., 2010; Portas et al., 2010; Varley et al., 2011; 

Akenhead et al., 2013a; Rawstorn, et al., 2014). A study using VICON, a video motion capture 

analysis system, as a criterion measure highlights how accuracy decreases as speed increases. 

The co-efficient of variation (CV) was 3.6% for slower (2.6 ± 0.1 m/s) movement speeds, up 

to 7.6% for faster (4.9 ± 0.2 m/s) movement speeds (Duffield et al., 2010). Compared to the 

VICON system, GNSS devices underestimated the distance covered when speed and 

movement complexity increased. 

The number of satellites to which devices can connect at the time of data collection will affect 

position estimation and therefore movement data accuracy (Witte and Wilson, 2004; Johnson 

and Barton, 2004; Grey et al., 2010). Device connection to four satellites is the theoretical 

minimum number needed to triangulate a GNSS receiver’s position (Scott, Scott and Kelly, 

2016), although there is a moderate negative correlation between the total distance error (i.e., 

the difference between the recorded distance and the actual distance) recorded by a GPS 

receiver and the number of satellites signalling the receiver (Grey et al., 2010). 

The sampling frequency of GNSS devices is the rate at which the position is measured per 

second ranging from early devices sampling at 1-Hz (MacLeod et al., 2009). Recent devices 
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have utilised a sampling rate of 18-Hz, improving the accuracy of data collection (Beato et al., 

2018). Higher sampling frequency devices (10- and 15-Hz) have been shown to be more 

accurate and reliable than 1- and 5-Hz units (Scott, Scott and Kelly, 2016). One study shows 

device accuracy increases up until 10-Hz, but the rise to 15-Hz provided no additional benefit 

(Johnston et al., 2014). Further study considering satellite availability and mitigation of 

ionosphere error showed improved bias (3.5 ± 3.3%) from 10-Hz devices (Beato et al., 2016) 

to 18-Hz Units (1.15 ± 1.23%), supporting the sampling rate rise in new devices (Beato et al., 

2018).  

There are no standardised recommendations for the acceptable error for validity measures in 

this field but other studies have adopted measures of validity bias to be rated as good (<5%), 

moderate (5–10%), or poor (>10%) and advised that the gold standard criterion measure to be 

a motion capture system (Scott, Scott and Kelly, 2016). 

For comprehensive criterion validity testing of GNSS device ability to measure sport-specific 

movement it is important to use a precise criterion measure. Examples used to measure 

distance, velocity or acceleration are laser systems (Siegle et al., 2013; Rampinini et al., 2015), 

timing gates (MacLeod et al., 2009; Frencken et al., 2013; Buchheit et al., 2014a) and motion 

capture systems (Duffield et al., 2010; Stevens et al., 2014; Vickery et al., 2014). Using a pre-

marked path measured by a trundle wheel identified error in path taken by trial subjects adding 

to the total error, thus not fully representing device accuracy (Portas et al., 2010, Coutts and 

Duffield, 2010). Therefore, the use of an accurate criterion measure will highlight more closely 

the true accuracy of the measured device (Duffield et al., 2010).  

Video camera motion capture systems for example, Qualisys (Qualisys, Gothenburg, Sweden) 

and Vicon (Oxford Metrics, UK), have been shown to be highly accurate measures of 

movement. A study using eight-Vicon T40S cameras measuring static experiments showed a 

mean absolute error of 0.15 mm, variability lower than 0.025 mm and dynamic movement 

error was less than 2 mm (Merriaux et al., 2017). 

Data collection for this study was completed in 2014 on GPS-enabled devices that are still 

used by sports teams globally. The availability of newer systems to the market have provided 

better value and affordability of these models therefore wider use in a range or sporting 

environments. The movements considered in this study reflect a soccer physical profile - 

characterised by brief bouts of high-intensity linear and multidirectional activity (Varley et al., 

2016), movements that have previously been shown to be measured inaccurately (Grey et al., 

2010; Portas et al., 2010; Varley et al., 2011; Akenhead et al., 2013a; Rawstorn, et al., 2014). 

This study therefore addressed these movements within the trial protocols. 

This study aims to use a video camera motion capture system to assess the validity of 10- and 

15-Hz GPS-enabled devices to measure the distance of team-sport specific movement. 
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3.3 Methods 

 

3.3.1 Participants 

 

One amateur male soccer player (26.3 years, 73.2 kg, 179.2 cm) volunteered to participate in 

this study. The experimental protocol was in accordance with the University of Bath 

department for Health Research Ethics Approval Committee. A written informed consent was 

obtained from the participant of this study.  

3.3.2 Technologies used 

 

Devices from three GPS device manufacturers were used: one non-differential 10-Hz Catapult 

Minimax device (MinimaX S4, 10-Hz, Firmware 6.70, Catapult Innovations, Melbourne, 

Australia), one non-differential 15-Hz GPSports devices (SPI-ProX, 15-Hz, Firmware V2. 4.3, 

GPSports, Canberra, Australia) and four non-differential 10-Hz STATSports devices (Viper, 

10-Hz, STATSports, Newry, Ireland). Devices were worn in a custom-made vest 

accommodating three devices side by side between the participant’s scapulae (Figure 3.1), as 

per manufacturer recommendation. 

Criterion validity was assessed using Qualisys (Qualisys, Gothenburg, Sweden), an 

optoelectronic motion capture system configured in an outside space (Figure 3.2), with twelve 

motion analysis cameras and one video camera (capture area of 15x3 m). The calibration 

process ensured an accuracy of 2.6 mm, which is in line with other kinematic studies (Merriaux 

et al., 2017). Twenty-one anatomical and technical markers were placed on the participant 

(Figure 3.3) including the device vest structure. An automatic identification of markers model 

(AIM) was created and applied to each trial marker trajectories to label the twenty-one 

trajectories (Qualisys Track Manager, Qualisys, Sweden). Three marker trajectories (i.e. GPS, 

SHR and SHL) were chosen for analysis, as highlighted in Figure 3.3.  
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Figure 3.1 Experimental set-up and device configuration in custom made vest during an 

acceleration trial 

 

 

 

 

Figure 3.2 Motion capture system (Qualisys) set up configuration with 12 motion analysis 

cameras and one video camera. Calibrated to 2.6mm error over a capture area of 15x3m 
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Figure 3.3 Motion capture system (Qualisys) identification of marker model highlighting the 

marker labels used in the analysis. 

 

3.3.3 Experimental procedures 

 

After refraining from physical activity for the 48 hours prior, the participant completed two 

experimental trials of identical protocol: i) ten linear accelerations (A-B = 13.95 m), ii) ten 

change-of-direction shuttle runs (A-B-A-B = 41.85 m) and iii) ten multi-direction shuffle runs 

(A-B-C-D-E-F = 12.5 m). Representative schematics of each run are shown in Figure 3.4.  

The first trial tested three STATSports Viper-2 devices and the second trial tested one device 

from each manufacturer. The participant had a ninety-minute break of complete rest between 

trials. To facilitate satellite connection, before each trial, the devices were switched on and left 

stationary for 15 minutes and then walked around a 400-m athletics track. 

Weather conditions recorded at the time of the two trial periods were clear skies and sun with 

temperatures of 24oC and 26oC respectively. Number of satellite and horizontal dilution of 

precision (HDOP) data were missing due to STATSports system version (Beato et al., 2018). 
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Figure 3.4 Schematic of validity trial protocols; Acceleration (ACC) – subject runs from A-B 

with nil change of direction, Change of direction (COD) – Subject runs three consecutive 

shuttles between A-B-A-B finishing at B including two 1800 direction changes, Zig-Zag (ZIG) 

– Subject follows multi-direction change track alternating between forward running and 

linear shuffle movements 

 

System synchronisation was achieved by instructing the participant to stand in the stationary 

anatomical position at the start and end of each trial in order to ‘standardise’ the start and end 

position. A time stamp was recorded and stored to synchronise Qualisys and GPS data sets. 

Trials were completed in surroundings free from potential signal disruption i.e. buildings, 

extreme topography or high-level foliage.  

Raw GPS data was downloaded using the respective manufacture software: STATSports 

(Viper 2.6.1.125), Catapult Logan Plus (v4.5) and GPSports Team AMS (v2.1). Qualisys raw 

files were processed using Qualisys Track manager (v2.10). The AIM model (Figure 3.3) was 

applied to each run to detect the twenty-one motion tags followed by manual processing of 

misidentified tags for three acknowledged tags (GPS, SHR and SHL). 

3.3.4 Qualisys data processing 

 

To obtain the distance covered from each trial from the Qualisys data, a tiered process was 

used to calculate displacement after a clean-up of fragmented or deletion of poor data. Firstly, 

following the application of the AIM model, if the GPS marker was complete across the whole 

trial (48.3% of all trials), measured distance was calculated as follows: 
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The instantaneous displacement for the x (anterior-posterior) and y (medio-lateral) axis was 

calculated in metres (m) as following: 

𝑑𝐺𝑃𝑆𝑥2 = 𝐺𝑃𝑆𝑥2 + |𝐺𝑃𝑆𝑥2 − 𝐺𝑃𝑆𝑥1| Equation 1 

𝑑𝐺𝑃𝑆𝑦2 = 𝐺𝑃𝑆𝑦2 + |𝐺𝑃𝑆𝑦2 − 𝐺𝑃𝑆𝑦1| Equation 2 

The displacement of GPS marker (dGPS) from frame to frame was calculated as following: 

𝑑𝐺𝑃𝑆 = √𝑑𝐺𝑃𝑆𝑥
2 + 𝑑𝐺𝑃𝑆𝑦

2
   Equation 3 

In cases of complete GPS marker data, the final frame to frame calculation is the GPS marker 

total distance from initial to final position. In cases of incomplete GPS marker data (31.6% of 

trials), shoulder tags (SHL and SHR, located on the acromion process of each shoulder) were 

used to calculate an estimated GPS marker position (eGPS) located between the participant’s 

scapulae.  

The calculation of estimated GPS marker position (eGPS) was performed as following 

𝑒𝐺𝑃𝑆𝑥 =
𝑆𝐻𝑅𝑥+𝑆𝐻𝐿𝑥

2
  Equation 4  

The instantaneous displacement of estimated GPS marker position was calculated in m as 

following: 

𝑑𝑒𝐺𝑃𝑆𝑥2 = 𝑒𝐺𝑃𝑆𝑥2 + |𝑒𝐺𝑃𝑆𝑥2 − 𝑒𝐺𝑃𝑆𝑥1|  Equation 5 

𝑑𝑒𝐺𝑃𝑆𝑦2 = 𝑒𝐺𝑃𝑆𝑦2 + |𝑒𝐺𝑃𝑆𝑦2 − 𝑒𝐺𝑃𝑆𝑦1|  Equation 6 

The displacement (m) of estimated GPS marker (eGPS) from frame to frame was calculated 

as following: 

𝑑𝑒𝐺𝑃𝑆 = √𝑑𝑒𝐺𝑃𝑆𝑥
2 + 𝑑𝑒𝐺𝑃𝑆𝑦

2
  Equation 7 

In cases of incomplete GPS marker data, the sum of GPS and replacement eGPS final frame 

to frame displacement represents the GPS marker total distance from initial to final position. 

All values are presented in metres. Trials with both GPS and SH error were omitted from the 

trial (20%). 

3.3.5 Statistical analysis 

 

Descriptive statistics are presented as the mean and standard deviation of the distance covered 

for the three trial protocols (Acceleration, Change of Direction and Zig-Zag) measured 

concurrently by optoelectronic motion capture system (Qualisys) and three GPS devices 

(STATSports Viper, Catapult Minimax, GPSports SPI-ProX). 
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The agreement between the distance measured by the three GPS devices compared with 

motion capture system was assessed by presenting the bias (raw (m) and percentage values) 

and standardised by dividing by the criterion standard deviation. Linear regression modelling 

was used to plot the GPS data against the Qualisys data. R-Squared values indicate a relative 

measure of fit and the Standard Error of the Estimate (SEE) assessed the absolute measure of 

fit. Mean standardised bias was used to quantify the magnitude of the difference between the 

distance measured by Qualisys and that reported by the GPS systems, with bias and SEE 

qualitative magnitudes classed as <0.2, trivial; 0.2-0.6, small; 0.6-1.2, moderate; 1.2-2.0, large; 

>2.0 very large (Hopkins, 2000) and used 95% limits of agreement (Bland and Altman, 1986).  

3.4 Results 

 

The descriptive data for the three trial protocols and the three GPS devices are shown in Table 

3.1. All three GPS devices generally underestimated distance relative to the criterion measure 

and a small linear relationship is shown across the majority of trial protocols (Figure 3.5, 3.6 

and 3.7). The four viper devices overestimated distance for the acceleration protocol (0.51 ± 

0.51 m; R2 = 0.12; SEE = 0.32) and multi-direction (ZIG) (1.39 ± 0.38 m; R2 = 0.03; SEE = 

0.25) however, there was no reported bias for the shuttle (COD) protocol (0.00 ± 0.76 m; R2 

= 0.29; SEE = 0.70). The Minimax device overestimated the ACC (1.79 ± 0.93 m; R2 = 0.02; 

SEE = 0.36) and ZIG (1.49 ± 1.26 m; R2 = 0.10; SEE = 0.25) protocols and underestimated 

COD (-0.56 ± 0.70 m; R2 = 0.12; SEE = 0.40). The SPI-ProX device overestimated all three 

protocols: ACC (0.47 ± 1.12 m; R2 = 0.66; SEE = 0.21), COD (1.14 ± 1.00 m; R2 = 0.06; SEE 

= 0.41) and ZIG (1.03 ± 0.57 m; R2 = 0.12; SEE = 0.26).  

 

Protocol n Qualisys distance (m) Viper distance (m) 

ACC 31 13.2±0.3 13.7±0.5 

COD 29 39.2±0.8 39.2±0.8 

ZIG 36 9.2±0.3 10.6±0.3 

   Minimax distance (m) 

ACC 31 13.1±0.3 14.9±0.8 

COD 29 39.7±0.4 39.2±0.7 

ZIG 36 9.3±0.3 10.8±1.4 

   SPI distance (m) 

ACC 31 13.1±0.3 13.6±0.5 

COD 29 39.7±0.4 40.9±0.8 

ZIG 36 9.3±0.3 10.3±0.6 

 

Table 3.1 Descriptive data (mean and standard deviation of the distance covered) for 

Acceleration (ACC), Change of Direction (COD), and Zig-Zag (ZIG) trial protocols measured 

concurrently by optoelectronic motion capture system (Qualisys) and three GPS devices 

(STATSports Viper, Catapult Minimax, GPSports SPI-ProX) 
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Validity statistics are shown in Table 3.2. Comparing protocols, data shows a trend of 

percentage bias being highest in all three devices during the ZIG protocol (11.6 – 16.4%). The 

only outlier to this from the other trial protocols was found for the Minimax ACC measurement 

(14.5%). Excluding this, percentage bias was much lower for the COD protocol (1.2 – 2.9%) 

and ACC protocol (3.3 – 3.5%).  

Comparing the three GPS devices, the viper unit performed best during the ACC and COD 

protocols and the SPI device during the ZIG. The Minimax device generally performed worst 

across the three protocols. The ACC protocol showed the smallest mean standardised bias 

(0.56 - 4.29). This is compared with the COD (-1.55 - 4.89) and ZIG protocol (1.32 - 3.67) 

with majority of data representing a ‘very large’ difference (>2.0). The best performing 

protocols showing ‘small’ (0.2 - 0.6) and ‘moderate’ (0.6 - 1.2) differences were found using 

the Viper unit (ACC – 0.97, COD – 0.56).  
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Figure 3.5 Linear regression plots for Qualisys and Viper GPS device distance measurement of three trial protocols 

 

Figure 3.6 Linear regression plots for Qualisys and Minimax GPS device distance measurement of three trial protocols 
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Figure 3.7 Linear regression plots for Qualisys and SPI-ProX GPS device distance measurement of three trial protocol 

 

 

Viper 

Protocol Bias (m±SD) % Bias (±SD) Mean Standardised 

Bias (±95%CL) 
R2 SEE 

 ACC 0.51±0.51 3.9±3.8 1.46±0.35 0.12 0.49 

 COD 0.00±0.76 0.00±2.0 0.00±0.36 0.29 0.66 

 ZIG 1.39±0.38 16.2±4.0 5.08±0.47 0.03 0.33 

Minimax       

 ACC 1.79±0.93 14.5±6.7 4.89±2.25 0.02 0.87 

 COD -0.56±0.70 -1.4±2.5 -1.55±2.36 0.10 0.78 

 ZIG 1.49±1.26 16.4±13.6 4.99±3.26 0.12 1.30 

SPI       

 ACC 0.47±1.12 3.5±9.1 1.32±2.98 0.66 0.52 

 COD 1.14±1.00 2.9±2.5 3.02±3.29 0.06 0.95 

 ZIG 1.03±0.57 11.6±5.9 3.67±1.51 0.12 0.60 

      

Table 3.2 Criterion validity statistics for Viper, Minimax and SPI GPS devices for each validity trial protocol
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3.5 Discussion 

 

This study analysed the validity of 10- and 15-Hz GPS devices to measure the distance of team-sport 

specific movements.  

The main findings were that all three devices reported moderate to large bias (increased with movement 

complexity), generally overestimating distance and showed a weak linear relationship relative to a gold-

standard measure. Device accuracy was best during unidirectional movement with simple change in 

direction and decreased with trial complexity (i.e. ZIG). Regarding the comparison across devices, the 

Minimax 10-Hz device performed weakest across the majority of trials compared with the Viper 10-Hz 

and SPI-Elite 15-Hz devices. Comparison of data between devices must be approached with caution 

due to lower number of completed trials for SPI and minimax devices (5 - 9) compared with Viper (31 

- 36).  

Previous studies have shown that devices, inclusive of those measuring at 1-Hz (MacLeod et al., 2009), 

accurately quantify distance during team sport simulation and therefore can justifiably be used during 

team sports matches and training (Scott, Scott and Kelly, 2016). A soccer-specific course was used to 

assess the accuracy of GPS devices to measure distance, concluding that 1- and 5-Hz devices could be 

used to quantify distance in soccer and similar field-based team sports (SEE = 2.2 – 4.4) (Scott, Scott 

and Kelly, 2016). The current study agrees with this research with ACC and COD trials mirroring these 

levels of error (Table 3.2). Measuring higher speed, acceleration and changes in direction protocols, the 

GNSS device accuracy decreases along with the validity of its measurement (Grey et al., 2010; Portas 

et al., 2010; Varley et al., 2011; Akenhead et al., 2013a; Rawstorn, et al., 2014; Duffield et al., 2014). 

The current study found similar findings, showing poor (>10%) bias with the most complex protocol 

(ZIG). Caution must be taken when using these devices to measure distance during movements that 

involve repeated change of direction. 

The results of the current study were also in agreement with Rawstorn et al., (2014) that caution is 

recommended when measuring rapid multidirectional change, shown to be an important part of soccer 

performance. Video tracking research shows that soccer players sprint (>25.1kph) 51 ± 20 times per 

match with the average sprint distance of 6.9 ± 1.3 m (Barnes et al., 2014). A player will perform up to 

1400 actions during a 90-minute match consisting of short activities changing every 4-6 seconds 

(Bangsbo, 1994; Stolen et al., 2005). Therefore, practitioners using such metrics in their analysis should 

be aware of the limitations of technology used to measure these actions shown in this data and previous 

studies, especially when using slower sample rate devices. 

To further develop the findings from those of the previous research, the current study adopted the use 

of an optoelectronic motion capture system (Qualisys, Gothenburg, Sweden) configured in an outside 

space (Figure 3.1) to accurately assess criterion validity. Motion capture systems have been shown to 
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measure dynamic movement with error less than 2 mm (Merriaux et al., 2017). Important to this 

research, the difference between the Qualisys measured distance and the pre-determined measured track 

for ACC (0.76 ± 0.34 m; 5.9%), COD (2.64 ± 0.81 m; 7.0%) and ZIG (2.75 ± 0.25 m; 34.8%) highlights 

the extent of protocol deviation from the testing subject (potential human error if criterion measure was 

not used).  

Sample rate has been cited as a key factor in technology development. Early studies used devices 

sampling at 1-Hz through to current, commercially available devices sampling at 18-Hz (STATSports 

Apex). The results of previous validity trials have shown higher sampling frequency devices (10- and 

15-Hz) to be more accurate and reliable than 1- and 5-Hz units (Scott, Scott and Kelly, 2016). The 

current study found that the 15-Hz SPI and 10-Hz viper devices performed better than the 10-Hz 

minimax devices but does not support a higher or lower sampling rate with the number of trials 

analysed.  

The current study was completed with GPS devices that manufacturers have since updated and replaced 

with newer technology. Several factors including higher sampling rates up to 18-Hz, use of 

augmentation to boost accuracy, utilisation of accelerometers to enhance movement tracking algorithms 

and increased satellite availability with the GNSS network, have improved device accuracy (Beato et 

al., 2018). It is important for research to support technological development, report the accuracy of new 

devices to give practitioners confidence using GNSS devices to guide the training process and, as 

outline in this study, employ gold standard methods for this process (Linke et al., 2018). This detailed 

study focusing on accuracy precision found the average spatial measurement error of a GNSS system 

was 96 cm (motion capture system used as criterion measure), the RMSE observed (4.9%) when 

measuring total distance of sports specific movements would correspond to a discrepancy of 560 m 

across a total match (Linke et al., 2018). The author reported larger errors when measuring high speed 

performance indicators and recommended research into XY-data, further to metric validity.  

The satellite number and HDOP data were not available due to the device version used during testing. 

Precautions were taken to ensure environment was created for good satellite visibility and signal 

connection, but no objective evidence can be provided. The optimal conditions were observed for data 

collection but validity data assumptions cannot be extended to every environmental condition. 

Additionally, there was limited data collected, especially for Minimax and SPI devices. This was further 

reduced after Qualisys data processing due to marker drop out, damaged files or missing sections of 

trial data, which is especially relevant when trying to compare devices. The method used to synchronise 

the start and end point between Qualisys and the corresponding GPS units, used in a previous study 

(Duffield et al., 2009) is an additional source of error to be aware of. The extent of the error is 

proportional to the amount of data collected so the level of error is mitigated firstly by short movement 
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lengths and the mechanisms used to limit the potential for error in data handling highlighted in the 

methods.  

GPS data was obtained from manufacturer software subjected to individual smoothing algorithms. 

Future study design could overlay raw positional data values from both Qualisys and GNSS devices, 

potentially using statistical parametric mapping (SPM). SPM was originally developed for the analysis 

of cerebral blood flow in 3D PET images (Worsley et al., 1992), but has been used more widely in a 

wide range of biomechanical applications (Pataky, 2010). Another area of future studies could explore 

the error in relation to other frequently measured metrics collected by GNSS devices to guide training 

load. Access to manufacturer equations and algorithms would be critical in this process in order to 

measure raw error rate and translate it to mechanical error. Metabolic metric accuracy would be an 

interesting area to explore.  

3.6 Practical applications 

 

 10- and 15-Hz devices measured in this study can be used to measure distance covered of soccer 

specific movements  

 Device accuracy decreases when measuring movements that include multiple change of 

direction  

3.7 Conclusion 

 

The main findings of this study were all three GPS devices reported moderate to large bias, generally 

overestimating distance and showed a weak linear relationship relative to a gold-standard measure. 

Caution must be observed when using these devices to measure movements that incorporate repeated 

change of direction but corroborates the findings of previous studies that GPS devices are useful tools 

to measure team-sport specific movement and can aid practitioners to guide the training process. The 

use of motion capture as the gold standard criterion measure is key for accurate criterion measure. 

Future studies should also ensure protocol design matches sport specific profile, maximise trial numbers 

to ensure robust statistical analysis and look at utilising raw data values. This study provides validity 

data on units that are still used by sports teams world-wide and provides insight into the methodology 

of determining device accuracy with a criterion measure.  
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CHAPTER 4: THE USE OF DIMENSIONALITY REDUCTION TO DESCRIBE 

TRAINING LOAD METRICS IN ELITE SOCCER 

 

4.1 Chapter summary 

 

Once established as fit for purpose, GNSS devices can be used to monitor load in soccer and data can 

provide insight for practitioners in elite clubs to optimise the training process. This chapter will 

investigate the methods used to present data in a simple format that has context which resonates with 

key stakeholders. This study contextualises training data using match average data and then streamlines 

the analysis using dimensionality reduction. Results from match data (elite soccer players from an 

English Premier League club) were in general agreement with previous match demand research and 

were applied to training data, offering a method to present data to coaches. Subsequent analysis of 

contextualised training data used dimensionality reduction to reduce twelve metrics to three new 

components (‘velocity’, ‘change in velocity’ and ‘metabolic intensity’). Components were named to 

represent the metrics associated with each one and together they provide a rounded view of external 

training load. The three components of training can be applied to future training load data sets by 

selecting the highest correlation metric or more pertinently to this thesis by applying the component 

weightings to the data sets to elicit a factor output for each area of training load. This is a methodological 

focussed chapter to show proof of concept for the use of dimensionality reduction in the subsequent 

experimental chapters. The methodology demonstrated will be used in Chapter 5 to describe and 

compare the loading strategies across three seasons of soccer load and analyse the influence of pre-

season training load, injury burden and player age on the rate of in-season injury. 

 

  



57 
 

4.2 Introduction 

 

Movement analysis has been widely used to examine the activity patterns and physical aspects of soccer 

in the last twenty years (Reilly and Thomas, 1976; Mohr, Krustrup and Bangsbo 2003; Dogramaci, 

Watsford and Murphy, 2011). Movement analysis data is commonly used retrospectively by many elite 

soccer clubs to provide a i) detailed physical breakdown of training or match play, and ii) an objective 

measure of physical demand placed on a player which can be used for subsequent training load planning.  

Training load in team sports can be described as either external or internal (Akubat et al., 2014). Internal 

load is commonly observed in soccer using the athlete rating of perceived exertion (RPE) and heart rate 

metrics (Buchheit et al., 2012; Owen et al., 2015). External load metrics, supported by the developments 

in micro-technologies, are commonly observed through metrics including total distance (m), distance 

in speed bands (m), number of sprints (count) and acceleration sum (number of actions > threshold) 

(Clark, 2014). Devices which combine accelerometers and non-differential satellite position receiving 

chips to produce load metrics are collectively termed integrated technology (Dellaserra, Gao and 

Ransdell, 2014). The accelerometer provides additional inertial data at up to 100-Hz which can enhance 

position precision, contributing to manufacturer smoothing algorithms applied during the data 

processing. The introduction of GNSS analysis in soccer results in more readily available data to 

coaches, players and support staff to help develop specific training programs and track individual 

physical progression.  

The practical use of data varies widely across different professional soccer clubs. A systematic review 

of papers (n=43) evaluating the application of position tracking technology showing significant 

differences in speed zones used highlighted variation in data processing and presentation, often with 

the analysis of many different metrics (Cummins et al., 2013). The large scope for analysis is intriguing 

but can become a limitation as multiple, complex data sets can become difficult for practitioners and 

coaches to digest. Essentially, the overload of potentially unimportant information ultimately limits its 

usefulness. Presenting absolute training data with no historical reference or context to guide the user 

can also reduce clarity and effectiveness of data presentation. Researchers aware of these challenges 

have previously attempted to organise the data analysis process and categorise training load for it to be 

presented in a simplified format (Owen et al., 2017).  

To the authors knowledge there are no studies which have attempted to statistically reduce either the 

internal or external metrics in soccer. Studies have either selected basic metrics that are shown to be 

most reliable or use a multi-modal approach to present metrics in two key categories (volume and 

intensity) based on knowledge of the metrics (Owen et al., 2017). Integrated technology software 

packages present many different metrics which can be a limitation with data analysis and presentation. 



58 
 

However, to simply select important metrics using opinion could mean that potential correlations 

between metrics and outcomes are missed.  

This study aims to (1) give context to training load data by using individual match thresholds and 

applying them to training data analysis, and (2) simplify the description of training by identifying 

pertinent metrics via dimensionality reduction. 

4.3 Methods 

 

4.3.1 Participants 

 

Training and match load data were collected from nineteen male elite soccer players (18.8 ± 0.9 years, 

74.7 ± 6.3 kg, 179.0 ± 5.0 cm) for one season resulting in 7836 training and match observations. All 

players were contracted to play professional soccer on a full-time basis at an English Premier League 

soccer club for the 2013-2014 season. Ethical approval for this research was obtained from the Research 

Ethics Committee of the University of Bath Research Ethics Approval Committee for Health: REACH 

reference number: EP 11/12 129. All participants received a clear explanation of the study and signed 

informed consent forms prior to data collection.  

4.3.2 Equipment 

 

All players wore commercially available GPS (10-Hz) and accelerometer (100-Hz) devices (Viper 2, 

STATSport technologies, Newry, Northern Ireland) for all training sessions and matches. GPS units 

have been shown to be a valid tool to measure team sport matches and training (Scott, Scott and Kelly, 

2016). In line with manufacturer recommendations, devices were worn between the shoulder blades 

embedded in a custom-made vest. Each player was assigned their own tracking unit for use throughout 

the study period. 

4.3.3 Study design 

 

Load data was collected from each player for every match during the 2013-2014 soccer season. Match 

data was considered eligible if the player had completed a full 90-minute match on an 11v11 pitch in 

their normal playing position and the data was absent of positioning error or signal disruption (e.g. 

signal disruptions in stadia or battery problems with tracking units). Average match data (match 

threshold) was then established for twelve individual metrics for each player. An average was created 

based on data from eight matches. Any player with less than eight matches of eligible data (n = 3) were 

excluded at this point. The twelve individual metrics are described in Table 4.1.  
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Table 4.1 Statsports Viper training load metrics explained – Adopted from STATSports Technologies LTD metrics report, Version 1.2 (2012) 
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Training load data was collected for every session for the duration of the 2013-2014 soccer season 

across the twelve metrics. 

To contextualise this data, each of the data points were expressed as a percentage of the match threshold 

calculated by the following formula: 

Training Load % =  
Training Output 

Match Threshold
 × 100 

The training load percentage was then averaged to produce a simple holistic training load value named 

‘Total Load’, also expressed as a percentage.  

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑 % =  
∑ 𝑀𝑒𝑡𝑟𝑖𝑐 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠

12
 

An example of the visual output is shown below in Figure 4.1: 

 

Figure 4.1 Visual representation of training load metrics for one training session expressed as 

percentage of match load 

 

Principal component analysis was then used on contextualised metrics to reduce twelve metrics into 

new components of load. 

4.3.4 Data analysis 

 

Software packages used for data processing and analysis were Viper (STATSports technologies, Newry, 

Northern Ireland), SPSS (IBM SPSS Statistics, Version 19) and Microsoft Excel (2010). 

A one-way ANOVA with a Tukey post-hoc test was used to analyse significant differences between 

playing position for the twelve training load metrics.  

The Kaiser-Meyer-Olkin (KMO) measure was used to verify the sampling adequacy for the analysis. It 

is recommended that an acceptable value is greater than .5 but closer to 1 indicates that the analysis 

should yield reliable results (Field, 2013). An R-Matrix was used to check for a high correlation between 
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metrics to avoid extreme multicollinearity. The removal process resulted in the removal of three metrics 

leaving nine metrics to be used for analysis (Field, 2005).  The determinant of the R-Matrix was also 

analysed, and the determinant should be greater than 0.00001, indicating the absence of 

multicollinearity. Once initial statistical checks were complete, a principal component analysis was 

conducted (n=1369) and the number of retained components was based on analysis of eigenvalues using 

Kaiser’s criterion of 1 and the subsequent scree plot. The plot is interpreted by accepting the points of 

inflexion in the line of eigenvalues as justification for retaining that number of components.  

4.4 Results 

 

The first aim for this study was to create an individualised match-play average for twelve data metrics 

to provide context for training data analysis. Table 4.2 shows the mean match play data comparing 

player positions. 

There were statistically significant differences between each positional group for each of the twelve 

metrics except accelerations (p=.014). The Tukey post-hoc test revealed differences between each 

playing position. Total distance for the centre forward position (9417 ± 557 m) is significantly lower 

than centre back (p < 0.001), centre midfield (p < 0.001) and full back positions (p < 0.001). There was 

no significant difference between the wide midfield and centre forward position for total distance (p = 

0.153). In comparison, the number of sprints for the centre back position (9.0 ± 4.5) were significant 

lower (p < 0.001) than centre forward, wide midfield and full back positions. Figure 4.2 shows a season 

of contextualised training data for the twelve metrics for one player highlighting the complexity of using 

twelve data streams. 

The second aim of this study was to simplify the description of training by identifying pertinent metrics 

via dimensionality reduction. The analysis on the contextualised data reduced twelve metrics into group 

factor components, identifying the most pertinent metrics within those components to explain training 

load. Initial eigenvalues analysis (Table 4.3) highlighted two components greater than 1.0 meaning the 

first analysis was conducted with the instruction to produce two component outcomes (68% of variance 

explained). The subsequent components however were not discounted as the eigenvalue scree-plot 

analysis (Figure 4.3) indicated the use of three and five component outcomes. It is expected for the 

components to be somewhat correlated as metric data is from the same session; however, the aim is to 

reduce the metrics by as much as possible and this is better achieved by discarding the five-component 

output due to there being a high correlation (.516) between components. Using two components showed 

an overcrowding of metrics associated with one another which would lead to a lack of session type 

characterisation. Failing to distinguish between session types could potentially mean overlooking some 

physical aspects that would be hidden within the data collected. Based on the balance of explanation of 

total variance, avoiding high correlation between components and ensuring physical demands are 
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represented - twelve data metrics were reduced to three new components. These three simplified 

components explain 78% of the variance and were independent of each other (.362). 

 

Figure 4.2 Multiple-metric training data for one soccer player for all completed training sessions 

during the 2013/14 season 

 

Table 4.4 highlights how each load metric contributes to the three new components. Due to the 

association with accelerations (.946) and decelerations (.905), component one is named ‘change in 

velocity’. Component two is strongly associated with number of sprints (.942) and high-speed running 

(.855) and is subsequently named ‘velocity’. Component three was strongly associated with average 

metabolic power (.868), number of impacts (.571) and speed intensity (.550). This third component of 

load isolates intensity measures that accumulate across a training session and is therefore named 

‘metabolic intensity’. These terms were chosen as simple representations of the metrics which 

contribute to each new component.  
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Position Total 

Distance 

High Speed 

Running 

High 

Metabolic 

Load 

Dynamic 

Stress Load 

High 

Intensity 

Accelerations 

High 

Intensity 

Decelerations 

Number of 

Sprints 

Average 

Metabolic 

Power 

Speed 

Intensity 

Impacts Equivalent 

Metabolic 

Load 

Energy 

Expenditure 

Centre Back 10559±1065 465±145 1779±350 396±206 34±9 59±12 9.2±4.6 9.6±0.9 521±57 7143±2211 12536±2211 1051±132 

Full Back 10473±837 509±171 1924±247 323±54 41±10 64±16 18.9±5.9 9.3±0.6 522±43 5946±972 12671±938 1086±115 

Centre Midfield 10506±626 380±139 1784±263 365±93 35±14 57±18 8.8±4.6 9.6±0.7 518±34 6128±1360 12483±776 1031±145 

Wide Midfield 9934±813 568±97 1951±204 367±71 45±15 69±16 24.2±5.4 9.2±0.7 495±41 5948±953 12081±999 918±79 

Centre Forward 9417±557 393±171 1716±211 466±138 37±14 59±11 16.7±4.9 8.6±0.6 464±33 5651±831 11248±752 982±61 

Average 10197±892 460±162 1831±251 381±128 38±13 61±15 15±7.7 9.2±0.8 505±47 6147±1412 12219±1050 1016±125 

 

Table 4.2 Descriptive (mean ± standard deviation) data of position specific match output from 16 elite soccer players across one competitive season  

 

 

 

 

Table 4.3 Eigenvalues and percentage of variance explained for each 

component from principle component analysis  

 

 

 

 

 

 Component   

 1 2 3 

High Speed Distance 0.031 0.855 -0.146 

High Metabolic Load 0.514 0.294 -0.491 

Dynamic Stress Load 0.496 0.034 -0.401 

High Intensity 

Accelerations 

0.946 0.048 0.229 

High Intensity 

Decelerations 

0.905 -0.012 0.007 

Number of Sprints -0.041 0.942 0.131 

Average Metabolic 

Power 

-0.177 0.064 -0.868 

Speed Intensity 0.540 0.078 -0.550 

Number of Impacts 0.531 -0.086 -0.571 

 

Table 4.4 Component correlation matrix from principle component analysis 

of training data highlighting the strongest associations within each 

component 

  

Component Eigenvalue % Variance Cumulative Variance 

1 4.681 52.01 52.01 

2 1.452 16.13 68.14 

3 0.968 10.75 78.90 

4 0.808 8.98 87.88 

5 0.378 4.21 92.08 

6 0.306 3.41 95.49 

7 0.239 2.66 98.14 

8 0.109 1.22 99.36 

9 0.058 0.64 100.00 
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Figure 4.3 Scree plot of Eigenvalues for each principal component. 

 

4.5 Discussion 

 

The aims of this study were to compare training load data to individual match thresholds to give context 

to training data, and to simplify the analysis process by reducing training metrics into load components.   

This study is the first to use principal component analysis on elite soccer training data to simplify the 

data analysis process and identify the most pertinent metrics. Results from the principal component 

analysis on training data show the twelve metrics reduced to three components named ‘change in 

velocity’, ‘velocity’ and ‘metabolic intensity’. Identifying athlete exposure to high velocity work has 

been linked with both performance (Dunn, 2014) and injury (Askling, Malliaropoulos and Karlsson, 

2013). Acceleration is the rate of change in velocity and has been shown to be more demanding on 

athletes than constant-velocity movement (Osnach et al., 2010). The new component distinguishes 

acceleration output which can assist practitioners to guide soccer specific programming in order to 

condition players appropriately for these movement demands. The component names were chosen as 

simple representations of the metrics which contribute to the three components and collectively the 

terms symbolise three key areas of training load which put different physical stresses on the player. 

Much of the previous research on the physical match demands of soccer use camera based analysis 

systems (Mohr, Krustrup and Bangsbo, 2003; Di Salvo et al., 2009; Di Salvo et al., 2010) and those that 

have used position tracking technology have often been carried out on young soccer players who do not 

play for the same match length (Castagna et al., 2010; Harley et al., 2010). One study which does assess 

elite adult players using positioning devices reported total distance (10451 ± 760 m) and high-speed 

running (505 ± 209 m) output (Akenhead et al., 2013b). The present data for total distance (10197 ± 

892 m) and high-speed running (460 ± 162 m) is in general agreement with these data. This study also 
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highlighted positional differences in match output similar to previous research (Ekblom, 1986; 

Bangsbo, 1994; Bloomfield et al., 2007; Di Salvo et al., 2007; Bradley et al., 2013). Match data was 

collected to contextualise each training load observation and obtain a ‘total load’ observation. This can 

primarily be used to improve the presentation of data to coaches making the process more effective. It 

is important that initial education of new data processes takes place. This study uses just one contextual 

factor (match data) and there are many other factors that could be used to reference external training 

load (load ratios, session characteristics, player characteristics). An all too common trap is to examine 

abundant amounts of data in an attempt to find relationships of interest (these may not even exist), 

without being able to provide the coach or athlete with any meaningful information (Coutts, 2014) This 

study combats this by offering a methodology to provide a clear, match-specific message. Figure 4.2 

shows how complex tracking twelve data streams can be and if presented to a coach, opportunity for a 

clear message could be lost and potentially any future meaningful information a loss of analysis buy-

in. The ability to effectively communicate training load data is paramount – data should be competently 

analysed and translated into clear, practical messages (Coutts 2014). Implementing three simply named 

training load components to represent the commonly collected metrics in a simplified format allows 

practitioners to explore a method to achieve this.  

‘Velocity’ is associated with the amount of work done at high speed which previous research has shown 

needs to be managed throughout the training week to prevent under or over exposure. With high levels 

of exposure to high-speed running during a match shown in this study (460 ± 162 m), it is imperative 

that players are physically prepared for exposure to this stimulus each match-day. High-speed running 

has been linked with hamstring injury (Askling et al., 2013) and is shown to be the most commonly 

diagnosed injury in elite soccer (Ekstrand, Hägglund and Waldén, 2011). Risk is elevated when players 

carry out high volumes of high-speed running during their training micro-cycle however, not 

performing enough can contribute to the risk being even higher as players will be underprepared for 

match demands (Dunn, 2014). Additionally, absolute high-speed running actions have increased by 

~30% (890 ± 299 vs. 1,151 ± 337 m, p < 0.001; ES: 0.82) and sprint actions by ~50% (118 ± 36 vs. 176 

± 46 m, p < 0.001; ES: 1.41), in premier league matches (Barnes et al., 2014). Training programmes 

adapt to the changing demands of match-play to prepare players to perform whilst reducing the risk of 

injury. ‘Velocity’, which is strongly correlated with high-speed running and number of sprints, 

measures player load completed at high speeds and is therefore a useful load component for both injury 

monitoring and performance.  

‘Change in velocity’ is associated with both accelerations and decelerations which collectively makes 

up 18% of distance covered (actions >1 m s−2) during match-play (Akenhead et al., 2013b). The training 

and subsequent adaptation of these metrics have been linked with soccer performance (Davis, Brewer 

and Atkin, 1988; Spinks et al., 2007). Acceleration is defined as the rate of change in velocity (Little 
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and Thomas, 2005) and has been shown to be more demanding on athletes than constant-velocity 

movement (Osnach et al., 2010). Accelerations have been shown to be fairly homogenous across 

positions with only wide defenders being the exception who performed the greatest number of maximal 

accelerations and low velocity accelerations across all playing periods when compared to all other 

positions (p < 0.001) (Varley et al., 2013b). ‘Change in velocity’ distinguishes acceleration output and 

could assist practitioners to guide appropriate training for these movement demands.  

‘Metabolic intensity’ is correlated with average metabolic power (.868), number of impacts (.571) and 

speed intensity (.550). Most strongly associated with average metabolic power, ‘metabolic intensity’ 

can isolate an area of player load often underestimated by traditional measurements of running speed 

particularly evident during small sided games, commonly used in soccer team training (Gaudino et al., 

2014). Together all three components provide a rounded view of training load in three clear training 

components.  

There are different approaches to the use of the new components. Firstly, upon analysis of Table 4.4, 

the metric with the highest correlation in each component could be used to represent that component. 

Component one would be represented by accelerations (.946), component two by number of sprints 

(.942) and component three by average metabolic power (.868). This method has used dimensionality 

reduction to identify these three metrics as the most pertinent out of the original twelve to provide a 

simplified but directed analysis of training load.  

An alternative and more comprehensive application is to apply the components to each data set to create 

three new physical load representations expressed by component scores. To compute the component 

score for a given case for a given factor, the standardised score on each metric is multiplied by the 

corresponding factor loading of the metric for the given factor and then summed together. This will 

then represent the session weighting for that particular physical load, distinguished by the three new 

components. Statistics software packages should be utilised to facilitate this process to enable 

component data to be presented efficiently.  

Data analysis in soccer aims to influence training programmes to optimise player performance through 

reduction of injury incidence or increase in physical capacity. This study has shown techniques to 

contextualise and simplify the training data analysis process. The use of dimensionality reduction, 

shown in this study to produce three training load components, could be explored further in future 

training load research.  

Future study would need to assess the validity of the new components across a season long data set. 

The use of dimensionality reduction could be used to link training load to injury incidence and 

potentially performance outcomes.  
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4.6 Practical applications 

 

 Match data can be used to give context to training load data of elite soccer players to simplify 

the presentation of data communication between the practitioner and the coach  

 The methodology used in this study can be applied to other data sets to streamline data analysis 

 

4.7 Conclusion 

 

Dimensionality reduction was used to produce three contextualised training load components that 

collectively symbolise three key areas of training load, each representing different physical stresses on 

the player - ‘change in velocity’, ‘velocity’ and ‘metabolic intensity’. The study used match average 

data to add context to training load communication and dimensionality reduction to simplify the metrics 

available to practitioners which can be subsequently utilised to improve the decision-making process 

and affect the training process. Pertinent to this thesis, this was a methodological focussed chapter to 

show proof of concept for the use of dimensionality reduction for use in the subsequent experimental 

chapters.  
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CHAPTER 5: SEASON-TO-SEASON TRAINING LOAD CHANGE IN ELITE 

SOCCER  

 

5.1 Chapter summary 

 

Dimensionality reduction provides a simplified method to enhance the practitioner-coach data feedback 

process and these methods were explored in Chapter 4. In this study, the principles used were applied 

to training data from an elite Australian soccer club across three seasons. This chapter provides insight 

to how the proposed methods explored in the previous chapter can be utilised with longitudinal data 

from elite soccer.  

Training load metrics (using a similar method shown in Chapter 4) were reduced to formulate three new 

components named volume load, speed load and density load. The three new components were used to 

analyse the distribution of cumulative load over three seasons and also within micro-cycles, analysing 

specific strategies to manipulate load. Additionally, the three components, age and injury burden were 

analysed using survival analysis to investigate the effects of pre-season training on in-season injury 

rate. Results were in agreement with previous research that higher accumulated training load during 

pre-season resulted in a longer estimated period before in-season injury incidence. The study goes on 

to highlight a number of strategies used within elite soccer clubs which lead to the changes in training 

load shown in the data across the three seasons. Conscious manipulation of training loads over an 

extended multi-season period may influence team injury rates in elite soccer. This study benefitted from 

the piloting of methodological process (Chapter 4) and focussed on linking analysis of data to applied 

concepts within an elite soccer club’s data set.  
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5.2 Introduction 

 

Periodisation in soccer encompasses the strategic manipulation of training stress to produce a desired 

outcome. For elite soccer teams this is to maximise squad availability while optimising player readiness 

for matches, ensuring that each player has the physical capability to implement the required tactics 

successfully (Walker and Hawkins, 2017). A well-planned progressive training programme with 

variation in frequency, duration, intensity and type of activities should be implemented to aid these 

goals (Jaspers et al., 2017). Programming load creates unique challenges for coaches to balance the 

requirements of recovery, developing and maintaining physical fitness and skill, and adjusting the 

training load for freshness before each match (Gastin et al., 2013). It is normal for elite soccer clubs to 

programme training load using a structured micro-cycle to prepare physically and tactically for match-

day (Malone et al., 2015; Thorpe et al., 2016; Los Arcos et al., 2017). A micro-cycle period is often 

between three and fourteen days, with natural variation dependant on match turn around (Anderson et 

al., 2015; Malone et al., 2015). Training load therefore, is monitored with the aim of making evidence-

based decisions on appropriate loading schemes to enhance desired successful outcomes (Akenhead 

and Nassis, 2016). 

Training load in team sports can be described as either external or internal (Akubat et al., 2014) and the 

relationship between both has received increasing attention in the literature (Gaudino et al., 2015; 

Terreño et al., 2016; Jaspers et al., 2017; Akubat et al., 2018). Internal load is commonly recorded in 

soccer using the athlete rating of perceived exertion (RPE) and heart rate metrics (Buchheit et al., 2012; 

Owen et al., 2015; Clemente et al., 2017; Djaoui et al., 2017). As described in Chapter 4, external load 

metrics, measured by technology platforms like GNSS, are objective measures of the work performed 

by the athlete during training or competition and are assessed independently of internal workloads 

(Bourdon et al., 2017). Pertinent to this study, metrics informing practitioners of load output include 

total distance, distance in speed bands, number of sprints and acceleration permutations (Clark, 2014; 

Clemente et al., 2018).  

Despite the increase in training load research especially related to soccer, little detail is known about 

how the metrics of load and methods of analysis are actually used at elite clubs (Weston, 2018). In elite 

soccer clubs, decision-making metrics which influence training load include match minutes and the 

upcoming fixture schedule, with accumulated total load and player subjective feedback ranking below 

these for popularity amongst practitioners (Akenhead and Nassis, 2016). For any physical load data 

there is a wide range of possibilities for analysis, however practically this can become a limitation 

mainly due to its complexity and multiple interpretations. Simplifying and streamlining existing 

monitoring processes could alleviate some of the limitations in load monitoring (Chapter 4). 
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Where multiple, complex data analyses are used, it can become difficult for practitioners and coaches 

to assimilate. The overload of potentially unimportant information ultimately limits its usefulness 

especially when many of the training load metrics collected have been shown to likely be correlated 

(Weaving et al., 2018). Principal component analysis (PCA) is a dimensionality reduction process that 

reduces a set of possible correlated predictor metrics to a smaller number of uncorrelated metrics. This 

transformation can combat some of the problems associated with multi-collinearity (Kuhn and Johnson, 

2013) and has been used in previous studies of training load monitoring (Chapter 4; Weaving, et al., 

2014; Carey et al., 2018).  

Training load has been linked with performance changes (Mujika et al., 1996; Gastin et al., 2010; Gastin 

et al., 2013; Lazarus et al., 2017; McCaskie et al., 2018; Graham et al., 2018) and injury risk in team 

sports (Gabbett, 2010; Gabbett and Jenkins, 2011; Rogalski et al., 2013; Colby et al., 2014; Cross et al., 

2016; Carey et al., 2017). Consequently, in today’s elite team sports, performance staff reflect on the 

association between various load metrics and player’s capacities to resist decline in performance or an 

increase in injury incidence (Meyer and Impellizzeri, 2015).  

In elite sport, player availability is important and has been shown to impact overall team success (Eirale 

et al., 2012; Hagglund et al., 2013b; Bengtsson et al., 2013; Podlog et al., 2015; Raysmith and Drew, 

2016). Player availability has substantial financial implications; the total wage bill for injured players 

in the English Premier League for the 2018/19 season reached £166 million (Forbes, 2019). Due to the 

financial and performance pressure of player availability there is potential danger to under-train (low 

chronic load) and therefore under-prepare players for match play, which has been shown to increase 

injury risk (Hulin et al., 2016; Murray et al., 2017b; Windt et al., 2017; Bowen et al., 2017; Gabbett, 

2018). In addition, current trends show high training loads, reduced training load fluctuations and 

attention to how athletes progress to high load may be protective of injury (Hulin et al., 2013; Hulin et 

al., 2015; Veugelers et al., 2015; Gabbett et al., 2016a; Gabbett et al., 2016b; Stares et al., 2018).  

Training load fluctuation can be the result of multiple factors. For example, fluctuation can be due to 

micro-cycle scheduling between match day turnaround (Los Arcos et al., 2017) or when players join up 

with their international teams. Training load can also fluctuate with a change in coach, which has shown 

to result in increased skeletal muscle injury incidence (Donmez et al., 2018). A common training load 

fluctuation occurs when players suffer from injury and go through a re-conditioning process. After 

training load fluctuation, it is advised that players are managed conservatively to gradually increase 

load back to high levels (Stares et al., 2018). 

Pre-season is a phase of the elite sport calendar that exposes players to load fluctuation and progression 

from the off-season phase. The period is often highlighted as an important phase with the main goal to 

prepare teams for the impending competition phase (Jeong et al., 2011). It is a phase where fitness can 
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be improved without the need to allow for recovery from competitive matches (Gamble, 2006) however, 

programming training can be challenging to prescribe load that both maximise positive physiological 

adaptations, while avoiding overtraining and injury (Buchheit et al., 2013). 

Players completing a higher proportion of pre-season training are shown to achieve higher in-season 

training load and greater training and match participation (Murray et al., 2017b). In addition, late pre-

season training is associated with the early in-season period performance measured as the first four 

matches (McCaskie et al., 2018).  

Survival analysis is a method used to examine the link between pre-season training load and in-season 

injury, where the outcome metric is time until an injury occurrence. It has previously been used to 

analyse the time to first injury across elite Australian football match play and training (Fortington et al., 

2017) and to assess the effectiveness of return-to-play programming with time to subsequent injury 

analysis (Stares et al., 2018). It is well documented that two of the highest risk factors for injury are 

previous injury (Arnason et al., 2004; Hagglund et al., 2006; Engebretsen et al., 2010a; Engebretsen et 

al., 2010b; Hagglund et al., 2013) and older age (Arnason et al., 2004; Hagglund et al., 2006; Hagglund 

et al., 2013a), and is important to consider them when analysing associations between training load and 

injury.  

The aims of this study are to: (1) use dimensionality reduction to simplify the description of training, 

(2) describe and compare the loading strategies across three seasons of training and match load from an 

elite soccer team, and (3) analyse the influence of pre-season training load on the rate of in-season injury 

in elite soccer players. 
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5.3 Methods 

 

5.3.1 Data collection 

 

Training load data were collected from 56 male elite soccer players competing in the highest level of 

competition in Australia (mean ± SD age at first record - 22.6 ± 5.4 years). Players were monitored for 

three seasons, resulting in 86 player seasons of data collected and 11,141 total training and match 

observations. Ethical approval for this research was obtained from the University of Bath ‘Research 

Ethics Approval Committee for Health’ (REACH - reference number: EP 11/12 129). Signed subject 

consent was obtained from each player for analysis and publication of de-identified data. 

All players wore commercially available devices during all field-based training sessions and matches. 

Devices available for use during season one were GPS-enabled (10-Hz) and accelerometer (100-Hz) 

devices (Viper 2, STATSport technologies, Newry, Northern Ireland). Devices worn during season two 

and three were GNSS-enabled (10-Hz) and accelerometer (600-Hz) devices (Apex, STATSport 

technologies, Newry, Northern Ireland). Research has highlighted the limitation of the devices used in 

season one but has justified it’s use to measure team sport-specific movement (Chapter 3; Coutts and 

Duffield, 2010; Beato et al., 2016; Scott et al., 2016). Apex devices have shown good levels of accuracy 

(bias < 5%) in sport specific metrics and can therefore be used to quantify players’ workload during 

training sessions and to optimise the overall training periodisation (Beato et al., 2018). Data lost due to 

unit or user error (172 observations – 1.54%) were estimated by using an individual average for that 

subject referenced to the session type (highlighted in Figure 5.4). The pre-season training period was 

defined as all sessions before the first Football Federation Australia Cup match each season.  

5.3.2 Injury definition 

 

Injuries were recorded and classified by club medical staff using the Orchard Sports Injury 

Classification System (OSICS). Injuries sustained were classified according to the mechanism (contact 

or non-contact), body part and severity (days missed from activity). This study used the ‘time loss’ 

definition; ‘an injury that results in a player being unable to take a full part in future football training or 

match play’ (Fuller et al., 2006). Therefore, injuries pertinent to this study were time-loss and non-

contact. All other injuries including all traumatic, contact events were excluded from analysis.  

5.3.3 Principal component analysis 

 

Principal component analysis was applied to the training load metrics: duration (min), distance (m), 

high speed (>19.8 km/h) running distance (m), sprint (>25.2 km/h) distance (m), high metabolic load 

(>25.5 W/kg) distance (m) (HMLD), number of accelerations and decelerations above 3 m/s2, and 

relative distance (m/min). A broad range of training load metrics was included in the principal 



73 
 

component analysis to capture as much information about the physical demands of the session as 

possible. Although there is no universally adopted approach for training load assessment in high-level 

football the top-five-ranking metrics used included accelerations (various thresholds and both positive 

and negative), total distance (m), distance covered above 5.5 m/s (>19.8 km/h) and estimated metabolic 

power (Akenhead and Nassis, 2016). The choice of load metrics was also informed by previous studies 

reporting associations between high-speed running distance and acceleration with injury risk (Gabbett, 

2010; Gabbett and Jenkins, 2011; Rogalski et al., 2013; Colby et al., 2014; Cross et al., 2016; Carey et 

al., 2017). An 80% threshold of the cumulative variance explained was used to determine the number 

of principal components to retain for the survival analysis (Jolliffe, 1986). 

The three new components were used to analyse the distribution of cumulative load over each of the 

three seasons using both a four- and twenty-one-day rolling average. The distribution of load between 

the load micro-cycles from match-day working back through to five days prior to the match (M-1 to M-

5). This study evaluated the increase and variation in loads that were a result of programming 

interventions and external effects including an internally named strategy to increase chronic training 

load (seasonal creep), the manipulation of the weekly training load schedule and loading pattern to 

prepare for matches (micro-cycle manipulation) and also the effect of changing coaching staff on the 

change in training load.  

5.3.3 Survival analysis 

 

The Cox proportional hazards regression model was used to estimate the effects of cumulative pre-

season training load, pre-season injury burden, and player age on time to first injury during the in-

season period. Cumulative training load was represented by summing each of the retained principal 

components over each pre-season session for each player. Injury burden was represented by the number 

of pre-season training sessions missed due to injury. This number did not include sessions missed for 

non-injury reasons such as international team duties. Age was computed at the end of each pre-season 

period. In-season exposure time (in hours) was accumulated after each training session or match until 

either a player sustained an injury, or the end of the season was reached (censored observation). Robust 

sandwich estimators were used to calculate standard errors due to repeated observations of players 

across multiple seasons (Therneau and Grambsch, 2000). Players were excluded from the survival 

analysis if they were signed during the competition cycle (i.e. their pre-season load was conducted away 

from the club and could not be monitored). All analyses were performed using the R statistical 

programming language (version 3.5.1) (R Core Team, 2018) utilising factoextra, FactoMineR, ggplot2 

and survival as the principle packages. 

5.4 Results 
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5.4.1 Principal component analysis 

 

The variance explained by each principal component is shown in Figure 5.1. The scree plot (Figure 5.1) 

indicates that much of the variance in the training load data (11,141 observations of 8 metrics) could be 

explained in one dimension (67.6%). Combined, the first three dimensions explained 88.2% of the total 

variance. 

 

Figure 5.1. PCA Scree plot showing percentage of variance explained by each principal component 

Variable factor maps (Figure 5.2) show how each training load metric was related to the first three 

principal components. 

 

 

 

Figure 5.2 Variable factor maps showing how each training load metric is related to principal 

components (a) PC1 and PC2, (b) PC1 and PC3, (c) PC2 and PC3. The highest correlated metrics 

against the three principal components are highlighted in red 
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Metrics PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Drill Time 0.868 0.193 -0.256 -0.322 0.140 0.077 0.079 0.049 

Distance 0.948 -0.069 0.075 -0.242 0.155 0.018 -0.035 -0.083 

High Speed Distance 0.771 0.441 -0.014 -0.091 -0.446 -0.009 0.061 -0.013 

Sprint Distance 0.608 0.603 -0.365 0.242 0.273 0.002 0.000 0.000 

High Metabolic Load Distance 0.978 0.040 0.051 -0.066 -0.092 -0.033 -0.156 0.044 

Accelerations 0.818 -0.378 -0.078 0.350 -0.120 0.211 0.002 -0.010 

Decelerations 0.871 -0.358 -0.077 0.185 -0.003 -0.268 0.043 -0.002 

Metres Per Minute 0.639 0.169 0.726 0.090 0.155 0.023 0.048 0.021 

 

Table 5.1 Raw correlation values for each metric across each principal component. PC1 – PC3 were 

selected as new components 

 

PC1 appears to represent total session training volume, as it is positively correlated with all load metrics. 

Raw correlation values (Table 5.1) show distance (.948), drill time (.876), and HMLD (.977) were most 

strongly correlated with PC1 suggesting it is representing volume more than intensity of training. 

PC2 discriminates between sessions that had inflated high-speed output highlighted by sprint distance 

(.603) and high-speed distance (.440) versus those that had high amount of accelerations (-0.378) and 

decelerations (-0.358). This suggests PC2 might be capturing the difference between training sessions 

or drills with more open space that allowed players to accumulate high speed running load and those 

that were more confined and produced high acceleration and change of direction counts.  

PC3 is strongly correlated with relative distance (m/min) (.726) capturing intensity and could be used 

as a representation of the ‘density’ of the measured load.  

PC1, strongly correlated with distance, session duration, and HMLD explained 67.6% of the variance 

and due to the associated metrics is named ‘volume load’. PC2, correlated with sprint distance (m > 

25.2 km/h) and high-speed distance (m > 19.8 km/h), is named ‘speed load’. PC3, distinguished by 

relative distance (m/min) which highlights the ‘density’ of distance covered within a session and is 

therefore named ‘density load’.  

5.4.2 Distribution of cumulative loads over a season 

 

Cumulative volume load, speed load and density load for 4 and 21 days longitudinally over the three 

seasons are shown in Figure 5.3. Volume load 4- and 21-day cumulative load analysis shows a season 

on season increase in load especially during the pre-season (shown by orange data points) in season 

three (S3). Cumulative speed load was lower in S3 pre-season compared to in-season period. 

Cumulative density load shows a downward trend through all three season macrocycles especially 

evident in S3. To reference the change in load over the study period the mean values from all training 

and matches for the respective components for all players are 0.010 (volume load), 0.051 (speed load) 

and -0.0103 (density load).  
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Figure 5.3 Cumulative training load plots across three seasons. PC1 (volume load), PC2 (speed load) 

and PC3 (density load) rolling average over 4 days and 21 days. 

5.4.3 Distribution of load within micro-cycles 

 

The distribution of volume load, speed load and density load within matches (M) appears similar across 

all three seasons (Figure 5.4 - top panel). The values and subsequent percentage changes are shown 

below in Table 5.2: 
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Component Season 1 
Mean PC Score ± 

SD 

S1-S2  

Change 

(Cohens D) 

Season 2 
Mean PC Score ± 

SD 

S2-S3 

Change 

(Cohens D) 

Season 3 
Mean PC Score ± 

SD 

S1-S3 

Change 

(Cohens D) 

Volume Load 1.375 ± 1.85 0.41 2.19 ± 2.13 0.45 3.18 ± 2.21 0.88 

Speed Load 0.41 ± 0.55 -0.08 0.35 ± 0.87 -1.80 -0.91 ± 0.51 -2.46 

Density Load 0.49 ± 0.62 -0.05 0.39 ± 0.58 0.64 0.70 ± 0.38 0.55 

 

Table 5.2 Mean component values comparing match load (full-matches played) between three seasons 

for PC1 (volume load), PC2 (speed load) and PC3 (density load) 

 

Plots in Figure 5.4 provide more details on the load trends shown in Figure 5.3; for example, a trend 

to the right for the main conditioning days (volume load) within a soccer micro-cycle (M-3/M-4), 

indicates an increase in training volume from S1, S2, or S3. Consistency in load through the ‘taper 

period’ of micro-cycle (M-2/M-1) is also highlighted with little variation shown between (speed load 

and density load). 
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Figure 5.4 Box Whisker plot showing distribution of training load (represented by (a) PC1 (volume 

load, (b) PC2 (speed load) and (c) PC3(density load) within micro-cycles across each season. 

Comparisons are represented by number of days to matchday (Indicated by key) and across S1, S2 

and S3.  

5.4.4 Relationship between pre-season load and injury rate 

 

A total of 56 complete player-seasons (pre-season load and in-season time to first injury) from 39 unique 

players were included in the survival analysis. A breakdown of basic injury results is shown in Table 

5.3. Figure 5.5 shows the estimated hazard ratios from the Cox proportional hazard regression model 

for volume load, speed load, density load, pre-season injury (sessions missed) and age (computed at the 

end of each pre-season period). Larger cumulative pre-season training volumes were associated with a 

small reduction in in-season injury hazard rate with all three upper confidence intervals below 1.0. Older 

players typically had slightly higher injury rates, and changes in pre-season session availability or age 

did not show a clear relationship with in-season injury hazard. 

 

 Season 1 Season 2 Season 3 Season 1 Season 2 Season 3 

 All injuries Injuries meeting definition 

Exposure (Hours) 4139 4468 5127 4139 4468 5127 

Injury Occurrences 44 24 35 31 16 18 

Match injuries 24 10 20    

Injury incidence (/1000 

hours) 
10.6 10.4 17.9 7.5 3.6 3.5 

 

Table 5.3 Descriptive injury data for all and definition specific injuries highlighting total incidence, 

relationship to exposure incidence for match play  

M Denotes when a player competes in a soccer match  

−1 Training sessions completed 1-day prior to matchday. Often short in nature to minimise fatigue 

−2 Training sessions completed 2-days prior to matchday. Often tactical in nature but varies with coach philosophy  

−3 Training sessions completed 3-days prior to matchday with opportunity for conditioning 

−4 Training sessions completed 4-days prior to matchday with opportunity for conditioning 

*All sessions are not impacted by previous matches in microcycle so conditioning sessions would not be affected by 

recovery phase (usually 2-days) 
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Figure 5.5 Hazard ratios and 95% confidence intervals for the effects of pre-season training 

(quantified using principal component scores) on in-season injury rate. 

 

5.5 Discussion 

 

Dimensionality reduction was used to describe variability among observed, correlated metrics and 

therefore simplify the description of training for an elite soccer team. New dimensions were used to 

describe and compare the loading strategies across three seasons of training and match load. Finally, 

this study analysed the influence of pre-season training load, injury burden and player age on the rate 

of in-season injury finding that higher accumulated training load (measured by new components) during 

pre-season resulted in a longer estimated period before in-season injury incidence. 

5.5.1 Dimensionality reduction of training load data 

 

The ability to effectively communicate training load data is paramount – data should be competently 

analysed and translated into clear, practical messages (Coutts 2014; Weston, 2018). The communication 

process can be more effective by reducing the number of reported metrics therefore negating the risk of 

‘data overload’ (Coutts, 2014; Weaving et al., 2014; Robertson et al., 2017; Weaving et al., 2018). This 

study used a principal component analysis (PCA) and was able to explain a large fraction (88.2%) of 

the variance from eight training load metrics using a reduced set of only three new derived components. 

This was similar to previous studies implementing PCA, where the first two components account for 

76.66% of the variance (Weaving et al., 2018) and following the same methodological principles as 

those highlighted in Chapter 4. The identification of three simply named training load components to 

represent commonly collected metrics therefore proposes a method of training load data analysis and 

communication aiming to maximise evidence-based decisions on appropriate loading schemes to 
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enhance the desired successful outcomes (Akenhead and Nassis, 2016). The terms volume load, speed 

load and density load were chosen as simple representations of the metrics which contribute to each 

new component. 

5.5.2 Pre-season load and injury rate 

 

This study used three new monitoring components; volume load, speed load and density load to analyse 

whether pre-season training load influences rate of in-season injury in elite soccer players.  

Results indicate that higher accumulated training load during pre-season resulted in a longer estimated 

period before in-season injury incidence (Figure 5.5). This is similar to previous studies in Rugby 

League showing players completing more pre-season sessions decreased injury risk by up to 17% 

(Windt et al., 2017). A study analysing the relationship between pre-season training load and in-season 

availability in Australian football found completing a greater proportion of pre-season sessions resulted 

in a greater pre-season training load. The subsequent result of this was the ability to perform higher in-

season training load which is positively associated with greater match availability (Murray et al., 

2017b).  

The effect of pre-season injury burden on in-season injury rate was analysed to isolate this factor from 

the effect of training load effect. The protective effect of increased pre-season training load (Figure 5.5) 

is not mirrored by the effects of injury burden during the pre-season period meaning there was no 

association between pre-season injury and in-season injury risk. Future research with a higher number 

of pre-season injuries could elucidate these trends further. The effect of player age on time to first injury 

was also analysed as part of the survival with results showing no significant effect on injury rate. 

It is important to consider that training load is only one factor that contributes to why a soccer player 

suffers an injury or not on any specific training or match-day. Injury aetiology models highlighted in 

Chapter 2 show that there are many other modifiable and non-modifiable factors that need to be 

deliberated. These include physical capacities (strength, aerobic fitness, tissue resilience), anatomy, 

gender and psycho-social issues – all of which could separately or collectively influence the training 

load effect or risk on any given day (Windt and Gabbett, 2017). 

5.5.3 Strategies for increasing training load 

 

Match demands did not vary significantly over the three seasons examined in this study highlighted by 

minimal change in volume load. Table 5.2 does show a large decrease (interpreted by Cohen’s d effect 

size) in speed load between season two-three (-1.8) and one-three (-2.46) which could be due to the 

playing style of the team or changes to personal in certain positions.  
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‘Seasonal creep’ is an internally termed intervention to raise chronic training load which is visually 

highlighted by the 4- and 21-day cumulative load graph for volume load (Figure 5.3), especially during 

the pre-season macro-cycle. Volume load for conditioning training sessions (M-3 and M-4) from season 

one to season two increased by 3.07% (1.388 – 1.432) and from season two to season three by 3.24% 

(1.432 – 1.480). Conscious decisions were made to progressively increase the on-field load each season 

starting from the pre-season base load, in order to aid technical, tactical and physical performance 

improvement with the added intention of improving player robustness (decreasing injury incidence). 

Previous research has shown high chronic load is protective against injury (Hulin et al., 2016; Murray 

et al., 2017b; Windt et al., 2017; Bowen et al., 2017; Gabbett, 2018) and is associated with better 

performance (Gabbett, 2018). During the period of data analysis this was driven by consistent staffing 

within the sports science and performance department to build on previous season programming.  

Cumulative speed load was lower in the pre-season of season three compared to the in-season period. 

This is an example of how the new components can distinguish between different training stresses. The 

physical goal of pre-season three to increase volume of distance covered (m) and short intensive actions 

measured by acceleration and deceleration count (> 3 m/s2). This is shown by an increase in volume 

load and a concurrent decrease in speed load, as high-speed output (m > 19.8 km/h) could not match 

the increase of the other physical metric outputs (Figure 5.3). Interestingly, this balanced out during the 

competition phase macro-cycle, which questions the effect of varying pre-season training modalities on 

in-season high speed running capacity.  

Season three load highlights a downward trend measured by ‘density load’. Practitioners continually 

strive to find the balance between match-play freshness, seasonal fitness maintenance with micro-cycle 

optimisation and combating cumulative fatigue across seasonal competition (Walker and Hawkins, 

2017). Potential further research could investigate the balance of in-season training load to maintain 

high levels of fitness throughout the whole season.  

This study highlights season-season load change distributed across micro-cycle training days in an elite 

soccer team (Figure 5.4). This data highlights continuity in match load but an increase in volume load 

for the main conditioning days within the soccer micro-cycle and therefore in the training output from 

S1 to S3. In addition to the increase in load through ‘seasonal creep’, seasonal variation in load between 

training days can be explained by the second load planning approach, internally termed ‘micro-cycle 

manipulation’. Common micro-cycle periods for Australian elite clubs run for six, seven or eight days 

due to one-match per week scheduling for the majority of the season with matches programmed on a 

Friday, Saturday or Sunday (Hyundai A-League Fixtures, 2018). The practice of micro-cycle 

manipulation was the changing of the natural training micro-cycle to match needs and characteristics 

of the current squad (age, fitness level, match minutes played, injury history, and tactical needs). This 

process occurred multiple times throughout the monitoring period. For example, in season one, due to 
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a high injury carry over from the previous season, training load was maximised by the inclusion of two 

conditioning training days on M-4 (match-day minus four days) and M-3 with a day off-pitch 

programmed M-2. After higher availability and higher training load in pre-season two, an off-pitch day 

was programmed M-3 to maximise the tactical lead in to match-day. These manipulations could be the 

reason for the variations in load between seasons shown across micro-cycle days for speed load and 

density load. It would be of interest to apply this analysis method to data sets from other leagues in 

different countries where the micro-cycle may differ with an increased density of matches within the 

schedule. 

The third factor observed was the effect of changes in coaching staff. Between season one and season 

two, there were changes to the assistant coaches and between season two and three, the head coach. 

These changes were pertinent in the drive to increase field exposure and particularly in the case of the 

head coach, a clear directive to push physical standards. Previous research has shown coach change is 

linked with a 2.3-fold increase in muscle injury rate (5.3 injuries/1000 hours of exposure) in an elite 

soccer club (Domnez et al., 2018) and training load was discussed as a changing factor. The observation 

was that the newly hired coaches tend to be critical of the approach of their predecessor resulting in a 

boost in training intensity (Domnez et al., 2018). Results from this study saw a change in load following 

coach changes epitomised by the increase in volume load in the preseason of season three with the 

change in head coach. Coach change often comes after consistent poor result in-season which would 

lead to a new training philosophy being implemented during the competition cycle. The changes 

highlighted in this study saw the changes made during off-season so the new coaches were able to 

implement their training programmes across the pre-season. 

The elite sporting team participating in this study had a high amount of player turnover impacting the 

ability to obtain a full description of each players training history. Sampling from only one team 

prevented the examination of non-linear effects of age and training load on injury risk. This study was 

able to include many of the commonly used training load measures however there are others such as 

distance covered in relative speed zones that were not available that may contain relevant information. 

Presenting longitudinal changes in components can be interpreted in different formats. Figure 5.3 

presents data from this study to highlight patterns across three seasons however, research using data 

from a cohort of rugby players present a time series plot method utilising standard deviation zones to 

highlight variation across two seasons (Weaving et al., 2019). An example of this method used on data 

from the current study is shown below in Figure 5.6 which could be subsequently explored for further 

use. 
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Figure 5.6 Rolling 21-day average volume load scores compared to the pooled mean and SD for all 

players 

 

It is also important to consider the potential effects of the change in technology used between season 

one and the subsequent seasons. The main changes to the new hardware provide to elite clubs by 

STATSports included an improved accelerometer sample speed and importantly a GNSS-enabled 

chipset allowing for enhanced satellite availability. Practitioners have to consider the effects of changes 

in both hardware and software, especially when analysing data longitudinally.  

5.6 Practical applications 

 

 Principal component analysis can provide a simpler (lower dimensional) representation of 

training load that has associations with injury risk. 

 The findings of this study provide insight into statistical analysis of training load that are 

inclusive of relevant information, thorough in statistical methodology and considerate to the 

coach-practitioner relationship. 

 Conscious manipulation of training loads over an extended multi-season period may be able to 

influence team injury rates in professional soccer. 

5.7 Conclusion 

 

The main findings of this study are that a higher accumulated training load during pre-season resulted 

in a longer estimated period before in-season injury incidence. The effect of pre-season injury (sessions 

missed) and age shows no clear trend with a higher in-season injury rate. A principal component 

analysis was used identify three training load components (volume load, speed load and density load) 

to represent commonly collected metrics to propose a method of data analysis to streamline 

communication and maximise training load decisions. Future research should aim to sample data across 

multiple teams and explore the use of PCA to streamline additional data sources including internal 

metrics, testing and screening along with data coming in from new technologies as they are introduced 

into a soccer club’s monitoring process. 
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CHAPTER 6: PREDICTIVE MODELLING OF TRAINING LOADS AND 

PERFORMANCE IN ELITE SOCCER 

 

6.1 Chapter summary 

 

A key theme throughout this thesis is the focus on applied practice carried out in elite soccer clubs. The 

studies leading up to this point have investigated the technology used to monitor training and match 

load, explored the methods that data is processed and investigated associations between training load 

with injury incidence.  

The final study tackles the challenges of firstly measuring soccer match performance and then using 

statistical models to estimate performance. A holistic performance metric (InStat Index) was selected 

and correlated against a successful performance outcome measure indicating a high individual index is 

favourable for team success. The index was used as the performance metric in five forecasting models, 

scaling up in complexity, with the final two that considered training load (Banister training-impulse). 

The results of this study showed that InStat Index is a useful metric that can be used by coaches and 

practitioners to quantify match performance individually. Results from the forecasting models indicate 

that the use of training load metrics is no better than simple methods of forecasting match performance. 

The best performing model produced an error of 9.5% and differences between model performance 

were minimal. It is unlikely that in the applied setting, coaches would make decisions based on the error 

associated with current models however; future research with access to larger data sets from various 

data sources impacting performance could yield stronger results.  
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6.2 Introduction 

 

The quantification of individual actions performed by soccer players during matches and the 

contribution of these actions to team success remains largely unexplored (Decroos et al., 2019; 

Pelechrinis et al., 2019). The low-scoring and dynamic nature of soccer complicates analysis leading to 

a dearth of performance-related questions close to the ‘language of the game’ that can be answered 

through analytics (Fernandez et al., 2018).  

Conversely, the physical output of soccer players during training and match play are well-documented 

(Bangsbo, 1994; Stølen et al., 2005; Bradley et al., 2010; Varley and Aughey, 2013; Barnes et al., 2014; 

Ingebrigtsen et al., 2015). Electronic Performance and Tracking Systems (EPTS) are technologies used 

to track player position to infer the output of training and match-play. Examples include optical based 

tracking systems that use high speed cameras within stadiums, local positioning systems that utilise 

fixed receivers for position data from a unit worn by players and pertinent to this thesis, GNSS devices 

calculating position data (FIFA.com, 2019). These data provide useful information to identify the 

current physical demands placed on players in competition (Bradley et al., 2013) and for practitioners 

within soccer clubs to plan position-specific periodised football training (Serpiello et al., 2011; 

Ingebrigtsen et al., 2015).  

Periodisation in soccer encompasses the strategic manipulation of training stress to produce a desired 

outcome. The desired outcome in elite soccer teams is to maximise squad availability while optimising 

player readiness for matches, ensuring that each player has the physical capability to implement the 

required tactics successfully (Walker and Hawkins, 2017). A well-planned progressive training 

programme with variation in frequency, duration, intensity, and type of activities should be 

implemented to aid these goals (Jaspers et al., 2017). To support this process, training load is monitored 

to make evidence-based decisions on appropriate loading schemes to enhance desired success outcomes 

(Akenhead and Nassis, 2016).  

The recent use of match performance metrics to link physical performance (Modric et al., 2019) and the 

above-mentioned body of research on physical performance in training and match play opens up the 

avenue for research to go further to investigate the association with performance measures. The ability 

to forecast outcomes such as performance, talent, or injury is arguably the field of sports science and 

medicine modern-day equivalent of the ‘Quest for the Holy Grail’ (McCall et al., 2017). Mathematical 

modelling has been used in a variety of sports to attempt this process. Pertinent to this study, the Banister 

impulse-response model (Banister et al., 1975) quantitatively relates performance at a specific time to 

the cumulative effects of prior training load (Taha and Thomas, 2003). Originally conceived to model 

swimming performance (Banister et al., 1975), the model has used training load to predict performance 
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in various sports including swimming (Hellard et al., 2005), cycling (Busso, 2003) and running (Morton 

et al., 1990; Wood et al., 2005). 

A significant challenge for practitioners and researchers is deciding on a performance metric to analyse 

match-day technical performance. It is suggested that methods incorporating several facets of the game, 

within a dynamic context, would appear to be superior and most appropriate for use (Ali, 2011). Coach 

rating scale is an example of a subjective performance measurement (Cormack et al., 2008; Mooney et 

al., 2013; Rowell et al., 2018) which relies on standardisation on feedback timing and a reliance on 

coach ability to block emotion and bias from rating decision. Objective proprietary metrics have been 

created using a combination of measured metrics from event data that measure effective and ineffective 

skill execution throughout a match (Champion Data impact ranking system) (Mooney et al., 2011; 

Sullivan et al., 2014; Lazarus et al., 2017). These metrics are used to guide player transfer decisions, 

understand positional values and estimate the expected player contribution translated in units with 

which managers and fans associate (Fernandez et al., 2018; Pelechrinis et al., 2019; Decroos et al., 

2019).  

In the current landscape there is a plethora of organisations which are using the explosion in technology 

development and pushing the boundaries in data analytics in this area which in turn expand the 

opportunities for performance metric in team sports. Champion Data, Opta and InStat are example 

companies that developed through a desire for performance data from sources including media, betting 

companies, fans and pertinently sports teams (Opta, 2018).  

InStat have created a unique algorithm which follows the holistic principles of the combination metric 

providing a-rounded assessment of player performance (InStat Index - InStat, Moscow, Russia). This 

automatic algorithm considers the contribution of the player to team success, the significance of 

their actions, opponent’s level and the level of the championship they play in (InStat, 2019). The index 

was created to speed up the scouting process, assess the player actions considering the opponent and 

competition level, compare players on different positions and reflect a player’s performance in match 

periods and longitudinally. InStat Index was recently used in a study as a holistic match performance 

indicator to analyse the association between running performance and match performance (Modric et 

al., 2019). The use of these indices to estimate performance and comparing them to other metrics such 

are training load is yet to be investigated.  

This study tackles the challenge of metric selection to measure soccer performance and then explores 

the value of estimating performance. More specifically the aims are: (1) Establish whether InStat Index 

can be used to measure soccer team and individual player match performance, and (2) compare the 

success of forecasting models to estimate performance; specifically, to assess the value of using training 

load. 
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6.3 Methods 

 

6.3.1 Data collection 

 

Training load data was collected from 56 male elite soccer players competing in the highest level of 

competition in Australia (mean ± SD age at first record - 22.6 ± 5.4 years). Players were monitored for 

three seasons, resulting in 86 player seasons of data collected and 11,141 total training and match 

observations.  

As described in Chapter 5, all players wore commercially available devices during all field-based 

training sessions and matches. Devices available for use during season one were GPS-enabled (10-Hz) 

and accelerometer (100-Hz) devices (Viper 2, STATSport technologies, Newry, Northern Ireland). 

Devices worn during season two and three were GPS-enabled (10-Hz) and accelerometer (600-Hz) 

devices (Apex, STATSport technologies, Newry, Northern Ireland). Research has highlighted the 

limitation of the devices used in season one but has justified it’s use to measure team sport-specific 

movement (Chapter 3; Coutts and Duffield, 2010; Beato et al., 2016; Scott et al., 2016). Apex devices 

have shown good levels of accuracy (bias < 5%) in sport specific metrics and can therefore be used to 

quantify players’ workload during training sessions and to optimise the overall training periodisation 

(Beato et al., 2018). Shown in Chapter 5, data lost due to unit or user error (172 observations – 1.54%) 

were estimated by using an individual average for that subject referenced to the session type 

(highlighted in Figure 5.4). 

Soccer performance was quantified using a proprietary player rating metric (InStat Index, © InSstat, 

Moscow, Russia). A player’s rating is calculated as a weighted sum of actions where the set of actions 

and weights are position specific. The explanation from InStat clarifies; ‘InStat Index is calculated in 

every match based on the following indicators - quantitative indicators of player's actions in the game 

(specific for each position), as well as the weighted match level coefficient that takes into account the 

player's level, and the levels of his team-mates and opponents’. Ethical approval for this research was 

obtained from the University of Bath ‘Research Ethics Approval Committee for Health’ (REACH - 

reference number: EP 11/12 129). Signed subject consent was obtained from each player for analysis 

and publication of de-identified data. 

6.3.2 Relationship between InStat player ratings and match performance 

 

To assess the applicability of using the InStat Index to rate player’s performance between 2015-2017 

seasons in the professional Australian soccer league; for each match (n=228), the difference between 

the total InStat Index accrued by each team was compared to the goal difference and expected goal 

difference (xG). xG is currently the most prominent commercially available metric used in elite soccer 
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event data analysis focussing on the team’s ability to create chances and the subsequent quality of those 

chances. It takes into account the build-up, the context of a shot (e.g., location, number of defenders in 

the vicinity etc.) and the probability of the chance leading to a goal (Pelechrinis et al., 2018). The 

strength of relationship between InStat differential, goal difference, and xG difference was assessed 

using the Pearson correlation coefficient. 

6.3.2 Estimation of player performance 

 

Multiple methods were compared for estimating the performance 𝑝𝑔,𝑖 of a player 𝑖 in a match 𝑔 (Table 

6.1). Models were restricted to only use information collected before a match. The first four 

observations of match performance for each player in the dataset were excluded to allow for model 4 

and 5 parameters to have enough data to fit. 

 

Model  Description 

1 – Previous match The simplest baseline model considered was to forecast the performance 

of each player to be the same as their previous match. 

2 – Performance average Forecast for each player is their average InStat rating in all their 

previous matches in the dataset 

3 – Team average Forecast for each player is the average InStat rating of all players in all 

previous matches in the dataset 

4 – James-Stein estimate Forecast for each player is their average in all previous matches, with an 

adjustment to shrink the value towards the average of all players (Efron 

and Hastie, 2016) 

5 – Banister impulse 

response model 

Impulse response models were fitted for each player. Two training load 

impulse variables were considered; total distance (TD) and high-speed 

running distance (HSD) 

𝑝𝑔,𝑖 = 𝑝0 + 𝑘1 ∑ 𝑤𝑗𝑒
−(𝑖−𝑗)

𝑡1

𝑖−1

𝑗=1

− 𝑘2 ∑ 𝑤𝑗𝑒
−(𝑖−𝑗)

𝑡2

𝑖−1

𝑗=1

 

 

 

pg,i – Performance (InStat Index) of player i in match g 

g – Match index 

p0 – Initial performance level 

k1 – Magnitude of fitness response to training impulse  

k2 – Magnitude of fatigue response to training impulse  

t1 – Fitness curve time decay constant 

t2 – Fatigue curve time decay constant 

w – Training impulse i.e. TD (m), HSD (m > 19.8kmph) 

𝑖 – Player index 
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Table 6.1: Player performance forecasting models 

 

The difference between the predicted and actual InStat performances for each player-match (n=1227) 

were calculated for each model. Models were compared by calculating the median and inter-quartile 

range of the absolute prediction errors for each player-match. Additionally, relative model errors were 

calculated by expressing the absolute error as a percentage relative to the average InStat score across 

all player-match observations. 

It was proposed to use the three new monitoring components produced from the principal component 

analysis of training data in chapter 5 (volume load, speed load and density load). Unfortunately, the 

output from these components are not applicable for use with the Banister model due to negative values. 

If you input a negative training dose into the Banister model all of the responses get flipped (i.e. 

"fatigue" increases performance and "fitness" decreases it). Total distance was selected to represent 

total volume (correlation value of 0.948 for volume load) (Table 5.1) and high-speed distance to 

represent speed exposure. As outlined in Chapter 5, HSD has been linked with hamstring injury 

(Askling et al., 2013) but more pertinently to this study there has been a significant increase in HSD 

match demands therefore outlining the importance of the training regulation of this physical metric 

(Barnes et al., 2014). 

All analyses were performed using the R statistical programming language (version 3.5.1) (R Core 

Team, 2018) utilising ggplot2, dplyr and cumstats as the principle packages. 

6.4 Results 

 

6.4.1 InStat Index to quantify soccer performance 

 

The relationship between the difference in total InStat Index and match outcomes are shown in Figure 

6.1. Data are from all matches of a club competing in the Hyundai A-League from 2015-18. InStat 

Index descriptive data is shown in Table 6.2 highlighting the typical scores achieved by elite soccer 

players across different playing positions. The correlation between InStat Index differential and match 

outcomes (r = 0.78 and r = 0.54) suggests that accruing a higher total InStat Index score than the 

opposition is generally a favourable outcome.  

Position n InStat Index (Mean±SD) 

Centre Defence 234 220.9±11.1 

Wide Defence 206 216.8±16.4 

Centre Midfield 296 221.2±19.5 

Wide Midfield 194 216.3±17.9 

Centre Forward 116 235.1±18.4 

Average 209 221.9±16.6 
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Table 6.2: InStat Index descriptive data 

 

 

Figure 6.1: Relationship between team InStat Index score differential and (a) match goal difference, 

(b) expected goal difference. 

 

6.4.2 Comparison of forecasting methods 

 

The median and interquartile range of InStat Index forecasting errors for each model is shown for 

absolute error score (Figure 6.2) and error percent relative to the average InStat Index for all players 

and all matches (Figure 6.3). The most accurate estimates (lowest absolute and relative percentage error) 

of a player’s future match performance were from the James-Stein estimate (InStat Index error 21.5, 

relative error percent 9.5%) and by taking that players previous average (21.7, 9.6%). Performance 

forecasting based on the use of the most recent previous match had the highest median error (30.0, 

13.3%). Using training load information and a banister impulse-response model to forecast match 

performance did not improve on the simpler methods (26.8, 11.9%), and showed relatively high 

variability (large IQR). It is important to note that although the above inferences can be made, the 

differences between model performance is low. 

 



91 
 

 

Figure 6.2: Median and interquartile range of InStat Index prediction error (absolute) for each 

forecasting method. 

 

 

Figure 6.3: Median and interquartile range of InStat Index prediction error percentage (relative) for 

each forecasting method. 

 

Figure 6.4 shows how the accuracy of InStat Index performance estimation methods changed as a player 

accumulated more match performance observations in the database for the best performing model 

(James-Stein estimate) and the two Banister models (using distance and high-speed distance training 

load input). At the beginning of a player’s match history the Banister models showed higher error than 

the James-Stein estimate. Once a player accumulated 30 or more match observations (i.e. the models 

were being fitted to over 30 observations) the Banister models showed a decreasing trend in error 

although throughout the match history which include an error increase again after 60 observations, there 

is a noteworthy overlap of the inter-quartile ranges. The error for the James-Stein estimate remained 

relatively constant throughout the player’s match history.  
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Figure 6.4: Variation of InStat Index prediction errors for different amounts of player match 

performance observations. 

 

6.4.3 Distribution of fitted Banister parameters 

 

Banister’s model was used to apply training load metrics to forecast future performance in order to 

address the second aim of this study. This section will specifically evaluate the model used in order to 

further understand the effectiveness to estimate performance. The distribution of Banister model 

parameters (𝑘1, 𝑘2, 𝑡1, 𝑡2, 𝑝0) is shown in Figure 6.5. The vertical axes have been cropped to include 

95% of all observations, the most extreme 5% distort the scale beyond interpretation (e.g. values in 

excess of 106 for 𝑡1). Figure 6.5 shows large variability in the fitted parameters, that tends to decrease 

as the number of match observations for a player increases. The parameters 𝑘1, 𝑘2 showed a tendency 

to approach zero, whereas trends in the other parameters were unclear.  
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Figure 6.5: Distribution of banister model parameters as the number of player matches increases (red 

= distance model, blue = high-speed distance model). Axes have been cropped to include 95% of all 

values. 

 

6.5 Discussion 

 

The first aim of this study was to establish whether InStat Index can be used as a metric to measure 

soccer match performance and to then use this holistic metric to compare the success of forecasting 

models to estimate performance. The models increased in complexity but there was very little difference 

in model performance and subsequent error. Training load was unable to offer any more insight than 

the simple forecasting models. 

6.5.1 InStat Index to quantify soccer performance 

 

Measuring match performance in soccer is complex and it is suggested that analysis methods that 

incorporate several facets of soccer, within a dynamic context, would appear to be superior and most 

appropriate for use (Ali, 2011). This study showed how a holistic event data metric (InStat Index) was 

correlated with team success and it can be therefore considered that if a player obtains a high InStat 

Index for their match performance that this is indicative of higher soccer performance and more likely 

to yield success. The correlation between performance metric and team success was utilised in a 
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previous study using an internal multifactorial concept against team ranking across six professional 

soccer leagues (Pappalardo and Cintia, 2017). 

The index was correlated to goal difference (ultimately shows result) and xG (chance quality) to 

compare it against known team success metrics. The result, shown by goal difference, is the ultimate 

gauge of success; however, it may not tell the true story of individual or team performance due to the 

complex nature of the sport. Breaking down the match into the event data provided, allows coaches and 

analysts to assess individual contributions to team success. The correlation to xG is not as high and this 

could be due to the principles behind the metric calculations. xG is offensively bias whereas the index 

is specific to position across the whole pitch. It is calculated using a unique algorithm using specific 

metric relevant to each position and also considers the contribution of opponent and competition level. 

This study is in agreement with previous research (Modric et al., 2019) that InStat Index is an 

appropriate metric to measure individual player match performance in elite soccer.  

6.5.2 Selection of models and metrics 

 

InStat Index was established to estimate player performance through a hierarchy of models. Heuristic 

techniques were selected first and complexity then added in layers as models progressed to investigate 

the success to forecast performance. Banister’s impulse-response model was selected as the final model 

to investigate how training load can influence the estimation of performance over much simpler 

forecasting models. Banister’s model estimates performance, indicated by InStat Index, at a specific 

time to the cumulative effects of prior training load (Taha and Thomas, 2003) measured in this study 

by two volume-based metrics (TD and HSD).  

A similar study investigating the relationship between estimates and actual match performance indices 

in professional Australian footballers also used a variable dose-response model with similar physical 

metrics. Dose response models from multiple training-load inputs can predict within-individual 

variation of an Australian football specific performance index (Cormack et al., 2018). This study in a 

different team sport, did not use any other forecasting models so there was no reference to say whether 

impulse-response models were any better than simple heuristics. Additionally, where the current study 

used the Banister impulse-response model in addition to other estimation models, this was not an 

exhausting list and future research could select different modelling methods which could elicit different 

outcomes. 

6.5.3 Performance prediction model comparison 

 

The results showed the most accurate estimates of a player’s future match performance were from the 

James-Stein estimate (9.5%) with the least accurate (highest error) being the simplest model of 

assuming performance will be the same as the previous week (13.3%). In absolute terms this equates to 
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an improvement of 8.5 index points between the two models highlighting the small differences between 

the tested models (referenced to the data shown in Table 6.2). The use of training load information 

performed better than the simplest model but results show all remaining three models (<10%) performed 

better than the two banister models (TD 10.7%, HSD 11.9%). This also indicates the trivial differences 

between the forecasting models to estimate match performance. 

This study supports previous research (Egidi and Gabry, 2018) that individual player performance is 

hard to predict. All methods considered had median errors above 20 InStat points. Soccer is such a 

complex sport and factors from a range of fields including physiology, psychology and pedagogy add 

to the myriad of intangibles that impact performance. As exposure to different technologies increases 

and research in a whole variety of areas progresses including the ability to collate these data together, 

understanding of soccer performance will improve and the ability to predict performance will have 

impact on training optimisation. The error increase using the Banister model using both distance and 

high speed distance after 51 observations could be due to a number of factors including the fact that 

there are fewer players that played that many matches, the players have more variable performance or 

that their performance is less dependent on training load. 

6.5.4 Critique of Banister model 

 

This study used the Banister dose-response model due to the popularity of use in a variety of sports to 

predict performance from training load (Clarke and Skiba, 2011), its simplicity that performance could 

be defined by two components (fitness and fatigue) and that at any time their difference can predict an 

athlete’s performance (Borrensen and Lambert, 2009). Despite the attractiveness of the concept, this 

study is in agreement with previous research, questioning accuracy, stability and goodness of fit 

(Hellard et al., 2006). This study found that the model parameters k1 and k2, intended to represent the 

changes in performance from training, tended to converge towards zero. This means that training dose 

had minimal impact on the forecasted performance levels. The large variability of the estimated model 

parameters suggested the model was unable to capture a stable relationship between training and 

performance in the athletes in this study 

6.6 Practical applications 

 

 InStat Index is a holistic match performance metric that can be used by coaches and 

practitioners to quantify match performance individually based on a correlation to team 

performance 

 Based on current data available, forecasting models including using training load metrics cannot 

be used to estimate individual player match performance 
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6.7 Conclusion 

 

The main findings of this study were that the forecasting models implemented were not able to estimate 

match performance. The use of training load was unable to offer any more insight to performance 

estimation over simple forecasting models so ultimately, none of the models within the study performed 

well enough to be a useful practical tool for coaches or practitioners at this current stage. Future 

research, which has access to larger data sets, across broader areas of player monitoring, utilising ever 

developing technology and statistical techniques to collate data, could explore further the ‘holy grail’ 

of performance prediction in elite soccer.  
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CHAPTER 7: GENERAL DISCUSSION 

 

7.1 Introduction 

 

The main aim of this thesis was to evaluate new methods of data analysis from an elite soccer 

longitudinal data set, to provide insight to the association between training load, injury and 

performance.  

The research was conducted over a period of seven years as it was completed in conjunction with 

working full-time. The length of the research term posed both advantages and disadvantages as working 

from within the soccer environment meant the questions that were being posed by a varied background 

of coaches and players with different training philosophies, underpinned and guided the research 

throughout. This key advantage meant that the research was always held close to the applied setting 

which was a key focus from the outset. The weaknesses of conducting the research across such a period 

was that the studies quickly became outdated as technology moved on and philosophies changes. A 

clear directional change through thesis transfer was to shift to a focus on performance measures to fit 

with current research and applied practice.  

To address the aims outlined in Chapter 1, four studies were conducted, with the final goal of generating 

relevant and applicable knowledge within elite soccer to enhance the practices within performance 

departments.  

The paragraphs below highlight the main findings from the studies included in this thesis: 

1. Assess the validity of GPS devices to measure the distance of team-sport specific movement. 

The validity of GPS devices for use in soccer was investigated in Chapter 3, and showed a weak linear 

relationship relative to a gold-standard measure (motion capture system). This study showed that 

caution is recommended when measuring movement with multiple change in direction.  

2. Provide context to training load data and simplify the description of training by identifying 

pertinent metrics. 

Dimensionality reduction (Chapter 4) was used to produce three contextualised training load 

components. The context was applied by collecting match data and using them as training load 

thresholds. The three new components - ‘change in velocity’, ‘velocity’ and ‘metabolic intensity’ - were 

named to simply represent the metrics which contribute to their make-up. Collectively, the terms 

symbolise three key areas of training load which put different physical stresses on the player. This study 

explores methods of analysing training load in elite soccer for the purpose of applying these principles 

in Chapter 5. 
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3. Provide insight into the statistical analysis of training load used in elite teams 

The reductionist approach described in Chapter 4 was employed to analyse three seasons of training 

and match data and highlighted a number of methods of presenting longitudinal load (Chapter 5). The 

study shows that principal component analysis can be used to identify training load components 

(volume load, speed load and density load) to represent commonly collected metrics to streamline 

communication and maximise training load decisions in a number of introduced applied concepts 

(micro-cycle manipulation, seasonal creep and change in coaching staff).  

4. Analyse the influence of training load on the risk of injury in elite soccer players 

The main finding of this study was that a higher accumulated training load during pre-season resulted 

in a longer estimated period before in-season injury incidence (Chapter 5). Pre-season injury (sessions 

missed) and higher age did not show a clear relationship with injury incidence. It is important to 

consider the multiple factors contributing to training load adaptation and injury risk highlighted in 

Chapters 2 and 5. 

5. Establish whether InStat Index can be used to measure individual match performance 

This study correlated InStat Index, a holistic match performance metric, to goal difference and expected 

goals, supporting its use by coaches and practitioners to quantify individual match performance.  

6. Analyse the influence of multiple factors, including training load, to assess the subsequent 

success to predict performance  

Finally, a variety of prediction models were used to predict InStat Index (match performance) in Chapter 

6. The main findings of this study were that training load was unable to offer any more insight to 

performance estimation over simple forecasting models. Importantly, none of the models within the 

study performed well enough to be a useful practical tool to predict performance highlighting the 

multifactorial nature of soccer performance. 

7.2 Overall discussion 

 

This section of the thesis will discuss the previously highlighted findings from each of the studies 

completed. An in-depth analysis of the challenges faced, the limitations, practical applications and also 

potential future research recommendations is included in the below. 

7.2.1 The validity of global positioning system (GPS) devices for measuring distance of team-sport 

specific movement 
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This study found that 10- and 15-Hz GPS devices overestimated distance of soccer specific movement 

compared to a gold standard criterion measure (Chapter 3). Carried out early during the PhD (2014), 

tracking technology has significantly developed with a large priority being accuracy. Today, ETPS 

providers use standardised testing days operated by FIFA which use many of the same methodological 

principles used in this study, in order to be accredited for use in elite soccer.  

The devices tested (Chapter 3) have been validated for use to measure team sports, with caution 

recommended with increased speed, acceleration and changes in direction (Scott et al., 2016; Malone 

et al., 2017a). Results agreed with this body of literature, and showed that the accuracy was best during 

unidirectional movement with simple change in direction and decreased with trial complexity (i.e. ZIG). 

It is suggested that accuracy decreases due to the increased complexity of the movements and the 

inability of the devices to compute the small changes in body position. There were also large differences 

found in accuracy between manufacturers, which could be due to factors such as sampling frequency, 

chipset or data processing algorithm variation.  

A key strength of this study was the use of an optoelectronic motion capture system as the gold standard 

measure. An early challenge to the research was to ensure that this, then lab-based system, could be 

taken to an appropriate outside space for soccer specific movement testing, allowing for clear satellite 

signal. Chapter 3 outlines how the system was configured and then calibrated to accuracy of 2.6mm to 

ensure the criterion measure stood apart from previous validity trials. The current protocol used by 

FIFA to certify ETPS also measures soccer specific movement using a motion capture system as the 

gold standard measure. 

One of the main limitations to this study was that satellite number and HDOP data were not available 

due to the device versions tested. Current GNSS devices can provide this data readily within the 

software as easily as load-based metrics. Checks were made to ensure that there was a complete data 

trace on all trials with the absence of any abnormal ‘spikes’ which can be caused by a number of 

conditions highlighted in Chapter 2.3. At this point of the study, the devices only had access to the 

American GPS as they were not GNSS-enabled, which meant reduced satellite availability. The 

developed devices used during data collected in Chapter 5 and 6 were GNSS-enabled. Chapter 2.3 also 

explains the effect of GNSS satellite availability.  

Additionally, there is limited trial data collected, especially for Minimax and SPI devices. This was due 

to only having one device available from each of these manufacturers. Trials were also discounted if 

there were issues with Qualisys data for example, marker drop out, damaged files or missing sections 

of trial data. To conduct a robust comparison of the difference between manufacturers, more data would 

be recommended.  

Future study could overlay raw positional data values from both Qualisys and GNSS devices, 

potentially using methods such as statistical parametric mapping (SPM). SPM was originally developed 
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for the analysis of cerebral blood flow in 3D PET images (Worsley et al., 1992), but has been used more 

widely in a range of biomechanical applications (Pataky, 2010). Some studies suggesting the 

investigation of x, y data to assess validity can provide accuracy insight into position accuracy; however, 

applied practitioners are not currently using coordinate data to analyse workload. This could be a future 

method explored with the influx of data scientists, however, as per FIFA protocol, it is appropriate to 

assess the output produced by GNSS devices and subsequently used day-to-day by practitioners. 

Another area of future study could explore the error in relation to other frequently measured metrics 

collected by GNSS devices to guide training load. Access to manufacturer equations and algorithms 

would be critical in this process in order to measure raw error rate and translate it to mechanical error. 

Metabolic metric accuracy would be an interesting area to explore.  

Regarding practical recommendations from this study, the overarching message is that previously, 

practitioners needed to conduct internal accuracy trials on technologies used in order to appreciate any 

error associated with the data collected, as many manufacturers would put devices to market before 

external validation. Where this is still recommended, especially specific to the internal metrics analysed, 

the standardised certification process adopted by FIFA has meant practitioners can be confident they 

can invest in a monitoring product that is fit for purpose and safe to use.  

This study fitted well into the journey as it was the first study conducted, reinforced the key research 

principles by going through ethics procedures, carrying out field testing, statistical analysis and study 

write up. It allowed for a deeper understanding to the history and development of the technology that 

the thesis is based and offer interesting experiences to other technologies used to measure movement. 

The take home message was that the first impressions of use in the applied setting and also during 

testing were the devices used in the trial providing useful and accurate data. The statistical analysis 

shows the areas of improvement the technology needed, particularly as movement complexity increases, 

which are being consistently addressed and developed.  

7.2.2 The use of dimensionality reduction to describe training load metrics in elite soccer 

 

Match data was used to give context to training load to improve communication of data output between 

the practitioner and the coach (Chapter 4). Following that, it demonstrates how dimensionality reduction 

can be used to produce three training components that collectively represent key areas of physical 

training stress. This novel approach to training load analysis was applied using a new data set to 

investigate three seasons of training and match data (Chapter 5). 

The initial findings from this methodological study highlighted the movement demands of soccer 

match-play. In agreement with previous research, these data can be used to inform practitioners of match 

demand to objectively show the output players need to be prepared for to aid subsequent planning of 

training. 
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This study used match average data to initially address the issue of training load communication. As 

mentioned in Chapter 5.6, Coutts, (2014) states the ability to effectively communicate training load data 

is paramount – data should be competently analysed and translated into clear, practical messages. Using 

the match-training load percentage calculation (Chapter 4.2.3), contextualised load metrics can resonate 

with coaches and players therefore increasing the potential opportunity for positive data 

communication.  

The secondary and main outcome of the simplification process was to propose a new methodology of 

metric use to reduce a complex training load analysis process into a simple and streamlined process. 

Dimensionality reduction was therefore used to streamline twelve load metrics into three new load 

components which can be utilised in different ways. The newly developed methodology was applied so 

that other practitioners could use it with any training load data set (Chapter 5). 

This study was a methods based study to explore ways in which data can be processed and presented 

with the aim of providing methodological principles to take forward and use on an applied, longitudinal 

data set (Chapter 5). The study only looks at a limited number of data process methods and there is 

increasing research presenting alternative methods for example, using population mean and standard 

deviation (Bacon and Mauger, 2017), quartiles (Malone et al., 2017) or creating categories using z-

scores (Bowen et al., 2017). It is important to acknowledge the multitude of methods available to 

practitioners for this process, this study present two main ideas but importantly the overarching 

principle of contextualisation and simplicity for the end user. 

7.2.3 Season-to-season training load change in elite soccer 

 

In Chapter 5, dimensionality reduction was implemented to provide a simpler representation of training 

load across different seasons. The three seasons of training and match data from Australian elite soccer, 

reduced to three training components, were used to describe seasonal changes in load, changes in micro-

cycle periodisation and the association that training load has with injury risk. 

As discussed previously, the ability to effectively communicate training load data is paramount, so the 

decision was taken to use dimensionality reduction on the new data for this study. The statistical process 

outlined in the section 5.2.3 was successfully used to reduce the multitude of training metrics available 

into three new components, whilst still explaining 88.2% of the variance. Principal component one, 

named volume load, strongly correlated with distance, session duration, and HMLD and explained 

67.6% of the variance. This can be a useful component for practitioners to monitor total player load due 

to its holistic nature which is accumulated through session time. A simple explanation of this component 

of training to coaches and players is that it represents an overview of total workload, always referring 

back to volume. Principal component two, named speed load, correlates with metrics exposing distance 

covered at higher speeds. This is useful for practitioners, as monitoring exposure to high speed load has 
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been linked with both match physical performance and injury reduction. The explanation of speed load 

can outline the work completed at high speed often when players have the distance and pitch space to 

express this physical attribute. Principal component three, named density load, correlated with metres 

per minute, distinguished by relative distance and can therefore be explained as a representation of the 

intensity of load.  

Using these new components, the main findings of this study were that higher accumulated training 

load (volume load, speed load and density load) during pre-season resulted in a longer estimated period 

before in-season injury incidence. This contradicts previous studies in the literature (Hulin et al., 2016) 

which caution against high load in team sports, but is certainly in agreement with recent research 

showing training hard and consistently is protective of injury (Hulin et al., 2015; Veugelers et al., 2015; 

Stares et al., 2017; Gabbett et al., 2018). Risk of injury occurrence in soccer is multifactorial and 

previously discussed research shows two main indicators being previous injury and older age. The effect 

of pre-season injury burden on in-season injury rate was analysed to isolate this factor from the training 

load effect on injury rate. However, the protective effect of increased pre-season training load (Figure 

6.5) is not mirrored by the effects of injury burden (sessions missed due to injury) during the pre-season 

period. Previous research recommend caution when implementing training and match load in older 

players (Hagglund et al., 2007; Ekstrand et al., 2011), however the results from this study show no clear 

association between players with a higher age and in-season injury.  

A limitation of this study is sample size as, although data was collected over a relatively long period, 

only one squad of players was monitored and the injury incidence within the study period was low. It 

is important to accept the potential effects of the change to device version as improved hardware became 

available. Practitioners should be mindful that whilst manufacturer-recommended upgrades in device 

firmware will improve certain operational aspects (e.g. bug fixes), they may also affect data output, and 

thus interpretations of longitudinal data (Varley et al. 2017). 

Future research with access to training load and injury data from multiple teams could elicit further 

findings. The principle component analysis method used to produce simplified load components could 

also be applied to a range of research designs for example the optimisation of training loads through 

pre-season (Carey et al., 2017) which modelled distance covered and high speed running to produce 

feasible training plans that maximise projected performance and satisfy injury risk constraints. Further 

to this, a machine learning approach may be best suited to analyse the association and prediction 

potential of training load and injury in soccer. Vallence et al., (2019) highlight a construct aggregating 

data sources including GNSS data can use various machine learning techniques. Dimensionality 

reduction could be investigated as part of this process.  

Much of this research highlights the need for simple presentation of data to players and coaches but it 

is also essential for the data management and organisation to be smooth and efficient. EPTS companies 
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are constantly developing their software to accommodate new metrics and it would be useful for 

practitioners to be able to firstly run a PCA analysis on their own data set within their own platform and 

then subsequently the new components be part of the daily output.  

It would also be interesting for future study to assess how elite teams are adapting to this type of research 

and if there is change to the age profile of playing squads to increase training and match robustness. 

Other research could investigate whether these results are reproduced in a different soccer leagues 

where training modalities and match demands maybe different. 

7.2.4 Predictive modelling of training loads and performance in elite soccer 

 

Training load was unable to offer any more insight to performance estimation over simple forecasting 

models. In addition to this, none of the models within the study performed well enough to be a useful 

practical tool to predict performance. 

The study correlated a holistic metric of match success for practitioners to use to measure individual 

match performance. This study and other previously discussed research highlights how soccer 

performance is extremely hard to measure and therefore predict, due to its multifactorial nature. 

Throughout this process, a number of metrics were investigated but the main conclusion was the need 

to be holistic, position specific and available on an individual player level. A common limitation of 

these holistic metrics were the bias towards attacking actions and many only accommodating team 

performance data. When practitioners select performance metrics it is important to be considerate of 

the above suggestions but also ensure that the selection is specific to the way that the team plays. As 

describe by Bradley and Ade (2017), an integrated approach contextualizes match demands by 

assimilating physical and tactical data effectively. This process is still to be truly established and could 

derive from coach-practitioner interaction to establish team game style, perception of good and bad 

performance, and then matching event data to these actions. Bespoke and holistic performance metrics 

could potentially be developed using processes similar to that of InStat Index and subsequently 

correlated against success factors using the processes exampled in Chapter 6.3.1. This approach was 

also used to investigate the relationship between performance (measured by an internal 

multidimensional concept) and final ranking (Pappalardo and Cintia, 2017). 

It was planned to use the load metric components developed by dimensionality reduction (Chapter 5) 

as inputs to the Banister impulse response model. Unfortunately, the new components were unable for 

use in the prediction model (Banister) because if you input a negative training dose into the Banister 

model, all of the responses are transposed (i.e. "fatigue" increases performance and "fitness" decreases 

it). 

As discussed, the prediction models did not perform well enough to be a useful practical tool to predict 

performance which could be due to the size and lack-of-diversity in the data set. Future investigation 
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with a larger data set could show stronger results; however, it is likely that the 10% error is appropriate 

due to the aforementioned multifactorial nature of soccer performance. Future research with access to 

larger data sets and importantly, from various data sources, with the increase in technology and data 

availability, could yield stronger results.  

This study first explored how soccer performance is measured and highlighted the advantages of using 

holistic metrics however further research could elicit further insight into the complex process of 

quantifying match performance. Soccer performance is so complex and the number of affecting factors 

including match conditions (surface, weather, opposition level, scoreline, tactics), physical factors 

(training load, match density, gym exposure, injury history, hydration, age) and a wide array of 

psychological and social factors (mood, media pressure, social support, contract status). This study used 

a holistic performance metric which assessed position specific event data based performance. Whilst 

this was shown to have an association with team success so can be used retrospectively to analyse 

performance of players, the later part of this study shows that by just using training load information, 

performance cannot be estimated. Analysis that has access to a larger data set which aggregates multiple 

contextual factors when managing athlete readiness to perform will be an interesting area of future 

research. 

 

7.3 Future directions 

 

This thesis explored methods to analyse performance and injury in elite soccer utilising data from GNSS 

devices. GNSS technology has evolved significantly throughout the duration of this research period, 

and will continue to do so, as will the available methods to assess technology accuracy. It is 

recommended that the FIFA strategy for standardised testing that has been developed during the period 

of this research is leveraged to assess technology accuracy in future research. Additionally, just as 

GNSS technology has evolved, during the same period new devices have come into the market that will 

offer further analysis potential. The idea of ‘invisible monitoring’, whereby loads may be evaluated 

while minimising athlete and practitioner burden, carries high potential. The influx of data that these 

technologies could provide will also introduce additional metrics to analyse. For future research, the 

ability to carry out multi-variate analyses across multiple seasons could potentially highlight further 

insight to the relationship between training load, injury and performance. The ability to do this analysis 

with significantly higher subject numbers with access to multiple squads could elicit stronger results. It 

would also be of interest to analyse the differences between competition level, training philosophy 

(especially between countries) and also the associations in women’s and youth soccer. A machine 

learning approach may be best suited to analyse the association and potential prediction potential of 

training load, injury and performance in soccer. 
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Future work could also establish gold standard metrics to measure soccer match performance 

culminating together the multitude of contextual factors that affect the readiness and ability to perform. 

Additionally, this work should consider the variation in playing style and performance goals for 

different leagues and coaches, in particular, the integration of physical (tracking) and technical (event) 

data. 

7.4 Thesis conclusion 

 

This thesis provides understanding of the validity of the measurement and analysis methods relating to 

training and match load in elite soccer. The aim of this thesis was to present methods to facilitate 

effective communication between practitioner and coach by streamlining the data analysis and 

interpretation process. The dimensionality reduction approach produced a simplified data feedback 

method to increase the ability of load data to influence the training planning process positively. This 

approach was applied across three seasons of training and match data, and the analysis found that higher 

accumulated training load during pre-season resulted in a longer estimated period before in-season 

injury incidence. From a performance prediction perspective, it has been shown that none of the 

prediction models currently in use performed well enough to be a useful practical tool to predict 

performance. This is deemed to be due to the fact that individual performance is hard to measure and 

therefore to predict. This is a pressing need in the research community, as performance optimisation is 

the ultimate goal in elite soccer.  

Overall, this thesis established the validity of devices to measure distance of soccer specific movement 

and tracked the development of the technology through the study period. It showed that increasing the 

training load of elite soccer players can be protective of injury and subsequently presented a variety of 

methods to aid the analysis process; importantly, the simplification and contextualisation of load data.  
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