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Summary

This thesis deals with quantitative decision making in a variety of different situations in drug
development. In these different situations, optimal decision strategies may be derived and
the value of different adaptive or model-based approaches may be quantified.

We primarily use examples of Phase II/III programmes and portfolios of Phase III trials.
Bayesian decision theory is a method that may be used to derive optimal decision rules given
a gain function that aims to model the net present value of various assets to a trial sponsor.
Deriving these optimal decision rules may be done using the method of dynamic programming
with numerical integration routines. We investigate the benefit of adaptive methods such as
group sequential designs or combination tests, or model-based approaches such as MCP-Mod
to programmes and portfolios.

Our results show that Bayesian decision theory coupled with the method of dynamic
programming may find optimal decision rules in a variety of settings in drug development.
These optimal decision rules may involve the choice of dose to take forward for a Phase III
trial given Phase II data in a Phase II/III programme, or the choice of sample size for a trial
in a portfolio of Phase III trials. It was found in simulation studies that group sequential
designs may add value to a drug development programme or portfolio. Furthermore, the use
of combination tests may add a smaller amount of value to a drug development programme.

The problems discussed in this thesis are relevant to the running of clinical trials in industry.
The methods we discuss may provide frameworks for the use of quantitative methods to help
inform decision making in drug development.
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A Brief Introduction

The development of new drugs

Great advances have been made in medicine in the last century. Many medical conditions now
have treatment options which aim to cure, slow the progression, or manage the symptoms of
the condition. However there are still conditions with no satisfactory treatment options, and
further progress can be made with current treatments.

Randomised controlled trials may be used to establish the efficacy and safety of newly
developed treatments by comparing the new treatment to the current standard treatment.
This involves randomly assigning patients to several treatment groups through several phases.
This randomisation may be double-blinded, which means neither the patient or investigator
knows the treatment group of the patient.

A double-blind randomised control trial is a scientifically rigorous method of hypothesis
testing and is considered the gold standard trial for evaluating the efficacy of a drug.

The development of a drug may depend upon the therapeutic area but is often characterised
by a number of clinical phases. These phases of drug development are listed below.

Phase I clinical trials are the first to involve a small number of human patients and
aim to make some initial assessment about the drug. In particular, the safety and
tolerability of the drug are studied.

Phase II clinical trials aim to identify if the treatment is efficacious whilst also
considering the safety and tolerability. Several treatments or doses of the same
treatment may be considered. This phase uses a moderate number of patients.

Phase III aims to provide confirmatory evidence that the treatment is better than
the current standard treatment and is safe. A larger number of patients are used. A
statistical framework of hypothesis testing is applied at this stage and results submitted
to regulatory bodies for approval to market the treatment.

Phase IV aims to monitor the effectiveness and safety of the marketed drug.
Regulatory agencies may refer to these trials as post marketing surveillance trials.
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Decision making in drug development

The pharmaceutical industry lags behind other industries in the uptake of quantitative
methods in making decisions. Antonijevic in Antonijevic (2014) notes that for example,
there is a lack of utilisation of modelling, simulation, and decision analysis. A possible
reason for may relate to the recent history of the industry. During the blockbuster era,
getting regulatory approval was easier due to less stringent safety requirements. Furthermore
companies could target diseases that affected large populations such as heart disease, pain,
or depression, and companies could marginally change their drugs to extend the patent life
by years and sell them as new treatments. The potential returns were very high and the
development path would not need to be innovative. Factors that have brought an end to
this era include legislation such as the ’Affordable Care Act’ in the USA, stipulating new
drugs significantly outperform available products to get reimbursed by medical insurance,
and the increasing ease of obtaining approval for generic versions of drugs. Another reason
for the lack of uptake of quantitative methods may be that many pharmaceutical leaders
have traditionally based their decisions more on qualitative evidence.

In drug development, complex high-value decisions with lasting consequences must be made.
These decisions are made by trial management teams in the context of uncertainty with data
from many sources. One problem is cognitive bias; a lack of quantitative methods to support
decision making often leads to poor decisions in complex situations, such as when decisions
are made to solve a problem that can be solved more easily, rather than the one that should
be solved.

This thesis aims to consider several processes in different areas of drug development and
develop methods to aid quantitative decision making. By studying these methods, one may
gain an appreciation of the complex situations and trade offs that are inherent in these
complex high-value decisions.

Thesis organisation

Below, we summarise the chapters of this thesis.

In Chapter 1, we introduce the different settings in drug development considered in this thesis,
and introduce the methods and techniques one may use to perform quantitative decision
making. In particular, we introduce the concepts of Bayesian decision theory and the method
of dynamic programming. These can be used in tandem to compute quantitative decision
rules in the different settings in drug development.

Chapter 2 introduces adaptive design techniques which have been developed in the last few
decades. Chapter 3 considers the value that these adaptive design techniques bring to a
Phase II/III programme where Phase II has multiple treatments. A simulation study is
performed to find the decision rules and assess the value of these adaptive design techniques.

Chapter 4 focuses on Phase II/III programmes where the treatments in Phase II are different
doses of the same drug. In a similar way to Chapter 3, we look at the value that dose response
modelling techniques can bring to a Phase II/III programme in this setting.

Chapter 5 considers the Phase II/III programme setting again but looks at the effect of having
two confirmatory Phase III trials within the Phase II/III programme. We consider the best
way to perform the programme in this case.

7



Chapter 6 considers the portfolio problem, which asks how one may best allocate a research
and development budget to a portfolio of many drugs which are approaching Phase III. We
formulate a statistical model for the portfolio problem, describe previous attempts to tackle
it, and suggest a dynamic programming method approach. Using this approach, we consider
different portfolio case studies to identify what one can learn from this problem.

Chapter 7 develops theory in order to construct optimal group sequential designs, which are
optimal according to some general gain function. We motivate this approach, show how these
designs can be computed, and analyse their properties.

8



1
Optimal Decisions in Drug Development

1.1 Introduction to Phase II/III programmes

Despite the cost of drug research and development increasing, clinical trial programmes
in some therapeutic areas continuously have very high failure rates. A good trial design
aims to try to find suitable treatments more efficiently, and discard unsuitable treatments
more quickly. The use of more innovative statistical techniques has the potential to reduce
failure rates by allowing the sponsor to make better use of data collected to inform decisions
throughout the programme.

Whilst efficient statistical methods in individual phases of drug development have been
studied extensively, relatively less work has been done on studying the entire programme of
phases. Although useful, optimisation of each individual phase does not lead to a programme
with optimal properties. However, designing an efficient programme over multiple phases is
more difficult than designing a trial for a single phase.

In the drug development process, it is often the case that several doses or treatments show
the potential to be safe and efficacious from pre-clinical and Phase I studies. Phase II may
involve running proof of concept (Phase IIa) and/or dose finding (Phase IIb) trials. Proof
of concept trials may be run with a criterion specifying whether to continue or not based
on observed data. Dose finding trials may also be run to find the dose or treatment to take
forward to the next stage. One or two Phase III confirmatory trials will then be performed
to assess the efficacy of the chosen treatment or dose by conducting a frequentist hypothesis
test. If the treatment is successful at this stage, the evidence will be submitted to regulatory
bodies for approval.

In this thesis, we study the optimisation of programmes containing the Phase II and III
aspects of the drug development process. In these programmes, one is required to be efficient
in identifying efficacious doses or treatments, and to build evidence of the efficacy of the
chosen dose or treatment such that there is sufficient evidence to submit to the regulatory
bodies for marketing approval.

In Chapters 2 and 3 we consider the Phase II/III programme with multiple treatments in
Phase II. Chapter 4 considers a similar problem but assumes the multiple treatments are
doses of the same drug. In Chapter 5 we consider a Phase II/III programme with multiple
Phase III trials.

9



1.1.1 Previous research

Research which considers optimising Phase II and III as a programme has been relatively
recent, with previous research generally focusing on the optimisation of a study consisting of
a single phase. In this section we review some of these approaches.

The approaches can be characterised by the following ingredients:

• The measure used to optimise the programme, such as expected net present value or
probability of success (assurance).

• Assumptions about the distribution of the data. For example, the use of Gaussian, time
to event, or discrete endpoints.

• Whether the purpose of Phase II is solely a proof-of-concept study, or involves some
dose-finding or treatment selection routines with multiple treatments.

Antonijevic et al. (2010) compares different Phase II dose-selection strategies in terms of the
expected net present value of the entire Phase II/III programme. The different Phase II
dose-selection strategies included adaptive designs that allowed the treatment allocation
randomisation to change based on the data collected, and adaptive analyses that allowed
the method of analysis to be driven by the data. It was found using simulation studies that
design-adaptive dose finding designs (such as Bayesian general adaptive dose allocation and
the D-optimal response-adaptive approach) added the most value to the programme.

Jiang (2011) considers normal endpoints for a single treatment in a Bayesian approach. The
probability of success is used as the measure by which to optimise the programme, and various
optimal sample size and go/no-go decision rules are algebraically derived.

Patel et al. (2012) consider time to event endpoints for a range of doses entering Phase II.
The expected net present value is used to make optimal decisions relating to the Phase II
sample size, dose selection, and the sample size of Phase III. The paper also involves a novel
method for obtaining posterior samples from the posterior distribution of parameters of dose
response models. We look at this method in Chapter 3.

Marchenko et al. (2013) and the following paper Parke et al. (2017) also describe an approach
using time to event endpoints. Multiple treatments are used in Phase II, and expected net
present value is considered as a measure to optimise the Phase II design. In the latter paper,
different adaptive Phase II and III designs are considered such as trials containing interim
analyses, and group sequential methods. We consider this paper more thoroughly in Chapter
2.

Commercial software packages such as EAST (EAST-6 (2019)) have started to include
programme level optimisation procedures as of 2019 showing the recent interest in this area.

1.2 Introduction to Phase III portfolios

Investing in drug development is a risky business. In order to mitigate the risk with a single
drug or product asset, investor groups or large pharmaceutical companies may consider
investing in a portfolio of drugs. One may define a portfolio as at least 3 drugs. Each
individual drug may have a high potential of failure due to several reasons; failure in proof
of concept trials, failure to progress to the next phase of development, failure in getting
regulatory approval, or an inadequate sales forecast. Pooling investment into a portfolio of
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drugs increases the chance of at least one success. Because potential revenues from marketing
the drug far out-way development costs, only a small number of successes may be all that is
necessary to return a profit on the investment.

For this reason, large pharmaceutical companies develop or acquire drugs with the intention
of developing a portfolio. Decisions related to investment in candidate drugs in a portfolio
are driven by the magnitude of risk to the investor and the palatability of the returns to the
seller. Antonijevic (2014) notes that experience suggests that investments are abandoned not
because of a flaw in the product or company, but because of the proposed return scheme.

While optimising the decision making of programmes in drug development is more desirable
to optimising each phase of the programme separately, taking another step back to look at
portfolios of several drugs may lead to an appreciation of the bigger picture. For example,
budget commitments to a drug have to be made with the opportunity cost of less money
being available for other drugs. On the other hand, if one sets aside funds for drugs in the
future and they fail to progress, there may be delays in development of drugs one could have
invested in sooner.

Decisions about investment in portfolios can be undertaken in a quantitative, value-driven
way in order to maximise their value. Assessing the value of this portfolio depends upon
the financial aspects of each drug and upon the portfolio decision making strategy. Budget
limits will be set at portfolio levels which makes any decisions interrelated. Given budget
constraints, not all planned programmes can be executed which focuses the problem on
potential returns. Further complications are that the decisions involve the number of patients
recruited for the programmes and there is uncertainty about if potential drugs will have
technical failures before becoming available to invest in.

In industry it is common to fix the level of power of Phase III trials at a predetermined level
not linked to the financial value of a drug. It may be the case that when looking at the larger
portfolio picture, more value is obtained by choosing the power based upon both the drug’s
financial value and portfolio considerations.

In Chapter 6, we consider the portfolio problem, and construct a method for finding the
optimal decision rules under a statistical model.

1.2.1 Previous research

Previous attempts at modelling a portfolio of drugs as a mathematical model that has an
optimal development strategy have been made.

Many of these approaches have come from operational research and use integer programming
(IP) with some kind of budget constraints. In particular, some either extend the formulation
to stochastic programming (Gatica et al. (2003), Colvin and Maravelias (2009), Jacob and
Kwak (2003), Colvin and Maravelias (2008)), or use simulation models (Varma et al. (2008),
Rogers et al. (2002), Blau et al. (2003), Solo et al. (2004), Solak et al. (2010)). Most
approaches use the expected net present value (eNPV) as a measure of return with different
ways of including risk whilst others use real option theory.

These approaches have generally not considered the choice of design for each programme
in the portfolio. However the choice of design is a key decision variable influencing the
probability of success of the Phase III trials of each drug. An approach which does consider
the choice of design and we closely follow in this thesis is the work of Patel and Ankolekar
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et al. (Patel and Ankolekar (2007) and Patel et al. (2013)). They use a Bayesian two-point
prior at the design stage to calculate the probability of success and eNPV and help determine
the choice of design for the Phase III trials of each drug in the portfolio. The problem is
formulated as a stochastic integer programming (SIP) problem and an SIP solver is used to
derive the optimal decision rules.

1.3 Bayesian decision theory

Decision theory is a study of principles and algorithms with the aim of making correct
decisions. That is, decisions that allow one to achieve better outcomes with respect to one’s
goals. Any action that one takes may be considered as a decision under uncertainty. The way
decisions are made must have some underlying mechanism and decision theory is the study
of how to make good decisions.

Bayesian decision theory is a decision theory that is informed using Bayesian probability. It
is a decision making mechanism that attempts to quantify the trade off between different
decisions using probabilities and costs.

Any kind of probability distribution or degree of belief about a random variable may represent
a prior distribution and Bayesian theory provides us with a method to obtain posterior
distributions representing the current belief about a random variable given observed data.
A core concept in Bayesian decision theory is the use of Bayesian probabilities to estimate
the expected value of each action, and the updating of these expectations based on new
information.

Berger (2013) is a popular reference on Bayesian decision theory, giving the underlying theory
with examples in different areas. The links between decision analysis and Bayesian ideas are
explored. Pham-Gia (1997) also explores these topics, with arguments that the sample size
for an experiment can be chosen based on Bayesian decision theory.

Bayesian decision theory has been used in previous research in application to trials in different
phases of drug development. Stallard (1998) uses it to derive optimal group sequential designs
for Phase II for binary outcomes. In a similar way, Gittins and Pezeshk (2000) derives the
optimal sample size for a Phase III trial using the posterior distribution of the treatment
effect. Senn (2008) and O’Hagan et al. (2005) both show how Bayesian decision theory can
be applied in a grander context, in particular for options of a clinical development plan or
project prioritisation in a portfolio.

1.3.1 Bayes’ optimal decision rules

Single decision making

In this section, we define some notation and derive Bayes’ optimal decision rule for a single
decision.

Let the random variable of the underlying state of nature be denoted by Θ with the set of
all states denoted by Ωθ, and with each element denoted by θ. Suppose there is a prior
distribution π(θ) for the state of nature. Denote the random variable X as the data with
the set of possible observed data as Ωx with elements x. The probability density function of
X can be denoted as f(x;θ), where θ is a parameter in the density function.

12



Denote possible actions one may take as Ωa with elements a, and let a decision rule d be a
function of data to actions d : Ωx → Ωa. Finally let the gain function G be a function of
actions and states of nature to the real numbers, G : Ωa×Ωθ → R, such that G(a,θ) is the
gain incurred when one takes action a when the state of nature is θ.

Suppose the likelihood of the data given θ is denoted by fX|θ(x|θ), and denote the probability
density function of the posterior distribution of θ given data x as πΘ|X(θ|x).

Define decision rule d to maximise the expected value of the gain function, E [G(d(X),Θ)],
and note that

E [G(d(X),Θ)] =
∫

Ωθ

π(θ)
∫

Ωx
fX|θ(x|θ) G(d(x),θ) dx dθ

=
∫

Ωx

∫
Ωθ

π(θ) fX|θ(x|θ) G(d(x),θ) dθ dx

=
∫

Ωx
fX(x)

[∫
Ωθ

πΘ|X(θ|x) G(d(x),θ) dθ
]
dx.

(1.1)

Therefore decision rule d may be written as

d(x) = argmax
a∈Ωa

∫
Ωθ

πΘ|X(θ|x) G(a,θ) dθ, (1.2)

which is named as Bayes’ decision rule. Intuitively, Bayes decision rule chooses the action
which maximises the expected value of the gain function, computed in the Bayesian sense
given the information observed so far.

Sequential decision making

In our setting, states of nature can refer to the unknown treatment effect(s) of the treatment(s)
under consideration in the programme. Observed data represents the data from clinical trials
with control and treatment arms. Actions taken in a programme may be related to the choice
of the future design of the programme, such as the number of patients to test, the treatment
to take forward, or whether to continue at all. The gain function represents the value of
different realisations of the programme to the sponsor. This may depend upon whether a
treatment was granted regulatory approval or not, how long the programme took, and the
number of patients that were required to be tested.

In a clinical trial programme, often one has many decision points which are chronologically
sequential. We adapt the single decision making mechanism in order to find Bayes’ decision
rule in this case.

Figure 1-1: A schematic of a sequential decision making process.

Let there be I decision points in our sequential decision problem. At decision point
i ∈ {1, ..., I}, one chooses an action ai ∈ Ωai , which may affect the distribution of the
data collected after this decision point. After decision point i ∈ {1, ..., I − 1} is made, one
observes data xi.
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The gain function G((d1, ..., dI), (x1, ...,xI), θ) is generalised to take account of all the data
in the sequence as well as all of the decision rules.

The problem then becomes one of finding decision rules d1, ..., dI that maximise

E(G((d1, ..., dI), (X1, ...,XI),Θ)). (1.3)

By integrating over the future data and state of nature, similarly to the single decision case,
we can derive Bayes’ decision rules for a sequential decision making problem. In Appendix
1.A, we show how this may be done algebraically. Intuitively, Bayes’ decision rule at each
stage is the one that, given current information (that is, all previous data), maximises the
expected value of the gain function given future decision points follow Bayes’ decision rule.
This may be found by integrating over the posterior distribution of the state of nature given
previously observed data and then integrating over the distribution of future data.

Integrating over future data of a decision point before the last stage (that is, when i < I)
involves knowing the Bayes decision rule at the next stage (that is, stage i + 1). If the
problem is simple enough, one may compute the Bayes decision rule at the next stage directly.
However, this link between each successive decision rule means an iterative method such as
dynamic programming can be naturally used to calculate Bayes decision stage by stage. This
may be more efficient for more complex problems. In Section 1.4.1, we explore how this can
be done.

Application: Phase II/III programmes (Chapters 3,4,5)

In this application we have two decision points in the Phase II/III programme. In particular,
the choice of Phase II design, and the choice of Phase III design. As there are only two
decision points, one may compute Bayes decision rule directly at each decision point, by
integrating over the treatment effect and future data.

Figure 1-2: A schematic showing the dynamic programming method applied to a Phase II/III
programme with multiple treatments (denoted T1 to TK) and control (denoted C) in Phase II.
Decision 1 refers to the decision point before Phase II which involves the choice of Phase II
design, and Decision 2 refers to the decision point after Phase II and before Phase III which
involves the choice of treatment to use in Phase III (denoted i∗) and the Phase III design.
A frequentist hypothesis test is then performed to decide whether the treatment can be
marketed.
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1.4 Dynamic programming

Dynamic programming is a mathematical optimisation method formulated by Bellman in the
50s (Bellman (1957)). The method involves simplifying a complicated problem by breaking
it down into smaller sub-problems and solving them in a recursive manner. We illustrate
how dynamic programming can be used to find Bayes’ decisions in Equation 1.3 in different
situations.

1.4.1 Dynamic programming with Bayesian decision theory

As in the sequential decision making in Section 1.3.1, there are stages in the process which
we denote by i = 1, ..., I. These may be decision points during a programme, portfolio, or
interim analyses in a trial. At any decision point i, one may be at a particular state s, with
the set of all possible values s can take being denoted by Si. The aim is to know Bayes’
optimal decision and corresponding expected value of the gain function (which we refer to as
the optimal decision and the expected gain for brevity) at any state and decision point.

The method of dynamic programming requires a dynamic programming central equation to
link the expected gain of a particular action ai ∈ Ωai at a state s at drug i in terms of the
expected gain of the optimal decisions at different states in Si+1 at drug i+ 1. The form this
equation takes depends upon the application, describes the different states one may move to
at the following stage, and comes from the innate structure inherent in the problem.

Once these are defined, one will generally proceed with the following dynamic programming
algorithm:

DP_func
• Compute the optimal decision and corresponding expected gain for any state
s ∈ SI at the final stage I.
• For each i = I − 1, ..., 1:

– For each state s ∈ Si at stage i, using the dynamic programming central
equation find the action which maximises the expected gain (that is,
the optimal decision) and store this optimal decision and corresponding
expected gain.

• Return the optimal decision rules and corresponding expected gain for each state
and stage.

The output of this algorithm contains the optimal decision rules at each stage. The
corresponding expected gain of the optimal decision at the initial state at stage 1 represents
the expected value of the gain function at the beginning of the process. This may be thought
of as the value of the process.

Application: Phase III portfolios (Chapter 6)

In this application the stages may be times at which different drugs are becoming available
for Phase III trials with decision points as each drug becomes available with the decisions
some choice of design of the Phase III trial for each drug. There may be a large budget to
spend on all the drugs within the portfolio, and the decision rules stipulate how the budget
is allocated to each drug. We require optimal decision rules giving the optimal allocation
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of budget given the current state, such as the portfolio budget remaining. The dynamic
programming method finds the optimal decision rules for the last drug, and then recursively
uses the central equation to find the optimal decision rules for drugs I − 1, I − 2,...,1. We
illustrate this in the schematic below.

Figure 1-3: A schematic showing the dynamic programming method applied to a portfolio.
The white circles refer to the state space of a drug (for example, the total remaining portfolio
budget B) with the grey circles representing the state space where the optimal decision rule
has been calculated for every state in that state space. The rows indicate how the algorithm
proceeds. In Steps 1-2, the optimal decision rules are found for every state space at the last
drug. Steps 3-6 illustrate the use of the central equation to calculate the optimal decision
rule for drug I − 1 using the saved optimal decision rules from final drug I as part of the
calculation. That is, given one is at state B at drug I − 1, the central equation requires the
optimal decision at different B′ at drug I. This process is repeated iteratively in steps 6-8
until optimal decisions have been found for every state at every drug.

Application: Group sequential designs (Chapter 7)

Another use of dynamic programming is the derivation of optimal group sequential designs
under some error constraints and an optimality criterion. This frequentist problem may be
reformulated as a Bayesian decision theory problem that is solved with dynamic programming.
The dynamic programming method involves finding the optimal critical values for the group
sequential design at the final stage, and working backwards stage by stage, finding the optimal
critical values each time until the first stage, under some costs of making an incorrect decision.
The original problem of finding the optimal design under the given constraints can then be
solved by using the Lagrangian multiplier method of performing a search over costs of making
an incorrect decision until the error constraints of the original problem are met.

The stages are the interim analyses k = 1, ..., 5 of the group sequential design with acceptance
and rejection boundaries ak and bk.
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Figure 1-4: A schematic showing the dynamic programming method applied to a group
sequential design. The steps indicate how the algorithm proceeds by finding the optimal
boundaries for each interim analysis starting from the final analysis and working backwards.

1.5 Types of gain functions

In Bayesian decision theory, one requires a gain function to be specified, and decisions are
taken to maximise the expected value of this gain function. How this gain function is defined
depends upon the value one allocates to different realisations of the process.

In this thesis, we generally use gain functions which measure the financial value of a particular
realisation to the investigator in terms of net present value. Alternatives include the return
ratio, for example studied in Chen and Beckman (2014). In this section, we outline the net
present value concepts that are used to construct gain functions.

1.5.1 Net present value

During drug development, resources are invested up front with the hope of recovering costs
and acquiring large revenue streams once the drug becomes a commercial product. Net
present value (NPV) has been used in many industries as a financial measure of returns,
representing in this context the difference between the present value of any future revenue
streams and the amount of investment. The revenue streams are highly dependent upon
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whether drugs are approved or not, which is not known until the end of the development
process. Therefore a common measure to use under this uncertainty is the expected net
present value (eNPV) which represents the NPV weighted by the development risks.

The advantage of using the eNPV is that it naturally accommodates optimisation. For
example, changing a trial design may increase the power of the test, but this may come at
the expense of recruiting extra subjects. The power increases with the number of subjects,
whilst the eNPV balances the increase in power with the monetary and time cost of treating
extra patients.

The eNPV measure fits harmoniously with Bayesian decision theory. The gain function
represents the NPV which, at the start of the programme, includes large sources of variability
due to technical risks of success and failure of the development process, with the eNPV
relating to the expected value of the development process, which is required when making
Bayes decisions.

There are several criticisms of eNPV. For many drug development programmes, the cost of the
programme is a small fraction of the realised revenues. Therefore the costs of a programme
can become much less important than relatively small changes in the revenue. However, a
sponsor may have a budget to spend on research and development across a whole portfolio of
programmes. If a programme takes too many resources, there is an opportunity cost where
other studies which may have been productive cannot now be funded. To attempt to mitigate
this problem, one can consider the portfolio problem as a whole.

The NPV gain function must quantify the trade offs between advantages and disadvantages
of different decisions in the drug development process. To do this, we require the following
features:

• Large gain when a treatment is deemed successful in the programme representing the
revenue realised from a treatment which has regulatory approval. Time considerations
may also be incorporated.

• Development costs from Phase II and Phase III dependent on the number of patients
required for each phase.

• Safety penalties in situations where there is uncertainty about the suitability of a drug
due to safety or side effect reasons.

• Gains and losses in the future may be discounted to represent their true current values.

In the sections below, we outline two forms of gain function we use during this thesis.

A simple gain function

The first gain function we consider is of a simple form that aims to simply quantify the trade
off between a larger sample size and power and increased costs of development. Consider a
drug development programme in which patients are tested in two distinct phases, Phase II
and Phase III.

One defines constant G and function ζ such that Gζ(θi) is the value to the sponsor of
treatment i being successful in the programme, given the true treatment effect was θi. Positive
real numbers γ1, γ2 are defined as the cost of treating a patient in Phase II and III respectively.
Denote N1 and N2 as the total number of patients in Phase II and III respectively.
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The gain function is hence defined as

G := G ζ(θi) 1{Drug i is successful} − γ1N1 − γ2N2. (1.4)

A financial model

The second gain function we consider is more detailed and aims to more accurately model
the different financial aspects of the decision making process.

We do not define the exact form of a financial model here as it will contain many parameters
relevant to the context in drug development, but we describe the different features it may
contain.

A drug undergoing a Phase II or III clinical trial will have a fixed cost to set up the trial, as
well as a cost per patient recruited. The trial will take a time proportional to the time taken
to recruit all the patients, plus the time taken to observe responses from the last recruited
patient.

Assuming a programme is successful, if one wishes to market the drug there will be a cost
and a time period involved in setting up the marketing. Once this marketing has been set
up, one will realise a revenue from marketing the drug until the patent expires.

We use a financial model gain function in Chapters 3, 5, and 6. The calculations in the
financial model are highly dependent upon the drug development process studied, so we
define the model fully in each of the applications in these chapters.

1.6 Computational approaches

In many chapters of this thesis, we require computational techniques to evaluate integrals
arising from decision rules. In this section, we summarise some of these methods.

1.6.1 Numerical Integration Techniques

Numerical integration techniques can be used to efficiently calculate low dimensional integrals.
Below, we illustrate a method to evaluate a common integral in this thesis.

A 1D numerical integration routine

Consider ∫
R
f(x)π(x)dx, (1.5)

where π is the density function of a normal distribution. In this section, we provide a method
for solving this integral, which breaks up the range of integration into a set of intervals- dense
around the peak of π(x), and logarithmically spaced out in the tails.

We suppose that f is a smooth function on the entire domain, with the possible exception of
a finite number of discontinuities. If there are discontinuities, the location of these must be
known a-priori.
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We take the approach of Chapter 19 in Jennison and Turnbull (2000) where the integration
points are placed more densely near the mean of the normal distribution and logarithmically
placed away from the mean. The composite version of Simpson’s rule is then applied to
intervals within these integration points.

Denote r as a parameter controlling the number of integration points. Let π be the probability
density function of the normal distribution N(µ, σ2).

Creation of initial integration points x

The initial integration points x1, ..., x6r−1 are defined by

xi =


µ+ σ(−3− 4log(r/i)) i = 1, ..., r − 1,
µ+ σ(−3 + 3(i− r)/2r) i = r, ..., 5r,
µ+ σ(3 + 4log(r/(6r − i))) i = 5r + 1, ..., 6r − 1,

(1.6)

The function and corresponding density is evaluated at each initial integration point to obtain

f(x1)π(x1), f(x2)π(x2), ..., f(x6r−1)π(x6r−1). (1.7)

Adding in adaptive integration points

New points may be added at this stage at any point on the real line. Suppose in particular
there is a discontinuity in f . We input integration points on either side of the discontinuity.
Suppose the discontinuity occurs at x∗. Create new points x′ = x∗ − ε and x′′ = x∗ + ε

for some small ε > 0. Compute the corresponding function evaluations and insert into the
integration point list, shifting the indices as appropriate, so that there are 2 extra integration
points.

Filling in the remaining integration points

Let m be the number of integration points created so far. Then let N = 2m− 1.

Compute the full set of integration points z1, ..., zN by setting zi = x(i+1)/2 for i = 1, 3, ..., N ,
and zi = (zi−1 + zi+1)/2 for i = 2, ..., N − 1.

Compute the function evaluations for the integration points which have not yet been
computed, f(z1)π(z1), ..., f(zN )π(zN ).

Using the composite Simpsons rule to evaluate the integral

The idea is that one computes the integral between two grid points with odd indices zi−1 and
zi+1 as

d

6f(zi−1)π(zi−1) + 4d
6 f(zi)π(zi) + d

6f(zi+1)π(zi+1). (1.8)

Therefore the weights corresponding to the whole integration line are

wi =



1
6(z3 − z1) i = 1
1
6(zi+2 − zi−2) i = 3, 5, ..., N − 2
4
6(zi+1 − zi−1) i = 2, 4, ..., N − 1
1
6(zN − zN−2) i = N

(1.9)

which give us the following approximation for the integral,

20



∫
R
f(x)π(x)dx ≈

N∑
i=1

wif(zi)π(zi) (1.10)

Equation 1.10 therefore allows us to integrate equations of the form of Equation 1.5.
Simpson’s rule has error of order O(N−4).

1.6.2 Monte Carlo

Another method for evaluating integrals is to use Monte Carlo simulation (Metropolis and
Ulam (1949)). This is particularly useful for higher dimension integrals where using numerical
integration techniques becomes computationally expensive.

If
I =

∫
Ω
f(x)πX(x)dx (1.11)

with Ω ⊆ R|x| needs to be evaluated, the Monte Carlo approach is to sample points from the
random variable X with probability density function πX(x). Let

X1, ...,XN
iid∼ πX , (1.12)

with observed values x1, ...,xN . Then we use approximation

I ≈ 1
N

N∑
i=1

f(xi). (1.13)

The Monte Carlo method has error O(N−1/2) so is slower to converge than using numerical
integration. Below, we list two ways the method can be made more efficient.

Use of splines

Consider a function f(x) which is computationally expensive to compute. Suppose we wish
to compute I from Equation 1.11 with the Monte Carlo approximation in Equation 1.13.

One wishes to avoid unnecessary evaluations of this function in the Monte Carlo routine.
However the error of the Monte Carlo method means a large number of simulations are
needed. One solution would be to use only a small number of Monte Carlo simulations,
but this would mean the Monte Carlo estimate has a larger amount of uncertainty attached
associated with it. Below, we outline another solution based upon the interpolation of splines.
This is our own method.

Suppose that x is one or two dimensional.

• Perform the Monte Carlo integration for Ninitial (<< N) initial runs, saving the
value of x each time in vector (x1, ...,xNinitial) and the values f takes in vector
(f(x1), ..., f(xNinitial)).

• Fit a 1-dimensional or 2-dimensional spline with covariates (x1, ...,xNinitial) and response
variables (f(x1), ..., f(xNinitial)).

• Denote by f∗(x) a function which estimates the value of f(x) based on interpolating
using the fitted spline without calculating f(x) explicitly.
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• Perform the Monte Carlo integration for a further N − Ninitial runs, using f∗ instead
of f .

• Return the Monte Carlo estimate over the full N Monte Carlo simulations.

One must ensure Ninitial is large enough such that the probability space of the covariate in the
spline is adequately explored, and the spline smoothing parameter is appropriately defined
to ensure the spline follows the relationship between the covariate and response adequately.

In 1-dimension, one may use cubic splines (De Boor (1978)) and in 2-dimensions, thin plate
splines (Bookstein (1989)).

Coupling

We describe another of our own methods for reducing the uncertainty associated with an
estimator. Suppose we wish to compute I1 − I2 where

I1 =
∫
X
f(x;m1)π(x;m1)dx, and

I2 =
∫
X
f(x,m2)π(x;m2)dx,

(1.14)

where f is a function of vector x and integer m, and the probability density function π is
Gaussian with mean θm and covariance matrix Σm. One may compute Monte Carlo estimates
Imc1 and Imc2 of each integral.

The coupling procedure introduces correlation between the Monte Carlo estimators of each
integral in Equation 1.14, reducing the variance of the difference between the two estimators.
If there is more correlation between the estimators Imc1 and Imc2 , then the variance of the
estimate Imc1 − Imc2 of I1 − I2,

var(Imc1 − Imc2 ) = var(Imc1 ) + var(Imc2 )− 2
√
var(Imc1 )var(Imc2 )corr(Imc1 , Imc2 ),

decreases.

Let x(1)
1 , ...,x

(1)
N and x(2)

1 , ...,x
(2)
N be the simulated values of x. Suppose that Σm may be

written as Σm = ΛmΛTm. This decomposition of the variance matrix is possible if it is positive
definite (the case unless one random variable is an exact linear combination of others).

Instead of drawing the data independently, we propose coupling the simulated data as follows,

x
(1)
i = θm1 + Λm1zi, and

x
(2)
i = θm2 + Λm2zi,

(1.15)

where
zi

iid∼ N(0, I). (1.16)

This introduces correlation between Imc1 and Imc2 . Suppose one wishes to find the choice
of parameter m which maximises the expected value of function f , when f depends upon
random data x. As one calculates the expected value of f for different parameters, using this
method will reduce the number of Monte Carlo simulations required to deduce the maximising
parameter. This technique is used in Chapter 2 when studying Phase II/III programmes.
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Section 1 Appendices

1.A Sequential Bayes’ decision rule

We derive Bayes’ decision rules for the sequential decision making problem using techniques
analogous to the single decision problem. We require decision rules d1, ..., dI such that the
following expression is maximised:

E(G((d1, ..., dI), (X1, ...,XI),Θ))

=
∫

Ωθ

∫
Ωx1

...

∫
ΩxI

G((d1, ..., dI), (x1, ...,xI),θ) π(θ) fX1|θ(x1|θ)

× fX2|θ,X1(x2|θ,x1)...fXI |θ,X1,...,XI−1(xI |θ,x1, ...,xI−1) dxI , ..., dx1 dθ

=
∫

Ωθ

∫
Ωx1

...

∫
ΩxI

G((d1, ..., dI), (x1, ...,xI),θ) πΘ|X1,...,Xi
(θ|x1, ...,xi) fX1,...,Xi(x1, ...,xi)

× fXi+1|θ,X1,...,Xi
(xi+1|θ,x1, ...,xi)...fXI |θ,X1,...,XI−1(xI |θ,x1, ...,xI−1) dxI , ..., dx1 dθ

=
∫

Ωx1
...

∫
Ωxi

fX1,...,Xi(x1, ...,xi)
∫

Ωθ

πΘ|X1,...,Xi
(θ|x1, ...,xi)

∫
Ωxi+1

...

∫
ΩxND

× G((d1, ..., dI), (x1, ...,xI),θ) fXi+1|θ,X1,...,Xi
(xi+1|θ,x1, ...,xi)...

× fXI |θ,X1,...,XI−1(xI |θ,x1, ...,xI−1) dxI , ..., dxi+1 dθ dxi, ..., dx1,

(1.17)

where Bayes’ theorem is used to obtain the last expression. Note that πΘ|X1,...,Xi
(θ|x1, ...,xi)

denotes the posterior distribution of θ given observed data (X1, ...,Xi) = (x1, ...,xi) for
i = 1, ..., I and fX1,...,Xi(x1, ...,xi) is the marginal probability density function for the data
for i = 1, ..., I.

Therefore we choose di such that∫
Ωθ

πΘ|X1,...,Xi
(θ|x1, ...,xi)

∫
Ωxi+1

...

∫
ΩxND

G((d1, ..., dI), (x1, ...,xI),θ) fXi+1|θ,X1,...,Xi
(xi+1|θ,x1, ...,xi)...

fXI |θ,X1,...,XI−1(xI |θ,x1, ...,xI−1) dxI , ..., dxi+1 dθ

=
∫

Ωθ

πΘ|X1,...,Xi
(θ|x1, ...,xi) E [G((d1, ..., dI), (x1, ...,xi,Xi+1, ...,XI),θ)] dθ

(1.18)

is maximised, where

E [G((d1, ..., dI), (x1, ...,xi,Xi+1, ...,XI),θ) :=
∫

Ωxi+1

...

∫
ΩxND

G((d1, ..., dI), (x1, ...,xI),θ)

fXi+1|θ,X1,...,Xi
(xi+1|θ,x1, ...,xi)...fXI |θ,X1,...,XI−1(xI |θ,x1, ...,xI−1) dxI , ..., dxi+1.

(1.19)

This gives us Bayes’ decision rule for the sequential problem. Intuitively, the optimal decision
at each stage is the one that, given current information (that is, all previous data), maximises
the expected value of the gain function.
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2
Adaptivity in Phase II/III programmes

2.1 An introduction to adaptive designs

Statistical inference for Clinical Trials has classically been done with the assumption that
the framework of the trial procedure is completely specified in advance. In particular, all
confirmatory trials have the hypotheses and statistical analysis plan described in advance
of the trial. In order to plan an appropriate trial design, knowledge of quantities such
as the desired efficacy of a new treatment that one wishes to detect, appropriate doses
or applications of the treatment, the success rate in the control group, and variability of
endpoint measurements are needed. These are not typically known, but relevant information
can be learnt throughout the trial. Based on information accumulated throughout the trial,
it can be desirable to stipulate changes to the trial procedure.

An important factor that fuelled the research into adaptive designs was the release of the
regulatory guidance ICH (1998) in both Europe and the United States stating

"If it becomes necessary to make changes to the trial, any consequent changes to the statistical
procedures should be specified in an amendment to the protocol at the earliest opportunity,
especially discussing the impact on any analysis and inferences that such changes may cause.
The procedures selected should always ensure that the overall probability of type I error is
controlled."

The publication of Bauer and Kohne (1994) and Bauer and Kieser (1999) were the first
approaches to allow flexible design modifications in the middle on an ongoing trial using
data that have been observed so far without inflating the type I error. Previously there was
research in procedures for modifying sample size as estimates of nuisance parameters’ became
available (see Wittes J (1990) and Chapter 14 Jennison and Turnbull (2000)) and adaptive
randomisation (see Chapter 18 Jennison and Turnbull (2000)). The focus of adaptive designs
in drug research has since shifted from focusing on sample size reassessment, to including
other adaptations such as treatment selection and the testing of multiple hypotheses.

The idea of adaptive designs in general is that they allow implementation of design
adaptations without inflating the type I error. These adaptations can be based on the
unblinded data that has been collected so far as well as any additional external information,
and often the adaptations do not need to be specified in advance.

Since the release of this ICH guidance, some designs with adaptive features were accepted by
regulatory bodies such as the FDA and EMA in the early 2000s. Further regulatory guidance
on adaptive designs was released by the EMA (EMA (2007)) and by the FDA (of Health
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(2018) and FDA (2017)). These further regulatory guidances classified approaches into those
well understood and those less well understood in terms of the statistical properties and
operational implementation. The role of research relating to adaptive designs is to suggest
new approaches and further the understanding of current approaches.

In the rest of this section, we introduce and discuss adaptive methods that may be applied
to Phase II/III programmes, which include adaptive designs with combination tests and the
more traditional group sequential methods.

2.2 Adaptive designs with combination tests

2.2.1 An introduction and history

In this section, we introduce adaptive designs which use combination tests.

Let θ denote the treatment effect of the treatment of interest, and H0 : θ ≤ 0 the null
hypothesis that states that the treatment is not efficacious. Frequentist hypothesis testing
aims to reject this null hypothesis in light of data observed in favour of the alternative, θ > 0,
that the treatment is efficacious.

Suppose it is of interest to test the null hypothesis against the alternative using data from 2
separate stages; stage 1 and stage 2. Pooling the data together and performing a hypothesis
test in the pooled data can introduce bias if the design of the second stage is influenced
by the data from the first stage. Adaptive combinations tests can be used to combine the
information in stagewise calculations in a way that does not introduce bias.

Denote P1 and P2 the stagewise p-values for H0 such that P1 is based on only stage 1 data
and P2 based on only stage 2 data. We shall reject H0 if C(P1, P2) ≤ c where C is a function
increasing in P1 and P2 and c is a constant. We shall consider cases when P1 and P2 are
defined such that

If θ = 0, then P1 ∼ U(0, 1) and P2|P1 ∼ U(0, 1),

If θ < 0, then P1 > U(0, 1) and P2|P1 > U(0, 1),

where X > Y means X is stochastically greater than Y (that is, P(X > x) > P(Y > x) for
any x ∈ R).

In the case that θ = 0, P1 ∼ U(0, 1), and P2 | Stage 2 design ∼ U(0, 1). If the stage 2 design
is chosen based upon P1, then P2 | P1 ∼ U(0, 1) for all P1. And therefore P1 and P2 are
independent and identically distributed U(0, 1) random variables. Constant c is chosen such
that P0(C(P1, P2) ≤ c) = α for some type I error rate α. In the case when θ < 0, we also
then have that Pθ(C(P1, P2) ≤ c) < α.

The combination function may alternatively be defined by rejecting H0 if C(P1, P2) ≥ c where
C is a function decreasing in P1 and P2 and c is a constant.

A procedure first proposed in the 1920s by Fisher (1925) involves rejecting the null hypothesis
when the product of the p-values from both stages is less than some critical value. An
alternative procedure is to reject the null hypothesis when the weighted sum of the z-statistics
corresponding to the p-values is greater than some critical value. We illustrate these two
approaches below.
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• Inverse χ2:
Reject H0 if C(P1, P2) := P1P2 < c1, (2.1)

• Inverse Normal:

Reject H0 if C(P1, P2) := w1Φ−1(1− P1) + w2Φ−1(1− P2) > c2, (2.2)

where w1 and w2 are arbitrary weights subject to w2
1 + w2

2 = 1.

Constants c1 and c2 are determined such that the test has a type I error rate α. Noting that
when Pi ∼ Unif(0, 1) for i = 1, 2, we have −2log(P1P2) ∼ χ2

2, we define c1 := exp(−0.5χ2
4,1−α),

where χ2
η,1−α is the (1−α) quantile of the χ2 distribution with η degrees of freedom. Similarly,

we define c2 := z1−α where z1−α is the upper 1 − α tail point of the standard normal
distribution.

The two stages in this procedure may relate to recruiting patients before and after an interim
analysis. The data that p1 and p2 are calculated from is the data collected from the patients
recruited before and after the interim analysis respectively. Overall, one requires a planning
stage, interim analysis, and final analysis. During the planning stage, the design of the first
stage including H0, test statistic, sample size, and the combination test are specified. At
the interim analysis it is decided whether the trial is stopped early due to early rejection of
H0 or early acceptance due to futility. Otherwise the design of the second stage is specified
(including the sample size, test statistic, and null hypothesis), based on information gained
from the first stage, without inflating the type I error rate of the overall procedure. The final
analysis is then performed after the second stage is complete.

An approach for defining a two-stage combination test in the context of an interim analysis
in a clinical trial was first given by the landmark paper Bauer and Kohne (1994). In this
paper, one defines the combination function C(p1, p2), early stopping boundaries α0, α1, and
critical value c for the final analysis. The trial is stopped after the first stage if p1 ≤ α1 (early
rejection of H0) or p1 ≥ α0 (early acceptance due to futility). The trial otherwise continues
to the second stage where H0 is rejected according to the combination test where α1 and α0

are chosen such that the type I error is preserved,

α1 +
∫ α0

α1

∫ 1

0
1{H0 rejected}(p1, p2) dp2 dp1 = α. (2.3)

The flexibility of the design comes from the fact the second stage (including the sample size
or test statistic) can be based on data which was used to calculate p1. The combination
function may take the form of the inverse χ2 or the inverse normal combination functions
given in Equations 2.1 and 2.2.

In the case of the inverse χ2 combination function, Equation 2.3 can be evaluated as a closed
form expression:

α1 + c1 (log(α0)− log(α1)) = α. (2.4)

Thus to maintain the type I error rate at level α across both stages, α0 and α1 are computed
by solving Equation 2.4. For the inverse normal combination function, one must use a root
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finding algorithm to find Equation α0 and α1 such that Equation 2.3 is satisfied.

Various publications about adaptive designs have followed, such as Proschan and Hunsberger
(1995), Cui et al. (1999), Lechmacher W (1999), and Müller and Schäfer (2001). These
involve various adaptations such as modifying the sample size, identifying sub-populations
for population enrichment, and dose selection whilst the type I error rate is protected.

Proschan and Hunsberger (1995) defined a ’conditional error function’ which was used to
adapt the sample size in an interim analysis. This involved calculating the maximum type
I error rate conditional on observed data at the interim analysis that may be produced by
always applying the worst case balanced sample size reassessment rule at the interim. One
may perform any type of balanced sample size reassessment after adjusting for this worst
case without inflating the type I error rate.

Lechmacher W (1999) and Cui et al. (1999) noted that for normal outcome variables
with known variance, the final test statistic is the weighted average of stagewise z-scores
weighted by the square root of the corresponding sample sizes, leading to the inverse normal
combination function defined above. When no adaptation has been performed then the
conventional sufficient z-test can be performed in the usual way.

2.2.2 Multiple testing

In a clinical trial, it may be the case that there will be interest in testing more than one single
hypothesis. Multiple hypotheses may result from testing primary and secondary endpoints,
having multiple treatments, or considering subgroups within the population. Thus multiple
testing becomes an important topic in many of the research areas in adaptive methods
described in the previous section. Methods have been developed to study different hypotheses
at once. In order to satisfy regulators, protecting the type I error rate is essential in most drug
development programs. Therefore it is of utmost importance that the probability of rejecting
at least one true hypothesis should be bounded by a fixed pre-determined α, irrespective of
how many and which null hypotheses are in fact true.

Let us consider the case of K parameters θi (i = 1, ...,K). Each may represent the true
mean endpoint difference between treatment i and the control, or the true mean endpoint
difference between a treatment and control in patient subgroup i, or the true mean endpoint
difference between treatment versus control for endpoint i.

Write the K null hypotheses as

H1 : θ1 ≤ 0,
H2 : θ2 ≤ 0,

...
HK : θK ≤ 0.

(2.5)

Each hypothesis can be true or false depending on the values of θ1,...,θK . During a test
procedure, any number of these hypotheses may be rejected.
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An intersection hypothesis HI is defined for subset I ⊆ {1, ...,K} as

HI :=
⋂
i∈I

Hi. (2.6)

Suppose we are interested in testing intersection hypothesis HI at level α. Let p1, ..., pK

denote the observed p-values and z1, ..., zK denote the observed Z-statistics for each of the
parameters θi and let the p-values of parameters in I be p(1), ...p(N) in increasing order.
Several approaches have been developed to test HI at level α, and we outline three below.

• Bonferroni (Bonferroni (1936))
Reject HI if p(1) ≤ α/N

• Simes (Simes (1986))
Reject HI if p(i) ≤ iα/N for at least one i = 1, ..., N .

• Dunnett (Curnow and Dunnett (1962))
Reject HI if pI ≤ α
where pI := P0(max(ZI) ≥ maxi∈I zi) and ZI is the multivariate normal distribution
of Z-statistics of the parameters in I. The form this takes depends upon what
the parameters θi represent. In Section 2.2.3, we use this test in the context of θi
representing the true mean endpoint difference between treatment i and control.

Define the FWER as

FWER := supθPθ(Reject ≥ 1 true hypotheses) (2.7)

We say a procedure preserves the FWER strongly at α if

FWER ≤ α. (2.8)

The closed testing procedure Marcus et al. (1976) states that a null hypothesis Hi can be
rejected only if

• Hi is rejected itself with a level α test, and

• All intersection hypotheses HI such that i ∈ I are rejected each with level α tests.

The closed testing procedure preserves the FWER strongly at α. The proof of this is simple
and is outlined below.

Proof. Define µ0 := set of true null hypotheses, Hµ0 := ∩i∈µ0Hi, and the events A := reject
at least one true hypothesis in the overall testing procedure, and B := reject Hµ0 .

Then because A ⊆ B and p(B) ≤ α, we have

p(A) = p(A ∩B)
= p(B) p(A|B) ≤ α.

(2.9)

The closed testing procedure is a way to construct multiple testing strategies in adaptive
designs using combination tests.
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2.2.3 Multiple testing within a two stage procedure with treatment
selection

In the studies in this chapter, we are primarily concerned with Phase II/III programmes,
which use combination tests in 2 stage procedures. Therefore we concentrate here on defining
a hypothesis test over two stages that protects the FWER in the strong sense.

In particular, suppose there are K treatments with treatment effects θi and null hypotheses
Hi : θi ≤ 0 for i = 1, ...,K. In the first stage, all treatments are tested against control and
p-values obtained for each treatment p1,1, ..., pK,1. Using the method of Dunnett, one may
compute p-values pI,1 for intersection hypothesis HI for any subset I ⊆ {1, ...,K}.

Due to the adaptive nature of the test, treatments may have been dropped from the set of
hypothesis to be tested. As there may be no second stage data for some null hypotheses
which were dropped at the interim analysis, one may question how to obtain the second
stage p-value for some intersection hypotheses which need to be rejected in order to reject the
elementary hypothesis of a treatment. A valid p-value to use for the intersection hypothesis
containing a dropped treatment is the p-value of of the intersection hypothesis containing
all the treatments in the original intersection hypothesis that have not been dropped. Bretz
et al. (2006) and Schmidli et al. (2005) discuss this in more detail.

Suppose in particular that one treatment is chosen to continue to the second stage and denote
the index by i∗. This choice of treatment may be chosen based on the results of the first stage,
meaning the procedure is adaptive. This may typically be the best performing treatment from
the first stage, such that the treatment with the lowest p-value, but we do not assume that
this is the case.

We apply the closed testing procedure with an inverse normal combination test over the two
stages:

Rejects Hi∗ if
C(pI,1, pI,2) ≥ z1−α, for all I such that i∗ ∈ I. (2.10)

Since no Phase III data is available for any treatment other than i∗ in Phase III, one may
write Equation 2.10 as

max
I:i∗∈I

C(pI,1, pi∗,2) ≥ z1−α. (2.11)

Assuming the combination function is increasing in its left argument, we may write this as

C

(
max
I:i∗∈I

pI,1, pi∗,2

)
≥ z1−α. (2.12)

That is,
C(p̃i∗,1, pi∗,2) > z1−α, (2.13)

where multiplicity adjusted p-value p̃i∗,1 is defined as p̃i∗,1 := maxI:i∗∈I pI,1.

Equation 2.13 provides a test to reject Hi∗ that intuitively combines the multiplicity adjusted
p-value from the first stage with the p-value from the second stage which strongly protects
the FWER. In Chapter 3, we use this equation as the hypothesis test for a Phase II/III
programme.

Hampson and Jennison (2015) compare several different combination functions and multiple
testing procedures. The rule considered here, with the inverse normal combination test with
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a Dunnett multiplicity adjustment, is considered one of the rules which performs well over a
variety of situations and is recommended in practice.

2.3 Group sequential designs

2.3.1 The development of group sequential design methodology

Monitoring the results of a trial as they occur with a view to either modify the trial or have
an early termination seems natural in many settings. Having interim analyses in a trial can
be considered advantageous for various reasons. These reasons can be ethical, administrative,
and economic.

For trials with human subjects, ethically one would want to not have subjects exposed to
unsafe or ineffective treatments. Therefore it is desirable to terminate the trial as soon
as possible in this case. Administratively, interim analyses provide a point at which one
can check the interim results show the experiment is being executed as planned, and any
assumptions made when designing the trial still apply, and action can be taken if not. For
a trial that has a positive result, stopping early for efficacy means the treatment can then
be released sooner, meaning a greater amount of time in the treatment’s patent life can be
exploited. Alternatively, if the trial does not have a positive result, stopping early saves
resources that can then be diverted towards other treatments.

In this section we describe the background relating to group sequential methods as they
are understood today, and outline the theory behind some of the popular group sequential
methods used in this thesis.

Armitage (1993) note that the theory of experimental design has classically dealt with
experiments with a predetermined size, perhaps due to the pioneering work of Fisher (1925) in
agricultural research, where the outcome of a field trial is available only after a long time after
the experiment was designed. Wald (1947) and Barnard (1946) developed sequential analysis
theory when participating in industrial groups for production during the war effort in World
War II. An example of this was the sequential probability ratio test. Wald and Wolfowitz
(1948) showed the procedure had the smallest possible expected sample size amongst all tests
with type I and II error probabilities bounded by certain values. However, the sample size
was not bounded.

The triangular group sequential tests were developed by Lorden (1976). For tests which select
from more than two hypotheses, the book of Bechhofer et al. (1968) provides an overview.
Hewett and Spurrier (1983) provides a review of early approaches that containing two or
three stages with normal responses. In these approaches, repeated numerical integration was
required to find the properties of the designs. This method is now a key tool to construct
group sequential tests, such as in Jennison and Turnbull (2000).

Pocock (1977) gave a clear method for implementing a group sequential design which had
fixed type I and II error rates, whilst noting the generalisability of the approach, where a
group sequential design for normal responses could be used for other responses. O’Brien
and Fleming (1979) proposed a different class of group sequential designs with different
stopping boundaries. In comparison to the Pocock approach, these stopping rules were more
conservative and had stopping rules more similar to the fixed sample design if the final stage
was reached. Lan and DeMets (1983) proposed new methods to be applied even when the
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group sizes are unequal or unpredictable. This permitted methods to be extended to survival
data where the group sizes, or increments in information, are unequal and unpredictable.

DeMets and Ware (1980), DeMets and Ware (1982), and Whitehead (1986) modified
the boundaries of group sequential designs by allowing early stopping to accept the null
hypothesis.

Upon termination of a trial, inferences may be necessary. This may be of confidence
intervals (Siegmund (1978), Pollak and Siegmund (1985), Kim and DeMets (1987)), p-values
(Fairbanks and Madsen (1982), Fairbanks et al. (1982)), or point estimates (Whitehead
(1986)). Different outcomes to a group sequential test have different numbers of observations.
Therefore the monotone likelihood ratio property does not apply so one may define the
ordering of the sample space which construct the p-values.

2.3.2 The canonical distribution

In Jennison and Turnbull (2000), the canonical distribution of the test statistics is formulated,
which is the basis for the interactive integration techniques that underpin the computations
of most group sequential designs. We describe an overview of this theory here.

Suppose that we have a group sequential design with K analyses with cumulative Z-statistics
of {Z1, ..., ZK}. One says that {Z1, ..., ZK} follow the canonical distribution with information
levels {I1, ..., IK} if

(Z1, ..., ZK) is multivariate normal,
E(Zk) = θ

√
Ik, for k = 1, ...,K,

Cov(Zk1 , Zk2) =
√
Ik1/Ik2 for k1 < k2.

(2.14)

It follows that any {Z1, ..., ZK} that has this distribution conditional on {I1, ..., IK} is a
Markov sequence. This property is useful when simplifying calculations when constructing
groups sequential designs using iterative integration techniques as in Chapter 19 of Jennison
and Turnbull (2000). The set {I1, ..., IK} corresponds to the Fisher information levels for
the statistical test.

Consider the case when the treatment and control responses are distributed as X(t)
i ∼

N(µ1, σ
2) and X

(c)
i ∼ N(µ0, σ

2) respectively, where the variance σ2 is known. Let the
treatment effect be denoted by θ = µ1 − µ0 with null hypothesis H0 : θ ≤ 0. Suppose nk
is the cumulative sample size per group in a group sequential trial with K analyses. The
maximum likelihood estimator of θ at analysis k is

θ̂k =
nk∑
i=1

(X(t)
i −X

(c)
i )/nk. (2.15)

The Fisher information may be written as

Ik = nk/(2σ2), (2.16)

and one has θ̂k ∼ N(θ, I−1
k ) for k = 1, ...,K.

Letting Zk = θ̂k
√
Ik, we have that {Z1, ..., ZK} follow the canonical distribution defined

above. Jennison and Turnbull (2000) describes many other situations in which the Fisher
information and Z-statistics can be defined such that they follow the canonical distribution.
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These include parallel two-treatment comparisons, testing the mean of a single population,
paired two-treatment comparisons, two-period crossover trials, binary data, survival data,
tests with unknown variance, and linear and other parametric models. Thus group sequential
trials can be used in a large number of different settings.

2.3.3 Some examples of one sided group sequential trials

Using the notation of Jennison and Turnbull (2000), we outline a few of the group sequential
designs that are used in this thesis below. Whilst much of the literature on group sequential
designs is of two sided testing, in clinical trials we often are interested in one sided hypothesis
tests. That is, if θ is the true treatment effect of the treatment relative to placebo, rejecting
H0 : θ ≤ 0 will provide evidence that the drug is successful.

For any one sided group sequential design, one observes test statistics (Z1, ..., ZK) at
information levels (I1, ..., IK). The group sequential trial consists of rejection boundaries
{b1, ..., bK} and acceptance boundaries {a1, ..., aK}. At analysis k, one rejects H0 if Zk ≥ bk

or accepts H0 if Zk < ak. Otherwise, one continues to the next stage.

Pampallona Tsiatis power family one-sided designs

The first designs we consider are the Pampallona and Tsiatis (1994) power family of one sided
tests.

For a power family test with parameter ∆, the rejection and acceptance boundaries are

bk =c(1)
K,α,β,∆(k/K)∆−1/2

ak =δ
√
Ik − c

(2)
K,α,β,∆(k/K)∆−1/2

(2.17)

for k = 1, ...,K.

The critical values are found that satisfy the type I and II error rates and enforce aK = bK .
Although designed for a specific sequence of information levels, these designs can still be used
when the information levels differ from the planned ones with small perturbations in type I
and II error probabilities.

ρ-family Error Spending Designs

Most group sequential designs are designed for a fixed number of equally sized groups of
information levels. Error spending designs provide a flexible design which may cope with
unpredictable information sequences whilst preserving the type I error exactly. In addition,
the number of analyses does not need to be fixed in advance.

Lan and DeMets (1983) proposed spending type I and II error throughout the trial as a
function of the observed information, with a specified target for the maximum information
Imax. This was done in the context of a two-sided test which we adapt here for a one-sided
test. One must define error spending functions f and g which allocate the type I and II error
to be spent π1,i and π2,i at each analysis i according to

π1,1 = f(I1/Imax)
π1,k = f(Ik/Imax)− f(Ik−1/Imax) for k = 2, 3, ...,K
π2,1 = g(I1/Imax)
π2,k = g(Ik/Imax)− g(Ik−1/Imax) for k = 2, 3, ...,K.

(2.18)
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The rho family error spending designs when one uses the following error spending functions

f(t) = min(αtρ1 , α)
g(t) = min(βtρ2 , β)

(2.19)

for some parameters ρ1 > 0 and ρ2 > 0.

At each stage k, the acceptance and rejection boundaries are calculated for that stage. One
does this by solving for ak and bk in the following equations,

P0(a1 < |Z1| < b1, ..., ak−1 < |Zk−1| < bk−1, |Zk| ≥ bk} = π1,k

Pδ(a1 < |Z1| < b1, ..., ak−1 < |Zk−1| < bk−1, |Zk| < ak} = π2,k.
(2.20)

Once one reaches a maximum information Imax, one stops and performs a interim analysis at
this point, where the rejection boundary aK is chosen to be equal to bK , where bK is chosen
such that the required type I error is spent according to the first equation in Equations 2.20.

Chapter 19 in Jennison and Turnbull (2000) provides methods to numerically compute designs
for both designs considered here. These are iterative integrative and root solving calculations,
which rely on the properties of the canonical distribution.
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3
The Value of Adaptivity in a Phase II/III Programme with

Treatment Selection

3.1 Introduction

As remarked in Chapter 1, studying Phase II and III together as a Phase II/III programme can
be advantageous relative to studying each phase separately. A Phase II/III programme with
treatment selection is a II/III programme which has multiple treatments entering Phase II,
with some treatments dropped before Phase III commences. The aim of the programme is
two-fold: to select an efficacious treatment, and to obtain sufficient evidence of its efficacy
for regulatory approval.

In this chapter we consider Phase II/III programmes with treatment selection in the case
when only one treatment is chosen for Phase III, when one observes the primary endpoint in
both phases, and when no dose response relationship is assumed between the treatments.

In Chapter 2, we considered adaptive methods which can be applied to a Phase II/III
programme. We shall examine the value of some of these adaptive methods in this setting.

During a Phase II/III programme with treatment selection, one must make decisions about
the next part of the programme. In particular:

Pre-Phase II decisions:

- Phase II sample size

Pre-Phase III decisions:

- Phase III sample size

- Treatment to take forward

In order to fairly compare programmes against one another, we require each programme to be
fully optimised. This involves having an optimal decision rule for the Pre-Phase III decisions
based on the Phase II data, and an optimal Phase II sample size.

We compute these optimal decision rules using Bayesian decision theory introduced in Section
1.3. We initially use a simple form of gain function to quantify the value of the programme,
but we go on to consider more detailed forms of the gain function later in Section 3.5.1.
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3.2 Motivations from previous research

In Section 1.1.1, we considered previous literature that addressed optimising Phase II/III as
a programme. Below, we consider the Parke et al. (2017) approach in greater detail, as this
provides motivation for the approach taken in this chapter.

3.2.1 Parke et al. (2017)

In this paper, eight programmes are compared against each other. These eight programmes
were constructed from different Phase II and III designs. The following Phase II designs are
considered:

• 2 concurrent two arm Phase II trials, with a different new treatment compared against
a common control in each,

• a three arm Phase II trial, with 2 different new treatments compared against control,

• a three arm Phase II trial with an interim analysis where either or both new treatments
can be dropped,

• a three arm Phase II trial with multiple interim analyses where either or both new
treatments can be dropped, and

• a three arm Phase II trial with response adaptive randomisation and multiple interim
analyses where either or both new treatments can be dropped.

In all, eight programmes were defined by combining the above Phase II designs with fixed
sample or group sequential Phase III designs. Not all combinations of Phase II design were
used with each Phase III design. The group sequential Phase III designs were error-spending
group sequential designs as introduced in Section 2.3.

The programmes are compared using their expected Net Present Value (eNPV), representing
the value, in terms of financial viability, of a programme. The model is similar to the Financial
Model introduced in Section 1.5.1.

The paper concluded by finding that there was a distinct improvement for programmes with
increasing amounts of adaptivity. That is, introducing each new statistical technique brought
added value to the programme. The best performing programme was the one with a three-
arm Phase II with many interim and response adaptive randomisation, with a four interim
analysis group sequential Phase III design.

There are several limitations with the approach taken in this paper which we aim to overcome
in our approach.

Many of the programmes contained rigid rules which were not optimised. In particular,
all the programmes stipulate that the treatment effects must have a predictive probability of
success greater or equal to a pre-determined threshold before being considered for a Phase III
trial. While these may be desirable as they match benchmark tests which have been used in
industry, more general decision rules lead to higher values of eNPV.

In all the programmes, Phase III is treated as separate with a hypothesis test using data
from this phase only. We shall extend this approach to consider the use of combination tests
as introduced in Section 2.2.
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One major concern of the programmes studied is that none allow adapting the Phase III
sample size based on the observed Phase II data. Using a sample size for Phase III that
is fixed before Phase II begins is an unrealistic assumption for such a setting as Phase III
trials are expensive and trial management teams will make decisions about Phase III after
seeing the results of Phase II. Therefore it is desirable to study programmes with sample size
re-estimation rules between Phase II and III in all programmes. If these rules are optimised
for each programme, one may compare the programmes fairly.

Notation

Below, we list notation associated with this approach. Contextual definitions are given in
relevant places later in the text.

Global Parameters

K Number of new treatments entering the Phase II/III programme.

θ Vector of length K of the true treatment effects.

σ2 The variance of all responses on control and new treatment arms.

θ0,Σ0 Hyperparameters of the prior distribution for the vector of treatment effects θ.

G The gain associated with rejecting the null hypothesis for an efficacious treatment.

γ1 Cost associated with treating a Phase II patient.

γ2 Cost associated with treating a Phase III patient.

I0 (σ2, G, γ1, γ2,θ0,Σ0). The set of global parameters known at the beginning of the
programme.

Parameters and observed data associated with Phase II

n
(t)
1 The sample size per treatment arm in Phase II.

n
(c)
1 The sample size for the control arm in Phase II.

θ̂1 (θ̂1,1, θ̂2,1, ..., θ̂K,1), The maximum likelihood estimators of the treatment effects
θ based on Phase II data.

p1 (p1,1, p2,1, ..., pK,1). P-values for testing H1, ...,HK corresponding to θ̂1, where
the hypotheses H1, ...,HK are to be defined in the following text.

p̃1 (p̃1,1, p̃2,1, ..., p̃K,1). Multiplicity adjusted p-values corresponding to p1.

I1 (I0, θ̂1, n
(t)
1 , n

(c)
1 ). The set of cumulative summary statistics formed from I0 plus

summary statistics from Phase II.

Parameters and observed data associated with Phase III

i∗ The index of the treatment chosen to continue to Phase III.

n2 The sample size per treatment and control arm in Phase III. If Phase III is group
sequential, this is the maximum sample size per treatment.

S If Phase III is group sequential, this is the number of stages of the group sequential
design.
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n
(obs)
2 If Phase III is group sequential, this is the observed sample size per treatment

arm. If not, this is equal to n2.

θ̂i∗,2 The maximum likelihood estimate of the treatment effect of treatment i∗ based
on the Phase III data only.

pi∗,2 The p-value corresponding to θ̂i∗,2 for testing hypothesis Hi∗ : θi∗ ≤ 0, which is
to be defined in the folowing text.

I2 (I1, θ̂i∗,2, n2) The set of cumulative summary statistics formed from I1 plus
summary statistics from Phase III.

Other Parameters and Functions

G The gain function of an observed programme.

α The familywise error rate of the overall programme and testing procedure.

C(·, ·) The inverse normal combination function (see Section 2.2) used to combine
Phase II and III p-values into a test statistic.

3.3 Our Phase II/III programme framework

Suppose K treatments are to be considered at the start of the programme with no dose
response relationship assumed. Suppose the primary responses are normally distributed with
known variance σ2, and means µ(t)

i for treatments i = 1, ...,K and µ(c) for control. Define
vector θ := (θ1, ..., θK) as the treatment effect vector where θi = µ

(t)
i − µ(c) for i = 1, ...,K.

A high treatment effect will indicate a successful treatment compared to control. We assume
that primary responses are observed in both Phase II and III.

The vector θ is considered unknown and inference is performed on it during the programme.
Define K one-sided null hypotheses H1 : θ1 ≤ 0, ... ,HK : θK ≤ 0.

The programme has an interim analysis after Phase II which is flexible, allowing the choice
of which treatment to take forward i∗ and the sample size n2 for Phase III. The hypothesis
that is tested at the end of the programme is Hi∗ . Phase II data may still be incorporated
in the final hypothesis test through the use of a combination function and Phase III may use
group sequential methods. Below, we specify how the programme progresses with a schematic
shown in Figure 3-1.

� Pre-Phase II Decision Making (Decision 1)

Choose the Phase II sample size for each treatment arm (n(t)
1 ) and control arm (n(c)

1 ).

� Phase II

Randomise n(t)
1 patients to each treatment i = 1, ...,K and n

(c)
1 to the control arm. Upon

observing patient responses, the maximum likelihood estimates θ̂1 are calculated, and the
p-values p1 deduced.

� Interim Decision Making (Decision 2)

Based upon the Phase II data, choose the Phase III sample size per treatment arm (n2) and
treatment for Phase III (i∗).
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� Phase III

Randomise n2 patients to both the treatment and control arm. In the case that Phase III is
group sequential with S analyses, n2 is the maximum number of patients on each treatment
arm. Denote by n(obs)

2 the observed number of patients on each of the treatment and control
arms. If Phase III is not group sequential, n(obs)

2 is n2. The maximum likelihood estimate
of the true treatment effect of treatment i∗ based on the Phase III data only, θ̂i∗,2, and
corresponding p-value pi∗,2 are calculated.

� Final Analysis

One performs a hypothesis test with null hypothesis Hi∗ . This hypothesis test makes use of
Phase III data but may or may not additionally use Phase II data.

If the test makes use of Phase III data only, one performs a standard Z-test comparing
treatment against control.

If both Phase II and Phase III data is used in the hypothesis test, the p-values from Phase II
and III are combined in the combination function used to perform the hypothesis test.
Formally, one rejects Hi∗ if and only if

C(p̃i∗,1, pi∗,2) > z1−α, (3.1)

where the inverse-normal combination function C(·, ·) and multiplicity adjusted p-value p̃i∗,1
defined in Section 2.2.3. This test protects the familywise error rate of the two stage procedure
strongly at level α.

Figure 3-1: A schematic showing the locations of Decisions 1 and 2.

3.3.1 Gain function

As discussed in Section 1.3, in order to make decisions throughout the programme using
Bayesian decision theory, the value of particular outcomes of the programme need to be
specified numerically with a gain or utility function. We use a simple gain function.

One defines constant a G and function ζ such that Gζ(θi∗) is the value to the sponsor of
rejecting Hi∗ , given the true treatment effect was θi∗ . Positive real numbers γ1, γ2 are
defined as the cost of treating a patient in Phase II and III respectively. The gain function
is hence defined as

G(I2, θi∗) := G ζ(θi∗) 1{Hi∗ is rejected} − γ1(Kn(t)
1 + n

(c)
1 )− 2γ2n2. (3.2)
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Table 3.1: Four Phase II/III Programmes with different components.

Dec. 1 Phase II Dec. 2 Phase III Hypothesis Test

1 Choose: Fixed Sample; n(t)
1 per Choose: Fixed Sample; n2 Phase III data only

n
(t)
1 , n(c)

1 treatment n(c)
1 for control i∗, n2 patients per arm

2 Choose: Fixed Sample; n(t)
1 per Choose: Fixed Sample; n2 Combination Test

n
(t)
1 , n(c)

1 treatment n(c)
1 for control i∗, n2 patients per arm with Phase II, III data

3 Choose: Fixed Sample; n(t)
1 per Choose: GSD; max. n2 Phase III data only

n
(t)
1 , n(c)

1 treatment n(c)
1 for control i∗, n2 patients per arm

4 Choose: Fixed Sample; n(t)
1 per Choose: GSD; max. n2 Combination Test

n
(t)
1 , n(c)

1 treatment n(c)
1 for control i∗, n2 patients per arm with Phase II, III data

3.3.2 Components of the programmes

To assess the value of adding components to bring adaptivity to a programme, one may
define the 4 programmes given in Table 3.1. The first two have a fixed sample Phase III
design whilst the latter two apply a group sequential design (GSD). Programmes 1 and 3 use
Phase III data only in the hypothesis test Hi∗ whilst Programmes 2 and 4 use data from both
Phase II and III in a combination test as described in Section 2.2.3 for hypothesis test Hi∗ .

Choosing n
(t)
1 and n

(c)
1

We suppose the number of patients n(t)
1 on each treatment arm and n

(c)
1 on control arm

satisfy the relation n
(c)
1 =

√
Kn

(t)
1 . This relation minimises the variance of each maximum

likelihood estimator Var(θ̂i) for each i, subject to a given total sample size and equal numbers
of observations for each new treatment. Given this, the choice in Decision 1 reduces down to
a choice of n(t)

1 only, from which n(c)
1 can be deduced.

Combining the GSD with a Combination Test in Programme 4

The group sequential design for Phase III is used with the inverse normal combination test in
the following way. Suppose p̃i∗,1 is the multiplicity adjusted p-value observed from Phase II.
Let p∗ be the solution of

C(p̃i∗,1, p∗) = z1−α. (3.3)

The group sequential design for Phase III is then constructed with type I error rate of p∗.
Then one crosses the rejection boundary of this group sequential test if and only if Hi∗ is
rejected in the combination test.

Comparing the Programmes

Given that the optimal decision rules are calculated so that one may make optimal decisions
at each decision point, the expected value of the gain function of the optimal decision at
Decision 1 represents the total value of the programme. We denote this quantity D(1)

J0
and

derive its form in Section 3.6.3.
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By comparing the value of each of the programmes, one can examine the value of all the
components of a programme. In the following section, we describe an example of a simulation
study that does this for the four programmes described above.

3.4 An example: A simulation study to assess the benefit of
adaptivity to the programme

3.4.1 Programme inputs and parameters

Unless stated otherwise, in our simulation study we use the following values for the
parameters:

Programme Parameters: Gain Function Parameters: GSD Parameters:

α = 0.025 G = 20000 S = 5
K = 4 γ1 = 1 ∆ = 0.25
σ = 3 γ2 = 1

ζ(θi∗) = 1 for all θi∗

• The prior for the treatment effects was θ ∼ N(θ0,Σ0) with θ0 = 0 and covariance
matrix

[Σ0]i,j =

3 if i = j

1 if i 6= j
. (3.4)

The form of this prior means that the computations are simplified. This is discussed in
Section 3.6.1.

• The inverse normal combination test was used with weightings of w1 =
√

0.15 and
w2 =

√
0.85 for Programme 2 and w1 =

√
0.075 and w2 =

√
0.925 for Programme 4.

We discuss this choice of weightings later in this section.

• GSDs were of the ∆-family Pampallona and Tsiatis (1994) type.

• The values n
(t)
1 could take were (30, 35, 40, ..., 115, 120) and values of n2 were

(0, 100, 200, ..., 2000).

• The number of Monte Carlo simulations to compute an estimate of the expected gain
for each n(t)

1 in Decision 1 (see Section 3.6.3) were chosen such that the standard error of
the estimate was less than 20 for Programmes 1 and 2, and less than 50 for Programmes
3 and 4, and the standard error of the difference between any two programmes at the
same value of n(t)

1 was less than 20. These small errors may be obtained by coupling
estimates, as explained in Section 1.6.

3.4.2 Simulation study results

In the table below, we summarise the optimised programmes for Programmes 1 to 4, and list
their properties.
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Table 3.2: Properties for each optimised programme.

Programme 1 2 3 4
Optimal n(t)

1 70 85 60 65
Expected Gain 14 299 14 401 14 800 14 830
Standard Error 20 20 48 41

PLA 77.5% 77.8% 78.6% 78.5%
Mean Optimal n2 369 289 649 555
Expected PLSS 1157 1088 885 835

PLP at θ = (0, 0, 0, 0) 2.5% 2.5% 2.5% 2.5%
PLP at θ = (1, 1, 1, 1) 98.4% 99.7% 99.6% 100.0%
PLP at θ = (0, .3, .7, 1) 96.3% 98.7% 98.7% 99.5%
PLP at θ = (0, .2, .2, .4) 68.6% 69.3% 74.1% 74.1 %
.... PLP at θ = (0, 0, 0, 1) 94.4% 96.9% 96.9% 97.5%

PLA refers to programme level assurance (the probability of rejecting the null hypothesis of
any treatment in the programme given the treatment effects θ are distributed according to
their prior distribution).

Mean Optimal n2 denotes the mean of the choice of n2 (for group sequential designs this is
the maximum sample size per arm) given it is chosen optimally according to Decision 2, and
the treatment effects are distributed according to the prior distribution.

Expected PLSS refers to the expected programme level sample size (the expected total sample
size across all treatments and phases given the treatments effects are distributed according
to the prior distribution).

PLP denotes programme level power (the probability that a null hypothesis from any
treatment is rejected in a programme, given the set of treatment effects of the treatments
that enter it are given by some vector θ).

Decision 1

The three plots in Figure 3-2 give the expected gain, programme level power, and programme
level sample size of each programme for different values of n(t)

1 considered in Decision 1.

Decision 2

The four plots in Figure 3-3 show the optimal n2 as a function of the posterior mean of the
treatment effect θi∗ . Figure 3-4 shows the expected gain of the programme in Decision 2 as
the posterior mean varies given the Phase II sample size has an optimal value of n(t)

1 as in
Table 3.2.
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Figure 3-2: Top: Expected gain evaluated for different n(t)
1 for each programme. The error

bars indicate the 95% confidence intervals of each point estimate. Due to coupling, the
standard error of the difference between the expected gain of two programmes and the
difference between different n(t)

1 values of the same programme are very small (at most 20).
Bottom: Programme level power and expected sample size evaluated for different values of
n

(t)
1 for each programme.

42



Figure 3-3: Optimal decision rule curves in Decision 2: Optimal choices of n2 given the
posterior mean.

Specifying the weights in the combination test

The weights of the combination test must be adequately specified in order to maximise the
expected gain of the programme. A requirement of the combination test is that the weights
are specified in advance. However the sample size of Phase III depends upon the Phase II
data so it not a-priori known. Therefore the choice of the weights becomes a trade-off to
maximise the use of the data from both phases, taking into account the likely sample sizes
in each phase.

One must optimise the weights in order to fairly compare a programme with a combination
test to another programme. In this study, we have optimised the weights in Programmes 2
and 4 by finding the weights which maximised the expected gain of the programme when one
makes optimal decisions at Decision 1 and 2. These weights lend more importance to the
Phase III p-value which is generally based upon a larger sample size.
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Figure 3-4: The expected gain of the programme in Decision 2 as the posterior mean varies,
for each programme with the same colours as in Figure 3-3.

The added value from using combination tests and GSDs

Incorporating combination tests and group sequential designs both add value to a programme
(Programmes 2 and 3 versus 1), with group sequential methods adding comparatively more
value than combination tests. Using combination test methods in a programme which already
has a group sequential Phase III (Programme 4) adds some further value.

On a relative scale, the expected gain from each programme are all fairly similar in the
14,000s. The design of the programme cannot affect the underlying efficacy of the treatments
entering it, which accounts for most of the gain. If treatments have a higher treatment effect,
then they are more likely to have a successful Phase III. On the other hand, a programme
which uses the data in an efficient manner to make decisions (such as the later programmes)
saves hundreds of units compared to one which does not (such as Programme 1). Given that
each unit is the cost of treating a patient, which may be as much as $20,000, this is a large
saving to the sponsor. Furthermore, a more efficient programme which requires fewer patients
to achieve the same information can be considered more ethical. Programme 4 requires 28%
fewer patients on average across the programme than Programme 1 as shown in Table 3.2.

Optimal decisions in Decision 2

In Figure 3-3, we are shown the optimal choice of Phase III sample size n2 as a function of
the posterior mean of the treatment effect of treatment i∗. Because of the choice of prior (see
Section 3.6.1 for a discussion about the choice of prior), the optimal n2 is a function only of
the posterior mean of the treatment effect of treatment i∗.

The optimal decision curves follow the same shape for each programme. This involves starting
at n2 = 0 (that is, not performing a Phase II trial and progression straight to Phase III) for
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low values of the posterior mean, before discontinuously jumping to a positive finite value and
increasing to a maximum before decreasing and tending towards n2 = 0 again. In Appendix
3.A, we explain the shape of this optimal decision curve.

For programmes with combination tests (Programmes 2 and 4), the hypothesis test depends
upon the Phase II data which also determine the posterior mean. Therefore data which
produces a low posterior mean will make it more difficult to reject the null hypothesis in the
combination test, whilst the opposite is true for data with a large posterior mean. Therefore
the optimal decision curve will be narrower in the sense that the jump occurs for a larger
value of the posterior mean and the curve decreases for lower values of the posterior mean,
which is what we observe in Figure 3-3.

For programmes with group sequential designs in Phase III, the choice of n2 in Decision 2 is
higher as one would expect to stop early in many cases before n2 patients have been created.

Optimal decisions in Decision 1

The optimal Phase II sample size increases when combination test techniques are
implemented, and decreases when group sequential designs are implemented as shown in
Table 3.2 and Figure 3-2. If Phase II data can be used in the final hypothesis test via a
combination function, it has more value than being simply used to select an appropriate
treatment. Therefore it makes sense to use more patients in this phase. Group sequential
trials are able to perform well regardless of the size of the treatment effect as the stopping
rule adapts to the treatment effect. Therefore group sequential trials are a good choice of
design when there is a large amount of uncertainty about the treatment effect.

As shown in Figures 3-2, the optimal set-up and properties of each programme change
depending on which statistical techniques are implemented. When combination test
techniques are used (Programmes 2 and 4 versus 1 and 3), the optimal setup has a slightly
lower programme level power but significantly lower expected programme level sample size.
Adding group sequential techniques (Programmes 3 and 5 versus 1 and 2) gives the optimal
setup a slightly higher programme level power and lower expected programme level sample
size. This is because it becomes viable to perform Phase III trials when there is still a
large amount of uncertainty as to whether the treatment effect is positive due to the early
stopping rules, and these early stopping rules reduce the average number of patients needed
in Phase III.

3.5 A second example: changing the gain function

The gain function proposed in Equation 3.2 is a very simplistic way of quantifying the net
present value (NPV) of a drug development programme. In reality, decisions need to be taken
which depend upon things such as the treatment effect of the drug, patent life, the time taken
to perform Phase II and III, and the costs of setting up marketing.

In this section, we stipulate changes to the gain function to more accurately model the NPV
of a programme. The first change we make is to allow the revenue to depend upon the
magnitude of the treatment effect of the drug that is marketed. The second change we
consider is to make the gain function more closely resemble a financial model as introduced
in Section 1.6.2.
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3.5.1 Two gain function extensions

New Gain Function A: Revenue dependent upon the treatment effect

In our first change to the gain function, we alter the definition of ζ as specified in Equation 3.2.
In the previous case studies, this function was taken to be 1 across its entire domain. We
change this to reflect the increased revenue one might expect from finding a treatment with a
higher treatment effect, and decreasing the revenue from treatments which are only marginally
better than placebo.

In this case study, we use the identity function for ζ. That is, we let

ζ(θi∗) = θi∗ . (3.5)

Simulation Result: New Gain Function A

In the case when ζ(θi∗) = θi∗ , the new versions of Figures 3-2 and 3-3 are Figures 3-5 and
3-6.

We note from Figure 3-5 that the overall expected gain for each programme is a lot higher
than in the case when ζ(θi∗) = 1 (Figure 3-2). This is because when θi∗ > 1, the gain can
be potentially a lot higher than before. Particularly as the prior distribution stipulates each
θi ∼ N(0, 3). Therefore the absolute gains are not particularly comparable to each other. We
also note that the order of the programmes that give the highest expected gain is preserved,
but the relative difference in expected gain between the programmes is reduced. This is
because the main contribution to the expected gain of a programme in this new case comes
from high underlying treatment effects, and realisations of programmes with large treatment
effects are very likely to be successful, regardless of whether the programme has adaptive
elements. In particular, in the ζ(θi∗) = 1 case, additional value was brought by increasing
the programme level power for small positive true treatment effects, whilst in the ζ(θi∗) = θi∗

case, these account for less value.

In Figure 3-6, one can see the maximum optimal n2 across all posterior means is less than
in the ζ(θi∗) = 1 case in Figure 3-3. As mentioned above, this is due to the lack of desire
to power to the same extent as before the realisations when the posterior mean is small but
positive, as these realisations now have less value in the ζ(θi∗) = θi∗ case. For example,
the optimal n2 given a posterior mean of 0.5 is 1200 in the ζ(θi∗) = 1 case and 700 in the
ζ(θi∗) = θi∗ case. This difference highlights the need to adequately specify the gain function
according to the value different trial conclusions have to the sponsor, as small changes in this
specification can significantly change the optimal decision rules. The differences between the
optimal decision curves of each programme are similar to the previous case in Figure 3-3.
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Figure 3-5: Top: Expected gain evaluated for different values of Phase II sample size n(t)
1 for

each programme. The error bars indicate the 95% confidence intervals of each point estimate.
Note that due to coupling, the standard error of the difference between the expected gain
of two programmes and the difference between different n(t)

1 values of the same programme
are very small (less than 20). Bottom: Programme level power and expected sample size
evaluated for different values of Phase II sample size n(t)

1 for each programme.
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Figure 3-6: Optimal decision rule curves for Decision 2

New Gain Function B: Financial model gain function

The second gain function we consider aims to more accurately model the financial aspect of
the decision making in drug development.

We denote nphII and nphIII as the total Phase II and III sample sizes respectively, so
nphII = Kn

(t)
1 + n

(c)
1 =

√
K(1 +

√
K)n(t)

1 and nphIII = 2n2.

We define the following parameters for use in the financial model gain function:

fphII Fixed cost for starting Phase II ($ M).

fphIII Fixed cost for starting Phase III ($ M).

cphII Cost per patient for Phase II ($ M).

cphIII Cost per patient for Phase III ($ M).

λphII Patient recruitment rate for Phase II.

λphIII Patient recruitment rate for Phase III.

ρ Discount rate.

F Fixed cost to set up marketing ($ M).

R Monthly revenue from marketed drug ($ M).

48



tphII setup Time to set up Phase II.

tphII trt Time to treat 1 patient in Phase II.

tphIII setup Time to set up Phase III.

tphIII trt Time to treat 1 patient in Phase III.

tmark setup Time to set up marketing for the drug.

tpat Time until patent expiry starting from the beginning of Phase II set up.

We define the following times

t1 = tphII setup

t2 = t1 + nphII/λphII

t3 = t2 + tphII trt

t4 = t3 + tphIII setup

t5 = t4 + nphIII/λphIII

t6 = t5 + tphIII trt

t7 = t6 + tmark setup.

(3.6)

The NPV in the case when the treatment is not successful in Phase III may be written as

NPVNOMARKET =− fphII

− cphIIλphII
∫ t2

t1
e−ρtdt

− fphIIIe−ρt31(nphIII>0)

− cphIIIλphIII
∫ t5

t4
eρtdt.

(3.7)

In the case when the treatment is successful, we write

NPVMARKET = NPVNOMARKET

− Feρt6

+R

∫ tpat

t7
e−ρtdt.

(3.8)

The gain function for this formulation can be written as

G(I2) = NPVMARKET 1{Hi∗ is rejected} +NPVNOMARKET 1{Hi∗ is not rejected}. (3.9)

A schematic for this model is given in Figure 3-7.

We perform another simulation study, using the same inputs and parameters as before with
the new gain functions listed above. In the following section, we describe the results of this
simulation study.
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Figure 3-7: Schematic for the financial model for Phase II/III programmes.

Simulation Results: New Gain Function B

We use the following parameters for the simulation study:

fphII $ 0.1 M λphIII 100 pat/month tphIII trt 0.5 months
fphIII $ 1 M ρ 0.05 tphII setup 2 months
cphII $ 0.012 M F $ 50 M tphIII setup 2 months
cphIII $ 0.008 M R $ 100 M tmark setup 6 months
λphII 80 pat/month tphII trt 0.5 months tpat 150 months

As before, we compute the optimal decision rules for each programme and compare their
performance.

Optimal decisions in Decision 1

Compared to Figures 3-2 and 3-5, Figure 3-8 shows a similar shape of the optimal decision
rules over the Phase II sample size. However the optimal Phase II sample size is far lower
than in the previous simulation studies, with n

(t)
1 = 18 being approximately optimal for

the programmes. There are many new parameters that could be having various effects. In
particular the time aspect of the financial model gain function, where finishing the programme
earlier is rewarded far more in the sense that one can market the drug for longer until the
patent expires, giving a larger gain.

Optimal decisions in Decision 2

Compared to Figures 3-3 and 3-6, Figure 3-9 shows similar shapes to the previous simulation
studies. Comparisons regarding the absolute numbers for the decision rules are not sensible
due to the different gain function. The Phase III patient cost is less than the Phase II
patient cost meaning the optimal programme favours more patients in Phase III compared
to Phase II.
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Figure 3-8: Top: Expected gain evaluated for different values of Phase II sample size n(t)
1 for

each programme. The error bars indicate the 95% confidence intervals of each point estimate.
Note that due to coupling, the standard error of the difference between the expected gain of
two programmes and the difference between different n(t)

1 values of the same programme are
very small (below 20). Bottom: Programme level power and expected sample size evaluated
for different values of Phase II sample size n(t)

1 for each programme.
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Figure 3-9: Optimal decision rule curves in Decision 2.

3.5.2 Simulation study conclusions

In Sections 3.4 and 3.5, we have performed simulation studies to compute the optimal decision
rules for some examples of a Phase II/III programme. We have shown that this framework
may be applied with different gain functions specifying the value of different outcomes of
the programme to the sponsor. In particular, one may compare different approaches for
performing the programme, including utilising group sequential methods or combination
tests. These comparisons may be done fairly if each programme is individually optimised
with respect to its decision rules. In conclusion, this framework provides a tool one may use
for ones own drug development programme situation using ones own numbers relating to the
revenue, cost of treating a patient, and priors on the treatment effect.

In these simulation studies, we evaluated the value to the programme of utilising group
sequential methods and combination tests. It was found that group sequential methods
brought a large amount of value to the programme. This came from the usual benefits of
a group sequential design of having lower expected sample size, in addition to allowing a
smaller Phase II sample size due to the group sequential design performing well when there
is a large amount of uncertainty as to the true treatment effect. The use of combination
testing in the portfolio added a smaller amount of value to the programmes, mostly through
reducing the sample size of Phase III required in order to achieve the same power. It is for
the investigator to deduce whether the additional value each of these techniques bring to the
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programme are worth it compared to any logistical challenges they may also bring.

3.6 Priors, distributions, and computing the optimal decision
rules details

In this section, we provide more details on an appropriate specification of a prior on the
treatment effects, derive the distribution of densities and optimal decision rules, and discuss
the computations of these decision rules.

3.6.1 Prior specification

The specification of the prior is an important aspect of the model, as this specifies the
treatment effects one may expect to enter the programme. Changes in prior beliefs may
change the optimal decision rules within the programme and the corresponding programme
value.

For computational and interpretability reasons, using a multivariate Gaussian prior is the
common approach. We assume a prior distribution for θ of the form

θ ∼ N(θ0,Σ0). (3.10)

1. Independent Multivariate Normal Prior

Here, θ0 is a vector of length K, Σ0 is a K ×K diagonal matrix.

This prior assumes each treatment effect to be independent and normally distributed.

2. Dependent Multivariate Normal Prior

Here, θ0 is a vector of length K, and Σ0 is a K ×K matrix with at least one non-diagonal
entry non-zero.

This prior assumes the treatment effects are dependent and normally distributed.

3. Special Prior 1

θ0 is arbitrary and Σ0 some multiple of

[Σ0]i,j =

1 if i = j

(1 +
√
K)−1 if i 6= j

. (3.11)

This prior is designed so that the posterior distribution of the treatment effects has special
properties. In particular, the mean of the posterior distribution of the treatment effect of
treatment i∗ depends only on the Phase II data from that treatment, namely θ̂i∗,1, and no
other element of θ̂1. We prove this in Appendix 3.B.

In certain settings, other prior distributions may be more appropriate. Chapter 4 deals with
dose response models such as an Emax model with a prior on model parameters, and we report
a simulation study comparing this approach with one that uses a dependent multivariate
normal prior (Prior 2). Chapter 6 deals with simple discrete priors in a more complex
problem.
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3.6.2 Programme distribution derivations

Suppose that the prior for the treatment effect for each drug is specified as θ ∼ N(µ0,Σ0). We
derive the distributions of the maximum likelihood estimates of the treatment effect vector
θ as well as the posterior distribution for each θi given the Phase II data.

Recall from Section 3.3.2, n(c)
1 is chosen from n

(t)
1 such that equation n(c)

1 =
√
Kn

(t)
1 holds.

Define

I1 = n
(t)
1
σ2 (1 +K−1/2)−1 (3.12)

and

Σ =


I−1 σ2K−1/2/n

(t)
1 ... σ2K−1/2/n

(t)
1

σ2K−1/2/n
(t)
1 I−1 ...

... . . . σ2K−1/2/n
(t)
1

σ2K−1/2/n
(t)
1 ... σ2K−1/2/n

(t)
1 I−1

 , (3.13)

where I is the information observed per treatment in Phase II.

Then the sampling distributions of the vector of maximum likelihood estimates from the
Phase II data given θ is

θ̂1|θ ∼ N (θ,Σ) . (3.14)

As the likelihood and prior are normally distributed, conjugacy easily gives us the posterior
distribution of θ,

θ | θ̂1 ∼ N
(

(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 θ0) , (Σ−1
0 + Σ−1)−1

)
. (3.15)

In particular, the posterior distribution of the treatment effect of the ith treatment is

θi | I1 ∼ N
(

[(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 θ0)]i , [(Σ−1
0 + Σ−1)−1]ii

)
(3.16)

where one recalls that I1 denotes the set of cumulative summary statistics known directly
after Phase II, which contains θ̂1. We use this notation in preparation for Section 3.6.3.

The distributions for the maximum likelihood estimates in Phase III depend on how Phase III
is specified. In the simple case, Phase III may have a fixed sample design. Alternatively, it
may be group sequential.

In a fixed sample Phase III, the sampling distribution of the maximum likelihood estimate
of θi∗ is

θ̂2,i∗ | θi∗ ∼ N(θi∗ , 2σ2/n2), (3.17)

and therefore the posterior predictive distribution given I1, is

θ̂2,i∗ | I1 ∼ N([(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 θ0)]i, [(Σ−1
0 + Σ−1)−1]2ii + 2σ2/n2). (3.18)
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3.6.3 Optimal decision rule derivations

In Chapter 1, we defined what it means for decisions to be optimal in a drug development
process. In this section, we derive the optimal decision for Decisions 1 and 2 in terms of our
notation in a Phase II/III programme.

Decision 2

Decision 2 is the decision made after Phase II has been completed when all the variables in
I1 are known, and decides the Phase III sample size n2 and the treatment to take forward to
Phase III, i∗.

In the most general form, the optimal decision at Decision 2 is to choose n2 and i∗ such that
the expected gain given I1 is maximised. That is, we choose i∗ and n2 such that the following
expression is maximised:

D(2)
i∗,n2,I1

:= E[ G(I2, θi∗) | I1, n2, i
∗]

=
∫

R
E [ G(I2, θi∗) | I1, θi∗ , n2 , i

∗ ]πθi∗ |I1(θi∗ |I1) dθi∗ ,
(3.19)

where πθi∗ |I1 is the posterior density of θi∗ given I1 as in Equation 3.16. The integral in 3.19
is clearly maximised by the i∗ which has the largest posterior mean, regardless of the choice
of n2. Therefore define i∗ as the treatment which gives the largest posterior mean, which is
given by

i∗ := argmax
i

[(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 θ0)]i, (3.20)

using Equation 3.16.

We may express D(2)
n2,I1

in two ways, by conditioning on the posterior mean and Phase III
likelihood respectively:

D(2)
n2,I1

=
∫

R
E [ G(I2, θi∗) | I1, θi∗ , n2 ]πθi∗ |I1(θi∗ |I1) dθi∗ , (3.21)

or

D(2)
n2,I1

=
∫

R
E
[
G(I2, θi∗) | I1, θ̂2,i∗ , n2

]
πθ̂2,i∗ |I1

(θ̂i∗ |I1) dθ̂2,i∗ , (3.22)

where πθ̂2,i∗ |I1
is the probability density function of the posterior predictive distribution of

the maximum likelihood estimate of θi∗ in Phase III given I1 given in Equation 3.18.

We write
D(2)

I1
:= max

n2
D(2)
n2,I1

(3.23)

for the expected gain resulting from an optimal choice of n2.

The calculation of Equation 3.23 depends upon whether Phase III is group sequential or not,
and whether the gain function depends explicitly on the treatment effect (that is, whether ζ in
Equation 3.2 is a function of θi∗ or not). It is computationally convenient to use Equation 3.22
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when the gain function is not explicitly dependent on the treatment effect, and Equation 3.21
otherwise. We illustrate the calculation in the different cases below.

Phase III is fixed sample and the gain function is not explicitly dependent on the
treatment effect

The density for the Phase III maximum likelihood estimate is available from Equation 3.18,
so the integral in Equation 3.22 may be reduced to a weighted sum of two probabilities of
having a θ̂2,i∗ high enough to reject Hi∗ , and not. In the case when it is not, the gain may
be negative due to the cost of treating patients.

Phase III is fixed sample and the gain function is explicitly dependent on the
treatment effect

The posterior distribution for the treatment effect given the Phase II data is available from
Equation 3.16. The expected gain given a treatment effect θi∗ and Phase II data I1 can be
found using the conditional probability of rejection found using the properties of the Phase III
trial. One uses Equation 3.21 using the numerical integration method described in Section
1.6.1.

Phase III is group sequential

When Phase III is group sequential, one may use a different method of calculation.

The expected gain term in Equation 3.21 becomes a nested multivariate integral of the
statistics at each analysis in the group sequential design. The outer integral in terms of θi∗
can be moved inside to be the innermost integral, which leads to a more efficient calculation.
In Appendix 3.C, we describe this approach in detail.

Decision 1

Decision 1 is the decision made before Phase II commences, which chooses the number of
patients for Phase II. We choose n(t)

1 only since n(c)
1 is found from the relation n(c)

1 =
√
Kn

(t)
1 .

We find the n(t)
1 to maximise the expected gain given I0,

D(1)
n

(t)
1 ,I0

= E[G(I2, θi∗)|I0, n
(t)
1 ]. (3.24)

We may condition on the treatment effect vector θ and the the maximum likelihood estimate
from the Phase II data θ̂1 to write Equation 3.24 in terms of the expected gain given optimal
decisions in Decision 2, D(2)

I1
:

D(1)
n

(t)
1 ,I0

=
∫

RK

∫
RK

E
[
G(I2, θi∗) | I0, θ̂1, n

(t)
1

]
πθ̂1

(θ̂1 | n(t)
1 ,θ) πθ(θ) dθ̂1 dθ

=
∫

RK

∫
RK

E [ G(I2, θi∗) | I1]πθ̂1
(θ̂1 | n(t)

1 ,θ) πθ(θ) dθ̂1 dθ

=
∫

RK

∫
RK
D(2)

I1
πθ̂1

(θ̂1 | n(t)
1 ,θ) πθ(θ) dθ̂1 dθ.

(3.25)

This integral is difficult to compute using numerical integration due to the large number of
dimensions of each of the integration variables. A Monte Carlo approach is therefore preferred
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for evaluating the integral by multiple forward simulations of the Phase II/III programme.
Quantifying the Monte Carlo error is straightforward.

Let θ̂(n) iid∼ θ̂1 | n(t)
1 ,θ(n) (the distribution of the maximum likelihood estimates in Phase II)

where θ(n) iid∼ θ | I0 (the prior distribution for the treatment effect), both for n = 1, ..., N .
The Monte Carlo estimate takes the form

MC(1)
n

(t)
1 ,I0

:= 1
N

∑
n=1,...,N

D(2)
(I0,θ̂

(n)
1 ,n

(t)
1 ,n

(c)
1 )
. (3.26)

One uses this Monte Carlo approximation to approximate D(1)
n

(t)
1 ,I0

,

D(1)
n

(t)
1 ,I0

≈MC(1)
n

(t)
1 ,I0

, (3.27)

The optimal decision in Decision 1 is found using these Monte Carlo estimates:

D(1)
I0

:= max
n

(t)
1

MC(1)
n

(t)
1 ,I0

(3.28)

for the expected gain resulting from an optimal choice of n(t)
1 in Decision 1.

3.6.4 Computing the optimal decision rules

In this section, we outline the main dynamic programming algorithms used to calculate the
optimal decision rules and note the computational approaches used.

Algorithms

We outline the 3 main functions used to compute the optimal decision rules in the following
boxes.

Dec_1
� For each n(t)

1
– For each MC simulation as in Equation 3.26:

� Simulate a programme using prg_sim, storing the expected gain.
– Calculate the mean expected gain from these simulations.

� Identify the n(t)
1 with the largest expected gain and return the n(t)

1 and expected
gain.

Prg_sim
� Simulate θ using the prior distribution as in Section 3.6.1.
� Simulate θ̂1 using the distribution in Equation 3.14.
� Calculate the optimal i∗, n2 and corresponding programme expected gain using

the Dec_2 function.
� Return the expected gain.

57



Dec_2
� Identify i∗ using Equation 3.20.
� For each n2:

– Calculate expected gain using the methods described in Section 3.6.3.
� Identify the n2 with the largest expected gain and return the i∗, n2 and

corresponding expected gain.

Computational techniques

In order to reduce the computation time needed to compute the optimal decisions, we use
the following techniques described in Section 1.6 with Decision 1 and 2.

Decision 2: Group Sequential Design Computations

As described in Section 3.6.3, in Appendix 3.C we derive an efficient method for calculating
the probability of rejection of a Group Sequential Design given a treatment effect is distributed
according to a normal distribution.

Decision 1: Coupling

As described in Section 1.6, coupling the errors of successive Monte Carlo estimators can
reduce the variance of the difference of the two estimators. Specifically, in Decision 1 we
can accomplish this by re-using the same underlying standard normal random variables when
simulating variables for Equation 3.26 for different values of n(t)

1 . When looking at other
programmes, these same sets of standard normal random variables can be used to reduce the
variance of the difference in expected gain between 2 programmes.

Decisions 1: Use of Splines

The most computationally intensive part of the Decision 1 calculation is the calculation of
D(2)

I1(θ̂(k)
1 )

in Equation 3.26. From Section 1.6.2, if the expected gain of the maximising i∗ and

n2 is a function of the posterior mean θ̆i∗,1 only, the spline method may be used to interpolate
D(2)

I1(θ̂(k)
1 )

from θ̆i∗,1, bypassing the need to do a lengthy calculation to evaluate D(2)
I1(θ̂(k)

1 )
in

Equation 3.26. This is the case when the combination function is a function of the Phase III
data only or the prior is Special Prior 1. When this is not the case, and the expected gain of
the maximising i∗ and n2 is a function of both the posterior mean θ̆i∗,1 and the p-value p̃i∗,1,
then thin plate splines may be used instead.

3.7 Discussion

The Seamless Phase II/III Programme with Treatment Selection in Current
Research

The approach taken in this chapter to model a seamless Phase II/III programme with
treatment selection relates to several current research themes in adaptive designs. We describe
two themes in this section, and outline how our approach is a special case of each.
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Multi Arm Multi Stage Trials

A modification to the gold standard randomised controlled trial design to allow more
treatments and stages makes the trial a multi-arm multi-stage (MAMS) trial. Multi-arm
means the trial is initialised with several treatments of interest. Multi-stage refers to the
trial taking several stages, where interim adaptations may be performed. In general, at the
end of each stage, treatments may be dropped according to some pre-specified rule, and the
trial continues until either one treatment is deemed superior to control, or the trial is stopped
for futility.

Only one control arm is needed to evaluate multiple new treatments meaning the sample size
and administrative costs are reduced, and the dropping of underperforming treatments earlier
in the study can reduce the expected sample size. The ’Systemic therapy for advancing or
metastatic prostate cancer (STAMPEDE)’ (James et al. (2009)) trial is one of the first to
employ such methodology. The trial contained six treatments with interim analyses used to
drop underperforming treatments. Magirr et al. (2012) provided an approach that gave exact
numerical computations for the acceptance and rejection boundaries, which can be computed
using numerical integration when the number of stages is 4 or less. Wason and Jaki (2012)
make an attempt to optimise under this framework to minimise the expected sample size
under some restrictions and different optimality criterions.

Magirr et al. (2014) extends the previous framework by using combination tests within closed
testing procedures. These allow adaptations to be performed between stages with multiple
treatments allowed to continue throughout the stages.

Our approach may then be considered a special case of a general MAMS trial, using
combination tests within closed testing procedures to control error rates. In particular,
the number of stages will be two, with all but one treatment dropped for the second stage.
This follows the traditional process of Phase II and III in drug development with Phase II
being concerned with treatment selection and Phase III providing confirmatory evidence
of the efficacy of a chosen treatment. These restrictions mean it is easier to optimise the
programme to a greater extent than the more general framework.

Seamless Phase II/III Trials

The simplest form of a seamless Phase II/III trial is an operationally seamless Phase II/III
trial. Operationally seamless Phase II/III trials aim to reduce the ‘white space’ between
Phase II and III in an operation sense of having a pre-defined decision rule between the two
phases. However they do not use Phase II data in the confirmatory hypothesis test. We have
presented an inferentially seamless Phase II/III design in this chapter, which refers to the
use of Phase II data within the confirmatory hypothesis test at the end of Phase III.

Our approach may be described as a seamless Phase II/III design in both senses as we allow
the use of Phase II data in the final analysis whilst additionally specifying a decision rule
to choose the design of Phase III based on the Phase II data without a need for any ’white
space’.

Inferentially seamless designs in particular have received academic attention in recent years
in research. They are proposed in generality in Bretz et al. (2006) and Jennison and Turnbull
(2007). The features of these designs are that they allow for multiple treatments in the
first stage (corresponding to Phase II) with one or more treatments selected to continue to
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the second stage (corresponding to Phase III). Combination functions are used as the final
test statistic within a closed testing procedure in order to control the familywise error rate
in the strong sense. Jennison and Hampson (2015) work within this seamless Phase II/III
framework to identify optimal data combination rules based on assumed treatment effects.
In particular, a closed testing procedure using an inverse normal combination rule and a
Dunnett test for intersection hypotheses is one of those which is robust in its efficiency under
the framework studied.

A Discussion About Our Approach

We presented a framework in which to perform a Phase II/III programme with treatment
selection at the interim analysis. Within this framework, we derived optimal decision
rules according to Bayesian decision theory with a gain function. We performed several
simulation studies to examine the properties of the programmes, and examined the value
to the programme of introducing adaptive methods such as allowing the programme to be
inferentially seamless, or the use of group sequential designs.

We found that group sequential methods added comparably more to the programme than
the use of combination tests to make the programme inferentially seamless. This result held
for both simple gain functions, and those that tried to more accurately model the financial
impact of decisions in the programme.

The optimal decision rules were found to be dependent upon the type of gain function used,
with more complex gain functions incorporating time and treatment effect producing different
optimal decision curves in both decision points before Phase II and before Phase III. One
should ensure aspects of the decision making process that are important in decision making for
a specific programme, such as time until patent expiry or safety concerns, are well accounted
for in the gain function.

Strengths of approach

The approach taken here provides a computationally feasible method to studying a complex
problem. Many outputs of the approach are interesting in their own right. The framework
can comprehensively deal with degrees of beliefs about unknown treatment effects and update
these given data.

The approach produces visually intuitive decision curves for Decision 1 and Decision 2 and
properties of the optimised programme. By changing the parameters of the treatment effects
or the structure of the programme, one can easily assess how the value of the programme
changes when these changes occur. In particular, this allowed us to fairly assess the value
of bringing adaptive elements to the programme in the form of combination tests and group
sequential designs.

A comment on studying the drug development process as a Phase II/III
programme

One of the arguments for studying Phase II and III together as a programme is that decisions
about the individual phases are interrelated. In particular, the optimal spread of budget
between Phase II and III may be found only when considering the programme as a whole,
rather than each phase individually.

Suppose one has a portfolio of Phase II/III programmes. One decision one must be required
to make is to allocate resources to the programmes in the portfolio. Clearly, here also the
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decisions are interrelated, such that the optimal spread of budget will be found only when
considering the portfolio as a whole. Fixing the budgets for each programme and optimising
them individually may not be optimal. This provides an argument for studying not just
individual phases together as a programme, but studying individual programmes together as
a portfolio of programmes.

Whilst one should be aware of the wider picture, clearly there is still value in studying
phases or programmes in isolation. Studying programmes and portfolios is more difficult
than studying individual phases and programmes respectively, which means that simplifying
assumptions must be made, which may remove the intricacies of the decision making problem
which are interesting to the investigator. In Chapter 6, we make an attempt to generalise
our thinking to considering a portfolio of programmes. In that approach, we make the
simplification to drop some details and make other simplifying assumptions about each
programme within the portfolio. These include considering only Phase III, moving to a
discrete prior for treatment effects, and stating the hypothesis test may only depend upon
Phase III data.

The approach taken in this chapter to model a programme is valuable in the sense that it
allows us to model a programme without too many simplifying assumptions. In particular, we
may specify a continuous prior for the treatment effects which is updated to make decisions
within the Phase II/III programme in a Bayesian decision making framework with detailed
optimal decision rules for each decision point. We believe the approach taken here would be
of interest to stakeholders and decision makers in late phase drug development.

61



Chapter 3 Appendices

3.A Exploring the choice of n2 in Decision 2

As discussed in the simulation study, both the optimal n2 and corresponding expected gain
in Decision 2 may be determined in certain situations by just the posterior mean of θi∗ .

In the below figure, we plot a typical decision curve encountered in Decision 2.

Figure 3-10: An optimal decision curve for Decision 2.

The decision rule plotted above has a few interesting features. Firstly, note that for low values
of the posterior mean the optimal n2 is 0. That is, if the Phase II data strongly suggest a
negative treatment effect, then the best action to not perform a Phase III to save the cost of
treating Phase III patients.

As the posterior mean increases, the optimal n2 discontinuously jumps to a large positive
value, and then continues to increase to a peak. As the posterior mean approaches 0, a non-
insignificant amount of the posterior distribution is just above 0, where a large n2 is needed
to detect a difference in the hypothesis test.

As the posterior mean gets very large, the optimal choice of n2 starts to decrease again as a
smaller n2 suffices to detect a difference in the hypothesis test.

We return to the discontinuity where the optimal choice of n2 jumps from 1 to a large positive
number as the posterior mean crosses a threshold. Figure 3-11 illustrates the mechanism
behind this discontinuity. When the posterior mean is around the value the jump occurs,
a small proportion of the posterior density will be small but positive. In order to detect
this difference, the sample size must be substantial. There exists a decision between not
performing the trial and performing a trial with a substantial sample size, and as the posterior
mean increases, this leads to the discontinuous jump in the optimal sample size for Phase III.
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Figure 3-11: 4 pairs of figures for 4 increasing values of the posterior mean, showing how
the discontinuity arrives in Figure 3-10. Each figure on the left shows the expected gain for
different values of n2, with the maximising value of n2 indicated by a red cross on the right
figure of the optimal decision curve as a function of the posterior mean of θi∗ .
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3.B Properties of Special Prior 1

In Section 3.6.1, we defined Special Prior 1. We show properties of this prior in this section.

Let Σ0 be

[Σ0]i,j =

c if i = j

c (1 +
√
K)−1 if i 6= j

, (3.29)

for some constant c.

We show that for any i in {1, ...,K}, the posterior distribution for the treatment effect of
treatment i depends only on the maximum likelihood estimate for its treatment effect from
Phase II data. In particular it does not depend any of the non-ith elements of the vector θ̂1.

From Equation 3.14, we have θ̂1|θ ∼ N(θ,Σ). We note that

Σ = σ2(1 +K−1/2)
cn

(t)
1

Σ0. (3.30)

Let σ′2 := σ2(1+K−1/2)
cn

(t)
1

, such that Σ = σ′2Σ0. We consider the posterior distribution of θ

given θ̂1. By standard theory, this is multivariate normal with mean

(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 θ0) = ((1 + σ′−2)Σ−1
0 )−1(σ′−2Σ−1

0 θ̂1 + Σ−1
0 θ0)

= (1 + σ′−2)−1(σ′−2θ̂1 + θ0).
(3.31)

In particular the posterior distribution mean for the treatment effect of treatment i∗ satisfies

θ̆i∗,1 = (1 + σ′−2)−1(σ′−2θ̂i∗,1 + θi∗,0), (3.32)

which only depends upon the i∗th elements of θ̂1 and θ0.

If i∗ is index of maximum element of θ̂1, the Dunnett multiplicity adjusted p-value p̃i∗,1
depends only on the ith element of θ̂1. Therefore there exists a bijection between θ̆i∗,1 and
p̃i∗,1 in this case.

3.C Group sequential computations

3.C.1 Calculating the probability of rejection for a distributed θ

In Jennison and Turnbull (2000), the notation ψk is used to represent the probability of
rejection at stage k. The authors treat the treatment effect θ as fixed. However, in many
applications studied in this chapter, the probabilities relating to a group sequential design
need to be evaluated over a distribution of possible treatment effects. That is, probabilities
such as ψk need to be evaluated over a distribution π(θ) on θ, which is typically Gaussian.
The first approach one may take to computing the probability of rejection ψk when θ is
distributed according to π(θ), denoted by ψπ,k, is to simply integrate the probability over a
range of possible θ values, weighting by the the corresponding distribution π(θ) as such:
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ψπ,k :=
∫

R
ψk(θ)π(θ)dθ

=
∫

R

∫ b1

a1
...

∫ bk−1

ak−1

∫ ∞
bk

f1(s1; θ)f2(s1, s2; θ)...fk(sk−1, sk, θ) dsk...ds1 π(θ) dθ
(3.33)

for densities f1,f2,...,fS as in Jennison and Turnbull (2000) but on the score statistic scale,
and stopping boundaries a1, a2, ..., aS ,b1, b2..., bS also on the score statistic scale.

The authors show that ψk can be re-written in terms of iteratively defined sub-densities.
Thus we may rewrite ψπ,k as

ψπ,k =
∫ bk−1

ak−1

∫
R
gk−1(sk−1; θ)ek−1(sk−1, bk; θ)π(θ) dθ dsk−1, (3.34)

where g1, ..., gk are the sub-densities on the score statistic scale and are defined iteratively by

g1(s1; θ) = f1(s1; θ)

gk(sk; θ) =
∫ bk−1

ak−1
gk−1(sk−1; θ)fk(sk−1, sk; θ) dsk−1.

(3.35)

The advantage in using this formulation is that approximations of the sub-densities can be
computed iteratively. However in the above form, integrating over the distribution π(θ) on
the outside of the integral is computationally expensive. The approach we take here is to
move this integral within the other to become the innermost integral and is motivated by
Barber and Jennison (2002). We write

ψ∗π,k :=
∫ bk−1

ak−1
g∗k−1(sk−1)e∗k−1(sk−1, bk) dsk−1, (3.36)

where g∗1(s1) :=
∫

R
f1(s1; θ) π(θ) dθ,

g∗k(sk) :=
∫ bk−1

ak−1
g∗k−1(sk−1)

∫
R
fk(sk−1, sk; θ)πθ|Sk−1=sk−1(θ) dθ dsk−1, and

e∗k−1(sk−1, bk) :=
∫

R
ek−1(sk−1, bk; θ)πθ|Sk−1=sk−1(θ) dθ

We prove that using the computationally faster ψ∗π,k is equivalent to using ψπ,k.

ψπ,k = ψ∗π,k for any distribution π and k = 1, ...,K.

Proof. By comparing the forms of ψ∗π,k and ψπ,k, it is sufficient to prove that for any k, θ,
and sk−1,

g∗k−1(sk−1)πθ|Sk−1=sk−1(θ) = gk−1(sk−1, θ)π(θ). (3.37)

Firstly, we note that we can re-write gk(sk; θ) and g∗k(sk; θ) in the following ways:
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gk(sk; θ) =
∫ bk−1

ak−1
gk−1(sk−1; θ)fk(sk−1, sk; θ) dsk−1

=
∫ bk−1

ak−1

∫ bk−2

ak−2
gk−2(sk−2; θ)fk−1(sk−2, sk−1; θ) dsk−2fk(sk−1, sk; θ) dsk−1

=
∫ bk−1

ak−1

∫ bk−2

ak−2
...

∫ b1

a1
f1(s1; θ)f2(s1, s2; θ)...fk(sk−1, sk; θ) ds1...dsk−1,

and

g∗k(sk) =
∫ bk−1

ak−1
g∗k−1(sk−1)

∫
R
fk(sk−1, sk; θ)πθ|Sk−1=sk−1(θ) dθ dsk−1

=
∫ bk−1

ak−1

∫ bk−2

ak−2
g∗k−2(sk−2)

∫
R
fk−1(sk−2, sk−1; θ)πθ|Sk−2=sk−2(θ) dθ dsk−2

×
∫

R
fk(sk−1, sk, θ)πθ|Sk−1=sk−1(θ) dθ dsk−1

=
∫ bk−1

ak−1

∫ bk−2

ak−2
g∗k−2(sk−2)

∫
R
fk−1(sk−2, sk−1; θ)πθ|Sk−2=sk−2(θ) dθ

×
∫

R
fk(sk−1, sk, θ)πθ|Sk−1=sk−1(θ) dθ dsk−2 dsk−1

= ...

=
∫ bk−1

ak−1
...

∫ b1

a1

∫
R
f1(s1; θ)πθ(θ) dθ

∫
R
f2(s1, s2, θ)πθ|S1=s1(θ) dθ

× ...×
∫

R
fk(sk−1, sk, θ)πθ|Sk−1=sk−1(θ) dθ ds1...dsk−1.

Now, Bayes’ Theorem implies the following relation;

πθ|Sk−1=sk−1(θ) = gk−1(sk−1; θ)π(θ)∫
R gk−1(sk−1; θ)π(θ)dθ . (3.38)

Consider the following:

Lemma
For any k and sk,

g∗k(sk) =
∫
gk(sk; θ)π(θ)dθ. (3.39)

Assume the Lemma holds. Then we use equations 3.38 and 3.39 to show Equation 3.37 holds:

g∗k−1(sk−1)πθ|Sk−1(θ) =
∫
gk−1(sk−1, θ)π(θ)dθ gk−1(sk−1, θ)π(θ)∫

gk−1(sk−1, θ)π(θ)dθ
=gk−1(sk−1, θ)π(θ)

(3.40)

This is sufficient to complete the proof. We finish by proving the Lemma.
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Proof of Lemma:

Note that Bayes’ Theorem implies

πθ|S1=s1(θ) = f1(s1; θ)π(θ)∫
R f1(s1; θ)π(θ)dθ , and for r = 2, ..., k − 1,

πθ|Sr=sr(θ) =
∫ br−1
ar−1

...
∫ b1
a1
f1(s1; θ)f2(s1, s2; θ)...fr(sr−1, sr; θ)π(θ)ds1...dsr−1∫

R

∫ br−1
ar−1

...
∫ b1
a1
f1(s1; θ)f2(s1, s2; θ)...fr(sr−1, sr; θ)π(θ)ds1...dsr−1dθ

.

(3.41)

Therefore one may write

g∗k(sk) =
∫ bk−1

ak−1
...

∫ b1

a1

×
∫

R
f1(s1; θ)π(θ)dθ

×
∫

R
f2(s1, s2; θ) f1(s1; θ)π(θ)∫

R f1(s1; θ)π(θ)dθdθ

×
∫

R
f3(s2, s3; θ)

∫ b1
a1
f1(s1; θ)f2(s1, s2; θ)π(θ)ds1∫

R

∫ b1
a1
f1(s1; θ)f2(s1, s2; θ)π(θ)ds1dθ

dθ

× ...

×
∫

R
fk(sk−1, sk; θ)

∫ bk−2
ak−2

...
∫ b1
a1
f1(s1; θ)...fk−1(sk−2, sk−1; θ)π(θ)ds1...dsk−2∫

R

∫ bk−2
ak−2

...
∫ b1
a1
f1(s1; θ)...fk−1(sk−2, sk−1; θ)π(θ)ds1...dsk−2dθ

dθ

ds1...dsk−1

=
∫ bk−1

ak−1
...

∫ b1

a1

∫
R
f1(s1; θ)f2(s1, s2; θ)...fk(sk−1, sk; θ)π(θ)dθds1...dsk−1

=
∫

R

∫ bk−1

ak−1
...

∫ b1

a1
f1(s1; θ)f2(s1, s2; θ)...fk(sk−1, sk; θ)π(θ)ds1...dsk−1dθ

=
∫
gk(sk; θ)π(θ),

which completes the proof.

Similarly, one may show for the probabilities of acceptance at stage k, φπ,k = φ∗π,k, where

φπ,k =
∫ bk−1

ak−1

∫
R
gk−1(sk−1; θ) e′k−1(sk−1, ak; θ) π(θ) dsk−1 dθ, (3.42)

for probability of acceptance at stage k, e′k−1(sk−1, ak; θ), which may be derived in a similar
way to its probability of rejection counterpart, ek−1(sk−1, bk; θ), and

φ∗π,k :=
∫ bk−1

ak−1
g∗k−1(sk−1) e′∗k (sk−1, ak) dsk−1, (3.43)

where
e′∗k (sk−1, ak) :=

∫
R
e′k−1(sk−1, ak; θ) πθ|Sk−1=sk−1(θ) dθ

Following this proposition, the probability of rejection in a group sequential design with K
stages when θ is distributed according to π(θ) may be written as
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pπ( cross rejection boundary ) =
K∑
k=1

ψπ,k =
K∑
k=1

ψ∗π,k (3.44)

Using the ψ∗π,k form allows computations to be performed much faster when θ has some
distribution.

Given ψπ,k and ψ∗π,k have been calculated for all k, properties about the sample size of the
group sequential design can be easily deduced.

3.C.2 Calculating the expected gain when θ is random, ζ depends upon θ

This method may be extended the calculate the expected gain of a treatment with treatment
effect θ, which has some distribution, entering a group sequential design when the gain
function depends upon θ.

In this method, one calculates expected gain in addition to the probability of rejection for
a normally distributed θ. This involves integrating above the rejection boundaries b at each
stage to calculate the expected gain at the previous stage. Denote ek(θ) as the expected gain
from the GSD with treatment effect θ from stopping at stage k, and G(θ, sk) the gain form
stopping at stage k at sk when theta is θ.

In this case, the quantity

eπ,k :=
∫

R
ψk(θ)π(θ)dθ

=
∫

R

∫ b1

a1
...

∫ bk−1

ak−1

∫ ∞
bk

f1(s1; θ)...fs(sk−1, sk, θ) G(θ, sk) dsk ...ds1 π(θ) dθ
(3.45)

may be written as

e∗π,k =
∫ bk−1

ak−1
g∗k(sk−1)

∫
R

∫ ∞
bk

G(θ, sk) fk(sk−1, sk; θ) dsk πθ|Sk−1=sk−1(θ) dθ dsk−1. (3.46)

The proof that eπ,k = e∗π,k is similar to the previous case in Appendix 3.C. The overall
expected gain of the GSD may then be written as

eπ =
S∑
k=1

e∗π,k. (3.47)
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4
The Value of Dose Response Modelling in Phase II/III

Programmes

4.1 Dose response modelling

4.1.1 An introduction

In Chapter 3, we treated each treatment as distinct and made no assumptions about how
the mean responses for efficacy for different treatments were related. However in many
Phase II/III programmes, a key part of the development process is the identification of the
correct dose of a treatment when there is some relationship between the mean responses for
efficacy at different dose levels. In this chapter, we examine the problem of a Phase II/III
programme with dose selection, where the treatments entering Phase II are assumed to be
doses of the same treatment. Using a similar framework to Chapter 3, we assess the value
that different dose response modelling approaches may bring to the programme.

Phase I clinical trials are concerned with finding a maximum tolerated dose. That is, the
highest dose of treatment that does not have unacceptable risk of adverse events. Phase III
involves confirmatory trials to provide evidence of efficacy and an acceptable risk of adverse
events of a single treatment. Phase II is therefore often concerned with dose ranging studies.
The purpose of a dose ranging study is to identify whether a Phase III study should be
performed, and the dose to take forward to Phase III. Sometimes, the number of patients
that should be used in Phase III will also be influenced by results from the dose ranging
study.

A drug or treatment is intended to have beneficial effects to patients, but it will also have
unwanted effects. These unwanted effects may be called adverse events. As the dose increases,
both the beneficial effects and risk of adverse events may increase together. Dose finding is
the problem of finding a dose with the right balance of beneficial effects and risk of an advance
event. The ICH E4 document on ’Dose Response Information to Support Drug Registration’
ICH (1998) contains the primary regulatory guidance.

4.1.2 Modelling dose and efficacy

A common approach is to model the relationship between dose and efficacy with parametric
dose response models. Safety is not always modelled in the same way, due to the potential
difficulties of obtaining accurate quantitative measurements. In many cases, it is assumed
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that the efficacy plateaus as the dose increases beyond a certain level, whilst the risk of
adverse effects increase monotonically.

The dose finding problem often becomes that of trying to find the smallest dose that provides
almost maximal efficacy. Safety aspects of each dose may then be modelled quantitatively
using information learned from previous trials in the therapeutic area, Phase I studies, and
perhaps even Phase II studies when the safety responses are available in a short period of
time. The trade-off between wanted and unwanted effects may be analysed using decision
theory or clinical utility indices.

In order to get information about the relationship between dose and efficacy, one needs to
place the doses at appropriate intervals. In practice, information about the dose response
relationship is limited when designing the study, so one solution is to use more doses covering
a wide range in order to attempt to capture the true dose response curve. Phase I trials will
provide information about the maximum tolerated dose which may be an upper bound on
any doses studied. Basic rules of thumb in industry advise the use of 4-7 doses with a range
such that the largest dose is ten times larger than the lowest dose. The doses may be spaced
out uniformly on the log dose scale.

4.1.3 Dose response models

Let µ(d,θ) represent the mean patient efficacy response at dose d for some parameter vector
θ.

A popular dose response model is the 3-parameter Emax model. For this model, µ(d,θ) takes
the form

µ(d,θ) = α1 + α2
d

β + d
, (4.1)

where θ = (α, β) are the model parameters with α = (α1, α2). Parameter α1 represents the
response at d = 0, α2 represents the increase from α1 to the maximum response as the dose
gets large, and β (ED50) the dose such that the response is α1 + 1

2(α2 − α1).

A commonly used more general model is the 4-parameter Emax model where µ(d,θ) takes
the form

µ(d,θ) = α1 + α2
dh

βh + dh
, (4.2)

where the Hill parameter h > 0 controls the steepness of the curve and is included in the
definition of θ.

The Emax dose response model may be derived from pharmacological principles: see Bretz
and Xun (2017). The appropriateness of the Emax model for modelling dose and efficacy
response data has been evaluated by Thomas et al. (2014). In this paper, a large number of
efficacy dose response relationships for small molecules were evaluated and it was concluded
that in almost all situations the Emax curve described the data adequately well.

Given that the true underlying dose response relationship takes the form of an Emax model,
there are other functions that can adequately describe the data over a particular subset of
the dose range. An exponential or linear function can be used to obtain local approximations
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of the true underling Emax model. Because of this, extrapolation beyond a specified dose
range upon which a model is fitted must be done with care.

Dose response relationships that are not monotonic increasing may occur due to
pharmacological reasons. Lagarde et al. (2015) detail cases dose response relationships where
receptor desensitisation and negative feedback mechanisms lead to a decrease in efficacy for
high doses. The quadratic and beta dose response functions can accommodate non-monotonic
dose response relationships.

In addition to the Emax function, the Table 4.1 lists 6 further dose response functions. We
denote B(δ1, δ2) as the Beta function.

Table 4.1: Dose response functions from Bretz et al. (2005)

Name Dose Response Function Parameter Constraints

Exponential E0 + E1(exp(d/δ)− 1) δ > 0
Power E0 + E1d

δ δ > 0
Linear E0 + δd

Linear Log E0 + E1log(d+ c) c > 0
Quadratic E0 + β1d+ β2d

2

Beta E0 + EmaxB(δ1, δ2)(d/D)δ1(1− d/D)δ2 δ1, δ2, D > 0

The Use of Bayesian Methods

Inference using dose response models can be performed in a frequentist setting where
estimates for the parameters of the dose response model are obtained given observed data,
with some measure of uncertainty. These estimates may be obtained using methods such as
maximum likelihood estimation.

Alternatively, one may use a Bayesian approach where priors are attached to the parameters of
the dose response model and the posterior distribution of these parameters are derived given
the observed data. Methods for finding these posterior distributions may include Markov
Chain Monte Carlo (MCMC) or other sampling approaches. In Appendix 4.A, we outline a
rejection sampling algorithm that may be used to sample from the posterior distribution of
the parameters of any dose response model in Table 4.1. This method is far more efficient
than the MCMC approach.

In this chapter, we shall take the Bayesian approach.

4.1.4 MCP-Mod

Bretz et al. (2005) first describe the procedure MCP-Mod, which amalgamates multiple
comparison procedures and model-based approaches to tackle the dose finding problem. The
method starts with a set of potential models for the dose response relationship. Given the
data, the procedure conducts a contrast test for each dose response model in order to identify
if there is a dose response relationship, whilst controlling the FWER of the contrast tests
using multiple comparison procedures (MCP step). If any of the models are appropriate,
it selects the ‘best’ model. Inference may be performed using this model (Mod step); for
example, to estimate a target dose of interest.
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MCP-Mod has attracted attention since its inception, with R packages and SAS procedures
written for it. König (2015) extends the method by allowing pairwise dose control comparisons
in a closed testing procedure, and allowing combination tests to perform interim analyses to
change the models under consideration, sample sizes, and doses. Commercial software such
as EAST (EAST-6 (2019)) have implemented MCP-Mod procedures as of 2019. Trials such
as Worm et al. (2017) have used MCP-Mod methodology.

The original MCP-Mod approach was for a single, normally distributed endpoint in a parallel-
group design. We outline the approach in Appendix 4.B.

Use of MCP-Mod Within a Phase II/III Programme

MCP-Mod is a procedure suitable for the problem when there is uncertainty as to the true
relationship between dose and the mean efficacy responses. By specifying a set of candidate
of models, the procedure may identify which, if any, are best suited to the observed data.
In this chapter, we assess the value of using this approach in comparison to simpler dose
response models.

Extensions

The MCP-Mod procedure has received much attention since this initial formulation in
Bornkamp (2006). The method has been extended to general linear models and can be
used with combination tests. In Appendix 4.D, we outline these extensions and suggest
other generalisations to avoid the use of guesstimates and improve the power of the multiple
contrast test.

4.1.5 Our Phase II/III programme framework

In Chapter 3, we specified a Phase II/III programme framework to assess the benefit of
using adaptive designs within the programme when the treatments were not assumed to
have a relationship between dose and efficacy. Here, we specify a Phase II/III programme
framework to assess the benefit of using dose response models when the doses and efficacy
responses have some relationship. Phase III is fixed sample with no use of Phase II data in
the final hypothesis test. As in Chapter 3, we find the optimal decision rules according to
Bayesian decision theory in order to optimise the programme.

Define yi,j as the observed response for patient j at dose di for for i = 1, ...,K, and
j = 1, ..., ni, with i = 1 corresponding to the control arm. We suppose the doses are such
that d1 < d2 < ... < dK . Consider the model

yi,j = µ(di) + εi,j , εi,j
iid∼ N(0, σ2), (4.3)

Thus, the observed response for patient j at dose di is normally distributed with a known
homogeneous variance across all doses, and the mean response for a particular dose di is given
by µ(di). We suppose the dose response model with parameters θ specifies µ(di) = f(di,θ).
Denote by µ the vector of mean responses (µ(d1), ..., µ(dK))T .

The Phase II/III programme framework is similar to the one in Chapter 3, which chooses the
Phase II sample size n1 (Decision 1), performs Phase II, and then chooses the dose to take
forward i∗ and Phase III sample size n2, both based on the Phase II data (Decision 2).
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• Decision 1: Choose n1 using the prior distribution on the treatment effect vector
θ according to the programme assumptions.
• Observe Phase II responses with n1 patients on each of the K doses, and

make statistical inferences about the treatment effect vector θ according to the
programme assumptions.
• Decision 2: Choose n2 and i∗ based on the posterior distribution of θ given the
Phase II data.
• Observe Phase III responses of dose i∗ and placebo with n2 patients on each arm
and perform a statistical hypothesis test using only Phase III responses.

The key difference here to the approach in Chapter 3 is that the dose response model used will
affect both the dose i∗ that is taken forward and the Phase III sample size n2 in Decision 2.
Information from other doses affects the estimate of µ(di).

Similarly to Chapter 3, we find the optimal decisions in Decision 1 and 2 according to Bayesian
decision theory. The gain function is used to calculate these optimal decision rules, but in
contrast to Chapter 3, must be influenced by the increased risk of adverse events for higher
doses.

We incorporate the risks of adverse events at each dose with a multiplicative penalty for
each successive dose S = (s2, ..., sK). For dose i, si will represent the probability the risk of
adverse events is at a satisfactory level which will not stop the revenue being realised. This
represents the risk that a safety problem is not found post-marketing. As the dose increases,
this probability decreases such that s2 ≥ s3 ≥ ... ≥ sK . We denote the indicator function
that a safety problem occurs as 1(No safety problems for drug i) with the expected value si.

Using notation from Chapter 3, the gain function is specified in the following way:

G(I2, θi∗) := G 1{Hi∗ is rejected}1(No safety problems for drug i∗) −Kγ1n1 − 2γ2n2. (4.4)

One may compare the values of optimised programmes when components of the programme
are changed.

4.2 Quantifying the value of dose response modelling in a
Phase II/III programme

4.2.1 Introduction

In Chapter 3, we assessed the value of introducing adaptive methods in a Phase II/III
programme by specifying different programmes within a general framework and optimising
each one by finding the optimal decision rules at each decision point according to Bayesian
decision theory. This section aims to assess the value of introducing dose response modelling
methods in a Phase II/III programme. Similarly to before, we must specify different
programmes within a general framework and find the optimal decision rules at each decision
point.
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4.2.2 Case Study 1: The value of using an Emax model in a Phase II/III
programme

Case study setup

Suppose the mean efficacy responses µ on doses d1, ..., dK are from the 3-parameter Emax
model. That is,

µ = (µ(d1,θ), ..., µ(dK ,θ)) (4.5)

where µ(d,θ) is defined in Equation 4.1.

Let N+(·, ·) be the positively truncated normal distribution with mean µβ, and variance Λβ
such that a sample may be obtained from this distribution by repeatedly sampling from
N(µβ,Λβ) until the sample is positive.

We specify the prior distribution of the Emax model parameters θ = {α, β}. In particular,
we specify the priors

α ∼ N(µα,Λα), and β ∼ N+(µβ,Λβ). (4.6)

Below, we define three programmes which we shall compare. The differences between the
programmes lie in the choice of model of the mean efficacy responses µ and the priors
attached to parameters within the model. The posterior distribution of µ given the Phase II
data depends upon these choices.

Programme 1 assumes no distinct relationship between the mean efficacy responses for
different doses. The model for Programme 1 specifies the mean efficacy response µ follows
a multivariate normal distribution with a diagonal covariance matrix. Programme 2 allows
dependence between the elements of µ within the model by allowing the covariance matrix
to be non-diagonal. Programme 3 uses the correct Emax model.

The vector of mean responses at each dose is defined as y and follows the distribution

y ∼ N(µ, diag(σ2/n1, ..., σ
2/nK)). (4.7)

Programme 1 (MVN prior for µ with diagonal covariance matrix)

• Specify a MVN prior µ ∼ N(µ0,Σ0), where Σ0 is diagonal.

• Given Phase II data y, use posterior distribution µ|y to make decisions in Decision 2.

Programme 2 (MVN prior for µ with non-diagonal covariance matrix)

• Specify a MVN prior on the responses µ ∼ N(µ0,Σ0), where Σ0 is not necessarily
diagonal.

• Given Phase II data y, use posterior distribution µ|y to make decisions in Decision 2.

Programme 3 (Emax model for µ)

• µ = (µ(d1,θ), ..., µ(dK ,θ)) as in Equation 4.5.

• Specify a prior for each of the Emax model parameters α ∼ N(µα,Λα) and β ∼
N(µβ,Λβ)

• Given Phase II data y, use posterior distribution µ|y, found from the posterior
distributions α|y and β|y, to make decisions in Decision 2.
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The parameters of the prior distribution used for each programme are chosen to match the
true prior distribution of efficacy responses as closely as possible. For Programmes 1 and
2, µ0 and Σ0 are chosen by finding the maximum likelihood estimates of these parameters
given a large number of simulations of mean efficacy responses µ generated from the Emax
model with the true priors on the Emax model parameters as specified in Equation 4.6. For
Programme 3, we use the true priors for α and β specified in Equation 4.6.

Case study parameters

General parameters
We define the parameters of the simulation study. The 5 doses taken were at values
d = (0, 0.05, 0.20.6, 1) with K = 5. Note that the first dose is the control arm. The standard
deviation for responses was σ = 3 across all doses and patients.

Gain function parameters
G = 35000, γ1 = γ2 = 1, S = (0.9, 0.8, 0.75, 0.6).

Prior specification
We define two sets of priors for parameters of the Emax model, and the corresponding implied
priors for µ0 and Σ0 in Programme 1 and 2. We say Case Study 1A and Case Study 1B for
Case Study 1 with prior 1 and 2 respectively.

Prior 1 (Case Study 1A):

µα = (0, 0.5)T , µβ = 0, Λα =
[
0.5 0
0 0.5

]
, and Λβ = 0.25.

Implied priors for µ0 and Σ0 in Programme 1:

µ0 = (0.003, 0.152, 0.288, 0.391, 0.427) and

Σ0 =



0.500 0 0 0 0
0 0.578 0 0 0
0 0 0.694 0 0
0 0 0 0.818 0
0 0 0 0 0.870


Implied priors for µ0 and Σ0 in Programme 2:

µ0 = (0.003, 0.152, 0.288, 0.391, 0.427) and

Σ0 =



0.500 0.500 0.501 0.501 0.501
0.501 0.578 0.616 0.636 0.642
0.501 0.616 0.694 0818 0.759
0.501 0.636 0.743 0.818 0.842
0.501 0.642 0.759 0.842 0.870


Prior 2 (Case Study 1B):

µα = (0, 1)T , µβ = 0.1, Λα =
[
0.5 0
0 1

]
, and Λβ = 0.5

Implied priors for µ0 and Σ0 in Programme 1:
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µ0 = (0.000, 0.259, 0.525, 0.744, 0.823) and

Σ0 =



0.501 0 0 0 0
0 0.642 0 0 0
0 0 0.853 0 0
0 0 0 1.091 0
0 0 0 0 1.199


Implied priors for µ0 and Σ0 in Programme 2:

µ0 = (0.000, 0.259, 0.525, 0.744, 0.823) and

Σ0 =



0.501 0.502 0.502 0.502 0.502
0.502 0.642 0.709 0.741 0.749
0.502 0.709 0.853 0.944 0.972
0.502 0.741 0.944 1.091 1.141
0.502 0.749 0.972 1.141 1.199


See Appendix 4.E for the implications of these prior distributions to the typical dose response
curve.

Optimisation computations
Optimal decisions in Decision 2 are calculated over a discrete range of Phase III sample sizes
N2 using Monte Carlo simulation with 2000 realisations of the posterior distribution of the
treatment effects θ given the Phase II data. Optimal decisions in Decision 1 are calculated
over Phase II sample sizes N1 using Monte Carlo simulation with 1000 simulations of the
true mean dose efficacy relationship µ.

In this simulation study, we allow the choices of Phase II sample sizes per arm to be
N1 := {0, 1, 10, 25, 50, ..., 125, 150, 200, 250, 300} and correspondingly for Phase III N2 :=
{0, 200, 400, ..., 1800, 2000}.

Results

We present the results of the simulation study in terms of the expected gain of each
programme from Decision 1. We do this for each of the two priors considered.

Prior 1: Case Study 1A

Simulation Study Conclusions (Prior 1)

The results of the simulation study are shown in Figure 4-1, where the expected gain of
Programme 1, 2, and 3 are plotted against different choices of n1 in Decision 1. Of interest
is the difference between the expected gain of different programmes.

Relative performance of all programmes (Prior 1)

Despite having a potential revenue of G = 35, 000 units, the optimal programmes have
expected gains of between 5000 and 13,000. This is due to a significant probability the
treatments are no better (or even worse) than control, and due to the safety penalties applied
to choosing the doses.
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Figure 4-1: Prior 1 : The expected gain over a range of different Phase II sample sizes. The
standard error of each point estimate is less than 225. Due to the error sharing, the standard
error between two estimates at the same n1 but different programmes is approximately 150
for Programmes 1 and 2, 65 for Programmes 2 and 3.

For all values of Phase II sample size n1, Programme 3 dominates Programme 2, which in
turn dominates Programme 1. The difference in estimated expected gains as shown in Figure
4-1 is significant at each value for n1 larger than 10. That is, for each value of n1 larger
than 10, the 95% confidence interval for the difference of the two expected gains of any two
programmes does not contain 0.

Even though all the differences between all programmes are significant, the difference between
Programme 1 and the others is particularly large. This provides evidence that in this scenario,
the assumptions made in the model in Programme 1 may result in bad decisions being made
for choices of i∗, n2, severely harming the likelihood the programme has a large gain.

The difference between Programme 2 and 3 is much smaller. However on an absolute scale,
a difference of several hundred units could still be argued to be important. As one unit
represents the cost treating one patient, this is equivalent to saving several hundred times
the cost of treating one patient, which is of the order of $20,000. Financially, this is a large
amount.

Properties of Programme 1 at n1 = 0 (Prior 1)

At n1 = 0, no Phase II trial is performed and Phase III is designed based on the prior. For
Programme 3, this is the correct prior (that is, the prior based on prior distributions on the
Emax parameters which all data is simulated from). For Programmes 1 and 2 this is the
multivariate normal prior approximated from the correct prior. Programmes 2 and 3 choose
the same sample size of n2 = 1000 patients, and the same dose of dose 4. Programme 1 also
chooses dose 4 but with a lower sample size of n2 = 600 patients, and has a lower expected
gain because of this.

The reason for this may be found by looking at what the prior on µ0 implies about the
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treatment effect µk − µ1 of treatment k,

var(µk − µ1) = var(µk) + var(µ1)− 2cov(µ1, µk).

If, like in Programme 1, the covariance term is ignored, the prior stipulates the treatment
effect of each dose is more variable than it is.

The shape of the expected gain of Programme 1 versus n1 (Prior 1)

As a few patients are added to Programme 1, the expected gain decreases dramatically. As
this programme uses the incorrect model to make inferences, there is a penalty not only for
the cost of treating a patient, but by making non-optimal decisions based on using the data
in a sub-optimal way. The optimal decision made when n

(t)
1 = 0 is made according to the

prior only, and in this case seems to be a fortuitously good choice. As patients are added,
and decisions made on the posterior distribution of µ given only a few patients, the decisions
become more variable.

As n1 increases further, the expected gain increases over the range of n1 studied, but flattens
off as as the number of patients reaches n1 = 300 at a level less than Programmes 2 and 3.

The shapes of Programmes 2 and 3 (Prior 1)

Programmes 2 and 3 follow similar shapes with the expected gain increasing to a maximal n1

value of approximately 30 and 125 respectively, before the cost of treating a patient dominates
and the expected gain starts to decrease. Programme 2 uses the incorrect model so does not
get the full benefit of additional patients when making decisions in Decision 2. This may be
the reason for the maximal n1 value being lower than in Programme 1.

Prior 2: Case Study 1B

Figure 4-2: Prior 2 : The expected gain over a range of different Phase II sample sizes.
The standard error of each point estimate is less than 225. Due to the error coupling, the
standard error between two estimates at the same n1 but different programmes is roughly
150 for Programmes 1 and 2, 65 for Programmes 2 and 3.
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Simulation Study Conclusions (Prior 2)

Prior 2 has mean for θi which are higher than Prior 1, so we see a shift upwards for the
expected gain of all programmes. However the orderings and the maximising n

(t)
1 values

remain similar. Note that in this case the optimal decision for Programme 1 based only on
the prior (at n(t)

1 =0) is less fortuitously good as in Prior 1.

4.2.3 Case Study 2: The value of model selection in a Phase II/III
programme

Case study setup

Suppose there are several candidate dose response relationships that may specify the
relationship between the mean efficacy response at different doses. To model the uncertainty
of the true relationship, we suppose the relationship may come from the following 5 dose
response models with specified probabilities,

q1 µ follows Emax(α1, α2, β)
q2 µ follows Exp(E0, E1, δ)
q3 µ follows LinearLog(E0, E1, c)
q4 µ follows Linear(E0, δ)
q5 µ follows Quadratic(E0, β1, β2)

(4.8)

The probabilities q1 to q5 sum to one. The forms of these dose response models are given in
Table 4.1. We suppose the parameters for each model have priors of the following form:

• Emax: α ∼ N(µα,Λα), β ∼ ln(µβ,Λβ), where ln is a log-normal distribution.

• Exponential: E0 ∼ N(µexpE0
,ΛexpE0

), E1 ∼ N(µexpE1
,ΛexpE1

), δ ∼ ln(µexpδ ,Λexpδ ).

• Linlog: E0 ∼ N(µlinlogE0
,ΛlinlogE0

), E1 ∼ N(µlinlogE1
,ΛlinlogE1

), c ∼ ln(µc,Λc).

• Linear: E0 ∼ N(µlinE0
,ΛlinE0

), δ ∼ N(µlinδ ,Λlinδ ).

• Quadratic: E0 ∼ N(µquadE0
,ΛquadE0

), β1 ∼ N(µquadβ1
,Λquadβ1

), β2 ∼ N(µquadβ2
,Λquadβ2

).

We study 4 programmes in this case study. Programmes 1-3 are of the same form specified in
Case Study 1 but with different priors. In particular, Programme 3 uses an Emax(α1, α2, β)
model with priors for the parameters defined above. Programmes 1 and 2 assume the data
follows a multivariate normal distribution with a diagonal and non-diagonal covariance matrix
respectively, with the priors for the parameters derived from simulations from the true dose
response relationship as in Case Study 1. Programme 4 is defined in the following way:
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Figure 4-3: 40 simulated values of µ using the probabilities in Equation 4.8 and the
parameters to be defined below for this case study.

Programme 4 (MCP-Mod procedure to model µ)

• Specify a prior of the above form for each of the Emax, Exponential, Linear Log, Linear,
and Quadratic model parameters.

• Given Phase II data y, perform a multiple comparison procedure (MCP step) using
appropriate guesstimates as discussed in Section 4.1.4.

• Using the model with the lowest p-value from the multiple comparison test, derive the
posterior distribution µ|y from the posterior distributions of the parameters of the
chosen model to make decisions in Decision 2.

Case study parameters

General parameters

As before, the 5 doses are d = (0, 0.05, 0.2, 0.6, 1.0) with K = 5. The standard deviation for
responses is σ = 3. We use equal probabilities for each dose response model q1 = q2 = q3 =
q4 = q5 = 0.2.

Gain function parameters

G = 35000, γ1 = γ2 = 1, S = (0.9, 0.8, 0.75, 0.6).

Prior specification

• Emax: µα = (0, 0.5), Λα = diag(0.5, 0.5), µβ = −1, Λβ =
√

0.6.

• Exponential: µexpE0
= 0, ΛexpE0

= 0.52, µexpE1
= 0.5, ΛexpE1

= 0.52, µexpδ = 1, Λexpδ = 0.52.

• Linlog: µlinlogE0
= 0, ΛlinlogE0

= 0.52, µlinlogE1
= 0.5, ΛlinlogE1

= 0.52, µc = 0.5, Λc = 0.52.

• Linear: µlinE0
= 0, ΛlinE0

= 0.52, µlinδ = 1, Λlinδ = 0.52.

• Quadratic: µquadE0
= 0, ΛquadE0

= 0.52, µquadβ1
= 0.5, Λquadβ1

= 0.52, µquadβ2
= 0.5,

Λquadβ2
= 0.52.
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Figure 4-4 shows 40 dose response curves that are simulated from the above dose response
relationships with the given priors.

Guesstimates for MCP step of MCP-Mod

Guesstimates are required for the multiple comparison contrast test for each model in
Programme 4. We follow the original MCP-Mod framework and pick guesstimates according
to the expected value of their prior distributions. Note that the log-normal parameterisation
is such that if β ∼ ln(µ, σ2), then the expected value of β is eµ+σ2/2.

• Emax: α = (0, 0.5), β = e−1+0.6/2.

• Exponential: E0 = 0, E1 = 0.5, δ = e1+0.5/2.

• Linlog: E0 = 0, E1 = 0.5, c = e1+0.5/2.

• Linear: E0 = 0, δ = 1.

• Quadratic: E0 = 0, β1 = 0.5, β2 = 0.5.

Optimisation computations
As before, optimal decisions in Decision 2 are calculated over a discrete range of Phase III
sample sizes N2 using Monte Carlo simulation with 2000 simulations of realisations of the
posterior distribution of the treatment effects θ given the Phase II data. Optimal decisions
in Decision 1 are calculated over Phase II sample sizes N1 using Monte Carlo simulation with
1000 simulations of the true mean dose efficacy relationship µ.

In this simulation study, we use N1 := {0, 1, 10, 25, 50, ..., 125, 150, 200, 250, 300} and N2 :=
{0, 200, 400, ..., 1800, 2000} for Phase II and III respectively.

Results

Table 4.2: Table showing the percentage of times each model is the chosen model from the
MCP-Mod procedure, depending on which true model the data is actually simulated from.

MCP-Mod Chosen DR Model

True DR

Emax Exponential Linear Quadratic Linear Log
Emax 62.2 0 1.1 24.9 11.8

Exponential 0 79.5 5.2 15.3 0
Linear 0 0 97.6 2.4 0

Quadratic 1.8 78.6 8.8 9.2 1.7
Linear Log 5.7 0 78.3 16.0 0
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Figure 4-4: The expected gain over a range of different Phase II sample sizes. The standard
error of each point estimate is less than 85. Due to the error coupling, the standard error
between two estimates at the same n1 but different programmes is roughly 30 for Programmes
1 and 2, 40 for Programmes 2 and 3, and 13 for Programmes 3 and 4.

Figure 4-5: The expected gain of each programme depending upon the true dose response
relationship and the Phase II sample size n1.
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Figure 4-6: The expected gain of each programme depending given the true dose response
relationship and the Phase II sample size n1.

Simulation Study Conclusions

Comparing Programme Performances

Figure 4-4 shows that in most cases the order of Programmes is preserved, with each successive
programme with more complex modelling procedures performing better than the last. In
contrast to the previous simulation study (Case Study 1), there is not much difference between
the performances of Programmes 3 and 4. Programmes 3 and 4 have low optimal values of
Phase II sample size compared to Programmes 1 and 2 suggesting the more complex modelling
procedures reduce the need for additional patients in Phase II.

Choosing the true model in Programme 4

Given the true dose response relationship, Programme 4 does not always identify the correct
model in the MCP step of MCP-Mod as shown in Table 4.2.3. Subsets of a dose response
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curve may be adequately modelled using another dose response curve. For example, the
increasing part of a quadratic curve may be approximated using an exponential curve. It is
not the aim to correctly identify the true dose response relationship, but rather to model the
relationship adequately enough to make good decisions in Decision 2.

The linear log dose response relationship never gets correctly identified in Programme 4, and
is instead identified as linear or quadratic. As mentioned above, this may be because linear
or quadratic terms may approximate the linear log curve well on the subset of the curve the
doses fall on. Secondly, the guesstimates used may lead to a contrast vector which is not very
powerful for identifying a dose response relationship for many parameters of the linear log
curve.

Programme 3 performs badly for large n1

Figures 4-5 and 4-6 show how the expected gain depends upon the true underlying dose
response relationship. The magnitude of expected gain of each relationship is driven primarily
by the priors attached to the model parameters, with the linear model giving the most
generous prior belief. Of interest is how the expected gains of each true relationship change
across different programmes. One can see that for large values, Programme 3 performs
poorly for quadratic and exponential forms of the true dose response relationship. This may
be because these relationships produce true dose response curves that increase at a rate faster
than linear which do not match up well with the Emax model with its specified choice of
priors for its parameters. This low efficiency results in Programme 3 performing poorly for
large values of n1 in Figure 4-4.

Limitations

The effect of different prior distributions on the results has not been fully explored. For
example, the results show much of the expected gain from the programme comes from
a couple of dose response relationships (linear, quadratic) due to their prior distributions
favouring efficacious treatments. In order to have a truly fair comparison, one would need the
prior distributions for the parameters of each dose response relationship and corresponding
weightings to represent the previous relationships between dose and responses that have
entered Phase II clinical trials.

Sensitively analysis should be performed, changing parameters such as the potential financial
gain G and the safety penalties, as these quantities cannot be fully known.

4.3 Discussion

Limitations of our approach

The safety penalties are an important part of the model and may be difficult to specify.
Both simulation studies consider the trade-off between higher efficacy and greater safety
considerations with a-priori known increasing safety penalties for each dose. In practice, it
may be the case that the risk of adverse events or other safety considerations may only be
known in the longer term, so applying penalties such as these may be the best one may
hope for. However, the value of the programme and corresponding optimal decisions before
Phase III depend highly upon these values. Whether these safety penalties are appropriate
or not adds another layer of uncertainty to this problem.

84



In Case Study 2, Programme 4 becomes similar to a Bayes model selection routine (Raftery
et al. (1997)). The difference in Programme 4 is that a single model is chosen based on the
data, and posterior distributions are derived based upon this single model rather than an
average over all of the models. Performing a hybrid frequentist-Bayesian routine is typical
of approaches taken when a model selection routine is required due to the difficulties of
performing a complete Bayes model averaging routine. Consider for example the family
of models of k-component mixture distribution in Richardson and Green (1997) and the
corresponding discussion from Jennison (1997). One must specify appropriate priors in this
setting as dispersed priors for parameters carry a huge penalty for models with a large number
of parameters. One must specify clear subjective prior distributions for parameters within
each model which is difficult to obtain if there is uncertainty as to the correct model.

In neither of the case studies did we consider using adaptive methods to combine data from
Phase II and III in the hypothesis test as in Programmes 2 and 4 and the use of group
sequential designs as in Programmes 3 and 4 in Chapter 3. This would be a straightforward
extension to the methodology studied here, and it is conjectured that these methods would
add similar benefits to the programmes studied in this chapter. When generating the p-value
for the Phase II data, this must be done as in Chapter 3 with no dose response relationship
assumed. This is to avoid assumptions that the dose and mean efficacy response follow some
parametric model influencing the hypothesis test.

Relevant current research

Design-focused procedures in current research can broadly be grouped into those which
attempt to model the dose response relationship using parametric functions such as the Emax

curve, and those which use semi-parametric or non-parametric methods to approximate it.
Further distinctions are whether they use Bayesian methods or have a model selection routine.
Our approach uses parametric functions and Bayesian methods.

Within the Bayesian literature, Thomas (2006) details a Bayesian parametric method
for estimating the dose response curve, Bornkamp and Ickstadt (2009) and Grieve and
Krams (2005) detail nonparametric Bayesian methods, and Müller et al. (2006) couple non-
parametric Bayesian methods with adaptive designs. Nonparametric methods often must
make assumptions such as monotonicity about the dose response curve due to the small
number of doses (Kelly and Rice (1990)).

Another area of research includes adaptive dose allocation methods in Phase II, which is
not considered in this chapter. Generally these approaches choose dose levels sequentially in
order to minimise some measure of uncertainty about the dose response relationship. Two
of these approaches are the General Adaptive Dose Allocation (GADA) and adaptive D-
Optimal (D-Opt) designs. The GADA approach uses Bayesian decision theory to randomise
each subject to placebo or a dose that results in the maximum increase in information about
a measure relating to the dose response curve, such as the posterior probability of response
at a target dose. The D-Opt approaches randomise each subject to a dose that minimises
the variance of model parameters of a dose response curve. Some research (Bornkamp et al.
(2007), Antonijevic et al. (2010)) has shown these to be more efficient in certain circumstances
than design-focused procedures. Antonijevic et al. (2010) in particular evaluated the impact
of dose selection strategies using programme-level measures, such as probability of Phase III
success.
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Summary

In this chapter, we have introduced the problem of dose response modelling in the context
of Phase II clinical trials, and the MCP-Mod procedure for use under uncertainty of the
correct dose response relationship. Two case studies were presented, the first quantifying the
benefit to a Phase II/III programme of modelling dose and response with an Emax function,
and the second quantifying the benefit to a Phase II/III programme of using the MCP-Mod
procedure under uncertainty about the true dose response relationship.

Case Study 1 provides evidence of the value of using dose response modelling approaches
in a Phase II/III programme. In particular, by not considering the dependency of different
doses to one another, one may make poor decisions about the chosen dose and the sample
size for the next phase within the programme, which may seriously affect the probability of
identifying an efficacious dose and receiving revenue from the drug.

In Case Study 2, we found that using the full MCP-Mod framework added value to the
programme under uncertainty about the true dose response relationship. The loss of value
from using incorrect models (Programmes 1-3) was less than in the first simulation study,
and decreased as n1 became large.

In conclusion, whilst dose response modelling procedures have been compared before, and
programme level analyses with financial model driven decision making have also been
conducted before, the approach here to make financial model decision making in Phase II/III
trials comparing different dose response procedures adds to current research. This research
adds weight to the argument that using dose response modelling approaches can bring value
to a Phase II/III programme.
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Section 4 Appendices

4.A Sampling the posterior distribution of Emax model
parameters

As detailed in the previous section, the Emax model is a popular choice for the dose response
relationship. We detail below two approaches to sample from the posterior distribution of
the model parameters.

4.A.1 The Neal (2003) MCMC slice sampling approach

Bornkamp, in the R package DoseFinding (Bornkamp et al. (2017)) suggests using slice
sampling (Neal (2003)) as an efficient method for sampling from the posterior distribution of
Emax model parameters. As an MCMC method, this method has the common drawbacks of
MCMC methods, such as the need to show convergence.

4.A.2 The Temple (2012) rejection sampling approach

Temple (2012) takes a different approach, by using a 4 parameter Emax model with
parameters (α1, α2, β, h). A bivariate normal prior for α = (α1, α2) and a prior for (β, h)
is proposed and we assume the responses are normally distributed. Then in the posterior
distribution of (α, β, h) given observed data, the conditional distribution of α given (β, h)
is bivariate normal. This allows us to set up a algorithm which produces samples from
the posterior distributions of each of (α, β, h). One does this by sampling (β, h) from its
marginal posterior distribution, then sampling α from its conditional posterior distribution
given (β, h).

We follow the Temple approach, but adapt it to consider the 3 parameter Emax model rather
than the 4 parameter (sigmoid) Emax model (by dropping parameter h), as is used in Temple
(2012). Below we note the derivation of the conditional posterior distributions of the model
parameters, similarly to the one derived in Temple (2012).

Let the 3 parameter Emax model be defined by

f(z;α, β) = α1 + α2
z

β + z
. (4.9)

Let yi,j denote the ith observation on dose j. Suppose that the responses are

yi,j = α1 + α2
zj

β + zj
+ εi,j , (4.10)

where εi,j ∼ N(0, 1) independently for i = 1, ..., nj and j = 1, ...,K. Then for the mean
response on dose j, Ȳj , one may write

Ȳj | α, β ∼ N(f(zj ;α, β), σ2/nj), (4.11)
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and the vector of mean responses Ȳ is distributed as

Ȳ | α, β ∼ N(Xβα,Σ), (4.12)

where

Xβ =


1 z1

β+z1
...

...
1 zJ

β+zJ

 , α =
[
α1

α2

]
, (4.13)

and Σ is a K ×K diagonal matrix with (k, k) entry σ2n−1
k .

We specify a multivariate normal prior for α as α ∼ N(µα,Γ−1
α ) and denote the prior for β

by πβ(β). From Bayes’ rule, the posterior distribution of the model parameters is

πα,β|y(α, β|y) ∝ py(y|α, β)πα(α)πβ(β), (4.14)

where the likelihood py(y|α, β) is obtained from Equation 4.12. Noting that the likelihood
py(y|α, β) for the full data set y is proportional to the probability density function of vector
of mean responses pȳ(ȳ|α, β), we may write

πα,β|y(α, β|y) ∝ (2π)
J+1

2 |Σ|−1/2exp(−1
2(ȳ −Xβα)TΣ−1(ȳ −Xβα))

× (2π)−1|Λα|−1/2exp(−1
2(α− µα)TΛ−1

α (α− µα)) πβ(β)

∝ exp(−1
2(αT (XT

β Σ−1Xβ + Λ−1
α )α− 2αT (XT

β Σ−1ȳ + Λ−1
α µα))

× exp(−1
2(ȳTΣ−1ȳ + µTαΛ−1

α µα)) πβ(β).

(4.15)

Define ξβ := XT
β Σ−1ȳ + Λ−1

α µα and ∆β := (XT
β Σ−1Xβ + Λ−1

α )−1.

Then

πα,β|y(α, β|y) ∝ exp(−1
2(α−∆βξβ)T∆T

β (α−∆βξβ))exp(1
2ξ
−1
β ∆βξβ)πβ(β)

∝ π(α|y, β)|∆β|
1
2 exp(1

2ξ
T
β ∆βξβ)πβ(β).

(4.16)

Therefore, we may extract the expressions for the conditional posterior distributions of α
and β as

πβ|y(β|y) ∝ |∆β|
1
2 exp(1

2ξ
T
β ∆βξβ)πβ(β),

α|y, β ∼ N(∆βξβ,∆β)
(4.17)

Thus to sample from the posterior distribution α, β|y, we can sample β from the first equation
and then sample α from the second equation in Equations 4.17. Sampling β from β|y requires
a form of rejection sampling. We describe this below.
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To set up the rejection sampling,

• Denote πp(β|y) := |∆β|
1
2 exp(1

2ξ
T
β ∆βξβ)πβ(β) such that πβ|y(β|y) ∝ πp(β|y).

• Split the domain on β up into discrete equally spaced intervals
(i1, i2), (i2, i3), ..., (iNint−1, iNint).

• For interval Ij := (ij , ij+1), let hj := r ×max(πp(ij |y), πp(ij+1|y)).

The constant r should be large enough so that for j = 1, ..., iNint − 1, the maximum value of
πβ(β|y) in interval (ij , ij+1) is less than hj . If there are enough intervals, a choice of r = 1.1
should be sufficient. For each simulation from the posterior distribution of β,

• Choose an interval I′ from I1, ...,INint−1 with probability proportional to h1, ..., hNint−1.

• Choose βI′ uniformly within this interval I′.

• With probability min(1, πp(βI′ |y)/hI′) accept this βI′ . Otherwise, discard and choose
another interval.

Figure 4-7: Rejection sampler algorithm. The rectangles are coloured in red with heights
h1, ..., hNint .

4.A.3 Methods for sampling from the posterior distribution of the
parameters of other dose response functions

In this section we outline how the Temple rejection sampling method for finding the posterior
of the parameters of an Emax model can be applied to other dose finding functions.

As for the Emax model case in Equation 4.12, we write

Ȳ |θ ∼ N(Xθ,Σ) (4.18)

where Σ is a K × K diagonal matrix with (k, k) entry σ2n−1
k . The definitions of X and θ

depend upon the dose response model. We list the forms they take below
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Emax X =


1 ed1/δ

...
...

1 edJ/δ

 θ =
[
E0

E1

]

Power X =


1 dδ1
...

...
1 dδJ

 θ =
[
E0

E1

]

Linear X =


1 d1
...

...
1 dJ

 θ =
[
E0

δ

]

Linear Log X =


1 log(d1 + c)
...

...
1 log(dJ + c)

 θ =
[
E0

E1

]

Quadratic X =


1 d1 d2

1
...

...
1 dJ d2

J

 θ =


E0

β1

β2



The Emax, Power, and Linear Log dose response functions differ from the Linear and
Quadratic dose response functions due to parameters in the nonlinear term of the dose
response function.

As before, we define

ξ = XTΣ−1ȳ + Λ−1
θ µθ

∆ = (XTΣ−1X + Λ−1)−1 (4.19)

In the Power, and Linear Log dose response function case, we have a similar form of expression
to the Emax case in equation 4.17.

• Power

θ|y, δ ∼ N(∆ξ,∆)

π(δ|y) ∝ |∆|1/2exp(1
2ξ

T∆ξ)π(δ)
(4.20)

• Linear Log

θ|y, c ∼ N(∆ξ,∆)

π(c|y) ∝ |∆|1/2exp(1
2ξ

T∆ξ)π(c)
(4.21)

Using these quantities, we follow the same method as in Section 4.A.2 by constructing an
acceptance/rejection sampling algorithm to sample the parameter in the nonlinear term (δ
or c).
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For the Linear and Quadratic case, the process becomes simple as there is no parameter in the
nonlinear term one needs to sample from. Thus we may sample directly from the posterior
distribution of all the model parameters;

θ|y ∼ N(∆ξ,∆). (4.22)

4.B MCP-Mod

We specify the classical MCP-Mod Approach as in the original Bornkamp (2006) paper.

Consider the model
yi,j = µ(di) + εi,j , εi,j

iid∼ N(0, σ2), (4.23)

for i = 1, ...,K, and j = 1, ..., ni. Thus, the observed response yi,j for patient j at dose di
is normally distributed with a known homogeneous variance across all doses, and the mean
response for a particular dose di is given by µ(di). We suppose the dose response model
with parameters θ specifies µ(di) = f(di,θ). Denote by µ the vector of mean responses
(µ(d1), ..., µ(dK))T .

The MCP-Mod procedure can be separated into two stages. The multiple comparison
procedure stage (MCP), and the inference from the fitted model stage (Mod).

MCP Stage

One starts by specifying M candidate models. Each model can be expressed in the form

f(d,θ) = θ0 + θ1f
0(d,θ0) (4.24)

where f0(d,θ0) is the standardised version of f(d,θ). Table 4.1 gives a selection of commonly
used dose response models with their standardised counterparts.

As part of the model selection multiple comparison step, we test null hypothesesHm
0 : cTmµ =

0 form = 1, ...,M wherem are indices for particular models. These are tested against the one-
sided alternatives Hm

0 : cTmµ > 0 for a given set of contrast vectors cm = (cm,1, ..., cm,K)T

which satisfy ||cm||1 = 0 for each m = 1, ...,M , where ||cm|| :=
∑K
i=1 cm,i. Single contrast

test statistics can be defined by

Zm = cTmȲ√
σ2∑k

i=1 c
2
m,i/ni

, (4.25)

for m = 1, ...,M where Ȳ = (Ȳ1, ..., ȲK)′ and Ȳi is the mean response for dose i = 1, ...,K.
Note that under Hm

0 , Zm ∼ N(τ(cm), 1), where the non-centrality parameter τ(cm) =
cTmµ/(σ2∑K

i=1 c
2
m,i/ni)1/2.

An optimal contrast may be defined as a vector c that maximises τ(c) given a particular model
function f(d,θ). In order to find this, µmust be specified which requires the parameter vector
θ to be specified. We refer to Guesstimates as values of θ chosen in order to derive optimal
contrasts. Optimal contrasts cm maximise τ(cm) for guesstimates θ. In Bretz et al. (2005),
the optimal contrasts for model selection are shown to be invariant to any shift and scale
change in the mean response vector. Thus, optimal contrasts for a model are the same as the
optimal contrasts for the standardised version of that model.
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As in Bretz and Xun (2017), the optimal contrasts take the form

ci ∝ ni(µi − µ̄), (4.26)

for i = 1, ...,K, where µ̄ =
∑K
i=1 niµi/

∑K
i=1 ni. We then require

∑K
i=1 c

2
i = 1.

In the multiple comparison test under the null hypothesis, the test statisticsZ := {Z1, ..., ZM}
follow a central multivariate normal distribution with a covariance matrix R which depends
on the sample sizes and contrast coefficients, which is derived in Appendix 4.C.

Any dose response model with a test statistic larger than q1−α can be declared statistically
significant under the contrast test at level α, where q1−α is defined as the multiplicity-adjusted
critical value such that the probability of max(Z) ≥ q1−α under the null hypothesis is equal
to α. This can be written as

P(max(Z) ≥ q1−α | µ0 = 0) = 1− P(max(Z) ≤ q1−α | µ0 = 0)
= 1− P(Z ≤ (q1−α, ..., q1−α) | µ0 = 0)

(4.27)

These critical values can be computed using software which computes the cumulative density
function of multivariate normal random variables, such as the mvtnorm package (Genz et al.
(2008)). The non-centrality parameter for the joint distribution is δm := (δm,1, ....δm,M ), with

δm,l = c′mµm/(σ2
K∑
i=1

c2
m,i/ni)1/2 (4.28)

The power of the test to detect the dose response relationship is the probability of detecting
the dose response under a model with responses µm and is written as

p∗µ=µm;q1−α : = P(max(Z) ≥ q1−α | µ = µm)
= 1− P (Z1 < q1−α, ..., ZM < q1−α | µ = µm)
= 1− P (Z < (q1−α, ..., q1−α) | µ = µm).

(4.29)

Mod Stage

The best model is selected according to the multiplicity adjusted p-values from the contrast
test or AIC/BIC criteria. The dose response model is then used to estimate target doses
according to some criterion. In the original method, this is the minimum effective dose, but
other approaches may be used.

4.C Correlation matrix derivation for Z

Firstly we note

Zl = cTl Ȳ√
σ2∑k

i=1 c
2
l,i/ni

(4.30)

is distributed as a N (τl, 1) distribution, where

τl = cTl µ√
σ2∑k

i=1 c
2
l,i/ni

. (4.31)
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Writing the statistic in this form allows us to deduce that Zl is distributed as a distribution
with non-centrality parameter τl.

Consider now the multivariate statistic

Z = (Z1, ..., ZM ) =

 cT1 Ȳ√
σ2∑k

i=1 c
2
1,i/ni

, ...,
cTM Ȳ√

σ2∑k
i=1 c

2
M,i/ni

 . (4.32)

From this, the non-centrality parameter may be read off as δ = (δ1, ..., δM ) where

δl = cTl µ√
σ2∑k

i=1 c
2
l,i/ni

for l = 1, ...,M. (4.33)

The degrees of freedom are again ν. The correlations can be found by

ρĩ,j̃ = Corr

 cT
ĩ
Ȳ√

σ2∑k
i=1 c

2
ĩ,i
/ni

,
cT
j̃
Ȳ√

σ2∑k
i=1 c

2
j̃,i
/ni


= 1√

σ2∑k
i=1 c

2
ĩ,i
/ni

1√
σ2∑k

i=1 c
2
j̃,i
/ni

M∑
k=1

cĩ,kcj̃,kVar(ȲK)σ2/nk

=
∑K
k=1 cĩ,kcj̃,k/nk√∑K

k=1 c
2
ĩ,k
/nk

∑K
k=1 c

2
j̃,k
/nk

.

(4.34)

4.D Adaptations to the MCP-Mod procedure

The methodology introduced in Bretz et al. (2005) has been subject to several extensions,
such as the extension to general parametric models in Pinheiro et al. (2014). This means
that the methodology can be used for Cox proportional hazard models, linear mixed effect
models, and generalised nonlinear models. The main restriction is that the dose and response
are both univariate. We outline the generalisation below.

Suppose y is the response of a patient receiving dose d, and write the model as

y ∼ F (µ(d), z,η), (4.35)

where µ(d) is the dose response relationship, z covariates, and η nuisance parameters. The
same approach is taken, with a multiple contrast test and dose response modelling performed.

Suppose M candidate models with mean responses µ1, ...,µM are specified, and an optimal
contrast found for each. These take the form

coptm ∝ S−1
(
µm −

µmS
−11

1′S−11

)
∀m, (4.36)

where S is the covariance matrix of the estimated dose response parameters µ̂.

In the MCP stage, estimates µ̂ and Ŝ are found by fitting an appropriate model with doses
as a factor. The contrast test statistic is defined as

zm = (coptm )T µ̂/
√

(coptm )T Ŝ(coptm ) ∀m. (4.37)
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In a lot of scenarios, µ̂ is asymptotically multivariate normal. Thus, suitable models may
then be used for the Mod stage as before.

König (2015) extends the methodology to allow individual pairwise dose control comparisons
in the MCP step, and adaptive interim analyses using combination tests which allow one to
change models, sample sizes, or doses.

Bretz and Xun (2017) provides an overview of practical considerations involved when using
MCP-Mod methodology, as well as an introduction to the DoseFinding R package Bornkamp
et al. (2010).

4.D.1 Improving the optimal contrasts in a Bayesian setting by removing
guesstimates

Suppose that we attach a prior to the parameters θ of each model denoted by π0(θ).

In this setting, we may calculate the optimal contrasts c for each model m so that they
maximise the following average power over the prior objective function,

Im(c) :=
∫
θ
p∗µ=µm(θ)π0(θ)dθ (4.38)

This will take into account the uncertainty about the exact shape of the model rather than
relying on a specific case obtained from guesstimates. This comes at the cost of having to
specify prior distributions for the model parameters, which may be difficult if there is little
information about possible dose response effects. However, in situations where inference is
to be performed later using Bayesian methods, these will need to be specified anyway.

Computations

Bretz et al. (2005) describe an algorithm for finding the optimal contrasts that maximise
τ(c). We may simply adapt this algorithm to find the contrasts that maximise any objective
function; in particular I(c), instead of τ(c). We outline this algorithm below.

The algorithm uses parameterisations to reduce the constrained optimisation of I(c) subject
to ||c||1 = 0 and ||c||2 = 1 to an unconstrained problem, which is easier to solve
computationally using standard optimisation software. The algorithm is as follows:

Find δ2, ..., δK−1 ∈ RK−2 which maximise I(c), where c is found from δ2, ..., δK−1 in
the following way:

ci = sin(γi)
∏

j=1,...,i−1
cos(γi), for i = 1, ...,K − 1

cK =
∏

j=1,...,K−1
cos(γj),

(4.39)

where γ1, ..., γK are found from

γi = −π/2 + π/(1 + exp(−δi)), for i = 2, ...,K

γ1 = tan−1

−
 ∑
i=1,...,K−1

sin(γi)
∏

j=2,...,i−1
cos(γj)

− ∏
j=2,...,K−1

cos(γj)

 . (4.40)

Note that first parameterisation of c1, ..., cK in terms of γ1, ..., γK−1 maps the elements of the
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contrast vector onto the surface of a unit sphere, which forces the condition ||c||2 = 1 at the
expense of one degree of freedom. The ||c||1 = 0 condition is forced by stipulating γ1 takes the
form above as a function of γ2, ..., γK−1 at the expense of a further degree of freedom. Then
γ2, ..., γK−1 may be chosen freely in [−π/2, π/2] to maximise the objective function. The last
parameterisation of γ2, ..., γK−1 in terms of δ2, ..., δK−1 makes the optimisation unconstrained.
That is, δ2, ..., δK−1 may be chosen in RK−2 to optimise I(c) using standard optimisation
software.

Benefits of the Approach

The benefits of using the approach described here are marginal in terms of the increase in
Im(c). We illustrate this in the following simulation study.

Suppose one suspects the dose response relationship follows an exponential model
(Exp(E0, E1, δ)) with some uncertainty associated with the parameter of the distribution.
In particular, suppose the parameter δ has a Gamma(4, 4) prior distribution. 50 realisations
of the exponential model where the parameter δ has been sampled from this, and other priors,
are shown in Figure 4-8.

The optimal contrast vector c vector for each case may be found using the guesstimate
approach (Optimisation from guesstimate) as in Bretz et al. (2005), or using our approach,
where the optimal c is found to maximise Equation 4.38 (Optimisation from prior). The doses
used were (0, 0.05, 0.2, 0.6, 1) with a sample size of 80 per dose. In Table 4.3, the optimal c
is displayed for each method accompanied with the corresponding value of I(c) and power
of the test at the guesstimate. We compare the contrast finding methods in terms of their
corresponding I(c) values. The guesstimates used are δ = 1 for the exponential model, and
β = 2/3, h = 2/3 for the gamma model.
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Figure 4-8: 50 realisations of the exponential model where the parameter δ has been sampled from different prior distributions and the sigmoid Emax model
where the parameters β, h have been sampled from different prior distributions.
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Table 4.3: Gain in power and Im(c) when finding the contrasts from the prior distribution compared to finding them from the guesstimates.

Model Parameter Prior Contrast Finding Method Contrast c Power at guesstimate Im(c)

Exp(λ) λ ∼ Gamma(4, 4) Optimisation from guesstimate (-0.389, -0.353, -0.236 ,0.180, 0.797) 99.054% 88.217%
Optimisation from prior (-0.402, -0.361, -0.227, 0.207, 0.783) 99.047% 88.233%

λ ∼ Gamma(2, 2) Optimisation from guesstimate (-0.389, -0.353, -0.235, 0.180, 0.798) 99.054% 84.600%
Optimisation from prior (-0.405, -0.362, -0.226, 0.211, 0.781) 99.045% 84.620%

λ ∼ Gamma(1, 1) Optimisation from guesstimate (-0.389, -0.353, -0.235, 0.180, 0.798) 99.054% 78.086%
Optimisation from prior (-0.477, -0.432, 0.000, 0.162, 0.748) 98.586% 82.391%

sigEmax(β, h) β, h ∼ Gamma(10, 15) Optimisation from guesstimate (-0.648, -0.324, 0.016, 0.387, 0.569) 95.578% 71.316%
Optimisation from prior (-0.670, -0.299, 0.0237, 0.384, 0.561) 95.557% 71.371%

β, h ∼ Gamma(2, 3) Optimisation from guesstimate (-0.648, -0.324, 0.016, 0.387, 0.569) 95.578% 67.832%
Optimisation from prior (-0.730, -0.222, 0.054, 0.369, 0.529) 95.216% 68.799%

β, h ∼ Gamma(2/3, 1) Optimisation from guesstimate (-0.648, -0.324, 0.016, 0.387, 0.569) 95.578% 64.752%
Optimisation from prior (-0.778, -0.149, 0.086, 0.350, 0.491) 94.454% 67.649%
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From this table, one can draw the conclusions that when there is a moderate amount of
uncertainty as to the parameter of the Emax model, finding the contrasts using this method is
always slightly, but not significantly, better than finding it using guesstimates. However, in the
case where there is a large amount of uncertainty (such as Gamma(1, 1) for the Exponential
and β, h ∼ Gamma(2/3, 1) for the sigmoid Emax, there is a significant improvement of a few
percentage points.

One may ask where this improvement comes from, in terms of which dose response curves
are now found significant with the contrast obtained from our new method where they were
not previously with the contrast obtained from the guesstimate. It is possible it is the case
that this improvement comes from dose response curves which are not promising in terms of
efficacy, in which case the increase in power may not be so important. Further work could
be done by specifying the relative importance of detecting a dose response relationship for
different dose response curves in the objective function.

This simulation shows that with appropriate guesstimates, the gain obtained by choosing the
contrast vectors optimally according to the prior is minimal.

4.E Interpretation of the Prior 1 and 2

In Figure 4-9, we plot simulated dose response curves given the priors used in Case Study 2
and list the properties of these simulated dose response curves in Table 4.4.

Table 4.4: Properties of the 3 priors

Prior 1 Prior 2
P (α1 > 0) 0.5 0.5
P (α2 > 0) 0.760 0.837
mean β 0.199 0.440
mean θ (0.01, 0.16, 0.29, 0.39, 0.43) (0.00, 0.19, 0.41, 0.63, 0.73)

P (θK − θ1 > 0) 0.693 0.791
P (θK − θ1 > 0.25) 0.580 0.695
P (θK − θ1 > 0.5) 0.460 0.585
P (θK − θ1 > 0.75) 0.346 0.475
P (θK − θ1 > 1) 0.242 0.370
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Figure 4-9: Plots of 50 samples from the prior distribution (top), and those same samples
translated so that they start at the origin (bottom).
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5
Multiple Phase III Trials

5.1 Introduction

Whilst it is not necessary in all cases, typically one would expect there to be two successful
Phase III trials in order to demonstrate a new treatment’s safety and efficacy, in order to
obtain approval from the regulatory agencies such as the FDA or EMA; see for example
Aksamit et al. (2017), Simpson et al. (2016), or Kimball et al. (2016). In the previous
chapters, we have considered programmes consisting of only a single Phase III trial. Previous
literature focusing on Phase II/III programmes has generally not considered more than one
Phase III design.

We assume both Phase III trials must be successful in order for the treatment to be marketed.
From a statistical modelling point of view, one may ask for the reasoning behind having two
independent Phase III trials? Suppose one has two Phase III trials with type I error rate α.
An argument may be that it is more efficient to perform one larger Phase III design with type
I error rate α2. The reasons why having two Phase III trials may be preferred may be due
to the the rigidity of the assumptions one uses when performing statistical modelling. Two
separate trials may be performed over different centres with different trial managers. Pooling
the patients together in one centre with the same trial manager will mean the administrative
methods used to execute the trial will be homogeneous, meaning any inherent bias in the
methods (such as the pool from which the subjects are recruited) will bias the whole of
Phase III. Having two Phase III trials aims to reduce this.

In this section we consider the problem of having two Phase III trials. In particular, the
question of when to perform each Phase III trial, and if they are group sequential, which
boundaries are optimal. We denote the two Phase III trials as Phase IIIa and Phase IIIb.

We take a similar approach to Chapter 3 and 4 by performing studies to assess the value of
different approaches to performing Phase II/III programmes with two Phase III trials. In
Section 5.1.1 we list the new notation used in this Chapter, in Section 5.1.2 we define the
gain function, and in Section 5.1.3, we motivate the simulation studies to be performed.

5.1.1 Notation

We adapt some notation for this chapter from those in Chapters 3 and 4.

n1 := The sample size per treatment in Phase II.
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n2 := The sample size per treatment in Phase IIIa.

n3 := The sample size per treatment in Phase IIIb.

θ̂1 := the maximum likelihood estimate of the treatment effect based on Phase II data.

θ̂2 := the maximum likelihood estimate of the treatment effect based on Phase IIIa data.

θ̂3 := the maximum likelihood estimate of the treatment effect based on Phase IIIb data.

γ1 := Cost of a Phase II patient (γ1 > 0).

γ2 := Cost of a Phase IIIa or IIIb patient (γ2 > 0).

I0 := (σ2, G, γ1, γ2, θ0,Σ0) the set of global parameters known at the beginning of the
programme. θ0 and Σ0 are parameters for the prior distribution of the treatment effect
θ.

I1 := (I0, θ̂1), the set of cumulative summary statistics formed from I0 plus summary
statistics from Phase II.

N1, N2, N3 := Vectors of possible sample sizes for Phase II, IIIa, and IIIb respectively.

We also introduce notation for the financial model gain function

Tpat := The patent time remaining at the start of the setup of Phase II.

G(t, Tpat) := Function for the revenue rate at time t measured from the start of Phase II
when the patent life is Tpat.

ρ := Parameter concerning the annual inflation rate such that 1 unit of currency today is
worth e−ρ after one year.

c := Parameter concerning the exponential decay in revenue after the patent expires.

TPhII setup := The time required to set up Phase II.

TPhIII setup := The time required to set up the pair of Phase III trials.

TPhII pat := The time required to recruit a patient in Phase II.

TPhIII pat := The time required to recruit a patient in Phase III.

γPhII overhead := The overhead cost of starting a Phase II trial.

γPhIIII overhead := The overhead cost of starting a Phase III trial.

5.1.2 Financial model gain function

Time is of particular importance in the two Phase III problem. The choice as to when to
perform each Phase III trial may become a trade off between investing money up front to
finish the trial sooner and receive income from the drug for longer until the patent expires, or
drip-feeding investment slowly and analysing initial results to make more informed decisions.
Thus, the simple gain functions used widely in Chapters 3 and 4 are not sufficient. Therefore,
as introduced in Section 1.5.1, we define a gain function motivated by the financial model
gain functions in Parke et al. (2017) and Patel et al. (2012) which aim to model the net
present value (NPV) of a programme.
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We define the gain function G(I3, θ) as

G(I3, θ) := Discounted Net Revenue− Phase II Cost− Phase III Cost. (5.1)

If H0 is rejected, there is an income at t > TPhII + TPhIII, which are defined by

TPhII :=TPhII setup + TPhII patn1

TPhIII :=TPhIII setup + TPhIII patn2.
(5.2)

We model the revenue per year as constant when the patent is in force, with an exponential
decay once the patent runs out, modelling the emergence of generic brand competitors that
will arise once the patent expires as

G(t, Tpat) :=

Grev if t < Tpat

Greve
−c(t−Tpat) if t ≥ Tpat.

(5.3)

Then we may define

Discounted Net Revenue := 1(H0 rejected) ×
∫ ∞
TPhII+TPhIII

G(t, Tpat)e−ρtdt, (5.4)

and

Phase II Cost :=γ12n1 + γPh II overhead

Phase III Cost :=(γ22n2 + γPhIII overhead)e−ρTPhII
(5.5)

The expression for the discounted net revenue can be expressed as

Discounted Net Revenue

=1(H0 rejected) ×
∫ ∞
TPhII+TPhIII

G(t, Tpat)e−ρtdt

=1(H0 rejected) ×
(∫ Tpat

TPhII+TPhIII
Greve

−ρtdt+
∫ ∞
Tpat

Greve
−(ρ+c)t+cTpatdt

)

=1(H0 rejected) ×
(
Grev
ρ

(e−ρ(TPhII+TPhIII) − e−ρTpat) + Grev
c+ ρ

e−ρTpat

)
.

(5.6)

5.1.3 Examples

In this chapter, we explore the answers to different questions relating to how best to perform
Phase III when we require two Phase III trials. Initially we concern ourselves with the
problem of whether to perform both trials in parallel, or attempt to learn from one trial
before committing resources to a second. After that, we investigate whether a compromise
between the two approaches may be appropriate in some scenarios. Lastly we consider the
case when the two Phase III trials have group sequential designs.

Similarly to Chapters 3 and 4, we take the approach of optimising each individual programme
by finding the optimal decision rules at each decision point with respect to the gain function.
The programmes may then be compared to each other to assess the benefit of the different
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approach each programmes take. In contrast to these chapters, we compute decision rules
only using numerical integration without resorting to Monte Carlo simulation methods.

5.2 Studies to assess how best to perform two Phase IIIs

5.2.1 Programmes 1 and 2

Given that Phase III consists of two trials, one may ask when they should be performed. In
particular, should they be performed sequentially (one after the other) or in parallel (at the
same time). The answer to this question will depend upon the parameters specified within
the gain function, and any prior knowledge about the drug itself.

In particular, the decision may come down to a trade off between starting both Phase IIIs
early in the hope of finishing as quickly as possible, or starting only Phase IIIa, in the hope
of learning more before committing to Phase IIIb.

In this section, we define Programmes 1 and 2, and consider computational techniques to
evaluate the optimal decision rules within the programme.

We suppose there is a single treatment to be considered at the start of the programme and
the primary response is normally distributed with known variance σ2, and means µ(t) and
µ(c) for treatment and control. Define θ := µ(t) − µ(c) as the treatment effect vector. A
high treatment effect will indicate a successful treatment compared to control. We assume
that primary responses are observed in both Phase II and III. We define the one-sided null
hypotheses H : θ ≤ 0 for each Phase III trial.

The programmes have multiple decision points in which decisions regarding the sample size
related to the next phase will be made. Data that has been accumulated prior to each decision
point may be used to inform the decision. Each Phase III trial uses data from that trial only,
and the hypothesis test must result in a rejection of the null hypothesis when applied to both
Phase III trials separately for the programme to be successful and the marketing revenues
realised. We suppose also that all trials are fixed sample and call the two Phase III trials
Phase IIIa and Phase IIIb.

Programme 1: Phase III trials in parallel

Background

Programme 1 concerns the case when Phase IIIa and IIIb are performed in parallel. That is,
after Phase II has concluded, both Phase IIIa and IIIb are started at the same time.

This programme may be advantageous when there is a rush to gain regulatory approval and
get the treatment to market sooner. This may be appropriate when the patients are relatively
inexpensive to treat, the potential revenue is large, or when the current belief about the
treatment effect is that it has high efficacy. We suppose the sample size for Phase IIIb is the
same as for Phase IIIa, n3 = n2.
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Figure 5-1: Programme 1 schematic.

As shown in Figure 5-1, there are two decision points which we call Decision 1 and Decision 2.

Computing the optimal decision rules

Below we define notation for the optimal decisions in Decision 1 and 2, and derive the optimal
decisions and discuss their computations. Firstly, we must define the cumulative summary
statistic,

I2 := (I1, θ̂2, θ̂3), the set of cumulative summary statistics formed from I1 plus summary
statistics from Phase IIIa and IIIb.

Let Di(Ii−1) be the optimal decision i, for i = 1, 2, given the information in Ii−1.

Let Gi(ni, Ii−1), i = 1, 2, 3, be the expected gain given Ii−1 and a choice of sample size ni
for Phase i, and assuming optimal decisions are made in future decision points.

We suppose the prior for the treatment effect θ is distributed according to N(θ0,Σ0).
At Decision 1, the sampling distribution of θ̂1, denoted π(θ̂1; I0, n1) may be found as
follows. For a fixed sample design, the conditional (on θ) distribution of summary statistic
is θ̂1 ∼ N(θ, 2σ2/n1). By considering the moment generating function of the marginal
distribution of θ̂1, we find

θ̂1 ∼ N(θ0, 2σ2/n1 + Σ0). (5.7)

Similarly for Decision 2, suppose the posterior distribution of θ given I1 is θ ∼ N(ϕ, ν2) with
probability density function π(θ; I1) where ϕ and ν can be deduced from I1. The sampling
distribution θ̂2, denoted π(θ̂2; I1, n2) is

θ̂2 ∼ N(ϕ, 2σ2/n2 + ν2). (5.8)

Decision 2:

D2(I1) = argmax
n2

G2(n2, I1) (5.9)

In order to compute this, we integrate over the treatment effect θ, weighted by its posterior
distribution given I1, π(θ; I1).

D2(I1) = argmax
n2

G2(n2, I1)

= argmax
n2

∫
θ

E[G(I2) | I1, n2, θ] π(θ; I1) dθ
(5.10)
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The expectation in Equation 5.10 can be easily computed. Each evaluation of the integrand
simply requires calculating the probability of rejection of the null hypothesis in both Phase III
trials given θ. Therefore the integral in its general form may be computed using the numerical
integration methods described in Section 1.6.1.

Decision 1:

We integrate over the maximum likelihood estimate of θ, θ̂1, with sampling distribution
density function given I0, π(θ̂1; I0, n1).

D1(I0) = argmax
n1

G1(n1, I0)

= argmax
n1

∫
θ̂1

E[G(I2) | I0, n1, θ̂1] π(θ̂1; I0, n1) dθ̂1

= argmax
n1

∫
θ̂1

E[G(I2) | I1] π(θ̂1; I0, n1) dθ̂1

(5.11)

Note that n2 is chosen according to Decision 2 such that

E[G(I1) | I1] = G2(D2(I1), I1). (5.12)

Therefore, we have

D1(I0) = argmax
n1

G1(n1, I0)

= argmax
n1

∫
θ̂1
G2(D2(I1), I1) π(θ̂1; I0, n1) dθ̂1

(5.13)

As in Decision 1, the numerical integration techniques in Section 1.6.1 may be used to
solve this integral. No Monte Carlo simulation based approaches are necessary. An
evaluation of D1(I0) requires computing G2(D2(I1), I1) for different θ̂1, so Decision 1 is
more computationally intensive than Decision 2.

One may reduce the computational expense required to compute D1(I0) for different n1 by
storing the value of G2(D2(I1), I1) for a grid of different values of θ̂1, and using these grid
points in the integration routine for each evaluation of D1(I0). This is the method of dynamic
programming.

Programme 2: Phase III trials in sequence

Background

Programme 2 concerns the case when Phase IIIa and IIIb are performed sequentially. That
is, after Phase II has concluded, Phase IIIa commences, and Phase IIIb commences after
Phase IIIa has finished.

This programme may be advantageous when there is no particular rush to gain regulatory
approval and get the treatment to market sooner. This may be appropriate when the patients
are more expensive to treat, the potential revenue is relatively small, or when the current
belief about the treatment effect is uncertain and one wants to proceed cautiously. We
introduce the cumulative summary statistics,

I2 := (I1, θ̂2), the set of cumulative summary statistics formed from I1 plus summary
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statistics from Phase IIIa.

I3 := (I1, θ̂3), the set of cumulative summary statistics formed from I2 plus summary
statistics from Phase IIIb.

Figure 5-2: Programme 2 schematic.

As shown in Figure 5-2, there are three decision points at Decision 1, Decision 2, and
Decision 3.

Computing the optimal decision rules

Decision 3:

As in Decision 2 in Programme 1, we get

D3(I2) = argmax
n3

G3(n3, I2)

= argmax
n3

∫
θ

E[G(I3) | I2, n3, θ] π(θ; I2) dθ.
(5.14)

Decision 2:

As in Decision 1 in Programme 1, we have

D2(I1) = argmax
n2

G2(n2, I1)

= argmax
n2

∫
θ̂2
G3(D3(I2), I2) π(θ̂2; I1, n2) dθ̂2.

(5.15)

Decision 1:

In the same way as Decision 2 above, we find

D1(I0) = argmax
n1

G1(n1, I0)

= argmax
n1

∫
θ̂1
G2(D2(I1), I1) π(θ̂1; I0, n1) dθ̂1.

(5.16)

As before, each decision can be calculated using numerical integration techniques with no
simulation required, with Decision 1 most intensive and Decision 3 the least intensive. The
method of dynamic programming can as before be used.
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5.2.2 Programme Comparison A: Comparison of Programmes 1 and 2

We compare and contrast Programmes 1 and 2 in a variety of settings. Unless otherwise
stated, we use the following parameters for this study:

Table 5.1: Programme Comparison A Parameters

σ = 3 TPhII setup = 0.1 TPhII overhead = 500
α = 0.025 TPhIII setup = 0.1 TPhIII overhead = 200
Grev = 5000 TPhII pat = 0.005 c = 5
Tpatent = 15 TPhIII pat = 0.005 N1, N2, N3 = (0,25,50,75,...)
ρ = 0.03 γ1, γ2 = (1,1) ζ = Identity function

In the following subsections, we look at the differences between the two programmes, and
consider which is the best programme under different circumstances.

5.2.3 A comparison of Programmes 1 and 2 at Decision 1

Suppose that the prior distribution parameters are µ0 = 0 and Σ0 = 1, such that θ ∼ N(0, 1).
Then the optimal decision about Decision 1 and corresponding expected gain of the entire
programme for Programmes 1 and 2 are given in the below table.

Programme 1 Programme 2
Optimal n1 50 0

Corresponding expected gain 13,386 11,884

Programme 1 has a higher expected gain compared to Programme 2 for this set of parameters
and prior distribution. Programme 2 in particular has an optimal decision of not performing
Phase II (n1 = 0) and proceeding straight to Phase IIIa with a sample size of 275 patients per
arm. The information from Phase IIIa is adequate to inform the sample size of Phase IIIb,
without the need to use up time performing Phase II which reduces the time left until the
patent expires. In Programme 1, this is less of an issue, as the two Phase III trials are
performed at the same time. This means however, a small Phase II trial of 50 patients per
arm is justified in order to inform the sample size of the two Phase III trials.

Optimal decision rules in Decision 2

Using the decision rules in Equations 5.10 and 5.15, one may calculate the optimal decision
rules for each programme.

As an example, suppose that after Phase II with n1 = 100, we have the posterior belief that
the true treatment effect follows θ ∼ N(µ, 1). In this section, we examine the optimal decision
rules in Decision 1 for the choice of n2 as the value of µ varies. Note that n2 = 0 means no
further trials are performed.

107



Figure 5-3: Optimal decision curves for Decision 2 as functions of the mean of the posterior
distribution µ. The top row is the optimal choice of n2 given each value of µ, with the
corresponding expected gain given in the bottom row. The first and second columns refer to
Programmes 1 and 2 respectively.

From Figure 5-3, it is particularly apparent in Programme 2 that there are only marginal
differences between the expected gain corresponding to some values of n2 when there is
flexibility to make further decisions later on in the programme. In these cases, the choice
of the optimal n2 becomes sensitive to numerical error from the numerical integration, so
the optimal n2 values do not follow a smooth curve as µ increases. The numerical error
one obtains may be larger than one would have expected. Due to the discontinuous values
N2,N3 can take, the integrand is not smooth in its first derivative, meaning the numerical
integration technique based on Simpsons’ rule may perform badly near these discontinuities
in the first derivative. However, given that the corresponding expected gains are very similar
for a range of different n2 in these cases, this is not a serious problem.

The best programme at Decision 2

Again, suppose Phase II is performed with n(t)
1 = 100 for both treatment and control and after

it has completed, we suppose the current belief in the treatment effect is that θ ∼ N(µ, 1).
We assume µ = 0 unless otherwise specified.

In the following comparisons, we vary the cost of treating Phase II, IIIa, and IIIb patients,
and the time to treat each patient. For each combination, we identify which programme has
a higher expected gain.
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Figure 5-4: Left: The optimal programme as γ1 = γ2 (denoted by gamma) and TPhII pat =
TPhIII pat are varied. Right: The corresponding expected gain of the optimal programme for
each pair of γ1 = γ2 and TPhII pat = TPhIII pat.

Figure 5-5: The expected gain for each programme corresponding to Figure 5-4.

We now repeat the above analysis for Figures 5-4 and 5-5 for when some assumptions are
changed. In particular when the parameter µ is reduced, representing a more pessimistic
belief in the efficacy of the treatment, and when Grev in the defintion of G(t, Tpat) is doubled,
representing larger revenues for this particular treatment.
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Figure 5-6: As in Figure 5-4, but with ϑ = −0.5.

Figure 5-7: The expected gain for each programme corresponding to Figure 5-6.
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Figure 5-8: As in Figure 5-4, but with Grev = 10000.

Figure 5-9: The expected gain for each programme corresponding to Figure 5-8.

From Figures 5-6 to 5-9, one may deduce the best programme design to use depends
significantly upon the parameters. Higher values for patient cost lead to favouring a sequential
design over parallel, as do lower values of the time taken to test a patient. A more pessimistic
outlook about the treatment effect of the drug favours a sequential design, and a larger
potential benefit from finding the drug works favours a parallel design.

5.2.4 Programme 3: Adding in adaptation

Motivation

In the programme comparison study in Section 5.2.2, it was found there was a trade off
between starting both Phase IIIa and PhIIIb in parallel in order to minimise time until
regulatory approval versus starting only Phase IIIa in order to gain more information to
make more informed decisions about Phase IIIb. One might ask if there is a middle ground,
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where Phase IIIb could be started halfway through Phase IIIa at that point if the results so
far give evidence to support this action.

Motivated by this, we define Programme 3 which follows the pattern of Programme 2 until
halfway through Phase IIIa. At this point, an interim analysis occurs, and a decision is made
whether to stop the programme, start Phase IIIb immediately, or to delay the decision by
continuing to the end of Phase IIIa and then consider whether to start Phase IIIb.

Clearly, an optimal version of this programme should dominate Programme 2 as it allows
one to proceed according to Programme 2, whilst allowing the freedom to deviate from
Programme 2 if it is beneficial. That is, Programme 2 is a special case of Programme 3.

In this programme, we must modify existing notation and introduce new notation.

θ̂
′
2, the maximum likelihood estimate of θ from data from the first half of Phase IIIa.

θ̂
′′
2 , the maximum likelihood estimate of θ from data from the second half (only) of Phase IIIa.

I2 := (I1, θ̂
′
2), the set of cumulative summary statistics formed from I1 plus summary

statistics from the first half of Phase IIIa.

I3 := (I2, θ̂
′′
2 ), the set of cumulative summary statistics formed from I2 plus summary

statistics from the second half of Phase IIIa.

I4 := (I1, θ̂3), the set of cumulative summary statistics formed from I3 plus summary
statistics from Phase IIIb.

Figure 5-10: Programme 3 schematic.

Administrative Considerations

We note that a protocol which involves an interim analysis halfway through Phase IIIa and
performing an action based upon the data observed may be viewed as unacceptable. Consider
the case where based upon the interim analysis, a decision is made to start Phase IIIb with
a small sample size. From this, one might infer that the treatment has performed well in
the first part of the Phase IIIa trial, so there is information leakage to those who understand
the rules of the trial design and learn about the choice of sample size for the Phase IIIb
trial. This goes against the principle of maintaining blindness of the results of a trial until
its completion. We shall investigate this programme design anyway to identify the possible
benefits the approach could bring.
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Computational approaches

As before, we derive the analytical expressions for the optimal decision rules at each decision
point for Programme 3.

Decision 4:

As in Decision 3 in Programme 2, we get

D4(I3) = argmax
n3

G4(n3, I3)

= argmax
n3

∫
θ

E[G(I4) | I3, n3, θ]π(θ; I3)dθ
(5.17)

Decision 3:

In Decision 3, we have the choice of either

• Waiting until Decision 4,

• Terminate the entire trial, or

• Starting Phase IIIb with a specified n3.

D3(I2) = argmax
action ∈ {wait,stop,start phIIIb}

G3(I2, action),

where G3(I2; start phIIIb) = max
n3

∫
θ

E[G(I4)|I2, n3, θ]π(θ; I2)dθ,
(5.18)

G3(I2; wait) =
∫
θ̂
′′
2

E[G(I3)|I2, n2, θ̂
′′
2 ]π(θ̂′′2 ; I2, n2)dθ̂′′2

=
∫
θ̂
′′
2

G4(D4(I3), I3)π(θ̂′′2 ; I2, n2)dθ̂′′2 , and

G3(n3, I2; stop) = −2γ1n1 − γPhII overhead − (γ2
2n2
2 + γPhIII overhead)e−ρTPhII .

(5.19)

Decision 2:

D2(I1) = argmax
n2

G2(n2, I1)

= argmax
n2

∫
θ̂′2

G3(D3(I2), I2)π(θ̂′2; I1, n2)dθ̂′2
(5.20)

Decision 1:

D1(I0) = argmax
n1

G1(n1, I0)

= argmax
n1

∫
θ̂1
G2(D2(I1), I1)π(θ̂1; I0, n1)dθ̂1

(5.21)

As before, we use numerical integration routines to calculate the optimal designs. No Monte
Carlo based simulation methods are requried.
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5.2.5 Programme Comparison B: The value of adaptivity

Comparing Programmes 1,2, and 3

We compare the performance of Programme 3 relative to the other programmes using the
same input parameters as in Section 5.2.3.

Programme 1 Programme 2 Programme 3
Optimal n1 50 0 0

Corresponding expected gain 13,386 11,884 13,067

The adaptations in Programme 3 add value to the programme compared to having no
adaptations in Programme 2. The optimal decisions with these parameters recommend
proceeding straight to Phase III as was the case for Programme 2. However, the programme
is still inferior to performing the Phase III trials in parallel as in Programme 1 under these
parameters.

Optimal decisions in Decision 2 for each programme

Figure 5-11: As in Figure 5-3, optimal decision curves for Decision 2 as functions of the mean
of the posterior distribution µ. The top row is the optimal choice of n2 given each value
of µ, with the corresponding expected gain given in the bottom row. The columns refer to
Programmes 1, 2, and 3 respectively.

The best programme at Decision 2

As in Programme Comparison A, we compare the decisions the programmes make in
Decision 2 as the cost of testing a patient γ and the time to test a patient Tpat vary. Since
Programme 2 is dominated by Programme 3, we only consider Programmes 1 and 3.
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Figure 5-12: The optimal programme and corresponding expected gain when θ ∼ N(0, 1)
with G = 5000.

Figure 5-13: The expected gain of each programme corresponding to Figure 5-12.

We then repeat this analysis as the posterior distribution of θ, and the revenue G change.

Figure 5-14: The optimal programme and corresponding expected gain when θ ∼ N(−0.5, 1)
with G = 5000.
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Figure 5-15: The expected gain of each programme corresponding to Figure 5-14.

Figure 5-16: The optimal programme and corresponding expected gain when θ ∼ N(0, 1)
with G = 10000.

Figure 5-17: The expected gain of each programme corresponding to Figure 5-16.

Comparing Figures 5-12, 5-14, 5-16 to Figures 5-4, 5-6, 5-8, we see that Programme 1 is
optimal in less of the Tpat and γ sample space. That is in some circumstances, introducing
adaptation in the form of Programme 3 means it becomes advantageous to start Phase III
sequentially with the option to adapt halfway through the first Phase III trial rather than in
parallel, which would be preferred if there is no adaptation.
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Comparing Figures 5-12, 5-14, 5-16, one can see as before that if one is more pessimistic about
the true treatment effect, in more cases it is advantageous to have Phase III sequentially in
the form of Programme 3. On the other hand if the revenue is expected to be larger from a
successful drug, in more cases it is advantageous to have the Phase III trials in parallel as in
Programme 1.

Optimal decisions in Decision 3

Figure 5-18: Decision 3 in Programme 3 when θ ∼ N(ϑ, 1), and θ̂′2 has been observed from
the first part of Phase IIIa. The plots show the (top) optimal decisions, (middle) Phase IIIb
sample size n3 if Phase IIIb is started, and (bottom) corresponding expected gain.
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Suppose that at Decision 3 in Programme 2, the posterior belief in the true treatment effect is
that θ ∼ N(ϑ, 1). We may ask under what circumstances is it optimal to wait until Decision 4,
stop everything, or start Phase IIIb early with a specified n2? Clearly this will depend upon
both the mean of the posterior distribution ϑ and the summary statistic for the first half of
Phase IIIa θ̂′2 as clearly Phase IIIa must be successful in order to realise any revenue.

In Figure 5-18 we analyse the decision rule by varying the values of ϑ and θ̂′2, and finding
the optimal decision in each case. We also record the optimal sample size n2 for Phase IIIb
if one decides to start Phase IIIb early, and record the expected gain in each case.

Figure 5-18 shows that the optimal decision at Decision 3 depends upon both the current
beliefs about the true treatment effect and on the observed data so far in Phase IIIa. This is
because the observed data from Phase IIIa is to be used in the hypothesis test for Phase IIIa
which necessarily needs to result in a rejected null hypothesis for the drug to be successful, as
well as the current beliefs about the treatment effect informing how likely one is to observe
data that results in rejections of the null hypothesis in both Phase IIIa and IIIb.

5.3 Group sequential Phase III optimisation

Suppose that our Phase III trials may have group sequential designs (GSDs). In this section,
we ask which types of GSDs work best when we require two Phase III trials. We will consdier
Phase III on its own here rather than as part of a Phase II/III overall design.

Firstly, we consider constructing error spending GSDs in order to satisfy an assurance
criterion.

5.3.1 Building error spending designs with an assurance criterion

Classically, error spending designs are constructed subject to a type I error condition under
the null hypothesis, and a power requirement under an alternative. In particular, rho-family
one sided error spending designs as described in Jennison and Turnbull (2000) with given
error spending functions may be constructed given a type I error of 0.025 and power 0.8 at
θ = 1. The final information time Imax is then deduced from these requirements.

When constructing the group sequential design, one may perform sensitivity analysis to
assess the power of the design under different assumptions about the true treatment effect
θ. Based on this logic, it may make sense to construct the design based upon an assurance
requirement instead of the power requirement, where the assurance requirement states a
particular probability of success given one’s current beliefs about the value of θ.

One can do this by constructing an error spending group sequential design such that there
is a type I error of α when θ = 0 and there is a probability of rejection of 1 − β given that
θ ∼ N(ϑ, ν2), for some ϑ and ν. In order for such a test to be well defined, it must be the
case that the area of the normal distribution to the left of 0 must be less than β. This is the
case if

Φ
(
ϑ

ν

)
> β. (5.22)

In Appendix 3.C, we described a method for finding the probability of rejection efficiently
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for a group sequential design. Using this method, one may replace the power criterion within
the construction of a error spending group sequential design.

5.3.2 Varying the ρ parameter in error spending designs

We identify how the boundaries for a ρ-family error spending group sequential design vary
as ρ is changed. We use intuition gained from this to explain results in following sections.

Figure 5-19 shows how the error spending group sequential design shape changes as the
parameter ρ is varied. Each subplot is an error spending group sequential design with type I
error 0.025 and power 0.8 at θ = 1. Similar shapes are observed when the power requirement
is changed to an assurance requirement of probability of rejection 0.8 when θ is distributed
according to some normal distribution.

When ρ is low, a large proportion of error is spent on the initial analyses, leading to more
frequent early stopping in the first few analyses. However, given the latter stages have less
error to spend- this means the information levels between each analysis must be larger.

When ρ is large, a large proportion of error is spent on the latter stages. This produces
designs which are unlikely to reject in the early stages, but have relatively low information
required to reach the final stage.

Intermediate values of ρ generally strike the optimal balance between error spending in early
and late stages and produce designs with the lowest expected information. Commonly used
values of ρ are between 1 to 3.

Figure 5-19: Error spending designs with type I error 0.025 and power 0.8 at θ = 1, as the
parameter ρ varies.
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5.3.3 Two error spending Phase III designs

Suppose one constructs a group sequential test with K analyses. Under particular
assumptions about θ, define the random variable of the time one terminates the group
sequential test as I(obs).

The probability mass function of I(obs) may be denoted as πk := P(I(obs) = k), where∑
k=1,...,K πk = 1. These probabilities are obtained as by-products from the calculations

required to construct the group sequential test.

Given that there are two independent identical group sequential designs running in parallel,
the distribution of the maximum of the times one terminates the group sequential test may
be deduced. Denote the random variable

I ′(obs) = max(I(obs)
1 , I(obs)

2 ), (5.23)

where I(obs)
1 and I(obs)

2 are independent and identically distributed.

One may show that

π′1 = π2
1, and

π′k = 2πk
k−1∑
i=1

πi + π2
k for k = 2, ...,K.

. (5.24)

Using the distribution defined by these probabilities, one may easily calculate the expected
sample size of the longer of two independent but identically defined group sequential designs.

In the figures below, we look at how the value of ρ affects the expected sample size of an
individual group sequential design and the longer of two GSDs, under different assumptions
about the treatment effect θ.

Figures 5-20 and 5-21 show that the optimal value of ρ to minimise the expected information
varies, depending on whether Phase III consists of one or two GSDs and under what treatment
effect θ the expected information is calculated.

Figure 5-20 in particular shows for poor treatment effects, a low ρ allows lots of error to be
spent in the early stages, making early rejection more likely. This is even more so the case
when one considers two Phase III GSDs, where the optimal ρ is even lower than the single
Phase III counterpart. What is more interesting, is when the treatment effect is high. In this
case one desires a larger ρ value. Again, this is even more so the case when we consider two
Phase III GSDs, with the optimal ρ even higher than the single Phase III counterpart. But
the optimal ρ for a single GSD does well for the two GSD case.

Figure 5-21 shows the dependence on ρ when θ ∼ N(1, 0.52). This prior involves a mix of the
effects observed in Figure 5-20, as it contains both low and high values of θ. In this case the
optimal ρ is a moderate value with the two Phase III group sequential design counterpart
having a slightly higher optimal value of ρ. GSDs with these values of ρ are shown in the
figure below.
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Figure 5-20: Thin dark blue: Expected information when θ = 0 for an individual Phase III
group sequential design. Thick dark blue: Expected information when θ = 0 for a pair
of Phase III GSDs. Thin light blue: Expected information when θ = 1 for an individual
Phase III group sequential design. Thick light blue: Expected information when θ = 1 for a
pair of Phase III GSDs. Vertical lines show the minimum of each curve. GSDs are defined
to have power 80% at θ = 1.

Figure 5-21: Thin curve: Expected information when θ ∼ N(1, 0.52) for an individual
Phase III group sequential design. Thick curve: Expected information when θ ∼ N(1, 0.52)
for a pair of Phase III GSDs. Vertical lines show the minimum of each curve. GSDs are
constructed to have assurance of 80% when θ ∼ N(1, 0.52).
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Figure 5-22: Optimal Error Spending Group Sequential Boundaries for 1 Phase III (grey),
with ρ = 0.74, and 2 Phase IIIs (black), with ρ = 1.05.

5.4 Discussion

We have attempted to tackle the problem of how best to perform two Phase III trials. We
have found that the answer often depends upon the assumptions made about the drug, such
as the magnitude of various costs and revenues, and assumptions about the drug’s efficacy.

From our first simulation study, we find that the best way to perform the two Phase III trials
depends upon the parameters of the drug and the posterior distribution of the treatment effect
after Phase II. In the case when testing the drug is expensive or the time to treat patients is
low, or when one is more pessimistic about the treatment effect, one favours taking the trials
sequentially in order to make more informed decisions about investing in the Phase IIIb trial.
The adaptive programme from the second simulation study is a compromise between the two
original programmes and adds value in certain combinations of drug parameters and beliefs
about the treatment effect.

Discussions with sponsors suggest the parallel approach is most commonly used in industry.
It may be the case that drugs that have appeared in industry have parameter values and
beliefs about the treatment effect that more commonly favour the parallel approach. That
is, they are optimistic about the drugs treatment effect (otherwise one may not take the drug
forward at all). The approach taken here to derive optimal decision rules for programmes and
compare optimised programmes against each other can be applied in practice, in situations
where the parameters are better known. This approach may then be used to inform and
justify high value decisions about how a programme of trials are performed.

The work on two group sequential designs provides an initial starting point to gain intuition
as to the appropriate types of GSDs to use in the two Phase III trial scenario. Whether
one should spend error later or earlier depends upon whether the treatment effect is low or
high. In the case when there is uncertainty as to the treatment effect, but it is thought to
be positive, the optimal value of group sequential design parameter ρ when performing two
Phase III trials was found to be close to the optimal value of that for only one group sequential
trial in our example. Whilst the choice of ρ for a set of two Phase III group sequential design
trials may not necessarily need to be optimised for each trial, the intuitions gained from these
results may help aid an appropriate selection.
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6
The Portfolio Problem

6.1 The Portfolio Problem

The portfolio problem concerns a portfolio of drugs in development, and the optimal allocation
of a research and development budget to develop these drugs.

Suppose a portfolio of drugs are in development. Suppose these drugs are in development
stages prior to Phase III commencing, which may include Phase II, I, or pre-clinical studies.
Based on current knowledge, it is believed these drugs have some prior probability of being
efficacious and have some probability of successfully reaching Phase III at some time point
in the future.

Once a drug becomes available for Phase III, there may be different Phase III design options
for that drug. Different design options may use up different amounts of budget whilst affecting
the probability of the drug passing Phase III successfully. The portfolio problem is to find
the optimal Phase III design for each drug given what has happened in the portfolio so far.

Formulation

Suppose there are I drugs in the portfolio and let the total budget be denoted by BPortTot.
Suppose the patient responses for drug i and control are normally distributed with known
variance σ2. Denote by θi the treatment difference between drug i and control. We are
interested in testing the hypothesis that H0,i : θi ≤ 0 for each drug i. We suppose the
one-sided type I error rate for drug i is given by αi.

We say that drug i is due to become available for Phase III at a particular time when the
drug has had a technical success in Phase II and is ready to start Phase III. Assume drug i
is available for Phase III at t(a)

i , and the probability of the drug being available for Phase III
development at this time is p(a)

i . Time t(a)
i is the only time drug i can become available for

Phase III. Probability p(a)
i therefore represents the probability of drug i having a technical

success in Phase II and proceeding to Phase III.

If drug i is available for Phase III, current knowledge about the treatment effect, θi, suggests
it may take θi = µ1

i in an efficacious scenario and θi = µ0
i in a non-efficacious scenario.

Conditional on drug i being available, we give θi a two point prior with density π such that

π(µ0
i ) = peffi , and

π(µ1
i ) = 1− peffi ,

(6.1)

for some probability peffi .
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For each drug i, we require ntrialsi confirmatory trials in Phase III, all of which need to be
successful for the drug to be marketed. This will generally be either 1 or 2.

For drug i = 1, ..., I, there are Ji designs for each Phase III trial one may choose from
(including not performing Phase III at all) each with power 1− βi,j and corresponding total
sample size ni,j for j = 1, ..., Ji. If ntrialsi > 1, then all trials for drug i must have the same
design. The probability a trial is a success in Phase III is

PoTSi,j = (1− βi,j)peffi + αi(1− peffi ). (6.2)

Given there are ntrialsi Phase III trials for drug i, the overall probability of success is PoSi,j ,
given by

PoSi,j = (1− βi,j)n
trials
i peffi + α

ntrials
i
i (1− peffi ). (6.3)

The total cost of the Phase III trials for drug i and design j is defined as bi,j . In the case
of fixed sample designs, this is a fixed quantity. In the case of group sequential designs, bi,j
is a random variable which depends upon the analysis at which the design terminates. The
expected gain for drug i and design j is defined as ei,j which depends upon PoSi,j . The gain
function that is used to calculate bi,j and ei,j is discussed in the next section.

Below, we list the notation to be used in this chapter.

Portfolio Problem Definition List

I Number of drugs in the portfolio.

αi Type I error rate for drug i.

Ji Number of possible designs for drug i.

µ1
i Value of true treatment effect θi when drug i is efficacious.

µ0
i Value of true treatment effect θi when drug i is not efficacious.

σ2
i Response variance for drug i.

βi,j Type II error rate for drug i with design j when θi = µ1
i .

ni,j Total sample size required for each Phase III trial with drug i, design j. Deduced
from other parameters such as βi,j , αi, and σ2

i .

bi,j Budget required for each Phase III trial with design j on drug i ($M).

PoSTi,j The probability of success (rejection of the null hypothesis) for each Phase III
trial with design j for drug i.

ntrialsi Number of successful trials required for Phase III for drug i to market the drug.

PoSi,j The probability of success of all ntrialsi trials for drug i.

ei,j Expected gain from drug i with design j ($M).

BPortTot Total portfolio budget.

θi True treatment effect for drug i.

t
(a)
i Time of availability of drug i.

p
(a)
i Probability of availability of drug i.

peffi Probability that drug i is efficacious.
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Financial model Definition List

fi Fixed cost incurred per fixed sample Phase III trial ($M).

ci Cost per patient in a Phase III trial ($M).

λi Recruitment rate for drug i (patients/month).

ttrti Time to treat and observe the response of 1 patient (months).

Fi Fixed marketing set up cost ($M).

tsi Set up time between the end of Phase III and first sales (months)

TPi Time at which the patent for drug i expires from time 0 (months).

ρ Monthly discount rate.

Rmean
i Mean revenue per month for drug i ($M).

Rsd
i Standard deviation of Rmean

i ($M).

The Financial Model

The gain function defines the value of a pharmaceutical asset to the sponsor from which one
may derive the optimal decisions within the portfolio. Changing the gain function changes
the exact question the portfolio problem asks. As introduced in Section 1.5.1 and with similar
forms used in Sections 3.5.1, 5.1.2, and 7.4, we consider the Financial Model, a gain function
which aims to model the expected net present value of a drug. In contrast to the other
approaches, the financial model is defined for each drug in our portfolio, so the gain for the
portfolio problem is the sum of the individual gains from each drug i = 1, ..., I. In the text
below, we outline the financial model for drug i illustrated in Figure 6-1.

Figure 6-1: Schematic of the financial model for a single Phase III trial of drug i with design
j, assuming Phase III is successful with revenue per month Ri. Quantities above the x-
axis denote time intervals or times events occur, and below the x-axis denote incomes and
expenditure amounts.

The financial model specifies the incomes and expenditures of drug i with a particular design
in $M. The initial expenditures consist of a fixed cost fi per Phase III trial and a patient
recruitment cost of ci per patient. The patients are recruited at a rate of λi patients/month
and each patient takes ttrti months to be treated and have an observed response. The total
time for a Phase III trial with ni,j patients is thus ni,j/λi + ttrti months.

125



The ntrialsi Phase III trials for drug i are all performed in parallel. If at least one of the trials
is not successful, no further incomes or expenditures are realised. Assuming all the Phase III
trials were successful, a fixed marketing set up cost of Fi is incurred, followed by a time
period of tsi allowing for production, distribution, and sales set up. Denote this time point
Tmi = t

(a)
i + ni,j/λi + ttrti + tsi . From this time point until the time of patent expiry, denoted

by T pi , the drug may be marketed. During this marketing time, an income per month Ri

is realised, representing the time the drug can be sold with exclusivity in its target market.
This revenue per month is sampled using a normal random variable for each drug with mean
Rmean
i and standard deviation Rsd

i to represent the uncertainty of the commercial success of
the marketed drug. Once the patent expires and the drug finishes its exclusivity period, we
assume no further incomes or expenditures are incurred.

We discount future costs and revenues continuously at rate ρ. This is a common approach in
portfolio modelling and represents inflation and the opportunity cost.

• If design j is fixed sample:

For any available drug i and design j, we define the budget, that is, the financial cost to
perform Phase III, as

bi,j := ntrialsi fi exp(−ρt(a)
i ) + (ntrialsi ci λi)

∫ t
(a)
i +ni,j/λi

t
(a)
i

exp(−ρt)dt, (6.4)

and the financial gain of a successful Phase III (where all Phase III trials reject the null
hypothesis) as

ri,j := −bi,j − Fi exp(−ρ(t(a)
i + ni,j/λi + ttrti )) +Ri

∫ T pi

Tmi

exp(−ρt)dt. (6.5)

When drug i is available and has design j, the financial gain for drug i is therefore defined as

Gi,j := 1(Phase III successful) ri,j − 1(Phase III unsuccessful) bi,j . (6.6)

The financial gain of the portfolio G with drugs i = 1, ..., I with designs j1, j2, ..., jI

respectively may be then defined as

G :=
I∑
i=1
Gi,ji . (6.7)

Let the expected financial gain of available drug i with design j when Phase III is not
successful be denoted by eNOSUCCESS

i,j . Similarly when Phase III is successful, we denote this
by eSUCCESSi,j . Overall, the expected financial gain of available drug i with design j is denoted
by ei,j . Then as bi,j is a-priori known, eNOSUCCESS

i,j = −bi,j and

eSUCCESSi,j = −bi,j − Fi exp(−ρ(t(a)
i + ni,j/λi + ttrti )) +Rmean

i

∫ T pi

Tmi

exp(−ρt)dt, (6.8)

and
ei,j = PoSi,j e

SUCCESS
i,j + (1− PoSi,j) eNOSUCCESS

i,j . (6.9)
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• If design j is group sequential:

Then each trial sample size is also a random variable depending upon at which analysis the
trial terminates. We adapt the above equations for group sequential designs. Consider the
ntrialsi trials for drug i. We make two simplifying assumptions about the group sequential
designs.

Firstly, we make the assumption that all group sequential trials run independently until
they terminate and Phase III concludes when the final group sequential trial terminates. In
particular, trials continue even if another has stopped for futility. Secondly, we assume that
at each interim analysis, the responses of all patients that have been recruited for the trial
by that time point are used in the interim analysis. This assumption assumes the treatment
time and time to response is small enough that nearly all patients recruited by the time of
the interim analysis have responses that may be used in the interim analysis.

For the rth group sequential trial for drug i with design j, let n(r)
i,j be the observed sample size

upon termination for r = 1, ..., ntrialsi . That is, if the group sequential design has Ki analyses,
n

(r)
i,j may take Ki possible values for each r, i, and j. Given the properties of the group

sequential design and the prior on the treatment effect, one may calculate the probability of
observing sample sizes upon termination for each trial ni,j := (n(1)

i,j , ..., n
(ntrials
i )

i,j ) denoted by
pni,j . The sample sizes upon termination for each trial are conditionally independent given
the treatment effect, so these probabilities may be calculated with ease.

We define b
(ni,j)
i,j , r(ni,j)

i,j , and G(ni,j)
i,j as the financial cost of performing Phase III, the

financial gain of a successful Phase III, and the overall financial gain given sample sizes
upon termination of ni,j . The financial cost of an unsuccessful Phase III is

b
(ni,j)
i,j := ntrialsi fi exp(−ρt(a)

i ) +
ntrials
i∑
r=1

ci λi

∫ t
(a)
i +n(r)

i,j /λi

t
(a)
i

exp(−ρt)dt, (6.10)

and the gain give a successful Phase III is

r
(ni,j)
i,j := −b(ni,j)i,j − Fi exp(−ρ(t(a)

i + max
r

(n(r)
i,j )/λi + ttrti )) +Ri

∫ T pi

Tmi,r

exp(−ρt)dt, (6.11)

where Tmi,r is defined as Tmi,r := Tmi = t
(a)
i + maxr(n(r)

i,j )/λi + ttrti + tsi . We adapt Equation 6.6
from the fixed sample case to get

G(ni,j)
i,j := 1(Phase III successful) r

(ni,j)
i,j − 1(Phase III unsuccessful) b

(ni,j)
i,j . (6.12)

Furthermore, we define the budget bi,j for drug i and design j assuming all group sequential
trials run until their final analyses,

bi,j := max
ni,j

(b(ni,j)i,j ) (6.13)

We make a commitment to this budget, but may not use it all if trials stop early.

The financial gain of the portfolio G with drugs i = 1, ..., I with designs j1, j2, ..., jI

respectively may be then defined as

G :=
I∑
i=1
Gni,jii,ji

. (6.14)
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As in the fixed sample case, define eNOSUCCESS
i,j , eSUCCESSi,j , and ei,j respectively. These take

the form
eNOSUCCESS
i,j = −

∑
ni,j

pni,jb
(ni,j)
i,j , (6.15)

and

eSUCCESSi,j :=
∑
ni,j

pni,j

[
− b(ni,j)i,j − Fi exp(−ρ(t(a)

i + max
r

(n(r)
i,j )/λi + ttrti ))

+Rmean
i

∫ T pi

Tmi,r

exp(−ρt)dt
]
.

(6.16)

The expected financial gain ei,j is as in the fixed sample case given by

ei,j = PoSi,j e
SUCCESS
i,j + (1− PoSi,j) eNOSUCCESS

i,j . (6.17)

Computing the optimal decisions

The best design for a particular drug will depend upon the total budget remaining, the designs
that were used for previous drugs, and the drugs that may be available for investment in the
future. In the following sections, we outline methods that may be used to calculate the optimal
decisions and total portfolio value. In Section 6.2 we describe an integer programming method
for solving the portfolio problem. In Section 6.3 we describe the dynamic programming
method applied with the design history state space in Section 6.3.1 and with the budget
remaining state space in Section 6.3.2.

6.2 The integer programming method

The integer programming method formulates the portfolio problem as a stochastic integer
programming problem, and calls an integer programming solver to produce solutions. This
approach was used by Patel et al. (2013), motivated by previous approaches such as Gatica
et al. (2003), Colvin and Maravelias (2008), Varma et al. (2008), and Solak et al. (2010)
which either used integer programming, stochastic integer programming, or simulation based
approaches. All these approaches consider fixed sample designs only. In this section, we
outline the Patel et al. (2013) integer programming approach for the problem.

The method makes use of availability histories and decision variables. The availability history
describes which drugs in the past were available or not, with ai = 1 denoting drug i being
available and ai = 0 denoting drug i not being available. Suppose for simplicity and without
loss of generality that the probability of availability of Drug 1 is p(a)

1 = 1. The availability
history of a2, ..., ai−1 has corresponding probability

∏i−1
m=2(p(a)

m )am(1 − p
(a)
m )1−am . Decision

variables describe the overall strategy of the portfolio and are defined for each drug with a
certain availability history.

Define decision variables

Z1,j =

 1 Design j is used for Drug 1 if it is available
0 otherwise,

(6.18)
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and for i = 2, ..., I

Zi,j|a2,...,ai−1 =

 1 if drug i uses design j given availability history a2, ..., ai−1.
0 otherwise.

(6.19)

The integer programming method formulates the problem by requiring one to find the decision
variables to maximise the expected gain of the portfolio

p
(a)
1
∑
j

e1,jZ1,j+
I∑
i=2

∑
a1

∑
a2

...
∑
ai−1

p
(a)
i

i−1∏
m=2

(p(a)
m )am(1−p(a)

m )1−am
∑
j

ei,jZi,j|a1,a2,...,ai−1 , (6.20)

subject to design constraints∑
j

Zi,j ≤ 1 for i = 1

∑
j

Zi,j|a2,...,ai−1 ≤ 1 for i = 2, 3, ..., I, and any a1, ..., ai−1,
(6.21)

and budget constraints detailing the budget to be used at time points during the portfolio,
ensuring that the strategy does not use more than the available budget. See Patel et al.
(2013) for further details.

The integer programming method formulates the problem in the following form

Maximise cZ
subject to AZ ≤ b.

(6.22)

One may store A as a sparse matrix and call an integer programming solver to compute the
solution.

As the number of drugs in the portfolio increases, the size of the integer programming problem
becomes very large. In Section 6.4, we show the size of the portfolio that this method may
find the optimal decisions in a reasonable amount of time. In particular, if all drugs have
uncertainty as to whether they will become available or not, we find that the method can
handle up to 8 drugs in a reasonable amount of time. In addition, this formulation only
allows the designs of each drug to be fixed sample. It is not clear how this formulation would
be extended to allow group sequential methods.

6.3 The dynamic programming method

In Section 1.4 we introduced the method of dynamic programming for computing optimal
decisions in a process. In this section, we show how dynamic programming can be used to
tackle the portfolio problem.

Suppose at the time drug i becomes available there are states si that one may find themselves
at. These states relate to what has happened previously in the portfolio. Define Ei(si) as the
expected gain from drugs i, i+1, ..., I, given one is at state si and one chooses optimal designs
for the remainder of the portfolio. The value this quantity takes at drug i = 1 at the initial
state can be considered the value of the portfolio. Dynamic programming computes these
values iteratively drug by drug, starting at i = I and working backwards, breaking down the
large problem of calculating this quantity at the first drug into smaller sub-problems.
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An important part of the method is the need for a dynamic programming central equation.
In dynamic programming literature, this may be called the Bellman Equation as in Bellman
(1957). The idea involves having the sub-problems nested recursively inside a larger problem
by having an equation define a relation between the larger problem and the sub-problems. In
particular in this context, the equation expresses the expected gain from drugs i, i + 1, ..., I
in terms of the expected gain from drugs i+ 1, ..., I. That is, the quantity Ei(si) is expressed
in terms of Ei+1(si+1) for different possible states si+1.

Consider the value of EI(sI) at the final drug I for some sI . Finding the optimal design and
corresponding expected gain is trivial in this case: the optimal design is the design in the set
of all the designs one can afford which produces the largest expected net present value. Using
the central equation, the problem at drug I − 1 of computing EI−1(sI−1) for some sI−1 may
be solved by reading solutions of the already solved sub-problem at drug I. One may repeat
this for each state sI−1 at drug I − 1, and then work backwards drug by drug until Drug 1.

6.3.1 The dynamic programming on a design history state space method

In this section, we illustrate how the dynamic programming method with a design history
state space can be used to solve the portfolio problem. As in the stochastic integer
programming method in Section 6.2, we restrict our attention to fixed sample designs only.

Method

Define a state at drug i in the portfolio as the design history j1j2...ji−1, with jr representing
the design chosen for drug r for 1 ≤ r ≤ i − 1. Let Ei(j1j2...ji−1) denote the expected
gain from drugs i to I, given one is at state j1j2...ji−1 at drug i, and one makes decisions
optimally for the remainder of the portfolio. Define Ji,j1j2...ji−1 as the set of possible designs
one can afford for drug i given how much of the budget has been used on designs specified
by j1j2...ji−1.

For any drug i = 1, ..., I − 1, state j1j2...ji−1, if design j ∈ Ji,j1j2...ji−1 is chosen for drug i,
the state at drug i+ 1 is j1j2...ji−1j. If drug i is not available for Phase III, then the design
for drug i is necessarily j = 1.

In the next equations, we formulate the dynamic programming central equations:

EI(j1j2...jI−1) = p
(a)
I max

j∈JI,j1j2...jI−1

eI,j , (6.23)

and for i = 1, ..., I − 1,

Ei(j1j2...ji−1) = p
(a)
i max

j∈Ji,j1j2...ji−1

[
ei,j + Ei+1(j1j2...ji−1j)

]
+ (1− p(a)

i ) Ei+1(j1j2...ji−11).

(6.24)

We note that Equation 6.24 has the form of the Bellman Equation (as in Bellman (1957)).
The expected value at a particular state at one stage (Ei(j1j2...ji−1)) is written in terms of
the expected value at different states at the next stage (Ei+1(j1j2...ji−1j) for different j) in
this equation.

Dynamic Programming (Design History) Definition List
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j1j2...ji−1 State describing the design history at drug i in the portfolio.

Ei(j1j2...ji−1) Expected gain of drugs i to I given remaining budget j1j2...ji−1 at drug i.

Ji,j1j2...ji−1 Possible designs one can afford at drug i given a design history of j1j2...ji−1.

Implementation

In this section we describe the algorithms to compute the optimal decisions in the portfolio
as pseudo-code.

STEP 1: Gather inputs

• Portfolio inputs

I, αi, Ji, βi,j , n
trials
i , BPortTot, σ2

i , t
(a)
i , p

(a)
i , peffi , µ

1
i , µ

0
i for all appropriate i, j.

• Financial model inputs

fi, ci, λi, ttrt, Fi, t
s
i , T

p
i , ρ for all appropriate i.

STEP 2: Compute Designs

In this step, we use the financial model and portfolio inputs to calculate the budget and
expected gain for each drug and design. As we are only considering fixed sample designs, the
budget is a-priori known for each drug i and design j.

• For every possible drug and design, we calculate the:

– Budgets bi,j and expected gain ei,j for each i = 1, ..., I and j = 1, ..., Ji using the
Financial Model equations of Section 6.1.

List the inputs and designs in object I := {I, BPortTot, (Ii){i=1,...,I}}, where
Ii = {p(a)

i , (bi,j){j=1,...,Ji}, (ei,j){j=1,...,Ji}, n
trials
i }.

STEP 3: Initial Computations

Firstly, for efficiency, remove designs that have higher budgets and lower expected gains than
another design for the same drug.

The method of dynamic programming is to work backwards, drug by drug, finding the optimal
decisions for any possible design history. This works because the optimal decisions for a
particular drug depend only on the current state, as specified in Equation 6.24.

For the optimal decision at each state at drug i, the corresponding eNPV can be stored in a
large array eG_Arr, where the entry with index j1,j2,...,ji−1 gives the eNPV of drug i and the
remainder of the portfolio of the optimal design at drug i given a design history of j1j2...ji−1.

In the algorithms below, we summarise the method used to calculate the optimal decisions
for the portfolio.
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STEP 4: Dynamic Programming Algorithm

The following boxes contain the algorithms used to perform the dynamic programming
method.

Master_Function

Inputs: I, eG_Arr

for i in I,I − 1,...,1
. eG_Arr ← Update_Opt_Decs (i, eG_Arr)
end for loop
Return eG_Arr

Update_Opt_Decs

Inputs: i, eG_Arr

for every combination j1j2...ji−1 of possible design histories
. Calculate the optimal design j∗ and corresponding ei,j∗
. given a design history j1j2...ji−1 using Equation 6.24.
. This involves reading stored elements in eG_Arr for the next drug.
. j1, ..., ji−1th entry of eG_Arr ← ei,j∗ .
end for loop
Return eG_Arr

6.3.2 The dynamic programming on a budget remaining state space
method

In this section, we illustrate how the dynamic programming method with a budget remaining
state space can be used to solve the Portfolio Problem. This differs to the design history state
space approach by defining states as the budget remaining for the remainder of the portfolio
rather than the design history of previous drugs. As before, we restrict our attention to
designs that are fixed sample.

Method

Define the current state to be B if there is a remaining budget of B at this time. If one is
at state B at drug i, one has a a total portfolio budget of B remaining to spend on drugs
i, i+ 1, ..., I. Let Ei(B) denote the sum of the expected value of the gain function of drugs i
to I, given one is at state B at drug i, and one makes decisions optimally. Define Ji,B as the
set possible designs one can afford for drug i given a remaining budget of B.

For any state B, drug i = 1, ..., I − 1 and design j ∈ Ji,B, the only possible state for drug
i + 1 is B − bi,j if the drug is available. That is, given one is at drug i with total budget B
and one chooses design j, one would move to state B − bi,j at drug i+ 1.
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We formulate the dynamic programming central equations. For the last drug, drug I, we have

EI(B) = p
(a)
i max

j∈JI,B
ei,j , (6.25)

and for i = 1, ..., I − 1,

Ei(B) = p
(a)
i max

j∈Ji,B

[
ei,j + Ei+1(B − bi,j)

]
+ (1− p(a)

i ) Ei+1(B). (6.26)

Again, we note that Equation 6.26 has the same form as the Bellman Equation (as in Bellman
(1957)). Given one is at state B at drug i, one may move to state B or B − bi,j at drug i+ 1
given one chooses design j for drug i as illustrated in Figure 6-2.

Figure 6-2: Figure showing the relationship between the state B at drug i and possible future
states B′ at drug i+ 1.

Dynamic Programming (Remaining Budget) Definition List

B State describing the remaining budget at some point in the portfolio.

Ei(B) Expected gain from drugs i to I given remaining budget B at drug i before
allocation resources to drug i.

Ji,B Possible designs one can afford at drug i with a remaining budget of B.

Implementation

In this section we describe the algorithms to compute the optimal decisions in the portfolio
as pseudo-code.

STEP 1: Gather inputs

• Portfolio inputs

I, αi, Ji, βi,j , n
trials
i , BPortTot, σ2

i , t
(a)
i , p

(a)
i , peffi , µ

1
i , µ

0
i for all appropriate i, j.
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• Financial model inputs

fi, ci, λi, ttrt, Fi, t
s
i , T

p
i , ρ for all appropriate i.

STEP 2: Compute Designs

In this step, we use the financial model and portfolio inputs to calculate the budget and
expected gain for each drug and design. As in the design history approach, we only consider
fixed sample designs, so bi,j and ei,j are known a-priori for each drug i and design j.

• For each drug and design, calculate:

– Budgets bi,j and expected gain ei,j for each i = 1, ..., I and j = 1, ..., Ji using the
Financial Model equations of Section 6.1.

List the portfolio inputs in object I := {I, BPortTot, (Ii){i=1,...,I}}, where
Ii = {p(a)

i , (bi,j){j=1,...,Ji}, (ei,j){j=1,...,Ji}, n
trials
i }.

STEP 3: Initial Computations

For efficiency, remove designs that have higher budgets and lower expected gains than another
design for the same drug.

The budget remaining part of the state space is a continuous quantity. However, we discretise
it into a finite number of intervals. Let

Bdisc :=
{
k − 1
N
BPortTot | k = 1, 2, ..., N

}
(6.27)

be a set a budgets, each corresponding to an interval

Ik :=
[
k − 1
N
BPortTot ,

k

N
BPortTot

)
for k = 1, ..., N. (6.28)

A method for storing the optimal decisions and corresponding expected gain is to define a list
Opt_Dec_List. This list is indexed by the drug i such that Opt_Dec_List[[i]] is a dataframe
detailing the optimal decisions for drug i. This dataframe consists of rows corresponding to
the discrete intervals covering the Budget Remaining state space, with columns giving the
optimal decisions and corresponding expected gain for the remainder of the portfolio for each
interval. The optimal decision for each interval is found by finding the optimal decision for
a sample within that interval (called a representative sample). To be conservative, one may
choose this sample to be the lower bound of the interval.

In the algorithms below, we summarise the method used to calculate the optimal decisions
for the portfolio.
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STEP 4: Dynamic Programming Algorithm

Master_Function

Inputs: I,Opt_Dec_List

for i in I,I − 1,...,1
. Opt_Dec_List ← Update_Opt_Decs(i,Opt_Dec_List)
end for loop
Return Opt_Dec_List

Update_Opt_Decs

Inputs: i,Opt_Dec_List

eG_vec ← Find_Opt_Decs(i, Opt_Dec_List)
Store eG_vec in a column in the dataframe Opt_Dec_List[[i]]
Return Opt_Dec_List

Find_Opt_Decs

Inputs: i,Opt_Dec_List

B_vec ← vector of representative samples of B, each from an interval in
Opt_Dec_List[[i]].
for each rloop in 1, 2, ..., length(B_vec)
. Calculate the optimal design j∗ for remaining budget B_vec[rloop]
. using Equation 6.26 with corresponding ei,j∗ .
. This involves reading stored elements in Opt_Dec_List[[i+ 1]].
. eG_vec[r_loop] ← ei,j∗

end for loop
Return eG_vec

6.4 A comparison of the different methods for the portfolio
problem with fixed sample designs

In this section, we compare the computational efficiency of the three methods we have
discussed so far when used to compute the optimal decisions of a portfolio consisting of fixed
sample designs. We consider the stochastic integer programming method (SIP), the dynamic
programming method with a design history state space (DP (History)), and the dynamic
programming method with a remaining budget state space (DP (Remaining Budget)).

In Section 6.7, we shall examine different case studies. Therefore, we present results on the
compuational efficiency for each of the methods for one of those examples.
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Table 6.1: Computational time in seconds for computing the optimal decisions in a portfolio
of drugs with fixed sample designs for the stochastic integer programming (SIP) and dynamic
programming (DP) methods. The SIP method for 8 drugs does not complete within 2 hours
(7200) seconds. All computations are run sequentially on a single core (Intel Core i7-7500U
2.7 GHz processor).

Computational Time (seconds)
SIP DP (History) DP (Remaining Budget)

3 Drugs 6.15 0.30 1.01
4 Drugs 6.16 0.50 1.38
5 Drugs 5.98 0.64 2.94
6 Drugs 10.70 2.38 6.35
7 Drugs 13.23 12.09 11.96
8 Drugs 150.23 101.02 17.22
9 Drugs - 979.10 21.71
25 Drugs - - 89.55

Table 6.1 shows the computational time for each method to find the optimal decision rules
for the portfolio.

For portfolios with few drugs, the times taken for each method are fairly similar. As
the number of drugs in the portfolio increases, the SIP and DP (History) method both
take exponentially increasing times, since the number of possible design histories increases
exponentially. The DP (Remaining Budget) increases at a linear rate with the addition of
new drugs and therefore performs better for portfolios with large numbers of drugs.

For more complex portfolios, the DP (Remaining Budget) is the favoured method and we
concentrate on this method for the remainder of this chapter. Only for smaller values of I
is this method not the fastest, in which case there are few combinations of design histories.
In Section 6.5, we generalise the DP (Remaining Budget) method to allow group sequential
designs.

In Section 6.7.1 we shall look at the computational time for the DP (Remaining Budget)
method for portfolios with an even larger number of drugs.

6.5 Generalisation of the dynamic programming (remaining
budget) method to group sequential designs

In Chapter 2, we introduced group sequential designs and noted the benefit of using them
within a Phase II/III programme. In a portfolio setting, group sequential designs can be
advantageous in two ways. Firstly, stopping early will allow one to reinvest unused budgets
back into the portfolio when the group sequential design stops. Secondly, stopping early for
efficacy will allow one to market the drug for longer until the patent expires. In this section,
we extend the dynamic programming (remaining budget) method to allow group sequential
designs.
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6.5.1 Method

Group sequential design situation ID

We suppose the group sequential trials for drug i each have Ki analyses.

The presence of group sequential designs in the portfolio complicates the state space as group
sequential designs return leftover budget to the total portfolio budget if they stop before the
final analysis. This means the optimal design for drug i is dependent on both the total
remaining portfolio budget as before, and the current status of ongoing group sequential
designs in the portfolio.

We therefore define an integer label s to be the GSD situation ID. This uniquely describes
the current status of all the GSDs in the portfolio. That is, whether each group sequential
design in the portfolio has terminated or was never started, if it is ongoing with a particular
design, or if the availability time of the corresponding drug is in the future.

Dynamic programming central equations

The expected value of a decision in a portfolio with group sequential designs now not only
depends upon the remaining budget, but on the current situation of the group sequential
designs. For example, if one is making a design decision for a certain drug but a group
sequential design for a previous drug is currently ongoing, then this group sequential design
may terminate early at some point in the future, returning leftover budget. This may affect
the optimal design decision at the current drug. In this subsection, we generalise the state
space to keep track of both the current situation of all group sequential designs as well as the
remaining portfolio budget.

Define the state (B, s) as the state of having remaining budget B and GSD situation ID s.
Let Ei(B, s) denote the sum of the expected value of the gain function from drugs i to I, given
one is at state (B, s) at drug i.

The sample size realised for a group sequential design is a random variable. When performing
the dynamic programming algorithm, we define bi,j as the maximum budget for drug i and
design j. That is, we assume that the group sequential trial will run until its last analysis.
This corresponds to the budget being ’locked away’ until one knows one does not need the
rest.

Given one is at state (B, s) at drug i, one may move to different states at drug i+ 1 due to
the following two mechanisms:

• if drug i is available, choosing design j will reduce B by bi,j , and

• if any ongoing GSDs terminate between drug i and i+ 1, s will change to reflect this,
and leftover budget may be returned making B increase.

Recall the definition of Ji,B from Section 6.3.2. For any state (B, s) and drug i = 1, ..., I − 1
and design j ∈ Ji,B, we define

AB,s,i,j := {(B′, s′) : (B′, s′) is a possible state at drug i+ 1 given drug i
has design j at state (B, s)}.

This set gives the possible states one may move to at the next drug given the current state
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at the current drug. For each new state (B′, s′) at drug i + 1, one defines the probability
of moving to it from (B, s) at drug i as p(i)

j ((B, s), (B′, s′)), given drug i had design j. For
fixed sample designs, this probability is 1 for (B − bi,j , s) reflecting the budget used by using
design j for drug i. For group sequential designs, these probabilities can be deduced from the
probabilities pni,j of observing a particular set of sample sizes as described in Section 6.1.

We now formulate the dynamic programming central equations.

EI(B, s) = p
(a)
I max

j∈JI,B
eI,j , (6.29)

and for i = 1, ..., I − 1,

Ei(B, s) = p
(a)
i max

j∈Ji,B

[
ei,j +

∑
(B′,s′)∈AB,s,j

p
(i)
j ((B, s), (B′, s′)) Ei+1(B′, s′))

]
+ (1− p(a)

i )
∑

(B′,s′)∈AB,s,1

p
(i)
1 ((B, s), (B′, s′)) Ei+1(B′, s′)

= max
j∈Ji,B

p(a)
i ei,j +

∑
(B′,s′)∈AB,s,i,j∪AB,s,i,1

[
p

(a)
i p

(i)
j ((B, s), (B′, s′))

+ (1− p(a)
i ) p(i)

i ((B, s), (B′, s′))
]
Ei+1(B′, s′)

]
.

(6.30)

As before, the key point of the central equation in Equation 6.30 is that the expected gain
at state (B, s) at drug i may be written in terms of the sum of the expected gain at different
states (B′, s′) at drug i+ 1, allowing for a dynamic programming approach.

In Figure 6-3, we show the relationship between a state at a particular drug and different
states one may move to at the next drug.

Figure 6-3: Figure showing the relationship between the state (B, s) at drug i and possible
future states (B′, s′) at drug i+ 1, with corresponding probabilities given design j for drug i.

Dynamic Programming with GSDs (Remaining Budget) Definition List

B Remaining budget at some point in the portfolio.
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s Group sequential design ID at some point in the portfolio describing the
current state of all the GSDs in the portfolio.

(B, s) State at a particular drug describing current values of B and s.

Ei(B, s) Expected gain from drugs i to I given state (B, s) at drug i.

AB,s,i,j Possible states at drug i+ 1 given state (B, s) at drug i and design j.

p
(i)
j ((B, s), (B′, s′)) Probability of moving to state (B′, s′) at drug i+ 1 given state (B, s) at

drug i with design j. This includes what happens in all the continuing
group sequential designs for drugs 1 to i.

Implementation

In this section we describe the algorithms to compute the optimal decisions in the portfolio
as pseudo-code.

STEP 1: Gather inputs

• Portfolio inputs

I, αi, Ji, βi,j , n
trials
i , BPortTot, σ2

i , t
(a)
i , p

(a)
i , peffi , µ

1
i , µ

0
i for all appropriate i, j.

• Financial model inputs

fi, ci, λi, ttrt, Fi, t
s
i , T

p
i , ρ for all appropriate i.

STEP 2: Compute Designs

In this step, we use the financial model and portfolio inputs to calculate the budget and
expected gain for each drug and design.

• Recall Ki is the number of analyses for group sequential designs for drug i. For drugs
with GSDs, calculate the:

– Analysis times tGSD
i,j,k and probabilities pGSD

i,j,k for each analysis k = 1, ...,Ki for each
group sequential trial j = 1, ..., Ji for each drug i = 1, ..., I.

– Budgets bi,j for each design j = 1, ..., Ji and drug i = 1, ..., I, defined as
bi,j := maxni,j (b

(ni,j)
i,j ), the budget assuming all group sequential trials run until

their final analysis using the notation from Section 6.1.

– Expected gains ei,j for design j = 1, ..., Ji for each drrug i = 1, ..., I.

• For drugs with fixed sample designs, calculate the:

– Budgets bi,j and expected gain ei,j for each i = 1, ..., I and j = 1, ..., Ji.

List the portfolio inputs in object I := {I, BPortTot, (Ii){i=1,...,I}}, where

Ii = {p(a)
i , (bi,j){j=1,...,Ji}, b

(ni,j)
i,j {j=1,...,Ji,all possible ni,j}, (ei,j){j=1,...,Ji},

t
(a)
i , (tGSD

i,j,k ){j=1,...,Ji, k=1,...,Ki}, n
trials
i }

.
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STEP 3: Initial Computations

As before, we discretise the budget remaining B part of the state space.

As in the case with fixed sample designs in the previous sections, the method of Dynamic
Programming is to work backwards, drug by drug, finding the optimal decisions for any
possible state. This process works because the optimal decisions for a particular drug depend
only on the current state, and the optimal decisions and corresponding expected gains for
the next drug, as specified in Equation 6.26.

We discretise the Budget Remaining dimension of the state space into a finite number of
intervals. A method for storing the optimal decisions and corresponding expected gain is to
define a list Opt_Dec_List. This list is indexed by the drug i and GSD situation ID s such
that Opt_Dec_List[[i]][[s]] is a dataframe detailing the optimal decisions for drug i given a
GSD situation ID s. This dataframe consists of rows corresponding to the discrete intervals
covering the Budget Remaining state space, with columns giving the optimal decisions and
corresponding expected gain for the remainder of the portfolio for each interval. The optimal
decision for each interval is found by finding the optimal decision for a sample within that
interval (called a representative sample). To be conservative, one may choose this sample to
be close to the lower bound of the interval.

In the algorithms below, we summarise the method used to calculate the optimal decisions
for the portfolio.

STEP 4: Dynamic Programming Algorithm

Master_Function

Inputs: I,Opt_Dec_List

for i in I,I − 1,...,1
. Opt_Dec_List ← Update_Opt_Decs(i,Opt_Dec_List)
end for loop
Return Opt_Dec_List

Update_Opt_Decs

Inputs: i,Opt_Dec_List

for each s possible for drug i
. eG_vec ← Find_Opt_Decs(i, Opt_Dec_List, s)
. Store eG_vec in a column in the dataframe Opt_Dec_List[[i]][[s]]
end for loop
Return Opt_Dec_List
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Find_Opt_Decs

Inputs: i,Opt_Dec_List,s

B_vec ← vector of representative samples of B, each from an interval in
Opt_Dec_List[[i]][[s]].
for each rloop in 1, 2, ..., length(B_vec)
. Calculate the optimal design j∗ for remaining budget B_vec[rloop]
. using Equation 6.30 with corresponding ei,j∗ .
. This involves reading stored elements in Opt_Dec_List[[i+ 1]][[s′]] for
. different possible s′.
. eG_vec[r_loop] ← ei,j∗

end for loop
Return eG_vec

An illustrative example

To illustrate the subtleties arising from the calculation of optimal decisions involving
portfolios with group sequential designs, we give an illustrative example. For simplicity,
we describe the budgets, expected gains, and the lengths of each design of each drug directly
in the table below and displayed in Figure 6-4.

Drug 1 Drug 2
t
(a)
i 1 4
p

(a)
i 1 0.5

ntrialsi 2 2
Design 1 type GSD, K1 = 2 GSD, K2 = 2

Design 1 budget 1 per analysis per trial 1 per analysis per trial
Design 1 eGain e1,1 = 2 e2,1 = 2
Design 2 type n/a GSD, K2 = 2

Design 2 budget n/a total per trial: first analysis: 2, second: 3
Design 2 eGain n/a e2,2 = 3

We suppose the budget for the portfolio is 8 units and that all group sequential designs take
1 time unit per analysis with a probability of 0.5 of stopping at each of the first and second
analyses.

Figure 6-4: A schematic of the two drugs with group sequential designs in the illustrative
example.
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Consider the situation at time point 4 given Drug 1 was run with 2 group sequential trials.
Each group sequential trial for Drug 1 may have stopped at the first analysis or the second.
Therefore, the remaining budget will be 8− 2× 2 = 4, 8− 2− 1 = 5, or 8− 2× 1 = 6. In the
case when the remaining budget is 6, one may choose design 2 for Drug 2 if it is available
which has a maximum budget of 2× 3 = 6. Otherwise, one must choose design 1 for Drug 2
if it is available which has a maximum budget of 2× 2 = 4.

Therefore, one may work out the expected gain of the portfolio by conditioning firstly on
whether Drug 2 is available (with probability 0.5) or not (with probability 0.5), and secondly
whether the remaining budget is 6 (with probability 0.25) or less than 6 (with probability
0.75).

expected gain of portfolio = 2 + 0.5× (0.25× 3 + 0.75× 2) + 0.5× 0
= 3.125

(6.31)

Using the dynamic programming algorithm, we obtain the same portfolio expected gain of
3.125. The optimal decisions may be listed in the following format.

Drug 1 Optimal Decisions Drug 2 Optimal Decisions, s = 1
Int Start Int End j∗ b1,j∗ e1,j∗ Int Start Int End j∗ b2,j∗ e2,j∗

8 8 1 4 2 0 4 none 0 0
4 6 1 4 2
6 8 2 6 3

The interval start (Int Start) and end (Int End) give the intervals of total remaining portfolio
budget in which one has the same optimal decision for each drug. At Drug 1, we know the
total portfolio budget is 8. At Drug 2, we only consider the states with s = 1 because by the
time Drug 2 is available, all of the group sequential designs from Drug 1 have terminated. For
each interval (row), we have the optimal design j∗, the maximum budget bi,j∗ , and expected
gain ei,j∗ for i = 1, 2.

6.6 Quantifying the variability in achieved gain associated
with optimal design strategy

Suppose the optimal decision rules for all states and drugs have been computed. The expected
gain of the optimal decision at the initial state at Drug 1 represents the expected gain of the
entire portfolio under this strategy. One may refer to this quantity as the expected value of
the portfolio.

The portfolio by design has a stochastic nature due to the uncertainty as to the availability
of drugs, whether each drug has a successful Phase III, the times at which GSDs end, and
the revenue per month of a marketed drug. For example, if fewer drugs are available than
expected, one may obtain a gain less than expected, and if more drugs are available than
expected, one may obtain a gain higher than expected. Understanding the risk associated
with investing in the portfolio is as important as understanding the expected return.

In this section, we describe how to obtain the distribution of the gain, given one follows the
optimal decision rules. We use a Monte Carlo approach as motivated by Patel et al. (2013),
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simulating runs of the portfolio. In each simulation, the stochastic elements of the portfolio,
such as the availability of each drug, are sampled. We specify the Monte Carlo algorithm
below.

Simulation_Function

Simulate the revenue per month of each drug.
for i in 1,2,...,I − 1,I
. Simulate whether drug i is available.
. If available, look up optimal design given remaining budget and
. simulate whether Phase III is successful and Ri and store the
. corresponding gain.
. If design is group sequential, also simulate analysis of termination.
. If before final analysis, store leftover budget to be added to
. remaining portfolio budget at the appropriate time.
. Updated remaining portfolio budget.
end for loop
Return the sum of the gains from drugs 1, 2, ..., I.

Suppose one runs N Monte Carlo simulations of the portfolio using the above algorithm.
The set of portfolio gains can be used to approximate the distribution of the gain under the
optimal decision rules. Furthermore, the distribution of the decision for each drug, and the
distribution of the total portfolio budget used are found.

6.7 Case studies

In this section we consider five case studies and apply our dynamic programming method
to find the optimal decision rules. The first case study aims to model a realistic scenario in
portfolio decision making where the portfolio consists of 7 drugs with fixed sample designs.
The other case studies make changes to the portfolio scenario to show the flexibility of this
approach to make inferences about different situations, such as when one uses group sequential
designs or when there are competitor drugs being developed.

6.7.1 Case Study 1: A portfolio of 7 drugs

Case Study 1 aims to model a realistic portfolio with 7 drugs with fixed sample designs. In
this section, we specify the inputs used in the model, and then describe the results of the
dynamic programming with a remaining budget state space algorithm including the expected
portfolio gain, the optimal decisions, and the associated risk. The inputs are taken from the
paper of Patel et al. (2013) and are displayed in Table 6.2.

Inputs

Total portfolio budget: 150. In Table 6.2, we list the other inputs for Case Study 1.
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Results

In Tables 6.3 and 6.4, we list the budgets required and expected gains for each drug i and
design j. Recall design j = 1 with a sample size of 0 represents no Phase III trial occuring.

Table 6.2: Inputs for Case Study 1

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
t
(a)
i 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TP

i 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd

i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 2 2 2 2 2 2 2
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1− βi,4 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,5 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1− βi,6 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.3: The budgets bi,j for each drug i and design j to 3 significant figures ($M).

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
Drug 1 0 14.4 15.8 17.8 21.0 28.0
Drug 2 0 16.7 19.4 23.1 29.2 42.6
Drug 3 0 21.1 24.3 28.8 36.1 52.1
Drug 4 0 33.5 38.2 44.7 55.4 78.7
Drug 5 0 18.4 21.3 25.3 31.9 46.2
Drug 6 0 18.6 21.6 25.7 32.4 47.1
Drug 7 0 12.1 13.9 16.4 20.4 29.3
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Table 6.4: The expected gain ei,j for each drug i and design j from the financial model gain
function, to 3 significant figures ($M).

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
Drug 1 0 2644 2823 2925 2840 2178
Drug 2 0 1308 1411 1486 1485 1237
Drug 3 0 6249 6975 7701 8366 8587
Drug 4 0 3311 3630 3910 4071 3785
Drug 5 0 347 384 418 442 424
Drug 6 0 4558 5072 5576 6017 6083
Drug 7 0 5434 5982 6477 6808 6463

After running the dynamic programming algorithm, the portfolio value can be summarised
as

Portfolio Expected Gain 11 834
Standard Deviation 9 325,

with individual drug contributions from simulation found as

Drug
1 2 3 4 5 6 7

Expected Gain ($M) 2925 1486 861 395 36 5461 667

In Table 6.7.1, we list the optimal designs for each drug given the portfolio budget remaining.
Note that we only consider states which are possible- for example, a portfolio budget
remaining of less than 122.0 is not possible for Drug 2 as the largest budget for Drug 1
is 28.0, so one cannot have less than 150.0-28.0=122.0.

Figure 6-5 displays the optimal decision plots for each drug using the data in Table 6.7.1.
From these optimal decision plots, one can see it is important to have at least 18.6M$ budget
remaining for Drug 6, which has a high probability of availability (0.9) and a substantial
expected gain. For some drugs and budgets, it is better to choose Design 1 (that is, no
Phase III trial) even if the drug is available, in order to save the budget for drugs with
larger rewards later on in the portfolio. Often over short intervals of the budget, the optimal
decisions may change frequently.

In Figure 6-5, we have plotted the optimal decisions for all drugs and remaining budgets
between 0M$ and 150M$. If one is only interested in the value of the portfolio and the
optimal decision rules, then for efficiency, one only has to calculate the optimal decision for
Drug 1 with remaining budget of 150M$ and only possible remaining budgets for Drugs 2-7.
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Table 6.5: For each drug, the optimal decision given the total remaining portfolio budget.
Each row is an interval (Int Start, Int End) on the budget remaining state space, with j∗ the
optimal decision, and bi,j∗ and ei,j∗ the corresponding budgets and expected gains.

Drug 1 Optimal Decisions Drug 5 Optimal Decisions
Int Start Int End j∗ b1,j∗ e1,j∗ Int Start Int End j∗ b5,j∗ e5,j∗

150.0 150.0 4 17.8 2924.9 0 62.9 1 0 0
62.9 70.1 2 18.4 347.3

Drug 2 Optimal Decisions 70.1 74.1 3 21.3 384.0
Int Start Int End j∗ b2,j∗ e2,j∗ 74.1 84.7 4 25.3 418.0
122.0 150.0 4 23.12 1485.5 84.7 88.8 5 31.9 442.3

88.8 99.4 4 25.3 418.0
Drug 3 Optimal Decisions 99.4 150.0 5 31.9 442.3

Int Start Int End j∗ b3,j∗ e3,j∗

98.9 104.9 5 36.1 8365.6 Drug 6 Optimal Decisions
104.9 106.5 6 52.1 8586.6 Int Start Int End j∗ b6,j∗ e6,j∗

106.5 107.2 5 36.1 8365.6 0 18.6 1 0 0
107.2 150.0 6 52.1 8586.6 18.6 21.6 2 18.6 4557.6

21.6 25.7 3 21.6 5072.0
Drug 4 Optimal Decisions 25.7 32.4 4 25.7 5576.5

Int Start Int End j∗ b4,j∗ e4,j∗ 32.4 37.8 5 32.4 6016.7
46.8 52.1 1 0 0 37.8 44.5 4 25.7 5576.5
52.1 63.9 2 33.5 3311.0 44.5 63.4 5 32.4 6016.7
63.9 65.9 3 38.2 3630.5 63.4 150.0 6 47.1 6082.5
65.9 70.4 2 33.5 3311.0
70.4 70.6 4 44.7 3909.5 Drug 7 Optimal Decisions
70.6 77.1 3 38.2 3630.5 Int Start Int End j∗ b7,j∗ e7,j∗

77.1 82.7 4 44.7 3909.5 0 12.1 1 0 0
82.7 89.2 3 38.2 3630.5 12.1 13.9 2 12.1 5433.8
89.2 99.9 4 44.7 3909.5 13.9 16.4 3 13.9 5981.5
99.9 150.0 5 55.4 4071.2 16.4 20.4 4 16.4 6476.7

20.4 150.0 5 20.4 6807.5

Figure 6-6 shows the distribution of the final gain that is realised given all the stochastic
elements inherent in the model. This includes the uncertainty attached to the return per
month from marketing the drug. The distribution is smooth due to the large combinations
of different revenues and costs that may be incurred such as having different revenues per
month. There is a peak of density of NPV around 0 representing no drugs being successful
in the portfolio (due to lack of availability or failure in Phase III), with a peak around 3000
representing a single success.
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Figure 6-5: The optimal decisions for each drug. For each drug and portfolio remaining budget, each plot gives the optimal design for the drug (given by the
colour) and the expected gain of the rest of the portfolio including the current drug.
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Figure 6-6: (Top) The distribution of the expected gain of the portfolio, given as a density plot using the simulation method described in Section 6.6. (Bottom)
The histograms show distribution of the designs chosen given one follows the optimal decisions.
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Portfolio expected gain as a function of portfolio budget

In this section we consider whether the budget for the portfolio of 150M$ is large enough.
We can answer this by looking at the portfolio expected gain for different portfolio budgets.
To do this, we examine the first plot in Figure 6-5.

Figure 6-7: The portfolio expected gain and optimal decision for Drug 1, for any total portfolio
budget, taken from Figure 6.7.4.

From this figure, one may deduce an investment of at least 100M$ is needed for most of the
benefit to be obtained from this portfolio. Investment beyond this amount yields a lower
return per extra unit of budget available. The total budget one may possibly consume if
one chose the design for each drug with the highest budget would be 323M$ which is far
higher than needed to obtain most of the value of the portfolio. This is because it is unlikely
all drugs will be available and the most expensive design may not always have the highest
expected gain due to a larger number of patients taking longer to test meaning there is a
shorter time to market the drug until patent expiry.

The value of making optimal decisions

In this case study we have assumed one makes decisions optimally. That is, one chooses the
design for each drug based on which design maximises the expected gain for the remainder
of the portfolio when one follows optimal decision rules for the remainder of the portfolio.
It may be useful to know how much better this decision making strategy is compared to
common industrial practises. Thus in this section, we compare making decisions optimally
with some other decision-making strategies.

We use the same portfolio parameters and inputs as before whilst varying the total portfolio
budget BPortTot. We examine to what extent changing the way one makes decisions in the
portfolio reduces the expected gain of the portfolio, and do this for a variety of total portfolio
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budgets. Below, we define 5 decision making strategies:

Decision Rule Name Description
Optimal Choose j∗ ∈ Ji,B such that Ei(B, s) is maximised.

Constrained EG current drug Choose j∗ ∈ Ji,B such that ei,j is maximised among j
s.t. ei,j/bi,j > c for some c > 0 (j∗ = 1 if there is no such j).

EG current drug Choose j∗ ∈ Ji,B such that ei,j is maximised.
Unconstrained RR Choose j∗ ∈ Ji,B \ {1} such that ei,j/bi,j is maximised

if Ji,B 6= {1}. Otherwise choose j∗ = 1.
At random Choose j∗ from Ji,B at random.

For the Constrained EG current drug decision rule, one assumes trial managers know which
return ratio is particularly worthwhile investing in for their therapeutic area, so we optimise
the value of c for each portfolio budget for a fair comparison. This optimisation was done by
performing a bisection search for the value of c that maximises the portfolio expected gain
which is calculated using simulation over 10,000 portfolio realisations.

In the table below, we display the portfolio expected gain and standard deviation for portfolios
with the different decision rules. We then repeat this for different portfolio budgets.

BPortTot=150
Decision Rule Portfolio expected gain Portfolio gain sd
Optimal 11 834 2 095
Constrained EG current drug 11 683 2 114
EG current drug 11 683 1 998
Unconstrained RR 9 726 2 047
Random 8 639 2 115

BPortTot=100
Decision Rule Portfolio expected gain Portfolio gain sd
Optimal 11 375 2 112
Constrained EG current drug 10 834 2 124
EG current drug 10 124 2 010
Unconstrained RR 9 638 2 076
Random 6 677 1 899

BPortTot=60
Decision Rule Portfolio expected gain Portfolio gain sd
Optimal 9 407 2 057
Constrained EG current drug 8 696 2 323
EG current drug 8 195 2 013
Unconstrained RR 7 986 2 104
Random 4 886 2 013

One can see that for all portfolio budgets, the portfolio expected gain suffers when decisions
are not made optimally. However, the Constrained EG current drug and EG current drug
decision rules are not a great deal worse than the optimal decision rule. However, as the
portfolio budget decreases, the difference between the optimal and non-optimal decision rules
widen.
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As one can see from Figure 6-8, the expected gain from current drug decision rule is
disadvantaged by picking larger designs earlier on, and not having enough budget left to
pick large designs for later more profitable drugs (in particular, Drug 6). In particular, the
Optimal decision rule chooses Designs 3 and 2 for Drugs 1 and 2 compared to 4 and 4 when
using the EG current drug decision rule- however at Drug 6, the Optimal decision rule may
choose Design 4 whilst the EG current drug decision rule chooses Design 2. The lack of
foresight in this decision rule comes at a cost to the overall portfolio value and therefore this
example shows the benefit of fully optimal decision rules. The Constrained EG current drug
goes some way to alleviating this problem, but is still inferior to the optimal decision rule.

If the total budget is very large, there is no need to worry about leaving budget for other
drugs later on, so the expected gain from current drug decision rule will be close to Optimal.
With a smaller total budget, it makes sense to consider the opportunity cost of spending
heavily at the start of the portfolio which the Optimal decision rule accounts for.

Efficiency for portfolios with large numbers of drugs

Amotivation for the dynamic programming with a budget remaining state space approach was
its computational efficiency compared to other methods. Here, we evaluate the computational
expense required to compute the optimal decisions of portfolios with a large number of drugs,
where other methods would not be sufficient (as shown in Section 6.4).

Let Comp Time 1 be the time in seconds to perform the dynamic programming algorithm
sequentially, and Comp Time 2 be the same time when done in parallel with 4 cores with an
Intel Core i7-7500U 2.7 GHz processor. The rloop loop in the algorithms in Section 6.5.1 can
be done in parallel.

From Table 6.6, we see although parallel is initially slower for fewer drugs, for a larger number
of drugs it is faster than sequential. As the number of drugs becomes very large (25), the
computational times are still of the order of minutes.

This simulation study shows that using parallel computing does not increase the efficiency
of the algorithm by a large amount. When group sequential designs are included, and each
stage of the dynamic programming algorithm becomes a much lengthier calculation, parallel
computing will reduce the computational time required.
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Figure 6-8: Decision made following each decision rule from simulations of 10000 portfolio realisations when following the (top) Optimal and (bottom) EG
current drug decision rules when BPortTot=100. Note that overall refers to simulations in which the corresponding drug was and was not available, whilst if
avail. refers to simulations only in which the corresponding drug was available.
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Table 6.6: The time taken in seconds for the dynamic programming algorithm to find the
optimal decisions of the portfolio.

# Drugs Comp Time 1 Comp Time 2 # Drugs Comp Time 1 Comp Time 2
3 1.01 2.62 10 25.88 21.07
4 1.38 3.94 11 27.53 23.15
5 2.94 3.89 12 31.58 26.19
6 6.35 8.49 14 42.33 33.08
7 11.96 11.54 16 54.4 41.18
8 17.22 15.24 20 59.88 52.37
9 21.71 18.42 25 89.55 66.52

6.7.2 Case Study 2: Introducing group sequential designs

In this case study, we examine the value of group sequential designs (GSDs) in a portfolio.
We consider the same inputs as the first case study but allow two drugs to have GSDs.

In particular, the portfolio inputs from Case Study 1 are used but with Drug 1 and 6 having
Pampallona-Tsiatis GSDs as outlined in Pampallona and Tsiatis (1994) with ∆ = 0.5 and 5
analyses.

Inputs

Total portfolio budget: 150M$. We display the rest of the portfolio inputs in Table 6.7.

The GSD identifier s

Central to the dynamic programming algorithm is the reduction of current situation of all the
GSDs in the portfolio to an integer identifier, the GSD situation ID, as outlined in Section
6.5.1. The parameter s takes integer values, each of which corresponds to a current state
of the group sequential designs in the portfolio with s = 1 corresponding to there being no
currently ongoing group sequential trials. In this case study, there are 4 group sequential
trials, 2 each for Drugs 1 and 6. Not all values of s may be possible at each drug, so the
algorithm only computes optimal decisions for possbile values of s. In particular, the only
possible value of s at Drug 1 is s = 1.
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Table 6.7: Inputs for Case Study 2

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
ai 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TPi 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd
i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 2 2 2 2 2 2 2
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

GSD? Yes No No No No Yes No
GSD Type TS ∆ = .5 TS ∆ = .5

GSD # Analyses 5 5
1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1− βi,4 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,5 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1− βi,6 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Results

Below, we list the expected gain, NPV, and probabilities split by analysis and design, for a
single GSD for Drug 1.

Table 6.8: The Drug 1 cost per group sequential design for drug i = 1 dependent on the
design j and the group sequential analysis the trial stops at.

Analysis Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
Analysis 1 0 5.78 5.96 6.22 6.62 7.47
Analysis 2 0 7.34 7.72 8.24 9.05 10.74
Analysis 3 0 8.91 9.49 10.25 11.47 14.00
Analysis 4 0 10.47 11.25 12.27 13.89 17.27
Analysis 5 0 12.04 13.01 14.29 16.31 20.54
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Table 6.9: The Drug 1 revenue given both trials are successful terminate at a particular
analysis.

Analysis Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
Analysis 1 0 10149 10013 9835 9557 8991
Analysis 2 0 9078 8824 8492 7981 6962
Analysis 3 0 8069 7710 7247 6541 5168
Analysis 4 0 7117 6668 6093 5227 3581
Analysis 5 0 6220 5693 5023 4027 2178

Table 6.10: The probabilities in each GSD for Drug 1 of terminating at a particular analysis
with specified event, given the design chosen. GO refers to stopping for efficacy and NOGO
refers to stopping for futility.

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
Analysis 1 GO n/a 0.158 0.171 0.190 0.217 0.271
Analysis 2 GO n/a 0.140 0.149 0.158 0.166 0.167
Analysis 3 GO n/a 0.083 0.085 0.085 0.080 0.060
Analysis 4 GO n/a 0.036 0.036 0.035 0.030 0.018
Analysis 5 GO n/a 0.009 0.009 0.008 0.007 0.004

Analysis 1 NOGO n/a 0.336 0.303 0.265 0.217 0.144
Analysis 2 NOGO n/a 0.148 0.152 0.157 0.166 0.181
Analysis 3 NOGO n/a 0.062 0.065 0.071 0.080 0.105
Analysis 4 NOGO n/a 0.023 0.024 0.026 0.030 0.040
Analysis 5 NOGO n/a 0.006 0.006 0.006 0.007 0.010

After running the dynamic programming algorithm, one may observe the portfolio value
increases from 11 834 in Case Study 1:

Expected Gain 12 654
Standard Deviation 9 782.

with individual drug contributions found from simulation as

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
Expected Gain Case Study 1 2925 1486 861 395 36 5461 667
Expected Gain Case Study 2 3378 1486 831 337 31 5885 643

In Table 6.11 we list some of the optimal decision rules as in Case Study 1. In this case study,
the optimal decisions depend upon the remaining portfolio budget and GSD situation ID s.
Therefore we only list the optimal decision rules for a selection of s values below.

In Figures 6-9 and 6-10, we present the optimal designs for each drug in the case when s = 1
(no ongoing GSDs), and show the distribution of the gain of the portfolio. Figure 6-11 gives
the distribution of programme sample size from simulations of the portfolio with the optimal
decision rules and compares it to Case Study 1.
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Table 6.11: Optimal decision rules for Case Study 2
Drug 1 Optimal Decisions

...
Int Start Int End j∗ b1,j∗ e1,j∗ Drug 4, Optimal Decisions for s = 13
150.0 150.0 5 26.9 3376.4 Int Start Int End j∗ b4,j∗ e4,j∗

40.8 52.9 1 0 0
Drug 2, Optimal Decisions for s = 1, ..., 13 52.9 65.1 2 33.5 3311.0

Int Start Int End j∗ b2,j∗ e2,j∗ 65.1 65.8 3 38.2 3630.5
116.0 150.0 4 23.12 1485.5 65.8 66.3 2 33.5 3311.0

66.3 67.1 3 38.2 3630.5
Drug 3, Optimal Decisions for s = 1, ..., 8, 10, 12 67.1 70.0 2 33.5 3311.0
Int Start Int End j∗ b3,j∗ e3,j∗ 77.0 77.4 3 38.2 3630.5

92.9 118.2 5 36.082 8365.6 77.4 78.3 4 44.7 39095
118.2 150.0 6 52.1 8586.6 78.3 81.4 3 38.2 3630.5

81.4 83.9 4 44.7 39095
Drug 3, Optimal Decisions for s = 9 83.9 84.8 3 38.2 3630.5

Int Start Int End j∗ b3,j∗ e3,j∗ 84.8 85.7 4 44.7 39095
92.9 114.3 5 36.082 8365.6 85.7 86.0 3 38.2 3630.5
114.3 150.0 6 52.1 8586.6 86.0 86.3 4 44.7 39095

86.3 86.6 3 38.2 3630.5
Drug 3, Optimal Decisions for s = 11 86.6 86.9 4 44.7 39095

Int Start Int End j∗ b3,j∗ e3,j∗ 86.9 87.8 3 38.2 3630.5
92.9 113.7 5 36.082 8365.6 87.8 88.2 4 44.7 39095
113.7 150.0 6 52.1 8586.6 88.2 88.6 3 38.2 3630.5

88.6 89.5 4 44.7 39095
Drug 4, Optimal Decisions for s = 1 89.5 90.4 3 38.2 3630.5

Int Start Int End j∗ b4,j∗ e4,j∗ 90.4 116.0 4 44.7 39095
40.8 58.5 1 0 0 116.0 150.0 5 55.4 4071.2
58.5 70.6 2 33.5 3311.0

70.6 72.6 3 38.2 3630.5
...

72.6 77.0 2 33.5 3311.0
77.0 77.4 4 44.7 3909.5 Drug 7, Optimal Decisions for all s
77.4 83.9 3 38.2 3630.5 Int Start Int End j∗ b4,j∗ e4,j∗

83.9 89.5 4 44.7 3909.5 0.0 12.1 1 0 0
89.5 96.0 3 38.2 3630.5 12.1 13.9 2 12.1 5433.8
96.0 106.7 4 44.7 3909.5 13.9 16.4 3 13.9 5981.5
106.7 110.9 5 55.4 4071.2 16.4 20.4 4 16.4 6476.7
110.9 121.5 4 44.7 3909.5 20.4 150.0 5 20.4 6807.5
121.5 150.0 5 55.4 4071.2
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Figure 6-9: The optimal decisions for each drug in the case where no GSDs are ongoing (that
is, s = 1) for Case Study 2. For each drug and portfolio remaining budget, each plot gives
the optimal design for the drug (given by the colour) and the expected gain of the rest of the
portfolio including the current drug.
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Figure 6-10: (Top) The distribution of the expected gain of the portfolio for Case Study 2, given as a density plot using the simulation method described in
Section 6.6. (Bottom) The histograms show distribution of the designs chosen given one follows the optimal decisions.
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Figure 6-11: The distribution of sample size from simulations given one follows the optimal
decision rules, for case studies 1 and 2.

The GSDs in this case study may also be of different types, for example, we might consider
the 1 sided rho-family error spending GSDs defined by Jennison and Turnbull (2000). When
the GSDs are of this type with ρ = 2, one obtains similar decision rules and expected gains.

The benefit of Group Sequential Designs

As noted at the beginning of this case study, the benefits of group sequential designs in a
portfolio are two-fold. Firstly, stopping early for efficacy allows one to market the drug for
longer until patent expiry, and secondly stopping early for efficacy or futility saves resources
which can be returned back into the portfolio budget to invest in future drugs. The group
sequential designs for Drugs 1 and 6 greatly increase the contributions to eNPV from both of
these drugs, and other drugs near the end of the portfolio, and at the expense of other drugs
near the start of the portfolio.

Keeping track of the group sequential situation ID to track when ongoing group sequential
trials may terminate early and return budget to the portfolio is the main driver in increasing
the computational complexity of the algorithm. One may ask if one was to ignore this
mechanism and assume no budget gets returned when a group sequential trial stops early,
what is the value of the portfolio? One may run the dynamic programming algorithm again
to find new optimal decision rules and a corresponding portfolio expected gain by treating all
designs as fixed sample (hence dramatically decreasing the computational workload) whilst
using the eNPV and budgets of the group sequential designs for Drugs 1 and 6 from the
original Case Study 2. We present the results of this in Table 6.12.

Table 6.12: The expected gain from the dynamic programming algorithm from (i) the original
Case Study 2, (ii) Case Study 2 when one assumes leftover budget from group sequential trials
stopping early is not reinvested back into the portfolio, and (iii) Case Study 1.

Expected Gain
Case Study 2 12 654

Case Study 2 with no return of leftover budgets 12 527
Case Study 1 11 834

From this case study, it looks like the longer time until patent expiry is the main driver in
increasing the portfolio expected gain. Furthermore, in Case Study 5, we consider the benefit
of having group sequential designs with only futility boundaries.
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6.7.3 Case Study 3: A fully group sequential portfolio

In this case study, we look at the impact of allowing all drugs to have a GSD. As more GSDs
are used in the portfolio, the complexity of the problem increases as the number of possible
GSD situation IDs s in the state space increased. To simplify the problem in other areas, we
consider a portfolio with 1 trial per Phase III and fewer design choices. We shall specify two
portfolios to compare against one another- one with no GSDs and the other with GSDs for
all drugs. The inputs are specified below.

Inputs

Total portfolio budget of $60M. In Table 6.13, we display the inputs for Case Study 3 when
no drug have group sequential designs (All Fixed Sample).

Table 6.13: Inputs for Case Study 3: no drug have group sequential designs (All Fixed
Sample)

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
ai 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TPi 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd
i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 1 1 1 1 1 1 1
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

GSD? No No No No No No No
GSD Type

GSD # Analyses
1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,4 0.95 0.95 0.95 0.95 0.95 0.95 0.95
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In Table 6.14, we display the inputs for Case Study 3 when all drugs have group sequential
designs (All GSDs).

Table 6.14: Inputs for Case Study 3: all drugs have group sequential designs (All GSDs)

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
ai 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TPi 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd
i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 1 1 1 1 1 1 1
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

GSD? Yes Yes Yes Yes Yes Yes Yes
GSD Type TS TS TS TS TS TS TS

GSD # Analyses 3 3 3 3 3 3 3
1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,4 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Results

We see a significant increase in the portfolio value when drugs are allowed to have GSDs.

All Fixed Sample All GSDs
Portfolio eNPV 12 503 13 480

sd of Portfolio NPV 9 448 10 124

Below, in Figures 6-12, 6-13, 6-14, and 6-15 we plot the optimal decision rules and distribution
of portfolio value in the All Fixed Sample and All GSDs case.

161



Figure 6-12: All Fixed Sample: The optimal decisions for each drug. For each drug and
portfolio remaining budget, each plot gives the optimal design for the drug (given by the
colour) and the expected gain of the rest of the portfolio including the current drug when no
GSDs are ongoing (that is, s = 1).
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Figure 6-13: All Fixed Sample: (Top) The distribution of the expected gain of the portfolio, given as a density plot using the simulation method described in
Section 6.6. (Bottom) The histograms show distribution of the designs chosen given that one follows the optimal decisions.
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Figure 6-14: All GSDs: The optimal decisions for each drug. For each drug and portfolio
remaining budget, each plot gives the optimal design for the drug (given by the colour) and
the expected gain of the rest of the portfolio including the current drug when no GSDs are
ongoing (that is, s = 1).
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Figure 6-15: All GSDs: (Top) The distribution of the expected gain of the portfolio, given as a density plot using the simulation method described in Section
6.6. (Bottom) The histograms show distribution of the designs chosen given one follows the optimal decisions.
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Computational workload

If the portfolio is restricted to fixed sample designs, the computational expense required is
not an issue even for a large number of drugs (as shown in Case Study 1). As GSDs are
added to the portfolio, the number of values s can take increases exponentially meaning the
state space for each drug grows rapidly. This is especially the case when there are multiple
Phase III GSD trials for each drug. In this case study with a single group sequential design
for each of the 7 drugs, we reach the limit of computational feasibility for a reasonable time
(1 day) with a dedicated CPU with 16 cores.

6.7.4 Case Study 4: Competitor drugs

In real life portfolio decision making problems, one would not consider one’s own portfolio
in isolation, but would make use of external information. The market for pharmaceutical
products is competitive, and several pharmaceutical companies may be developing drugs
for the same therapeutic area. It is possible to consider when rival products from other
pharmaceutical companies will go to market, and to make decisions about one’s own portfolio
based on this knowledge.

Being first to market is to market one’s own drug before a rival company markets a similar
drug they are working on. This is an important consideration in portfolio decision making.
Those drugs without possible competitors may justify a greater proportion of investment
compared to those with possible competitor drugs.

To understand how the consideration of competitor drugs impacts decision making within the
portfolio, one may specify this within the portfolio model. One may stipulate for each drug
whether there is a potential competitor drug, the probability that this competitor drug will
reach market pcomp

i , the time this competitor drug will go to market tcomp
i , and the market

share that the competitor will take from the revenue rcomp
i . If the competitor drug for drug

i is successful, and will take a market share of 50%, the revenue per month will be reduced
by 50% at all times the competitor drug is also marketed.

We propose a case study similar to Case Study 1 which has only fixed sample designs, but
with some drugs having competitor drugs. We examine how this affects the portfolio value
and optimal decisions.

Inputs

We specify the same parameters as Case Study 1 with fixed sample designs only, with a total
portfolio budget of $150M, but also specify characteristics of any potential competitor drugs.
These inputs are given in Table 6.15.

166



Table 6.15: Inputs for Case Study 4

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
t
(a)
i 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TPi 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd
i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 2 2 2 2 2 2 2
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

Competitor? Yes Yes No Yes Yes Yes No
tcomp
i 33 5 66 30 30
pcomp
i 0.75 0.10 0.95 0.5 0.5
rcomp
i 0.60 0.25 0.95 0.25 0.5

1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1− βi,4 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,5 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1− βi,6 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Results

Case Study 1 Case Study 4
Portfolio eNPV 11 834 8 775

sd of Portfolio NPV 9 325 7 753

The competitor drugs reduce the portfolio value by a quarter, due to the lost revenues due
to competitor drugs taking away a share of the market. In Case Study 1 one saw that most
revenue is generated from Drugs 1 and 6. In Case Study 4 there is a high probability of the
competitor drug being available from most of the remaining patent life time of these drugs.
There is also additional uncertainty (as a ratio of standard deviation to mean of portfolio
NPV) around the value of the portfolio due to whether or not the competitor drug goes to
market.
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In Figures 6-16 and 6-17, we show the optimal decisions for each drug and the distribution
of gain when one follows these optimal decisions.

Figure 6-16: The optimal decisions for each drug. For each drug and portfolio remaining
budget, each plot gives the optimal design for the drug (given by the colour) and the expected
gain of the rest of the portfolio including the current drug.
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Figure 6-17: (Top) The distribution of the expected gain of the portfolio, given as a density plot using the simulation method described in Section 6.6. (Bottom)
The histograms show distribution of the designs chosen given one follows the optimal decisions.
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The impact of competitor drugs within the portfolio

Comparing the optimal decisions in Figures 6-5 and 6-17, we note that for when a competitor
is present, the optimal decisions are to invest comparably less budget into these drugs. For
example, Drugs 1 and 4 are likely to have a competitor which takes away a large proportion
of the revenue. The optimal decisions for these drugs in Figure 6-17 are both Design 3
if available compared to Design 4 and 5 respectively in Figure 6-6 in Case Study 1 where
competitor drugs are not present. The presence of competitors for each drug decreases the
expected gain for that drug, meaning one cannot justify as large a budget investment as
before in most cases. Furthermore, it is more advantageous to use smaller trials that finish
sooner that one can market the drug for longer before the competitor arrives and reduces the
revenue.

Realistically, the presence of competitor drugs that possibly arrive at a certain time would
perhaps influence sponsors to perform the trial more quickly to reach market sooner. In our
portfolio model, this may only be done by reducing the sample size. Practically, there may
be many methods to achieve this, such as using more centres in parallel to reach the required
sample size in a shorter time frame. Depending on the circumstances, this may be a better
solution than the one suggested by the optimal decision rules in this model.

This case study shows how considerations about competitor drugs can be easily incorporated
into the portfolio problem with minimal extra computations.

6.7.5 Case Study 5: A minimum number of patients for safety?

The purpose of Phase III in drug development is not solely the examination of efficacy of
the treatment. The safety of the drugs must be monitored, and one may require a certain
number of patients to be on the treatment group in order to satisfy company and regulatory
guidelines. In this case, very early stopping for efficacy will not be possible. In this case study,
we examine the extent to which the gain to the portfolio when the scope for using group
sequential designs as shown in Case Study 2 is curtailed by requiring a safety stipulation of
no early stopping for efficacy, or a minimum number of patients for each drug before stopping
for efficacy is permitted.

As noted in Case Study 2, the benefit of using group sequential methods in a portfolio is
two-fold. Firstly, stopping early for efficacy allows the drug to be marketed for longer until
the patent expires, and secondly, stopping early for futility allows the remaining budget to
be reinvested back into the portfolio. Using GSDs with only a futility boundary (referred
to as futility only GSDs) will let us examine which of these factors contributes more to the
increase in gain.

To investigate this, we propose (A) GSDs with only futility boundaries. We use the one-sided
rho-family error spending designs as in Jennison and Turnbull (2000), where all boundaries
except at the final analysis for stopping for efficacy are constrained to be infinity. Secondly,
we propose (B) GSDs which specify a minimum number of patients for each Phase III trial
to be on the treatment group and which stop for efficacy only if this requirement has been
satisfied. In Figure 6-18, we show how one may construct the type of GSD as in case (B).
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Figure 6-18: In the case (B), we require a minimum number of patients of 200 per arm. The
error spending GSD (left) can be recomputed (right) to allow for this requirement. Note that
all boundaries shift slightly to counter the absence of stopping for efficacy at the first two
analyses.

Inputs

We use the same parameters as Case Study 2, with a total portfolio budget of $150M. We
split the case study up into studying a portfolio with futility only GSDs (5A) and one with
GSDs with a minimum number of patients required before stopping for efficacy (5B). We list
the common parameters in Table 6.16 with the inputs for the GSDs in Tables 6.17 and 6.18.

Table 6.16: Parameters for Case Study 5

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7
ai 1 1 3 6 13 18 25
p

(a)
i 1 1 0.1 0.1 0.1 0.9 0.1
peffi 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αi 0.05 0.05 0.05 0.05 0.05 0.05 0.05
σi 2 1.8 2 2 1.5 1.5 1
λi 20 30 90 45 60 90 45
ci 11.09 16.64 25.29 23.63 25.79 14.84 14.01
fi 2805 15 525 2125 240 125 500
TPi 108 120 135 180 155 180 145
tsi 6.3 7 18 18 30 12 18
Fi 50000 500000 400000 300000 500000 300000 1000000

Rmean
i 175000 85000 400000 200000 45000 250000 500000
Rsd
i 35000 17000 80000 40000 9000 50000 100000
µ1 0.5 0.4 0.5 0.4 0.4 0.3 0.25
µ0 0 0 0 0 0 0 0
ttrt 0.3 1 12 12 24 6 12
ntrialsi 2 2 2 2 2 2 2
ρ 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

1− βi,1 0 0 0 0 0 0 0
1− βi,2 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1− βi,3 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1− βi,4 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1− βi,5 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1− βi,6 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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Table 6.17: Case Study 5A: Futility only GSD Boundaries
Drug

1 2 3 4 5 6 7
GSD? Yes No No No No Yes No

GSD Type ES-Fut ρ = 2 ES-Fut ρ = 2
GSD # Analyses 5 5

Table 6.18: Case Study 5B: GSDs with minimum number of patients before stopping for
efficacy

Drug
1 2 3 4 5 6 7

Min # Patients 250 0 0 0 0 350 0
GSD? Yes No No No No Yes No

GSD Type ES ρ = 2 ES ρ = 2
GSD # Analyses 5 5

Results

In Table 6.19, we compare the expected gain of the portfolio of Case Studies 5A and 5B to
the unconstrained case in Case Study 2 and when the designs are all fixed sample in Case
Study 1. In Figures 6-19, 6-20, 6-21, and 6-22, we display the optimal decision rules for Case
Studies 5A and 5B with the distribution of portfolio value when these optimal decision rules
are followed.

Table 6.19: Expected gain of the portfolio in Case Study 1, 2, 5A, and 5B

Case Study 1 Case Study 2 Case Study 5A Case Study 5B
Fixed Sample No Constraints Futility Only Min SS

Portfolio Expected Gain 11 834 12 654 11 696 12 274
SD of Portfolio Gain 9 325 9 782 9 834 9 466
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Figure 6-19: The optimal decisions for each drug for Case Study 5A. For each drug and
portfolio remaining budget, each plot gives the optimal design for the drug (given by the
colour) and the expected gain of the rest of the portfolio including the current drug.

173



Figure 6-20: The optimal decisions for each drug for Case Study 5B. For each drug and
portfolio remaining budget, each plot gives the optimal design for the drug (given by the
colour) and the expected gain of the rest of the portfolio including the current drug.
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Figure 6-21: The distribution of the expected gain of the portfolio for Case Study 5A, given as a density plot using the simulation method described in Section
6.6. (Bottom) The histograms show distribution of the designs chosen given one follows the optimal decisions.
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Figure 6-22: The distribution of the expected gain of the portfolio for Case Study 5B, given as a density plot using the simulation method described in Section
6.6. (Bottom) The histograms show distribution of the designs chosen given one follows the optimal decisions.

176



Figure 6-23: The distribution of sample size used in the simulations for Case Study 1,2, 5A,
and 5B.

Portfolio Value

Comparing the value of the portfolio for fixed sample designs (Case Study 1), and futility-only
GSDs (Case Study 5A) in Table 6.19, we see that the scheme with fixed sample designs has a
higher eNPV. The longer trials required for the GSDs harms the value of the portfolio more
than the benefit obtained from stopping early for futility with reinvestment of the remaining
budget back into the portfolio. The benefit of futility-only GSDs comes from reinvesting
leftover budget back into the portfolio. There is no advantage of this from Drug 6 which is
at the end of the portfolio. Any advantage from Drug 1 is mitigated by the longer maximum
sample size required for Drugs 1 and 6 compared to fixed sample designs in order to have
early stopping boundaries. These longer maximum sample sizes reduce the time until patent
expiry and this reduces the revenue. Thus, at least in this portfolio, it appears that the gain
from using group sequential methods (in Case Study 2) comes primarily from the positive
trials which have longer for marketing before patent expiry. This may not be the case in
other portfolios with a smaller total budget, meaning there is a greater opportunity cost of
not stopping early for futility to save funds for future drugs.

The above findings mirror similar findings in Antonijevic (2016) where it was found that
a portfolio with adaptive elements (in particular stopping early for futility or sample size
re-estimation) reduces the value of the portfolio relative to a portfolio with only fixed sample
designs.

The minimum number of patients for drugs 1 and 6 in Case Study 5B means that one may
stop early for efficacy at some interim analyses prior to the final analysis. Constructing the
GSDs like this increases the value of the portfolio to 12 274 compared to Case Study 1,
approximately half of the gain to the portfolio of using GSDs with no minimum number of
patients as in Case Study 2.

We conclude that for this portfolio, the benefit of GSDs comes overwhelmingly from stopping
early for efficacy. However, if a minimum number of patients is required for safety data, there
is still added value in having GSDs which stop for efficacy once this minimum requirement
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has been satisfied. For other portfolios in which the portfolio budget is lower, saving budget
through futility only GSDs may be desirable.

Portfolio Sample Size

Even though the portfolio value accounts for the financial value of treating patients, using
fewer patients may be desirable to make the process more ethical. Figure 6-23 shows the
distribution of the sample size for programmes 1, 2, 5A, and 5B.

From this figure, the expected sample size is clearly significantly smaller for any portfolios
that have group sequential methods (2, 5A, 5B). In addition, portfolios 5A and 5B only have
a slightly higher expected sample size than portfolio 2.

Thus, we recommend that this information is taken into account in decision making if the
financial model does not explicitly deal with the ethical advantages of using fewer patients.

6.8 Discussion

Inferences from the Case Studies

The problem of developing a portfolio of drugs is a high-value complex problem with decisions
involving many trade-offs. In this chapter we explored a range of case studies to identify the
inferences one can make from the statistical formulation of the portfolio problem. It is hoped
these inferences will provide insight about optimal strategies for this problem, which may be
used to make better decisions. We conclude by summarising each of the case studies in this
chapter to assess the insights obtained.

Case Study 1 was formulated to represent a realistic portfolio of drugs belonging to a large
sponsor, perhaps within a single therapeutic area. The parameters were those specified in
Patel et al. (2013) and the designs were fixed sample designs only. Some of these treatments
are far more likely to reach Phase III than others, and some have much higher revenues than
others.

The optimal decision rules computed by the dynamic programming method clearly show that
the optimal decisions depend upon the current state; in this case being the total portfolio
budget remaining. The optimal design for Drug 1 can change in response to a small change
in the total portfolio budget due to the discrete nature of the decisions and the number of
possible combinations of paths for the remainder of the drugs. When this occurs, there is
usually not much difference between the expected gains for the different designs.

From the solution of the portfolio problem, one can obtain many useful inferences. These
include the optimal decision rules for each drug and the distribution of the portfolio value
given one follows these optimal decision rules. We considered the loss of value of the portfolio
when optimal decisions were not made, and we found that the policy maximising the expected
gain return ratio of each drug decision rule, subject to the return ratio exceeding a certain
(optimised) threshold, (Constrained EG current drug) did not result in too great a loss of
efficiency compared to the optimal decision rule.

In Case Study 2, we wanted to assess the benefit of having group sequential designs within
the portfolio. It was found that allowing two drugs (which both had high probabilities of
availability) to have group sequential designs increased the portfolio value by about 7%. This
gain came from mainly stopping early for efficacy which allowed a longer marketing time
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from patent expiry, rather than from allowing unused budget to be reinvested back into the
portfolio when stopping early for either efficacy or futility.

Case Study 3 examined the computational challenge of allowing all 7 drugs to have group
sequential designs. Simplifications to allow optimisation in this case were to have only one
Phase III trial for each drug, and to reduce the number of designs from 6 to 4. Allowing the
group sequential designs for this portfolio increased the eNPV from $12,503M to $13,480M
(+7.8%).

Case Study 4 examined the effect that external influences would have on the portfolio.
In particular, if competitors were developing drugs that would compete with drugs in the
portfolio, how does this change the optimal decision rules and portfolio value? Intuitively,
the portfolio problem showed us that in this case the optimal decisions are to use smaller
sample sizes in Phase III for drugs with competitors due to a lower return ratio and a desire
to finish sooner so as to market the drug for longer before the competitor was released.

Case Study 5 assessed how the benefit to a portfolio of having group sequential designs was
mitigated if one required a minimum sample size in Phase III for safety reasons. It was
found in this case study that if the safety requirement stipulated a sample size significantly
less than the maximum sample size of the group sequential design and there is an interim
analysis shortly after this point, then most of the benefit of group sequential designs were
preserved. The lesson from the case study is that group sequential designs still add benefit,
as long as the interim analyses are performed once the minimum number of patients for
the safety threshold has been reached (and as long as this minimum number of patients is
significantly less than the maximum number of patients under the group sequential design).

Strengths of the Approach

Portfolio Problem Formulation

The formulation of the portfolio problem is a statistical model which maximises the value of
the portfolio by finding the optimal decision rules regarding Phase III sample sizes for each
drug under a portfolio budget constraint. As described in Patel et al. (2013), this approach
provides a more realistic solution to the portfolio problem than other models with no budget
limits or no choice of design. In previous chapters of this thesis, the probability of success
of each Phase III and other factors that impact the revenue would dominate the investment
required. However, an overall portfolio budget limit means there is an opportunity cost of
spending for one drug at the expense of missing out on another.

The model accounts for many sources of uncertainty within the portfolio. These include
whether a drug will pass the phases prior to Phase III, whether Phase III will be successful,
whether the drug is efficacious of not, and what the revenue per month will be. The
stochastic element of the Phase III availability incorporates this uncertainty. Using Monte
Carlo simulations of the portfolio will incorporate the other sources of uncertainty of the
model.

Furthermore, sensitivity analysis can be done by running the model a series of times using
modifications of parameters in the model.

The optimal decision rules can be re-derived as more information becomes available. For
example, after a certain number of months, one may rerun the model to obtain updated
optimal decision rules given the information that has been observed so far and taking into
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account new drugs that may become available on the horizon as well as any extra portfolio
budget allowances. In the paper of Patel et al. (2013), this is referred to as the model being
able to perform dynamic re-optimisation as new information becomes available.

The Dynamic Programming Method

The dynamic programming method provides a far more efficient method to solve the portfolio
problem than the stochastic integer programming method as in most previous literature; in
particular, Patel et al. (2013). In Case Study 1, we show how the computational time required
to compute the decision rules increases at a linear rate as the number of drugs increases when
designs are fixed sample. In particular, for 25 drugs with the dynamic programming method,
the time required was only 90 seconds. In Table 6.1 we compared the running times of the
dynamic programming method with a budget remaining state space with the SIP method
and the dynamic programming method with design history state space. It was found the SIP
method and the design history state space method suffered as the number of drugs increased
due to the exponentially increasing number of possible design histories. In particular, the
SIP method would not compute in a sufficiently small time when the number of drugs in the
portfolio was 9 or more.

Whilst integer programming and stochastic integer programming are popular techniques in
operational research, dynamic programming has been used commonly in computing optimal
designs in clinical trials as described in Chapter 1. For instance, the computation of group
sequential design boundaries (Chapter 19.6.1 Jennison and Turnbull (2000), Barber and
Jennison (2002), Jennison and Turnbull (2006), Hampson and Jennison (2013)). Using a
solution based on dynamic programming is therefore appealing as researchers in adaptive
designs may be more familiar with the concepts underlying the dynamic programming
approach.

Limitations of the Portfolio Problem

Knowing financial model parameters a-priori

The portfolio problem requires that the financial model parameters are known at the time
of computing the optimal decision rules. These include the probability of availability,
recruitment rate, and the mean and standard deviation of the revenues. If these differ much
from the assumed values, the computed optimal decision rules may no longer be optimal.
However, many of these parameters will not be known in advance and guesstimates will need
to be made, perhaps based on historical data. Once more information becomes available, the
optimal decision rules can be dynamically updated by re-running the model with the new
data.

Relationships between the efficacy of the drugs

The model assumes there is no relationship between the efficacy of different drugs. In
particular settings such as basket, umbrella, or platform trials knowledge that one treatment is
efficacious may lend weight to the belief that other treatments will be efficacious. Dependence
between the efficacy of drugs is not easily incorporated within the dynamic programming
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method, as this requires an extension of the state space to specify which drugs are found to
be efficacious.

Portfolio familywise error rate

A portfolio familywise error rate may be defined as the probability of deducing at least one
drug in the portfolio is efficacious when none are efficacious. Presently, each Phase III trial has
a type I error which is pre-defined. When considering the portfolio problem as a whole, one
could control the portfolio familywise error rate, allocating equal proportions of type I error
to each drug such that the probability of making a type I error across all drugs is bounded
by a pre-specified amount. However, this is not a necessary requirement of regulators and
may be considered unnecessary.

Penalising the variability of the gain

A downside of the model is that it is based on optimising the eNPV of the portfolio. Although
this is a commonly used criterion in decision making in many industries, it involves an
indifference to risk. One may define an adjusted eNPV which negatively weights strategies
involving more risk than others. The optimal decisions derived from this measure may be
more suitable for smaller companies, or for those that require investment from venture capital
firms.

Computations as the number of GSDs increase

A large part of the motivation for developing the dynamic programming method for the
portfolio problem was the desire to study more complex portfolios involving group sequential
designs. This was done by adding in an extra dimension to the state space, which takes
the form of an integer ID tracks the current situation of all group sequential designs in the
portfolio.

The size of the state space for each drug is the number of discretisations of the budget
remaining dimension of the state space multiplied by the number of values this ID can take.
The size of the state space grows exponentially as the number of drugs with group sequential
designs increase, particularly if each drug has two Phase III trials. Therefore the method
runs into computational difficulty once the number of drugs with group sequential designs
increases beyond two or three. With simplifying assumptions, (such as in Case Study 3) one
may be able to increase the number beyond this point.

Learning from Phase II efficacy information

In this framework we have assumed that drugs will either pass Phase II and be available for
Phase III or not. Information about the performance of the drug in Phase II is not used for
decision making purposes, in comparison to other approaches taken in this thesis, such as in
Phase II/III programmes in Chapters 2 and 3.

Whilst making decisions about the Phase III trial based upon the posterior distribution of the
treatment effect given Phase II data would be desirable, this would make the computations
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more difficult, as optimal decisions must be stored for all values a variable describing the
Phase II performance.

An alternative may be to have discrete states describing the drugs performance in Phase II,
with different decision rules for each state. For example, a particular drug would either (i)
not be available for Phase III, (ii) be available for Phase III with satisfactory performance
in Phase II, or (iii) be available for Phase III with high performance in Phase II. The
central equations in dynamic programming would require an extra term, but the dynamic
programming algorithm would only require the computation of an optimal decision for (iii)
in addition to (ii).

Going back for previous drugs

Suppose one does not invest in a particular drug in the hope of using the resources for future
drugs, only for the future drugs not to be available. One may be tempted to go back to invest
in the initial drug despite it becoming less attractive due to having a shorter patent life. In
the framework considered, this is not allowed.

Looking Forward

Alternative mechanisms for the R&D portfolio budget

Conversations with stakeholders have brought interesting comments about how decision
making works at a portfolio level within a therapeutic area at a large sponsor. It is suggested
that R&D funding is not solely fixed at a portfolio level over a certain time period but may be
performance-based to some degree. For example, if a drug is successful, then extra funding
may be available for future drugs. This kind of dynamic budget may be naturally incorporated
within the portfolio problem, and poses no problems for the dynamic programming method
based on the budget remaining state space.

Applications in specialist settings

The portfolio problem applies when there is a pipeline of drugs which are available over time
with degrees of uncertainty attached. When this is the case, the portfolio problem may be
used to provide a statistical model. In the case of basket trials (Hirakawa et al. (2018)), a
single targeted therapy is used to target different diseases or multiple disease sub-types; for
example, on a single mutation on a range of tumour types. A complication is that these trials
may have drugs from different sponsors.

This could potentially be modelled using the portfolio problem if we assume that the efficacy
of the treatment for any two diseases are independent, and each disease area is available to
start the trial at a particular point in time in the future with particular probability.
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7
Optimal Group Sequential Designs

7.1 Introduction

We introduced group sequential designs in Chapter 2, where we noted the ethical,
administrative, and economic benefits to a trial sponsor. In Chapters 3, 5, and 6, we use
group sequential designs in simulation studies and highlight the benefit they can bring to a
programme or portfolio in drug development. In each of these applications, popular designs
such as ρ-family error spending group sequential designs or the Pampollona and Tsiatis family
(see Pampallona and Tsiatis (1994)) are used.

In this chapter we discuss the boundaries of a group sequential design and extend the
theory of optimal asymmetric one-sided group sequential designs to a general gain function.
These group sequential designs will have boundaries that perform more efficiently than those
determined parametrically such as the ρ-family error spending and the Pampollona and
Tsiatis designs.

7.1.1 Optimal group sequential designs

The choice of group sequential design to choose for a study involves a few considerations.
These include the simplicity of the design (in order to explain the design to stakeholders),
the flexibility of the design (such as allowing the analyses to take place at information levels
which are not predetermined), and the efficiency under assumptions about the treatment
effect (such as the expected sample size).

In Barber and Jennison (2002), the authors extend the method used by Eales and Jennison
(1992) to find optimal symmetric group sequential tests to optimise over a larger class than
symmetric designs. Barber and Jennison show how one sided group sequential tests with non-
equal type I and II error rates can be made optimal in the sense of minimising the expected
sample size over different assumptions about the treatment effect. In particular, the authors
give a method to solve the following problem:

Find acceptance a1, ..., aK and rejection b1, ..., bK boundaries such that

1
2(E0(N) + Eδ(N)) (7.1)

is minimised, subject to the group sequential design having type I error α, and type II error
β at θ = δ, where Eθ(N) is the expected sample size of the group sequential design when the
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treatment effect is θ.

In the Barber and Jennison paper, a Lagrangian Multiplier approach is used to find the
optimal group sequential designs. A new objective function is defined by adding the cost
of an incorrect decision to the original gain function. The cost of an incorrect decision
is represented by constants d0 and dδ, associated with the cost of a type I and II error
respectively. The optimal group sequential design is found using this new objective function
for the unconstrained problem which does not impose the type I and II error conditions. This
solution is the Bayes optimal design for the unconstrained Bayes optimal design problem. One
then performs a search over d0 and dδ until the solution of this problem has the desired type
I and II error rates. The optimal group sequential design for the unconstrained problem with
those d0 and dδ is then the optimal group sequential design for the constrained problem with
the original gain function given the specified type I and II error rate constraints.

In this chapter, we show how to generalise this approach to construct optimal group sequential
designs that maximise a general financial model gain function that may more accurately
model the financial aspects of the trial. In Barber and Jennison (2002), the rho-family error
spending designs are found to be close to optimal. We shall look at whether these designs
are still close to optimal for our financial model gain function.

7.2 Optimal group sequential design theory

7.2.1 Canonical distribution results

From Jennison and Turnbull (2000), the Z-statistics in a group sequential trial follow a
canonical distribution. Denote by nk the sample size (per treatment) at analysis k for
k = 1, ...,K. We assume the same model as in Chapter 3. In particular, we equally allocate
patients to treatment and control and assume responses are normally distributed with known
variance σ2 and with different means. Treatment effect θ is defined as the difference between
the mean of treatment responses minus the mean of control responses. Denote φ as the
probability density function of the standard normal distribution.

We describe results that follow from the following two properties of the canonical distribution
described in Section 2.3.2, using the fact that in this setting, the information level at stage k
is equal to Ik = nk/(2σ2) (see Chapter 3 Jennison and Turnbull (2000) for details):

• Z1 ∼ N(θ
√

n1
2σ2 , 1)

The probability density function of Z1 given θ is

pθ(z1) = φ

(
z1 − θ

√
n1
2σ2

)
with probabilities of rejection and acceptance at stage 1 of

Pθ(Z1 > b1) =1− Φ
(
b1 − θ

√
n1
2σ2

)
Pθ(Z1 < a1) =Φ

(
a1 − θ

√
n1
2σ2

)
.
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Secondly, we let µθ,k(zk) and νk denote

µθ,k(zk) :=zk
√

nk
nk+1

+ θ√
2σ

(
nk+1 − nk√

nk+1

)

ν2
k :=nk+1 − nk

nk+1

• Zk+1|Zk = zk ∼ N(µθ,k(zk), ν2
k) for 1 ≤ k ≤ K − 1

The probability density function of zk+1 given zk and θ is

pθ(zk+1; zk) = 1
νk
φ

(
zk+1 − µθ,k(zk)

νk

)
with probabilities of rejection and acceptance at stage k + 1 of

Pθ(zk+1 > bk+1; zk) =1− Φ
(
bk+1 − µθ,k(zk)

νk

)
Pθ(zk+1 < ak+1; zk) =Φ

(
ak+1 − µθ,k(zk)

νk

)
,

7.2.2 Case A: Gain function does not explicitly depend on θ

In this section, we outline the method for constructing optimal group sequential designs in
the case when the gain function does not depend on θ. We define the gain function G(k,R)
as the gain incurred by a group sequential trial that stops at stage k for rejection R = 1 or
acceptance R = 0. One envisages this gain function to be much larger when R = 1 than
R = 0 and decreasing in k representing the increasing number of patients required to be
treated and the less time one has until patent expiry. As in Barber and Jennison (2002), we
formulate the problem as an unconstrained Bayes problem with an objective function and
use Langrangian Multiplier arguments to find the solution to the overall frequentist problem.

Overall Frequentist Problem

Suppose the group sequential design has K analyses, equally spaced on the information scale,
and final information level Imax = R Ifix for treatment and control where R > 1 is the ratio
between the final information level and the information level required for a fixed sample
design Ifix. That is,

Ifix = (Φ−1(1− α) + Φ−1(1− β))2/δ2. (7.2)

We wish to find acceptance and rejection boundaries a1, ..., aK , b1, ..., bK that maximise the
expected value of

∫
R Eθ[G(k,R)] πθ(θ) dθ over all boundaries which give type I error rates of

α and powers of 1− β when θ = δ.

We suppose πθ is of the form

πθ(θ) =

π1 θ = δ

1− π1 θ = 0
. (7.3)
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Below, we describe the details of the Bayes formulation.

Prior and posterior distributions

Given Equation 7.3 defines the prior distribution on θ, the posterior distribution of θ given
data summarised by Z-statistic Z = zk at stage k has probability density function

p(k)(θ; zk) =C π(zk|θ) πθ(θ)

=C

π1 φ(zk − δ
√
nk

2σ ) θ = δ

(1− π1) φ(zk) θ = 0.

Lagrangian Objective function

Define the objective function OF as

OF := G(k,R)− λ11(reject,θ=0) − λ21(accept,θ=δ), (7.4)

where 1(reject,θ=0) is the indicator function that one rejects the null hypothesis when
θ = 0, and 1(accept,θ=δ) is similarly defined. The unconstrained Bayes problem is to find
a1, ..., aK , b1, ..., bK such that the expected value of OF is maximised under prior πθ. The
solution of this unconstrained problem (that is, without type I and II error rate constraints)
solves the original frequentist problem when λ1 and λ2 are such that the solution to the Bayes
problem has the required Type I and II error constraints.

Conditional expected gain given Zk

Suppose at stage k (1 ≤ k ≤ K − 1), one has a Z-statistic of zk. Then the conditional
expected gain given Zk = zk is

Ezk [OF ] = A(zk)1(zk>bk) +B(zk)1(zk<ak) + C(zk)1(ak<zk<bk), (7.5)

where

A(zk) = G(k,R = 1)− λ1p
(k)(0; zk)

B(zk) = G(k,R = 0)− λ2p
(k)(δ; zk)

C(zk) =
∫ ∞
−∞

[p0(zk+1; zk) p(k)(0; zk) + pδ(zk+1; zk) p(k)(δ; zk)] Ezk+1 [OF ] dzk+1.

(7.6)

When k = K, we have the same expression but without the third term. A(zk), B(zk), and
C(zk) represent the expected value of the objective function when one stops for rejection,
stops for acceptance, or continues at stage k, given one has observed zk. A(zk) and B(zk) are
easily computed. We split up C(zk) into two parts by conditioning on zk+1, the Z-statistic
from stage k + 1, in the cases when one stops at stage k + 1 for acceptance or rejection, or
one falls in the continuation region of stage k + 1. Thus

C(zk) = C1(zk) + C2(zk), where (7.7)
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C1(zk) =
∫ ∞
bk+1

p0(zk+1; zk) [G(k + 1, R = 1)− λ1] dzk+1 p
(k)(0; zk) +∫ ∞

bk+1
pδ(zk+1; zk) G(k + 1, R = 1) dzk+1 p

(k)(δ; zk) +∫ ak+1

−∞
p0(zk+1; zk) G(k + 1, R = 0) dzk+1 p

(k)(0; zk) +∫ ak+1

−∞
p0(zk+1; zk) [G(k + 1, R = 0)− λ2] dzk+1 p

(k)(δ; zk)

=
(

1− Φ
(
bk+1 − µ0

σ

))
[G(k + 1, R = 1)− λ1] p(k)(0; zk) +(

1− Φ
(
bk+1 − µδ

σ

))
G(k + 1, R = 1) p(k)(δ; zk) +

Φ
(
ak+1 − µ0

σ

)
G(k + 1, R = 0) p(k)(0; zk) +

Φ
(
ak+1 − µδ

σ

)
[G(k + 1, R = 0)− λ2] p(k)(δ; zk),

(7.8)

where µθ,k(zk), and σ are defined before. This is now in an easily computable form.

C2(zk) =
∫ bk+1

ak+1
( p0(zk+1; zk)p(k)(0; zk) + pδ(zk+1, zk)p(k)(δ; zk) ) Ezk+1 [OF ] dzk+1

=
∫ bk+1

ak+1

1
σ
φ

(
zk+1 − µ0

σ

)
Ezk+1 [OF ] dzk+1 p

(k)(0; zk) +∫ bk+1

ak+1

1
σ
φ

(
zk+1 − µδ

σ

)
Ezk+1 [OF ] dzk+1 p

(k)(δ; zk).

(7.9)

This form requires integrating over the continuation region of stage k + 1. Thus to
compute this, we must have evaluations of Ezk+1 [OF ] for a finite number of points within
zk+1 ∈ [ak+1, bk+1].

In Section 7.3, we outline the computations required to use these integrals to compute the
optimal group sequential designs.

7.2.3 Case B: Gain function may explicitly depend on θ

In this section we generalise the methods of the previous section and consider the case where
the gain function may depend explicitly in terms of θ. Denote the gain function as G(k, θ,R).
We have the same overall frequentist problem as Case A but we wish to maximise the expected
value of

∫
R Eθ[G(k, θ,R)] πG(θ) dθ over all boundaries which give type I error rates of α and

powers of 1 − β when θ = δ, where we suppose πG is the probability density function of a
Gaussian distribution.

Prior and posterior distributions

This time we require a hybrid continuous and discrete prior. We require a discrete element to
the prior in addition to πG to use the Lagrangian Multiplier argument to derive the optimal
group sequential design.
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Therefore we define the prior as

πθ(θ) =


1/3 θ = 0
1/3 θ = δ

1/3 θ ∼ πG(θ)

(7.10)

for some ε > 0.

Let E1, E2, E3 be 3 events defined in the above prior. The posterior distributions are as
follows:

P(E1|zk) = p0(zk) / (3πZ(zk))
P(E2|zk) = pδ(zk) / (3πZ(zk))

P(E3|zk) =
∫
θ
pθ(zk) πG(θ) dθ / (3πZ(zk))

(7.11)

where πZ(zk) is the marginal probability density function of observing the Z-statistic zk and
may be deduced trivially by using the relation P(E1|zk) + P(E2|zk) + P(E3|zk) = 1. The
posterior distribution of θ given zk under event E3 may be written as

πE3(θ|zk) = pθ(zk) πG(θ)∫
pθ(zk)πG(θ)dθ . (7.12)

Lagrangian Objective function

This time the gain function may depend upon the treatment effect θ. Let G(k, θ,R) denote
the gain incurred by a group sequential trial that stops at stage k for rejection R = 1 or
acceptance R = 0, when the treatment effect is θ. Define the objective function OF as

OF := 3G(k, θ,R)1(θ∈R\{0,δ}) − λ11(reject,θ=0) − λ21(accept,θ=δ) (7.13)

with the same notation as before. The unconstrained Bayes problem mirrors the one of
Case A.

Conditional expected gain given Zk

Suppose at stage k (for 1 ≤ k ≤ K − 1), one has a Z-statistic of zk. Then the conditional
expected gain given Zk = zk is

Ezk [OF ] =
[∫

R
πE3(θ|zk) G(k, θ,R = 1) dθ 3P(E3|zk)− λ1P(E1|zk)

]
1(zk>bk)

+
[∫

R
πE3(θ|zk) G(k, θ,R = 0) dθ 3P(E3|zk)− λ2P(E2|zk)

]
1(zk<ak)

+
∫

R

( ∫
R
pθ(zk+1; zk) πE3(θ|zk) dθ 3P(E3; zk) + pδ(zk+1; zk) P(E2; zk)

+ p0(zk+1; zk) P(E1; zk)
)

Ezk+1 [OF ] dzk+1 1(ak<zk<bk),

(7.14)

where as before the k = K case has no third term.

As before in Case A, we write

Ezk [OF ] = A(zk)1(zk>bk) +B(zk)1(zk<ak) + C(zk)1(ak<zk<bk) (7.15)
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and use numerical integration routines to evaluate each of A(zk), B(zk), and C(zk). Due to
the dependence upon θ, each of these are more computationally expensive than Case A.

In Section 7.3, we outline the computations required to use these integrals to compute the
optimal group sequential designs.

7.3 Computations

In this section, we outline the dynamic programming algorithms that may be used to construct
the optimal group sequential designs.

7.3.1 Optimal decisions

The group sequential designs are optimal in the sense that the rejection and acceptance
boundaries a = (a1, ..., aK) and b = (b1, ..., bK) are chosen such that the expected value of
the gain function is maximised.

To do this, we assume the number of analyses K is fixed, and the inflation factor R of the
total group sequential design sample size over fixed sample sample size is fixed (one may
search over different values of R afterwards if desired). The type I error α, and type II error
β at θ = δ are specified.

Denoting the information required for a fixed sample design with type I error α and type II
error β as Ifix, we have the standard result,

Ifix = (Φ−1(1− α) + Φ−1(1− β))2/δ2. (7.16)

The analyses are then performed at information levels

I = (I1, ..., IK) where Ik = RIfix
k

K
for k = 1, ...,K. (7.17)

Optimal decision at analysis k = K

Suppose one is at analysis k = K with Z-statistic zK . One wishes to maximise the expected
value of the objective function for any zK . Therefore, to find the value of aK (= bK), we find
the zK such that

A(zK) = B(zK) (7.18)

where these functions are defined in Equations 7.5 or 7.15. This is our final rejection and
acceptance boundary point aK = bK .

Optimal decision at analysis k = 1, ...,K − 1

Likewise, suppose one is at analysis k < K with Z-statistic zk. We find bk by finding the zk
such that

A(zk) = C(zk), (7.19)

and ak by finding the zk such that

B(zk) = C(zk), (7.20)
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where these functions are again defined in Equations 7.5 or 7.15. This gives us our acceptance
ak and rejection bk boundary points at stage k.

7.3.2 Dynamic programming algorithms

In the algorithm below, we outline how to calculate an optimal group sequential design.

Construct_OptGSD_lambda12_func
• Compute information levels I from Equation 7.17.
• Find final boundary aK = bK by solving Equation 7.18.
• Find penultimate acceptance aK−1 and rejection bK−1 boundaries by solving
Equations 7.19 and 7.20.

� For k = K − 2, ..., 1
– Create a finite mesh vector Mk+1 of equally spaced points in the interval

(ak+1, bk+1).
– For each zk+1 ∈Mk+1, calculate and store C(zk+1) from Equation 7.5 (Case

A) or 7.15 (Case B).
– Find acceptance ak and rejection bk boundaries by solving Equations 7.19

and 7.20, using the stored mesh of points Mk+1 and corresponding values
of C(zk1) at analysis k + 1 to aid the numerical integration.

• Calculate the probability of acceptance and rejection under θ = 0 (denoting
as pacc0 , prej0 ) and θ = δ (denoting as paccδ , prejδ ) using standard techniques (see
Jennison and Turnbull (2000)).
• Return I, a, b, and pacc0 , prej0 , paccδ , prejδ .

Construct_OptGSD_func
• Perform a 2 dimensional search over λ1 and
λ2 until Construct_OptGSD_lambda12_func outputs a value of prej0 equal to
α and prejδ equal to β.
• Return all the properties of the group sequential design that satisfies this,
including the expected value of the original gain function. By the Lagrangian
Multiplier principle, this group sequential design is optimal (has the highest
expected gain) over all boundaries such that the type I error and power are α
and β respectively.

7.4 Comparing group sequential design performances under
the financial model

In this section, we compare the performance of non optimal group sequential designs against
our optimal design. Group sequential designs are commonly parameterised by one or two
parameters, so we compare the performance of these group sequential designs using commonly
used parameter values. We then examine how the parameter selection can improve the
performance of each group sequential design, and identify how close one can get to the
optimal group sequential design.

We use the Financial Model from Chapter 6 as our gain function, with parameters
corresponding to Drug 1.
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7.4.1 Efficiency of the error spending and Pampallona and Tsiatis designs

In Chapter 2, we introduced the one sided ρ-family error spending group sequential design
family and the Pampallona and Tsiatis group sequential ∆-family designs. The error spending
family is parameterised by ρ1 and ρ2, and the Pampallona and Tsiatis family is parameterised
by ∆. In previous simulations studies, we have used the parameters ρ1 = ρ2 = 2 and ∆ = 0.25
for these choice of parameters.

Below, we compare these two group sequential designs with the optimal group sequential
design under the financial model from Chapter 6 Case Study 1. We do this firstly with the
usual parameters values for ρ1, ρ2, and ∆, and then we tune the parameter values to obtain
the best designs possible under our financial model.

All group sequential designs are specified to have 5 interim analyses, and type I error 0.05 and
power 0.8 at θ = 1, and using the Drug 1 Financial Model parameters from the simulation
study in Section 6.7.1. The optimal GSD is optimised over inflation factor R also. For the
Error Spending and Pampallona and Tsiatis group sequential designs, the final information
level is a function of the parameter values. In Table 7.1, we list the expected gain of these
different GSDs with different parameter values, and plot the corresponding GSDs in Figure
7-1.

Table 7.1: The expected gain of the optimal, Error Spending, and Pampallona Tsiatis GSDs
under different parameter values.

GSD Parameter Values Expected Gain
Optimal GSD none 3 920

Error Spending GSD ρ1 = ρ2 = 2 3 834
ρ1 = 0.59, ρ2 = 5.76 3 913

Pampallona Tsiatis GSD ∆ = 0.25 3 827
∆ = 0.43 3 844

From these results, one can see that both designs are not much worse than the optimal
design, especially when their parameters are optimised. In particular, the Error Spending
design comes very close to optimal and its shape very closely matched the optimal group
sequential design. The Pampallona and Tsiatis design we study here has only one parameter,
so the effect of optimising this parameter is less pronounced.

The use of the Financial Model suggests it is more important to stop early for efficacy at the
expense of stopping early for futility and the final information level.
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Figure 7-1: Error Spending, Optimal, and Pampallona Tsiatis group sequential designs as
computed in Table 7.1. The top figure gives the group sequential designs for the usual
parameter values, and the bottom for the parameter values that maximise the value of the
design under the financial model.

7.5 Discussion

In this chapter, we outlined a method to construct optimal designs according to some general
gain function and under a prior on treatment effect θ, extending the work of Barber and
Jennison (2002). In particular, optimal designs can be constructed to maximise the eNPV
when the gain function used is the Financial Model gain function introduced in Chapter 1
and used in Chapters 3 and 6.

When comparing the optimal designs to commonly used designs such as one sided ρ-family
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Error Spending designs and Pampallona and Tsiatis ∆-family designs, the difference in
performance was not too large in the example considered.

Reasons for not using this approach may stem from being critical of the use of a Financial
Model decision theory approach for single Phase III trials only and thus missing the bigger
picture with respect to the opportunity cost of investing resources too heavily in a single
trial. It is also the case that parameters in the Financial Model that may affect the design
are hard to estimate well; for example, the revenue per month if the drug passes Phase III.

193



8
Thesis Overview

8.1 Decision making in drug development

The pharmaceutical industry has a moral duty to develop treatments to satisfy an unmet
medical need. This may be where there are no satisfactory treatments, or the current
treatment can be improved upon. The industry has come to an era where there is an
increasing amount of pressure for sponsors to be cost-effective and efficient in their drug
development strategies due to increasing costs and diminishing returns.

The lack of uptake in quantitative methods that support decision making processes contribute
to a lack of efficiency. Utilisation of decision analysis, statistical resources, and modelling and
simulation are methods that allow one to make more informed decisions in order to increase
the efficiency of drug development.

In this thesis, we have examined a range of scenarios in drug development where quantitative
methods can aid decision making. One only has to consider a simple scenario of a few
drugs with some information about their efficacy under uncertainty, before decisions about
the future development of these drugs becomes a complex problem with trade-offs between
different decisions. These complex decisions have large financial implications and are prone to
cognitive bias. The approach taken in this thesis is to utilise decision theory in order to gain
insight into the problem. Bayesian methods may naturally be used when there is uncertainty
attached to certain beliefs and one may obtain information throughout the process that may
inform decision making later in the process.

In the following section we outline the scenarios studied in this thesis, the methods required
to gain insight into the problem using decision theory, and the insights gained in case studies.
We then discuss the overall themes pertaining to this thesis, and outline extensions that have
arisen.

8.2 Summary of results

8.2.1 The value of adaptivity in a Phase II/III programme with treatment
selection (Chapter 3)

We consider a Phase II/III drug development programme which contains multiple treatments
entering Phase II where one treatment is selected to proceed to Phase III given the data from
Phase II. The sample sizes of Phase II and III must be specified during the programme.
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In this programme, one defines two decision points before Phase II and Phase III when the
decisions are made. Bayesian decision theory is used to derive optimal decision rules using
a gain function for each decision point using information about the treatment effects of the
treatments under uncertainty. In the first decision point before Phase II, this information
is a continuous prior distribution on the treatment effects. In the second decision point
before Phase III, this decision may be informed by the Phase II data which is combined
with the prior distribution according to Bayesian principles. The optimal decisions may be
computed using numerical integration and simulation techniques. In particular, Monte Carlo
integration is used in the first decision point and is computationally expensive when the
programme contains adaptive elements such as group sequential methods.

Applying these methods to a case study, it is found one can compute optimal decision rules
for both decision points and infer the value of the programme. One can specify the gain
function to be a simple function that rewards rejecting the null hypothesis of a working
treatment in Phase III, or a more complex function that more accurately models the net
present value of a programme. It is found that adding adaptive elements to the programme
in the form of combination tests or group sequential methods brings added value to the
programme and changes the optimal decision rules. Group sequential methods are found to
bring comparatively more value to the programme than combination tests.

8.2.2 The value of dose response modelling in Phase II/III programmes
(Chapter 4)

A Phase II/III drug development programme is considered in which multiple doses of the
same treatment are tested in Phase II with one dose selected to proceed to Phase III given
data from Phase II. Dose response modelling techniques may be used on the Phase II data
to inform decision making. As before, the sample sizes of Phase II and III must be specified
during the programme.

Bayesian decision theory is used to derive optimal decision rules for decision points before
Phase II and III using a gain function. One assumes that the efficacy of larger doses is
expected to be larger, but this comes at the cost of a safety penalty, representing the risk
of failure of the treatment due to safety concerns. Dose response modelling procedures may
involve fitting parametric models to model the efficacy, or using procedures such as MCP-Mod
(Bornkamp (2006)).

The use of dose response relationships to aid decision making add value to the programme
when the doses and efficacy responses follow some dose response relationship in comparison to
making decisions under the assumption the doses are independent treatments. When there is
uncertainty as to the true dose response relationship, a flexible procedure such as MCP-Mod
adds value to the programme as it is able to use the most appropriate dose response model
that best fits the observed data in order to make inferences for decision making.

8.2.3 Multiple Phase IIIs (Chapter 5)

Regulations often require the use of two independent Phase III trials in order to gain market
approval for a new treatment. We consider the best way to perform these two trials; in
parallel, sequentially, or in an adaptive procedure starting the second halfway through the
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first. Furthermore, if these trials are group sequential, one can ask what is the best family of
acceptance and rejection bounds.

We formulate these problems mathematically, identify the decision points, and compute
optimal decision rules using Bayesian decision theory. The choice between parallel and
sequential trials becomes a trade off between completing both trials earlier to realise more
marketing time before patent expiry, or to reduce unnecessary patient costs by using initial
results from the first trial to inform whether performing the second trial is worthwhile.

It is found that the prior information about the drug’s efficacy and the financial parameters
determine the best way to perform the two Phase III trials. An adaptive compromise between
sequential and parallel design adds value over the two alternatives in some situations.

8.2.4 The portfolio problem (Chapter 6)

We consider a portfolio of treatments which are approaching Phase III in the drug
development process in the near future, but have some probability of failure before reaching
Phase III. A budget is available for the entire portfolio meaning decisions about the investment
for each treatment depend upon the other treatments. We require an optimal design strategy
that allocates the budget to the treatments within the portfolio in order to maximise the
portfolio value.

The optimal design strategy is found by finding the optimal decision rules at each treatment
given the current status of the remaining budget and ongoing trials. These optimal decision
rules are derived using dynamic programming as an alternative to the method of Stochastic
Integer Programming used in Patel et al. (2013). The dynamic programming method is more
efficient, and allows the use of group sequential designs within the portfolio.

A realistic portfolio of fixed sample Phase III designs is used as a case study and optimal
designs are found for each treatment. Adding group sequential designs adds value to the
portfolio, even when a minimum sample size is required to obtain a sufficient amount of
data for safety purposes. However, adding group sequential designs to the portfolio increases
the computational workload of the dynamic programming algorithm. Another case study
found that the presence of drugs under development from other sponsors that may become
competitors meant it became optimal to invest less in those drugs with possible competitors.

8.2.5 Optimal group sequential designs (Chapter 7)

Group Sequential Designs often have boundaries specified by parametric functions. Barber
and Jennison (2002) provides an approach to instead find optimal boundaries to minimise the
expected sample size under assumptions about the treatment effect given a specified type I
error rate and power. We generalise this approach to find optimal boundaries which maximise
a general gain function.

Using Lagrangian Multiplier arguments, we formulate this optimisation problem as a Bayesian
decision theory problem. We use dynamic programming to derive the optimal boundaries at
each stage in the group sequential design.

An algorithm is derived which may be used to derive these optimal group sequential designs.
Using a gain function representing the financial aspects of the trial gives boundaries that

196



prioritise early stopping for efficacy rather than for futility in order to maximise the time the
drug can be marketed until patent expiry.

8.3 Discussion points

8.3.1 Decision theory as a quantitative method for aiding decision making

There are numerous factors that are important when planning pharmaceutical programmes
or portfolios. These may be economic, statistical, and logistical. Decisions regarding different
development options should be taken such that the expected value of the development
programme or portfolio is maximised. Decision theory is a tool which can help quantify
these values.

Optimisation can be done at an individual trial level, programme level, or portfolio level.
What is optimal at one level may not be optimal at a higher level as individual trials and
programmes may be interdependent- for example, due to a shared research and development
budget. However, the complexity of the model may mean that only simple decisions can
be modelled at a higher level. Therefore one is left with a trade off between the ability to
more accurately model complex decisions, and to keep the bigger picture in mind. It is useful
to work at all levels in order to obtain an appreciation of the trade-offs between different
decisions.

The value of a programme or portfolio depends upon the quality of the product, associated
beliefs about the treatment effect of the product, and the development strategy. Decision
theory can inform the development strategy and thus has the potential to increase the value
of a programme or portfolio within drug development. This is due to

• more efficient allocation of budget to individual trials or treatments,

• more efficient choices of dose or sample size for individual trials, and

• providing evidence of the benefit of adaptive designs.

All of the case studies within this thesis use gain functions which aim to model the financial
aspects of the programme or portfolio. These may be simple functions, or more complex
functions which aim to more accurately model the financial aspects. The financial aspects
are modelled using the concepts of net present value. Decisions are made under uncertainty
and therefore a common measure to use is the expected net present value. In this thesis, we
have shown this measure naturally accommodates optimisation and fits harmoniously with
Bayesian decision theory. The criticisms that have been noted with net present value relate
to the setting in which the optimisation is performed. In many case studies, the cost of the
drug development can become a small fraction of realised revenues. A small relative change
in revenue in exchange for a larger development cost could therefore be considered justified
given a net present value gain function. However, this may result in a large opportunity cost,
where budget would have been better spent on other opportunities.

The method of decision theory depends on several assumptions. The gain function provides
a measure which determines the relative importance of different outcomes to the sponsor.
If the gain function is misspecified, then decisions which are optimal according to the gain
function may not be satisfactory. However, specifying the gain function a-priori may be
difficult. When the gain function aims to model the net present value of a programme or
portfolio, we require the specification of parameters such as the revenue per month, which
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may be difficult to estimate in advance. Furthermore, the net present value for a drug is
highly dependent on the revenue per month. In some applications, such as in Chapter 7, a
standard deviation is specified to allow for some uncertainty with this figure.

Obtaining optimal decision rules from case studies in this thesis relied on the rules being
computationally solvable in a satisfactory time. In several case studies, we found that one
may run into computational difficulties when the problem became too complex. Decision
rules that are derived by Monte Carlo procedures are prone to having large computational
expenditures, as a large number of simulations may be needed to obtain reliable estimates.
Case studies in Chapter 3 and 4 require Monte Carlo estimates in Decision 1. One of the main
motivators for a dynamic programming approach for the portfolio problem in Chapter 6 was
that the currently used Stochastic Integer Programming method was particularly inefficient.
We found that the dynamic programming method was more computationally efficient for
large portfolios. However when many group sequential designs were added to the portfolio,
the algorithm could become too computationally expensive to solve due to the number of
values the group sequential design situation ID variable s in the state space could take.

It was necessary to use methods to ensure computational efficiency in the case studies in this
thesis. When appropriate, computations were parallelised, and computations run with a high
performance computing cluster with 16 cores.

8.3.2 The value of adaptive methods in drug development

In this thesis, we have principally studied two types of adaptive methods: group sequential
designs and combination tests. Group sequential designs were studied in the context of
Phase II/III programmes (Chapter 3), two Phase III trials (Chapter 5), Phase III portfolios
(Chapter 6), and finding optimal group sequential designs (Chapter 7), whilst combination
tests were studied in the context of Phase II/III programmes (Chapter 3).

In the context of Phase II/III programmes and Phase III portfolios, it was found there was a
significant benefit to the sponsor if group sequential designs were used. As noted, this is due
to the use of group sequential designs allowing trials to stop early for futility or efficacy. This
means the drug can be marketed for longer until the patent expires and leftover budget is
saved. It is found that the benefit of group sequential designs comes overwhelmingly from the
longer marketing time rather than saving leftover budget. This comes from the gain function
weighting the revenue much more highly than development costs.

As described in Chapter 2, combination tests introduce flexibility into clinical trials. The
benefit of using combination tests to pool the data from multiple phases to increase the
power of the hypothesis test is found to add value to Phase II/III Programmes (Chapter 3)
but significantly less than using group sequential designs.

8.4 Extensions for future work

The case studies in this thesis have primarily been motivated by questions about the efficiency
of traditional industrial practices. During investigations of these case studies, new questions
have arisen. However due to the time constraints, not all of these new questions can be
tackled. In this section, we outline some unanswered questions as extensions to the work
done in this thesis. These extensions may inspire future work.
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In Chapter 3, we assess the value of using combination tests in a Phase II/III portfolio.
However, in Chapter 4, we focused on the value of dose response modelling in a Phase II/III
programme with multiple doses of the same treatment. A question that arises is what is
the value in using combination tests within a Phase II/III programme with multiple doses
with dose response modelling following Phase II? Clearly, one cannot combine p-values that
are found using dose response models as the overall combination test would then implicitly
assume the dose response model was correct. However, a scheme where dose response models
are used on the Phase II data to inform decisions about Phase III, and a combination test
is performed on the Phase II and III data without any dose response model assumptions is
possible and may add value.

In Chapter 5, we use two independent Phase III designs and allow them to be group sequential.
Assuming the trials are done in parallel, one stops for futility if one of the trials stops
for futility, and one stops for efficacy if both the trials have stopped for efficacy. Though
the regulatory advice is that the trials should be independent, it is thought that sharing
data between the trials when considering futility should not be problematic. One extension
therefore is to investigate the efficiency of a pair of group sequential trials, where early
stopping for efficacy for each trial depends upon the data for each trial separately, whilst
early stopping for futility for each trial depends upon the pooled data from both trials.

When considering a portfolio in Chapter 6, we assume the efficacies of each of the treatments
are independent of each other. That is, if one treatment is found to be efficacious, this
does not affect the probability of another treatment being efficacious. Alternatively, the net
present value of two treatments are the sum of the net present value of each of them; this
may not be the case if there are two different treatments for the same medical condition.
Using the method of dynamic programming may be difficult in this case, as the optimal
decision for each drug will depend upon data about the efficacy of previous drugs, leading to
a much larger state space. Therefore, to investigate this problem, one would have to use an
alternative method to find the optimal decisions (such as Stochastic Integer Programming),
or find a method for reducing the size of the state space.

In many case studies in this thesis, a gain function based on net present value is used to derive
optimal decisions and we note that these decisions might not be optimal when we consider
the larger problem (for example, a programme of many trials, or portfolio of many trials or
programmes). One method for solving this problem would be to use a gain function which
gives some measure of return ratio under some constraints. This is investigated briefly in
Chapter 6 and in papers such as Chen et al. (2015). An extension of the work in this thesis
would be to more thoroughly use these types of gain functions, to investigate the benefit of
using decision rules derived from these gain functions in the bigger picture.
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