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Summary
Conceptual climate models plays an important role in the study and understanding
of the Earth climate system. They are mostly used to get insight on the processes
or mechanism of the climate system. Therefore a rigorous study of a conceptual
model developed to study a certain phenomena is crucial. An example of conceptual
models of climate is the PP04 model for climate change, in particular the behaviour
of the ice-ages [57]. This models the transition from a glacial to an inter-glacial
state through a sudden release of oceanic Carbon Dioxide into the atmosphere. This
process can be cast in terms of a Filippov dynamical system, with a discontinuous
change in its dynamics. The work of this thesis is to perform a careful analysis of
the PP04 model using the techniques from the theory of non-smooth dynamical
systems. In particular, an analysis of this model is performed for cases of no forcing,
periodic forcing and quasi-periodic forcing with both two and three modes. Earlier
approaches to studying the PP04 model have used the theory of smooth dynamical
systems. These approaches have limited the findings of the dynamics and bifurcations
observed in this model. Therefore a thorough study of the model in a non-smooth
dynamical systems framework is needed. This is the motivation for the research work
in this thesis.

The thesis begins with a review on the development of simple conceptual models
of climate and how dynamical systems theory was introduced in the construction
of such models in showing response of ice sheets to astronomical forcing. A review
on the literature of dynamical systems (both smooth and non-smooth systems) and
in particular Filippov systems follows. The analyses of the PP04 model focuses
on the presence of the discontinuity boundary due to sudden release of Carbon
Dioxide. The results reveals that, the PP04 model has a rich and novel, dynamical
structure. The PP04 model with no forcing has periodic solutions that are destroyed
at discontinuity induced bifurcations. In addition, the periodically forced PP04
model, exhibits synchronised periodic solutions with subtle regions of existence which
depend on the amplitude and frequency of the forcing. The orbits can be created
or destroyed in both smooth and discontinuity induced bifurcations, in particular
a grazing bifurcation. The changes in orbital stability at the bifurcations show
behaviour similar to that observed at the Mid-Pleistocene Transition. The quasi-
periodically forced PP04 model exhibits quasi-periodic time solutions that resemble
those observed in paleoclimate records. The solutions are observed to depend on the
phase of the forcing with possibility of chaotic response when the amplitude of the
forcing is increased. The study of orbits and the transitions between them is done
for all three types of forcing considered and comparisons made with actual climate
dynamics. We conclude by stating further work to be done.
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Chapter 1

Introduction

Climate change potentially affects all aspects of life on the planet. The increase of
temperatures observed on Earth these recent years has been linked to the increase
in Carbon Dioxide released into the atmosphere. Carbon Dioxide is believed to act
as an insulator preventing heat loss out of the Earth. Thereby causing high rise in
temperatures leading to more severe impacts such as droughts and crop failure and
hence increasing poverty. The melting of the ice sheets and glaciers due to increased
temperature can lead to the rise in sea levels which might cause displacement of
homes and problems like migration in large numbers will be encountered. These
concerns and other severe impacts not mentioned above prompted the scientific
community to come up with different ways such as modelling the climate system and
its variabilities, in an attempt to understand causes of climate change.

The models are developed and evaluated by comparing their findings with the
captured variations of past climate obtained from its proxies such as coral reefs
and ice cores [42]. The simple conceptual climate models are mostly developed to
understand how the climate system works. They are used to study some hypothesis
that has been formulated by using laws of physics to study some processes and
mechanism of the climate. One of the phenomenon that has been studied intensively,
though not yet fully understood, is the glacial cycles.

The data reconstructed from the paleoclimate (past climate) records showed that the
Earth climate has experienced oscillatory periods of the cold and warm conditions
with periods which transitioned from 23kyrs to 41kyrs and of recent to 100kyrs.
The proxy record compiled by Lisiecki and Raymo [42] for global temperature using
the benthic δ18 O records for 57 sites reflects these changes of the global climate (see
Figure 2-4). The global temperature records shows the shift from 41kyrs oscillation
to 100kyrs cycles occurring roughly about 1Myrs ago. This transition of the global
climate from 41 to 100kyrs is known as the Mid Pleistocene Transition (MPT). The
study of the MPT is one active area of research and different simple conceptual
climate models have been developed to study this transition [67, 68, 54, 2, 56]. Some
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of the simple conceptual models used to study the MPT were SM90, SM91, P98 and
AD15 which were able to reproduce the transition using different hypothesis. They
depicted the transition (MPT) as a result of significant changes in the dynamics of
the climate system.

Figure 1-1: The graph showing compilation of benthic δ18O records for last 3 Myrs
showing different periods experienced by the Earth climate (image from Lisiecki and
Raymo 2005).

The models are developed using mathematical equations to represent certain processes
that typically occur over very different time scales. The processes that happen on
short time scales can then be represented as almost instantaneous (discontinuous)
when compared to others. One such simple conceptual climate model with processes
on different time scales, and fast ones represented as discontinuous is the PP04
model of glacial cycles. This model is used to study the transition of the glacial
cycles from a period of 41kyrs to 100kyrs and the driving force behind the 100kyrs
cycles. The PP04 model postulates that the glacial state is ended by a very rapid
(instantaneous) release of Carbon Dioxide from the oceans. The model was developed
using the dynamical systems theory approach and has derivative discontinuities due
to the equations for the Carbon Dioxide release. The system of equations with
discontinuities are known as ’non-smooth dynamical systems’ [19, 10, 38].

Non-smooth dynamical systems have been studied intensively in recent years [38]
and are mostly observed in systems that has interrupted events or switches such as in
medicine, electrical and mechanical engineering applications and climate. Therefore
to study these systems we need to employ the techniques similar to those that are
used in studying the smooth dynamical systems. The study of smooth dynamical
systems involves the applications of bifurcation and qualitative topological theories,
and the use of Poincaré maps as a vital tool to reduce dimensions of the systems
and capture all possible transitions.

Since smooth dynamical systems theory is well studied and there is a lot of literature
in this field, some researchers found it useful to approximate non-smooth dynamical
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systems with the smooth dynamical systems in order to study them. The discontinuity
in these systems are mostly regularised to give a smooth dynamical system. For
instance the non-smooth dynamical systems model of climate change, the PP04 model,
is widely studied through the use of smooth dynamical system theory [46, 47, 13].
This has led to only the dynamics and bifurcations that are only peculiar to smooth
systems to be observed. However the non-smooth systems have subtle mathematics
and novel results are expected in their analysis such as phenomena like switching,
grazing and or sliding. Furthermore non-smooth systems are widely used in a range
of applications, for example in development of machinery and a thorough analysis of
such systems is needed to understand exactly how the machinery will work. This has
however in part motivated this research. As a consequence we will consider the PP04
model of glacial cycles by reformulating it as a quasi-periodically forced piece-wise
smooth dynamical system and then do a detailed study .The key results of this study
are summarised at the end of this chapter. This is a novel approach both in the
modelling of the glacial cycles and in the non-smooth dynamical systems.

The study of piece-wise smooth dynamical systems or any non smooth dynamical
systems entails the study of dynamics to get an insight onto how the processes or
variables of the system truly interacts. Because of the presence of discontinuity, the
mathematical analysis cannot be done using the smooth dynamical systems tools
but those relevant only to non-smooth dynamical systems. The analytical framework
of systems with a single discontinuity boundary, involves studying the subsystems
defined in a certain region of the state phase and merging the solutions to get the
overall solution for the whole system. The results obtained are then compared with
solutions of a numerical analysis. The analysis of each bifurcations of the system
involving a periodic orbit is reduced to the study of an appropriate defined Poincaré
map. Therefore the construction of the Poincaré map is needed though for physical
systems construction of these maps is difficult.

The piece-wise smooth dynamical systems with degree of smoothness equal to one
are known as Filippov systems. These are systems characterised with a discontinuous
vector field. Therefore the PP04 model is a quasi-periodically forced Filippov system
with a single discontinuity introduced by sudden release of Carbon Dioxide. According
to our knowledge the quasi-periodically forced Filippov systems have not been studied
before. Hence the study of the PP04 model in the framework of non-sliding Filippov
system is a novel approach.

1.1 Outline of the Thesis

Chapter 2: Background

In Chapter 2, a brief introduction to general climate modelling is given. The general
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approach behind construction of climate models, the processes and stages involved in
validating the models using the past climate data are discussed. Different approaches
in developing conceptual climate models in the framework of dynamical system
theory and how each model taken as an example performed in depicting climate
change are discussed.

We also give brief introduction to smooth dynamical systems and non-smooth dynam-
ical systems and how they are introduced into climate modelling. The terminologies
and definitions used in smooth systems and those particular to non-smooth dynamical
systems are provided. The dynamics and bifurcations expected for both smooth
dynamical and piece-wise smooth dynamical systems of Filippov type are discussed.

Chapter 3: Features of the PP04 model as a Filippov system

In this Chapter we introduce and motivate the PP04 model. The chapter then focuses
on the reformulation of the PP04 model of glacial cycles as a quasi-periodically forced
Filippov system with a single discontinuity surface. Then we give the analysis of the
type of dynamics that are expected to be observed at the discontinuity boundary of
the system and give a broad classification of the PP04 system within the Filippov
framework. We observed that the PP04 system is a Filippov system without sliding,
that is with transversally crossing orbits with a possibility of a grazing periodic orbit.

Chapter 4: Unforced System

In Chapter 4, we study the unforced Filippov system. The type of dynamics and
bifurcations observed in this unforced PP04 model shows an existence of periodic
solutions between the two sets of virtual fixed points. The bifurcation behaviours
observed in this system are the Hopf bifurcation when considering the smooth system,
and the Boundary Collision bifurcations for a non-smooth system.

Chapter 5: The Periodically forced system

Chapter 5 studies the periodically forced PP04 model. The system is studied
analytically as a perturbation of the unforced PP04 model. The analysis showed the
existence of (1, n) periodic solutions and regions of synchronised periodic solutions.
For small µ we observed that the boundary of the synchronised solutions are linear
but become nonlinear as µ > 0.25. When varying of the parameters ω and µ, we
show that at the boundary of regions of synchronised periodic solutions, the periodic
solutions are destroyed at a saddle node bifurcation. The numerical analysis of the
model under a small forcing is studied by considering the Poincaré section and Monte
Carlo plot which leads to observing different and or general periodic solutions. For
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example when ω is varied we observed the (m,n) periodic solutions and regions of
coexistence of multiple periodic solutions. The period (1, 3) solution was observed to
be stable. The stability and physicality of the periodic solutions also studied.

Chapter 6: The quasi-periodically forced system

In Chapter 6 we study the quasi-periodically forced PP04 model with two and or three
modes of the forcing. The quasi-periodically forced system is studied analytically
as a perturbation of the periodic forced system. For µ2 small, we study the system
using the linear map and the Poincaré map. The linear map is then derived using
the perturbation of the point on the limit cycle and then used to study the system.
The study of the system through the linear map has shown the existence of periodic
n cycle solution for rational forcing and invariant curves for irrational forcing. The
whole system was then studied numerically used the stroboscopic plots of the Poincaré
map. When ω2 is an irrational multiple of ω1, using time series the quasi-periodic
solution is observed and in the phase plane we observe tori. An increase in µ2 showed
the break up of the tori to apparent chaotic solutions for µ2 ≥ 1.

Chapter 7: Grazing Bifurcations

Chapter 7 studies the grazing bifurcations, a transition observed for periodically
forced system at a certain value of parameter µ or ω. The grazing bifurcation
occurs when the part of the periodic orbit interacts with the discontinuity boundary
and hence destabilising the solution. This transition is studied through the use of
discontinuity maps. The domain of attraction that states which type of periodic
solutions are expected for certain initial conditions is also studied.

Chapter 8: Links Back to climate

In Chapter 8 the results observed in the previous chapters 4, 5, 6 and 7 are linked
to what has been observed in the past climate system. The dynamics observed in
the system are compared to the reconstructed data of the paleoclimate. Bifurca-
tions observed are explained to have an understanding how they may relate to the
transitions observed in the climate system.

Chapter 9: Conclusion and Remarks

In Chapter 9 the contents of the thesis are summarised and ideas for possible work
are discussed.
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1.2 Key results

The key results observed in the analyses of the PP04 model are:

• Proof of existence of a periodic solution for the PP04 model without forcing.

• For the periodically forced model we observed:

– Perturbation of the periodic solution to give synchronised periodic solu-
tions.

– Proof of existence of ellipses on solutions and saddle node bifurcations.

– Identification of the breakup of synchronised solutions ellipses and conse-
quent expansion of the basin of attraction.

– Identification of multiple existence of different periodic solutions and
transitions between them.

– Identification of grazing bifurcations.

• Possible explanation of the MPT via bifurcations (both smooth and non-smooth
bifurcations).
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Chapter 2

Background

2.1 General climate models

Climate can be described as being the statistics of the atmospheric, ocean state
and including physical processes on the Earth surface (in particular Biosphere and
Cryosphere) of a certain region over long periods of time. It is measured by assessing
the patterns of variations in temperature, humidity, wind, precipitation, dryness and
other variables. Subsequently when observing these different physical variables, it
is apparent that variations in climate can be from month to month, year to year
or any other longer time scales [41]. Furthermore, when the long term changes in
the patterns of these variable elements persists over a longer period of time ranging
from decades to millions of years, it is called climate change. Climate change can be
limited to a certain region or it can be global. Consequently, this shows that the
climate operates in different time and spatial scales. Moreover, the Earth climate
is complex and difficult to understand hence the development of various models to
simulate it.

Climate models are developed and/or used for variety of purposes which are :

(i) detection and establishing if climate is changing significantly and if so what are
the causes.

(ii) studying climate dynamics in order to understand the past climate of the Earth.

(iii) projection or forecasting of the future climate and how it will change.

Furthermore, the climate models can be used to simulate the interaction between
different components (subsystems) of climate such as oceans (Hydrosphere), land
(Biosphere), ice (Cryosphere) and atmosphere which evolve on many time scales
and spatial scales. These interactions are the causes of internally generated climate
variability which can occur in different time scales. For example, the inter-annual
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climate variability comprises of the phenomenon called El Ninõ Southern Oscillations
and the Quaternary variability dominated by glaciation cycles [21]. In addition, these
climate variabilities can be externally induced or influenced by different internal
processes of climate components [21]. For example, according to Imbrie et al. [36],
the glaciation cycles are believed to be driven by the 650N radiation cycle.

Therefore since the climate variabilities evolve in time and space, they can be
represented mathematically through the use of systems of equations (mathematical
model). These equations or mathematical representations of climate system are based
on the basic laws of physics, fluid motion and chemistry to represent fundamental
physical processes in the atmosphere, ocean, land surface and or Cryosphere associated
with the climate variability [86]. The models are then run and verified by comparing
their results against the information (data) reconstructed from past climate through
use of ice cores and corals (called paleodata sources).

Like any mathematical model of a natural system, the climate models are a simplifi-
cation of a complex and complicated system. The number of variables, processes and
spatial and temporal scales that are involved in formulation of the model determines
the degree of accepted simplification. Thus the complexity of the model determined
by the physical,chemical and biological processes and the extent of Earth system
interactions that are presented, vary and is used to classify them hence generating
the hierarchy of models. Therefore, the hierarchy of models because of varying
degrees of complexity and resolution of processes, gives us a range of models from
the simple conceptual models (at the bottom) to the very complex Global Climate
Models (GCM) at the top of the hierarchy (see Figure 2-1).

Figure 2-1: The graph showing the level of complexity of the climate models starting
with the conceptual models at the bottom (image by Easterbrook[23])
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The conceptual models are mainly used to test the hypothesis about a certain
climate variability or phenomena in order to gain an understanding about it and
for identifying the relevant physical processes within the system that influences
that process. Therefore conceptual models considers a limited number of physical
processes with limited resolutions and can assume zero or one dimensional resolution
depending on whether they had addressed any spatial parameter. An example of
a conceptual climate model which is zero dimensional (0D) is the Budyko’s [6] or
the Seller’s [71] model of energy balance in which the Earth is represented as a
point. That is, in this model there is no account for latitude, longitude or altitude
(spatial resolution) and consequently averages the outgoing energy. However, this
(0D) model can be extended to include either the latitude or vertical (altitude)
dependence (increasing spatial resolution) in order to raise its dimension to a one
dimensional(1D) model. Therefore when the spatial resolution of the model is
increased the complexity of the model is also increased.

Just above the simple conceptual climate models, for instance the Energy Balance
models, are the Box models. These models represents different climate subsystems
such as ocean, land and atmosphere as boxes which are connected through equations
of energy transfer. Then we have the Intermediate Complexity model or the Earth
systems models of Intermediate Complexity (EMICS) which are 3D models and
accounts for the latitude, altitude and longitude dependence of the parameters.
EMICS bridge the gap between conceptual and comprehensive models as they
contain a sizeable number of physical processes.

The Global Climate models also known as General Circulation models (GCM) are of
high dimensionality with billion degrees of freedom because many physical processes
are considered and are also represented in their complex manner. GCMs incorporate
the three dimensionality nature of the components of the climate considered such
as ocean, atmosphere, sea ice, land surface (sometimes interaction with vegetation
is considered), ocean biology, chemistry and ice sheets. In particular, GCMs have
a large number of scales and consider high spatial and temporal resolutions and
hence includes many feedback processes which increases the model complexity due
to climate non-linearity. The GCMs are a compilation of what is already understood
about the earth climate system hence a tool to be used to predict future climate.
However, the processes that are not understood yet are parametrised and included
into the model [86] and those that cannot be resolved are expressed in terms of
the resolved quantities. The equations of this type of climate model are based on
the conservation laws of mass, energy, momentum, Carbon Dioxide, water and so
on. Therefore a fully coupled ocean-atmosphere GCM will need a high performing
computing resource to be run and so experiment climate change. There are a
number of GCMs that have been developed in the United Kingdom such as the
UKLO, HadCM2, HadCM3 and of recent the HadGEM3 family which is still under
development. The HadGEM3 family includes the NEMO ocean model which has
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three major components and CICE sea-ice model components.

However, the GCMs cannot be run for the long periods associated with the glacial
cycles. Hence, in order to obtain insight into the past climate phenomenon for
instance the glacial cycles it is necessary to make use of simpler conceptual models
which study variations of ice sheets and effects of astronomical forcing on these ice
sheets.

The results from these models are then compared with the data reconstructed from
proxies (such as ice cores and coral reefs) which provides the information about the
long time behaviour of past climate. From these data sources, we observe that the
Earth climate has been changing or varying but stable which implies that it has
a mechanism of stabilising itself from extreme variabilities from the normal. The
indicators (such as temperature, volume of ice, carbon dioxide) of climate observed
from data clearly shows that there was alternating periods of cold and warm climate.
Furthermore the oscillatory behaviour experienced in climate has been of different
cyclic periods. All these behaviour of climate is believed to be influenced by various
changing external forcing mechanisms, the most important of which is the sun [21].

2.1.1 Energy Balance Model

Considering the sun as the sole radiative energy provider to the Earth, there are
a number of energy balance models developed in order to understand the glacial
cycles of climate. Their equations are constructed such that they focus on the energy
budget and the thermodynamics of the climate system assuming global radiation
balance. The equations also describes the north south energy transport in terms
of temperature gradients at the poles [4]. This is because the radiative energy is
believed to be exchanged and distributed between Earth climate subsystems. The
interactions and fluxes associated are called energy cycle. When the steady state
of energy is affected or perturbed by internal or external forcing, change in climate
occurs. Sellers [71] and Budyko [6] models were early attempts to understand the
glacial cycles of climate by using energy balance methods. They independently, and
using different approaches, arrived at the same model which is developed such that
it represent zonally the averaged energy balance as a function of planetary albedo.
The function of planetary albedo is proposed to depend on the extent of ice or snow
cover and surface temperature. The Budyko-Seller’s model [6, 71] is defined by:

A = Q(1− α)− I

where A represents the rate of gain or loss of heat (heat flux), Q solar radiation
coming to the outer boundary of the atmosphere and I is outgoing radiation. The
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planetary albedo, α is given as a two step function of surface temperature defined as:

α =

b− 0.009Tg, Tg < 283.16
b− 2.548, Tg > 283.16

where Tg is average surface temperature and b is empirical coefficient given in [71].

Subsequently, most conceptual climate models were developed in order to improve
the Sellers and Budyko’s model by studying other different processes and mechanism
but still using the notion of the radiative energy from the Sun. These are usually
expressed in terms of low-dimensional dynamical systems. For instance Kgomotso
Morupisi’s master’s project, extended the Budyko- Sellers model to address the lag
in temperature changes as ice sheets increases or reduced . When the amount of
ice sheets are increased, the ice-albedo effect lowers the amount of incoming solar
radiation absorbed by the Earth system hence lowering temperature. However this
process is not instantaneous. This is because the ice-albedo effect is delayed by a
certain time period say τ which is the time it takes the ice sheets to accumulate
(or reduced) from one level to the next level. Consequently the albedo at time t is
dependent upon the temperature at some previous time t− τ . Therefore the albedo
function which was earlier defined as α(T ) by Budyko and Sellers is now given by
α(T (t− τ)). Therefore the equation for energy balance is defined

C
dT

dt
= Q(1− α(T (t− τ)))− σε(A+BT )

where C is heat capacity of the Earth surface, A and B represents empirical constants,
Q mean annual incoming solar radiation, σ Stefan Boltzmann’s constant, ε a constant
accounting for greenhouse effect and T is surface temperature. The parameter τ is
the time constant.

On the other hand, Widiasih [87] extended the Budyko model by coupling it with ice
line dynamics. Walsh et al. [85] further extended the Budyko model by separating
the introduced ice line to obtain two dynamic variables and hence introducing the two
climatic states that corresponds to glacial advance and retreat. This reformulation
yields a Filippov system with the switching governed by the ice extent and albedo
line.

A Serbian geophysicist Milankovitch proposed that the changes in patterns of climatic
cycles were initiated by variations in the Earth orbit parameters: eccentricity,
obliquity and precession [45]. Thus the amount of radiation energy received by the
Earth varies and is dependent on the shape of the Earth orbit and the orientation of
the Sun from Earth axis (see Figure 2-2). He used the astronomical variations to
explain the advancement and the retreat of polar ice cap. Furthermore, he proposed
that the land gets heated at high summer insolation which makes glaciers ablate,
and in contrast low summer radiation keeps land cool promoting growth of ice sheets
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and also allowing persistence of ice sheets. That is, during summer period, if there is
low Earth tilt and near circular shape of Earth orbit, the distance from Sun to Earth
increases. Hence low solar radiation absorbed and promoting growth of ice sheets.

Figure 2-2: The graph showing the variations in the Earth orbit (image from Maslin
[44]).

However, it has been established that the amount of energy received by the Earth
system is also affected by other internal processes, mechanisms or feedbacks such
as ice-albedo feedback and weathering [6, 71, 52, 41]. The albedo feedback helps
in promotion of ice sheets growth or ice sheet waning. Consequently, during the
period of more ice sheet, there will be reduction of temperature and during a period
of less ice sheet there will be an increase of temperature. These two successive
climatic conditions are labelled glacial (cold) and the interglacial (warm) climatic
states respectively. Thus from beginning of history, the Earth climate has been
characterised by periods of waxing and waning of ice sheets called ice ages (glaciation
cycle) which persisted for thousands of years [88].

Imbrie et al. [36] states that scientists have recorded about five significant ice ages
(see Figure 2-3) which includes the Quaternary: a period from 2.6 million years
ago extending to the present day. Moreover, there is evidence from ice cores that
suggests that as the earth climate slid in and out of the last ice age, at the end of
each period of general cycle there was some abrupt changes. These abrupt events are
characterised by large and rapid temperature fluctuations which were accompanied
(followed) by transitions between cold stadials and warm stadials [1, 70] (see Figure
2-4). They are associated with the Dansgaard-Oeschger (DO) events which were
found to occur at last glacial inception [13]. The general cyclic periods of glacial
cycles observed from proxies are 23 000 years, 41 000 years and in the recent 500
000 years ago a period of 100 000 years [36, 9]. According to Raymo et al. [66] a
complete theory of ice ages is still elusive since there is still lack of understanding
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the causes of 100 000 year cycle.

Figure 2-3: The graph shows the temperature and ice volume variations during the
four major glaciations of the last 450 000 years reconstructed from the oxygen isotopes
of Vostok and EPICA ice cores. From the graph we observe the slow growth of ice
sheets and the fast waning of ice sheets including the periodicity of approximately
100,000 years. (image from: Global Warming Art; data is from Petit, J.R et al.,[60])

However, there is a consensus about other factors that are believed to be of importance
in interpreting or understanding glacial cycles such as the astronomical forcing theory
and the climatic variations: ocean circulation and atmosphere circulation patterns
together with concentration of atmospheric Carbon Dioxide and methane [55, 33].
Hays et al. [32] attests that the glacial cycles are linearly correlated with Earth
orbit. He showed that the 23 000 year cycle in the longitude of the perihelion
(precession) and 40 000 years obliquity cycle are the same frequencies observed in
the oxygen isotope (δ18O). Hence the proxy data supporting that the two periodic
cycles observed are coherent with amplitude of insolation [36]. Consequently the
variations in seasonal and spatial distribution of the solar radiation driven by orbital
variations, are thought to be the fundamental drivers of the glacial and interglacial
oscillations [73]. When applying Milankovitch’s theory, the glacial cycles of 23 000
years and that of 41 000 years were able to be explained. However, this theory failed
to explain the 100 000 year glacial cycle because the transition from the 41 000 year
cycle to the 100 000 year cycle occurred in the absence of any significant change in
the amplitude of orbital forcing.

The transition of the glacial cycles to the longer period of 100 000 is known as the Mid
Pleistocene Transition (MPT). Since there was no significant change in orbital forcing
to explain this dominant period, it was thought to be an indication that the transition
can be due to climate responding to its internal changes. However, this is not yet
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Figure 2-4: The graph showing different periods experienced by the Earth climate
obtained from δ18O isotope (image from Lisiecki and Raymo [42]).

justified as the physical mechanisms that drive the 100 000 year cycle are not yet fully
known or understood [13, 36]. As a result a number of hypotheses were formulated
in order to understand the causes of the MPT. One of such hypotheses was that the
100 000 year cycle is caused by an underlying change in the global carbon cycle [9].
This was brought about by the findings from proxies and other observational results,
suggesting that during the Pleistocene period and before each glacial terminations,
there was an increase on atmospheric carbon dioxide concentration several millenia
before the melting of the Northern hemisphere ice sheets [5] and that this increase of
Carbon Dioxide is parallel to the increase of temperature.

As a consequence, different mechanisms in the same time scale that can bring about
this change were proposed: those involving the export of carbon to the deep ocean,
those involving deep water ventilation of the Southern Ocean and those involving
changes in the ocean chemistry and carbonate flow to the deep sea [28]. Imbrie et
al. [36] supported this when he proposed that the ocean as carbon sink can provide
part of the explanation (or reason) for this 100 000 year cycle. This is due to the
fact that the ocean has the capability to store and release Carbon Dioxide in the
longer time scales such as centuries to 10 000 years which is the time scale similar
to that of glacial cycles. Nevertheless, Garcia-Olivares and Herrero [28], suggested
that the 100 000 year periodicity of glacial cycles arises from the characteristic time
of Antarctic ice sheet advance to the continental slope. Consequently, different
hypothesis addressing specific mechanisms gave birth to different conceptual climate
models.

Therefore in an attempt to explain the fluctuations of the climatic cycles and bi-
stability of ice sheets, different concepts that originate from theory of dynamical
systems were employed by different authors. The use of dynamical systems theory was
introduced because the physical processes changes with respect to time. According
to Crucifix [13], dynamical systems theory was first introduced to conceptual models
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of paleo climate in order to show the response of the ice sheets to the astronomical
forcing. One of such models was the experimental model by Oerlemans [52] using the
bedrock and ice-sheet dynamics to explain the behaviour of Northern Hemisphere
ice sheet during the 100 000 years glacial cycle.

The use of dynamical systems theory on conceptual models or low dimensional
models has brought a lot of insightful information on how the complex Earth climate
system behave. In particular through this approach, the dynamics of the complex
system that are usually not easy to be captured in a General Circulation model or
any complex model, are easily captured on conceptual models at some leading modes
for a certain temporal and or spatial scales [13]. Moreover, the general understanding
of climate as a dynamical system enables one to study the stability or instability
of the system. Through this approach Calov et al. [7] was able to find a hysteresis
responsive behaviour of the ice sheets to insolation, which indicated that the climate
system has multi stability and hence may be able to explain the glacial cycles and
changes in period of cycles. Furthermore, the approach was viewed as a tool that
can help in identifying the bifurcation (tipping) points of the climate system or their
neighbourhood, that can result in catastrophic climatic changes [13].

Saltzman and Maasch [67, 68] were one of the first scientists to address the hypothesis
that the change in carbon cycle causes the MPT using dynamical system’s theory.
Consequently they developed two glacial models, the glacial model of 1990 (SM90)
and the glacial model of 1991 (SM91) respectively. The SM90 and SM91 models
couple the dynamics of ice volume, Carbon Dioxide concentration and deep ocean
temperature and adopts the Milankovitch view that an increase in orbital forcing
leads to a decrease in volume of ice sheets[13]. Both models consider that the ice
mass responds to amount of Carbon Dioxide in the atmosphere and the changes in
astronomical forcing FI(t). The dynamics of atmospheric Carbon Dioxide and the
reaction of ocean temperature are obtained through the second and third equations
respectively. The SM90 and SM91 models differs only in their equations of change
in Carbon Dioxide, which have proven difficult (problematic) to be interpreted
physically[13, 3].The equations of the model are such that there is no stochastic
forcing and random forcing considered as the original model [67, 68, 13]. The
equations of the Saltzman and Maasch Model (SM90) are given by


İ = α1 − (cα2)µ− α3I − kθα2θ − kRα2FI(t)
µ̇ = −β1 − (β2 − β3θ + β4θ

2)µ− (β5 − β6θ)θ + Fµ(t)
θ̇ = γ1 − γ2I − γ3θ
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and the Saltzman and Maasch model (SM91) is defined

İ = α1 − (cα2)µ− α3I − kθα2θ − kRα2FI(t)
µ̇ = −β1 − (β2 − β3µ+ β4µ

2)µ− β5θ + Fµ(t)
θ̇ = γ1 − γ2I − γ3θ

where θ, I and µ represents mean ocean temperature in oc, global ice mass and
concentration of atmospheric Carbon Dioxide respectively. The other parameters
α1, β1 and γ1 represents the rates at which global ice mass, Carbon Dioxide and
mean ocean temperature would increase respectively while α2, β2, β3, β4, β5, γ2 are
coefficients and γ3 is inverse time constant for the response of deep ocean temperature.

The SM90 and SM91 models regard the change in period of glacial cycle from 41
kyr to the 100 kyr as a limit cycle synchronised with insolation due to the slow
Carbon Dioxide feedback. They interpreted the Mid -Pleistocene Transition as a
bifurcation from quasi-linear to nonlinear resonance regime of insolation [13] due to
the gradual increase of ice sheet mass or slow Carbon Dioxide [67]. In particular the
SM90 experienced a Hopf bifurcation [2] and assuming that the increase in insolation
causes a decrease in ice sheet mass and therefore in a similar way, an increase in
carbon dioxide causes decrease in ice mass.

In a similar way, other simple models of ice ages using the same approach were
developed such as the Paillard 1998 model (P98) [54], Paillard and Parrenin 2004
model (PP04) [57], Crucifix 2013 model (VdP13) [14] and Ashwin and Ditlevsen
2015 model (AD15) [2]. However, Paillard [54] advocated for the use of thresholds
and multiple states in developing model of glacial cycles.

He mentioned that threshold for different states introduces the non linearity observed
in the response of global ice volume to forcing during the 100kyrs glacial cycle, and
that there is evidence for existence of multiple states in the ocean. Hence he used an
ocean box model to derive the threshold of the P98 model. The equation of the P98
model are defined by

dV

dt
= (VR − V )

τR
− F

τF
(2.1)

where V is ice volume, R is current climate regime (R = i, g, G) and hence VR is
the reference ice volume for different climatic conditions. F is the forcing and τR
and τF are the time constants. In this equation, the ice volume is relaxed to the
reference ice volume and perturbed by the insolation forcing. The climate regimes
are explained as i to refer to interglacial state, g the mild glacial state and G the
deep glacial state.

Paillard proposed that the transition from 41kyrs to 100kyrs can be depicted as
a bifurcation due to the gradual increase in total ice mass and that the climate
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system can be represented by three quasi-steady states driven by astronomical
forcing. Whereby the thresholds that triggers the transitions from one climatic state
to another are driven by insolation forcing and ice volume and the climatic states
are assumed to follow the sequence i→ g → G→ i according to the thresholds set.
For instance the transition from g → G occurs if the threshold value of insolation
has exceeded a certain value and the transition g → i is prohibited. The P98 model
attributes the fast-slow dynamics. The multiple states used are derived from the
study of Stommel’s simplified model of the ocean [80].

Ashwin et al [2] motivated by the relaxation oscillator and threshold model proposed
by Paillard [54] suggested the AD15 model of ice ages which is the regularisation of
the P98 model with addition of the effect of noise. Though the study of this effect
was never thoroughly done in the analyses of his model. Similar to the P98 model,
AD15 model is a fast-slow system and couples the slow dynamics of ice volume V (t)
and the fast temperature variable y(t). The model suggests that the Mid Pleistocene
transition is due to the transcritical bifurcation. The equations of this model are
defined

dV

dt
= Ve(y)− V

τV (y) − I(t)
κf

+ σvηv (2.2)

dy

dt
= H(V, y, λ(t)) + σyηy (2.3)

where Ve(y) = β(α − y) represents the equilibrium state, V volume of ice and
H(V, y, λ(t)) is the drift function that describes the nonlinear relationship between
ice volume and some climate state with structural parameter λ(t) that evolves slowly
over the Pleistocene period. The insolation represented by I(t), is the force that
causes melt off of ice sheets during summer, τV (y) represents time variable assumed
to be different in every climate state. Whilst σv,y and ηv,y are noise amplitude and
additive noise respectively and κf the reaction time linked to ice sheet heat capacity
[2].

Similarly the PP04 model was developed using the same principle of relaxation
oscillators and thresholds to represent the ice ages and hence the concept of multi-
stability of ice sheet volume. However in the PP04 model, thresholds are introduced
by the Heaviside function in the equation for Carbon Dioxide represented by the
step function describing the sudden release of Carbon Dioxide when the Southern
Ocean is ventilated. In a further attempt Paillard [56] proposed other three different
mechanisms involving insolation and ice sheets working together to possibly explain
the 100 000 year periodic cycle: instability of base of large ice sheets, ice-albedo
feedback in a dry and cold global climate and the effect of Antarctica ice sheet
maximum extent to bottom water formation.

Clearly, all the models mentioned above perceived the climate system as a dynamical
system hence were analysed by using the theory of dynamical systems. However,
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Figure 2-5: The graph showing the climate assumed three distinct regimes; i=
interglacial, g = mild glacial state and G = deep glacial state. The transitions i→ G
is triggered by insolation threshold, g → G triggered by ice volume threshold and
G→ i occurs when the insolation threshold is reached [54].

smooth dynamical system theory was the one used for almost all the models mentioned
above even those that are not smooth such as P98 and PP04. Therefore, the
dynamics distinctive to smooth systems such as relaxation oscillators, strange non-
chaotic attractors, hysteresis behaviour, Hopf bifurcations, transcritical bifurcations,
synchronisation and Arnold tongues etc were observed [3, 13, 46, 47].

However the analysis of a non-smooth dynamical system through smooth dynamical
systems theory limits the findings of the dynamics in the system. This is because only
dynamics and bifurcations peculiar to smooth dynamical systems will be observed.
For instance, if we consider a Filippov system, and study it using smooth dynamical
systems theory, the dynamics such as grazing bifurcation (which is the primary
bifurcation in our work relating to MPT) cannot be observed. This behaviour would
only be observed if the system is studied using the non-smooth dynamical systems
theory.

Evidently in the climate Filippov dynamics are common because of different time
scales. Consequently Paillard et al. [57] when constructing a model of glacial cycles
produced a Filippov system due to the consideration of ocean ventilation in the
Carbon Dioxide equation. Similarly when Walsh et al. [85] extended the Budyko
model of energy balance by separating the ice line into two dynamic variables and
produced a Filippov system. When studying their model using non-smooth dynamical
systems theory, they observed a periodic solution between two attracting virtual
fixed points for each of the two climatic states. The behaviour we also observe in
the PP04 model.
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Therefore in order to be able to capture all the dynamics and the bifurcations even
the complicated ones in the PP04 model, the study of the model using non-smooth
dynamical system theory is imperative. Mitsui and Aihara [46] when studying this
model, observed that the dynamics in the hybrid automata models or ones with
complicated spatial dimensions are not clear if analysed using smooth dynamical
systems theory, hence in part giving a strong motivation for this work.

Furthermore, it is desirable to include noise in the models of climate phenomenon as
the climate system is complex system. Inasmuch as there are some chaotic processes
and some uncertainties very evident in the atmosphere and oceans, which influences
the climate. Therefore the inclusion of noise in the model of ice ages (AD15) was
useful though in their analyses they never considered it. However, noise can have an
effect known as phase dispersion on oscillators as glacial cycles [13].

However the principal climate models discussed in this chapter has some limitations
and strengths. The weaknesses of these models are summarised in the Table 2.1.
From the table, we could observe that most models have a weakness in explaining
the Carbon Dioxide equation. However, the PP04 model captures the effect of the
Carbon Dioxide on climate system and also provides the physical meaning of Carbon
Dioxide changes in the atmosphere by considering processes occurring in the ocean.
Most of the models are able to reproduce the results as captured in observational
data (see Table 2.2) of the climate system but do not properly capture the sudden
change in dynamics such as the MPT.

Table 2.1: Table summarising the weaknesses of main climate models discussed

Model Weakness
Budyko Uses energy balance and not consider the effect of Carbon Dioxide
SM90 Physical interpretation of CO2 equation unclear
SM91 Physical interpretation of CO2 equation unclear
P98 Physical meaning of the discrete variable
AD15 Physical interpretation of drift function λ(t) and of climate state y

Table 2.2: Table summarising the strengths of main climate models discussed

Model Strength
Budyko Agreement of temperature results and observational data.
SM90 captures a close fit to Vostok data.
SM91 Gives a close fit to the SPECMAP and Vostok data.
P98 Gives a perfect fit to reconstructed data from Vostok records.
AD15 A good fit to observational data for over a period of 200 kyrs.
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2.2 Dynamical systems

Differential equations are used widely in sciences to model systems that change with
time in an attempt to provide the simple representation of the processes, mechanisms
or phenomenon. If a differential equation is derived about the physical process, it is
usually important to know the solutions and their behaviour both long and short
time to gain an information about the process.

A general definition of a dynamical system written in terms of an n−dimensional
state space X ∈ Rn and an evolution operator φ that takes elements x0 of the phase
space and evolves them through time t to a state xt defined

φt := X → X, xt = φt(x0) (2.4)

where t takes values in an index set T .

Definition 2.2.1. A state space X, index set T ⊂ R and the evolution operator φt

are said to define a dynamical system if

φ0(x) = x, for all x ∈ X (2.5)

φt+s(x) = φs(φt(x)), for all x ∈ X, t, s ∈ T (2.6)

The set of all points φt(x) for all t ∈ T is called the orbit and the partitioning of the
state space into orbits is called the phase portrait[19].

Definition 2.2.2. A dynamical system satisfying (2.5) and (2.6) is said to be smooth
of index Cr if the first r derivatives of φ exists and are continuous at every point
x ∈ X [19].

Therefore a general dynamical system can be defined

ẋ = f(x), x ∈ Rn (2.7)

where f(x) = ∂
dt

(φt(x)) is the vector field and can either be smooth or non-smooth.
Therefore equation (2.7) is a system of ordinary differential equations.

Most nonlinear differential equation systems of the form (2.7) do not have explicit
solutions. However the qualitative behaviour of the solutions can be studied geomet-
rically, and this lies at the heart of the theory of dynamical systems. More especially
the long term behaviour of the trajectories, as they provide more information about
the invariant solutions of the system. Considering that systems of Ordinary differen-
tial equations exhibits different kinds of invariant sets such as equilibria and limit
cycles and it is important to establish whether these are attracting or otherwise [29].
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Definition 2.2.3. [19] An invariant set of a dynamical system (2.5- 2.6) is a subset
Λ ⊂ X such that x0 ∈ Λ implies that φt(x0) ∈ Λ for all t ∈ T . An invariant set that
is closed and bounded is called an attractor if :

1. for any sufficiently small neighbourhood U ⊂ X of Λ, there exists a neighbour-
hood V of Λ such that φt(x) ∈ U for all x ∈ V and all t > 0.

2. for all x ∈ U , φt(x)→ Λ as t→∞.

Definition 2.2.4. A closed and bounded invariant set Λ is called chaotic if it satisfies
the two additional conditions and if :

1. it has sensitive dependence on initial conditions. That is there exists an ε > 0
such that, for any x ∈ Λ and any neighbourhood U ⊂ Λ of x, there exists
y ∈ U and t > 0 such that |φt(x)− φt(y)| > ε.

2. There exists a dense trajectory that eventually visits arbitrarily close to every
point of the attractor[19].

However a dynamical system might have many competing attractors. Their impor-
tance is indicated by the size of the set of initial conditions that they attract. That
is their domain or basin of attraction.

Definition 2.2.5. The domain of attraction of an attractor is the maximal set U
for which x ∈ U implies φt(x)→ Λ as t→∞ [19].

However, when the dynamical system has a discontinuous vector field, or if the
evolution of the system with respect to time is discontinuous and or if the state
reaches a discontinuous boundary, then the system is said to a non-smooth dynamical
system [20, 10].

2.3 Non-smooth dynamical systems

A general unforced dynamical system is defined as

ẋ = f(x), x ∈ Rn (2.8)

where the vector field f(x) is piecewise smooth or discontinuous. This is known as
piecewise smooth dynamical system as the trajectories of the solution may not be
differentiable everywhere. The discontinuous dynamical systems have been used
to model different processes or mechanisms. Considering that numerous physical
processes and some machinery are characterised by periods of smooth evolutions and
instantaneous interrupted events, they can be represented by non-smooth dynamical
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system [19]. Notably non-smooth dynamical systems has been widely used in different
scientific disciplines such as in vibro impacting mechanics, switching electronic circuits
such as thermostats, vibration hammers e.t.c. Furthermore, Feigin [25] suggests
that the piecewise continuous dynamical systems gives a good description of the
behaviour of the broad class of machines such as relay, dry friction and vibroimpact
machines. As a consequence, non-smooth dynamical systems were used in the model
of a vertically bouncing ball on a sinusoidal vibrating plate [35]. Moreover, Shaw [72]
employed the use of piecewise smooth systems when studying mechanical systems
with components making intermittent contacts by representing the systems by a
periodic forced piecewise linear oscillator. Likewise, Peterka [59] used the non-smooth
systems when studying mechanical systems with impacts in particular those that
have change in stability of periodic motion to a chaotic one. However, Barry et al.
[4] extended the Budyko energy balance model of climate and considered the albedo
to be dependent on the iceline and latitude. They introduced a step function which
suggests that the change in iceline is dependent on latitude and greenhouse gas effect
hence obtaining a non-smooth dynamical system.

Nevertheless different types of discontinuities captured in non-smooth dynamical
systems gives birth to different classes of solutions. Thus the systems can be
classified depending on the degree of their smoothness. According to Cortés [12] and
di Bernardo et al. [19], the degree of smoothness depends on whether the system
exposes jumps and or switches on its state, vector field or its Jacobian. Therefore
the non smoothness behaviour can be represented by the piecewise smooth system.

For instance, the climate system experiences switches between different climatic
states and some climate variabilities and therefore these switches can be modelled
using non-smooth dynamical systems. For example the switch of the glacial cycles
from glacial to interglacial states, in the PP04 model of glacial cycles was represented
by a step (Heaviside) function, hence resulting into a piecewise smooth dynamical
system [57]. In the study of the El Niño Southern Oscillation phenomenon, non-
smoothness is represented by a delay equations in the classical delayed oscillator
(ENSO) model [21].

2.3.1 Piecewise smooth systems

Piecewise smooth systems are characterised by having dynamics that are determined
by different equations depending on the region of phase space the trajectory is
passing through. In each region, the evolution of trajectories are defined by the
smooth dynamical system which changes to a different defining system across the
discontinuity boundary [29]. Therefore they can be classified into three classes: maps,
flows and hybrids systems [19].
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Definition 2.3.1. Piecewise smooth map
A piecewise smooth map consists of a finite set of smooth maps [19]

x 7→ Fi( x), x ∈ Si (2.9)

where each function Fi(x) is smooth in state x and defined for any open subset U of
Si. The map has a switching boundary or discontinuity boundary (Σ) which is n− 1
dimensional and separates the regions of the phase space Si where different smooth
maps apply.

Definition 2.3.2. Piecewise smooth flow
A piecewise smooth flow is given by a finite set of ordinary differential equation [19]

ẋ = Fi(x) x ∈ Si ⊂ Rn (2.10)

where each subspace or region Si has a non-empty interior, and ∪iSi = D ⊂ Rn.
Each vector field Fi(x) is smooth in the state x and defines a smooth flow Φi(t)
within the disjoint open regions Si. The intersection Σij := S̄i ∩ S̄j is either an Rn−1

dimensional manifold included in the boundaries ∂Si and ∂Sj or is an empty set.

A non empty border or intersection between any two or more regions Σi is called
discontinuity boundary or switching manifold. The switching manifold consists of
finitely many smooth manifolds intersecting transversely, and the union of Σi and all
Si covers the whole state space D ⊆ Rn [19, 11]. In studying the behaviour of the
flow at the switching manifold, the degree of smoothness of the boundary and the
discontinuity of boundary is considered.

Definition 2.3.3. Degree of smoothness
The degree of smoothness at a point x0 ∈ Σij of a piecewise smooth ordinary
differential equation with a single boundary, is the highest order r such that the
Taylor expansions of Φi(x0, t)and Φj(x0, t) with respect to time evaluated at t = 0
agree up to terms of O(tr−1) [19].

Definition 2.3.4. Uniform discontinuity
A discontinuous boundary Σij is said to be uniformly discontinuous in some domain
D if the degree of smoothness is the same for all points x ∈ Σij ∩ D. If the first
non-zero partial derivative of Fi − Fj evaluated on the boundary is of order m− 1
we say the discontinuity is uniform with degree m. That is, degree of smoothness is
one if Fi(x, µ)− Fj(x, µ) 6= 0 for x ∈ Σij ∩D[19].

Climate models takes the form of smooth flows with changes in rate of a certain
quantity. Many of the dynamical systems models in climate including the PP04
model which we will study in detail, have a discontinuity included in the evolution
of the flow that makes it a piecewise smooth dynamical system. In particular, the
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PP04 is an example of piecewise smooth system, of the Filippov system type because
Fi(x, µ) 6= Fj(x, µ) .

2.3.2 Filippov systems

The Filippov systems are the particular examples of piecewise smooth systems
characterised by ordinary differential equations defined in a certain region, where
the discontinuity boundary is defined by a smooth scalar function H(x) such that
Σij := {x ∈ Rn| H(x) = 0}. When we consider a single boundary Filippov system,
then the regions can then be expressed as

Si = {x ∈ Rn| H(x) < 0}
Sj = {x ∈ Rn| H(x) > 0},

Therefore a Filippov system with two states can be written as

ẋ =

F1(x, µ) if H(x) < 0
F2(x, µ) if H(x) > 0

(2.11)

where F1(x, µ) generates a flow Φ1(x, µ) defined on the region S1 and F2(x, µ)
generates a flow Φ2(x, µ) defined on the region S2. The discontinuity manifold
Σ12 := H(x) is between the two regions and µ is a parameter [11, 19, 17]. The
switching manifold is considered to be as smooth as the flow. Thus flow Φ1 can be
defined as the quantity that satisfy

∂

dt
Φ1(x, t) = F1(Φ1(x, t)), Φ(x, 0) = x.

According to Piiroinen et al. [61], the most important feature of the Filippov systems
is the possibility of motion to be constrained to some region of the state space. If
the vector fields F1(x, µ) and F2(x, µ) are locally both pointing away or towards the
discontinuity surface Σ12(x), the dynamics are assumed to be locally constrained to
the surface. Therefore when the trajectories of the Filippov system are confined to
the boundary, they can be described by three basic forms of dynamics that would
occur at the switching manifold: crossing , sliding and escaping, which depends on
the orientation of the vector field on either side of the switching manifold[11]. To
find out what happens to the trajectory of the flows when they reach the switching
manifold from either region, we assess the components of the vector fields F1(x, µ)
and F2(x, µ) orthogonal to the switching manifold Σ12. That is, we find

W1(x) = ∇TH(x)F1(x, µ)

and W2(x) which defines the forward time orbits.
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Definition 2.3.5. Crossing region
The crossing region of a system (2.11) with uniform degree of smoothness one and
having the phase space region divided into two regions, is given by that portion of
the boundary of H12(x) for which

W1(x) ·W2(x) > 0.

The crossing regions are classified into the negative and positive crossing regions.
Negative crossing is obtained for x ∈ Σ12 such that both W1(x) < 0 and W2(x) < 0.
While the positive crossing is obtained for x ∈ Σ12 such that W1(x) > 0, W2(x) > 0.
On the other hand, when the normal component of the vector field switches direction
and the vector field is directed away from the manifold, we obtain escaping[11].
Otherwise when the trajectory or limit cycles may tangentially hits the switching
manifold in the phase space, this is called grazing (see Figure 2-6b) and may result
in non-unique solutions [17].

Figure 2-6: Trajectories of the vector field F(x) which switches between F1 above the
surface and F2 below it. a) trajectory crosses the switching manifold. b) trajectory
of ẋ = F2 grazes the switching manifold. c) sliding trajectory constrained to evolve
along the switching manifold. That is, both trajectories of F1 and F2 got attracted
to the switching manifold and the combined trajectory F1,2 and F2 slide on the
manifold.

Generally it is not possible to obtain analytical solutions of Filippov systems and thus
their solutions cannot be expressed in terms of elementary functions. Consequently,
the most notions of smooth dynamical systems cannot be directly applied to Filippov
system but needs some updating first [31]. For example, in piecewise smooth systems
concepts such as orbits need to account for finite time effects while the definition for
topological equivalence needs to consider that many different trajectories can arrive
at the discontinuity boundary and slide. Furthermore, since the solutions of these
systems are not guaranteed, to obtain their analytical solutions, reformulation has to
be done to construct a Filippov set valued map. The map then aids in transforming
the differential equation into differential inclusion called the Filippov regularisation
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[34]. That is the system takes the form,

ẋ ∈ F(x(t)), t ∈ [0, T ]

where F(x(t)) is a set valued map. Complementary systems methods are another
way that Filippov systems can be studied analytically. Other than these, a Filippov
system can be studied by a geometric approach where the solutions are obtained
analytically for two regions and then merged together. This approach allows for the
determination of important characteristics of the solution which are the stability and
bifurcations of the invariant sets.

In dynamical systems, the presence of periodic solutions implies that the system has
some kind of an attractor. In particular, there are different kinds of attractors the most
common being fixed points (equilibrium points), periodic (limit cycles) and chaotic
attractors [83, 84]. Nevertheless, under parameter variations there is a possibility
of destroying or changing the long time dynamics of dynamical system or affecting
the stability of the invariant sets (attractors). When the qualitative appearance of
dynamics of the system has changed, it is said to have a bifurcation. The parameter
values at which the bifurcation occurs is called bifurcation point. However, according
to di Bernardo et al. [19], the definition of bifurcation used in smooth dynamical
systems is not used in non-smooth dynamical systems. Furthermore, in smooth
systems, bifurcations can be defined by using the analytical or topological approach
which are problematic in non smooth dynamics [20].

2.4 Bifurcations

Non-smooth dynamical systems can experience two types of bifurcations. That
is, they can experience both smooth (where the local bifurcation occurs when one
or more eigenvalues of the system crosses the imaginary axis of the system) and
non-smooth (Discontinuity Induced Bifurcations) bifurcations. For instance, the
smooth bifurcations that describe the evolution of attractors and are familiar and
can be observed in non-smooth systems includes the saddle-node, Hopf and period
doubling.

Notably, in piecewise smooth systems, the presence of the discontinuity boundary
leads to complicated dynamical behaviour and bifurcations which are not possible in
smooth systems. Feigin was one of the first to study bifurcation phenomena in non-
smooth dynamical systems in detail, whereby he considered the case where the fixed
point or period point changes stability when it collides with the switching manifold.
He termed the resulting bifurcations C- bifurcations [26, 18]. Nusse and Yorke [51]
later described these kind of bifurcations as the Border Collision Bifurcations a term
commonly used today. However some of the main results by Feigin were remodelled
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into the framework of modern bifurcation theory by di Bernado et al. [18] . On the
same note, Filippov contributed immensely into the study of non-smooth dynamical
systems by providing a detailed qualitative behaviour of these systems near or at
the discontinuity boundary using regularised Filippov systems [34].

According to Simpson [74], the discontinuity boundary often causes changes in the
system’s response. For this reason, the bifurcation phenomena unique to piecewise
smooth systems is where an invariant set interacts with the discontinuity boundary
called Discontinuity Induced Bifurcation (DIB). This situation can exhibit dramatic
transitions whereby periodic solutions suddenly transition to large scale chaotic
attractors [17]. The behaviour of the invariant sets when interacting with switching
manifold gives the type of DIB: Border collisions of maps, boundary equilibrium
bifurcations, grazing bifurcation of limit cycles, sticking and sliding bifurcation or
boundary intersection crossing or corner collision [19, 20].

Definition 2.4.1. Discontinuity Induced Bifurcation
A system of the form (2.11) is said to undergo a discontinuity induced bifurcation at
a parameter value µ = µ0 if there exists an arbitrarily small perturbation that leads
to a loss of piecewise topological equivalence [17].

According to di Bernardo et al. [19], the common DIB occurring in codimension one
systems such as the Filippov systems are Boundary Equilibrium Bifurcation (BEB)
and Border Collision Bifurcation (BCB). Boundary Equilibrium Bifurcation is the
type of DIB that occur when an equilibrium point lies on the discontinuity boundary
and is associated with flows. Similarly, Border collision bifurcation are related to
maps and corresponds to a fixed point (or periodic point) perturbed away from the
switching manifold of the map.

Definition 2.4.2. Boundary equilibrium bifurcation [19]
A Filippov system (2.11) is said to undergo a boundary equilibrium bifurcation at
µ = µ∗ if there exists a point x∗ such that, for both i = 1 and 2:

1. Fi(x∗, µ∗) = 0

2. H(x∗, µ∗) = 0

3. Fi,x(x∗, µ∗) is invertible or equivalently det(Fi,x) 6= 0.

4. Hµ(x∗, µ∗)−Hx(x∗, µ∗)[F−1
i,xFi,µ](x∗, µ∗) 6= 0

In a piecewise smooth dynamical system, the complicated dynamics are often gener-
ated by the grazing bifurcation. A grazing bifurcation corresponds to the interaction
of a periodic orbit with the boundary of the discontinuity surface (switching manifold)
or where a periodic orbit touches the switching manifold [76, 74, 50]. Thus the limit
cycles of the flow becomes tangential with the switching manifold under parameter
perturbation.
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Definition 2.4.3. Grazing bifurcation of limit cycles
A Filippov system (2.11) undergoes a grazing bifurcation at µ = µ∗ with respect to
vector field F1 if there exists a point x∗ such that

1. F1(x∗, µ∗) = 0 but F2(x∗, µ∗) 6= 0

2. H(x∗, µ∗) = 0

3. F1,x(x∗, µ∗) = 0 is invertible or equivalently det(F1,x(x∗, µ∗)) 6= 0 [19]

Although the grazing bifurcations are local bifurcations: that is bifurcation that occur
only at the switching manifold, the resulting motion of the orbit can be complex as
this bifurcation destabilises the solution. Consequently, when studying dynamics of
a system, it is important to not only know the location and type of solutions for
the system, but also their basin of attraction [27]. This will enable us to know the
behaviour of an orbit for certain initial conditions and also the regions of the phase
plane that will give solutions that will be attracted to a certain equilibrium.

In our study of the PP04 model, we will find the evidence of Boundary Equilibrium
bifurcations in the case of the unforced model. Whilst for the periodically forced
PP04 model, we will observe the grazing bifurcations.

2.4.1 Relaxation oscillators and excitable systems

When considering periodic solutions governed by a parameter λ, we usually see
changes in the stability as λ is varied. Periodic solutions and other attractors have
various forms of stability: asymptotic and global. Asymptotic stable attractors have
the trajectories of nearby orbits attracting towards them whereas, for globally stable
attractors, all the trajectories in the phase plane are attracted towards them. As a
result, a limit cycle is formed.

Definition 2.4.4. Asymptotic stability [19]
The equilibrium solution x = φ(t) of the system (2.8) at the origin is said to be
asymptotically stable if :

1. For all ε > 0, there exists δ > 0 such that for any other solution x = ψ(t)
satisfying ||ψ(t0)− φ(t0)|| < δ then ||ψ(t)− φ(t)|| < ε for all t > t0

and

2. There exists δ0 such that whenever ||ψ(t) − φ(t)|| < δ0 then ψ(t) → φ(t) as
t→∞.

According to Soliman [78] there can be several attractors that may coexist at a fixed
set of parameter value where each attractor is embedded in its basin of attraction. In
nonlinear systems, multiple attractors are common and there might be a coexistence
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of chaotic and periodic attractors. Coexistence of solutions means that there is a
possibility of existence of two periodic states at the same parameter value [77].

Relaxation oscillators are examples of limit cycles with global stability which have
orbits with two time scales. That is, the oscillator is characterised by a consecutive
extremely slow build up followed by a sudden discharge of motions (see Figure 2-7)
and hence the orbit have segments of fast growth or reduction and segments of slow
decay or growth and resetting at the threshold [62].

Figure 2-7: The graph showing the saw tooth behaviour of Carbon Dioxide depicting
the sudden release of Carbon Dioxide into the atmosphere and its slow absorption by
the ocean. The graph was obtained by solving the smoothed unforced PP04 model
with η = 80 and initial conditions V = 0.25, A = 0.55, C = 0.8

However, a relaxation oscillator’s oscillations are based upon the behaviour of a
physical system’s return to equilibrium after being disturbed. The period of the
oscillations are determined by the time that it takes the system to relax from every
perturbed state to the threshold that triggers the next disturbance [90]. According
to Crucifix [13], there are three main types of relaxation oscillators based on their
structure:

1. relaxation founded on slow-fast dynamics. That is whereby the vector space is
organised by a slow manifold with several stable branches with all points of
state space attracted towards the stable branches of the slow manifold ( see
Figure 2-8 (a) and (d)).

2. relaxation structured by a homoclinic orbit. In this type of relaxation oscillation,
trajectories are quickly attracted towards a region of the phase plane influenced
by a saddle point. However as the trajectory comes near to the saddle point, it
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take a longer time before escaping in the direction of the unstable manifold
(also known as bottleneck effect) (see Figure 2-8 (b)).

3. relaxation structured around a focus an unstable (see Figure 2-8 (c)).

If we refer to Figure 2-3, we can see that ice ages have the apparent form of relaxation
oscillators. Ice ages depict a period of slow ice build up and a period of fast loss of
ice sheets. A period of ice loss is initiated by a threshold mechanisms which involves
the thermohaline circulation at the South Ocean that triggers ocean ventilation,
thus releasing carbon dioxide into the atmosphere and hence observing two types of
climate states (glacial and interglacial) in one glacial cycle. Therefore a number of
scientists have used this knowledge to come up with different models [2, 54, 57, 67].
All these models envisaged that this climate phenomenon as an oscillator precisely
a relaxation oscillator. A good review of models that use the notion of relaxation
oscillation is given in a paper by Crucifix [13] and most of these models captures the
smooth behaviour of the climate dynamics. However there are some models which
also captures the non-smooth behaviour such as the P98 and PP04 models.

Figure 2-8: The graph showing different schematic forms of relaxation oscillators
(image from Crucifix [13]).
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A nonlinear dissipative dynamical systems which has the capacity to produce periodic
oscillations such as a relaxation oscillator without an external drive is called a natural
oscillator. These oscillators with self sustained oscillations can be excited by external
perturbations [13]. However, their natural rhythm can be restored after perturbation
of their oscillations [62] and therefore are called excitable systems. On the other
hand, a dissipative natural oscillators when periodically forced or coupled to another
oscillator, their frequencies may lock at different ratios through a phenomenon called
synchronisation [43].

Synchronisation and resonance

When two oscillators with different natural frequencies have synchronised, their
rhythms or frequencies are adjusted due to weak interaction such that they start
to oscillate with a common frequency [39]. While in contrast, resonance is the
phenomenon where an oscillator will oscillate with greater amplitude when forced
near its natural frequency [81, 43]. However, when the dissipative self sustained
oscillator is forced at a frequency that is the rational fraction of its natural frequency,
it can phase lock and then can oscillate with the frequency near its natural frequency
[43]. Furthermore, Strogatz [81] and Mike Schaus [69] assert that phase locking
(synchronisation) can also occur when the coupled system’s response oscillates at
either the frequency of forcing or with a ratio of the forcing frequency. This can be
determined by the strength of forcing as well as, how far from its natural frequency
the system is forced. On the other hand, when the forced system assumes the
frequency of the forcing or the ratio of forcing frequency, it is said to have entrained
to the forcing frequency. However, synchronisation depends on the coupling strength
and the difference between the two natural frequencies of the coupled system but
not on the initial conditions [62]. That is, weak force or coupling can only influence
the phase. We will see this behaviour in the PP04 model.

Arnold tongues and resonance tongues

When two coupled self sustained oscillatory systems interact, they can create regions
on the phase plane, for which the frequencies of the coupled system are phase-
locked. These are known as Arnold tongues. These regions provide information
about the stability change and different dynamics obtained on the phase plane as
the parameters of the forcing are varied. Moreover, inside these stability regions,
forcing cycles and the resulting forced oscillations have ratios, in specific ratio of
n : m. That is, the synchronous regimes with n cycles of forcing within m cycles of
system oscillation can be observed [69]. This n : m synchronisation phenomena for
n,m ∈ N gives a relationship between phase of natural oscillator ψ(t) and forcing
phase φ(t) = ωt such that 0 < |mφ(t)− nψ(t)| ≤ 2π. That is, the phase difference
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across the synchronisation region changes between zero and π with phase difference
of zero at the centre of the tongue. Hence obtain the relation n

m
= ω

Ω where Ω is
frequency of the synchronised oscillations [43].

In most cases, the synchronisation of order n : m can be observed with the tongues
touching the ω axis of the parameter space and the regions becoming very narrow for
large values of n and m [62]. That is having a tip at µ = 0 and ω = mω0

n
, for ω0 being

natural frequency of system. In addition, as µ is increased the tongues widen up and
might overlap when a certain critical value of amplitude µc is reached which indicates
the breaking up of the invariant tori [43] or coexistence of frequencies. According to
Thompson et al. [84] and Montoya [48], outside the periodic mode locked regimes,
there is drift (movement) corresponding to either chaotic or quasi-periodic motion.
A quasi-periodic motion is achieved when the dynamic behaviour is characterised by
the coexistence of two or more incommensurate frequencies [79]. Nevertheless, the
change from synchronised regimes to unsynchronised ones corresponds to a saddle
node bifurcation [43]. We will observe this in the periodically forced PP04 model.

Figure 2-9: The diagram showing Arnold tongues representing the mode-locked
regions as a function of the amplitude and frequency of this periodic forcing (image
from A. Farokhniaee and E.W.Large [24]).

On a different note, resonance occurs when there is a noticeable increase in the
amplitude of the periodic forcing near some frequencies. Therefore the resonance
tongues which are regions in parameter space within which particular periodic
solutions exists and are attracting, obtained by keeping the amplitude µ of forcing
constant, and plotting the amplitude of periodic solutions as a function of the forcing
frequency ω [82]. However, when the forcing frequency approach as certain fraction
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or multiple of natural frequency of the system, there will be additional sub-harmonic
resonances. Resonance occur for sufficiently large amplitude forcing [43]. The
overlapping of resonance regions imply multi stability or coexistence of multiple
stable periodic solutions or resonance states [77, 78]. However, according to Simpson
[74], the resonance tongues of piecewise smooth continuous maps are commonly
characterised by sausage-like geometry where stable and unstable periodic solutions
exists throughout the tongue. Furthermore, for smooth maps, the codimension one
boundaries of tongues may be analogous to familiar smooth bifurcations such as
saddle node and period doubling [75], while for piecewise smooth systems the tongue
boundaries may be due to boundary collision bifurcations [74].

The climate system comprises processes and phenomena for instance, glacial cycles,
which are natural oscillators. If this oscillator is then forced by the other self sustained
oscillation system, such as astronomical forcing, we expect to see resonance and
synchronisation phenomena. That is, both resonance and synchronisation can be
observed in glacial cycles. In this thesis to do the calculations to obtain resonance
regions, the stroboscopic technique in particular a Poincaré map is used.

Natural Poincaré map

In order to study the dynamics near the limit cycle associated with the glacial cycles,
we often make use of a Poincaré section and an associated map.

The Poincaré section is an n− 1 dimensional surface Π that contains a point xp such
that xp is a point on the limit cycle that is transverse to the flow at xp. The notation
of the Poincaré section is given as

Π := {x ∈ Rn : π(x) = 0} (2.12)

for some smooth scalar function π. The transversality condition is given by the
normal vector πx(xp) to Π at xp having a non-zero component in the direction of the
φt(xp, 0) = f(xp) [19]. That is, we have

πx(xp)f(xp) 6= 0.

A Poincarè map is a mapping from Π to itself. This is obtained by following the
trajectories from one intersection with the Poincaré section to the next, which is
defined for, say x, sufficiently close to xp contained in Π [19]. Thus Poincaré map
reduces the dimension of the system by one and simplifies the study of a system of
Ordinary Differential Equations (ODE) to the analysis of discrete difference equations
or maps.

However to construct the Poincaré map analytically is not an easy task, and for
practical problems, numerical methods are generally needed. Since the Poincaré map
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is an exact method, the topology of phase space of the Poincaré map is identical with
the topology of the phase space of the original non-averaged system. Consequently,
they are useful in studying swirling flows such as flows near a periodic orbit [81]
and hence Taylor [83] states that the bifurcation analysis of nonlinear continuous
models is somewhat based on the ideas of Poincaré map. For non-smooth system
with discontinuity on set Σ it is natural to set the Poincaré section to be equal to
the discontinuity boundary more especially for crossing flows.

Figure 2-10: The graph showing the trajectories of the system as they intersect the
discontinuity boundary (Poincaré section) creating a Poincaré map.

Suppose we consider an ice age model of climate, simplified to n− dimensional
systems of ODEs. The Poincaré section of this system should have n− 1 dimensions.
Consequently we should consider a natural Poincaré map

Ps : Rn−1 → Rn−1 (2.13)

If the forcing on the system is periodic, with frequency ω a natural and Poincaré
map to be considered is the stroboscopic map defined by

PS : x(t)→ x
(
t+ 2π k

ω

)
(2.14)

PS x(t) ≡ x
(
t+ 2π k

ω

)
, for some k ∈ N. (2.15)

Using this map we can construct a set of points xm defined by the iteration

xm+1 = PS xm. (2.16)
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If xm → x∗ then this corresponds to a periodic solution of the ODE system. If,
asymptotically xm lie on a closed (invariant) curve this corresponds to a torus in the
original system.

We have already established that for a nonlinear dissipative dynamical system
forced by a periodic oscillator, tongue like structures of phase-locked regions on the
parameter space are observed. Furthermore, when considering the simplest nonlinear
dynamical system, for example a circle map (a one dimensional map which maps
a circle onto itself), different dynamics such as chaotic, quasi-periodic and strange
non-chaotic attractor are observed if the map is forced by a rigid rotation with
irrational frequency [53]. However, for quasi-periodically forced smooth dynamical
systems, strange non-chaotic attractors are one of the mostly expected dynamics
to be observed [22]. Therefore, when considering a smooth model for climate, we
expect to also observe non-chaotic strange attractors since the model is quasi-periodic
forced.

Strange non-chaotic attractor

Since the attractors of a dynamical systems can be classified by observing the
dynamics of typical orbits, the ones characterised by fractal structure are said to have
"strange attraction". Moreover, those with fractal structure and non differentiability
(strangeness) but with no exponential sensitivity to initial conditions are called
Strange non-chaotic attractors (SNA) [8]. Therefore a system has an SNA, when
the typical orbits on the attractor have generally non-positive non-trivial largest
Lyapunov exponents and when its geometrically strange [30, 37]. Thus typical nearby
orbits do not diverge exponentially with time but stay correlated.

As a consequence, a small change to the systems’ initial state have a proportionally
small effect on the fractal journey of the orbit hence making its evolution relatively
predictable and stable. Grebogi et al. [30] are the first to observe SNA’s from a
system defined by a two dimensional map

xn+1 = 2σ(cos 2πθn + α) tanh xn

θn+1 = θn + ω mod 1

where (θ, x) ∈ [0, 1] x R, n ∈ Z, ω irrational, with α and σ as non-negative parameters
[30, 47, 46]. The map defines a non-linear forced system with the type of forcing
determined by ω: if ω is rational, we will have a periodic forced system whereas if ω
is irrational, we have a quasi-periodically forced system. However, Prasad et al. [65]
and Pikovsky et al. [63], states that strange non-chaotic attractors are generic in
non-linear quasi-periodically forced systems and are not at all rare. As a consequence,
SNA’s are found in the neighbourhood of periodic, quasi-periodic attractors as well
as the strange chaotic attractors in parameter space. Thus, SNA’s can occur over a
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finite range in parameter space [30]. From the Figure 2-11 and Figure 2-12, we could
observe that the qualitative appearance of trajectories are dependent on the value of
α. Furthermore, the SNA exists only for |σ| > 1 [63].

Figure 2-11: The graph showing the phase portrait of the circle map exhibiting a quasi-
periodic attractor obtained for initial values θ = 0.25, x = 0.3 with ω = (

√
5− 1)/2

and parameters α = 1.001 and σ = 1.2.

According to Prasad et al. [65] the distinct route or mechanism for SNA’s formation
is not yet clear. However, there are some already known situations that make
their formation possible: the wrinkled double torus formed due to period doubling
bifurcation ocollides with its unstable parent torus in a dense set of θ (torus collision),
fractalisation, intermittency or blowout bifurcation. Of all the mentioned mechanisms
above, the torus collision is the most common [65]. However, a sequence of torus
doubling bifurcations depends upon the nonlinearity parameter of the model when
the amplitude of forcing is fixed. Nevertheless, when the amplitude is large, smooth
torus transform into an SNA thereby number of torus doubling bifurcation in a
sequence depends on the amplitude [37].
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Figure 2-12: The graph showing the phase portrait results of the circle map exhibiting
a strange non-chaotic attractor obtained for initial values θ = 0.25, x = 0.3 with
ω = (

√
5− 1)/2 and parameters α = 0.8 and σ = 1.2.

2.5 The PP04 model of climate dynamics

The model for the glacial cycles that we are studying in this thesis, was introduced
by Paillard and Parrenin in 2004. Before the introduction of this conceptual ice age
model, there has been a number of conceptual models of glacial cycles introduced, that
were employed to explain the observed behaviour of glacial cycles, more especially,
the fast or rapid loss of ice sheets followed by the slow growth of ice sheets and MPT.
In order to explain the glacial cycles and MPT, the researchers used the notion of
interplay between variations of ice, temperature, Carbon Dioxide all coupled together
by various feedback loops. The scientists proposed that there is a mechanism between
internal cyclicity of earth climate system and astronomical variations that make
them to be synchronised. At the same time, the data reconstructed from the Vostok
ice core, identified a correlation between temperature and Carbon Dioxide suggesting
that Carbon Dioxide drives the glacial cycles [60].

The PP04 is one simple glacial cycle model which captures the physics behind the
initiation and termination of the ice ages and the pacing with astronomical forcing.
This makes it an interesting model to study and a number of researchers such as
Crucifix [13], Mitsui et al. [46] and Ashwin et al. [3] did some study of this model,
but considered it a smooth system. This approach, hence limited the findings of the
dynamics and bifurcations to be observed in the model. Therefore a thorough study
of the model in a non-smooth dynamical systems framework is needed. This is the
motivation for the research work.

During the later period of the 20th century, Paillard [54], introduced the model P98,
to explained the glacial cycles and abrupt changes of climatic state from glacial
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to interglacial using the concepts of relaxation and thresholds. He represented
the climate system by the three quasi steady states (deep glacial, mild glacial and
interglacial) given by the relaxation processes driven by the astronomical forcing.
However in this model, Paillard failed to provide a physical meaning of the discrete
variable involved in the threshold criteria. Subsequently, Paillard and Parrenin
[57], introduced a relaxation model of ice ages (known as the PP04 model) which
incorporates the physical mechanism involving the influence of Antarctica ice sheets
extent on bottom water formation. The threshold in the bottom water formation in
the Atlantic ocean, induces a switch between the glacial and interglacial states. This
transition influences the sudden changes in amount of atmospheric Carbon Dioxide
during the glacial-interglacial transitions. Therefore the fast transition from the
glacial to the interglacial states is caused by a sudden release of Carbon Dioxide from
the ocean into the atmosphere and the slow transition from interglacial to glacial
can be explained through Milankovitch theory.

According to Ashwin et al. [3], when the surface water rich with oxygen has density
which is sufficiently high, it allows for this water to sink to great depths. Thus the
bottom water in the deep ocean is strongly stratified with cold salty water which
has the capability of storing a lot of carbon. On the other hand, when the Antarctic
ice sheet reach its maximum, brine rejection makes salty water formation difficult,
and then stratification weakens leading to the release of Carbon Dioxide into the
atmosphere. The formulation of the model as a relaxation oscillator is due to multiple
states of the glacial cycles evident from records of deep ocean temperature, Carbon
Dioxide or Southern Ocean temperature suggesting a link between Northern ice
sheets, atmospheric Carbon Dioxide and deep ocean temperature [57].

On a different note, it was observed from geological records that at the end of
every glacial cycle, the temperature change leads Carbon Dioxide decrease and that
both Antarctica air temperature and atmospheric Carbon Dioxide concentration
lagged global ice volume changes. This showed that the temperature change drives
atmospheric Carbon Dioxide. Therefore mechanisms occurring at the Southern Ocean
were proposed as significant role players in the long term changes of atmospheric
Carbon Dioxide changes [60]. Furthermore, similarities between insolation at 650N

and data from δ18O isotope helped in establishing a link between atmospheric
temperature and astronomical forcing [40, 60].

2.5.1 The model

The PP04 model describes the evolution of ice sheets and feedback mechanisms
associated with global ice volume V , atmospheric Carbon Dioxide content C and
the extent of Antarctica ice sheet A. The glacial cycle model is defined
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dV

dt
= (Vr − V )

τV ,
(2.17)

dA

dt
= (V − A)

τA
, (2.18)

dC

dt
= (Cr − C)

τC
, (2.19)

where variables V,A,C are considered to be functions of time t. From equations
(2.17 - 2.19), the first equation shows that the growth of global volume of ice depends
upon the quantity of Vr defined

Vr = −xC − yI65(t) + z,

where the parameters x, y, z are constants and are summarised in Table 2.3. In
particular, (2.17) expresses that the global ice volume depends on the amount of
Carbon Dioxide in the atmosphere and is driven by the astronomical forcing I65(t).
An increase of Carbon Dioxide in the atmosphere as a result of mechanism happening
in the Southern Ocean, such as upwelling, cause an increase of the global temperature
because Carbon Dioxide is a greenhouse gas, and hence cause the melting of ice caps.
The water from melting of the ice caps, is added into the ocean hence affecting the
salinity of ocean water. Thereby weakening the upward and downward movement of
water and air in the ocean surface, which in turn triggers the absorption of dissolved
inorganic carbon on ocean surface. Therefore equation for change in atmospheric
Carbon Dioxide concentration is given by (2.19) and Cr defined as

Cr = αI65(t)− βV + γH(−F ) + δ,

where the parameters α, β, γ, δ are constants and are also summarised in Table 2.3.
According to Garcia-Olivares et al. [28], δ can be interpreted as the Carbon Dioxide
reference level and β represents the positive feedback between temperature and
Carbon Dioxide through the ice volume V and A. The function I65(t) is insolation
at the latitude of 650N during summer solstice, and is provided in Mitsui et al.
[46, 16]. The equation (2.19) describes that the growth in the amount of atmospheric
Carbon Dioxide is dependent on the volume of global ice and an increase of insolation
received, as well as the contribution of the Southern Ocean. The ocean contribution
is represented by a Heaviside function which is dependent on the stratification
parameter F . Thus the ocean contribution is such that when more fresh water is
added into the ocean, causing salinity stratification, in turn makes absorption of
carbon on ocean surface possible. When more carbon is absorbed, consecutively
the amount or concentration of Carbon Dioxide in the atmosphere is reduced and
thereby initiating slow ice sheet growth. When the stratification parameter reach a
certain value, the ocean ventilates and through an upwelling of Carbon Dioxide, it is
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released into the atmosphere and subsequently causing deglaciation.

Therefore the ocean contribution is parametrised as H(−F ) with stratification
parameter F acting as a switch when its threshold value is reached and suddenly
triggering the release of Carbon Dioxide from the ocean. Consequently there is no
ocean contribution during glacial periods until another release of Carbon Dioxide
from the ocean is initiated. However, the ocean ventilates when F < 0 and the
stratification parameter is defined

F = aV − bA− cI60(t) + d, (2.20)

where the parameters a, b, c and d are constants and provided in the Table 2.3.
The stratification parameter increases with global ice volume and decreases with
Antarctica ice sheet and Southern Hemisphere insolation. However the parameter d
controls the threshold switching for the model from glacial to interglacial states and
Southern Hemisphere insolation I60(t), is the daily insolation 600S. Therefore the
ocean contribution is defined

H(−F ) =

1 if F < 0
0 if F ≥ 0

The parameters τV , τA and τC in equations (2.17- 2.19) are time constants and are
also summarised in the table. They are provided in thousands of years units as it
is believed that the process for ice volume and Antarctica ice sheet build up before
melting take an estimated lag time of 103 − 104 years. Therefore the time scale for
Antarctica ice sheet and volume of global ice are coupled together with the very
faster one for Carbon Dioxide release.

Therefore due to the disparity in the time scales for the climate driven events, it is
natural to describe some processes or events as instantaneous when compared to
others, for example, the ocean contribution in this model. As a result, the sudden
release of Carbon Dioxide into the atmosphere, a fast process compared to ice growth
or loss, represented by a step function (representing ocean contribution) introduces
the discontinuity in the equation for Carbon Dioxide. Hence making the model
a piecewise smooth dynamical system. Consequently the PP04 model becomes a
non-smooth dynamical system.

2.6 Astronomical forcing

The astronomical forcing terms are obtained by using a Fourier representation by
Berger(1978) for the detection of Northern Hemisphere summer solstice insolation at
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higher latitude (650N) and is defined by

I65(t) = 1
e

35∑
i=1

si sin(wi t) + ci cos(wi t) (2.21)

where wi are different frequencies, si and ci coefficients provided in [16, 46, 47].
However the coefficients ci and si are found through linear regression of the insolation
on the frequencies ωi and the function is valid for the period of about the past one
million years to present [16]. The parameter e is a scale factor used to make the
function for astronomical forcing dimensionless though different researchers seem to
take different values of e for different models and the value seem to be dependent
on the number of components of the astronomical forcing considered. For instance
Ashwin and Dietlevsen [2] considered e = 1 for the AD15 model. However Mitsui
and Aihara [46] considered e = 11.77 Wm−2 for the Crucifix-De Saedeleer model and
e = 18.3 Wm−2 for the SM90, SM91 and PP04 models, basing the value on the three
frequency components of astronomical forcing that they considered to be significant.
In contrary Mitsui et al. [47] considered the parameter e = 23.58 Wm−2 for the PP04
model. According to Mitsui et al. [46] the three astronomical forcing components:
precession terms at i = 1 (23.7 kyr) and i = 3 (19.1 kyr) as well as obliquity term
at i = 4 (41.0 kyr) constitute 78 percent of original insolation forcing. Since the

Figure 2-13: The graph showing the quasi-periodicity nature of the astronomical
forcing using only three modes of the forcing given by i = 1, 3 and 4 reproduced for
the past 1000 kyrs
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insolation forcing has high degrees of freedom, and has obliquity and precesion as the
dominant frequencies, it is thus reasonable to consider the simplified astronomical
forcing as a quasi-periodic function comprising of the two or three harmonics that
includes precession at (19 kyrs or 23kyrs) and the (dominant) obliquity at 41kyrs
or ω4 = 0.153 ( Figure 2-13 is produced using these three modes). The approach we
will follow in this thesis.

We observe that the amplitude of the forcing obtained by taking coefficient s4 ≈ −11
and dividing it by e = 23.58 is approximately

µ = 0.467. (2.22)

For the remainder of this thesis we will use the above frequencies and coefficients as
in [46, 16].

Paillard et al. [57] considered values given in Table 2.3 to produce the figures in their
paper. In the absence of forcing they observed a self sustained relaxation oscillator
with a periodicity of 132 kyrs. The results of the model was able to reproduce most
of the glacial-interglacial cycles and also predicted the correct termination times.

We also consider the same values for our analysis of the model, except that we
consider γ = 0.7 a consideration made after personal communications with Paillard.
We also do not consider the contribution of I60(t) in the system by taking c = 0 since
the absence of I60(t) does not affect the initiation and termination of ice ages, the
parameter values in the model were considered from first principles and obtained
experimentally [57].

Table 2.3: Model parameter values used

Variables Values Range Units
a 0.3 0.26-0.39
b 0.7 0.63-0.74
c 0 0-0.15
d 0.27 0.253-0.302
x 1.3 1.23-1.44
y 0.5 0.4-0.64
z 0.8 0.77-0.82
α 0.15 0-0.35
β 0.5 0.46-0.54
γ 0.7 0.37 - 0.7
δ 0.4 0.39 - 0.42
τV 15 13.2 - 18.1 kyrs
τC 5 3.1 - 15 kyrs
τA 12 9.5 - 26 kyrs

The PP04 model is a discontinuous system because of the threshold described above,has
been studied so far as smooth dynamical system, See for example [3, 46, 15, 47].
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However, the unforced system was found to exhibit the dynamics of a relaxation
oscillator [14, 57] and when quasi-periodically forced, the strange non-chaotic attrac-
tors were observed [46, 47]. According to Mitsui et al. [46],the simulated model for
over 700 000years exhibited solutions that agreed with the data obtained from the
δ18O isotope of LR04 stack and that they synchronised after transient time.

Nevertheless, the only types of dynamics peculiar to smooth dynamical systems were
observed. Discontinuous dynamical systems are non-smooth systems and should be
studied using non-smooth dynamical systems theory in order to find all the dynamics
present in the system. Therefore, we propose that non-smooth dynamical system
theory should be employed in studying the discontinuous dynamical systems models.
Therefore in the remainder of this thesis, we will study the PP04 model through
employing the non-smooth dynamical system’s theory.
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Chapter 3

Features of the PP04 model as a
Filippov system

In this chapter we will prove some basic results on the PP04 model, showing that
it is a Filippov system without sliding. The PP04 model can be formulated as a
Filippov system principally because of the presence of the switching mechanism
(due to the Heaviside function) representing the ventilation of the ocean which is
influenced by stratification of the water in the Southern Ocean. The ventilation of
the ocean brings about the transition from one climatic state to the other and hence
the stratification parameter F is considered as a transition surface Σ across which
the dynamics of the system changes. When F < 0 the ocean switch is triggered and
Carbon Dioxide is released into the atmosphere and the climate system experience a
warm climate (interglacial state). However, when F > 0 the switch is off and Carbon
gets absorbed by the ocean hence reducing Carbon Dioxide in the atmosphere as a
result the climate system experiences cold climate (glacial state).

We can formulate the PP04 model as a forced Filippov System. To do this we
introduce a state vector

X = (V,A,C)T .

According to Paillard et al. [57], the inclusion of the I60(t) term in the definition
of F does not affect the times when the glacial cycles terminates or the qualitative
form of the overall dynamics. Setting it to zero significantly simplifies the resulting
analysis of the PP04 model and we will do this for the remainder of this thesis. With
this simplification, it then follows from (2.20) that

F (X) = (a,−b, 0)T X + d ≡ cTX + d. (3.1)

In this thesis we will use the notation in the PP04 paper whereby we consider
F (X) = H(x) corresponding to the discontinuity surface Σ of the PP04 model.
Therefore in the Filippov framework the discontinuity surface Σ is given by the
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simple linear relation
Σ = {X : cTX + d = 0, }. (3.2)

This transition surface is the important aspect of this system as it governs which
region of the plane is the orbit observed. That is, from which type of climatic state
are the dynamics observed.

Now we define the two climatic states corresponding to the glacial and inter-glacial
states

S+ = {X : c ·X + d > 0}, S− = {X : c ·X + d < 0}. (3.3)

Therefore in the PP04 model the dynamics in S± is given by

Ẋ = LX + b± + I65(t) e (3.4)

where the linear operator L and vector e are defined by

L =


−1/τV 0 −x/τV
1/τA −1/τA 0
−β/τC 0 −1/τC

 , e =


−y/τV

0
α/τC

 . (3.5)

and these do not depend upon the system state. In contrast the vectors b± depend
upon which region X lies in and are given by:

b+ =


z/τV

0
δ/τC

 , b− =


z/τV

0
(γ + δ)/τC

 . (3.6)

From this formulation, it is clear that the PP04 model has a piecewise-linear Filippov
structure. We can thus expect it to have similar dynamics to a typical Filippov
problem and to show both ’smooth’ and ’discontinuity induced’ bifurcations (for
example grazing bifurcations) as parameters are varied. When now looking at the
generic structure of this formulation, we observe that the degree of discontinuity of
the system is given by

(LX + b+ + I65(t) e)− (LX + b− + I65(t) e) 6= 0. (3.7)

We now look at the structure of this formulation.

Lemma 3.1 The degree of discontinuity of the PP04 model is one.

Proof It is clear from the formulation that X is continuous on Σ, but that Ẋ has a
jump discontinuity. The result then follows.
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The following results show that we do not have sliding solutions.

Lemma 3.2 The value of dF
dt

is continuous across Σ.

Proof

If
F (X) = c ·X + d

then it follows immediately that

d

dt
F = c · d

dt
X = c · LX + c · b± + c · eI65(t). (3.8)

Then if we define

h = c · L, r± = c · b±, g(t) = c · e I65(t), (3.9)

then we have
d

dt
F = h ·X + r± + g(t). (3.10)

However, it follows directly from (3.1) and (3.6) that

r− = r+ ≡ r.

So
d

dt
F = h ·X + r + g(t). (3.11)

It is clear that dF
dt

is then continuous across the discontinuity surface (3.2).

If we approach Σ from S+ it follows that dF
dt
≤ 0. In particular if dF

dt
< 0 on Σ

then from Lemma 3.2 it follows immediately that the corresponding trajectory must
immediately enter the region S− and does not slide on Σ.

It is possible for grazing to occur on Σ. This arises when F = 0 and dF
dt

= 0. In the
case of an unforced system this will arise when

c ·X + d = 0 and h ·X + r = 0.

It follows immediately that in this case grazing on Σ occurs along a straight line, the
grazing set G, which is parallel to the vector c× h.

We note further that in this case we have

d2F

dt2
= h · (LX + b±).
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Hence the surface d2F
dt2

= 0 is another plane in each region S±. This can intersect
G at most one point. This rules out the possibility of sliding. Moreover, we could
observe from the model that the release of a Carbon Dioxide induces the big change
in climatic conditions. Therefore the stratification parameter of the ocean cannot
remain in one level or condition without the threshold for either absorption of carbon
or release of Carbon Dioxide being triggered. Since the release of Carbon Dioxide
takes a certain period of time before the ocean stratification threshold reached,
intuitively no sliding of solutions could be observed.

52



Chapter 4

The unforced PP04 system

In this chapter, we study the unforced PP04 model, that is the case where I65(t) = 0.
We will consider the non-smooth system case where we solve the system through non-
smooth dynamical system’s theory and a smoothed system case where we solve the
system numerically. The purpose of this is to show that the unforced (non-smooth)
model has periodic solutions of approximately 140 kyr period, which arise at border
collision bifurcations from fixed points, and that in the smooth system these are
Hopf bifurcations.

4.1 Non-smooth system

In this section we are going to consider the solutions of two ordinary differential
equations merged together to give solution of the system. That is, we are studying
the system

Ẋ =

LX + b+ if F (X) > 0
LX + b− if F (X) < 0

(4.1)

where the discontinuity boundary Σ12 between the two regions of the phase plane is
defined as

F (X) = c ·X + d = 0,

while the two regions are given by S+ = F (X) > 0 and S− = F (X) < 0.

4.1.1 Fixed points

The general unforced PP04 model has two fixed points corresponding to the two
systems of ordinary differential equations and obtained by solving the right hand
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side of (4.1) and hence given by

Z± = −L−1b±. (4.2)

The linear operator L is given by

L =


−1/τV 0 −x/τV
1/τA −1/τA 0
−β/τC 0 −1/τC

 ,

and the vectors depending on the two climatic states are given by

b+ =


z/τV

0
δ/τC

 , b− =


z/τV

0
(γ + δ)/τC

 .

Consequently the two fixed points are given by

Z+ =


(z − xδ)/(1− xβ)
(z − xδ)/(1− xβ)
(δ − zβ)/(1− xβ)

 , Z− =


(x(γ + δ)− z)/(1− xβ)
(x(γ + δ)− z)/(1− xβ)
(γ + δ − zβ)/(1− xβ)

 .

If we now consider the tabulated values for the PP04 model, we then have linear
operator given by

L =


−1/15 0 −1.3/15
1/12 −1/12 0
−0.5/5 0 −1/5


with the eigenvalues of the linear operator as


λ1

λ2

λ3

 =


−0.08033
−0.0188
−0.2478

 .

It follows that since eigenvalues of the linear operator L are negative, both fixed
points are attractors.

If the fixed point Z+ lies in S+ then it is physical. Since the linear operator L has
negative eigenvalues, it follows that orbits will be attracted to it, and the system
will evolve towards a steady state. This arises if

F (X) > 0. (4.3)
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In contrast, if Z+ lies in S− then the fixed point is called a virtual fixed point.
Although it does not strictly exist as part of the dynamics, it still has a stable
manifold in S+ and attracts trajectories towards it. An exactly similar situation
arises for the fixed point Z−. A Border Collision Bifurcation (BCB) arises when one
of the virtual fixed points crosses the discontinuity set Σ ≡ {F (X) = 0}.

4.1.2 The existence of periodic solutions of the unforced
system.

Now when considering the motion of the whole unforced system. We have to describe
the trajectory of the system between the two fixed points. Therefore we establish
the following results which will aid in describing the motion of the system.

Lemma 4.1 Let Z± be defined as above

(i) If F (Z+) ≡ d− L−1b+ > 0 then the system trajectory starting in S+ evolves to
Z+.

(ii) If F (Z−) ≡ d− L−1b− < 0 then the system trajectory starting in S− evolves to
Z−.

(iii) If F (Z−) ≡ d− L−1b− > 0 and if F (Z+) ≡ d− L−1b+ < 0 then the system has
a periodic solution P (t).

Proof
Parts (i) and (ii) of this lemma are already considered above, whereby we found out
that for each case the orbit will be attracted to their respective fixed points. So we
now only consider part (iii). Consider the situation illustrated in the Figure (4-1).
In this figure a periodic trajectory starts at the regionS+ and evolves towards its
virtual fixed point crossing the discontinuity boundary Σ before trying to reach it.
That is if the flow starts at point X0 in Σ it then evolves in the region S+ before
reaching the discontinuity boundary Σ again. As the unforced system is autonomous
it can be assumed to start from X0 at time t = 0. Then the flow X(t) in S+ is then
given by the exact expression

X(t) = eLt(X0 − Z+) + Z+. (4.4)

If we consider the quantity y = c · x+ d, we know that as the flow is initially in S+

then y > 0 for small t > 0. Similarly, as L has negative eigenvalues and we are in
case (iii) then for large t > 0 we must have y < 0. Then there must be a first time
t = t1 at which y = 0 and the trajectory intersects Σ at the point X = X1 then the
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flow now crosses over into S−. The resulting flow is then given by

X(t) = eL(t−t1)(X1 − Z−) + Z−. (4.5)

By the same argument, it follows that there is a first time t2 > t1 such that y = 0
and the trajectory intersects Σ from S− at the point X2. The condition for a periodic
solution is that

X0 = X2 ≡ N(X0) (4.6)

This can be considered to be a fixed point condition for the nonlinear map N : Σ→ Σ
defined above. However, as Σ is finite dimensional, and, as L has negative eigenvalues,
N must map a finite region of Σ to itself. It follows from the Brouwer fixed point
theorem that N has a fixed point, and hence there is a periodic solution to the
Filippov system.

If we now consider the tabulated values of the PP04 model, the two fixed points are
Z+ = (0.8, 0.8, 0) and Z− = (−1.8,−1.8, 2) then the trajectories of F (X) between
F (Z+) and F (Z−) in the regions S+ and S− gives a periodic solution (see illustration
in Figure 4-2). The time series of the components of the resulting solution is then
illustrated in Figure 4-1. From the results, we observe that the system spends most
of its time on the glacial period (where N > 0)and less time on the interglacial state.
Furthermore, the results show that when Carbon Dioxide is suddenly released into the
atmosphere, the system switches to the interglacial state as the Antarctica ice sheet
and global ice volume extent wanes. Thus the results show a saw-tooth like structures
similar to those evident in the geological reconstructed data. Therefore these results
suggest that without insolation the climate will always alternate regularly between
the interglacial and the glacial states. Hence a relaxation oscillator has been obtained
and has a period of 147kyr in this case. This phenomenon was also observed in the
original PP04 paper without any mathematical analysis. Note that the period of
this unforced oscillation is higher than the observed period of 100kyr but it is not
dissimilar. This indicates that in this model the natural timescales of the Earth play
a major role in determining the frequency of the ice ages.

4.1.3 Border Collision bifurcations of the periodic solution.

If one of the parameters of the system, say d, is varied, then the periodic solution
can lose existence at a border collision bifurcation (BCB), when either one of the
two virtual fixed points Z± intersects Σ. As a consequence, we see a change from
a periodic solution to a fixed point. As the BCB is approached, the period of the
periodic solution increases, rising to infinity when the fixed point lies on Σ.

To illustrate this, for example, we consider the flow in S+, where F (X) = c ·X+d > 0
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Figure 4-1: Unforced periodic solution of the non-smooth system showing V (red),
A (blue) and C (magenta), F (black) as well as I65(t)(green) obtained by merging
the solutions of two systems ( that is, considering a non-smooth system).

Figure 4-2: Schematic diagram showing the existence of a periodic solution as the
orbit evolves between two virtual fixed points.
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and follow its evolution in this region until it crosses Σ as it approaches Z+ in S−.
Similarly we consider the flow in S− where F (X) = c ·X+d < 0 as it evolves towards
Z− in S+.

Lemma 4.2

(i) The solutions of PP04 system remain bounded for all time.

(ii) There is an attracting region B in the X− phase space into which all trajectories
enter.

Proof
As L has all negative real eigenvalues, it can be written as L = UΛU−1 where
Λ = diag(λ1, λ2, λ3). If we set Y = U−1X, p± = u−1b± and q = U−1e then

Ẏ = ΛY + p± + qI65(t).

Now consider N = YTY/2 then it is immediate that if N is sufficiently large then

Ṅ = YTΛY + YT (p± + qI65(t)) < −min(λi)YTY + YT (p± + qI65(t)) < 0.

Hence N, and thus |X| is bounded.

To prove (ii) we note (from inspection of the actual matrix) that the matrix UTU is
positive definite. It follows that the bounded sets in Y correspond to bounded sets
in X and vice versa. Hence the N− ball in the Y space corresponds to a bounded
set B in the X space.

If we consider a trajectory starting from a point X on the discontinuity boundary
Σ and entering S+. This will be attracted to Z+ which is in S−. Therefore the
trajectory must intersect the discontinuity boundary again and enter S−. It is then
attracted to the point Z− which is in S+. Therefore it must cross the discontinuity
boundary at a point F (X). By construction the map X→ F (X) is continuous from
Σ to itself. By Lemma 4.2 it also maps the region Σ intersect B to itself. Therefore
by the Brouwer fixed point theorem it must have a fixed point X∗ on Σ, so that
F (X∗) = X∗. Therefore any trajectory starting from X∗ must be a periodic orbit.

The values of d± at which we have a BCB are given by solving the following equation

d± = −c · Z± (4.7)
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Using the tabulated values we obtain

d− = −0.72, d+ = 0.32,

with periodic solutions obtained when −0.72 < d < 0.32. In Figure 4-3 we show the
period of the periodic solution as a function of d in which we can see the two BCBs.

Figure 4-3: Graph showing the period of solution as parameter d is varied and the
Border Collision Bifurcations at d = −0.72 and d = 0.32.

It is of interest to consider how this bifurcation structure arises if we replace the
non-smooth system by a smooth one. A convenient way to do this is to replace the
(non-smooth) Heaviside function, by the regularized function.

4.2 Numerical methodology

We now consider the PP04 model with the Heaviside function replaced by the function

Hη(z) = 1
2(1 + tanh(ηz)). (4.8)

The advantage of this formulation is that we can solve the system numerically forward
in time using Matlab code ode45. By varying the values of η in the Function (4.8) we
can simulate both a smooth or a non smooth system. For η ≥ 100, the Function (4.8)
closely approximates the Heaviside function. Therefore using this approximation we
can easily integrate the system (2.17-2.19) forward in time and explore its varied
dynamics.
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4.2.1 Periodic solutions

When using this approximation and consider η ≥ 100, we observe a system ap-
proximately equivalent to the non smooth system. This is illustrated by using the
periodic solutions observed for η = 80 and η = 1000. In Figure 4-4 and Figure 4-5
where η = 80, the time solution shows periodic solutions that looks more sinusoidal.
However in Figure 4-6 and Figure 4-7 where η = 1000, the time solutions shows a
saw-tooth dynamic behaviour similar to the one observed in ice age records. For
instance, the time solution for V, shows the trajectory with alternately exponentially
growing part and fast reduction parts. Similarly the time solutions for Carbon
Dioxide clearly shows the sudden increase of Carbon Dioxide and slow reduction.
Thus we have a period of rapid decay and of slow growth of ice sheets and Carbon
Dioxide as evidently shown by saw tooth kind of time series obtained for non-smooth
system (see Figure 4-1) and these depicts what is expected on the climate system
(see Figure 2-3).

Figure 4-4: Graph showing the periodic solutions of global volume of ice V for the
smoothed system with η = 80 and initial conditions V = 0.25, A = 0.55, C = 0.8.

In Figure 4-8, we observe a relaxation oscillator in the phase plane and the unforced
system has a period of about 140kyr. When considering the time solution for the
stratification parameter F (see Figure 4-9), we observe the periodic solutions similar
to those observed in Figure 4-1.Thus the solutions for the smoothed system when
η = 1000 and the non smooth system are consistent. Notably when we vary the
parameter d, we observe that the periodic solution of the system gets destroyed and
then the system gets attracted to the fixed point. That is the climate system gets
locked into one climatic state (see Figure 4-11). For d = 0.4, we observe the system
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Figure 4-5: Graph showing the periodic solutions of Carbon Dioxide C for the
smoothed system with η = 80 and initial conditions V = 0.25, A = 0.55, C = 0.8.

Figure 4-6: Graph showing the periodic solutions of global volume of ice V for the
non smooth approximated system with η = 1000 for initial conditions V = 0.25, A =
0.55, C = 0.8 when d = 0.4.
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Figure 4-7: Graph showing the periodic of solutions of Carbon Dioxide C for the non
smooth approximated system with η = 1000 and initial conditions V = 0.25, A =
0.55, C = 0.8

locked onto the glacial state of climate where there is little to no Carbon Dioxide in
the atmosphere but a high amount of ice sheets globally.

4.2.2 Hopf bifurcations of periodic solutions

To determine the dynamics of the solutions of both the smooth and non-smooth
approximated system, we start with a random set of initial conditions and integrate
forward in time until the solution converges onto its Ω−limit set. To record this
we then plot the maximum and minimum values of the solution on this set. If this
is done for a set of values of d then we can determine the complete bifurcation
picture for the solutions. This is given in Figure 4-12 to 4-14. In Figure 4-13 we take
η = 100 and this represents a smooth system and in Figure 4-14 we take η = 1000
and represents a non-smooth system. In Figure 4-12 we can clearly see a smooth
Hopf Bifurcation. In Figure 4-13, which represents a smooth system, we see that
the two fixed points lose stability, each at Hopf bifurcations, to a periodic solution.
This type of solutions were also observed by Crucifix in [13]. In Figure 4-14, which
much more closely represents the non-smooth system described above, we see the
discontinuous change in the solution at the BCB.
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Figure 4-8: The graph showing the phase portrait of volume of global ice and
Antarctica ice sheets

Figure 4-9: The graph showing time solution for the stratification parameter F
plotted forward in time obtained by solving the smoothed PP04 model with η = 1000
and initial conditions (V,A,C) = (0.25, 0.55, 0.8).
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Figure 4-10: Graph showing the fixed points of the non-smooth approximated system
with η = 1000 for initial conditions V = 0.25, A = 0.55, C = 0.8 and d = 0.4

Figure 4-11: The graph showing time solution for the stratification parameter F
plotted forward in time for d = 0.4
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Figure 4-12: The graph showing the smooth bifurcations obtained when plotting
the Omega limit set of minimum values (blue circles) of F and Omega limit set of
maximum values (red circles) of F against d with η = 30.

Figure 4-13: The graph showing the smooth Hopf bifurcations obtained when plotting
the Omega limit set of minimum values (blue circles) F and Omega limit set of
maximum values (red circles) F against d with η = 100.
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Figure 4-14: The graph showing the Hopf bifurcation , which is now very close to a
Border Collision bifurcation. The graph is obtained by plotting the Omega limit set
of minimum values (blue circles) of F and Omega limit set of maximum values(red
circles) of F with parameter η = 1000.

4.3 Summary

In this chapter we have observed that the unforced PP04 model can have both
fixed points and a periodic solution of a period of 147kyrs. In non-smooth case
it exchanges stability from a fixed point to a periodic solution through a border
collision bifurcation when parameter d is varied. In smooth case the border collision
bifurcation is replaced by the complex scenario including the Hopf bifurcation.
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Chapter 5

The periodically forced system

This chapter studies the periodically forced PP04 model. That is we consider the
model when insolation is considered to be a single mode forcing. Although this form
of forcing is unrealistic from a physical point of view, studying such systems allows
us to gain insight into the more general case of quasi-periodic forcing, especially
when one frequency is dominant in the insolation. Therefore, we consider the system
of the form

Ẋ = LX + b± + I65(t) e (5.1)

where
I65(t) = µ sin(ωt), (5.2)

so that the period of the forcing is given by

T = 2π
ω
. (5.3)

5.1 Analytical solutions

When considering the forced system, we observe that for small µ this is a perturbation
of the unforced Filippov System (4.1) which we have periodic solution. Therefore
we might expect to observe periodic solutions of (5.1) that are bounded for certain
parameters values and a perturbation of the periodic solution of the unforced system.
As a consequence, we will investigate the effect of amplitude and or frequency of the
forcing to determine their effect on the periodic solutions. Therefore, in general we
might expect to see the following types of solution behaviour from the PP04 system

(a) Synchronised periodic solutions (both stable and unstable) of period P = nT =
2πn
ω

with n = 1, 2, 3.. which have precisely one glacial and one inter-glacial
period (one glacial cycle) between repeats. We define these as (1, n) periodic
orbits.
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(b) Synchronised periodic solutions with several (for example m) glacial cycles
between repeats. We define these as (m,n) periodic orbits.

(c) Quasi-periodic solutions showing at least two distinct frequencies

(d) Chaotic solutions

In practice, for appropriate choices of parameters, we see all of these types of solutions,
possibly co-existing. Some of these solutions arise through smooth bifurcations and
others (as we have seen in the previous chapter) from non-smooth bifurcations as we
vary parameters such as µ and ω. We note that in parametrically excited smooth
dynamical systems we might expect to see Arnold Tongues which are curves of
(say) parameters (µ, ω) which define the existence regions for synchronised periodic
solutions [62, 74]. Moreover, these curves can be used to represent the regions of
stability change of the solutions. Inside these stability regions, forcing cycles and the
resulting forced oscillations have specific ratios of n : m. Thus n cycles of forcing
which results in m cycles of system oscillation [69]. Outside of the phase locked
regions,the quasi-periodic or chaotic motion of the solutions is expected [84] and
similar behaviour is observed in this non-smooth system. Indeed we will now study
the solutions of type (a) and (b) and will obtain analytic estimates for these tongues.

5.1.1 Conditions for the existence of the (1, n) periodic solu-
tions.

It is relatively easy to construct algebraic conditions which are necessary for the
existence of the (1, n) periodic orbits. Suppose that we have a periodic solution
of period P = 2nπ

ω
, with one period existing in the range t ∈ [t0, t2 = t0 + P ]. We

assume that this solution is glacial if t ∈ [t0, t1] and inter-glacial if t ∈ [t1, t2]. We
then assume that X(ti) = Xi. It then follows that

X0 = X2 and F (ti) ≡ c ·Xi + d = 0. (5.4)

The differential equations satisfied by this system are then

Ẋ = LX + b± + µ e sin(ωt). (5.5)

when we consider a particular integral of this system given by

X±PI(t) = Z± + µ p cos(ωt) + µ q sin(ωt), (5.6)

it follows from (5.5) that

Ẋ = −µ ω p sin(ωt) + µ ω q cos(ωt). (5.7)
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and hence comparing coefficients of (5.5) and(5.7) it gives the following

Z± = −L−1b±, p = −(L2 + ω2I)−1 ω e, q = −(L2 + ω2I)−1 L e. (5.8)

We can then integrate the whole system to give

X1 = eL∆1
(
X0 −X+

PI(t0)
)

+ X+
PI(t1), (5.9)

and similarly
X2 = eL∆2

(
X1 −X−PI(t1)

)
+ X−PI(t2). (5.10)

Here we set
∆1 = t1 − t0, ∆2 = t2 − t1 = P −∆1. (5.11)

Therefore the problem of existence of a periodic solution is then reduced to finding
X0 together with the phase t0 and t1 so that the conditions (5.4) hold.

This nonlinear system may or may not have algebraic solutions, and we will consider
this in the next sub-section. Furthermore the algebraic solutions, if they exist may
or may not lead to physically relevant climate trajectories.

Definition 5.1.1. We define a periodic solution for the PP04 model to be physical if

V (t) > 0, A(t) > 0, C(t) > 0 ∀t (5.12)

and

F (X+(t)) > 0, t0 < t < t1, and F (X−(t)) < 0 t1 < t < t2. (5.13)

Typically solutions lose algebraic existence through smooth (saddle-node) bifurcations,
and lose physicality through non-smooth (grazing) bifurcations. In the case of F
changing sign the Filippov condition is violated and we expect to see a dramatic
change in the solution as indicated in Chapter 7 of [19]. We will return to this
situation in the next chapter.

5.1.2 Small µ synchronised (1, n) periodic solutions

We consider first the question of the existence of the (1, n) periodic solutions. To do
this we use perturbation theory, and look for periodic solutions of the forced system
which are perturbations of the periodic solution of the unforced system when µ is
small. We have shown in the previous chapter that if µ = 0 (the unforced system)
there is a single glacial cycle periodic solution with frequency ω = ω∗ with period
P ∗ = 2π

ω∗
and which takes values X∗ = (V ∗, A∗, C∗) at the start of the glacial cycle.
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Accordingly, for small µ we might expect to see a synchronised (1, n) periodic orbit
of period P provided that this period is closer to the period of the perturbed one.
That is P ≈ P ∗ so that

P = 2πn
ω
≈ P ∗ = 2π

ω∗
.

Therefore by perturbation theory

ω = nω∗ + µα +O(µ2) (5.14)

and it follows that for small values of µ

ω ≈ n ω∗. (5.15)

As a result, we propose that for small µ there is a range of ω values with |ω−n ω∗| =
O(µ) such that two synchronised periodic solutions exist within this range. Over the
interval the phase t0 of each such solution (defined as the phase of the forcing at the
start of the glacial cycle) is well defined and varies over the whole range [0, 2π

ω∗
]. One

of these periodic solutions is stable and the other is unstable. Both solutions are
perturbations of the unforced solution which is given when µ = 0, and which has an
arbitrary phase. Hence, both solutions are physical provided that µ is sufficiently
small and the parameter d is not close to the value at which a border collision occurs
for the free system. The boundaries of the regions of existence are determined by
the existence of saddle-node bifurcations.

Therefore this result is an immediate consequence of the following

Lemma 5.1 (i) For each n, if µ is small then there is a set of solutions (ω,x) to
the algebraic system, which is parametrised by t0.

(ii) If µ is small then the curves (ω, V (ω)),(ω,C(ω)) etc form ellipses which have
for instance (nω∗, V ∗) at the centre.

(iii) The size (for example the semi-major axis) of the ellipses is (for sufficiently
small µ) directly proportional to µ.

(iv) As we go once around the small elliptical curves, the phase t0 increases by 2π
ω∗
.

Corollary 5.2 If µ� 1 then for each value of n, the synchronised periodic solutions
of the PP04 model exhibit saddle node (SN) bifurcations at points (ω1,n, ω2,n). At
which points they change to quasi-periodic orbits. Synchronised periodic solutions
exist in the interval ω ∈ (ω1,n, ω2,n). We have that

|ωi,n − nω∗| = O(µ), i = 1, 2.
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We illustrate the conclusions of Lemma 5.1 and Corollary 5.2 in Figure 5-1, in which
we plot the ellipses of solutions (ω, V (t0)) for µ = 0.05, 0.1, 0.2 and n = 3.

Figure 5-1: The variation of V (t0) with ω for µ = 0.05 (red), µ = 0.1 (blue) and
µ = 0.2 (green) for n = 3 showing the (elliptical) curve of the solutions and the two
SN bifurcation points. It is clear that the size of the curve increases in proportion to
µ and that it has a true elliptical shape for the smaller values of µ.

In Figure 5-2 we plot t0 for the case of µ = 0.1 and n = 3 as we go around the
ellipse. For the problem considered we have ω∗ = 0.128 we can see that t0 increases
by 2π

ω∗
= 49.0874 over this cycle.

Proof

If µ = 0 we have a periodic solution X∗(t) of the autonomous system. This can
have an arbitrary time t∗0 at the start of the glacial cycle for which F (X∗(t∗0)) =
0. We have a well defined set of time differences ∆∗1 and ∆∗2 so that the glacial
period is in the interval [t∗0, t∗0 + ∆∗1] and the inter-glacial period in the time interval
[t∗0 + ∆∗1, t∗0 + ∆∗1 + ∆∗2] with ∆∗1 + ∆∗2 = 2π

ω∗
. In the forced case, with µ > 0, the system

will exhibit phase-locking so that we expect to see a well defined time t0 in this case
and finding t0 will be part of the solution procedure. Setting as before

X = (V,A,C)T
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Figure 5-2: The variation of t0 with ω for µ = 0.1 (n = 3) showing that it increases
by approximately 2π

ω∗
= 49.0874 over this cycle.

we have that
Ẋ = LX + b± + µe cos(ωt).

Suppose that we consider a periodic orbit of period T = 2πn
ω
≈ 2π

ω∗
, so that ω ≈ nω∗,

with a glacial state in the interval t ∈ (t0, t1) and an inter-glacial state for t ∈ (t1, t2)
so that

t2 = t0 + 2πn
ω
.

We define Xi = X(ti). Thus to have a periodic solution we must satisfy the following
three conditions

X0 = X2 and F (Xi) = c ·Xi + d = 0. (5.16)

We now consider a solution which is a perturbation of the unforced case so that to
order O(µ) we have

ω = nω∗ + µα, ∆1 = ∆∗ + µδ, X0 = X∗0 + µx.

It follows immediately that

∆2 = 2π
ω
−∆1 = ∆∗2 − µδ − µ

2πα
(ω∗)2 .

It follows from (5.5) that

X1 = eL∆1(X0 +−Z+ − µ p cos(ωt0)− µ q sin(ωt0)) + Z+ + µ p cos(ωt1)+
µ q sin(ωt1).
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which is simplified

X1 = eL(∆1+µδ)(X∗0 + µx− Z+ + µr(t0)) + Z+ + µr(t1).

Hence, after some manipulation

X1 = X∗1 + µ
(
eL∆∗1 (δLX∗0 + x + r(t0)) + r(t1)

)
+O(µ2).

Thus
X1 = X∗1 + µy +O(µ2),

where
y = eL∆∗1 (δLX∗0 + x− r(t0)) + r(t1)

Similarly,
X2 = X∗2 + µz +O(µ2),

where
z = eL∆∗2

(
−(δ + 2πα

(ω∗)2))LX∗1 + y− r(t1)
)

+ r(t0).

The conditions F (Xi) = 0 are then satisfied provided that

x = z and c · x = 0, c · y = 0.

We define the linear operators A1 and A2 by:

eL∆1 = A1, eL∆2 = A2.

It follows that

y = A1(δLX∗0 + x− r(t0)) + r(t1), z = A2(−(δ + γα)LX1 + y− r(t1)) + r(t0).

Hence, as z = x we have

x = A2(−(δ + γα)LX1 + A1(δLX0 + x− r(t0)) + r(t0), (5.17)

c · x = 0, c · y = 0. (5.18)

Now we look at the structure of the equations (5.17,5.18). We note that to leading
order, as t1 = t0 + ∆∗1 that there are vectors p0,q0,p1,q1 so that

r(t0) = p0 cos(n ω∗t0) + q0 sin(n ω∗t0), r(t1) = p1 cos(n ω∗t0) + q1 sin(n ω∗t0).

It follows that there is a linear operator M and vectors a and b so that (5.17,5.18)
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can be put into the form

M


x
δ

α

+ a cos(n ω∗t0) + b sin(n ω∗t0) = 0. (5.19)

The linear operator M and the vectors a,b can all be constructed explicitly. We will
make the assumption that M is invertible. If this is the case then for each value of t0
the system (5.19) can be solved uniquely to give the values of x, δ and α in the form


x
δ

α

 = f cos(n ω∗t0) + g sin(n ω∗t0)

for appropriate (constant) vectors f and g. In particular there will be unique values
f5 and g5 so that

α = f5 cos(n ω∗t0) + g5 sin(n ω∗t0).

As t0 varies over the whole range of [0, 2π/(n ω∗)] so α will range over the interval.

α ∈
[
−
√
f 2

5 + g2
5,
√
f 2

5 + g2
5

]
. (5.20)

This interval sets the limits of existence of the solutions of (5.17,5.18) and hence the
width of the tongues over which we will see synchronised periodic solutions. Clearly
if Wα =

√
f 2

5 + g2
5 then there is a phase φα so that

α = Wα cos(n ω∗t0 − φα). (5.21)

If we set [V A C] = XT , then an identical argument implies that there are amplitudes
WV ,WA and WC , and phases φV , φA and φC so that

v = WV cos(n ω∗t0 − φV ), a = WA cos(n ω∗t0 − φA), c = WC cos(ω∗t0 − φc).
(5.22)

It follows immediately that the curves (α, V ), (α,A) and (α,C) are all ellipses centred
on the origin.

The nature of the solution ellipses

The values of the coefficients of the vectors f and g are determined explicitly by the
calculation above, but are hard to estimate from this. However, the basic calculation
of the (1, n) periodic orbits is identical for all values of n = 1, 2, 3, 4, .. although the
precise values of the coefficients will change in each case. In particular, for small µ we
expect to see small ellipses in each case, the size of which is directly proportional to
µ. In Figure 5-3 we plot the resulting ellipses when µ = 0.1 for n = 1, 2, 3, 4. These
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ellipses are computed by numerically solving the nonlinear equations for V,A,C, ω
and t1. As these solutions are parametrised by t0, it is convenient in this calculation to
use t0 as the path following variable. Each of these ellipses are centred on the values
of ω1 = 0.0426 ω2 = 0.0853, ω3 = 0.128 and ω4 = 0.1706 respectively, corresponding
to the integer multiples of the frequency of the periodic solution to the unforced
problem.

We note that as n increases the minor axis of the ellipse appears to decrease, although
the major axis stays approximately constant.

Figure 5-3: The variation of V (t0) with ω for µ = 0.1 for (from left to right) the
three cases of n = 2, 3, 4.

The value of t0 varies over the interval [0, 2π
(n ω∗) ] as we travel around the ellipse. In

particular, it follows from (5.20) that the value of t0 changes by π
(n ω∗) between the

two saddle node bifurcation points. This is of interest as it demonstrates that the
phase of the response (V,A,C) to the insolation forcing, whilst locked to it for a
particular periodic orbit, differs from it. This phenomenon has been observed in the
record of the ice ages in which the Milankovitch cycles are not always seen to be in
phase with the cooling and warming periods.

As an example we take the case n = 3 and µ = 0.1. A numerical calculation in
this case shows that solutions exist for ω ∈ [0.1152, 0.1413], 2π

ω
∈ [44.46, 54.52],

T = 6π
ω

= [133.37, 163.57] and t0 ∈ [8.7965, 31.882]. In Figure 5-6 we plot two cycles
of the resulting periodic orbits for the three cases t0 = 8.7965, t0 = 20.3156 and
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t0 = 31.882 representing the left and right limits and the middle of the range of
values for which we see a solution.

Figure 5-4: Two cycles of the periodic solutions when n = 3. In this plot we see V
(blue), A (red), C (maroon), F (black), and the insolation (green) when t0 = 8.79

We see that the periodic solutions observed in Figure 5-4 to Figure 5-6 are similar to
the ones observed in Figure 4-1. However, the former have some oscillations added
into the solutions.

Regions of existence for small µ

The previous analysis shows that ω∗ = 0.0429. Further numerical studies lead to the
following approximations for small µ of the regions of existence of the (1, n) orbits.

ω1,1 = ω∗ − 0.0905µ ω2,1 = ω∗ + 0.0905µ
ω1,2 = 2ω∗ − 0.1228µ ω2,2 = 2ω∗ + 0.1228µ
ω1,3 = 3ω∗ − 0.1348µ ω2,3 = 3ω∗ + 0.1348µ
ω1,4 = 4ω∗ − 0.1296µ ω2,4 = 4ω∗ + 0.1296µ

(5.23)

In Figure 5-7 we give the graph of the regions of existence of the periodic solutions
for n = 1, 2, 3, 4 for the linearised problem as described above. We can see that the
regions of existence of periodic solutions for this linear problem start to overlap if
µ > 0.15.That is, for µ > 0.15 we expect to see (as we in fact do see) the co-existence
of periodic solutions with different values of n and hence of different periods T = 2nπ

ω
.

In fact, as we shall see, the original (nonlinear) problem has rather larger regions of
overlap of the existence regions or of coexistence of periodic solutions.
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Figure 5-5: Two cycles of the periodic solutions when n = 3. In this plot we see V
(blue), A (red), C (maroon), F (black), and the insolation (green) when t0 = 31.882.

Figure 5-6: Two cycles of the periodic solutions when n = 3. In this plot we see V
(blue), A (red), C (maroon), F (black), and the insolation (green) when t0 = 20.3156.
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Figure 5-7: The existence regions for the linearised problem.

5.1.3 Larger values of µ.

The above calculation has given only a small µ analysis, showing that for small µ the
width of the existence tongues increases directly proportionally to µ for all values
of n. However, as µ increases, so this analysis will break down as further nonlinear
effects become important. Indeed, we see a distortion, and indeed a break up, of the
elliptical curves.

In Figure 5-8 we plot computed regions of existence of the (1, n) periodic solutions.
These regions are determined by first fixing the value of µ and solving the full
algebraic system numerically for a set of values of ω = nω∗ ± δ increasing δ from 0.
The calculation was done using the Matlab solver fsolve with an initial guess given
by X0 = (5, 5, 5, 5, 5, 5, 100, 200). We then plot the first values of ωnew against µ for
which the algebraic solver breaks down. As can be seen, the regions of existence
are linear (as predicted) for small values of µ. They then expand significantly as µ
increases. This is due to a break up of the solution ellipses.

We note that the physically interesting case of (µ, ω) = (0.467, 0.1476) (as per the
approximated values for the frequency and coefficient terms for obliquity provided in
[46, 16]) lies in the region where there is only a (1, 3) periodic solution.

In Figure 5-9 we see the set of elliptical curves for the cases of n = 2, 3, 4 taking
larger values of µ than before. For n = 2, 3 we see a break up of the ellipses at
µ = 0.25. In the case of n = 4 the break up occurs for a larger value of µ. Indeed,
we observe in general, that break up of the ellipses occurs for smaller values of µ

78



Figure 5-8: A set of graphs showing the regions of existence of the (1, n) orbits when
both µ and ω are varied. The red case n = 2, 3, 4 are illustrated.

as n decreases. We note further that if µ = 0.25 then (as expected from the linear
analysis) the regions of existence of the n = 2 and n = 3 periodic orbits overlap. As
a consequence we might expect to see both n = 2 and n = 3 orbits in this case, with
related domains of attraction for the initial data. If we take the larger, and physically
relevant, value of µ = 0.467 then we see a more complicated curve, and the range of
existence of the solutions in this case is more difficult to predict. In Figure 5-10 we
show the curves of the (1, 3) orbit for a range of values of µ increasing from µ = 0.1
to µ = 0.467. In this figure we observe solution existence ellipses for µ < 0.245.
These then break up at around µ = 0.25 and enlarge as µ increases. When µ = 0.467
we see that the maximum value of ω = 0.194. There is no minimum value shown on
this graph, however we note that not all of the solutions of the algebraic solver are
physical over this range. To see this we take µ = 0.467 and consider the physically
relevant value of ω = 0.1476. For this value of ω it is apparent from Figure 5-10 that
there are (at least) two solutions, S1,2 ≡ [V (t0), A(t0), C(t0), t0,∆] to the algebraic
equations, with S1 on the upper side of the curve of solutions and S2 on the lower.
A careful calculation shows that these solutions are given by

S1 = [0.3835, 0.5501, 0.7585, 37.3574, 113.8284],

and
S2 = [0.0246, 0.3966, 0.9906, 23.2615, 109.9237].

The resulting functions (V (t), A(t), C(t), F (t)) are plotted in Figure 5-11 and Figure

79



Figure 5-9: The variation of V (t0) with ω when n = 2, 3, 4 (from left to right
respectively) for µ = 0.1 (blue), µ = 0.2 (green) and µ = 0.25 (red) showing the
break up of the elliptical curves as µ increases when n = 2, 3, 4.

Figure 5-10: The variation of V (t0) with ω for the (1, 3) orbit when µ increases from
µ = 0.1 to µ = 0.467 showing the break up of the elliptical curve at µ = 0.25
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5-12, along with the forcing. It is clear from these figures that only the solution S2

can be physical. This is because when we consider the solution S1 it is clear from
the graph that the function F (t) does not keep a constant sign during either the
glacial or the inter-glacial cycles.

Figure 5-11: The solutions on the upper branch (S1). In these graphs we plot (as
functions of time) V (red), A (blue), C (purple), F (black) and the forcing (green).
The solution S1 is not physical as F changes sign during the cycles.

The solutions close to µ = 0.25 are of some theoretical interest. In Figure 5-13 we
show the solution existence curves for µ = 0.244 (left) and µ = 0.245 (right). The
curve for µ = 0.244 shows evidence for two separated solution branches, one of which
is a distorted ellipse. These two branches then merge when µ = 0.25 leading to a
break up of the ellipse.

A plot of the curve of (t0, ω) and of (t0, V ) for the case of µ = 0.25 is given in Figure
5-14. We see in this case that, unlike in the case of small µ when t0 could take
arbitrary values, in this case we have an upper limit of t0 < 78. We note, however,
that the solutions on these curves are not necessarily physical.
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Figure 5-12: The solutions on the lower branch (S2 right). In these graphs we plot (as
functions of time) V (red), A (blue), C (purple), F (black) and the forcing (green).

Figure 5-13: The variation of V (t0) with ω for the (1, 3) orbit for µ = 0.244 (left)
and µ = 0.25 (right).

82



Figure 5-14: The variation of V (t0) (blue), and of ω with t0 for the (1, 3) orbit for
µ = 0.25

5.2 Stability and physicality

As we have seen, not all of the orbits on the computed curves are physical, in the
sense that the function F can change sign during a glacial or an inter-glacial cycle.
We will consider the implications of this to the resulting dynamics in the Chapter 7.

Also of significant interest is the stability of the resulting orbits. The right extremes
of the (ω, V ) solution curves are in all cases marked by saddle-node bifurcations. In
general such bifurcations are associated with changes in the stability of the solutions.
It is difficult to determine the stability algebraically. However a large number of
numerical experiments demonstrate clearly that it is the lower branch of the curves
which is stable, and the upper branch is unstable.

When considering the curve for µ = 0.1 as shown by Figure 5-15, we observe that the
point (ω, V (t0)) = (0.128, 0.0571) is on the lower branch while the point (0.14, 0.1643)
is on the top branch. In Figure 5-17 we observe that the lower branch of the curve gives
stable solutions shown by the stroboscopic plots of F . Similarly when we consider
the curve for µ = 0.2 as shown by Figure 5-19 the point (ω, V (t0)) = (0.15, 0.15003)
is on the lower branch and (0.15, 0.231) is on the top branch. In Figure 5-21 we
observe that the lower branches of the curves for µ = 0.2 give the stable solutions
shown by the stroboscopic plots of F .

In Figures 5-18 and 5-16 we observe that the upper branch of the curve for µ = 0.1
give the unstable solutions respectively as shown by the stroboscopic plots of F . The
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Figure 5-15: The variation of V (t0) with ω for n = 3 and µ = 0.1.

solutions are unstable around the initial point and then converge to a period (1, 3)
solution.

We will see later that the solutions can also lose stability at period-doubling bifurca-
tions, where a (m,n) orbit is replaced by a (2m, 2n) orbit. A further loss of stability
is associated with a grazing bifurcation, when a solution loses physicality with the
function F changing sign within a glacial or an inter-glacial cycle.
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Figure 5-16: The stroboscopic plots of F showing the lack of stability of solutions.
The solutions evolves from the upper branch to the lower branch of the curve when
µ = 0.1 and ω = 0.14 with initial conditions (V,A,C) = (0.1643, 0.4561, 0.9043)
starting at t0 = 80.1320.

Figure 5-17: The stroboscopic plots of F showing the stability of solutions corre-
sponding to the lower branch for n = 3 when µ = 0.1 and ω = 0.1154 with initial
conditions (V,A,C) = (0.0606, 0.4117, 0.9727) starting at t0 = 10.
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Figure 5-18: The stroboscopic plots of F showing unstable solutions for corresponding
to the upper branch when µ = 0.1 and ω = 0.1228 with initial conditions (V,A,C) =
(0.1281, 0.4406, 0.9293) starting at t0 = 0.

Figure 5-19: The variation of V (t0) with ω for n = 3 and µ = 0.1.
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Figure 5-20: The stroboscopic plots of F showing unstable solutions on the up-
per branch when µ = 0.2 and ω = 0.15 with initial conditions (V,A,C) =
(0.2306, 0.4845, 0.8601) starting at t0 = 75.7907.

Figure 5-21: The stroboscopic plots of F showing the stability of solutions on
the lower branch for n = 3 when µ = 0.2 and ω = 0.15 with initial conditions
(V,A,C) = (0.1491, 0.4496, 0.9122) starting at t0 = 110.7196.
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5.3 More general (m,n) periodic orbits

The analysis described above applies to (1, n) orbits. An essentially similar analysis
can be applied to the more general (m,n) orbits, which exhibit m glacial cycles.
To construct, and analyse these, we introduce a series of m intervals ∆i,1 and ∆i,2

summing in total to 2π
ω
, being the times between successive glacial and inter-glacial

periods. Each such interval will start at a time ti,1 or ti,2, with i = 0 . . .m − 1,
where each such ti,1,2 can be computed from the initial time ti,1 of the first cycle by
adding the appropriate time periods ∆i,1,2. For small µ each ∆i,1, and ∆i,2 is then a
perturbation δi,1 or δi,2 of the respective times for the unforced problem. Similarly,
let Xi,1 and Xi,2 be the initial conditions at the start of the respective glacial and
inter-glacial periods. These will be perturbations xi,1 and xi,2 of the unperturbed
values. The equations for a (1, n) orbit then extend to the following system for
i = 0 . . .m− 1.

Xi,2 = E(ti,1,∆i,1,Xi,1), (5.24)
Xi+1,1 = E(ti,2,∆i,2,Xi,2) (5.25)
F (Xi,1) = 0, (5.26)
F (Xi,2) = 0, (5.27)

m−1∑
i=0

∆i,1 + ∆i,2 = 2πn
ω
, (5.28)

X0,1 = Xm,1. (5.29)

Here E(ti,1,∆i,1,Xi,1) is the evolutionary operator which we have constructed ex-
plicitly. If we specify the start time t0,1 then the system (5.29) constitutes 8m+ 4
equations for the 8m+ 4 unknowns Xi,1,Xi,2,∆i,1,∆i,2, and ω.

As before, the complete system (5.29) can then be linearised about the solution when
µ = 0. The resulting system will be identical in form to that given in equation (5.19).
Hence we expect to see small ellipses of solutions as before, scaling linearly with µ.

It is difficult to predict from the above analysis the size of the window of existence of
the (m,n) solutions. It is tempting to relate the (m,n) orbits to the periodic orbits
of circle maps of frequency ω with forcing proportional to µ. In these the theory of
Arnold Tongues implies mode-locked regions close to rational frequencies ω = n

m
the

width of which scales as µm [62]. This means that the windows of existence are much
smaller for the larger values of m. In the non-smooth problem we are considering the
scaling of the (m,n) is always linear in µ. However, we will show by some numerical
experiments, that it appears that the regions of existence are much smaller if m > 1
than for the case of m = 1.
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5.4 More general dynamics of the PP04 model

The previous sections have allowed us to gain an analytical insight into the general
behaviour of the periodic solutions of the PP04 model for small periodic forcing,
but give less information about the general behaviour of the system. Of course this
is of most interest in a general discussion of how well the model applies to climate
dynamics for which µ takes larger values. We now make a systematic numerical
analysis of this case which both confirms the predictions of the previous section, and
allows us to explore the rich dynamics of the forced PP04 system.

5.4.1 Poincaré sections and Monte-Carlo plots

As we discussed in Chapter 2, a natural tool for analysing the PP04 climate model
under periodic forcing is the stroboscopic Poincaré map PS. This map is defined as
follows

Definition 5.4.1. Let the PP04 model be forced by the insolation function µ sin(ωt),
with state vector X(t) then

PS X(t) ≡ X
(
t+ 2π

ω

)
. (5.30)

Using this map we can construct a set of points xm defined by the iteration

Xm+1 = PS Xm. (5.31)

A (m,n) periodic orbit, as constructed above, then corresponds to an orbit which is
an n−cycle (X0,X1, . . . ,Xn−1) of PS for which

X0 = PS Xn−1.

Such an orbit crosses the discontinuity manifold 2m times. The nature of such maps
for Filippov flows has been studied some detail in [19] Chapter 7. In general the map
PS will be piecewise smooth. However it will lose smoothness if there is a grazing
event in the interval [t, t+ 2π

ω
]. We will return to this in the Chapter 7.

The general dynamics of the PP04 system can now be studied by considering the
iterations of the map PS. To do this we use a Monte-Carlo approach in which we
consider a set of randomly chosen initial conditions but we fix the strength of the
forcing. The random initial conditions are considered so that the multiple attractors
or all attractors of the system may be observed if they so exists. In this calculation
we ignore the transient dynamics and plot the Omega limit set given by the final
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set of iterations of the map in a long set of iterations. If this is done for a set of
random initial data then we obtain a Monte-Carlo plot, which gives a significant
insight into the overall dynamics of the system. It is convenient to represent the
state of the whole system by plotting the single variable F (X). We gradually increase
the frequency of the forcing with each iteration to see the resulting dynamics as a
function of ω.

Varying ω.

Initially we take fixed small values of µ (consistent with the earlier analysis) and
vary the value of ω. In Figure 5-22 we take µ = 0.05 and increase ω from 0.08 to
0.13, plotting the Omega-limit set of the resulting orbit in each case. It is convenient
to represent these orbits by plotting the values of the function F . In this figure we
can see a clear (1, 2) orbit for smaller values of ω and an equally clear (1, 3) orbit for
the larger values. For ω ≈ 0.107 we see a small window of existence for the (2, 5)
periodic orbit. Away from these values we observe quasi-periodic behaviour. An

Figure 5-22: The Poincaré section points of F on the omega limit set, as a function
of ω with µ = 0.05 showing (as ω increases), a large window of existence for the
(1, 2) periodic orbit, a small window of existence for the (2, 5) periodic orbit and
then another large window for the (1, 3) periodic orbit, all separated by intervals of
quasi periodic motion

equivalent figure is presented in Figure 5-23 in which we take the larger value of the
forcing µ = 0.1. This figure shows, as we might expect, larger regions of existence
for all of the above periodic orbits, with other emerging structures between the (1, 2)
and the (1, 3) periodic orbits.
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Figure 5-23: The Poincaré section points on the Omega limit set, as a function of ω
with µ = 0.1 showing the (1, 2), (2, 5) and (1, 3) periodic solutions.

In Figures 5-24, and 5-25 we now study the (1, 3) orbit in more detail as this will
turn out to be the most interesting orbit from a climate perspective. In Figure 5-24
we take µ = 0.03 and see the transition from quasi-periodic motion when ω < 0.1245
to period (1, 3) motion when ω > 0.1245. Note the change of phase of the (1, 3) orbit
as ω is increased. In Figure 5-25 we see the (1, 3) orbit changing to a quasi-periodic
orbit when ω = 0.135 followed by an interval of quasi-periodic motion, which then
turns into a (1, 4) orbit when ω = 0.165. This is fully consistent with the separation
of the solution ellipses for these two orbits. There appears to be a very thin window
of existence for a (2, 7) orbit between the (1, 3) and (1, 4) orbits. This is what might
be expected from the related theory of Arnold Tongues of orbits of circle maps, in
which we see a Farey sequence describing the periods of the various orbits.

Varying µ

As a second calculation, we fix ω at the physically relevant value of ω = 0.1467 and
increase µ from zero. The resulting Monté-Carlo calculation is presented in Figure
5-26. We see quasi-periodic behaviour for small values of µ and for large values of
µ we see (1, 1) periodic orbits, completely locked to the forcing. At µ = 0.467 we
see only a (1, 3) periodic orbit. This figure is fully consistent with the regions of
existence of the (1, n) orbits plotted in Figure 5-8.
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Figure 5-24: The Poincaré section points on the Omega limit set of F , as a function
of ω with µ = 0.03 showing quasi-periodic motion followed by period (1, 3) motion

Figure 5-25: The Poincaré section of F on the Omega limit set, as a function of
ω with µ = 0.05 showing period (1, 3) and period (1, 4) motions separated by an
interval of quasi periodic motion, with some evidence of a period (2, 7) orbit between
them.
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Figure 5-26: The Poincaré section points on the Omega limit set of F , as a function
of µ with ω = 0.1476 showing the different types of solutions as µ increases from
quasi-periodic, to (1, 3),(1, 2) and then (1, 1) with regions of co-existence.

5.4.2 Period doubling and intermittent dynamics

For a final calculation we take µ = 0.467 and vary ω from 0.121 to 0.129. The results
are presented in Figure 5-27. As we would expect from the previous results for the
smaller values of ω we see a (1, 2) orbit and for the larger values a (1, 3) obit. Two
interesting transitions can be observed in this figure as ω increases. At ω = 0.122
the (1, 3) orbit abruptly appears. The reason for this can be seen from studying the
values of F . In particular F = 0 at the bifurcation point. This is a (non-smooth)
grazing bifurcation at which the (1, 3) orbit starts to become physical. We will
study this transition in more detail in a next chapter. A (smooth) super critical
period-doubling bifurcation can be seen at ω = 0.127. At this point the (1, 2) orbit
loses stability to a nearby (2, 4) orbit. To support this calculation we take ω = 0.128
which is just greater than the period-doubling value. The resulting intermittent
dynamics resembles that at the mid-Pleistocene transition

5.4.3 Numerical calculations of the time dependent solu-
tions

In fixing the values of µ and ω but varying the initial conditions, we expect to observe
the (1, n) time dependent orbits in accordance with Figure 5-8. In Figure 5-28, when
fixing µ = 0.467 and ω = 0.126 , and considering different initial conditions, the (1, 2)
periodic orbit is observed. From the solution, it is established that the system spends
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Figure 5-27: Monte-Carlo plot of F for µ = 0.467. To the left we observe a (1, 2)
orbit and to the right a (1, 3) orbit. Various transitions between these orbits can also
be observed. These include a grazing bifurcation at ω = 0.1215 and what appears to
be a period-doubling bifurcation at ω = 0.1275.

most of its time in the glacial state, as clearly seen in Figure 5-29 and in accordant
with analytical calculations. However in Figure 5-30, for the same values of µ and
ω, but with different set of different initial conditions, a period (1, 3) solution is
observed. These periodic solutions observed are consistent with Figure 5-27, where
we observed the presence of both periodic solutions. This implies that for µ = 0.467
and ω = 0.126, the type of solution observed depends on the initial conditions.

Figure 5-28: The time solution of the system showing a period (1, 2) orbit of F for
ω = 0.126 and µ = 0.467 for different initial conditions left: (V,A,C) = (0.5, 0.3, 0.4)
and right: (V,A,C) = (0.1, 0.6, 0.9)

Figure 5-32, shows a period (2, 4) solution when the same value of µ is considered
with ω = 0.128, and initial conditions (V,A,C) = (0.3, 0.55, 0.8). The transition
from the (1, 2) periodic solution to the (2, 4) periodic solution is as a result of period
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Figure 5-29: The phase plot showing different period (1, 2) solutions with different
initial conditions for left: ω = 0.126 and right: µ = 0.467

Figure 5-30: The time solution of the system showing a period (1, 3) orbit of F for
ω = 0.126 and µ = 0.467 for initial conditions (V,A,C) = (0.7, 0.5, 0.2)
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Figure 5-31: The phase plot V,A of the system showing a period (1, 3) orbit for
ω = 0.126 and µ = 0.467 for initial conditions (V,A,C) = (0.7, 0.5, 0.2)

doubling that occurs at ω ≈ 0.1275. This solution is also consistent with what we
expected.

However in Figure 5-31, we observe that there is possibility of the period (1, 3) orbit
to interact with the discontinuity boundary if one of the parameters of the system
say µ or ω are varied. When the periodic orbit interacts with the switching boundary,
a grazing bifurcation is observed. We will do a detailed study of this transition in
Chapter 7.

5.4.4 Existence and persistence of the (1, 3) orbit

A significant observation from these calculations under periodic forcing with the
physically relevant values of (µ, ω) = (0.467, 0.15) we see only a stable (1, 3) periodic
orbit. This orbit has period 3∗2π

ω
= 127.7kyr which is slightly longer than the

observed period of 100kyr. The (1, 3) orbit appears from our numerical calculations
to be globally stable attracting flow for all initial conditions. An example of the
system evolving towards this orbit is given in Figure 5-36.

This analysis has only been made for the case of periodic forcing and in practice the
Milankovitch cycles introduce quasi-periodic forcing. However, the structural stability
of the (1, 3) orbit constructed above means that this orbit persists, appropriately
perturbed, when quasi-periodic forcing is introduced, with a small additional forcing
at a different frequency. This motivates a detailed study of the quasi-periodic forced
PP04 model which will be given in the next chapter.

96



Figure 5-32: The time solution of the system showing a period (2, 4) orbit of F
which arises following the period doubling bifurcation from the (1,2) solution, for
ω = 0.128, µ = 0.467 and initial conditions (V,A,C) = (0.3, 0.55, 0.8).

Figure 5-33: The phase plot showing period (2, 4) solution for ω = 0.128 and
µ = 0.467.
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Figure 5-34: The time solution of the system showing a period (1, 3) orbit of F for
ω = 0.128 and µ = 0.467 for initial conditions (V,A,C) = (0.5, 0.3, 0.4)

Figure 5-35: The phase plot showing period (1, 3) solution for ω = 0.128, µ = 0.467
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Figure 5-36: The time solution of the system when (µ, ω) = (0.467, 0.1476) showing
the evolution towards the (1, 3) periodic solution.

5.5 Summary

In this chapter we have observed that the periodically forced PP04 model exhibits:

1. the existence of periodic solutions with a period of 127kyrs.

2. the existence of periodic solutions with one or several glacial cycles between
repeats.

3. the existence of a stable period (1, 3) solution.

4. the existence of regions of synchronised periodic solution with their boundary
determined by saddle node bifurcations.

5. the co-existence of multiple stable periodic.

6. Large amplitude of the forcing leads to loss of stability physicality of periodic
solutions at grazing bifurcation.

99



Chapter 6

The quasi-periodically forced
system

6.1 Overview

The original forcing of the PP04 model I65(t) is quasi-periodic with about N = 35
degrees of freedom and it is very challenging to do a thorough analysis using this
forcing. Therefore this chapter studies the quasi-periodically forced PP04 model but
with the simplified forcing

I65(t) = µ1 sin(ω1 t) + µ2 sin(ω2 t)

considering two modes of the forcing or more. This allows us to investigate a more
representative forcing model than the previous chapter, but still allows us to do some
rigorous analysis.

In the previous chapter, we have found out that the periodically forced PP04 model
has stable period (1, 3) solutions. To extend this calculation we now study the
quasi-periodically forced system as a perturbation of the periodically forced one, and
the resulting orbit as an extension on the periodically forced system. The study
of this system is to be done through the use of two maps, the linearised map and
the stroboscopic map. The linearised map is used to study the perturbed periodic
orbit if µ2 � 1 and to find the types of solutions observed for different ω2. The
stroboscopic map is be used to study the smoothed quasi-periodic system whereby
the sampling time is considered τ = 2π

ω1
for different values of ω2 and µ2.

For the linear map we observed both the period k solutions, where k is dependent
on the quotient ω2

ω1
, and the existence of invariant curves. For the stroboscopic map,

we observe the presence of the tori which break up as µ2 is increased leading to a
more complex behaviour e.g chaos.
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6.2 Non-smooth quasi-periodic system

We consider the quasi-periodically forced PP04 model with simple two modes of
insolation defined by

Ẋ = LX + b± + e1µ1 sin(ω1t) + e2µ2 sin(ω2t), (6.1)

To start the study of this system, we will consider the case when quasi-periodic
forcing is small, that is when the values of µ2 are small. We study this system
by deriving approximate Poincaré map obtained by linearising about the periodic
solution constructed in the earlier section when µ2 = 0

6.2.1 Derivation of a linearised map if µ2 � 1

To construct this map, we start by assuming that when µ2 = 0 the equation (6.1)
has a stable period (m,n) solution of period nT . For example the (1, 3) solution we
found in the previous chapter, with period T = 2π

ω1
. Then we consider a case where

µ2 is very small i.e µ2 � 1 and seek a perturbation of the periodic orbit.

Figure 6-1: The solution as a function of time showing the (1, 3) periodic solution
for µ1 = 0.467 , ω1 = 0.1476 and µ2 = 0.1, ω2 = 0.331.

In Figure 6-1, we take µ2 = 0, and observe a periodic orbit which intersects the
discontinuity boundary, in particular the (1, 3) periodic solution. Therefore the
dynamics at the discontinuity boundary Σ will take the form illustrated in Figure
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Figure 6-2: The graph showing the trajectory of the periodic orbit of the system
with µ2 = 0 showing two intersections with Σ.

6-2. Now we let µ� 1 and consider the Poincaré map of the system (6.1) the form

P : X(t)→ X(t+ T ) (6.2)

where T = 2π n
ω1

with Xk = X(k T ). Suppose that the periodic orbit is X∗(t) so that

X∗(t0) = X∗(t0 + T ) = X∗(t0 + 2 T ) = X∗(t0 + 3 T ) = · · · (6.3)

Without loss of generality we take t0 = 0. We assume that this periodic solution is
stable so that if µ2 = 0 and X(t0) = X∗(t0) + x(t0) with x(t0) small, then

X(t0 + T ) = X∗(t0 + T ) + Ax(t0 + T ) (6.4)

where A is a stability(contraction) matrix. That is, all eigenvalues of A are less than
one in modulus. We will show that the map can be linearised about the periodic
orbit and

Lemma 6.1 Linearised form is

X(n+ 1) = A X(n) + a cos(ω2n T ) + b sin(ω2nT ). (6.5)

We will do this by perturbing the periodic orbit. This involves two calculations
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(i) perturbation away from the intersections with Σ

(ii) perturbation of the intersection with Σ.

Proof
We consider the case where µ2 is small in the equation (6.1) and the discontinuity
surface Σ = F (X) = 0.

The particular integral of the system (6.1) is given by

X±PI(t) = Z± + µ1 a1 cos(ω1t) + µ1 b1 sin(ω1t) + µ2 a2 cos(ω1t) + µ2 b2 sin(ω2t),
(6.6)

it follows from (6.1) that

Ẋ = −µ1 a1 ω1 sin(ω1t) + µ1 b1ω1 cos(ω1t)− µ2 a2 ω2 sin(ω2t)+
µ2 b2 ω2 cos(ω2t).

(6.7)

When comparing the coefficients of (6.1) and (6.7) it gives the following vectors

Z± = −L−1b±, a1 = −(L2 + ω1
2I)−1 e1, b1 = −(L2 + ω1

2I)−1 L e1

ω1

a2 = −(L2 + ω2
2I)−1 e2, b2 = −(L2 + ω2

2I)−1 L e2

ω2
.

(6.8)

Then we obtain the following general solution of this system in each region given by

X(t) = eL(t−ti)
(
X(ti)− L−1b± − µ1 a1 cos(ω1ti)− µ1 b1 sin(ω1ti)

)
−µ2 a2 e

L(t−ti) cos(ω2ti)− µ2 e
L(t−ti) b2 sin(ω2ti)− L−1b± + µ1a1 cos(ω1t)

+µ1b1 sin(ω1t) + µ2 (a2 cos(ω2t) + b2 sin(ω2t))

(6.9)

where the orbit intersects the discontinuity boundary at times X(ti) = X(t1) =
X(t2) · · · .

Now we let
X(t0) = X∗(t0) + x(t0) (6.10)

where x is small. Then it follows from (6.9), that before the trajectory hits the
discontinuity boundary we have

X(t) = X∗(t) + eL(t−t0)x(t0)− eL(t−t0)L−1b+ − µ1 e
L(t−t0)a1 cos(ω1t0)

−eL(t−t0)b1 sin(ω1t0)− µ2 e
L(t−t0) (a2 cos(ω2t0) + b2 sin(ω2t0))

−L−1b+ + µ1 (a1 cos(ω1t) + b1 sin(ω1t))
+µ2 (a2 cos(ω2t) + b2 sin(ω2t)) .

(6.11)
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This can be written as

X(t) = X∗(t) + eL(t−t0)x(t0)− µ2 e
L(t−t0) (a2 cos(ω2t0) + b2 sin(ω2t0))

+µ2 (a2 cos(ω2t) + b2 sin(ω2t)) .
(6.12)

Equation (6.12) is simplified and represented as

X(t) ≡ X∗(t) + x(t)

where x(t) is small. Now we assume that we hit the discontinuity boundary Σ at
time t1 with the periodic orbit X∗ . That is,

F (X∗(t1)) = 0

Then we can find the time t1+δ when the perturbed orbit X∗+x hits the discontinuity
boundary Σ. To do this we solve

F (X(t1 + δ)) = 0

so that
c · (X∗ + x) + d = 0.

Therefore we have to leading order

F (X(t1 + δ)) = F (X∗(t1 + δ) + x(t1 + δ)),
F (X(t1 + δ)) = F (X∗(t1) + δX∗

′ + x(t1) + δx′(t1)) +H.O.T,

F (X(t1 + δ)) = F (X∗(t1)) + δX∗
′(t1)F ′(X∗(t1)) + x(t1)F ′(X∗(t1)) +H.O.T

and it follows that
δ = −x(t1)Fx(X∗(t1))

X∗′(t1)Fx(X∗(t1))
or equivalently

δ = −c · x
c · dX∗

dt

which is well defined and x(t1) a function of µ2 as observed from (6.12). The
intersection with the discontinuity boundary Σ is then at

X∗(t1) + δ
dX∗

dt
(t1) + x(t1)

to leading order. So the perturbed orbit hit the discontinuity boundary Σ close to
t1, it then continues hitting the switching boundary again before returning at time
t0 + T (see Figure 6-3).
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Figure 6-3: The schematic diagram showing the trajectory of the perturbed periodic
orbit.

We now look at where the orbit has got to at the time t0 + T . It follows from the
stability and equation (6.12) that the orbit X(t0 + T ) is mapped into

X∗(t0) + A x(t0)− µ2 e
LT (a2 cos(ω2t0) + b2 sin(ω2t0))

+µ2 (a2 cos(ω2(t0 + T )) + b2 sin(ω2(t0 + T ))) +H.O.T

where A is the linearisation of the return map about the periodic solution. However
the matrix A is hard to compute analytically because it involves calculating the
intersection of the periodic orbit with the discontinuity boundary.

Thus the original perturbation x(t0) mapping is simplified to

Ax(t0) + µ2 (a2 cos(ω2(t0 + T )) + b2 sin(ω2(t0 + T )))− µ2e
LTa2 cos(ω2 t0)−

µ2e
LT b2 sin(ω2 t0)

and higher order terms are ignored and the contribution of µ2 is to leading order.
When expanding µ2 term about t0 we obtain

− eLT µ2 (a2 cos(ω2t0) + b2 sin(ω2t0)) + a2 µ2
(
cos(ω2t0)− ω2

2 T sin(ω2t0)
)

+ b2 µ2
(
sin(ω2t0) + ω2

2 T cos(ω2t0)
)

+H.O.T
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And simplified to
µ2 (c1 cos(ω2t0) + c2 sin(ω2t0))

for vectors c1 and c2 defined c1 = eLTa2+a2+ω2
2T b2 and c2 = −eLTb2+b2−ω2

2T a2.

So if we start at time t0 and orbit for T then

X∗(t0) + x(t0)→ X∗(t0) + Ax(t0) + µ2 (c1 cos(ω2t0) + c2 sin(ω2t0)) .

Without loss of generality when we take t0 = 0 for the first orbit, we then have
t0 = T , t0 = 2T, · · · . That is, t0 = n T for subsequent orbits. We deduce that if
Xn ≡ x(n T ) then the linearised map takes the form

x(n+ 1) = A x(n) + µ2 (c1 cos(ω2n T ) + c2 sin(ω2nT )) . (6.13)

So we derived the approximate map

x(n+ 1) = A x(n) + µ2 (c1 cos(ω2n T ) + c2 sin(ω2nT )) . (6.14)

stated in the lemma (6.1) where T = 2π
ω1
.

We now study the map.

6.2.2 Calculations of the dynamics of the linearised map

In order to determine the types of solutions to be expected, we consider the general
case. That is, we take the map

x(n+ 1) = A x(n) + e1 cos(ω2n T ) + e2 sin(ω2nT ) (6.15)

where x(n) is a vector and consider a solution of the from

x(n) = p cos(ω2n T ) + q sin(ω2nT ). (6.16)

When substituting (6.16) into equation (6.15) we have

p cos(ω2(n+ 1) T ) + q sin(ω2(n+ 1)T ) = Ap cos(ω2n T ) + Aq sin(ω2nT )
+e1 cos(ω2n T ) + e2 sin(ω2nT )

p cos(ω2 n T + ω2 T ) + q sin(ω2n T + ω2 T ) = Ap cos(ω2n T ) + Aq sin(ω2nT )
+e1 cos(ω2n T ) + e2 sin(ω2nT )
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which simplifies to

p cos(ω2 n T ) cos(ω2 T )− p sin(ω2 n T ) sin(ω2 T ) + q sin(ω2n T ) sin(ω2 T )+
q cos(ω2 n T ) cos(ω2 T )

= Ap cos(ω2n T ) + Aq sin(ω2nT ) + e1 cos(ω2n T ) + e2 sin(ω2nT ).

Comparing coefficients in cos(ω2n T ) and sin(ω2n T ) we have

p cos(ω2 n T ) cos(ω2 T )− Ap cos(ω2n T ) + q cos(ω2 n T ) cos(ω2 T )
= e1 cos(ω2n T )

and

q sin(ω2n T ) sin(ω2 T ) + −Aq sin(ω2nT )− p sin(ω2 n T ) sin(ω2 T )
= e2 sin(ω2nT ).

Thus we have

p cos(ω2 T )− Ap + q cos(ω2 T ) = e1

and

q sin(ω2 T )− Aq − p sin(ω2 T ) = e2.

Hence we obtain

q = e1 + Ap− p cos(ω2 T )
cos(ω2 T )

and similarly

p = e2 + Aq − q sin(ω2 T )
− sin(ω2 T )

which gives the following expressions

p = e1 sin(ω2 T )− Ae1 − e2 cos(ω2 T )
A2 + 2 sin(ω2 T ) cos(ω2 T )− A sin(ω2 T )− A cos(ω2 T )

and

q = e1 sin(ω2 T )− Ae2 + e2 cos(ω2 T )
A2 + 2 sin(ω2 T ) cos(ω2 T )− A sin(ω2 T )− A cos(ω2 T ) .
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The solution of the linearised map can therefore be represented as

x(n) = An C + p cos(ω2n T ) + q sin(ω2nT ) (6.17)

where C is an arbitrary constant.

Corollary 6.2 The Ω−limit set of the linearised equation is

(i) an ellipse if ω2 × T
2π is irrational.

(ii) discrete points if ω2 × T
2π is rational.

To illustrate this we take the special 2D case of x =
x
y

 and

x(n+ 1) = λ x(n) + µ2 cos(ω2 n T ), (6.18)

y(n+ 1) = λ y(n) + µ2 sin(ω2 n T ), (6.19)

Given if z(n+ 1) = x(n) + i y(n) we have

z(n+ 1) = λ z(n) + µ2 exp(i ω2 n T ). (6.20)

We can then find a solution quickly . If

z(n) = a exp(i ω2 n T )

where a is a complex number of the form r exp(i ψ). Then we have

a exp(i ω2(n+ 1) T ) = λ a exp(i ω2 n T + µ2a exp(i ω2 n T )
a exp(i ω2 T ) = λ a+ µ2

a = µ2

exp(i ω2 T )− λ.

We have r = |a|, so that r is the radius of the invariant curve. Then the general
solution of (6.20) is

z(n) = λn C + a exp(i ω2 n T ) (6.21)

where C is an arbitrary constant. We observe that for λ < 1 the first term decays to
zero leaving the invariant curve.

Now the linear map is studied to find its solutions.
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6.2.3 Solutions of the linear map

In order to study the map numerically, we need to calculate the stability matrix A.
To find this matrix, we start by picking a point away from the discontinuity surface
Σ and using it as an initial condition in the Matlab solver solving the smoothed
periodic forced PP04 system for fixed value of µ1 and ω1. The solver is then run a
number of times until we get an equilibrium point. Then the equilibrium point is
perturbed and the resulting value is taken as the initial condition for the solver which
is ran only once. The value of the equilibrium point is then subtracted from the
new value obtained, then the difference is divided by the perturbation value to find
the elements of the matrix A. The eigenvalues of the matrix A are then calculated,
because both the eigenvalues and matrix A give us the information as to how each
component of the model is affected by the perturbation. The eigenvalues of matrix
A, are all observed to be always less than one.

For an example, if we consider µ1 = 0.3 and ω1 = 0.1558 we observe that the
periodically forced PP04 system gives a physical period (1, 3) solution (see Figure
6-4). We define X∗ to be the point on the periodic orbit at a start time t0 chosen
such that the periodic orbit at this point is not close to the discontinuity surface.
The point is then used as an initial condition on the smoothed periodic system and
the system is solved numerically for a number of cycles until we obtain an stable
equilibrium point. The stable equilibrium point is a point that lie on the periodic
solution and is then perturbed using the vectors

e1 =


1
0
0

 , e2 =


0
1
0

 , e3 =


0
0
1

 .

The new value Xin = X∗+ε ei is then used as an initial condition for the Matlab solver,
and the trajectory starting from Xin simulated for only one cycle t0 → t0 + Period
(where Period is the period of the periodic orbit). We set Xnew = X(t0 + Period) =
P (Xin). The components of the column of the matrix A corresponding to ei are
found by dividing the difference Xnew−X∗ by ε. For ω1 = 0.1558, and µ1 = 0.3 with

initial time t = 25 we find the equilibrium point X(t = 25) ≡ X∗ =


0.1
0.4
0.9

 a point

on the periodic solution X(t) = (V,A,C)T which when perturbed gave

A =


−0.7894 −0.4977 −0.7608
3.2029 1.9347 −1.3238
0.3367 0.2086 0.1207
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with eigenvalues 
−0.6335 + 0.5808i
0.6335− 0.5808i
−0.0011 + 0.0000i

 .
We could observe that the modulus of eigenvalues of this matrix are less than one
therefore the first term of the map will decay to zero leaving the invariant curve as
the ω− limit set.

Figure 6-4: The graph showing a physical period (1, 3) solution of the periodically
forced PP04 model with µ1 = 0.3 and ω1 = 0.1558. The blue part of the orbit
represents the solution F (X) of the PP04 model obtained for when the amount of
Carbon Dioxide in the system is increased, that is the glacial climatic state. The
yellow line represent the state when the stratification parameter of the ocean has
reached the threshold value for Carbon Dioxide to be released or when F (X) = 0.
The red orbit represent the solution of the quasi-periodically PP04 model when
carbon is absorbed by the ocean.

The matrix A is then substituted into the linear map (6.14) and the map is evaluated
numerically to get the next iterated point. In Figure 6-5 and Figure 6-6, we observe
that if we start anywhere in the phase space and considering µ2 = 0, the trajectory
of the iterated points of the linear map will eventually settles or decays to the stable
periodic solution after about forty iterations . We now study the linear map taking
µ2 � 1 with rational and irrational values of ω2 T .

In Figure 6-7, we observe that for random initial values with µ2 = 0.2 and ω2 = 1.6×ω1

which implies that ω2T = 16π
5 a rational multiple of π, the linear map exhibits a

period five cycle solution. In Figure 6-8, with the same random initial conditions
with µ2 = 0.6 and ω2 = 1.5 × ω1 where ω2T = 3π

2 , we observe a period two cycle
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Figure 6-5: The graph showing the change in the iterated value of xn of the linear
map (6.14) with µ2 = 0 and ω1 = 0.1558. The red curve represents xn(1), green
curve represents xn(2) and blue curve represents xn(3).

Figure 6-6: The graph showing the phase plane changes of the iterated points of the
linear map (6.14) until it settles into a point in the periodic orbit for µ2 = 0 and
ω1 = 0.1558.
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solution of the linear map.

Figure 6-7: The stroboscopic Omega-limit set of the linear map (6.14) showing the
period 5 cycle when µ = 0.2, ω1 = 0.1558 and ω2 = 1.6× ω1 and this gives ω2

ω1
= 8

5

In Figure 6-9 and Figure 6-10, we observe that if we have ω2 = 1.6180339888× ω1

which gives ω2 T as an irrational multiple of π, invariant curves are solutions of the
linear map. The size of the invariant curve are observed to be dependent on the
value of µ2 and hence can be expressed in terms of µ2. These solutions observed
are consistent with the theory of nonlinear systems, stating that the introduction of
an external force on incommensurate frequency leads to complicating the dynamics
with fixed points in maps becoming invariant curves [64].
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Figure 6-8: The stroboscopic Omega limit set of the linear map (6.14) showing the
period 2 cycles solution when µ = 0.6, ω1 = 0.1558 and ω2 = 1.5× ω1 and this gives
ω2
ω1

= 3
2

Figure 6-9: The stroboscopic Omega limit set of the linear map (6.14) showing the
solution as a closed curve when µ = 0.2, ω1 = 0.1558 and ω2 = 1.6180339888× ω1.
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Figure 6-10: The stroboscopic Omega limit set of the linear map (6.14) showing the
solution as a closed curve when µ = 0.6, ω1 = 0.1558 and ω2 = 1.6180339888× ω1.

6.3 Numerical methodology: solution of the
smoothed quasi-periodic system

The previous section helped us to gain an analytical insight into the behaviour of
the solution of the PP04 model if forced with two modes of insolation (i.e quasi-
periodically forced) and the amplitude of the second mode is very small (µ� 1) in
relation to the periodic solution observed for the periodic forced system. We observed
that with periodic forcing (µ2 = 0), the system has a stable periodic solution, that is
a (1, 3) periodic solution.

Now we consider the smoothed PP04 quasi-periodically forced model where Heaviside
function is represented by tanh(−ηF ). The dynamics of the system are then studied
using the stroboscopic plots of the Poincaré map P defined by

PX(t) ≡ X(t+ T ) (6.22)

where T = 2π
ω1

the sampling time. Using this map we construct the set of points
defined by the iteration

X(m+ 1) = PX(m). (6.23)

The stroboscopic map of the Omega limits sets of V and A are then plotted to
obtain the dynamics. The stroboscopic plots are obtained by solving the smoothed
quasi-periodic PP04 model with two or three modes of the forcing, with sampling
frequency T = 2π

ω1
and then plotting the last five hundred points of the variables V

and A. We consider µ1 = 0.467 and ω1 = 0.1476 for all the figures with T = 2 π
ω1
.
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In Figure 6-11, we observe that if µ2 = 0 we have corresponding to the period (1, 3)
solution of the full system, the three equilibrium points of the map.

Figure 6-11: The stroboscopic map of V and A on the limit cycle with µ2 = 0
showing the three equilibrium points of the map corresponding to the (1, 3) periodic
orbit obtained after solving the quasi-periodic forced PP04 model with two modes.
The blue line represent the discontinuity boundary Σ.

6.3.1 Small µ2 and rational ω2 comparison to linear case

Now we consider the stroboscopic map, where we fix µ1 = 0.467 and ω1 = 0.1476
and varied values of ω2 such that ω2 T is rational with small values of µ2. The
stroboscopic plot of the limit cycle in the phase plane (V,A) is plotted taking the
period of the map T = 2 π

ω1
. For µ2 = 0, we have observed the three equilibrium

solutions and for small values of µ2, the three periodic solutions with the number of
periodic cycles determined by the denominator of the relation ω2

ω1
.

In Figure 6-12, we consider ω2 = 1.6 ω1, and take µ2 = 0.2 and the stroboscopic plot
of the Omega limit set shows the three invariant curves made up of five points. The
five points observed are due to the relation 1.6

1 ≡
8
5 .

In Figure 6-18 we consider ω2 = 0.9 ω1 and µ2 = 0.2 the stroboscopic map on limit
cycle shows three sets of invariant curves made of ten points as solutions consistent
with the denominator of the relation ω2

ω1
. We also observed that if the the relation

ω2
ω1

is a proper fraction, when µ2 is increased the three invariant curves are easily
destroyed and only the points exactly equal to the denominator are observed. While
if the relation is an improper fraction and µ2 increased, the three invariant curves
are destroyed and points spread out. This can be observed in for example Figure
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6-20 which shows the case of the proper fraction, and Figure 6-14 showing the case
of the improper fraction.

We then consider the Fast Fourier Transform (FFT) of the solutions of the system in
order to find the periods present in the system and the one driving it.

If we have a function U(t) and takes samples at ∆t intervals to give U(j) ≡ U(j∆t)
for j = 0, 1, · · ·N − 1. We set T = N∆t as the total length of the time interval.
The FFT algorithm, W = fft(U) transforms the function in time domain into the
frequency domain and is defined by

W (k) =
N−1∑
j=0

Uke
−2 π i kj/N . (6.24)

Here U(k) = U(k∆t) thus we have

W (k) = 1
∆t

N−1∑
j=0

U(j ∆ t)∆ t e−2 π i kj∆t/N∆t (6.25)

W (k) =
N−1∑
j=0

U(t)e−2 π i k t/N∆t (6.26)

and t = j∆t for k = 0, 1, · · ·N − 1. The frequency corresponding to W (k), is then
f(k) = k

N∆t = k
T
corresponding to a periodic signal of period T

k
.

For the calculation of the FFT of the quasi-periodically forced system, we considered
the time interval or the sampling length from −n kyrs to n kyrs which give
N = 2n+ 1 and taking samples every ∆t = 10kyrs. We know that the glacial cycles
have a dominant period of 100kyr, therefore we have the frequency

1
100 = k

2n+ 1

which gives the frequency index at k = 2n+1
100 .

For instance if we considered the sampling length from −720kyrs to 720kyrs we
have N = 1441. Therefore we have the frequency

1
100 = k

1441

which gives the frequency index at k ≈ 14. Thus we expect a peak at k ≈ 14 for the
100 kyrs period to be present. We also know from literature that the climate have
driving cycles of 40kyr and 23kyrs which if present will be observed at k = 36 and
k = 72 respectively.

In Figures 6-13, 6-16, 6-19, and 6-22 we observe that the dominant frequency is
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at index k = 12 which corresponds to the 120kyr period. This implies that the
dominant or the fundamental period driving this system is the 120kyrs. We also
observe its harmonics at index k = 24 and k = 36 corresponding to 60kyrs and
40kyrs respectively.

In Figure 6-19 and Figure 6-22 we observe that there is a small peak at k = 32
corresponding to 45kyrs but is not one of the harmonics hence another frequency
introduced by the forcing of the system. As a consequence we observe that the time
dependent solutions in Figure 6-23 and Figure 6-21 the solutions are quasi-periodic.
Furthermore in Figure 6-22, there are a number of components present introduced
by an increase in amplitude µ2.

Figure 6-12: The stroboscopic map of V and A on the limit cycle with µ2 = 0.2 and
ω2
ω1

= 8
5 showing the invariant curve of exactly 5 points.

6.3.2 Small µ2 and irrational ω2

We start by considering the irrational forcing that is ω2 = 1+
√

5
2 ω1 and 1+

√
5

2 is known
as the golden mean. We then vary the value of µ2 starting with the very small value,
that is considering µ2 � 1. In Figure 6-24, we observe that when µ2 is gradually
increased, the tori is observed and its size increases with µ2.

In Figure 6-26 we observe that as µ2 is increased further say when µ2 = 0.6, one
of the tori breaks as it interacts with the discontinuity boundary. But the further
increase say to µ2 = 0.72 another different torus is formed (see Figure 6-30). The tori
is completely destroyed if µ2 > 0.72 and hence at this value of µ2 the quasi-periodic
solution is destroyed.
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Figure 6-13: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.2 and ω2 = 1.6× ω1 with ω2

ω1
= 8

5 .

Figure 6-14: The stroboscopic map of V and A on the limit cycle with µ2 = 0.5 and
ω2
ω1

= 8
5 showing the three invariant curves made up of 5 points destroyed and points

spread on the plane intersection with Σ.
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Figure 6-15: The graph showing the time dependent solution of V for µ2 = 0.5 and
ω2 = 1.6× ω1.

Figure 6-16: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.5 and ω2 = 1.6× ω1.
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Figure 6-17: The graph showing the time dependent solution of F for µ2 = 0.5 and
ω2 = 1.6× ω1.

Figure 6-18: The stroboscopic map of V and A on the limit cycle with µ2 = 0.2 and
ω2
ω1

= 9
10 showing the invariant curve made up of only 10 points intersection with Σ.
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Figure 6-19: The graph showing the frequencies available in the system when
µ1 = 0.467 , ω1 = 0.1476, µ2 = 0.2 and ω2 = 0.9× ω1.

Figure 6-20: The stroboscopic map of V and A on the limit cycle with µ2 = 0.29
and ω2

ω1
= 9

10 showing exactly a total of the ten points spread out.
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Figure 6-21: The graph showing the time dependent solution of V for µ2 = 0.2 and
ω2 = 0.9× ω1.

Figure 6-22: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.29 and ω2 = 0.9× ω1 with ω2

ω1
= 9

10 .
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Figure 6-23: The graph showing the time series solution of F for µ2 = 0.29 and
ω2 = 0.9× ω1.

Figure 6-24: The stroboscopic map of V and A on the Omega limit set with
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.2 and ω2 = 1.6180339888×ω1 showing the invariant
tori. These closed curves are centred on the period 3 limit cycle.
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Figure 6-25: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.2 and ω2 = 1.6180339888× ω1.

Figure 6-26: The stroboscopic map of V and A on the Omega limit set with
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.6 and ω2 = 1.6180339888× ω1 showing the breakup
of the tori.
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Figure 6-27: The graph showing the time series solution of V for µ2 = 0.6 and
ω2 = 1.6180339888× ω1.

Figure 6-28: The graph showing the time dependent solution of F for µ2 = 0.6 and
ω2 = 1.6180339888× ω1.
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Figure 6-29: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.6 and ω2 = 1.6180339888× ω1.

Figure 6-30: The stroboscopic map of V and A on the Omega limit cycle with
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.72 and ω2 = 1.6180339888 × ω1 showing the
formation of a different torus.
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Figure 6-31: The graph showing the frequencies available in the system when
µ1 = 0.467, ω1 = 0.1476, µ2 = 0.72 and ω2 = 1.6180339888× ω1.

Figure 6-32: The graph showing the time series solution of F for µ2 = 0.72 and
ω2 = 1.6180339888× ω1.
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In considering the Fast Fourier Transform (FFT) of the solutions of the system in
order to find the periods present in irrationally forced quasi-periodic system, we
examined Figure 6-25, Figure 6-29 and Figure 6-31.

In Figure 6-25 we observe that the periods present are the dominant 120kyrs and its
harmonics and also a presence or contribution of the forcing frequency at frequency
index k = 56 which corresponds to 26kyrs. Hence quasi-periodic solutions observed
in the time solutions Figure 6-32 and Figure 6-27. As µ2 is increased, the peaks
spreads out due to the introduction of other frequency components, the growth of
the peak representing the 26kyrs period is also clearly seen in Figure 6-29. The
Figure 6-29 shows that the 120kyr period and the 40kyrs period are both driving
the system.

6.3.3 Large µ2

Now we consider the stroboscopic map of V on the Omega limit when µ2 ≥ 1. The
stroboscopic plot of the limit cycle in the phase plane (V,A) is plotted taking the
same period of the map T = 2 π

ω1
. For large µ2, the stroboscopic plot on the Omega

limits of the quasi-periodically forced model exhibits the apparent strange chaotic
attractors (see Figure 6-33).

Figure 6-33: The stroboscopic map of V and A on the Omega limit cycle with
µ2 = 1.2 and ω2 = 1.6180339888× ω1 showing the apparent chaotic solutions.

The presence of chaotic attractors in the quasi-periodically forced PP04 model with
only two frequencies was also observed by Ashwin et al. [3] with similarly significant
amplitude. On the other hand, the quasi-periodic time dependent solutions for the
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volume of ice were observed for quasi-periodically forced smoothed system.

The full analysis of the system (6.1) is hard as it involves a long investigation of
effects of a number of parameters and variables of the model. Therefore we had
performed an investigation whereby we checked the effect of forcing by studying
the effect of different frequencies and amplitudes. The summary of the dynamics
observed in the quasi-periodic forced PP04 model with different forcing is given in
Table 6.1 and shows that for small amplitudes the system exhibits quasi-periodic
motion. When the frequency of the forcing is irrational and the amplitude of the
forcing is increased the system exhibits chaotic motion.

Table 6.1: Table summarising the dynamics in the two mode forced quasi-periodic
PP04 model

ω1 ω2 µ2 Result Figure
0.1476 0.9× ω1 0.2 periodic motion Figure 6-18
0.1467 1.6× ω1 0.2 period motion Figure 6-12
0.1467 1.680339888× ω1 0.2 quasi-periodic motion Figure 6-24
0.1476 1.680339888× ω1 0.6 tori seen at µ2 = 0.4 breaks up Figure6-26
0.1467 1.680339888× ω1 1.2 chaotic motion Figure 6-33

6.3.4 Three frequency forcing

The astronomical forcing has thirty-five different modes of the astronomical forcing
of which the obliquity, eccentricity and precession are dominant. Therefore Mitsui et
al. [46] states that the three modes of I65(t) constitutes about seventy-five percent of
the forcing and hence a good representation of the forcing. Therefore it is important
to try and understand how the climate will work with this forcing by considering
these three modes of forcing in order to observe their effect on the dynamics of the
system.

If we consider three frequency forcing and fix µ2 = 0.4 and ω2 = 1.6180339888× ω1

with T = 2π
ω1
, the stroboscopic map of V on the Omega limit exhibits invariant curves

when µ3 is small which breaks when µ3 is increased.

In Figure 6-34 we observe the invariant curves when µ3 = 0.6 and in Figure 6-35 the
invariant curves are destroyed.
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Figure 6-34: The stroboscopic map of V and A on the Omega limit cycle showing
the invariant curves for µ2 = 0.4, ω2 = 1.6180339888× ω1, µ3 = 0.3 and ω3 = 0.331
.

Figure 6-35: The stroboscopic map of V and A on the Omega limit cycle showing
the apparent chaotic solution when invariant curves break up for µ2 = 0.4, ω2 =
1.6180339888× ω1, µ3 = 0.6 and ω3 = 0.331.
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6.4 Summary

In this chapter we have established that for the quasi-periodically forced PP04 model
with two modes of forcing, the system exhibits:

1. Periodic points or periodic solutions for rational forcing when using both the
linear map and the stroboscopic map of the smoothed system with small forcing.

2. Tori for irrational forcing when using the linear map, or the nonlinear map for
small amplitude.

3. The tori breaks down when the amplitude is increased for the full system.

4. Apparent strange chaotic attractors for large amplitude of the forcing.

131



Chapter 7

Grazing bifurcation, transitions
and domains of attractions

In Chapter 5 we considered the periodic solutions of the periodically forced system
which transversally intersects the discontinuity boundary. To extend the study of
these solutions, we now look at the periodic solutions that intersects the discontinuity
boundary Σ non-transversally as a parameter is varied. In this chapter, we will:

(i) Give evidence that the grazing bifurcation occurs on the period (1, 3) solution

(ii) Show that this grazing bifurcation leads to a significant instability and loss of
physicality of solutions.

(iii) Look at the domains of attraction of the various periodic solutions and see how
these give insight into the transitions between these solution.

7.1 Grazing instability

A grazing bifurcation is said first to occur when as a parameter of the system (2.17
- 2.19) is varied the periodic orbit X has a point of tangency with the switching
boundary Σ. That is, if we consider the orbit X starting from S+ where F (X) > 0,
as a parameter is varied then there is a point Xg such that the periodic orbit touches
the discontinuity boundary at a non-transversal intersection (a graze) at Xg. At this
point we then have

F (Xg) = d
dt
F (Xg) = 0 (see Figure 7-1). It is shown in [19] that such behaviour is

highly destabilising.

The set of initial conditions that leads to a trajectory grazing is known as the grazing
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Figure 7-1: The schematic graph showing a stable periodic orbit before graze (left)
and a grazing periodic orbit (right).

Figure 7-2: The schematic graph showing an unstable periodic orbit after graze
which has an additional small excursion in S−.

set defined as
Gi = {x ∈ Σ : F (x) = d

dt
F (x) = 0}

These initial conditions separates the physical and the non physical solutions and
hence acts as a border between the two types of solutions. The grazing bifurcation
leads to sudden change in behaviour of the system as part of the orbit has a zero
velocity at the switching boundary and the resulting Poincaré map has infinite
stretching. Consequently the transition produce rich dynamics [49].

In Figure 5-26 and Figure 5-27 we observed that the period (1, 3) solution was
suddenly born or destroyed when either ω or µ are varied respectively. We also
observed that the synchronised periodic solutions ceases to exist at certain values of
µ when ω is constant. This behaviour of the period (1, 3) solution at this certain
value of µ or ω we associate with a grazing bifurcation. That is to say, for ω > ωg or
µ < µg we have a stable period (1, 3) solution and for ω ≤ ωg or µ ≥ µgthe periodic
solution becomes unstable. To illustrate the grazing bifurcation of a period (1, 3)
solution, we fix the value of ω and vary µ until we reach the value of µ such that F
changes signs while x ∈ S+ to get the value of the grazing parameter.
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7.1.1 Using algebraic calculations to show grazing

We consider the non-smooth system and to find the grazing amplitude of the forcing,
we solve the algebraic equations. In Figure 7-3, the solutions of the algebraic solver
shows that an increase in the value of µ closer to the grazing value, the part of
the periodic solution approaches the discontinuity boundary as the velocity of the
trajectory at that point become smaller and smaller until the orbit grazes. This
figure shows that the period (1, 3) orbit grazes at µ ≈ 0.5 if ω = 0.123 which is
consistent with the solutions obtained for the smooth system in Figure 5-27.

Figure 7-3: The graph showing that with an increase in the value of µ the part of
the periodic solution has velocity close to zero and eventually grazes with ω = 0.123
and µ = 0.467 (left) and µ = 0.51 (right).

Figure 7-4: The graph showing that after the periodic solution has grazed, it loses
its physicality for µ = 0.6 and ω = 0.123 .
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7.1.2 Numerical calculations showing grazing

When we consider the smoothed system, Figure 5-30 shows that when we fix ω = 0.126
a period (1, 3) solution is near grazing when µ = 0.467. Therefore this shows that
if µ is increased further, it will graze. To illustrate the grazing bifurcation of the
period (1, 3) solution using the smoothed system, we consider say ω = 0.123 and
vary µ until we reach the value of µ such that F changes signs for the orbit in S+ in
order to get the grazing value µg.

Figure 7-5: The graph showing that as µ is increased the periodic solution of the
periodically forced PP04model exhibits a grazing bifurcation at µ = 0.525 when
ω = 0.123. The graph is obtained by plotting the minimum values of F against µ.

Indeed in Figure 7-5, we observe that when solving the periodically forced smoothed
system, for ω = 0.123, the minimum value of F obtained for flow X in the region S+,

changes sign at µ = 0.53. Therefore the grazing bifurcation is observed at µg = 0.53
and similarly we observed that µg = 0.49 for ω = 0.122 agreeing with the non-smooth
solution. Similar behaviour is expected for other values of ω or µ when increased
and hence we can get a grazing curve (see Figure 7-12). Now we study this grazing
instability.

To study the dynamics of the PP04 system in the neighbourhood of the grazing
trajectory, we can use the discontinuity mapping technique. This technique was first
introduced by Nordmark et al. [49] and then was extended to n−dimensional piece-
wise smooth systems by [19]. The normal Poincaré map PS in the neighbourhood of
the grazing trajectory is set up to describe this near grazing dynamics as trajectories
near grazing will transversally cross the Poincaré section ΠN at a point near the
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grazing point. If we consider the Poincaré section normal to the discontinuity
boundary and to pass through the origin, then one side will be on S+ and another
on S− and the Poincaré Discontinuity Mapping (PDM) can be constructed [20].

7.1.3 The discontinuity mapping

The discontinuity map defines the correction made to the trajectories in order to
account for the presence of a discontinuity boundary in phase space [19]. This is
done by considering a flow in the region S+ close to the trajectory that contains
the grazing point xg. The near grazing periodic orbit starting in S+ and passing
through x0 using flow φ1, intersects the boundary Σ at x2 close to xg and continue
in S− with flow φ2 until it intersects the discontinuity boundary Σ again at x3 and
then continue to evolve in S+ using flow φ1. When we consider that grazing occur
in S+, then the discontinuity mapping is the correction to be applied only to the
trajectory of the flow φ1 in S+, to account for passage through S− [20]. Figure 7-6
is used to illustrate how this map is constructed whereby we describe the map using
both flows φ1 from S+ and φ2 from S−.

When considering the flow φ1, the trajectory that intersects the boundary Σ at x2

can be continued in S− and intersects ΠN at x1. Similarly the orbit from x3 can
be evolved backwards in time to x4. Suppose the flow φ1 from S+ through x0, and
intersecting the discontinuity boundary at x2 takes t = δ0, and the flow φ2 in S−

intersecting the boundary Σ at x3 takes t = δ2. Then the flow backwards from x3

using flow φ1 intersecting ΠN at x5 until reaching x4 takes t = −(δ0 + δ2) [19]. Where
the normal Poincaré section is defined

ΠN := {x : ∂
∂t
F (φ(x)) = 0}

and the Poincareé map PS := ΠN → ΠN is through

φ1(x1) 7→ φ2(x2) 7→ φ1(x3) 7→ x5.

Then the combination of the Poincaré map PS and the discontinuity mapping gives
insight into the behaviour of near grazing solutions [89]. The PDM map then captures
the recurrent dynamics in the neighbourhood of the grazing orbit for a sufficiently
small |x− x∗| and |µ− µ∗| [19]. According to di Bernardo et al. in [20] and [19], if
the vector field is discontinuous at the grazing point the system has a square root
type singularity at the grazing point. Therefore for the PP04 system which has

LX + b+ + µ e sin(ωt) 6= LX + b− + µ e sin(ωt)

has a square root singularity at the grazing point. Therefore the Poincaré Disconti-
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Figure 7-6: The graph used to illustrate the construction of the PDM mapping
x1 → x5

nuity mapping (PDM) which is a mapping from x1 → x5 given by

PDM = φ1(φ2(φ1(x, δ), δ2),−δ3)

for the PP04 system is given by

Xn+1 =

AXn if F (X) > 0
AXn +B(−F (Xn))1/2 + C if F (X) < 0

(7.1)

where A,B are matrices and C represents high order terms. The square root in this
map leads to stretching of the phase portrait in the neighbourhood of grazing and
hence resulting in an instability of the orbit (for a further reading see chapter 7 in
[19]).

If F (X) > 0 the stability is determined by A. In particular if A is a contraction
matrix ( as it is for the (1, 3) orbit) then the fixed points of this map are stable.
However if F (X) < 0 the stretching in phase space introduced by the square-root
term leads to the fixed point becoming unstable. This is the essence of the grazing
bifurcation.

7.2 Stability of the (1, 3) periodic solution

We consider the period (1, 3) solution obtained for the smoothed system simulated for
t = −1500kyrs with ω = 0.122 and initial values (V,A,C) = (0.8, 0.3, 0.5). In Figure
7-7, we observe that for the same initial conditions, a stable period (1, 3) solution
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grazes at µ = 0.467. When µ is increased further to µ = 0.4762, the period (1, 3)
solution destabilises and transitions to a period (1, 2) (see Figure 7-8). This shows
that the grazing bifurcation has destabilised the period (1, 3) solution. In Figure 7-9
a further increase in µ leads to an observed stable period (1, 2) solution for µ = 0.6
behaviour consistent with the behaviour observed in Figure 5-26. Furthermore, in
Figure 7-10, we observe that when µ is increased and ω = 0.123, the stroboscopic
plots of the Omega limit set of F shows that before grazing µg, we have stable period
(1, 2) which coexists with the unstable period (1, 3) solution. In Figure 7-11 when
we consider µ > µg, that is taking µ > 0.525 we observe the period (1, 2) solution.

If we fix µ and ω and vary the initial conditions, we observed that we have different
types of solutions. For example, in Figure 7-16, we observe a period (1, 2) solution
and in Figure 7-15, we observe an initial transient with close to (1, 3) dynamics which
then ultimately evolves to (1, 2) motion. We note that there is a dramatic change
in the behaviour of the system when t ≈ −500. This occurs when there is a local
minimum at which F < 0 which occurs for the first time in a ’glacial region’. The
resulting instability is the result of a grazing transition. Using this observation we
can now construct the domain of attraction.

Figure 7-7: The time solution showing very near grazing orbit for µ = 0.467 and
ω = 0.122 with initial conditions (V,A,C) = (0.8, 0.3, 0.5) simulated forward in time.
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Figure 7-8: The graph showing the (1, 3) solution losing stability and evolving
to a period (1, 2) solution for µ = 0.47 and ω = 0.122 with initial conditions
(V,A,C) = (0.8, 0.3, 0.5).

Figure 7-9: The graph showing a stable period (1, 2) solution with µ = 0.6, ω = 0.122
and initial conditions (V,A,C) = (0.8, 0.3, 0.5).
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Figure 7-10: The Poincaré section points on the Omega limit set of F , as a function
of µ with ω = 0.123 showing the existence of different types of solutions before the
grazing bifurcation at µ = 0.505. The stable period (1, 3) solution and the unstable
(1, 2) period solution as µ increases.

Figure 7-11: The Poincaré section of Omega limit set of F , as a function of µ with
ω = 0.123 showing the stable period (1, 2) solutions after the grazing bifurcation at
µ = 0.505.
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Figure 7-12: The graph showing the grazing curve of the period (1, 3) orbit.

7.3 Domains of attraction

The transition from one periodic solution to the other, say from (1, 3) to (1, 2) implies
that the period (1, 3) solution will still be in existence but unstable and not dominant.
Therefore there is coexistence of solutions. That is, the co-existence, for example, of
the (1, 2) and (1, 3) solutions at the values of ω = 0.128 and µ = 0.467, leads to the
possibility of seeing both types of behaviour for a variety of initial conditions, and
indeed an evolution from one to the other for certain initial conditions. To investigate
this we calculated the domains of attraction for these two orbits. These are the
subsets of the three dimension phase space (V,A,C) such that the Omega-limit set
of the iterations of the map PS is either the (1, 2) or the (1, 3) orbit. It is problematic
to find the full three dimensional sets, so for convenience we find a two-dimensional
projection by fixing one of the variables say A = 0.55 a value used in [57]. The
domain of attraction given in Figure 7-13 is obtained when we consider random
initial values (V,C) for ω = 0.128 and µ = 0.467 and solved the smoothed PP04
model forward in time using Matlab solver ode45 for time interval t = [−1000, 0].
The frequencies detected when using the Matlab Fast Fourier Transform (FFT) , are
used in determining the types of solutions and hence the colouring.

In Figure 7-13 we see that for the given choice of parameter values, the domain
of attraction for the (1, 3) orbit is much larger than for the (1, 2) orbit. There is
evidence, as we might expect, for more complex dynamics close to the boundary
of the sets. This figure is consistent with Figure 7-15 when we explore the time
evolution of the solutions for initial conditions in the green region but close to the red
boundary. If we consider ω = 0.1275 and the same amplitude µ = 0.467, Figure 7-14
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Figure 7-13: Domains of attractions for the periodic solutions with periodic forcing
where ω = 0.128 and amplitude µ = 0.467 where the larger red region represents
domain for period (1, 3) solution, the smaller green region is the domain for period
(1, 2) solution and the very small blue regions are the domains of attraction for the
other solutions.

Figure 7-14: Domains of attractions for the periodic solutions with periodic forcing
where ω = 0.1275 and amplitude µ = 0.467 where the larger red region represents
domain for period (1, 3) and the small blue regions are the domains of attraction for
other solutions such as the period (2, 4) solutions.
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shows a large the domain of attraction for the (1, 3) solution than for other solutions
such as the (2, 4) periodic solution. These results are consistent with the observed
stroboscopic Omega limit sets of the F for the same frequency and amplitude in
Figure 5-27.

Figure 7-15: The time evolution of F (t) for the system showing the slow evolution
from a (1, 3) orbit to a (1, 2) orbit when ω = 0.122 and µ = 0.4762 with initial
conditions (V,A,C) = (0.4, 0.55, 0.7).
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Figure 7-16: The time evolution of F (t) for the system showing the evolution of a (1, 2)
orbit when ω = 0.122 and µ = 0.4762 with initial conditions (V,A,C) = (0.6, 0.3, 0.7).

7.4 Summary

From this chapter we have shown that for the periodically forced PP04 model :

1. The (1, 3) periodic solution experiences grazing bifurcation for a certain values
of frequency and amplitude.

2. When the periodic solution grazes, the Poincaré discontinuity mapping shows
that the (1, 3) periodic solution destabilises and hence a transition to the (1, 2)
solution is possible.

3. The grazing bifurcation of the (1, 3) leads to a loss of physicality of the solution
.
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Chapter 8

Links back to climate and
conclusions

We have performed the analysis of the PP04 model with no forcing, periodic forcing
and quasi-periodic forcing (with two or three modes). In this chapter, we are linking
or comparing the results we observed for the analysis of the PP04 model with what
has been observed in the climate.

8.1 The unforced system

From the results, the PP04 unforced system exhibits a limit cycle or a relaxation
oscillator of a period about 140kyr. This result implies that the Earth’s climate
system if left on itself without the contribution of astronomical forcing, will oscillates
successively between the two climatic states with a period of about 2π

ω
= 147.2kyrs.

We noted that this period exhibited by this system is bigger but closer to the expected
or observed period of 100kyrs, and much bigger than the previously observed 40kyrs
period before the MPT as observed from the paleoclimate records. However the
form of the orbit coincides with the expected behaviour of the system whereby the
the climatic system spends most of its time on the glacial state and a little time
on the interglacial states (see Figure 8-1). We have also observed that the limit
cycle appears to be stable so that the unforced climate system will always experience
successive glacial cycles irrespective of initial state of the climate. Nevertheless these
results are observed using the constants in [57] obtained experimentally to fit the
results of reconstructed climate data.

On the other hand, when varying the constant d that controls the threshold in
the parameter of salty bottom water formation efficiency which induce the switch
between the glacial and the interglacial states, the results shows that the system might
lock into one type of climatic state. We observed that for d = 0.32 or d = −0.72,
the system experiences a border collision bifurcation and therefore for d > 0.32 or
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Figure 8-1: The graph showing climatic fluctuations of the Pleistocene period using
the oxygen isotopic ratio of calcite shells of benthic foraminifera. (Image from
Crucifix [13])

d < −0.72 the system has stable equilibria. This results suggests that for these
values of d the climate system can get locked into one type of glacial state, that is
either glacial state or inter-glacial state respectively.

8.2 The periodically forced system

The periodically forced PP04 model with forcing of the form µ sin(ωt), has a range of
different solutions observed depending on the strength and frequency of the forcing.

When the periodic forcing is considered for physically relevant values of (µ, ω) =
(0.467, 0.1476) that are approximately equal to the obliquity component of the forcing,
only a stable (1, 3) periodic orbit is observed (see Figure 5-26). The period of this
periodic orbit is 3∗2π

ω
= 127.7kyr which is slightly longer than the observed period

of 100kyr. We note that 100kyr would be very close to the period of the (2, 5)
periodic orbit. However, we have not seen any evidence of this orbit existing close to
the realistic parameter values. Furthermore we also observed that the (1, 3) orbit
appears to be globally stable so no matter where you start you get attracted to the
limit cycle. This results shows that when the astronomical forcing is solely driven
by obliquity, according to the PP04 model the climate system will still experience
the cyclic glacial cycles but with a reduced period of 127.7kyr. The results further
showed an introduction (addition) of the other periods into the periodic solutions of
the periodically forced PP04 model due to the introduction of the Milankovitch cycle.
Therefore according to this results, within one glacial cycle, the climate system will
experience two glacial states of different strength. The rapid reduction of ice volume
during the glacial state is also observed in real climate data records as observed in
Figure 8-1.

The solutions of the periodically forced system has also exposed the existence of
two different periodic solutions for each values of (µ, ω), obtained dependent on
where we started in the parameter space. One of these solutions is observed to be
stable while the other unstable, implying that according to the PP04 model the
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type of climate observed is dependent on the amount of astronomical forcing at that
particular period or time. Furthermore, the results depict that the climate system
can experience the usual or previously observed climate or a slightly different but
similar one for the same forcing. The starting time for periodic solutions, say t0,
was observed to change by π

nω∗ within the area of existence of periodic solutions for
small values of µ (small amount of forcing). This demonstrates that the phase of
the response (V,A,C) to the insolation forcing, whilst locked to it for a particular
periodic orbit, differs from it. This phenomenon has been observed in the record of
the ice ages in which the Milankovitch cycles are not always seen to be in phase with
the cooling and warming periods.

Figure 8-2: The Poincaré section points on the Omega limit set of F , as a function
of µ with ω = 0.1476 showing the different types of solutions as µ increases from
quasi-periodic, to (1, 3),(1, 2) and then (1, 1) with regions of co-existence.

The ’tongues’ in Figure 8-3 are observed to have regions where periodic solutions
overlap for µ ≥ 0.15 and certain values of ω. This gives the co-existence of periodic
solutions. At µ = 0.25 the two types of period (1, 3) solutions cease to exists. These
findings implies that for that certain amount of forcing that coincides with certain
values of µ and ω the climate system can assume any of the periodic solutions, for
instance a period (1, 3) or a period (1, 4) solution. Therefore as the value of µ or
of the frequency increases, the climate system has a possibility of switching to a
different type of periodic cycle.

When increasing the frequency of forcing ω or the strength of the forcing µ, we
observed an abrupt existence or destruction of a period (1, 3) solution. However the
period (1, 2) solution persisted for a while and ceased to exist at a period doubling.
The birth of a period (1, 3) solution is observed as a transition from the longer period
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Figure 8-3: The graph showing regions of existence of period (1, n) orbits when both
µ and µ are varied with regions of co-existence.

(1, 2) solution to a shorter (1, 3) orbit, when the phase of the forcing is increased.
However, when the strength of the forcing is increased, the transition from period
(1, 3) solution to period (1, 2) solution, illustrates a similar mechanism observed at
the mid-Pleistocene transition (MPT). Therefore the grazing bifurcation might be
assumed to reasonably explain the MPT mainly because the transition at the MPT
is from a small period to a bigger ( i.e from 40kyrs to 100kyrs).

8.3 The quasi-periodically forced PP04 model

The time series results we observed for the quasi-periodically forced PP04 model
in Figure 8-4, showed a response behaviour of ice volume V similar to the actual
response reconstructed from benthic foraminifera (see Figure 8-1). The presence of
the 100kyr periodicity was evidently seen in the FFT plots which coincides with the
peak observed at index k = 14. The results of this system also showed a dependence
on the value of ω2. For rational phase variable ω2, we observe periodic solutions and
invariant curves for irrational phase variable ω2. Furthermore the size of an invariant
curve increases with µ2 that breaks up as µ2 reaches a certain critical value. Then
the results showed the existence of apparent chaotic solutions for large µ2.

The existence of periodic solutions for rational phase implies that, according to
the PP04 model, the climate system forced with forcing with rational phase will
experience the period (1, n) glacial cycles. The number of glacial states before the
transitioning to the interglacial is dependent on the phase and the strength of the
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Figure 8-4: The graph showing the time series solution of V for µ2 = 0.6 and
ω2 = 1.6180339888× ω1. We can compare this with Figure 8-1.

Figure 8-5: The graph showing the frequencies available in the system when µ1 =
0.467, ω1 = 0.1476, µ2 = 0.6 and ω2 = 1.6180339888× ω1. We observe the peak at
k = 14 which is consistent with a 100kyr period.
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forcing. However, for the irrational forcing, the solutions of the system will always
be arbitrarily closer to the previous ones. This observation implies that for this
type of forcing, according to the PP04 model the climate system will experience
cyclic oscillations of volume of ice with some abrupt changes during the entire glacial
states period. These abrupt changes were also observed in the reconstructed data
of past climate (see Figure 8-1) and has been associated with the Heinrich and or
Dansgaard Oeschger events[13]. The existence of apparent chaotic solutions in the
quasi-periodically forced PP04 model for large µ2, suggest that the climate system
might become chaotic if the astronomical forcing is very strong. However these large
values of the forcing might not be relevant to the Pleistocene glacial cycles. Ashwin
et al [3] also observed the same solutions and came to the conclusion that, chaotic
solutions for large amplitude might be observed in regions of the phase space that
may not be relevant to the late Pleistocene glacial cycles.

8.4 Conclusion and remarks

We conclude the contents of this thesis by stating the new results stated in this thesis
and present the ideas for further research.

In Chapter 4 we studied the unforced PP04 model

Ẋ = LX + b±

with dynamics defined in S± and the discontinuity boundary Σ = {X : cTX+d = 0, }.
This system showed existence of two virtual fixed points and a periodic solution
between them. This periodic solution is observed to exists when the parameter d of
the ocean stratification is within the interval −0.72 < d < 0.32, however at either
d = 0.32 or d = −0.72, the system experiences a Border Collision Bifurcation.

In Chapter 5, we studied the periodically forced PP04 model of climate change
defined

Ẋ = LX + b± + µ sin(ωt)

so that the period of the forcing is given by

T = 2π
ω
.

We have first made a mathematical study of this model, which revealed the existence
of stable and unstable periodic orbits marked by saddle node bifurcation, with
subtle domains of attraction for small forcing. However, when the values of µ and
ω were increased, the grazing bifurcation was observed which consequently lead to
unstable periodic solutions. These values of µ and ω, marked the boundary between
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the physical and non-physical solutions. The increase in the phase of the forcing
exhibited the period doubling transition from period (m,n) solutions to period
(2m, 2n) solutions.

In Chapter 6 the derivation of the linear map motivated the study of the quasi-
periodically forced PP04 model given by

Ẋ = LX + b± + µ1 sin(ω1 t) + µ2 sin(ω2 t).

It was observed that under small additional quasi periodic forcing forcing, the stable
periodic orbits calculated for physically realistic values of the parameters persisted
and have a similar form to those of the observed glacial cycles. Therefore the
quasi-periodically forced system was studied as a perturbation of the periodically
forced one using linear map and stroboscopic plots of Poincaré map with sampling
period T = 2π

ω1
. The study through both maps showed the existence of period n cycle

solutions when the forcing is rational and invariant curves or tori when irrationally
forced. The time evolution solutions showed quasi-periodic solutions. However, for
large amplitudes, the stroboscopic map showed apparent chaotic solutions on the
phase plane.

In Chapter 7 we further studied the periodically forced PP04 model and our main
focus was in showing evidence of grazing bifurcation of the period (1, 3) solution. We
studied the grazing bifurcation of the PP04 model using discontinuity mapping and
then showed the domains of attraction of different solutions. We observed that at
the grazing bifurcation, the discontinuity mapping has a square-root singularity and
that periodic solution loses stability and physicality.

However other researchers who studied the climate models have observed a Hopf
bifurcation in their system [67, 68] and associated the MPT with this bifurcation.
Other researchers such as as Mitsui et al. [46, 47], Crucifix [13] and Ashwin et al.
[3] who studied the PP04 model, also observed the Hopf bifurcation as parameter is
varied and associated this bifurcation with the MPT. In our study of the PP04 model,
in Figure 5-26 we observed a sudden transition from a (1, 3) periodic solution to a
(1, 2) periodic solution when a parameter is varied which depicts a transition from
a bigger period to a smaller one, the opposite way round from the MPT. However
Figure 5-27 shows a transition from a (2, 4) periodic solution to a (1, 3) periodic
solution which closely resemble the MPT. Therefore we suggest that the MPT can
be explained using the grazing bifurcation as all these are sudden transitions.

A further study is needed to understand better the importance of including additional
climatic terms into the PP04 model. Much more work needs to be done to fully
develop the discontinuity mapping in order to do a thorough study of the grazing
transition. The study of the of all other transitions in the whole of the parameter
space under the effect of additional larger terms in the quasi periodic forcing also
needs be done. Furthermore, the investigation of strange non-chaotic attractors and
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calculation of Lyapunov exponents should be done. However, the PP04 model as a
simple model of climate change has a rich structure as a discontinuous dynamical
system, and is a plausible explanation of the glacial cycles. Nevertheless, the
study of more advanced models of climate change and other models of climate with
discontinuities such as Paillard and Parrenin model of 2012 [58] and the Stommel
model of thermohaline circulation [21, 80] are needed.
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Appendix A

Matlab codes used

The sample of the matlab codes used in this thesis are:

A.1 The Matlab codes for solving the smoothed
PP04 model

This is the code that provides the PP04model: function [Vdot] = paillard04int(t,
VAC)

Vdot = zeros(3, 1);
global e alpha y c a b d h eta delta;

x = 1.3; z = 0.8; beta = 0.5; gamma = 0.7;

τV = 15;
τA = 12;
τC = 5;
insolNorth = insol65Nperiodc(t,e); insolS = insol60(t,e);

F = a*VAC(1) - b*VAC(2)-c*insolS + d;

Vr = -x*VAC(3)-y*insolNorth + z;

discont = swich(F,eta);

Cr = alpha*insolNorth - beta*VAC(1) + gamma*discont + delta;
Vdot(1) = (Vr-VAC(1))/τV ;
Vdot(2) = (VAC(1)-VAC(2))/τA;
Vdot(3) = (Cr - VAC(3))/τC ;
Vdot = [Vdot(1); Vdot(2); Vdot(3)];
end
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function [t, V, A, C] = pp041pdcforcededit(tf, Vinit, Ainit, Cinit)
global omega tinitial;
TT = (2 ∗ pi)/omega;
options=odeset(’AbsTol’,1e-12,’RelTol’,1e-12);
[t, V AC] = ode45(@paillard04pdcforced, [tinitial: TT: tf], [Vinit, Ainit, Cinit],options);
V = VAC(:, 1);
A = VAC(:, 2);
C = VAC(:, 3);
end

A.1.1 Function to regularise the model

This is the code that represents the Heaviside function as a tanh function and hence
providing the regularization of the PP04 model:

function [discont] =swich (F,eta)
discont= (1+tanh(-F*eta))/2;
end

A.1.2 Script file for solving the system

This is the code to solves the smoothed PP04 model as an initial value problem:

close all
clc
global alpha y c a b d eta amp omega e delta tinitial

eta=1000;
y =0.5;
alpha =0.15;
c = 0;
e = 23.58;
omega = 0.121;
amp = 0.467;
a = 0.3;
b =0.7;
d = 0.27;
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delta = 0.4;
Vinit = 0.1;
Ainit = 0.55;
Cinit = 0.2;
tinitial = -15000;
tf = 0;

[t, V, A, C] = pp041pdcforcededit(tf,Vinit, Ainit, Cinit);
insolNorth = insol65Nperiodicbifurc(t);
F = a*V-b*A+d;
figure(2)
plot(A,V );
hold on;
plot(A,1/a*(b*A-d));hold off;
xlabel(’A’);
ylabel(’V’);hold on;
figure(3) plot(t,C,’b’); hold on;
xlabel(’t’);

figure(4) plot(t,V,’r’); hold on;
xlabel(’t,in Kyrs’);

figure(5) plot(t,A,’g’); hold on;
xlabel(’t,in Kyrs’);

figure(7) plot(t,F)
hold on;
plot(t,0*t)
hold off;
xlabel(’t’);
ylabel(’F’);hold on;
grid on

This is the code that provides the function for astronomical forcing:

function [insolNorth] = insol65Nperiodicbifurc(t)
global omega amp
insolNorth= amp*sin(omega*t);
end
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A.2 Matlab codes for solving the non-smooth PP04
system

This is the code that solves the non-smooth PP04 model using the tabulated values
given in the paper

function f = algcal(x)

global mu om nn

x0 = x(1:3)’; t0 = x(4); t1 = x(5);

L = [-1/15 0 -1.3/15;1/12 -1/12 0;-0.5/5 0 -1/5];
e = [-0.5/15 0 0.15/5]’;
bp = [0.8/15 0 0.4/5]’;
bm = [0.8/15 0 1.1/5]’;

cc = [0.3 -0.7 0];
dd = 0.27;

T = 2*pi*nn/om; t2 = t0+T;

Lbp = L\bp;

Lbm = L\bm;

L2 = L ∗ L+ om2 ∗ eye(3);

a = L2\(-om*mu*e);

b = L ∗ a/om;

x1 = expm(L ∗ (t1− t0)) ∗ (x0 + Lbp− a ∗ cos(om ∗ t0)− b ∗ sin(om ∗ t0))− Lbp+
a ∗ cos(om ∗ t1) + b ∗ sin(om ∗ t1);
x2 = expm(L ∗ (t2− t1)) ∗ (x1 + Lbm− a ∗ cos(om ∗ t1)− b ∗ sin(om ∗ t1))− Lbm+
a ∗ cos(om ∗ t2) + b ∗ sin(om ∗ t2);
f1 = dot(cc,x1) + dd;
f2 = dot(cc,x2) + dd;
r1 = x2 - x0;
f = [r1’ f1 f2]’;
end
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A.2.1 The script file to solve the system of algebraic equa-
tions

close all;
clear all;
clc;
global mu om nn

nn = 3;
om = 0.132;
zero = zeros;
timeone = zeros;
mu = 0.3;
x = [0.1102 0.4329 0.9405 1.6829 100];

[x,fval]=fsolve(@algcal,x);
x0 = x(1:3)’;
V0 = x0(1);
t0 = x(4);
t1 = x(5);
L = [-1/15 0 -1.3/15;1/12 -1/12 0;-0.5/5 0 -1/5];
e = [-0.5/15 0 0.15/5]’;
bp = [0.8/15 0 0.4/5]’;
bm = [0.8/15 0 1.1/5]’;
cc = [0.3 -0.7 0];
dd = 0.27;

T = 2*pi*nn/om;
t2 = t0+T;

Lbp = L\bp;

Lbm = L\bm ;

L2 = L ∗ L+ om2 ∗ eye(3);

a = L2\(-om*mu*e);

b = L*a/om;

N = 100;

dtp = (t1 - t0)/N; dtm = (t2 - t1)/N; tp = [t0:dtp:t1];
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tm = [t1:dtm:t2];

for n = 1:N+1

tpn = tp(n);
x1 = expm(L*(tpn-t0))*(x0+Lbp-a*cos(om*t0)-b*sin(om*t0))-Lbp+a*cos(om*tpn)+
b*sin(om*tpn);
Fp(n) = dot(cc,x1) + dd;
Vp(n) = x1(1);
Ap(n) = x1(2);
Cp(n) = x1(3);
end
x11 = expm(L*(t1-t0))*(x0+Lbp-a*cos(om*t0)-b*sin(om*t0))-Lbp+a*cos(om*t1) +
b*sin(om*t1);
for n = 1:N+1
tmn = tm(n);
x2 = expm(L*(tmn-t1))*(x11+Lbm-a*cos(om*t1)-b*sin(om*t1))-Lbm+a*cos(om*tmn)+
b*sin(om*tmn);
Fm(n) = dot(cc,x2) + dd;
Vm(n) = x1(1);
Am(n) = x1(2);
Cm(n) = x1(3);
end

x22 = expm(L*(t2-t1))*(x11+Lbm-a*cos(om*t1)-b*sin(om*t1))
- Lbm+a*cos(om*t2)+b*sin(om*t2);
T = 2*pi*nn/om;
hold on
plot(tp+T,Vp,’r’,tm + T,Vm,’r’)
plot(tp,Ap,’b’,tm,Am,’b’)
plot(tp+T,Ap,’b’,tm+T,Am,’b’)
plot(tp,Cp,’m’,tm,Cm,’m’)
plot(tp+T,Cp,’m’,tm+T,Cm,’m’)
plot(tp,Fp,’k’,tm,Fm,’k’,tp,Fp==0,’g’)
plot(tp+T,Fp,’k’,tm+T,Fm,’k’,tm,Fm==0,’b’)
plot(tp,mu*sin(om*tp),’g’,tm,mu*sin(om*tm),’g’)
plot(tp+T,mu*sin(om*tp),’g’,tm+T,mu* sin(om*tm),’g’)
hold off
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