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Chapter 1

Introduction and literature

review

1.1 Context

Biological systems exhibit a tremendously wide variety of behaviours at many different

spatial scales. While in theory, the behaviour of a system at any scale can be viewed

as emergent from the behaviour of its smallest components, deriving these scale rela-

tionships is analytically intractable except in only very carefully constructed examples.

Numerical methods based purely on the microscopic behaviour of a system quickly be-

come cost-prohibitive as the respective number of agents is increased. To counter this,

computational feasibility may be attained through the use of scale-dependent modelling

regimes; however, this inherently incurs a loss of information when coarser represen-

tations are applied. This report is concerned with hybrid methods, which combine

multiple regimes to balance the advantages and disadvantages of each.

Many biological systems can be described as reaction-diffusion systems. These

spatio-temporal models represent the evolution of particle systems via the incorpora-

tion of two distinct processes; in particular, inter-agent interactions, or reactions, and

random movement, or diffusion. Such models are capable of displaying a multitude

of behaviours, including wave-like behaviour and, in particular, the formation of trav-

elling waves [12, 32]; as well as the emergence of self-organising spatial patterns [37],

the formation of which are of great interest for explaining the structural heterogene-

ity present in most multicellular life. The broad applicability and generalisability of

reaction-diffusion systems has motivated the development of many different modelling

representations across the molecular, microscopic, mesoscopic, and macroscopic scales.

The finest modelling scale is that of molecular dynamics, in which the movement
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of agents is simulated via consideration of their interactions with the media in which

they are immersed. Coarse molecular representations treat agents and molecules as

rigid spheres, calculating inter-molecular collisions according to standard Newtonian

mechanics; that is, agents are allowed to collide and react in a manner which obeys

conservation of momentum. In this way, these models do not consider diffusion to

be a stochastic process, as in the coarser regimes described below, but rather a fully

deterministic system of interacting agents. Inevitably, such models require the storage

of the positions and momenta of all constituent agents, precluding their application to

large systems.

The next coarsest (‘microscopic’) scale, consists primarily of agent-based models.

Within this regime, the positions of all individual agents in the system are tracked; the

diffusion of these agents can then be realised according to a Brownian motion or, in

the case of biased or more complicated diffusive processes, a more general stochastic

differential equation. A wide variety of methods exist for the modelling of inter-agent

reactions, including the Smoluchowski coagulation equation [34], Green’s function reac-

tion dynamics [33], and the λ-ρ method [10]. For many systems, these methods provide

the most accurate representation; however, this accuracy comes at a significant and po-

tentially prohibitive computational cost. Keeping track of the location and movement

of each individual agent quickly becomes very expensive for larger systems; modelling

the diffusion of a system containing N agents requires the realisation of dN Gaussian

random variables at each time step, where d is the dimension of the system. Further,

the simulation of second- or higher-order reaction kinetics requires the storage of a,

potentially very large, pairwise distance matrix in order to determine whether agents

are close enough to react. This matrix must be recalculated at each time step, requiring

O(N2) operations for a system of N agents.

Mesoscopic methods, one of the two regimes of interest in this report, are more

coarse than microscopic methods, sacrificing knowledge of individual agent locations

in exchange for computational efficiency. Mesoscopic methodologies divide the spatial

domain of interest into fixed-size compartments, and track the number of agents oc-

cupying each individual compartment; in particular, agent positions are known only

up to their compartment, in which they are assumed to be well-mixed and uniformly

distributed. Agents are allowed to interact at some prescribed rate within their com-

partment according to predetermined reaction pathways, typically manifesting as the

addition or removal of agents from the compartment. In some cases, however, reaction

products may be allowed to appear in neighbouring compartments [20]. Diffusion be-

tween compartments is treated as a reaction in which agents are removed from their

initial compartment and placed into a neighbouring compartment; the corresponding
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diffusion rate can be derived from the desired linear (as in Fick’s law [11]) or nonlinear

macroscopic diffusion law.

Compartment-based models can be simulated according to either a time-driven or

an event-driven algorithm. Time-driven algorithms employ a fixed time step, chosen

to be sufficiently small so as to preclude the occurrence of multiple reactions in any

single time step. Both the occurrence or non-occurrence of a reaction, as well as

the specific type of reaction which occurs, are determined by the generation of two

uniformly distributed random numbers. Event-driven algorithms, on the other hand,

simulate the elapsed time between reactions; the most widely used algorithm of this

form is the Gillespie direct method [16]. All possible reactions have an associated

exponentially distributed waiting time, representing the time until the reaction occurs;

consequently, the time until the occurrence of any reaction is simply the minimum of

these waiting times, which is itself exponentially distributed. A realisation of this time

can then be drawn, with the associated reaction being chosen at random according to

the relative individual reaction rates. While this method provides an exact simulation

of the corresponding master equation, it can be expensive for large numbers of agents or

compartments. In answer to this, several approximate stochastic simulation algorithms

have been developed, such as the next reaction method [14], the next sub-volume

method [8], and the R-leaping method [3].

Finally, macroscopic methods provide the coarsest applicable modelling framework,

and shall be the second regime of interest in this report. These methods most frequently

take the form of a partial differential equation such as the reaction-diffusion equation,

given by
∂u

∂t
= D∇2u +R(u), (1.1)

where u represents agent concentrations, D is a matrix of diffusion and cross-diffusion

coefficients, and R is a function representing the local reactions. Due to the extensive

study of partial differential equations over the past several decades, there exist many

highly-efficient methods for both simulation and solution, such as finite difference, finite

element, and finite volume methods. The computational efficiency of these methods,

however, comes at the cost of accuracy. In systems with regions of low agent density,

PDE models are often unable to fully capture the nonlinear dynamics of the system.

The cell-division cycle is one of the most fundamental processes in biology, typically

defined to be the period of time between a cell’s formation through the division of some

mother cell, and the division of the cell itself into two daughter cells. The vast majority

of eukaryotes undergo some form of this cycle in order to replicate; prokaryotic cells, on

the other hand, go through a comparatively simple process known as binary fission [1].
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There are notable exceptions however, such as neuronal cells, which cease replication

after a certain number of iterations, becoming permanently held in a particular phase

of the cycle.

While the exact mechanisms behind division can vary substantially between cell

types, the basic sequence of events remains essentially the same and can be broadly

divided into four distinct phases: G1, S, G2, and M. The length of each phase is

determined by a network of regulatory proteins which respond to internal and envi-

ronmental cues, and exhibits considerable variation not only between different types of

cell, but also between cells which are morphologically identical [1]. Measuring phase

lengths is, moreover, a nontrivial experimental problem, as it is often not possible to

observe all transitions between phases, or to identify which phase a cell is in at any

given time; this further complicates the determination of cell cycle distributions [35].

1.2 Hybrid modelling

This section presents an overview of several hybrid methods, which couple the meso-

scopic and macroscopic spatial regimes. Such methods divide the domain of interest

into two or more regions, upon which different models are employed, in a manner which

exploits their complementary strengths and minimises their weaknesses. All presented

methods are described in the one-dimensional case; however, extension to multiple di-

mensions is, in most cases, trivial. Finally, we consider some existing methods applied

in the study of the multi-stage model of the cell cycle.

We first introduce the pseudo-compartment method (PCM) of Yates and Flegg

[38], which provides the basis for this report; a schematic diagram for this method is

provided in Figure 1-1. The PCM works by dividing the domain of interest into two

regions, separated by an interface. In one region, a PDE-based method is used, whilst

a compartment-based method is employed in the other; these regions are labelled ΩP

and ΩC , respectively. On ΩP , we solve the PDE stated in Equation 1.1, representing

the agent concentration at each point in the domain. This region is discretised into

a regular grid with uniform spacing ∆x, on which the PDE is solved using a finite-

difference method. Specific details of the finite-difference scheme used for the solution

of PDEs of this type will be given in Chapter 2.

The region ΩC is uniformly divided into compartments of length h, where h is

chosen such that ∆x << h. The method keeps track of the number of agents in each

compartment, but not the positions of these agents; we are therefore forced impose a

uniform distribution and well-mixedness of the agents within each compartment. In

each compartment, agents are allowed to either react according to some predetermined
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reaction channels, or perform diffusive jumps into neighbouring compartments. The

compartment-based method evolves according to the Gillespie direct method, a detailed

discussion of which is presented in Chapter 2.

Figure 1-1: Schematic diagram for the PCM. The green line represents the solution of
the PDE, while the blue boxes represent agents within each compartment. The red
line denotes the interface between the two sub-domains. The green boxes residing in
the pseudo-compartment represent the number of pseudo-agents within the pseudo-
compartment, calculated by direct integration of the solution over that region. The
arrows in the centre represent the movement of pseudo-agents over the interface between
the pseudo-compartment and the first compartment of the mesoscopic domain. (Figure
reproduced from [28].)

To facilitate the movement of agents between the two regimes, a pseudo-compartment

is constructed, lying within the PDE-based region. This is a small region, of the same

size as the other compartments, whose agent count is determined by direct integration

of the solution of the PDE in said region. Agents are permitted to diffuse across the

interface between the pseudo-compartment and ΩC according to the Gillespie algo-

rithm; this is achieved by either adding or removing a single agent’s worth of mass

from the solution of the PDE, uniformly across the pseudo-compartment, and remov-

ing or adding a agent to the first compartment accordingly. Other reactions, as well as

diffusive events into ΩP are not treated according to the compartment-based regime;

rather, they are performed implicitly through solving the PDE. Chapters 3 and 4 will

provide a much more comprehensive treatment of the PCM, wherein we will replicate
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a travelling wave solution to the FKPP equation [12, 32] using this method, as well as

an extension to the simulation of a multi-stage model of the cell cycle.

The PCM makes use of a static interface; that is, the interface and, in the case

of the PCM, the pseudo-compartment, are stationary in space. While this simplifies

the implementation of the method, it can limit the benefits of hybridisation when

the agent mass in ΩP and the pseudo-compartment is low. When agent numbers are

low, the PDE-based method may fail to capture the full nonlinear dynamics of the

system, due to the presence of bi-molecular or higher-order reactions in the underlying

stochastic system. Further, in the case where ΩC contains a large number of agents,

the corresponding compartment-based method will be comparatively more expensive.

Similar problems manifest in the hybrid coupling of alternative modelling regimes, such

as microscopic-to-mesoscopic methods. To combat this, several hybrid methods have

been developed which make use of adaptive interfaces; such interfaces may change

either their position in space, or their size, according to the local distribution of agent

mass.

Figure 1-2: Schematic diagram for the method of Spill et al. [29]. The green line and
blue boxes are defined in the same way as in Figure 1-1, while the red boxes denote an
extra compartment between the PDE- and compartment-based regimes. The coloured
double-headed arrows denote the manner in which fluxes are calculated between the
two regimes. (Figure reproduced from [28].)
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Spill et al. [29] incorporate an adaptive interface in their proposed method, which

is otherwise conceptually very similar to the PCM; a schematic can be found in Figure

1-2. Rather than making use of a pseudo-compartment that is, in some sense, both

a mesoscopic and a macroscopic region, their interface takes the form of a regular

compartment. Further, the macroscopic region is divided into compartments, resulting

in a system of mean-field ODEs representing the number of agents in each macroscopic

compartment, as opposed to a PDE for the entire region.

Agents are permitted to jump into and out of the mesoscopic regime according to

the stochastic simulation algorithm, whereas the macroscopic regime is coupled to the

compartment according to a deterministic flux governed by the mean-field ODEs. The

macro-compartments are labelled C−n, ..., C−1, the meso-compartments are labelled

C1, ...Cm, and the interface compartment is labelled C0. An agent can jump from

the first meso-compartment C1 into the interface compartment C0 at a rate propor-

tional to the number of agents in C1; likewise, an agent can jump from C0 to C1 at

a rate proportional to the number of agents in C0. Agents jumping between C0 and

C−1 are modelled deterministically. Letting n(Ck, t) denote the number of agents in

compartment k at time t, the flux between compartments C0 and C−1 can be written

n(C0, t+ τ) = n(C0, t) + τ
D

h2
(n(C0, t)− n(C−1, t)), (1.2)

where t is the current time, τ is the Gillespie time step, D is the diffusion coefficient,

and h is the compartment width. While this appears to be a Neumann boundary

condition at the interface, since n(0, t) can change stochastically, this condition instead

manifests as a stochastic source term for the mean-field ODEs at the interface.

All reactions within this compartment are completed according to the stochastic

simulation algorithm, and reactions elsewhere are governed by their respective regime.

A threshold number of agents is used to determine the location of, and adaptively

move, this interface. The natural consequence of the imposition of this threshold is

the occurrence of multiple interface regions, which the method permits. If a particular

sub-domain of the mesoscopic region exceeds this threshold, for example, said sub-

domain can be converted to a region governed by the PDE. Similarly, a sub-domain

in the macroscopic region may spontaneously convert to a mesoscopic sub-domain.

The ability for the domain to adapt its modelling regime according to local agent

density incurs certain issues, however; in particular, there may be regions in which the

agent density fluctuates quickly around the threshold value. While not an immediate

problem, this could potentially give rise to numerous small, disconnected regions of a

particular regime. This problem is circumvented by imposing a minimum permitted
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size on sub-domains, preventing arbitrarily small regions from changing their modelling

regime.

Further problems arise in the adaptive interface framework when regions of the

modelling domain fluctuate about the threshold value. This causes the region in ques-

tion to rapidly switch between modelling regimes, requiring a potentially significant

amount of computational overhead. Further, a loss in accuracy may result. For exam-

ple, in the event of a macroscopic region with a particularly high gradient switching to

the mesoscopic regime, information about this gradient will be lost, introducing spu-

rious smoothing of the solution. Robinson et al. [25] tackle this problem through the

incorporation of two threshold values in their proposed hybrid method, which couples

a macroscopic regime to a microscopic regime (we note, however, that their technique

can be easily adapted to any coupling). In this methodology, if a microscopic re-

gion exceeds the upper threshold it switches to the macroscopic regime. Likewise, a

macroscopic region which falls below the lower threshold will switch to the microscopic

regime. Regions which lie between the two thresholds do not change their regime.

1.3 The cell-division cycle

This report considers the cell-division cycle, along with diffusion, as a mechanism for

cellular invasion. A considerable research effort has been devoted to the study of the

effects of cell motility and proliferation on invasion speed; in particular, deriving the re-

lationship between motility and proliferation parameters and the invasion speed c. This

began with the seminal work of Fisher [12] and, separately, Piscounov, Kolmogorov,

and Petrovskii [32], who independently proposed the now ubiquitous FKPP equation,

∂u

∂t
−D∂

2u

∂x2
= ru(1− u), (1.3)

with boundary conditions

u(−∞, t) = 1,

u(∞, t) = 0, (1.4)

where D is the diffusion rate, and r is the logistic growth rate. The FKPP equation was

the first partial differential equation which was shown to exhibit the travelling wave

behaviour expected from an invasive population.

Typical contemporary approaches for modelling invasion include deterministic mod-

els such as partial differential equations [36], and stochastic agent-based models (ABMs)

[2, 7]. Recent work has extended these models to include cellular populations consisting
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of multiple species or stages [9, 13]. It is well established that when agent motility is

modelled according to standard Fickian diffusion [11], with diffusion coefficient D and

assumed agent proliferation rate λ, the speed of invasion is proportional to
√
Dλ [12].

One key assumption of many representations of cellular invasion is that cells pro-

liferate according to an exponentially distributed waiting time. Recent experimental

results, however, indicate that this assumption is often inappropriate, and that cell-

cycle time distributions (CCTDs) typically deviate significantly from an exponential

distribution [4, 18, 39]. Instead, it has been proposed that CTTDs can be described

with a considerably higher degree of accuracy through the use of hypoexponential dis-

tributions [4, 18, 39].

Multi-stage models (MSMs) are a class of model which seek to better describe

CCTDs, which have garnered much attention in recent literature [39, 4]. MSMs divide

the cell cycle into a sequence of N stages. Agents can proceed through the cycle

from stage i to stage i+ 1 according to an exponentially distributed waiting time with

rate λi; agents in the final stage N divide at rate λN , splitting into two daughter

agents in stage 1, respectively. Analytic and numerical treatments of MSMs can be

simplified through exploitation of the Markov property of the exponential distribution,

resulting in hypoexponentially distributed CCTDs; two mathematical features which

make MSMs appealing.

An important point to note is that the stages used in an MSM do not necessarily

correspond to the biological phases of the cell cycle; rather, they are a mathematical

construction which can be used to fit actual CCTDs. While MSMs have proven to

be effective models in the case of well-mixed populations, little research has been con-

ducted into the case of invasive populations, and the particular relationship between

the parameters of MSMs and the resultant invasion speeds.

Recently, Gavagnin et al. [13] investigated the relationship between a multi-stage

representation of the CCTD and invasion speed. In their paper, the authors con-

structed an ABM on a two-dimensional lattice, designed to represent cellular invasion.

The proliferation rate of each agent was represented as an N -stage MSM that can

be simulated using the Gillepsie method (or an alternative stochastic simulation al-

gorithm). Through consideration of the average column densities and application of

the mean-field approximation, they constructed a system of N reaction-diffusion-like

PDEs. The authors then derived an exact analytic expression for the invasion speed

in the case of identical inter-stage transition rates, corresponding to a CCTD with an

Erlang distribution.
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1.4 Summary

The overall purpose of this thesis formulation report (TFR) is to lay the foundations for

building a hybrid method that couples the two modelling regimes used by Gavagnin et

al. [13], exploiting the complementary advantages of both regimes. The ultimate aim

is to construct a method exhibiting improved computational efficiency as compared to

the ABM, whilst maintaining a similar level of accuracy. The TFR will also outline

the motivation behind, and future research directions of, the PhD.

The structure of the remainder of this report is as follows. In Chapter 2, we present

a detailed discussion of both the pseudo-compartment method of Yates et al. [38], and

the multi-stage representation of CCTDs and invasion speeds of Gavagnin et al. [13].

For completeness, we additionally describe some of the mathematical background for

these methods; in particular, we provide a representative example demonstrating the

use of compartment-based modelling, and demonstrate how the mean-field assump-

tion can be used to derive a corresponding partial differential equation. Further, we

discuss techniques for simulating compartment-based models, such as the Gillespie di-

rect method. The form and derivation of the general reaction-diffusion equation is

explained, and the Crank-Nicolson finite difference method for solving general partial

differential equations is presented.

In Chapter 3, we describe a multi-stage hybrid method for simulating cellular in-

vasion with realistic cell cycle distribution times. The performance of this method is

assessed for a simple test case, highlighting and interpreting the problems which arise.

The report will conclude with Chapter 4, in which we discuss future research directions

for the PhD.
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Chapter 2

Methodology

This chapter explores in greater detail a number of concepts mentioned in the introduc-

tion. Specifically, we will first discuss compartment-based (mesoscopic) modelling and

PDE-based (macroscopic) modelling, following which we will be sufficiently equipped

to give a full explanation of the PCM. We will also replicate some of the results from

the paper of Yates and Flegg [38], and demonstrate the capability of the method in the

representation of more complicated dynamics. Finally, we introduce the mesoscopic

and macroscopic methods of Gavagnin et al. [13] for the simulation of the cell-division

cycle with diffusion, and realistic (non-exponential) cell cycle distribution times.

2.1 Mesoscopic modelling

A Markov chain approach is employed in the simulation of reaction-diffusion systems at

the mesoscopic scale. The domain of interest is divided into a number of compartments,

between which agents are permitted to jump and within which they can interact. This

method keeps track of the number of agents inside each compartment, but does not

consider individual agent locations within said compartment. With each possible dif-

fusive jump and reaction channel we associate a propensity function, which represents

the probability of said event occurring within an infinitesimal time step.

2.1.1 Compartment-based methods

As an illustrative example, consider dividing Ω = [0, 1] into K compartments of length

h = 1/K. We denote by Ai the number of agents in compartment i, corresponding to

the interval Ci = [(i− 1)h, ih], i = 1, ...,K. Each agent is permitted to jump out of its

present compartment into a neighbouring compartment at some rate d. This can be
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written as the following reaction system,

A1
d−−⇀↽−−
d

A2
d−−⇀↽−−
d

...
d−−⇀↽−−
d

AK . (2.1)

Further, each agent is allowed to either divide into two identical agents in the same

compartment, or collide with another agent, destroying one of them. This can be

written as the following reversible dimerisation reaction,

Ai +Ai
k1−⇀↽−
k2
Ai, (2.2)

for rates k1, k2 and i = 1, ...,K.

After enumerating all reaction channels, we can associate with the channel j a

propensity function aj(t), defined such that aj(t)dt is the probability of the reaction

channel firing in the infinitesimal time step [t, t+dt). For reactions with a single reactant

Ai, i.e. Ai
k−→ X, where X is some arbitrary product, the corresponding propensity

function is simply kAi(t), where Ai(t) is the number of agents in compartment i at

time t. For second-order reactions, such as Ai + Ai
k−→ X, the propensity function is

k
νAi(t)(Ai(t)− 1), where ν is the ‘volume’ of the compartment. In this example, where

the compartments are one-dimensional, we simply have ν = h.

We are now sufficiently equipped to determine the mean of the number of agents

inside each compartment. For brevity, define the operators Ri, Li : NK → NK as follows

Ri : (n1, ..., ni, ni+1, ..., nK) 7→ (n1, ..., ni + 1, ni+1 − 1, ..., nK),

Li : (n1, ..., ni−1, ni, ..., nK) 7→ (n1, ..., ni−1 − 1, ni + 1, ..., nK). (2.3)

We then write down the chemical master equation (CME) [23]; this gives the time

evolution of the probability that the system is in state n = (A1 = n1, ..., AK = nK) at

time t. The CME for this system is as follows

∂p(n)

∂t
= d

K−1∑
i=1

{(ni + 1)p(Rin)− nip(n)}+ d

K∑
i=2

{(ni + 1)p(Lin)− nip(n)}

+
k1

h

K∑
i=1

{ni(ni + 1)p(n1, ..., ni + 1, ..., nK)− ni(ni − 1)p(n)}

+ k2

K∑
i=1

{(ni − 1)p(n1, ..., ni − 1, ..., nK)− nip(n)} . (2.4)

The full derivation of the CME for a given system is somewhat laborious, and an

exhaustive treatment can be found in [17]; here, it suffices to say the following. The
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first and second summations represent the internal diffusive mechanisms through which

compartments may arrive at the state n from a different state. The first way this could

occur is from the state Ai−1(t) = ni−1−1, Ai(t) = ni+1 for some i = 2, ...,K; this is the

state Lin. In this case, an agent jumping from compartment i into compartment i− 1

is required for the system to arrive at state n. The probability of this event occurring

in an infinitesimal time step is equal to d(ni + 1)dt. We multiply this probability by

p(Lin, t), where p(Lin, t) is the probability of the system being in state Lin at time t.

Likewise, the system could transition from state Rin to n through an agent jumping out

of compartment i into compartment i+1 for i = 1, ...,K−1, which occurs with a similar

probability. Finally, it could be the case that the state n is maintained throughout

the time step; an event which occurs with probability (1 − 2dnip(n, t))dt. The third

and fourth sums in the CME represent the proliferative and degradative reactions

respectively, and can be derived in much the same way as the first and second.

To derive an evolution equation for the mean of Ai(t), we multiply the CME by ni,

then sum over all possible states n. We can thus write the vector of means as

M(t) = [M1(t), ...,MK(t)] =
∑
n

np(n) ≡
∞∑

n1=0

...
∞∑

nK=0

np(n). (2.5)

Applying this technique to our example system, however, yilds a system in which the

means of the Ai(t)s depend on the variance and covariances, resulting from the non-

linearity of the degradation probabilities; the variances and covariances themselves then

depend on higher-order moments. This is an intrinsic problem in attempting to describe

mesoscopic behaviours deterministically; namely, that it is often impossible to derive

a closed system of evolution equations. Nonetheless, this problem can be mitigated by

making the (often poor) assumption that the variances and all higher moments are zero,

known as the mean-field assumption. The degree to which the mean-field assumption is

acceptable depends heavily upon the specific model and the chosen model parameters.

There are many other methods for closing the system of equations, broadly known as

moment closures, which can achieve a higher degree of accuracy over the rudimentary

mean-field closure.

Nevertheless, for the purpose of simplicity, this derivation shall be built upon the

mean-field assumption, ultimately resulting in the following system of evolution equa-
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tions for the compartment means:

∂M1

∂t
= d (M2 −M1) + k2M1 + k1h

−1
(
M1 −M2

1

)
, (2.6)

∂Mi

∂t
= d (Mi+1 − 2Mi +Mi−1) + k2Mi − k1h

−1
(
Mi −M2

i

)
, (2.7)

∂MK

∂t
= d (MK−1 −MK) + k2MK − k1h

−1
(
MK −M2

K

)
, (2.8)

where i = 2, ...,K − 1. As with the CME, deriving this full system of equations is

laborious. Instead, to demonstrate the general technique, we will derive the term

d (Mi+1 − 2Mi +Mi−1) in the evolution equation for Mj , j = 2, ...,K − 1. We begin

by multiplying the first two terms of the CME by nj and summing over n, giving

d
K−1∑
i=1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)}+ d
K∑
i=2

∑
n

{nj(ni + 1)p(Lin)− njnip(n)} .

(2.9)

The first sum can then be written as

d
K−1∑
i=1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)} = d

j−2∑
i=1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)}

+ d
K−1∑
i=j+1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)}

+ d
∑
n

{nj(nj−1 + 1)p(Rj−1n)− njnj−1p(n)}

+ d
∑
n

{
nj(nj + 1)p(Rjn)− n2

jp(n)
}
.

(2.10)

Noting that 〈ni〉 =
∑

n nip(n) and 〈ninj〉 =
∑

n ninjp(n), it follows that∑
n

{nj(ni + 1)p(Rin)− njnip(n)} = 0 (2.11)

for j 6= i, j 6= i+ 1, allowing us to rewrite (2.10) as

d

K−1∑
i=1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)} = d
∑
n

{nj(nj−1 + 1)p(Rj−1n)} − 〈njnj−1〉

+ d
∑
n

{nj(nj + 1)p(Rjn)} − 〈n2
j 〉. (2.12)
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Finally, noticing that

nj(nj−1 + 1) = (nj − 1)(nj−1 + 1) + (nj−1 + 1), (2.13)

and

nj(nj + 1) = (nj + 1)2 − (nj + 1), (2.14)

we obtain

d

K−1∑
i=1

∑
n

{nj(ni + 1)p(Rin)− njnip(n)} = d(〈nj−1〉 − 〈nj〉) = d(Mj−1 −Mj). (2.15)

Proceeding in a similar fashion, it is established that

d
K∑
i=2

∑
n

{nj(ni + 1)p(Lin)− njnip(n)} = d(Mj+1 −Mj). (2.16)

Clearly, (2.15) and (2.16) sum to give d(Mj+1 − 2Mj +Mj−1), as required.

It is notable that this particular term represents the flux into compartment j re-

sulting from diffusive jumps into (the term d(Mj+1 + Mj+1)) and out of (the term

d(−2Mj)) the compartment. Diffusive reactions are uni-molecular, and therefore their

corresponding terms do not contain any higher-order moments of nj . This same tech-

nique of multiplying by nj , summing over the states n, and carefully rearranging the

result can be applied to the other terms of the CME to construct the full system of

mean-field ODEs; however, this results in higher-order moments for the bi-molecular

reactions, necessitating the use of an appropriate moment closure to obtain a closed

system of ODEs.

The corresponding deterministic description of this system is usually expressed in

terms of concentration, which can be approximated by hu(xi, t) ≈Mi, where xi is the

centre of compartment i. Dividing (2.7) through by h gives

∂u

∂t
(xi, t) ≈ d(u(xi−1, t)− 2u(xi, t) + u(xi+1, t)) + αu(xi, t) (1− βu(xi, t)) , (2.17)

where α = k2 + h−1k1, and β = (k1h)/(k2h+ k1). Finally, Taylor expanding the right-

hand side of (2.17), and taking the joint limit as h → 0, t → 0, holding the quantity

dh2 constant, yields
∂u

∂t
≈ dh2∂

2u

∂x2
+ αu(1− βu). (2.18)

This general technique can be used to find the deterministic approximation of any

compartment-based reaction network.
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Algorithm 1. The Gillespie algorithm.

1. Generate two uniformly distributed random numbers r1, r2 from the interval
(0,1).

2. For each reaction i, compute the propensity function αi(t). Further, compute

α0 =

q∑
i=1

αi(t),

where q denotes the number of possible events.
3. Calculate the time elapsed to the next reaction, given by

τ =
1

α0
ln

(
1

r1

)
4. Determine which reaction occurs at time t+ τ . In particular, find the index
j such that

1

α0

j−1∑
i=1

αi(t) ≤ r2 <
1

α0

j∑
i=1

αi(t),

updating the corresponding agent counts accordingly. Finally, set t = t + τ ,
and return to step (1).

2.1.2 Stochastic simulation algorithms

We now turn our attention to the simulation of a compartment-based model. There are

many methods to achieve this; in this report, we will consider only the Gillespie direct

method [16], however, it is worth mentioning some of the alternatives. Exact methods,

named to reflect their ability to exactly determine solution trajectories of the CME,

offer the most accuracy, but are often prohibitively expensive. These include methods

such as the Gillespie direct method [16] and the next sub-volume method [8]. Inexact

methods provide computational efficiency at the expense of, to some extent, accuracy.

These include the τ -leaping method [17], in which a fixed time step τ is chosen, and the

number of events occurring of each type within this time step is drawn from a Poisson

distribution with appropriate mean. The R-leaping method [3] is similar; however, here

a prescribed number of events is given, with the time step being drawn from an Erlang

distribution.

The Gillespie direct method proceeds as follows. As previously mentioned, each

event, whether it be a reaction or a diffusive jump, has associated with it some propen-
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sity function αj(t). If there are q possible events, we define

α0 =

q∑
i=1

αi(t) (2.19)

to be the sum of all such propensity functions. An implicit assumption in the construc-

tion of the compartment-based method is that the time until each particular event is

exponentially distributed. Therefore, the time τ until the occurrence of any event, is

simply the minimum of these respective exponential waiting times, i.e. τ ∼ Exp(α0).

To sample from this distribution, we employ the inverse transform sampling method;

that is, we take a realisation of the uniform random variable r1 ∼ U(0, 1) and calculate

τ =
1

α0
ln

(
1

r1

)
. (2.20)

After calculating this time step, we must also determine which specific reaction has

occurred. Each event occurs with probability proportional to its propensity function;

therefore, we must find the index j such that

1

α0

j−1∑
i=1

αi(t) ≤ r2 <
1

α0

j∑
i=1

αi(t).

This process continues for the desired amount of time, finally yielding a single realisa-

tion of the system.

2.2 Macroscopic modelling

Reaction-diffusion systems are typically modelled at the macroscopic scale through

the use of either deterministic or stochastic partial differential equations. The theory

of PDEs is expansive, and there exist myriad methods for numerically solving them,

such as the finite-difference, finite-element, and finite-volume methods, which can be

optimised for high levels of efficiency and accuracy. Further, many specialist software

packages such as MATLAB and ANSYS possess in-built solvers for specific classes of PDE,

making PDEs an accessible and viable modelling technique even in the absence of an

in-depth knowledge of the underlying theory.

Despite the efficiency and relative simplicity of PDE models, they may fail to provide

a full description of systems in which stochastic fluctuations contribute significantly to

the dynamics. This is a common problem encountered in the modelling of small-

scale reaction-diffusion systems. When the number of agents in the domain is large,
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stochastic fluctuations can be considered to have a negligible effect; on the other hand,

for small numbers of agents, the effect of randomness on their behaviour cannot be

adequately captured by a deterministic PDE. A further issue present in PDE modelling,

discussed in Section 2.1.1, arises when second- or higher-order reactions are present in

the system. As discussed, the presence of these higher-order reactions mandates the use

of an appropriate moment closure in order to derive a closed, finite system of mean-field

ODEs from the CME of the mesoscopic model.

2.2.1 Deriving the reaction-diffusion equation

To demonstrate the use of PDEs for modelling reaction-diffusion systems, we derive

the reaction-diffusion equation (1.1) on the domain Ω ⊂ R. Define the function c(x, t)

to be the density of agents at x ∈ Ω at time t. Further, define a function f(c) which

represents the net change in concentration due to any and all reactions that take place,

and define J(x, t) to be the net flux at x ∈ Ω at time t in the positive x direction. For

an arbitrary interval Ω′ = [a, b] ⊂ Ω, the change in the number of agents present in Ω′

over an arbitrarily short time period [t, t+ τ) can be expressed as

Number of

agents in Ω′ at

time t+ τ

=

Number of

agents in Ω′

at time t

+

Flux into Ω′ over

the interval

[t, t+ τ)

+

Production of agents

within Ω′ over the

interval [t, t+ τ)

.

This can be written in terms of the functions and variables already introduced, giving∫
Ω′
c(x, t+ τ) dx =

∫
Ω′
c(x, t) dt− (J(b, t)− J(a, t))τ +

∫
Ω′
f(c(x, t))τ dx. (2.21)

Rearranging and dividing through by τ gives∫
Ω′

c(x, t+ τ)− c(x, t)
τ

dx = −(J(b, t)− J(a, t)) +

∫
Ω′
f(c(x, t))dx, (2.22)

to which we apply the fundamental theorem of calculus, such that∫
Ω′

c(x, t+ τ)− c(x, t)
τ

dx = −
∫

Ω′

∂J

∂x
dx+

∫
Ω′
f(c(x, t)) dx. (2.23)

Finally, taking the limit as t→ 0 and rearranging, we obtain∫
Ω′

{
∂c

∂t
+
∂J

∂x
− f(x)

}
dx = 0. (2.24)

Since equation (2.24) must hold for any arbitrary Ω′ ⊂ Ω, it is concluded that the
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integrand must be zero. This gives us the general PDE,

∂c

∂t
= −∂J

∂x
+ f(c). (2.25)

In the context of a reaction-diffusion system, the only flux present is that resulting

from diffusion; to this end, we apply Fick’s law of diffusion,

J(x, t) = −D ∂c

∂x
(x, t), (2.26)

for diffusion coefficient D. Substitution of Fick’s law into equation (2.25) yields the

one-dimensional reaction-diffusion equation,

∂c

∂t
= D

∂2c

∂x2
+ f(c). (2.27)

2.2.2 The Crank-Nicolson finite difference method

Finite difference methods (FDMs) are a commonly used method for the solution of

partial differential equations. These methods estimate the derivatives at a number of

discrete grid points using finite difference approximations. To achieve this, derivatives

are approximated via Taylor’s theorem, which states that, for any function f with

sufficiently well-behaved derivatives,

f(a+ h) = f(a) +
d

dx
f(a)h+O(h2). (2.28)

For small h, therefore, we can approximate the derivative of f by

df

dx
(a) ≈ f(a+ h)− f(a)

h
. (2.29)

In an analogous manner, one can derive finite difference approximations for higher-

order derivatives; that is,

d2f

dx2
(a) ≈ f(a+ h)− 2f(a) + f(a− h)

h2
. (2.30)

A popular FDM for solving diffusion-like equations is the Crank-Nicolson method,

proven to be unconditionally stable [31]. To demonstrate this method, suppose we

wish to solve the diffusion equation

∂u

∂t
= D

∂2u

∂x2
, (2.31)
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on the domain Ω = [a, b], with zero-flux boundary conditions

∂u

∂x
(a, t) =

∂u

∂x
(b, t) = 0, ∀t ≥ 0. (2.32)

In doing so, the domain Ω is discretised into a set of points a = x1 < x2 < ... <

xN−1 < xN = b with uniform spacing ∆x; further, we discretise time into a sequence

of equally spaced time steps 0 = t0 < t1 < ... with uniform spacing ∆t. For brevity, we

will write u(xi, tj) = uji . The Crank-Nicolson (CN) method makes use of the following

finite difference approximations

∂u

∂t
≈
uj+1
i − uji

∆t
, (2.33)

∂u

∂x
≈

(uj+1
i+1 − u

j+1
i ) + (uji+1 − u

j
i )

2∆x
, (2.34)

∂2u

∂x2
≈

(uj+1
i+1 − 2uj+1

i + uj+1
i−1 ) + (uji+1 − 2uji + uji−1)

2∆x2
. (2.35)

The CN discretisation for the diffusion equation is then

uj+1
i − uji

∆t
=

D

2∆x2

(
(uj+1
i+1 − 2uj+1

i + uj+1
i−1 ) + (uji+1 − 2uji + uji−1)

)
. (2.36)

Defining

r =
D∆t

2∆x2
, (2.37)

the discretisation (2.36) may be expressed in the more manageable form

−ruj+1
i+1 + (1 + 2r)uj+1

i − ruj+1
i−1 = −ruji+1 + (1− 2r)uji − ru

j
i−1. (2.38)

The CN method is an implicit method; that is, the solution at each time step

depends on both the previous state and the new state. Implicit methods require the

solution of an equation at each time step, and therefore incur a greater computational

cost at each step as compared to explicit methods, in which the solution depends only

upon the previous state. Implicit methods are advantageous, however, in that they

typically require significantly fewer time steps in order to achieve the same accuracy

as comparable explicit methods. It is noted from (2.38) that, in the case of the CN

discretisation of the diffusion equation, the problem arising in the computation of the

updated solution is tridiagonal, which can be solved far more efficiently than a general

linear system.

One potential difficulty encountered in the construction of FDMs is the implementa-

tion of Neumann boundary conditions, such as those in (2.32); clearly, equation (2.38)
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is meaningless when i = 1, N . The standard technique for handling Neumann boundary

conditions within the FDM framework necessitates the introduction of ‘ghost nodes’ at

i = 0 and i = N +1. In the diffusion equation example, we can discretise the boundary

conditions (2.32) using a central difference approximation of the derivative,

∂u

∂x
(a, t) =

uj2 − u
j
0

∆x
= 0, (2.39)

∂u

∂x
(b, t) =

ujN+1 − u
j
N−1

∆x
= 0, (2.40)

which gives that

uj0 = uj2, (2.41)

ujN+1 = ujN−1. (2.42)

These can then be substituted into (2.38) to give the full finite difference scheme for

the diffusion equation.

2.3 The pseudo-compartment method

In this section we present a detailed description of the pseudo-compartment method,

on which we base the titular model of this report. The PCM computes approximate

solutions of the general reaction-diffusion equation

∂u

∂t
= D∇2u+R(u), (2.43)

on some domain Ω. In this section, we take the domain Ω = [a, c] ⊂ R, noting that

the extension of this method to higher dimensions is trivial. The domain is divided

into two connected components, which we here define, without loss of generality, to be

ΩP = [a, b] and ΩC = [b, c].

On the sub-domain ΩP , we solve Equation (2.43). A zero-flux boundary condition

is enforced at the interface b; this choice of boundary condition reflects the fact that

the flux of agents between the two regions is not a deterministic process, but rather

a discrete stochastic process. The appropriate boundary condition on a is chosen

according to the specific application. The domain ΩC is divided into compartments

C1, ..., CK of uniform width h = (c − b)/K on which, as discussed in Section 2.1, any

number of reactive or diffusive events can be defined. The PDE is solved according to

the Crank-Nicolson finite difference method, with a grid spacing ∆x << h and time step

dtP ; we note, however, that any appropriate method can be used for solving this PDE,
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as the algorithm for interfacing between the two sub-domains is independent of any

specific implementation. Agents in ΩC can jump between neighbouring compartments

with propensity AiD/h
2, where Ai is the number of agents in Ci, as well as undergo

reactions according to any number of reaction channels with appropriate propensities;

in ΩP , these diffusive and reactive mechanisms are represented by the PDE itself.

The key mechanism for coupling the two sub-domains is the pseudo-compartment,

defined to be the interval C−1 = [b − h, b] ⊂ ΩP . Agents in ΩC are allowed to jump

into the pseudo-compartment, with the usual propensity AiD/h
2. Thus, the impor-

tant consideration is how to correctly count the number of agents inside the pseudo-

compartment; this is done by computing the expected value of A−1,

A−1 =

∫
C−1

u(x, t)dx.

Hence, when an agent jumps into C−1, we uniformly add 1/h to the solution u at each

PDE grid point in C−1. Similarly, agents can jump out of the pseudo-compartment

into C1 with propensity α∗ = A−1D/h
2, in which case we subtract an agent’s worth of

mass, i.e.

u(x, t+ τ) = u(x, t)− IC−1/h. (2.44)

The algorithm for the implementation of the PCM is similar to the standard Gille-

spie algorithm (Algorithm 1), with a slight modification made to concurrently sim-

ulate both the PDE and the compartments. The time is initialised by t = 0 and

tP = t + dtP . At each time step, the time of the next compartment-based reaction is

calculated as tC = t + τ , with τ computed according to Equation (2.20). If tC < tP

then the compartment-based reaction occurs as in the Gillespie algorithm, and the time

is updated to t = tC ; if, instead, tP < tC then the PDE solution is updated via the

Crank-Nicolson method, the current time is updated to t = tP , and the next PDE

update time is set to tP = tP + dtP . The algorithm then repeats from the new time t,

ending once some pre-specified total time has elapsed.

The PCM has been demonstrated to be effective for representing a number of be-

haviours, such as maintaining a uniform steady state, and establishing a morphogen

gradient across a domain [38]. Here, we present a novel application of the PCM; namely,

the replication of a travelling wave solution to the Fisher equation on a finite domain.

On ΩC , we simulate the reaction system

A1
d−−⇀↽−−
d

A2
d−−⇀↽−−
d

...
d−−⇀↽−−
d

AK , (2.45)
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Figure 2-1: This plot shows the calculated density profile of the PCM at t = 0, 15, 30
(top, middle, and bottom resp). We take the domain Ω = [−3, 3] with regions ΩP =
[−3, 3], ΩC = [0, 3]. On ΩP we numerically solve (2.47) using the Crank-Nicolson
method with grid spacing ∆x = 0.005 and time step ∆t = 0.0005, as well as model
parameters D = 1/100, λ = 1, and u∞ = 1000. On ΩC we simulate the compartment-
based method with a compartment size of h = 0.05 and model parameters k1 = 1,
k2 = 0.01, d = 4.

Ai +Ai
k1−⇀↽−
k2
Ai, (2.46)

where d = D/h2, and k1, k2 are reaction rates. To derive the corresponding determin-

istic representation, we use the Poisson moment closure as in [25], which assumes that

the mean of Ai is equal to its variance, as opposed to the mean-field closure, which
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Figure 2-2: These plots show the absolute value of the relative error between the
velocity of the travelling wave as predicted by the PCM and the SSA (top), and the
PCM and the mean-field equations (bottom). Each point represents an average over
100 realisations of the PCM and 100 realisations of the SSA.

assumes that the variance is equal to zero. The result is the FKPP equation

∂u

∂t
= D

∂2u

∂x2
+ λu

(
1− u

u∞

)
, (2.47)

which we solve on ΩP with boundary conditions

∂u

∂x
(a, t) =

∂u

∂x
(b, t) = 0. (2.48)
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In this case, the boundary conditions (2.48) are equivalent to the zero-flux boundary

conditions. Note that this differs from the usual form of the FKPP equation, which is

defined on an infinite domain.

To assess the effectiveness of the PCM in this instance, we compare the results

obtained from the hybrid model against the fully stochastic simulation, which we con-

sider to be the true solution of the problem. To begin, we plot the density profile as

calculated by the PCM against the density profile as calculated by the SSA (Figure

2-1). We observe reasonable agreement between the two, with the PCM exhibiting a

travelling wave of approximately the correct shape and velocity as that predicted by the

SSA. While these preliminary results look promising, we acknowledge that a noticeable

disagreement exists at the front of the travelling wave.

In Figure 2-2 we conduct a more quantitative evaluation of the agreement between

the methods. Here, we compute the relative error between the velocity of the travelling

wave as predicted by the PCM, vh, and the predicted velocity of the SSA, vs. We

further compute the relative error between vh and the velocity predicted by the mean-

field equations, vp. It is observed that the average errors are approximately 9% and

4%, respectively.

The purpose of the plots presented in Figure 2-2 is to assess whether there exists

any systematic bias in the error between the two methods. In order to reasonably

conclude that two methods predict the same behaviour, one would expect the relative

errors between the two at each sample point to be identically distributed; clearly, the

figure demonstrates that this is not the case. In particular, it would appear that in

both comparisons the relative error increases with time. This is most evident when

comparing the results of the PCM to the solution of the mean-field equations. Given

the stationarity of the interface, it is expected that the relative error would initially

be negligible, as stochastic effects do not manifest until agents begin to move into ΩP

at approximately t = 15. Another point of interest is the increase in the error as time

continues past t = 15, which suggests that the PCM predicts a different wave velocity

to the mean-field equations. This is also to be expected; as discussed previously, the

presence of second-order reactions in our reaction network necessitates the use of a

moment closure approximation, resulting in mean-field equations which are insufficient

to satisfactorily describe the dynamics of the fully stochastic system.

The results of our comparison suggest that the PCM with a stationary interface is

not suitable for modelling our reaction network; however, it is reasonable to assume

that equipping the PCM with an adaptive interface could rectify many of these issues

[5].
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2.4 Multi-stage cell cycle model

As discussed, there are many ways in which the multi-stage cell cycle can be modelled.

Here, we describe the deterministic, macroscopic model of Gavagnin et al. [13], which

we will suitably adapt in Chapter 3. This model describes the volume-excluded diffusion

and proliferation of a population of agents containing N stages on a Lx × Ly square

lattice with grid spacing ∆ and southwesterly lattice point located at the origin. At

the individual level, agents are able to move from stage s to s+ 1 at rate λs; agents in

the final stage N attempt proliferation events at a rate λN . To carry out a proliferation

event, a random site is selected uniformly at random from the four nearest neighbours

of the parent agent. When the chosen site is empty, a new agent in the first stage is

placed in it, and the parent is set back to the first stage; when it is occupied, the event

is aborted. Agent movement happens in a similar fashion; agents attempt movement

events at rate β, choosing uniformly at random one of their neighbouring sites, only

completing the event if the selected site is unoccupied.

To describe the overall population dynamics, we define Is(i, j, t) ∈ {0, 1} to be the

indicator that an agent in stage s occupies the lattice site (i∆, j∆) at time t, where

i = 0, ..., Lx− 1 and j = 0, ..., Ly − 1. It is noted that, in the case of periodic boundary

conditions on the top and bottom of the lattice, as well as for initial conditions which

are invariant under translations in the y direction, we can describe the overall dynamics

in one dimension. To do this, we define the column density of s-stage agents Ss(i, t) to

be

Ss(i, t) =
1

Ly

Ly−1∑
j=0

Is(i, j, t). (2.49)

We further define the total column density to be

C(i, t) =
N∑
s=1

Ss(i, t) =
1

Ly

N∑
s=1

Ly−1∑
j=0

Is(i, j, t). (2.50)

This continuum description of this agent-based model is derived by writing the

master equation for the column density Ss and taking the limit as ∆→ 0, where β∆2

is held constant. To demonstrate the general technique for deriving this system of

PDEs, we will consider the simplified case of a single agent stage, following a variation

of the method of Simpson et al. [27, 26]. We define 〈Ci(t)〉 to be C(i, t) averaged over

a large number of repeats.

To begin, we write the discrete conservation equation for 〈Ci(t)〉, which represents

the change in the average density of column i resulting from transitions into and out of

column i over the interval [t, t+τ) for some infinitesimal time step τ . The probability of
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a given agent experiencing a movement event in this time interval is βτ . Likewise, the

probability of a proliferation event is λτ . For brevity, we will here write 〈Ci〉 = 〈Ci(t)〉;
the conservation equation can then written as follows

δ〈Ci〉 =− βτ

4
〈Ci〉(1− 〈Ci−1〉)−

βτ

4
〈Ci〉(1− 〈Ci+1〉)

+
βτ

4
〈Ci−1〉(1− 〈Ci〉) +

βτ

4
〈Ci+1〉(1− 〈Ci〉)

+
λτ

4
〈Ci−1〉(1− 〈Ci〉) +

λτ

4
〈Ci+1〉(1− 〈Ci〉)

+
λτ

2
〈Ci〉(1− 〈Ci〉), (2.51)

where δ〈Ci〉 denotes the change in average column density over an arbitrarily small time

step of length τ . The first two terms correspond to diffusive jumps out of column i into

columns i− 1 and i+ 1, respectively. The second two terms represent diffusive jumps

into column i from columns i−1 and i+1, respectively. Terms five and six represent the

placement of daughter agents into column i from the neighbouring columns, and the

final term represents the proliferation of agents strictly inside column i. Defining the

average spatial column density to be C(xi, t) = 〈Ci〉, where xi = ∆i, and simplifying

(2.51) gives the more familiar form

C(xi, t+ τ)− C(xi, t) =
βτ

4
[C(xi−1, t)− 2C(xi, t) + C(xi+1, t)]

+
λτ

4
[C(xi−1, t) + 2C(xi, t) + C(xi+1, t)] [1− C(xi, t)] . (2.52)

Dividing through by τ and taking the Taylor expansion of both sides gives

∂C

∂t
≈ β∆2

4

∂2C

∂x2
+
λ

4

[
4C + ∆2∂

2C

∂x2

]
[1− C] +O(∆2). (2.53)

Finally, we jointly take the limit ∆ → 0 and τ → 0, holding both β∆2 and ∆2/τ

constant, to obtain

∂C

∂t
= D

∂2C

∂x2
+ λ(1− C)C. (2.54)

The derivation of the continuum description in the case of an arbitrary number

of stages proceeds in much the same way [26], resulting in the following system of
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reaction-diffusion-type partial differential equations

∂S1

∂t
= D

∂

∂x

[
(1− C)

∂S1

∂x
+ S1

∂C

∂x

]
+ 2λN (1− C)SN − λ1S1, (2.55)

∂Ss
∂t

= D
∂

∂x

[
(1− C)

∂Ss
∂x

+ Ss
∂C

∂x

]
+ λs−1Ss−1 − λsSs, (2.56)

∂SN
∂t

= D
∂

∂x

[
(1− C)

∂SN
∂x

+ SN
∂C

∂x

]
+ λN−1SN−1 − λN (1− C)SN , (2.57)

whereD = lim∆→0
β∆2

4 . The reflective boundary conditions enforced in the agent-based

model then become zero-flux boundary conditions on each of the PDEs (2.55)-(2.57).

Summing the above equations gives the dynamics of the total population,

∂C

∂t
= D

∂2C

∂x2
+ λN (1− C)SN . (2.58)

Note that, although the diffusive terms for each individual stage are non-linear, the

population as a whole follows the same diffusion and growth rates as in the single-stage

case.
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Chapter 3

The hybrid method for

multi-stage cellular invasion

In this chapter, we lay the foundations for building a hybrid method for cellular invasion

with realistic cell cycle time distributions. This method will couple the agent-based

model of Gavagnin et al. [13] with its corresponding continuum description, using a

coupling method similar to that of Yates’ [38] pseudo-compartment method. Further,

we discuss a number of issues arising in the method, which require rectification prior

to practical application.

3.1 The CCTD hybrid method

Let ΩP = [a, b] denote the region in which we solve the system of S partial differential

equations (2.55)-(2.57), with diffusion coefficient D and transition rates λ1, λ2, ..., λS .

Moreover, we define ΩL to be a Lx×Ly lattice with uniform grid spacing ∆ upon which

we simulate the agent-based model. The hybrid method is based on the PCM and, as

such, there exists no deterministic flux between the two regions; for implementation,

zero-flux boundary conditions are enforced on the PDE system.

Agents are permitted to traverse between the two regions only via the pseudo-

compartment, which we define to be the sub-domain C−1 = [b−∆, b]. Note that here

it is assumed, without loss of generality, that the region ΩP lies to the left of ΩL. To

facilitate the coupling between the two regions, we must first determine the number of

agents in each stage within the pseudo-compartment. Denote by N s
−1(t) the number

of agents at stage s in the pseudo-compartment, which is defined to be

N s
−1(t) = Ly

∫
C−1

us(x, t) dx, (3.1)
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Figure 3-1: Schematic diagram for the multi-stage hybrid method. The green and
yellow lines denote solutions to the system of PDEs (2.55)-(2.57) in the case where
there are only two stages. The circles represent points on the lattice ΩL. White circles
are vacant, and the green and yellow circles represent agents in the first and second
stages respectively. The arrows represent the propensities with which agents move
across the interface, shown as the red line.

where the us are the solutions to the system (2.55)-(2.57).

Recall that agents on the lattice attempt movement events at rate β = 4D/∆2;

when a movement event is attempted, the associated movement direction is selected

uniformly at random. If the neighbouring site in the selected direction is vacant, the

agent moves into that site; otherwise, the event is aborted. If the moving agent lies

on the right side of the lattice, any movement events to the right are reflected. If they

are on the top of the lattice, any attempt to move upwards instead places them at the

bottom of the lattice in the same column, imitating a periodic boundary condition.

Likewise, downwards movements at the bottom of the lattice place the moving agent

at the top. Agents move into the pseudo-compartment when they attempt to move

leftwards off of the lattice; in this case, a single agent’s worth of mass is added to the

solution of the appropriate PDE in C−1, i.e.

us(x, t+ τ) = us(x, t) + IC−1/(∆Ly). (3.2)
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Algorithm 2. The multi-stage hybrid method.

1. Initialise the time t = 0, and set the final time tf . Specify the PDE discreti-
sation grid size ∆x and time step dtp. Set the next PDE update time to be
tp = t+ dtp. Set the number of stages S.

2. Initialise the mass distribution in the PDE region ΩP and agents on the lattice
ΩL.

3. Calculate the propensity functions αi, i = 1, ..., S+ 2, according to equations
(3.3)-(3.6).

4. Calculate the total propensity α0 according to equation (3.7).

5. Determine the time until the next agent-based event tc = t + τ , where τ is
calculated via equation (3.8).

6. If tc < tp

(a) Determine which type of event occurs, where each type of event occurs
with probability proportional to its propensity.

(b) Select uniformly at random an agent, in the appropriate stage, that will
attempt the event.

(c) If the event is a transition event, advance the agent one stage. If the
event is either a movement or proliferation, then attempt the event ac-
cording to the mechanism given in the text.

(d) Update the current time t := tc.

7. Else if tp < tc

(a) Update the PDE solutions according to the desired numerical method.

(b) Update the current time t := tp, and update the next PDE update time
tp := tp + dtp.

8. If t > tf , break. Otherwise, return to step (3).
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Proliferation on the lattice occurs in a similar fashion. Agents in stage s, where

s < S, progress to stage s + 1 at a rate λs; agents at state S attempt proliferation

events at rate λN . When an S-stage agent attempts to proliferate, it proceeds in much

the same manner as if it were performing a movement event. Namely, a direction is

chosen uniformly at random, and the occupancy of the neighbouring site is assessed.

If the site is occupied, the event is aborted. If, however, the site is vacant, a new

agent in the first stage is placed on that site, and the original agent is sent back to the

first stage. Boundary conditions are the same as for movement on the top, right, and

bottom sides of the lattice; however, agents are not permitted to proliferate leftwards

into the pseudo-compartment, and hence a reflective boundary is imposed on the left

side.

Agents can enter ΩL from the pseudo-compartment via diffusion. Agents in stage s

attempt to move into the leftmost column of ΩL at a rate governed by the propensity

function

α1 =
1

2
N s
−1(t). (3.3)

Notice the factor of 1/2 here, which represents a reflective boundary condition on agents

attempting to jump into ΩL. When such an event is attempted, a site in the leftmost

column of ΩL is selected uniformly at random. If the site is occupied, the event is

abandoned. If the site is vacant, an agent at stage s is placed on the selected site, and

an agent’s worth of mass is removed from the solution us in C−1, i.e.

us(x, t+ τ) = us(x, t)−
1

∆Ly
IC−1 . (3.4)

Time proceeds in the hybrid method in much the same way as in the PCM. Define

N s(t) to be the number of s-stage agents in ΩC at time t, and N (t) =
∑

sN s(t). Since

all agents possess the same movement rate, we can assign a single propensity function

to the event that a movement occurs, given by

α2 = βN (t). (3.5)

Similarly, all agents within a particular stage share the same transition rate. Therefore,

with each type of transition event (including the proliferation event), we can associate

the propensity

α2+s = λsN s(t), (3.6)

for s = 1, ..., S. In order to calculate the time until the next event of any type occurs,
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we first compute the sum of the propensity functions

α0 =
S+2∑
i=1

αi, (3.7)

and calculate the time step

τ =
1

α0
ln

1

r
, (3.8)

where r ∼ U(0, 1).

The full algorithm for the hybrid method is given in Algorithm 2, and a schematic

diagram can be found in Figure 3-1.

3.2 Results

To determine the viability of the hybrid method, we conduct a simple experiment to

evaluate the predictive accuracy of the method, with respect to the expected behaviour

as determined by the fully stochastic agent-based model. In particular, we restrict

ourselves to the case of a single stage, with a proliferation rate of λ = 0. This case

corresponds precisely to the equation

∂S

∂t
= D

∂2S

∂x2
, (3.9)

with zero flux boundary conditions. In Figure 3-2, we compare the density of the

hybrid solution to that predicted by the mean-field equations. While, at a glance, the

agreement seems good, there is a noticeable discontinuity across the interface. The

result of this is emphasised in Figure 3-3, where we plot the expected total mass in

ΩP according to the mean-field solution, in contrast to that calculated by the hybrid

method. Inspection reveals that the rate at which mass leaves ΩP appears to be the

same in both cases after approximately t = 20. One proposed explanation for this

is that the coupling mechanism is unable to appropriately manage the discontinuity

present in the initial condition, resulting in a lower flux into ΩL than predicted.

The hybrid method, in its current state, is unable to simulate the full multi-stage

system. The method suffers from a number of problems, both in terms of speed and

numerical accuracy. It is hypothesised that these issues stem from inherent problems

in the chosen PDE solver; the pdepe solver is unable to satisfactorily compensate for

the discontinuities incurred by the removal of agents from the pseudo-compartment,

resulting in solutions which violate the necessary zero-flux boundary conditions. In

particular, the mass in ΩP is not conserved between time steps. Further, numerical
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Figure 3-2: Mass is initially distributed entirely in ΩP and permitted to diffuse through-
out the domain with diffusion coefficient D = 1/100. The red line represents the loca-
tion of the interface; to the left is ΩP , and to the right, ΩL. In ΩL, we plot the average
column density over 100 repetitions on a lattice of size 80 by 400. On ΩP , we solve
(3.9) with zero-flux boundary conditions using MATLAB’s built-in PDE solver pdepe.
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Figure 3-3: Here we plot the error for the diffusion problem, in which all agents are ini-
tially located in ΩP . The blue line corresponds to the average mass in ΩP as calculated
by the hybrid method, averaged over 100 repetitions. The orange line corresponds to
the expected value of the mass in ΩP according to the mean-field model.

testing conducted towards the present work has revealed that the use of an explicit

finite-difference method for solving the system of PDEs requires prohibitively small

time steps in order to achieve stability.

It is also reasonable to conjecture that the location of the interface plays an impor-

tant role in ensuring that the correct flux between the two regions is maintained. Upon

inspection of Figure 3-3, it appears that a steep gradient at the interface may result

in a dampening of the flux from the PDE-based region into the agent-based region;

further numerical experiments are required to investigate this phenomenon.
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Chapter 4

Discussion and conclusion

In this chapter, we present a brief discussion of the results and observed performance

of the multi-stage hybrid method. Following this, we consider potential research av-

enues towards improvements in both the accuracy and generalisability of the method,

alongside prospective projects to be undertaken during the PhD.

4.1 Discussion

In Chapter 3, we proposed an algorithm for simulating a multi-stage model of the cell

cycle with realistic cell cycle time distributions, proliferation, and diffusion. This algo-

rithm couples a system of reaction-diffusion type partial differential equations in one

region with an on-lattice agent-based model in another. The method for interfacing be-

tween the two regions possesses great similarity to that used in the pseudo-compartment

method [38].

We have demonstrated the potential of the method for coupling the two regimes;

however, it is apparent that a significant amount of further development is necessary

for the method to be considered viable. The potential improvements will be discussed

further in Section 4.2, although a brief overview is given here for completeness. The

first proposed improvement is to employ an implicit finite-difference scheme for solving

the system of PDEs, with the hope of combating the observed numerical instability

resulting from the use of an explicit scheme. The second is to replace the on-lattice

method used in the mesoscopic regime with a volume-excluding compartment-based

method [30]. Finally, the use of an adaptive interface could be considered, so as to

ensure that the PDE system is not being used for the modelling of regions where agent

numbers are low.
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4.2 Future avenues of research

We will now discuss some of the avenues which could be explored in the PhD. On the

whole, the PhD will be focused on hybrid methods for simulating reaction-diffusion

systems. Particular focus will be given to developing novel techniques for simulating

complex biological behaviours, such as cellular invasion and the cell-division cycle. The

project will also emphasise novel applications of hybrid methods to real biological data

sets; something which has not received a significant amount of attention in the past.

To date, there has been no attempt in the literature to couple a multi-stage system

of PDEs with a mesoscopic method in a hybrid method. Therefore, the immediate aim

of the PhD, following this report, is the improvement of our current hybrid method-

ology; as seen in Chapter 3, the method shows promise for the effective simulation of

multi-stage diffusion systems. Further, the agent-based model and PDE-based model

are both capable, independently, of demonstrating travelling wave behaviour [13]. The

development of a hybrid method which is capable of simulating both multi-stage rep-

resentations of the cell cycle as well as invasive behaviours would be both a valuable

and novel addition to the current body of research, possessing applicability to a wide

variety of biological systems such as wound healing [6], tumour formation [19], and

embryonic development [15, 22].

There are improvements to be made with regards to the numerical methods for

solving systems of PDEs representing multi-stage models of the cell cycle. While an

explicit finite difference scheme suffices for solving the PDEs in isolation [13], it is

evident from the results of Chapter 3 that this approach is not necessarily well-suited

to coupling with a mesoscopic representation. It is unclear at present why this is

the case, which leaves many open questions. One approach to combat the numerical

instabilities caused by the current coupling method is the use of an implicit finite

difference scheme, such as the Crank-Nicolson method, for solving the system of PDEs.

An implicit finite difference scheme does not require the prohibitively small time steps

necessary to ensure stability that an explicit method does. There are, however, other

considerations to be made. For example, spurious solutions are still possible in the

Crank-Nicolson method in the case that the ratio of D∆t to ∆x2 exceeds 1/2, as per

a Von Neumann stability analysis [24]. The use of a spatio-temporal finite element

method could also be considered [21]. The nonlinearity of the system of PDEs poses a

significant computational strain on any numerical method; finding a method which is

both efficient and well-behaved when interfacing with a mesoscopic model is of much

interest.

The hybrid method constructed in this report couples a system of PDEs to an on-
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lattice agent-based model. The justification for using the on-lattice method is that

it provides a simple means to simulate volume exclusion; however, there are other

ways to simulate this. For example, we could replace the on-lattice method with a

volume-excluded compartment-based method. A common approach to achieve volume

exclusion in a compartment-based method is to define the jump rates between com-

partments as the product of the diffusive jump rate with some blocking probability

[30], for example, defining

d±i =
D

m2h2

(
1− Ai±1

m

)
, (4.1)

where d±i is the right (respectively left) volume-excluding jump rate of agents in com-

partment i and m is the carrying capacity of the compartments. Note that in the case

m = 1, this corresponds exactly to a one-dimensional fully-excluding on-lattice method.

The case where m > 1 is known as partial volume exclusion. Given the many different

methods for incorporating volume exclusion into a mesoscopic model, there is much

potential for developing efficient and accurate multi-stage models of reaction-diffusion

systems, which the PhD will investigate.

Adaptive interfaces have seen wide implementation in many different hybrid meth-

ods, and their use has been demonstrated to substantially increase computational effi-

ciency and accuracy for a number of problems [25, 29]. As demonstrated in our results

from both the PCM and the multi-stage hybrid method, adaptive interfaces have the

potential to solve the issues resulting from a coupling that is unable to respond to local

changes in agent density.

4.3 Conclusion

A significant amount of work has been put into the development of hybrid methods;

however, their widespread adoption has yet to be seen within the field of mathematical

biology. There are several reasons for this. It is not immediately clear that hybrid

methods are able to provide valuable insights into biological behaviours that traditional

methods are unable to realise. Further, there exists little literature on the application

of hybrid methods to growing domains, which are of great importance in developmental

biology. The observed issues with the hybrid method constructed in this report signpost

a wide variety of research directions, investigation into which will significantly benefit

the field of hybrid modelling on the whole.
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