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Abstract 

Electrification of vehicles is the direction the automotive industry has embarked 

on to address the well documented problems of air quality and climate change. 

Advantages of electric vehicles include zero tail pipe emissions, low energy cost and 

city-friendly driveability. However, a fundamental drawback is their limited range and 

high recharge time required. 

The range extended electric vehicle (REEV) is a solution that enables the driver 

to be range anxiety free, seeks to achieve a practical compromise between the onboard 

battery size and the single charge driving range. The range extender or auxiliary power 

unit (APU) consists of an onboard fuel convertor, usually an internal combustion 

engine (ICE) that converts fuel such as gasoline into electrical power while the vehicle 

is in operation. This enables the traction battery storage capacity to be reduced whilst 

still maintaining an acceptable driving range. The ICE can be optimised for a limited 

number of steady state points which offer significant improvement in fuel economy as 

well as emissions.    

Thermal management, a critical part in a vehicle is governed by two constraints 

– packaging and cooling performance. The packaging space in the vehicle limits the 

cooling system size. It becomes even more challenging in a hybrid system since extra 

components are in operation compared to a conventional car. Further, to mimimise 

fuel consumption of the APU, it is important that the engine and generator are operated 

at their maximum efficiency in addition to optimising the complete system to reduce 

any parasitic losses in the auxiliary systems. However, they have conflicting 

temperature requirements to achieve their own optimal efficiency. 

Cost is one of the most significant factors for such a powertrain as the range 

extender is an additional system to a vehicle that already includes an expensive fully 



 

ii 

capable electric system. Therefore, the APU must maximise its cost advantage over 

the proportion of the battery pack that it is effectively replacing. 

With the above as the background, this research work elaborates on the 

considerable experimental work undertaken to optimise a very low-cost 624cc 

production automotive engine of c. 25kW for running as an APU in critical speed/load 

ranges. The engine optimisation process only included changes that were possible in 

the normal volume-production process. This included introduction of a new engine 

management system and electronic throttle, bespoke engine inlet and exhaust manifold 

development, engine calibration for improved fuel economy and well as introduction 

of an electric water pump. The optimisation achieved a best engine BSFC of 245g/kWh 

at 2500rpm with 92% reduction in engine inlet manifold volume.  

On commissioning of the APU, the total dry weight of the APU was measured 

to be 81.5kg as against an initial target of 80kg. Experimental analysis showed the 

ESFC was below the target best ESFC of <270g/kWh under optimal temperature 

conditions of the engine, M/G and inverter unit in separate coolant circuits for the 

engine and generator. The APU produced a peak power of 22.78kW at 5100rpm. Best 

ESFC of 260g/kWh was measured at 2500rpm, and the ESFC remained below 

270g/kWh across 2000 to 3500rpm at full load. The specific performance of the APU 

at peak power was 270W/kg which was within the target of 250 to 313W/kg. 

The experimental analysis also demonstrated that it is possible to operate the 

APU in a combined engine-generator coolant loop, with marginal drop of 4% in power 

and 2% increase in ESFC. However, the combined loop provides greater flexibility of 

package installation and simplifies vehicle integration, with reduction in parasitic 

losses. It also reduces the overall package cost.  

This research contributes in the area of optimising an industry first low-cost 

production, low-cylinder count engine for range extender application as well as 
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thermal management of an APU by providing an insight on the performance of the 

engine and generator in a single coolant loop with changing coolant and oil 

temperatures. This is considered to be the novelty of this research since literature 

review revealed that though researchers had written about potential cost savings on 

combining of coolant circuits, there was no evidence that it had actually been 

implemented. 

 



 

iv 

Acknowledgement 

I would like to express my most sincere gratitude to my lead supervisor Professor 

Chris Brace for giving me the opportunity to work in PVRC and simultaneously pursue 

my PhD. Despite my limited background in automotive research, his continuous 

support and guidance helped me to find my feet and I was able to embark on this 

journey. His infectious enthusiasm, broad outlook and encouragement kept me 

motivated to keep going even after leaving the University. I would also like to express 

my appreciation to my second supervisor Professor Sam Akehurst. Your immense 

practical knowledge on test facilities helped me a lot.  

I would also like to express my gratitude to Dr Andrew Lewis, my third 

supervisor and now also a dear friend. I learnt and benefitted immensely from you. 

Your experience in commissioning, operation of test equipment / test cells and data 

analysis was of tremendous help. You have been an incredible mentor for which I shall 

always be grateful.  

I would like to thank the project partners, Tata Motors European Technical 

Centre and Ashwoods for giving me the chance to work collaboratively on this project 

which was conducted with the financial support of Innovate UK and their support is 

acknowledged. My thanks especially to Gary Kirkpatrick, Johnathan Breddy, Peter 

Strange, Marco Cecotti, Christopher Mudd, Yash Gandhi from TMETC, Lloyds Ash 

and Calum Roke from Ashwoods. Thanks for your help and advice throughout the 

project.  

My sincere thanks to Bob Gusthart, senior technician and his team including Jim 

Cansell, Martin Fullick, James Burge and Tom Holley for the assistance given during 

the project. Despite work pressure on various projects pulling in different directions, 

they always prioritised the LowCAP test cell for which I am grateful. The smooth 

progress made during the research was largely due to their willing and timely support. 



 

v 

I would also like to thank Dr Richard Burke for providing me the opportunity to 

work with the research group from University of Bristol. Thank you, Jing Na, Anthony 

Siming Chen, Yingbo Huang and Professor Guido Herrmann. It was great to interact 

with you all.  

I would like to thank my colleagues at PVRC especially Deepak Hari, Leon 

Rodrigues, Dian Liu, Calo Avola, Ed Chappell, Simon Pickering, Karl Giles and Nic 

Zhang. It was a pleasure to work with you in different capacities as the project 

progressed. Thanks to most of you adding PhDs against your names post my joining 

PVRC, this mountainous journey seemed surmountable.  

I would like to thank my parents for their words of encouragement. Wish you 

were here mom to share this achievement.  

Finally, I would like to thank my wife. Your constant poking and reminding me 

to always look at the glass being half full kept me going! 

 

 

 

 

 



 

vi 

Contents 

Abstract ........................................................................................................................ i 

Acknowledgement ..................................................................................................... iv 

Contents ..................................................................................................................... vi 

List of Figures ............................................................................................................ xi 

List of Tables ........................................................................................................... xix 

List of Abbreviations .............................................................................................. xxi 

List of Symbols ...................................................................................................... xxiii 

CHAPTER - 1 Introduction .......................................................................... 1 

1.1 The Modern Electric Hybridised Powertrain ..................................... 2 

1.2 Characteristics of an Engine for Range Extender Application ........... 3 

1.3 Aims and Objectives .......................................................................... 3 

1.4 Thesis Structure .................................................................................. 8 

CHAPTER - 2 Literature Review .............................................................. 11 

2.1 Introduction ...................................................................................... 12 

2.2 Definition of EV, APU and REs ...................................................... 12 

2.3 Benefits of Electric Vehicles ............................................................ 13 

2.4 Shortcomings of Pure Electric Vehicles ........................................... 18 

2.5 Range Extender – The Solution for a BEV ...................................... 27 

2.6 Power Output Consideration for a Range Extender ......................... 30 

2.7 Operating Strategies of an APU in a REEV ..................................... 33 

2.8 Requirements of a Range Extender Engine ...................................... 35 

2.9 Engine Concepts for Range Extender Applications ......................... 37 

2.9.1 Gasoline Engines (2-stroke engines and 4-stroke engines) .......... 38 

2.9.2 Diesel Engine ................................................................................ 39 

2.9.3 Wankel Rotary Engine .................................................................. 40 

2.9.4 Gas Turbine Range Extender ........................................................ 40 

2.9.5 Fuel Cell ........................................................................................ 42 

2.10 REs Currently in the Market ............................................................ 43 

2.11 Thermal Management in an APU ..................................................... 49 

2.12 Selection of a Production Engine vis-à-vis a Bespoke Engine ........ 53 

2.13 Research Gaps / Opportunities ......................................................... 54 

2.14 Conclusion ........................................................................................ 56 



 

vii 

CHAPTER - 3 Base Engine Selection and Benchmarking ...................... 58 

3.1 Introduction ...................................................................................... 59 

3.2 RE Power Requirement, 20–25kW .................................................. 59 

3.3 Base Engine Specification ................................................................ 62 

3.4 Engine Test Cell ............................................................................... 64 

3.4.1 Dynamometer................................................................................ 65 

3.4.2 Engine Torque............................................................................... 65 

3.4.3 Lambda Value and Air/Fuel Ratio (AFR) .................................... 65 

3.4.4 Fuel, Coolant and Oil Flow Measurement .................................... 66 

3.4.5 Temperature Measurements .......................................................... 66 

3.4.6 Pressure Measurement .................................................................. 67 

3.4.7 Combustion Parameters ................................................................ 67 

3.4.8 Emissions Measurement ............................................................... 68 

3.5 Reference Fuel .................................................................................. 69 

3.6 Repeatability of Test Data ................................................................ 70 

3.7 Base Engine Performance Characterisation ..................................... 74 

3.8 Conclusion ........................................................................................ 78 

CHAPTER - 4 New Engine Management Strategy .................................. 80 

4.1 Introduction ...................................................................................... 81 

4.2 New Engine Management Strategy .................................................. 81 

4.2.1 Overall Control Strategy ............................................................... 81 

4.2.2 Overview of EMS Requirements and Calibration ........................ 83 

4.3 Introduction of Electronic Throttle Control (ETC) .......................... 87 

4.4 Engine Performance ......................................................................... 88 

4.5 Conclusion ........................................................................................ 89 

CHAPTER - 5 Bespoke Manifold Development ....................................... 90 

5.1 Introduction ...................................................................................... 91 

5.2 Bespoke Intake Manifold Development ........................................... 92 

5.2.1 Inertial Ram Cylinder Charging ................................................... 93 

5.2.2 Wave Tuning (Helmholtz Resonator) ........................................... 95 

5.3 Intake & Exhaust Manifold Simulation at TMETC ....................... 100 

5.3.1 Runner Length Sweep ................................................................. 101 

5.3.2 Runner Diameter Sweep ............................................................. 102 

5.3.3 Diameter and Length Sweep ....................................................... 102 



 

viii 

5.3.4 Runner Bend Angle Simulation .................................................. 103 

5.3.5 Resonator Simulation .................................................................. 103 

5.4 Experimental Evaluation of Inlet Manifold Variation.................... 104 

5.5 Bespoke Exhaust Manifold Development ...................................... 112 

5.6 Experimental Evaluation of Exhaust Manifold .............................. 113 

5.7 Engine Performance with Bespoke Manifolds ............................... 114 

5.8 Conclusion ...................................................................................... 117 

CHAPTER - 6 Map Calibration and Introduction of EWP .................. 119 

6.1 Introduction .................................................................................... 120 

6.2 Reduction in Exhaust Enrichment .................................................. 120 

6.3 RON 91 versus RON 95 Gasoline .................................................. 121 

6.4 Spark Timing Optimisation ............................................................ 122 

6.5 Introduction of Electric Water Pump ............................................. 128 

6.6 Pump mapping and control development ....................................... 130 

6.7 Engine performance / BSFC Post Modifications ........................... 131 

6.8 Conclusion ...................................................................................... 133 

CHAPTER - 7 Thermal Survey of Base Engine ..................................... 135 

7.1 Introduction .................................................................................... 136 

7.2 Lubrication / Friction Considerations in an ICE ............................ 136 

7.2.1 Boundary Lubrication ................................................................. 138 

7.2.2 Hydrodynamic Lubrication ......................................................... 138 

7.2.3 Mixed Lubrication ...................................................................... 139 

7.2.4 Operating Modes of Major Engine Components ........................ 140 

7.3 Mean Effective Pressure (MEP) ..................................................... 141 

7.4 Engine Oil 15W-40 ........................................................................ 142 

7.5 Thermal Survey of Baseline Production Engine ............................ 143 

7.6 Conclusion ...................................................................................... 154 

CHAPTER - 8 APU Commissioning and Performance ......................... 155 

8.1 Introduction .................................................................................... 156 

8.2 Specification of Prototype Motor / Generator Unit ........................ 156 

8.3 APU test bed configuration ............................................................ 158 

8.4 Benchmarking of APU Thermal Performance ............................... 158 

8.5 APU Performance with varying Coolant & Oil Temperatures ...... 164 

8.5.1 Independent Coolant Circuits ..................................................... 164 



 

ix 

8.5.2 Single Coolant Circuit for Engine and Generator ....................... 171 

8.6 Analysis of Experimental Results .................................................. 175 

8.7 Conclusion ...................................................................................... 179 

CHAPTER - 9 APU Performance over NEDC ....................................... 181 

9.1 Introduction .................................................................................... 182 

9.2 Drive Cycle ..................................................................................... 182 

9.3 Artemis Drive Cycle ....................................................................... 183 

9.4 Hyzem Drive Cycle ........................................................................ 184 

9.5 New European Drive Cycle (NEDC) ............................................. 184 

9.6 Energy Demand from APU to complete NEDC............................. 185 

9.7 APU Performance over NEDC ....................................................... 188 

9.8 Conclusion ...................................................................................... 190 

CHAPTER - 10 Emissions Performance ................................................. 192 

10.1 Introduction .................................................................................... 193 

10.2 Pollutant Formation in SI Engines ................................................. 193 

10.3 Emission Control by Design Modifications & Calibration ............ 196 

10.3.1 Spark Timing ............................................................................ 196 

10.3.2 Exhaust Gas Recirculation (EGR) ............................................ 196 

10.3.3 Air Fuel Ratio (AFR) ................................................................ 197 

10.4 Exhaust Treatment for Gasoline Engines ....................................... 198 

10.5 Catalyst Construction ..................................................................... 199 

10.6 Catalyst Sizing ................................................................................ 200 

10.7 Catalyst Conversion Efficiency (CE) ............................................. 201 

10.8 Conversion Efficiency and AFR Relationship ............................... 201 

10.9 Catalyst Light Off ........................................................................... 203 

10.10 Exhaust Gas Legislation for EU6 ............................................... 204 

10.11 EU6 Testing Norms for Electric Vehicles .................................. 204 

10.12 Test Cell Set for Catalyst Testing ............................................... 205 

10.13 Catalyst Ageing........................................................................... 207 

10.14 Emission measurement over NEDC ........................................... 209 

10.15 Faster TWC Light-off ................................................................. 211 

10.16 Additional control strategy to improve AFR control .................. 211 

10.17 Analysis of TWC Performance ................................................... 213 

10.18 Conclusion .................................................................................. 215 



 

x 

CHAPTER - 11 Conclusion and Further Work ..................................... 217 

11.1 Conclusion ...................................................................................... 218 

11.2 Research Limitations ...................................................................... 221 

11.3 Future Work ................................................................................... 222 

References ............................................................................................................... 224 

Appendix A ............................................................................................................. 237 

Appendix B ............................................................................................................. 240 

Appendix C ............................................................................................................. 241 

Appendix D ............................................................................................................. 242 

Appendix E ............................................................................................................. 243 

Publications............................................................................................................. 249 

 

 



 

xi 

List of Figures 

Figure 1-1 Range extended electric vehicle architecture [2] ....................................... 2 

Figure 1-2 Roles and responsibilities - LowCAP project, funded by Innovate UK .... 4 

Figure 1-3 Base engine major dimensions without intake, exhaust and after-treatment 

[6] ................................................................................................................................. 6 

Figure 1-4 Engine overall dimensions with intake, exhaust and after-treatment, viewed 

from inlet manifold side [6] ......................................................................................... 6 

Figure 1-5 Engine overall dimensions with intake, exhaust and after-treatment, viewed 

from flywheel end [6]................................................................................................... 7 

Figure 2-1 Government subsidies on electric vehicles purchase price to encourage 

uptake  [14] ................................................................................................................ 14 

Figure 2-2 Rise in electric cars sales including plug-in hybrids in China due to 

government support [16] ............................................................................................ 15 

Figure 2-3 Global sales of electric vehicles in 2018 crossed the 2 million mark [22]

 .................................................................................................................................... 17 

Figure 2-4 Electric vehicle penetration expected to be 11% of total vehicles worldwide 

by 2025 [24] ............................................................................................................... 18 

Figure 2-5 Gravimetric and volumetric energy density of fuels and their storage 

systems [3]. The gap between batteries versus diesel and gasoline is highlighted .... 19 

Figure 2-6 Battery consumption per km as a function of vehicle curb weight [25] .. 20 

Figure 2-7 Specific power versus specific energy of various battery technologies. 

Lithium-ion has higher specific power and energy compared to other battery 

technologies [1] .......................................................................................................... 21 

Figure 2-8 Price of lithium carbonate imported to China [29]................................... 21 

Figure 2-9 Rise in cost of rare metals [32] ................................................................. 22 

Figure 2-10 General Motors Chevrolet Bolt battery cost glide path [34] .................. 23 

Figure 2-11 Despite an initial large historical spread, the price of Lithium-ion batteries 

is converging and falling [36] .................................................................................... 23 

Figure 2-12 Data from FleetCarma on Nissan Leaf and Chevrolet Volt depicts battery 

range variation with temperature [45] ........................................................................ 26 

Figure 2-13 Impact of air conditioning on electric range of BEVs. As air conditioning 

power demand increases, the EV range sees a rapid drop [49] .................................. 27 

Figure 2-14 Range extender power and battery size trade off. There is a region where 

the right balance exists between battery size (EV range) and range extender power. 

Daily commutes are done in EV mode, and the occasional long journey is supported 

by the APU in charge sustain mode [4] ..................................................................... 28 

Figure 2-15 Powertrain cost advantage of a REEV in comparison to an EV [50] .... 28 



 

xii 

Figure 2-16 Statistics of all daily driving requirements in Germany. More than 70% of 

the vehicles do not exceed 50km which is well within the capability of an EV on a 

single charge [52] ....................................................................................................... 29 

Figure 2-17 REEV battery SOC variation during a portion of a trip, based on data 

logged from the MAHLE RE demonstrator vehicle [4]............................................. 30 

Figure 2-18 E-REV range extender fuel converter mechanical power requirement 

variation to maintain constant battery SOC (charge sustain) with varying cruising 

speed (1500 kg vehicle mass) [54] ............................................................................. 31 

Figure 2-19 General operating strategy of a range extender in a BEV. The two phases 

of charge deplete (EV mode, APU off) and charge sustain (with APU in operation) are 

highlighted [55] .......................................................................................................... 33 

Figure 2-20 NEDC weighed CO2 variation with varying electric only range and range 

extender fuel consumption [61] ................................................................................. 36 

Figure 2-21 Comparison of heat engines for series hybrids. Daimler-Benz AG consider 

availability of engine technology as one of the key selection criteria [59]. ............... 37 

Figure 2-22 Product development roadmap by NAIGT with fuel cell powered vehicles 

being the desired endgame [73] ................................................................................. 42 

Figure 2-23 Fuel cell RE powertrain configuration. Direct conversion of fuel into 

electricity without intermediate step of producing mechanical power [74] ............... 43 

Figure 2-24 BMW-i3 REX cooling circuit. Engine and motor/generator coolant 

circuits are independent of each other  [86] ............................................................... 51 

Figure 2-25 Chevrolet Volt Radiator layout for cooling the 4 independent cooling 

circuits [88] ................................................................................................................ 52 

Figure 3-1 Vehicle electrical power requirement of 15-30kW versus speed for the three 

vehicles considered. Power calculation based on vehicle weight including kerb weight 

plus 250kg, highway speed 60-70mph, flat road (0% gradient), 5kW ancillary loads 

and charge sustaining APU operation [6] .................................................................. 62 

Figure 3-2 Production 273MPFI engine including intake and exhaust manifold [2] 63 

Figure 3-3 Schematic of the bespoke test cell experimental set up at University of Bath.

 .................................................................................................................................... 68 

Figure 3-4 Engine mounted in the test cell. The 50kW AC dynamometer is on the right 

[2] ............................................................................................................................... 69 

Figure 3-5 Repeatability of measured engine torque at 3000rpm, WOT. Statistical 

parameters like minimum, maximum, mean, standard deviation and coefficient of 

variance are detailed in Table 3-7 .............................................................................. 72 

Figure 3-6 Repeatability of measured engine BSFC at 3000rpm, WOT. Statistical 

parameters like minimum, maximum, mean, standard deviation and coefficient of 

variance are detailed in Table 3-7 .............................................................................. 73 

Figure 3-7 Engine airflow versus engine speed for varying throttle positions during 

benchmarking of base engine performance ................................................................ 74 



 

xiii 

Figure 3-8 Engine combustion paraments at engine speed of 3000rpm, WOT. The plots 

show cylinder pressure, start of fuel injection (SOI), end of fuel injection (EOI) and 

spark timing with respect to crank angle.................................................................... 75 

Figure 3-9 Engine average exhaust gas temperature versus engine speed for varying 

throttle positions during benchmarking of base engine. Peak exhaust temperatures of 

750°C were measured. ............................................................................................... 76 

Figure 3-10 Measured lambda values with varying engine speed and torque during 

benchmarking of base engine performance. The WOT torque curve has been 

superimposed on the lambda map. At WOT, the engine was running lambda 1 for up 

to 3500rpm (see arrow), after which it began enriching the air fuel mixture to control 

exhaust gas temperatures............................................................................................ 77 

Figure 3-11 Measured BSFC values with varying engine speed and torque during 

benchmarking of base engine. The wide open throttle torque curve has been 

superimposed on the BSFC map. Region of 250g/kWh BSFC is highlighted. ......... 78 

Figure 4-1 Overall control architecture. The EMS and GCU are under the APU 

supervisory controller (ASC) which is controlled by the VSC .................................. 82 

Figure 4-2 EMS control architecture. Sensor inputs are shown in blue, the actuator 

commands in red and the ASC requests in black [2] ................................................. 83 

Figure 4-3 Spark timing control strategy to calculate spark start angle based on desired 

spark advance and coil characterisation ..................................................................... 85 

Figure 4-4 Injector timing and fuel injection duration control strategy ..................... 86 

Figure 4-5 Engine torque control strategy facilitates conversion of torque demand to 

the required electronic throttle opening position independent of driver input ........... 88 

Figure 4-6 Comparison of engine power and torque for Bosch production EMS and 

Mototune EMS with cable driven and electronic throttle .......................................... 88 

Figure 5-1 Inertial ram cylinder charging. Increased density of air-charge as the piston 

starts to move towards TDC [98] ............................................................................... 94 

Figure 5-2 Simple Helmholtz resonator (a) and equivalent model for a single cylinder 

(b) [101] ..................................................................................................................... 95 

Figure 5-3 Multi cylinder Helmholtz resonator [101]................................................ 97 

Figure 5-4 Comparison of the Helmholtz resonator with a tuned manifold system for 

multi-cylinder engines [98] ........................................................................................ 98 

Figure 5-5 Effect of varying runner diameter with constant runner length. As the runner 

diameter decreases, the VE peaks much earlier. However the magnitude of the peak is 

independent of runner diameter [98] .......................................................................... 99 

Figure 5-6 Effect of varying runner length with constant runner diameter. As the runner 

length increases, the VE magnitude increases while shifting earlier in engine speed 

[98] ........................................................................................................................... 100 

Figure 5-7 GT Power engine simulation model developed at TMETC [2, 103] ..... 100 

Figure 5-8 Relation between runner length and runner diameter based on Helmholtz 

Resonator Equation (4) for varying resonant frequencies. At a resonant frequency of 



 

xiv 

4500rpm, for a runner diameter of 32mm the runner length is 456mm and for a runner 

diameter of 26mm the runner length is 301mm ....................................................... 102 

Figure 5-9 Examples of resonators simulated at TMETC [103] .............................. 104 

Figure 5-10 Test 1 configuration with inlet runner length of 0mm, single plenum 

chamber, pre-plenum feed pipe, throttle body parallel to the runner axis and conical 

air filter. .................................................................................................................... 105 

Figure 5-11 Test 2 configuration with inlet runner length of 0mm, double plenum 

chamber, pre-plenum feed pipe, throttle body parallel to the runner axis and conical 

air filter ..................................................................................................................... 106 

Figure 5-12 Test 3 configuration with inlet runner length of 50mm, single plenum 

chamber, pre-plenum feed pipe, throttle body parallel to the runner axis and conical 

air filter ..................................................................................................................... 106 

Figure 5-13 Test 4 configuration with inlet runner length of 50mm, single plenum 

chamber, throttle body parallel to the runner axis and conical air filter .................. 107 

Figure 5-14 Test 5 configuration with inlet runner length of 50mm, double plenum 

chamber, throttle body parallel to the runner axis and conical air filter .................. 107 

Figure 5-15 Test 6 configuration with inlet runner length of 50mm, triple plenum 

chamber, throttle body parallel to the runner axis and conical air filter .................. 108 

Figure 5-16 Test 7 configuration with inlet runner length 150mm, single plenum 

chamber, throttle body parallel to the runner axis and conical filter [2] .................. 108 

Figure 5-17 Test 8 configuration with inlet runner length 150mm, double plenum 

chamber, throttle body parallel to the runner axis and conical filter ....................... 109 

Figure 5-18 Test 9 configuration with inlet runner length 150mm, triple plenum 

chamber, throttle body parallel to the runner axis and conical filter ....................... 109 

Figure 5-19 Experimental results of effect of varying runner length and plenum 

volumes on engine volumetric efficiency. Description of tests are in Table 5-1 ..... 110 

Figure 5-20 Experimental results of effect of varying runner length and plenum 

volumes on engine torque. Description of tests are in Table 5-1 ............................. 110 

Figure 5-21 Change in ηv with change in runner length. As the runner length increases, 

the magnitude of the ηv increases (arrow 1), the ηv peak shifts left (arrow 2) although 

not so evident, and quickly trails off after the ηv peak is reached (arrow 3) ............ 111 

Figure 5-22 Kinetic energy theory of scavenging (a) and (b) [98] .......................... 112 

Figure 5-23 Kinetic energy theory of scavenging (c) [98] ....................................... 113 

Figure 5-24 Bespoke exhaust manifold on engine in test cell. Thermocouples for 

measuring exhaust gas temperature, exhaust gas pressure transducers, lambda sensor 

and connection to the emissions analyser heated line can be seen  [2] .................... 114 

Figure 5-25 Experimentally measured brake power change – proposed versus original 

manifolds .................................................................................................................. 115 

Figure 5-26 Base engine with bespoke inlet manifold, reduction in overall package 

width from 553.15mm to 390.70mm, courtesy TMETC ......................................... 116 



 

xv 

Figure 5-27 Base engine with bespoke inlet and exhaust manifold. Reduction in width 

from 597.25mm to 403.05mm. Overall height increased from 550.58mm to 

637.13mm, courtesy TMETC .................................................................................. 116 

Figure 6-1 Comparison of lambda at WOT between production and Motohawk EMS. 

Lambda 1 operation at WOT extended to 3750rpm with bespoke EMS [2] ........... 121 

Figure 6-2 Spark timing sweep at 4000rpm, engine load of 238mg/cyl/cycle. MBT of 

32.1Nm is at spark timing of 30°BTDC .................................................................. 123 

Figure 6-3 Spark timing sweep at 3000rpm, engine load of 245 mg/cyl/cycle. MBT 

peak not clear but the trend can be seen ................................................................... 123 

Figure 6-4 Optimised spark timing – undulated map [2] ......................................... 124 

Figure 6-5 Optimised spark timing – smoothed map generated using Matlab curve fit 

toolbox [2] ................................................................................................................ 125 

Figure 6-6 Net change in spark timing after the smoothing process. Negative values 

indicate that after the smoothing process the spark timing had been retarded from its 

earlier value, while positive values indicate that spark timing had been advanced from 

its earlier value. Circled areas indicate areas on the map where significant spark 

advance has occurred in the smoothing process, this however did not have any 

detrimental effect. .................................................................................................... 126 

Figure 6-7 Smoothed spark timing map BSFC versus non-smoothed spark timing map 

BSFC. Numbers above 100 indicate smoothed spark timing BSFC is worse than non-

smoothed spark timing map BSFC. ......................................................................... 127 

Figure 6-8 Calibration of spark advance using RON 95 reference fuel. An average of 

5° spark advance was achieved at WOT across 1500 to 5500rpm .......................... 127 

Figure 6-9 Mechanical coolant pump before and after removal of impeller blades [2]

 .................................................................................................................................. 129 

Figure 6-10 Engine cooling circuit with EWP and additional instrumentation. The 

outlet of the EWP is into the inlet of the non-functional mechanical water pump .. 130 

Figure 6-11 Comparison of Mechanical and EWP flow rate post calibration ......... 131 

Figure 6-12 Engine BSFC map with bespoke ECU, electronic throttle, bespoke 

manifolds and EWP.................................................................................................. 132 

Figure 6-13 Comparison of BSFC maps of RE optimised engine and baseline engine. 

Numbers less than 100 indicate optimised engine BSFC is better than baseline engine 

BSFC. Increased BSFC post 4500rpm was expected because of the intake manifold 

tuning and reduction in manifold diameter which has resulted in decrease in engine 

torque as well as increase in enrichment of the air fuel mixture beyond 4500rpm to 

maintain exhaust gas temperature within limits ....................................................... 133 

Figure 7-1 Stribek diagram showing various regimes of boundary, mixed and 

hydrodynamic lubrication versus duty parameter as defined in equation 6 below [107]

 .................................................................................................................................. 137 

Figure 7-2 Actual time logged P-V diagram of base engine at engine speed 2500rpm, 

WOT from CAS ....................................................................................................... 141 



 

xvi 

Figure 7-3 Variation of kinematic viscosity of 15W – 40 engine oil with temperature. 

An exponential trendline added to extrapolate viscosity at 110°C [109] ................ 143 

Figure 7-4 Target speed / torque set points for thermal survey of base engine ....... 145 

Figure 7-5 Target coolant / oil temperature set points for thermal survey of base engine

 .................................................................................................................................. 145 

Figure 7-6 Engine coolant circuit in the test cell. Engine out temperature used as 

setpoint during thermal survey ................................................................................. 146 

Figure 7-7 Engine oil circuit in the test cell. Oil gallery temperature used as setpoint 

during thermal survey .............................................................................................. 146 

Figure 7-8 Oil gallery temperature variation at various setpoints versus engine speed, 

WOT ......................................................................................................................... 148 

Figure 7-9 Engine coolant temperature variation at various setpoints versus engine 

speed, WOT.............................................................................................................. 149 

Figure 7-10 Increase in FMEP at WOT with reduction in oil & coolant set points at 

different engine rpm ................................................................................................. 150 

Figure 7-11 Comparison of FMEP & mechanical efficiency at oil and coolant set 

points of 60° and 90°C across engine rpm, WOT .................................................... 150 

Figure 7-12 BSFC versus engine rpm at varying engine fluid settings at 24Nm torque

 .................................................................................................................................. 151 

Figure 7-13 BSFC versus engine rpm at varying engine fluid settings at full load 

(WOT) ...................................................................................................................... 151 

Figure 7-14 Comparison of BSFC at WOT with oil/coolant set point at 90°C versus 

60°C. Minimum BSFC seen at 3000rpm ................................................................. 153 

Figure 8-1 IPM machine with integrated inverter developed by Ashwoods Automotive 

Ltd [110]................................................................................................................... 156 

Figure 8-2 Comparison of generating torque efficiency between simulated and 

measured results on the OEM Ashwoods test bed. Generator/inverter efficiency under 

ideal coolant temperature conditions was of the order of 95% at 4000rpm............. 157 

Figure 8-3 Experimental set up for testing of APU ................................................. 158 

Figure 8-4 Independent coolant loops for engine and generator [110] .................... 160 

Figure 8-5 Engine oil circuit .................................................................................... 161 

Figure 8-6 ESFC map, generator coolant inlet set point 35°C, engine oil and coolant 

set point 90°C.  A best ESFC of 260g/kWh was measured at 2500rpm, and the ESFC 

remained below 270g/kWh across 2000 to 3500 rpm at full load [110] .................. 162 

Figure 8-7 Comparison of engine versus APU specific fuel consumption. The SFC 

maps based on power are shown and the comparison highlighted for WOT........... 162 

Figure 8-8 Engine EWP power (watts) drawn with respect to APU speed. Power drawn 

by the EWP is a function of engine speed only and independent of engine load .... 163 



 

xvii 

 Figure 8-9 Inverter temperature (red line) warning limit of 95°C being crossed at 

maximum generator power output. APU speed 4000rpm, generator coolant inlet set 

point 80°C, engine coolant outlet and oil gallery set point 90°C ............................. 165 

Figure 8-10 Inverter temperature (red line) warning limit of 100°C being crossed at 

maximum generator power output. APU power demand reduced to 18kW to stay 

within inverter safe operating temperature limit. APU speed 4500rpm, generator 

coolant inlet set point 80°C, engine coolant outlet and oil gallery set point 90°C .. 166 

Figure 8-11 M/G unit internal cooling fan. The fan on the left is the old design while 

the fan on the right is the improved design, courtesy Ashwoods Motors ................ 169 

Figure 8-12 ESFC map, separate coolant loops for engine and generator. Generator 

coolant inlet, engine coolant outlet and oil gallery temperature set point of 80°C .. 170 

Figure 8-13 Matched engine and generator coolant circuits flowrates .................... 171 

Figure 8-14 Combined engine and generator coolant circuit. The header tank 

connection is at the inlet of the heat exchanger ....................................................... 172 

Figure 8-15 Combined engine and generator coolant circuit. Header tank connection 

relocated at entry to the EWP [110] ......................................................................... 172 

Figure 8-16 EWP power (W) and flow rate (LPM) with respect to APU speed – 

combined coolant circuit post relocation of coolant header tank [110] ................... 173 

Figure 8-17 APU ESFC map, generator inlet coolant set point 80°C, engine oil gallery 

set point 80°C, combined coolant circuit with power cut back at 4000rpm and 4500 

rpm [110] .................................................................................................................. 175 

Figure 8-18 Change in APU power and ESFC at generator inlet coolant temperature 

and engine gallery temperature set point at 80°C vis-à-vis generator inlet coolant 

temperature at 35°C and engine oil gallery temperature set point at 90°C .............. 176 

Figure 8-19 Change in APU power and SFC at generator inlet coolant temperature and 

engine gallery temperature set point at 80°C vis-à-vis optimised engine with engine 

coolant outlet temperature set point at 90°C and engine oil gallery temperature set 

point at 90°C ............................................................................................................ 177 

Figure 8-20 Comparison of EWP power in separate and combined coolant loops . 178 

Figure 8-21 Impact of including EWP power consumed on APU ESFC. There is a very 

marginal increase in ESFC after including the EWP power. Since the EWP power is a 

function of APU speed only, its impact on ESFC increases with increase in APU speed 

(black line). .............................................................................................................. 178 

Figure 9-1 Artemis urban, rural-road and motorway driving cycles [111] .............. 183 

Figure 9-2 NEDC drive cycle is a highly stylised drive cycle which is used for type 

approval of light-duty vehicle models in the European Union [57]......................... 184 

Figure 9-3 APU ESFC map with operating points during NEDC superimposed. 

Operating points chosen are essentially at best ESFC to minimise fuel consumption 

over the NEDC ......................................................................................................... 187 

Figure 9-4 APU speed, power and cumulative energy demand to complete NEDC 188 

Figure 9-5 Power demand and output of APU over NEDC. .................................... 189 



 

xviii 

Figure 9-6 Cumulative energy demand and APU output. Based on 1.76kWh energy 

required, the VSC demanded 1.87kWh over the NEDC .......................................... 189 

Figure 10-1 Source of THC, CO and NOx emissions in a spark ignition engine [104]

 .................................................................................................................................. 194 

Figure 10-2 Excess air ratio and specific heat of exhaust gas at constant pressure [118]. 

The exhaust gas specific heat peaks at an excess air ratio of 1 ................................ 197 

Figure 10-3 The concentration of CO, NO and hydrocarbons emitted by a spark 

ignition engine as a function of intake AFR [116] ................................................... 198 

Figure 10-4 Typical TWC efficiency as a function of exhaust gas AFR. A narrow 

window of 0.1AFR near stoichiometric exists in which high conversion efficiencies 

for all 3 pollutants are achieved [121]...................................................................... 202 

Figure 10-5 Schematic arrangement of the test cell set up at University of Bath .... 206 

Figure 10-6 Instrumented three-way catalyst. Additional instrumentation included pre 

and post TWC thermocouples and lambda sensors as well as connection to the heated 

line for emissions measurement ............................................................................... 207 

Figure 10-7 Cumulative NOx emissions post TWC after cold start of APU, two 

independent tests show stability in performance of the TWC after running-in to achieve 

stability in conversion efficiency ............................................................................. 208 

Figure 10-8 APU speed, power, engine throttle position and exhaust mass flow over 

NEDC ....................................................................................................................... 209 

Figure 10-9 Cumulative NOx, THC and CO emissions measured over the NEDC 

which substantially exceed the NEDC legislative limits ......................................... 210 

Figure 10-10 Air fuel ratio shows large variation to low frequency / amplitude throttle 

changes ..................................................................................................................... 212 

Figure 10-11 Variation in pre TWC lambda with minor changes in engine throttle, 

despite lambda demand remaining constant at 1 ..................................................... 212 

Figure 10-12 Improved lambda control after introduction of a dynamic estimator 

(reference TCST-2019-0325 – IEEE paper under preparation) ............................... 213 

Figure 10-13 Regions of high ESFC (lower CO2 emissions), see figure (a) coincides 

with high NOx levels, see figure (b) ........................................................................ 214 

 

 



 

xix 

List of Tables 

Table 2-1 Illustrative energy efficiency indicators of BEVs & PHEVs versus IC engine 

counterparts [10] ........................................................................................................ 13 

Table 2-2 Summary of REEVs in the market ............................................................ 49 

Table 2-3 Comparison of production engine versus bespoke engine for APU 

application .................................................................................................................. 54 

Table 3-1 Tata Motors Manza REEV specification [6] ............................................. 60 

Table 3-2 Tata Motors B-segment REEV concept specification [6] ......................... 60 

Table 3-3 JLR Evoque-E specification [6] ................................................................ 61 

Table 3-4 Specifications of the TATA 273MPFI engine [2] ..................................... 63 

Table 3-5 AC dynamometer key parameters ............................................................. 65 

Table 3-6 Carcal RF02-08 E5 (48337) gasoline fuel properties. Reference fuel was 

used to ensure reproducibility of test results with respect to fuel quality .................. 70 

Table 3-7 Minimum, maximum, mean, standard deviation and coefficient of variance 

of engine torque, power, fuel flow and  BSFC during repeatability testing – 3000rpm, 

WOT ........................................................................................................................... 73 

Table 5-1 DOE for inlet manifold tuning by varying intake runner lengths, pre-plenum 

chambers and side plenum chambers. Runner diameter was kept constant at 26mm

 .................................................................................................................................. 105 

Table 6-1 Pierberg CWA100-3 technical specifications .......................................... 129 

Table 8-1 Specifications of the bespoke M/G and inverter [110] ............................ 157 

Table 8-2 M/G, inverter and IGBT temperature limits provided by the OEM Ashwoods 

Motors ...................................................................................................................... 164 

Table 8-3 Revised motor/generator, inverter and IGBT temperature limits provided by 

the OEM Ashwoods Motors..................................................................................... 166 

Table 8-4 Generator maximum continuous power and ESFC performance varying only 

generator inlet coolant set point. Figures in red indicate requirement to cut back on 

APU power demand to stay within temperature limits specified for the inverter by the 

OEM Ashwoods Motors [110] ................................................................................. 167 

Table 8-5 Generator maximum continuous power performance and ESFC while 

varying generator and engine coolant and oil temperature set points. Figures in red 

indicate requirement to cut back on power to stay within temperature limits specified 

for the inverter [110] ................................................................................................ 168 

Table 8-6 Maximum continuous power in a combined coolant circuit with generator 

inlet and oil gallery set point at 80°C. Figures in red indicate requirement to cut back 

power to stay within the motor temperature limits .................................................. 174 



 

xx 

Table 9-1 APU operating points selected to complete the NEDC. Operating points 

were chosen to minimise fuel consumption, sustain HV battery state of charge over 

the drive cycle and reduce APU noise to below vehicle noise ................................ 186 

Table 10-1 Limit values of THC, CO and NOx pollutants – EU 4 & EU6 legislation 

[126, 127] ................................................................................................................. 204 

Table 10-2 EU6 limit values of THC, CO and NOx pollutants over NEDC cycle .. 204 

Table 10-3 Specifications of bespoke closed coupled catalyst [129, 130] .............. 205 

 



 

xxi 

 

List of Abbreviations 

AAA  Automobile Association of America 

ABDC After Bottom Dead Centre 

AFR  Air-Fuel Ratio 

APC Air/Cylinder/Cycle 

APU Auxiliary Power Unit 

ASC APU Supervisory Controller 

BEV Battery Electric Vehicle 

BMEP Brake Mean Effective Pressure 

BSFC Brake Specific Fuel Consumption 

BTDC Before Top Dead Centre 

CAN Controller Area Network 

CAS Combustion Analysis System  

COV Coefficient of Variance 

DOE Design of Experiment 

ECU Electronic Control Unit 

ESFC Electric Specific Fuel Consumption 

ETC Electronic Throttle Control 

EMS Engine Management System 

EOI End of Injection 

EPW Electrical Pulse Width 

EV Electric Vehicle 

EWP Electric Water Pump 

GCU Generator Control Unit 

GDI Gasoline Direct Injection 

GMEP Gross Mean Effective Pressure 

GSA Geometric Surface Area 

HWP Hardware Protection 

HV High Voltage 

HYZEM Hybrid Technology approaching efficient Zero Emission Mobility 

IAT Inlet Air Temperature 

IAP Inlet Air Pressure 

ICE Internal Combustion Engine 

IMEP Indicated Mean Effective Pressure 

IPM Interior Permanent magnet Motor 



 

xxii 

KLSA Knock Limited Spark Advance 

LCA Life Cycle Analysis 

LEZ Low Emission Zone 

LPM Litres/minute 

LV Low Voltage 

MAF Mass Air Flow 

MAP Manifold Absolute Pressure 

MBT Maximum Brake Torque 

MEP Mean Effective Pressure 

MIL Malfunctioning Indicating Lamp 

MITRE Micro Turbine Range Extender 

MIMS Mineral Insulated Metal Sheathed 

MPW Mechanical Pulse Width 

NEDC New European Drive Cycle 

NRPC Number of Combustion Events per Revolution 

NVH Noise Vibration and Harshness 

OFA Open Frontal Area 

PEM Proton Exchange Membrane 

PEV Plug-in Electric Vehicle 

PFI Port Fuel Injection 

PHEV Plug in Hybrid Electric Vehicle 

PMEP Pumping Mean Effective Pressure 

PRT Platinum Resistance Thermometer 

RE Range Extender 

RESS Renewable Energy Storage System 

REEV Range Extender Electric Vehicle 

RON Research Octane Number 

SOC State of Charge 

SOI Start of Injection 

TREV Turbine Recharged Range Extender 

TTW Tank to Wheel 

TWC Three Way Catalyst 

UHEGO Universal Heated Exhaust Gas Oxygen 

ULEZ Ultra-Low Emission Zone 

VSC Vehicle Supervisory Controller 

VE Volumetric Efficiency 

WOT Wide Open Throttle 

 



 

xxiii 

 

List of Symbols 

a Speed of sound, feet/sec 

A Cross sectional area of tuned pipe, in2 

K Constant, ratio of Helmholtz frequency to engine speed 

L Length of tuned pipe, in 

ṁ Mass air flow, g/s 

n Number of results 

Ncyl Number of cylinders 

Neng Engine speed, rpm 

P Manifold air pressure, kPa 

 R Universal gas constant, 287 J/kgK 

 rc Compression ratio 

T Ambient temperature in °K 

Vcyl Volume of cylinder 

Vd Displaced cylinder volume 

ʋe Volumetric efficiency 

Veff Effective volume, in3 

σ Standard deviation 

y Individual experimental results 

ηv Volumetric efficiency 

 

 

 



 

1 

 

CHAPTER - 1  

Introduction 

 

This chapter presents the background for the electrification of the modern 

automotive powertrain and the features of range extended electric vehicles. The 

second part introduces the aims and objectives of this research work. The thesis 

structure is given at the end of this chapter. 
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1.1 The Modern Electric Hybridised Powertrain 

The desire to reduce man made CO2 emissions to combat global warming and to 

improve the energy security of individual nations is driving a move towards increasing 

electrification of the vehicle.   

Advantages of electric vehicles include zero tail pipe emissions, low energy cost 

and city-friendly driveability. However, a fundamental drawback is the limited range 

and high recharge time required when compared to their combustion engine 

counterparts. Range Extended Electric Vehicles (REEVs) operate as normal electric 

vehicles for most of their operating time, until the battery state of charge falls below a 

certain point. This switches on the Auxiliary Power Unit (APU) such as an internal 

combustion engine (ICE) which is connected to a generator that maintains battery state 

of charge [1]. 

The APU acts to extend the range of an otherwise fully electric vehicle (EV) and 

the vehicle driveline architecture reflects that of a series only hybrid electric vehicle 

(HEV) where the energy is transferred electrically between the ICE and the vehicle as 

shown in Figure 1-1. 

 

Figure 1-1 Range extended electric vehicle architecture [2] 
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According to Kay et al [1], REEVs can exhibit a 43% greenhouse gas (GHG) 

reduction compared with conventional ICEs which will increase to 47% by 2020 with 

the decarbonisation of electricity. Emissions of CO2 can also potentially be further 

reduced with sustainable biofuels. 

1.2 Characteristics of an Engine for Range Extender Application 

The basic requirements of an engine for range extended application include 

compactness and being lightweight, good fuel efficiency, low emissions levels to meet 

prevailing regulations, excellent noise vibrations and harshness (NVH) behaviour, and 

meeting all these at a low cost [3-5]. These can be met either by developing a bespoke 

engine or by taking a production engine and then making the necessary changes for 

range extender application. The merits/demerits of both approaches are covered in 

greater depth in Section 2.12.  

1.3 Aims and Objectives 

For this research a pragmatic approach was taken which included selecting a 

very low-cost highly optimised production automotive engine and then enhancing it 

for running as an APU in critical speed/load ranges for range extender application. The 

engine modifications to be considered would only include changes which were 

possible in the normal volume-production process. Finally, during the integration 

process, it was aimed to combine the ICE, generator and power electronics in a single 

coolant circuit to reduce parasitic losses as well as reduce overall package volume and 

weight without significant drop in overall system efficiency. Since the RE was 

replacing a portion of the high voltage battery, it was important to accrue the maximum 

benefit by keeping the overall package weight of the RE to the minimum possible.  
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This research formed part of a collaborative project between Tata Motors 

European Technical Centre (TMETC), Ashwoods Automotive Ltd and University of 

Bath. The scope of the project was to design, model and evaluate an industry first low-

cost auxiliary power unit intended primarily for use in a REEV. Figure 1-2 shows the 

main project responsibilities/deliverables of the partners for this Innovate UK funded 

research project. The research project began in July 2013 and concluded in July 2016.  

 

Figure 1-2 Roles and responsibilities - LowCAP project, funded by Innovate UK 

The role of the University of Bath was to perform experimental analysis to 

support the progress of the project. This involved: 

- Commissioning of the bespoke test cell at University of Bath. 

- Benchmarking the performance of the base engine supplied by TMETC. 

- Thermal survey of the base engine.  

- Experimental analysis and calibration for introduction of bespoke engine 

management system and electronic throttle. 

- Experimental analysis to validate intake and exhaust manifold simulation 

results undertaken at TMETC. 
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- Engine calibration as modifications were carried out on the engine including 

intake and exhaust manifolds, spark timing optimisation and introduction of 

electric water pump. 

- Upgrade the test cell as it progressed from the conventional engine test cell 

to a high voltage APU testing facility. 

- Experimental analysis of the performance of the APU in order to operate the 

motor/generator and the engine in a single coolant loop. 

- Measure performance of the APU over the New European Drive Cycle 

(NEDC). 

- Experimental analysis of the three-way catalyst of the APU.  

Accordingly, this dissertation discusses the development of a low cost APU c. 

20-25kWe for a range extender application utilising a low-cost, well optimised 

production automotive two-cylinder gasoline engine, which was in use in the Indian 

market.  

An electric specific fuel consumption (ESFC) of less than 270g/kWh for the 

APU was aimed for. This target had been set based on the production engine 

performance and considering efficiencies of commercially available generators and 

inverters of similar topology [6]. This translated to a best BSFC in the region of 

245g/kWh.  This compared favourably with the bespoke Mahle RE of similar 10bar 

BMEP, having a target minimum BSFC of 240g/kWh [7].  

A target (dry) weight for the complete APU of less than 80kg was aimed for, 

which along with 20-25kWe target power, the specific performance of the APU would 

be 250 to 313W/kg [6]. 

The package volume was to be minimised as far as possible by using a highly 

integrated approach that included examining the possibility of a combined cooling 

circuit for the engine and generator. Whilst the base engine envelope, see Figure 1-3, 
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could not be changed significantly, the intake, exhaust, after-treatment and generator 

package volumes were to be developed to minimise any increase in overall dimensions 

as far as possible, see Figure 1-4 and Figure 1-5 respectively. 

 

Figure 1-3 Base engine major dimensions without intake, exhaust and after-treatment [6] 

 

Figure 1-4 Engine overall dimensions with intake, exhaust and after-treatment, viewed from inlet 
manifold side [6] 
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Figure 1-5 Engine overall dimensions with intake, exhaust and after-treatment, viewed from flywheel 
end [6] 

Given the research constraints of packaging and low cost, opportunity was 

envisioned to be in the following areas at some additional cost for better integration 

for range extender application: - 

• Introduction of a bespoke EMS and electronic throttle. This 

would enable development of the control strategy to suit the production engine for RE 

application as well as integration with the generator controller unit (GCU) and the 

overall vehicle supervisory controller (VSC).  Introduction of the electronic throttle 

would facilitate the incorporation of the engine torque control strategy without any 

driver input, considered essential for range extender application. 

 

• Intake and exhaust manifold design. The criteria for bespoke 

intake and exhaust manifold development was to minimise the APU package volume 

in order to improve vehicle package whilst targeting improved performance between 

2000 – 4500rpm. This was because low-speed high torque and high-speed high power 

points were not expected to be used in RE application from fuel efficiency and NVH 

aspects. 
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• Operation at lambda 1 across a wider portion of the engine 

operating range.  Since the APU was being developed for European markets where 

RON 95 gasoline is standard, there was an opportunity to optimise ignition timing and 

reduce exhaust enrichment to achieve an improvement in fuel economy and the 

potential for effective catalyst operation. 

 

• Reduction in overall package and parasitic drive losses by using a 

single coolant system for engine and generator. Development of a thermal 

management system using a single coolant loop for the APU unit reducing parasitic 

loads and simplifying vehicle integration as well as reducing overall package volume. 

 

• Bespoke catalyst to meet EU6 emission norms.  Development of the 

close coupled catalyst to achieve EU6 emission requirement. 

1.4 Thesis Structure 

As per the objectives of this research work, the detailed contents are presented 

in the following chapters of this thesis. 

Chapter 2 is review of the previous work in the related areas of REEV. It covers 

the benefits and shortcomings of electric vehicles, how an APU overcomes the 

shortcomings of a BEV, RE operating strategies, requirements of a RE engine, engine 

concepts, REs in the market, thermal management of a RE and finally pros and cons 

of a bespoke engine versus a production engine for RE application.  

Chapter 3 details the base engine provided by TMETC, the bespoke test cell 

development at University of Bath, commissioning of the test cell and benchmarking 

the performance of the base engine.  
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Chapter 4 discusses introduction of the new engine management strategy 

including the commercially off the shelf electronic control unit (ECU) and electronic 

throttle unit.    

Chapter 5 details the development and introduction of the bespoke intake and 

exhaust manifolds on the engine. Detailed experimental analysis was carried out to 

validate the simulation undertaken at TMETC. 

Chapter 6 describes calibration efforts to improve the engine performance and 

BSFC by reduction in exhaust enrichment, spark timing optimisation and introduction 

of an electric water pump.  

Chapter 7 details the thermal survey of the base production engine to quantify 

the effect of changes in oil and coolant temperature on engine BSFC.  

Chapter 8 describes the commissioning and performance of the APU. It details 

the changes to the test cell to support testing of a high voltage APU and other 

modifications to the engine and motor/generator cooling circuit. ESFC testing of the 

APU was carried out under optimal thermal conditions for the engine and electrical 

machine with separate coolant circuits. Subsequently the performance of the APU was 

compared under varying thermal conditions and combining the engine and generator 

coolant circuit. 

Chapter 9 covers the performance of the APU in charge sustain mode over the 

NEDC. It demonstrates that the APU was successfully able to produce the necessary 

power based on a representative vehicle model developed by TMETC. 

Chapter 10 covers the emissions performance of the APU over the NEDC 

including cold start emissions performance. Based on the performance, strategies to 

improve catalyst light-off and steady state emissions were explored.  
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Chapter 11 summarises the results and key findings from this research work. The 

research limitations and future work that could be undertaken in the field introduction 

of APUs in BEVs are discussed.  
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CHAPTER - 2  

Literature Review 

 

This chapter presents benefits and shortcomings of pure electric vehicles and 

the role that a range extender plays in addressing some of the shortcomings. A 

literature review has been carried out on the requirements of a range extender 

engine, possible engine concepts and current range extenders in the market. 

Research gaps/opportunities have been highlighted which this research project 

aimed to address.  
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2.1 Introduction  

In this chapter a review of published work will be presented, highlighting the 

benefits and shortcomings of electric vehicles. The next section covers the role a range 

extender plays in overcoming the primary shortcoming of an electric vehicle i.e. 

driving range. Then the pros and cons of different high-level APU operation control 

strategies are investigated based on the results of previous researches. The next part of 

the review highlights the requirements of a range extender, pros and cons of various 

engine concepts and the various range extenders currently in the market. Then the 

cooling arrangements for hybrid powertrains are discussed. Lastly, the advantages of 

selection of the production engine vis-à-vis development of a bespoke engine for range 

extender application are covered.  

2.2 Definition of EV, APU and REs 

In accordance with SAE nomenclature [8, 9],  a hybrid electric vehicle (HEV) is 

defined as a vehicle that can draw propulsive energy from both of the following 

sources of energy: a consumable fuel and a rechargeable energy storage system 

(RESS) that is recharged by an electric motor-generator system, an external electrical 

energy source or both. An electric vehicle (EV) is a vehicle powered solely by energy 

stored in an electrochemical device. This implies that the EV’s propulsion is achieved 

entirely by electric motors, regardless of the means of obtaining that electric energy.  

Further, a battery electric vehicle (BEV) is a vehicle that receives its on-board 

propulsion power solely from batteries, unlike a hybrid vehicle that may receive a 

portion of its power from a separately fuelled power source such as an internal 

combustion engine. An auxiliary power unit (APU) is a device that converts 

consumable fuel energy into mechanical or electrical energy. The APU is a secondary 

energy or propulsion source. Some examples of APUs are ICEs, gas turbines or fuel 

cells. A range extender (RE) is a small engine-powered generator or APU added to a 
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battery EV. This generator sustains vehicle operation beyond the range provided by 

the batteries alone [8].  

For this research, a range extended electric vehicle (REEV) is considered as a 

battery electric vehicle which is additionally equipped with a RE to provide electrical 

energy to extend the range of the vehicle when the battery state of charge (SOC) drops 

below a pre-defined level.  

2.3 Benefits of Electric Vehicles 

Apart from the obvious benefit of zero tailpipe emissions, BEVs have other 

benefits as well. On a tank-to-wheel (TTW) basis, EVs are more energy efficient than 

comparable combustion engines [10]. Table 2-1 below summarises the efficiency 

indicators of BEVs and PHEVs vis-à-vis their ICE counterparts.     

Table 2-1 Illustrative energy efficiency indicators of BEVs & PHEVs versus IC engine counterparts [10] 

 

BEVs cost much less to maintain as there is no oil or oil filter, no exhaust system, 

no fuel pump, no alternator, and no transmission. The electric motor has few moving 

parts while the IC engine has hundreds of moving parts. The BEVs servicing schedule 

is much easier with considerably less downtime for regular maintenance and repair. 

As per Professor Tony Seba, Stanford University economist, Tesla’s S model car has 

http://avt.inel.gov/pdf/fsev/compare.pdf
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18 moving parts, one hundred times fewer than a combustion engine car, making 

maintenance virtually zero [11].  

The BEV batteries are sealed so they don’t need any maintenance, though may 

need periodic replacement. Most BEV batteries are covered by an eight-year warranty, 

this includes all Tesla models as well as the recently launched Jaguar I-Pace [12].  

Many governments provide incentives to encourage the increased sales of EVs. 

The ultimate purpose is to meet their greenhouse gas emissions target to put more EVs 

on the roads. These incentives can include subsidies for the purchase price [13, 14], 

see Figure 2-1, assistance with charging stations, preferential traffic lanes [15] and 

other inducements. Also, there are incentives for home and workplace charging 

equipment, public installation of charging equipment, preferential parking for EVs, 

preferential access to restricted highway occupancy vehicle lanes, and utility policies 

that promote EVs. Other important incentives are those directed more towards vehicle 

manufacturers, such as research and development funding, vehicle efficiency and CO2 

standards, super-credits as well as direct EV mandates such as the California Zero 

Emission Vehicle program.  

 

Figure 2-1 Government subsidies on electric vehicles purchase price to encourage uptake  [14]  

http://www.theicct.org/sites/default/files/publications/ICCT_EV-fiscal-incentives_20140506.pdf
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From May 2016 Germany commenced to subsidise electric car purchase to 

accelerate the sluggish growth in the EV sector to help Germany approach its goal of 

putting one million electric cars on the road by 2020, up from around 50,000 out of 

Germany’s 45 million cars. Car buyers receive €4000 on purchase of the purely electric 

vehicle and €3000 for a plug-in hybrid, with the cost shared 50-50 between the public 

purse and the car makers. German auto giants Volkswagen, Daimler and BMW signed 

up for this programme [13].  

Sales of electric cars in China saw a dramatic increase because of government 

incentives, see Figure 2-2. It is expected that the market to grow by nearly 50% a year 

for the rest of this decade in China [16]. Likewise in UK, between April and June 2014 

there were 2738 electric vehicles registered compared with 9657 in the same period 

during 2015, a rise of 250% [15]. In 2018 the UK government scrapped the £2500 

subsidy on Plug-in hybrid vehicles and the sales of hybrid vehicles dropped by 50.4% 

in June 2019 as compared to June 2018 [17]. Even the subsidy on electric vehicles was 

reduced from £4500 to £3500. This just goes to demonstrate that government subsidy 

is a major contributing factor towards growth of sales of electric vehicles and 

continued support would be required if the alternatively fuelled vehicle sector is to 

grow.  

 

Figure 2-2 Rise in electric cars sales including plug-in hybrids in China due to government support [16] 
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Another concept, particularly popular in Europe and China are Low Emission 

Zones (LEZ). These are designated areas, usually in cities, that place a restriction on 

vehicle with high emissions. The restrictions can range from an outright ban, 

restrictions for certain times of the day, or a financial penalty for emissions. A BEV 

can eliminate the costly inconvenience of being restricted from a LEZ. An Ultra-Low 

Emission Zone (ULEZ) has been introduced within the same area of Central London 

as the congestion charge that operates 24 hours a day, 7 days a week, every day of the 

year [18].  

Thus, while the retail prices of BEVs are still considerably higher than their 

fossil-fuelled counterparts, the savings on fuel and maintenance over the BEV’s 

lifetime plus government incentives can produce a price that is competitive with 

gasoline. 

Because electric vehicles have limited range on a single charge as compared to 

their ICE counterparts, there is a need to develop a substantial charging infrastructure. 

While governments are investing in building up the EV charging infrastructure, to 

expedite its process auto manufacturers have also come together in investing in its 

development. In the United Kingdom BMW, Daimler, Ford and Volkswagen group 

including Audi and Porsche decided in 2016 to build 400 ultra-fast charging sites with 

the capability to charge at a speed to 350kW [19, 20]. Such initiatives are expected to 

attract more people to buy electric cars.  The UK government as recently as August 

2019 announced an investment of 40 million pounds to improve the UK charging 

infrastructure [17].  

Another technology which is being investigated is charging while driving, both 

contact and contact-less charging. Honda carried out considerable research on their 

contact-type, high power charge-while-driving system that can simultaneously supply 

power and charge during vehicle operation. They demonstrated a charging power of 

100kW, with a maximum voltage of DC 375V and a maximum current of 300A, with 
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the vehicle speed at the time of charging varying from 7kph to 70kph [21]. They also 

carried out a lucid discussion on the merits of contact-type EV charging over wireless 

charging, which as per them is several years away.  

Further, as per Kay et al [1] EVs stand to benefit the maximum from technology 

development in the area of weight, drag and rolling resistance reduction. Electric 

powertrains being highly efficient and thus weight, drag and rolling resistance account 

for a much larger proportion of the total efficiency losses. Reducing these losses may 

also allow the battery size to be reduced for a given range, in turn further reducing the 

vehicle weight and cost. 

EV sales have swelled by 11 times in four years and crossed 2 million vehicles 

across the world in 2018 [22], see Figure 2-3. As per Frost & Sullivan more than 2.8 

million electric vehicles are likely to be sold globally in 2019 [23]. 

 

Figure 2-3 Global sales of electric vehicles in 2018 crossed the 2 million mark [22] 
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While today the proportion of EVs on the world’s road is still well below 1%, 

most forecasters had reckoned that by 2025 that would rise to around 4%. This figure 

is seeing an overhaul as carmakers announce huge expansions in their production of 

EVs. Exane BNP Paribas bank predicts that EV penetration could form around 11% 

of the vehicles on the road worldwide by 2025, see Figure 2-4 or even higher. 

 

Figure 2-4 Electric vehicle penetration expected to be 11% of total vehicles worldwide by 2025 [24] 

This surge in numbers has two explanations; the rising cost of complying with 

emission regulations and the dropping cost of electric vehicle batteries. EVs are a way 

of meeting the ever-increasing stricter emission targets, albeit an expensive one. But 

the gains expected from less dear methods such as turbocharging small capacity 

engines, start-stop technology and weight reductions are unlikely to be enough to meet 

the future emission targets. 

2.4 Shortcomings of Pure Electric Vehicles 

While EVs are viewed as desirable as they do not generate pollutants while 

passing through inhabited areas and can potentially rely on its energy being provided 

by a selection of renewable sources, they however have relied on batteries as the source 
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of energy since the end of the 19th century. Despite the innovative nano-materials 

applied to lithium based NiMH and Li-ion type batteries, it has inherent disadvantages 

like low energy density, high cost, heavy, and consequently additional drawbacks like 

mass compounding. 

Turner et al [3] compared  the gravimetric and volumetric energy density of 

various fuels  and their storage systems. Figure 2-5 clearly illustrates the significantly 

higher energy density of traditional fossil fuels over batteries.  

 

Figure 2-5 Gravimetric and volumetric energy density of fuels and their storage systems [3]. The gap 
between batteries versus diesel and gasoline is highlighted 

Ribau et al [25] in a survey on electric/hybrid vehicles concluded that, on 

average BEVs have a consumption of around 0.12Wh/km for each kg of vehicle mass 

as shown in Figure 2-6. For a 1500kg vehicle (approximately the curb weight of the 

Nissan Leaf and Opel Ampera) this yields consumptions around 180Wh/km, which 

would require a Lithium-ion battery pack of volume 117 litres and weight of around 

180kg for each 100km range (with a volume around 1.17l/km and a weight around 

1.8kg/km). Considering an ICE based vehicle with consumption of around 7l/100 km, 

assuming density of 95 RON fuel of around 0.75kg/ltr [26], this implies that for 100 

km range, the weight of the fuel would be 5 kg. In comparison, the BEV energy storage 

would be around 17 times bigger and 35 times heavier than that of conventional 

vehicles for the same available range.  
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Figure 2-6 Battery consumption per km as a function of vehicle curb weight [25] 

Thomas [27] highlighted that lithium–ion batteries used in BEVs are too heavy 

and occupy too much volume. In principle, more batteries can be added to any BEV 

to extend range, however the mass and volume occupied by these batteries grows non-

linearly with additional range due to a process called mass compounding. Because of 

adding more batteries, extra structure must be added to support these batteries. This 

extra mass will in turn require larger motors to provide the desired vehicle acceleration, 

and the brake system must be slightly larger to safely stop the vehicle. The vehicle 

frame and suspension systems must be augmented to carry this additional mass, further 

increasing total vehicle mass. Thus, additional batteries will be required to propel this 

heavier vehicle the required distance in an iterative, non-linear feedback process. 

Adding a load such as 100 kg of batteries will require an additional 59.8kg for 12 

vehicle subsystems such as structure, brakes and suspension systems.  

Further, electrical power storage is considerably more expensive than liquid 

energy storage. With lithium being a vital component of current batteries, because of 

its higher specific power and energy compared to other battery technologies, see 

Figure 2-7, there is a global scramble to secure supply of lithium by the world’s largest 

battery producers and by the end-users such as car makers. Kay et al [1] have 
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highlighted that there are potential resource risks for the rare earth metals that are 

required for the electric motors and materials for batteries. 

 

Figure 2-7 Specific power versus specific energy of various battery technologies. Lithium-ion has 
higher specific power and energy compared to other battery technologies [1] 

The Economist [28, 29] highlighted that the price of 99%-pure lithium carbonate 

imported to China more than doubled in the two months to the end of December 2015, 

to USD13,000 a tonne as shown in Figure 2-8.  

 

Figure 2-8 Price of lithium carbonate imported to China [29] 
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In addition, current lithium-ion batteries often use extremely rare elements in 

their chemistries such as cobalt. The materials most used for cathodes in EV batteries 

are a combination of nickel, manganese and cobalt known as NMC. The demand for 

these elements is also soaring [30-32]. When chemistry prevents the removal of a truly 

rare element, the economics of mass production will ensure that instead of getting 

cheaper, these batteries will become more expensive [3], see Figure 2-9.  

 

Figure 2-9 Rise in cost of rare metals [32]  

Improvement in battery technology has reduced the cost of batteries while 

increasing range, it is still presently in the range of USD 300/kWh. With Nissan [33] 

launching the 30kWh battery model in Europe while maintaining the battery pack size 

of its earlier 24 kWh battery with marginal increase of 21kg in weight and an increased 

driving range of 155 miles between charges, the cost of the battery  is still around USD  

5500. This increased driving range is substantially less than what a driver of a 

traditional car is used to, in addition to the issue of long recharging times.  

Thus, customers must pay a great deal more vis-à-vis a conventional car for their 

personal mobility or they must adjust to a significantly reduced vehicle range and 
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increased stress due to range anxiety i.e. the fear of getting stranded in an EV without 

the possibility of recharging. However, General Motors declared that the cost of the 

battery in their Chevrolet Bolt electric vehicle, which would be an industry leading 

USD145/kWh [34, 35]. GM goes on to state that by 2022 the cost is estimated to be 

USD 100/kWh, see Figure 2-10. This is reported to be quite competitive with Tesla, 

which is seen to be ahead of other manufacturers, with a price of USD 100/kWh by 

2020 [34].  

 

Figure 2-10 General Motors Chevrolet Bolt battery cost glide path [34] 

Further, despite the huge historical spread in battery costs amongst vehicle 

manufacturers, these are beginning to converge and falling [36], see Figure 2-11.  

 

Figure 2-11 Despite an initial large historical spread, the price of Lithium-ion batteries is converging 
and falling [36] 



   CHAPTER - 2 

24 

A widely promoted solution called battery switching [37] was expected to 

alleviate range anxiety. At battery switch stations, vehicles position themselves over a 

pit with a servo-controlled lift. The battery is dropped down to below-road level, 

replaced by another fully charged battery, and conveyed to a warehouse for recharging. 

With battery switching, refuelling an EV would take minutes and therefore achieve the 

convenience of conventional cars. In addition, battery switching enables the 

decoupling of the battery and the vehicle, eliminating the higher upfront capital costs 

that EVs incur over traditional cars. Vehicle owners simply enter a leasing contract 

with EV service supplier provider, buying a fixed number of miles over a defined 

period.  

However, this phenomenon failed to gain traction because of the substantial 

technical and economic challenges. First, battery switch stations must be able to handle 

different battery sizes and shapes as well as different vehicle chassis, adding 

considerable engineering complexity. This problem is prohibitive if there is an absence 

of industry standards. Second, compatibility needs to be established across countries, 

especially in Europe to ensure cross-border mobility. Third, batteries are high-tech 

expensive devices, easy to damage and degrade over time. This raises important issues 

for commercial arrangement for ownership and safety assurance of the batteries. 

Fourth, battery switching systems require large amounts of capital for excess battery 

capacity and switch stations. Failure of Better Place [38] a battery service provider in 

Israel underlined some the challenges above. Without battery-switching, pure EVs 

have a limited range and they take a long time to recharge. 

Emergence of rapid chargers have addressed the issue of long charging times 

[39]. Although expensive to install, rapid chargers allow for either 80% charging in 30 

minutes or effective topping up for partly charged vehicles in 10 to 15 minutes. 

Ultimately this means that a vehicle can be topped up whilst the driver takes a short 

break. 
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This would require a large network of public charging infrastructure to ensure 

that drivers can charge their vehicles away from home. The pace of charging 

infrastructure growth is also an issue as San Diego’s leading car sharing company 

car2Go came to realise over its 5 year operations despite electrification being identified 

as top priority in the US as highlighted in Section 2.3. When Daimler’s car2Go 

launched its car-sharing service in San Diego in 2011, its entire fleet of 400 vehicles 

was composed of electric cars. However, in March 2016 car2Go declared that they 

were withdrawing their fleet of Smart Fortwo electric drive city cars and replacing 

them with gasoline models because of lack of charging infrastructure in the area. 

Car2Go blamed the Department of Energy, which had a plan to install 1000 charging 

stations in San Diego by the end of 2011, however only 400 were installed around the 

city till March 2016, which made it very difficult for car2Go to maintain an EV fleet 

[40]. Tajima et al [21] also highlight the congestion at rapid chargers in Japan. 

Another factor affecting BEV range is ambient temperature. It is well known 

that cold and hot weather shorten EV range [41], below 20°C battery life decreases 

linearly with temperature [42, 43]. With lower temperatures, the internal resistance of 

the battery increases, chemical reactions in the electrolyte of the battery slow down 

causing a limitation of power output as well as recharging capability [44].  A study 

conducted by Automobile Association of America (AAA) Automotive Research 

Centre showed that EV driving range can be nearly 60% lower in extreme cold and 

33% lower in extreme heat [42]. Data from FleetCarma [45], a company that tracks 

data from fleet managers and private owners indicated that the optimum ambient 

temperature for maximum EV range seems to be between 15.5°C to 24°C, see Figure 

2-12.  



   CHAPTER - 2 

26 

 

Figure 2-12 Data from FleetCarma on Nissan Leaf and Chevrolet Volt depicts battery range variation 
with temperature [45] 

OEMs like Nissan recognised this factor and introduced a battery blanket to keep 

the battery pack warmer [46].  

High temperatures increase the chemical degradation of the battery and therefore 

reduce battery life [44]. Nissan is testing a revised lithium-ion cell chemistry that 

appears to be as durable in sustained extreme heat as its current battery is under normal 

conditions [47]. 

Thorn [48] and Guenter et al [49] highlight that under extreme driving conditions 

i.e. slow traffic and demanding requirements for cabin heating or cooling – the 

electrical range might become less of a question of distance but more of total operation 

time. Guenter et al [49] analysed the power requirement for cabin conditioning for 

both hot and cold conditions, see Figure 2-13, and under these conditions the driver 

may even be faced with the dilemma of driving or air conditioning.  
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Figure 2-13 Impact of air conditioning on electric range of BEVs. As air conditioning power demand 
increases, the EV range sees a rapid drop [49] 

2.5 Range Extender – The Solution for a BEV 

In comparison to a battery, the gasoline fuel tank is a phenomenal energy storage 

device. Because of this property, an APU fitted on a BEV solves the paramount 

problem from the customer point of view – range anxiety. The RE represents a highly 

integrated auxiliary power source with a much superior level of energy density and 

lower production costs compared to battery systems for an equivalent driving range. 

The APU converts liquid fuel such as gasoline into electrical energy whilst the vehicle 

is driving. In addition, it also enables the traction battery storage capacity to be 

reduced, though still maintaining an acceptable driving range. For majority of the duty 

cycle the driving range provided by the battery should be sufficient, especially for 

urban driving. For the occasional long journeys when the battery and fuel are both 

depleted, the driver can simply refuel the gasoline tank as in a traditional vehicle. 

Bassett [4], Figure 2-14, illustrated the RE power and battery size trade off to reach an 

optimum compromise.  
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Figure 2-14 Range extender power and battery size trade off. There is a region where the right balance 
exists between battery size (EV range) and range extender power. Daily commutes are done in EV 

mode, and the occasional long journey is supported by the APU in charge sustain mode [4] 

Thus, an APU in a REEV provides the functionality to complete longer journeys, 

at lower total vehicle cost than a pure EV with a large battery [50] as illustrated in 

Figure 2-15.      

 

Figure 2-15 Powertrain cost advantage of a REEV in comparison to an EV [50] 

Current EVs usually have a higher nominal driving range compared to the real-

life average driving distance which is usually much lower. Studies show that typical 

daily driving range in Germany is below 50 km (80-90% of journeys) [49, 51]. Further 

for pure city vehicles this percentage is shifted to even lower distances [52], see Figure 

2-16. 
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Figure 2-16 Statistics of all daily driving requirements in Germany. More than 70% of the vehicles do 
not exceed 50km which is well within the capability of an EV on a single charge [52] 

A similar analysis carried out by Aimee et al [41] on the first generation 

Chevrolet Volt E-REV, with an all-electric range of 35–38 miles (56–61 kms), showed 

that drivers were able to travel 74% of their total miles in charge depleting mode 

without requiring ICE support. They also showed that drivers could attain even higher 

EV ranges utilising the benefit of daytime charging and efficient driving behaviours in 

moderate climates. 

As per Kay et al [1] typically up to 60% of an average UK drivers’ mileage can 

be in fully electric mode. Thus, for daily use additional battery weight is carried around 

in the vehicle without being used. Beside battery cost, the portion of the battery 

capacity not being utilised is reducing the efficiency of the complete vehicle.  

Therefore, the battery capacity could be designed for the typical daily driving range 

and an ICE powered RE covering larger energy requirements (higher power demand 

or longer driving distance).  

The integration of a combustion engine thermal management concept into the 

thermal architecture of an EV is challenging, however the RE provides the key solution 

to keep the EV alive under severe ambient conditions. It supports bringing the battery 
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into the required temperature window as well as ensures adequate cabin climate control 

under hot and cold ambient conditions. Providing reasonable cabin climate conditions 

by pure electrical means would result in a dramatically reduced EV range [53]. 

2.6 Power Output Consideration for a Range Extender 

In a REEV the battery pack delivers the peak demands of power to the traction 

motor. Since the battery is not discharged towards the minimum SOC defined by 

durability aspects, but a certain reserve is always kept to cover short term peak power 

requirements exceeding the RE power, therefore the RE can be sized such that it only 

needs to meet the mean power demand [4, 49]. The capacity of the battery enables it 

to average out the peaks and troughs in power requirement. Basset [4] in Figure 2-17   

showed the logged data from the Mahle RE wherein despite the highly variant nature 

in traction motor power, the battery SOC remained fairly constant with the RE 

operating strategy that roughly  follows the mean traction motor power demand. 

 

Figure 2-17 REEV battery SOC variation during a portion of a trip, based on data logged from the 
MAHLE RE demonstrator vehicle [4] 
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The amount of power a vehicle requires to complete a drive cycle is a function 

of several factors, including vehicle mass, drag and friction. The REEV can 

theoretically provide an ideal solution since it can use its energy storage system to 

smooth out the vehicle loads and therefore the engine could operate at limited 

conditions which can be made very efficient.  

Based on the Artemis cycle, detailed in Chapter 9, Bassett et al [54] worked out 

the requirements for a hypothetical range extended electric vehicle for a typical 

European C-class vehicle. The RE mechanical output was strongly dependent upon 

desired cruise speed capability with sustained battery state of charge (SOC) as 

illustrated in Figure 2-18.  

 

Figure 2-18 E-REV range extender fuel converter mechanical power requirement variation to maintain 
constant battery SOC (charge sustain) with varying cruising speed (1500 kg vehicle mass) [54] 

Turner et al [3] carried out a similar analysis to establish the necessary power 

output of a practical series hybrid vehicle, dependent on maximum vehicle speed and 

gradeability for conditions of extended climbing with a depleted battery. This was 

assessed for a vehicle mass of 1650kg and typical drag coefficient and rolling friction 

for a conventional vehicle. They opted for a weight more than that of a typical C or D-
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segment car, because of the unknown mass of the battery pack. They fixed a reasonable 

target maximum vehicle speed in charge-sustaining mode (akin to cruise performance 

with fully depleted batteries) of 70mph (120km/h). This would represent the minimum 

change to the motorist’s driving habits on a long journey when the battery is fully 

depleted. Coupled with realistic electrical system efficiencies of 90% for the 

generator/motor, they concluded that peak engine power of 35kW would be needed to 

achieve 70mph (120km/h) vehicle cruise speed. Additionally, in the real-world 

scenario, ancillary loads (heating/cooling and infotainment) need to be considered and 

were anticipated to be up to 3kW for a luxury vehicle.  

They also concluded that based on a vehicle operating on RON 95 gasoline, with 

thermal efficiency of 20% on the NEDC drive cycle, the useful continuous power 

requirement from the engine averaged would be just 3kW over the completed drive 

cycle. Catering for the ancillary loads, they concluded that 15kW could therefore be 

expected to cover most driving conditions up to an average speed of 30mph (48km/h), 

i.e. typical urban and extra urban conditions.  

Hubmann et al [51] to meet an electrical power requirement of 25kW, selected 

30kW as the power output of the ICE to cover losses in the overall system and other 

influencers like differing ambient conditions and ageing of parts. Pischinger  et al [53] 

for a performance target of 62mph (100km/h) for an uphill gradient of 3% in order to 

enable vehicle operation at a speed 10km/h faster than the truck speed on German 

highways arrived at a power demand of approximately 25.8 kW at the wheels. Taking 

into consideration the component efficiencies, the power demand of the combustion 

engine was calculated to be 30kW. 

For this study, the Artemis Urban and Artemis Motorway drive cycles were 

considered by TMETC while selecting the power requirement for the APU, covered 

in more detail in Chapter 3 [6].  
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2.7 Operating Strategies of an APU in a REEV 

Since the battery acts as a buffer, the range extender can be operated 

independently of the driver demand, and it is not necessary that the generated power 

is always equal to the required traction power. The general operating strategy normally 

has two phases, a charge depleting phase and the charge sustaining phase [55], see 

Figure 2-19.  

 

Figure 2-19 General operating strategy of a range extender in a BEV. The two phases of charge 
deplete (EV mode, APU off) and charge sustain (with APU in operation) are highlighted [55] 

During the charge depleting phase, the APU is not operating and all the traction 

power is being provided by the battery, which gives vehicle zero tailpipe emissions. 

This phase is when the battery state of charge (SOC) is high. When the battery SOC 

drops below a predefined threshold, the APU switches on to maintain a certain level 

of SOC. As mentioned in Section 2.6, the battery SOC is never allowed to go below 

this SOC level due to battery durability aspects [55, 56]. Also a certain reserve is kept 

to cover short term peak power requirements exceeding the RE power [4].  

APU operation impacts the system’s fuel economy and efficiency. Hence the 

time to switch the APU on, its load and speed set points are critical to APU 

performance. Since there is an extra stage between the fuel’s chemical energy to the 

vehicle’s kinetic energy process, the energy conversion in a REEV is comparatively 

inefficient. Electricity from the grid is comparatively cheaper. Consequently, the APU 
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usually does not intend to charge the battery over the manufacturer’s pre-defined SOC. 

When there is a short term transient peak power demand such as accelerating, the 

residual battery SOC can cover such requirements.   

 Rogge et al [55] compared the performance of three APU operating strategies 

in simulation, which were single operating point, three operating points, and a 

characteristic curve. The simulation was based on a vehicle similar to the Mitsubishi 

i-MiEV and the APU was based on the Lotus APU which was a 1200cc 3-cylinder 

engine and a permanent magnet synchronous generator [3]. The single point strategy 

operates the engine at its maximum efficiency (36kW) load condition. However, if the 

generated power is greater than the traction power demand, the battery is used as a 

buffer to absorb the extra power. This results in a high number of charge /discharge 

cycles that have a detrimental effect on battery life [55].  The 3 point operating strategy 

(16kW, 26kW and 36kW) allows the engine to adopt the most appropriate power rating 

based on vehicle power demand and protect the battery by reducing the 

charge/discharge cycles [55]. The characteristic curve strategy is based on the engine’s 

minimum fuel consumption curve. With this strategy, the engine output can match the 

exact power requirement as long as it is above 4.7kW. Operating points below 4.7kW 

are excluded as the engine offers very poor efficiency. The simulation was conducted 

using the Hybrid Technology Approaching Efficient Zero Emission Mobility 

(HYZEM) driving cycles, developed for evaluating hybrid vehicles [57] and the New 

European Driving Cycle (NEDC), these cycles are discussed in Section 9.4 and 9.5 

respectively. For comparison of the three strategies, the vehicle started with the same 

amount of fuel and 100% SOC for each run. The results showed that the single 

operating point strategy gives the best range and thus has the least fuel consumption 

of the three strategies in all drive cycles. The characteristic strategy is not efficient in 

urban cycles because the range extender is operated for long durations at low power 

rates and at a low efficiency. However, when only the highway driving is considered, 

very little difference was observed between the strategies due to the long duration of 

high-power demand.  
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Tupule et al [58] stated a similar result as above. A series hybrid system equipped 

with a small sized battery was used to cater for the daily commuting range. For long 

range driving the APU switched on for considerable periods. In this case, the single 

operating point strategy was the worst among the three as regards battery ageing effect. 

This is because the battery acts as an energy buffer to absorb the excess engine power 

that led to higher charging/discharging cycles.  

Tupule et al [58] also discussed a blended mode control wherein the engine is 

used consistently with the electric motor during the entire trip. Power sharing between 

the engine and the battery is optimised such that the SOC continues to decrease during 

the trip and reaches the pre-defined minimum value only at the end of the trip. Such a 

strategy requires a prior knowledge of the driving pattern as well as sophisticated 

control algorithms as well as GPS information and historical traffic data to characterise 

the driving pattern.  

2.8 Requirements of a Range Extender Engine 

The basic requirements of a RE [3-5, 59, 60] can be tabulated as follows: - 

• Compactness and lightness of the complete package as the RE engine 

is always carried by the vehicle, and even though it is operated infrequently it 

contributes to electric energy consumption even when switched off.  

 

• Good fuel efficiency in order to maximise the benefits on CO2 

reduction of the EV. 

 

• Low emissions levels to meet stringent regulations.  

 

• Excellent noise vibration and harshness (NVH) behaviour, preferably 

the driver should not be able to distinguish when the engine is running. In EV mode, 
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the vehicle is virtually silent, and ideally the operation of the RE should be 

undetectable by the passengers i.e. should not impact the electric driving experience.  

 

• Low cost as the RE system is essentially an additional cost to a re-

specified BEV and therefore it must maximise its cost advantage over the proportion 

of the battery pack that it is effectively replacing.  

As per Guenter et al [49] NVH, package and weight are the most important 

criteria whereas the efficiency of the ICE is less important due to the low share of ICE 

operation. Bassett et al [61] provide a similar argument because as the electric-only 

range of the vehicle increases, the weighing factors affecting the tailpipe emissions 

reduce the declared mass of emissions, see Figure 2-20. 

 

Figure 2-20 NEDC weighed CO2 variation with varying electric only range and range extender fuel 
consumption [61] 

Daimler-Benz AG while shortlisting options for their RE considered availability 

of the selected technology also as one of the key criteria [59], see Figure 2-21.  
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Figure 2-21 Comparison of heat engines for series hybrids. Daimler-Benz AG consider availability of 
engine technology as one of the key selection criteria [59].  

As per Bassett [4], cost is the most significant factor for such a powertrain as the 

range extender is an additional system to a vehicle that already includes an expensive 

fully capable electric system. However, addition of a RE may make it possible to make 

the REEV cheaper or cost neutral as it enables reduction in the capacity of the 

expensive battery pack.  

Fischer et al [52] in the AVL RE development, covered at Section 2.10  

advocated that acoustics, comfort and dependability were the highest development 

priorities since the ICE operation should not or only indirectly be noticeable by the 

customer and that it should operate even after a long standstill.  Pischinger et al [53] 

in the FEV RE development, covered at Section 2.10, regarded low noise operation as 

key for usage in an EV as it should have the least impact on electric driving experience.  

2.9 Engine Concepts for Range Extender Applications 

Internal combustion engines as range extenders for EVs are developed to operate 

at a limited range of load and speed. Thus, these engines are much more efficient than 

the usual accelerating engines found in conventional cars, as they always run at 
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specified conditions and are designed / optimised only for running at these conditions. 

Potentially critical operations for emissions, reliability or fuel consumption may be 

simply discarded from the set of working points [3, 5, 9, 49]. Removal of the 

mechanical link between the engine and the wheels permits consideration of various 

concepts which would have otherwise not been feasible. As per Hubmann et al [62] 

the available space and required power output are the biggest drivers for the engine 

concept selection.  

As per Pischinger et al [53] a reciprocating gasoline engine offers a mature and 

proven technology for a RE application and can fulfil all future emission legislations 

as well as encompass the benefits of the use of existing fuelling infrastructure.  

Turner et al [3], Bassett [4], Mattarelli et al [5] and Boretti [63] carried out a 

lucid discussion on engine concepts for RE applications which include gasoline 

engines (2-stroke versus 4-stroke), diesel engines, rotary engines, gas turbines and fuel 

cells. Merits and demerits of these various technologies are discussed in the succeeding 

paragraphs.  

2.9.1 Gasoline Engines (2-stroke engines and 4-stroke engines) 

The 2-stroke gasoline benefits from the double cycle frequency, allowing the 

designer the flexibility to either draw a very compact and light unit for a given power 

target, or limit the maximum rotational speed with ensuing advantages in terms of 

mechanical efficiency and NVH [60]. It also does not suffer from throttling losses at 

part load, but loses some of its charge air to the exhaust under some conditions leading 

to direct carry over in the case of external fuel mixture [3].  

This can be eliminated by direct injection, but this leads to excess air operation. 

At low load and speed, 2-stroke GDI engine can work with lean/stratified mixture 

because of high turbulence levels, the compactness of the chamber and the injector 
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capability to generate a proper stratification of the charge. The adoption of a 

conventional 3-way catalyst should allow the complete reduction of CO and HC, while 

NOx is anyway low [5]. 

This stratified operation strategy will not be able to comply with emission 

regulations at high loads and speeds. The engine can be made to operate with a 

stoichiometric mixture within the cylinder, however a worsening of NOx emissions is 

envisaged due to peaks of oxygen concentration in the exhaust flow occurring at the 

end of the scavenging process. This would result in the freezing of the reduction of 

NOx. Thus, a 2-stroke engine would probably require a NOx trap. These are expensive 

and require regeneration strategies [3]. 

As compared to a 2-stroke, the 4-stroke has significant advantages which include 

ease of manufacture, simplicity of after-treatment and the minimisation of throttling 

loss if the engine is made to operate at full load. As the RE is expected to operate only 

at a few steady state points, therefore optimisation is much easier and potentially 

critical operations for emissions, fuel consumption and reliability may be simply 

discarded from the set of working points [3].  

2.9.2 Diesel Engine 

Diesel exhaust after-treatment systems have increased in complexity, size and 

weight in recent years because of stringent exhaust particulate and NOx regulations 

[3-5]. Further as brought out earlier in section 2.8, the RE will essentially operate at 

full load and hence un-throttled, the magnitude of efficiency benefit enjoyed by the 

diesel engine over an equivalent gasoline engine is significantly reduced.  The diesel 

engine has additional NVH disadvantages compared to gasoline engines [4]. 

Compression ignition engines, without turbocharging, are not attractive, because of 

the low power density, but turbocharging is immediately discarded because of cost 

implications [5].  
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2.9.3 Wankel Rotary Engine 

The Wankel rotary engine has some advantages as regards RE application which 

include being extremely compact, light and has excellent NVH characteristics [3, 4, 

51]. It operates on the 4-stroke cycle and its emissions, especially HC, require a 

comprehensive optimisation of the mixture formation and combustion, can be 

controlled by a simple 3-way catalyst. Guenter et al [49] also highlighted that by 

utilising the Atkinson cycle, the late exhaust opening and resulting extended expansion 

not only improved the efficiency and HC emissions but also reduced the pressure pulse 

with exhaust opening and consequently the gas exchange noise. Further, the rotary 

engines provided advantages both in terms of run-in behaviour as well as friction level 

with non-warmed up engine over a conventional ICE. Also, the catalyst light off profits 

from the high exhaust temperature of the rotary engine. 

The main drawback of the Wankel engine is the non-availability of large-scale 

manufacturing devices for specific rotary engine components and therefore the 

industry is demanding solutions based on conventional piston engines [3, 51]. Further 

once the intake and exhaust systems are considered, the overall package is comparable 

to its reciprocating counterpart. Also, the sealing of the rotor tips is a persistent 

challenge for such engines as is the compromised shape of the combustion chamber. 

There is renewed interest in this technology with Mazda announcing that it will 

introduce one of its BEVs in 2020 with a Wankel engine range extender engine [64].  

2.9.4 Gas Turbine Range Extender  

Several proposals and examples of REEVs fitted with gas turbine REs exist [65-

68]. To achieve high efficiency, a recuperator is needed to transfer heat from the 

exhaust to the combustor inlet, which increases the size, weight and cost of the unit 

[4]. To avoid the use of the recuperator the pressure ratios must be increased along 

with the turbine entry temperature. Current turbine entry temperatures of turbochargers 
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are around 1050°C, however still below what is required to achieve a reasonable 

specific fuel consumption (SFC) at maximum power in a gas turbine.  Increasing this 

value would have detrimental effect on NOx emissions, and would require 

considerable effort, though not impossible, to control NOx [3].  

Gas turbines offer low vibration and good noise characteristics coupled with a 

reasonable package volume. However, they have higher production costs and long 

development times in comparison to both the reciprocating piston and the rotary engine 

[3, 4].  

Jaguar introduced its C-X75 gas micro-turbine extended range EV concept at the 

Paris motor show 2010 [69]. There appears to be a renewed interest in this technology 

with Delta Motorsport [70] working on the development of a 17kW micro turbine 

range extender (MITRE) for EVs and Wrightspeed Inc, a developer of range extended 

EV powertrains for medium and heavy duty vehicles unveiling a 80 kW radial inflow, 

axial turbine, intercooled and recuperated [71]. 

Techrules, a new automotive research and development company based in 

Beijing introduced their concept 1030bhp turbine-recharged electric vehicle (TREV) 

with six electric motors and a theoretical top speed of 217mph at the 2016 Geneva 

motor show. It uses a very small micro turbine to directly drive the generator that 

produces electricity that powers the electric motors that turn the wheels. The turbine 

produces 36kW to drive the generator and power the ancillaries. The micro turbine 

uses an air bearing in place of the conventional oil lubricant film and is claimed to be 

so low maintenance that it would potentially be sealed for life with only the air filters 

needing renewal [72]. 
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2.9.5 Fuel Cell 

The New Automotive Innovation and Growth Team (NAIGT), formed in April 

2008, published a 20-year vision for the UK automotive industry and made 

recommendations on how this should be realised. The report presents mass-market 

EVs and hydrogen fuel cell powered vehicles as desirable end games in terms of low 

fleet averaged CO2 emissions [4, 73], see Figure 2-22.  

 

Figure 2-22 Product development roadmap by NAIGT with fuel cell powered vehicles being the desired 
endgame [73] 

As per Bassett [4], the fuel cell is in many ways the ideal RE unit as it enables 

direct conversion of fuel into electricity without the intermediate step of producing 

mechanical power, see Figure 2-23. This has the added benefit of zero mechanical 

vibrations or noise other than those generated by coolant pumps and air blowers. The 

energy conversion of fuel cells is usually very high. Warburton et al [74] reported an 

overall efficiency of almost 54% from their London taxi demonstrator using the proton 

exchange membrane (PEM) fuel cell that are evaporatively cooled.  
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The attributes of a fuel cell of being silent, vibration free and zero emissions at 

point of use allow greater flexibility in the vehicle power management strategy as 

compared to an ICE. The strategy can exploit the favourable attributes of the fuel cell 

to reduce the inefficiencies inherent in charging and discharging the main battery by 

up to 40% and operating at non-ideal power points [75].  

 

Figure 2-23 Fuel cell RE powertrain configuration. Direct conversion of fuel into electricity without 
intermediate step of producing mechanical power [74] 

The most significant barriers to the introduction of fuel cell technology are cost 

(maximising power density and reducing cell quantities and area), fuel supply 

infrastructure and elements of durability under dynamic and climatic conditions [74]. 

The motivation for a RE is to be able to refill quickly with a highly energy dense fuel, 

using an existing and readily available refuelling infrastructure, diesel and gasoline in 

contrast to hydrogen, are ideal in this regard. Further hydrogen must be stored at high 

pressures, involving cumbersome tanks and limiting the on-board storage capacity [4].  

2.10 REs Currently in the Market 

Mahle developed a bespoke 900cc, inline 2-cylinder, 4-stroke petrol engine for 

their range extender vehicle concept to meet the requirement of minimum package 

volume, low cost and good NVH. The engine consisted of a single overhead cam and 

ran a compression ratio of 10:1, alongside a flexible Mahle ECU. The generator unit 
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was a 38kW water-cooled permanent magnetic axial flux motor. The entire unit 

weighed 70kg. The unit was coupled to an EVO AF130 axial flux generator, which 

had a maximum efficiency region around 4000rpm. The demonstrator vehicle used by 

Mahle was an Audi A1 1.2. The Mahle Rex unit was shorter than the 1.2 litre 

turbocharged 4-cylinder engine that it replaced. The vehicle was then tested on the 

NEDC drive cycle under two separate conditions specified in the hybrid vehicle test 

procedure regulations – one with battery SOC 20% and one with a fully charged 

battery. The vehicle had considerably lower exhaust CO2 emissions at 42g/km 

compared to the baseline vehicle which had 119g/km [7]. The APU had a peak system 

efficiency of 283g/kWh(e) and rated system efficiency of 292g/kWh(e) [6].  

Lotus developed a compact range extender vehicle for the Limo Green project, 

which involved Jaguar Land Rover and funding from the UK government. The 

bespoke engine was a 3-cylinder, 1200cc, four stroke gasoline with a heavily 

constrained area of operation. The main criteria considered before finalising the 4-

stroke gasoline engine were weight, cost and efficiency. It was decided that NVH 

could be dealt with during the development and installation process. The engine speed 

was constrained to 3500rpm with an option to run at 4000rpm for higher power 

requirements in the future. The general specification of the engine was 36.8kW with 

10.7bar BMEP [3]. 

BMW launched its i3 EV with the range extender as an additional option costing 

around £3150 extra. The vehicle consists of a 22kWh battery pack which provides an 

all-electric range of 80-120 miles. The range extender option comprises of a 650cc 

Kymco engine (W20) from the BMW C650 GT scooter rated to 25kW, which is 

connected to an AC machine [76]. The range extender is mainly used to maintain a 

battery state of charge to keep the electrical system going until the next recharging 

station. For this purpose, the package has a 9-litre fuel tank and in total weighed 150kg. 
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The new Metrocab from makers Frazer-Nash research Ltd and Ecotive Ltd has 

been operating on a pilot fleet basis in London since November 2014. The vehicle is 

driven by two 50kW brushless motors, powered by a 12.2kWh Lithium ion battery 

pack. The vehicle claims to produce less than 50g/km CO2 in the range extender mode 

and has a fuel consumption of 98 mpg when tested on the Public Carriage Office (PCO) 

drive cycle. The range extender engine consists of a 3-cylinder, 1000cc gasoline engine 

which provides 3kW on-board charging of the batteries [77], further details whether 

the engine is a bespoke or production engine could not be found.  

FEV’s compact range extender prototype consisted of a V-2 engine with a 

vertical oriented crankshaft [53]. The engine was 800cc petrol powered producing an 

output of 40kW at 4500rpm. The engine was closely connected to two generators via 

gears to increase the speed of operation of the PM machines and to make use of the 

full engine vibration compensation technology [78]. The PM machines have a power 

output of 15kW each. The main bearings of crankshaft and generator shaft were 

machined together in one part to make handling of gear tolerances easier. The FEV 

range extender cooling solution used the same coolant as in the engine to cool the 

generator unit and the inverter. The RE was installed underneath the rear seats and the 

luggage compartment, which facilitated easy assembly/disassembly and the exhaust 

system did not have to be routed past the battery. Specific fuel consumption at best 

point was 245g/kWh at 2500 rpm, Euro 6 compliant. The permanent electric motor 

output was 3kW at 4500rpm. The module weight was 62kg without the exhaust 

system. 

EP Tender is another manufacturer who attempted a compact retrofit range 

extender for automotive applications. The company developed a trailer mounted range 

extender comprising a 600cc engine with a generator of 22kW capacity [79]. The entire 

unit was enclosed and on wheels, which could be attached to the rear of an EV. The 

trailer had a 35-litre gasoline tank and had an average consumption from 6–7 l/100 km 
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when batteries were discharged. Practicality and aesthetic appeal of this technology 

makes it a less preferred solution among consumers. 

AVLs direct drive range extender was developed as a low cost and best fuel 

economy range extender. This prototype used a unique 2-cylinder piston engine based 

on a cost and friction optimized design originating from 2-wheelers. The engine was a 

570cc with a maximum power output of 25kW at 6000rpm and operated within 

1000rpm and 6000rpm. This engine was coupled to a 15kW PM generator unit. The 

system was tried in an Audi A1 with a 60kW PM machine as the traction motor [49].  

The benefits of the Wankel rotary engine have been covered earlier at Section 

2.9.3. Using their experience in the development of rotary engines, AVL developed 

their pure range extender. The single piston rotary engine with 254cc displacement 

was limited to 5000rpm for full power (18kW) operation, producing 15kW electrical 

output. To reduce the vibrations from the RE unit to the car body, it was installed in a 

suspension frame system which was mounted on the rear part of the chassis with a few 

elastic bearings and rubber mounts. Apart from that, a box was used to accommodate 

the RE unit in an acoustic enclosure. The air inlet and outlet were designed as acoustic 

labyrinths with high sound attenuation. These designs allowed the sound level to be 

less than 65dbA at 1m away and 58dbA in the cabin [52]. 

Despite the very small packaging, excellent NVH characteristics and acceptable 

fuel efficiency even under stringent emission challenges, the main drawback seen by 

AVL was the non-availability of large-scale manufacturing for specific rotary engine 

components. Therefore AVL developed a single cylinder ICE to replace the Wankel 

engine, packaged in the same RE box arrangement except the exhaust muffler for 

thermal considerations [51]. The single cylinder engine had a stroke/bore ratio of 0.67 

and produced 30kW at 5800rpm. The corresponding electric power output was 25kW. 

The package space constraint meant the engine was tilted to an angle of 70° and the 

crankshaft was not coaxial with generator shaft anymore. A gear stage was introduced 
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thus. Two separate cooling circuits for the engine and the generator were used allowing 

them to operate in the optimum thermal state respectively. 1st order mass forces are 

most severe NVH source for one-cylinder engine. AVL used 2 balancer shafts which 

were in plane with the crankshaft reducing the forces by up to 2.4 times. With further 

optimised crankshaft counterweight inertia, the vibration level was brought down to 

nearly the same as the rotary engine. 

Mazda’s range extender prototype was based on the Mazda 2 small hatchback. 

Initially the electric car developed based on this hatchback had a 350V 20kWh battery 

under the floor of the vehicle, powering a 75kW electric traction motor. The range 

extender consisted of a 330cc Wankel engine optimised to run at 4500rpm producing 

a power of 22kW. The generator produces a continuous output of 20kW [80]. The 

Wankel engine being highly compact was placed horizontally along with the generator 

and the fuel tank under the rear boot floor of the vehicle, with the engine, electric 

generator, nine-litre fuel tank and ancillaries weigh just 100kg. The estimated CO2 

emissions of the range extender vehicle over the NEDC drive cycle is 13g/km. Mazda 

had announced that one of the electric vehicles that they shall introduce in 2020 shall 

have a small, lightweight and exceptionally quiet rotary engine [64]. 

The Chevrolet Volt consists of a 4-cylinder 1400cc IC engine producing 63kW 

connected to a generator rated to 55kW. The vehicle has a 16kWh battery pack that 

weighs 197kg. The vehicle operates as an EV most of the time, till the battery state of 

charge drops to a low level, after which the IC engine starts charging the battery. The 

vehicle has a fully electric range of 80km and around 600km of extended range using 

the IC engine. At high speeds, the internal combustion engine can be mechanically 

connected to the driveline using a clutch [81]. 

Polaris developed a range extender package in the view of the industry moving 

towards engine downsizing and powertrain electrification. Their design was proved on 

an EV based on the VW Polo, which then had a range of 50km in full EV mode and 
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500km when the engine was used to charge the battery pack [82]. The engine consisted 

of a 325cc single cylinder which in conjunction with an electric motor produced an 

electrical output of 22kW and weighed 38kg.  

Volvo developed a range extender vehicle based on the C30 compact car with 

the aim of reducing exhaust CO2 emissions to under 50g/km on the NEDC. The system 

consisted of a 3-cylinder ICE producing 45kW that would run in series with an 

electrical generator rated to 40kW. The vehicle had a range of 100km in full EV mode 

and up to 1000km with the ICE range extender. The battery pack was a smaller sized 

12kWh unit, while the fully electric version of the C30 had a 24kWh battery pack [48]. 

GETRAG developed a range extended EV with plug in capability to travel up to 

50km in all electric mode. The vehicle consisted of a 2-speed planetary gear set that 

mechanically linked the engine and the electric motor together with the output drive. 

This system allowed for the either series or parallel operation of the EV. The major 

portion of the driving dynamics was covered using the battery pack and all electric 

mode, while the engine is used in a small part of the overall vehicle performance map. 

The electric motor provided continuous output of 30-45kW, depending upon vehicle 

platform, with maximum output of 45-80kW. The GETRAG range extender 

demonstration vehicle was a Ford Fiesta and produced 35g/km of CO2 on the NEDC. 

It also had a 14kWh capacity battery pack rated to 400V [83]. 

 Intelligent energy introduced their evaporatively cooled fuel cell stacks for RE 

application in a fleet of five conventional London taxi black cabs in 2012 since its first 

exposure to the public in 2010.  The standard black taxi chassis was modified to accept 

an electric drive, electrical battery storage, 35MPa hydrogen gas storage and a PEM 

fuel cell system with no change to rear passenger space or function and minimal impact 

on the luggage and driver area [74]. The taxi had a 14kWh battery and the fuel cell 

rated at 30kW, with a reported overall efficiency of almost 54%.  



   CHAPTER - 2 

49 

A summary of the various range extenders discussed in the preceding paragraphs 

is tabulated at Table 2-2 below. 

Table 2-2 Summary of REEVs in the market  

Manfacturer Engine Size / Specification Generator 

Specification 

Battery 

Size 

Weight Range Reference 

Mahle Bespoke 2-cylinder 900cc, 

30kW, 72Nm @2000-
4000rpm 

38kW, water-

cooled PM axial 
flux 

350V, 

14kWh 

50kg engine (70 

kg with generator) 

70km EV 

mode  

[3, 73] 

Lotus Bespoke 3-cylinder, 1200cc, 

36.8kW @3500rpm 

- - 56 kg engine  48 km EV 

mode 

[3] 

BMW Retrofit 2-cylinder, 650cc, 
25kW, 55Nm 

- 22kWh  200km EV 
mode 

[76] 

Frazer-Nash 

& Ecotive 
Ltd 

1000cc - 12.2kWh - - [77] 

FEV Bespoke V-2, 800cc, 

40kW@4500rpm 

2*15kW PM 

machines 

- - - [53, 78] 

AVL Bespoke 2-cylinder, 570cc, 
25kW@6000rpm 

15kW - 40kg engine - [49] 

AVL Bespoke Single-cylinder, 

rotary, 18kW@5000rpm 

15kW - - - [52] 

AVL Bespoke Single-cylinder, 
30kW@5800rpm 

25kW - - - [51] 

Mazda Bespoke Rotary, 330cc, 

22.37kW@4500rpm 

Continuous output 

of 20kW 

346V, 

20kWh 

- - [80] 

Chevrolet 4-cylinder, 1400cc, 63kW 53kW 16kWh  80km EV 
mode 

[81] 

Polaris Bespoke Single cylinder, 

325cc 

22kW  38kg engine 48km EV 

mode 

[82] 

Volvo 3-cylinder, 45kW 40kW 12kWh - 110km EV 
mode 

[48] 

GETRAG 3-cylinder, 1000cc, 

57kW@3500rpm 

40kW 400V, 

14kWh 

100kg 50km EV 

mode 

[83] 

Intelligent 
Energy 

30kW PEM fuel cell - 14kWh - - [74] 

2.11 Thermal Management in an APU 

Thermal management is a critical part in a vehicle. It is governed by two 

constraints – cooling performance and packaging. The packaging space in the vehicle 

limits the cooling system size. It becomes even more challenging in a hybrid system 

since extra components are in operation compared to a conventional IC engine. One 

of the key requirements of an APU is to provide its maximum electrical power most 

efficiently i.e. with minimum fuel consumption. To do so, it is important that the 

engine and the generator are operated at their maximum efficiency in addition to 

optimising the complete system to reduce any parasitic losses in the auxiliary systems.  
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The system efficiency is one of the key parameters for an APU since it decides 

the maximum possible electric power that can be delivered with a given amount of 

fuel, i.e. the fuel economy. The operating temperature of the APU thus plays an 

important role on both engine and motor/generator efficiency. However, they have 

conflicting requirements to achieve their own optimal efficiency.  

The positive effect of higher coolant operating temperatures on an engine’s fuel 

economy and emissions is well documented [84-86]. With the conventional engine 

cooling system, with an engine driven passive water pump designed to cope with the 

peak-heat rejection rate at WOT conditions, based on a coolant temperature set point, 

the engine and its cooling systems operate at less than ideal conditions at part-load, 

such as city driving or slow cruising, leading to higher fuel consumption and emissions 

output. This is discussed in greater detail in Chapter 7.  

On the other hand, the performance of the motor/generator and the power 

electronics is limited by their peak working temperatures, mainly restricted by the 

insulation. As for the motor windings which is mainly copper, the resistance will rise 

with temperature. This will result in more copper losses. Hence lower operating 

temperatures are preferred for better efficiency as opposed to the ICE [51, 52].  

Hence thermal management of an APU merits considerable attention. However, 

despite extensive literature search, details on this subject as regards current range 

extenders in the market were not available except for the BMW-i3 RE and Chevrolet 

Volt. There was a brief mention in regards the FEV compact range extender cooling 

solution that indicated that the coolant used to cool the engine is also used to cool the 

generator unit and inverter [53, 78]. Likewise, for AVL’s single cylinder range 

extender, the cooling system is split into two different cooling jackets for generator 

and engine cooling without internal connection, and the cooling system is driven by 

an electric water pump [51]. 
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As a pure electric vehicle without a range extender, the BMW-i3 has cooling 

circuit for the high voltage components. If a range extender is installed, then the 

necessary cooling of the combustion engine is done by a second cooling circuit [87], 

see  Figure 2-24. The coolant is recirculated in the engine using a conventional engine-

driven mechanical coolant pump and control is achieved using a wax element 

thermostat. 

 

Figure 2-24 BMW-i3 REX cooling circuit. Engine and motor/generator coolant circuits are independent 
of each other  [86] 

The Chevrolet Volt uses four independent cooling loops to achieve the thermal 

requirements of each subsystem [88]. The power electronics and the onboard charger 

are cooled in one circuit that uses the upper section of the front radiator. The lower 

section of the radiator is for the battery. The engine and the two motor/generators have 

their own cooling circuit with radiator for different temperature levels, see Figure 2-25.  
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Figure 2-25 Chevrolet Volt Radiator layout for cooling the 4 independent cooling circuits [88] 

All the four circuits use electric water pumps (EWP) instead of the engine driven 

mechanical water pump. Conventional mechanical coolant pumps are engine driven 

(belt/gear) and hence their rpm is governed by the engine rpm. Coolant pumps need to 

ensure sufficient cooling even at low engine rpm with high engine loads and at elevated 

ambient temperatures, and so for normal operation such as city driving or slow 

cruising, they are inevitably oversized. 

The use of an electric coolant pump with appropriate thermal management of the 

combustion engine has measurable advantages. Demand driven cooling, which is 

independent of engine speed, particularly in the cold-start phase reduces impeller 

energy consumption and leads to corresponding improvement in fuel economy. The 

Lotus bespoke RE engine also employed a EWP for similar reasons [3]. 

Another major benefit of an electric coolant pump is its ability to keep running 

after the engine has shut down to prevent the heat soak problems to which some 

engines are prone. Further the lack of dependence on a mechanical drive also results 

in considerable flexibility in component packaging within the engine compartment 

[89].  
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Multiple cooling circuit design is effective, but the system complexity, 

installation/packaging requirements and associated costs are significant. Combining 

cooling loops of some subsystems can accrue cost benefits. The Toyota Prius consists 

of a cooling loop for the ICE at around 105°C and the Power electronics/electric 

machine loop at 65°C. Staunton et al [90] estimated that by combining the two loops 

approximately $188 per vehicle could be saved.  

In a range extender the engine operation is intermittent. This results in an 

increased number of cold starts. Hence a quick warm up is very helpful to reduce 

engine cold start emissions and friction loss during this phase. More is discussed about 

this aspect in Chapter 10.  

2.12 Selection of a Production Engine vis-à-vis a Bespoke Engine 

There has been considerable debate on whether to select a production engine or 

develop a bespoke engine for RE application. As brought out earlier in the report, most 

car manufacturers have developed bespoke engines for RE application [3, 53, 91].  

Benefits of bespoke engines are that they are highly optimised to purpose, have 

potential for better integration with e-machine, often capable of flexible installation 

keeping package optimisation in mind and higher operating speed can drive better e-

machine performance. The drawbacks of bespoke engines include that it may need 

unusual manufacturing process, setting up of a new/adapted manufacturing plant and 

no other demand outside the RE application. Setting up of a new manufacturing facility 

involves high cost and developing a new engine will also require unique engineering 

and validation programme.  

On the other hand, production engines benefit from their manufacturing highly 

optimised for high volume production, are usually certified for emission performance, 

proven for vehicle use, have existing service network and cost less because of higher 

volumes [50], an approach followed by BMW for their BMWi3 RE [76] and EP 
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Tender [79]. Mattarelli et al [5] tend to disagree with this approach. As per them the 

engineering cost for converting an existing engine for other applications (motorcycles, 

small gen-sets etc.) into REs would be not much lower than the development from 

scratch. However, they do not qualify their statement with more details. Further 

production engines may have their challenges in terms of limited options for 

installation and more difficult to integrate with an e-machine. Considering the 

anticipated production volumes of REEVs is likely to be relatively small, to achieve 

an acceptable cost modification of an existing volume production engine would be a 

preferable route over a bespoke engine.  

The pros and cons of using a production engine vis-à-vis a bespoke engine are 

tabulated in Table 2-3.  

Table 2-3 Comparison of production engine versus bespoke engine for APU application 

Parameter Production Engine Bespoke Engine  

Highly optimised for high volume 

manufacture 
✓  

Certified for emission 

performance  
✓  

Proven for vehicle use ✓  

Existing service network ✓  

Selling price benefits from total 

derivative volumes 
✓  

Options for installation and 

orientation 

Limited Developed based 

on requirement 

Integration of e-machine More challenging Easier 

Performance optimisation 

allowable for APU application 

Limited Developed based 

on requirement 

2.13 Research Gaps / Opportunities 

Based on the high voltage battery costs and the daily urban driving commute of 

an average driver, introducing a range extender in a BEV made economic sense.  The 

RE represents a highly integrated auxiliary power source with a much superior level 

of energy density and significantly lower production costs compared to battery systems 
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for an equivalent driving range. For most of the time the driving range provided by the 

battery should be enough, especially for urban driving. For the occasional long 

journeys when the battery and fuel are both depleted, the driver can simply refuel the 

gasoline tank as in a traditional vehicle. 

Opportunity was hence seen to select a very low-cost highly optimised 

production automotive engine and then enhance it for more fuel-efficient running in 

critical speed/load ranges for the REEV duty cycle. Engine operation would be 

optimised for low dynamic use with restricted engine map. Operating points such as 

low speed and high-speed torque would be avoided, with the battery being used to 

smooth out the vehicle loads.   

The engine modifications to be considered would only include changes which 

were possible in the normal volume-production process. 

As mentioned in Section 2.11 not much information was available regarding 

thermal management of a range extender. Whatever information was available 

indicated that the engine and generator (including power electronics) were thermally 

managed in independent circuits. Combining the high temperature ICE cooling circuit 

with the low temperature power electronic/electric machine low temperature cooling 

circuit would accrue cost and packaging benefits. Opportunity was seen to fill this 

research gap by combining the two coolant circuits and demonstrate by experimental 

analysis that satisfactory performance could be achieved without significant loss in 

efficiency. This would also reduce parasitic losses as well as reduce overall package 

volume and weight. Since the RE was replacing the high voltage battery, it was 

important to accrue the maximum benefit by keeping the overall package weight of 

the RE to the minimum possible.  

Based on the opportunities above, a collaborative research project was conceived 

in partnership between TMETC, Ashwoods Automotive Ltd and the University of 



   CHAPTER - 2 

56 

Bath. The scope of the project was to design, model and evaluate an industry first low-

cost Auxiliary Power Unit (APU) intended primarily for use in a REEV. The project 

was part funded by Innovate UK. The research project began in 2013 and concluded 

in July 2016. 

2.14 Conclusion 

This chapter presents a literature review on the benefits and shortcomings of 

electric vehicles. Since the range extender benefits from the advantages of a 

conventional ICE, it provides a means of overcoming the primary range anxiety issue 

of electric vehicles. Further it also facilitates battery downsizing which has other 

benefits as well.  

Since the APU in a REEV is not directly connected to the drive shaft, the ICE 

does not have to output high torque other than turning an electric generator, especially 

at low revolution speed. Therefore, a low-cylinder-count is commonly used for this 

application which facilitates reduction of cost, weight, package size etc. Also, the 

engine operation as a RE is more flexible. This is because low speed-high torque and 

high speed-high power load points were not expected to be used in RE application 

from fuel efficiency and NVH aspects. 

The low-cylinder-count engine inherently exposes more vibration and speed 

fluctuations due to the less frequent firing events. The literature review of the current 

REEVs brought out the efforts by manufacturers to minimise the vibrations both 

actively or passively. In the EV mode, the vehicle is virtually silent, and ideally the 

operation of the RE should be undetectable by the passengers i.e. should not impact 

the electric driving experience. Manufacturers and researchers have either developed 

from scratch or heavily modified IC engines to attain their required IC engine 

performance. This approach increases both R&D and manufacturing costs of the 

engine and its components. 
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Lastly the advantages of selection of a production engine vis-à-vis development 

of a bespoke engine for range extender application were covered. It is opined that based 

on the literature review wherein over 70% of the journeys do not exceed 50km and the 

RE would not be used, the development of a bespoke engine for RE application is not 

warranted. At the same time, there is need to keep sight of the rapidly dropping battery 

prices, weight, improved range as well as doubling of production as it is likely to 

influence the economic model for a range extender.  
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CHAPTER - 3  
Base Engine Selection and 

Benchmarking 

 

This chapter presents the criteria for the RE power requirement and the base 

engine selection. It then discusses the bespoke engine test cell at the University 

of Bath and test data repeatability. At the end, the base engine performance is 

discussed. 
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3.1 Introduction 

In this chapter, the criteria for selecting the RE power requirement for this 

research is discussed. The next section presents the selection of the base engine based 

on the RE power requirement and using an in-production engine.  

Subsequently, the development of the bespoke engine test cell at the University 

of Bath is covered. This includes a discussion on repeatability of test data and the 

importance of using a reference fuel for consistency in test results.  

Lastly the performance of the production engine is mapped across its entire 

operating regime, both at part load and full load. A BSFC map is generated which then 

became a yardstick to compare the effect of subsequent optimisation of the engine for 

range extender application.  

3.2 RE Power Requirement, 20–25kW 

An APU may be sized from an emergency limp home device of relatively low 

power, to a device that provides the full functionality of the EV once the battery has 

been depleted. For the purpose of this study, the APU considered was that would 

provide the latter capability.  

The electrical power output of the RE for this study was defined by considering 

the average electrical load drawn from the high voltage (HV) bus during extended 

range (or charge sustaining operation) for 3 vehicle applications. This load is the sum 

of tractive power (suitably corrected for drive system losses) together with ancillary 

load requirements.  

The three vehicles considered by TMETC to develop the appropriate RE power 

requirements were [6]:- 
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• Tata Motors Manza REEV 

• Tata Motors X451 REEV 

• JLR Evoque-E (REEV) 

The Tata Motors Manza REEV was the outcome of Tata Motors Horizonext 

campaign with sustainability and EV technology among the key focus areas. TMETC 

developed the Manza REEV demonstrator vehicle. Some of its technical specifications 

are at Table 3-1 below. 

Table 3-1 Tata Motors Manza REEV specification [6] 

Vehicle Unit Target (Status) Remarks 

Vehicle category - C-segment sedan  

Kerb weight kg 1375  

Performance test weight kg 1525  

GVW kg 1705  

Maximum vehicle speed kmph 132 (82 mph)  

R101 (A) NEDC range 

(EV) 

km 88  

R101 (B) NEDC CO2 g/km   

R101 NEDC CO2 g/km <40  

EV range (real world) km 56 Artemis combined 

Total range (real world) km 350 Artemis combined 

Fuel economy @ charge 

sustaining 70 mph 

mpg 46  

The second vehicle chosen was the REEV variant of the Tata Motors 

MEGAPIXEL, a B-segment vehicle being developed for European and global 

markets. Concept specifications of MEGAPIXEL REEV are at Table 3-2 below. 

Table 3-2 Tata Motors B-segment REEV concept specification [6] 

Vehicle Unit Target (Status) Remarks 

Vehicle category - B-segment hatch  

Kerb weight kg Not disclosed.  Industry 

confidentiality 

GVW kg Not disclosed.  Industry 

confidentiality 

Maximum vehicle speed kmph Not disclosed.  Industry 

confidentiality 

R101 (A) NEDC range 

(EV) 

km 62  
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Vehicle Unit Target (Status) Remarks 

R101 (B) NEDC CO2 g/km Not disclosed.  Industry 

confidentiality 

R101 NEDC CO2 g/km <30  

The third vehicle was JLR’s electric Evoque (Evoque-E) which was meant to be 

a BEV. Specifications are at Table 3-3 below. 

Table 3-3 JLR Evoque-E specification [6] 

Vehicle Unit Target (Status) Remarks 

Vehicle category - BEV/SUV  

Kerb weight kg 1914  

GVW kg 2440  

Maximum vehicle speed kmph 210  

R101 (A) NEDC range 

(EV) 

km 325  

R101 (B) NEDC CO2 g/km 0 BEV 

R101 NEDC CO2 g/km 0 BEV 

Total range (real world) km na  

As discussed earlier in Section 2.6, the RE power output is strongly dependent 

upon desired cruise speed capability with sustained battery state of charge (SOC) as 

illustrated in Figure 2-18. A  similar exercise based on electrical power versus speed 

was carried out by TMETC for the 3 selected vehicles and it was found that the 

electrical power required falls within a range from 15kWe to greater than 30kWe for 

motorway cruising speed [6], see Figure 3-1 
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Figure 3-1 Vehicle electrical power requirement of 15-30kW versus speed for the three vehicles 
considered. Power calculation based on vehicle weight including kerb weight plus 250kg, highway 

speed 60-70mph, flat road (0% gradient), 5kW ancillary loads and charge sustaining APU operation [6] 

Based on this electric power range and the base engine performance capability 

coupled with the primary requirement of this study to optimise the ICE using low cost 

changes well within the normal volume-production process, a maximum electrical 

power output of 20–25kW was aimed at. This would result in a small compromise in 

maximum charge sustaining speed and/or ancillary performance for the Manza REEV 

and Evoque-E (REEV) but was accepted for this research.  

3.3 Base Engine Specification 

The base engine selected for this research was a Bharat Stage 4 (BS4) emission 

version of Tata Motors Limited 273 2-cylinder 624cc naturally aspirated gasoline 

engine for Indian market application [2, 6]. Being a production engine, it accrued the 

benefit of low cost as compared to the development of a bespoke engine, as has been 

discussed in Section 2.12.  

The main specifications of the engine are given in Table 3-4 below.  
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Table 3-4 Specifications of the TATA 273MPFI engine [2] 

Displaced volume 624cc 

Bore / Stroke 73.5mm * 73.5mm 

Compression ratio 10.3:1 

Maximum power 37bhp @ 5500rpm 

Maximum torque 51Nm @ 4000rpm 

Firing order  1-2 (360° firing) 

Number of valves 2 per cylinder, single fixed overhead camshaft 

Fuel system 
Sequential port fuel injection with closed loop 

A/F control  

Emission compliance Bharat stage (BS) III or IV 

Coolant specification 50:50 (water:Ethylene glycol) 

Engine management 

system 
Bosch Motronics EMS 

Weight 54.7kg with AC 

The base engine including the production manifolds is shown in Figure 3-2.  

 

Figure 3-2 Production 273MPFI engine including intake and exhaust manifold [2] 

The base engine, which was first introduced during the Tata Motors Nano car 

launch in 2008, already had some of the low-cost features that have subsequently been 

incorporated by other engine manufacturers during their bespoke RE engine 

development programmes quoting the Nano engine. Some of these are covered in the 

succeeding paragraphs.   
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The Nano 273MPFI base engine has a 2-cyclinder, in-line engine layout as it has 

the lowest package volume, lowest projected production cost and least weight for an 

engine of this size.  It also has an open-deck structure since it is the lowest cost option 

for high volume series production. MAHLE during their assessment for calculating 

total production cost as well as total mass of the complete RE bespoke engine 

development likewise arrived at a 2-cylinder, in-line engine layout [61]. Further while 

deciding on their bespoke engine block design, MAHLE, quoting the Tata Nano engine 

chose an open-deck structure since it is the lowest cost option for high volume series 

production.  

The 273MPFI base engine has fixed valve timing. MAHLE also opted for fixed 

valve timing. Trends in the last twenty years show a wide range of complex systems 

in the valve trains of passenger cars primarily to improve performance and 

simultaneously meet the increasingly stringent emission requirements. As mentioned 

earlier in the report, unlike a traditional passenger car engine, the RE engine is required 

to operate at a few discrete steady-state speed and load points which obviates much of 

the benefits accrued through variable valve timing [61]. At the same time, it reduces 

the cost of the overall package.  

Like the 273MPFI base engine, the MAHLE RE engine also has a directly 

mounted oil pump (no chain) and metal spin–on type oil filter to reduce cost.  

MAHLE have also opted to bolt the generator rotor directly to the crankshaft 

palm, which apart from reducing the assembly size, has cost benefits as well. A similar 

approach had been planned for this project as well.  

3.4 Engine Test Cell 

The experimental work was performed in a bespoke engine test cell at University 

of Bath. 
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The test cell control system used was CADET V-14 from Sierra CP Engineering 

enabling monitoring in real time and logging a range of relevant engine parameters.  A 

dedicated host computer running the CADET V14 software was used to create a virtual 

instrument for data scaling, processing and logging. Post processing of data was 

carried out using MS Excel and/or Matlab software.  

3.4.1 Dynamometer 

The test cell included a 50kW AC dynamometer and drive system suitable for 

motoring and absorption. Key parameters of the dynamometer are in Table 3-5.    

Table 3-5 AC dynamometer key parameters  

Speed (rpm) 0 / 3000 / 5100 / 8500 

Absorbing power (kW) 0 / 50 / 50 / 35 

Absorbing torque (Nm) 164 / 164 / 95 / 40 

Calibration of the dynamometer was undertaken at regular intervals using 

calibration arms and weight pans to ensure accuracy of test data.  

3.4.2 Engine Torque 

Engine torque was measured using a HBM T40B torque flange. Its measuring 

range was 0–500Nm with an accuracy of ± 0.25Nm, class 0.05. The torque flange was 

located at the dynamometer end. 

3.4.3 Lambda Value and Air/Fuel Ratio (AFR) 

Exhaust gas lambda for both exhaust ports was measured using an ECM 

wideband lambda sensor with CAN interface. These sensors were programmable for 

all fuel types (H:C, O:C, N:C ratios). These were calibrated in atmosphere prior to 

testing. The sensors output lambda (λ) and AFR with an accuracy of ±0.6% (at 
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stoichiometric), ±0.9% (average, elsewhere) and %O2 with an accuracy of ±0.1% 

(absolute).  

3.4.4 Fuel, Coolant and Oil Flow Measurement 

The fuel consumption was measured using a micro motion Coriolis flow meter 

with a range of 0 to 93.5kg/hr and accuracy ±0.10% of actual measured flow rate. Oil 

flow was measured using a Krohne OPTIMASS 6400 C Coriolis mass flowmeter. Its 

flow range was 0 to 30LPM. The system consisted of the measuring sensor and a 

converter which provided a corresponding voltage signal. Its accuracy was ±0.1% of 

the actual measured flow rate.  Coolant flow was measured using a Krohne 

electromagnetic flowmeter with a flow range of 0 to 35LPM. 

3.4.5 Temperature Measurements 

Temperature parameters were monitored using Chromel-Alumel (type-K) 

mineral insulated metal sheathed (MIMS) thermocouples. The shielded thermocouples 

had a response time of approximately 1 second with an accuracy of 0.0075*T, where 

T is the temperature measured. Platinum resistance thermometers (PRT) were also 

used to measure temperature which had an accuracy of 0.3 ± 0.005*T, where T is the 

temperature measured.  

The ambient temperature in the test cell was controlled at 25±2oC. It is 

highlighted that the cell temperature was not automatically controlled but required 

manual intervention by the operator to switch on the set of exhaust fans when the test 

cell temperature reached 27°C. Likewise the operator had to switch off the exhaust 

fans when the cell temperature dropped to 23°C. This was one of the main drawbacks 

of the test cell set up and there were instances when the test cell temperature exceeded 

the limits during testing. These excursions would have affected the results to a certain 

extent by affecting the air density entering the engine inlet manifold. This would have 
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affected the amount of fuel injected and as a result the BSFC. The oil and coolant flows 

were measured, and their temperature set points maintained within ±2oC tolerance 

band.  

3.4.6 Pressure Measurement 

Various pressure parameters like oil pressure, coolant pressure and fuel pressure 

etc were monitored using Druck UNIK 5000 series pressure sensors with an accuracy 

of ±0.25% full scale.  

3.4.7 Combustion Parameters 

The engine combustion parameters were measured and logged by an AVL 

Combustion Analysis System (CAS). Parameters recorded were spark timing, start of 

injection (SOI), end of injection (EOI), in-cylinder pressure, inlet and exhaust 

manifold pressures with respect to crank angle.  

To measure in-cylinder pressure, Kistler piezoelectric pressure transducer type 

6052C31 were installed in the cylinder head coupled to a signal conditioning unit 

which fed into the AVL CAS. The linearity of the sensor was ±0.25% full scale.  

Proper crank angle phasing was achieved by installation of a Kistler crank angle 

optical encoder type 2614CK, having a speed range of 0-12000rpm.  

The SOI, EOI and spark timing was measured using Kistler miniaturised 

electrical impulse sensors type 2105A30 with linearity error of 0.3%. The miniaturised 

sensors were required because of the paucity of installation space and the regular 

sensors, because of their weight were breaking the electrical harness wiring.  
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Based on the Hall effect measurement principle, the sensors provide an output 

voltage proportional to the current. This is amplified using amplifier type 2105A20 

which is then connected to the AVL CAS.  

3.4.8 Emissions Measurement  

Undiluted emissions concentrations were measured continuously for catalyst gas 

samples wherever appropriate using Horiba MEXA 7000 analysers. Heated transfer 

line, at a temperature of 191°C was located at the exit of the exhaust ports. The Mexa 

instrument was calibrated before every experiment using span gases of known 

concentration and zeroed with nitrogen gas.  

Schematic of the experimental setup is shown in Figure 3-3. The engine mounted 

in the test cell coupled to the dynamometer is shown in Figure 3-4. Engine ancillaries 

such as AC compressor and alternator were removed during engine testing.  

 

Figure 3-3 Schematic of the bespoke test cell experimental set up at University of Bath.  
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Figure 3-4 Engine mounted in the test cell. The 50kW AC dynamometer is on the right [2] 

3.5 Reference Fuel 

Test procedures designed to evaluate engine performance require fuels which 

have the least possible variations of their chemo-physical data.  To ensure consistency 

of experimental data all engine testing at University of Bath was conducted with 

reference gasoline, Carcal RF02-08 E5 (48337) whose properties are at Table 3-6. This 

ensured reproducibility of test results with respect to fuel quality.  
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Table 3-6 Carcal RF02-08 E5 (48337) gasoline fuel properties. Reference fuel was used to ensure 
reproducibility of test results with respect to fuel quality 

 

3.6 Repeatability of Test Data 

To validate experimental results, results are usually recorded more than once. If 

the recorded results are the same, there is arbitrarily more confidence in the measured 

result. However, if there is variation in the results, the experimenter will either repeat 

the experiment or change the test set up based on the assumption that there are other 

factors affecting the result. If many measurements are made, one would obtain a 

distribution/spread of results. The corresponding curve is known as the normal or 

Gaussian distribution. The shape of the Gaussian curve is such that the frequency of 

small deviations from the mean value is much greater than the frequency of large 

deviations. The sample mean is an important measure of the location of the data, 



  CHAPTER - 3 

71 

however it gives no information about the scatter, for which standard deviation, σ, is 

commonly used, see equation (1), where σ is the standard deviation, y is the individual 

experimental results, y bar is the mean of the experimental results and n is the number 

of results. It is important to note that the above definition of standard deviation is 

arrived at after applying the Bessel correction factor since in an experimental set up 

there are finite set of measurements [92].  

 

𝜎 =  √
∑(𝑦 − 𝑦)̅̅ ̅2

𝑛 − 1
 

(1) 

The standard deviation is given in the units of the experimental measurement. 

Therefore, it is not possible to use the standard deviation to make valid comparisons 

of experimental variability between experiments unless the results of the experiment 

are measured in the same units. Therefore, it is more common to express the standard 

deviation as a percentage of the mean as it allows for direct comparison of 

experimental variability [93]. This is known as coefficient of variation (CoV) or 

variance, see equation (2). 

 
𝐶𝑜𝑉 =  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
∗ 100 

(2) 

For well-designed engines, the variance of the indicated mean pressure is less 

than 1% [94]. For certification testing, guidelines are provided in accordance with 

ISO1585 which is  ±2% on net power [95]. As per BS5514 the permissible deviation 

in engine torque as measured repeatedly during a single test run on a single test bed is 

2% [96]. Traditional limits of repeatability are around 1% coefficient of variation 

(CoV) at 95% confidence level [97].  For this research a similar target of CoV was 
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aimed for. To ensure that the test data recorded was repeatable and reproducible, 

testing was carried out under following conditions: - 

• 2000rpm, 2bar BMEP. 

 

• 2000rpm wide open throttle (WOT).  

 

• 3000rpm, 5bar BMEP.  

 

• 30000rpm WOT.  

Data was logged after the oil and coolant temperature and engine torque had 

stabilised at 90°±2°C. Each test log was a 10 second average and 20 logs were taken 

at each test condition. Engine torque and BSFC at 3000rpm, WOT recorded are shown 

in Figure 3-5 and Figure 3-6 respectively.  

 

Figure 3-5 Repeatability of measured engine torque at 3000rpm, WOT. Statistical parameters like 
minimum, maximum, mean, standard deviation and coefficient of variance are detailed in Table 3-7 
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Figure 3-6 Repeatability of measured engine BSFC at 3000rpm, WOT. Statistical parameters like 
minimum, maximum, mean, standard deviation and coefficient of variance are detailed in Table 3-7 

 As per the test results, the mean, standard deviation and coefficient of variance 

of the engine torque, power, BSFC and fuel flow at 3000rpm at WOT are shown in 

Table 3-7 below.  

Table 3-7 Minimum, maximum, mean, standard deviation and coefficient of variance of engine torque, 
power, fuel flow and  BSFC during repeatability testing – 3000rpm, WOT 
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The results indicate that the deviation in engine torque during a single test run 

on a single test bed is within 2% in accordance with BS5514. Based on the results 

obtained above, the repeatability of the test cell set-up was considered satisfactory to 

progress to the next stage of experimental work. Reproducibility checks were not 

carried out.  

3.7 Base Engine Performance Characterisation 

The performance of the engine was characterised at both part load and WOT 

across 1500rpm to 5500rpm. Engine ancillaries such as AC compressor and alternator 

were removed during engine characterisation since they would not be required in an 

electric vehicle. The engine would be started by the motor/generator and the AC 

compressor was expected to be an electric HV compressor. Engine throttle was varied 

in steps of 10% and engine speed varied from 1500 to 5500rpm and data logged. Figure 

3-7 shows the engine airflow versus engine speed for varying throttle positions.  

 

Figure 3-7 Engine airflow versus engine speed for varying throttle positions during benchmarking of 
base engine performance 
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When logging, the CAS recorded data for 300 engine cycles and the average 

value recorded. An example is shown in Figure 3-8. It illustrates the combustion 

parameters at engine speed of 3000rpm, WOT. Blue and red lines indicate cylinder 1 

and cylinder 2 parameters respectively. The zero crank angle is the top dead centre 

firing (TDCF). Since the engine is even fired, the cylinder 1 and 2 data should be 

360°C apart. In order to compare the cylinder to cylinder variation, the two traces were 

shifted to be co-located.  

It was seen that the cylinder 2 developed higher peak pressure compared to 

cylinder 1. This difference was consistently seen in all tests. Subsequent investigation 

confirmed that this was not due to sensor calibration. 

 

Figure 3-8 Engine combustion paraments at engine speed of 3000rpm, WOT. The plots show cylinder 
pressure, start of fuel injection (SOI), end of fuel injection (EOI) and spark timing with respect to crank 

angle.  
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Figure 3-9 shows the engine average exhaust temperature versus engine speed 

for varying throttle positions. Peak exhaust temperatures of around 750°C were 

measured. Subsequently during the spark timing optimisation process, this was the 

target exhaust temperature which was considered as the limit.   

 

Figure 3-9 Engine average exhaust gas temperature versus engine speed for varying throttle positions 
during benchmarking of base engine. Peak exhaust temperatures of 750°C were measured. 

Figure 3-10 shows the engine lambda values versus engine speed for varying 

throttle positions with full load torque curve superimposed. At WOT, the engine was 

running lambda 1 for up to 3500rpm, after which it began enriching the air fuel mixture 

to control exhaust gas temperatures.  
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Figure 3-10 Measured lambda values with varying engine speed and torque during benchmarking of 
base engine performance. The WOT torque curve has been superimposed on the lambda map. At 

WOT, the engine was running lambda 1 for up to 3500rpm (see arrow), after which it began enriching 
the air fuel mixture to control exhaust gas temperatures. 

The BSFC map is shown in Figure 3-11 along with the full load torque curve 

superimposed. It was against this BSFC benchmark that the effectiveness of the 

proposed modifications was to be compared, the aim being: - 

• To improve the torque/power across the engine operating range from 

2000-4500rpm, the proposed operating points of the RE.  

• To maintain/improve the BSFC while reducing the overall engine 

package.  
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Figure 3-11 Measured BSFC values with varying engine speed and torque during benchmarking of 
base engine. The wide open throttle torque curve has been superimposed on the BSFC map. Region 

of 250g/kWh BSFC is highlighted. 

A best BSFC of 245g/kWh was measured at 2250rpm, WOT. BSFC of the order 

of 250g/kWh was measured from 2000 to 3500rpm at WOT.  

3.8 Conclusion 

In this chapter the electrical power output of a RE for essentially a C-segment 

vehicle were worked out by TMETC to be of the order of 20 to 25kW during extended 

range (or charge sustaining mode). This output is the sum of the tractive power and 

ancillary load requirements.  

The next section presented the selection of the base engine based on the RE 

power requirement using low-cost, in-production engine. Based on the base engine 

performance capability coupled with the primary requirement of this experimental 
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study to optimise the ICE using low cost changes well within the normal volume-

production process, a maximum electrical power output of 20–25kW was aimed at. 

Subsequently, the development of the bespoke engine test cell at University of 

Bath was covered. This included a discussion on repeatability of test data and the 

importance of using a reference fuel to have consistency in test results. The 

repeatability of the test data was found to be well within the permissible deviation of 

2% as measured repeatedly during a single test run on a single test bed.  

The performance of the production engine was mapped across its entire 

operating regime, both at part load and full load. A BSFC map was generated and a 

best BSFC of 245g/kWh was measured at 2250rpm, WOT. BSFC of the order of 

250g/kWh was measured from 2000 to 3500rpm at WOT. This became a yardstick to 

compare the effect of subsequent optimisation of the engine for RE application. 

The work presented in this chapter formed part of the technical paper titled 

‘Development of a Low-Cost Production Automotive Engine for Range Extender 

Application for Electric Vehicles’ that was presented at the SAE World Congress, 

Detroit in April 2016. Paper reference is 10.4271/2016-01-1055.  
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CHAPTER - 4  
New Engine Management Strategy 

 

This chapter presents the need and development of the bespoke APU engine 

management strategy. The second part discusses the EMS calibration 

methodology and introduction of the electronic throttle. At the end, the 

performance of the engine with the bespoke EMS is compared with the 

production EMS. 
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4.1 Introduction 

An auxiliary power unit is a complex system of bespoke parts which can be 

separated into two independently functional units. The electric generator with its 

control unit being one and the other being the engine with its control unit. These 

independently functional units are mechanically linked, and they are actively 

coordinated by an additional control unit, the APU supervisory controller.  

The first section of this chapter presents the development of the bespoke engine 

controller or engine management system (EMS) for integration of the engine with a 

generator for range extender application.  

The next section explains the introduction of the electronic throttle which 

facilitates the incorporation of the torque control strategy since the throttle needs to be 

driver independent for an APU application.  

Subsequently the engine performance, post modifications is compared with the 

base engine to confirm its performance is satisfactory.  

4.2 New Engine Management Strategy  

4.2.1 Overall Control Strategy 

The APU control structure comprises essentially of three components. The APU 

Supervisory Controller (ASC) which controls the other two components namely the 

Engine Management System (EMS) and the Generator Control Unit (GCU). The ASC 

is subordinate to the overall Vehicle Supervisory Controller (VSC).  

The VSC is responsible to command the APU Supervisory Controller (ASC) to 

start or stop the APU based on the requirements from the battery state of charge and 
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the driver power demand. It provides the ASC with the target speed and power. The 

ASC in turn communicates the target speed request to the GCU and the target torque 

request to the EMS. The desired engine operating condition is achieved through the 

actuation of the throttle whilst maintaining target air fuel ratio and optimum ignition 

timing [2]. The schematic of the overall control architecture is shown in Figure 4-1.  

 

Figure 4-1 Overall control architecture. The EMS and GCU are under the APU supervisory controller 
(ASC) which is controlled by the VSC  

The VSC, ASC and GCU are out of the scope of this research and are therefore 

not discussed further. The EMS control development was undertaken by my co-

supervisor Dr A.J. Lewis and the engine calibration work was undertaken by me.  

The production engine utilised a Bosch Motronic EMS to which calibration level 

access was not available. For integration of the engine with a generator for a range 

extender application, which would entail torque management and engine operation 

over a limited number of points, there was a need to replace the production EMS with 

a bespoke EMS. 

The bespoke EMS would allow the necessary access to the control and 

calibration variables. Accordingly, a new Motohawk EMS control strategy was 

developed which involved adapting the control strategy from an off the shelf 6-
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cylinder engine control strategy to suit the production engine and integrate it with the 

GCU and the ASC. 

4.2.2 Overview of EMS Requirements and Calibration 

The role of the EMS is to control the engine to the desired operating condition.  

The control is performed through the actuation of the throttle, the fuel injectors and 

ignition.  During the first phase of development, the throttle was cable driven and not 

controlled by the EMS but would result in a manifold air pressure (MAP) value, which 

was read by the EMS.  

Figure 4-2 describes the overall EMS control architecture that was to be 

employed within the APU control architecture. Sensor inputs are shown in blue, the 

actuator commands in red and the ASC requests in black.  

 

Figure 4-2 EMS control architecture. Sensor inputs are shown in blue, the actuator commands in red 
and the ASC requests in black [2] 

The bespoke EMS should be able to translate a torque command into a throttle 

position independent of driver input, based on look-up tables characterised on the test 

bench during the benchmarking process, as well as return a value of maximum torque 

available. The maximum torque is based on the estimated air flow with open throttle.  
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The EMS should be able to respond to an engine off command, when the Engine 

ON request is false by removing the fuel and ignition to the engine, to stop the APU. 

This is necessary to avoid overcurrent in the battery when the APU is pushing current 

to the battery close to the current limit and a regeneration (braking) event is imposed 

by the driver.  

The EMS should guarantee safe and robust operation of the engine under any 

operating conditions i.e. temperature, humidity, loading, speed etc. 

In order to deliver the functions above, the following control features were 

present: - 

(a) Engine torque control. 

(b) Closed loop fuel control. 

(c) Lambda sensor temperature control. 

(d) Ignition control. 

(e) Component protection. 

The main inputs / demands to the EMS were: - 

(a) Torque Demand. Initially the torque demand was via an analog signal from 

the dynamometer to the cable throttle actuator. The pedal demand from the 

dynamometer host system was fed to the cable throttle actuator. The resultant manifold 

pressure was read by the EMS. Subsequently it was an internal signal from the ASC 

once the electronic throttle was incorporated. This is covered in greater detail 

subsequently in Section 4.3.  

(b) Engine coolant temperature. 

(c) Inlet manifold pressure and temperature (combined sensor). 
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(d) Lambda sensor. 

(e) Engine speed / position sensor. This was an additional induction sensor from 

a 36-2 pattern encoder disc. At the later stage of the research, once the generator was 

coupled to the engine, the speed input would be received from the GCU.  

(f) Camshaft sensor. The production engine was not provided with a camshaft 

sensor, this was additionally installed. 

(g) Knock sensor.  

(h) Throttle sensor. 

The main outputs from the EMS were: - 

(a) Spark timing. A spark manager block controlled the required spark 

advance, see Figure 4-3. A 2-D lookup table (17x17) with engine speed and indicated 

load as the axis were populated from the data captured during the baseline of the engine 

with the Bosch EMS. The spark manager included a spark limiter (rate limiter and 

engine coolant temperature limiter), temperature compensation offset and desired 

equivalency ratio offset.  The spark start angle was calculated based on the desired 

spark advance and the coil characterisation. 

 

Figure 4-3 Spark timing control strategy to calculate spark start angle based on desired spark advance 
and coil characterisation  
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(b) Injector timing and duration.  Figure 4-4 shows an overview of the 

injector timing and duration control strategy. 

 

Figure 4-4 Injector timing and fuel injection duration control strategy 

(c) Lambda sensor heating.  

 Initially the calibration tables in the control strategy were populated using the 

baseline data captured while running the engine with the production EMS. This 

enabled the new EMS to control the engine satisfactorily. The major tables that needed 

to be populated were volumetric efficiency (VE), desired equivalency ratio, spark 

timing, start of injection (SOI) and end of injection (EOI). These tables essentially 

display speed on the y-axis and engine load [air per cylinder per cycle (APC) 

(mg/cyl/cycle)] on the x-axis. 

To illustrate with an example, the VE of the engine is fixed for a given inlet and 

exhaust manifold geometry. The 2-dimensional look-up table (17*17) axis were port 

pressure ratio (manifold air pressure/barometric pressure) and engine speed. For 

validation, the mass air flow calculated with the EMS was compared to test bed data 

measured during the benchmarking, and required changes made to the VE table.  
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4.3 Introduction of Electronic Throttle Control (ETC) 

As mentioned above, during the first phase of the EMS development the throttle 

was cable driven as in the production engine. Once the engine was running 

satisfactorily on the new EMS, the electronic throttle was incorporated. The electronic 

throttle facilitates the incorporation of the torque control strategy since the throttle can 

be moved without any driver input [2]. The torque request from the ASC is interpreted 

in a feed forward throttle position demand based on look up tables populated from the 

previous mapping experimental work based on equation (3) below. 

 
𝑚̇ = (

𝑃

𝑅𝑇
) (ʋ𝑒𝑉𝑐𝑦𝑙) (

𝑁𝑒𝑛𝑔𝑁𝑐𝑦𝑙

60 ∗ 𝑁𝑅𝑃𝐶
) 

(3) 

Where, 

ṁ is the mass air flow, g/s 

P is the manifold air pressure, kPa 

R is the Universal gas constant, 287J/kgK 

T is the ambient temperature, °K  

ʋe is the volumetric efficiency, % 

Vcyl is the volume of cylinder 

Neng is the engine speed, rpm 

Ncyl is the number of cylinders 

NRPC is the number of combustion events per revolution, 1 

Closed loop throttle position control exists within the EMS. Target throttle 

position is determined from the indicated load and engine speed look-up table. Internal 

position feedback was used within a PID controller in the EMS model to hold throttle 

position. A schematic of the engine torque strategy is shown at Figure 4-5.  
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Figure 4-5 Engine torque control strategy facilitates conversion of torque demand to the required 
electronic throttle opening position independent of driver input 

4.4 Engine Performance  

Figure 4-6 compares the performance of the engine with the Bosch EMS versus 

the Mototune EMS at WOT.  

 

Figure 4-6 Comparison of engine power and torque for Bosch production EMS and Mototune EMS with 
cable driven and electronic throttle 
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The power curve of the engine had a good match under all three conditions. This 

was considered more critical than torque as when the engine would be coupled to the 

generator the ASC would control the APU based on a power.   

4.5 Conclusion 

Since calibration level access was not available for the production Bosch ECU, 

it was necessary to develop a bespoke engine controller for use in an APU application. 

This chapter dwelled on the APU control architecture wherein the power demand is 

split into a torque demand and a speed demand.  The torque demand was translated 

into a throttle position whereas the speed is controlled by the GCU. Since the generator 

had still not been integrated with the engine, the speed was controlled by the 

dynamometer.  

The bespoke EMS was calibrated based on the engine data captured during the 

benchmarking process as described in Chapter 2. Once the engine was running 

satisfactorily, the cable driven throttle was replaced with the electronic throttle. 

The performance of the engine with the bespoke controller and electronic throttle 

was found to have a good match with the production EMS. This laid the foundation 

for progressing to the next stage of the experimental research which involved 

development of bespoke engine manifolds.  

The work presented in this chapter formed part of the technical paper titled 

‘Development of a Low-Cost Production Automotive Engine for Range Extender 

Application for Electric Vehicles’ which was presented at the SAE World Congress, 

Detroit in April 2016. Paper reference is 10.4271/2016-01-1055. 
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CHAPTER - 5  
Bespoke Manifold Development 

 

This chapter presents the development of bespoke inlet and exhaust manifolds to 

generate power circa 20–25kW at 4500rpm. Experimental techniques were 

employed to validate simulation results undertaken at TMETC. The results 

achieved 92% reduction in manifold size while achieving greater engine torque 

up to 4500rpm. 
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5.1 Introduction 

To allow the APU to generate power circa 20-25kW, it requires the engine to 

operate at a relatively high engine speed of around 4500rpm. To achieve power output 

circa 20-25kW, the production engine’s power needed to increase. Due to limited 

speed range in which the engine shall operate in when used as an APU and due to 

increase in the engine’s minimum operating speed to 2000rpm, driveability was no 

longer the target, and power outside of the target speed range could be sacrificed to 

reach the target power output [6]. 

One of the means of achieving this was development of bespoke inlet and 

exhaust manifolds, which are well within the normal volume-production process. The 

criteria for bespoke intake and exhaust manifolds development was to minimise their 

volumes to improve vehicle package whilst targeting improved performance between 

2000–4500 rpm.  Tuning of the intake and exhaust manifolds can be used to increase 

engine performance across a limited engine speed range. However, due to the target 

packaging size the tuned solution needs to be of a compact design. 

The volumetric efficiency of an engine has a direct impact on its performance, 

and an improvement in an engine’s VE can provide improved power output [98, 99]. 

Reducing the level of airflow restriction and pressure drop on the engine will increase 

the amount of air the engine can induct, which will increase the volumetric efficiency. 

This parameter was selected as the measure of engine performance as it is easily 

comparable between simulations/experimental analysis and would show how effective 

the bespoke intake and exhaust manifolds had been in improving the airflow and 

cylinder filling, which would in turn lead to an increase in power output. 

In this chapter development of bespoke intake and exhaust manifolds has been 

covered. A combination of simulation in a 1-D environment (GT-Power) and 

experimental testing was applied to optimize these attributes. Simulation work was 
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undertaken by TMETC. Experimental work was undertaken at University of Bath to 

corroborate the simulation results.  

Subsequently the effect of the bespoke manifolds on engine performance was 

quantified and compared with the production manifolds.  

5.2 Bespoke Intake Manifold Development 

An engine manifold is the part between the cylinder(s) and throttle body. In a 

multi-cylinder engine, its role is to evenly distribute air flow between each cylinder 

and to create the air-fuel mixture for port fuel injection (PFI) engines. The inlet 

manifold determines how much air can be drawn through both during transients and 

in steady state, how fast the air is moving and how well it can be mixed with the fuel.  

An intake manifold is composed of two parts, in conjunction with the throttle 

body, which include the plenum and the runner(s). The plenum is the chamber which 

collects the air before it is diverted down to each cylinder via the runner. The runner 

is also where the fuel is mixed prior to the engine (with the noted exception of direct 

injection).  

The intake system restricts the amount of air which an engine of a given 

displacement can induct. Volumetric efficiency is the parameter used to measure the 

effectiveness of the engine’s induction process. Volumetric efficiency is only used 

with 4-stroke engines which have a distinct induction process. It is defined as the 

volume flow rate of air into the intake system divided by the rate at which the volume 

is displaced by the piston. Typical maximum values of ηv for naturally aspirated 

engines are in the range 80 to 90% [99] 

A well-designed intake manifold will deliver a uniform air/fuel charge to the 

cylinder as far as possible with appropriate velocity to sufficiently maintain ηv at low 
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and high engine speeds. Intake manifolds can come in various configurations from 

simple to complex. There can be multiple plenums and/or multiple runners feeding a 

given cylinder. There are pros and cons to each of these configurations, where the 

balance of performance is measured for a given engine and design goal [98]. 

The methods of intake tuning can be separated into two categories, inertial ram 

cylinder charging and wave tuning.  Both look at the intake manifold dimensions to 

increase the air entering the combustion chamber, with inertial cylinder charging 

working to provide good airflow and minimal pressure drop, and wave tuning working 

to use the dimensions of the intake to utilise pressure waves made by the engine to 

force more air into the combustion chamber [98]. 

5.2.1 Inertial Ram Cylinder Charging 

In this phenomenon, the momentum acquired by the air-fuel charge entering the 

cylinder during the induction period is utilised. 

At the end of the exhaust stroke and the beginning of the induction stroke the 

inlet valve opens and the piston commences to move away from TDC. The outward 

accelerating piston quickly expands the space between the cylinder-head and piston 

crown. The depression created in this rapidly enlarging space is transmitted to the inlet 

port. The drop in pressure immediately causes the column of air-fuel charge in the 

induction tract to move as whole towards the open inlet valve. The large cross-

sectional area of the piston relative to that of the much smaller intake tract cross-

sectional area, plus the acceleration of the piston, forces the column of air-charge in 

the tract to acquire a high flow velocity.  

The inlet valve remains open for the complete outward movement of the piston 

on its induction stroke and for some of the return compression stroke. This crank-angle 

lag ABDC before the inlet valve closes utilises the inertia of the air-fuel charge moving 
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through the induction manifold tract to valve port to ram itself into the cylinder, 

thereby raising the density of the cylinder air-charge [98], see Figure 5-1. 

 

Figure 5-1 Inertial ram cylinder charging. Increased density of air-charge as the piston starts to move 
towards TDC [98] 

The momentum built up by the fast-moving column of air-charge in the intake 

tract is brought rapidly to a halt when the inlet valve closes against the flow. At this 

point the kinetic energy of the fast-moving column of air-charge is converted into 

pressure energy in the blanked-off inlet port. Consequently, the density of the trapped 

charge rises. It is this rise in pressure at the port which enables the induction period to 

have an early start due to the pressurised charge momentarily stored behind the inlet 

valve head when it opens next.  

The greater the momentum produced, the greater the rise of pressure, and if 

energy losses are very low in accelerating the flow, the inertia ram effect can increase 

the VE by cramming extra mixture into the cylinder [98]. 
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5.2.2 Wave Tuning (Helmholtz Resonator)   

Engelmann [100] presents an lucid description of the Helmholtz resonator 

theory. The Helmholtz resonator originally consisted of a spherical chamber with a 

pipe projecting from it, see Figure 5-2 (a), the chamber being the equivalent of the 

manifold gallery and the branch pipes in addition to the inlet valve ports and cylinder, 

whereas the pipe projecting from the chamber becomes the tuned induction tract [100-

102]. 

 

Figure 5-2 Simple Helmholtz resonator (a) and equivalent model for a single cylinder (b) [101] 

To understand the Helmholtz resonator theory, it is useful to think of the pipe 

being acted on by forcing function produced by the piston. As the piston moves 

downward during the intake stroke, a reduced pressure occurs at the inlet valve relative 

to the pressure at the open end of the pipe. At mid stroke the piston is near its maximum 

velocity and the maximum pressure drop occurs across the valve which results in the 

maximum negative pressure (rarefaction wave) at the inlet valve. The rarefaction wave 

travels down the pipe to the open end and is reflected as a compression wave. A tuning 

effect occurs when the compression wave arrives at the time of valve closure when the 

piston is moving inwards towards TDC. The pressure wave will force the air, which 

would otherwise reverse under piston pressure, into the combustion chamber. 

This theory can only predict the resonant frequencies of an intake system and 

cannot give a magnitude for the volumetric efficiency at the resonant frequencies 
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[101]. A single cylinder engine modelled as a Helmholtz resonator is shown in Figure 

5-2 (b). The effective resonator volume Veff is chosen to be one-half of the displaced 

volume plus the clearance volume. At this point the piston velocity is close to its 

maximum and the pressure in the inlet system close to its minimum. The tuning peak 

occurs when the natural frequency of the cylinder volume coupled to the pipe is about 

twice the piston frequency [99, 101].  

For a single cylinder engine, the equation for the resonant tuning rpm is given 

by: - 

 

𝑅𝑃𝑀 =
162

𝐾
𝑎√

𝐴

𝐿𝑉𝑒𝑓𝑓
 

(4) 

Where, 

RPM is the rpm at tuning frequency, 

162 is a constant for FPS units 

a is the speed of sound (feet/sec), 

A is the cross-sectional area of tuned pipe (in2), 

L is the length of tuned pipe (in), 

K is the constant, ratio of Helmholtz frequency to engine speed, 2.0 – 2.5 range 

for most conventional engines, 

Veff is the effective volume (in3), which is given by: - 

 𝑉𝑒𝑓𝑓 = 𝑉𝑑(𝑟𝑐 + 1) [(𝑟𝑐 − 1)]   𝑖𝑛3⁄  (5) 

Where, 

Vd is the displaced cylinder volume, 

rc is the compression ratio. 
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Engelman [100] discusses the Helmholtz theory for multi-cylinder engines. For 

these configurations, the intake pipes of the cylinder not undergoing induction are 

treated as additional volumes. In Figure 5-3 the two pipes, (L1, A1) and (L2, A2), and 

the two volumes, V1 and V2 form a vibrating system with two degrees of freedom and 

two resonant frequencies. 

 

Figure 5-3 Multi cylinder Helmholtz resonator [101]  

An advantage of using this approach on the production parallel twin engine 

under consideration is that the induction strokes do not overlap as the engine has a 

360° firing interval, and this allows for the entire volume of the intake manifold to 

supply only one cylinder at a time.  This means that the volume of both runners and 

the shared volume of the air box can be combined when using this method, rather than 

needing separate volumes, which would allow for a smaller overall package.  

The Helmholtz resonator method and derivatives from it, see Figure 5-4, have 

been substantially used over the years.  
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Figure 5-4 Comparison of the Helmholtz resonator with a tuned manifold system for multi-cylinder 
engines [98] 

The resonator volume needs to be carefully chosen such that it resonates at an 

engine speed at which the boost torque is required, usually the peak torque of the 

engine, as well as to experiment with the tuned pipe length to obtain best results. Either 

side of the engine speed chosen, the pressure-wave ram effect quickly deteriorates 

[98]. 

Heisler [98] also provided a lucid discussion on effect of runner dimensions on 

VE characteristics. He showed that for a given runner length, both small and large 

runner diameters produce approximately the same peak VE in the cylinder. However, 

the VE with the small diameter runner peaks much earlier than the larger diameter 

runner, see Figure 5-5.  
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Figure 5-5 Effect of varying runner diameter with constant runner length. As the runner diameter 
decreases, the VE peaks much earlier. However the magnitude of the peak is independent of runner 

diameter [98] 

For a given runner diameter, as the runner length increases, the peak efficiency 

shifts lower in engine speed [98]. This is due to several reasons. First, as the length 

increases, so does the surface area of the flow stream which results in additional 

resistance. As the air velocity increases with engine speed, the effect of this frictional 

resistance increases causing VE to shift lower in engine speed. Conversely, as the 

length gets longer, the charge column of air will get greater as it builds up over the 

greater length resulting in peak VE rising. This means as length increases, VE 

magnitude increases while shifting earlier in engine speed, and trails off quicker after 

peak VE is reached, see Figure 5-6. 

While the preceding sections covered the theoretical aspects of inlet manifold 

tuning, nowadays the same is carried out using the 1-D simulation package GT Power 

as was done by TMETC.  
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Figure 5-6 Effect of varying runner length with constant runner diameter. As the runner length 
increases, the VE magnitude increases while shifting earlier in engine speed [98] 

5.3 Intake & Exhaust Manifold Simulation at TMETC 

Simulation studies were carried out at TMETC using a detailed 1-D engine 

model, see Figure 5-7.  

 

Figure 5-7 GT Power engine simulation model developed at TMETC [2, 103] 
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This included the use of individual cylinder feeds to allow for a common volume 

reducing the overall size of the manifolds. The volumetric efficiency of the engine was 

selected as the measure of engine performance as it was easily comparable between 

simulations and showed how effective the intake and exhaust manifolds were in 

improving the airflow and cylinder filling, which in turn would lead to an increased 

power output [103]. 

5.3.1 Runner Length Sweep 

The intake length was varied from 0mm to 1500mm across an RPM range of 0-

5500rpm to produce a contour map to display volumetric efficiency and torque against 

rpm and runner length.  The diameter was fixed as that of the original intake at 32mm.  

The length sweep ranged from 50mm up to 1500mm in intervals of 10mm between 50 

and 500mm and intervals of 50mm between 500 and 1500mm. In line with the theory 

covered in Section 5.2 above, the longer runners produced the highest volumetric 

efficiency at lower engine speeds, and as the target engine speed for peak power was 

increased the runner length was required to be reduced to maintain high volumetric 

efficiency values. Simulation results showed that for peak power at 4500rpm the 

runner length for 32mm diameter was 460mm [103].  

The relation between runner length and runner diameter closely follows 

Equation (4) and is shown in Figure 5-8. According to the Helmholtz resonator 

equation, for a runner diameter of 32mm, at a resonant frequency of 4500rpm, the 

runner length should be 456mm which is very close to the simulation runner length of 

460mm in the preceding paragraph. As mentioned earlier in Section 5.2.2, Equation 

(4)  can only predict the resonant frequencies of an intake system and cannot give a 

magnitude for the volumetric efficiency at the resonant frequencies.   
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Figure 5-8 Relation between runner length and runner diameter based on Helmholtz Resonator 
Equation (4) for varying resonant frequencies. At a resonant frequency of 4500rpm, for a runner 

diameter of 32mm the runner length is 456mm and for a runner diameter of 26mm the runner length is 
301mm 

5.3.2 Runner Diameter Sweep 

Keeping the original runner length of 320mm, the runner diameter was varied 

from 20mm to 100mm in 5mm increments. Results showed that there were only a 

small range of runner diameters that could produce an acceptable volumetric 

efficiency. For the target engine speed of 4500rpm the simulated runner diameter was 

26mm [103]. This matches closely with the runner length of 301mm calculated based 

on the Helmholtz resonator Equation (4) and shown in Figure 5-8 above.  

5.3.3 Diameter and Length Sweep 

To investigate the relationship between length and diameter, they were changed 

together to provide a sweep across a large set of dimension combinations that were 

tested across the engine speed range.  The diameter was varied from 20 to 30mm and 
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the length 400 to 500mm.  Each combination was tested at 500rpm increments between 

500 and 5500rpm. Simulation showed that at 4500rpm the optimum runner diameter 

was 26.5mm and length of 460mm [103].  

5.3.4 Runner Bend Angle Simulation 

To allow for a compact packaging solution, it was evident that straight runners 

would not be a viable option, and bent runners would be required. Accordingly, the 

impact of including a bend was tested by carrying out a simulation sweep with a fixed 

length as the radius of the pipes was increased in increments of 10° between 0° and 

260° and a runner length of 400mm was used. It was seen that a small variation in 

volumetric efficiency was present, but at 4000rpm where the 400mm runner would 

deliver its highest volumetric efficiency, the peak value changed very little as the 

radius changed from its minimum and maximum values [103]. 

5.3.5 Resonator Simulation 

In order to examine the effect of wave tuning as outlined in Section 5.2.2 above, 

a simple resonator was modelled based on Figure 5-4. Although the simulations carried 

out did not provide a clear set of dimensions that could be applied to the resonator, 

they did provide a range of values that could be useful, such as the effective range of 

diameters in which a high volumetric efficiency value could be achieved [103].  

Two examples of the models tested are shown in Figure 5-9. Once a model was 

entered in GT Power, it was possible for the software to change the dimensions and 

update the model, and the power delivery from the resonator simulated. Results 

showed that 0.24 litre resonator could deliver a 100% volumetric efficiency with 

100mm runners and 100mm feed pipe. 
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Figure 5-9 Examples of resonators simulated at TMETC [103] 

Based on the results, it was possible to achieve the desired power improvement 

at the target engine speed of 4500rpm, however two routes to achieving could be 

adopted. Either the optimum dimension 460mm open ended runners could be used, but 

these were quite long and would pose a packaging problem, or a resonator which was 

a compact solution, which while still delivering an increase, did not match the 

performance of the long runners.  

The results above showed that intake runner length and diameter were critical to 

achieve high volumetric efficiency. However, the optimized runner length of 460mm 

was considered too long from a packaging perspective and a resonator system selected 

for its compact size with only a small reduction in volumetric efficiency.  

5.4 Experimental Evaluation of Inlet Manifold Variation 

In order to maintain a modular approach which was more amicable from 

packaging perspective as well as giving an improved performance over the base inlet 

manifold, the intake runner length was kept variable, a resonator was included and 

accordingly a Design of Experiment (DOE) was prepared by TMETC [2] and provided 

to University of Bath to evaluate and is shown in Table 5-1 below.  
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Table 5-1 DOE for inlet manifold tuning by varying intake runner lengths, pre-plenum chambers and 
side plenum chambers. Runner diameter was kept constant at 26mm 

Test Runner 

length, 

mm 

Plenum 

chamber 

Pre-plenum 

chamber 

feed pipe 

Side plenum 

chamber 

Throttle 

body 

position 

Conical air 

filter 

1 0 Yes Yes (parallel 

to runner 

axis) 

No Parallel to 

runner axis 

Yes 

2 0 Yes Yes (parallel 

to runner 

axis) 

Yes Parallel to 

runner axis 

Yes 

3 50 Yes Yes (parallel 

to runner 

axis) 

No Parallel to 

runner axis 

Yes 

4 50 Yes No No Parallel to 

runner axis 

Yes 

5 50 Yes No Yes Parallel to 

runner axis 

Yes 

6 50 Yes No Yes (2 in 

number) 

Parallel to 

runner axis 

Yes 

7 150 Yes No No Parallel to 

runner axis 

Yes 

8 150 Yes No Yes Parallel to 

runner axis 

Yes 

9 150 Yes No Yes (2 in 

number) 

Parallel to 

runner axis 

Yes 

Figure 5-10 to Figure 5-18 show the test 1 to test 9 configurations as set up in 

the test cell during the inlet manifold tuning process. The diameter of the runners was 

fixed at 26mm which was the optimal diameter as per simulation in Section 5.3.2. 

 

Figure 5-10 Test 1 configuration with inlet runner length of 0mm, single plenum chamber, pre-plenum 
feed pipe, throttle body parallel to the runner axis and conical air filter. 
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Figure 5-11 Test 2 configuration with inlet runner length of 0mm, double plenum chamber, pre-plenum 
feed pipe, throttle body parallel to the runner axis and conical air filter 

 

 

Figure 5-12 Test 3 configuration with inlet runner length of 50mm, single plenum chamber, pre-plenum 
feed pipe, throttle body parallel to the runner axis and conical air filter 
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Figure 5-13 Test 4 configuration with inlet runner length of 50mm, single plenum chamber, throttle body 
parallel to the runner axis and conical air filter 

 

 

Figure 5-14 Test 5 configuration with inlet runner length of 50mm, double plenum chamber, throttle 
body parallel to the runner axis and conical air filter 
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Figure 5-15 Test 6 configuration with inlet runner length of 50mm, triple plenum chamber, throttle body 
parallel to the runner axis and conical air filter 

 

 

Figure 5-16 Test 7 configuration with inlet runner length 150mm, single plenum chamber, throttle body 
parallel to the runner axis and conical filter [2] 
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Figure 5-17 Test 8 configuration with inlet runner length 150mm, double plenum chamber, throttle body 
parallel to the runner axis and conical filter 

 

 

Figure 5-18 Test 9 configuration with inlet runner length 150mm, triple plenum chamber, throttle body 
parallel to the runner axis and conical filter 

  

Figure 5-19 shows the effect of varying runner lengths and plenum volume as per the 

various test configurations on volumetric efficiency.  
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Figure 5-19 Experimental results of effect of varying runner length and plenum volumes on engine 
volumetric efficiency. Description of tests are in Table 5-1 

Figure 5-20 shows the effect of varying runner lengths and plenum volume as 

per the various test configurations on engine torque.  

 

Figure 5-20 Experimental results of effect of varying runner length and plenum volumes on engine 
torque. Description of tests are in Table 5-1 
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Figure 5-21 below which is an extract of Figure 5-19 highlights how the 

experimental results are in line Heisler’s theory [98] of effect of runner dimensions on 

volumetric efficiency as discussed in Section 5.2.2. The test 5 and test 8 intake 

manifold configurations are identical except for runner lengths. Test 5 has a runner 

length of 50mm while test 8 has a runner length of 150mm. In line with Heisler theory 

as the runner length increases, the magnitude of the VE increases, the VE peak shifts 

left, although not so apparent in this case, and quickly trails off after the VE peak is 

reached. 

 

Figure 5-21 Change in ηv with change in runner length. As the runner length increases, the magnitude 
of the ηv increases (arrow 1), the ηv peak shifts left (arrow 2) although not so evident, and quickly trails 

off after the ηv peak is reached (arrow 3) 

Based on the increased torque results as well as overall ease of packaging, it was 

decided to continue further development with the test 7 configuration. It is highlighted 

that while the exhaust manifold development has been covered in the subsequent 

section, at the time of inlet manifold development, the new exhaust manifold had 

already been installed on the engine.  
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5.5 Bespoke Exhaust Manifold Development 

Heisler [98] provides a cogent explanation on the kinetic energy theory of 

cylinder scavenging. As per him the most important mechanism for extracting the 

residual exhaust gases from the combustion chamber at the end of the exhaust period 

is to utilise the kinetic energy of the outgoing exhaust gases to produce a compression 

wave followed by an expansion wave in which the gas pressure is reduced to a 

depression in the exhaust port region of the exhaust system. This depression created 

during the valve overlap period considerably helps to draw residual exhaust gases out 

of the combustion chamber and into the exhaust port and at the same time pulls in the 

fresh charge from the induction port to fill this evacuated space, see Figure 5-22 and 

Figure 5-23.  

 

Figure 5-22 Kinetic energy theory of scavenging (a) and (b) [98] 
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Figure 5-23 Kinetic energy theory of scavenging (c) [98] 

If the exhaust manifold only has short branch pipes there will be insufficient time 

for the compression wave to leave behind it a depression capable of pulling out the 

stagnant gas so that the fresh charge arriving at the inlet port is prevented from entering 

the combustion chamber in the early part of the induction process. Conversely if the 

pipe length is very long the flow resistance may become excessive thereby creating its 

own back pressure, which will also slow down the scavenging and the filling process.  

Another important factor with emission laws becoming more stringent and the 

requirement to reduce exhaust pollutants following a cold start is to reduce the thermal 

mass (or capacitance) of the exhaust manifold. This facilitates bringing the catalytic 

converter to the light off temperature more quickly using the heat in the exhaust [94].  

5.6 Experimental Evaluation of Exhaust Manifold  

Simulation results at TMETC showed that exhaust system had negligible impact 

on performance and the requirement was only to minimise back pressure within a 
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favourable package [2]. Figure 5-24 shows the bespoke exhaust manifold on the engine 

with instrumentation to monitor manifold pressures, temperatures and lambda values.  

Testing was subsequently undertaken without a catalyst downstream, and instead 

a back-pressure valve was installed, and its position suitably calibrated to match the 

back pressure like that of the production catalyst. 

 

Figure 5-24 Bespoke exhaust manifold on engine in test cell. Thermocouples for measuring exhaust 
gas temperature, exhaust gas pressure transducers, lambda sensor and connection to the emissions 

analyser heated line can be seen  [2] 

5.7 Engine Performance with Bespoke Manifolds 

Based on the results obtained at Section 5.4 and 5.6 above, Figure 5-25 shows 

the difference in brake power between the proposed and original manifolds during 

testing. 
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Figure 5-25 Experimentally measured brake power change – proposed versus original manifolds 

The results show a gain in engine torque across the operating range of the engine, 

from 2000-4500rpm. After 4500rpm, there is a reduction in performance because the 

proposed manifold’s compact size, which was considered to be an acceptable 

compromise for an APU application as the planned APU operating strategy follows 

WOT line across the engine speed range, with no requirement to run above 4500rpm. 

This strategy maximises the engine efficiency at any given power output by 

minimising throttling losses and friction. Part load running is avoided and therefore 

not considered a primary objective for the optimisation [2]. 

As mentioned in Section 5.4 above, further APU development work was 

continued with the Test 7 configuration. TMETC subsequently developed prototype 

inlet and exhaust manifolds, that were installed on the engine in the test cell during the 

latter stages of the project.  The final configuration chosen maintained a 92% plenum 

volume reduction. The final configuration of the bespoke inlet and exhaust manifolds 

on the base engine are shown in Figure 5-26 and Figure 5-27.  
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Figure 5-26 Base engine with bespoke inlet manifold, reduction in overall package width from 
553.15mm to 390.70mm, courtesy TMETC  

 

Figure 5-27 Base engine with bespoke inlet and exhaust manifold. Reduction in width from 597.25mm 
to 403.05mm. Overall height increased from 550.58mm to 637.13mm, courtesy TMETC 

 



CHAPTER - 5 

117 

To facilitate packaging without significant compromise on performance, the 

final runner lengths chosen during rapid prototyping were; cylinder 1 – 246.9mm and 

cylinder 2 – 248.3mm. These were longer than what was experimentally tested in the 

test cell, however simulation studies had been carried out at TMETC.  

5.8 Conclusion 

One of the objectives of the research was to develop the APU to generate power 

circa 20-25kW. This required the engine performance to increase while introducing 

modifications within the normal volume production process.  

Since the engine was being used for a range extender application where 

driveability was not an issue, it allowed the flexibility to optimise for a few operating 

points rather than the entire engine operating regime.  

Development of bespoke inlet and exhaust manifolds was undertaken based on 

1D-simulation at TMETC and experimental work at University of Bath.  

Based on the results obtained, the final configuration chosen maintained a 92% 

plenum volume reduction while gaining in engine power across the proposed operating 

range of the APU from 2000 to 4500rpm. After 4500rpm, there was a reduction in 

performance because the proposed manifold’s compact size. This was an acceptable 

compromise for the APU application as the planned APU operating strategy follows 

the WOT line across the engine speed range, with no requirement to run above 

4500rpm. This strategy maximises the engine efficiency at any given power output by 

minimising throttling losses and friction. 

However, future work could be planned to optimize the APU’s performance at 

higher speeds for applications that require greater power. 
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The work presented in this chapter formed part of the technical paper titled 

‘Development of a Low-Cost Production Automotive Engine for Range Extender 

Application for Electric Vehicles’ that was presented at the SAE World Congress, 

Detroit in April 2016. Paper reference is 10.4271/2016-01-1055.  
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CHAPTER - 6  
Map Calibration and Introduction of 

EWP 

 

This chapter presents the fine tuning engine calibration to run stoichiometric air 

fuel ratio as far as possible and achieve maximum best torque by optimising 

spark advance. The second part introduces the electric water pump and its 

control development. Lastly the engine performance, post modifications, is 

compared with the baseline production engine.  

. 
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6.1 Introduction 

After the development of bespoke manifolds in Chapter 5, this chapter discusses 

further engine calibration to improve the engine performance as well as gain 

improvements in engine BSFC. 

Aspects which were looked at in detail were reduction in exhaust lambda 

enrichment and spark timing optimisation. Extensive experimental testing and 

calibration was undertaken to determine the limit of running the engine at 

stoichiometric air-fuel ratio as well as ensuring the maximum possible engine torque 

while staying within engine knock limits.  

The next section discusses the introduction of the electric water pump (EWP) 

and its control development. Merits of the EWP and its role in an APU application are 

discussed.  

Lastly the performance of the engine post calibration/modifications was 

compared with the baseline production engine.  

6.2 Reduction in Exhaust Enrichment 

The production engine was developed for operation in the Indian market and use 

of RON 91 gasoline. Since the APU was being developed for European conditions 

where RON 95 gasoline is standard, there was an opportunity to optimise ignition 

timing i.e. advance the spark timing and reduce exhaust enrichment to achieve an 

improvement in performance and fuel economy while preventing knock and 

maintaining exhaust temperatures within 750°C to 755°C as specified by TMETC. 

Having calibration level access in the Motohawk EMS, the baseline desired 

equivalency ratio calibration table was optimised to achieve lambda 1 operation at 

WOT up to 3750rpm as shown in Figure 6-1 while maintaining exhaust gas 
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temperatures within 750°C. This was achieved in conjunction with spark timing 

optimisation covered in Section 6.4. 

 

Figure 6-1 Comparison of lambda at WOT between production and Motohawk EMS. Lambda 1 
operation at WOT extended to 3750rpm with bespoke EMS [2] 

6.3 RON 91 versus RON 95 Gasoline 

Octane number is a standard measure of the performance of an engine fuel. The 

higher the octane number, the higher compression it can withstand before detonating 

(igniting). In gasoline spark-ignition (SI) engines, the air-fuel mixture is heated due to 

being compressed and is then ignited by the spark plug to burn rapidly. If the mixture 

is heated or compressed too much, it may self-ignite before the ignition system sparks. 

This results in engine knock. The most common type of octane rating is the Research 

Octane Number (RON). As per Stone [104] unity increase in RON will increase the 

knock limited spark advance (KLSA) by 1.5° to 2° crank angle.  
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6.4 Spark Timing Optimisation 

Spark timing has a direct effect on power output. If ignition is too late (retarded 

spark timing) then although work done by the piston during the compression stroke is 

reduced, so is the work done on the piston during the expansion stroke since all 

pressures during the cycle will be reduced. There is also a risk that combustion will be 

incomplete before the exhaust valve opens at the end of the expansion stroke and could 

overheat the exhaust valve. On the other hand, if the ignition is too early (advanced 

spark timing) there will be too much pressure rise before the piston reaches TDC and 

the power will be reduced because the compression stroke work transfer which is from 

the piston to the cylinder gases increases. Also, with early ignition the peak pressure 

and temperature may be enough to cause knock. Ignition timing is therefore optimised 

to give maximum brake torque (MBT) and at this timing the magnitudes of the two 

opposing tends just offset each other. Timing which is advanced or retarded from this 

optimum gives lower torque [99, 104]. 

The spark optimisation was carried out from 1500rpm to 5000rpm in steps of 

500rpm. At each rpm set point, the engine load [air per cylinder per cycle (APC) 

(mg/cyl/cycle)] was varied from 105mg (part load) to WOT in steps of 30 mg. At each 

step the existing spark timing was retarded / advanced in steps of 2°, 4°, 8° to have an 

overall sweep of 8° on either side of the existing timing. The data was logged using a 

30sec averaging period to observe the small changes expected during the spark sweep. 

It was observed that at WOT the spark timing advance was limited by the onset of 

knock. Retarding the spark timing was limited by high exhaust temperatures. It was 

aimed not to exceed the temperature limit of 755°C [2].  

In most cases, there was clear indication where the MBT occurs. Figure 6-2 

shows that the MBT of 32.1Nm occurs at a spark timing of 30° BTDC at an engine 

load of 238 mg/cyl/cycle at an engine speed of 4000rpm and exhaust gas temperature 

of 748.1°C.   
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Figure 6-2 Spark timing sweep at 4000rpm, engine load of 238mg/cyl/cycle. MBT of 32.1Nm is at spark 
timing of 30°BTDC 

However, because of the variation in measured torque observed, more so at part 

load, there were instances where such a peak was not clear. Figure 6-3 shows two 

peaks of 37.6Nm at spark timings of 26° and 32° BTDC at 3000rpm at an engine load 

of 245 mg/cyl/cycle. Nevertheless, a trend could be extracted. 

 

Figure 6-3 Spark timing sweep at 3000rpm, engine load of 245 mg/cyl/cycle. MBT peak not clear but 
the trend can be seen 



CHAPTER - 6 

124 

At higher engine speeds and WOT, because of onset of knock or exhaust 

temperature limit (755°C) at times it was not possible to do the entire 16° spark timing 

sweep. At 5000rpm, WOT, the existing spark timing was of 29° BTDC. At this regime, 

the engine cylinder-2 exhaust temperature was 765°C. Therefore, the spark timing was 

not retarded and the performance was only checked for spark timing advance.  

Based on the measurements, the optimised spark timing is shown in Figure 6-4. 

The optimised spark timing analysis resulted in a spark advance map with an 

undulating surface. 

 

Figure 6-4 Optimised spark timing – undulated map [2] 

It was decided to smooth the spark advance map to smooth out any irregularities 

in test data. This would minimise the excursions of engine speed and lambda from 

their corresponding set values during transiting from one load point to the other. The 

smoothed map shown in Figure 6-5  was generated using the Matlab curve fit toolbox 

(version 3.5.2, copyright 2001-2015 The MathWorks Inc.).  
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Figure 6-5 Optimised spark timing – smoothed map generated using Matlab curve fit toolbox [2]  

During the smoothing procedure, in the spark advance calibration map there 

were instances where the spark timing has been advanced beyond the experimental 

optimised value.  

Figure 6-6 shows the net change in spark timing after the smoothing process. 

Negative values indicate that after the smoothing process the spark timing had been 

retarded from its earlier value, while positive values indicate that spark timing had 

been advanced.  

During testing it was found that the smoothing did not have any detrimental 

effect on the engine and it was concluded that the optimisation process was somewhat 

conservative, with some additional variation attributed to measurement imprecision 

[2]. However, there were a few points on the spark timing map where the spark timing 

required minor adjustment to avoid knock. 
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Figure 6-6 Net change in spark timing after the smoothing process. Negative values indicate that after 
the smoothing process the spark timing had been retarded from its earlier value, while positive values 

indicate that spark timing had been advanced from its earlier value. Circled areas indicate areas on the 
map where significant spark advance has occurred in the smoothing process, this however did not 

have any detrimental effect.  

The BSFC comparison between the smoothed versus non-smoothed spark 

advance maps is shown in Figure 6-7. It was seen that the smoothed BSFC is mostly 

better up to 4500rpm after which the non-smoothed BSFC is better. From engine speed 

of 3000rpm to 4000rpm the improvement in BSFC of the smoothed spark advance 

map is of the order of 4% over the non-smoothed spark advance map. 

 Figure 6-8 shows the spark advance achieved in comparison to the production 

EMS at WOT across engine speed. An average of 5° spark advance was achieved at 

WOT across 1500 to 5500rpm. The results are in line with that predicted by Stone 

[104] at section 6.3. 
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Figure 6-7 Smoothed spark timing map BSFC versus non-smoothed spark timing map BSFC. Numbers 
above 100 indicate smoothed spark timing BSFC is worse than non-smoothed spark timing map BSFC.  

 

Figure 6-8 Calibration of spark advance using RON 95 reference fuel. An average of 5° spark advance 
was achieved at WOT across 1500 to 5500rpm 
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6.5 Introduction of Electric Water Pump 

Conventional mechanical coolant pumps are engine driven (belt/gear) and hence 

their rpm is governed by the engine rpm. Coolant pumps need to ensure sufficient 

cooling even at low engine rpm with high engine loads and at elevated ambient 

temperatures, and so for normal operation such as city driving or slow cruising, they 

are inevitably oversized. 

The use of an electric coolant pump with appropriate thermal management of the 

combustion engine has measurable advantages. Demand driven cooling, which is 

independent of engine speed, particularly in the cold-start phase reduces impeller 

energy consumption and leads to corresponding improvement in fuel economy. The 

Lotus bespoke RE engine also employed a EWP for similar reasons [3]. 

Another major benefit of an electric coolant pump is its ability to keep running 

after the engine has shut down to prevent the heat soak problems to which some 

engines are prone. Further the lack of dependence on a mechanical drive also results 

in considerable flexibility in component packaging within the engine compartment 

[89].  

As one of the primary objectives of this research was to eventually run the APU 

in a combined engine–generator coolant loop to reduce parasitic losses and measure 

improvement in overall efficiency, the mechanical engine driven water pump had to 

be removed and replaced with an EWP.  

The production engine had an integrated gear driven oil and water pump housing, 

so it was not possible to remove the mechanical coolant pump in its entirety. For the 

purpose of the experimental analysis, the impellor blades were removed leaving the 

shaft as it was common with the oil pump. Figure 6-9 shows the mechanical pump 

impeller before and after the blades were removed [2] 
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Figure 6-9 Mechanical coolant pump before and after removal of impeller blades [2] 

The mechanical coolant pump was rated at 50litres/minute @ 0.8bar back 

pressure at engine speed of 5500rpm [105]. Based on the pump characteristics, the 

Pierberg CWA100-3 was selected to replace the mechanical pump by TMETC. The 

technical specifications of the selected Pierberg CWA100-3 EWP are given in Table 

6-1 below. 

Table 6-1 Pierberg CWA100-3 technical specifications  

Nominal voltage 13.5V 
Voltage range with full 

hydraulic power 

12.5V to 16.5V 
Ambient temperature 

range 

-40°C to 125°C 
Coolant temperature 

range 

-40°C to 125°C 
Speed range 84rpm to 7000rpm 
Hydraulic duty point 30 l/min 

Figure 6-10 shows the EWP cooling circuit and associated instrumentation. Four 

additional thermocouples were installed on the engine to measure the cylinder valve 

bridge and liner temperatures.  
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Figure 6-10 Engine cooling circuit with EWP and additional instrumentation. The outlet of the EWP is 
into the inlet of the non-functional mechanical water pump 

6.6 Pump mapping and control development 

The EWP was initially characterised alongside the functioning mechanical water 

pump in a separate coolant circuit, this allowed calibration of the EWP duty cycle 

without compromising or potentially damaging the engine, had the EWP been 

integrated in the engine cooling circuit from the beginning.   

The initial plan was to mirror the output of the mechanical water pump, which 

had a linear relationship to engine speed. To achieve this, the engine was run and 

changes made to the pump duty map in Motohawk to match the coolant flow across 

the engine speed range. The calibration table was based on engine speed and engine 

load.   

The mechanical and electrical pump flow rates are shown in Figure 6-11. The 

electric pump shows slightly higher flow rate at high engine speeds, this was due to 

the fidelity of the control map. Further calibration would improve this control. 
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Figure 6-11 Comparison of Mechanical and EWP flow rate post calibration  

6.7 Engine performance / BSFC Post Modifications 

 After the introduction of the new EMS, electronic throttle, bespoke manifolds, 

spark optimisation and EWP, the BSFC map of the engine was generated to quantify 

the effect of the changes on BSFC vis-à-vis the production engine. The BSFC map is 

at Figure 6-12. Best BSFC of 245g/kWh was achieved at 2500rpm at WOT.  
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Figure 6-12 Engine BSFC map with bespoke ECU, electronic throttle, bespoke manifolds and EWP 

The BSFC comparison between the baseline engine and optimised engine is 

shown at Figure 6-13. The BSFC improved or remained the same up to 4500rpm, after 

which it increases.  

This is expected as because of the intake manifold tuning and reduction in 

manifold diameter which has resulted in decrease in engine torque as well as increase 

in enrichment of the air fuel mixture beyond 4500rpm to maintain exhaust gas 

temperature within limits.  
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Figure 6-13 Comparison of BSFC maps of RE optimised engine and baseline engine. Numbers less 
than 100 indicate optimised engine BSFC is better than baseline engine BSFC. Increased BSFC post 

4500rpm was expected because of the intake manifold tuning and reduction in manifold diameter which 
has resulted in decrease in engine torque as well as increase in enrichment of the air fuel mixture 

beyond 4500rpm to maintain exhaust gas temperature within limits 

6.8 Conclusion 

The chapter covered the further engine calibration to improve the engine 

performance as well as gain improvements in the engine BSFC. 

Extensive testing was undertaken to reduce exhaust lambda enrichment and the 

engine could be run at lambda 1 up to 3750rpm at WOT, from the earlier 3000rpm 

while maintaining satisfactory exhaust temperatures.  

Spark timing optimisation was carried out to achieve maximum best torque 

while staying within the knock limit. Based on the test results the spark timing map 

was smoothed to ensure smoother transition from one operating point to the other.  
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The next section discussed the introduction of the electric water pump and its 

control development. Merits of the electric water pump and its role in an APU 

application were discussed. The EWP would play a crucial role during subsequent 

integration of the engine and generator coolant loops.  

Subsequent to the modifications/calibration, the engine BSFC map testing was 

undertaken and a best BSFC of 245g/kWh was achieved at 2500rpm at WOT. 

Lastly the performance of the engine post calibration/modifications is compared 

with the baseline production engine. The BSFC improved or remained the same up to 

4500rpm, after which it increased. This was expected as because of the intake/exhaust 

manifold tuning and reduction in manifold diameter resulted in decrease in engine 

torque as well as increase in enrichment of the air fuel mixture beyond 4500rpm to 

maintain exhaust gas temperature within limits.  

The work presented in this chapter formed part of the technical paper titled 

‘Development of a Low-Cost Production Automotive Engine for Range Extender 

Application for Electric Vehicles’ that was presented at the SAE World Congress, 

Detroit in April 2016. Paper reference is 10.4271/2016-01-1055.  
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CHAPTER - 7  
Thermal Survey of Base Engine 

 

This chapter presents the thermal survey carried out on the production engine 

to quantify the effect change in oil and coolant temperature had on engine BSFC. 

The engine BSFC increased by an average of less than 5% by reducing the oil 

and coolant temperature set point from 90°C to 60°C at full load across the 

operating regime. 
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7.1 Introduction 

A key requirement of the APU is to generate maximum electrical power with 

minimum fuel consumption. Therefore, it is important that the engine and the generator 

are operated at the maximum efficiency in addition to optimising the complete system.  

The operating temperature plays an important role on both engine and 

motor/generator efficiency. However, they do have conflicting requirements to 

achieve their own optimal efficiency.  

This chapter covers the experimental work undertaken to determine the effect of 

change in engine coolant and oil temperature on engine performance. This thermal 

survey was carried out on the baseline production engine. Since the optimisation 

carried out in this research on the production engine did not make any design changes 

to the engine, the results of this survey could be extended to the engine with the 

modified manifolds, EWP and bespoke EMS.  

7.2 Lubrication / Friction Considerations in an ICE 

Lubrication regimes encountered in an engine range from high friction boundary 

lubricated contacts where the coefficient of friction may be as high as 0.2 to low 

friction hydrodynamic contacts where the coefficient of friction could be as low as 

0.001. The Stribek diagram [106-108], see Figure 7-1, is used to relate the various 

regimes of lubrication to a duty parameter which is defined as the product of the 

absolute viscosity times the sliding speed divided by the unit load, see equation (6). 
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Figure 7-1 Stribek diagram showing various regimes of boundary, mixed and hydrodynamic lubrication 
versus duty parameter as defined in equation 6 below [107] 

 
 𝐷𝑢𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  

𝜇𝑈

𝑃
 

(6) 

Where, 

μ is the absolute viscosity,  

U is the sliding speed, 

P is the unit load.  

Once the duty parameter for a component is computed, an estimate of the 

lubrication regime can be made. For high unit loads and low sliding speeds, boundary 

lubrication is indicated. In this regime, the coefficient of friction is independent of the 

duty parameter. For contacts operating at higher speeds, it is possible to separate the 

two surfaces with a complete hydrodynamic oil film and the coefficient of friction is 

then proportional to the duty parameter. This is referred to as hydrodynamic 

lubrication. As loads are increased on a hydrodynamic contact, film separating the two 

surfaces becomes thinner. Under this condition, it is possible for the asperities on one 

surface to contact asperities on the other surface. This situation is referred to as mixed 

lubrication. In this case the load is supported in part by the fluid film pressures and in 
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part by the interaction of the solid asperities. It also indicates that there is a lower limit 

to the reduction of the coefficient of friction possible by reducing the speed or the oil 

viscosity [106, 107]. 

7.2.1 Boundary Lubrication 

In boundary lubrication regime the friction force is proportional to the normal 

load and this is frequently referred to as Coulomb friction [107], see equation (7) 

  𝐹 = 𝑓𝑊 (7) 

Where,  

F is the friction force,  

f is the coefficient of friction, 

W is the normal load.  

While the coefficient of friction is independent of the bulk lubricant viscosity, 

the sliding speed and the unit load, it can be influenced by the material combination 

and lubricant additives.  

7.2.2 Hydrodynamic Lubrication 

In hydrodynamic lubrication, relative motion between the two surfaces generates 

a fluid film pressure which separates the surfaces. Friction in hydrodynamically 

lubricated contacts, equation (8), depends on geometry, speed and lubricant viscosity.  

 
𝐹 =  

𝜇𝐴𝑈

ℎ
 

(8) 
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Where,   

μ is the absolute viscosity, 

A is the area,  

U is the velocity, 

h is the film thickness. 

From equation (8) it is evident that friction force is inversely proportional to the 

film thickness, decreasing film thickness for a given geometry increases the friction 

force. However thinner films develop higher fluid film pressures and thus carry higher 

loads. The net result is that as the applied load is increased, the coefficient of friction 

decreases as shown in Figure 7-1 in the hydrodynamic portion of the Stribek diagram. 

As per McGeehan [106], studies have shown that at zero gas pressure (low loads) the 

ring is easily twisted by the frictional forces to give an unfavourable hydrodynamic 

wedge. It is possible, therefore, that with increased gas pressure the onset of mixed 

lubrication is reduced due to the more favourable attitude of the ring in the groove. 

Engine journal bearings also fall under this category of lubrication.  

7.2.3 Mixed Lubrication 

As the hydrodynamic film thickness reduces, asperities on either surface begin 

to come in contact and the region of mixed lubrication is encountered. This regime is 

a combination of hydrodynamic and boundary lubrication. Unit loads on the contact 

can be large enough to cause localised elastic deformation which defines an elasto-

hydrodynamic lubrication mode. Complex interactions between the surfaces and the 

lubricants makes analysis of this phenomenon very difficult, however it is known that 

surface texture controls the transition from the hydrodynamic to the mixed regime 

[107]. 
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7.2.4 Operating Modes of Major Engine Components 

The critical elements in the valve train including the cam-lifter interface and 

rocker-arm pivots, operate in the boundary to mixed regime because high loads are 

encountered at low sliding speed. Piston rings operate over the range of thick film 

hydrodynamic to mixed lubrication as the gas load and velocity of the piston ring vary 

extensively over one engine cycle. At top dead centre (TDC) where the gas forces are 

maximum the velocity of the piston ring is zero and contact occurs between the piston 

ring and the cylinder wall. Contact may be no more than local contact of asperities on 

the ring face while the bulk of the periphery of the ring is separated from the liner by 

the oil’s squeeze film.  

Hydrodynamic lubrication theory indicates that an oil film generated by the 

wedge action is dependent on the ring velocity and therefore the oil film thickness 

should be zero at both TDC and BDC. However, contact with the cylinder during the 

zero or low velocity periods near the ends of the stroke can occur only if the ring is 

able to penetrate the film generated by the wedge action during the high velocity part 

of the stroke. The oil film thickness at the ends of the stroke, therefore, depends upon 

the rate of diminution of the wedge-generated oil film under the influence of radial 

squeezing action of the ring [106]. This oil film is called squeeze film and its thickness 

is the smallest in the cycle. At mid-stroke, piston velocity is maximum, gas forces have 

reduced and a complete hydrodynamic oil film separates the piston ring from the 

cylinder wall.  

The piston skirt because of its large contact area and low loading, is primarily a 

thin film hydrodynamic contact. Engine bearings operate in a hydrodynamic mode 

except for brief periods during starting and stopping.  
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7.3 Mean Effective Pressure (MEP) 

Mean Effective Pressure (MEP) is commonly used to describe the engine output 

and is a parameter used for comparing performance of engines with different 

displacement [99, 104]. Figure 7-2 shows a plot of cylinder pressure versus cylinder 

volume (P-V diagram) of the base engine at WOT, 4000rpm.  

 

Figure 7-2 Actual time logged P-V diagram of base engine at engine speed 2500rpm, WOT from CAS 

Gross Mean Effective Pressure (GMEP) is the positive work delivered to the 

piston during the compression and expansion stroke. The Pumping Mean Effective 

Pressure (PMEP) is the work required by the piston during the intake and exhaust 

strokes. PMEP is the negative work required by the piston to draw the air charge into 

the cylinder and push the exhaust from the engine. The Indicated Mean Effective 

Pressure (IMEP) is the net work extracted by the piston and is the difference between 

GMEP and PMEP.  

Brake Mean Effective Pressure (BMEP) is the work available at the engine and 

can be calculated as:  
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𝐵𝑀𝐸𝑃 =  

𝑇𝑛𝑐

𝑉𝑑
2𝜋 

(9) 

Where, 

T is the torque, 

nc is the number of revolutions per power cycle (i.e. for 4-stroke engine nc =2), 

Vd is the engine displacement. 

Friction Mean Effective Pressure (FMEP) is the work lost due to mechanical 

friction and parasitic losses. Mechanical friction under hydrodynamic, boundary and 

mixed lubrication modes in the engine has been discussed above in Section 7.2.4. 

Parasitic losses are from driving engine ancillaries such as the oil pump water pump 

etc. The friction work or FMEP was expected to increase as the engine coolant and oil 

temperature set points were lowered as the viscosity of the oil increases with lower 

temperature, see Section 7.4. This would impact the BMEP of the engine and in turn 

the BSFC. Mechanical efficiency, ηm is a measure of how efficiently work available at 

the piston is transferred to the crankshaft, see equation (10). 

 
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝜂𝑚  =  

𝐵𝑀𝐸𝑃

𝐼𝑀𝐸𝑃
 

(10) 

7.4 Engine Oil 15W-40 

The OEM recommended engine oil for the base engine for ambient temperature 

from -10°C and above was 15W – 40 API SJ [105]. The kinematic viscosity of the oil 

at 40°C is 105.10 mm2/s and drops to 13.648 mm2/s at 100°C [109], see Figure 7-3. 

Extrapolation at 110°C would give a kinematic viscosity of 5.59 mm2/s.  
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Figure 7-3 Variation of kinematic viscosity of 15W – 40 engine oil with temperature. An exponential 
trendline added to extrapolate viscosity at 110°C [109] 

7.5 Thermal Survey of Baseline Production Engine 

As it was planned to eventually run the APU in a combined engine – generator 

coolant loop to reduce parasitic losses and improve overall efficiency, this involved 

trying to meet the conflicting requirement of running the engine at a higher 

temperature and the generator as cool as possible.  

The positive effect of higher coolant operating temperatures on fuel economy 

and emissions is well documented [84-86]. With the engine cooling system designed 

to cope with the peak-heat rejection rate at WOT conditions, based on a coolant 

temperature set point, the engine and its cooling systems operate at less than ideal 

conditions at part-load, such as city driving or slow cruising, leading to higher fuel 

consumption and emissions output. Increasing the operating temperature set point has 

been the most popular route to achieve improvement in fuel economy and emissions 

[86]. At higher coolant temperatures: - 

(a) There is enhanced combustion process along the cylinder walls. 
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(b) A reduced heat flow to the cooling water. 

(c) Optimised combustion chamber temperatures reducing piston /cylinder 

friction.  

As per the production engine manual, the engine ran best when coolant was at 

93°C [105]. At this temperature, the combustion chamber was hot enough to 

completely vapourise the fuel providing better combustion and reducing emissions. 

Secondly the oil used to lubricate the engine had the right viscosity, so the engine parts 

move more freely, and the engine wasted less power moving its own components 

around. As a result, there was reduction in wear and tear of engine parts. 

The generator and the power electronics delivers better efficiency at lower 

temperature compared to the ICE [51, 52]. 

Therefore, preliminary experimental analysis was carried out to see the effect of 

variation of coolant and oil temperatures on the BSFC of the base engine. For this 

experimental work, the production baseline engine with the Bosch ECU (test bed 

version) was used.  

The independent variables selected for the thermal survey comprised of: - 

(a) Three engine outlet coolant temperature set points. 

(b) Three engine oil gallery temperature set points. 

(c) Four engine speeds. 

(d) Three engine load settings. 

The target speed/torque set points and target fluid set points specified are at 

Figure 7-4 and Figure 7-5 below respectively. The complete matrix of 81 test points is 

placed at Appendix A.  
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Figure 7-4 Target speed / torque set points for thermal survey of base engine 

 

Figure 7-5 Target coolant / oil temperature set points for thermal survey of base engine 

A fully open thermostat was installed on the engine to ensure that 100% coolant 

was flowing to the coolant heat exchanger. Schematic of the engine coolant and oil 
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circuits are below at Figure 7-6 and Figure 7-7 respectively. An adaptor was fitted on 

the oil circuit to allow connection to the test bed oil cooling system. 

 

Figure 7-6 Engine coolant circuit in the test cell. Engine out temperature used as setpoint during 
thermal survey 

 

Figure 7-7 Engine oil circuit in the test cell. Oil gallery temperature used as setpoint during thermal 
survey 
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Thermal survey was successfully carried out for 54 out of the 81 test points. 

Engine testing could not be undertaken for the following target fluid set points:- 

(a)  Engine coolant outlet set point 110°C, oil gallery set point 110°C (09 

test points). 

(b)  Engine coolant outlet set point 110°C, oil gallery set point 90°C (09 test 

points). 

(c)  Engine coolant outlet set point 110°C, oil gallery set point 60°C (09 test 

points). 

This was because of the following reasons: - 

(a)  At coolant outlet temperature of 105°C, Hardware Protection (HWP) 

indicating high coolant temperature operated. This is a hardware protection in 

the Sierra CP Cadet software. To overcome this, the HWP settings were changed 

to 127°C.  

(b)  However, with the revised HWP setting, as the engine out coolant 

temperature rose to 112°C, the engine malfunction indicating lamp (MIL) came 

on. As a result, it was not possible to progress testing. The MIL setting is within 

the closed production Bosch ECU and since low level access was not available 

at this time, this setting on the ECU could not be altered.   

The oil gallery and coolant engine out set points were varied as per the test 

schedule. Figure 7-8 and Figure 7-9 show the variation of oil gallery temperature and 

engine coolant out temperature at the various set points at WOT respectively.   Some 

keys observations from the figures below were: - 
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(a)  A coolant set point of 60°C maintains an oil gallery temperature below 

the set point of 110°C, below 5000rpm.  

(b) Above 4000rpm the oil gallery temperature was found to exceed the set 

point of 60°C for coolant temperature set point conditions of 90°C despite 100 % 

cooling open for the oil heat exchanger. 

(c) Coolant temperature control was very good throughout the test program 

and within ±2°C of the set point. 

 

Figure 7-8 Oil gallery temperature variation at various setpoints versus engine speed, WOT 
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Figure 7-9 Engine coolant temperature variation at various setpoints versus engine speed, WOT 

The results of the thermal survey on the BSFC are discussed in the succeeding 

paragraphs. As expected with decrease in oil and coolant set points, the friction work 

required showed an increase. Figure 7-10 shows the increase in FMEP when the oil 

and coolant set points are changed from 90°C to 60°C at full load condition at various 

engine rpm. Since there were no intermediate oil and coolant set points between 60° 

and 90°C, the increase in FMEP from 60°C to 90°C appear to be linear. However, it 

would not be the case had there been more points in between. Figure 7-11 shows the 

effect on FMEP and mechanical efficiency of the engine at 60°C and 90°C oil and 

coolant set points across engine rpm at full load.  
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Figure 7-10 Increase in FMEP at WOT with reduction in oil & coolant set points at different engine rpm 

 

Figure 7-11 Comparison of FMEP & mechanical efficiency at oil and coolant set points of 60° and 90°C 
across engine rpm, WOT 
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Figure 7-12  and Figure 7-13 show the BSFC versus engine speed for the two 

load conditions of 24Nm and full load (WOT). 

 

Figure 7-12 BSFC versus engine rpm at varying engine fluid settings at 24Nm torque 

 

Figure 7-13 BSFC versus engine rpm at varying engine fluid settings at full load (WOT) 
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Figure 7-13 clearly illustrates that at full load the minimum BSFC is at 3000rpm 

for various coolant and oil set points. At this engine rpm as the coolant temperature is 

lowered there is an increase in BSFC. A similar trend is seen at all other engine rpms 

as well which is expected as brought out earlier in the report.  

Comparison of BSFC at WOT for conditions oil and coolant at 90°C versus 

coolant at 90°C and oil at 110°C merits attention. At 3000rpm increasing the oil 

temperature set point to 110°C does not affect the BSFC as the oil temperature does 

not exceed 92.5° and therefore the condition is effectively the same as for the oil 

temperature set point at 90°C. Likewise at 2000rpm, irrespective of the oil temperature 

set point of 90°C or 110°C, the oil temperature recorded is 86.3°C and 87.3°C (for 

coolant set point of 90°C in both cases) and therefore the difference in BSFC observed 

could not be explained.  

At higher rpm of 4000 marginal decrease in BSFC is seen with increase in oil 

temperature from 90°C to 110°C, which then increases at 5000rpm. This could be 

attributed to the fact that as the oil gallery temperature set point is increased it also 

affects the oil sump temperature. At 4000rpm the oil sump temperature at the oil 

gallery set point of 110°C is higher by 9°C as compared to 90°C set point. As a result, 

the oil viscosity decreases which reduces the coefficient of friction, see Figure 7-1, 

and results in lower friction losses. However, at 5000rpm, the oil sump temperature is 

higher by 17°C, which while further lowering the oil viscosity could push the 

lubrication regime into the mixed regime resulting in increase in the coefficient of 

friction.  

A similar trend at a load condition of 24Nm is not as clear. This could be 

attributed to fact that as the engine has a cable operated throttle rather than electronic 

throttle control (ETC), it was not possible to be at exactly 24Nm load condition at all 

the concerned test points. This would have affected the calculation of BSFC and hence 

the comparison would not be for exactly similar load conditions.  
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It is evident from Figure 7-13 that the engine performance is optimal at oil and 

coolant set points of 90°C. Running the engine at lower coolant temperatures increases 

the BSFC. When the coolant and oil set points are decreased to 60°C, at 2000rpm, the 

BSFC increases from 257.74g/kWh to 277.33g/kWh (increase of 7.6%). Likewise, at 

5000rpm the BSFC increases from 285.67g/kWh to 295.59g/kWh (increase of 3.47%). 

When the coolant and oil set points are increased to 90°C and 110°C respectively, at 

5000rpm the BSFC increases from 285.67g/kWh to 288.35g/kWh (increase of 0.93%). 

However, at 4000rpm, the BSFC decreases from 263.85g/kWh to 260.38g/kWh 

(decrease of 1.31%). 

Based on the above findings, if the BSFC is compared at the oil and coolant set 

points of 90°C versus 60°C, the BSFC plot clearly brings out the increase in BSFC 

with reducing temperature, see Figure 7-14, which is an excerpt from Figure 7-13 

above. The engine BSFC increased by an average of less than 5% by reducing the oil 

and coolant temperature set point from 90°C to 60°C at full load across the operating 

regime. 

 

Figure 7-14 Comparison of BSFC at WOT with oil/coolant set point at 90°C versus 60°C. Minimum 
BSFC seen at 3000rpm  
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7.6 Conclusion 

The conflicting requirements of running the engine at a high temperature 

(~90°C) and the generator to run as cold as possible (~50°C) has consequences on 

vehicle system integration such as the need to use separate coolant loops, radiators, 

pumps etc. Employing a common cooling loop can reduce parasitic loads and simplify 

vehicle integration but requires operating the engine and/or the generator under sub-

optimum thermal conditions. Since the eventual aim was to run the engine and the 

generator in a single loop, it was important to determine how the engine performance 

deteriorated with drop in oil and coolant temperature.  

An exhaustive thermal survey of the production engine was undertaken to 

quantify the effect of oil and coolant temperature on engine BSFC.  

The engine BSFC increased by an average of less than 5% by reducing the oil 

and coolant temperature set point from 90°C to 60°C at full load across the operating 

regime.  

The work presented in this chapter formed part of technical paper titled ‘Thermal 

Management of a Low-Cost Range Extender for Electric Vehicles’ which was 

presented at the 6th Hybrid and Electric Vehicles Conference (HEVC 2016) in 

November 2016. Paper reference is 10.1049/cp.2016.0976. 
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CHAPTER - 8  

APU Commissioning and Performance 

 

This chapter presents the integration of engine with the interior permanent 

magnet machine. Baseline ESFC testing of the APU was carried out under 

optimal thermal conditions for the engine and electrical machine with separate 

coolant circuits. Subsequently the performance of the APU was compared under 

varying thermal conditions and combining the engine and generator coolant 

circuit. 
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8.1 Introduction 

This chapter presents the integration of engine with the prototype interior 

permanent magnet machine (IPM) developed by Ashwoods Automotive Ltd. Initially 

baseline ESFC testing of the APU was carried out under optimal thermal conditions 

for the engine and electrical machine with separate coolant circuits. Subsequently, 

exhaustive experimental analysis was undertaken on the APU to determine whether it 

was possible to combine the ICE, generator and power electronics in a single coolant 

circuit to accrue the benefits of reduced parasitic losses and simpler vehicle integration 

whilst maintaining satisfactory performance. The target best ESFC aimed at was 

<270g/kWh, and the rated ESFC was 290-320g/kWh. Performance of the APU was 

quantified by varying thermal conditions and combining the engine and generator 

coolant circuit.  

8.2 Specification of Prototype Motor / Generator Unit 

A bespoke IPM machine with integrated inverter was developed by Ashwoods 

Electric Motors in consultation with TMETC for the purpose of this research, see 

Figure 8-1.  

 

Figure 8-1 IPM machine with integrated inverter developed by Ashwoods Automotive Ltd [110] 
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This motor/generator (M/G) unit was mounted directly onto the engine crank 

palm.  With such an arrangement the need for extra generator bearings and a compliant 

coupling between the engine and generator is removed, facilitating a compact APU 

[50]. The main specifications of the prototype motor/generator (M/G) are given in 

Table 8-1 below.  

Table 8-1 Specifications of the bespoke M/G and inverter [110] 

Parameter Value Unit 

DC voltage 350 ~ 450 V 

Peak inverter DC 

current 
100 

A 

Operating speed 4000-5000 rpm 

Cranking torque 80 Nm 

Generator/inverter η >90 % 

Continuous power 25 kW 

Simulation results versus measured results at the OEM test bed indicated that the 

generator/inverter efficiency under ideal coolant temperature conditions was of the 

order of 95% at 4000rpm, see Figure 8-2.  

 

Figure 8-2 Comparison of generating torque efficiency between simulated and measured results on the 
OEM Ashwoods test bed. Generator/inverter efficiency under ideal coolant temperature conditions was 

of the order of 95% at 4000rpm 
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After coupling of the engine with the M/G and inverter unit the total dry weight 

of the APU was measured to be 81.5kg as against an initial target of 80kg. 

8.3 APU test bed configuration 

The test bed set up for testing of the APU was similar to that described in Section 

3.4. However, the dynamometer was no longer required, and the engine output was 

absorbed by the generator. The output of the generator was fed to a bi-directional DC 

power supply. This DC power supply was also used to supply power to the motor for 

starting of the engine. The test cell set up with the APU is shown in Figure 8-3.  

 

Figure 8-3 Experimental set up for testing of APU 

8.4 Benchmarking of APU Thermal Performance 

One of the key requirements of an APU is to provide maximum electrical power 

while minimising fuel consumption. To do so, it is important that the engine and the 
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generator are operated at their maximum efficiency in addition to optimising the 

complete system to reduce any parasitic losses in the auxiliary systems. One of the 

ways to reduce parasitic losses is to combine the engine and generator cooling circuit. 

This also simplifies vehicle integration by avoiding duplication of cooling circuit 

components.  

The system efficiency is one of the key parameters for an APU since it decides 

the maximum possible electric power that can be delivered with a given amount of 

fuel, i.e. the fuel economy. The operating temperature plays an important role on both 

engine and motor/generator efficiency. However, they have conflicting requirements 

to achieve their own optimal efficiency.  

The positive effect of higher coolant operating temperatures on an engine’s fuel 

economy and emissions is well documented and has been discussed at length in 

Sections 2.11 and 7.5. The base engine was designed to run with coolant at about 93°C. 

At this coolant temperature the combustion chamber wall temperature aided fuel 

vaporisation providing more complete combustion and reducing emissions.  

Secondly the oil used to lubricate the engine had a lower viscosity at this 

temperature so less friction was encountered, consequently reducing parasitic losses 

and potentially minimising wear and tear of engine components [105]. Drop in coolant 

temperature set point from 90°C to 60°C resulted in an increase in BSFC across the 

engine operating range from 2000 to 5000rpm as has been demonstrated at Section 

7.5.  

On the other hand, the performance of the motor/generator and the power 

electronics is limited by their peak working temperatures. Low coolant temperature is 

preferred for better efficiency as opposed to the ICE [51, 52]. Therefore, when 

designing the combined coolant loop for the APU, a compromise had to be made 

between adopting a high temperature coolant for the electrical system that is close as 
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to the production engine set point or reducing the engine operating temperature to 

improve motor efficiency. 

The initial performance characterisation of the APU was carried out using two 

independent coolant loops as shown at Figure 8-4. This enabled the engine outlet 

coolant temperature and generator inlet coolant temperature to be controlled 

independent of each other. 

 

Figure 8-4 Independent coolant loops for engine and generator [110] 

The engine’s oil gallery temperature was controlled independent to the system 

coolant circuits as shown in Figure 8-5. Having independent control on the coolant and 

oil circuits provided greater flexibility while designing the DOE for the thermal 

performance of the APU.    
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Figure 8-5 Engine oil circuit 

The coolant inlet temperature to the generator was set to 35°C. The engine outlet 

coolant and the oil gallery temperatures were set to 90°C. The EWP on the engine 

coolant circuit was calibrated to match the erstwhile mechanical pump flow rate, while 

in the generator coolant circuit it was initially set to 25 litres per minute (LPM) across 

all speeds. This was done because being a prototype generator its thermal response 

was not definitively known. The effect of change in coolant flow rate on generator 

temperatures was not studied at this time. 

Testing was undertaken to generate the ESFC map of the APU and the results 

are shown in Figure 8-6. The APU generated a peak power of 22.78kW at 5100rpm. 

The full load power curve has been superimposed on the map. A best ESFC of 

260g/kWh was measured at 2500rpm, and the ESFC remained below 270g/kWh across 

2000 to 3500 rpm at full load. 
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Figure 8-6 ESFC map, generator coolant inlet set point 35°C, engine oil and coolant set point 90°C.  A 
best ESFC of 260g/kWh was measured at 2500rpm, and the ESFC remained below 270g/kWh across 

2000 to 3500 rpm at full load [110] 

A comparison was done to check the increase in SFC of the APU vis-à-vis the 

optimised engine in Section 6.7. Figure 8-7 shows the increase in SFC of the APU in 

comparison to the engine. At WOT conditions there is a drop of APU power by an 

average of 4.11% and an increase in SFC by 3.63%.  

 

Figure 8-7 Comparison of engine versus APU specific fuel consumption. The SFC maps based on 
power are shown and the comparison highlighted for WOT 
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The results at Figure 8-7 compare favourably with simulation/measured results 

as shown in Figure 8-2. Under ideal thermal conditions the generator has an efficiency 

of the order of 93% to 95% across 2000-4500rpm. After coupling the engine to the 

generator, we see a similar drop in APU power and SFC.  

The ESFC map at Figure 8-6 was under optimum thermal conditions both for 

the engine (~90°C) and the generator (~35°C). It became the benchmark to compare 

the subsequent effects of changing coolant temperatures in the engine and generator 

coolant circuits with the final aim to integrate the cooling circuits. The ESFC map did 

not take the power requirements to drive the EWPs for the two independent circuits 

into consideration. 

The power drawn by the engine EWP is shown at Figure 8-8. Since the engine 

EWP replicates the performance of the erstwhile engine gear driven mechanical pump, 

the EWP power drawn increases with the engine speed, irrespective of the load. The 

power drawn by the generator EWP was a constant of 57.88 watts across the entire 

operating regime to deliver a constant flow rate of 25 LPM.  

 

Figure 8-8 Engine EWP power (watts) drawn with respect to APU speed. Power drawn by the EWP is a 
function of engine speed only and independent of engine load  
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8.5 APU Performance with varying Coolant & Oil Temperatures 

The next stage in the experimental analysis was to determine the effect of 

generator coolant inlet temperature, engine outlet coolant temperature and oil gallery 

temperature on the continuous power performance of the generator, while remaining 

within the temperature limits for the generator. During the initial phase of testing, the 

temperature limits set for safe operation of the M/G, inverter and power electronics 

(IGBT), as set by the OEM are at Table 8-2. 

Table 8-2 M/G, inverter and IGBT temperature limits provided by the OEM Ashwoods Motors 

 Warning Inverter Trip Remarks 

Motor Temperature 135°C 150°C Motor de-rates between 

140°C to 150°C 

IGBT Temperature 110°C 140°C  

Inverter Temperature 95°C 100°C  

This testing was divided into two stages. Initially having two independent 

coolant circuits for the engine and the M/G unit with the final aim of combining the 

two coolant circuits.  

8.5.1 Independent Coolant Circuits 

Initially the engine oil and coolant temperature set points were kept constant at 

their optimum value of 90°C during the first set of tests, while varying only the 

generator inlet coolant temperature. The aim was to study the generator continuous 

performance variation with change in generator inlet coolant temperature. It was 

expected that as the generator inlet coolant temperature was increased, there would be 

a drop in its continuous power output.   

Subsequently in the second set of tests, the effect of simultaneously varying the 

generator inlet coolant temperature, engine outlet coolant temperature and the oil 

gallery temperature set point was tested at maximum power. 
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For both sets of tests above, the flow rate in the engine coolant loop was matched 

to the flow with the erstwhile mechanical pump, while the flow rate in the generator 

coolant circuit was retained at 25 LPM across all speeds. 

During the first set of tests, at generator inlet coolant set point of 80°C at 

4000rpm maximum power, it was observed that the inverter temperature warning limit 

of 95°C, was being crossed, see Figure 8-9.  

 
Figure 8-9 Inverter temperature (red line) warning limit of 95°C being crossed at maximum generator 

power output. APU speed 4000rpm, generator coolant inlet set point 80°C, engine coolant outlet and oil 
gallery set point 90°C 

Accordingly post discussions with the OEM, Ashwoods Motors, the M/G, 

inverter and IGBT temperature limits were revised and are shown at Table 8-3. The 

rationale behind the change in temperature limits was since during testing it was 

observed that the IGBT temperature closely followed the generator inlet coolant 

temperature set point. Therefore, its warning and invertor trip temperature limits were 

lowered as it was not foreseen to operate the generator at a coolant inlet temperature 

greater than 90°C. The motor warning temperature was raised to 140°C as its 

temperature was well within the safe working temperature. 
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Table 8-3 Revised motor/generator, inverter and IGBT temperature limits provided by the OEM 
Ashwoods Motors 

 Warning Inverter Trip Remarks 

Motor Temperature 140°C ↑ 150°C Motor de-rates between 

140°C to 150°C.  

IGBT Temperature 105°C ↓ 115°C ↓ Limits lowered. 

Inverter Temperature 100°C ↑ 105°C ↑ Limits raised. 

 

Testing was repeated with the revised M/G temperature limits. It was observed 

that at the generator inlet coolant temperature set at 80°C, at 4000 and 4500rpm, the 

inverter still reached the warning temperature limit of 100°C and hence the APU power 

request had to be reduced. The power request was reduced till the inverter temperature 

dropped to just below 100°C at which it was considered safe for continuous operation 

of the generator. Figure 8-10 shows the cutback in power request from maximum 

power down to 18kW to reduce the inverter temperature below the warning limit at 

4500rpm. 

 

Figure 8-10 Inverter temperature (red line) warning limit of 100°C being crossed at maximum generator 
power output. APU power demand reduced to 18kW to stay within inverter safe operating temperature 
limit. APU speed 4500rpm, generator coolant inlet set point 80°C, engine coolant outlet and oil gallery 

set point 90°C 
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Based on the revised temperature limits and continuous APU performance, the 

results of the first set of tests wherein the engine oil and coolant temperature set points 

were kept constant at their optimum value of 90°C while varying only the generator 

inlet coolant temperature, are tabulated at Table 8-4 below.  

Table 8-4 Generator maximum continuous power and ESFC performance varying only generator inlet 
coolant set point. Figures in red indicate requirement to cut back on APU power demand to stay within 

temperature limits specified for the inverter by the OEM Ashwoods Motors [110] 

 4000rpm 4500rpm 5100rpm 

Generator inlet 

temperature °C 

(with engine 

coolant outlet 

and oil gallery 

SP 90°C) 

Maximum 

Continuous 

Power 

[kW] 

ESFC 

[g/kWh] 

Maximum 

Continuous 

Power 

[kW] 

ESFC 

[g/kWh] 

Maximum 

Continuous 

Power 

[kW] 

ESFC 

[g/kWh] 

60 18.7 304 20.7 305 21.8 329 

70 18.4 307 20.7 311 21.9 329.5 

80 17.6 287 17.9 310 22.5 325.9 

90 <2 kW 

 (Inverter 

tempr 

102°C) 

680 1.5 

 (Inverter 

tempr 

100°C)  

969  1.5 

 (Inverter 

tempr 

100°C)  

951 

Although there was a requirement to cutback power demand at 4000rpm and 

4500rpm, at 5100rpm, the generator and the inverter temperatures were maintained 

within limit at full load. This could be attributed to the fact that although the power 

output increased at 5100rpm, the mean engine torque at this speed was actually lower 

than 4000rpm and 4500rpm. This led to lower Joule losses in the motor, which is the 

dominant part of the total loss, therefore less heat is generated.  

Subsequently in the second set of tests, the effect of varying the generator inlet 

temperature, engine coolant outlet temperature and the oil gallery temperature set point 

was tested at maximum power. Results of the second set of tests are tabulated at Table 

8-5.  
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Table 8-5 Generator maximum continuous power performance and ESFC while varying generator and 
engine coolant and oil temperature set points. Figures in red indicate requirement to cut back on power 

to stay within temperature limits specified for the inverter [110] 

 4000rpm 4500rpm 5100rpm 

Engine coolant, 

oil gallery and 

generator coolant 

temperature [°C] 

Maximum 

Continuous 

Power [kW] 

ESFC 

[g/kWh] 

Maximum 

Continuous 

Power [kW] 

ESFC 

[g/kWh] 

Maximum 

Continuous 

Power [kW] 

ESFC 

[g/kWh] 

70 18.9 294.7 20.69 313 21.5 333 

80 18.0 291 20.7 314 21.5 331 

90 <2 kW 

 (Inverter 

tempr 

102°C) 

680 1.5 

 (Inverter 

tempr 

100°C)  

969  1.5 

 (Inverter 

tempr 

100°C)  

951 

The maximum power in red indicates that the power had to be cut back to keep 

within the inverter warning temperature limits. Here again at 4000rpm the inverter 

temperature reached its 100°C limit and power had to be reduced to 18kW. In the 

4500rpm test case, the inverter temperature remained within its 100°C limit and hence 

the APU power increased from 17.9kW to 20.7kW despite the drop in engine and oil 

gallery temperature from 90°C to 80°C. Further analysis of the test data indicated that, 

due to the inverter being operated extremely close to its limiting temperature, the cell 

ambient temperature variation of ±2°C was affecting APU peak performance [110]. 

The detailed tables with M/G, inverter and IGBT temperatures during the two 

set of tests are placed at Appendix B and Appendix C respectively. 

The inverter over-temperature condition was caused due to the limited cooling 

available to the prototype inverter board. Subsequent design modifications by the 

OEM to the cooling configuration allowed better internal air flow to the inverter as 

well as a change in the potting compound with better thermal conductivity improved 

the cooling.  
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Further, the internal cooling fan of the M/G unit was replaced with an improved 

design which was more effective. As a result, post these modifications, the issue of 

inverter over-temperature was no longer experienced.  Figure 8-11 shows the old and 

the new internal cooling fan. The fan on the left is the old design while the fan on the 

right is the improved design.  

 

Figure 8-11 M/G unit internal cooling fan. The fan on the left is the old design while the fan on the right 
is the improved design, courtesy Ashwoods Motors 

Based on the results obtained it was evident that a generator coolant inlet 

temperature of 80°C and engine coolant outlet and oil gallery temperature of 80°C 

could be used for further testing without any adverse effect on the APU. At these 

temperatures set points, both the engine and generator were performing satisfactorily 

without substantial requirement to cut back on power to stay within the temperature 

limits of the inverter.  

Accordingly, a testing was carried out to generate an EFSC map at generator 

coolant inlet temperature of 80°C and engine coolant outlet and oil gallery temperature 

of 80°C. The same is placed at Figure 8-12.  
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Figure 8-12 ESFC map, separate coolant loops for engine and generator. Generator coolant inlet, 
engine coolant outlet and oil gallery temperature set point of 80°C 

The next step in the integration process was to match the generator coolant 

circuit flowrates to the engine coolant circuit flow rates across all speeds. This was 

necessary since in the subsequent simple combined circuit, the flowrate would be 

similar to that of the engine EWP. Accordingly, the generator EWP duty map was re-

calibrated to match the flowrates in the two circuits. The same is shown in Figure 8-13.  

The full load power curve testing of the APU was carried out with the matched 

flowrates in the independent circuits and the performance was found to be satisfactory. 

However, at this stage the maximum power continuous performance testing was not 

carried out. It was planned to undertake this once the coolant circuits were combined.  
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Figure 8-13 Matched engine and generator coolant circuits flowrates  

The next step in the integration process was to move to a single coolant loop for 

the engine and the generator.  

8.5.2 Single Coolant Circuit for Engine and Generator 

The two coolant circuits were combined as a single circuit as shown in Figure 

8-14. The coolant flow was matched to the flow values in the independent engine 

coolant flow circuit. It was observed that this resulted in coolant flow fluctuation at 

various engine rpm. 
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Figure 8-14 Combined engine and generator coolant circuit. The header tank connection is at the inlet 
of the heat exchanger 

To obviate this issue, the header tank connection was relocated to the inlet of the 

EWP, see Figure 8-15. It was opined that this would reduce the suction pressure at the 

inlet of the pump. Further, the combined circuit was also pressurised to 0.4 bar to 

replicate the pressure of a closed coolant circuit of a road vehicle.  

 

Figure 8-15 Combined engine and generator coolant circuit. Header tank connection relocated at entry 
to the EWP [110] 
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The power drawn by the EWP is shown in Figure 8-16. It was observed that the 

EWP draws less power in the single circuit as compared to the EWP for the engine 

coolant circuit in the independent circuit. This was attributed to the relocation of the 

header tank connection of the inlet of the EWP which reduced the suction pressure at 

the inlet of the pump and consequently reduced the power drawn [110]. 

 

Figure 8-16 EWP power (W) and flow rate (LPM) with respect to APU speed – combined coolant circuit 
post relocation of coolant header tank [110] 

In the single coolant loop, the generator inlet coolant temperature set point of 

80°C was potentially high enough to cause the engine outlet coolant temperature to 

rise to 90°C viz. the engine production manual set point. Under these conditions, the 

engine was only marginally running below sub-optimal because the oil gallery set 

point had been lowered from 90°C to 80°C, which would increase the oil viscosity and 

result in slightly higher frictional losses. 
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Continuous performance testing was carried out with the combined circuit. It 

was observed that subsequent to the modifications in the inverter cooling design, the 

inverter critical temperatures were no longer exceeded. However, motor critical 

temperatures were reached at 4000 and 4500rpm. Coolant flows were increased to 25 

LPM subsequently from their values of 18 LPM and 22 LPM respectively, however 

the increased flow did not reduce the motor temperatures [110].  

Table 8-6 below summarises the maximum continuous power and ESFC in the 

combined coolant circuit with generator inlet coolant and engine oil gallery set point 

at 80°C. 

Table 8-6 Maximum continuous power in a combined coolant circuit with generator inlet and oil gallery 
set point at 80°C. Figures in red indicate requirement to cut back power to stay within the motor 

temperature limits 

APU speed 

[rpm] 

Maximum continuous 

power [kW] 

ESFC 

[g/kWh] 

2000 8.62 273 

2500 11.33 271 

3000 13.77 271 

3500 16.37 268 

4000 18.73 292 

4500 19.97 310 

5100 21.81 333 

There was a need to cut back the power at 4000rpm and 4500rpm to keep the 

motor temperature within limits. The ESFC map of the APU in a combined coolant 

loop with generator inlet coolant temperature at 80°C with power limitations at 

4000rpm and 4500rpm is shown in Figure 8-17 below. 
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Figure 8-17 APU ESFC map, generator inlet coolant set point 80°C, engine oil gallery set point 80°C, 
combined coolant circuit with power cut back at 4000rpm and 4500 rpm [110] 

8.6 Analysis of Experimental Results 

On comparing the maximum power continuous performance data of the APU in 

Table 8-5 and Table 8-6, it is observed that the performance of the APU with separate 

and combined coolant loops is comparable with the generator inlet coolant temperature 

and oil gallery temperature set point at 80°C. The differences observed are well within 

measurement accuracy and test-to-test variability. Therefore, by combining the coolant 

loops, with coolant flows matched to the erstwhile mechanical engine coolant pump, 

we were able to get similar performance and efficiency from the APU while greatly 

simplifying the cooling circuit and reducing parasitic loads of the EWP. 

Based on the experimental results, on comparing the two ESFC maps at full load 

across 2000rpm to 5100rpm in Figure 8-6 and Figure 8-17, there was a drop in APU 
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power by an average of 4% with an increase of ESFC by circa of 2%, see Figure 8-18, 

at operation of the APU at 80°C set points of generator inlet coolant and oil gallery 

temperature. This can be attributed primarily to the higher operating temperature of 

the generator with the increase in the generator inlet coolant temperature set point from 

35°C to 80°C. Although the engine efficiency also reduced with drop in coolant and 

oil temperature, however in the combined circuit the engine outlet coolant temperature 

continues to reach around 88°C. The oil gallery temperature has been reduced by 10°C 

to 80°C which would marginally increase the frictional losses because of increase in 

oil viscosity. 

 

Figure 8-18 Change in APU power and ESFC at generator inlet coolant temperature and engine gallery 
temperature set point at 80°C vis-à-vis generator inlet coolant temperature at 35°C and engine oil 

gallery temperature set point at 90°C 

Comparing the optimised engine power and BSFC at Figure 6-12 with the APU 

power and ESFC (combined coolant circuit @ 80°C and oil gallery temperature 

setpoint at 80°C) at Figure 8-17, indicates average generator efficiency of the order of 

91% based on power and 93% based on SFC, see Figure 8-19.  
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Figure 8-19 Change in APU power and SFC at generator inlet coolant temperature and engine gallery 
temperature set point at 80°C vis-à-vis optimised engine with engine coolant outlet temperature set 

point at 90°C and engine oil gallery temperature set point at 90°C 

Although there is an increase in ESFC by combining the coolant loops, there is 

a sizeable saving in parasitic losses as regards the EWP. Over 50% saving in parasitic 

loads is achieved in the combined circuit at 4500rpm, with even greater savings at 

lower speeds as shown in Figure 8-20.  

This is attributed to two reasons. Firstly, in the independent generator coolant 

circuit the flow had been set to a maximum of 25 LPM across all engine speeds. This 

resulted in a large draw of EWP power. However, once the circuits were combined, 

because of the reduced flows (matched to the independent engine coolant circuit), the 

EWP power has reduced.  

Secondly re-positioning of the header tank to the inlet of the EWP also improved 

the flow in the combined coolant circuit and hence resulted in reduced EWP power.     
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Figure 8-20 Comparison of EWP power in separate and combined coolant loops  

Figure 8-21 shows the impact of including EWP power consumed on APU 

ESFC. It shows the very marginal increase in ESFC after including the EWP power.  

 

Figure 8-21 Impact of including EWP power consumed on APU ESFC. There is a very marginal 
increase in ESFC after including the EWP power. Since the EWP power is a function of APU speed 

only, its impact on ESFC increases with increase in APU speed (black line). 
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Since the EWP power is a function of APU speed only, its impact on ESFC 

increases with increase in APU speed. Detailed calculations of the impact of EWP 

power on the APU ESFC are shown in Appendix D. 

8.7 Conclusion 

This chapter has discussed the commissioning of the APU subsequent to the 

engine optimisation and then the development of a thermal management system for 

using a single coolant loop for the APU. After coupling of the engine with the M/G 

and inverter unit the total dry weight of the APU was measured to be 81.5kg as against 

an initial target of 80kg. 

The target best ESFC of <270g/kWh was exceeded under optimal temperature 

conditions with separate coolant circuits for the engine and generator, with peak power 

of 22.78kW at 5100rpm. Best ESFC of 260g/kWh was measured at 2500rpm, and the 

ESFC remained below 270g/kWh across 2000rpm to 3500rpm at full load. These 

exceed the bespoke Mahle APU best ESFC of 283g/kWh. From 4000rpm to 4500rpm 

the ESFC was between 285g/kWh to 305g/kWh which was also within the target ESFC 

and are comparable to the Mahle ESFC of 292g/kWh. The specific performance of the 

APU at peak power was 270W/kg which was within the target of 250 to 313W/kg. 

The experimental analysis also demonstrated that it was possible to operate the 

APU in a combined coolant loop, to meet the conflicting requirement of running the 

engine at a high temperature and the generator as cold as possible, with marginal drop 

in power and increase in ESFC. In the combined loop, with a coolant temperature of 

80°C at the generator inlet, there was a drop in APU power of an average of 4% and 

an ESFC penalty of circa 2% at full load across the operating regime. However, the 

combined loop provides greater flexibility of package installation and simplifies 

vehicle integration, with reduction in parasitic losses. It also reduces the overall 

package cost which was one of the objectives of this research. With subsequent 
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improvement in bespoke generator internal cooling design, cutback of power at 4000–

4500rpm could be avoided which would improve APU power and ESFC in this range. 

As shown in the experimental analysis, the electric coolant pump output was 

matched to that of the erstwhile mechanical engine driven coolant pump. The flow 

rates in such a strategy are designed to cope with peak heat rejection rate at high power 

conditions, and consequently at other conditions such as city driving or slow cruising, 

the system is less efficient i.e. wasteful pumping work and negative impact on oil and 

combustion temperatures. Also, it was seen that the generator is less sensitive to 

change in coolant flow rates which gives an opportunity to change the flow rates 

without affecting the generator performance. 

As the operating limits on the engine structure revolves around the maximum 

metal temperature in certain key locations, it is more desirable to regulate the flow rate 

to ensure that such metal temperature remains within limit, rather than the coolant 

temperature [86]. By regulating the flow rate such that metal temperatures are always 

at an optimum level even at low power conditions, savings can be made in fuel 

consumption and lower emissions. Therefore, further experimental work could be 

planned to optimise the flow rates in the APU coolant circuit based on metal 

temperatures to further reduce EWP parasitic power and improve ESFC.  

The work presented in this chapter formed part of technical paper titled ‘Thermal 

Management of a Low-Cost Range Extender for Electric Vehicles’ which was 

presented at the 6th Hybrid and Electric Vehicles Conference (HEVC 2016) in 

November 2016. Paper reference is 10.1049/cp.2016.0976. 
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CHAPTER - 9  

APU Performance over NEDC 

 

This is a brief chapter which discusses the performance of the APU over the New 

European Drive Cycle (NEDC). It demonstrates that the APU was successfully 

able to produce the necessary power output as demanded by the vehicle 

supervisory controller (VSC) based on a representative vehicle model developed 

by TMETC.  
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9.1 Introduction 

In this chapter, the performance of the APU was seen over a New European 

Drive Cycle (NEDC). The NEDC is discussed and then establishes that the APU was 

successfully able to produce the necessary power output as demanded by the Vehicle 

Supervisory Controller, based on a representative vehicle model prepared by TMETC. 

9.2 Drive Cycle 

A drive cycle is a fixed schedule of vehicle operation which allows an emission 

test to be conducted under reproducible conditions. Drive cycles are usually defined 

in terms of vehicle speed and gear selection as a function of time. It is important to 

note that drive cycles may be used for a variety of purposes other than emissions 

measurement, such as testing engines or drive train durability. Depending on the 

character of speed and engine load changes, cycles can be broadly divided into the 

following: - 

(a) Steady state cycle 

(b)  Transient cycle 

A steady state cycle is a sequence of constant engine speed and load conditions. 

Such cycles are mainly used for testing of heavy-duty diesel engines. In transient 

cycles, the vehicle speed and engine load are changing continuously. These are used 

for testing of light-duty vehicle [57]. There are various drives cycles which are used 

all over the world such as NEDC, Artemis, FTP etc, however for purpose of this 

research the performance of the APU was tested against the NEDC since this is the 

cycle used for type approval of light-duty vehicle models in the European Union. Brief 

discussion on the various drive cycles that have been mentioned in the thesis is covered 

in the succeeding paragraphs.   
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9.3 Artemis Drive Cycle 

The Assessment and Reliability of Transport Emission Models and Inventory 

Systems (Artemis) drive cycle project was undertaken to collect data on the actual 

driving of European cars and to derive representative real-world driving cycles to 

ensure the compatibility and integration of all the resulting emission data in the 

European systems of emission inventory [111]. With 77 passenger cars used under 

actual driving conditions, taking into account the diversity of driving conditions and 

behaviours, led to the identification of 12 classes obtained by automatic clustering of 

speed profiles recorded on-board vehicles. Urban, rural-road and motorway cycles 

were developed, see Figure 9-1. The Motorway cycle has two variants with maximum 

speeds of 130 and 150 km/h.  The set of the Artemis real-world and reference drive 

cycles is widely used in the frame of European projects [111]. 

 

Figure 9-1 Artemis urban, rural-road and motorway driving cycles [111] 
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9.4 Hyzem Drive Cycle 

The hybrid technology approaching efficient zero emission mobility (HYZEM) 

drive cycle is a test cycle developed for evaluating hybrid vehicles. It is an unofficial 

European transient drive cycle that involves many speed changes representing the 

constant speed changes typical of on-road driving [57]. The APU operating strategies 

by Rogge et al [55] discussed in Section 2.7 were simulated on this cycle.  

9.5 New European Drive Cycle (NEDC) 

The NEDC is a highly stylised drive cycle which is used for type approval of 

light-duty vehicle models in the European Union. It has periods of constant 

acceleration, deceleration and speed [57]. The NEDC is made up of two parts, the 

urban cycle (part 1) and the extra urban cycle (part 2), see Figure 9-2. The urban cycle 

is made up of 4 repeats of the elementary urban cycle, each lasting 195 seconds and 

part two lasts for 400 seconds making the total cycle time of 1180 seconds covering a 

theoretical distance of 11023 meters. 

 

Figure 9-2 NEDC drive cycle is a highly stylised drive cycle which is used for type approval of light-duty 
vehicle models in the European Union [57] 
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Since the NEDC bears little resemblance to real world driving conditions, the 

worldwide harmonised light vehicles test procedure (WLTP) has been developed and 

a new cycle, the worldwide harmonised light-duty driving cycle (WLTC) has replaced 

the NEDC in Europe with effect from September 2017 [112]. The new procedure 

covers a greater range of vehicle and engine speeds, engine load, gear changes and 

ambient temperatures.   

9.6 Energy Demand from APU to complete NEDC  

The electrical power output of the RE for this study was defined by considering 

the average electrical load drawn from the high voltage bus during extended range (or 

charge sustaining operation) for 3 vehicle applications. This load was the sum of 

tractive power (suitably corrected for drive system losses) together with ancillary load 

requirements, see Section 3.2.  

In a conventional vehicle, operation of the engine at peak efficiency is not 

possible for sustained periods because the engine is normally sized to meet peak 

vehicle power requirements. The engine therefore operates at low load, speed and 

efficiency under most typical driving conditions.  

As discussed earlier, see 2.6 in a charge sustaining mode, the APU only supplies 

the average power and not the instantaneous power requested from the driveline, thus 

allowing it to choose its operating points. This flexibility to operate the engine at its 

efficient operating points or in a high-efficiency operating region allows it to have a 

very good fuel economy performance in charge sustaining mode. The total range of 

the REEV can be enhanced by employing energy management strategies that enable 

the efficient use of fuel energy when the APU is turned on considering NVH, 

emissions and durability constraints.  
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In order to minimise the fuel energy in the charge sustaining mode, TMETC 

examined various energy management strategies [113, 114] with the following 

objectives:- 

(a)  Minimise fuel consumption in charge sustaining mode when the APU 

is ON. This implies that over a drive cycle the energy used for propelling the 

vehicle is only from the APU and the battery is only used as a temporary energy 

buffer which allows to reduce fuel consumption.  

(b) Sustain the battery charge over different types of driving trips. 

(c) Reduce the noise output of the APU when in operation to below the 

vehicle noise.  

However, TMETC did not include emission requirements while optimising the 

energy management strategy. Based on the energy management strategy, the following 

operating points were selected for the APU over the NEDC cycle, see Table 9-1. The 

selected operating points superimposed on the APU ESFC map are shown at Figure 

9-3.  

Table 9-1 APU operating points selected to complete the NEDC. Operating points were chosen to 
minimise fuel consumption, sustain HV battery state of charge over the drive cycle and reduce APU 

noise to below vehicle noise  

APU speed  

[rpm] 

APU power 

[kW] 

1500 3 

1500 3.5 

2108 6 

2918 12 

3322 15 

3322 15.5 

3525 16.5 
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Figure 9-3 APU ESFC map with operating points during NEDC superimposed. Operating points chosen 
are essentially at best ESFC to minimise fuel consumption over the NEDC  

TMETC worked out that the APU must produce 1.76kWh to complete the 

NEDC. This was based on many factors such as vehicle mass, aerodynamics, motor 

and generator efficiency, tyre friction, battery efficiency etc. TMETC had the above 

data for their representative vehicle which was then used in their vehicle model. The 

throttle was then controlled over the NEDC and 1.76kWh was the energy dissipated 

over the cycle [115]. Based on 1.76kWh energy required, the VSC demanded 1.87kWh 

over the NEDC, see Figure 9-4.  The reason for the extra demand was to cater for the 

delay in generation of power from the time of demand. This additional demand could 

be subsequently fine-tuned during the calibration process if required.  
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Figure 9-4 APU speed, power and cumulative energy demand to complete NEDC 

9.7 APU Performance over NEDC 

The test cell set up has already been discussed in the previous chapter, see Figure 

8-3. The test cell temperature was controlled to 25±2°C. The generator inlet coolant 

temperature and engine oil gallery temperature were controlled to 80±2°C. The 

performance of the APU over the NEDC is shown in Figure 9-5  and Figure 9-6.  
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Figure 9-5 Power demand and output of APU over NEDC.  

 

Figure 9-6 Cumulative energy demand and APU output. Based on 1.76kWh energy required, the VSC 
demanded 1.87kWh over the NEDC 

Based on the VSC demand the APU was satisfactorily able to cope with the 

demand as measured by the GCU. On the VSC cumulative energy demand of 
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1.87kWh, the APU produced 1.91kWh which was within 3% and was considered 

acceptable [115].  

The Regatron bi-directional DC power supply measured 1.74kWh over the 

NEDC. The difference between the GCU measured energy and Regatron measured 

energy could not be ascertained at the test cell level and was communicated to 

Ashwoods. However, no clarification was received from Ashwoods and to progress 

with further work, it was decided to use the GCU measurement. This was justifiable 

since the APU output was being controlled based on the GCU measurement and not 

the Regatron unit.   

During the test the APU required 0.716 litres of gasoline to complete the NEDC. 

This compared favourably against the 25kW APU with a bespoke engine developed 

for the Manza REEV which consumed 0.78 litres during the NEDC [113].  

9.8 Conclusion 

The performance of the APU was tested over the NEDC, which was designed to 

minimise fuel consumption based on an energy management strategy taking into 

consideration fuel consumption, battery SOC and minimise NVH. However, the 

choice of the APU operating points during the NEDC did not take into consideration 

the emissions map for minimising emissions.  

Based on the results obtained, the APU could successfully produce the necessary 

power as demanded by the VSC for a representative vehicle model.  There remained 

the need to further improve the calibration of the GCU with respect to power 

measurement, however that was not possible within the project time framework and 

was left to Ashwoods to resolve in case the APU was going to market.  
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During the test the APU consumed 0.716 litres of gasoline to complete the 

NEDC. This compared favourably against the 25kW APU with a bespoke engine 

developed for the Manza REEV which consumed 0.78 litres during NEDC. 
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CHAPTER - 10  

Emissions Performance  

 

This chapter discusses the experimental results of the emissions performance of 

the conventional three-way catalyst of the APU over the NEDC. Based on the 

performance, strategies to improve catalyst light off and steady state emissions 

were explored. The analysis concluded that the existing catalyst was unsuitable 

for range extender application. 
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10.1 Introduction 

Three-way catalysts (TWC) are essential for automotive-exhaust purification for 

gasoline engines. This chapter discusses the performance of the TWC similar in size 

and precious metal loading of the original vehicle TWC for treatment of the exhaust 

of the APU over the NEDC. The emissions from the APU were measured over the 

NEDC based on the APU power demand as per the drive cycle discussed in Chapter 

9.  Since the emission levels were exceeding the EU6 legislative limits, attempts were 

made to improve the emission performance by experimental analysis of various light 

off strategies and improving air-fuel ratio control. Based on the results, it was evident 

that the existing TWC was not suitable for APU application and would require to be 

redesigned. There also exists the opportunity to look at other technologies such as 

electrically heated catalyst which would come at an additional cost.  

10.2 Pollutant Formation in SI Engines 

An exothermic reaction releases energy as heat during the combustion of fuels 

with oxygen from the air, which contains 21% by volume O2, <1% by volume noble 

gases and nitrogen N2. Theoretically the only components formed from the complete 

combustion of hydrocarbons under ideal conditions or excess air are carbon dioxide 

and water. Pollutants form primarily from the interruption of the combustion reaction 

chain due to short residence time in the combustion chamber. An equilibrium state 

therefore no longer exists. Further inhomogeneities in the mixture due to different 

air/fuel ratios, combustion wall effects and contaminants and additives in the fuel also 

lead to formation of undesirable by-products [94].   

The exhaust of SI engines contains oxides of nitrogen (nitric oxide, NO and 

nitrogen dioxide, NO2, which are collectively known as NOx), carbon monoxide (CO) 

and organic compounds which are unburnt or partially burnt hydrocarbons (HC)plus 

other e.g. N2O. The formation and destruction reactions of CO, organic compounds 
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and particulates are closely coupled with the primary fuel combustion process. For 

NOx, the formation and destruction reactions are not directly part of the fuel 

combustion process, however their formation takes place in an environment created 

by the combustion process [94, 99]. Pollutant formation in a cylinder of a SI engine is 

shown at Figure 10-1.  

 

Figure 10-1 Source of THC, CO and NOx emissions in a spark ignition engine [104] 

Nitric oxide (NO) formation occurs throughout the high-temperature burnt gases 

behind the flame by chemical reactions involving oxygen and nitrogen in air, which 

do not attain chemical equilibrium. The processes are described by the expanded 

Zeldovich mechanism (1946), see equation below [94]. 

 O2         2O 

O + N2          NO + N 

N + O2          NO + O 

 

(11) 

Formation of NO and other oxides of nitrogen increase very strongly with 

increasing flame temperature [99, 104]. As the burnt gases cool during the expansion 
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stroke, the reactions involving NO freeze and the NO concentrations remain far in 

excess of levels corresponding to equilibrium at exhaust conditions. NOx formation is 

also influenced by flame speed. Lower flame speeds with lean mixtures provide a 

longer time for NOx to form. Likewise NOx emissions increase with reduced engine 

speed [104].  

Since NOx formation is very sensitive to the combustion temperature, it has also 

acted against the pursuit of higher fuel efficiency by increasing engine compression 

ratios [96]. 

Carbon monoxide forms during the combustion process. It is intermediate step 

in the formation of carbon dioxide and is characterised by the equation below 

 CO + H2O         CO2 + H2O (12) 

With rich fuel-air mixtures, there is insufficient oxygen to fully burn all the 

carbon in the fuel to CO2. In such a scenario the CO emissions have a nearly linear 

relationship with the air/fuel ratio. Also, in high-temperature products, even with lean 

mixtures, dissociation ensures there are significant CO levels. During the expansion 

stroke the CO oxidation process freezes as the burnt gas temperature falls.   

HC emissions can originate both from the fuel and the lubricants and have 

several different sources. The increasing cylinder pressure, during compression and 

combustion forces some of the gas in the cylinder into crevices such as the volume 

between the piston, rings and cylinder wall, see Figure 10-1. The fuel-air mixture in 

these crevices does not undergo the primary combustion process as the entrance to 

these crevices is too narrow for the flame to enter. During the expansion this unburnt 

gas leaves the crevice and becomes a source of unburnt hydrocarbons. Another source 

is the partial ignition of the overall combustion chamber volume and the wall deposits 
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of fuel. Other reasons are residual fuel in the dead spaces such as gaps in the cylinder 

head seal, valve seats, fire land, spark plugs and squish area. Misfiring, emissions of 

hydrocarbons from the lubricant, and absorption of fuel molecules in the lubricant film 

of the cylinder barrel also increase hydrocarbon emissions [94].  

10.3 Emission Control by Design Modifications & Calibration  

Emissions of CO, NOx and HC vary with different engines and are dependent 

on factors such as ignition timing, load, speed and in particular fuel/air ratio relative 

to stoichiometric. Some degree of control over their formation is possible by engine 

and engine-calibration modification such as spark timing changes, exhaust gas 

recirculation (EGR) and air-fuel ratio (AFR) changes.  

10.3.1 Spark Timing  

Spark timing influences peak cylinder pressures and consequently peak unburnt 

and burnt gas temperatures. Spark retard will result in lower cylinder temperatures but 

increases the temperature in the exhaust as considerable burning occurs in the 

expansion stroke. Lower cylinder combustion temperatures will reduce NOx formation 

and the higher exhaust temperature will reduce HC by their oxidation in the exhaust 

port and manifold if excess O2 is present. However retarding spark from MBT reduces 

fuel economy, see Section 6.4. Retarded timing may be utilised at engine start up to 

bring the catalyst to achieve light-off temperature faster, more is covered on this aspect 

in Appendix D [99, 116, 117].  

10.3.2 Exhaust Gas Recirculation (EGR) 

Recirculation of cooled exhaust gas back in the engine intake manifold replaces 

a portion of the fresh charge. This gas mixture can absorb a large amount of heat under 

dissociation and hence will reduce combustion temperature and as a result NOx 
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formation. Figure 10-2 below shows the relation between air-fuel ratio (λ) and the 

specific heat of exhaust gas at constant pressure. During combustion, CO2 and H2O 

with high heat capacities, increase the specific heat capacity of the exhaust gases to 

values greater than air. EGR effectively utilises this phenomenon by recirculating a 

portion of the exhaust gas back into the intake port to act as a heat sink that lowers the 

combustion temperature [118]. Substantial reduction in NOx concentrations are 

achieved with 10 to 25% EGR. However EGR also reduces the combustion rate which 

makes stable combustion more difficult to achieve [99]. Also, lower combustion 

temperatures increase the wall quench layer thickness, see Figure 10-1, and 

consequently the hydrocarbon emissions. It also results in a cooler exhaust and less 

homogeneous hydrocarbon oxidation [99, 116].  

 

Figure 10-2 Excess air ratio and specific heat of exhaust gas at constant pressure [118]. The exhaust 
gas specific heat peaks at an excess air ratio of 1 

10.3.3 Air Fuel Ratio (AFR) 

The air fuel ratio of the mixture in the combustion chamber has the greatest 

influence on untreated emissions. The emissions of CO and HC are lowest in the 

slightly lean range of lambda, λ, of 1.05 – 1.1, however untreated NOx emissions are 

the highest in this range, see Figure 10-3. When run rich the raw exhaust contains more 

CO and HC than NOx. This is due to there not being enough oxygen to burn the fuel 
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all the way to CO2. Further the relatively cool-in cylinder temperatures combined with 

low oxygen availability limits the amount of NOx formed.  

Conversely as the AFR becomes lean, more NOx is formed. With more oxygen 

available and the higher in-cylinder temperatures less CO and HC are produced but 

more NOx is formed. This trend continues until the engine becomes lean enough that 

the additional air intake begins the cool the combustion temperature and NOx 

production decreases. Quite lean operation i.e. AFR ~20, will reduce both NOx and 

CO but in general will produce high HC levels, see Figure 10-3.  

 

Figure 10-3 The concentration of CO, NO and hydrocarbons emitted by a spark ignition engine as a 
function of intake AFR [116] 

10.4 Exhaust Treatment for Gasoline Engines 

Treatment of exhaust gas after it leaves the exhaust ports can be either thermal 

or catalytic. Homogenous oxidation of hydrocarbons in the exhaust requires 

temperatures in excess of 600°C and a holding time of ~50ms. Likewise, to 

homogenously oxidise CO, temperatures in excess of 700°C are required. Since during 

majority of the time, the exhaust temperatures are in the range of 400-600°C, it is not 
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high enough for effective oxidation. In addition homogenous oxidation requires that 

excess oxygen be present at all times [116].   

Catalytic oxidation of CO and HC in the exhaust can however effectively be 

carried out at temperatures as low as 250°C. Further the only satisfactory known 

method for the removal of NOx from the exhaust involves catalytic processes. As a 

result three way catalysts have now become the norm for automotive-exhaust 

purification [116]. TWCs used in modern vehicles reduce CO and UHC emissions by 

90-95% and NOx by 80-90% when they are fully warmed up [117].  

10.5 Catalyst Construction 

Present day catalysts used in SI engines consist of an active catalytic material in 

a specially designed metal casing which directs exhaust gas flow through the catalytic 

bed. It comprises of three layers – the substrate, washcoat and catalytically active 

materials. Two design configurations for the construction are commonly used. The 

first one uses a ceramic honeycomb structure or monolith held in a metal can in the 

exhaust stream. The second design configuration uses a bed of spherical ceramic plates 

to provide a large surface area in contact with the flow [99].  Since the original vehicle 

TWC was a monolith design, it is elaborated further in more detail in the succeeding 

paragraphs.  

The substrate is the framework that supports everything else so that exhaust 

gases can come in contact with the catalytically active layer. Design targets for ceramic 

catalyst substrates include high geometric surface area (GSA), large open frontal area 

(OFA), low thermal mass and heat capacity, high use temperature, low coefficient of 

thermal expansion, good coatability and washcoat compatibility, strength and 

oxidation resistance. Substrates with a high cell density and thin walls are suitable for 

improving the light-off behaviour when the catalyst is heated quickly. A typical 

monolith has square cross section passageways with inner dimensions of ~1mm 
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separated by thin, 0.15 to 0.3mm, porous walls. The number of passageways per square 

centimetre varies between about 30 and 60 [99, 119].  

The washcoat provides more surface area on which to deposit the catalytically 

active materials. The substrate overall has fairly little surface area, and washcoating 

the substrate increase the available surface area dramatically. The washcoat is 

essentially highly porous inert aluminium oxide (γ-Al2O3) and 5 to 15% of the weight 

of the monolith having a surface area of 100 to 200m2/g [99, 119].  

The catalytically active noble metals are most suitable as catalytic material. A 

mixture of palladium (Pd) and platinum (Pt) is most common and is distributed as 

finely as possible on the washcoat to prevent particle-to-particle metal contact. This 

augments catalytic behaviour which is a function of surface atoms as well as 

suppresses high temperature sintering of catalytic material [99, 119].   

10.6  Catalyst Sizing 

As per literature survey, the ceramic monolith volume required is about half of 

the engine displaced volume. This gives a space velocity through the catalyst converter 

(volume flow rate of exhaust divided by converter volume) over the normal engine 

operating range of 5 to 30 per second [99, 116]. Space velocity implies the time it takes 

for a segment of exhaust gas to pass from the catalyst’s inlet face to its outlet face, see 

equation below: - 

 
𝑆𝑝𝑎𝑐𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  

𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝐹𝑙𝑜𝑤 (𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡/ℎ𝑜𝑢𝑟)

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡)
 

(13) 
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The conversion efficiency (CE), see section  10.7, of a catalyst is a function of 

the space velocity and temperature for a given substrate. Space velocity and CE have 

an inverse relationship. When sizing a catalyst for an engine, the CE is calculated for 

a compound based on the raw emissions and the required operating limit. The CE value 

is then used to determine the space velocity that yields the CE for the temperature of 

the exhaust gas in the inlet face of the catalyst. Based on the space velocity, equation 

(13) above is used to calculate the catalyst volume. The ratio of ceramic monolith 

volume and the engine displaced volume of the catalyst provided by TMETC was 1.15 

[120].   

10.7 Catalyst Conversion Efficiency (CE) 

As per Heywood [99], the conversion efficiency of a catalyst is the ratio of the 

rate of mass removal in the catalyst of the particular constituent of interest to the mass 

flow rate of that constituent into the catalyst. For example, for HC: 

 
𝜂𝑐𝑎𝑡 =  

𝑚̇𝐻𝐶,𝑖𝑛 −  𝑚̇𝐻𝐶,𝑜𝑢𝑡

𝑚̇𝐻𝐶,𝑖𝑛
  

(14) 

10.8 Conversion Efficiency and AFR Relationship 

An engine which is operated at or very close to the stoichiometric AFR enables 

both NOx reduction (chemically) and CO and HC oxidation in a single catalyst bed. 

The exhaust composition is brought to a near-equilibrium state i.e. a composition of 

CO2, N2 and H2O under these conditions. For a catalyst to be efficient a very tight 

control of the AFR around stoichiometric is necessary, see Figure 10-4. There is a 

narrow window, termed window width, of around 0.1 AFR (0.007 in equivalence ratio 
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terms) near stoichiometric in which high conversion efficiencies for all three pollutants 

are achieved [99, 116].  

 

Figure 10-4 Typical TWC efficiency as a function of exhaust gas AFR. A narrow window of 0.1AFR 
near stoichiometric exists in which high conversion efficiencies for all 3 pollutants are achieved [121] 

To achieve such a tight control over AFR, closed loop control using an oxygen 

sensor is introduced in the exhaust, which provides feedback to the fuel system based 

on whether the engine is operating lean or rich.  

Heywood [99]  and Kaidantzis et al [121] provide a cogent explanation on the 

operation of the oxygen sensor and that under moderate AFR modulation very high 

CO, HC and NOx conversion efficiencies can be traded for conversion window width. 

The effect of AFR modulation depends on the frequency and the amplitude of the 

modulation. Frequencies above 1 Hz are reported to be most effective and the 80% 

conversion window can with modulation frequencies greater that 1 Hz be broadened 

to about 0.8 AFR. The modulation frequency should be as high as possible since the 

catalyst is a distributed system and the AFR oscillations are therefore averaged at 

higher frequencies.  
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10.9 Catalyst Light Off  

TWCs do not operate effectively at temperatures below the range of 250-340°C. 

It is therefore absolutely essential to bring the catalyst to a temperature, termed light-

off temperature, where at least 50% conversion of the emissions can occur as soon as 

possible [94, 116, 117]. The response of the catalyst has two distinct stages. In the first 

stage the catalyst heats up due to the presence of the high temperature exhaust gases 

but without any significant chemical reaction. After a relatively short span of time, the 

temperature in the interior of the catalyst becomes sufficiently high for significant 

reaction to occur, which generates heat faster than can be swept away by the gas 

stream. The temperature and reaction rate increase dramatically at this point and the 

catalyst lights-off. The catalyst then rapidly gets divided into a region upstream of this 

light-off position where the catalyst temperatures are low and the reaction rates are 

small.  The narrow transition between these regions is called the light-off front. The 

second stage of the response is characterised by a relatively slow movement of the 

light-off front towards the catalyst inlet. Once the light-off front reaches the inlet face 

of the catalyst, it is then fully operational [122]. Experimental results show that catalyst 

light-off temperature is of the order of 300°C, based on the catalyst brick temperature 

at a distance of 25mm from the front face of the catalyst [123, 124]. Basshuysen et al 

[94] and Chan [117] provides a comprehensive summary on the various strategies for 

rapid catalyst light-off using different heat sources. These vary from improving the 

catalyst design to reduce heat capacity, moving from an underfloor catalyst to a close 

coupled catalyst and varying the air gap wall of the exhaust pipe for improved heat 

preservation. Other methods include exhaust gas ignition, secondary air injection, 

afterburner and burner-assisted catalyst methods to supply additional thermal energy 

to the exhaust to aid faster catalyst light-off. Electrically heated catalyst [59] and 

microwave dielectric techniques [125] have also been studied.  
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10.10 Exhaust Gas Legislation for EU6  

The acceptable limits for principal emission components in g/km as per EU4 and 

EU6 norms for spark ignition engines are shown in Table 10-1 below. 

Table 10-1 Limit values of THC, CO and NOx pollutants – EU 4 & EU6 legislation [126, 127] 

Emissions 

Standards 

THC CO NOx 

g/km g/km g/km 

EU 4 0.1 1.0 0.08 

EU 6 0.1 1.0 0.06 

As mentioned in Section 10.1, the emissions were to be measured against the 

NEDC cycle EU6 limit. Accordingly considering the NEDC cycle total distance of 

11.007 km, the cumulative emissions in grams over the NEDC are shown in Table 

10-2   below. 

Table 10-2 EU6 limit values of THC, CO and NOx pollutants over NEDC cycle  

THC CO NOx 

g g g 

1.1 11.01 0.66 

10.11 EU6 Testing Norms for Electric Vehicles 

In accordance with Regulation No. 83 [128] of the Economic Commission for 

Europe of the United Nations (UNECE) there is a requirement to perform two tests for 

an electric vehicle without an operating mode switch. The first test is to be carried out 

with a fully charged electrical energy storage device. If the electrical range of the 

vehicle is greater than the distance of the driving cycle, emissions will not be present 

in this test.  

The second test is to be carried out with the electrical energy storage device in a 

minimum state of charge. In this scenario, the range extender starts immediately at the 

beginning of the test cycle and depending on the operating strategy must at least 

provide an energy amount to hold the charge state of the battery.  
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The above tests must be carried out twice. First with a starting temperature 

between 20°C and 30°C with the emission limits in accordance with Table 10-1 and 

Table 10-2 above. The vehicle has to be kept in a room in which the temperature 

remains relatively constant between 20°C and 30°C and has to be undertaken for at 

least 6 hours and until the engine oil and coolant temperature are within ±2°C of the 

temperature of the room. The second is with a starting temperature of -7°C. In this cold 

started test, the emission limits are 15 times higher than the regular EU6 legislation. 

Investigations on vehicles show that the adherence to these higher limits is not difficult 

[126] and hence have not been considered further in this research.  

10.12 Test Cell Set for Catalyst Testing 

The specifications of the close coupled catalyst were decided by TMETC and 

was manufactured by BTB Exhausts [129, 130]. TMETC had ordered a standard brick 

size (commercially off the shelf) from BTB exhaust for keeping the cost of the catalyst 

low and specified the Platinum group metals (PGMs) loading as per the Nano car BS4 

catalyst [131].   

The rationale for using a BS4 specification catalyst was that the EU6 emissions 

were not actually much lower, essentially NOx limit being reduced from 80mg/km to 

60mg/km, rest of the limits remaining the same, refer Table 10-2. Further, since for a 

RE application the freedom existed to operate the engine at a few fixed load/speed 

points it was felt that raw emissions would be easier to control. Some of the 

specifications of the catalyst which were made available by TMETC are in Table 10-3 

below.   

Table 10-3 Specifications of bespoke closed coupled catalyst [129, 130] 

Parameter Value Remarks 

Brick size 86mm * 93mm  

Cell density 600 cpsi  

Foil thickness 3 mil (0.0762mm)  
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Parameter Value Remarks 

Platinum group 

metals (PGMs) 

loading  

30g/cft Platinum: Palladium: 

Rhodium ratio: 0: 26: 4 

Maximum allowable 

catalyst mid-brick 

temperature 

1360°C Monolith softening 

temperature 

Figure 10-5 shows the schematic of the test bed and the instrumentation used for 

the emissions measurement and catalyst light off experimental analysis. The 

arrangement was essentially same as has been discussed at Section 8.3. However, some 

aspects and modifications specific to emissions measurement are elucidated in the 

succeeding paragraphs.  

 

Figure 10-5 Schematic arrangement of the test cell set up at University of Bath 

 The exhaust gas AFR was measured using two Labcell lambda sensor, NTK 

6ma which were installed pre and post the TWC. These also provided the value of 

lambda before and after the TWC and were recorded continuously on the Host PC, see 

Figure 10-6.   
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Figure 10-6 Instrumented three-way catalyst. Additional instrumentation included pre and post TWC 
thermocouples and lambda sensors as well as connection to the heated line for emissions 

measurement 

Intake air was measured by a Labcell Meriam flow meter type 50MC2-2F 

(laminar flow element) equipped with a differential pressure transducer. The mass flow 

rate was then calculated from the volume flow rate based on ambient temperature and 

pressure. Fuel flow rates were measured using a micro motion Coriolis flow meter.  

The exhaust gas temperatures, both pre-catalyst and post-catalyst were measured 

using type-K thermocouples, see Figure 10-6. The exhaust emissions were measured 

by the Horiba Mexa 7000 gas analyser and recorded on the host PC.  

10.13 Catalyst Ageing 

The performance of a new catalyst changes with usage and light–off 

temperatures can increase by 50°C as the catalyst ages [124]. As a result, the emissions 

measured downstream of a new TWC would be lower than that using a used catalyst. 

For a conventional vehicle, the performance of the catalyst should be satisfactory after 

50,000 vehicle miles [116, 124]. Reasons for catalyst ageing include exposure to 

elevated temperatures of the order of 900°C and above which can result in precious 

metal sintering and substrate material sintering. Presence of catalyst poisons such as 
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lead, phosphorous and sulphur which can be present in gasoline or motor oil also 

degrade the catalyst performance [116].  

A typical catalyst ageing is carried out in an oven at a temperature of 980°C in 

an atmosphere comprising 2% O2, 10% H2O with the remainder being N2 for a duration 

of 4hrs [132]. Since it was not possible to age the catalyst under these conditions, the 

catalyst provided was run-in by operating the APU at 3000rpm, 6kW for 6hrs in 

consultation with TMETC to achieve stability in conversion efficiency.  

On completion of the catalyst running-in, the APU was started from cold and 

emissions measured post catalyst. Figure 10-7 shows the cumulative NOx emissions 

after a cold start post TWC. Two separate tests measuring post-TWC NOx emissions 

indicated stability in catalyst performance.  

 

Figure 10-7 Cumulative NOx emissions post TWC after cold start of APU, two independent tests show 
stability in performance of the TWC after running-in to achieve stability in conversion efficiency 
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10.14 Emission measurement over NEDC 

After running-in of the TWC, catalyst performance over the NEDC from cold 

was carried out to determine the efficiency of the close coupled catalyst provided by 

TMETC. The catalyst is considered to be lit-off when the pre-cat exhaust temperature 

reached 350°C, as discussed in Section 10.9.  

The APU was operated on the NEDC and APU power and speed demand was 

varied as per the cycle discussed in chapter 9, see Figure 10-8.  

 

Figure 10-8 APU speed, power, engine throttle position and exhaust mass flow over NEDC 

The cumulative emissions of NOx, THC and CO observed over the NEDC are 

at Figure 10-9. It is observed that NOx emissions show a rise prior to the catalyst light-

off, then plateau off. However, there is a steep rise in emissions toward the end of the 

drive cycle when the APU speed is over 3000rpm and power demand is of the order 

of 15kW.  
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As regards THC emissions were concerned, see Figure 10-9, it was observed that 

the emissions rose steeply prior to catalyst light off, quickly exceeding the EU6 limits, 

and then plateau off. It was clear that while the conversion efficiency of the TWC with 

respect to THC was high over the drive cycle, there was a need to have a catalyst light 

off strategy to reduce THC emissions.  

 

Figure 10-9 Cumulative NOx, THC and CO emissions measured over the NEDC which substantially 
exceed the NEDC legislative limits 

As regards CO emissions, see Figure 10-9, little conversion appeared to be 

taking place over the NEDC. While the CO emissions during catalyst light-off do not 

exceed NEDC limits, as was seen with THC emissions, the cumulative emissions 

exceeded the EU6 emission limits as little conversion appears to occur in the catalyst 

over the drive cycle 

Based on the results obtained, to improve the performance of the current TWC 

two strategies were explored to improve catalyst conversion. One was to reduce engine 

out emissions and second to speed up catalyst light-off.  
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10.15 Faster TWC Light-off 

From the preceding section it was evident that there was a need to reduce THC 

emissions during start-up from cold if the present catalyst was to be considered suitable 

for the APU. Based on literature review, two strategies considered to be easily 

implementable without any additional hardware, with a calibration level access engine 

EMS was implementation of ignition timing retard and higher power demand at engine 

start [117].     

Since the engine was to be used in a RE application, it offered the flexibility to 

start the engine at load and speeds higher than the conventional idle speed. 

Accordingly, the ignition retard was carried out at 2000rpm, 5kW power demand. 

Likewise, the power demand at engine start was also varied at 2000rpm.  

The two ignition retard strategies were 10° and 20° retard relative to the normal 

timing. As regards power demand, it was varied between 4kW and 6kW to see the 

effect of catalyst light-off.  Results of the experimental analysis that was undertaken 

are presented in Appendix E. Experimental analysis showed that while the light-off 

emissions decreased with spark timing retard and increasing power demand, the 

improved light-off was still not enough to meet cumulative EU6 legislative limits.  

10.16 Additional control strategy to improve AFR control 

Section 10.3.3 covers the influence of AFR on emission formation. Air fuel ratio 

has the greatest influence on untreated emissions. Further for a catalyst to be efficient 

a very tight control of the AFR around stoichiometric is necessary. The engine AFR 

with respect to APU speed and power demand were analysed, see Figure 10-10 and it 

was found that the AFR was showing large variation even during low 

frequency/amplitude throttle changes.   
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Figure 10-10 Air fuel ratio shows large variation to low frequency / amplitude throttle changes 

  

 Figure 10-11 shows the variation in pre TWC lambda vis-à-vis the engine 

lambda demand for minor throttle demand changes.  

 

Figure 10-11 Variation in pre TWC lambda with minor changes in engine throttle, despite lambda 
demand remaining constant at 1 
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Though not part of this research, collaborative work was undertaken with 

University of Bristol to see the effect of a new AFR control structure for gasoline 

engines. Subsequent to the implementation of the new control strategy there was 

considerable improvement in the oscillations observed earlier, see Figure 10-12 below.  

 

Figure 10-12 Improved lambda control after introduction of a dynamic estimator (reference TCST-2019-
0325 – IEEE paper under preparation)  

However, despite the improved AFR control, while there was a drop in the 

cumulative emissions, the NEDC limits continued to be exceeded for all three 

pollutants. 

10.17 Analysis of TWC Performance 

Since the purpose of the APU is to run at the more efficient engine regime, i.e. 

low BSFC, this was translating into operation at high emissions regions. Figure 10-13 

shows that regions of low ESFC are also regions where the NOx emissions are the 

highest. Test results also showed that NOx breakthrough was a problem during steady 
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state as was evident during the highway driving phase of the NEDC, Figure 10-9. On 

the other hand, THC was more important during catalyst light-off phase. Similar 

behaviour was also expected with respect to CO, however test results showed little 

conversion over the NEDC.  

 

Figure 10-13 Regions of high ESFC (lower CO2 emissions), see figure (a) coincides with high NOx 
levels, see figure (b) 

Based on the testing results, it was evident that the existing catalyst was not 

designed for high speed/load conditions. In order to meet requirements of operation at 



CHAPTER - 10 

215 

optimum ESFC while keeping the CO, HC and NOx emissions within legislation 

limits, the existing TWC would require to be changed.  

Aleksandrova et al had carried out considerable research in the design of a 

TWC for RE application and had reached similar conclusions. They have then 

examined the influence of several factors such as catalyst length and diameter, cell 

density, precious metal loading on engine emissions. They concluded that while 

precious metal loading had the most effect on NOx conversion, a combination of 

measures would be required to improve NOx conversion to meet legislative 

requirements. Modification of catalyst design parameters alone would not be enough 

for required NOx reduction and engine calibration (ignition timing retard or cooled 

EGR) would be also be required. Alternatively, the APU operating strategy would 

require to be reviewed to operate at lower speed/part load at the expense of higher fuel 

consumption [50, 133, 134].  

As regards cold start emissions, Mercedes for their C-class hybrid had 

employed an electrically heated catalyst as early as 1998 to improve cold start 

emissions [59]. This would greatly solve the poor THC and CO emissions during 

engine start. Electrically heated catalyst technologies such as EMICAT® are now 

available which are conventional catalysts with an additional heating disc which 

provide for faster light-off during cold start phases [125]. However, these solutions 

come at a technical and financial cost which need to be taken into consideration.   

10.18 Conclusion 

The performance of a TWC similar in size and precious metal loading of the 

original vehicle TWC was analysed for treatment of the exhaust over the NEDC. 

Analysis showed that the conventional catalyst was unsuitable for high speed / high 

load operations which are the essential operating points of the APU from a power 

requirement standpoint. Further there is a requirement for a satisfactory catalyst light-
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off strategy. Two strategies namely spark timing retard and higher power/speed engine 

start were examined to improve catalyst light-off. While an improvement was seen, it 

was not sufficient to meet EU6 NEDC legislation. To reduce steady state emissions, 

work was undertaken to improve AFR control, with limited success.  

It was concluded that the original vehicle TWC was unsuitable for RE 

application and would require a multi-pronged strategy to meet legislative 

requirements. These would include factors such as catalyst length and diameter, cell 

density and precious metal loading. Further, satisfactory performance would need 

engine calibration to employ ignition retard or EGR. Electrically heated catalyst 

technologies such as EMICAT® are now available which would greatly improve cold 

start emissions but come at an additional cost. These were outside the scope of this 

research. 
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CHAPTER - 11  
Conclusion and Further Work 

 

This chapter concludes this research work and highlights the key findings and 

results. Research limitations and future work opportunities of this research are 

discussed. 
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11.1 Conclusion 

This objective of this research was to carry out experimental analysis to support 

the development of an industry first low-cost auxiliary power unit for electric vehicles. 

A very low cost highly optimised production automotive engine was selected with an 

aim to optimise it in critical speed/load ranges for range extender application. The 

engine modifications included changes which were possible in normal production 

process to accrue the cost savings over development of a bespoke engine. Finally, 

during the integration process with the motor/generator and inverter unit, it was aimed 

to combine them in a single coolant loop to reduce parasitic losses as well as reduce 

overall package volume and weight without significant drop in overall system 

efficiency. Since the range extender was intended for replacing a portion of the high 

voltage battery, it was important to accrue the maximum benefit by keeping the overall 

package weight of the range extender to the minimum possible. This was the novelty 

of this research since the literature review revealed that though researchers have 

written about potential cost savings on combining of coolant circuits, there was no 

evidence that it had been implemented.  

The modifications to the production engine included introduction of a new EMS, 

electronic throttle, bespoke manifolds, spark advance, AFR calibration and 

introduction of an EWP. Post modifications the BSFC was comparable with that of the 

production engine over the APU operating regime with reduction in overall package 

volume. A best BSFC of 245g/kWh was achieved at 2500rpm at WOT.  

This compared favourably against the Lotus and MAHLE bespoke RE engines 

that have a BSFC of the order of 241g/kWh. Further, while this was a reasonably 

modest level of performance for a naturally aspirated gasoline engine compared to 

modern passenger car performance levels but considering the cost and packaging 

targets as well as being a 2-cylinder engine with two valves per cylinder, it was a 

satisfactory result. 
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Since one of the main objectives of the research was to run the APU in a single 

coolant loop, a thermal survey was carried out on the base engine to quantify the 

reduction in performance at lower oil and coolant temperatures. The engine BSFC 

increased by an average of less than 5% by reducing the oil and coolant temperature 

set point from 90°C to 60°C at full load across the operating regime.  

On commissioning of the APU, the total dry weight of the APU was measured 

to be 81.5kg as against an initial target of 80kg. Experimental analysis showed the 

target best ESFC of <270g/kWh was exceeded under optimal temperature conditions 

of the engine, M/G and inverter unit in separate coolant circuits for the engine and 

generator, The APU produced a peak power of 22.78kW at 5100rpm. Best ESFC of 

260g/kWh was measured at 2500rpm, and the ESFC remained below 270g/kWh across 

2000 to 3500rpm at full load.  

These exceeded the bespoke Mahle APU best ESFC of 283g/kWh. From 

4000rpm to 4500rpm the ESFC was between 285g/kWh to 305g/kWh which was also 

within the target ESFC and were comparable to the Mahle ESFC of 292g/kWh. The 

specific performance of the APU at peak power was 270W/kg which was within the 

target of 250 to 313W/kg. 

On combining the engine and M/G unit in a single coolant loop with oil and 

coolant temperature set points at 80°C there was a drop in APU power by an average 

of 4% with an increase of ESFC by circa of 2%. This could be attributed primarily to 

the higher operating temperature of the generator with the increase in the generator 

inlet coolant temperature set point from 35°C to 80°C. Although the engine efficiency 

also reduced with drop in coolant and oil temperature, however in the combined circuit 

the engine outlet coolant temperature continued to reach around 88°C. The oil gallery 

temperature was reduced by 10°C to 80°C which marginally increased the frictional 

losses because of increase in oil viscosity. 
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However, the combined loop provides greater flexibility of package installation 

and simplifies vehicle integration, with reduction in parasitic losses. It also reduces the 

overall package cost which was one of the objectives of this research. With subsequent 

improvement in bespoke generator internal cooling design, cutback of power at 4000–

4500rpm could also be avoided which would improve APU power and ESFC in this 

range. This demonstrated that a balance can be achieved by trading engine efficiency 

for overall system efficiency and simplicity.  

The performance of the APU was tested over the NEDC and it was demonstrated 

that the APU could successfully produce the necessary power as demanded by the VSC 

for a representative vehicle model. The APU consumed 0.716 litres of gasoline to 

complete the NEDC. This compared favourably against the 25kW APU with a bespoke 

engine developed for the Manza REEV which consumed 0.78 litres during NEDC.  

As regards emission control to meet EU6 legislation, based on experimental 

analysis over the NEDC, it was shown that the original vehicle TWC was unsuitable 

for RE application. At the end of the drive cycle the emissions of THC, CO and NOx 

were 6.62g/km, 42.72g/km and 4.29g/km respectively, far exceeding the EU6 limits. 

Despite attempting strategies like ignition retard, higher power demand at engine start 

as well as improved AFR control, though some improvement was observed, it was not 

enough to meet EU 6 legislation.  

A multi-pronged strategy would be required to meet legislative requirements. 

These would include factors such as catalyst length and diameter, cell density and 

precious metal loading. Further, satisfactory performance would need engine 

calibration efforts to employ techniques like ignition retard for faster catalyst light off.  
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11.2 Research Limitations 

During this research study, certain unforeseen restrictions/factors emerged that 

led to some weaknesses and limitations that need to be highlighted. 

Firstly, as mentioned in Chapter 3, the ambient cell temperature was manually 

controlled to 25±2°C by a switching on/off a set of exhaust fans. While all efforts were 

made to stay within the temperature limits, there were instances when the cell 

temperature exceeded the limits during testing. These excursions would have affected 

the results to a certain extent. Automated control of test cell temperature could not be 

implemented because of the expenditure involved and test cell downtime which could 

not be afforded in the project timeframe. 

Another limitation during the experimental analysis being the development of 

the bespoke inlet manifold. While most testing / calibration was done with a 150mm 

runner length, however the final bespoke manifold that was introduced during the 

commissioning of the APU had runners of length 248mm. As per TMETC they were 

eventually governed by packaging criteria while trying to adhere as closely as possible 

to the experimental results. This reasoning was considered satisfactory as the aim of 

this collaborative project was to eventually introduce a low cost APU in the 

commercial market.  

Likewise, during the APU testing, as defects / failures occurred in the prototype 

motor/generator unit and the inverter unit, Ashwoods Ltd would provide an improved 

version and not necessarily the changes in design / firmware /software were shared 

with the University research team. These changes would have also impacted the test 

results and it was not always possible to quantify the differences in test results.  
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11.3 Future Work 

Presently the engine cooling strategy is based on controlling engine outlet 

temperature within a specified value. It is more desirable to control the engine cooling 

system based on the metal temperature rather than the coolant temperature. With 

knowledge of the limits on the temperature of the metal temperature, experimental 

work could be undertaken to optimise coolant flow rates to reduce the EWP parasitic 

power and improve overall efficiency. The additional instrumentation to the base 

engine would involve additional cost and would need to be factored in.  

A study could also be undertaken on the thermal management of the overall APU 

package. Future work could include quantification of the heat dissipated by the oil, 

coolant and by cooling air. This would facilitate sizing of radiators for vehicle 

application.    

The production engine was developed for Indian conditions and accordingly oil 

15W-40 was selected. Since the research work has been undertaken with the APU 

being operated in European climatic conditions, a tribology study and experimental 

work could be undertaken to see the effect of various oils. 

Currently new car registrations are based on the Tank to Wheel (TTW) 

assessment of CO2. The Automotive Council roadmap has indicated that in the 2025-

2030 timeframe the use of Well to Wheel is likely to appear. They have also indicated 

that over a longer timeframe they would consider the implications of Life Cycle 

Analysis (LCA) on energy and CO2 consumption. This would include the energy and 

CO2 consumption during manufacturing and disposal. Such an approach of looking at 

CO2 assessment for compliance/taxation based on cradle to grave could pose a 

challenge to electrification of vehicles because of the high levels of embedded CO2 in 

battery manufacture.  
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Keeping the above in mind, despite dropping battery prices, it is opined that a 

low cost APU designed to operate at distinct point(s) allowing optimisation of design 

to maximise efficiency would lend itself favourably to reducing battery size, since as 

mentioned in Chapter 2, 80km EV range enables electric driving in and around most 

major cities. The APU can be utilised outside of the cities / zero-tailpipe zones to 

provide propulsive power and slowly charge the battery, increasing battery life and 

efficiency. It also overcomes the driver’s range anxiety. The additional range comes 

at a significantly lower penalty to a BEV, both in terms of mass and cost.  

While the research briefly touched upon the APU usage strategy, with the advent 

of Geofenced operation and eHorizon technology, the driver would be able to drive in 

EV mode in certain areas (e.g. major cities, ZEVs, schools etc) and use the APU to 

charge the battery while on the motorway. For example, if a driver is traveling from 

London to Edinburgh via Birmingham, the battery provides all power for propulsion 

in the Geofenced city areas of London, Birmingham and Edinburgh producing zero 

tailpipe emissions. Once the vehicle is outside the Geofenced zone, the APU could 

provide all the propulsive power plus power to trickle charge the traction battery since 

high engine efficiency produces low tailpipe emissions.  

To summarise, the introduction of an APU in a BEV maintains the BEV’s 

performance/driveability and at the same time reduces reliance on charging 

infrastructure growth. It facilitates a lower cost and mass production system through 

battery size reduction. While this research has focused on a gasoline engine as prime 

mover for the APU, various energy generation technology opportunities could emerge 

through the decoupling of operating envelopes. The total cost of ownership could 

further improve if fuel prices reduce as supply exceeds demand. It also improves both 

the low temperature and high temperature operating capability of the electric vehicle.  
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Appendix A 

Test Matrix for Thermal Survey of Base Production Engine 

Test  Engine Speed Torque Coolant Outlet Oil Gallery 

 # rpm Nm °C °C 

1 2000 10 110 110 

2 2000 24Nm 110 110 

3 2000 WOT 110 110 

4 3000 24Nm 110 110 

5 3000 WOT 110 110 

6 4000 24Nm 110 110 

7 4000 WOT 110 110 

8 5000 24Nm 110 110 

9 5000 WOT 110 110 

10 2000 10 90 110 

11 2000 24Nm 90 110 

12 2000 WOT 90 110 

13 3000 24Nm 90 110 

14 3000 WOT 90 110 

15 4000 24Nm 90 110 

16 4000 WOT 90 110 

17 5000 24Nm 90 110 

18 5000 WOT 90 110 

19 2000 10 60 110 

20 2000 24Nm 60 110 

21 2000 WOT 60 110 

22 3000 24Nm 60 110 

23 3000 WOT 60 110 

24 4000 24Nm 60 110 

25 4000 WOT 60 110 

26 5000 24Nm 60 110 

27 5000 WOT 60 110 

28 2000 10 110 90 

29 2000 24Nm 110 90 

30 2000 WOT 110 90 

31 3000 24Nm 110 90 

32 3000 WOT 110 90 

33 4000 24Nm 110 90 

34 4000 WOT 110 90 

35 5000 24Nm 110 90 
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Test  Engine Speed Torque Coolant Outlet Oil Gallery 

 # rpm Nm °C °C 

36 5000 WOT 110 90 

37 2000 10 90 90 

38 2000 24Nm 90 90 

39 2000 WOT 90 90 

40 3000 24Nm 90 90 

41 3000 WOT 90 90 

42 4000 24Nm 90 90 

43 4000 WOT 90 90 

44 5000 24Nm 90 90 

45 5000 WOT 90 90 

46 2000 10 60 90 

47 2000 24Nm 60 90 

48 2000 WOT 60 90 

49 3000 24Nm 60 90 

50 3000 WOT 60 90 

51 4000 24Nm 60 90 

52 4000 WOT 60 90 

53 5000 24Nm 60 90 

54 5000 WOT 60 90 

55 2000 10 110 60 

56 2000 24Nm 110 60 

57 2000 WOT 110 60 

58 3000 24Nm 110 60 

59 3000 WOT 110 60 

60 4000 24Nm 110 60 

61 4000 WOT 110 60 

62 5000 24Nm 110 60 

63 5000 WOT 110 60 

64 2000 10 90 60 

65 2000 24Nm 90 60 

66 2000 WOT 90 60 

67 3000 24Nm 90 60 

68 3000 WOT 90 60 

69 4000 24Nm 90 60 

70 4000 WOT 90 60 

71 5000 24Nm 90 60 

72 5000 WOT 90 60 

73 2000 10 60 60 

74 2000 24Nm 60 60 

75 2000 WOT 60 60 

76 3000 24Nm 60 60 
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Test  Engine Speed Torque Coolant Outlet Oil Gallery 

 # rpm Nm °C °C 

77 3000 WOT 60 60 

78 4000 24Nm 60 60 

79 4000 WOT 60 60 

80 5000 24Nm 60 60 

81 5000 WOT 60 60 
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Appendix C 

241 

Appendix C 
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Appendix D 

Effect of EWP Power on APU ESFC 

 

 

 

APU Speed APU 

(Generator) 

Power 

Original ESFC 

(without EWP 

power considered)

EWP Power Coriolis 

(Fuel) Mass 

Flow

Net Power 

Output of 

APU 

ESFC (EWP power 

consumption 

factored in)

Increase in ESFC 

after considering 

EWP Power

rpm kW g/kWh W g/sec kW g/kWh kW
1956 2.35 379.65 7.04 0.248 2.343 380.79 1.14

1955 5.1 298.83 6.90 0.423 5.093 299.23 0.40

1953 8.62 273.78 6.76 0.656 8.613 273.99 0.21

2442 2.27 428.78 14.21 0.270 2.256 431.48 2.70

2441 5.27 311.37 14.63 0.456 5.255 312.24 0.87

2438 9.39 275.12 14.77 0.718 9.375 275.55 0.43

2441 11.33 271.21 14.77 0.854 11.315 271.56 0.35

2926 2.37 466.66 20.84 0.307 2.349 470.80 4.14

2925 5.45 325.97 20.98 0.493 5.429 327.23 1.26

2924 10 278.23 20.98 0.773 9.979 278.81 0.58

2923 13.56 268.27 20.84 1.010 13.539 268.68 0.41

2924 13.77 271.15 20.70 1.037 13.749 271.55 0.41

3410 2.34 542.06 26.91 0.352 2.313 548.37 6.31

3412 5.49 345.63 27.19 0.527 5.463 347.35 1.72

3411 10.34 288.53 27.05 0.829 10.313 289.28 0.76

3409 14.11 272.65 27.05 1.069 14.083 273.17 0.52

3410 16.37 268.78 26.91 1.222 16.343 269.22 0.44

3897 5.52 379.02 38.50 0.581 5.481 381.68 2.66

3897 10.68 298.95 39.05 0.887 10.641 300.05 1.10

3897 14.64 285.18 38.78 1.160 14.601 285.94 0.76

3897 18.13 289.80 38.92 1.459 18.091 290.42 0.62

3896 18.73 292.45 38.92 1.522 18.691 293.05 0.61

4385 5.66 412.33 48.85 0.648 5.611 415.92 3.59

4384 11.12 325.94 49.27 1.007 11.071 327.39 1.45

4384 15.51 314.02 49.13 1.353 15.461 315.02 1.00

4384 19.22 309.02 49.13 1.650 19.171 309.81 0.79

4384 19.97 310.80 49.13 1.724 19.921 311.57 0.77

4871 5.76 465.50 76.18 0.745 5.684 471.74 6.24

4872 11.51 360.58 76.73 1.153 11.433 363.00 2.42

4869 16.39 332.38 76.59 1.513 16.313 333.94 1.56

4871 20.31 332.11 76.45 1.874 20.234 333.37 1.25

4873 21.81 328.40 76.45 1.990 21.734 329.55 1.16

4968 5.75 478.11 80.32 0.764 5.670 484.88 6.77

4967 11.46 368.36 80.73 1.173 11.379 370.97 2.61

4965 16.58 334.02 81.01 1.538 16.499 335.66 1.64

4969 20.63 337.05 80.73 1.931 20.549 338.37 1.32

4969 21.89 332.89 80.73 2.024 21.809 334.12 1.23
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Appendix E 

This appendix discusses the experimental analysis that was undertaken to 

improve the light-off performance of the catalyst in an attempt to meet EU 6 emission 

legislation limits.  

E.1 Spark Retard for Faster TWC Light-off 

As it was seen in Chapter 10, Section 10.14, that there was a need to reduce THC 

emissions during start-up from cold if the present catalyst was to be considered suitable 

for the APU. Based on literature review, a strategy considered to be easily 

implementable without any additional hardware, with a calibration level access engine 

EMS was implementation of ignition timing retard.  

Since the APU was expected to start at 2000rpm, 5kW, the ignition retard was 

carried out at 2000rpm, 5kW power demand. Maintaining this higher engine speed 

would result in higher exhaust gas temperature and higher exhaust mass flowrate, 

which would increase the total enthalpy of the exhaust gas for heating up the catalyst 

and hence achieve rapid catalyst light-off. 

Two factors had to be borne in mind while retarding ignition timing. Firstly, the 

amount of spark retard and secondly the amount of time the retarded spark is 

maintained. Over-retarding ignition timing would result in engine backfiring and high 

engine-out HC emissions owing to poor combustion efficiency. Holding retarded 

ignition for a longer time means the TWC and exhaust valves would be exposed to 

high exhaust gas temperatures for a longer time. Since the heat capacity of a catalyst 

is very small and much lower than that of exhaust valves, therefore a long holding time 

of retarded ignition was not considered necessary. Further holding time of retarded 

spark should be as short as possible to reduce unnecessary fuel consumption due to 

spark retard. 
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Figure E-1 illustrates the normal spark timing and the two spark retard timings 

as measured during experimental tests based on the two strategies employed. The two 

ignition retard strategies were 10° and 20° retard relative to the normal timing. 

Negative values of ignition advance means values that are before top dead centre 

(BTDC). The holding time of retarded ignition lasted for 25sec.   

 

Figure E -1 Ignition time versus time. Normal spark timing and ignition retard of 10° and 20° crank 
angle relative to normal timing 

 Figure E-2 shows the exhaust gas temperature as a function of spark timing 

retard. As expected, higher the value of spark timing retard higher was the exhaust gas 

temperature. The exhaust gas temperature at the catalyst upstream associated with 20° 

spark retard was about 250°C higher than that of normal timing. This was because 

most of the heat released from combustion in the cylinders took place in the expansion 

stroke and was discharged in the exhaust system. Further retarding of spark timing 

could result in engine backfiring which would have adverse effects on engine-out 

emissions. 
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Figure E-2 Exhaust temperature at TWC upstream and downstream under normal spark timing and 
varying spark timing conditions 

The NOx emissions downstream of the TWC with varying spark timing retard 

were compared with the NOx emissions with normal spark timing, Figure E-3. It was 

seen that as expected emissions reduced as spark retard was increased from normal to 

20°. Further the cumulative post TWC emissions were well below the NEDC NOx 

limit of 0.66 grams.  
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Figure E-3 Comparison of downstream TWC cumulative NOx emissions under varying spark timing vis-
à-vis normal spark timing. Emissions reduce as spark retard is increased from normal to 20°. 

Cumulative post TWC emissions are well below the NEDC NOx limit 

The THC emissions downstream of the TWC with varying spark timing retard 

were compared with the THC emissions with normal spark timing, Figure E-4. It was 

seen that emissions reduced as spark retard was increased from normal by 20°. 

However, the THC cumulative post TWC emissions continued to exceed the NEDC 

THC limit of 1.1 grams.  
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Figure E-4 Comparison of downstream TWC cumulative THC emissions under varying spark timing 
vis-à-vis normal spark timing. Emissions reduce as spark retard is increased from normal to 20°. 

Cumulative post TWC emissions are well above the NEDC THC limit 

Hence, while the cumulative emissions decreased with spark timing retard, the 

improved light-off of the catalyst was still not enough to meet EU6 legislative limits.  

E.2 Higher Power Demand at Engine Start for Faster Catalyst Light-off 

Since the gasoline engine was being used for a RE application, it provided the 

flexibility to start the engine at varying power demands and engine speeds. Higher 

power demand would result in higher exhaust gas temperature and higher exhaust mass 

flow rate, which would heat the catalyst faster. However, too high a power demand at 

cold start may cause problems of engine wear and high fuel consumption. Since during 

the NEDC, the engine was being started at 2000rpm, for the purpose of examining the 

effect of varying power demand on catalyst light-off, the rpm was kept at 2000rpm 

and the power demand varied from 4kW to 6kW. From Figure E-5, it was observed 
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that as expected the THC emissions reduce with increasing power demand at engine 

start. However, the rise in THC emissions prior to catalyst light-off still exceeded the 

EU6 NEDC limit.   

 

Figure E5 Comparison of downstream TWC cumulative THC emissions under varying spark timing. 
Cumulative THC emissions reduce as power demand at engine start is increased from 4 to 6kW. 

However, emissions still exceed NEDC THC limit 
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Publications 

1. ‘Development of a Low-Cost Production Automotive Engine for Range 

Extender Application for Electric Vehicles’ 

Ashwini Agarwal, Andrew Lewis, Sam Akehurst, Chris Brace, Yash 

Gandhi, Gary Kirkpatrick,  

SAE World Congress 2016 

Abstract 

Range Extended Electric Vehicles (REEVs) are gaining popularity due to their 

simplicity, reduced emissions and fuel consumption when compared to parallel or 

series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) 

can be optimised to a number of steady state points which offers significant 

improvement in overall exhaust emissions. One of the key challenges in such vehicles 

is to reduce the overall powertrain costs, and OEMs providing REEVs such as the 

BMW i3 have included the range extender as an optional extra due to increasing costs 

on the overall vehicle price. This paper discusses the development of a low cost 

Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 

624 cc two cylinder automotive gasoline engine. Changes to the base engine are 

limited to those required for range extender development purposes and include 

prototype control system, electronic throttle, redesigned manifolds and calibration on 

European grade fuel. Modifications to the intake/exhaust manifolds were initially 

modelled using GT-Power and validated by engine tests. These modifications 

improved the engine torque in the APU planned operating range, and the new control 

system achieved improved BSFC up to 4000 RPM with European grade fuel. The use 

of European grade fuel also allowed operation at lambda 1 across a marginally wider 

portion of the engine operating range to improve fuel economy. Further modifications 

include replacing the mechanical coolant pump with an electric pump to reduce engine 

warmup duration and improve fuel economy. 
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2. ‘Thermal Management of a Low-Cost Range Extender for Electric 

Vehicles’ 

Ashwini Agarwal, Leon Rodrigues, Dian Liu, Andrew Lewis, Sam 

Akehurst, Chris Brace, Gary Kirkpatrick, Llyod Ash 

The 6th Hybrid and Electric Vehicle Conference (HEVC), 2016 

Abstract 

Range extenders are a solution to partly overcome the limitations of current 

battery technology and are gaining popularity despite their complexity, due to the 

potential for reduced tailpipe emissions and fuel consumption. The range extender or 

Auxiliary Power Unit (APU) consists of an on-board fuel convertor that converts fuel 

such as gasoline into electrical power while the vehicle is in operation. This enables 

the traction battery storage capacity to be reduced whilst still maintaining an 

acceptable driving range. One of the key requirements of an APU is to provide 

maximum electrical power. In order to do so it is important that the engine as well as 

the generator are operated at their maximum efficiency in addition to optimising the 

complete system to reduce any parasitic losses in auxiliary systems. The conflicting 

requirements of running the engine at a high temperature (~90°C) and the generator to 

run as cold as possible (~50°C) has consequences on vehicle system integration such 

as the need to use separate coolant loops, radiators, pumps etc. Employing a common 

cooling loop can reduce parasitic loads and simplify vehicle integration but requires 

operating the engine and/or the generator under sub-optimum thermal conditions. The 

paper discusses the development of a thermal management system using a single 

coolant loop for the APU. The APU was tested on a bespoke rig first using two 

independent cooling loops to characterise the APU performance. The benefits of 

employing a single coolant loop are then weighed against the compromise in 

performance observed as a result of operating the engine and/or generator under 



Publications 

251 

suboptimum thermal conditions in a single loop. In the single coolant loop, there is a 

drop in APU power of around 4% and an ESFC penalty of circa 2% at full load across 

the operating regime. However, there is a sizeable saving in parasitic losses, simplified 

package installation with reduction in overall package cost. 
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3. ‘Air-Fuel Ratio Control of Spark Ignition Engines with Unknown 

Dynamics Estimator: Theory and Experiments’ 

Jing Na, Member IEEE, Anthony Siming Chen, Yingbo Huang, Ashwini 

Agarwal, Andrew Lewis, Guido Herrmann, Senior Member IEEE, Richard Burke and 

Chris Brace 

IEEE Transactions on Control Systems Technology, reference TCST-2019-0325  

Abstract 

 This paper addresses the emission reduction of spark ignition engines by 

proposing a new control to regulate the air-fuel-ratio (AFR) around the ideal value. 

After revisiting the engine dynamics, the AFR regulation is represented as a tracking 

control of the injected fuel amount. This allows to take the fuel film dynamics into 

consideration and simplifies the control synthesis. The lumped unknown engine 

dynamics in the new formulation are online estimated by suggesting a new effective 

unknown dynamics estimator. The estimated variable is then superimposed into a 

commercially configured, well-calibrated gain scheduling like PID control to achieve 

better AFR response. The salient feature of this proposed control scheme lies in its 

simplicity and the less required measurements, i.e. only the air mass flow rate, the 

pressure and temperature in the intake manifold, and the measured AFR value are used. 

Practical experiments on a Tata Motors Limited 2-cylinder gasoline engine are carried 

out under realistic driving cycles. Comparative results show that the proposed control 

can achieve an improved AFR control response and reduced emissions. 

 


