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Abstract

Starting with a Fully Abstract denotational semantics for an Algol-
like programming language, we investigate how we can use techniques
of categorical algebra to adapt the semantics when the original lan-
guage is extended with various nondeterministic effects. Our running
example for the base denotational semantics is Abramsky and Mc-
Cusker’s game semantics for Idealized Algol [AM96]. We give a full
presentation of this game semantics, including an alternative proof of
Computational Adequacy that uses Laird’s concept of a sequoidal cat-
egory [Lai02] rather than the combinatorial proof from Abramsky and
McCusker’s original paper.

We introduce the familiar concepts of monads and Kleisli cate-
gories, and prove a Full Abstraction result that shows how the pro-
cess of passing to certain Kleisli categories corresponds to particular
language extensions. We link these language extensions to may- and
must-testing for finite and countable nondeterminism, showing how
we can construct Fully Abstract models of these effects using Kleisli
categories.

We introduce a generalization of monads: lax actions, also known
as parametric monads. We investigate various corresponding general-
izations of Kleisli categories, and prove a Full Abstraction result for
one such generalization, showing how it too can be used to construct
a model of an extended version of our original Algol-like language. We
show how a special case of this construction can be adapted to model
a probabilistic language.
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Chapter 1

Introduction

1.1 Denotational Semantics and Program Equiva-
lence

Given two pieces of computer code, in what circumstances can we say that
they are interchangeable? I.e., when can we be absolutely sure that we can
replace one with the other and know that the behaviour of the program will
not change? This is a simple question with a complicated answer.

A starting point is to require that the two pieces of code should return the
same output for any choice of input values. But that is not necessarily
enough. For example, the following two Haskell functions appear to do the
same thing: indeed, both return 0, whatever input is passed in.

f : : Int −> Int
f n = i f (n == 0) then 0 else 0

g : : Int −> Int
g n = 0

However, if we introduce a non-terminating function

d ive rge : : Int −> Int
d ive rge x = d ive rge x

then it becomes clear that f and g are not interchangeable: indeed, since
Haskell evaluates inputs to functions lazily, evaluating g (diverge 0) will
not evaluate the non-terminating term (diverge 0) and will terminate at
the value 0, while f (diverge 0) will evaluate (diverge 0) and will itself fail
to converge.
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This is not itself a difficult problem to get around: all we have to do is treat
non-termination as a separate input value in itself. Thus, we add to each
datatype an extra distinguished value ⊥ representing non-termination (so,
for example, the type of integers is represented by the set Z⊥ = Z + {⊥}),
and then function types are interpreted as functions between these sets –
so a term of type Int −> Int is represented by a function Z⊥ → Z⊥. We
can then tell that our functions f and g are different, since g corresponds to
the constant 0 function Z⊥ → Z⊥, while f corresponds to the function that
sends n ∈ Z to 0 but sends ⊥ to ⊥.

Every program gives rise to a function in this way, but not every such
function arises from a program. For example, we cannot write a program
corresponding to the function χ : Z⊥ → Z⊥ that sends ⊥ to 0 and all other
values to 1: since χ is not constant, such a program would have to evaluate
its argument, and would consequently fail to terminate if that argument did
not terminate, so it would have to send ⊥ to ⊥.

If our language admits higher types, then it becomes especially important to
exclude such ‘impossible’ functions from our model. For example, if F and
G are two programs of type (Int −> Int) −> Int – i.e., functions that take
in a function from integers to integers and return an integer – then we do not
want to declare that F and G are different on the basis that F (χ) 6= G(χ).

In order to rule out these ‘impossible’ functions, we define a partial order on
the sets T⊥ corresponding to types, defined by setting x ≤ x and⊥ ≤ x for all
x. We then require that functions should be monotonic and continuous with
respect to this order. For example, a monotonic function Z⊥ → Z⊥ is either
constant (corresponding to a function that does not evaluate its argument
at all) or sends ⊥ to ⊥ and is otherwise unconstrained (corresponding to a
function that evaluates its argument). It turns out that if we order functions
pointwise, then we get the correct constraints at higher types as well.

Even if we get round the problems with divergence, there are other language
features that we may need to consider if we want to determine whether two
pieces of code are equivalent. If our functions have access to global variables,
then we need to check that these variables end up taking the same final value,
whatever their initial values were. If we have IO calls in our language, then
we need to check that the functions print out the same text, whatever the
user input was. If we have a random number generator, then we need to
check that our functions return the same set of values, whatever the input.

What we have been doing in all these examples is denotational semantics:
the art of using mathematical objects to study logic and programming lan-
guages. In the first case, our denotational semantics was expressed through
the mathematics of sets and functions, where we captured the behaviour of
a (programming language) function via a (mathematical) function.

12



Then, following Scott [Sco76], we refined this model to one based on par-
tially ordered sets – more specifically, Scott domains – in which we modelled
the behaviour or a program via an associated Scott-continuous functions be-
tween domains.

In our other examples, we need to come up with further refinements to our
model in order to incorporate the new computational effects. For example, to
handle nondeterminism, we might want to switch to using nondeterministic
functions, or relations, instead of ordinary functions.

The advantages in all of these cases is that the mathematical objects we
use are often fairly simple, whereas computer programs, even in simple ‘toy’
languages, are very complicated to study. A program is, at its heart, a string
of symbols governed by a collection of operational rules that govern how such
strings should behave. Such an object is very fiddly to reason with directly;
indeed, the only way to think about it is as some kind of ‘function’ from
input to outputs. Denotational takes this basic intuition further, and aims
to capture features of programming languages through a diverse collection
of different mathematical models.

A word of warning: the principal mode of denotational semantics which
we shall be studying in this thesis is game semantics, which is much more
complicated than the semantics of sets and functions.

1.2 Computational Adequacy & Full Abstraction

In order for a denotational semantics to tell us anything, we first need to
prove some results that relate it to the language we are studying. For ex-
ample, if we are hoping to model a programming language using sets and
functions, then we need to define a mapping J−K (the denotation) that takes
program types to sets and program functions to functions between those sets,
and we also need to prove that this denotation respects the operational rules
of the language. For example, we might want to prove that if f : int → int
is a function and M : int is a term that evaluates to the integer n, then the
term fM will evaluate to the integer JfK (n).

This type of result is called Computational Adequacy, and relates to a pro-
gram’s observable behaviour. Some programs have an automatic notion of
observable behaviour: if we run them, then they will return a concrete value
or fail to terminate. In a typed setting, these are the programs of ground
type. Others – for example, programs of function type – require input before
they can return a value. These programs have no observable behaviour of
their own, but if we insert them into a hole in a larger context, then they
may influence the observable behaviour of the complete program.

Briefly speaking, a Computational Adequacy result tells us that the observ-
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able behaviour of a program of ground type may be deduced exactly from its
denotation. For example, in a domain-theoretic semantics, we might want
to say that a program M evaluates to a value v if and only if JMK = v and
that M fails to terminate if and only if JMK = ⊥.

Such a computational adequacy result extends readily to terms not of ground
type. Given two programs M and N of the same type, we say that M and N
are observationally equivalent if C[M ] and C[N ] have the same behaviour for
any one-holed context C[−] of ground type. If our semantics is compositional
– so that the denotation of C[M ] is obtained by ‘applying’ the denotation
of C[−] to the denotation of M – and computationally adequate, then it
follows that the semantics is equationally sound : if two terms M and N
have the same denotation, then they are observationally equivalent.

If we have an effective way of computing denotations, then this can give us
an easy way to prove observational equivalence of terms. However, it gives
no guarantee that this technique is always going to work: the terms M and
N might be observationally equivalent despite having distinct denotations.
The gold standard of denotational semantics – Full Abstraction – asserts
in addition that the converse of equational soundness holds, so that the
denotational semantics completely captures the observational equivalence
relation. This means that if two terms are observationally equivalent, then
we can always prove that they are observationally equivalent by showing
that they have the same denotation.

An important early success in this direction came with Plotkin’s introduction
of the stateless sequential programming language PCF [Plo77]. Plotkin was
unable to provide a fully abstract denotational semantics for PCF itself,
but he showed that if we add a simple parallel construct1 to PCF, then a
denotational semantics based on Scott domains is fully abstract. This result
presents us with a world in which we can practically and systematically
check observational equivalence (for terms of this extended version of PCF)
by computing denotations. If two term displays infinitary behaviour, then
it is not necessarily possible to check whether their denotations are equal,
but if they are finitely presentable in some sense, so that their denotations
as functions between Scott domains can be computed and compared, then
the Full Abstraction result gives us, at least in principle, a systematic recipe
for checking observational equivalence.

Unfortunately, this stops working once we remove the extra parallel con-
struct. PCF is a sub-language of the parallelized version, and therefore can
also be given a denotational semantics via Scott domains, but the absence of

1Specifically, ‘parallel or’, which evaluates its two boolean arguments in parallel, and
is thus able to return true if either the left or the right argument returns true, even if the
other fails to terminate.
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parallelism also means that the observational equivalence relation is coarser:
there may be terms that can be distinguished by a context including the
parallel construct that cannot be distinguished inside any purely sequential
context. This means that the Full Abstraction result does not automatically
pass over to sequential PCF.

Any hope of solving the problem with a tweaked model was brought down
to earth by Ralph Loader’s 2001 theorem that observational equivalence
for PCF is undecidable, even if we restrict ourselves to a finitary version
of the language with no infinite datatypes or recursion beyond a simple
non-termination primitive ⊥. This in particular tells us that no concretely
presentable denotational semantics for PCF can possibly be fully abstract,
or it would in principle give us an algorithm for deciding observational equiv-
alence in this finite version.

Despite this fact, there were, roughly contemporaneous with Loader’s result,
several fully abstract models of PCF published, in a watershed moment for
the subject. The model published by O’Hearn and Riecke [OR95] was more
or less along domain-theoretic lines, while those of Abramsky, Jagadeesan
and Malacaria [AJM00], Hyland and Ong [HO00], and Nickau [Nic94] used
the relatively new Game Semantics.

These models took a slightly oblique approach to Full Abstraction, which
is how they reconcile themselves with Loader’s Theorem. First, they de-
fined the notion of intrinsic equivalence of terms of the same type T in a
denotational model, where two elements σ and τ of the denotation of T are
intrinsically equivalent if α(σ) = α(τ) for all functions α : JT K → JoK from
the denotation of T to the denotation of some fixed ground type o. This
definition is very closely linked to that of observational equivalence; indeed,
if two terms M and N are observationally equivalent, and we are working
in a computationally adequate and compositional denotational semantics,
then the denotations of M and N will be intrinsically equivalent, since for
any ground-type context C[−], we can take α to be the denotation of C[−]
in the above definition.

Proving the converse – that intrinsic equivalence of denotations implies ob-
servational equivalence – entails going in the opposite direction; i.e., starting
with some element α in the model and coming up with a context C[−] in
the language whose denotation is α. Thus, proving this direction normally
reduces to some kind of definability result. Typically, we do not actually
need to prove that every α is definable within the language – and, indeed,
this is often not the case. Instead, we try to show that each element α in
the language can be written as the least upper bound of elements α′ liv-
ing in some more restricted class whose members can all be defined in the
language. This class usually consists of those elements which are compact
or finitary in some sense, though McCusker’s Fully Abstract relational se-
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mantics for SCI [McC02] is an important exception. Under mild continuity
assumptions, this suffices to prove Full Abstraction, for we can then deduce
that if α(σ) 6= α(τ) for some α, then there is some definable α′ such that
α′(σ) 6= α′(τ). This is the approach taken by the fully abstract semantics
that have been given for PCF; there is no contradiction of Loader’s theo-
rem, because the intrinsic equivalence relation is itself undecidable, even for
finitary terms.

If we can prove, for some denotational model of a language, that obser-
vational equivalence of terms is equivalent to intrinsic equivalence of their
denotations, then we can form a fully abstract model by passing to equiva-
lence classes under the intrinsic equivalence relation. In this thesis, we shall
skip the final step of passing to equivalence classes and declare a denota-
tional semantics to be fully abstract for a language if we can prove that
observational equivalence of terms is equivalent to intrinsic equivalence of
their denotations. Thus, the Full Abstraction results that we prove will
have three main ingredients: compositionality, computational adequacy and
definability.

Lastly, we note that the conclusion of Loader’s theorem does not necessarily
hold for other languages. For example, in Section 3.8, we shall demonstrate a
denotational characterization of observational equivalence in Idealized Algol,
due to Abramsky and McCusker [AM96], which can be adapted to give us
an algorithm for deciding observational equivalence for a finitary version of
Idealized Algol.

1.3 Categorical Semantics

There is a close link between (typed) programming languages and cate-
gories. Most programming languages have things called types, and many
have functions that go from one type to another. Typically, it will be possi-
ble to compose two functions together in the language in an associative way,
giving us a category. It should come as no surprise, then, that a very im-
portant branch of denotational semantics is categorical semantics, in which
we take some existing category from mathematics, and use its objects and
morphisms to represent the types and terms of a programming language.

Typically, each type T of the language will correspond to some object JT K of
the category, while a term of type T will correspond to a morphism 1→ JT K,
where 1 is some fixed object in the category (usually a terminal object).

Particularly important [Lam68] are the Cartesian closed categories, which
have a number of properties making them suitable for denotational seman-
tics:

Product and function spaces Given types S and T , we can define the
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denotations of the product type S × T and the function type S → T
to be given by JSK× JT K and JT KJSK.

Compositionality Given types S and T , and corresponding objects JSK
and JT K of the category, we can define the denotation of the function

type S → T to be given by the exponentiation JT KJSK as above. Then
we automatically have a recipe for substituting a term of type S into
a function of type S → T via the canonical morphism

JT KJSK × JSK→ JT K .

Abstraction Given a morphism σ : A×B → C, we may form a morphism
Λ(σ) : A→ CB. This gives us the semantics for λ-abstraction, whereby
we pass from a term-in-context

Γ, x : S `M : T

to the term-in-context

Γ ` λx.M : S → T .

These rules allow us to build up a model of the simply-typed λ-calculus
within any Cartesian closed category, which means we get a large part of
the denotation (and the subsequent proof of Computational Adequacy) for
free.

This alone would be a good justification for using category theory in denota-
tional semantics, but the benefits go further. The development of program-
ming languages such as Haskell has been strongly influenced by category-
theoretic concepts. For example, Moggi’s 1991 observation [Mog91] that
monads on categories provide us with a way of modelling computational
effects influenced work that led directly to the introduction of support for
monads in Haskell [Jon95], where they have become the primary tool for
abstracting out effectful computation.

Monads will be particularly important in this thesis, so it is worth dwelling
on them a little further. A monad on a category C is given by a functor
M : C → C, together with natural transformations

e : idC ⇒M m : M ◦M ⇒M

that endow M with an algebraic structure. One example is the non-empty
powerset functor on the category of sets, together with the natural transfor-
mations given by

e : A→ P(A)
a 7→ {a}

m : P(P(A))→ P(A)

A 7→
⋃
A∈A

A .
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This powerset monad indicates some kind of nondeterministic choice be-
tween elements of A, particularly if we modify the construction to the non-
empty powerset functor P+.

Another example in the category of sets is the functor A 7→ A + {⊥}, that
appends an additional element on to a set. We have natural functions A→
A + {⊥} and A + {⊥} + {⊥} → A + {⊥} that make this into a monad as
well. In the study of programming languages, this is often called the maybe
monad, because A+ {⊥} indicates an element of A that may or may not be
present (with the distinguished value ⊥ indicating no value).

Given a monad M on a category C, we can form a new category KlM C –
the Kleisli category of M – whose objects are the objects of C and where
a morphism from A to B is given by a morphism A → MB in C. The
monadic coherence gives us the correct notion of composition: given Kleisli
morphisms σ : A→MB and τ : B →MC, we may compose them to give a
morphism A→MC via the following formula.

A
σ−→MB

Mτ−−→MMC
m−→MC

The Kleisli category of the powerset monad is the category of sets and
relations, while the Kleisli category of the maybe monad is the category of
sets and partial functions.

There are numerous other monads that can be used to model computational
effects, such as the state monad and the exception monad. Work by Plotkin
and Power [PP02] makes this more precise, by studying monads that can
be built up via algebraic operations and equations. For example, we might
want to model nondeterministic choice on a set A via an operation

∑
that

takes in infinitely many elements of A – so
∑
ai gives us a choice between

the ai. We then impose some axioms on this operation.

Idempotence If ai = a for all i, then
∑
ai = a;

Commutativity
∑
ai =

∑
aπ(i)

for any permutation π; and

Associativity
∑

i(
∑

j aij) =
∑

i,j aij .

This is an algebraic theory akin to the theory of groups, and its category of
free algebras is isomorphic to the Kleisli category of the powerset monad.

1.4 Game Semantics

Game Semantics gives us a particularly fruitful categorical semantics for
programming languages. The underlying idea is that a computer program
behaves like a strategy for a two-player game, in that it needs to respond
to arbitrary inputs (opponent moves) with its own behaviours (proponent
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moves). Thus, we represent a programming language type by an idealized
game between two players O and P 2, and represent a term of that type by
a strategy for that game.

The power of game semantics comes from the fact, first noted by Blass in
[Bla92], that certain natural operations on games correspond to some of the
connectives of linear logic. For example, if A and B are two-player games,
then we may form their tensor product A ⊗ B, which is played by running
the games A and B together in parallel, with the opposing player O allowed
to switch between games when it is his turn.

A closely related construction takes games A and B and forms their linear
implication A ( B, in which B is played in parallel with the dual of A, in
which the roles of players P and O are swapped round. This time, player P
can choose to switch game when it is her turn.

The remarkable thing about the ( construction, first pointed out by Joyal
in [Joy77], is that if A, B and C are games, then we may compose a P -
strategy for A ( B with a P -strategy for B ( C to get a P -strategy for
A( C.

In order to form her strategy, player P sets up a ‘scratchpad’ consisting of
the games A ( B and B ( C side by side. Now suppose that player O
makes a move in A( C that originally came from the game C. Then player
P treats this move as a move in B ( C, and uses her strategy for that game
to come up with a reply. If that reply is a move in C, then she plays it as her
response. Otherwise, if it is a move in B, she treats that move as an O-move
in A ( B, and therefore has a reply in A ( B according to her strategy
for that game. Eventually, if she plays a move in A or C, then that will be
her reply in the composite strategy. See Figure 1.1 for an illustration.

It is possible instead that player P flips between her two strategies for ever,
always playing moves in B and never coming out into A or C. Computa-
tionally, this represents ‘livelock’: a computation that does not terminate
because two subroutines are continually deferring to each other without re-
turning values of their own.

This composition of strategies gives us a category G in which the objects
are games and a morphism from a game A to a game B is a strategy for the
game A ( B. In this category, the identity morphism on a game A is the
copycat strategy for A( A, which responds to an O-move in either copy of
A with the identical move in the other copy.

What is more, the connectives ⊗ and ( make G into a symmetric monoidal
closed category. We typically apply some category-theoretic construction

2Another convention is to refer to player O as ∀belard and player P as ∃löıse, so I will
refer to player O as ‘he’ and player P as ‘she’ throughout.

19



A B B C
◦
•
◦

◦ •
• ◦
◦ •

•
◦

• ◦
•

Figure 1.1: Illustration of the composition of strategies in Game Semantics.
Working top-to-bottom, the symbol ◦ denotes a move by O and the symbol
• a move by P . A dotted line indicates that a move is determined by one
of player P ’s strategies for the games A ( B and B ( C. Note that the
moves in B are duplicated, so that they may always be considered as an
O-move in either A ( B or B ( C. Moves from B are hidden in the
composite strategy: in this case, player P ’s first ‘real’ move is in C, her
second in A and her third in C.

to G to get a Cartesian closed category, by passing either to the Kleisli
category for a linear exponential comonad on G (as in [AJM00]; see [Sch04]),
or to a subcategory of the category of cocommutative comonoids in G (as
in [HO00, AM96]; see [Har99, §3.5.2]). Once we have a Cartesian closed
category, we automatically have a way to interpret the simply-typed lambda
calculus.

1.5 Game Semantics for Programming Languages

The first triumph of Game Semantics was to solve the Full Abstraction prob-
lem for PCF, but a more lasting application of the discipline has been to
model more general programming languages with effects such as state. By
making changes to the definitions of game and strategy, Game Semantics has
proved to be applicable to a wide variety of programming language effects,
including exceptions [Lai01], coroutines and continuations [Lai16], nonde-
terminism [HM99], probability [DH00], and general references [AHM98].

The precise definition of a strategy that we use depends on the language
that we are trying to model – a language with less expressive power can
realize fewer strategies. For example, the denotations of terms in a stateless
language such as PCF are history-free or innocent, in which the proponent’s
moves can only depend on a particular subsequence of the current sequence
of moves – the P -view – rather than on the whole sequence. So for a lot
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of computational effects, particularly ones that have something to do with
state, adding that effect corresponds to a relaxing of conditions on strategies.

We model other types of effects by extending the definition of a strategy.
For example, if we want to provide a semantics for a language with nonde-
terminism, then we modify the definition of a strategy so that the proponent
can have multiple replies to each opponent move, as in the work of Harmer
and McCusker [HM99]. If we want to model a probabilistic language, then
we decorate these different moves with probabilities, as in the work of Danos
and Harmer [DH00].

When choosing a definition of a strategy, the aim is to prove a definability
result, so that we can prove Full Abstraction. The original proofs of de-
finability of compact innocent strategies in PCF from [AJM00] and [HO00]
were intricate and technical. Subsequent work on languages that extend
PCF tends to try to prove definability via a factorization result, in which we
show that every strategy in an extended category of games may be written
as the composition of a strategy in an original category of games with some
fixed strategy in the new category. Then, if we have a definability result for
the original semantics, we can extend it to a definability result in the new
category.

For example, the language Idealized Algol is an extended version of PCF
that adds some stateful primitives. Abramsky and McCusker’s proof of com-
pact definability for Idealized Algol in [AM96] first proves that each compact
strategy in their model may be written as the composite of a compact inno-
cent strategy with the (non-innocent) denotation of one of the new stateful
constants. Thus, they can deduce compact definability for Idealized Algol
from Hyland and Ong’s result that every compact innocent strategy is the
denotation of a term of PCF.

Similarly, Harmer and McCusker develop in [HM99] a model of game se-
mantics in which strategies can be nondeterministic. They show that every
such strategy can be written as the composite of a deterministic strategy
with some particular fixed nondeterministic strategy. Then, to prove com-
pact definability for nondeterministic Idealized Algol, it suffices for them to
exhibit a nondeterministic term whose denotation is that fixed strategy.

We can now summarize the typical process of proving a Full Abstraction
language for a language L′ that extends a language L as follows.

• Starting with an existing computationally adequate model C of L that
satisfies compact definability, define a categorical model C′ that ad-
mits an identity-on-objects functor J : C → C′. For example, if C is
a category of games and strategies, C′ might be a category whose ob-
jects are the same games as C, but where the strategies are less rigidly
constrained.
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• Prove that the model C′ is a Cartesian closed category and is compu-
tationally adequate for L′.

• Prove a factorization result that exhibits every morphism g in C′ as
the composition of some morphism Jf in the image of J with one of
some fixed collection of morphisms that are known to be definable in
L′ (for example, single terms from L′ \L). In addition, if g is compact,
then f should be compact in C.

The third bullet point allows us to deduce a compact definability result
for L′ in C′ from the compact definability result of L in C, and then Full
Abstraction follows as we have outlined in Section 1.2.

The proofs of Full Abstraction for stateful and nondeterministic languages
that we have mentioned [AM96, HM99] prove Full Abstraction in this way.
Other important Full Abstraction results in Game Semantics that follow
this pattern include Danos and Harmer’s result for a probabilistic variant of
Idealized Algol [DH00], the Full Abstraction result for general references of
Abramsky, Honda and McCusker [AHM98], Laird’s result for local excep-
tions [Lai01], Murawski and Tzevelekos’s Nominal Game Semantics [MT16]
and the result for countable nondeterminism by Laird and the present author
[GL18].

Lastly, it is worth mentioning several papers that prove Full Abstraction
without going through a factorization result. This is usually because they
depart more radically from traditional game semantics. Such papers include
Tsukada and Ong’s sheaf-based models for nondeterministic PCF [TO15,
TO14], Laird’s categorical semantics for coroutines [Lai16] and the results
for probabilistic PCF by Castellan, Clairambault, Paquet and Winskel using
concurrent games [CCPW18].

1.6 Full Abstraction for Kleisli Categories

One thing which these Full Abstraction results have in common is that they
rely on some degree of human intuition to build the original model. This
process can often be very difficult. For instance, it seems obvious that if
we want to model a nondeterministic programming language, then we need
to relax the determinism constraint on strategies. However, relaxing the
determinism constraint turns out not to be enough on its own: recall that
we model a nonterminating computation in game semantics by a strategy
that has no P -reply to a particular O-move. How then do we model a term
which chooses between terminating at a value v and not terminating, and
how do we distinguish it from a term which always terminates at v? In both
cases, player P has the reply v to player O’s initial move, but now there is
nothing to indicate the possibility of non-termination.
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Harmer and McCusker are able to solve this problem, in the finite nondeter-
minism case, by separately keeping track of divergences in the strategy, but
further problems arise when we start to consider countable nondeterminism.
Since Game Semantics usually keeps track of finite sequences of moves, non-
deterministic strategies are unable to distinguish between a program that
nondeterministically chooses a number n and prints “Hello, world” n times,
and a program that either does the same thing, or prints out the message
infinitely many times. So now we have to add extra information in about
infinite sequences of moves (see Levy’s work on infinite trace equivalence
[Lev08] and the work of Laird and the present author on nondeterministic
Idealized Algol [GL18]).

Things get even more difficult when we consider nondeterministic versions
of stateless languages such as PCF. Naively relaxing the determinism con-
straint on the usual definition of an innocent strategy does not give the
right notion of a nondeterministic innocent strategy [TO15]. There are def-
initions of nondeterministic innocence due to Levy [Lev14], to Tsukada and
Ong [TO15], and, via concurrent games, to Castellan, Clairambault, Hay-
man and Winskel [CCHW18], that use the concept of morphisms between
plays, but these are already some distance removed conceptually from Hy-
land and Ong’s original paper that introduced deterministic innocent strate-
gies. Tsukada and Ong’s paper involves a complete recasting of strategies
as sheaves in order to understand what happens when we try to mix nonde-
terminism and innocence.

This is just one example that shows that the process of adding different
computational effects into a game semantics can be very hard and can require
some ingenuity. Meanwhile, there is plenty of well-known theory that deals
with computational effects in a purely systematic way. We have already
met two such techniques in section 1.3: monads (and Kleisli categories) and
Lawvere theories. Put simply, the purpose of this thesis is to investigate
what happens when we try to use these systematic techniques to prove Full
Abstraction results for effectful languages.

Let us start by looking at Kleisli categories for monads. Recall that a monad
M on a category C is a functor M : C → C that satisfies certain conditions,
and that the Kleisli category KlM C of M has the objects of C as its objects,
and that a morphism a→ b in KlM C is given by a morphism a→Mb in C.
There is a natural identity-on-objects functor J : C → KlM C.

In particular, if a is any object of C, then we have a distinguished Kleisli
morphism φA : Ma→ a in KlM C given by the identity morphism Ma→Ma
in C. Now let f : a → b be an arbitrary morphism in KlM C, given by a
morphism f̂ : a→Mb in C. Then we can write f as the following composite
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in KlM C.
a

Jf̂−→Mb
φb−→ b

In other words, the Kleisli category KlM C automatically satisfies a factor-
ization result of the type we have been talking about. So if C is a model of a
language L that satisfies compact definability, then KlM C will automatically
satisfy compact definability for any denotational semantics for a language
language L′ that includes (via the functor J) the existing denotational se-
mantics for L and in which the morphisms φa are all definable.

Proving computational adequacy is not so automatic. One approach is to
treat KlM C like any other model and to apply the usual arguments for
proving adequacy. Most computational adequacy arguments rely on order-
enriched properties of the underlying categories, particularly for dealing
with recursion, and the Kleisli category KlM C automatically inherits order-
enriched structure from C, by saying that f ≤ g : a → b in KlM C if f ≤ g
when considered as morphisms a→Mb in C.

An alternative approach, which we shall use in this thesis, is to try and
deduce computational adequacy for KlM C from a computational adequacy
result for the original language L in C. In this approach, we take a term
N of the extended language L′ and note that its denotation JNK : a→ b in
KlM C is given by some morphism f : a → Mb in C. Typically, it is easy to
construct a term P of L whose denotation in C is f . We then prove results
to peg the operational behaviour of N in L′ to that of P in L, allowing us
to deduce a computational adequacy result for our model of L′ from the
corresponding result for L.

The last ingredient that we need is to prove that KlM C is a Cartesian closed
category. This is not immediate either: KlM C need not be Cartesian, even
if C is. For the purposes of this thesis, we will be considering only monads of
a very special form – the reader monads Rz on Cartesian closed categories,
given by Rza = z → a. The Kleisli category for a reader monad on a
Cartesian closed category is always Cartesian closed [Lam74].

1.7 Difficulties with Countable Nondeterminism

This thesis will focus on nondeterministic effects. Of these, perhaps the
trickiest to work with is countable nondeterminism, in which a program can
nondeterministically choose between a possibly infinite number of different
options, without the possibility of non-termination3.

3If we have a source of finite nondeterminism, then we can get infinite branching if we
accept the possibility that our program might never terminate – for example, count the
number of coin tosses it takes before we get the first head.
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There are three main difficulties when dealing with countable nondetermin-
ism in game semantics. We have covered the first in the previous section: we
cannot tell everything about a program’s behaviour by looking at its possi-
ble finite traces, even when the traces are allowed to be arbitrarily long, as
in the example where a program nondeterministically chooses a number n
and prints out a message n times vs the program which may print out the
message infinitely many times.

The fact that finite nondeterminism avoids this behaviour comes down to
König’s Lemma, which asserts that any finitely branching tree without an
infinite branch has bounded height.

Related is second problem, which is the failure of continuity of composition.
This was noticed by Dijkstra in [Dij97, Ch. 9] and later studied by Plotkin
and Apt in [AP81].

In order to explain what we mean by continuity, we define the observational
preorder on terms of a language. If M,N : T , we write M . N if for all
ground-type contexts C[−] with a hole of type T we have

C[M ] always terminates⇒ C[N ] always terminates.

In particular, M and N are observationally equivalent if and only if M . N
and N .M .

Continuity of composition means that least upper bounds with respect to
this order are preserved by function application. Consider, for example, the
infinite sequence of terms ≤m : N→ N for m = 0, 1, . . . that return 0 if their
argument is less than or equal to m and go into an infinite loop otherwise. It
is fairly clear (with a straightforward rigorous proof once we have introduced
the denotational semantics) that a least upper bound for the ≤m is the term
≤∞ that evaluates its argument and then returns 0 regardless of what value
it finds4.

But now notice what happens if we have a countable nondeterminism prim-
itive ? in our language which when evaluated returns an arbitrarily large
natural number. Then the terms ≤m? are all observationally equivalent:
they either return 0 (when ? returns a number less than or equal to m),
or fail to terminate (when ? returns a number greater than m). We might
write

≤m? = 0 + Ω .

Therefore, the sequence ≤m? is a constant sequence and its least upper
bound is that constant value 0 + Ω.

4≤∞ differs slightly from λn.0 – also an upper bound for the ≤m, but not the least
upper bound – in that it evaluates its argument before returning 0. This means that it
will fail to terminate if its argument fails to terminate.
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Meanwhile, ≤∞? always returns 0. Therefore, application to ? does not
preserve least upper bounds.

The reason that this is a problem is that a typical strategy for proving
computational adequacy is via an order-enriched category in which the ob-
servational preorder at a type matches up with the ordering of morphisms
into the denotation of that type. The standard adequacy proof uses con-
tinuity of composition in the model in an essential way – see Lemma 3.4.6
for an example of such an argument being used to prove computational ad-
equacy for a deterministic language. But if the ordering of morphisms in a
denotational model of a language with countable nondeterminism faithfully
respects the observational ordering of terms, then composition of morphisms
is necessarily not continuous – since it is not continuous in the language it-
self.

Our strategy for getting around this problem goes back to Levy’s paper
Infinite Trace Equivalence [Lev08], and essentially involves going via an
auxiliary language, in which the nondeterministic oracle ?, when it chooses
a value, must print that value to a log. Given a term P of ground type,
we write P ⇓u if P terminates whenever it prints the sequence u to the log.
We then replace our earlier definition of the observational preorder with a
stronger one: we write that M . N if for all suitable contexts C[−] we have

C[M ] ⇓u⇒ C[N ]⇓u .

This ordering on terms is continuous. For example, the extra requirement
wrecks our previous example of failure of continuity of composition. Indeed,
the sequence ≤m? is no longer constant, since, for example, ≤5? does not
terminate if it prints 6 to the log, whereas ≤1000? does. The least upper
bound of the ≤m? is then the term that terminates whenever it prints a
single number to the log; i.e., ≤∞?.

We can prove continuity of composition in general for the new language,
which allows us to prove computational adequacy in the usual way. Hav-
ing done this, we then use operational methods to find a way to identify
terms that should be observationally equivalent in the original sense. This
allows us to quotient out our model for the new language to get one that is
computationally adequate for the ordinary nondeterministic version.

The last problem is to do with definability. First note that there are two
different reasons why an element of a denotational model (e.g., a strategy)
might not be definable in a particular language. One reason is structural:
for example, a stateless language such as PCF cannot define a strategy
whose behaviour depends on its entire history, since that would indicate
stateful behaviour. The other reason is purely computational. Given a non-
computable function f : N→ N (for example, the function that returns 0 if
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its argument is source code for a terminating program and 1 otherwise), we
have a perfectly well-behaved history free strategy that represents f , but f is
nevertheless still not definable in most programming languages. Historically,
the study of Full Abstraction has not been too concerned with non-definable
elements of the second kind: the reason is that they do not usually play a
role in determining the intrinsic equivalence relation. However, in the pres-
ence of countable nondeterminism, there exist definable terms that can be
distinguished in the model that cannot be distinguished by definable ele-
ments, but can be distinguished by non-computable functions. An example
of such a function is found in Section 4.14; the general idea is due to Kleene
and can be found in [Bau06].

What this means is that if we want to model countable nondeterminism then
structural constraints are not enough: we need to impose computability con-
straints on strategies as well. Happily, such notions are well studied already,
even appearing in the original Hyland-Ong and AJM papers [HO00, AJM00],
in which the authors give a complete characterization of those strategies de-
finable in PCF – a universality result for the model. Similar results can also
be found in earlier work on Full Abstraction, such as Plotkin’s original PCF
paper [Plo77].

The difficulties with countable nondeterminism that we have outlined are
essentially domain-theoretic, and can be summed up by saying that compo-
sition of countably nondeterministic functions is not continuous – i.e., does
not preserve least upper bounds – with respect to the natural orderings on
terms.

1.8 Plan for this Thesis

This thesis will develop the theory of Full Abstraction from the point of
view of techniques of categorical algebra such as Kleisli categories.

Chapters 2 and 3 give a fairly traditional presentation of a Fully Abstract
game semantics model for Idealized Algol. All subsequent results will
be for extended versions of Idealized Algol, so this model can serve
as the foundation for the rest of our work. Although these chapters
form by some distance the longest part of the thesis, they also contain
the smallest amount of new material, and essentially cover the same
material as Abramsky and McCusker’s Fully Abstract game semantics
for Idealized Algol [AM96]. The main difference, which ties in with
the general theme of the thesis, is that we prove Computational Ad-
equacy using techniques of categorical algebra rather than via the ad
hoc combinatorial arguments found in [AM96]. Specifically, we use
the concept of a sequoidal category and of the exponential as a final
coalgebra, introduced by Laird in [Lai02] to prove Full Abstraction for
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a language with general references. We present the first application of
this technique to a language with purely local state of ground type.
The remainder of the Full Abstraction result is largely as in [AM96].

Chapter 4 presents the general theory of monads and Kleisli categories. It
then presents a technique which can be used to prove Full Abstraction
for several nondeterministic effects, along the lines we outlined in the
previous section.

For the remainder of the thesis, we deal with a generalization of monads
– parametric monads, in which the action of the monad is parameterized
by an object of some monoidal category X (so that we deal with a functor
X × C → C rather than a functor C → C).

Chapter 5 introduces and defines parametric monads (also known as lax
actions), and proves a number of technical results which we need. It
also introduces the Melliès category and the oplax 2-limit C/X , which
give us two related analogues of the Kleisli category in the parametric
case. The Melliès category is an enriched category, while C/X is an
ordinary category obtained from it by change of base. As with monads,
we need to specialize to a small class of parametric monads – the reader
actions – in order to ensure that C/X is a Cartesian closed category.

Chapter 6 uncovers a large source of these reader actions; in this chapter,
we prove that reader actions on the category Set of sets are equivalent
to lax monoidal functors Set→ Set.

Chapter 7 takes a small detour away from the main narrative to study the
Melliès category from the point of view of profunctors.

Chapter 8 completes our study of parametric monads by proving a Full
Abstraction result for categories derived from Melliès categories, using
similar techniques to Chapter 4. As an example, we give a semantics
for a probabilistic language for a category derived from a particular
parametric monad, and show that it is Fully Abstract.

Lastly, our conclusion in Chapter 9 provides a glimpse into several further
directions that are left unexplored by the rest of the thesis.
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Chapter 2

A Sequoidal Game Semantics
for Idealized Algol

To introduce our material, we will go back over some old ground, namely the
fully abstract game semantics for Idealized Algol developed by Abramsky
and McCusker in [AM96]. In keeping with the spirit of this thesis, we will
aim to use category theoretic methods, and so our proofs of soundness and
adequacy will depart from those given by Abramsky and McCusker, and will
instead involve coalgebraic ideas developed by Laird in [Lai02] and [Lai16].

2.1 Idealized Algol

The ground types of Idealized Algol are called com, bool, nat and Var.
The first three are data types corresponding to the sets C = {a}, B =
{t, f} and N = {0, 1, 2, · · · }. com takes the role of a command or void type;
typically, although the return value of a function T → com does not convey
any information, the function will have side effects that do make a difference.

The type Var is the type of a variable holding elements of N. It is best
understood as corresponding to the following pseudo-Java ‘interface’.

public interface Var
{

nat read ( ) ;
com wr i t e (nat value ) ;

}

In other words, any term M of type Var supports two operations: one ‘read’
operation that returns a natural number and one ‘write’ operation that
accepts a natural number. The most natural case to consider is when M
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actually corresponds to a storage cell, with ‘write’ updating the value and
‘read’ returning it, but our language will permit any other implementation
of the Var interface, including, for example, a term of type Var that ignores
any values ‘written’ to it and always returns 0 when read: such terms,
which fulfil the type-theoretic contract of a storage cell without replicating
its behaviour, are sometimes called ‘bad variables’ (e.g., in [AM99, §2]).

The types of Idealized Algol are then defined by the following inductive
grammar.

T ::= com | bool | nat | Var | T → T .

Next, we present the typing rules for the language. Here, Γ will stand for a
context ; i.e., a list x1 : T1, · · · , xn : Tn of variable names together with their
types.

First, we have the usual rules for the simply typed lambda calculus.

Γ, x : T ` x : T

Γ `M : S → T Γ `N : S

Γ `MN : T

Γ, x : S `M : T

Γ ` λxS .M : S → T

We then have rules for each of the base types. At type com we have:

Γ ` skip : com

Γ `M : com Γ `N : T

Γ `M ;N : T
T ∈ {com, bool, nat}

.

Here, skip is a generic command with no side-effects that returns the unique
element a of the singleton set C. M ;N represents the sequential composition
of M with N ; i.e., the term that first evaluates M , performing any of its
side-effects, and then evaluates N and returns the result.

At type bool we have true/false values and conditionals.

Γ ` t : bool Γ ` f : bool

Γ `M : bool Γ `N : T Γ ` P : T

Γ ` IfM then N else P : T
T ∈ {com, bool, nat}

At type nat we have numerals, arithmetic operators and a conditional that
tests whether a number is equal to 0 or not.

Γ ` n : nat

Γ `M : nat

Γ ` succM : nat

Γ `M : nat

Γ ` predM : nat

Γ `M : nat Γ `N : T Γ ` P : T

Γ ` If0M then N else P : T
T ∈ {com, bool, nat}
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At type Var, we have terms that call the read and write ‘methods’ to assign
a new value to the variable or to get its current value.

Γ ` V : Var Γ ` E : nat

Γ ` V ← E : com

Γ ` V : Var

Γ ` !V : nat

We have the let keyword that allows us to evaluate an expression and bind
the result to a variable name.

Γ `M : S Γ, x : S `N : T

Γ ` letS,T x = M in N : T
S ∈ {bool, nat}; T ∈ {com, bool, nat}

We have two ways to create terms of type Var. The first gives us the storage-
cell behaviour.

Γ, x : Var `M : T

Γ ` newT λx.M : T
T ∈ {com, bool, nat}

The idea here is that if M is a term that refers to some free variable x of type
Var; then new λx.M makes x behave like an actual (zero-initialized) storage
cell (so, for instance, the result of the computation newnat λx.(x ← 5); !x
will be 5).

The second way of creating terms of type Var is using the mkvar keyword.
mkvar can be used to create ‘bad variables’: arbitrary pairs of read and write
methods that do not necessarily actually behave like actual storage cells. If
we think back to our earlier illustration of the Var type as an interface,
this becomes clearer. mkvar creates a new anonymous instance of the Var

interface, using the ‘methods’ supplied through its arguments.

Γ `M : nat Γ `N : nat→ com

Γ `mkvarMN : Var

Lastly, we have fixpoint combinators at all types that we use to implement
recursion.

Γ `M : T → T

Γ `YTM : T

2.2 Games and Strategies

We adopt the game semantics from [AM96]. For the most part, these are
very similar to the arenas defined by Hyland and Ong in [HO00]; however,
they are slightly modified (through the prescription of a set of legal plays) in
order to give us access to the substructural logic (in particular, linear logic)
that we will use as the basis of the model of local state.
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Definition 2.2.1. An arena is a tuple A = (MA, λA,`A), where

• MA is a set of moves,

• λA : MA → {O,P} × {Q,A} is a function that identifies each move as
either an O-move or a P -move, and as either a question or an answer,
and

• `A is a relation between MA + {∗} and MA such that

– if ∗ `A a, then λA(a) = (O,Q), and if b `A a then b = ∗,

– if a `A b and a is an answer, then b is a question, and

– if a `A b and a 6= ∗, then either a is an O-move and b a P -move,
or the other way round.

If ∗ `A a, then we say that a is an initial move in A. If a `A b, the we say
that a enables b.

As a shorthand, we write λOPA : MA → {O,P} for pr1 ◦λA and λQAA : MA →
{Q,A} for pr2 ◦λA.

Definition 2.2.2. A justified sequence in an arena A is a finite sequence s
of moves together with, for each non-initial move a occurring in s, a pointer
from a back to some move b occurring earlier in s such that b `A a. We say
that b justifies a or that b is the justifier of a.

Given such a justified sequence, we define the P -view psq and O-view xsy
of s inductively as follows.

pεq = ε

psaq = psqa if a is a P -move

psaq = a if a is initial

psbtaq = psqba if a is an O-move justified by b

xεy = ε

xsay = xsya if a is an O-move

xsbtay = xsyba if a is a P -move justified by b

A justified sequence s is well-bracketed if whenever a question q justifies
some answer a, then any question q′ occurring after q and before a must
justify some answer a′ occurring between q′ and a, and if a is, moreover, the
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only answer justified by q:
q

...

q′

...

a′

...
a

We say that a justified sequence s is alternating if it alternates between O-
moves and P -moves, and that it is well-formed if it is both well-bracketed
and alternating.

We say that a well-formed justified sequence is visible if whenever ta v s,
and a is a P -move, then the justifier of a occurs in the P -view of t, and if
whenever tb v s, and b is a non-initial O-move, then the justifier of b occurs
in the O-view of t.

We say that a justified sequence s is legal if it is well-formed and visible,
and write LA for the set of legal sequences occurring in A.

Note that since every non-initial move in a justified sequence s must be
justified by some previous move, then the first move in the sequence must
be initial and therefore an O-question. If s is alternating, this means that s
ends with an O-move if it has odd length and with a P -move if it has even
length.

We shall call an odd-length sequence s ∈ PA an O-position and an even-
length sequence a P -position.

Definition 2.2.3. A game is a tuple

A = (MA, λA,`A, PA)

where (MA, λA,`A) is an arena and PA is a non-empty prefix-closed subset
of LA.

Example 2.2.4 (Empty game). The empty game I is given by the tuple

(∅,∅,∅, {ε}) ,

where ε is the empty sequence.

Example 2.2.5 (Data-type games). Let X be some set. Then we have a
game, which we shall also call X, given by:
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• MX = {q}+X;

• λX(q) = (O,Q) and λX(x) = (P,A) for all x ∈ X;

• q `X x for each x ∈ X; and

• PX = {ε, q} ∪ {qx : x ∈ X}, where the x in qx is justified by q.

In particular, we have games C, B and N, which we shall use to model the
datatypes com, bool and nat of Idealized Algol.

Given a game A, there are several ways to capture the natural notion of
a strategy for A for player P . The most convenient way is to identify a
strategy with the set of P -positions that may occur if P plays according to
that strategy.

Definition 2.2.6. Let A be a game. Then a strategy for A is a non-empty
even-prefix-closed set σ ⊆ PA of P -positions in A such that if sab, sac ∈ σ
then b = c and the justifier of b is the justifier of c.

Here, we have identified a strategy for a game with the set of P -positions
that can occur when player P plays according to that strategy. So the
condition we have given is one of determinism: in any O-position sa that
can occur in the strategy, player P must have at most one reply.

Note that there may be O-positions for which player P has no reply at all;
we use these to model non-terminating computations.

We write σ : A to denote that σ is a strategy for the game A.

Definition 2.2.7. A strategy σ for a game A is called innocent if player P ’s
moves only depend on the current P -view; i.e., if whenever sab ∈ σ, t ∈ σ
and ta ∈ PA such that psaq = ptaq, then we have tab ∈ σ.

2.3 Connectives on Games

In the product A×B of games A and B, player O chooses either A or B on
the first move and subsequent play is that game.

Definition 2.3.1. Given games A,B, define the product of A and B to be
the game A×B given by

• MA×B = MA +MB;

• λA×B = [λA, λB];

• ∗ `A×B a if and only if ∗ `A a or ∗ `B a and a `A×B b if and only if
a `A b or a `B b; and
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• PA×B = {s ∈ LA×B : s|A ∈ PA & s|B = ε or s|A = ε & s|B ∈ PB}.

Here, we have written s|A for the subsequence of s consisting of all moves
from MA and s|B for the subsequence consisting of all moves from MB.

We extend this to arbitrary products
∏
iAi in the obvious way. In particular,

the product 1 of the empty collection is the same as the empty game I defined
in Example 2.2.4.

Our interpretation of the type Var will be given by a particular infinite
product; namely, the product of countably many copies of the game C, each
one corresponding to the action of writing a particular natural number into
the variable, together with a copy of the game N, corresponding to requesting
the current value of the variable.

In the tensor product A ⊗ B of games A and B, the games A and B are
played in parallel, and player O may switch between games when it is his
turn.

Definition 2.3.2. Given games A,B, define a game A⊗B by

• MA⊗B = MA +MB;

• λA⊗B = [λA, λB];

• ∗ `A⊗B a if and only if ∗ `A a or ∗ `B a and a `A⊗B b if and only if
a `A b or a `B b; and

• PA⊗B = {s ∈ LA⊗B : s|A ∈ PA and s|B ∈ PB}.

In the linear implication A ( B, the game B is played in parallel with a
version of A in which the two players’ roles have been switched around, and
player P may switch between the two games when it is her turn.

Definition 2.3.3. Given games A,B, define a game A( B by

• MA(B = MA +MB;

• λA(B = [¬ ◦ λA, λB];

• ∗ `A(B a if and only if ∗ `B a, and a `A(B b if and only if a `A b or
a `B b, or if a is initial in B and b is initial in a; and

• PA(B = {s ∈ LA(B : s|A ∈ PA and s|B ∈ PB}.

Here, ¬ : {O,P} × {Q,A} → {O,P} × {Q,A} is the function that reverses
O and P , while leaving {Q,A} unchanged.

In the exponential of a game A, infinitely many copies of A are played in
parallel, and player O may switch between copies whenever it is his move.
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Definition 2.3.4. Given a game A, define a game !A by

• M!A = MA;

• λ!A = λA;

• `!A = `A; and

• P!A = {s ∈ L!A : s|b ∈ PA for each initial move b occurring in s}.

Lastly, the sequoid A � B of two games A and B behaves like the tensor
product A⊗B, except that the opening move must take place in A.

Definition 2.3.5. Given games A,B, define a game A�B by

• MA�B = MA⊗B;

• λA�B = λA⊗B;

• `A�B = `A⊗B; and

• PA�B = {s ∈ PA⊗B : s = ε or s begins with a move from A}.

2.4 Composition of strategies

Definition 2.4.1. Let A,B,C be arenas. An interaction sequence between
A,B,C is a justified sequence s of moves drawn from MA, MB and MC

such that s|A,B ∈ LA(B and s|B,C ∈ LB(C . Here, s|A,B is the subsequence
of s consisting of those moves from s that occur in A or B, together with
all justification pointers between moves in A and B, and s|B,C is defined
similarly.

We write int(A,B,C) for the set of all interaction sequences betweenA,B,C.

Given s ∈ int(A,B,C), we write s|A,C for the subsequence of s consisting of
those moves from s that occur in A or C. A move b in s|A,C justifies a move
a either if b justifies a in either the A or the C components, or if b justifies
in s some initial move c in B, which itself justifies a.

Definition 2.4.2. Let A,B,C be games, let σ be a strategy for A ( B
and let τ be a strategy for B ( C. We define σ‖τ to be given by the set

{s ∈ int(A,B,C) : s|A,B ∈ σ and s|B,C ∈ τ} .

Then we define the composition σ; τ of σ and τ to be given by the set

{s|A,C : s ∈ σ‖τ} .
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We have not yet shown that this is indeed a well-formed strategy; the proof
of this fact will take us a few pages. We start by proving some lemmata and
making some definitions.

Lemma 2.4.3. We extend the function λOPA to alternating sequences of
moves by

• λOPA (ε) = P and

• λOPA (sa) = λA(a).

If s ∈ PA(B, then λOPA(B(s) = (λOPA (s|A) ⇒ λOPB (s|B)), where ⇒ is the
binary operation on {O,P} defined by

P Q P ⇒ Q

P P P
O P P
P O O
O O P

.

Moreover, if λOPA (s|A) = O then λOPA (s|B) = O. In other words, the second
row of the table above never occurs.

Proof. Induction on the length of s. If s = ε, then s|A = s|B = ε, and so

(λOPA (s|A)⇒ λOPB (s|B)) = (P ⇒ P ) = P = λOPA(B(s) .

Suppose then that s = ta, and that λOPA(B(t) = O. This means that

λOPA (t|A) = P λOPB (t|B) = O .

Then, whether a is a move in A or a move in B, adding it will flip exactly
one of these components – so

λA(B(s|A) = O λOPA(B(s|B) = O

if a is a move in A, and

λA(B(s|A) = P λOPA(B(s|B) = P

if a is a move in C.

Suppose instead that λOPA(B(t) = P . By induction, this means that either

λOPA (t|A) = P λOPB (t|B) = P

or that

λOPA (t|A) = O λOPB (t|B) = O .
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In the first case, this means that either t|A is empty or its last move is a
P -move in A (and therefore an O-move in A( B), and so the move a must
take place in C, meaning that λOPA (s|A) = P and λOPB (s|B) = O.

Similarly, in the second case, the last move in t|C must be an O-move in B
(and therefore an O-move in A( B, and so the move a must take place in
A, meaning that λOPA (s|A) = P and λOPB (s|B) = O.

It follows that

Corollary 2.4.4 (Switching condition). Only player P may switch between
games in A ( B; i.e., if tab ∈ PA(B, and a occurs in A and b in B, or if
a occurs in B and b in A, then b is a P -move.

Proof. Otherwise, λA(B(t) = O, so λA(t|A) = P and λB(t|B) = O. But we
must also have λA(B(tab) = O, so λA(tab|A) = P and λB(tab|B) = O. But
this is a contradiction, since tab|A and tab|B are both one move longer than
the plays t|A and t|B, so λA(tab|A) 6= λA(t|A) and λB(tab|B) 6= λB(t|B).

Definition 2.4.5 ([Har06, §3.1]). Given s ∈ int(A,B,C), we define the
P -view psq of s inductively as follows.

pεq = ε

psaq = psqa if a is a move in B, an O-move in A or a P -move in C

pscq = c if c is an initial move of C

psbtaq = psqba if a is a P -move of A or an O-move of C
and is justified by b

Lemma 2.4.6. If s ∈ int(A,B,C), then psq|A,C = ps|A,Cq.

Proof. Induction on the length of s. This is clear if s = ε.

If a is an O-move in A or a P -move in C, then a is a P -move in A ( C.
We have psaq|A,C = psq|A,Ca, which by the inductive hypothesis is equal to
ps|A,Cqa, which is the same as psa|A,Cq. If b is a move in B, then

psbq|A,C = psqb|A,C = psq|A,C = ps|A,Cq = psb|A,Cq ,

by the inductive hypothesis.

If c is initial in C, then pscq|A,C = c = psc|A,Cq.

Suppose a is a P -move of A or an O-move of C – so a is an O-move in
A ( C – and suppose that a is justified by b in the sequence sbta. Since a
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cannot be an initial move in A, b must occur in the same game as a, and in
particular must not occur in B. Then we have

psbtaq|A,C = psqba|A,C = psq|A,Cba ,

which by the inductive hypothesis is equal to ps|A,Cqba = psba|A,Cq.

Lemma 2.4.7 ([Har06, §3.1]). Let sa ∈ int(A,B,C) (so, in particular, s|A,B
and s|B,C satisfy the visibility condition). If a is a move in B, an O-move
in A or a P -move in C, then psaq ∈ int(A,B,C).

Proof. Induction on the length of s. If s = ε, then this is clear. Otherwise,
suppose that s is non-empty.

First, we claim that psq ∈ int(A,B,C). If s ends with a move in B, an
O-move in A or a P -move in C, then this follows immediately from the
inductive hypothesis. Otherwise, suppose that s ends with a P -move in
A or an O-move in C. If this last move is initial, then psq is a single
move, so the claim is trivial. Otherwise, write s = tpur, where p justifies
r. By the inductive hypothesis, we have ptpq ∈ int(A,B,C), and then
psq = ptpurq = ptqpr = ptpqr ∈ int(A,B,C).

Now, since a is a P -move in A( B or in B ( C, its predecessor b is an O-
move and has some justifier c contained in ps|Xq, where X ∈ {A( B,B (
C} is that component in which a is a P -move. Then this c is preceded by
some other O-move b′, which is necessarily also contained in psq, and so has
some justifier c′, contained in ps|Xq by visibility. Continuing in this way
until we reach an initial move, we build up the whole of the sequence ps|Xq
as a subsequence of psq. Therefore, the justifier of a must be contained in
psq, and so psaq = psqa ∈ int(A,B,C).

Lemma 2.4.8 (O-views in the linear implication, [HO00, 4.2,4.3]). Let A,B
be games, and let bs be a non-empty play in A( B beginning with an initial
move b in B.

i) If bs ends with a P -move in B, then xbsyA(B = xbs|ByB.

ii) If bs ends with a P -move in A, then xbsyA(B = bps|AqA.

Proof. Induction on the length of s. If s = ε, then bs ends with an O-move
in B, and we have xbyA(B = b = xbyB.

Otherwise, suppose that bs ends with a P -move c in B. Let d be the justifier
of c. Then d must be an O-move in B. Write bs = tduc, where t, u are
sequences. Then xtducyA(B = xtyA(Bdc and xtduc|ByB = xt|ByBdc. By
Corollary 2.4.4, t must end with a P -move in B, or be empty, so by the
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inductive hypothesis we have xtyA(B = xt|ByB. Therefore, xbsyA(B =
xtducyA(B = xtyBdc = xtduc|ByB = xbs|ByB.

Next, suppose that bs ends with a P -move a in A. Let c be the justifier
of a. Then c must be an O-move in A. Write s = tcua, where t, u are
sequences. Then xbtcuayA(B = xbtyA(Bca and ptcua|AqA = pt|AqAca,
since the roles are reversed in A. By Corollary 2.4.4, t must end in a P -
move in A, or be empty, so by the inductive hypothesis we have xbtyA(B =
bpt|AqA. Therefore, xbsyA(B = xbtcuayA(B = xbtyA(Bca = bpt|AqAca =
bptcua|AqA = bps|AqA.

Proposition 2.4.9. σ; τ is a strategy for A( C.

Proof. First, we claim that s|A,C ∈ PA(B for any s ∈ σ‖τ . Since we cer-
tainly have s|A,C |A = s|A,B|A ∈ PA and s|A,C |C = s|C = s|B,C |C ∈ PC , it
suffices to show that s|A,C ∈ LA(C .

Suppose that ta v s|A,C . We claim that λA(C(t) = ¬λA(C(a). By Lemma
2.4.3, we are in one of the following configurations.

λOPA (t|A) λOPB (t|B) λOPC (t|C) λOPA(B(t|A,B) λOPB(C(t|B,C) λOPA(C(t|A,C)
P P P P P P
P P O P O O
P O O O P O
O O O P P P

In the configuration PPP , the move a cannot be a move in A, since that
would leave ta|A(B in the configuration OP , which is impossible by Lemma
2.4.3. Therefore, it must be a move in C, and must therefore be an O-move
in C and hence an O-move in A( C.

In the configuration PPO, once again the move a cannot take place in A,
since this would leave ta|A(B in the illegal configuration OP . Therefore,
it must occur in C, and must be a P -move in C and hence a P -move in
A( C.

In the configuration POO, the move a cannot take place in C, or it would
leave ta|B,C in the illegal configuration OP , so the move a takes place in A.
Therefore, it must be an O-move in A and hence a P -move in A( C.

Lastly, in the configuration OOO, the move a cannot occur in C, or it
would leave ta|B,C in the configuration OP , and so it must take place in A.
Therefore, it must be a P -move in A, and hence an O-move in A( C.

Having established that s|A,C is alternating, we now show that it is well-
bracketed. Suppose that a question move q in s|A,C justifies some answer
move a. q and a must occur in the same component, since the only case in
which a move from one of A and C can justify a move in the other is when
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both moves are initial, and hence questions. Suppose first that q and a both
occur in the game C. Suppose that some other question move q′ occurs
between q and a in s|A,C . If q′ occurs in C, then it must be answered by
some a′ occurring between q′ and a, since s|C is a well-bracketed sequence.
Otherwise, suppose that q′ occurs in A.

By examining the table above, we see that there must be some move in B
occurring between q and q′ in s, since moves in A move between configu-
rations OOO and POO, while moves in C move us between configurations
PPP and PPO. Let b be the earliest such move. Then b must be a question;
indeed, if it is an answer, then it is non-initial and so can only be justified
by questions in B. But such a question must occur earlier in s|B,C than q,
which would mean that q was an unanswered question when the move b was
played, contradicting well-bracketedness of s|B,C . Since b is a question, it
must be answered by some a′′ occurring between b and a. Therefore, since
s|A,B is well-bracketed, the move q′ must be answered by some a′ occurring
between a′ and a′′ in s|A,B, and therefore between a′ and a in s|A,C .

The case when q and a both occur in A is similar.

Lastly, we need to show that s|A,C satisfies the visibility condition. Let
ta v s|A,C . Choose some ta v s such that ta|A,C = ta.

Suppose a is a P -move. Then by Lemma 2.4.7, ptaq ∈ int(A,B,C). By
Lemma 2.4.6, we know that ptqa = ptaq = ptaq|A,C , and therefore that the
justifier of a must be inside ptq.

Secondly, suppose that a is an O-move. If a is an O-move in C, then
either it is initial or t ends with some P -move in C, and therefore xtyA(C =
xt|CyC = xt|B,CyC by Lemma 2.4.8. Therefore, since t|B,C satisfies visibility,
the justifier of a must lie in xtyA(C . If a is an O-move in A, then write
t = cu and t = cu, where c is the starting move in C. We have xcuayA(C =
cpu|AaqA = xcu|A,ByA(B. Therefore, the justifier of a must lie in xtyA(C .

Therefore, s|A,C ∈ LA(C , so s|A,C ∈ PA(C .

It is fairly clear that σ; τ is even-prefix closed, since σ and τ are. Indeed, if
s|A,C ∈ σ; τ and t v s|A,C , then we may choose some prefix t of s such that
t = t|A,C . Then t|A,B v s|A,B ∈ σ and t|B,C v s|B,C ∈ τ , so t ∈ σ‖τ .

We claim that every sequence in σ; τ has even length. Indeed, if s|A,B ∈ σ
and s|B,C ∈ τ , then both s|A,B and s|B,C must have even length, so must
be in configuration OO or PP . This means that s as a whole must be in
configuration OOO or PPP , and so s|A,C must be in configuration OO or
PP , so must have even length.

Lastly, we need to show that σ; τ is deterministic. Suppose that sab, sac ∈
σ; τ , and suppose that b 6= c. Suppose that s|A,C = sab and t|A,C = sac,
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for s, t ∈ σ‖τ , and let u be the longest common prefix of s, t. s and t are
certainly incomparable under the prefix ordering, since s|A,C and t|A,C are,
so we have up v s and uq v t, where p 6= q. Now p and q cannot be O-
moves in A, P -moves in C or moves in B, or they would have to be equal
by determinism of σ and τ . Therefore, they are P -moves in A or O-moves
in C, but this contradicts s|A,C = sab and t|A,C = sac.

Therefore, the composition σ; τ is a strategy.

We also want to show that the composition of innocent strategies is innocent.
We follow the proof given in [Har06]. First, we use a lemma.

Lemma 2.4.10 ([Har06, 3.3.3]). Let sa ∈ int(A,B,C).

i) If a is a P -move of A or an O-move of B, then psa|A,Bq = ppsaq|A,Bq.

ii) If a is a P -move of B or an O-move of C, then psa|B,Cq = ppsaq|B,Cq.

Proof. Induction on the length of s. We prove (i); the proof of (ii) is exactly
the same.

If a is a P -move of A or an O-move of B, then it is an O-move of A ( B.
If a is an initial move of A ( B, then we have ps|A,Baq = a = paq|A,B =
ppsaqq|A,B. Otherwise, write s = tbu, where b justifies a. Then psa|A,Bq =
pt|A,Bbu|A,Baq = pt|A,Bqba, which by the inductive hypothesis is equal to
pptq|A,Bqba, which is equal to pptbuaq|A,Bq = ppsaq|A,Bq.

Proposition 2.4.11. If σ : A ( B and τ : B ( C are innocent strategies,
then σ; τ : A( C is innocent.

Proof. Suppose there are sab, t ∈ σ; τ such that ta ∈ PA(C , psaq = ptaq.
Let s′b be such that s′b|A,C = sab and choose the minimal prefix s v s′ such
that sa|A,C = sa.

Let ta be such that ta|A,C = ta. Since psaq = ptaq, we have psaq|A,C =
psa|A,Cq = psaq = ptaq = pta|A,Cq = ptaq|A,C by Lemma 2.4.6. Let u be
the longest common prefix of psaq and ptaq. If sa and ta are not equal,
then without loss of generality there is some up v s, where up 6v t. Then,
by determinism of σ and τ , this p cannot be a P -move in either A ( B or
B ( C, so it must be a P -move in A or an O-move in C, and is therefore
preceded by another move in A or C, which contradicts psaq|A,C = ptaq|A,C .
Therefore, psaq = ptaq.

Now write s′ = sab1 · · · bnb, where each bi is a move in B. We show by
induction that tab1 · · · bj ∈ σ‖τ . Indeed, if tab1 · · · bj−1 ∈ σ‖τ , then bj (or
b) is a P -move in either A ( B or B ( C, and bj−1 is an O-move in that
same component. Write X for the component (A( B or B ( C) in which
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bj is a P -move. Repeating the argument above, we see that ptab1 · · · bj−1q =
psab1 · · · bj−1q, and so we have that ptab1 · · · bj−1|Xq = psab1 · · · bj−1|Xq by
Lemma 2.4.10. Therefore, by innocence of σ (if X = A ( B) or τ (if X =
B ( C), we see that tab1 · · · bj ∈ σ‖τ . It follows that tab1 · · · bnb ∈ σ‖τ ,
and therefore that tab ∈ σ; τ .

2.5 Associativity of composition

In this section, we shall prove that composition of strategies is associative;
i.e., that if σ : A ( B, τ : B ( C and υ : C ( D are strategies, then
(σ; τ); υ = σ; (τ ; υ). To do this, if A,B,C,D are arenas, we define the set
int(A,B,C,D) to be the set of all sequences u of moves such that u|A,B ∈
LA(B, u|B,C ∈ LB(C and u|C,D ∈ LC(D. Given such a sequence u, we
define u|A,D as before; i.e., we take all moves from u occurring in A and D,
together with justification pointers within these games, and if an initial move
in A is justified by an initial move in B, which is justified by an initial move
in C, which is justified by an initial move in D, then we add a justification
pointer from that move in A to that move in D.

Given strategies σ, τ, υ as above, we define σ‖τ‖υ to be the set of all u ∈
int(A,B,C,D) such that u|A,B ∈ σ, u|B,C ∈ τ and u|C,D ∈ υ. We then claim
that:

Proposition 2.5.1.

(σ; τ); υ = {u|A,C : u ∈ σ‖τ‖υ} = σ; (τ ; υ) .

Proof. Firstly, if u ∈ σ‖τ‖υ, then it is clear to see that u|A,B,C ∈ σ‖τ and
that u|B,C,D ∈ τ‖υ, and therefore that {u|A,C : u ∈ σ‖τ‖υ} ⊆ (σ; τ); υ and
{u|A,C : u ∈ σ‖τ‖υ} ⊆ σ; (τ ; υ).

Conversely, suppose that t ∈ (σ; τ)‖υ, so that t|A,C ∈ σ; τ and t|C,D ∈ υ,
and choose some s ∈ σ‖τ such that s|A,C = t|A,C . We may write

s = c1b1a1 · · · cnbnan
for some (possibly empty) sequences of moves ai from A, bi from B and ci
from C. We may then write

t = d1c1a1 · · ·dncnan
(for the same ai, ci), and we can therefore interleave these sequences into
the sequence

u = d1c1b1a1 · · ·dncnbnan ,
which is in σ‖τ‖υ. Then we have u|A,D = t|A,D, and it follows that (σ; τ); υ ⊆
{u|A,C : u ∈ σ‖τ‖υ}, and the case for σ; (τ ; υ) is identical.
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2.6 Copycat strategies

Definition 2.6.1. Let A,B be games. Then a subset inclusion of A into B
is a partial injection i : MA ↪→MB such that

• if i is defined at a and b then ∗`A a if and only if ∗`B i(a), and a`A b
if and only if i(a) `B i(b);

• i(a) is defined for every move a occurring in a play in PA; and

• i∗(s) ∈ PB for every s ∈ PA.

Here, i∗(s) means the function i applied pointwise to the elements of the
string s, leaving justification indices as they are in s.

If i is a subset inclusion of A into B, then we get an innocent strategy
subsi : B ( A defined by

subsi = {s ∈ PB(A : for all even-length t v s, t|B = i∗(t|A)} .

If PB = {i∗(s) : s ∈ PA}, then we call i a structural isomorphism, and we
write cci (‘copycat’) instead of subsi.

Example 2.6.2. If, in particular, A = B and i is the identity, then the
resulting strategy is sometimes called the copycat strategy on A ( A. It
will take the role of the identity in our categorical semantics.

Example 2.6.3. If A and B are games, then the set of plays of A � B is
a subset of the set of plays of A ⊗ B. This will give us a subset inclusion
morphism A⊗B ( A�B.

Example 2.6.4. If (Ai) is a collection of games, then there is a natural injec-
tion from the set of plays for Aj into the set of plays for

∏
iAi. This gives

us projection morphisms
∏
iAi ( Aj for each j.

Proposition 2.6.5. subsi is an innocent strategy.

Moreover, if σ : C ( B is a strategy, then

σ; subsi = {[idMC
, i−1]∗(s) : s ∈ σ, s|B ∈ i∗(PA)} ,

where i−1 : MB ⇀ MA is the canonical partial right-inverse to i, and if
τ : A( D is a strategy, then

subsi; τ = {[i, idMD
]∗(s) : s ∈ τ} .

Proof. subsi is clearly prefix-closed by definition. Suppose that sab, sac ∈
subsi; then s|A = i∗(s|B) and sab|A = i∗(sab|B). It follows that ab|A =
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i∗(ab|B), so either a is a move in A and b = i(a) or a is a move in B and
a = i(b). Since the same applies to c, and since i is injective, we have b = c.

This argument also shows that subsi is history-free – i.e., that its reply to an
O-position is entirely determined by the last O-move – and therefore that it
is certainly innocent.

Now let σ : C ( B be a strategy. Suppose that s ∈ σ‖ subsi. Then s|C,B ∈ σ
and s|B = i∗(s|A); i.e.,

s|C,B = [idMC
, i]∗(s|C,A) ,

and therefore
s|C,A = [idMC

, i]∗(s|C,B) ,

where s|B ∈ i∗(PA).

Conversely, given s ∈ σ, where s|B ∈ i∗(PA), for each P -move b = i(a) in
s occurring in the component B, insert the move a immediately after it,
and for each O-move b′ = i(a′) in s occurring in the component B, insert
the move a′ immediately before it. Let these extra moves in B be justified
according to the original moves in A, and let all initial moves in B be justified
by the initial moves in A that occur immediately before them. Then the
resulting sequence s is contained in σ‖ subsi, and s|A,C = [idMC

, i−1]∗(s).

The case for composition in the other direction is similar.

An easy corollary of this fact is that composition of copycat strategies re-
spects composition of the underlying subset inclusions.

Corollary 2.6.6. Let i be a subset inclusion from A to B and let j be a
subset inclusion from B to C. Then j ◦ i is a subset inclusion from A to C
and subsj◦i = subsj ; subsi : C ( A.

It is also easy to see from Proposition 2.6.5 that the identity function
id: MA → MA is a structural isomorphism from A to itself, and that the
resulting copycat strategy ccid is an identity for composition. Combining
this with our result for associativity in the previous section (Proposition
2.5.1), we get that

Theorem 2.6.7. The collection of games forms a category G, where the
morphisms A → B are strategies for A ( B, composition is as above and
the identity morphisms are the copycat strategies induced from the identity
functions on moves.

In this setting, Proposition 2.6.5 tells us that a structural isomorphism gives
rise to an isomorphism in G.
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Proposition 2.6.8. Let f be a structural isomorphism from a game A to a
game B. Then ccf is an isomorphism in G from A to B.

Proof. The underlying partial injection f : MA ↪→MB has an inverse partial
injection f−1 : MB →MA, inducing a structural isomorphism from B to A.
Then Proposition 2.6.5 tells us that ccf and ccf−1 are inverses in G.

General subset inclusions are not, of course, isomorphisms, but we can still
say something category-theoretic about them.

Proposition 2.6.9. Let i be a subset inclusion from a game A to a game
B. Then the strategy subsi is an epimorphism from B to A.

Proof. In fact, it is a split epimorphism: we can define a retract

reti = {s ∈ PA(B : for all even-length t v s, t|A = i∗(t|B)} .

The same argument as in Proposition 2.6.5 tells us that this is indeed a
strategy for A ( B. Note that although subsi is always a total strategy
(i.e., if s ∈ subsi and sa ∈ PB(A, then there is always sab ∈ subsi for some
b), the same is not in general true about reti.

In any case, if s ∈ reti ‖ subsi, then s|AL = i∗(s|B) = s|AR , and the same is
true of any even-length substring of s, and so s|A,A ∈ idA. Conversely, given
any s ∈ idA, we can form some s ∈ reti ‖ subsi such that s|A,A = s as in
Proposition 2.6.5.

We can also prove that subsi is an epimorphism directly, which might be
useful, for example, in a setting in which non-total strategies such as reti
are disallowed. In this setting, let σ, τ : A ( C be strategies such that
subsi;σ = subsi; τ . Then, by Proposition 2.6.5, we know that

{[i, idMC
]∗(s) : s ∈ σ} = {[i, idMC

]∗(s) : s ∈ τ} .

Then, since the function [i, idMD
]∗ : PA(C → PB(C is an injection, we

deduce that σ = τ .

2.7 G as a Symmetric Monoidal Category

We now claim that the tensor product connective ⊗ makes G into a sym-
metric monoidal closed category, with internal hom given by (. We shall
prove this result over the next two sections.

Definition 2.7.1. Let σ : A ( B and τ : C ( D be strategies. We define
a strategy σ ⊗ τ : (A⊗ C) ( (B ⊗D) by

σ ⊗ τ = {s ∈ P(A⊗C)((B⊗D) : s|A,B ∈ σ and s|C,D ∈ τ} .
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To prove that this is a strategy, we prove a lemma analogous to our Lemma
2.4.3.

Lemma 2.7.2. Let s ∈ PA⊗B. Then λOPA⊗B(s) = λOPA (s|A) ∧ λOPB (s|B),
where ∧ is the binary operator on {O,P} given by

p q p ∧ q
P P P
O P O
P O O
O O O

.

Moreover, either λOPA (s|A) = P or λOPB (s|B) = P ; i.e., the bottom row of
the table above does not occur.

Proof. Mutual induction on the length of s. This is obvious if s is empty.
Suppose that sa ∈ PA⊗B, where a is an O-move. By induction, since
λA⊗B(s) = P , we must have λA⊗B(s|A) = P and λA⊗B(s|B) = P . There-
fore, depending on which game a is played in, either λA(sa|A) = O and
λB(sa|B) = P or λA(sa|A) = P and λB(sa|B) = O.

If sb ∈ PA⊗B, where b is a P -move, then by induction either λA(s|A) = O
and λB(s|B) = P or λA(s|A) = P and λB(s|B) = O. In either case, player
P must play in whichever game is currently in an O-position, returning us
to configuration PP .

The above proof gives us the following result, which is analogous to Corollary
2.4.4.

Corollary 2.7.3 (Switching condition for ⊗). Player O switches games in
A⊗B; i.e., if sab ∈ PA⊗B, where a and b take place in different games (i.e.,
a in A and b in B or a in B and b in A), then b is an O-move.

Proposition 2.7.4. σ ⊗ τ is a strategy for (A⊗ C) ( (B ⊗D).

Proof. σ ⊗ τ is certainly an even-prefix-closed subset of P even
(A⊗C)((B⊗D).

Let s be a play of P(A⊗B)((C⊗D). We consider the possible configurations
of s; i.e., the tuples (λA(s|A), λB(s|B), λC(s|C), λD(s|D)).

By Lemma 2.4.3 we must avoid the overall configuration OP for the linear
implication, and by Lemma 2.7.2 we must avoid the configuration OO inside
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either tensor product, so we end up with the following possibilities.

λA(s|A) λC(s|C) λB(s|B) λD(s|D) λA⊗C(s|A,C) λB⊗D(s|B,C) λ(A⊗C)((B⊗D)(s)

P P P P P P P

P P P O P O O

P P O P P O O

P O P O O O P

O P O P O O P

P O O P O O P

O P P O O O P

If s ∈ σ ⊗ τ , or an odd-length sequence formed by adding an O-move to
the end of a sequence in σ ⊗ τ , then we also know that s|A,B ∈ σ ⊆ PA(B

and that s|C,D ∈ τ ⊆ PC(D. This means that we can discount the last two
configurations in the table above, since one contains the illegal configuration
OP in C ( D and the other contains the illegal configurationOP in A( B.

Now suppose that sab, sac ∈ σ⊗ τ . Then sa is an O-position in (A⊗C) (
(B⊗D), and is therefore in configuration PPPO or PPOP . By inspecting
the table above, we see that if sa is in configuration PPPO, then b and
c must both occur either in C or in D, and that if sa is in configuration
PPOP , then b and c must both occur either in A or in B. In either case,
we must have b = c, by determinism of τ (in the first case) or of σ (in the
second case).

We need a lemma to prove that the tensor product of two innocent strategies
is innocent.

Lemma 2.7.5. Let s ∈ σ ⊗ τ .

i) If s ends with a move in A or B, then psq(A⊗C)((B⊗D) = ps|A,BqA(B.

ii) If s ends with a move in C or D, then psq(A⊗C)((B⊗D) = ps|C,DqC(D.

Proof. Induction on the length of s. We prove (i); (ii) is exactly the same.

If a is a P -move, then we have psaq = psqa. By our analysis in the proof
of Proposition 2.7.4, player P only switches moves between A and B, and
between C and D, so s must end with a move from A or B. Therefore, by
the inductive hypothesis, psq = ps|A,Bq. Then psaq = psqa = ps|A,Bqa =
psa|A,Bq.

If a is an initial move, then psaq = a = psa|A,Bq.

If a is an O-move justified by b in sbta, then psbtaq = psqba. Then b is a
P -move, so s must end with a move in A or B, as before. Therefore, by the
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inductive hypothesis, psq = ps|A,Bq. Then psbtaq = psqba = ps|A,Bqba =
psbta|A,Bq.

Proposition 2.7.6. Let σ : A→ B, τ : C → D be innocent strategies. Then
σ ⊗ τ is innocent.

Proof. Suppose sab, t ∈ σ⊗τ such that ta ∈ P(A⊗C)((B⊗D) and psaq = ptaq.
Suppose without loss of generality that a is a move in A or B. Then psaq =
psa|A,Bq and ptaq = pta|A,Bq by Lemma 2.7.5, and therefore tab|A,B ∈ σ by
innocence of σ, and so tab ∈ σ ⊗ τ .

The most important thing we need to prove is that ⊗ is a functor.

Proposition 2.7.7. Let σ′ : A′′ ( A′, σ : A′ ( A, τ ′ : B′′ ( B′ and
τ : B′ ( B be strategies. Then (σ′ ⊗ τ ′); (σ ⊗ τ) = (σ′;σ)⊗ (τ ′; τ).

Moreover, if A′, A,B′, B are games, i is a subset inclusion from A to A′ and
j is a structural isomorphism from B to B′, then subsi⊗ subsj = subs[i,j].
In particular, if A and B are games, then idA⊗ idB = idA⊗B.

Proof. First suppose that s ∈ (σ′ ⊗ τ ′); (σ ⊗ τ); so s = s|A′′,B′′,A,B, where
s ∈ (σ′ ⊗ τ ′)‖(σ ⊗ τ). Then s|A′′,A′ ∈ σ′ and s|A′,A ∈ σ, so s|A′′,A′,A ∈ σ′‖σ
and therefore s|A′′,A = s|A′′,A ∈ σ′;σ. Similarly, s|B′′,B ∈ τ ′; τ , and therefore
s ∈ (σ′;σ)⊗ (τ ′; τ).

Conversely, suppose that s ∈ (σ′;σ)⊗(τ ′; τ). Choose some s ∈ σ′‖σ, t ∈ τ ′‖τ
such that s|A′′,A = s|A′′,A and s|B′′,B = s|B′′,B. By our analysis, the only
time we switch from the A′′, A-component to the B′′, B component in s, or
vice versa, is when player O switches between the games A and B. Thus,
we may divide s up into blocks, each starting and ending with a move in the
outer component A⊗B. This then gives us a way to divide up s and t into
blocks, such that each block of s or t projects on to a block of s. Lastly, we
can string these blocks together to give us some u ∈ (σ′ ⊗ τ ′)‖(σ ⊗ τ) such
that u|A′′,B′′,A,B = s.

For the second part, let A′, A,B′, B be games, let i be a structural isomor-
phism from A to A′ and let j be a structural isomorphism from B to B′.
Suppose that s ∈ subsi⊗ subsj . Then s|A′,A ∈ subsi and s|B′,B ∈ subsj –
so if u v s|A,A has even length, then u|A′ = i∗(u|A), and if v v s|B,B has
even length, then v|B′ = i∗(v|B). Suppose that t v s is of even length.
Then, since only player O switches between the A′, A-component and the
B′, B-component, both t|A′,A and t|B′,B are of even length, it follows that
t|A′,B′ = [i, j]∗(t|A,B). Since t was arbitrary, this means that s ∈ subs[i,j].

Conversely, suppose that s ∈ subs[i,j]. Then for all even-length t v s,
t|A′ = i∗(t|A) and t|B′ = j∗(t|B). Since any play in σ or in τ is itself a
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play of σ ⊗ τ , then if u v s|A′,A has even length, then u|A′ = i∗(u|A),
and if v v s|B′,B, then v|B′ = j∗(v|B). It follows that s|A′,A ∈ subsi and
s|B′,B ∈ subsj , and therefore that s ∈ subsi⊗ subsj .

Now it is fairly clear that if A,B,C are games, then we have structural
isomorphisms

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

A ∼= A⊗ I A ∼= I ⊗A

A⊗B ∼= B ⊗A ,

induced by the associators, unitors and symmetry of the category of sets
with coproduct. We claim that these are natural transformations.

Proposition 2.7.8. The families of morphisms

ccassocMA,MB,MC
: (A⊗B)⊗ C → A⊗ (B ⊗ C)

cclunitMA
: A→ I ⊗A ccrunitMA

: A→ A⊗ I

ccsymMA,MB
: A⊗B → B ⊗A

are natural transformations in G.

Proof. We prove this for the associator; the other cases are similar.

Let σ : A′ ( A, τ : B′ ( B, υ : C ′ ( C be strategies. By Proposition 2.6.5,
we have

((σ ⊗ τ)⊗ υ); ccassocMA,MB,MC

= {[idM(A′⊗B′)⊗C′ , assocMA,MB ,MC
]∗(s) : s ∈ (σ ⊗ τ)⊗ υ}

=

{
[idM(A′⊗B′)⊗C′ , assocMA,MB ,MC

]∗(s)

∣∣∣∣ s ∈ P((A′⊗B′)⊗C′)(((A⊗B)⊗C)

s|A′,A ∈ σ, s|B′,B ∈ τ , s|C′,C ∈ υ

}
= {s ∈ P((A′⊗B′)⊗C′)((A⊗(B⊗C)) : s|A′,A ∈ σ, s|B′,B ∈ τ, s|C′,C ∈ υ}

=

{
[assocMA′ ,MB′ ,MC′ , idMA⊗(B⊗C)

]∗(s)

∣∣∣∣ s ∈ P(A′⊗(B′⊗C′))((A⊗(B⊗C))

s|A′,A ∈ σ, s|B′,B ∈ τ , s|C′,C ∈ υ

}
= {[assocMA′ ,MB′ ,MC′ , idMA⊗(B⊗C)

]∗(s) : s ∈ σ ⊗ (τ ⊗ υ)}

= ccassocMA′ ,MB′ ,MC′
; (σ ⊗ (τ ⊗ υ)) .
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This proves that the coherences we have defined are natural transforma-
tions. By Proposition 2.6.5 again, these natural transformations satisfy the
same coherence diagrams (pentagon, triangles, hexagon etc.) satisfied by
the original associators, unitors and symmetry in (Set,+).

It follows that ⊗ makes G into a symmetric monoidal category.

2.8 G as a Symmetric Monoidal Closed Category

Definition 2.8.1. Let A,B,C,D be games, let σ be a strategy for A( B
and let τ be a strategy for C ( D. Then we define a strategy

σ ( τ : (B ( C) ( (A( D)

by
σ ( τ = {s ∈ P(B(C)((A(D) : s|A,B ∈ σ, s|C,D ∈ τ} .

Proposition 2.8.2. σ ( τ is a strategy for (B ( C) ( (A( D).

Proof. σ ( τ is certainly a prefix-closed subset of P even
(B(C)((A(D).

We examine the sign configuration of a play in (B ( C) ( (A( D), using
Lemma 2.4.3. Since we must avoid the configuration OP in either B ( C,
A ( D or in (B ( C) ( (A ( D), we arrive at the following list of
possibilities.

λOPB (s|B) λOPC (s|C) λOPA (s|A) λOPD (s|D) λOPB(C(s|B,C) λOPA(D(s|A,D) λOP
(B(C)((A(D)

(s)

P O P O O O P

P P P O P O O

O O P O P O O

P P P P P P P

O O O O P P P

P P O O P P P

O O P P P P P

If s ∈ σ ( τ , then we can immediately discount the last two of these
possibilities, since one includes the illegal configuration OP in A( B, and
the other includes the illegal configuration OP in B ( D.

By examining the remaining possibilities, we arrive at the conclusion that
any O-position in configuration PPPO constrains player P to play in C (to
reach configuration POPO) or to play in D (to reach configuration PPPP ),
and that any O-position in configuration OOPO constrains player P to play
in A (to reach configuration OOOO) or to play in C (to reach configuration
POPO).
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Now suppose that sab, sac ∈ σ ( τ . Then, by our above analysis, b and c
must either both take place in the B,A-component, in which case b = c by
determinism of σ, or both in the C,D-component, in which case b = c by
determinism of τ .

To prove that σ ( τ is innocent if σ and τ are, we need a lemma analogous
to Lemma 2.7.5.

Lemma 2.8.3. Let s ∈ σ ( τ .

i) If s ends with a move in A or B, then psq(B(C)((A(D) = ps|A,BqA(B.

ii) If s ends with a move in C or D, then psq(B(C)((A(D) = ps|C,DqC(D.

Proof. Exactly the same as in Lemma 2.7.5, using the analysis from the proof
of Proposition 2.8.2 to show that player P only switches moves between A
and B, and between C and D, in σ ( τ .

Proposition 2.8.4. Let σ : A( B, τ : C ( D be innocent strategies. Then
σ ( τ is innocent.

Proof. Suppose sab, t ∈ σ ( τ such that ta ∈ P(B(C)((A(D) and psaq =
ptaq. Suppose without loss of generality that a is a move in A or B.
Then psaq = psa|A,Bq and ptaq = pta|A,Bq by Lemma 2.8.3, and there-
fore tab|A,B ∈ σ by innocence of σ, and so tab ∈ σ ( τ .

We now need to prove that ( is a functor Gop × G → G.

Proposition 2.8.5. Let σ′ : A′′ ( A′, σ : A′ ( A, τ ′ : B′′ ( B′ and
τ : B′ ( B be strategies. Then (σ ( τ ′); (σ′ ( τ) = (σ′;σ) ( (τ ′; τ).

Moreover, if A′, A,B′, B are games, f is a structural isomorphism from A′

to A and g is a structural isomorphism from B′ to B, then ccf ( ccg =
cc[f−1,g]. In particular, if A,B are games than idA ( idB = idA(B.

Proof. As in Proposition 2.7.7.

Now it is easy to see that the associator assocMA,MB ,MC
is a structural

isomorphism from (A⊗B) ( C to A( (B ( C), so it induces a copycat
isomorphism ΛA,B,C = ccassocMA,MB,MC

: (A⊗B) ( C → A( (B ( C).

Proposition 2.8.6. ΛA,B,C is natural in A,B,C.

Proof. The same argument as in Proposition 2.7.8.
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We have proved the following.

Theorem 2.8.7. G is a symmetric monoidal closed category, with tensor
product given by ⊗ and internal hom given by (.

2.9 Tree Immersions and Zigzag Strategies

So far, the strategies we have been considering have all been innocent. For
our model of state, we are going to need to start using some non-innocent
strategies as well. We begin with a generalization of the idea of a subset
inclusion to that of a tree immersion, which gives us a similar recipe for
constructing strategies. Tree immersions are similar to subset inclusions,
but generated by a function between plays, rather than between moves. A
consequence of this is that while tree immersions do give rise to strategies,
these strategies are not in general innocent.

Definition 2.9.1. Let A,B be games. A tree immersion from A to B is a
function φ : PA ↪→ PB such that

• φ preserves length and justification indices;

• for all sequences s, t ∈ PA, if t v s then φ(t) v φ(s); and

• if φ(sb) = φ(sc), where b, c are P -moves in A, then b = c.

Given a tree immersion φ from A to B, we define a strategy zzφ : B ( A by

zzφ = {s ∈ PB(A : for all even-length t v s, t|B = φ(t|A)} .

We shall refer to strategies of the form zzφ as zigzag strategies.

Example 2.9.2. If i is a subset inclusion from A to B, then i∗ is a tree
immersion from A to B and zzi∗ = subsi.

Example 2.9.3. If A,B,C are games, then we have a natural morphism

(A� C)× (B � C) ( (A×B)� C ,

given by a tree immersion from the set of plays of (A×B)�C to the set of
plays of (A� C)× (B � C). Note that this is not a subset inclusion: if s is
a play of (A×B)�C ending in a move in C, then the copy of C that that
move ends up in is determined by whether s begins with a move in A or in
B.

Proposition 2.9.4. zzφ is a strategy.
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Proof. zzφ is a prefix-closed subset of PB(A by definition. If sab, sac ∈
zzφ, then we have s|B = φ(s|A) and sab|B = φ(sab|A). Since φ is length-
preserving, s|A and s|B must have the same length, and the same is true
of sab|A and sab|B. Therefore, either a is a move in A and s|Bb = φ(s|Aa)
or a is a move in B and s|Ba = φ(s|Ab). The same applies to c: so either
s|Bb = φ(s|Aa) = s|Bc or φ(s|Ab) = s|Ba = φ(s|Ac). In either case, we have
b = c.

We want an analogue of Proposition 2.6.5.

Definition 2.9.5. Given a tree immersion from A to B, and a play s ∈
PC(A for some C, we write sφ for the play obtained by replacing the moves
of s|A wholesale with the moves of φ(s|A). Since φ preserves length and
justification indices, the resulting play is a legal play of C ( A.

Proposition 2.9.6. If σ : C ( B is a strategy, then σ; zzφ is given by

{s ∈ PC(A : sφ ∈ σ} .

In particular, if φ is a tree immersion from A to B and ψ is a tree immersion
from B to C, then ψ ◦ φ is a tree immersion from A to C and zzψ◦φ =
zzψ; zzφ.

Proof. Suppose that s ∈ σ‖ zzφ. Then s|C,B ∈ σ and t|B = φ(t|A) for all
even-length t v s|B,A. Then it is clear that (s|C,A)φ = s|C,B.

Conversely, suppose that s ∈ PC(A and that sφ ∈ σ. We construct a se-
quence s ∈ σ‖ zzφ such that s|C,B = sφ and s|C,A = s by taking the sequence
s and inserting, in order, the elements of the sequence φ(s|A) immediately
after each O-move in s|C and immediately before each P -move in C, leaving
the rest of s intact. Then s|C,B = sφ ∈ σ and s|B,A ∈ zzφ, by construction.
So s = s|C,A ∈ σ; zzφ.

Definition 2.9.7. We say that a tree immersion φ is a tree isomorphism if
it is a bijection.

Proposition 2.9.8. If φ is a tree isomorphism from a game A to a game
B, then zzφ is an isomorphism in G.

Proof. If φ is a tree isomorphism, then its inverse φ−1 is also a tree iso-
morphism, and Proposition 2.9.6 tells us that zzφ and zzφ−1 are inverses in
G.

More generally:
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Proposition 2.9.9. If φ is a surjection, then zzφ is a monomorphism.

Proof. Let σ, τ : C ( B be strategies. Then, by Proposition 2.9.6, we have

{s ∈ PC(A : sφ ∈ σ} = {s ∈ PC(A : sφ ∈ τ} .

Let t ∈ σ. Then, since φ is surjective, there is some u ∈ PA such that
φ(u) = t|B. As before, we may construct some sequence t′ such that t′|A = u
and t = (t′)φ. Then, since (t′)φ = t ∈ σ, we must have (t′)φ ∈ τ ; i.e., that
t ∈ τ . So σ ⊆ τ .

Similarly, τ ⊆ σ, and so σ and τ are equal.

Applying this to subset inclusions using Proposition 2.6.9, we see that a
surjective subset inclusion is both a monomorphism and a split epimorphism,
and hence an isomorphism.

2.10 Products in G
Proposition 2.10.1. Given some family Ai of games, the game

∏
iAi, as

defined in Definition 2.3.1, is the category-theoretic product of the Ai.

Proof. We have natural injections inj : MAj ↪→M∏
i Ai

giving rise to subset
inclusions. Then our projections are given by the morphisms

prj := subsinj :
∏
i

Ai → Aj .

Now suppose we have some game B, and strategies σi : B ( Ai for each i.
Define a strategy

〈σi〉 =
⋃
i

[idMB
, ini]∗(σi) .

We claim that this is indeed a strategy for B (
∏
iAi. Indeed, it is certainly

a prefix-closed subset of PC(
∏
i Ai

.

Moreover, if sab, sac ∈ 〈σi〉, then there is some unique j such that a comes
from a move in Aj , and therefore sab, sac are both plays in σj , so b = c.

Next, we claim that 〈σi〉; prj = σj . Indeed, we have

〈σi〉; prj = 〈σi〉; subsinj

= {[idMB
, in−1

j ]∗(s) : s ∈ 〈σi〉, s|∏
i Ai
∈ (inj)∗(PAj )} Prop. 2.6.5

= σj .

Lastly, suppose τ : B (
∏
iAi is a strategy such that τ ; prj = σj for each j.

We claim that τ = 〈σi〉. Indeed, by the argument above, we must have

{[idMB
, in−1

j ]∗(s) : s ∈ τ, s|∏
i Ai
∈ (inj)∗(PAj )} = σj
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for each j. Suppose that s ∈ τ . Then s|∏
i Ai
∈ (inj)∗(PAj ) for some j, by

the definition of
∏
iAi. Therefore, s ∈ [idMB

, inj ]∗(σj).

Conversely, let t ∈ σj . By the above equation, we know that there is some
s ∈ τ such that s|∏

i Ai
∈ (inj)∗(PAj ) and [idMB

, in−1
j ]∗(s) = t. It follows

that [idMB
, inj ]∗(t) = s ∈ τ .

An examination of the definitions tells us that

Proposition 2.10.2. Let Ai, B be games and let φi be tree immersions from
Ai to B. Then 〈zzφi〉 = zzφ, where φ is the tree immersion from

∏
iAi to

B given by

φ(s) =

{
ε if s = ε

φi(s|Ai) if s starts with a move from Ai

Proof. The only thing we really need to check is that this is indeed a tree
immersion. Let sb, sc be positions in

∏
iAi, where b, c are P -moves. Then

sb, sc must start with the same move, so if φ(sb) = φ(sc) then we have
φi(sb) = φi(sc) for some i and therefore b = c.

Note that 〈σi〉 is not in general innocent, even if all the σi are, and Propo-
sition 2.10.2 cannot be adapted to use subset inclusions rather than tree
immersions. Of course, since a subset inclusion is a special case of a tree
immersion, then 〈subsi : i ∈ I〉 is always a tree immersion strategy for any
set I of subset inclusions.

2.11 Sequoidal categories

We have given the category-theoretic properties of all the connectives from
section 2.3, with the exception of the sequoid � and the exponential !. In this
section, we will introduce the categorical semantics of the sequoid operator
� . The sequoid is a non-standard operator and does not fall into any

of the established patterns of categorical algebra; rather, it gives rise to the
new notion of a sequoidal category introduced by Laird in [Lai02].

To start with, we would like to be able to say that � is a functor from
G × G → G, as is the case with the tensor product ⊗ . However, this
does not quite work: given strategies σ : A ( B and τ : C ( D, we would
like to say that we get a strategy σ�τ : A�C ( B�D. However, this does
not quite work as we might expect: suppose player O begins (as he must)
with some move b in B, and suppose that σ’s reply to b is another move b′

in B. Suppose then that player O switches and plays a move d in D, and
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suppose that τ ’s reply to d is a move c in C. Then player P is unable to
play according to τ , because d is not yet a legal move in (A�C) ( (B�D)
since no move has yet been played in A.

We can fix this problem by imposing some constraints on the strategies σ
and τ . The problem occurs when player O’s initial move in B is not reflected
by an initial move by player P in A; therefore, if σ is such that player P
always responds to the initial move in B with a move in A, then we can
form a strategy σ� τ for (A�C) ( (B�D). Moreover, this strategy σ� τ
will inherit this property that the first move on the right is always replied
to by a move on the left.

Definition 2.11.1. Let A,B be games. A strict morphism from A to B
is a strategy σ for A ( B such that any player P response to an opening
move in B is a move in A; i.e., such that if b is an initial O-move in B and
ba ∈ σ, then a is a move in A.

We will call such a σ a strict strategy for A ( B, although this is a slight
abuse of language, since the definition depends on the constituent games A
and B, which may not be recoverable from A( B.

It is clear that the composition of strict morphisms is again a strict mor-
phism, and that any morphism of the form subsi is a strict morphism, and
so we get a wide subcategory Gs of G whose objects are games and where
the morphisms are the strict strategies. We then have a natural inclusion
functor J : Gs → G.

Definition 2.11.2. Given games A,B,C,D, a strict morphism σ : A ( B
and a strategy τ : C ( D, we define a strict morphism σ � τ : (A � C) (
(B �D) by

σ � τ = {s ∈ P(A�C)((B�D) : s|A,B ∈ σ, s|C,D ∈ τ} .

Proposition 2.11.3. σ � τ is a strategy.

Proof. σ� τ is certainly a prefix-closed subset of P(A�C)((B�D). Moreover,
if sab, sac ∈ σ � τ , then sab, sac ∈ σ ⊗ τ , so b = c.

Of course, PA�B is a subset of PA⊗B, which means that the identity function
MA + MB → MA + MB gives us a subset inclusion from A � B to A ⊗ B,
and hence a strategy subsidMA+MB

for A⊗B ( A�B, which we shall refer
to as wkA,B.
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Proposition 2.11.4. Let A,B,C,D be games, let σ : A ( B be a strict
strategy and let τ : C ( D be a strategy. Then the following diagram com-
mutes.

A⊗ C B ⊗D

A� C B �D

σ⊗τ

wkA,C wkB,D

σ�τ

Proof. By Proposition 2.6.5 and the definition of wk, we know that

σ ⊗ τ ; wkB,D = {s ∈ σ ⊗ τ, s|B,D ∈ PB�D}
wkA,C ;σ � τ = σ � τ ,

as sets of plays.

Now we know that σ � τ = {s ∈ σ ⊗ τ : s ∈ P(A�C)((B�D)}, so it suffices
to show that if s ∈ σ⊗τ is such that s|B,D ∈ PB�D then s ∈ P(A�C)((B�D).

Indeed, if s|B,D ∈ PB�D then s begins with an initial O-move in B. Then,
since σ is strict, the next move in s must be a move in A, and therefore
s|A,C begins with a move in A. Since we also have s|A,C ∈ PA⊗C , we must
have that s|A,C ∈ PA�C .

Remark 2.11.5. If σ is not a strict strategy, then the set

{s ∈ σ ⊗ τ : s ∈ P(A�C)((B�D)}

is still a valid strategy for P(A�C)((B�D), but now the conclusion of Propo-
sition 2.11.4 no longer holds.

Remark 2.11.6. Of course, we would like to restate Proposition 2.11.4 by
saying that wk is a natural transformation, but it doesn’t make sense to do
so, because we don’t yet know that � is a functor.

Proposition 2.11.7. If we have strict strategies σ′ : A′′ ( A′ and σ : A′ (
A, and strategies τ ′ : B′′ ( B′ and τ : B′ ( B, then we have

(σ′ � τ ′); (σ � τ) = (σ′;σ)� (τ ′; τ) .

If A′, A,B′, B are games, i is a subset inclusion from A into A′ and j is a
subset inclusion from B into B′, then

subsi� subsj = subs[i,j] : A
′ �B′ ( A�B .

In particular, if A,B are games, then idA� idB = idA�B.
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Proof. Let A′′, A′, A,B′′, B′, B and σ′, σ, τ ′, τ be as above.

We have

wkA′′,B′′ ; (σ′ � τ ′); (σ � τ) = (σ′ ⊗ τ ′); wkA′,B′ ; (σ � τ) Prop. 2.11.4

= (σ′ ⊗ τ ′); (σ ⊗ τ); wkA,B Prop. 2.11.4

= ((σ′;σ)⊗ (τ ′; τ)); wkA,B Prop. 2.7.7

= wkA′′,B′′ ; ((σ′;σ)� (τ ′; τ)) . Prop. 2.11.4

By Proposition 2.6.9, wkA′′,B′′ is an epimorphism, and therefore we have
that

(σ′ � τ ′); (σ � τ) = (σ′;σ)� (τ ′; τ) .

Now let A′, A,B′, B be games, let i be a subset inclusion from A into A′

and let j be a subset inclusion from B into B′. Then, since subset inclusion
strategies are automatically strict, we have

wkA′,B′ ; (subsi� subsj) = (subsi⊗ subsj); wkA,B Prop. 2.11.4

= subs[i,j]; wkA,B Prop. 2.7.7

= subs[i,j] Prop. 2.6.5

= wkA′,B′ ; subs[i,j] . Prop. 2.6.5

As before, we know from Proposition 2.6.9 that wkA′,B′ is an epimorphism,
and so

subsi� subsj = subs[i,j] .

Proposition 2.11.7 tells us that � is a functor Gs × G → G. As before,
write J for the inclusion functor Gs ↪→ G. Then we can restate Proposition
2.11.4 in a more natural way.

Proposition 2.11.8. wkA,B is a natural transformation

JA⊗B → J(A�B) .

We have some additional structure on the ⊗ and � operators. By inspect-
ing the definitions, we can see that if A,X, Y are games then the associator
assocMA,MX ,MY

and unitor runitMA
in (Set,+) give rise to structural iso-

morphisms

(A�X)� Y ∼= A� (X ⊗ Y ) A ∼= A� I .
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Indeed, in the first case, both games are the game in which A, X and Y are
played in parallel, but where the first move must take place in A. In the
second case, we have A�I = A⊗I, because there are no moves in I anyway,
and the copycat morphism induced from the right unitor in (Set,+) is the

same strategy as the right unitor A
∼=−→A⊗ I.

We formalize the structure we have uncovered so far in the concept of a
sequoidal category.

Definition 2.11.9 ([Lai02]). A sequoidal category C is given by

• a symmetric monoidal category (C,⊗, I) (with coherences assoc, lunit,
runit, sym);

• a (strong) right action of C on a category Cs; i.e., a functor � : Cs×
C → Cs together with natural isomorphisms

passoca,x,y : (a� x)� y
∼=−→a� (x⊗ y) ra : a

∼=−→a� I

that make the diagrams

((a� x)� y)� z (a� (x⊗ y))� z a� ((x⊗ y)⊗ z)

(a� x)� (y ⊗ z) a� (x⊗ (y ⊗ z))

passoca,x,y �z

passoca�x,y,z

passoca,x⊗y,z

a�assocx,y,zpassoca,x,(y⊗z)

a� x a� (I ⊗ x)

(a� I)� x

a�lunitx

ra�x
passoca,I,x

a� x a� (x⊗ I)

(a� x)� I

a�runitx

ra�x
passoca,x,I

commute; and

• a lax morphism of actions from � to the right tensor multiplication
action ⊗ of C on itself; i.e., a functor J : Cs → C and a natural
transformation wka,x : Ja ⊗ x → J(a � x) that makes the following
diagrams commute.

(Ja⊗ x)⊗ y J(a� x)⊗ y J((a� x)� y)

Ja⊗ (x⊗ y) J(a� (x⊗ y))

wka,x⊗y

assocJa,x,y

wka�x,y

J passoca,x,y
wka,x⊗y

Ja J(a� I)

Ja⊗ I

J ra

runitJa
wka,I
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Remark 2.11.10. The definitions of lax action can be found at the start of
Chapter 5, while that of an oplax morphism of actions is found at Definition
5.0.2. The definitions we have used here are not quite the same as the ones
from Chapter 5, but they are similar: a strong action is a lax action in
which the coherences (called m and e in Chapter 5 and passoc and r here)
are isomorphisms. A lax morphism of actions is defined in the same way as
an oplax morphism, except that the coherence (called µ in Definition 5.0.2
and wk here) goes in the opposite direction.

Proposition 2.11.11. The monoidal category G, together with the category
Gs, the natural transformations

passocA,X,Y = ccassocMA,MX,MY
: (A�X)� Y

∼=−→A� (X ⊗ Y )

rA = ccrunitMA
: A

∼=−→A� I ,

the inclusion functor J : Gs → G and the natural transformation

wkA,X : JA⊗X = A⊗X → A�X = J(A�X)

form a sequoidal category.

Proof. We have shown most of this already; all that remains is to show
that passoc and r are natural transformations and that the five diagrams in
Definition 2.11.9 commute.

Let us start with the diagrams. By Proposition 2.6.5, commutativity of
these diagrams follows from commutativity of the diagrams formed from
the corresponding subset inclusion functions in Set. For example, to show
that the first diagram commutes in G, we must show that the following
diagram commutes in Set.

((MA +MX) +MY ) +MZ (MA + (MX +MY )) +MZ

(MA +MX) + (MY +MZ) MA + ((MX +MY ) +MZ)

MA + (MX + (MY +MZ))

[assocMA,MX,MY ,idMZ ]

assocMA+MX,MY ,Z
assocMA,MX+MY ,MZ

assocMA,MX,MY +MZ
[idMA ,assocMX,MY ,MZ ]

This diagram is, of course, none other than the pentagon diagram for the
coproduct + in Set. Similarly, the second and third diagrams in Definition
2.11.9 reduce in this case to the triangle diagrams for the coproduct + in
Set.
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For the fourth diagram in Definition 2.11.9, since wk is a subset inclusion
strategy induced from an identity map, Proposition 2.6.5 tells us that both
arms of the diagram are the strategy induced by the subset inclusion

assocMA,MX ,MY
: (MA +MX) +MY →MA + (MX +MY )

from (A ⊗ X) ⊗ Y to A � (X ⊗ Y ). Similarly, both arms of the last dia-
gram in Definition 2.11.9 are the strategies induced by the subset inclusion
runitMA

: MA →MA + ∅ from A to A� I.

It now remains only to show that passoc and r are natural transformations.
For passoc, suppose that A′, X ′, Y ′, A,X, Y are games, that σ : A′ ( A is
a strict strategy and that τ : B′ ( B, υ : C ′ ( C are strategies. Then we
need to show that the following diagram commutes.

(A′ �X ′)� Y ′ A′ � (X ′ ⊗ Y ′)

(A�X)� Y A� (X ⊗ Y )

passocA′,X′,Y ′

(σ�τ)�υ σ�(τ⊗υ)

passocA,X,Y

We have

(wkA′,X′ ⊗Y ′); wkA′�X′,Y ′ ; passocA′,X′,Y ′ ; (σ � (τ ⊗ υ))

= assocA′,X′,Y ′ ; wkA′,X′⊗Y ′ ; (σ � (τ ⊗ υ)) (see above)

= assocA′,X′,Y ′ ; (σ ⊗ (τ ⊗ υ)); wkA,X⊗Y Prop. 2.11.8

= ((σ ⊗ τ)⊗ υ); assocA,X,Y ; wkA,X⊗Y Prop. 2.7.8

= ((σ ⊗ τ)⊗ υ); (wkA,X ⊗Y ); wkA�X,Y ; passocA,X,Y (see above)

= (wkA′,X′ ⊗Y ′); ((σ � τ)⊗ υ); wkA�X,Y ; passocA,X,Y Prop. 2.11.8

= (wkA′,X′ ⊗Y ′); wkA′�X′,Y ′ ; ((σ � τ)� υ); passocA,X,Y . Prop. 2.11.8

Now observe that wkA′,X′ ⊗Y = subs[idMA′+MX′
,idMY ′

] by Proposition 2.7.7,

so it is an epimorphism by Proposition 2.6.9. Proposition 2.6.9 also tells us
that wkA′�X′,Y ′ is an epimorphism. Therefore, we have

passocA′,X′,Y ′ ; (σ � (τ ⊗ υ)) = ((σ � τ)� υ); passocA,X,Y

for any A′, X ′, Y ′, A,X, Y, σ, τ, υ as above. It follows that passoc is a natural
transformation.

The proof that r is a natural transformation is similar. Let A′, A be games
and let σ : A′ ( A be a strict strategy. We need to show that the following
diagram commutes.

A′ A′ � I

A A� I

rA′

σ σ�I
rA
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Indeed, we have

rA′ ; (σ � I) = runitA′ ; wkA′,I ; (σ ⊗ I) (see above)

= runitA′ ; (σ ⊗ I); wkA,I Prop. 2.11.8

= σ; runitA; wkA,I Prop. 2.7.8

= σ; rA . (see above)

Therefore, r is a natural transformation, which completes our check of the
criteria required by Definition 2.11.9.

2.12 Sequoidally decomposable categories

The definition of a sequoidal category captures some of the important prop-
erties of the sequoid operator � in the category of games, but not all of them.
In this section, we will consider some further category-theoretic properties
of the sequoid operator.

Definition 2.12.1 ([CLM11]). Let C be a sequoidal category such that Cs
has arbitrary products (including a terminal object 1). We say that C is
distributive if whenever ai is a collection of objects of C′ and x is an object
of C, the morphism

dist(ai),x = 〈pri�x〉 :

(∏
i

ai

)
� x→

∏
i

(ai � x)

is an isomorphism.

Remark 2.12.2. In particular, taking (ai) to be the empty collection, the
morphism lx = (): 1� x→ 1 is an isomorphism.

Proposition 2.12.3. G is a distributive sequoidal category.

Proof. Let (Ai), X be games. By Proposition 2.10.2, the morphism 〈pri�X〉
is given by the tree immersion φ : P∏

i(Ai�X) → P∏
i Ai�X defined as follows.

φ(s) =

{
ε if s = ε

[inAj , inX ]∗(s) if s begins with a move in the j-th component

When we say [inAj , inXj ]∗(s), we have considered s as a sequence in (MAj +
MXj )∗.

We claim that φ is a bijection. Indeed, it is certainly injective, since if
φ(s) = φ(t), then the first move of φ(s) = φ(t) occurs in one of the Aj ,
which means that s, t must both come from the j-th component. Then,

63



if we have a non-empty sequence s ∈ P∏
i Ai�X), then s must start with a

move in some Aj , and must thereafter take place in the games Aj and X.
Then s = φ([inAj , inXj ]∗(s)), where we have considered s as a sequence in
(MAj +MXj )∗.

Therefore, φ is a tree isomorphism, so dist(Ai),X = zzφ is an isomorphism by
Proposition 2.9.6.

We can get a distributivity result in the other direction, but this one is
not as strong, since the morphism we get is only a monomorphism, not an
isomorphism.

Definition 2.12.4. Let C be a distributive sequoidal category. We say that
C is strongly distributive if whenever (Ai), (Bi), C are objects of Cs, where
(Bi) is a non-empty collection, then the morphism

〈JC ⊗ J(A1 � (· · · � (An � J(pri)) · · · ))〉

is a monomorphism

JC ⊗ J

(
A1 �

(
· · · �

(
An � J

(∏
i

Bi

))
· · ·

))
→

∏
i

(JC ⊗ J(A1 � (· · · � (An � J(Bi)) · · · ))) .

Proposition 2.12.5. G is a strongly distributive sequoidal category.

Proof. We first ignore the JC ⊗ part.

By Proposition 2.10.2, the morphism 〈(A1� (· · · � (An� pri) · · · ))〉 is given
by the tree immersion

φ : P∏
i(A1�(···�(An�Bi)··· )) → PA1�(···�(An�

∏
iBi))

defined as follows.

φ(s) =

ε if s = ε

[inA1,··· ,An , inBj ]∗(s) if s begins with a move in the j-th
component

Note that φ is not in general injective, since if s occurs entirely inside one of
the copies of the Ai, then φ(s) = φ(s′) for any identical sequence s′ occurring
inside one of the other copies of the Ai.

We claim that φ is surjective. Indeed, let t ∈ PA1�(···�(
∏
iBi))

be a non-
empty sequence. If t contains moves in one of the Bj , then we have t =
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φ([in
Aji
, inBj ]∗(t)), where Aji is the copy of Ai in the j-th component of the

product and we have considered t as a sequence in (MA1 + · · · + MAn +
MBj )

∗. If t only contains moves in the Ai, then pick some fixed index 0;
then we have t = φ([inA0

i
]∗(t)), where we have considered t as a sequence in

(MA1 + · · ·+MAn)∗.

Therefore, φ is a monomorphism by Proposition 2.9.9.

Now, if we take the tensor product on the left by JC, we still get a surjective
tree immersion and hence a monomorphism.

Definition 2.12.6. A sequoidal category C is inclusive if Cs is a full-on-
objects subcategory of C containing wk and all isomorphisms of G, and the
functor J is the inclusion functor.

In such a situation, we will sometimes drop the mention of the functor J .

Proposition 2.12.7. G is an inclusive sequoidal category.

Proof. The only thing we really need to check is that isomorphisms in G
are always strict strategies. Indeed, if σ is a strategy for A ( B and τ a
strategy for B ( A such that σ; τ = idA, then for any opening move a in
A on the right of τ there is some s ∈ int(A,B,A) such that s|A,A = aa, and
therefore the reply to a in τ must take place in B.

An important fact about the sequoid operator for games is that it gives us
a way to decompose the tensor product as

A⊗B ∼= (A�B)× (B �A) .

Informally, this is because both sides allow player O to start either in A or in
B on the first move, and thereafter switch between A and B as he chooses.

Definition 2.12.8. Let C be a distributive inclusive sequoidal category,
where C is a symmetric monoidal category. We say that C is decomposable
if the morphisms

deca,b = 〈wka,Jb, symJa,Jb; wkb,Ja〉 : Ja⊗ Jb→ (a� Jb)× (b� Ja)

() : I → 1

are isomorphisms in Cs.

Proposition 2.12.9. Let C be a decomposable sequoidal category and sup-
pose that a1, · · · , an is a list of objects of Cs. Then we have an isomorphism

a1 ⊗ · · · ⊗ an ∼=
n∏
i=1

(ai � (a1 ⊗ · · · ⊗ ai−1 ⊗ ai+1 ⊗ · · · ⊗ an)) .
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Proof. Induction on n. If n = 0, then we have the isomorphism () : I → 1.
More generally, we have

a1 ⊗ · · · ⊗ an+1

∼= (a1 ⊗ · · · ⊗ an)⊗ an+1

dec−−→ (a1 ⊗ · · · ⊗ an)� an+1 × an+1 � (a1 ⊗ · · · ⊗ an)

∼=

 n∏
i=1

ai � j≤n⊗
j 6=i

aj

� an+1 × an+1 � (a1 ⊗ · · · ⊗ an)

dist× id−−−−−→
n∏
i=1

ai � j≤n⊗
j 6=i

aj

� an+1

× an+1 � (a1 ⊗ · · · ⊗ an)

〈passoc〉×id−−−−−−−→
n∏
i=1

ai �
j≤n⊗

j 6=i
aj ⊗ an+1

× an+1 � (a1 ⊗ · · · ⊗ an)

∼=
n+1∏
i=1

ai × j≤n+1⊗
j 6=i

aj

× an+1 � (a1 ⊗ · · · ⊗ an)

∼=
n+1∏
i=1

(ai � (a1 ⊗ · · · ⊗ ai−1 ⊗ ai+1 ⊗ · · · ⊗ an+1)) ,

where each of the arrows is an isomorphism.

The formula for the isomorphism given in the proof of Proposition 2.12.9 is
rather complicated. Our next task will be to give an equivalent formulation
that will be simpler to work with later.

Definition 2.12.10. Given objects a1, · · · , an of a monoidal category, we
write symn

i for the unique symmetric coherence isomorphism

a1 ⊗ · · · ⊗ an ∼= ai ⊗ a1 · · · ⊗ ai−1 ⊗ ai+1 ⊗ an .

Proposition 2.12.11. The isomorphism in the proof of Proposition 2.12.9
is given by

decn(ai) = 〈symn
i ; wkai,a1⊗···⊗ai−1⊗ai+1⊗···⊗an〉 .

Proof. Induction on n. We will make use of the coherence theorem for
symmetric monoidal categories [Mac71, §11] to allow us to elide associa-
tors. The base case is obviously true, because () : I → 1 is the unique
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morphism between these objects. Otherwise, we observe that the mor-

phism into
∏n+1
i=1

(
ai �

⊗j≤n+1
j 6=i aj

)
is given component-wise by morphisms

a1 ⊗ · · · ⊗ an+1 → ai �
⊗j≤n+1

j 6=i for each i = 1, · · · , n+ 1; we need to check

that each of these components is equal to symn+1
i ; wkai,

⊗
j 6=i aj

.

If i ≤ n, then the i-th component of the morphism in the proof of Proposition
2.12.9 is given by the composite thick dashed arrows in Figure 2.1, and
is therefore equal to the composite of the solid arrows, which is equal to
symn+1

i ; wkai,
⊗
j 6=i aj

as desired. The n + 1-th component of the morphism

in the proof of Proposition 2.12.9 is given by the composite

n+1⊗
j=1

aj →
n⊗
j=1

aj⊗an+1

sym⊗n
j=1

aj,an+1−−−−−−−−−−−→ an+1⊗
n⊗
j=1

aj
wkan+1,

⊗n
j=1

aj−−−−−−−−−−→ an+1�
n⊗
j=1

aj ,

and then we use the fact that the leftmost two morphisms in this composite
compose to give us symn+1

n+1.

Proposition 2.12.12. G is a decomposable sequoidal category.

Proof. Let A,B be games. By Proposition 2.10.2, the strategy

〈wkA,B, symA,B; wkA,B〉

is given by the tree immersion φ from (A�B)× (B�A) to A⊗B) given by

φ(s) =


ε if s = ε

s|A�B if s takes place entirely within A�B
s|B�A if s takes place entirely within B �A

.

We claim that this tree immersion is a bijection. Indeed, it is certainly
injective. Now let s ∈ PA⊗B be a non-empty play. Then, if s begins with
a move in A, we have s = φ((inA�B)∗(s)), and if s begins with a move
in B, we have s = φ((inB�A)∗(s). Therefore, φ is a tree isomorphism, so
decA,B = zzφ is an isomorphism in G.

Lastly, we have I = 1 in G, and the unique morphism I → 1 is the identity.

Definition 2.12.13 ([Lai02]). A sequoidal closed category is an inclusive
sequoidal category C such that C is a monoidal closed category (with inner
hom () and such that the map f 7→ Λ(wkA,B; f) defines an isomorphism

Λs : Cs(A�B,C)
∼=−→Cs(A,B ( C) .

Proposition 2.12.14. G is a sequoidal closed category.
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⊗n+1
j=1 aj

⊗n
j=1 aj ⊗ an+1

⊗n
j=1 aj � an+1

(
ai ⊗

⊗j≤n
j 6=i aj

)
⊗ an+1

(
ai ⊗

⊗j≤n
j 6=i aj

)
� an+1

ai ⊗
⊗j≤n+1

j 6=i aj ai ⊗
(
⊗j≤nj 6=i aj ⊗ an+1

) (
ai �

⊗j≤n
j 6=i

)
⊗ an+1

(
ai �

⊗j≤n
j 6=i aj

)
� an+1

ai �
(⊗j≤n

j 6=i aj ⊗ an+1

)

ai �
⊗j≤n+1

j 6=i aj

symn+1
i

wk⊗n
j=1

aj,an+1

symn
i ⊗an+1 symn

i �an+1

wk
ai⊗

⊗j≤n
j 6=i aj ,an+1

assoc
ai,

⊗j≤n
j 6=i aj ,an+1

wk
ai,

⊗j≤n
j 6=i aj

⊗an+1

wk
ai,

⊗j≤n
j 6=i aj

�an+1

wk
ai,

⊗j≤n+1
j 6=i aj

wk
ai,

⊗j≤n
j 6=i aj⊗an+1

wk
ai�

⊗j≤n
j 6=i ,an+1

passoc
ai,

⊗j≤n
j 6=i aj ,an+1

Figure 2.1: Diagram used in the proof of Proposition 2.12.11. The pentagon at the heart of the diagram is the coherence
diagram for passoc and wk from Definition 2.11.9.
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Proof. Since wkA,B is an epimorphism and Λ is a bijection, the map is
certainly injective. Showing that it is surjective comes down to proving that
uncurrying of a strict strategy for A ( (B ( C) is a strict strategy for
(A�B) ( C. Indeed, after the opening move in C, in both cases player P
must play the next move in A.

2.13 A Formula for the Exponential

We now move on to the categorical semantics of the exponential operator ! .
As the name suggests, this operator gives us a way to model the exponential
connective from linear logic. More specifically, we shall show that, for a
certain class of games A (the well-opened games), !A is the carrier for a
cofree commutative comonoid over A. We use a result of Melliès, Tabareau
and Tasson to show why this is the case.

Definition 2.13.1. Let C be a symmetric monoidal category. Given objects
A1, · · · , An of C and a permutation π ∈ Sn, there is a unique canonical
symmetry isomorphism

symπ : A1 ⊗ · · · ⊗An
∼=−→Aπ(1) ⊗ · · · ⊗Aπ(n) .

Given an object A of C, an n-th symmetrized tensor power of A is an equal-
izer (An, eqn) for the diagram given by all morphisms of the form

symπ : A⊗n → A⊗n .

We say that the symmetrized tensor power An commutes with the tensor
product if (B ⊗ An, B ⊗ eqn) is an equalizer for the diagram given by mor-
phisms of the form

B ⊗ symπ : B ⊗A⊗n → B ⊗A⊗n .

Proposition 2.13.2 ([GL17]). Let C be an inclusive, strongly distributive,
decomposable sequoidal category. Then C has all symmetrized tensor powers
and they commute with the tensor product.

Proof. Let A be an object of C (equivalently, an object of Cs). We inductively
define objects A�n by

• A�0 = I; and

• A�(n+1) = J(A�A�n).

We claim that A�n is a symmetrized tensor power of A.
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Given n, we inductively define a morphism wkn : A⊗n → A�n, where wk0 =
idI , and wkn+1 is given by the composite

A⊗(n+1) → A⊗A⊗n A⊗wkn−−−−−→ A⊗A�n
wkA,A�n−−−−−−→ A�A�n .

We show by induction on n that if B is an object of C and k ≥ 0 then the
composite

B⊗(A� )kA⊗n
〈B⊗(A� )k symπ〉−−−−−−−−−−−−−−→ (B⊗(A� )kA⊗n)n! (B⊗(A� )k wkn)n!

−−−−−−−−−−−−−−−→ (B⊗A�(k+n))n!

(i.e., the morphism 〈B ⊗ (A � )k(symπ; wkn)〉) is a monomorphism. In
particular, taking k = 0, we will have shown that 〈B ⊗ (symπ; wkn)〉 is a
monomorphism.

The hypothesis is clearly true for n = 0; in the general case, we have a
composite

B ⊗ (A� )kA⊗(n+1)

B⊗(A� )k〈symn+1
i ;wkA,A⊗n 〉−−−−−−−−−−−−−−−−−−−−→ B ⊗ (A� )k(A�A⊗n)n+1

〈B⊗(A� )k;pri〉−−−−−−−−−−−−−−−−−−−−→ (B ⊗ (A� )k+1A⊗n)n+1

−−−−−−−−−−−−−−−−−−−−→ (B ⊗A�(k+n+1))(n+1)! ,

where the last arrow is the tensor product of B with the (n + 1)-th power
of the composite given by

(A� )k+1A⊗n
〈(A� )k+1 symσ〉−−−−−−−−−−−−→ ((A� )k+1A⊗n)n! ((A� )k+1 wkn)n!

−−−−−−−−−−−−−→ (A�(k+n+1))n! ,

which is a monomorphism by the induction hypothesis. Then the previous
composite is the composite of monomorphisms (by our assumptions on C),
and is therefore itself a monomorphism. Now this composite may be written
as

〈B ⊗ (A� )k(symn+1
i ; wkA,A⊗n ; (A� symσ); (A� wkn))〉 ,

which, since wk is a natural transformation, is equal to

〈B ⊗ (A� )k(symn+1
i ; (A⊗ symσ); (A⊗ wkn); wkA,A�n)〉 ,

where σ ranges over the permutations in Sn. Moreover, by the definition of
wkn, this is equal to

〈B ⊗ (A� )k(symn+1
i ; (A⊗ symσ); wkn+1〉 .

Now, given i ∈ {1, · · ·n+ 1} and σ ∈ Sn, there is a unique permutation π ∈
Sn+1 such that symn+1

i ; (A⊗ symσ = symπ); moreover, the map (i, σ) 7→ π
defines a bijection from {1, · · · , n + 1} × Sn → Sn+1. Therefore (after
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choosing an appropriate enumeration of our permutations), we see that this
composite is in fact equal to

〈B ⊗ (A� )k(symπ; wkn+1)〉 .

Therefore, 〈B ⊗ (A � )k(symπ; wkn+1)〉 is a monomorphism as desired,
completing the induction.

Next, we define morphisms eqn : A�n → A⊗n inductively, where eq0 = id
and eqn+1 is defined by the following composite

A�(n+1) = A�A�n
〈(A�eqn)n1 〉−−−−−−−→ (A�A⊗n)n ∼= A⊗(n+1) ,

where the final isomorphism is as in Propositions 2.12.9 and 2.12.11.

First, we show inductively that eqn; symπ; wkn = idA�n for all permutations
π of Sn. This is certainly true for n = 0; in the general case, let π ∈ Sn+1

be a permutation. Let j = π−1(1) be the element sent to 1 by π and let σ be
the permutation of 1, · · · , n such that applying σ to the elements 2, · · · , n+1
and composing with π gives us the j-cycle (1 . . . j). Then we have

symn+1
j ; (A⊗ symσ) = symπ .

Now we get

eqn+1; symπ; wkn+1

= 〈(A� eqn)n1 〉; (decn+1
~A

)−1; symπ; (A⊗ wkn); wkA,A�n

= 〈(A� eqn)n1 〉; (decn+1
~A

)−1; symn+1
j ; (A⊗ symσ); (A⊗ wkn); wkA,A�n

= 〈(A� eqn)n1 〉; (decn+1
~A

)−1; symn+1
j ; wkA,A⊗n ; (A� symσ); (A� wkn)

= 〈(A� eqn)n1 〉; (decn+1
~A

)−1; 〈symn+1
i ; wkA,A⊗n〉; prj ; (A� symσ); (A� wkn)

= A� (eqn; symσ; wkn) ,

which is equal to the identity on A�(n+1) by the induction hypothesis.

Now let ρ be a permutation in Sn. We claim that eqn = eqn; symρ.

Indeed, we have

eqn; 〈symπ; wkn〉 = 〈eqn; symπ; wkn〉
= 〈id〉
= 〈eqn; symρπ; wkn〉
= eqn; symρ; 〈symπ; wkn〉 .

Since 〈symπ; wkn〉 is a monomorphism, this means that eqn = eqn; symρ, as
desired. Therefore, eqn equalizes the morphisms eqn. We claim that it is an
equalizer, and that this equalizer is preserved by the tensor product.
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Indeed, let B,C be objects of C, and let f : C → B ⊗ A⊗n be a morphism
such that f = f ; (B ⊗ symπ) for all π ∈ Sn.

Let f̃ = f ; (B ⊗ wkn) : C → B ⊗ A�n. We claim that f̃ ; (B ⊗ eqn) = f ;
indeed, we have

f̃ ; (B ⊗ eqn); 〈B ⊗ (symπ; wkn)〉 = 〈f ; (B ⊗ (wkn; eqn; symπ; wkn))〉
= 〈f ; (B ⊗ wkn)〉
= f ; 〈B ⊗ (symπ; wkn)〉 .

Therefore, since 〈B⊗(symπ; wkn)〉 is a monomorphism, we know that f̃ ; (B⊗
eqn) = f .

Now suppose that h : C → B⊗A�n is such that h; (B⊗ eqn) = f . We claim
that h = f̃ . Indeed, we have

f̃ = f ; (B ⊗ wkn) = h; (B ⊗ eqn); (B ⊗ wkn) = h .

Therefore, (B ⊗A�n, B ⊗ eqn) is an equalizer of the arrows B ⊗ symπ : B ⊗
A⊗n → B ⊗A⊗n, as desired.

We are interested in symmetrized tensor powers because of an important
result of Melliès, Tabareau and Tasson. Suppose C is a monoidal category
with a terminal unit object, and that C has symmetrized tensor powers that
commute with the tensor product. Given n, we have a morphism

A⊗n ⊗ () : A⊗(n+1) → A⊗n ,

where () is the unique morphism into the terminal object. Then, if An and
An+1 are the n-th and n+1-th symmetrized tensor powers of A, and eqn+1, eq
the corresponding equalization, for any π ∈ Sn we have a commutative
diagram

B ⊗An+1 B ⊗A⊗(n+1) B ⊗A⊗n

B ⊗A⊗(n+1) B ⊗A⊗n

B⊗eqn+1 B⊗A⊗n⊗()

symπ′ symπ

B⊗A⊗n⊗()

,

where π′ is the permutation of 1, · · · , n+ 1 that fixes 1 and applies π to the
remaining elements 2, · · · , n+ 1.

This means that for each π ∈ Sn we have

(B ⊗ eqn+1); (B ⊗A⊗n ⊗ ()) = (B ⊗ eqn+1); (B ⊗ symπ′); (B ⊗A⊗n ⊗ ())

= (B ⊗ eqn+1); (B ⊗A⊗n ⊗ ()); (B ⊗ symπ) ,
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and that there is therefore an induced morphism

B ⊗An+1 → B ⊗An ,

by the universal property of the equalizer.

Note also that if m,n are integers, then any permutations σ of 1, · · · ,m
and π of 1, · · · , n induce a permutation [σ, π] of 1, · · · ,m+ n. Then we get
morphisms

Am+n → A⊗(m+n) → A⊗m ⊗A⊗n ,

which are equalized by all symmetries on A⊗m and A⊗n individually. Since
the equalizers Am and An are preserved by the tensor product, then we get
an induced morphisms

Am+n → Am ⊗An .

Theorem 2.13.3 ([MTT09]). Let C be a monoidal category such that the
monoidal unit for C is a terminal object. Suppose that C has symmetrized
tensor powers that commute with the tensor product.

Then, for any objects A,B of C, there is a natural sequence

B ← B ⊗A← B ⊗A2 ← B ⊗A3 ← · · · .

In particular, there is a sequence

I ← A← A2 ← A3 ← · · · .

Suppose that this sequence has a limit !A, and suppose moreover that ten-
soring this limiting cone with B exhibits B ⊗ !A as the limit of

B ← B ⊗A← B ⊗A2 ← B ⊗A3 ← · · · .

for any B.

For each m, we can define morphisms

!A→ Am+n → Am ⊗An

for each n, which commute with the morphisms An+1 → An and hence
induce a morphism !A→ Am ⊗ !A. Then these morphisms themselves com-
mute with the morphisms Am+1⊗ !A→ Am⊗ !A, and so we get a morphism
µA : !A→ !A⊗ !A.

The morphisms µA : !A → !A ⊗ !A and () : A → I give !A the structure
of a commutative comonoid in C. In fact, this is the cofree commutative
comonoid over A in C. The corresponding counit derA : !A → A is the
morphism in the limiting cone.
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We want to show that this theorem applies in G. First, we find an explicit
formula for the morphisms B ⊗A�(n+1) → B ⊗A�n.

Proposition 2.13.4. Let C be an inclusive, strongly distributive, decompos-
able sequoidal category – so G has symmetrized tensor powers preserved by
the tensor product as in Proposition 2.13.2.

Then the canonical morphisms B ⊗A�(n+1) → B ⊗A�n are given by

B ⊗ (A� )n() ,

where () : A→ I is the unique morphism into the terminal object.

Proof. First, we show by induction on n that the following diagram com-
mutes.

A⊗(n+1) A⊗n

A�(n+1) A�n

A⊗n⊗()

A⊗wkn+1 wkn

(A� )n()

This is clearly true for n = 0; in the general case, we have the following
commutative diagram –

A⊗(n+2) A⊗A⊗(n+1) A⊗A⊗n A⊗(n+1)

A⊗A�(n+1) A⊗A�n

A�(n+1) A�(n+1)

wkn+2

A⊗(A⊗n⊗())

A⊗wkn+1 A⊗wkn

wkn+1A⊗(A� )n()

wk
A,A�(n+1) wkA,A�n

(A� )n+1()

–

where the middle square is the inductive hypothesis (tensored by A), the
outer trapezia are the definitions of wkn+2 and wkn+1, and the bottom
trapezium commutes because wk is a natural transformation.

Now, by the proof of Proposition 2.13.2, the canonical morphism B ⊗
A�(n+1) → B ⊗A�n must be constructed as the composite

B ⊗ (eqn+1; (A⊗n ⊗ ()); wkn) ,

which we have shown is equal to

B ⊗ (eqn+1; wkn+1; (A� )n()) = B ⊗ (A� )n() .

Definition 2.13.5. Let A be a game. We say that A is well-opened if initial
moves of A can only occur as the very first move in a play.
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It is immediate from the definitions that:

• the empty game I and our data-type games C,B,N are well opened;

• if Ai are well-opened games, then so is
∏
iAi; and

• if B is a well-opened game, then so is A( B;

but that A⊗B, A�B and !A are not in general well-opened, even if both
A and B are.

Proposition 2.13.6. Let A be a well-opened game. Then we have natural
morphisms

!A→ A�n

for each n, and these commute with the natural morphisms A�(n+1) → A�n

and make !A the limit of the sequence

I ← A← A�2 ← A�3 ← · · · .

Moreover, if B is any game, then B ⊗ !A is the limit of the sequence

B ← B ⊗A← B ⊗A�2 ← B ⊗A�3 ← · · · .

Proof. For the sake of notational simplicity, we will only prove the first part
of the Proposition, but the second part (the B ⊗ · · · version) goes through
in exactly the same way.

The morphism in question is the (non-innocent) zigzag strategy given by
the tree immersion φn : PA�n → P!A defined by

φn(s) = ∇∗(s) ,

where ∇ : MA + · · ·+MA is the co-diagonal.

We have seen already that the natural morphism A�(n+1) → A�n is the
copycat morphism generated by the inclusion n.(MA)→ (n+ 1).(MA), and
so it is clear that these commute with zzφ by Proposition 2.9.6.

Now let C be a game and suppose that there are strategies σn : C ( A�n

that commute with the natural morphisms A�(n+1) → A�n. Then we define
a morphism σ : C → !A by

σ =

s ∈ PC(!A

∣∣∣∣∣∣
for some n, s|!A contains
at most n initial moves, and
[in, inA1 , · · · , inAn ]∗(s) ∈ σn.

 .

Here we have used the fact that A is well-opened to tell us that s|!A is indeed
a valid play in A�n.
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We claim that σ is indeed a strategy. First we show that σ is prefix
closed. If s ∈ σ and t v s, write n for the number of initial moves in
s. Then t has at most n initial moves; if [idC , inA1 , · · · , inAn ]∗(s) ∈ σn, then
[idC , inA1 , · · · , inAn ]∗(t) ∈ σn, and therefore t ∈ σ.

Now note that if s ∈ CC(!A is such that s|!A contains k initial moves, and
if m,n ≥ k, then

[in, inA1 , · · · , inAm ]∗(s) = [inC , inA1 , · · · , inAn ]∗(s) ,

since the σn commute with the natural morphisms A�(n+1) → A�n. So, if
sab, sac ∈ σ, then we can assume that

[inC , inA1 , · · · , inAk ]∗(sab), [inC , inA1 , · · · , inAk ]∗(sac) ∈ σk

for some common k, and therefore that b = c.

Now we have σ; zzφn = σn for each n by Proposition 2.9.6.

Suppose that τ is some other strategy for C ( !A such that τ ; zzφn = σn
for each n. By Proposition 2.9.6, we have

σn = τ ; zzφn = {s ∈ PC(A�n : sφn ∈ τ} .

Suppose s ∈ σ and that s contains n initial moves. Then

[inC , inA1 , · · · , inAn ]∗(s) ∈ σn

for some n. Therefore, s = ([inC , inA1 , · · · , inAn ]∗(s))
φn ∈ τ . So σ ⊆ τ .

Conversely, suppose that t ∈ τ . Suppose that t|!A contains n initial moves.
Then t = sφn for some sequence s ∈ PC(A�n , and we must have s ∈ σn.
Therefore, t ∈ σ. So τ ⊆ σ.

Therefore, by Theorem 2.13.3, if A is a well-opened game, then !A inherits
the structure of a cofree commutative comonoid on A.

Let Gwo denote the category of well-opened games and strategies. Let
CCom(G) denote the category of commutative comonoids with respect to
the symmetric monoidal structure on G.

In general, given two commutative comonoidsM,N in a symmetric monoidal
category C, we can form the tensor product

M ⊗N → (M ⊗M)⊗ (N ⊗N)→ (M ⊗N)⊗ (M ⊗N)

M ⊗N → I ⊗ I → I ,

and this makes CCom(C) into a Cartesian category.
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Now note that we have defined a functor

Gwo → CCom(G)

We define a category G!
wo to be the span of this functor inside CCom(G).

Then the corresponding functor

Gwo → G!
wo

is a right adjoint, and therefore preserves products. So if A,B are well-
opened games, then we get a natural isomorphism of comonoids between
the tensor product of the comonoids on !A and !B and the comonoid on
!(A×B). In particular, we have a natural isomorphism

!A⊗ !B ∼= !(A×B) .

G!
wo therefore inherits the structure of a Cartesian category.

This gives us a category in which the objects are commutative comonoids
over well-opened games. A more convenient description of this category is
that it is the category where the objects are well-opened games and where
the morphisms

A→ B

are morphisms !A → B in the original category G. We compose two such
morphisms σ : !A( B and τ : !B ( C as

!A
σ†−→ !B

τ−→ C ,

where the promotion operator † from strategies σ : !A → B to strategies
σ† : !A→ !B is the right half of the adjunction between Gwo and G!

wo.

Since the functor Gwo → CCom(G) preserves products, G!
wo obtains a Carte-

sian structure given by the category-theoretic product ×. We claim that it
is Cartesian closed, with the function object from A to B given by !A( B.
Indeed, we have

G!
wo(A, !B ( C) ∼= G(!A, !B ( C)

∼= G(!A⊗ !B,C)
∼= G(!(A×B), C)
∼= G!

wo(A×B,C) .

We have one thing left to prove.

Proposition 2.13.7. Let σ : !A ( B, τ : !B ( C be innocent strategies,
where A,B,C are well-opened games. Then the composite of σ and τ in G!

wo

is an innocent strategy.

Proof. It suffices to show that σ† is innocent, which follows by an argument
similar to that in Proposition 2.7.6.
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2.14 The Exponential as a Final Coalgebra

Our proof in the previous section that !A is the cofree commutative comonoid
over A (if A is well-opened) leads us towards another category-theoretic
property enjoyed by !A, one that is more closely tied to the sequoid operator.
This property will be key to our treatment of the semantics of state.

Definition 2.14.1. Let F : C → C be a functor. A coalgebra for F or
F -coalgebra is an object a of C, together with a morphism f : a→ Fa.

A coalgebra homomorphism from (a, f) to (b, g) is a morphism h : a → b
such that the following diagram commutes.

a Fa

b Fb

f

h Fh

g

Clearly, the coalgebras for a given functor F form a category. A final coal-
gebra for F is a terminal object for this category; i.e., an F -coalgebra (t, α)
such that for all F -coalgebras (a, f) there is a unique morphism $f% : a→ t
such that the following diagram commutes.

a Fa

t F t

f

$f% F$f%
α

We call $f% the anamorphism of f .

We use two standard pieces of theory about coalgebras.

Theorem 2.14.2 (Lambek’s Theorem, [Lam68]). If (t, α) is a final coalge-
bra for a functor F , then α : t → Ft is an isomorphism with inverse given
by $Fα%.

Theorem 2.14.3 (Adámek’s Theorem, [Adá03]). Suppose C has a terminal
object 1. By repeatedly applying F to the morphism F1→ 1, we build up a
sequence

1← F1← F 21← F 31← · · · .

If this sequence has a limit Fω1, and if the morphism β : F (Fω1) → Fω1
induced from the universal property of the limit is an isomorphism, then
(Fω1, β−1) is a final coalgebra for F .
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Now we have already shown that if A is well-opened, then !A is the limit of
the sequence

I ← A← A�2 ← A�3 ← · · · ,

and this sequence is precisely the sequence from Adámek’s Theorem, when
F = J(A � ) : G → G. Moreover, this limit is preserved when taking the
sequoid with A on the left, and so we get that

Corollary 2.14.4. If A is a well-opened game, then !A is a final coalgebra
for the functor J(A� ) : G → G.

In this case, the morphism !A → A � !A is the zigzag strategy that plays
copycat between the different copies of A; i.e., zzφ, where φ : PA�!A → P!A

is the tree isomorphism given by

φ(s) = [inMA
, id]∗(s) .

One small thing we need to do is to relate the two structures on the expo-
nential.

Proposition 2.14.5. The final coalgebra

α : !A→ A� !A

is given by the composite

!A
µA−−→ !A⊗ !A

derA⊗!A−−−−−→ A⊗ !A
wkA,!A−−−−→ A� !A .

Proof. By Theorem 2.13.3, we can tell that this composite is a copycat
strategy between !A and A� !A, as is α. Since A is well-opened, there is a
unique such strategy.

2.15 Denotational Semantics of Idealized Algol

At last we are in a position to interpret Idealized Algol within our category
G!
wo. The base types com, bool and nat are interpreted by the games C, B

and N, while the type Var is interpreted by the game

Var = CN × N ,

where CN is the product of countably many copies of C (so we have used the
symbol N to denote both the set N and the game N in the same formula).
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Given types S, T , the denotation JS → T K of the type of functions from S
to T is given by

JSK→ JT K := ! JSK ( JT K .

This gives us the denotation of the types of Idealized Algol.

We inductively define a denotation of terms-in-context Γ `M of IA, where
Jx1 : T1, · · · , xn : Tn `M : T K is a strategy

JT1K× · · · × JTnK→ JT K .

First note that we have natural innocent strategies a : C, t, f : B and n : N,
which give us the denotations of Γ ` skip, Γ ` t, Γ ` f and Γ ` n.

Moreover, if we have a strategy

JΓ, x : S `M : T K : JΓK× JSK→ JT K ,

then, since G!
wo is Cartesian closed, we get a strategy

JΓ ` λxs.MK : JΓK→ JSK→ JT K .

In addition, we have natural morphisms

JΓ, x : T ` x : T K = JΓK× JT K
prJT K−−−→ JT K .

Lastly, if we have strategies

JΓ `M : S → T K : JΓK→ JSK→ JT K JΓ `N : SK : JΓK→ JSK ,

then we get a strategy

JΓ `MN : T K = JΓK ∆−→ JΓK× JΓK
JΓ`MK×JΓ`NK−−−−−−−−−→ (JSK→ JT K)× JSK ev−→ JSK .

In order to form the denotation of the next lot of terms, we need a new
definition.

Definition 2.15.1. Let X be a set, and let (σx : x ∈ X) be a collection of
strategies for a game A. Write X for the datatype game corresponding to
X. Then we define a strict strategy (σx) : X → A by

(σx) = {ε} ∪ {∗q : ∗ ∈ PA} ∪ {∗qys : ∗s ∈ σy} .

In other words, after the initial move in A, (σx) requests some element
y ∈ X, and thereafter plays according to σy in A.

Proposition 2.15.2. If the σx are innocent strategies, then (σx) is an in-
nocent strategy.
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Proof. If ∗s ∈ σy, then p∗qysaq = ∗qypsaq. Then, if t ∈ (σx) and ptaq =
∗qypsaq, we have t = ∗qyt′ for t′ ∈ σy and p∗t′aq = p∗saq. So if ∗sab ∈ σy,
then ∗t′ab ∈ σy and therefore tab ∈ (σx).

The most important feature of strategies of the form (σx) is the most obvious
one: given X, and y ∈ X, we have a strategy y for the game X with maximal
play qy. Then y; (σx) = σy.

Now we define morphisms

• seqX = (idX) : C ( (X → X);

• IfX = (λx.λy.x, λx.λy.y) : B ( (X → X → X);

• succ = (1, 2, 3, 4, · · · ) : N ( N;

• pred = (0, 0, 1, 2, · · · ) : N ( N;

• If0X = (λx.λy.x, λx.λy.y, λx.λy.y, · · · ) : N ( (X → X → X);

• assign = (pr0,pr1, · · · ) : N ( (Var→ C);

• deref = prN : Var ( N;

• letB,X = (λf.ft, λf.ff) : B ( (B→ X)→ X;

• letN,X = (λf.f0, λf.f1, · · · ) : N ( (N→ X)→ X; and

• mkvar = λw.λr.〈(wn)n∈N, r〉 : (N→ C)→ N ( Var.

Here, prn and prN are the natural projections on to C and N from Var =
(C)n × N.

These morphisms give us an obvious way to interpret most of the rest of the
terms of Idealized Algol. For example, if we have strategies

JΓ ` V : VarK JΓ ` E : NK ,

then we get a strategy

JΓ ` V ← E : CK = JΓK ∆−→ JΓK× JΓK
JΓ`EK×JΓ`V K−−−−−−−−−→ N×Var

assign−−−→ C

that we can use as the denotation of the term Γ ` V ← E.

We use seqX for the denotation of M ;N and deref for the denotation of !V .
The role played by the remaining morphisms can easily be deduced from
their names.
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2.16 Order-Enrichment of G
The remaining parts of Idealized Algol that we have yet to define are the
fixpoint combinator YT and the new variable constructor new.

To define YT , we use order-enriched properties of G.

Note that if A is a game, then we can order the strategies for A by subset
inclusion. This order is clearly preserved by composition.

Proposition 2.16.1. The partial order of strategies for A, ordered by in-
clusion, is directed-complete. So is the partial order of innocent strategies
for A.

Proof. Let Σ be a directed set of strategies for A; so if σ, τ ∈ Σ then there
is some υ ∈ Σ such that σ ⊆ υ and τ ⊆ υ. We claim that

⋃
Σ is a strategy

for A. Indeed, it is certainly even-prefix-closed, and if sab, sac ∈
⋃

Σ, then
sab ∈ σ and sac ∈ τ for σ, τ ∈ Σ, and therefore sab, sac ∈ υ for some υ ∈ Σ
and so b = c.

Now suppose that all σ ∈ Σ are innocent. Let sab ∈
⋃

Σ and suppose that
t ∈

⋃
Σ is such that ptaq = psaq. Then, as before, we have sab, t ∈ υ for

some innocent υ ∈ Σ, and therefore tab ∈ υ ⊆
⋃

Σ.

It is clear then that composition of strategies is Scott-continuous with re-
spect to this ordering.

Writing ⊥ = {ε} for the bottom strategy for a game A, if we have a strat-
egy σ : A → A, then the Kleene fixed point theorem tells us that we may
construct a fixed point for σ as the union of the chain

⊥ ⊆ ⊥;σ ⊆ ⊥;σ;σ ⊆ · · · .

Given a game A, we define a strategy YA : (A→ A)→ A as the fixed point
of the strategy

λF.λf.f(Ff) : ((A→ A)→ A)→ (A→ A)→ A .

We can then use YA to interpret the term Γ `YTM : T for any term Γ `
M : T → T .

We will later require other order-theoretic properties of the set of strategies
for a game A. Recall that an element σ of a directed-complete partially
ordered set is called compact if whenever we have σ =

⋃
Σ for some directed

set Σ, then σ ∈ Σ.

A little thought convinces us that a strategy σ : A is compact if and only if
it is finite as a set of plays; indeed, suppose σ is a finite set and σ =

⋃
Σ.
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For each s ∈ σ, we have s ∈ τs for some τs ∈ Σ; since Σ is directed, then
there is some υ ∈ Σ such that τs ∈ Σ for each s, and therefore σ ⊆ υ ⊆ σ.
Conversely, if σ is infinite, then by König’s lemma, it either has an infinite
branching point (i.e., s ∈ σ such that there are infinitely many plays sab ∈ σ)
or an infinite branch (i.e., an infinite increasing sequence s1 v s2 v · · · in
σ). In either case, it is easy to construct some directed set Σ such that
σ =

⋃
Σ but σ 6∈ Σ.

Recall that a directed-complete partial order P is said to be algebraic if
whenever p ∈ P , the set of compact elements of P lying below p is directed
and its supremum is p.

Proposition 2.16.2. The set of strategies for a game A is an algebraic
directed-complete partial order.

Proof. Let σ be a strategy for a game A and let τ1, τ2 be two finite sub-
strategies such that τ1, τ2 ⊆ σ. Then τ1 ∪ τ2 ⊆ σ and is finite; moreover, if
sab, sac ∈ τ1 ∪ τ2, then sab, sac ∈ σ, so b = c.

Lastly, given any s ∈ σ, there is a compact strategy σs containing s; namely

σs = {t : t v s has even length} .

It is possible to prove an innocent version of this (see [HO00]), but we will
not need this to prove Full Abstraction for Idealized Algol.

2.17 The Strategy cell

Now we come to the denotation of new. For this, we shall define a strategy
cell : !N ( ! Var by using the universal property of ! Var that arises from the
fact that it is a final coalgebra for Var� .

Given n ∈ N, we define a strategy writen : !N ( C� !N by

writen = !N ()−→ I
!n−→ !N lunit!N−−−−→ I ⊗ !N skip⊗!N−−−−→ C⊗ !N wk−−→ C� !N .

Let read: !N ( N � !N be the morphism part α of the limiting coalgebra.
In other words, by Proposition 2.14.5, read is the composite

read = !N µN−→ !N⊗ !N derN⊗!N−−−−−→ N⊗ !N
wkN,!N−−−−→ N� !N .

Then we get a coalgebra cell0 : !N ( Var�!N given by

!N 〈(writen)n∈N,read〉−−−−−−−−−−−→ (C�!N)N×(N�!N)
dist−1

(C)N,N,!N−−−−−−−→ (CN×N)�!N = Var�!N .
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We then define the strategy cell to be the anamorphism $cell0% : !N ( ! Var;
i.e., cell is the unique morphism making the following diagram commute.

!N Var�!N

! Var Var�! Var

cell0

cell Var�cell
αVar

Concretely, the strategy cell behaves as follows, as we shall prove in Propo-
sition 2.17.2. When player O plays in !Var, he chooses to play either in one
of the copies of C or in N. If he plays the initial move qn in the n-th copy of
C, player P updates the value she has stored in her head to n. If he plays
the initial move q in N, then player P replies with this stored value. Lastly,
if he plays this initial move q without having played in any of the copies of
C, then player P interrogates the argument in order to find out which value
to play.

This strategy cell now gives us a morphism newA : !(! Var ( A) ( A (for A
well-opened), given by

!(! Var ( A)
der−−−−−−−−→ (! Var ( A)

lunit−−−−−−−−→ I ⊗ (! Var ( A)
!0⊗(! Var(A)−−−−−−−−→ !N⊗ (! Var ( A)
cell⊗(! Var(A)−−−−−−−−→ ! Var⊗(! Var ( A)

ev−−−−−−−−→ A .

We use this to provide the denotation of the term new.

Lemma 2.17.1. cell0; (prn�!N) = writen for each n and cell0; (prN�!N) =
read, where prn : Var = CN × N ( C is the projection on to the n-th copy
of C and prN : Var = CN × N ( N is the projection on to the copy of N.

Proof. We have

dist(C)N,N,!N; prn = 〈(prn�!N)n∈N, prN�!N〉; prn = prn�!N

and

dist(C)N,N,!N; prN = 〈(prn�!N)n∈N, prN�!N〉; prN = prN�!N ,

so

cell0; (prn�!N)

= 〈(writen)n∈N, read〉; dist−1
(C)N,N,!N; (prn�!N)

= 〈(writen)n∈N, read〉; dist−1
(C)N,N,!N dist(C)N,N,!N; prn

= 〈(writen)n∈N, read〉; prn

= writen
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and

cell0; (prN�!N)

= 〈(writen)n∈N, read〉; dist−1
(C)N,N,!N; (prN�!N)

= 〈(writen)n∈N, read〉; dist−1
(C)N,N,!N dist(C)N,N,!N; prN

= 〈(writen)n∈N, read〉; prN

= read .

While this coalgebraic definition of the cell strategy will be sufficient for most
of our purposes, it will also be convenient to have a more direct definition.

Proposition 2.17.2. The strategy cell is the strategy on !N ( ! Var that
behaves as follows. It replies to a move qn (i.e., the initial move in the n-th
component of C in Var) with the unique answer a, and replies to the move
q in the N component of Var with that number n such that qn was the most
recently played O-move in the CN component, or, if no such move has been
played, it interrogates !N on the left and copies the value back on to the right.

Proof. It will suffice to show that the strategy cell as described in the state-
ment makes the diagram

!N Var�!N

! Var Var�! Var

cell0

cell Var�cell
αVar

commute. Since dist(C)N,N is a natural isomorphism, it will suffice to show
commutativity of the diagram formed by composing by dist(C)N,N on the
right to give us the diagram

!N Var�!N (C� !N)N × (!N� !N)

! Var Var�! Var (C� ! Var)N × (N� ! Var) ,

cell0

cell

dist(C)N,N

(C�cell)N×(N�cell)

αVar
dist(C)N,N

which, by the definition of cell0, is the same as the diagram

!N (C� !N)N × (!N� !N)

! Var Var�! Var (C� ! Var)N × (N� ! Var) .

〈(writen)n∈N,read〉

cell (C�cell)N×(N�cell)

αVar
dist(C)N,N
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That is, we need to show that the following diagrams commute, where n in
the first diagram ranges over the natural numbers.

!N C� !N

! Var Var�! Var C� ! Var

writen

cell C�cell
αVar prn�! Var

!N N� !N

! Var Var�! Var N� ! Var

read

cell N�cell
αVar prN�! Var

Consider the first diagram. We may identify plays of cell;αVar; (prn�! Var)
with those plays in cell that begin with the initial move qn in Var (i.e.,
the initial move q in the n-th copy of C). We need to show that plays in
writen; (C � cell) take the same form. Indeed, the response to the initial
move in C in writen; (C� cell) is the unique response a, by the definition of
writen; thereafter, play continues in ! Var according to cell – so the response
to a move qm will be a, while the response to q, if some qm has been played
already in ! Var, will be the most recently occurring value of m.

If no qm has been played in ! Var, then the behaviour of cell tells us that
we must interrogate the !N in C � !N in order to get the value. By the
definition of writen, the value returned will be n, mirroring the behaviour
in cell;αVar; (prn�! Var).

Now consider the second diagram. We may identify plays of the strategy
cell;αVar; (prn�! Var) with those plays in cell that begin with the initial
move q in Var (i.e., the initial move q in the copy of N). We need to show
that plays in read; (N�cell) take the same form. Indeed, the response to the
initial move will be to interrogate !N on the left to get the value. Thereafter,
play will continue between !N and ! Var according to the cell strategy – so
once again the response to a move qm will be a, while the response to q, if
some qm has been played, will be the most recently occurring value m.

If no qm has been played in ! Var, then, by the definition of read, the strat-
egy will interrogate !N in order to get its response, just as in the strategy
cell;αVar; (prN�! Var).
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Chapter 3

Operational Semantics,
Computational Adequacy
and Full Abstraction

3.1 Big-Step Operational Semantics

We now introduce the operational semantics of Idealized Algol. When we
have done so, we will link it to our denotational semantics by proving Com-
putational Adequacy and Full Abstraction.

We first define a canonical form of the language to be

• at type com, the term skip;

• at type bool, the terms t and f;

• at type nat, the numerals n;

• at type Var, variable names x : Var and expressions taking the form
mkvarW R; and

• at type S → T , expressions of the form λxS .M .

These are the terms that cannot be evaluated any further.

We define a Var-context to be a context Γ of the form x1 : Var, · · · , xn : Var.
Given a Var-context Γ, we define a Γ-store to be a function s from the set
of variable names occurring in Γ (i.e., the xi) to the set of natural numbers.
Given such a store s, we write (s|x 7→ n) for the store given by

(s|x 7→ n)(y) =

{
n if y = x

s(y) otherwise
.
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We now inductively define a relation Γ, s `M ⇓ c, s′, where

• Γ is a Var-context;

• s and s′ are Γ-stores; and

• Γ`M , Γ`c are Idealized Algol terms-in-context, where c is a canonical
form.

The definition of this relation is shown in Figure 3.1. The idea behind it is
that the predicate Γ, s `M ⇓ c, s′ should represent the assertion that, given
initial state s, the term M will evaluate to the canonical form c, leaving the
state s′.

3.2 Small-Step Operational Semantics

We also give an equivalent small-step operational semantics for Idealized
Algol. For a lot of our purposes, the small-step semantics will be easier to
work with.

This time, instead of defining a relation Γ, s`M ⇓ c, s′, we define a relation
Γ, s `M −→ Γ,∆, s′ `M ′, where

• Γ,∆ are disjoint Var-contexts;

• s is a Γ-store and s′ a Γ,∆-store; and

• Γ `M , Γ,∆ `M ′ are Idealized Algol terms-in-context.

As an auxiliary definition, we need the notion of an evaluation context, as
introduced by Felleisen in [FH92]. An evaluation context is a single-holed
context defined inductively by the following BNF formula, where M ranges
over IA terms (subject to typing rules).

E ::= − | EM | succE | predE | E;M | If E thenM elseM |

If0E thenM elseM |!E |M ← E | E← n | letx = E inM

The idea behind the evaluation contexts is that they tell us about the order
of evaluation of a term: if we want to evaluate the term E[M ] for one step,
then we first evaluate M for one step, yielding another term M ′, and then
replace E[M ] with E[M ′].

Next, we define a relation Γ, s,M 99K Γ,∆, s′,M ′. The definition of this
relation is in Figure 3.2; we interpret the judgement Γ, s,M 99K Γ,∆, s′,M ′

as saying that if we start in state s and evaluate the term M for a single
step, then we get the term M ′ in the state s′, possibly adding some new free
variables through the Var-context ∆.
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Γ, s ` c ⇓ c, s
Γ, s `M ⇓ λx.M ′, s′ Γ, s′ `M ′[N/x] ⇓ c, s′′

Γ, s `MN ⇓ c, s′′

Γ, s `M(YM) ⇓ c, s′

Γ, s `YM ⇓ c, s′
Γ, s `M ⇓ n, s′

Γ, s ` succM ⇓ n+ 1, s′

Γ, s `M ⇓ n+ 1, s′

Γ, s ` predM ⇓ n, s′
Γ, s `M ⇓ 0, s′

Γ, s ` predM ⇓ 0, s′

Γ, s `M ⇓ skip, s′ Γ, s′ `N ⇓ c, s′′

Γ, s `M ;N ⇓ c, s′′

Γ, s `M ⇓ t, s′ Γ, s′ `N ⇓ c, s′′

Γ, s ` IfM then N else P ⇓ c, s′′

Γ, s `M ⇓ f, s′ Γ, s′ ` P ⇓ c, s′′

Γ, s ` IfM then N else P ⇓ c, s′′

Γ, s `M ⇓ 0, s′ Γ, s′ `N ⇓ c, s′′

Γ, s ` If0M then N else P ⇓ c, s′′

Γ, s `M ⇓ n+ 1, s′ Γ, s′ ` P ⇓ c, s′′

Γ, s ` If0M then N else P ⇓ c, s′′

Γ, s `M ⇓ c, s′ Γ, s′ `N [c/x] ⇓ c′, s′′

Γ, s ` letx = M in N ⇓ c′, s′′

Γ, s ` E ⇓ n, s′ Γ, s′ ` V ⇓ x, s′′

Γ, s ` V ← E ⇓ skip, (s′′|x 7→ n)
x ∈ Γ

Γ, s ` V ⇓ x, s′

Γ, s`!V ⇓ n, s′
s′(x) = n

Γ, x : Var, (s|x 7→ 0) `M ⇓ c, (s′|x 7→ n)

Γ, s ` new λx.M ⇓ c, s′

Γ, s ` E ⇓ n, s′ Γ, s′ ` V ⇓ mkvarWR, s′′ Γ, s′′ `Wn ⇓ skip, s′′′

Γ, s ` V ← E ⇓ skip, s′′′

Γ, s ` V ⇓ mkvarWR, s′ Γ, s′ `R ⇓ n, s′′

Γ, s`!V ⇓ n, s′′

Figure 3.1: Operational semantics for Idealized Algol. See [Har99] and
[AM96].
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Γ, s ` (λx.M)N 99K Γ, s `M [N/x] Γ, s `YM 99K Γ, s `M(YM)

Γ, s ` succn 99K Γ, s ` n+ 1

Γ, s ` pred(n+ 1) 99K Γ, s ` n Γ, s ` pred 0 99K Γ, s ` 0

Γ, s ` skip;M 99K Γ, s `M

Γ, s ` If t then N else P 99K Γ, s `N Γ, s ` If f then N else P 99K Γ, s ` P

Γ, s ` If0 0 then N else P 99K Γ, s `N

Γ, s ` If0(n+ 1) then N else P 99K Γ, s ` P

x,Γ, s ` x← n 99K x,Γ, (s|x 7→ n) ` skip x,Γ, s ` !x 99K x,Γ, s ` s(x)

Γ, s ` new λx.M 99K Γ, x, (s|x 7→ 0) `M

Γ, s ` (mkvarW R)← n 99K Γ, s `Wn Γ, s ` !(mkvarW R) 99K Γ, s `R

Γ, s ` letx = t inM 99K Γ, s `M [t/x]

Γ, s ` letx = f inM 99K Γ, s `M [f/x]

Γ, s ` letx = n inM 99K Γ, s `M [n/x]

Figure 3.2: Felleisen-style small-step operational semantics for Idealized Al-
gol.

Lastly, we define the relation −→ as

Γ, s `M 99K Γ,∆, s′ `M ′

Γ, s `E[M ] −→ Γ,∆, s′ `E[M ′]

for each evaluation context E whose free variables lie in Γ.

We need to prove that this is equivalent to our original semantics.

Given a Γ,∆-store s, write s|Γ for the restriction of s to Γ.

Lemma 3.2.1. Suppose that Γ, s `M 99K Γ,∆, s′ `M ′ and that Γ,∆, s′ `
E[M ′] ⇓ c, s′′. Then Γ, s `E[M ] ⇓ c, s′′|Γ.

Proof. Structural induction on E. The base case, when E = −, covers
the interesting cases, so we shall leave it to last. The remaining cases are
quite similar, so we will show the proof for the case where E = E′N for
illustration.
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If E = E′N , for some term N , then we have Γ,∆, s′ `E′[M ′]N ⇓ c, s′′. By
inspection of the rules in Figure 3.1, the derivation of this must end with a
rule of the form

Γ,∆, s′ `E′[M ′] ⇓ λx.M ′′, t Γ,∆, t `M ′′[N/x] ⇓ c, s′′

Γ,∆, s′ `E′[M ′]N ⇓ c, s′′ .

Thus, Γ,∆, s′ ` E′[M ′] ⇓ λx.M ′′, t and Γ,∆ ` M ′′[N/x] ⇓ c, s′′ must be
provable for some M ′′, t. By the induction hypothesis, this means that
Γ, s `E′[M ] ⇓ λx.M ′′, t is provable. Then we have a derivation

Γ,∆, s `E′[M ] ⇓ λx.M ′′, t Γ,∆, t `M ′′[N/x] ⇓ c, s′′

Γ,∆, s `E′[M ]N ⇓ c, s′′|Γ,∆ .

Then, because any variables in ∆ are not mentioned in E′[M ]N or in c, we
have

Γ, s `E′[M ]N ⇓ c, s′′|Γ .
The remaining cases when E 6= − are quite similar. Now, let us suppose
that E = −, so that E[M ′] = M ′.

Then there are a number of cases, depending on the particular 99K rule we
are using. Many of these cases are similar, so we will cover a few of them
for the purposes of illustration.

• For function application, suppose that Γ, s `M [N/x] ⇓ c, s′. Then we
have a derivation

Γ, s ` λx.M ⇓ λx.M, s Γ, s `M [N/x] ⇓ c, s′

Γ, s ` (λx.M)N ⇓ c, s′ .

• For variable assignment, we have a derivation

Γ, s ` x ⇓ x, s Γ, s ` n ⇓ n, s
Γ, s ` x← n ⇓ skip, (s|x 7→ n) .

• For variable dereference, we have a derivation

Γ, s ` x ⇓ x, s′

Γ, s ` !x ⇓ s(x), s .

• For new, suppose that Γ, x, (s|x 7→ 0) `M ⇓ c, s′. Then we have a
derivation

Γ, x, (s|x 7→ 0) `M ⇓ c, s′

Γ, s ` new λx.M ⇓ c, s′|Γ ,

since s′ = (s′|Γ|x 7→ s′(x)).
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We have proved:

Proposition 3.2.2. Suppose that we have a sequence

Γ1, s
(1),M1 −→ · · · −→ Γn, s

(n),Mn ,

where Mn is a canonical form. Then Γ1, s
(1) `M1 ⇓Mn, s

(n)|Γ1.

Proof. Induction on n. The inductive step is Lemma 3.2.1, while the base
case (n = 1) is given by the derivation

Γ, s ` c ⇓ c, s .

We can also prove the converse.

Proposition 3.2.3. Suppose that Γ, s`M ⇓ c, s′. Then there are sequences
Γ = Γ1, · · · ,Γn = Γ,∆ of Var-contexts, s = s(1), · · · , s(n) of Γn-stores and
M = M1, · · · ,Mn = c of terms such that

Γ1, s
(1) `M1 −→ · · · −→ Γn, s

(n) `Mn ,

and s(n)|Γ = s′.

Proof. Induction on the derivation of Γ, s `M ⇓ c, s′. Since most of the
cases are similar, we cover a selection for illustration.

• Suppose that the last step in the derivation is

Γ, s ` c ⇓ c, s .

Then we have the one-element sequence Γ, s ` c.

• Suppose that the last step in the derivation is

Γ, s `M ⇓ λx.M ′, s′ Γ, s′ `M ′[N/x] ⇓ c, s′′

Γ, s `MN ⇓ c, s′′ .

Then, by the inductive hypothesis, we have small-step derivations

Γ, s `M −→ · · · −→ Γ,∆, t′, λx.M ′

Γ, s′ `M ′[N/x] −→ · · · −→ Γ,∆′, t′′, c ,

where t′|Γ = s′ and t′′|Γ = s′′. Note that we can easily enlarge Γ to
make sure that it contains all the free variables in N .

If we apply the evaluation context −N pointwise to the first small-step
derivation, then we have another valid small-step derivation

Γ, s `M N −→ · · · −→ Γ,∆, t′, λx.M ′N .

Then we can join the two together to get the derivation
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Γ, s `MN −→ · · · −→ Γ,∆, t′, (λx.M ′)N −→

Γ,∆, t′,M ′[N/x] −→ · · · −→ Γ,∆ ∪∆′, t′′ \ t′, c ,

where t′′ \ t′ is the Γ,∆ ∪ ∆′-store that agrees with t′′ on Γ,∆′ and
with t′ on ∆ \∆′. Then (t′′ \ t′)|Γ = s′′.

• Suppose that the last step in the derivation is

Γ, s ` E ⇓ n, s′ Γ, s′ ` V ⇓ x, s′′

Γ, s ` V ← E ⇓ skip, (s′′|x 7→ n) .

By the inductive hypothesis, we have small-step derivations

Γ, s ` E −→ · · · −→ Γ,∆, t′, n Γ, s′ ` V −→ · · · −→ Γ,∆′, t′′, x ,

where t′|Γ = s′ and t′′|Γ = s′′.

We may apply the evaluation context V ← − pointwise to the first
derivation and the evaluation context − ← n pointwise to the second,
and then string the two together to get

Γ, s ` V ← E −→ · · · −→ Γ,∆, t′, V ← n −→ · · · −→

Γ,∆ ∪∆′, t′′ \ t′, x← n −→ Γ,∆ ∪∆′, (t′′ \ t′|x 7→ n) ,

where we have (t′′ \ t′|x 7→ n)|Γ = (s′′|x 7→ n).

• Suppose that the last step in the derivation is

Γ, s ` V ⇓ x, s′

Γ, s ` !V ⇓ s′(x), s′ .

Then, by the induction hypothesis, we have a small-step derivation

Γ, s ` V −→ · · · −→ Γ,∆, t′ ` x ,

where t′|Γ = s′. Then we may compose this derivation pointwise with
the evaluation context !−, and add an extra term on the end, to arrive
at the derivation

Γ, s ` !V −→ · · · −→ Γ,∆, t′ ` !x −→ Γ,∆, t′ ` t′(x) ,

where t′(x) = s′(x).
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• Suppose that the last step in the derivation is

Γ, x, (s|x 7→ 0) `M ⇓ c, (s′|x 7→ n)

Γ, s ` new λx.M ⇓ c, s′ .

By the induction hypothesis, we have a small-step derivation

Γ, x, (s|x 7→ 0) `M −→ · · · −→ Γ,∆, x, (t′|x 7→ n), c ,

where t′|Γ = s′. Then we may add a term at the beginning to give us

Γ, s ` new λx.M −→ Γ, x, (s|x 7→ 0) `M −→

· · · −→ Γ,∆, x, (t′|x 7→ n), c ,

where (t′|x 7→ n)|Γ = s′.

3.3 Soundness

To prove soundness of our model, we shall use the small-step formulation.
Our reason for this is that the most difficult part of the denotational seman-
tics we are using is the part to do with state. In the big-step formulation,
nearly every rule involves the state changing in some way, whereas in the
small-step formulation, only the rules that specifically pertain to the stateful
components of the language do.

Given a Var-context Γ, we will write SΓ for N× · · · × N.

Given Γ, we have a morphism cellΓ : !SΓ ( ! JΓK, given by

!SΓ
∼= !N⊗ · · · ⊗ !N cell⊗···⊗cell−−−−−−−→ ! Var⊗ · · · ⊗ ! Var ∼= ! JΓK .

Lemma 3.3.1. For j = 1, · · · , |Γ|, the following diagram commutes.

!SΓ !VΓ

!N ! Var

cellΓ

! prj ! prj

cell

Proof. We have a commutative diagram

!SΓ !N⊗ · · · ⊗ !N ! Var⊗ · · · ⊗ ! Var !VΓ

!N ! Var

∼=

! prj

cell⊗···⊗cell

()⊗···⊗!N⊗···⊗()

∼=

()⊗···⊗! Var⊗···⊗()
! prj

cell

,
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where the outer triangles commute because the vertical arrows are the pro-
jections in the tensor product of comonoids.

Given a Γ-store s, we will write JsK for the corresponding morphism I → SΓ.

We start our proof of soundness with a structural result about evaluation
contexts. Recall that the most important property of an evaluation context
E is that if a term M fits into the hole in E, then M is the first part
of E[M ] to be evaluated. Using the sequoid operator, we can capture in
category-theoretic terms an analogous property for the denotation of E.

Lemma 3.3.2. Let Γ `M : T be an Idealized Algol term-in-context (where
Γ is an arbitrary context), and let E be an evaluation context with a hole of
type T , where E[M ] : U . Then there are (independent of M) a game A, a
strategy σ : !JΓK ( A and a strict strategy τ : JT K�A( JSK, such that the
denotation JΓ `E[M ]K factors as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ−−−−−−→ JT K⊗A
wkJT K,A−−−−−→ JT K�A τ−→ JUK .

Proof. Structural induction on E.

• If E = − is a hole, then we may take A = I, σ = () and τ = rJT K.

• If E = E′N for some term N , where E′ has type S → T , N has type
S, and M : S′ fits into the hole, then the denotation JΓ `E[M ]K =
JΓ `E′[M ]NK is given by the composite

!JΓK
µJΓK−→ !JΓK⊗!JΓK

JΓ`E′[M ]K⊗JΓ`NK−−−−−−−−−−−−→ (! JSK ( JT K)⊗! JSK
ev!JSK,JT K−−−−−→ JT K .

By the inductive hypothesis, JΓ `E′[M ]K factors as

!JΓK
µJΓK−−→ !JΓK⊗!JΓK

JΓ`MK⊗σ′−−−−−−−→ JS′K⊗A′
wkJS′K,A′−−−−−−→ JS′K�A′ τ

′

−→ (! JSK ( JT K),

for appropriate A′, σ′, τ ′. Then JΓ `E[M ]K = JΓ `E′[M ]NK is given
by the thick dashed arrows in the diagram in Figure 3.3. But this com-
posite is equal to that given by the thin solid arrows in the diagram,
which is of the required form, with

A = A′ ⊗ ! JSK σ = µJΓK; (σ′ ⊗ JΓ `NK†)

τ = passoc−1
JS′K,A′,!JSK; (τ ′ � ! JSK); evs !JSK,JT K .
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!JΓK !JΓK⊗ !JΓK

!JΓK⊗ !JΓK !JΓK⊗ (!JΓK⊗ !JΓK)

(!JΓK⊗ !JΓK)⊗ !JΓK JS′K⊗ (A′ ⊗ ! JSK)

(JS′K⊗A′)⊗ ! JSK JS′K� (A′ ⊗ ! JSK)

(JS′K�A′)⊗ ! JSK (JS′K�A′)� ! JSK

(! JSK ( JT K)⊗ ! JSK (! JSK ( JT K)� ! JSK

JT K

µJΓK

µJΓK

!JΓK⊗µJΓK

µJΓK⊗!JΓK JΓ`MK⊗(σ′⊗JΓ`NK†)

(JΓ`MK⊗σ′)⊗JΓ`NK†

assoc!JΓK,!JΓK,!JΓK

wkJS′K,A′⊗!JSK

wkJS′K,A′ ⊗!JSK

assocJS′K,A′,!JSK

passoc−1

JS′K,A′,!JSK

τ ′⊗!JSK

wkJS′K�A′,!JSK

τ ′�!JSK

ev!JSK,JTK

wk!JSK(JTK,!JSK

evs !JSK,JTK

Figure 3.3: The property in Lemma 3.3.2 is preserved by function applica-
tion. Here, evs !JSK,JT K = Λ−1

s (id!JSK(JT K).

• If E = succE′ or predE′, where E′ is a context of type nat, and M : T
is a term that fits into the hole, then the denotation JΓ `E[M ]K is
given by the composite

!JΓK
JΓ`E′[M ]K−−−−−−→ N θ−→ N ,

where θ is either pred or succ. By the inductive hypothesis, JΓ `E′[M ]K
factors as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ N ,

for appropriate A′, σ′, τ ′. When we compose on the right by θ, we are
already in the required form, for

A = A′ σ = σ′ τ = τ ′; θ .

• Similarly, if E = !E′, where E′ is a context of type Var, and M : T is
a term that fits into the hole, then the denotation JΓ `E[M ]K is given
by the composite

!JΓK
JΓ`E′[M ]K−−−−−−→ Var

deref−−−→ N .
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By the inductive hypothesis, JΓ `E′[M ]K factors as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ Var ,

for appropriate A′, σ′, τ ′. When we compose on the right by deref, we
are already in the required form, for

A = A′ σ = σ′ τ = τ ′; deref .

• If E = E′;N for some term N of type X ∈ {com, bool, nat}, where E′

is an evaluation context of type com, and if M : T fits into the hole in
E′, then the denotation JΓ `E[M ]K is given by the composite

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`E′[M ]K⊗JΓ⊗NK−−−−−−−−−−−−→ C⊗X Λ−1(seqX)−−−−−−−→ X .

If E = N ← E′, for some term N of type Var, where E′ is an evaluation
context of type com, and if M : T fits into the hole in E′, then the
denotation JΓ `E[M ]K is given by the composite

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`E′[M ]K⊗JΓ⊗NK−−−−−−−−−−−−→ N⊗ Var
Λ−1(assign)−−−−−−−→ C .

Write Y = C, X ′ = X, Z = X and υ = seqX in the sequencing
case, and Y = N, X ′ = Var, Z = C and υ = assign in the variable
assignment case. By the inductive hypothesis, JΓ `E′[M ]K factors as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ Y ,

for suitable A′, σ′, τ ′. Then JΓ `E[M ]K is given by the thick dashed
arrows in the diagram in Figure 3.4. But this composite is equal to
that given by the thin solid arrows in the diagram, which is of the
required form, with

A = A′ ⊗X ′ σ = µJΓK; (σ′ ⊗ JΓ `NK)

τ = passoc−1
JT K,A′,X′ ; (τ ′ �X ′); Λ−1

s (υ) .

• If E = If E′ then N else P for a context E′ of type bool, where N and
P are terms of type X ∈ {bool, com, nat}, then write Y = bool and
η = IfX . If E = If0E′ then N else P for a context E′ of type nat,
where N and P are terms of type X ∈ {bool, com, nat}, then write
Y = nat and η = If0X . In either case, if M : T is a term that fits into
the hole, then the denotation JΓ `E[M ]K is given by

!JΓK
µVΓ−−→ !JΓK⊗ !JΓK

µΓ⊗JΓK−−−−−→ (!JΓK⊗ !JΓK)⊗ !JΓK

(JΓ`E′[M ]K⊗JΓ`NK)⊗JΓ`P K−−−−−−−−−−−−−−−−−−→ (Y ⊗X)⊗X Λ−1(Λ−1(η))−−−−−−−−→ X .
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!JΓK !JΓK⊗ !JΓK

!JΓK⊗ !JΓK !JΓK⊗ (!JΓK⊗ !JΓK)

(!JΓK⊗ !JΓK)⊗ !JΓK JT K⊗ (A′ ⊗X ′)

(JT K⊗A′)⊗X ′ JT K� (A′ ⊗X ′)

(JT K�A′)⊗X ′ (JT K�A′)�X ′

Y ⊗X ′ Y �X ′

JT K

µJΓK

µJΓK

!JΓK⊗µJΓK

µJΓK⊗!JΓK JΓ`MK⊗(σ′⊗JΓ`NK)

(JΓ`MK⊗σ′)⊗JΓ`NK

assocJΓK,JΓK,JΓK

wkJTK,A′⊗X′

wkJTK,A′ ⊗X
′

assocJTK,A′,X′

passoc−1

JTK,A′,X′

τ ′⊗X′

wkJTK�A′,X′

τ ′�X′

Λ−1(υ)

wkY,X′

Λ−1
s (υ)

Figure 3.4: The property in Lemma 3.3.2 is preserved by sequencing and
variable assignment. We use the fact that υ ∈ {seqX , assign} is a strict
strategy, so that Λ−1

s (υ) is well-defined.
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By the inductive hypothesis, JΓ `E′[M ]K factors as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ Y ,

for appropriate A′, σ′, τ ′. Then JΓ `E[M ]K = JΓ `E′[M ]NK is given
by the thick dashed arrows in the diagram in Figure 3.5. But this com-
posite is equal to that given by the thin solid arrows in the diagram,
which is of the required form, with

A = (A′⊗X)⊗X σ = µJΓK; (µJΓK⊗ !JΓK); ((σ′⊗JΓ `NK)⊗JΓ ` P K)

τ =

passoc−1
JT K,A′⊗X,X ; (passoc−1

JT K,A′,X �X); ((τ ′ �X)�X); Λ−1
s (Λ−1

s (η)) .

• If E = letY,X x = E′ in N , for X ∈ {C,B,N} and Y ∈ {B,N}, then the
denotation JΓ `E[M ]K is given by

!JΓK
µVΓ−−→ ! JΓK⊗ ! JΓK

JΓ`E′[M ]K⊗JΓ`λx.NK−−−−−−−−−−−−−−→ Y ⊗ (!Y ( X)
Λ−1(let)−−−−−→ X .

By the inductive hypothesis, JΓ `E′[M ]K can be written as

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ Y ,

for suitable A, σ, τ . This means that JΓ `E[M ]K is given by the thick
dashed arrows in the diagram in Figure 3.6. But this composite is
equal to that given by the thin solid arrows in the diagram, which is
of the required form with

A = A′ ⊗ (!Y ( X) σ = µJΓK; (σ′ ⊗ JΓ ` λx.NK)

τ = passoc−1
JT K,A′,(!Y(X); (τ ′ � (!Y ( JT K)); Λ−1

s (let) .

• Lastly, suppose that E = E′ ← n for some numeral n, where E′ is a
context of type Var, and suppose that M : T fits into the hole. The
denotation JΓ `E[M ]K is given by

!JΓK
JΓ`E′[M ]K−−−−−−→ Var

lunitVar−−−−−→ I ⊗Var
n⊗Var−−−−→ N⊗Var

assign−−−→ C .

By the induction hypothesis, JΓ `E′[M ]K takes the form

!JΓK
µJΓK−−→ !JΓK⊗ !JΓK

JΓ`MK⊗σ′−−−−−−→ JT K⊗A′
wkJT K,A′−−−−−→ JT K�A′ τ

′
−→ Var ,
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!JΓK !JΓK⊗ !JΓK

!JΓK⊗ !JΓK (!JΓK⊗ !JΓK)⊗ !JΓK !JΓK⊗ (!JΓK⊗ !JΓK)

(!JΓK⊗ !JΓK)⊗ !JΓK (!JΓK⊗ (!JΓK⊗ !JΓK))⊗ !JΓK !JΓK⊗ ((!JΓK⊗ !JΓK)⊗ !JΓK)

((!JΓK⊗ !JΓK)⊗ !JΓK)⊗ !JΓK (JT K⊗ (A′ ⊗X))⊗X JT K⊗ ((A′ ⊗X)⊗X)

((JT K⊗A′)⊗X)⊗X (JT K� (A′ ⊗X))⊗X JT K� ((A′ ⊗X)⊗X)

((JT K�A′)⊗X)⊗X ((JT K�A′)�X)⊗X (JT K� (A′ ⊗X))�X

(Y ⊗X)⊗X (Y �X)⊗X ((JT K�A′)�X)�X

X (Y �X)�X

µJΓK

µJΓK !JΓK⊗µJΓK

µJΓK⊗!JΓK

µJΓK⊗!JΓK

assoc!JΓK,!JΓK,!JΓK

(!JΓK⊗µJΓK)⊗!JΓK !JΓK⊗(µJΓK⊗!JΓK)

(µJΓK⊗!JΓK)⊗!JΓK

assoc!JΓK,!JΓK⊗!JΓK,!JΓK

(JΓ`MK⊗(σ′⊗JΓ`NK))⊗JΓ`P K JΓ`MK⊗((σ′⊗JΓ`NK)⊗JΓ`P K)

((JΓ`MK⊗σ′)⊗JΓ`NK)⊗JΓ`P K

assoc!JΓK,!JΓK,!JΓK⊗!JΓK

assocJTK,A′⊗X,X

wkT,A′⊗X ⊗X wkJTK,(A′⊗X)⊗X
assocJTK,A′,X ⊗X

(wkJTK,A′ ⊗X)⊗X wkJTK�(A′⊗X),XpassocJTK,A′,X ⊗X passoc−1

JTK,A′⊗X,X

wkJTK�A′,X ⊗X

(τ ′⊗X)⊗X) wk(JTK�A′)�X,X(τ ′�X)⊗X passoc−1

JTK,A′,X �X

wkY,X ⊗X

Λ−1(Λ−1(η)) wkY�X,XΛ−1(Λ−1
s (η)) (τ ′�X)�X

Λ−1
s (Λ−1

s (η))

Figure 3.5: The property in Lemma 3.3.2 is preserved by conditionals. We use the fact that η ∈ {IfX , If0X} is a strict strategy,
and that the Λ−1

s is a function from strict strategies to strict strategies, so that Λ−1
s (Λ−1

s (η)) is well-defined and strict.
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! JΓK ! JΓK⊗ ! JΓK

! JΓK⊗ ! JΓK ! JΓK⊗ (! JΓK⊗ ! JΓK)

(! JΓK⊗ ! JΓK)⊗ ! JΓK JT K⊗ (A′ ⊗ (!Y ( X))

(JT K⊗A′)⊗ (!Y ( X) JT K� (A′ ⊗ (!Y ( X)

(JT K�A′)⊗ (!Y ( X) (JT K�A)� (!Y ( X)

Y ⊗ (!Y ( X) Y � (!Y ( X)

X

µJΓK

µJΓK

!JΓK⊗µJΓK

µJΓK⊗!JΓK JΓ`MK⊗(σ′⊗JΓ`λx.NK)assoc!JΓK,!JΓK,!JΓK

(JΓ`MK⊗σ)⊗JΓ`λx.NK wkJT K,A′⊗(!Y(X)
assocJT K,A′,!Y(X

wkJT K⊗A′,!Y(X passoc−1
JT K,A,!Y(X

wkJT K�A′,!Y(X

τ ′⊗(!Y(X) τ ′�(!Y(X)

wkY,!Y(X

Λ−1(let)

Λ−1
s (let)

Figure 3.6: The property in Lemma 3.3.2 is preserved by the let keyword.
We use the fact that letY,X is a strict strategy, and that the Λ−1

s is a function
from strict strategies to strict strategies.

101



for suitable A′, σ′, τ ′. When we compose on the right by the mor-
phism lunitVar; (n ⊗ Var); assign, in order to give us the denotation
JΓ `E′[M ]← nK = JΓ `E[M ]K, then we are already in the required
form, with

A = A′ σ = σ′ τ = τ ′; lunitVar; (n⊗Var); assign .

Having proved this result about evaluation contexts, we now give an outline
of the general soundness proof. We would like to represent a term-with-store
Γ, s `M : T by its denotation

I
!JsK−−→ !SΓ

cellΓ−−−→ ! JΓK
JΓ`MK−−−−→ JT K .

This composite tells us what the behaviour of M is when we evaluate it
with state s. However, it tells us nothing about the state that M leaves
after it has evaluated, and is therefore inadequate for inductive proofs along
a derivation.

Instead, we want to capture information about the state that M leaves,
which we do using the following derivation.

• We use the comonoid structure of ! JΓK to create two separate references
to the storage cells – one for the use of M and one for the use of any
code that will run after M has finished.

• We then use the sequoid operator to indicate the temporal relationship
– namely, that M runs first and all other accesses to the storage cells
will receive the state that M left behind.

Definition 3.3.3. Let Γ, s `M : T be a term with store. Then we define
the sequoidal denotation JΓ, s `MK to be the composite

I
!JsK−→ !SΓ

cellΓ−−→ ! JΓK
µJΓK−−→ ! JΓK⊗! JΓK

JΓ`MK⊗!JΓK−−−−−−−→ JT K⊗! JΓK
wkJT K,!JΓK−−−−−→ JT K�! JΓK .

Our next lemma will help us deal with the base 99K rules. We will then use
Lemma 3.3.2 to extend this to the −→ relation.

Lemma 3.3.4. The relation 99K between triples Γ, s `M preserves the se-
quoidal denotation JΓ, s `MK .

In other words, if Γ, s `M 99K Γ,∆, s′ `N , where M,N have type T , then
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the following diagram commutes.

I !SΓ ! JΓK ! JΓK⊗ ! JΓK

!SΓ,∆ JT K⊗ !VΓ

!JΓ,∆K JT K� ! JΓK

!JΓ,∆K⊗ !JΓ,∆K JT K⊗ !JΓ,∆K JT K� !JΓ,∆K .

!JsK

!JsK′

cellΓ µJΓK

JΓ`MK⊗!VΓ

cellΓ,∆ wkJT K,!JΓK

µJΓ,∆K

JΓ,∆`NK⊗!JΓ,∆K wkJT K,!JΓ,∆K

JT K�! prΓ

I.e., if Γ, s `M 99K Γ,∆, s′ `N , then JΓ, s `MK = JΓ,∆, s′ `NK ; ! prΓ.

Proof. We prove this on a case-by-case basis.

• For most of the rules, ∆ = and s = s′; i.e., the rule is of the form

Γ, s `M 99K Γ, s `N

for some M,N . In such a case, it suffices to show that JΓ `MK =
JΓ `NK. Indeed, we have

– JΓ ` (λx.M)NK = JΓ `M [N/x]K (by a usual substitution-lemma
argument);

– JΓ `YMK = JΓ ` (λF.λf.f(Ff))YMK = JΓ `M(YM)K;

– JΓ ` succnK = JΓ ` n+ 1K;

– JΓ ` pred(n+ 1)K = JΓ ` nK;

– JΓ ` pred 0K = JΓ ` 0K;

– JΓ ` skip;MK = JΓ `MK;

– JΓ ` If t then N else P K = JΓ ` (λx.λy.x)NP K = JΓ `NK;

– JΓ ` If f then N else P K = JΓ ` (λx.λy.y)NP K = JΓ ` P K;

– JΓ ` If0 0 then N else P K = JΓ ` (λx.λy.x)NP K = JΓ `NK;

– JΓ ` If0(n+ 1) then N else P K = JΓ ` (λx.λy.y)NP K = JΓ ` P K;

– JΓ ` letx = t inMK = J(λx.M)tK = JM [t/x]K;

– JΓ ` letx = f inMK = J(λx.M)fK = JM [f/x]K;

– JΓ ` letx = n inMK = J(λx.M)nK = JM [n/x]K;
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– JΓ ` (mkvarW R)← nK = 〈JΓ `WnKn∈N , JΓ `RK〉; prn =
JΓ `WnK; and

– JΓ ` !(mkvarW R)K = 〈JΓ `WnKn∈N , JΓ `RK〉; prN = JΓ `RK.

• Now consider the rule

Γ, s ` new λx.M 99K Γ, x, (s|x 7→ 0) `M ,

where Γ`M : T . The first observation to make is that the denotation
JΓ ` new λx.MK may be written as

! JΓK
runit!JΓK−−−−→ ! JΓK⊗I !JΓK⊗(0;cell)−−−−−−→ ! JΓK⊗! Var→ !JΓ, xK

Λ−1(JΓ`λx.MK)−−−−−−−−−→ JT K ,

where, of course, Λ−1(JΓ ` λx.MK) = JΓ, x `MK, and that the projec-
tion prΓ : !JΓ, xK is a right inverse for the composite runit!JΓK; (!JΓK ⊗
(0; cell));∼=, since we have a commutative diagram

! JΓK ! JΓK⊗ I ! JΓK⊗ ! Var

! JΓK ! JΓK⊗ I !JΓ, xK .

runit!JΓK !JΓK⊗(0;cell)

id!JΓK⊗I !JΓK⊗()

runit−1

! prΓ

Then we may prove this case using the commutative diagram in Figure
3.7.

• Now consider the rules

x,Γ, s`x← n 99K x,Γ, (s|x 7→ n)`skip x,Γ, s` !x 99K x,Γ, s`s(x) .

In each of these cases, the outer context Γ is unchanged by the rule;
moreover, each term ignores the variables in Γ. So the denotations of
the terms-in-context x,Γ `M : T on either side of each rule are of the
form

!Jx,ΓK
! pr1−−→ ! Var

Jx`MK−−−−→ JT K .

Now the diagram in Figure 3.8 tells us that each JΓ, x, s`MK may be
written as the composite

! Js|ΓK ; cellΓ; lunit!JΓK;

((! Js|xK ; cell;µVar; (Jx `MK⊗ ! Var); wkJT K,! Var)⊗ ! JΓK);

wkJT K�! Var,!JΓK; passocJT K,! Var,!JΓK;
∼=
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I !SΓ ! JΓK ! JΓK⊗ ! JΓK

!SΓ,x ! JΓK⊗ ! JΓK !JΓ, xK⊗ ! JΓK

!JΓ, xK JT K⊗ ! JΓK

!JΓ, xK⊗ !JΓ, xK JT K⊗ !JΓ, xK JT K� !JΓ, xK JT K� ! JΓK

!JsK

!〈JsK,0〉

cellΓ µJΓK

µJΓK runit!JΓK;(!JΓK⊗(0;cell));∼=! prΓ

cellΓ,x JΓ,x`MK⊗!JΓK

prΓ⊗!JΓK
! prΓ

µJΓ,xK wkJT K,!JΓK

! prΓ⊗! prΓ JΓ,xK⊗prΓ

JΓ,x`MK⊗!JΓ,xK wkJT K,!JΓ,xK JT K�prΓ

Figure 3.7: The conclusion of Lemma 3.3.4 holds for the new rule.
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(where ∼= represents the natural isomorphism between the games JT K�
(! Var⊗! JΓK) and JT K � !Jx,ΓK), and so is completely determined by
the value of the composite

! Js|xK ; cell;µVar; (Jx `MK⊗ ! Var); wkJT K,! Var ;

i.e., the sequoidal denotation Jx, s|x `MK .

This tells us that we can assume that Γ is the empty context, so that
the rules take on the form

x, s ` x← n 99K x, (x 7→ n) ` skip x, s ` !x 99K x, s ` s(x) .

Now the commutative diagrams in Figure 3.9 prove that

Jx, s|x ` x← nK = Jx, (x 7→ n) ` skipK

and that
Jx, s|x ` !xK = Jx, s|x ` s(x)K ,

completing the proof.

Now that we have dealt with the base rules, we can move on to the full
relation −→.

Lemma 3.3.5. The relation −→ between triples Γ, s `M preserves the se-
quoidal denotation

JΓ, s `MK = ! JsK ; cellΓ;µJΓK; (JΓ `MK⊗ ! JΓK); wkJT K,!JΓK .

I.e., if Γ, s`M 99K Γ,∆, s′`N , where M,N have type T , and E is a context
of type U with a hole of type T , then the following diagram commutes.

I !SΓ ! JΓK ! JΓK⊗ ! JΓK

!SΓ,∆ JUK⊗ !VΓ

!JΓ,∆K JUK� ! JΓK

!JΓ,∆K⊗ !JΓ,∆K JUK⊗ !JΓ,∆K JUK� !JΓ,∆K ,

!JsK

!Js′K

cellΓ µJΓK

JΓ`E[M ]K⊗!VΓ

cellΓ,∆ wkJUK,!JΓK

µJΓ,∆K

JΓ,∆`E[N ]K⊗!JΓ,∆K wkJUK,!JΓ,∆K

JUK�! prΓ
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I !SΓ ! JΓK I ⊗ ! JΓK

!Sx,Γ I ⊗ !SΓ

!N⊗ !SΓ !N⊗ ! JΓK

!Jx,ΓK ! Var⊗! JΓK

!Jx,ΓK⊗ !Jx,ΓK (! Var⊗! JΓK)⊗ (! Var⊗! JΓK) (! Var⊗! Var)⊗ (! JΓK⊗ ! JΓK) (! Var⊗! Var)⊗ ! JΓK

! Var⊗!Jx,ΓK ! Var⊗(! Var⊗! JΓK) JT K⊗ (! Var⊗! JΓK) (JT K⊗ ! Var)⊗ ! JΓK

JT K⊗ !Jx,ΓK (JT K� ! Var)⊗ ! JΓK

JT K� !Jx,ΓK JT K� (! Var⊗! JΓK) (JT K� ! Var)� ! JΓK

!Js|ΓK

!JsK

cellΓ

lunit!SΓ

lunit!JΓK

!Js|xK⊗!JΓK
∼=

cellx,Γ

I⊗cellΓ

!Js|xK⊗!SΓ

!N⊗cellΓ

cell⊗cellΓ cell⊗!JΓK
∼=

µJx,ΓK µVar⊗!JΓK

µVar⊗µJΓK

! pr1⊗!Jx,ΓK

Jx,Γ`MK⊗!Jx,ΓK

(! Var⊗())⊗(! Var⊗!JΓK)

(! Var⊗! Var)⊗(()⊗!JΓK)

(Jx`MK⊗! Var)⊗!JΓK

∼=

Jx`MK⊗!Jx,ΓK

assoc−1
! Var,! Var,!JΓK

Jx`MK⊗(! Var⊗!JΓK) assocJTK,! Var,!JΓK

wkJTK,(! Var⊗!JΓK)

wkJTK,! Var⊗!JΓK

wkJTK,!Jx,ΓK

∼=

wk(JTK�! Var),!JΓK

∼=
passocJTK,! Var,!JΓK

Figure 3.8: Diagram proving that if we want to prove the conclusion of Lemma 3.3.4 for a small-step rule that does not change
the context and only mentions one variable, then it suffices to assume that that variable is the only variable in the context.
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I !N ! Var ! Var⊗! Var

!N I Var�!N Var⊗! Var

C⊗ !N Var�! Var

! Var I ⊗ !N C� !N C⊗ ! Var

! Var⊗! Var I ⊗ ! Var !C⊗ ! Var C� ! Var

!s(x)

!n

cell

() cell0

µVar

αVar

P. 2.14.5

derVar⊗! Var

cell lunit!N

L. 2.17.1

!n

Var�cellprn�!N wkVar,! Var

prn⊗! Var

wkC,!N

C⊗cell prn�! Var

µVar lunit! Var

skip⊗!N

I⊗cell C�cell wkC,! Var

()⊗! Var skip⊗! Var wkC,! Var

I !N ! Var ! Var⊗! Var

!N I ⊗ I !N⊗ !N Var⊗! Var

I ⊗ !N N⊗ !N Var�!N

! Var N� !N Var�! Var N⊗ ! Var

! Var⊗! Var I ⊗ ! Var N⊗ ! Var N� ! Var

!s(x)

!s(x)

cell

µN

cell0

L.2.17.1

µVar

αVar

P.2.14.5
derVar⊗! Var

lunit!N

cell

I⊗!s(x)

!s(x)⊗!s(x)

s(x)⊗!s(x)
derN⊗!N

wkVar,! Var

prN⊗! Var
s(x)⊗!N

I⊗cell

wkN,!N

N⊗cell

prN�!N
Var�cell

µVar lunitVar

N�cell

prN�! Var
wkN,! Var

()⊗! Var s(x)⊗! Var wkN,! Var

Figure 3.9: Diagrams to prove that the conclusion of Lemma 3.3.4 holds for
the storage cell rules. References in the middle of a shape refer to Lemma
2.17.1 and Proposition 2.14.5 above. Note the prominent role played in both
diagrams by the anamorphism square for cell given in Section 2.17.
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Proof. We use Lemma 3.3.2 and Lemma 3.3.5. Lemma 3.3.2 tells us that
for any Γ, s `M , JΓ `E[M ]K may be written as

! JΓK
µJΓK−−→ ! JΓK⊗ ! JΓK

JΓ`MK⊗σ−−−−−−→ JT K⊗A
wkJT K,A−−−−−→ JT K�A τ−→ JUK

for suitably chosen A, σ, τ .

Let us write JΓ, s `MK for the composite

! JsK ; cellΓ;µJΓK; (JΓ `MK⊗ ! JΓK); wkJT K,!JΓK; (JT K� (Γ + 0∆)) .

So we are trying to show that JΓ, s`E[M ]K = JΓ,∆, s′`E[N ]K ; (JUK�! prΓ).

Now the diagram in Figure 3.10 shows us that for any Γ, s`M we may write

JΓ, s`E[M ]K = JΓ, s`MK ; (JT K�(µJΓK; (σ⊗! JΓK)); passoc−1
JT K,A,!JΓK; (τ�! JΓK) .

Therefore, Lemma 3.3.4 tells us that if Γ, s `M 99K Γ,∆, s′ ` N , then we
have

JΓ, s `E[M ]K
= JΓ, s `MK ; (JT K� (µJΓK; (σ ⊗ ! JΓK)); passoc−1; (τ � ! JΓK)
= JΓ, s `NK ; (JT K� ! prΓ); (JT K� (µJΓK; (σ ⊗ ! JΓK)); passoc−1; (τ � ! JΓK)
= JΓ, s `NK ; (JT K� (µJΓ,∆K; ((prΓ;σ)⊗ !JΓ,∆K))); passoc−1;

(τ � ! JΓK); (JUK� ! prΓ)

= JΓ, s `E[N ]K ; (JUK� ! prΓ) ,

as desired.

It is now a simple induction to lift this result from the small-step −→ relation
to the big-step ⇓ relation.

Lemma 3.3.6. Suppose that Γ, s ` M ⇓ c, s′, where M, c : T . Then the
following diagram commutes.

I !SΓ ! JΓK ! JΓK⊗ ! JΓK

!SΓ JT K⊗ ! JΓK

! JΓK ! JΓK⊗ ! JΓK JT K⊗ ! JΓK JT K� ! JΓK

!JsK

!Js′K

cellΓ µJΓK

JΓ`MK⊗!JΓK

cellΓ wkJT K,!JΓK

µJΓK JΓ`cK⊗!JΓK wkJT K,!JΓK
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!JΓK !JΓK⊗ !JΓK JT K⊗ !JΓK JT K� !JΓK

!JΓK⊗ !JΓK

(!JΓK⊗ !JΓK)⊗ !JΓK !JΓK⊗ (!JΓK⊗ !JΓK) JT K⊗ (!JΓK ⊗ !JΓK) JT K� (!JΓK⊗ !JΓK)

(JT K⊗A)⊗ !JΓK JT K⊗ (A⊗ !JΓK) JT K� (A⊗ !JΓK)

(JT K�A)⊗ !JΓK (JT K�A)� !JΓK

JUK⊗ !JΓK JUK� !JΓK

µJΓK

µJΓK

JΓ`MK⊗!JΓK

!JΓK⊗µJΓK

wkJT K,!JΓK

JT K⊗µJΓK JT K�µJΓK

µJΓK⊗!JΓK

assoc!JΓK,!JΓK,!JΓK

(JΓ`MK⊗σ)⊗!JΓK

JΓ`MK⊗(!JΓK⊗!JΓK)

JΓ`MK⊗(σ⊗!JΓK)

wkJT K,!JΓK⊗!JΓK

JT K⊗(σ⊗!JΓK) JT K�(σ⊗!JΓK)

wkJT K,A⊗!JΓK

assocJT K,A,!JΓK wkJT K,A⊗!JΓK

wkJT K�A,!JΓK

τ⊗!JΓK τ�!JΓK

passocJT K,A,!JΓK

wkJUK,!JΓK

Figure 3.10: Diagram proving that the conclusion of Lemma 3.3.4 can be lifted to the −→ relation.
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Proof. By Proposition 3.2.3, there are sequences Γ = Γ1, · · · ,Γn = Γ,∆,
s = s(1), · · · , s(n), M = M1, · · · ,Mn = c such that

Γ1, s
(1) `M1 −→ · · · −→ Γn, s

(n) `Mn ,

and s(n)|Γ = s′.

By inductively applying Lemma 3.3.5, we see that we have a commutative
diagram

I !SΓ ! JΓK ! JΓK⊗ ! JΓK

!SΓ,∆ JT K⊗ !VΓ

!JΓ,∆K JT K� ! JΓK

!JΓ,∆K⊗ !JΓ,∆K JT K⊗ !JΓ,∆K JT K� !JΓ,∆K ,

!JsK

!Js(n)K

cellΓ µJΓK

JΓ`MK⊗!VΓ

cellΓ,∆ wkJT K,!JΓK

µJΓ,∆K

JΓ,∆`cK⊗!JΓ,∆K wkJT K,!JΓ,∆K

JT K�! prΓ

Now, since s(n)|Γ = s′, we have a commutative diagram

I !SΓ

!SΓ,∆

!JΓ,∆K ! JΓK

!JΓ,∆K⊗ !JΓ,∆K ! JΓK⊗ ! JΓK

JT K⊗ !JΓ,∆K JT K⊗ ! JΓK

JT K� !JΓ,∆K JT K� ! JΓK

Js′K

Js(n)K

cellΓ

! prΓ

cellΓ,∆

! prΓ

µJΓ,∆K µJΓK

JΓ,∆`cK⊗!JΓ,∆K

! prΓ⊗! prΓ

JΓ`cK⊗!JΓK

JT K⊗! prΓ

wkJT K,!JΓ,∆K wkJT K,!JΓK

JT K�! prΓ

which, together with the diagram above, gives us the commutative diagram
in the statement.

So we have now proved that if Γ, s`M ⇓ c, s′, then the sequoidal denotations

JΓ, s `MK JΓ, s′ ` cK
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are equal.

It is then an easy corollary to show the sense in which our semantics is
sound.

Proposition 3.3.7 ([AM96]). Suppose that Γ, s `M ⇓ c, s′. Then

JsK ; cellΓ; JΓ `MK =
q
s′

y
; cellΓ; JΓ ` cK .

Proof. Lemma 3.3.6, plus the fact that if Γ, s ` P : T , then we have a com-
mutative diagram

I !SΓ ! JΓK ! JΓK⊗ ! JΓK JT K⊗ ! JΓK

! JΓK⊗ I

! JΓK� I JT K⊗ I

JT K JT K� I JT K� ! JΓK ,

JsK cellΓ µJΓK

JΓ`P K

runit!JΓK

JΓ`P K⊗!JΓK

!JΓK⊗()

wkJT K,!JΓK

JT K⊗()

JΓ`P K⊗Iwk!JΓK,I

JΓ`P K�I

r!JΓK

wkJT K,I

rJT K JT K�()

allowing us to recover JsK ; cellΓ; JΓ ` P K from

JΓ, s ` P K = JsK ; cellΓ;µJΓK; (JΓ ` P K⊗ ! JΓK); wkJT K,!JΓK ,

for P = M, c.

3.4 Computational Adequacy

Our proof of computational adequacy is based on that from [AM96], but
modified to make use of the coalgebraic definition of the cell strategy. As
is usual in proofs of computational adequacy, our proof relies on logical
relations.

First, we note some additional order-theoretic properties of our model. For
any game A, we have a strategy ⊥A : A, given by ⊥A = {ε}; i.e., the strategy
that has no reply even for the very first move. It is clear that ⊥ is the bottom
element of the set of strategies for A, ordered by inclusion.

It is then easy to see the following.

Proposition 3.4.1.
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• Given σ : A( B, σ;⊥B(C = ⊥A(C .

• Given a strict strategy τ : B ( C, ⊥A(B; τ = ⊥A(C .

• ⊥A(B is a strict strategy and ⊥A(B � σ = ⊥(A�C)((B�D) for any
σ : C ( D.

• Λ(⊥A⊗B(C) = ⊥A((B(C).

• Given a zigzag (copycat) strategy zzφ : B ( C and a strategy σ : A(
B, if σ; zzφ = ⊥A(C then σ = ⊥A(B.

Definition 3.4.2. Given a Var-store Γ, a strategy σ : ! JΓK ( A and a
Γ-store s, we write

Js, σK

for the composite

I
!JsK−−→ !SΓ

cellΓ−−−→ ! JΓK
µJΓK−−→ ! JΓK⊗ ! JΓK

σ⊗!JΓK−−−−→ A⊗ ! JΓK
wkA,!JΓK−−−−−→ A� ! JΓK .

In particular, if Γ `M : T is a term in context, then Js, JΓ `MK K is equal
to the sequoidal denotation JΓ, s `MK .

Definition 3.4.3. We inductively define a relation /Γ
T , where Γ is a Var-

store and T a type, between strategies σ : ! JΓK ( JT K and terms Γ `M : T
in context as follows.

• If X ∈ {C,B,N} is a datatype, M : X, u ∈ X and σ : ! JΓK ( X, then
we say that σ /Γ

X u if for all Γ-stores s, either Js, σK = ⊥A�!JΓK or
Js, σK = JΓ, s′ ` uK for some Γ-store s′ such that Γ, s `M ⇓ u, s′.

• If σ : ! JΓK ( Var and Γ `M : Var, we say that σ /Γ
Var M if

σ; prn /
Γ
com M ← n

for all n, and if
σ; prN /

Γ
nat !M .

• If σ : ! JΓK ( (! JSK ( JT K) and M : S → T , we say that σ /Γ
S→T M

if whenever τ : ! JΓK ( JSK is a strategy and N : S is a term such that
τ /Γ

S N , then(
! JΓK

µJΓK−−→ ! JΓK⊗ ! JΓK σ⊗τ†−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K
)
/Γ
T M N.

We now prove some lemmata about this new relation.

113



Lemma 3.4.4. Let Γ`M,N : T be terms in context of Idealized Algol such
that

Γ, s `M −→ Γ, s `N

for all Γ-stores s. Suppose σ : ! JΓK ( JT K is a strategy such that σ /Γ
T N .

Then σ /Γ
T M .

Proof. Induction on T .

Suppose that Γ, s `M,N ` X, where X is some datatype, and that Γ, s `
M −→ Γ, s ` N for all Γ-stores s. Fix some Γ-store s and some strategy
σ : ! JΓK ( JT K, and suppose that σ /Γ

T N .

If Js, σK 6= ⊥!JΓK(X , then by hypothesis it is equal to Js′, uK for some u such
that Γ, s `N ⇓ u, s′. Then, by Lemma 3.2.1, Γ, s `M ⇓ u, s′.

If Γ, s `M,N : Var and σ /Γ
Var N , then we have σ; prn /

Γ
com N ← n for each

n and σ; prN /Γ
nat !N . If Γ, s `M −→ Γ, s ` N , then Γ, s `M ← n −→

Γ, s `N ← n for each n and Γ, s ` !M −→ Γ, s ` !N . Then, by the previous
paragraph, we must have σ; prn /

Γ
com M ← n for each n and σ; prN /

Γ
nat !M ,

and therefore σ /Γ
Var M .

Lastly, suppose that Γ, s`M,N : S → T and suppose that Γ, s`M −→ Γ, s`
N . Let σ : ! JΓK ( (! JSK ( JT K) be a strategy and suppose that σ /S→T N .
We claim that σ /S→T M . Indeed, let τ : ! JΓK ( JSK be a strategy and let
Γ `P : S be a term in context such that τ /Γ

S P . Then, since σ /S→T N , we
must have that µJΓK; (σ ⊗ τ †); ev /Γ

T N P . Since Γ, s `M −→ Γ, s ` N , we

must have Γ, s`M P −→ Γ, s`N P , and therefore µJΓK; (σ⊗τ †); ev /Γ
T M P

by induction.

Lemma 3.4.5. Let T be a type of Idealized Algol, and let Γ be a Var-context.
Then ⊥!JΓK(JT K /

Γ
T M for any term-in-context Γ `M : T .

Proof. Induction on T . If T is a datatype and s a store, then for any
σ : ! JΓK ( JT K we have

! JsK ; cellΓ;σ = Js, σK ; (JT K� ()); rJT K ,

as in the proof of Proposition 3.3.7; since (JT K� ()); rJT K is a zigzag strategy,

if σ = ⊥!JΓK(JT K, then ! JsK ; cellΓ;σ = ⊥JT K, and therefore Js, σK = ⊥T�!JΓK.

Suppose Γ `M : Var. Since the projections are strict strategies, we have
⊥!JΓK(Var; prn = ⊥!JΓK(C /

Γ
Var M and ⊥!JΓK(Var; prC = ⊥!JΓK(N /

Γ
N M , and

therefore ⊥!JΓK(Var /
Γ
Var M .

Suppose that Γ `M : S → T . Fix some N : S and τ : ! JΓK ( JSK such that
τ /Γ

S N .
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We are required to show that(
! JΓK

µJΓK−−→ ! JΓK⊗ ! JΓK ⊥⊗τ
†

−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K
)
/Γ
T M N ,

which, by induction, we can do by showing that it is equal to ⊥!JΓK(JT K.
Indeed, we may write this composite as

! JΓK
µJΓK−−→ ! JΓK⊗ ! JΓK

!JΓK⊗τ†−−−−−→ ! JΓK⊗ ! JSK
Λ−1(⊥!JΓK((!JSK(JT K))−−−−−−−−−−−−−−→ JT K ,

which is equal to ⊥!JΓK(JT K.

Lemma 3.4.6. Let T be an idealized Algol type, and let Γ ` M : T be a
typing judgement, where Γ is a Var-context. Suppose that σ1 ⊆ σ2 ⊆ · · · is
a nested sequence of strategies for ! JΓK ( JT K such that σi /

Γ
T M for all i.

Let σ =
⋃
i σi. Then σ /Γ

T M .

Proof. If X is a datatype, Γ is a Var-context, s is a Γ-store and Γ `M : X
is a typing judgement, then if Js, σiK = ⊥X�!JΓK for all i, then we must
have Js, σiK = ⊥X�!JΓK = ⊥X�!JΓK by continuity of composition. Otherwise,
Js, σiK = JΓ, s′ ` uK for some i, some Γ-store s′ and some u ∈ X such that
Γ, s `M ⇓ u, s′. In that case, since JΓ, s′ ` uK is a maximal strategy for
X� ! JΓK, we must have Js, σjK = JΓ, s′ `uK for all j ≥ i, and therefore that
Js, σK = JΓ, s′ ` uK .

By induction on T , this extends to higher types by continuity of composition.
For example, suppose that we have Γ ` M : S → T , and that the σi are
strategies ! JΓK ( (! JSK ( JT K) such that σi /

Γ
S→T M for all i. We claim

that
⋃
i σi /

Γ
S→T M .

Indeed, suppose that τ : ! JΓK ( JSK is a strategy and N : S a term such
that τ /Γ

S N . Then, by hypothesis, we have(
! JΓK

µJΓK−−→ ! JΓK⊗ ! JΓK σi⊗τ†−−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K
)
/Γ
T M N

for each i, and so, by the inductive hypothesis applied to T , we know that
we have⋃
i

(
! JΓK

µJΓK−−→ ! JΓK⊗ ! JΓK σi⊗τ†−−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K
)
/Γ
T M N .

But continuity of composition tells us that this composite is equal to(
! JΓK

µJΓK−−→ ! JΓK⊗ ! JΓK
⋃
i σi⊗τ†−−−−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K

)
/Γ
T M N ,

and so the result follows.
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Now we are ready to prove our main adequacy Lemma.

Lemma 3.4.7. Let Γ be a Var-context, let ∆ be an arbitrary context and let
T be an Idealized Algol type. Write ∆ = x1 : T1, · · · , xn : Tn. Suppose that
σi : ! JΓK ( JTiK are strategies and Γ `Ni : Ti are terms-in-context such that
σi /

Γ
Ti
Ni for each i.

Given a strategy σ : !JΓ,∆K ( JT K, we write

(σi) ; σ

for the composite

! JΓK
〈der,σ1,··· ,σ†n〉†−−−−−−−−−→ !JΓ,∆K σ−→ JT K .

Then for any term-in-context Γ,∆ `M : T , we have

(σi) ; JΓ,∆ `MK /Γ
T M [Ni/xi] .

Proof. Induction on the typing derivation Γ,∆ `M : T .

• Let xj : Tj be a variable occurring in ∆. Then xj [Ni/xi] = Nj . More-
over, it is clear that (σi) ; JΓ,∆ ` xjK = σj . And we have σj /

Γ
Tj
Nj by

hypothesis.

• Next, suppose that x : Var is a variable occurring in Γ. Then we have
x[Ni/xi] = x, and it is easy to see that we have

(σi) ; JΓ,∆ ` xK = JΓ ` xK .

Now we have JΓ ` xK ; prn = JΓ ` x← nK and JΓ ` xK ; prN = JΓ ` !NK.
From the proof of Lemma 3.3.5 (in particular, Figures 3.8 and 3.9),
we know that if s is a Γ-store, then

Js, JΓ ` x← nK K = JΓ, s ` x← nK = JΓ, (s|x 7→ n) ` skipK ,

where Γ, s ` x← n ⇓ skip, (s|x 7→ n), and that

Js, JΓ ` !xK K = JΓ, s ` !xK = JΓ, s ` s(x)K ,

where Γ, s ` !x ⇓ s(x), s.

• Next, suppose that Γ,∆ ` M : S → T and Γ,∆ ` N : S, where we
already know that

(σi) ; JΓ,∆ `MK /Γ
S→T M [Ni/xi]
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and that
(σi) ; JΓ,∆ `NK /Γ

S N [Ni/xi] .

Then it easy to see that

(σi) ; JΓ,∆ `M NK

is given by the composite

! JΓK
µJΓK−−→ ! JΓK⊗! JΓK

((σi);JΓ,∆`MK)⊗((σi);JΓ,∆`NK)−−−−−−−−−−−−−−−−−−−−→ (! JSK ( JT K)⊗! JSK ev−→ JT K .

Therefore, by the definition of /Γ
S→T , it must be the case that

(σi) ; JΓ,∆ `M NK /Γ
T M [Ni/xi]N [Ni/xi] = (M N)[Ni/xi] .

• Next, suppose that Γ,∆, x : S `M : T . We claim that

(σi) ; JΓ,∆, λx.MK /Γ
S→T (λx.M)[Ni/xi] .

Let σ′ : ! JΓK ( JSK be a strategy and let Γ`N : S be a term in context
such that σ /Γ

S N . Then, by the inductive hypothesis (with x lying in
the ‘∆-part’, we know that

(σi, σ
′) ; JΓ,∆, x : S `M : T K /Γ

T M [Ni/xi, N
′/x] .

Then, since Γ, s ` (λx.M [Ni/xi])N
′ −→ Γ, s `M [Ni/xi, N

′/x] for any
Γ-store s, by Lemma 3.4.4 we know that

(σi, σ
′) ; JΓ,∆, x : S `MK /Γ

T ((λx.M)[Ni/xi])N
′ .

Finally, observe that (σi, σ
′) ; JΓ,∆, x : S `M : T K is the composite

! JΓK
〈der,σ1,··· ,σn,σ′〉†−−−−−−−−−−−→ !JΓ,∆, xK

JΓ,∆,x : S`MK−−−−−−−−−→ JT K ,

which can alternatively be written as

! JΓK
〈der,σ1,··· ,σn〉†−−−−−−−−−→ !JΓ,∆K

µJΓ,∆K−−−−→ !JΓ,∆K⊗ !JΓ,∆K

JΓ,∆`λx.MK⊗(σ′)†−−−−−−−−−−−−→ (! JSK ( JT K)⊗ ! JSK ev−→ JT K .

Now we move on to the structural constants for the datatypes. We deal with
the case of the type nat (i.e., the terms n, succM , predM and If0M then
N else P ), and it should be clear how our ideas translate to the correspond-
ing rules at the types com and bool (i.e., skip, t/f, sequencing and the
boolean conditional).
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Before we cover these cases, we make an important observation. Suppose
that Γ,∆ `M,N : T , and that

Js, ((σi) ; JΓ,∆ `MK)K = Js′, ((σi) ; JΓ,∆ `NK K .

Let E be an evaluation context of type U with a hole of type T . Then

Js, ((σi) ; JΓ,∆ `E[M ]K)K = Js′, ((σi) ; JΓ,∆ `E[N ]K K .

We can prove this by precomposing both directions of the diagram in Figure
3.10 (with Γ in that diagram standing for Γ,∆) with the composite

I
!JsK−−→ !SΓ

cellΓ−−−→ ! JΓK
〈der,σ1,··· ,σn〉†−−−−−−−−−→ ! JΓ,∆K ,

in order to prove that the value of Js, ((σi) ; JΓ,∆ `E[M ]K K depends only
on the value of Js, ((σi) ; JΓ,∆ `MK)K and E.

• Given a numeral n and a Γ-store s, we have (σi) ; JΓ,∆ ` nK = JΓ ` nK
and Js, JΓ ` nK K = JΓ, s ` nK , where Γ, s ` n ⇓ n, s.

• Suppose Γ,∆ `M : nat, and that we already know that

(σi) ; JΓ,∆ `MK /Γ
nat M [Ni/xi] .

So for all Γ-stores s, either Js, ((σi) ; JΓ,∆ `MK)K = ⊥N�!JΓK or it is
equal to JΓ, s′ ` nK for some numeral n.

Now we have

(σi) ; JΓ,∆ ` succMK = (σi) ; JΓ,∆ `MK ; (succ⊗! JΓK) ;

since succ : N ( N is a strict strategy, we know that either

Js, ((σi) ; JΓ,∆ ` succMK)K = ⊥N�!JΓK

or

Js, ((σi) ;JΓ,∆ ` succMK)K = JΓ, s′`nK ; (succ⊗! JΓK) = JΓ, s′`n+1K ,

and we have Γ, s ` succM [Ni/xi] ⇓ n+ 1. Therefore,

(σi) ; JΓ,∆ ` succMK /Γ
nat succM [No/xi] .

A similar argument proves that

(σi) ; JΓ,∆ ` predMK /Γ
nat predM [Ni/xi] .
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• Now we move on to the conditional. Suppose that we have Γ,∆ `
M : nat and Γ,∆`N,P : X for some datatype X. Let s be a Γ-store.
Since If0 is a strict strategy, if Js, ((σi) ; JΓ,∆ `MK)K = ⊥N�!JΓK, then

Js, ((σi) ; JΓ,∆ ` If0M then N else P K K = ⊥X�!JΓK .

Otherwise, by induction we know that Js, ((σi);JΓ,∆ `MK K = JΓ, s′`
nK for some numeral n such that Γ, s`M [Ni/xi] ⇓ n, s′. Without loss
of generality, suppose that n = 0. Then we have

Js, ((σi) ; JΓ,∆ ` If0M then N else P K)K
= Js′, ((σi) ; JΓ,∆ ` If0 0 then N else P K)K
= Js′, ((σi) ; JΓ,∆ `NK)K ,

where the first equality is by our observation above (since If0− then
N else P is an evaluation context), and the second is by the definition
of If0. Then, by induction, this last term is either equal to ⊥X�JΓK,or is
equal to JΓ, s′′ ` uK for some u ∈ X such that Γ, s′ `N [Ni/xi] ⇓ u, s′′.
In this second case, we have Γ, s ` If0M [Ni/xi] then N [Ni/xi] else
P [Ni/xi] ⇓ u, s′′.

The argument for let is similar.

• Suppose that Γ,∆ `M : Y and Γ,∆, x : Y `N : X, where Y is either
bool or nat and X is either bool, nat or com. Let s be a Γ-store.
Since let : Y ( ((Y → X) → X) is a strict strategy, if Js, ((σi) ;
JΓ,∆ `MK)K = ⊥Y�!JΓK, then

Js, ((σi) ; JΓ,∆ ` letx = M in NK K = ⊥X�!JΓK .

Otherwise, by induction we must have Js, ((σi);JΓ,∆ `MK K = JΓ, s′`
yK for some y ∈ Y such that Γ, s `M [Ni/xi] ` y, s′. Then we have

Js, ((σi) ; JΓ,∆ ` letx = M in NK)K
= Js′, ((σi) ; JΓ,∆ ` letx = y in NK K
= Js′, ((σi) ; JΓ,∆ ` (λx.N)yK K ,
= Js′, ((σi) ; JΓ,∆ `N [y/x]K K ,

where the first inequality holds because letx = − in N is an evalua-
tion context, and the second holds by the definition of let. Then, by
induction, this last term is either equal to ⊥X�!JΓK or it is equal to
JΓ, s′′ ` uK for some u ∈ X such that

Γ, s′ `N [y/x,Ni/xi] ` u, s′′ .

119



In this second case, we have

Γ, s ` letx = M [Ni/xi] in N [Ni/xi] ⇓ u, s′′ .

Next, we deal with the rules for variables.

• Suppose Γ,∆ ` V : Var, and suppose we already know that

(σi) ; JΓ,∆ ` V K /Γ
Var V [Ni/xi] .

Then by definition we have

(σi) ; JΓ,∆ ` !V K = (σi) ; JΓ,∆ ` V K ; prN /
Γ
N !V[Ni/xi] .

Suppose Γ,∆ ` E : nat, and suppose we know already that (σi) ;
JΓ,∆ ` EK /N E[Ni/xi]. Then, for all s, either Js, (σi) ; JΓ,∆ ` EK K =
⊥N�!JΓK – in which case

Js, (σi) ; JΓ,∆ ` V ← EK K = ⊥C�!JΓK

(since assign is a strict strategy) – or it is equal to Js′, nK for some
n ∈ N such that Γ, s ` E[Ni/xi] ⇓ n, s′. In the second case, we have

Js, ((σi) ; JΓ,∆ ` V ← EK)K
= Js′, ((σi) ; JΓ,∆ ` V ← nK K
= Js′, ((σi) ; JΓ,∆ ` V K ; prn)K .

Now we have (σi) ; JΓ,∆ ` V K ; prn /
Γ
com V [Ni/xi]← n by induction, so

this composite is either equal to ⊥C�!JΓK or it is equal to JΓ, s′′ ` skipK
for s′′ such that Γ, s′ ` V [Ni/xi] ← n ⇓ skip, s′′. In this second case,
we have Γ, s ` V [Ni/xi]← E[Ni/xi] ⇓ skip, s′′.

• Suppose that Γ,∆`W : nat→ com and that Γ,∆`R : nat. We claim
that

(σi) ; JΓ,∆ `mkvar W RK ; prn /
Γ
com (mkvar W [Ni/xi]R[Ni/xi])← n

for each n and that

(σi) ; JΓ,∆ `mkvar W RK ; prN /
Γ
nat !(mkvar W [Ni/xi]R[Ni/xi]) .

For the first of these, let s be a Γ-store. We have

Js, ((σi) ; JΓ,∆ `mkvar W RK ; prn)K
= Js, ((σi) ; JΓ,∆ `W nK)K .
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By induction, we have (σi) ; JΓ,∆ `W nK /Γ
com W [Ni/xi]n. There-

fore, this last composite is either equal to ⊥C�!JΓK, or it is equal to
JΓ, s′, skipK for some s′ such that Γ, s `W n ⇓ skip, s′. In this second
case, we have Γ, s ` (mkvarW R)← n ⇓ skip, s′.

For the second, we have

Js, ((σi) ; JΓ,∆ `mkvar W RK ; prN)K
= Js, ((σi) ; JΓ,∆ `RK)K .

By induction, we have (σi) ; JΓ,∆ `RK /Γ
nat R[Ni/xi]. Therefore, this

last composite is either equal to ⊥C�!JΓK, or it is equal to JΓ, s′, nK
for some s′, n such that Γ, s, R ⇓ n, s′. In this second case, we have
Γ, s ` !(mkvarW R) ⇓ n, s′.

• Suppose that Γ, x : Var,∆`M : X, where X is a datatype, and suppose
we already know that

(σi) ; JΓ, x : Var,∆ `MK /Γ,x
X M ,

where x is considered as belonging to the ‘Γ-component’. Let s be a Γ-
store – then we get a Γ, x-store (s|x 7→ 0). So either J(s|x 7→ 0), ((σi) ;
JΓ, x,∆ `MK)K = ⊥X�!JΓK, or it is equal to JΓ, x, (s′|x 7→ n), uK for
some s′, n, u such that Γ, (s|x 7→ 0) `M [Ni/xi] ⇓ u, (s′|x 7→ n).

But by the definition of new, we have

J(s|x 7→ 0), ((σi) ; JΓ, x,∆ `MK)K ; (X � ! prΓ)

= Js, ((σi) ; JΓ,∆ ` new λx.MK)K .

It follows that either Js, ((σi) ; JΓ,∆ ` new λx.MK)K = ⊥X�!JΓK or it
is equal to JΓ, x, (s′|x 7→ n), uK ; (X � ! prΓ) = JΓ, s′, uK for some u
such that Γ, (s|x 7→ 0) ` M [Ni/xi] ⇓ u, (s′|x 7→ n). In this case,
Γ, s ` new λx.M ⇓ u, s′.

It remains to deal with the case of the recursion combinator YT . First
recall that if h : ((JT K→ JT K)→ JT K)→ (JT K→ JT K)→ T (where we write
A→ B for !A( B) is the morphism corresponding to the λ-term

λF (T→T )→T .λfT→T .f(F f) ,

then YT is constructed as the limit of the chain

⊥(T→T )→T ⊆ ⊥(T→T )→T ;h ⊆ ⊥(T→T )→T ;h;h ⊆ · · · .

By Lemma 3.4.6, then, it suffices to show that if Γ,∆ `M : T → T then
(σi) ; JΓ,∆ `MK ;

(
⊥(T→T )→T

)
;hn /Γ

T YTM [Ni/xi] for each n.
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We do this by induction on n. Lemma 3.4.5 takes care of the initial case,
and it will therefore suffice to prove that if σ /Γ

T YTM then σ;h /Γ
T YTM .

Suppose T = T1 → · · · → Tn → X, where X is a datatype. Fix terms Mi : Ti
and strategies τi : JΓK→ JTiK such that τi /

Γ
Ti
Mi for each i.

Since σ /Γ
T YTM , we know that 〈τ1, · · · , τn〉;σ /Γ

X YTMM1 · · · Mn. It
follows that 〈τ1, · · · , τn〉;σ;h /Γ

X M(YTM)M1, · · · Mn. Then, since

Γ, s,YTMM1, · · · Mn −→ Γ, s,M(YTM)M1 · · · Mn

for any Γ-store s, by Lemma 3.4.4 we have that

〈τ1, · · · , τn〉;σ;h /Γ
X YTMM1, · · · ,Mn ,

and therefore that σ;h /Γ
X YTM , since the Mi, τi were arbitrary.

This is now enough to prove a computational adequacy result for our deno-
tational semantics.

Definition 3.4.8 (Computational Adequacy Result). Suppose we have a
programming language L and a denotational semantics J−K of L in some
category C. Let o be a ground type of L and let ⇓ be some operational
predicate on closed terms of L of type o. Let ↓ be a predicate on morphisms
1→ JLK in C. Then a computational adequacy result for the semantics is a
result that says that for all terms M : o in L,

M ⇓ if and only if JMK ↓ .

We will prove a computational adequacy result for our semantics of IA,
taking o = com. If M : com is a term of IA, we say that M ⇓ if , () `M ⇓
skip, (). If σ : 1 ( C is a strategy, we say that σ ↓ if σ 6= ⊥com.

Theorem 3.4.9 (Computational Adequacy). Let M : com be a closed term
of Idealized Algol. Then M ⇓ if and only if JMK 6= ⊥com.

Proof. First suppose that M ⇓. Then Proposition 3.3.7 tells us that JMK =
JskipK 6= ⊥com.

Conversely, suppose that JMK 6= ⊥com. Lemma 3.4.7 tells us that JMK /com
M . Since JMK 6= ⊥com, the only possibility is that , () `M ⇓ skip, ().

We can now prove an equational soundness result. First, we recall the
definition of observational equivalence of terms.
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Definition 3.4.10 (Observational Equivalence). Suppose we have a lan-
guage L, together with a distinguished ground type o and operational pred-
icate ⇓ as above. Given two closed terms M,N : T in L, we say that M and
N are observationally equivalent if for all contexts C[−] : o in L with a hole
of type T , C[M ] ⇓ if and only if C[N ] ⇓.

Next, we create a definition that mirrors this one within the denotational
semantics.

Definition 3.4.11 (Intrinsic Equivalence). Suppose we have a language L,
together with a denotational semantics J−K in a Cartesian closed category
C, a distinguished ground type o and a predicate ↓ on morphisms 1 → JoK
as above.

Given objects A,B of C, and morphisms σ, τ : A → B, we say that σ, τ are
intrinisically equivalent, and write σ ∼ τ , if for all α : (A → B) → JoK,
Λ(σ);α ↓ if and only if Λ(τ);α ↓.

Definition 3.4.12 (Equational Soundness Result). An equational sound-
ness result for a semantics as above is a result that says that if M,N : T are
such that JMK ∼ JNK, then M and N are observationally equivalent.

Proposition 3.4.13. Any compositional semantics that satisfies Computa-
tional Adequacy satisfies Equational Soundness.

Proof. Suppose that JMK ∼ JNK. Let C[−] : o be a context with a hole
of type T . Then, since C is Cartesian closed, the β-rule is valid in C, and
therefore we have

JC[M ]K = 1
JMK−−→ JT K

Jx : T`C[x]K−−−−−−−→ JoK ,

and similarly for C[N ]. Therefore, taking α = Jx ` C[x]K in the definition
of ∼, we get that JC[M ]K ↓ if and only if JC[N ]K ↓. By Computational
Adequacy, this means that C[M ] ⇓ if and only if C[N ] ⇓. Since C was
arbitrary, it follows that M and N are observationally equivalent.

This proof relies on the fact that the context C gives rise to a morphism
α = Jx ` C[x]K. To go in the other direction (full abstraction), we need a
definability result, to allow us to transform a morphism in G into an Idealized
Algol context. This will be the subject of the next section.

3.5 Innocent Factorization

The aim of this section will be to show that any strategy between the deno-
tations of Idealized Algol types may be factorized as the composite of some
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innocent strategy with the strategy cell. This will reduce the problem to
showing that certain innocent strategies are definable, for which we can use
known results.

Again, we follow the proof from [AM96] very closely.

Proposition 3.5.1 (Innocent Factorization, [AM96, 14]). Let A be a game,
and suppose A has the property that whenever sb ∈ PA is an O-position and
tbc ∈ PA is a P -position such that psbq = ptbq, then sbc ∈ PA. Suppose
also that MA is a countable set. Let σ be a strategy for A. Then there is an
innocent strategy σ̂ for ! Var ( A such that σ factorizes as the composite

I
!0−→ !N cell−−→ ! Var

σ̂−→ A .

Proof. Fix some injection LA ↪→ N, thought of as giving a ‘code’ to each
legal sequence, such that the code of the empty sequence is 0. σ̂ proceeds as
follows. At each position sb ending with an O-move a in A, player P first
plays the move q in ! Var, after which player O returns some natural number
n. If n is not the code of a sequence in PA, or if it encodes some sequence t
such that ptbq 6= ps|Abq, then player P has no reply. Otherwise, let c be the
reply to ta that player P would have made under σ. Player P computes the
code k of the sequence tbc and plays qk in ! Var. After the O-reply a, player
P then plays the move b in ! Var.

Since tbc ∈ PA and ptbq = ptcq, we have s|Abc ∈ PA by our hypothesis on
A, which implies that this is a valid strategy. We claim that it is innocent.
Moreover, since player P ’s moves depend only on the number n returned
and on the current P -view within A, this strategy is innocent.

Lastly, if we compose with !0; cell, then we ensure that this number n that
is returned is always the code of the current sequence in A, and therefore
that !0; cell; σ̂ = σ by the explicit description of the cell strategy given in
Proposition 2.17.2.

We want to apply this result in the case that A is the denotation of an IA
type, so we need to show that for any IA type T , the game JT K satisfies the
hypotheses of Proposition 3.5.1. In fact, we show something stronger.

Lemma 3.5.2 ([AM96, Lemma 15]). Let T be a type of Idealized Algol.
Then PJT K is the set of all sequences in LJT K that contain at most a single
initial move.

Proof. This is obvious for the datatypes and for Var. Let S, T be types –
so JS → T K = ! JSK ( JT K – and let s ∈ P!JSK(JT K. An initial move in
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! JSK ( JT K is an initial move in JT K; by induction, s|JT K ∈ PJT K contains at
most one initial move, and so s contains at most one initial move.

Conversely, suppose that s ∈ L!JSK(JT K contains at most one initial move.
We show by induction on the length of s that s ∈ P!JSK(JT K. This is obvious
if s = ε; if s = ta for some t, then by induction we have t ∈ P!JSK(JT K,
so t|!JSK ∈ P!JSK and t|JT K ∈ PJT K. We need to show that ta ∈ P!JSK, for
which it suffices by induction to show that ta|!JSK and ta|JT K are both legal
positions, ta|!JSK|n has a unique initial move in JSK for each initial move n of
JSK, and ta|JT K has a unique initial move in JT K. Indeed, we can show that
they are alternating using the same arguments we used in Proposition 2.4.9,
and they are clearly well-bracketed sequences. Visibility then follows from
Lemma 2.4.8, and from Proposition 4.3 from [HO00], which states that if s is
a play in A( B, then psqA(B|A is a subsequence of ps|AqA and psqA(B|B
is a subsequence of ps|BqB. This means that the justifier of the move a must
occur within the appropriate O- or P -view, since we know that t|!JSK and
t|JT K are both visible sequences.

Proposition 3.5.3. Let T be a type of Idealized Algol. Then JT K satisfies
the hypotheses of Proposition 3.5.1.

Proof. Suppose that sb, tbc ∈ PJT K, where c is a P -move, are such that
psbq = ptbq. It is clear that sbc is an alternating and visible sequence;
moreover, it is well-bracketed, since the most recently unanswered question
in sb is the same as in tb. Therefore, sbc is a legal sequence with a unique
initial move, and so it is contained in PJT K by Lemma 3.5.2.

3.6 Arena-only Semantics

Before we complete our definability proof, and hence our proof of Full Ab-
straction, we take a detour to consider a variation of our game semantics
in which we do away with the sets of plays PA. We call this an arena-only
semantics, since the objects of our category are plain arenas. Since the
semantics given in [HO00] are of this form, and since we want to quote de-
finability results from this work, it makes sense to cast our own work in this
form.

Definition 3.6.1. Let A be a game. We say that A is full if PA = LA.

Let A be a game. Since the underlying arena of !A is the same as that of A,
and since we have PA ⊆ P!A, we have the following result.

Proposition 3.6.2. If A is full, then A = !A.
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Note that the definition of the ! connective, together with Lemma 3.5.2,
implies the following.

Proposition 3.6.3. Let T be an Idealized Algol type. Then ! JT K is full.

This does not immediately seem very useful: ! JT K may be full, but JT K
itself is not, and JT K is the game that we are using to model the type T in
our semantics. Recall, however, that the ‘co-Kleisli’-style morphisms in our
category, which are strategies for !A ( B, may alternatively be regarded
as comonoid homomorphisms from the comonoid on !A to the comonoid
on !B. Thus, if S, T are Idealized Algol types, then the set of morphisms
! JSK ( JT K in our original category is precisely the same as the set of
morphisms ! JSK ( ! JT K that are comonoid homomorphisms. We will take
up the rest of this section giving a combinatorial characterization of these
morphisms.

Definition 3.6.4. Let A be a game and let sa be a play in A. Then the
current thread dsae of sa is sa|n, where n is the unique initial move that
hereditarily justifies a.

Let σ be a strategy for A. We say that σ is single-threaded if player P ’s
moves only depend on the current thread; i.e., if whenever sab ∈ σ, t ∈ σ
and ta ∈ PA such that dsae = dtae, then we have tab ∈ σ.

Note that this definition is identical to the definition of an innocent strategy,
except with the current thread d−e taking the role of the P -view p−q. Since
psq is a subsequence of dse for any sequence s, we get:

Proposition 3.6.5. Any innocent strategy is single-threaded.

We now make a new definition.

Definition 3.6.6. Given a legal sequence s ∈ LA, and a move b in s, we
say that a move a in s is hereditarily justified by b if there is a chain of
justification pointers going back from a to b.

We write s|b for the subsequence of s given by all moves in s that are
hereditarily justified by b. Given a set I of initial moves, we write s|I for the
subsequence of s given by all moves that are hereditarily justified by some
b ∈ I.

We say that a game A is thread-closed if s|I ∈ PA whenever s ∈ PA and I is
some collection of occurrences of initial moves in s.

If A and B are non-empty games, then the sequoid A� B is never thread-
closed: if we take some play s with moves in both A and B, then s|B is not
a play of A�B.
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However, if A is a well-opened game, then !A is always thread-closed.

Lemma 3.6.7 ([Har99, 3.5.1]). Let A be a thread-closed game and let σ : A
be a single-threaded strategy. Suppose s ∈ σ, and let I be a set of occurrences
of initial moves in s. Then s|I ∈ σ.

Proof. Induction on the length of s. Suppose that sab ∈ σ. Since sab is
a visible sequence, we know that the justifier of b occurs in psaq, and in
particular in dsae. Now a must be hereditarily justified by that initial move
that hereditarily justifies b; if this initial move is not contained in I, then we
have sab|I = s|I ∈ σ by induction. Otherwise, we have sab|I = s|Iab. Then,
since we have dsae = ds|Iae, we must have s|Iab ∈ σ by single-threadedness
of σ.

We now link the concept of single-threadedness to the idea of a comonoid
homomorphism.

Proposition 3.6.8. Let A,B be well-opened games. Given a strategy

σ : !A( !B ,

σ is single-threaded if and only if it is a comonoid homomorphism with
respect to the natural comonoid structures on !A and !B; i.e., it makes the
following diagrams commute.

!A !B

!A⊗ !A !B ⊗ !B

σ

µA µB

σ⊗σ

!A !B

I

σ

()
()

Proof. Of course, the second diagram is automatically satisfied by any strat-
egy σ, since I is a terminal object.

Since A,B are well-opened, !A and !B are the cofree commutative comonoids
on A,B, and therefore the comonoid homomorphisms σ : !A ( !B are pre-
cisely the strategies of the form τ †, where τ : !A ( B is an arbitrary mor-
phism. It is easy to check that such a strategy is single-threaded; indeed,
the plays of τ † are precisely those plays s ∈ P!A(!B such that s|n ∈ τ for
any occurrence n of an initial move in s.

Conversely, let σ : !A ( !B be single-threaded. Let τ = σ ∩ P!A(B – so τ
consists of all sequences in σ that have at most one initial move. Then τ
is clearly a strategy, since it is a prefix-closed subset of σ. We claim that
σ = τ †. Indeed, suppose that s ∈ σ. Let n be an occurrence of an initial
move in s. Then, by Lemma 3.6.7, s|n ∈ σ and has a unique initial move,
and is therefore contained in τ . Therefore, σ = τ †.
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Now consider the category whose objects are arenas and where the mor-
phisms from A to B are single-threaded strategies for A ( B, where we
identify A and B with their corresponding full games. Then, if T is any
Idealized Algol type, there is some corresponding arena such that the full
game on that arena is isomorphic to ! JT K. We shall write JT K for this arena,
relying on context to distinguish the two notions of denotation. This means
that our semantics of Idealized Algol lives within the new category, since a
single-threaded strategy for JSK → JT K is the same thing as a strategy for
! JSK ( JT K in the original semantics.

We end up with a game semantics entirely based around arenas, without
having to talk about distinguished sets of legal plays. This semantics is
much closer to the game semantics of PCF developed by Hyland and Ong
in [HO00]; the difference there is that they use innocent rather than single-
threaded strategies.

We might ask why we did not try to work with this arena-only semantics
from the start (as has been done in other work – see [Har99] and [Har06],
for example). The reason is that this semantics is unable to accommodate
the tensor and sequoid operators, which – although not involved in the
denotation of any Idealized Algol type – have been essential to our proof of
Computational Adequacy.

3.7 Full Abstraction

We now quote a definability result from [HO00].

Theorem 3.7.1 ([HO00, 7.1]). Let T be a PCF type, and let σ be a compact
innocent strategy for JT K (within the arena-only semantics). Then there is
some closed PCF term M : T such that JMK = σ.

Here, PCF is the sub-language of Idealized Algol generated by the types
nat and bool, together with their structural constants. Notably, it does not
contain let or any of the explicit stateful structure of Idealized Algol.

We will take it as read that this result may be extended to the types com

and Var, so that we can say that if T is an Idealized Algol type, then any
compact innocent strategy for JT K is the denotation of some IA term. Then
our factorization result (Proposition 3.5.1) gives us the following definability
result.

Proposition 3.7.2. Let T be an Idealized Algol type, and let σ : JT K be
a compact strategy. Then there is some closed IA term M : T such that
JMK = σ.
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Proof. We work in the arena-only semantics so that we can apply Theorem
3.7.1. By Proposition 3.5.1, we know that σ = !0; cell; σ̂ for some innocent
strategy σ̂ : Var → JT K. By looking at the proof of Proposition 3.5.1, we
can see that σ̂ is compact if σ is. Then, by Theorem 3.7.1, we know that
there is some IA term λx.M : Var → T such that Jλx.MK = σ̂. It follows
that σ is the denotation of the term new(λx.M) : T .

Definition 3.7.3 (Full Abstraction result). A full abstraction result encom-
passes both an equational soundness result and its converse, asserting that
two programs are observationally equivalent if and only if their denotations
are intrinsically equivalent.

Theorem 3.7.4 (Full Abstraction). Let M,N : T be closed terms of Ide-
alized Algol. Then M and N are observationally equivalent if and only if
JMK ∼ JNK.

Proof. We have already proved that our semantics is computationally ade-
quate, and therefore that the reverse direction (equational soundness) holds.
Now suppose instead that JMK 6∼ JNK. Without loss of generality, suppose
there is α : JT K→ C such that JMK† ;α 6= ⊥C and JNK† ;α = ⊥C.

Since α is the supremum of all its compact sub-strategies, if JMK† ;α′ = ⊥C
for all compact α′ ⊆ α, then JMK† ;α = ⊥C by continuity of composition.
Therefore, there is some compact α′ ⊆ α such that JMK† ;α 6= ⊥C; moreover,
we have that JNK† ;α′ = ⊥C by monotonicity of composition.

Then α′ is the denotation of some term P : T → com, and we have P M ⇓
and P N 6⇓ by Computational Adequacy. Therefore, M and N are not
observationally equivalent.

3.8 The Intrinsic Equivalence Relation

We conclude by giving a more concrete description of the intrinsic equiva-
lence relation on strategies. This will give us a concrete representation of a
morphism in the quotiented category, and hence an algorithm for deciding
observational equivalence of (finitary) terms of Idealized Algol.

Definition 3.8.1. We say that a justified sequence s is complete if every
question move q occurring in s has some answer move a justified by q.

Proposition 3.8.2 ([AM96, 25]). Let σ, τ : !A ( B be strategies, where
A,B are well-opened games. Then σ ∼ τ if and only if σ and τ contain the
same complete plays.
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Proof. Suppose first that σ and τ do not contain the same complete plays.
So, without loss of generality, there is some complete s ∈ σ \ τ . Then we
may define a strategy α : !(!A ( B) ( C that behaves as follows. After
the opening move q in C, player P plays precisely those moves in !A ( B
that make up the sequence s. If player O deviates from the sequence s at
any point, then player P has no response under α; if player P succeeds in
building up the entire sequence s, then she finishes by playing a in C. Note
that α is not innocent in general. It is clear then that σ†;α = skip and
τ †;α = ⊥C.

Conversely, suppose that σ 6∼ τ . Then, without loss of generality, there is
some α : !(!A ( B) ( C such that σ†;α = skip and τ †;α = ⊥C. Therefore
we must have some s ∈ σ†‖α such that s|C = qa, and s|!A(B decomposes into
‘threads’ which are plays of !A( B, one for each initial move occurring in
that sequence. By the well bracketing condition, every one of these threads is
itself a complete play in !A( B. Every one of these sequences is contained
in σ; if they were all contained in τ , then we would have s ∈ τ †‖α, which
would be a contradiction, so we end up with a complete sequence contained
in σ \ τ .
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Chapter 4

Monads and Kleisli
categories

4.1 Monads

Let C be a category. Then the category [C, C] of functors C → C and natural
transformations has a (strict) monoidal structure given by composition. A
monad [Mac71, §VI] in C is a monoid in [C, C].

In other words, a monad is a functor M : C → C together with natural
transformations ma : MMa→Ma and ua : a→Ma such that the following
diagrams commute for all objects a of C.

MMMa MMa

MMa Ma

Mma

mMa ma

ma

Ma MMa

Ma

Mua

id
ma

Ma MMa

Ma

uMa

id
ma

Example 4.1.1. In the category of sets, the nonempty powerset functor P+

sends a set A to the set of nonempty subsets of A. This functor has the struc-
ture of a monad on Set, since we have a natural transformation (union) from
P+P+A to P+A and a natural transformation (singleton) from A toP+A
that obey the diagrams given above.

Example 4.1.2. Let M be a monoidal category and let x be a monoid in
M. The writer monad Wx on M is defined by Wxy = y ⊗ x, with natural
transformations

my : y ⊗ x⊗ x→ y ⊗ x uy : y → y ⊗ x

given by the monoid structure on x.
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Going the other way, if M is monoidal closed with inner hom (, and if z
is a comonoid in M, then the reader monad Rz is given by Rzy = z ( y.
Then the monadic coherences

my : z ( z ( y → z ( y uy : y → z ( y

are induced from the comonoid structure on z.

If the monoidal structure on M is Cartesian, then a comonoid in M is the
same thing as an object a of M (with the diagonal a→ a× a and terminal
a→ 1 morphisms). In such a case, every object a ofM gives rise to a reader
monad on M.

Example 4.1.3. If C
L−→
⊥
←−
R

D is an adjunction with counit ε : LR → 1 and unit

η : 1 → RL, then the composite RL : C → C has the structure of a monoid
on C, where the multiplication and unit are given by

RεL : RLRL→ RL η : 1→ RL .

We will see in the next chapter that every monad is induced by an adjunction
in this way.

Let us look at an example of a monad that arises from an adjunction in this
way. Recall that the definition of a monoidal closed category M is that it
admits an adjunction between functors ⊗ w and w ( for any object
w of M . If M is a monoidal closed category and w is an object of M, then
the functor Sw on M defined by

Swx = w ( (x⊗ w)

is the composition of these adjoint functors and therefore inherits the struc-
ture of a monad, known as the state monad.

Example 4.1.4. Another example that arises from an adjunction is the list
monad on Set that arises from the adjunction between the category Set of
sets and the category of monoids. The underlying set of the free monoid on
a set A is the set A∗ of finite lists of elements of A, and the functor A 7→
A∗ inherits a monoid structure where the multiplication mA : (A∗)∗ → A∗

concatenates a list of lists into a single list and the unit ua : A→ A∗ forms
a list with a single element.

Example 4.1.5. A monad on Cop is called a comonad on C. The carrier of a
comonad is still a functor M : C → C, but now the multiplication and unit
are natural transformations M ⇒ MM and M ⇒ 1, rather than the other
way round.
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An adjunction C
L−→
⊥
←−
R

D gives rise to a comonad structure on LR in much the

same way as it gives rise to a monad structure on RL. So, for example, we
have the store comonad S′r for any object r of a monoidal closed category
M, given by

S′rx = (r ( x)⊗ r .

4.2 Kleisli Categories

Let C be a category and let M be a monad on C. Then [Kle65] there is a
category KlM , called the Kleisli category of M , whose objects are the objects
of C and where a morphism from an object a to an object b is a morphism
a→Mb in C.

Identity arrows are given by the morphisms uc : c → Mc (considered as
morphisms c → c in KlM ) and the composition of arrows f : a → Mb and
g : b→Mc is given by the following composite in C.

a
f−→Mb

Mg−−→MMc
mc−−→Mc

There is a natural identity-on-objects functor J : C → KlM that sends a
morphism f : a→ b in C to the composite

a
f−→ b

ub−→Mb ,

considered as a morphism a→ b in KlM .

In the other direction, we have a functor S : KlM → C that sends an object
a of KlM to the object Ma of C and sends a morphism f : a → Mb from a
to b in KlM to the composite

Ma
Mf−−→MMb

mb−−→Mb

in C. Note that SJ = M , by one of our coherence conditions on m and u.
Meanwhile, JS is the functor KlM → KlM that sends an object a to Ma
and sends a morphism a → b given by a morphism f : a → Mb in C to the
morphism Mf : Ma→MMb, considered as a morphism Ma→Mb in KlM .

Proposition 4.2.1 ([Kle65]). S is a right adjoint to J . The unit of the
adjunction is u : id⇒M . The counit ea : J(Sa)→ a is given by the identity
morphism Ma→Ma in C, considered as a morphism Ma→ a in KlM .
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4.3 Multiplicative natural transformations

Given a monad M on a category C and a functor F : C → D, where D is
another category, we say that a natural transformation ψa : FMa → Fa is
M -multiplicative if it makes the following diagrams commute.

FMMa FMa

FMa Fa

ψMa

Fma ψa

ψa

Fa FMa

Fa

Fua

id
ψa

Given two triples (D, F, ψ), (D′, F ′, ψ′), where F : C → D, F ′ : C′ → D′ are
functors and ψ : FM ⇒ F,ψ′ : F ′M ⇒ F ′ are functors, we define a mor-
phism from (D′, F ′, ψ′) to (D, F, ψ) to be a functor H : D′ → D such that
F = HF ′ and ψ = Hψ′. This gives us a category.

A defining property of the Kleisli category is that it is an initial object in
the category of such triples (D, F, ψ):

Proposition 4.3.1 ([Str72a]). i) Given an object a of C, consider the iden-
tity morphism Ma→Ma as a morphism φa : JMa→ Ja in KlM . Then φa
is an M -multiplicative natural transformation.

ii) Let D be a category, let F : C → D be a functor and suppose that
ψa : FMa→Ma is an M -multiplicative natural transformation. Then there
is a unique functor F̂ : KlM → D such that F = F̂ J and ψ = F̂ φ.

Another way to characterize the Kleisli category KlM is to say that the
adjunction we described above is initial among all adjunctions giving rise
to the monad M . This can be deduced from Proposition 4.3.1 using the
following result.

Lemma 4.3.2 ([Str72a]). Let C be a category and let M be a monad on C.

If C
L−→
⊥
←−
R

D is an adjunction (with counit ε and unit η), we say it gives rise to

M if M = RL, m = RεL and u = η.

Any such adjunction gives rise to an M -multiplicative natural transforma-
tion ψ : LM ⇒ L. This gives us a fully faithful functor from the category of
adjunctions giving rise to M to the category of triples (D, F, ψ) where ψ is
M -multiplicative.

The proof of Proposition 4.3.1 essentially comes down to the following fac-
torization result. If f : a→ b is a morphism in KlM , then f may be factorized
as

f = a
Jf−→Mb

φb−→ b ,

134



where we use ‘f ’ to refer both to the morphism a → b in KlM and to the
underlying morphism a → Mb in C. Indeed, if we compute this composite
inside C, we get

a
f−→Mb

uMb−−→MMb
M id−−−→MMb

mb−−→Mb ,

which is equal to f by the coherence conditions on m and u. This means
that the Kleisli category may be thought of as being freely generated from
the original category C and an M -multiplicative natural transformation φ.

Example 4.3.3. The morphisms in the Kleisli category for the nonempty
powerset monad P+ on Set are functions A→ P+B, which can be thought
of as nondeterministic functional programs. Given a set A, the morphism
φA : P+A → A in KlP+ can be interpreted as a ‘nondeterministic choice’
function that accepts a nonempty set of elements of A and nondeterministi-
cally chooses one of them. The factorization then means that the category
is freely generated over C by these nondeterministic choice morphisms.

Example 4.3.4. Let C be a Cartesian closed category and let z be some fixed
object of C. Then the Kleisli category for the reader monad Rz on C is gen-
erated over C by a natural transformation φy : (z → y)→ y. As a Cartesian
closed category, C may be regarded as being enriched over itself. By the en-
riched Yoneda lemma, then, such a natural transformation is always given
by precomposition with some fixed morphism askz : 1→ z. This means that
KlRz is suitable for modelling any situation in which we are generally work-
ing in C, but need the ability to request a value of type z (for example, a
config file, a piece of user input, a random number or something else that
isn’t being passed into the function in question).

A particularly important fact about the reader monad in Cartesian closed
categories is the following.

Theorem 4.3.5 ([Lam74]). Let C be a Cartesian closed category and let z
be an object of C. Then the Kleisli category KlRz for the reader monad over
z on C is Cartesian closed.

The functional completeness theorem [Lam74] can be thought of as a special
case of our remarks above.

4.4 Denotational Semantics

Having given an overview of the general theory of monads and Kleisli cate-
gories, we now examine the relationship between Kleisli categories and Full
Abstraction. From now till the end of the chapter, we fix an base Carte-
sian closed category G that admits a denotational semantics of Idealized
Algol satisfying Computational Adequacy. In addition, we require that G
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can be interpreted as being enriched in algebraic partial orders, in such a
way that any compact morphism between the denotation of IA types is the
denotation of some IA term. The prototypical example, of course, will be
the category of games and visible strategies that we met in Chapter 2, but
we will not exploit any properties of this model beyond the ones we have
already mentioned, mentioning it only in examples where appropriate.

In addition, we will specialize to reader monads. The rationale behind this
is twofold: firstly, we do not wish to assume too much about the underlying
category G beyond the fact that it gives us a good model of Idealized Al-
gol. Reader monads can be constructed for any object inside any Cartesian
closed category. Secondly, in order to get a compositional semantics for the
λ-calculus, it is important that the Kleisli categories we consider are them-
selves Cartesian closed. Theorem 4.3.5 tells us that this is the case for the
Kleisli categories of reader monads on categories that are themselves Carte-
sian closed, but this may not be the case for other monads we can build from
the Cartesian closed structure on our base category, such as state monads.

Let X ∈ {B,N,C} be a set that has an interpretation as an Idealized Algol
type X, and write X also for the corresponding object of G. We shall write
GX as a shorthand for KlRX G, the Kleisli category for the reader monad on
G that corresponds to the object X. The purpose of the rest of this chapter
will be to define a new language, give it a denotational semantics in GX , and
prove a full abstraction result for this denotational semantics.

Definition 4.4.1 (The language IAX). The language IAX is formed by
taking Idealized Algol, and adding to it a new constant

askX

with typing rule

Γ ` askX : X
.

From Proposition 4.3.1, we know that there is a distinguished natural trans-
formation φA : (X → A)→ A in GX ; in particular, we have a morphism

φ = Λ(lunitX ; idX);φX

(where Λ(lunitX ; idX) : 1 → (X → X) is the interpretation of the λ-term
λx.x), which will be the denotation of the term askX . Together with the
existing denotational semantics of Idealized Algol within G, this gives us an
inductively defined denotational semantics of IAX within GX .

Clearly any term-in-context of IAX is of the form

Γ `M [askX /x] : T ,
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where
Γ, x : X `M : T

is a judgement of Idealized Algol. Given such a term-in-context, we know
that the denotation of

Γ ` (λx.M) askX : T

is given by the composite

1
φ−→ X

JΓ,x`MK−−−−−→ JT K .

Now this last term is β-equivalent to our original term-in-context Γ `M .
Since GX is Cartesian closed (by Theorem 4.3.5), the β rule is valid in GX ,
and this means that the composite above is an alternative definition of the
denotation of Γ `M .

4.5 Operational Semantics

We now define the operational semantics of IAX and prove a computational
adequacy result for our denotational semantics.

Definition 4.5.1 (Operational semantics of IAX). Let X∗ be the free
monoid on the set X; i.e., the set of all finite strings of elements of X.
Given u, v ∈ X∗ we shall write u++ v for their product in X∗; i.e., the con-
catenation of the two strings. We shall write ε for the unit in X∗; i.e., the
empty string.

If u ∈ X∗,we write |u| for the length of u. If 0 ≤ n < |u|, then we write u(n)

for the corresponding element of u, numbering from 0.

We inductively define a relation Γ, s `M ⇓u c, s′, where Γ is a Var-context,
M, c are terms of IAX with all free variables in Γ, where c is an IA canonical
form, s, s′ are Γ-stores and u ∈ X∗. The definition of this relation is shown
in Figure 4.1.

Closer examination of the rules in Figure 4.1 reveals an alternative, indirect
definition of the operational semantics of IAX . Note that each rule from
ordinary Idealized Algol takes the form

Γ, s(0) `M1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Mn ⇓ cn, s(n)

Γ, s(0) `M ⇓ c, s(n)
,

Here, we have interpreted each IA rule as an infinite scheme of rules ranging
over the different terms Mi,M that the rule can apply to. We first extend
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Γ, s ` c ⇓ε c, s
Γ, s `M ⇓u λx.M ′, s′ Γ, s′ `M ′[N/x] ⇓v c, s′′

Γ, s `MN ⇓u++v c, s
′′

Γ, s `M(YM) ⇓u c, s′

Γ, s `YM ⇓u c, s′
Γ, s `M ⇓u n, s′

Γ, s ` succM ⇓u n+ 1, s′

Γ, s `M ⇓u n+ 1, s′

Γ, s ` predM ⇓u n, s′
Γ, s `M ⇓u 0, s′

Γ, s ` predM ⇓u 0, s′

Γ, s `M ⇓u skip, s′ Γ, s′ `N ⇓v c, s′′

Γ, s `M ;N ⇓u++v c, s
′′

Γ, s `M ⇓u t, s′ Γ, s′ `N ⇓v c, s′′

Γ, s ` IfM then N else P ⇓u++v c, s
′′

Γ, s `M ⇓u f, s′ Γ, s′ ` P ⇓v c, s′′

Γ, s ` IfM then N else P ⇓u++v c, s
′′

Γ, s `M ⇓u 0, s′ Γ, s′ `N ⇓v c, s′′

Γ, s ` If0M then N else P ⇓u++v c, s
′′

Γ, s `M ⇓u n+ 1, s′ Γ, s′ ` P ⇓v c, s′′

Γ, s ` If0M then N else P ⇓u++v c, s
′′

Γ, s `M ⇓ c′, s′ Γ, s′ `N [c′/x] ⇓ c, s′′

Γ, s ` letx = M in N ⇓ c, s′′

Γ, s ` E ⇓u n, s′ Γ, s′ ` V ⇓v x, s′′

Γ, s ` V ← E ⇓u++v skip, (s
′′|x 7→ n)

x ∈ Γ
Γ, s ` V ⇓u x, s′

Γ, s`!V ⇓u n, s′
s′(x) = n

Γ, x : Var, (s|x 7→ 0) `M ⇓u c, (s′|x 7→ n)

Γ, s ` new λx.M ⇓u c, s′

Γ, s ` E ⇓u n, s′ Γ, s′ ` V ⇓v mkvarWR, s′′ Γ, s′′ `Wn ⇓w skip, s′′′

Γ, s ` V ← E ⇓u++v++w skip, s′′′

Γ, s ` V ⇓u mkvarWR, s′ Γ, s′ `R ⇓v n, s′′

Γ, s`!V ⇓u++v n, s
′′

Γ, s ` askX ⇓x x, s
x ∈ X

Figure 4.1: Operational semantics for IAX . All the rules except the last
one are deterministic and may be obtained from the corresponding rules of
Idealized Algol by suitably annotating the ⇓ relation with sequences from
X∗.
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this scheme of rules to a scheme of rules for IAX , by allowing the Mi,M to
range over terms of IAX . We then replace the rule with the new rule

Γ, s(0) `M1 ⇓u1 c1, s
(1) · · · Γ, s(n−1) `Mn ⇓un cn, s(n)

Γ, s(0) `M ⇓u1++···++un c, s
(n)

,

to give us an operational rule for IAX (if n = 0, then we treat the empty
string ε as the empty concatenation). Lastly, we add the rule for the new
constant askX :

Γ, s ` askX ⇓x x, s
x ∈ X

.

This rule is the only nondeterministic one in our language, as well as being
the only one in which the sequence annotating the ⇓ symbol at the bottom
is not formed from concatenating together the sequences on the top.

Example 4.5.2. If X = C, then, since X has a single element a, a sequence
u = a · · · a︸ ︷︷ ︸

n

of elements of X may be identified with its length n. In this

case, the language IAX gives us a way to model time complexity, and the
term askX may be considered as a subroutine sleep : com whose semantics is
to wait for some fixed period of time before continuing. In this case,

Γ, s `M ⇓n c, s′

is interpreted to say that ‘starting with the store s, M converges to c in time
n, leaving store s′’.

Example 4.5.3. If X = N, we can interpret the language IAX as giving us
a way to model user input. When we call askN, we are asking the user to
provide us as a string of text (which we interpret as a binary string and
hence as a natural number). Then we interpret the judgement

Γ, s `M ⇓u c, s′

as saying that ‘starting with the store s, and the sequence u of pieces of user
input, M converges to c, leaving store s′’.

Example 4.5.4. If X ∈ {B,N}, then the language IAX gives us a way to
model nondeterminism, where askX behaves as a nondeterministic oracle;
i.e., a device that nondeterministically returns an element of X.

If X = B then we have a model of binary (i.e., finite) nondeterminism,
whereas if X = N then we have a model of countable nondeterminism.

In these cases, we interpret the relation

Γ, s `M ⇓u c, s′

as saying that M converges to c in the case that the sequence of values
returned by the nondeterministic oracle is given by the sequence u.
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4.6 Soundness

To prove our adequacy result for the operational semantics of IAX , we first
give some definitions.

Definition 4.6.1. We inductively define terms in context tru : nat→ X of
ordinary deterministic Idealized Algol for each u ∈ X∗ as follows.

trε = λn.Ω trxu = λn. let y = n in If0 y then x else tru(pred y)

In other words, tru is the function that will return the i-th term of the
sequence u when given i as an input, or will fail to terminate if passed some
index k ≥ |u|.

Proposition 4.6.2. Let u ∈ X∗ and let n < |u|. Then it is possible to
deduce that

Γ, s `M ⇓ n, s′

Γ, s ` truM ⇓ u(n), s′

in Idealized Algol.

We start our soundness proof with a small lemma to help us deal with
substitution.

Lemma 4.6.3. Let

Γ, s(0) `M1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Mn ⇓ cn, s(n)

Γ, s(0) `M ⇓ c, s(n)

be an inference, where the Mi,M are terms of IAX and the whole inference
satisfies one of the patterns of the Idealized Algol rules. Let Q be a fixed
term of type X. Then

Γ, s(0) `M1[Q/ askX ] ⇓ c1, s
(1)

· · · Γ, s(n−1) `Mn[Q/ askX ] ⇓ cn, s(n)

Γ, s(0) `M [Q/ askX ] ⇓ c, s(n)

is a valid inference of Idealized Algol.

Proof. Informally, this is true because the term askX is not mentioned any-
where in the IA rules, so substitution of the term Q for askX could not
possibly break the pattern. Formally, we can show this by inspection on
each of the different rules. For instance, if the original rule is the one for
sequencing:

Γ, s `M ⇓ skip, s′ Γ, s′ `N ⇓ c, s′′

Γ, s `M ;N ⇓ c, s′′
,
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then we have (M ;N)[Q/ askX ] = M [Q/ askX ];N [Q/ askX ] and the inference

Γ, s `M [Q/ askX ] ⇓ skip, s′ Γ, s′ `N [Q/ askX ] ⇓ c, s′′

Γ, s `M [Q/ askX ];N [P/ askX ] ⇓ c, s′′

is still a valid instance of the sequencing rule.

We can now state and prove our soundness lemma. As suggested by the
substitution lemmas we have just proved, we will be taking a term M of
nondeterministic IA and replacing all instances of askX in M with some
particular term Q. The Q that we will use is

Γ, v : Var ` v ←� !v; trw !v : X ,

where w is some sequence of elements of X. The idea is that this term will
trace the effect of a particular evaluation path of askX , similarly to how we
sometimes ‘mock’ a random number generator when writing unit tests.

Each time we call the term above, we increment the value of v, and successive
invocations will end up spelling out a particular substring u of w – depending
on the initial value of v and assuming that w is long enough. This will allow
us to study one particular evaluation path of the original term M – namely,
the one where the successive values returned by askX spell out the sequence
u.

Lemma 4.6.4. Suppose that

Γ, s `M ⇓u c, s′

is derivable in IAX . Fix k ∈ N and let w ∈ X∗ be a sequence such that u is
the substring of w starting at position k + 1 (i.e., u(j) = w(k+j+1) for each
j = 0, · · · , |u| − 1). Then

Γ, v : Var, (s|v 7→ k) `M [v ← succ!v; trw!v/ askv] ⇓ c, (s′|v 7→ k + |u|)

in Idealized Algol.

Proof. Structural induction on the derivation.

Suppose that the last rule we use comes from one of the Idealized Algol
rules. That is, there is an inference

Γ, s(0) `M1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Mn ⇓ cn, s(n)

Γ, s(0) `M ⇓ c, s(n)
,

derived from one of the Idealized Algol schemas, and we have replaced it
with the rule

Γ, s(0) `M1 ⇓u1 c1, s
(1) · · · Γ, s(n−1) `Mn ⇓un cn, s(n)

Γ, s(0) `M ⇓u1++···++un c, s
(n)

,

141



where each of the relations Γ, s(i−1) `Mi ⇓ui ci, s(i) is derivable in IAX .

Fix k ∈ N and a sequence w such that u1 ++ · · · ++ un is a subsequence of
w starting at position k + 1. In particular, for each i = 1, · · · , n, ui is a
subsequence of w starting at position k +

∑i−1
j=1 |uj |+ 1.

Then by the inductive hypothesis, we know that for each i = 1, · · · , n, the
relation

Γ, v, (s(i−1)|v 7→ k+

i−1∑
j=1

|uj |)`Mi[v ← succ!v; trw!v/ askv] ⇓ c, (s(i)|v 7→ k+

i∑
j=1

|uj |)

is derivable in Idealized Algol. Then we may apply the Idealized Algol
inference and Lemma 4.6.3 to deduce that

Γ, v, (s(0)|v 7→ k) `M [v ← succ!v; trw!v/ askv] ⇓ c, (s(n)|v 7→ k +

n∑
i=1

|un|) ,

as desired.

Now suppose instead that the last rule was the new one for askX ; i.e.,

Γ, s ` askX ⇓x x, s
,

where x ∈ X. Fix some k ∈ N and some w such that the single term x is a
subsequence of w starting at position k + 1; i.e., that x = w(k+1). Then we
would like to derive that

Γ, v, (s|v 7→ k) ` v ← succ!v; trw!v ⇓ x, (s|v 7→ k + 1) ,

which we can do using the derivation in Figure 4.2a, where we have used
Proposition 4.6.2 to deal with the trw term.

This completes the induction.

In light of Lemma 4.6.4, we can state our soundness result.

First recall the statement of Computational Adequacy for G (Theorem 3.4.9
if G is the category of games):

Theorem 4.6.5. Let M : com be a closed term of Idealized Algol. Then

, () `M ⇓ skip, () .

if and only if JMK 6= ⊥.
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Γ, v, (s|v 7→ k) ` v ⇓ v, (s|v 7→ k)

Γ, v, (s|v 7→ k)`!v ⇓ k, (s|v 7→ k)

Γ, v, (s|v 7→ k) ` succ!v ⇓ k + 1, (s|v 7→ k) Γ, v, (s|v 7→ k) ` v ⇓ v, (s|v 7→ k)

Γ, v, (s|v 7→ k) ` v ← succ!v ⇓ skip, (s|v 7→ k + 1)

Γ, v, (s|v 7→ k + 1) ` v ⇓ v, (s|v 7→ k + 1)

Γ, v, (s|v 7→ k + 1)`!v ⇓ k + 1, (s|v 7→ k + 1)

Γ, v, (s|v 7→ k + 1) ` trw!v ⇓ x, (s|v 7→ k + 1)

Γ, v, (s|v 7→ k) ` v ← succ!v; trw!v ⇓ x, (s|v 7→ k + 1)

(a) IA derivation that if s(v) = k, then Γ, s ` v ← succ!v; trw!v converges to the k + 1-th term of w, leaving state v 7→ k + 1.

Lem. 4.6.4
v, (v 7→ 0) `M [v ← succ!v; tru> !v/ askx] ⇓ skip, (v 7→ |u|)

v, (v 7→ |u|) ` v ⇓ v, (v 7→ |u|)
v, (v 7→ |u|)`!v ⇓ |u|, (v 7→ |u|)

v, (v 7→ 0) `M [v ← succ!v; tru> !v/ askX ]; v ⇓ |u|, (v 7→ |u|)
, () ` new(λv.M [v ← succ!v; tru> !v/ askX ]; !v) ⇓ |u|, ()

(b) IA derivation used in the proof of Proposition 4.6.9.

Figure 4.2: Some useful IA derivations
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Definition 4.6.6. Let u ∈ X∗. Let u> be the sequence formed by appending
some fixed value > ∈ X to the start of u, so that u is the subsequence of u>

running from position 1 up to position |u|. Define a morphism

ηu = Jf : X → com ` λv.f(v ← succ!v; tru> !v); !vK : (X → C)→ (Var→ N)

in G.

Definition 4.6.7. Let n be a natural number. We inductively define terms
testn : nat→ com by

test0 = λm. If0m then skip else Ω

testn+1 = λm. letx = m in If0x then Ω else testn(predx)

So testn converges if its input evaluates to n and diverges otherwise.

We then define tn : N→ C to be the denotation of testn in G.

Definition 4.6.8. Let σ : 1 → C be a morphism in GX , considered as a
morphism (X → C) in G. We say that σ ↓u if the composite

1
σ−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥.

Proposition 4.6.9. Let M : com be a closed term of IAX , let u ∈ X∗ be a
sequence and suppose that

, () `M ⇓u skip, () .

Let the denotation JMK : 1 → com in GX be considered as a morphism 1 →
(X → C) in G. Then JMK ↓u; i.e., the composite

1
JMK−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥.

Proof. Since the β rule is valid in GX , this composite is equal to the deno-
tation of the term

test|u|(new(λv.M [v ← succ!v; tru> !v/ askX ]; !v))

in IA. By the adequacy result for Idealized Algol, it suffices to show that
this term converges to skip; i.e., that the term

new(λv.M [v ← succ!v; tru> !v/ askX ]; !v)

converges to |u| in IA.

We can prove this using the derivation tree in Figure 4.2b.

144



Remark 4.6.10. Definition 4.6.8 looks a bit odd. This is a result of working
at such a high level of generality: since we have not assumed much about G
beyond the fact that it is a suitable model of Idealized Algol, then we have
to define everything in terms of Idealized Algol denotations.

If G is the category of games and visible strategies, then the statements of
Proposition 4.6.9 (and our later Adequacy and Full Abstraction results) be-
come clearer. Observe that if σ : 1→ (X → C) is a strategy in G (considered
as a strategy for !X ( C, then the maximal plays in the interaction

σ||(ηu; JnewK)

take the form
X C N

q
q

q

u(0)

...
q

u(k−1)

a
k ,

for k ≤ |u|, where the component in X,C is a valid play of σ. Moreover, the
strategy tn is the one with maximal plays of the form

N C
q

q
n

a

or
N C

q
q
m

for m 6= n.

This means that the composite

1
σ−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C
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is not equal to ⊥ if and only if σ contains the sequence

X C

q
q

u(0)

...
q

u(|u|−1)

a

.

Since complete plays in the game !X ( C are always of the form q, followed
by some sequence of pairs of the form qxi for xi ∈ X, followed by a, it is
very natural to consider conditions on those xi when dealing with a strategy
σ : !X ( C.

4.7 Computational Adequacy

Now we want to prove Computational Adequacy; i.e., the converse to Propo-
sition 4.6.9. To do this, we need to prove a converse to Lemma 4.6.4.

First of all, we need to prove a reverse result to Lemma 4.6.3 that deals with
substitution in the opposite direction. That is, instead of telling us what
happens when we substitute a term for askX , we will look at what happens
when we substitute a term for v ← succ!v; tru!v.

In most cases, this will not disrupt the structure of the IA rule. For instance,
we always have

(!V )[Q/v ← succ!v; tru!v] =!(V [Q/v ← succ!v; tru!v]) ,

and so the derivation

Γ, s ` V [Q/v ← succ!v; tru!v] ⇓ v, s′

Γ, s`!V [Q/v ← succ!v; tru!v] ⇓ n, s′
s′(v) = n

still follows the pattern of the Idealized Algol rule for variable dereference.

There is only one case where this breaks down. Consider the following
instance of the sequencing rule.

Γ, v, s ` v ← succ!v ⇓ skip, s′ Γ, v, s′ ` tru!v ⇓ x, s′′

Γ, v, s ` v ← succ!v; tru!v ⇓ x, s′′
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In this case, substituting some term Q for v ← succ!v; tru!v in the top two
terms will have no effect, whereas it will replace the whole of the bottom
with Q, invalidating the whole inference.

We have proved the following.

Lemma 4.7.1. Let

Γ, s(0) `M1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Mn ⇓ cn, s(n)

Γ, s(0) `M ⇓ c, s(n)

be an inference of Idealized Algol. Let u ∈ X∗ and let Q : X be a term of IAX .
Fix an unused variable name v and suppose that M 6= v ← succ!v; tru!v.
Then

Γ, s(0) `M1[Q/v ← succ!v; tru!v] ⇓ c1, s
(1)

· · · Γ, s(n−1) `Mn[Q/v ← succ!v; tru!v] ⇓ cn, s(n)

Γ, s(0) `M [Q/v ← succ!v; tru!v] ⇓ c, s(n)

conforms to the same Idealized Algol pattern. In particular, if w1, · · · , wn ∈
X∗, then

Γ, s(0) `M1[Q/v ← succ!v; tru!v] ⇓w1 c1, s
(1)

· · · Γ, s(n−1) `Mn[Q/v ← succ!v; tru!v] ⇓wn cn, s(n)

Γ, s(0) `M [Q/v ← succ!v; tru!v] ⇓w1++···++wn c, s
(n)

is a valid inference of IAX .

We need one more lemma to help us deal with substitution.

Lemma 4.7.2. Suppose that Γ, y `M : T is a typing judgement of Idealized
Algol, where Γ is a Var-context and y is a free variable of type X. Fix
u ∈ X∗. Suppose that M 6= y and that we have some inference

Γ, s(0) `N1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Nn ⇓ cn, s(n)

Γ, s(0) `M [v ← succ!v; tru!v/y] ⇓ c, s(n)
.

of Idealized Algol. Then each Ni may be written as Mi[v ← succ!v; tru!v/y]
for some Γ, y `Mi.

Proof. This can be checked case-by-case. The most interesting is the case
for sequencing: if M [v ← succ!v; tru!v/y] 6= v ← succ!v; tru!v, then we must
have

M [v ← succ!v; tru!v/y] = N [v ← succ!v; tru!v/y];P [v ← succ!v; tru!v/y] ,

which is deduced from N [v ← succ!v; tru!v/y] and P [v ← succ!v; tru!v/y].
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Now we can state and prove our adequacy lemma.

Lemma 4.7.3. Suppose that w ∈ X∗ is a sequence of length greater than
or equal to k, l and that

Γ, v, (s|v 7→ k) `M [v ← succ!v; trw!v/y] ⇓ c, (s′|v 7→ l)

is derivable in Idealized Algol, where v is not free in M and y is a variable
name of type X. Then l ≥ k and

Γ, s `M [askX /y] ⇓u c, s′

in IAX , where u is the subsequence of w consisting of all terms from k + 1
up to l.

Proof. Induction on the derivation.

Suppose that M 6= y. Then, by Lemma 4.7.2, the last step in the derivation
of M [v ← succ!v; trw!v/y] must be of the form

Γ, s(0) `M1[v ← succ!v; trw!v/y] ⇓ c1, s
(1)

· · · Γ, s(n−1) `Mn[v ← succ!v; trw!v/y] ⇓ cn, s(n)

Γ, s(0) `M [v ← succ!v; trw!v/y] ⇓ c, s(n)
,

where each Mi[v ← succ!v; trw!v/y] is derivable in Idealized Algol.

By the inductive hypothesis, s(i−1)(v) ≤ s(i)(v) for each i and so s(0)(v) ≤
s(n)(v), as desired (in the case that there are no premises – i.e., the case of
the rule for canonical forms – we have s(0)(v) = s(0)(v)). Moreover, by the
inductive hypothesis, it is derivable that

Γ, s(i−1) `Mi[askX /y] ⇓ui ci, s(i) ,

where ui is the subsequence of w going from term s(i−1)(v) + 1 up to s(i)(v).

Now for any term Γ, y ` P , we have

P [askX /y] = P [v ← succ!v; tru!v/y][askX /v ← succ!v; tru!v] ,

and so by Lemma 4.7.1 we may derive

Γ, s(0) `M [askX /y] ⇓u1++···++un c, s
(n) .

But u1++· · ·++un is precisely the subsequence of w going from term s(0)(v)+1
up to s(n)(v)!

This completes the first case. The second case is where M = y. Suppose,
then, that

Γ, v, (s|v 7→ k) ` v ← succ!v; trw!v ⇓ x, (s′|v 7→ l)
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is derivable in Idealized Algol.

Since IA is a deterministic language (so if Γ, s`M ⇓ c, s′ and Γ, s`M ⇓ c′, s′′
then c = c′ and s′ = s′′), then the derivation of this term must agree with
the valid IA derivation given in Figure 4.2a. It follows that l = k + 1 and
that x is the (k + 1)-th term of w, so the single-term sequence x is the
subsequence of w going from k + 1 to l.

Then we have the derivation

Γ, s ` askX ⇓x x, s′

in IAX . This completes the induction.

We can now prove computational adequacy for our model. We have proved
one direction already in Proposition 4.6.9, so it suffices to prove the other
direction.

Proposition 4.7.4 (Computational adequacy). Let M : com be a closed
term of IAX . Consider the denotation JMK : 1 → C in GX as a morphism
1 → (X → C) in G. Let u ∈ X∗ be a sequence and suppose that JMK ↓u;
i.e., that the composite

1
JMK−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥. Then

, () `M ⇓u skip, () .

Proof. As before, the composite given in the statement is the denotation of
the term

test|u|(new(λv.M [v ← succ!v; tru> !v/ askX ]; !v)) .

By the adequacy result for Idealized Algol, the fact that this denotation is
not equal to ⊥ means that the term converges to skip, from which we can
deduce that

new(λv.M [v ← succ!v; tru> !v/ askX ]; !v

converges to |u|.

It is easy to see that this is equivalent to asking whether we can derive the
following relation in Idealized Algol.

v, (v 7→ 0) `M [v ← succ!v; tru> !v/ askX ] ⇓ skip, (v 7→ |u|)
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Now u is the subsequence of u> going from position 1 to position |u|. So
Lemma 4.7.3 tells us that we must have

, () `M ⇓u skip, ()

in IAX .

Remark 4.7.5. Recall that if G is the category of games, then we have σ ↓u
if and only if σ contains the play

X C

q
q

u(0)

...
q

u(|u|−1)

a

.

Therefore, we have now proved that we have , () `M ⇓u skip, () if and
only if JMK contains that sequence.

4.8 Full Abstraction

To prove full abstraction of our semantics for IAX , we introduce the usual
intrinsic equivalence on terms.

Definition 4.8.1. Let σ, τ : A → B be morphisms in GX . By currying, we
may consider A and B as morphisms 1 → (A → B) in GX . We say that
σ ∼ τ if for all morphisms α : (A → B) → C and for all sequences u ∈ X∗,
if we regard σ;α, τ ;α : 1 → C as morphisms 1 → (X → C) in G, then the
composites

1
σ;α−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

1
τ ;α−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

are equal.

Theorem 4.8.2 (Full abstraction). Let M,N : T be closed terms of IAX .
Then M,N are observationally equivalent – i.e., for all contexts C[−] : com
of IAX with a hole of type T and for all sequences u ∈ X∗,

, () ` C[M ] ⇓u skip, ()⇐⇒ , () ` C[N ] ⇓u skip, () –
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if and only if JMK ∼ JNK.

Proof. First, suppose that JMK ∼ JNK. Let C[−] : com be a context with a
hole of type T . Then the denotation of t `C[t] is a morphism α : JT K→ C.
Moreover, the denotation of C[M ] is the composite JMK ;α and that of C[N ]
is the composite JNK ;α since we are working in a Cartesian closed category.

Then the composites

1
σ;α−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

1
τ ;α−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

are equal, so C[M ] ⇓u skip if and only if C[N ] ⇓u skip by Propositions 4.6.9
and 4.7.4.

Conversely, suppose that M 6∼ N . So there is some α : JT K→ C in GX and
some sequence u such that (without loss of generality),

(JMK ;α); ηu; JnewK ; t|u| 6= ⊥ (JNK ;α); ηu; JnewK ; t|u| = ⊥ .

Here, we have enclosed JMK ;α and JNK ;α in brackets to indicate that the
composition is taken in the Kleisli category GX , and then the whole thing
is considered as a morphism 1→ (X → C) in G.

More specifically, these composites are given by the composites

1
JMK−−→ (X → JT K) X→α−−−→ (X → (X → C))

µ−→ (X → C)

1
JNK−−→ (X → JT K) X→α−−−→ (X → (X → C))

µ−→ (X → C)

in G, where µ indicates precomposition with the diagonal.

Now α is the least upper bound of its compact approximants, so it follows
that there is some compact α′ ⊆ α such that

JMK ; (X → α′);µ; ηu; JnewK ; t|u| 6= ⊥

JNK ; (X → α′);µ; ηu; JnewK ; t|u| = ⊥ .

Then, by compact definability in G, α′ is the denotation of some IA term
x : T `C[x] : X → com, which is therefore the denotation of the term x : T `
C[x] askX : com in GX . So we get

JC[M ]K ; ηu; JnewK ; t|u| 6= ⊥ JC[N ]K ; ηu; JnewK ; t|u| = ⊥ ,

and so C[M ] ⇓u skip by Proposition 4.7.4, while C[N ] 6⇓u skip by Proposition
4.6.9. Therefore, M and N are observationally inequivalent in IAX .
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4.9 Comparison with Ghica’s slot games

For this section, let us suppose that G is the category of games and visible
strategies, and that X = C. As we remarked above, this means that IAX

can be interpreted as a language for modelling time complexity.

We compare our approach to a different one, due to Dan Ghica [Ghi05].
Given a game A, Ghica defines a play with costs in A to be a justified
sequence s ∈ (MA + { $©})∗ such that s|MA

∈ PA. Here, $© is a special
symbol called a slot or token-action, which can be interleaved throughout
the play s|MA

from A. We shall also impose the requirement (not found in
[Ghi05]) that an occurrence of the special symbol $© must take place either
after an O-move in A or after another instance of $©. The token actions do
not carry justification pointers.

Following Ghica, we define a strategy with costs to be a prefix-closed set σ of
plays with costs such that the set σ|MA

= {s|MA
: s ∈ σ} is a valid visible

strategy for A and such that determinism applies to token actions as well as
ordinary moves – i.e., if s is an O-play with costs in A such that s $©a ∈ σ
for some ordinary move a, then sb 6∈ σ for all ordinary moves b.

The identity strategy with costs is the usual identity strategy, without any
token actions. We can similarly define an interaction sequence with costs
to be a sequence s ∈ (MA + MB + MC + { $©})∗ such that s|A,B,C is an
interaction sequence for A,B,C and such that each occurrence of the token
action ∗ occurs after a move that could be considered as an O-move in either
A( B or B ( C.

Given such an interaction sequence s ∈ (MA +MB +MC + { $©})∗ between
the games A, B and C, write s|A,B for the subsequence consisting of all those
moves in A and B, together with all token actions such that the previous
move was an O-move in A( B. Define s|B,C similarly. Then if σ : A( B
and τ : B ( C are strategies with costs, we define σ‖τ to be the set of all
such sequences s such that s|A,B ∈ σ and s|B,C ∈ τ . Lastly, we define σ; τ
to be the set of all sequences obtained by taking a sequence s ∈ σ‖τ and
removing all the moves in B (but retaining all the token actions, including
those that arise between moves in B). The usual arguments apply to show
that this is indeed a category.

This seems like a purely combinatorial construction, but it can actually be
subsumed into our category-theoretic apparatus.

Proposition 4.9.1. Let A be a game. Then there is a bijection

c : {normal strategies for !C ( A} ↔ {strategies with costs for A}

Moreover, this bijection respects composition and identity in the Kleisli cat-
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egory: let σ : !C ( (A → B) and τ : !C ( (B → C) be strategies. Write
σ; τ for the Kleisli composition of σ and τ in GC; i.e., the composite

!C µ−→ !C⊗ !C σ⊗τ−−→ (A( B)⊗ (B ( C)
;−→ (A( C) .

Then c(σ; τ) = c(σ); c(τ). Moreover, c(idA) is the identity in the category
of games and strategies with costs.

Proof. The map c is the unique functor given by the functional completeness
theorem (Proposition 4.3.1) that sends the canonical strategy φ : 1 → C to
the strategy with costs for C with maximal play

q $©a .

More synthetically, we get from a strategy for σ : !C ( A to a strategy with
costs for A by replacing each occurrence of the pair qa occurring in the C
component with the token action $© in each play of σ.

This functor is the identity on objects, and it is fully faithful, since it has
an obvious inverse, given by taking a strategy with costs and replacing each
occurrence of the token action with a pair of moves qa in !C, where q justifies
a and is itself justified by the most recently occurring O-move in A. Since
each token action must always occur after an opponent move or after another
token action, and since player O has no reply to the move q other than the
move a, this always gives us a legal strategy.

Therefore, we see that the category of games and strategies with costs is
isomorphic to the Kleisli category GC, which we have already shown to be
fully abstract for a language with time complexity.

4.10 Alternative Reduction Rules - May Testing

We remarked above that if X ∈ {B,N}, then IAX is a model of nondeter-
minism, finite in the case of B and countable in the case of N. However, we
have given a rather strange operational semantics for these languages (the
relation ⇓u) that does not accurately reflect how they are normally used.

For example, the terms

If askB then t else f : bool If askB then f else t : bool

are not observationally equivalent in our operational semantics; indeed, we
have

If askB then t else f ⇓t t If askB then f else t ⇓t f .
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However, these terms (which both nondeterministically choose either the
true or the false value), should be observationally equivalent in any sensi-
ble nondeterministic semantics. The issue is the labelling on the reduction
relations, which is saving too much information about the reduction of the
term. Indeed, this is sort of the point of nondeterminism: we should be able
to make nondeterministic choices without recording which value we used for
that choice.

Definition 4.10.1 ([HM99]). If X ∈ {B,N}, we define an operational re-
lation ⇓ (‘may converge’) on the language IAX as follows. The rules for ⇓
are identical to the operational rules for Idealized Algol, with the addition
of the following rule for the primitive askX .

Γ, s ` askX ⇓ x, s
x ∈ X

These rules are exactly the same as our original operational semantics for
IAX , but with the sequences u removed. Moreover, if we have a valid deriva-
tion of Γ, s`M ⇓ u, s′, then it is clear (by induction) that we may annotate
all the occurrences of ⇓ with suitable sequences in order to obtain a deriva-
tion of Γ, s`M ⇓u c, s′ for some u ∈ X∗. So we get the following alternative
definition of may convergence.

Definition 4.10.2. We say that Γ, s `M ⇓ c, s′ if there is some u ∈ X∗

such that Γ, s `M ⇓u c, s′.

We can reflect this operational relation in the semantics by modifying the
definition of intrinsic equivalence.

Firstly, an obvious consequence of Propositions 4.6.9 and 4.7.4 is that

Corollary 4.10.3 (Computational Adequacy for May Testing). Let M : com
be a closed term of IAX . Consider the denotation JMK : 1 → C in GX as
a morphism 1 → (X → C) in G. Then there exists some sequence u ∈ X∗
such that the composite

1
JMK−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥, if and only if

, () `M ⇓ skip, () .

In light of this result, we can define a new intrinsic equivalence on morphisms
in GX :
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Definition 4.10.4. Let σ, τ : A → B be morphisms in GX , considered as
morphisms 1 → (A → B) in GX . We say that σ ∼may τ if for all u ∈ X∗
there exists v ∈ X∗ such that the composites

1
σ;α−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

1
τ ;α−−→ (X → C)

ηv−→ (Var→ N)
JnewK−−−→ N

t|v|−−→ C

are equal, and vice versa.

Then exactly the same argument as before gives us a full abstraction result
for may-equivalence.

Theorem 4.10.5. Let M,N : T be closed terms of IAX . Then M,N are
may-observationally equivalent – i.e., for all contexts C[−] : com of IAX with
a hole of type T ,

, () ` C[M ] ⇓ skip, ()⇔ , () ` C[N ] ⇓ skip, () –

if and only if JMK ∼may JNK.

Proof. Suppose that JMK ∼may JNK. Let C[−] be a context of IAX , inter-
preted as a morphism α : JT K→ C.

Suppose that , ()`C[M ] ⇓ skip, (). So there is some sequence u ∈ X∗ such
that , () ` C[M ] ⇓u skip, () and therefore the composite

1
JMK;α−−−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥. This means that there exists some v ∈ X∗ such that the
composite

1
JNK;α−−−→ (X → C)

ηv−→ (Var→ N)
JnewK−−−→ N

t|v|−−→ C

Therefore, , ()`C[N ] ⇓v skip, (), and so , ()`C[N ] ⇓ skip, (). The reverse
direction is identical.

Conversely, suppose that M,N are may-observationally equivalent. Then,
as before, we can take α to be compact, whence definable, in Definition
4.10.4, and the proof continues as in the first part, but in reverse.

Let us examine what this means in the category of games. If σ : !X ( C is
a strategy, then, by our discussion at the end of §4.6, we know that, for any
sequence u, the composite

1
σ−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C
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is not equal to ⊥ if and only if σ contains the play

X C

q
q

u(0)

...
q

u(|u|−1)

a

.

Moreover, since any complete play in !X ( C must take this form, we can
see there exists such a u making the composite above not equal to ⊥ if and
only if

qa ∈ {s|C : s ∈ σ is complete} .

This suggests a general equivalence relation on Kleisli morphisms in GX :
given a strategy σ : !X ( A, we write σ|A for the set

{s|A : s ∈ σ is complete} .

We say that two strategies σ, τ : !X ( A are may-equivalent, and write
σ ≈may τ , if

σ|A = τ |A .

In this case, Corollary 4.10.3 tells us that M ⇓ skip if and only if σ ≈may τ .

We need to show that this respects composition, so that we get a category
if we take the quotient by this equivalence relation.

Proposition 4.10.6. Let σ, σ′ : A→ B, τ, τ ′ : B → C be morphisms in GX .
Suppose that σ ≈may σ

′ and τ ≈may τ
′. Then σ; τ ≈may σ

′; τ ′.

Proof. A complete play in σ; τ is given by a sequence s|X,A,C , where s ∈
(MX +MA+MB+MC)∗ is a legal interaction of a complete play in τ with a
collection of complete plays in σ, B-components being identified. Then s|A,C
can alternatively be characterized as t|A,C , where t ∈ (MA +MB +MC)∗ is
a legal interaction of a sequence from τ |B,C with a collection of sequences
from σ|A,B.

It follows that if σ|A,B = σ′|A,B and τ |B,C = τ ′|B,C , then σ; τ |A,C =
σ′; τ ′|A,C .

Now we can also see that this equivalence we have just defined is subsumed
into the intrinsic equivalence.
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Proposition 4.10.7. Let σ, τ : !X ( A be strategies. If σ ≈may τ then
σ ∼may τ .

Proof. Given strategies σ, τ : A in GX , we have σ ∼may τ if and only if
σ;α ≈may τ ;α for any morphism α : !A( C in GX . If σ ≈may τ , we have

σ;α|C = (σ|C);α = (τ |C);α = τ ;α|C .

Note that it is also the case that if α ≈may α
′ and σ ≈may τ then σ;α ≈may

τ ;α′. Therefore, the Full Abstraction result we have just proved applies to
the quotiented category.

The definition of the relation ≈may suggests that we might forget about the
!X component of a strategy σ : !X ( A altogether, and consider only the
set σ|A. This set is not a strategy, since it does not satisfy the determinism
requirement, but it satisfies every other requirement.

Definition 4.10.8. Given a game A, a nondeterministic strategy is a prefix-
closed set of even-length legal plays from A.

We can compose nondeterministic strategies using ‘parallel composition plus
hiding’, just as for deterministic ones, and we get a Cartesian closed category
in the same way. We interpret all the Idealized Algol terms in the usual way
as deterministic strategies, interpreting the nondeterministic primitive askX
as the nondeterministic strategy for X with maximal plays

qx

for every x ∈ X.

Now, if we have a Kleisli morphism σ : !X ( A, then σ|A is a nondetermin-
istic strategy for A. The composition of nondeterministic strategies respects
the composition and identity in the Kleisli category; moreover, any two
Kleisli morphisms that give rise to the same nondeterministic strategy are
intrinsically equivalent.

It is already known (see [HM99]) that this model is fully abstract for (finitely
or countably) nondeterministic Idealized Algol with may-contextual equiv-
alence. We have just provided an alternative proof of this fact.

4.11 Alternative Reduction Rules - Must Testing

A more interesting, and more complicated, reduction rule for nondetermin-
istic IA is the must-convergence relation.

We shall define this indirectly via its negation.
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Definition 4.11.1. We define a relation

Γ, s `M ⇑

(M ‘may diverge’) between Var-contexts Γ, Γ-stores s and terms Γ `M : T
of Idealized Algol.

The rules for this relation may be deduced from the rules for Idealized Algol.
If

Γ, s(0) `M1 ⇓ c1, s
(1) · · · Γ, s(n−1) `Mn ⇓ cn, s(n)

Γ, s(0) `M ⇓ c, s(n)
,

is an IA rule, then for each j = 1, · · · , n we have a rule

Γ, s(0) `M1 ⇓ c1, s
(1) · · ·

Γ, s(j−2) `Mj−1 ⇓ cj−1, s
(j−1) Γ, s(j−1) `Mj ⇑

Γ, s(0) `M ⇑ .

In other words, if the evaluation of the term M diverges at any step, then
the whole thing diverges. Note that since the rules for the canonical forms
have no premises, there are no rules relating them to the ⇑ predicate.

Crucially, these rules are interpreted not inductively but coinductively; in
other words, the derivation trees for ⇑ are allowed to have infinite height.
Indeed, since every rule for ⇑ has at least one premise, any valid tree must
be infinitely tall.

If there is no such derivation tree, then we say that M must converge, and
write Γ, s `M ⇓must.

Example 4.11.2. If Γ ` c is a canonical form, then Γ ` c ⇓must, since there
is no inference that we can apply that will yield the term Γ ` c ⇑ on the
bottom.

Example 4.11.3. , () ` Y(λx.x) ⇑ because it has the following infinite
derivation tree.

, () ` (λx.x) ⇓ (λx.x), ()

...

, () `Y(λx.x) ⇑
, () ` (λx.x)(Y(λx.x)) ⇑

, () `Y(λx.x) ⇑

Remark 4.11.4. It is possible to characterize the ⇓must predicate directly via
an inductive relation (see [Har99], for instance).

We will next give an alternative definition of ⇓must that will relate it to our
existing rules ⇓u.
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Definition 4.11.5. We say that Γ, s`M ⇓must if for every infinite sequence
w ∈ Xω there is some finite prefix u Ř w such that Γ, s`M ⇓u c, s′ for some
canonical form c and some Γ-store s′.

Before we show that the two definitions are equivalent, we shall examine why
this one makes sense. Recall that we said that the statement Γ, s`M ⇓u c, s′
meant ‘M will converge to c in the case that the values we obtain by querying
the nondeterministic oracle form the sequence u’. Our initial thought, then,
might be to declare that Γ, s `M ⇓must if for all u ∈ X∗, Γ, s `M ⇓u c, s′
for some c, s′. However, this is not the case even for terms that clearly have
to converge. For example, if we have

M = If askB then t else f ,

then M ⇓t t and M ⇓f f, and it is certainly true that M ⇓must. However, it
is not the case that, for example, M ⇓ε c; nor is it the case that M ⇓fftft c
for any c. In the first case, the sequence is too short: we can extend it to the
sequence t and then we get convergence. In the second case, the sequence is
too long: we have already converged after the first term f, so we never get
the chance to read any other terms.

The idea is that if we fix beforehand an infinite sequence made up of all the
values that the nondeterministic oracle could possibly give, then we know
that the term will always end up reading some finite sequence of values from
the beginning of the sequence and then terminating at a value.

Proposition 4.11.6. The two definitions of the ⇓must predicate given in
Definitions 4.11.1 and 4.11.5 are equivalent.

Proof. Suppose that Γ, s ` M ⇑. We coinductively construct a sequence
w ∈ Xω such that Γ, s `M 6⇓u c, s′ for any finite prefix u Ř w and any c, s′.
We shall use the notation Γ, s `M ⇑w to indicate this w.

Given any rule

Γ, s(0) `M1 ⇓ c1, s
(1)

· · · Γ, s(j−2) `Mj−1 ⇓ cj−1 Γ, s(j−1) `Mj ⇑
Γ, s(0) `M ⇑

,

by our definition of ⇓, there are u1, · · · , uj−1 ∈ X∗ such that Γ, s(i−1)`Mi ⇓ui
ci, s

(i) for each i = 1, · · · , j − 1.

The corresponding coinductive rule is then

Γ, s(0) `M1 ⇓u1 c1, s
(1)

· · · Γ, s(j−2) `Mj−1 ⇓uj−1 cj−1 Γ, s(j−1) `Mj ⇑w

Γ, s(0) `M ⇑u1++···++uj−1++w .
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In other words, the sequence w at the bottom of the tree may be character-
ized as the concatenation of all the sequences u constructed for the ⇓ relation
in the tree, working bottom to top and left to right. If the w so formed is a
finite sequence, then pad it with arbitrary values so that it becomes infinite.

Now suppose that u Ř w is some finite prefix such that Γ, s `M ⇓u c, s′ for
some c, s′. We claim that Γ, s `M 6⇑, giving us a contradiction.

The proof of the claim is via induction on the derivation of Γ, s`M ⇓u c, s′.

Suppose that the last rule takes the form

Γ, s(0) `M1 ⇓u1 c1, s
(1) · · · Γ, s(n−1) `Mn ⇓un cn, s(n)

Γ, s(0) `M ⇓u1++···++un c, s
(n) .

Then inspection of the IA rules tells us that the last step in our derivation
of Γ, s(0) `M ⇑ must look like

Γ, s(0) `M1 ⇓u1 c1, s
(1)

· · · Γ, s(j−2) `Mj−1 ⇓uj−1 cj−1 Γ, s(j−1) `Mj ⇑w

Γ, s(0) `M ⇑u1++···++uj−1++w

for the same Mi and ci. But we had Γ, s(j−1)`Mj ⇓uj cj , s(j). By hypothesis,
u1 ++ · · ·++ un is a finite prefix of u1 ++ · · ·++ uj−1 ++w, and so uj is a finite
prefix of w. Therefore, by the inductive hypothesis applied to Mj , we cannot
have Γ, s(j−1) `Mj ⇑, leading to the desired contradiction.

For the converse, define an n-truncated derivation tree to be a derivation
tree of height n such that premises of the form Γ, s`M ⇑w may occur at the
top level without proof. We now define, for any infinite sequence w ∈ Xω,
any triple Γ, s `M and any i ≥ 0, either

• a proof of height ≤ i that Γ, s `M ⇓u c, s′ for some u Ř w (and some
c, s′); or

• an i-truncated proof Fi(w,Γ, s `M) of Γ, s `M ⇑v for some (possibly
infinite) v v w.

Moreover, the Fi(w,Γ, s`M) will form an infinite sequence, so that if i < j
then Fi(w,Γ, s `M) is the result of truncating Fj(w,Γ, s `M) at the i-th
level.

For i = 0, Fi(w,Γ, s `M) is the tree of the form

Γ, s `M ⇑w ,

where this statement is treated as an unproven (and in many cases untrue)
hypothesis.
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Now we define Fi+1(w,Γ, s `M) as follows. If M is a canonical form, then
Fi+1(w,Γ, s `M) is the derivation.

Γ, s `M ⇓ε M, s .

If M = askX , then Fi+1(w,Γ, s `M) is the derivation

Γ, s `M ⇓w(0) w(0), s .

Otherwise, based on the structure of M , we choose a first premise M1 for M .
In most cases, there is a unique IAX rule that applies to M , but sometimes
(i.e., if M is predM ′, IfM ′ then N ′ else P ′, If0M ′ then N ′ else P ′, !V
or V ← E) there may be more than one possible rule. However, in all
of these cases, the first premise of each rule is the same. For instance, if
M = IfM ′ then N ′ else P ′ then the first premise of both the possible IA
rules is M ′, and the value that this converges to then determines which
instance of the If rule we use.

We evaluate Fi(w,Γ, s `M1). If Fi(w,Γ, s `M1) is a complete proof that
Γ, s ` M1 ⇓u1 c1, s

(1) for u Ř w, then write w = u1w2 and move on to
the next premise, computing Fi(w2,Γ, s `M2). Note that now the value of
c1 completely determines the IAX rule we are using; for example, if M =
IfM ′ then N ′ else P ′, and Γ, s`M ′ ⇓u c, s′, then c is either t or f, and there
is a unique IAX rule that applies in each case.

We keep going through the premises of M in order. If we satisfy them all,
so that Fi(wi,Γ, s

(i−1) `Mi) is a proof that Γ, s(i−1) `Mi ⇓ui ci, s(i) for each
Mi, then we can put these together to get a derivation of

Γ, s `M ⇓u1++···++un c, s
(n) ,

of height ≤ i+ 1, where u1 ++ · · ·++ un is a finite prefix of w.

Otherwise, at some point Fi(w,Γ, s
(j−1) `Mj) must be an i-truncated proof

that
Γ, s(j−1) `Mj ⇑v

for some v v w. In that case, since we have a proof of height ≤ i for
Γ, s(k−1) `Mk ⇓uk ck, s(k) for each k < j, we can apply the appropriate rule
for ⇑v to get an (i+ 1)-truncated proof that

Γ, s `M ⇑u1++···++uj−1++v ,

where u1 ++ · · ·++ uj−1 ++ v is a prefix of w.

Now, given w and Γ, s`M , either Fm(Γ, s`M) is a proof that Γ, s`M ⇓u c, s′
for u Ř w and m sufficiently large, or the Fi(w,Γ, s `M) form an infinite
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sequence of trees of increasing height that all extend one another. In the
second case, we can stitch the trees together to form an infinite derivation
tree for Γ, s `M ⇑.

It follows that if there is some w such that Γ, s `M 6⇓u c, s′ for any finite
prefix u Ř w, then there is an infinite derivation tree for Γ, s `M ⇑.

We can now get an adequacy result for must testing.

Definition 4.11.7. Given a morphism σ : 1 → C in GX , considered as a
morphism X → C in G, we write σ ↓must if whenever w ∈ Xω is an infinite
sequence, then w has a finite prefix u such that the composite

1
σ−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥.

Corollary 4.11.8. Let M : com be a closed term of IAX and consider the
denotation JMK : 1 → C in GX as a morphism 1 → (X → C) in G. Then
, () `M ⇓must if and only if JMK ↓must.

Once again, this slightly abstruse Definition 4.11.7 becomes much more nat-
ural when G is the category of games, though in this case things are a bit
more subtle. Let σ be a strategy for !X ( C. We observed earlier that
σ; ηu; JnewK ; t|u| 6= ⊥ if and only if the sequence

!X ( C
q

q

u(0)

...
q

u(|u|−1

a

is contained in σ. Now fix some infinite sequence w ∈ Xω and consider
what it means if we say that such a sequence is not contained in σ for any
u Ř w. By the definition of a strategy, there are two reasons why this might
happen. Either there is a partiality in the strategy, so that for some finite
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v Ř w, player P has no reply at all to the O-position

!X ( C
q

q

v(0)

...
q

v(|v|−1

a .

Or, σ contains an infinite increasing sequence of plays, whose limit is the
infinite sequence

!X ( C
q

q

v(0)

q

v(1)

...

Definition 4.11.9. We say that a strategy σ : !X ( C is winning if σ is
total and contains no infinite plays.

We have shown the following adequacy result.

Corollary 4.11.10. Let M : com be a closed term of IAX and consider the
denotation JMK : 1→ C in GX as a morphism X → C in G. Then

, () `M ⇓must

if and only if this strategy is winning.

4.12 Full Abstraction for Finite Nondeterminism
Under Must Testing

We now extend our earlier definitions using the new ⇓must rule.

Definition 4.12.1. Given closed terms M,N : T of IAX , we write

M ≡must N

if for all contexts − : T ` C[−] : com, C[M ] ⇓must if and only if C[N ] ⇓must.

We write M ≡m&m N if M ≡may N and M ≡must N .
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Definition 4.12.2. Given morphisms σ, τ : 1→ C in GX , we write σ ≈must τ
if σ ↓must and τ ↓must or if σ 6↓must and τ 6↓must.

We write σ ≈m&m τ if σ ≈may τ and σ ≈must τ .

Definition 4.12.3. Given morphisms σ, τ : A → B in GX , considered as
morphisms 1→ (A→ B), we write σ ∼must τ if whenever α : (A→ B)→ C
is a morphism in GX , then σ;α ≈must τ ;α.

We write σ ∼m&m τ if σ ∼may τ and σ ∼must τ .

Remark 4.12.4. In the category of games we can simplify the definition of
∼m&m to saying that σ ∼m&m τ if for all α : (A → B) → C, σ;α ≈may τ ;α
and either σ;α and τ ;α are both winning, or neither is.

Now we might expect to be able to prove a full abstraction result as before,
namely that JMK ∼m&m JNK if and only if M ≡m&m N . In the case of finite
nondeterminism, this is possible.

Theorem 4.12.5. Let M,N : T be closed terms of IAB. Then M ≡m&m N
if and only if JMK ∼m&m JNK.

Proof. We already know that JMK ∼may JNK if and only if M and N are
may-contextually equivalent, so it is sufficient to prove that JMK ∼must JNK
if and only if M ≡must N .

One direction is easy, as usual. Suppose that JMK ∼must JNK, and let
C[−] be a context. Suppose that C[M ] ⇓must, and fix w ∈ Xω. Then
JC[M ]K = JCK ; JMK, so there is some finite prefix u Ř w such that the
composite

1
JCK;JMK−−−−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C

is not equal to ⊥. Since M ∼must N , there is some finite prefix v Ř w and
some compact α′ : JT K→ C such that the composite

1
JCK;JNK−−−−−→ (X → C)

ηv−→ (Var→ N)
JnewK−−−→ N

t|v|−−→ C

is not equal to ⊥, and therefore C[N ] ⇓must. The other direction is com-
pletely symmetric.

The converse is harder. Let α : JT K→ C be an arbitrary morphism. Suppose
that for all w ∈ Bω there is some finite u Ř w such that the composite

JMK ; (X → α);µ; ηu; JnewK ; t|u|

is not equal to ⊥. Let V be the set of all sequences v ∈ B∗ such that v has
no prefix u with this property. Then V is a finitely branching tree with no
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infinite path so, by König’s Lemma, it is finite. Therefore, there is some
finite set of sequences U ⊆ B∗ such that for every sequence w ∈ Bω, w has
some prefix u ∈ U such that JMK ; (X → α);µ; ηu; JnewK ; t|u| 6= ⊥.

Since G is enriched in algebraic cpos, for each u ∈ U there is some compact
αu ⊆ α such that

JMK ; (X → αu);µ; ηu; JnewK ; t|u|

is not equal to ⊥. Since the set of compact elements below α is directed,
there is some compact α′ ⊆ α such that αu ⊆ α′ for each u ∈ U .

So we now know that: for any infinite sequence w ∈ Bω, there is some finite
prefix u Ř w such that the composite

JMK ; (X → α′);µ; ηu; JnewK ; t|u|

is not equal to ⊥. Now if JNK 6∼must JMK, then there is some infinite w ∈ Bω
is such that for every v Ř w the composite

JNK ; (X → α);µ; ηv; JnewK ; t|v|

is equal to ⊥; since α′ ⊆ α, the same is true if we replace α with α′.

Now, since α′ is compact, it is definable as a term in IA and hence as a term
L in IAB. By Corollary 4.11.8, this means that LM ⇓must, while LN ⇑, so
M 6≡must N .

This last result makes crucial use of the finiteness of B in order to apply
König’s lemma. In the case of IAN, the argument we have just used does
not apply, since we can certainly have infinite bounded-height trees if we
allow infinite branching.

In fact, this point is essential: not only does this specific argument not
work for our model of IAN, the model is not necessarily Fully Abstract
at all! In particular, if G is the category of games, then the semantics of
must testing in GN is not Fully Abstract. The next result will show that no
model of countable nondeterminism can be Fully Abstract, subject to some
rather mild assumptions. We will then explore how we can come up with a
model for which these assumptions do not hold, and eventually prove a Full
Abstraction result.

4.13 The Kleene Tree

In order to show that our model is not Fully Abstract, we start by introduc-
ing the Kleene tree.
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We define a binary tree to be a prefix-closed subset of B∗. Using the binary
representation, we can identify B∗ with N, meaning that every such tree can
be specified by its characteristic function χ : N→ B.

We say that the tree is computable if there is some IA term M : nat→ bool

such that Mn converges to χ(n) for all n ∈ N.

In this section, we will show the construction of the Kleene tree (see [Sti18,
4.5] and [Bau06]). This is a tree K that has the following seemingly para-
doxical properties.

• It is computable.

• It has an infinite path; that is, there are b0, b1, · · · ∈ B such that for
all k, the string b0 · · · bk−1 is contained in K.

• It has no computable infinite path. I.e., if M : bool→ nat is a term of
IA such that Mi converges to some ai ∈ B for each i ∈ N, then there
is some k such that the string a0 · · · ak−1 is not contained in K.

In order to construct K, we are first going to assume that we have fixed
some sensible encoding of IA terms as binary strings and hence as natural
numbers. We shall further assume the existence of an interpreter for IA
terms of type bool; that is, a term int : nat→ nat such that:

• if n is the encoding of some M : bool such that M ⇓ t, then intn ⇓ 0;

• if n is the encoding of some M : bool such that M ⇓ f, then intn ⇓ 1;

• if n is the encoding of some M : bool such that M diverges, then intn
diverges; and

• if n is not the encoding of a term of type bool, then intn ⇓ 255.

The construction of int is more a matter of software engineering than any-
thing else. The idea is to use pattern matching and recursion to implement
the small-step semantics of Idealized Algol within the encoding we have
fixed.

In fact, we shall need a slightly modified version of int that accepts an extra
timeout parameter. That is, we require some int′ : nat → nat → nat such
that

• if n is the encoding of some M : bool such that M ⇓ t in under k
steps, then int′ k n ⇓ 0;

• if n is the encoding of some M : bool such that M ⇓ f in under k
steps, then int′ k n ⇓ 1; and

• if n is the encoding of some M : bool such that M does not converge
after k steps, or if n is not the encoding of a term of type bool, then
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int′ k n ⇓ 255.

This modification to the original int is not too hard to make, but now we
can be assured that int′ will always converge, even if fed the encoding of a
divergent program. This will be important later.

Definition 4.13.1 (Kleene tree). We construct the tree K as follows. Sup-
pose b = b0, · · · , bk−1 is a finite sequence of binary digits. Then b is contained
in K if and only if for all n = 0, · · · , k − 1, if n is the encoding of a pro-
gram M : nat → bool such that Mn converges in under k steps, then Mn
converges to a value different from bn.

Remark 4.13.2. We can use int′ to construct an IA term nat → bool that
computes the characteristic function of K. Since the syntax of IA is not very
transparent, we shall describe the operation of the term informally. Given
an input n, treated as a sequence b0 · · · bk−1, we iterate from 0 up to k − 1.
For each number p, if p is the encoding of a term M : nat→ bool, we pass
the encoding of Mp to int′, giving k as the timeout parameter. If we get
0 (true) or 1 (false) back, then we compare against bp, returning f if the
values are equal and t if they are different. If we get the error value 255
back, then we return t.

Lastly, if we have got t back for each p, we return t; otherwise, we return f.

Proposition 4.13.3. i) K has an infinite path.

ii) K has no computable infinite path.

Proof. (i): For each p such that p is the encoding of some M : nat → bool

such that Mp converges, let ap be t if Mp ⇓ f and f if Mp ⇓ t. Otherwise –
i.e., if Mp does not converge or if p is not the encoding of a term nat→ bool

– then return any value – f, say. Then any sequence a0 · · · ak−1 must be
contained in K.

(ii): Let M : nat → bool be such that there are bi ∈ B for which Mi ⇓ bi
for all i, let p be the encoding of M and suppose that Mp converges in k
steps. Let N = max{k − 1, p}. We claim that b0 · · · bN is not contained
in K. Indeed, p is the encoding of M and Mp converges to bp in under N
steps.

4.14 Non-computable functions and Observational
Equivalence

The presence of non-computable functions in the semantics for a language
does not normally present a problem for Full Abstraction. In previous sec-
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tions, we have been able to appeal to continuity results that tell us that the
intrinsic equivalence relation in our model is determined entirely by some
collection of compact (and hence computable) morphisms. In the presence
of countable nondeterminism, these continuity results no longer hold, and
the intrinsic equivalence becomes sensitive to noncomputable elements in
the semantics.

To investigate this, we define a language IA+Functions by extending IA
with, for each (set-theoretic) function f : N → B, a primitive Φf : nat →
bool with the following operational semantics.

Γ, s `N ⇓ n, s′

Γ, s ` Φf N ⇓ f(n), s′

We make some new claims.

Proposition 4.14.1. i) The Game Semantics model from Sections 2 and 3
is Computationally Adequate and Fully Abstract for IA+Functions.

ii) Two terms of IA are observationally equivalent within IA if and only
if they are observationally equivalent when we consider them as terms of
IA+Functions.

Proof. (i): The denotation of Φf is the strategy with maximal plays of the
form

N N
q

q
n

f(n)

,

for n ∈ N. In the notation of Section 2.15, this is the strategy given by the
formula

(f(0), f(1), f(2), · · · ) .
Computational adequacy for this function follows by exactly the same ar-
guments as for the functions succ and pred; note that we used no special
properties of the successor or predecessor functions in Chapter 3, so exactly
the same arguments go through for any function N → N. Full Abstraction
also goes through without modification.

(ii): This follows from (i), since the two languages share a Fully Abstract
model.

In the presence of countable nondeterminism, however, we shall show that
the equivalent of (ii) does not hold; i.e., that there are observationally equiv-
alent terms of nondeterministic IA that are observationally distinguishable
within IA+Functions+Countable nondeterminism.
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This will then give the reason why our proposed semantics cannot be fully
abstract: our starting model is fully abstract for both IA and IA+Functions
and we have already proved that the nondeterministic version is Equa-
tionally Sound for nondeterministic IA (and, by a similar argument, for
IA+Functions+Countable nondeterminism). Equational Soundness tells us
that any observationally distinguishable terms of IA+Functions+Countable
nondeterminism must therefore be distinguished by the model, proving that
it cannot be fully abstract for IA+Countable nondeterminism.

Let us now examine the two terms that we shall be considering. First, we
define M : (nat→ bool)→ com by the formula

M =λf. let k =? in

IfK((f 0) · · · (f (k − 1))) then (skip or skip) else (skip orΩ) ,

where
((f 0) · · · (f (k − 1)))

is shorthand for the natural number corresponding to the binary sequence
given by (f 0) up to (f (k − 1)), or is binary choice and K is the Kleene
tree from the previous section. Now define N : (nat→ bool)→ com by the
formula

N =λf. let k =? in (f 0); · · · ; (f (k − 1));

skip orΩ ,

where we have used the notation P ;Q (for P : nat) as a shorthand for

If0P then Q else Q ;

i.e., the program that evaluates P , forgets the result and then evaluates Q.
The reason for evaluating (f 0), · · · , (f (k − 1)) before either returning or
diverging is to make sure that any side effects of the evaluation of f are the
same for both programs (we shall assume that K operates in such a way
that it evaluates each of the (f i) exactly once).

We now claim that M and N are observationally equivalent in nondeter-
ministic IA. We will postpone the formal proof of this fact until we have a
working Fully Abstract semantics for that language, but a rough argument
is as follows. M and N can only be distinguished by an f such that

K((f 0) · · · (f (k − 1)))

evaluates to t for all k. Otherwise, both terms may diverge. But we have
shown in the previous section that there is no computable f with this prop-
erty.

Meanwhile, M and N are not observationally equivalent in nondeterministic
IA+Functions; indeed, if κ : N → B is an infinite path in the Kleene tree,
then M and N are distinguished by Φκ.
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4.15 Full Abstraction for Countable Nondetermin-
ism under Must Testing

The previous two sections make it clear that the problem is the existence in
the semantics of morphisms that behave like certain noncomputable func-
tions. The presence of such morphisms is normally an orthogonal issue to
full abstraction, since we can usually assume that the strategy α in the defi-
nition of intrinsic equivalence is compact. However, in our case, the presence
of these noncomputable morphisms is a big problem.

In order to get around this problem, then, we will clearly need to disal-
low noncomputable functions N → N, which quickly entails that we should
disallow all morphisms that are not computable.

Such models were considered by Hyland and Ong [HO00] and by Abramsky,
Jagadeesan and Malacaria [AJM00] in their original proofs of Full Abstrac-
tion for PCF. In these models, a game (or arena) A comes equipped with
an encoding function MA → N; a strategy is said to be recursive if it can be
defined by a recursive function N → N. The remarkable thing about these
models is that they satisfy a property called universality : every morphism
into the denotation of one of the types of the language is definable.

Suppose our model G of Idealized Algol satisfies universality. Then it is
relatively easy to pass from Computational Adequacy to Full Abstraction.

Theorem 4.15.1. Let M,N : T be terms of IAX and suppose that our base
semantics of IA in G satisfies universality. Then M ≡m&m N if and only if
JMK ∼m&m JNK.

Proof. See the proof of Theorem 4.12.5 for the proof that if JMK ∼m&m JNK
then M ≡m&m N .

Conversely, if JMK 6∼m&m JNK, then without loss of generality there is some
α : JT K → C such that JMK ;α ↓must and JNK ;α 6↓must. But by universality
JMK ;α = JLMK and JNK ;α = JLNK for some term L : T → com of IA.
Therefore, the result follows from Corollary 4.11.8.

The next step is to find an example of such a G. As we said earlier, we
will do this by cutting our game semantics down so that it only contains
computable strategies. The first step is to fix an enumeration eA : MA → N
of the moves of each game A. We do this for the ground type games and
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then extend to the connectives. For example:

eC(q) = 0 eC(a) = 1 eB(q) = 0 eB(t) = 1 eB(f) = 2

eN(q) = 0 eN(n) = n+ 1 eVar(q) = 0 eVar(n) = 3n+ 1

eVar(qn) = 3n+ 2 eVar(an) = 3n+ 3

eA⊗B(inA(a)) = 2eA(a) eA⊗B(inB(b)) = 2eB(b) + 1

...and so on.

We can extend the enumeration of moves to an enumeration of (justified)
plays in A. We then say that a strategy σ is recursive if it is a recursively
enumerable subset of PA. Recursive visible strategies give us a Cartesian
closed subcategory of the original category of games and visible strategies.

We now appeal to some results about these recursive strategies. For example,
the following was proved in [HO00].

Theorem 4.15.2 (Universality for PCF). Let A be the denotation of a PCF
type T Then every recursive innocent strategy for A is innocently intrinsi-
cally equivalent to the denotation of some PCF term M : T .

This result is not quite enough for us, since the innocent intrinsic equivalent
is coarser than that for visible strategies. However, if we add the constant
let to PCF, then we can get a stronger result that gives us definability on
the nose.

Theorem 4.15.3 (Unpublished, but see [LN15, §7.1.5]). Let A be the de-
notation of a PCF type T . Then every recursive innocent strategy for A is
the denotation of a term M : T of PCF+let.

Moreover, these results are all easily extended to the IA ground types that
are not present in PCF. So we see that any recursive innocent σ : JT K is the
denotation of some Idealized Algol term M : T .

Lastly, we observe that our innocent factorization result (Proposition 3.5.1)
will always produce a recursive innocent strategy if the original strategy is
recursive. It follows, then, that any recursive visible σ : JT K is the denotation
of some Idealized Algol term M : T . Thus, the category Grec of games and
recursive visible strategies is universal for Idealized Algol, and therefore its
Kleisli category GrecX is fully abstract for IAX .

As an application of this fully abstract semantics, we clear up a loose end
from Section 4.14.
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Lemma 4.15.4. The terms M,N : (nat → bool) → com, as defined in
Section 4.14, are observationally equivalent in Idealized Algol with countable
nondeterminism.

Proof. The denotations for M and N both have maximal plays that look
like this:

N N B C
q

q
k

q
q
0

a0
...

q
q

(k − 1)
ak−1

q
n

(a)

.

Here, the copy of N on the left denotes the nondeterministic oracle given by
the Kleisli category. The final move a is in brackets to indicate that it does
not always occur, depending on the moves that have gone before.

More specifically, in JMK, the final move a always occurs if a0 · · · ak−1 is a
finite path in the Kleene tree; otherwise, it may or may not occur, depending
on whether n is 0 or not.

Meanwhile, the final move a is present in JNK if and only if the number n is
equal to 0. This means that JNK is a subset of JMK.

Fix some strategy α : ((N→ C)→ C)→ C in GX and suppose that

JMK ;α 6≈m&m JNK ;α .

First note that we always have JMK ;α ≈may JNK ;α for arbitrary α, which
we can deduce by ignoring the copy of N on the left and considering JMK
and JNK as nondeterministic strategies. In this setting, JMK and JNK are
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equal, since both have maximal plays of the form

N B C
q

q
q
0

a0
...

...
q

q
(k − 1)

ak−1

(a)

,

where k is arbitrary.

Therefore, we must have JMK ;α 6≈must JNK ;α.

Since JNK ⊆ JMK, it must be the case that JMK ;α ↓must and JNK ;α 6↓must;
i.e., that JMK ;α is a winning strategy, when considered as a strategy N→ C
in G, but JNK ;α is not.

Since JMK and JNK do not differ until the very last move, this means that
α must respond to the initial move q in the rightmost copy of C with the
move q in the copy of C on the left (otherwise, JNK ;α is winning), and that
α must be total (otherwise, JMK ;α is not winning). α replies to each move
i in N with some move in B, and this defines a function N → B. Since α is
total, this function must trace out an infinite path in the Kleene tree.

But if α were recursive, then we would be able to recover this infinite path
from α via a recursive algorithm, and we know that this is not possible
Therefore, α is not recursive.

It follows that M and N are observationally equivalent in Idealized Algol
with countable nondeterminism under may-and-must testing.

Note that we certainly have σφ; JMK ↓must, while σφ; JNK 6↓must, demonstrat-
ing that the recursivity requirement is essential to the full abstraction result
in this case.
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4.16 The Intrinsic Equivalence Relation

We conclude this chapter by examining the intrinsic equivalence relation in
GX .

Proposition 4.16.1. Let σ, τ : A → B be two morphisms in GX , If σ ∼ τ
when considered as morphisms X → (A→ B) in G, then σ ∼ τ in GX .

Proof. Suppose that α : (A→ B)→ C separates σ and τ in GX , so without
loss of generality, we have

1
(σ;α)−−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C = ⊥

1
(τ ;α)−−−→ (X → C)

ηu−→ (Var→ N)
JnewK−−−→ N

t|u|−−→ C 6= ⊥

for some u. Expanding the Kleisli compositions σ;α and τ ;α, we get

σ; (X → α);µ; ηu; JnewK ; t|u| = ⊥

τ ; (X → α);µ; ηu; JnewK ; t|u| 6= ⊥ ,

and so (X → α);µ; ηu; JnewK ; t|u| distinguishes σ and τ , when considered as
morphisms X → (A→ B) in G.

As a special case, if σ, τ : A → B are morphisms in G, then σ ∼ τ in G if
and only if Jσ ∼ Jτ in GX . Combined with our Full Abstraction results,
this tells us that IAX is a conservative extension of Idealized Algol.

What is more, we have

σ ∼ τ ⇒ Jσ ∼ Jτ ⇒ Jσ ∼m&m Jτ ⇒ σ ∼ τ .

This proves that the finite and countable nondeterministic variants of Ide-
alized Algol are conservative extensions of Idealized Algol.
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Chapter 5

Parametric monads

Since a monoid in a monoidal category X is the same thing as a lax monoidal
functor from the unit category into X , the definition of a monad on a cat-
egory C (i.e., a monoid in [C, C]) may be generalized to that of a lax action
[JK02] of a monoidal category X on C; i.e., a lax monoidal functor X → [C, C]
(so that a monad on C is a lax action of the unit category on C).

Equivalently, a lax action is given by a functor . : X × C → C together
with natural transformations

mx,y,a : x.y.a→ (x⊗ y).a ea : a→ I.a

such that the following diagrams commute.

x.y.z.a x.(y ⊗ z).a (x⊗ (y ⊗ z)).a

(x⊗ y).z.a ((x⊗ y)⊗ z).a

x.my,z,a

mx,y,z.a

mx,y⊗z,a

mx⊗y,z,a
assocx,y,z .a

x.a I.x.a

(I ⊗ x).a

ex.a

lunitx .a
mI,x,a

x.a x.I.a

(x⊗ I).a

x.ea

runitx .a
mx,I,a

Since lax actions are a generalization of monads, we shall sometimes follow
Melliès [Mel17] and refer to them as parametric monads. We shall not be
considering strong actions (for which m, e are required to be isomorphisms),
so we shall sometimes say ‘action’ to mean ‘lax action’.

Example 5.0.1. If X is a monoidal category, C is a monoidal closed category
and j : X → C is an oplax monoidal functor, then we have a lax action of
X op on C given by

x.a = jx( a ,
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together with the natural coherences

jx( jy ( a −−−−→ (jx⊗ jy) ( a
mjx,y(a
−−−−−→ j(x⊗ y) ( a

a −−−−→ I ( a
ej(a−−−→ jI ( a .

This generalizes the reader monads that we met earlier, so we shall call a
parametric monad of this form a parametric reader monad or lax reader
action.

Definition 5.0.2. Suppose that a monoidal category X acts on a category
C and that it also acts on a category D. An oplax morphism of actions
from one action to the other is given by a functor F : C → D together with
a natural transformation µx,a : F (x.a) → x.Fa that makes the following
diagrams commute for all objects x, y of X and a of C.

F (x.y.a) x.F (y.a) x.y.Fa

F ((x⊗ y).a) (x⊗ y).Fa

µx,y.a

Fmx,y,a

x.µy,a

mx,y,Fa

µx⊗y,a

Fa

F (I.a) I.Fa

Fea
eFa

µI,a

5.1 The Melliès category

The main thing we want to do with lax actions is to perform a construction
analogous to that of the Kleisli category of a monad. Fujii, Katsumata and
Melliès give a construction called a ‘Kleisli resolution’ in the paper [FKM16],
but we shall prefer an alternative construction due to Melliès.

Suppose that a monoidal category X acts on a category C.

Definition 5.1.1. A Melliès morphism from a to b is a morphism of the
form

a→ x.b ,

for some object x of X .

Remark 5.1.2. In what follows, the object x will be part of the data of the
Melliès morphism, so a Melliès morphism from a to b is a pair (x, f), where
f : a → x.b is an ordinary morphism. We will omit the x when it is clear
from the context.

Definition 5.1.3. Given Melliès morphisms f from a to b and g from b to
c given by

f̃ : a→ x.b g̃ : b→ y.c ,
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their Melliès composition is given by the composite

a
f̃−→ x.b

x.g̃−−→ x.y.c
mx,y,c−−−−→ (x⊗ y).c ,

which is a Melliès morphism from a to c.

Having defined our basic notion of composition, we can move on to our main
constructions. We start with some definitions that will help us navigate size
issues.

Definition 5.1.4. Let C be a category. An ancestral set (see [KK81]) for C
is a set A of objects of C such that for any object a of C, there is an object
a′ ∈ A and a morphism f : a′ → a. A descendent1 set for C is an ancestral
set for Cop; i.e., a set D of objects of C such that for any object a of C, there
is an object a′ ∈ D and a morphism f : a→ a′.

We are interested in (small) ancestral and descendent sets, because they
help guarantee the existence of certain large limits and colimits in Set.

Proposition 5.1.5 ([KK81]). i) Let J : X → Set be a diagram, where X
has a small ancestral set A. Then J has a limit in Set.

ii) Let J : Y → Set be a diagram, where Y has a small descendent set D.
Then J has a colimit in Set.

Proof. (i): The limit is given by the set

l =

{
(ξa) ∈

∏
a∈A

J(a) : ∀f : a→ x, g : b→ x, J(f)(ξa) = J(g)(ξb)

}
,

where f and g range over all morphisms from objects in A to general objects
of X .

(ii): The colimit is given by the set

c =
∑
d∈D

J(d)/ ∼ ,

where ∼ is the equivalence relation on pairs (d, ηd) (for d ∈ D and ηd ∈ J(d)),
generated by

(∃y : Y, f : d→ y, g : e→ y . J(f)(ηd) = J(g)(ηe))⇒ (d, ηd) ∼ (e, ηe) .

The proofs that these are indeed a limit and a colimit for the corresponding
diagrams are very similar to the proofs for ordinary small limits and colimits
in Set. However, the constructions we have made above rely on more than

1This is not a typo – descendent is the adjectival form of the noun descendant.
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the fact that Set is complete and cocomplete. We also need to be able
to perform universal and existential quantification over large collections of
objects; this corresponds to the category-theoretic fact that if we have any
(possibly large) collection of monomorphisms

Ai → B

in Set (for fixed B), then we can form their intersection (i.e., a category-
theoretic pullback for the collection), and similarly that we can form the
pushout of any (possibly large) collection of epimorphisms out of a set. See
[KK81] for full details.

Definition 5.1.6. Let X be a monoidal category. Given an object x of X , a
tensor-descendent set for x is an ancestral set for the category of elements2

of the functor X ( ⊗ , x) : X op × X op → Set; i.e., a set Dx of objects of
X such that for any morphism

f : y ⊗ z → x

there exist y′, z′ ∈ Dx and morphisms h : y → y′, k : z → z′, f̃ : y′ ⊗ z′ → x
such that the following diagram commutes.

y ⊗ z y′ ⊗ z′

x

h⊗k

f
f̃

We say that X is well-tensored if every object x of X has a small tensor-
descendent set.

Definition 5.1.7 ([Day70]). Let X be a well-tensored monoidal category
and let

F,G : X → Set

be functors. Then the Day convolution of F and G is a functor

F ⊗Day G : X → Set

given by the coend

(F ⊗Day G)(x) =

∫ y,z : X
F (y)×G(z)×X (y ⊗ z, x) .

This makes [X ,Set] into a monoidal category (the monoidal unit is the
functor X (I, ) : X → Set).

2See the proof of Proposition 6.3.1.
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Remark 5.1.8. The reason that we need well-tensoredness of X is to ensure
that the coend above is a small set. Indeed, let

[y, z, a, b, f ]

be an arbitrary element of the coend (for y, z : X , a ∈ F (y), b ∈ G(z)
and f : y ⊗ z → x). Given a small tensor-descendent set Dx, we can find
y′, z′ ∈ Dx and morphisms h : y → y′, k : z → z′ and f̃ : y′ ⊗ z′ → x as in
Definition 5.1.6. Then we have

[y, z, a, b, f ] = [y′, z′, F (h)(a), F (k)(b), f̃ ] .

It follows that the coend is a subset of the small set∑
y′,z′∈Dx

F (y′)×G(z′)×X (y′ ⊗ z′, x) ,

and is therefore itself small.

We could alternatively have deduced this from Proposition 5.1.5, using the
fact that the coend above may be recast as a colimit indexed by the opposite
of the category of elements of X ( ⊗ , x).

Definition 5.1.9 ([Mel12]). Given a lax action of a well-tensored monoidal
category X upon a category C, the Melliès category of the action is an
[X ,Set]-enriched category MellX C whose objects are the objects of C and
where the hom objects are given by

MellX C(a, b)(x) = C(a, x.b) .

The composition is given by the natural transformation

(MellX C(a, b)⊗Day MellX C(b, c))(x)

=

∫ y,z : X
C(a, y.b)× C(b, z.c)×X (y ⊗ z, x)

→
∫ y,z : X

C(a, (y ⊗ z).c)×X (y ⊗ z, x)

∼= C(a, x.c)
= MellX C(a, c)(x) ,

where the arrow on the third line is induced by the Melliès composition
C(a, y.b)× C(b, z.c)→ C(a, (y ⊗ z).c).

The identity transformation

C(I, x)→ C(a, x.a)

is the one sending a morphism f : I → x to the composite

a
ea−→ I.a

f.a−−→ x.a .
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5.2 The category C/X
We will mainly be concerned not with the Melliès category itself, but with a
closely related ordinary category. The usual method for turning a V-enriched
category into an ordinary category is via base change along a monoidal
functor V → Set.

For example, any V-enriched category has an underlying ordinary category,
obtained via base change along the functor V(I, ). If a and b are objects
of the base category C, then the set of morphisms in the underlying ordinary
category of the Melliès category is the set of natural transformations

C(I, x)→ C(a, x.b) ,

which by the Yoneda lemma is the same as the set C(a, I.b). In other words,
this underlying ordinary category is precisely the Kleisli category for the
monad on C given by the composite

1
I−→ X .−−−→ End[C] ;

in other words, the monad on C given by Ma = I.a.

More generally, if m⊗m→ m is a monoid in X , then we can construct a lax
monoidal functor [X ,Set]→ Set that sends F to F (m). If we change base
through this functor, then the morphisms a → b in the resulting ordinary
category will be elements of C(a,m.b); i.e., morphisms a→ m.b in C, and the
category turns out to be the Kleisli category corresponding to the monad
on C given by Ma = m.a. So the Melliès category can be thought of as
classifying all the Kleisli categories that arise from the action . through
the monoids in M.

For our purposes, however, we will want to use a single ordinary category
that captures as much as possible of the structure of the Melliès category.
Suppose that X has, in addition, a small descendent set. Then we have a
functor

[X ,Set]→ Set

F 7→ colim−−−→
x : X

F (x)

given by the colimit in Set.
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Moreover, this functor is lax monoidal, via the multiplicative(∫ y

F (y)

)
×
(∫ z

G(z)

)
→
∫ y,z

F (y)×G(z)

→
∫ y,z

F (y)×G(z)×X (y ⊗ z, x)

=

∫ x

(F ⊗Day G)(x)

(where the second morphism sends picks out the inhabitant iny⊗z(idy⊗z) of
colim−−−→x : X X (y ⊗ z, x)), and via the unital

1 → colim−−−→
x : X

X (I, x)

() 7→ inI(idI) .

We then conclude by changing base through this colimit functor. It turns
out to be fairly easy to describe the resulting category directly, and we can
drop the well-tensoredness condition.

Definition 5.2.1. Let a monoidal category X with a small descendent set
act on a category C via a lax action. Then we define a new category C/X
where

• the objects are the objects of C;

• given objects a, b of C, the set of morphisms a → b is given by the
colimit

colim−−−→
x : X

C(a, x.b) ;

i.e., a morphism in C/X from a to b is an equivalence class of Melliès
morphisms

a→ x.b

in C, where x ranges over the objects of X , and where the equiva-
lence relation on morphisms is generated by identifying two morphisms
f : a→ x.b, g : a→ y.b if there is a morphism h : x→ y in X such that
the following diagram commutes (we say that h mediates between f
and g);

a x.b

y.b

f

g h.b
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• composition of morphisms is via the Melliès composition of Definition
5.1.3; and

• the identity a → a is given by the equivalence class corresponding to
the morphism

ea : a→ I.a

in C.

Remark 5.2.2. If we follow Proposition 5.1.5 exactly, then the object x in
the Melliès morphism a → x.b has to be contained in the small descendent
set of X . Instead, we shall stick to the traditional formulation of the colimit,
as for small diagrams, only using Proposition 5.1.5 so that we can be sure
that the colimit is a small set.

Proposition 5.2.3. C/X is a well defined category.

Proof. Let us first check that Melliès composition is well defined with respect
to our equivalence relation. Suppose that

f : a→ x.b

f ′ : a→ x′.b

g : b→ y.c

g′ : b→ y′.c

are Melliès morphisms, and that f is equivalent to f ′ and g is equivalent
to g′. By induction, we can assume that f, f ′ and g, g′ are related by the
relation that generates the equivalence relation on Melliès morphisms, so
that there are morphisms h : x→ x′, k : y → y′ in X such that the following
diagrams commute.

a x.b

x′.b

f

f ′
h.b

b y.c

y′.c

g

g′
k.c

Then we have the following commutative diagram, since m is a natural
transformation.

a x.b x.y.c (x⊗ y).c

x′.b x′.y.c

x′.y′.c (x′ ⊗ y′).c

f

f ′

x.g

h.gh.b

mx,y,c

h.y.c

h.k.c (h⊗k).cx′.g

x′.g′
x′.k.c

mx′,y′,c
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This proves that the Melliès composition of f and g is equivalent to the
Melliès composition of f ′ and g′.

We should check that Melliès composition is associative with respect to our
equivalence relation. Let f : a → x.b, g : b → y.c, h : c → z.d be Melliès
morphisms. Then we have the following commutative diagram.

a

x.b

x.y.c x.y.z.d x.(y ⊗ z).d (x⊗ (y ⊗ z)).a

(x⊗ y).c (x⊗ y).z.d ((x⊗ y)⊗ z).a

f

x.g

x.y.h

mx,y,c

x.my,z,d

mx,y,z.d

mx,y⊗z,d

(x⊗y).h mx⊗y,z,a
assocx,y,z .d

Here, the pentagon at the right is one of the coherence diagrams for a lax
action, while the left-hand square commutes because m is a natural transfor-
mation. The composite given by the thick dashed lines is the Melliès com-
position f ; (g;h), while that given by thin lines is the Melliès composition
(f ; g);h. The arrow assocx,y,z in X then mediates between these morphisms,
so they are equivalent, and therefore correspond to the same morphism in
C/X .

Lastly, we need to check that the identity we have defined is indeed an
identity for the composition. The following diagrams show us that the mor-
phism lunitx in X mediates between a Melliès morphism f : a → x.b and
the Melliès composite ea; f , and that the morphism runitx in X mediates
between f and the Melliès composite f ; eb.

a x.b

I.a I.x.b (I ⊗ x).b

f

ea ex.b
lunitx .b

I.f mI,x,b

a x.b x.I.b

(x⊗ I).b

f x.eb

runitx .b
mx,I,b

Remark 5.2.4. This generalizes the Kleisli category of a monad. Indeed, if
M is a monad on C, then we may consider M as a lax action of the unit
category 1 on C. Then composition of morphisms f : a→ I.b, g : b→ I.c in
the category C/1 is given by

a
f−→ I.b

I.g−−→ I.I.c
mI,I,c−−−−→ I.c .

Writing M for I. , we see that this is precisely the definition of composition
in the Kleisli category for M (and the identity is the same thing too). Note
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that since the unit category has only an identity morphism, the equivalence
relation on morphisms in C/1 is discrete, so C/1 is the Kleisli category for
M .

There is an identity-on-objects functor J : C → C/X given by sending a
morphism f : a→ b to the Melliès morphism

a
f−→ b

eb−→ I.b .

It is easy to show that this is a functor, and we will prove that it is in a
more general context in Proposition 5.5.4.

A special role will be played by the identity morphisms

idx.a : x.a→ x.a ,

considered as Melliès morphisms x.a→ a. We will see later that these are the
components of a natural transformation φx,a : x.a→ a in C/X , generalizing
the natural transformation φa : Ma→ a in the Kleisli category for a monad
M that we met in Proposition 4.3.1.

5.3 Lax 2-colimits

In the previous chapter, we approached the category C/X via the Melliès
category. In this chapter, we will show that C/X has important properties
in its own right: namely that it is a certain lax 2-colimit in Cat. We will
briefly return to the Melliès category in chapter 7, when we will approach
it from the point of view of profunctors.

Definition 5.3.1 ([Str72b]). Let C,D be bicategories. A lax functor F : C →
D is given by

• a map F from the objects of C to the objects of D;

• for each pair a, b of objects of C, a functor

F : C(a, b)→ D(F (a), F (b)) ;

• for each triple a, b, c of objects of C, a transformation

mf,g : F (f);F (g)→ F (f ; g)

natural in f : a→ b, g : b→ c; and

• for each object a of C, a 2-cell

ea : idFa ⇒ F (ida) : Fa→ Fa ;
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such that for all tuples a, b, c, d of objects and all morphisms f : a → b,
g : b→ c, h : c→ d, the following diagrams commute.

(F (f);F (g));F (h) F (f); (F (g);F (h))

F (f ; g);F (h) F (f);F (g;h)

F ((f ; g);h) F (f ; (g;h))

assocF (f),F (g),F (h)

mf,g ;F (h) F (f);mg,h

mf ;g,h mf,g;h

F (assocf,g,h)

Ff idFa;Ff

F (ida; f) F ida;Ff

lunitFf

F lunitf ea;Ff

mida,f

Ff Ff ; idFb

F (f ; idb) Ff ;F idb

runitFf

F runitf Ff ;eb
mf,idb

Example 5.3.2. Given a monoidal category X , write BX for the bicategory
having a single object ∗, where BX (∗, ∗) is the category X and composition
of 1-cells x, y : ∗ → ∗ is given by

x; y = x⊗ y .

If C = BX , D = BY are the delooping bicategories of monoidal categories
X ,Y, then a lax functor C → D is the same thing as a lax monoidal functor
X → Y.

Example 5.3.3. More generally, a lax functor F : BX → D is the same as
a lax monoidal functor from X to the monoidal category of 1-cells F (∗) →
F (∗). In particular, a lax functor 1 → Cat is the same thing as a monad
and a lax functor BX → Cat is the same thing as a parametric monad
parameterized by X .

Definition 5.3.4. Let F : C → D be a lax functor of bicategories. Then
an oplax cocone under F is given by an object d of D (called the tip of the
cocone), together with 1-cells

lc : F (c)→ d

for each object c of C and 2-cells

µh : F (h); lc′ ⇒ lc : F (c)→ d

for each 1-cell h : c→ c′ in C, such that for all 2-cells φ : h′ ⇒ h : c→ c′ the
diagram

F (h′); lc′ lc

F (h); lc′

µh′

F (φ);lc′ µh
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commutes, and such that for all h : c→ c′, h′ : c′ → c′′, the diagrams

(F (h);F (h′)); lc′′ F (h); (F (h′); lc′′) F (h); lc′

F (h;h′); lc′′ lc

assocF (h),F (h′),lc′′

mh,h′ ;lc′′

F (h);µh′

µh

µh;h′

lc idc; lc

lc F (idc); lc

lunitlc

idlc ec;lc

µid

commute.

Definition 5.3.5 ([Lei98]). Let (d, l, µ), (d′, l′, µ′) be oplax cocones for a
lax functor F : C → D. Then a modification of oplax cocones l→ l′ is given
by a collection of 2-cells

δc : lc ⇒ l′c

for each object c of C, such that the following diagram commutes for any
1-cell h : c→ c′ in C.

F (h); lc′ lc

F (h); l′c′ l′c

µh

F (h);δc′ δc

µ′h

Definition 5.3.6 ([GHN17]). Let F : C → D be a lax functor of bicategories.
Then a lax colimit of F is an oplax cocone (u, k, ν) under F such that

• if (d, l, µ) is any other oplax cocone under F then there is a unique
1-cell l̂ : u→ d such that kc; l̂ = lc for each object c of C and such that
νh l̂ = µh for any 1-cell h : c→ c′ in C; and

• if (d, l′, µ′) is another oplax cocone under F with tip d and δ : l⇒ l′ is
a modification of oplax cocones, then there is a unique 2-cell δ̂ : l̂⇒ l̂′

such that hc; δ̂ = δc for all objects c of C.

For the justification of the terminology we have used whereby a lax limit is
a limiting oplax cocone, see [nLa19].

Remark 5.3.7. Our definition of a lax colimit (u, k, ν) tells us that if d is an
object of C, then there is an isomorphism of categories from the category
C(u, d) to the category of oplax cocones under F with tip d, with morphisms
given by modifications of oplax cocones. As a consequence, any two lax
colimits for the same diagram are uniquely isomorphic as cocones.

187



There is a more usual definition of an oplax cocone, in which this isomor-
phism of categories is weakened to an equivalence. The distinction is not
important for our purposes, since the lax colimits we will be considering will
all satisfy our stronger definition.

We shall sometimes write
coliml−−−→
c : C

F (c)

for the lax colimit of the functor F .

5.4 Lax natural transformations and functoriality
of lax colimits

Definition 5.4.1 ([Lei98]). Let F,G : C → D be lax functors of bicategories.
A oplax natural transformation C → D is given by a family of 1-cells

tc : F (c)→ G(c) ,

for each object c of C, together with a family of 2-cells

µh : F (h); tc′ ⇒ tc;G(h) : F (c)→ G(c′)

for each morphism h : c→ c′ in C, such that for all 2-cells φ : h′ → h : c→ c′

the diagram

F (h′); tc′ tc;G(h′)

F (h); tc′ tc;G(h)

µh′

F (φ);tc′ Tc;F (φ)

µh

commutes, and such that for all h : c→ c′, h′ : c′ → c′′, the diagrams

(F (h);F (h′)); tc′′ F (h); (F (h′); tc′′) F (h); (tc′ ;G(h′))

F (h;h′); tc′′ (F (h); tc′);G(h′)

tc;G(h;h′) tc; (G(h);G(h′)) (tc;G(h));G(h′)

assoc

mF
h,h′ ;tc′′

F (h);µh′

assoc

µh;h′ µh;G(h′)

tc;mGh,h′
assoc

lc idc; lc

lc; idc

lc;G(idc) F (idc); lc

lunitlc

runitlc

eFc ;lc

lc;eGc

µidc
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commute.

As we would expect, the horizontal/vertical composition of two oplax nat-
ural transformations is also an oplax natural transformation, and there is
an identity oplax natural transformation F ⇒ F for any lax functor F of
bicategories.

Example 5.4.2. An oplax natural transformation between two lax functors
BX → Cat is the same thing as an oplax morphism between the corre-
sponding actions, as defined in Definition 5.0.2.

Example 5.4.3. If F : C → D is a lax functor of bicategories, then an oplax
cocone under F with tip d : D is the same thing as an oplax natural trans-
formation F → ∗d, where ∗d is the constant functor taking the value d.

We can then get a functoriality result similar to the usual one for ordinary
colimits.

Proposition 5.4.4. Let F,G : C ⇒ D be lax functors and let t : F ⇒ G be
an oplax natural transformation. Suppose that F and G have lax colimits
with tips F̃ and G̃. Then t naturally gives rise to a lax functor F̃ → G̃ in a
way that respects composition and identity of lax natural transformations.

Proof. Composing the limiting oplax cocone kG : G → ∗G̃ with t gives us
an oplax natural transformation F → ∗G̃ and hence a unique lax functor

(t; kG)̂ : F̃ → G̃ such that kFc ; (t; kG)̂ = tc; k
G
c and νFh (t; kG)̂ = νGh for all

objects c and morphisms h in C.

We can prove that this procedure preserves composition and identities via
the usual technique: if we have oplax natural transformations t : F ⇒ G
and t′ : G⇒ H, then the composite of the induced lax functors F̃ → G̃ and
G̃ → H̃ satisfies the same property that uniquely defines the lax functor
F̃ → H̃ induced from the composite of t and t′.

Another similar functoriality result tells us what happens to lax colimits
when we precompose with a lax functor.

Proposition 5.4.5. Let F : C → D, G : D → E be lax functors. Suppose
that lax colimits exist for G and for F ;G. Then we get a natural lax functor
F̂ from the lax colimit of F ;G to the lax colimit of G such that for all objects
c and all morphisms h in C we have

kF ;G
c ; F̂ = kgFc νF ;G

h F̂ = νGFh ,

where (kF ;G, νF ;G) is the limiting cocone for the lax colimit of F ;G and
(kG, νG) is the limiting cocone for the lax colimit of G.
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Proof. Composing the limiting cocone (kGd , ν
G
k ) for the lax colimit of G with

F gives us an oplax cocone (kGFc, ν
G
Fh) under F ;G, inducing a functor from

the lax colimit of F ;G to the lax colimit of G that satisfies the required
properties.

5.5 Lax 2-colimits in Cat

Let C be a bicategory, and let F : C → Cat be a bifunctor.

Definition 5.5.1 ([Str80]). The Grothendieck construction associates to the
bifunctor F a bicategory

∫
F , where

• the objects of
∫
F are pairs (a,m), where a is an object of C and m

an object of F (a);

• the 1-cells (a,m) → (b, n) are pairs (h, f), where h is a 1-cell b → a
and f is a morphism m→ F (h)(n) in F (a); and

• the 2-cells (h, f) ⇒ (k, g) : (a,m) → (b, n) are 2-cells φ : h ⇒ k in C
that make the following diagram commute.

m F (h)(n)

F (k)(n)

f

g (Fφ)n

The identity 1-cell (a,m) → (a,m) is given by

(
ida,m

(ea)m−−−→ F (id)(m)

)
.

The composite of a 1-cell (h, f) : (a,m)→ (b, n) with a 1-cell (k, g) : (b, n)→
(c, p) is the pair (k;h, f ∗ g), where f ∗ g is the following composite.

m
f−→ F (h)(n)

F (h)(g)−−−−−→ F (h)(F (k)(n))
mh,k−−−→ F (k;h)(n)

Remark 5.5.2. For the Grothendieck construction see [SGA1, VI.8] and
[Joh02, B1.3.1] – in the original formulation, the category F is a pseud-
ofunctor C → Cat (i.e., a lax functor where the coherences m and e are
isomorphisms), where C is an ordinary category – then

∫
F contains only

identity 2-cells, so we can consider it as an ordinary category as well. For
the version where C is an arbitrary bicategory (and

∫
F is a bicategory), see

[Str80].

There are many different variations of this construction, where various com-
binations of arrows are reversed. We have chosen the variation that suits
our needs.
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Definition 5.5.3. Let C be a bicategory, and suppose that whenever a, b
are objects of C, the category C(a, b) of 1-cells has a small descendent set.
Then we write π∗C for the ordinary category whose objects are the objects
of C and where the morphisms a → b are the connected components of
the 1-cells a → b in C: i.e., equivalence classes of 1-cells a → b under the
equivalence relation generated by relating f : a→ b to g : a→ b if there is a
2-cell φ : f → g.

Proposition 5.5.4 ([nLa19, §3]). Let C be a bicategory such that C(a, b) has
a small descendent set for every pair (a, b) of objects of C, and let F : C →
Cat be a lax functor. Then π∗

∫
F is a lax colimit for F .

Proof. First, we need to show that π∗
∫
F is well defined; i.e., that each

category
∫
F ((a,m), (b, n)) of morphisms in

∫
F has a small descendent set.

Suppose that D is a small descendent set for C(b, a). We claim that

{(h′, f ′) : h′ ∈ D , f : m→ F (h)(n)}

is a descendent set for
∫
F ((a,m), (b, n)).

Indeed, let (h, f) : (a,m) → (b, n) be a morphism in
∫
F – so h : b → a is a

1-cell in C and f is a morphism m→ F (h)(n) in F (a). Let h′ ∈ D be such
that there exists a 2-cell φ : h ⇒ h′ and let f ′ : m → F (h′)(n) be given by
the composite

m
f−→ F (h)(n)

(Fφ)n−−−−→ F (h′)(n) .

Then φ is a 2-cell from (h, f) to (h′, f ′) in
∫
F ((a,m), (b, n)).

Now we have assured ourselves that there are no size problems, we define
the oplax cocone under F with tip π∗

∫
F . Given an object a of C, the arrow

from F (a) to π∗
∫
F is the functor k defined by

ka(m) = (a,m) ka

(
m

f−→ n
)

=

(
ida,m

f−→ n
(ea)n−−−→ F (id)(n)

)
.

We should check that this is indeed a functor; clearly it preserves the identity,

so we need to check that it preserves composition. Let m
f−→ n

g−→ p be
morphisms in F (a). We need to show that ka(f); ka(g) = ka(f ; g) in π∗

∫
F ,

for which it suffices to exhibit a 2-cell in
∫
F mediating between these two

1-cells. Indeed, such a 2-cell is given by lunitida : ida → ida; ida (see Figure
5.1).

Next, if h : a→ a′ is a morphism in C, then we define a natural transforma-
tion

νh : F (h); ka′ ⇒ ka

by
(νh)m = (h, idF (h)(m)) : (a′, F (h)(m))→ (a,m) .
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m n F (ida)(n)

p F (ida)(p) F (ida)((F (ida)(p)))

F (ida, ida)(p)

f (ea)n

g F (ida)(g)

(ea)p F (ida)(ep)

F (lunitida )p
mida,ida

Figure 5.1: The square commutes because (ea) is a natural transfor-
mation, while commutativity of the triangle is one of the conditions
for a lax functor. The composite ka(f); ka(g) is given by the pair(

ida; ida, m F (ida, ida)(p)
)

(thick dashed arrows), while ka(f ; g) is

given by (ida,m→ F (ida)(p)) (normal arrows). The 2-cell lunitida : ida →
ida from

∫
F mediates between them (dotted arrow).

We want to show that this is a natural transformation; i.e., that for any
morphism f : m→ n in F (a), the following diagram commutes.

ka′(F (h)(m)) ka(m)

ka′(F (h)(n)) ka(n)

(νh)m

ka′ (F (h)(f)) ka(f)

(νh)n

Here, the top right composite is given by

F (h)(m)
F (h)(f)−−−−−→ F (h)(n)

F (h)((ea)n)−−−−−−−→ F (h)(F (ida)(n))
mh,ida−−−−→ F (h; ida)(n) ,

which is related to F (h)(f) via runith, while the bottom left composite is
given by

F (h)(m)
(Fh)f−−−→ F (h)(n)

(ea′ )(Fh)f−−−−−→ F (ida′)(F (h)(n))
mida′ ,h−−−−→ F (ida′ ;F (h))(n) ,

which is related to F (h)(f) via lunith.

We now need to show that the appropriate diagrams commute to ensure
that

(
π∗
∫
F, k, ν

)
is a oplax cocone under F . For the first diagram, we

must show that the following commutes for any 2-cell φ : h′ ⇒ h : a → a′

and any object m of F (a).

ka′(F (h′)(m)) ka(m)

ka′(F (h)(m))

(νh′ )m

ka′ ((Fφ)m)
(νh)m

192



Since the arrow along the top is given by the identity on F (h′)(m), it will
suffice to show that the arrow along the bottom is of the form F (ψ)m, for
some 2-cell ψ in C, and that it is therefore equal to the identity in π∗

∫
F .

Indeed, writing this composite out in full, we get

F (h′)(m)
(Fφ)m−−−−→ F (h)(m)

(ea′ )F (h)(m)−−−−−−−→ F (id)(F (h)(n))
mid,h−−−→ F (id;h)(n) .

By the conditions on a lax functor, the composite of the last two morphisms
is F (lunith)m, and so the whole thing is equal to F (φ; lunith)m.

Lastly, we need to show that the following diagrams commute for any 1-cells
h : a→ a′, h′ : a′ → a′′ and any object m of F (a).

ka′′(F (h′)(F (h)(m))) ka′(F (h)(m))

ka′′(F (h;h′)(m)) ka(m)

(νh)F (h)(m)

ka′′ ((mh,h′ )m) (νh)m

(νh;h′ )m

ka(m) ka(F (id)(m))

ka(m)

ka((ea)m)

idka(m)

(νid)m

This time, we can compute that both composites in the first diagram are
equal to

F (h′)(F (h)(m))
mh,h′−−−→ F (h;h′)(m) ,

while in the second diagram the top left composite is equal to

m
(ea)m−−−→ F (id)(m)

(ea)F (id)(m)−−−−−−−→ F (id)(F (id)(m))
µid,id−−−→ F (id; id)(m) ,

and the diagonal arrow is given by

m
(ea)m−−−→ F (id)(m) .

These 1-cells in
∫
F are related by F (lunitm), so they correspond to the

same morphism in π∗
∫
F .

This completes the definition of the universal cocone under π∗
∫
F .

Now, suppose that (D, l, µ) is another oplax cocone under F . We define

l̂(a,m) = la(m)

l̂

(
(a,m)

(h,f)−−−→ (b, n)

)
= la(m)

la(f)−−−→ la(F (h)(n))
(µh)n−−−→ lb(n) .
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la(m) la(F (h)(n)) lb(n)

la(F (h)(F (k)(p))) lb(F (k)(p))

la(F (k;h)(p)) lc(p)

la(f) (µh)n

la(F (h)(g)) lb(g)

(µh)F (k)(p)

la((mk,h)p) (µk)p

(µk;h)p

Figure 5.2: Proof that l̂ respects composition. The thick dotted line repre-
sents l̂((h, f); (k, g)), while the thin solid line represents l̂(h, f); l̂(k, g). The
top square commutes because µh is a natural transformation, while the bot-
tom is one of the conditions on a cocone.

We need to show that l̂ is a functor π∗
∫
F → D. First, observe that it sends

the identity on (a,m) to the composite

la(m)
la((ea)m)−−−−−−→ la(F (id)(m))

(µid)m−−−−→ la(m) ,

which is equal to the identity on la(m) since l is a cocone under F . Now
suppose we have morphisms

(a,m)
(h,f)−−−→ (b, n)

(k,g)−−−→ (c, p) .

Using the formula for the composition of morphisms in the Grothendieck
construction, we see that l̂((h, f); (k; g)) is given by the thick dotted com-
posite in Figure 5.2, while l̂(h, f); l̂(k, g) is given by the thin composite. We
can deal with the identity in a similar way. Therefore, l̂ is a functor.

Moreover, if a is an object of C andm and object of F (a), we have l̂(ka(m)) =
l̂(a,m) = la(m), and if f : m → n is a morphism in F (a), then l̂(ka(f)) is
given by the composite

la(m)
la(f)−−−→ la(n)

la((ea)n)−−−−−→ la(F (id)(n))
(µid)n−−−−→ la(n) ,

which is equal to la(f) by the cocone condition on µ. Therefore, ka; l̂ = la
for each object a of C.

Lastly, if h : a→ b is a morphism in C, then

l̂((νh)m) = l̂(h, idF (h)(m)) = (µh)m ,

and so νhl = µh. This completes the existence part of the proof.

For uniqueness, suppose that j is another functor π∗
∫
F → D such that

ka; j = la and νhj = µh for each object a of C and each morphism h : a→ b
in C.
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Let (a,m) be an object of π∗
∫
F . Then j(a,m) = j(ka(m)) = la(m) =

l̂(a,m).

Now let (h, f) : (a,m)→ (b, n) be a morphism in π∗
∫
F . We claim that we

may decompose (h, f) as the composite

(a,m)

(a, F (h)(n)) (b, n)

ka(f)
(h,f)

(νh)n

.

Indeed, if we work out what that composite is, then we get

m
f−→ F (h)(n)

(ea)n−−−→ F (id)(F (h)(n))
(mid,h)n−−−−−→ F (id;h)(n) ,

which is related to (h, f) in
∫
F by the 2-cell lunith (since F is a lax functor),

and is therefore equal to (h, f) in π∗
∫
F .

We therefore have

j(h, f) = j(ka(f); (νh)n) = j(ka(f)); j((νh)n) = la(f); (µh)n = l̂(h, f) ,

and therefore j = l̂.

Lastly, suppose that (l′, µ′) is another oplax cocone with tip D under F , and
let δ : l ⇒ l′ be a modification of oplax cocones. Then, for each object a of
C and each object m of F (a), we have a morphism

δa,m : la(m)→ l′a(m) .

We claim that these δa,m form the components of a natural transformation

δ̂ : l̂ ⇒ l̂′. Indeed, if (h, f) : (a,m) → (b, n) is a morphism in
∫
F , then we

have the following commutative diagram.

la(m) l′a(m)

la(F (h)(n)) l′a(F (h)(n))

lb(n) l′b(n)

δa,m

la(f) l′a(f)

δa,F (h)(n)

(µh)n (µ′h)n

δb,n

Here, the top square commutes because δa is a natural transformation, while
the bottom commutes because δ is a modification of oplax cocones.

Now we have
(ka; δ̂)m = δ̂ka(m) = δa,m ,

as desired.
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5.6 Examples of lax 2-colimits in Cat

Suppose that M is a monad on a category C, considered as a lax functor

F : 1→ Cat

such that F (∗) = C.

If we apply the Grothendieck construction to F , then the category we get
has pairs (∗, a) for objects, where a ranges over the objects of C; and the
morphisms from (∗, a) to (∗, b) are morphisms a → F (id)(b) in C, where
F (id) = M . In other words,

∫
F is precisely the Kleisli category for M . In

this case, Proposition 5.5.4 reduces to Proposition 4.3.1.

More generally, if X is a monoidal category with a small descendent set, then
BX satisfies our smallness condition (all categories of 1-cells have a small
descendent set). If F : BX → Cat is a lax functor, corresponding to a lax
action of X upon C = F (∗), then it is easy to see that π∗

∫
F is isomorphic to

the category C/X that we defined earlier. Indeed, in both cases the objects
may be identified with the objects of C, and the morphisms from an object
a to an object b may be written as equivalence classes of morphisms a→ x.b
in C under the equivalence relation generated by relating f : a → x.b to
g : a→ y.b if there is a morphism h : x→ y in X such that g = f ; (h.b).

In this case, we can recast Proposition 5.5.4 to get a result about C/X .

Corollary 5.6.1. Let . be an action of a monoidal category X on a
category C. If we identify this action with a lax functor F : BX → Cat,
then C/X is the lax colimit of this functor.

In particular, there is a functor J : C → C/X and a natural transformation

φx,a : J(x.a)→ Ja

making the following diagrams commute

J(x.y.a) J(y.a)

J((x⊗ y).a) Ja

φx,y.a

J(mx,y,a) φy,a

φx⊗y,a

Ja

J(I.a) Ja

idJ(la)

φI,a

,

such that if F : C → D is a functor and

ψx,a : F (x.a)→ Fa

is a natural transformation making the following diagrams commute

F (x.y.a) F (y.a)

F ((x⊗ y).a) Fa

ψx,y.a

F (mx,y,a) ψy,a

ψx⊗y,a

Fa

F (I.a) Fa

idF (la)

ψI,a

,
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then there is a unique functor F̂ : C/X → D such that F = F̂ J and ψ = F̂ φ.

Remark 5.6.2. Here, J : C → C/X is the identity on objects and sends a
morphism f : a→ b in C to the Melliès morphism

a
f−→ b

eb−→ I.b ,

while the component φx,a of φ is the identity

x.a→ x.a ,

considered as a Melliès morphism x.a→ a.

Corollary 5.6.1 tells us that C/X is generated as a category by the objects
and morphisms in C, together with the special morphisms making up the
natural transformation φx,a : x.a→ a.

In this special case, the proof of Proposition 5.5.4 tells us that C/X always
satisfies a ‘factorization result’ akin to those in [AM96] (our Proposition
3.5.1) and [HM99]: if f : a → b is a morphism in C/X , given by some
morphism f̃ : a→ x.b in C, then we may write f as the composite

a
J(f̃)−−−→ x.b

φx,b−−→ b

in C. This means that if we have a definability result for the category C – for
example, that every compact morphism in C is definable in some language
L – then we can automatically get a definability result for the category C/X
– for example, that every compact morphism in C/X (i.e., every morphism
a→ b in C/X that is given by a compact morphism a→ x.b in C) is definable
in the language L + Φx,a, where Φx,a is a new family of primitives in the
language whose denotations are given by the φx,a.

In the case that X = 1 and the action is a monad, this factorization result
is Proposition 4.3.1, which played an important role in our main Full Ab-
straction result (Theorem 4.8.2). We shall use our new factorization result
to prove a Full Abstraction result in a similar way.

5.7 Finite products distribute over lax colimits in
Cat

The next result mirrors the result for distributivity of finite products over
arbitrary colimits in a Cartesian closed category (which is essentially because
the functor A× is a left adjoint, so preserves colimits).
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Proposition 5.7.1. Let F : C → Cat be a lax functor of bicategories, where
C(a, b) has a small descendent set for any pair (a, b) of objects of C. Let A be
a category. Then the lax colimit of A×F (defined by (A×F )(c) = A×F (c)
and (A × F )(f) = (id, f)) is given by the product of A with the lax colimit
of F .

Proof. It is easiest to compute the colimit ofA×F directly using Proposition
5.5.4. The objects are tuples (c, (a,m)), where c is an object of C, a is
an object of a and m is an object of F (c). 1-cells from (c′, (a′,m′)) to
(c, (a,m)) are given by pairs (h, (q, f)), where h is a morphism c→ c′ in C,
f is a morphism a′ → F (h)(a) in F (a′) and q is a morphism a′ → a in A.
Two 1-cells (h, (q, f)) and (h′, (q′, f ′)) from (c′, (a′,m′)) to (c, (a,m)) define
equivalent morphisms if there is a 2-cell φ : h⇒ h′ such that f ; (Fφ)m = f ′,
and if a′ = a.

Meanwhile, the product of A with the lax colimit of F has tuples (a, (c,m))
for objects, where a is an object of A, c an object of C and m an object of
F (c). 1-cells (a′, (c′,m′))→ (a, (c,m)) are given by tuples (q, (h, f)), where
q is a morphism a′ → a, h is a morphism c → c′ and f is a morphism
m′ → F (h)(m). Two 1-cells (q, (h, f)) and (q′, (h′, f ′)) from (a′, (c′,m′))
to (a, (c,m)) define equivalent morphisms if a′ = a, and if there is a 2-
cell φ : h ⇒ h′ such that f ; (Fφ)m = f ′. These two categories are clearly
isomorphic.

Corollary 5.7.2. Let F : C → Cat, G : D → Cat be lax functors of bicate-
gories. Then

coliml−−−→
c : C,d : D

(F (c)×G(d)) ∼= coliml−−−→
c : C

F (c)× coliml−−−→
d : D

G(d) .

Proof. By Proposition 5.7.1, we have

coliml−−−→
c : C

F (c)× coliml−−−→
d : D

G(d)

∼= coliml−−−→
c : C

(F (c)× coliml−−−→
d : D

G(d))

∼= coliml−−−→
c : C

coliml−−−→
d : D

(F (c)×G(d))

∼= coliml−−−→
c : C,d : D

(F (c)×G(d)) .

In the particular case of a bifunctor out of BX , for X a monoidal category,
we get the following.
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Corollary 5.7.3. Suppose we have actions of a monoidal category X on a
category C and of a monoidal category Y on a category D. We get an action
of X × Y on C × D by

(x, y).(c, d) = (x.c, y.d) .

Then
(C × D)/(X × Y) ∼= (C/X )× (D/Y) .

Proof. Since the C/X construction is a special case of a lax colimit in Cat,
this is a direct application of Corollary 5.7.2 where we are using the fact
that B(X × Y) ∼= BX ×BY.

5.8 Monoidal structure of C/X
We shall now consider the C/X construction in more depth, looking at the
properties that C/X has when C is also a monoidal category. Until the
end of the chapter, we assume that the monoidal category X has a small
descendent set.

Definition 5.8.1. Suppose that X is a symmetric monoidal category acting
on a monoidal category C, and suppose moreover that the underlying functor
X × C → C is a lax monoidal functor.

Then the functor X ×X ×C → C that sends (x, y, a) to x.y.a is lax monoidal.
Since X is symmetric monoidal, the tensor product ⊗ : X × X → X
is a strong monoidal functor and so the functor X × X × C → C that sends
(x, y, a) to (x⊗ y).a is also lax monoidal.

We say that the action of X on C is monoidal if the underlying functor
X × C → C is a lax monoidal functor and the natural transformations

mx,y,a : x.y.a⇒ (x⊗ y).a : X × X × C → C ea : a⇒ I.a : C → C

are monoidal natural transformations.

Example 5.8.2. If X , C are symmetric monoidal categories, where C is sym-
metric monoidal closed, and j : X → C is an oplax symmetric monoidal
functor, then the parametric reader monad action

x.a = jx( a

is a symmetric monoidal lax action of X op on C.
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Remark 5.8.3. This generalizes the definition of a monad being monoidal ;
i.e., when the underlying functor C → C is a monoidal functor and the mul-
tiplication and unit for the monad are monoidal natural transformations.
However, although a monoidal monad can be defined to be a monoid in the
category of monoidal functors C → C and monoidal natural transformations
between them, a monoidal parametric monad parameterized by a symmet-
ric monoidal category X cannot be defined as a monoidal functor from X
into this category. Indeed, that would mean we had, inter alia, a natural
transformation

x.a⊗ x.b→ x.(a⊗ b) ,

whereas we want to specify that there should be a natural transformation

x.a⊗ y.b→ (x⊗ y).(a⊗ b) .

Proposition 5.8.4. Suppose that X is a symmetric monoidal category, and
that we have a monoidal lax action of X on another monoidal category C.
Then C/X inherits the structure of a monoidal category and the natural
functor J : C → C/X is strict monoidal.

Proof. By taking the product of the action with itself, we get an action of
X × X on C × C; i.e., the action given by (x, y).(a, b) = (x.a, y.b). Since X
is symmetric monoidal, the tensor product functor X × X → X is strong
monoidal, so by composing it with the action of X on C we get a lax action of
X ×X on C; i.e., the action given by (x, y).a = (x⊗y).a, with multiplicative
coherence m(x,y),(x′,y′).a given by

(x⊗y).(x′⊗y′).a
m(x⊗y),(x′⊗y′),a−−−−−−−−−−→ ((x⊗y)⊗(x′⊗y′)).a→ ((x⊗x′)⊗(y⊗y′)).a ,

where the last arrow is given by the unique symmetric monoidal isomor-
phism; and with unital coherence ea given by

a
ea−→ I.a→ (I ⊗ I).a .

We claim that the functor ⊗ : C × C → C and the monoidal coherence

mx,y,a,b : x.a⊗ y.b→ (x⊗ y).(a⊗ b)

of the monoidal functor . : X × C → C give rise to an oplax morphism
from the action of X × X on C × C to the action of X × X on C.
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Indeed, the first diagram in Definition 5.0.2 in this case is given by

(x.y.a)⊗ (x′.y′.a′) (x⊗ x′).(y.a⊗ y′.a′)

((x⊗ y).a)⊗ ((x′ ⊗ y′).a′) (x⊗ x′).(y ⊗ y′).(a⊗ a′)

((x⊗ y)⊗ (x′ ⊗ y′)).(a⊗ a′) ((x⊗ x′)⊗ (y ⊗ y′)).(a⊗ a′)

mx,x′,y.a,y′.a′

mx,y,a⊗mx′,y′,a′ (x⊗x′).my,y′,a,a′

mx⊗y,x′⊗y′,a,a′ mx⊗x′,y⊗y′,a⊗a′
,

which is precisely the diagram saying that m is a monoidal natural trans-
formation. Similarly, the second diagram from Definition 5.0.2 is the same
as the diagram saying that e is a monoidal natural transformation.

Therefore, by Proposition 5.4.4, this lax morphism of actions gives rise to a
functor

(C × C)/(X × X )→ C/(X × X ) .

The lax monoidal functor X × X → X gives rise by Proposition 5.4.5 to a
functor C/(X × X )→ C/X , which we may compose with the functor above
to give us a functor

(C × C)/(X × X )→ C/X .

Moreover, Corollary 5.7.3 tells us that (C × C)/(X × X ) is isomorphic to
(C/X )× (C/X ), giving us our desired functor

⊗ : (C/X )× (C/X )→ (C/X ) .

The construction of this functor tells us that it commutes with the identity-
on-objects functors out of the original categories:

C × C C

(C/X )× (C/X ) C/X

⊗

J×J J

⊗

.

This means that the functor J preserves the tensor product. It also means
that we may lift the associators and unitors for the tensor product on C
along the functor J morphisms in C/X , and that these morphisms satisfy
the appropriate coherence diagrams. It remains to show that they are still
natural transformations in C/X , and we do this in Figure 5.3.

Having defined the monoidal structure on C/X in a very formal way, let
us unpack what it actually is. The tensor product on objects is defined
exactly as in C, while the tensor product of morphisms f : a′ → a, g : b′ → b
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(a′ ⊗ b′)⊗ c′ a′ ⊗ (b′ ⊗ c′)

(x.a⊗ y.b)⊗ z.c x.a⊗ (y.b⊗ z.c)

((x⊗ y).(a⊗ b))⊗ z.c x.a⊗ ((y ⊗ z).(b⊗ c))

((x⊗ y)⊗ z).((a⊗ b)⊗ c) (x⊗ (y ⊗ z)).(a⊗ (b⊗ c))

assoca′,b′,c′

(f⊗g)⊗h f⊗(g⊗h)

assocx.a,y.b,z.c

mx,y,a,b⊗z.c x.a⊗my.b,z.c

mx⊗y,z,a⊗b,c mx,y⊗z,a,b⊗c

assocx,y,z . assoca,b,c

a′ I ⊗ a

x.a I ⊗ (x.a)

(I ⊗ x).(I ⊗ a) (I.I)⊗ (x.a)

lunita′

f I⊗f

lunitx.a

lunitx . lunita e⊗x.a
mI,x,I,a

a′ a⊗ I

x.a (x.a)⊗ I

(x⊗ I).(a⊗ I) (x.a)⊗ (I.I)

runita′

f f⊗I

runitx.a

runitx . runita x.a⊗e
mx,I,a,I

Figure 5.3: Proof that the associators and unitors in C/X are indeed natural
transformations. Here, f : a′ → a, g : b′ → b, h : c′ → c are morphisms in
C/X , considered as morphisms a′ → x.a, b′ → y.b, c′ → z.c in C.
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(considered as morphisms f : a′ → x.a, g : b′ → y.b in C) is given by the
composite

a′ ⊗ b′ f⊗g−−→ (x.a)⊗ (y.b)
mx,y,a,b−−−−−→ (x⊗ y).(a⊗ b) ,

where the right hand arrow is the multiplicative coherence for the monoidal
functor . : X × C → C.

The reason we need some kind of symmetry in X is for this to be a functor:
indeed, suppose that we have morphisms f ′ : a′′ → a′, f : a′ → a, g′ : b′′ → b′

and g : b′ → b in C/X , considered as morphisms f ′ : a′′ → x′.a′, f : a′ → x.a,
g′ : b′′ → y′.b′ and g : b′ → y′b in C. Then (f ′ ⊗ g′); (f ⊗ g) is given by the
composite

a′′ ⊗ b′′
f ′ ⊗ g′−−−−−−−−−−−−−−−−→ (x′.a′)⊗ (y′.b′)
mx′,y′,a′,b′−−−−−−−−−−−−−−−−→ (x′ ⊗ y′).(a′ ⊗ b′)

(x′ ⊗ y′).(f ⊗ g)
−−−−−−−−−−−−−−−−→ (x′ ⊗ y′).((x.a)⊗ (y.b))

(x′ ⊗ y′).mx,y,a,b−−−−−−−−−−−−−−−−→ (x′ ⊗ y′).(x⊗ y).(a⊗ b)
mx′⊗y′,x⊗y,a⊗b−−−−−−−−−−−−−−−−→ ((x′ ⊗ y′)⊗ (x⊗ y)).(a⊗ b) ,

while (f ′; f)⊗ (g′; g) is given by

a′′ ⊗ b′′
f ′ ⊗ g′−−−−−−−−−−−−−−−−→ (x′.a′)⊗ (y′.b′)

x′.f ⊗ y′.g−−−−−−−−−−−−−−−−→ (x′.x.a)⊗ (y′.y.b)
mx′,x,a ⊗my′,y,b−−−−−−−−−−−−−−−−→ ((x′ ⊗ x).a)⊗ ((y′ ⊗ y).b)
mx′⊗x,y′⊗y,a,b−−−−−−−−−−−−−−−−→ ((x′ ⊗ x)⊗ (y′ ⊗ y))⊗ (a⊗ b) .

Since X is symmetric, and since mx,y,a is a monoidal natural transformation,
the natural symmetric monoidal coherence

((x′ ⊗ y′)⊗ (x⊗ y))
∼=−→((x′ ⊗ x)⊗ (y′ ⊗ y))

mediates between these two composites, so they give us the same morphism
in C/X .

5.9 Symmetric monoidal structure of C/X
Definition 5.9.1. Let a symmetric monoidal category X act via a monoidal
lax action on a monoidal category C. If C is symmetric monoidal, then we say
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that the action of X on C is symmetric monoidal if the underlying functor
X × C → C is a symmetric monoidal functor.

Example 5.9.2. If j : X → C is a symmetric oplax monoidal functor, where
C is symmetric monoidal closed, then the reader action of X op on C induced
from j is a symmetric monoidal lax action.

Proposition 5.9.3. Let a symmetric monoidal category X act via a sym-
metric monoidal lax action on a symmetric monoidal category C. Then the
category C/X is symmetric monoidal.

Proof. As with the associators and unitors, we can lift the symmetry iso-
morphisms from C on to C/X , and these isomorphisms will satisfy the ap-
propriate coherence diagrams.

We need only show that they are natural transformations in C/X . Let
f : a′ → a, g : b′ → b be morphisms in C/X , considered as morphisms

f : a′ → x.a g : b′ → y.b

in C. Then we need show that the following diagram commutes.

a′ ⊗ b′ b′ ⊗ a′

(x.a)⊗ (y.b) (y.b)⊗ (x.a)

(x⊗ y).(a⊗ b) (y ⊗ x).(b⊗ a)

syma′,b′

f⊗g g⊗f
symx.a,y.b

mx,y,a,b my,x,b,a

symx,y . syma,b

Indeed, the top square commutes because sym is a natural transformation
in C, and the bottom square commutes because the action is a symmetric
monoidal functor.

5.10 Monoidal closed structure of C/X
Let a symmetric monoidal category X act on a symmetric monoidal cate-
gory C via a symmetric monoidal action. Since any lax monoidal functor
between monoidal closed categories is automatically lax monoidal closed, we
might expect that in such a situation the category C/X would be symmetric
monoidal closed.

In fact, this is not the case. For example, suppose that X is the unit monoidal
category, and that X acts on the category of sets via the powerset monad.
Then the category Set/X is the Kleisli category for the powerset monad –
i.e., the category of sets and relations.
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Since the powerset functor is lax monoidal, it induces a monoidal structure
on the Kleisli category – i.e., the familiar Cartesian product. In fact, the
category of sets and relations is monoidal closed with respect to this choice
of product, but this is a bit of a coincidence: in particular, the internal hom
functor this category (which is also given by Cartesian product) does not
agree with the function-space construction in the category of sets.

We are going to need to impose some stricter constraints on our action,
then, in order to ensure that C/X is monoidal closed. It turns out that we
only need C to be monoidal closed, but that we need the action of X on C
to preserve the internal hom strictly.

Definition 5.10.1. Let a symmetric monoidal category X act on a sym-
metric monoidal closed category C via a symmetric monoidal lax action.
We say that the action is symmetric monoidal closed if there is a natural
isomorphism

sx,a,b : a( (x.b)
∼=−→x.(a( b)

that makes the following diagram commute for any object x of X and any
objects a, b of C.

(x.(a( b))⊗ (I.a) (x⊗ I).((a( b)⊗ a)

(a( x.b)⊗ a x.b

mx,I,a(b,a

runit−1⊗ eva,bsx,a,b⊗ea
eva,x.b

Example 5.10.2. If j is an oplax symmetric monoidal functor from a sym-
metric monoidal category X to a symmetric monoidal closed category C,
then the reader action of Xop on C induced by j is symmetric monoidal
closed, via the isomorphism

(jx( b) ∼= jx( (a( b) .

Proposition 5.10.3. Suppose that a symmetric monoidal category X acts
on a symmetric monoidal closed category C via a symmetric monoidal closed
action. Then the category C/X is symmetric monoidal closed.

Proof. Given objects a, b of C, we define a ( b in C/X to be the same as
a( b in C, and we define

eva,b = J(eva,b) : (a( b)⊗ a→ b ,

to be given by the same morphism as in C.
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Let f : c ⊗ a → b be a morphism in C/X . It is necessary and sufficient to
show that there is a unique morphism

h : c→ a( b

in C/X such that f = (h⊗ a); eva,b.

Suppose that f is given by a morphism

f̂ : c⊗ a→ x.b

in C. This then induces a morphism

f̃ = W (f̂) : c→ (a( x.b) ,

which we can compose with sx,a,b to give us a morphism

ĥ = W (f̂); sx,a,b : c→ x.(a( b) ,

which we may consider as a morphism h : c → (a ( b) in C/X . We claim
that (h ⊗ a); eva,b = f ; indeed, the composite (h ⊗ ida); eva,b is given in C
by the composite

(x.(a( b))⊗ (I.a) (x⊗ I).((a( b)⊗ a)

c⊗ a (a( x.b)⊗ a (x⊗ I).b

mx,I,a(b,a

idx⊗I ⊗ eva,b

f̃⊗a

sx,a,b⊗ea .

Using the diagram in Definition 5.10.1, we see that this is equal to the
composite

c⊗ a f̃⊗a−−→ (a( x.b)⊗ a
eva,x.b−−−−→ x.b

runitx .b−−−−−→ (x⊗ I).b .

The composite of the first two morphisms is equal to f̂ , and so the whole
thing defines the same morphism as f in C/X , with runitx mediating between
the two.

Now suppose that h : c→ a( b is a morphism in C/X, given by a morphism
ĥ : c→ x.(a( b) in C. Let f : c⊗ a→ b be given by the morphism

f̂ = W−1(ĥ; s−1
x,a,b) .

Then h may be recovered from f just as in the first part of this proof, and
the equation f = (h⊗ a); eva,b determines f . It follows that the choice of h
is unique.

206



5.11 Cartesianness of the monoidal structure

Suppose that a symmetric monoidal category X acts on a Cartesian category
C via a symmetric monoidal lax action. In this chapter we will consider
what properties of the action we need in order to ensure that the induced
monoidal structure on C/X is Cartesian. Remember that the category of
sets and relations is not Cartesian, even though it arises from an action of
the unit category on the category of sets.

Since C is Cartesian, the diagonal and terminal maps in C gives every object
a natural comonoid structure:

a
∆a−−→ a× a a

()−→ 1 .

The tensor product of objects A,B in C/X is the same object A×B that de-
fines the Cartesian product C, so we can lift this comonoid structure through
the functor J to give us a natural comonoid structure on each object of C/X :

a
J∆a−−−→ a⊗ a a

J()−−→ I .

We have replaced the symbol × with the symbol ⊗ when we are working in
C/X , since we do not know whether this tensor product is still Cartesian in
C/X .

If every morphism f : a → b in C/X is a comonoid homomorphism with
respect to this comonoid structure; i.e., if it makes the diagrams

a b

a⊗ a b⊗ b

f

J∆a J∆b

f⊗f

a b

I

f

J()
J()

commute, then we may identify C/X with a full subcategory of its own
category of comonoids, closed under tensor product. Since the category of
comonoids in a monoidal category is always Cartesian, this will tell us that
C/X is Cartesian.

What does it mean for every morphism in C/X to be a comonoid homo-
morphism? Firstly, since C itself is Cartesian, every morphism in C is a
comonoid homomorphism with respect to the diagonal, and it follows that
every morphism of the form Jf : a→ b (where f : a→ b is a morphism in C)
is a comonoid homomorphism in C/X . Since every morphism in C/X may
be written as the composite of a morphism of the form Jf with a morphism
of the form φx,b, it will suffice to show that the morphisms of the form φx,a
are comonoid homomorphisms in C/X ; i.e., that they make the following
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diagrams commute.

x.a a

x.a⊗ x.a a⊗ a

φx,a

J∆x.a J∆a

φx,a⊗φx,a

x.a a

I

φx,a

J()
J()

Let us compute the two arms of the first square directly in C. The composite
along the top right is given in C by the morphism

x.a
x.∆a−−−→ x.(a× a) ,

while that along the bottom right is given by the composite

x.a
∆x.a−−−→ x.a× x.a mx,x,a,a−−−−−→ (x⊗ x).(a× a) .

Proposition 5.11.1. Let a symmetric monoidal category X act on a Carte-
sian category C via a symmetric monoidal lax action. Suppose that either

• for every object x of X there are morphisms f : x→ x⊗x and f0 : x→
I that make the following diagrams commute;

x.a

x.a× x.a (x⊗ x).(a× a)

f.∆a
∆x.a

mx,x,a,a

x.a

1 I.1

()
f0.()

e

or

• for every object x of X there is are morphisms g : x ⊗ x → x and
g0 : I → x that make the following diagrams commute.

x.a x.(a× a)

x.a× x.a (x⊗ x).(a× a)

x.∆a

∆x.a

mx,x,a,a

g.(a×a)

x.a x.1

1 I.1

x.()

()

e

g0.1

Then the monoidal structure on C/X is Cartesian.

Proof. In either case, the morphisms f, f0 or g, g0 mediate between the com-
posites from our earlier discussion.

Note that these results are not the sharpest possible: there may well be
more complicated zigzags mediating between the morphisms. Nevertheless,
they are sufficient for our purposes.
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An obvious idea for constructing the morphisms f, f0 is to look at the case
that X is itself Cartesian, taking f to be the diagonal and f0 the terminal
morphism. Note, however, that this does not automatically mean that the
diagrams in Proposition 5.11.1 commute: for example, the trivial category
and the category of sets are both presheaf categories and hence Cartesian
closed, but if 1 acts on the category of sets via the powerset monad then the
resulting monoidal category Set/1 (i.e., the category of sets and relations
with the set-theoretic product) is not Cartesian.

If X is Cartesian and X op acts on C, then we can try taking g and g0 to
be (the opposites of) the diagonal and terminal morphism in X . This will
be particularly useful for reader actions, where an oplax monoidal functor
j : X → C gives rise to an action of the opposite category X op of X on C.
If C is Cartesian and we want to show that C/X is Cartesian, then it will
be sufficient to find, for each object x of X , morphisms f : x → x ⊗ x and
f0 : x→ I such that the following diagrams commute.

jx→ a jx→ (a× a)

(jx→ a)× (jx→ a) (jx× jx)→ (a× a) j(x⊗ x)→ (a× a)

jx→∆a

∆jx→a

mjx→(a×a)

jf→(a×a)

jx→ a jx→ 1

1 1→ 1 jI → 1

jx→()

()

ej→1

jf0→1

For these to commute, it is sufficient that the composite

jx
jf−→ j(x⊗ x)

mjx,x−−−→ jx× jx

should be equal to the diagonal on jx, and that the composite

jx
jf0−−→ jI

ej−→ 1

should be equal to the terminal morphism jx → 1. Of course, this second
condition is automatically satisfied by the definition of a terminal object, so
all we require is that some morphism f0 : x→ I should exist.

We have proved:

Theorem 5.11.2. Let j : X → C be an oplax symmetric monoidal functor
between symmetric monoidal categories, where C is Cartesian closed. Then
j induces a reader action of X op on C, and the category C/X op is symmetric
monoidal closed.
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Suppose that for every object x of X , there are morphisms f : x→ x⊗x and
f0 : x→ I in X such that jf ;mj

x,x = ∆jx. Then C/X op is Cartesian closed.

In the next chapter, we will investigate a class of reader actions, and give a
more concrete property for the category C/X op to be Cartesian closed. We
will start to see how we can come up with reader actions to model differ-
ent computational effects and come closer to our eventual Computational
Adequacy and Full Abstraction results.
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Chapter 6

Reader actions on Set

6.1 Colimits of actions are monoidal functors

Proposition 6.1.1. Let C be a cocomplete monoidal category, and suppose
that a symmetric monoidal category X with a small descendent set acts on
C via a symmetric monoidal action in the sense of Definition 5.8.1. Define
a functor C → C by

Fa = colim−−−→
x : X

x.a .

Then F is a lax monoidal functor.

Proof. We have morphisms

colim−−−→
x : X

x.a⊗ colim−−−→
y : X

y.b

→ colim−−−→
x,y : X

x.a⊗ y.b

→ colim−−−→
x,y : X

(x⊗ y).(a⊗ b)

↪→ colim−−−→
z : X

z.(a⊗ b) .

and
1

e−→ I.1 ↪→ colim−−−→
x : X

x.1 .

Figures 6.1 and 6.2 show that these satisfy the coherence conditions for a
monoidal functor.

Proposition 6.1.2. If C is a cocomplete symmetric monoidal category and
the action of X on C is symmetric monoidal, then

colim−−−→
x : X

x.
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(
colim−−−→
x : X

x.a⊗ colim−−−→
y : X

y.b

)
⊗ colim−−−→

z : X
z.c colim−−−→

x : X
x.a⊗

(
colim−−−→
y : X

y.b⊗ colim−−−→
z : X

z.c

)

(
colim−−−→
x,y : X

x.a⊗ y.b

)
⊗ colim−−−→

z : X
z.c colim−−−→

x : X
x.a⊗

(
colim−−−→
y,z : X

(y.b⊗ z.c)

)

colim−−−→
x,y,z : X

(x.a⊗ y.b)⊗ z.c colim−−−→
x,y,z : X

x.a⊗ (y.b⊗ z.c)

colim−−−→
t,z : X

t.(a⊗ b)⊗ z.c colim−−−→
x,y,z : X

(x⊗ y).(a⊗ b)⊗ z.c colim−−−→
x,y,z : X

x.a⊗ (y ⊗ z).(b⊗ c) colim−−−→
x,t : X

x.a⊗ t.(b⊗ c)

colim−−−→
x,y,z : X

((x⊗ y)⊗ z).((a⊗ b)⊗ c) colim−−−→
x,y,z : X

(x⊗ (y ⊗ z)).(a⊗ (b⊗ c))

colim−−−→
t,z : X

(t⊗ z).((a⊗ b)⊗ c) colim−−−→
x,t : X

(x⊗ t).(a⊗ (b⊗ c))

colim−−−→
u : X

u.((a⊗ b)⊗ c) colim−−−→
u : X

u.(a⊗ (b⊗ c))

assoc

colim assoc

colimmx,y,a,b⊗z.c colimx.a⊗my,z,b,c

colimmt,z,a⊗b,c

colimmx⊗y,z,a⊗b,c colimmx,y⊗z,a,b⊗c

colimmx,t,a,b⊗c

colim assoc . assoc

colimu. assoc

Figure 6.1: Proof that colim−−−→x : X x.a satisfies the multiplicative criterion for being a monoidal functor. The bottom hexagon
is the multiplicative coherence for . as a monoidal functor, after applying the colimit.
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colim−−−→
z : X

z.(1⊗ a)

colim−−−→
y : X

y.a colim−−−→
y : X

(I ⊗ y).(1⊗ a) colim−−−→
x,y : X

(x⊗ y).(1⊗ a)

colim−−−→
y : X

1⊗ y.a colim−−−→
y : X

I.1⊗ y.a colim−−−→
x,y : X

x.1⊗ y.a

1⊗ colim−−−→
y : X

y.a I.1⊗ colim−−−→
y : X

y.a colim−−−→
x : X

x.1⊗ colim−−−→y : 1
y.a

colim lunit . lunit

colim id . lunit

colim lunit

lunit

colim e⊗id

colimmI,y,1,a colimmx,y,1,a

∼

e⊗id

∼

colim−−−→
z : X

z.(a⊗ 1)

colim−−−→
x : X

x.a colim−−−→
x : X

(x⊗ I).(a⊗ 1) colim−−−→
x,y : X

(x⊗ y).(a⊗ 1)

colim−−−→
x : X

x.a⊗ 1 colim−−−→
x : X

x.a⊗ I.1 colim−−−→
x,y : X

x.a⊗ y.1

(
colim−−−→
x : X

x.a

)
⊗ 1

(
colim−−−→
x : X

x.a

)
⊗ I.a colim−−−→

x : X
x.a⊗ colim−−−→y : 1

y.1

colim runit . runit

colim id . runit

colim runit

runit colim id⊗e
colimmx,I,a,1 colimmx,y,a,1

∼

id⊗e

∼

Figure 6.2: Proof that colim−−−→x : X x.a satisfies the unital criteria for being a
monoidal functor. The top-right squares are the unital coherence for .
as a monoidal functor, after applying the colimit.
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is a symmetric monoidal functor.

Proof. We have a commutative diagram

colim−−−→
x : X

x.a⊗ colim−−−→y : X y.b colim−−−→
y : X

y.b⊗ colim−−−→x : X x.a

colim−−−→
x,y : X

x.a⊗ y.b colim−−−→
x,y : X

y.b⊗ x.a

colim−−−→
x,y : X

(x⊗ y).(a⊗ b) colim−−−→
x,y : X

(y ⊗ x).(b⊗ a)

colim−−−→
z : X

z.(a⊗ b) colim−−−→
z : X

z.(b⊗ a)

sym

colim sym

colimmx,y,a,b colimmy,x,b,a

colim sym.sym

colim id . sym

.

Here, commutativity of the middle square is by applying the colimit to the
diagram for . to be a symmetric monoidal functor.

6.2 Reader actions on Set vs change of base

For our next result, we will go via the Melliès category. First, we need a
standard result about the Day convolution product.

Proposition 6.2.1 ([Pis14]). Let X ,Y be monoidal categories, where X is
well-tensored, and let the functor category [X ,Set] be equipped with the Day
convolution product.

Given a functor F : Y×X → Set, we have an associated functor Λ(F ) : Y →
[X ,Set]. Then F is lax monoidal if and only if Λ(F ) is lax monoidal.

In particular, if X acts on the category of sets via a monoidal action, then
it gives rise to a monoidal functor Set→ [X ,Set].

Proposition 6.2.2. Let j : X → Set be an oplax symmetric monoidal func-
tor between symmetric monoidal categories, where X is well-tensored. Let
X op act on Set via the reader action induced by j. Then the Melliès category
MellX op Set is isomorphic to the category obtained via base change along the
functor Set→ [X ,Set] obtained from the action . .

Proof. The objects of both categories are sets. The morphism objects in the
Melliès category are given by

MellX Set(A,B)(x) = [A, [jx,B]] ,
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while those in the base-changed category are given by

( . )∗Set(A,B)(x) = [jx, [A,B]] ,

and these may be related by the symmetry isomorphism

sjx,A,B : [A, [jx,B]]→ [jx, [A,B]] .

We need to show that this preserves composition of morphisms. Recall that
composition in the Melliès category is given by∫ y,z

[A, [jy,B]]× [B, [jz, C]]×X (y ⊗ z, x)

→
∫ y,z

[A, [j(y ⊗ z), C]]×X (y ⊗ z, x)

∼= [A, [jx, C]] ,

where the first arrow is induced via the Melliès composition, while compo-
sition in the base changed category is given by∫ y,z

[jy, [A,B]]× [jz, [B,C]]×X (y ⊗ z, x)∫ y,z
mjy,jz,[A,B],[B,C] ×X (y ⊗ z, x)

−−−−−−−−−−−−−−−−−−−−−−−→
∫ y,z

[jy × jz, [A,B]× [B,C]]×X (y,⊗z, x)∫ y,z
[mj

y,z, ; ]×X (y ⊗ z, x)
−−−−−−−−−−−−−−−−−−−−−−−→

∫ y,z

[j(y ⊗ z), [A,C]]×X (y ⊗ z, x)

∼= [jx, [A,C]] ,

where ; is the internal composition in Set.

Using the diagram in Figure 6.3, we see that the expressions inside the
coends are related by the symmetry isomorphisms as follows.

[A, [jy,B]]× [B, [jz, C]] [A, [j(y ⊗ z), C]]

[jy, [A,B]]× [jz, [B,C]] [j(y ⊗ z), [A,C]]

Melliès

sjx,A,B×sjy,B,C sj(x⊗y),A,C

B.c.

It follows that the functor induced by s is an isomorphism of [X ,Set]-
enriched categories.

By applying base change along the colimit functor to both these categories,
we get the following.

Corollary 6.2.3. Let j : X → Set be a symmetric monoidal functor, where
X has a small ancestral set (so X op has a small descendent set). Let X op
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[A, [jy,B]]× [B, [jz, C]] [jy, [A,B]]× [jz, [B,C]]

[A, [jy,B]]× [[jy,B], [jy, [jz, C]]] [jy × jz, [A,B]× [B,C]]

[A, [jy,B]]× [[jy,B], [jy × jz, C]] [jy × jz, [A,C]] [j(y ⊗ z), [A,C]]

[A, [jy × jz, C]] [A, [j(y ⊗ z), C]]

[A,[jy,B]]×Ljy
B,[jz,C]

sy,A,B×sz,B,C

mjy,jz,[A,B],[A,C]

[A,[jy,B]]×[[jy,B],W−1] [jy×jz,;]

[my,z ,;]

;

[my,z ,[A,C]]

sjy×jz,A,C

[A,[my,z ,C]]

sj(y⊗z),A,C

Figure 6.3: Proof that Melliès composition agrees with base-changed composition in the case of a symmetric reader action
on Set. The Melliès composition is given by the thick dashed arrows, while the composition in the base-changed category
is given by the thin arrows. The dotted lines at the top and at the bottom right – given by the symmetry isomorphisms –
mediate between the two. We can verify that the main heptagon commutes by directly computing each direction: in each
case, a pair 〈f, g〉 of functions is sent to the function h : A→ [jy × jz, C] given by

h(a)(Y, Z) = g(f(a)(Y ))(Z) .

216



act on Set via the induced reader action. Then the category Set/X op is iso-
morphic to the category obtained from Set by base change along the functor

colim−−−→
x : X

x. : Set→ Set .

Thus, the theory of reader actions on Set is subsumed into the theory of
base change in Set along monoidal functors Set→ Set.

6.3 From monoidal endofunctors to reader actions

We can get a result in the other direction; i.e., a kind of converse to Propo-
sition 6.1.1 in the case of reader actions on Set.

Proposition 6.3.1. Let F : Set→ Set be a lax symmetric monoidal func-
tor. Then there is a symmetric monoidal category X and an oplax monoidal
functor j : X → Set such that for all sets A, we have

FA ∼= colim−−−→
x : X

[jx,A] ,

and the monoidal coherences of F arise from the reader action of X op on
Set as in Proposition 6.1.1.

Proof. By considering each set F (A) as a category with only identity mor-
phisms, we can imagine F as a 2-functor Set → Cat. Let X =

(∫
F
)op

be
the opposite of its Grothendieck construction. Since Set is an ordinary cate-
gory (as opposed to a proper bicategory), X has only identity 2-morphisms,
so may be considered as an ordinary category.

More concretely, the objects of X are pairs (A,m), where A is a set and
m ∈ FA, and morphisms

(A,m)→ (B,n)

are given by functions h : A → B such that F (h)(m) = n. X is normally
called the category of elements of F .

We define a symmetric monoidal structure on X by setting

(A,m)⊗ (B,n) = (A×B,mF
A,B(m,n)) I = (1, eF ) ,

using the fact that the monoidal coherences for F are given by functions

mF
A,B : FA× FB → F (A×B) eF : 1→ F1 .

217



We now need to show that the monoidal coherences in Set give rise to
morphisms

assocA,B,C : ((A×B)× C,mF
A×B,C(mF

A,B(m,n), p))→

(A× (B × C),mF
A,B×C(m,mF

B,C(n, p))

lunitA : (A,m)→ (1×A,mF
1,A(eF ,m))

runitA : (A,m)→ (A× a,mF
A,1(m, eF ))

symA,B : (A×B,mF
A,B(m,n))→ (B ×A,mF

B,A(n,m))

in X . Happily, the diagrams we need for this are precisely the coherence
diagrams for mF , eF that we get from F being a lax symmetric monoidal
functor.

Since assoc, lunit, runit, sym satisfy the pentagon, triangle and hexagon iden-
tities in Set, so they do in X . Therefore, X is a symmetric monoidal cate-
gory.

There is an obvious forgetful functor X → Set that is, in fact, strict
monoidal.

We claim that if A is a set, then we have

colim−−−→
(X,m) : X op

[X,A] ∼= FA .

To see this, note that for each object (X,m) of X there is a function

[X,A]→ FA

f 7→ F (f)(m) .

We claim that this defines a cocone under the functor

(X,m) 7→ [X,A] : X op → Set .

Indeed, if h : (Y, n)→ (X,m) is a morphism then by definition we have

F (h)(n) = m,

and so we get a commutative triangle

[X,A] FA

[Y,A]

f 7→F (f)(m)

f 7→h;f
g 7→F (g)(n)

,
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since
F (h; f)(n) = F (f)(F (h)(n)) = F (f)(m) .

Therefore, there is an induced map

colim−−−→
(X,m) : X

[X,A]→ FA

that sends ((X,m), f) to F (f)(m).

Now we define a map in the other direction.

FA→ colim−−−→
(X,m) : X

[X,A]

m 7→ ((A,m), idA)

We claim that these two maps are inverses. Indeed, we certainly have

F (idA)(m) = idFA(m) = m.

In the other direction, we need to show that

((A,F (f)(m)), idA) = ((X,m), f)

in the colimit. But we have a morphism f : (X,m) → (A,F (f)(m)) in
X op, and f ; idA = f . Therefore, our map colim−−−→(X,m) : X [X,A] → FA was a

bijection.

Lastly, we need to show that this decomposition as a colimit gives rise to
the monoidal structure on the functor F ; i.e., that the following diagrams
commute.

FA× FB F (A×B)

colim−−−→
(X,m) : X

[X,A]× colim−−−→
(Y,n) : X

[Y,B] colim−−−→
(Z,p) : X

[Z,A×B]

mFA,B

∼ =

∼=

1 F1

colim−−−→
(X,m) : X

[X, 1]

eF

∼=

Here, the arrows marked with the isomorphism symbol ∼= are the isomor-
phisms that we have just defined, while the arrows at the bottom of the first
diagram and at the bottom left of the second are as in Proposition 6.1.1.
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We can check by hand that these diagrams commute: that in the first dia-
gram, both directions send the pair (m,n) ∈ FA× FB to

((A×B,mA,B(m,n)), idA×B) ∈ colim−−−→
(Z,p) : X

[Z,A×B] ,

and that in the second diagram both directions pick out the element

((1, eF ), id1)

of colim−−−→(X,m) : X [X, 1].

Remark 6.3.2. If the category X that we have constructed has a small an-
cestral set, this means that Set/X op is isomorphic to the category obtained
from Set via base change through F .

If X has not got a small ancestral set, then this is still true, except that
now Set/X op is not technically defined. This is not really important: we
only need X op to have a small descendent set so that we can prove that
colim−−−→x : X [jx,A] is a small set, but in this case we know that anyway –
colim−−−→x : X [jx,A] ∼= F (A)!

In any case, our main examples will satisfy the smallness conditions on X
that we have been working with up to this point.

Example 6.3.3. Let P+ : Set → Set be the non-empty powerset functor.
Then the category X of elements of P+ has pairs (A,M) as elements, where
A is a (necessarily non-empty) set and M a non-empty subset of A. Mor-
phisms (A,M)→ (B,N) are functions f : A→ B such that f(M) = N .

The nonempty powerset functor has a natural monoidal structure:

P+A× P+B → P+(A×B) 1→ P+1

sending (M,N) to M × N ⊆ A × B and picking out the subset 1 ⊆ 1.
Therefore this category of elements is a monoidal category, and has a natural
induced action as in Proposition 6.3.1. The colimit of this action then gives
us the original functor. Therefore, by Corollary 6.2.3, the category Set/X
is isomorphic to the category (P+)∗Set obtained by base change along the
non-empty powerset functor P+ : Set→ Set.

Example 6.3.4. Let DG: Set→ Set be the functor that sends a set A to the
set of discrete probability measures on A and sends a function f : A→ B to
the function DG(A)→ DG(B) that sends a probability measure P on A to
the probability measure f∗P on B given by

f∗P(X) = P(f−1(X)) .
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Then the category of elements of DG is the category whose objects are
pairs (A,P) and where the morphisms (A,PA) → (B,PB) are functions
f : A → B such that PB = f∗PA. In other words, it is the category of
discrete probability spaces and probability-preserving functions.

The functor DG has a natural monoidal structure: given a discrete proba-
bility measure on a set A and a discrete probability measure on a set B, we
can get a discrete probability measure on the set A×B by

PA×B({(a, b)}) = PA({a})× PB({b}) .

This then gives us a monoidal structure on the category of discrete prob-
ability spaces, where the tensor product of probability spaces (A,PA) and
(B,PB) is given by the set A×B, together with the probability measure as
described above.

Now suppose that F : Set→ Set is a lax symmetric monoidal endofunctor.
We have shown that F gives rise to a strict symmetric monoidal functor
j : X → Set, for some monoidal category X , and that the induced category
Set/X op is isomorphic to the category obtained from Set by base change
along F .

Since the action of X on Set is the reader action of a symmetric monoidal
functor, by Theorem 5.11.2 we know that the category Set/X op must be
symmetric monoidal closed.

Now recall that in order to apply the second part of Theorem 5.11.2, and
deduce that Set/X op is Cartesian closed, we must prove that for every
object x of X , there are morphisms f : x → x ⊗ x and f0 : x → I such
that jf = ∆jx;mj

x and jf0 = (); ej . This is particularly useful in our
case, since the functor X → Set is faithful, making X into a concrete cate-
gory. Then the morphisms between two objects in X may be thought of as
‘structure-preserving functions’ between the corresponding sets. The crite-
rion from Theorem 5.11.2 then says that the composites ∆jx;mj

x and (); ej

are structure-preserving.

In other words, for every set A and every p ∈ FA, the function ∆A must
define a morphism

(A, p)→ (A×A,mF
A,A(p, p)) –

i.e., we must have
F (∆A)(p) = mF

A,A(p, p) –

and the function () must define a morphism

(A, p)→ (1, eF ) –
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i.e., we must have
F (())(p) = eF .

Let us see what this means in some examples.

Example 6.3.5. The finite powerset functor does not satisfy the condition
given above; indeed, we have

P+(∆A)(X) = {(x, x) ∈ A×A : x ∈ X}

m
P+

A,A(X,X) = X ×X = {(x, y) ∈ A×A : x ∈ X} .

Similarly, the discrete probability measure functor does not satisfy the con-
dition we have given, since the diagonal map

∆A : (A,PA)→ (A×A,PA×A)

does not preserve probability in general.

Example 6.3.6. An alternative way of dealing with probability that does
satisfy the condition for Cartesianness of the resulting category. If (Ω,F ,P)
is a fixed probability space, then a discrete random variable taking values in
a set A is a measurable function

V : (Ω,F)→ (A,PA) .

Given X ⊆ A, we define

P(V ∈ X) = P(V −1(X)) .

This then gives us a discrete probability measure on X.

Suppose that (Ω,F ,P) is such that F contains all singleton sets (and hence
all countable sets) and that if Y ∈ F has measure 0 (i.e., P(Y ) = 0) and
Z ⊆ Y , then Z ∈ F . Write RVΩ : Set → Set for the functor that sends a
set A to the set of all random variables taking values in the set A and sends
a function f : A→ B to the function

RVΩ(A)→ RVΩ(B)

given by composing on the right with f .

Moreover, RVΩ is a lax monoidal functor: if V,W are discrete random vari-
ables taking values in sets A,B, then we can define

〈V,W 〉 : Ω→ A×B

given by pairing.
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Proposition 6.3.7. 〈V,W 〉 is a measurable function, so this is a random
variable.

Proof. Any discrete random variable is countably supported. This means
that there are countable Â ⊆ A, B̂ ⊆ B such that V −1(Â) and W−1(B̂) are
measurable and have measure 1. Now let U ⊆ A×B. Write Û = U∩(Â×B̂).
Then

〈V,W 〉−1(Û) = 〈V,W 〉−1(U) ∩ 〈V,W 〉−1(Â× B̂)

= 〈V,W 〉−1(U) ∩ V −1(Â) ∩W−1(B̂) ,

which is countable and therefore measurable, while

〈V,W 〉−1(U \ Û) ⊆ (Ω \ Â) ∪ (Ω \ B̂) ,

which is measurable of measure 0, meaning that 〈V,W 〉−1(U \ Û) is mea-
surable and has measure 0, by hypothesis. Therefore, 〈V,W 〉−1(U) is the
union of two measurable sets and is therefore measurable.

Now if we apply the construction from Proposition 6.3.1, we get the category
whose objects are pairs (A, V ), where A is a set and V a discrete random
variable taking values in A and where the morphisms (A, V )→ (B,W ) are
functions f : A→ B such that W = V ; f . This category, which we will call
RvΩ, admits a strict monoidal forgetful functor into the category of sets,
giving us a lax reader action of Rvop

Ω on Set. Once again, we can pass to
the symmetric monoidal category Set/Rvop

Ω , giving us a way of modelling
probability that is equivalent to taking base change through the functor
RVΩ.

The difference now is that the diagonal map

∆A : (A, V )→ (A×A, 〈V, V 〉)

is probability preserving. In the language of probability, the two copies of
the random variable V are dependent random variables, so the probability
of obtaining the reading (v, v) from 〈V, V 〉 is the same as the probability of
obtaining the reading v from V . Since the terminal morphism from (A, V ) to
(1, ()) is also probability preserving, the category Set/Rvop

Ω will be Carte-
sian closed.

6.4 Actions of categories with terminal objects

The probability example above lends itself to further examination. Recall
that if a monoidal category X acts on a category C, and x is a monoid in X
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with multiplication mx and unit ex, then we get a monad on C given by the
composite

1
x−→ X .−−−→ End[C]

of lax monoidal functors.

More explicitly, this monad is given by

Mxa = x.a ,

with the monadic coherences given by

MxMxa = x.x.a
mx,x−−−→ (x⊗ x).a

mx.a−−−→ x.a = Mxa

a
ea−→ I.a

ex.a−−→ x.a = Mxa .

If j : X → C is an oplax monoidal (in particular, comonoid-preserving) func-
tor, yielding a reader action of X op upon C, and x is a monoid in X op (i.e., a
comonoid in X ), then the monad Mx will be the reader monad corresponding
to jx.

Now suppose that the category X has a terminal object 1. Then 1 automat-
ically has the structure of a monoid in X , via the unique morphisms

1⊗ 1
()−→ 1 I

()−→ 1 .

Proposition 6.4.1. Let a monoidal category X act on a category C via a
lax action. Suppose that X has a terminal object 1. Then the category C/X
is isomorphic to the Kleisli category for the monad M1.

Proof. In both cases, the objects are the objects of C. Note also that we
have an isomorphism

(C/X )(a, b) =

∫ x

C(a, x.b) ∼=
∫ x

C(a, x.b)×C(x, 1) ∼= C(a, 1.b) = KlM1(a, b) .

More concretely, this isomorphism sends a Melliès morphism f : a→ x.b to
the Kleisli morphism given by the composite

a
f−→ x.b

().b−−→ 1.b .

By Proposition 5.4.4, this gives us a functor

C/X → KlM1 ,

which is fully faithful and the identity on objects.
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Now we can get a clearer idea of what is going on in the probability example:
the new category RvΩ almost has an initial object (i.e., a terminal object
in Rvop

Ω ), given by the pair
(Ω, idΩ) .

In fact, if F = P(Ω) then this is indeed an initial object. However, if
F 6= P(Ω), then the function

idΩ : (Ω,F)→ (Ω,PΩ)

is not measurable, and so idΩ is not a discrete random variable.

If RvΩ has an initial object (Ω, idΩ), then the category

Set/Rvop
Ω

is isomorphic to the Kleisli category for the reader monad for the set Ω
on Set. Now, from Theorem 4.3.5, we know that this Kleisli category is
automatically Cartesian closed.

What is going on in the general case is that the category RvΩ is just close
enough to having an initial object for the category Set/Rvop

Ω to be Carte-
sian, even though it is not a Kleisli category.

Remark 6.4.2. We could redo this whole probability example using the
nonempty powerset functor, in an effort to model nondeterminism. To do
that, we’d construct a new category whose objects were pairs (A, f), where
f : Ω → A is a function out of some fixed set Ω. However, in that case the
resulting monoidal category would always have an initial object (namely,
(Ω, idΩ)), and our resulting action would collapse to an ordinary monad,
taking us back to Chapter 4.

6.5 Reader actions and denotational semantics

Suppose that we have an oplax monoidal functor j : X → Set, giving rise to
a lax reader action of X op on Set. Let G be a (Cartesian closed) model for a
programming language P , and suppose that there is a functor D : Set→ G
that gives us the denotation of the datatypes in G.

For example, if G is the category of games, then we can define D(A) to be
the game given by MD(A) = {q}∪A with λ(q) = O and λ(a) = P for a ∈ A,
where q is initial and justifies the moves a ∈ A and the legal plays are those
of the form ε, q or qa.

In general, since the source category Set and target category G are Carte-
sian, such functors automatically carry an oplax monoidal structure, given
by

mA,B = D(A×B)
〈D(pr1),D(pr2)〉−−−−−−−−−−→ D(A)×D(B) e = D(1)

()−→ 1 .
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Then we may compose the functors j and D to get a new oplax monoidal
functor X → G, inducing a reader action of X op on G.

Now the category G/X op has its universal natural transformation

φx,A : (Djx→ A)→ A ,

which, by the enriched Yoneda lemma, may be equivalently given by the
natural transformation

ωx = 1
uD(jx)−−−−→ (D(jx)→ D(jx))

φx,D(jx)−−−−−→ D(jx) .

We can use this natural transformation to model primitives in the language
of the form

choosex : jx ,

for each object x of X , where we use jx to refer to the datatype correspond-
ing to the set jx.

The purpose of the final chapter will be to define a language with an op-
erational semantics for which these primitives make sense, and prove a full
abstraction result for it.

But first, an interlude.
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Chapter 7

Promonads and parametric
promonads

The purpose of this short chapter is to shine some light on the definition of
the Melliès category for a parametric monad, showing why it is natural to
think of it as being an analogue for the Kleisli category on a monad.

As a technical tool to prove the results we want, we shall introduce mul-
ticategories, which are a small generalization of monoidal categories. The
main purpose of this generalization is to allow us to do without coends wher-
ever possible: for example, while we need coends to make [X ,Set] into a
monoidal category, we do not need them to make it into a multicategory.

The first half of this chapter is, in the interests of completeness, fairly tech-
nical, and may be skimmed over on a first reading. In Section 7.11, we
introduce the multicategory of endoprofunctors on a category C, which gen-
eralizes the monoidal category of endofunctors on C. As monoids in End(C)
are called monads on C, so we will call monoids in Endoprof(C) promonads
on C. We will observe that a promonad may be regarded as a sort of cate-
gory, and that the Kleisli category for a monad M is precisely the category
we get by considering M as a promonad.

The main result will then be to show that an X -parametric promonad on a
category C – i.e., a multifunctor X → Endoprof(C) – may be regarded as a
sort of [X ,Set]-enriched category, and that the Melliès category for a para-
metric monad may similarly be regarded as the [X ,Set]-enriched category
that we get by regarding that parametric monad as a parametric promonad.
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7.1 Multicategories

Definition 7.1.1 ([Lei04]). A multicategory M is given by a set of objects
Ob(M) whose elements are called objects and, for each (possibly empty) list
a1, · · · , an of objects and each object b, a set

Mn(a1, · · · , an; b)

whose elements are called the (n-ary) multimorphisms a1, · · · , an → b.

Given collections (aij : i = 1, · · · , n, j = 1, · · · , ki), (bi : i = 1, · · · , n), c of
objects and multimorphisms

fi : ai1, · · · , ai,ki → bi g : b1, · · · , bn → c ,

there is an operation that forms the composition

(f1, · · · , fn); g : a11, · · · , a1k1 , · · · , an1 · · · , ankn → c .

Moreover, for each object a of M, there is a distinguished multimorphism
ida : a→ a called the identity on a.

The composition and identity are subject to associativity and unitality con-
ditions. Namely, letapqr :

p = 1, · · · , n
q = 1, · · · , kp
r = 1, · · · , lpq

 (
bpq :

p = 1, · · · , n
q = 1, · · · , kp

)

(cp : p = 1, · · · , n) d

be collections of objects and let

fpq : apq1, · · · , ap,q,lpq → bpq gp : bp1, · · · , bp,kp → cp h : c1, · · · , cn → d

be multimorphisms. Then we require that

(((f11, · · · , f1k1); g1), · · · , ((fn1, · · · , fn,kn); gn));h

=

(f11, · · · , f1k1 , · · · , fn1, · · · , fn,kn); ((g1, · · · , gn);h) .

Furthermore, we require that if f : a1, · · · , an → b is a multimorphism, then

(ida1 , · · · , idan); f = f f = (f); idb .

Remark 7.1.2. We will use a slightly different form of commutative diagrams
for multicategories, which should be fairly straightforward to understand. If,
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for example, we say that the following diagram commutes,

a1, · · · , an b1, · · · , bj

c1, · · · , ck d

f1,··· ,fj

g1,··· ,gk h

i

where the arities of f1, · · · , fj sum to n, as do the arities of g1, · · · , gk,
then we mean that the composite (f1, · · · , fk);h is equal to the composite
(g1, · · · , gk); i. We leave it to the reader to extend this to more complicated
diagrams.

Example 7.1.3. If C is an ordinary category, then C may be regarded as a
multicategory Ĉ in which Ĉ1(a; b) = C(a, b) and Ĉn(a1, · · · , an; b) = ∅ for
n 6= 1. At the same time, ifM is a multicategory, then it has an underlying
ordinary category M1 whose morphisms are the morphisms in M with a
single source object.

Example 7.1.4. IfM is a monoidal category, thenM may be regarded as a
multicategory M̃ with

M̃n(a1, · · · , an; b) =M(a1 ⊗ · · · ⊗ an, b) n ≥ 1 M̃0(; b) =M(I, b)

If we’re being careful, then we should note that the expression a1 ⊗ · · · ⊗
an does not define a single object of M. Since the tensor product is not
necessarily strictly associative, the choice of bracketing in the expression
a1 ⊗ · · · ⊗ an affects which object we end up with. It is enough to fix any
one of the possible bracketings (e.g., to make ⊗ always associate to the
right).

Composition is then given by

a11 ⊗ · · · ⊗ a1k1 ⊗ · · · ⊗ an1 ⊗ · · · ⊗ ankn
−−−−−−−→ (a11 ⊗ · · · ⊗ a1k1)⊗ · · · ⊗ (an1 ⊗ · · · ⊗ ankn)
f1⊗···⊗fn−−−−−−−→ b1 ⊗ · · · ⊗ bn

g−−−−−−−→ c ,

where the first arrow is induced from the normal monoidal coherences (ex-
actly which ones depends on how we choose to interpret the iterated tensor
product).

7.2 Representable multicategories

We call a multicategory representable if it isomorphic to a multicategory that
arises from a monoidal category as in Example 7.1.4. The next theorem gives
a criterion for a multicategory to be representable.
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Theorem 7.2.1 ([Her00]). Let M be a multicategory and suppose that for
each natural number n and each sequence a1, · · · , an of objects of M there
is an object ⊗~a and a multimorphism

π~a : a1, · · · , an → ⊗~a .

Suppose that the π~a are strongly universal in the sense that if

b1, · · · bk, c1 · · · , cl

are two (possibly empty) lists of objects, and d is an object, then any multi-
morphism

f : b1, · · · , bk, a1, · · · , an, c1, · · · , cl → d

factors uniquely through π~a; i.e., there is a unique morphism

f̂ : b1, · · · , bk,⊗~a, c1, · · · , cl → d

such that
f = (idb1 , · · · , idbk , π~a, idc1 , · · · , idcl); f̂ .

Given objects a, b of M, define a ⊗ b = ⊗a, b, and let I be the object ⊗ε,
where ε is the empty list. Then the operation ⊗ and I make M into a

monoidal category M such that M̃ and M are isomorphic multicategories.

• ⊗ and I are the monoidal product and unit of a monoidal category
on M1, the underlying category of M.

• For any sequence a1, · · · an of objects of M there is a canonical iso-
morphism

a1 ⊗ · · · ⊗ an ∼= ⊗~a ,

for any bracketing of the left hand side, and the associators and unitors
in M1 are induced from these isomorphisms.

• The set of multimorphisms a1, · · · , an → b is in bijection with the set
of morphisms a1 ⊗ · · · ⊗ an → b for n ≥ 1, and the set of multimor-
phisms → b is in bijection with the set of morphisms I → b, and these
bijections commute with the multicategory composition in M and the
composition in M1.

Definition 7.2.2. A symmetric multicategory is a multicategory M to-
gether with an action of the symmetric group on the setsMn(a1, · · · , an; b)
that respects composition. In other words, for each natural number n, each
multimorphism f : a1, · · · , an → b and each permutation σ of {1, · · · , n}
there is a multimorphism

σ∗f : aσ(1)), · · · , aσ(n) → b
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such that if (aij : i = 1, · · · , n), (bi : i = 1, · · · , n) are objects,

fi : ai1, · · · , ai,ki → bi g : b1, · · · , bn → c

are multimorphisms, σi is a permutation of {1, · · · , ki}, and τ is a permuta-
tion of {1, · · · , n}, then

(σ1∗fq, · · · , σn∗fn); (τ∗g) = (τ ∗ (σ1, · · · , σn))∗((f1, · · · , fn); g) ,

where τ ∗ (σ1, · · · , σn) is the permutation of

{(1, 1), · · · , (1, k1), · · · , (n, 1), · · · , (n, kn)}

that sends (i, j) to (τ(i), σi(j)).

Moreover, we require that for any morphism f : a1, · · · , an → b and permu-
tations σ, τ of {1, · · · , n} we have

σ∗τ∗f = (σ ◦ τ)∗f id∗ f = f

Example 7.2.3. Any multicategory arising from an ordinary category is sym-
metric.

Example 7.2.4. A monoidal category is a symmetric multicategory if and
only if it is a symmetric monoidal category.

7.3 Product and unit multicategories

Definition 7.3.1. LetM,N be multicategories. The product multicategory
M× N has, as objects, pairs (a, b), where a is an object of M and b an
object of N . The multimorphisms are given by

(M×N )n((a1, b1), · · · , (an, bn); (c, d)) =

Mn(a1, · · · , an; c)×Nn(b1, · · · , bn; d) .

Composition and the identity are similarly defined pointwise.

Definition 7.3.2. The unit multicategory 1 has a single object I, and for
each n, the set

1n(I, · · · , I; I)

is a singleton.

This is a representable multicategory; indeed, it may be identified with the
usual unit monoidal category.
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7.4 Multifunctors & multinatural transformations

Definition 7.4.1. Let M,N be multicategories. A multifunctor from M
to N is a map F from the objects of M to the objects of N together with,
for each list a1, · · · , an, b of objects of M, a function

Mn(a1, · · · , an; b)→ Nn(Fa1, · · · , Fan;Fb)

that commutes with the composition operator.

Definition 7.4.2. Given multicategories M,N and multifunctors

F,G : M→N ,

a multinatural transformation φ : F ⇒ G is given by morphisms

φa : Fa→ Ga

for each object a of M, such that if f : a1, · · · an → b is any morphism in
M, then the following diagram commutes.

Fa1, · · · , Fan Ga1, · · · , Gan

Fb Gb

φa1 ,··· ,φan

Ff Gf

φb

Proposition 7.4.3. If M,N are monoidal categories, considered as multi-
categories, then multifunctors M→ N are the same thing as lax monoidal
functors. Multinatural transformations are the same thing as monoidal nat-
ural transformations.

Definition 7.4.4. Let M,N be multicategories, where M is symmetric.
Then the collection of multifunctors M → N forms a multicategory. A
multimorphism F1, · · · , Fn ⇒ G, where F1, · · · , Fn, G are multifunctors
M→N , is given by a family

φa : F1(a), · · · , Fn(a)→ G(a)

such that for any multimorphism f : a1, · · · , am → b in M, the diagram

F1(a1), · · · , Fn(a1), · · · , F1(am), · · · , Fn(am) G(a1), · · · , G(am)

F1(a1), · · · , F1(am), · · · , Fn(a1), · · · , Fn(am)

F1(b), · · · , Fn(b) G(b)

φa1 ,··· ,φam

σ∗

Gf

F1f,··· ,Fnf
φb
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commutes, where σ is the map

(1, 1), · · · , (n, 1), · · · , (1,m), · · · , (n,m)→

(1, 1), · · · , (1,m), · · · , (n, 1), · · · , (n,m)

sending (i, j) to (i, j), considered as a permutation of {1, · · · ,mn}.

7.5 Monoids in multicategories

Definition 7.5.1. Let M be a multicategory.

Then a monoid in M is an object a of M together with multimorphisms

m : a, a→ a e : → a

satisfying the following associativity and unitality laws.

a, a, a a, a

a, a a

m,ida

ida,m m

m

a a

a, a

ida

ea,ida m

a a

a, a

ida

ida,ea m

Note that a monoid in a multicategoryM may equivalently be defined as a
multifunctor 1→M [Lei04, 2.1.11].

7.6 Categories enriched over multicategories

Definition 7.6.1. Let V be a multicategory. Then a V -enriched category
C is given by a collection Ob(C) of objects together with, for each pair a, b
of objects, an object

C(a, b)
of V and, for objects a, b, c of C, composition and identity multimorphisms

;a,b,c : C(a, b), C(b, c)→ C(a, c) ηa : → C(a, a)

that satisfy the following associativity and unitality laws for all objects
a, b, c, d of C.

C(a, b), C(b, c), C(c, d) C(a, c), C(c, d)

C(a, b), C(b, d) C(a, d)

;a,b,c,idC(c,d)

idC(a,b),;b,c,d ;a,c,d

;a,b,d

C(a, b) C(a, b)

C(a, a), C(a, b)

idC(a,b)

ηa,idC(a,b) ;a,a,b

C(a, b) C(a, b)

C(a, b), C(b, b)

idC(a,b)

idC(a,b),ηb ;a,b,b
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Remark 7.6.2. These definitions clearly generalize the same definitions for
categories enriched over a monoidal category.

In particular, a monoid in a multicategory M is the same thing as an M-
enriched category with a single object.

Remark 7.6.3. If V is a symmetric multicategory and C is a V-enriched
category, then we may define the opposite category Cop whose objects are
the objects of C and where

Cop(a, b) = C(b, a) .

Composition is defined by

C(b, a), C(c, b) τ∗−→ C(c, b), C(b, a)
;c,b,a−−−→ C(c, a) ,

where τ is the permutation that transposes the two values.

7.7 Multicategory-enriched functors and natural
transformations

Definition 7.7.1. Let C,D be categories enriched over some multicategory
V. An V-enriched functor F : C → D is a map F from the objects of C to
the objects of D together with, for each, pair a, b of objects of C, a (unary)
multimorphism

F : C(a, b)→ D(F (a), F (b))

such that for all a, b, c the following diagrams commute.

C(a, b), C(b, c) C(a, c)

D(F (a), F (b)),D(F (b), F (c)) D(F (a), F (c))

;a,b,c

F,F F

;F (a),F (b),F (c)

C(a, a)

D(F (a), F (a))

ηa

ηF (a) F

Definition 7.7.2. Let C,D be categories enriched over a multicategory V
and let F,G : C → D be V-enriched functors. An V-enriched natural trans-
formation φ : F ⇒ G is given by a family of 0-ary multimorphisms

φa : → D(F (a), G(a))
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such that for all objects a, b the following diagram commutes.

C(a, b) D(F (a), F (b)),D(F (b), G(b))

D(F (a), G(a)),D(G(a), G(b)) D(F (a), G(b))

F,φb

φa,G ;F (a),F (b),G(b)

;F (a),G(a),G(b)

7.8 The categories enriched over a symmetric mul-
ticategory form a multicategory

Definition 7.8.1. Let V be a symmetric multicategory. Given V-enriched
categories C1, · · · , Cn,D, a multimorphism

F : C1, · · · , Cn → D

is given by a function

F : Ob(C1)× · · · ×Ob(Cn)→ Ob(D)

together with, for each ai, bi ∈ Ob(Ci), a multimorphism

F : C1(a1, b1), · · · , Cn(an, bn)→ D(F (a1, · · · , an), F (b1, · · · , bn)) ,

such that the diagrams in Figure 7.1 commute.

In the case n = 1, this is the same thing as a V-enriched functor from C1 to
D.

7.9 Change of base

Let M,N be multicategories, let F : M → N be a multifunctor and let C
be anM-enriched category. Then we can form an N -enriched category F∗C
whose objects are the objects of C and where the morphisms are given by
the formula

F∗C(a, b) = F (C(a, b)) .

We get composition and identities by applying the multifunctor F to the
composition and identity multimorphisms in C. By functoriality of F , these
composition and identities are associative and unital, meaning that F∗C is
indeed an N -enriched category.

This process is called base change along F .
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C1(a1, b1), C1(b1, c1), · · · , Cn(an, bn), Cn(bn, cn) C1(a1, c1), · · · , Cn(an, cn)

C1(a1, b1), · · · , Cn(an, bn), C1(b1, c1), · · · , Cn(bn, cn)

D(F (a1, · · · , an), F (b1, · · · , bn)),D(F (b1, · · · , bn), F (c1, · · · , cn)) D(F (a1, · · · , an), F (c1, · · · , cn))

;a1,b1,c1
,··· ,;an,bn,cn

σ∗

F

F
;F (a1,··· ,an),F (b1,··· ,bn),F (c1,··· ,cn)

C1(a1, a1), · · · , Cn(an, an)

D(F (a1, · · · , an), F (a1, · · · , an))

ηa1 ,··· ,ηan

ηF (a1,··· ,an) F

Figure 7.1: The rules for preservation of composition and identity by multimorphisms of V-enriched functors are similar to
those for ordinary enriched functors. Note that it is essential for the V to be a symmetric multicategory. This generalizes the
usual construction for categories enriched over a symmetric monoidal category.
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7.10 Closed multicategories

Definition 7.10.1 ([Man12]). We say that a multicategory M is closed if
for any pair a, c of objects, there exists an object

M(a, c)

and a multimorphism
eva,c : a,M(a, c)→ c

such that for any sequence b1, · · · , bn of objects of M, the function

κa,b1,··· ,bn,c : Mn(b1, · · · , bn;M(a, c))→Mn+1(a, b1, · · · , bn; c)

f 7→ (ida, f); eva,c

is a bijection.

Proposition 7.10.2 ([Man12]). If V is a closed multicategory, then V gives
rise to the structure of a V-enriched category on the underlying category V1

of V. We will also call this category V1, relying on context to distinguish the
two. The objects of V1 are the objects of V, while the morphisms are given
by

V1(a, b) = V(a, b) .

If V is a closed multicategory and C1, · · · , Cn are V-enriched categories, then
a functor C1, · · · , Cn → V is given by a map Ob(C1)×· · ·×Ob(Cn)→ Ob(V)
and, for each ai, bi ∈ Ob(Ci), a multimorphism

C1(a1, b1), · · · , Cn(an, bn)→ V(F (a1, · · · , an), F (b1, · · · , bn))

By the definition of a closed multicategory, this is equivalent to providing a
multimorphism

F (a1, · · · , an), C1(a1, b1), · · · , Cn(an, bn)→ F (b1, · · · , bn) .

In what follows, we will denote these multimorphisms (and their various
permutations) with the letter p.

We have seen so far that multicategories provide us with a rather straight-
forward generalization of monoidal categories. We might ask the question,
then: why make this generalization?

To answer this question, we introduce some natural multicategories that are
not representable.
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C(a, a′), F1(a′, b1), · · · , Fn(bn−1, c), C(c, c′) C(a, a′), G(a′, c), G(c, c′)

F1(a, b1), · · · , Fn(bn−1, c
′) G(a, c′)

id,φ
a′,~b,c,id

p,id,··· ,id,p p

φ
a,~b,c′

F1(a, b1), C(b1, b′1), F2(b′1, b2), · · · , Fn−1(b′n−2, bn−1), C(bn−1, b
′
n−1), Fn(b′n−1, c)

F1(a, b′1), · · · , Fn(b′n−1, c) F1(a, b1), · · · , Fn(bn−1, c)

G(a, c)

id,p,··· ,pp,··· ,p,id

φ
a,~b′,c

φ
a,~b,c

Figure 7.2: Extranatural transformations between endoprofunctors. The
coherences we require on the multimorphisms between endoprofunctors are
essentially the axioms for an extranatural transformation as in [EK66].

7.11 The multicategory of endoprofunctors

Let C,D be ordinary categories. Recall that a profunctor F : C−7−→D is an
ordinary functor Cop ×D → Set.

More generally, if C,D are enriched over some symmetric closed multicat-
egory V, then a V-enriched profunctor F : C−7−→D is a V-enriched functor
Cop ×D → V1.

Let F1, · · · , Fn, G : Cop × C → V1 be V-enriched profunctors C−7−→C, where C
is a V-enriched category.

We then define a multimorphism φ : F1, · · · , Fn ⇒ G to be given by a family
of multimorphisms

φa,b1,··· ,bn−1,c : F1(a, b1), · · · , Fn(bn−1, c)→ G(a, c)

that make the diagrams in Figure 7.2 commute.

A 0-ary multimorphism→ G is an ordinary enriched natural transformation
C(a, c)→ G(a, c).

We say that φa,b1,··· ,bn−1,c is natural in a and c and extranatural in the bi.

We will often drop the component objects from φ and from the profunctors
in question where they can be inferred from context.

We compose these multimorphisms pointwise. The following proposition
shows that this is indeed a well-defined composition.
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Proposition 7.11.1. Let V be a symmetric closed multicategory and let C
be a V-enriched category. Let F1, · · ·Fn, G1, · · · , Gm, H be profunctors C−7−→C,
and let 0 = k0, · · · , km = n be a (not necessarily strictly) increasing subse-
quence of {0, · · · , n}. Let φ(i) : Fki+1, · · · , Fki+1

→ Gi, ψ : G1, · · · , Gm → G
be multimorphisms of profunctors.

Then the family of multimorphisms

F1, · · · , Fn
φ(1),··· ,φ(m)

−−−−−−−→ G1, · · · , Gm
ψ−→ H

forms a multimorphism F1, · · · , Fn → H.

Proof. For the first condition (naturality), we have

C, F1, · · · , Fn, C C,G1, · · · ,Gm, C C, H, C

F1, · · · , Fn G1, · · · , Gm H

id,φ(1),··· ,φ(m),id

p,id,··· ,id,p

id,ψ,id

p,id,··· ,id,p p

φ(1),··· ,φ(m) ψ

,

where commutativity of the left hand square is the naturality condition on
φ(1) and φ(m), while commutativity of the right hand square is the naturality
condition for ψ.

For the second condition (extranaturality), see Figure 7.3.

This composition is associative, because it is given pointwise by composition
in V, and its unit is given by the identity natural transformation. This gives
us a multicategory.

Suppose that V is the category of sets, so that the multimorphisms

F1, · · · , Fn → G

are ordinary extranatural transformations

φ
a,~b,c

: F1(a, b1), · · · , Fn(bn−1, c)→ G(a, c) .

Then the definition of the coend∫
b1,··· ,bn−1 : C

F1(a, b1)× · · · × Fn(bn−1, c)

is that it is universal among all objects admitting such an extranatural trans-
formation out of them. It follows that in this case (and more generally, if V is
a cocomplete monoidal category), that the multicategory of endoprofunctors
on C is representable, with monoidal product given by

F ⊗G(a, c) =

∫
b : C

F (a, b)×G(b, c) .
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F1, · · · , Fn

F1, · · · , Fk1 , C, · · · , C, Fkm−1 , · · · , Fn G1, · · · , Gm

F1, C1, F2, · · · , Fn−1, C, Fn G1, C, G2, · · · , Gm−1, C, Gm H

F1, · · · , Fk1 , C, · · · , C, Fkm−1 , · · · , Fn G1, · · · , Gm

F1, · · · , Fn

φ(1),··· ,φ(m)

idF1
,··· ,idFk1

,p,··· ,p,idFkm−1+1
,··· ,idFn

φ(1),id,··· ,id,φ(n)
ψ

id,p,··· ,p

p,··· ,p,id

id,p,··· ,p,idC ,··· ,idC ,id,··· ,p

p,··· ,p,id,idC ,··· ,idC ,p,··· ,p,id

id,p,··· ,p

p,··· ,p,id

idF1
,··· ,idFk1

,p,··· ,p,idFkm−1+1
,··· ,idFn

φ(1),id,··· ,id,φ(n)
ψ

φ(1),··· ,φ(m)

Figure 7.3: Proof that extranaturality is preserved by composition. Commutativity of the central square is by extranaturality
of the φ(i), while that of the four-cornered triangle at the right is by extranaturality of ψ. The triangles on the left commute
automatically, while the parallelograms at the top and the bottom commute by naturality of the φ(i).
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This is the usual notion of composition for Set-enriched profunctors. How-
ever, it relies on the appropriate coends existing in Set; for more generally
V-enriched profunctors, the multicategory of endoprofunctors on C need not
be representable, even if V is a monoidal category.

We have only considered profunctors going from a category into itself. Pro-
functors in general form a structure called an fc-multicategory [Lei04], but
we shall not be using this notion.

7.12 Functors are a special case of profunctors

The reason why we refer to a functors F : Cop,D → V as a profunctors
C−7−→D is that they generalize ordinary functors. Specifically, if F : D → C is
a functor, then we can identify it with the profunctor

F̃ (c, d) = C(c, F (d)) : Cop,D → V .

This gives us an embedding of the monoidal category of endofunctors C → C
into the multicategory of endoprofunctors C−7−→C:

Proposition 7.12.1. Let V be a closed symmetric multicategory and let C
be a V-enriched category. Let F1, · · · , Fn, G : C → C be functors. Then the
set of natural transformations F1 ◦· · ·◦Fn → G is naturally in bijection with
the set of extranatural transformations

F̃1, · · · , F̃n → G̃ .

Proof. We have a natural multimorphism

C(a, F1(b1)), · · · , C(bn−1, Fn(c))
id,··· ,F1◦···◦Fn−1−−−−−−−−−−−→ C(a, F1(b1)), · · · , C(F1 ◦ · · · ◦ Fn−1(bn−1), F1 ◦ · · · ◦ Fn(c))

;∗−−−−−−−−−−−→ C(a, F1 ◦ · · · ◦ Fn(c)) ,

which is natural in a, c and extranatural in the bi.

If φ : F1 ◦ · · · ◦ Fn → G is a natural transformation, then it gives rise (via
postcomposition) to a natural transformation

C(a, F1(· · · (Fn(c)) · · · ))→ C(a,G(c)) ,

which we can compose with the multimorphism above to get the required
extranatural transformation

C(a, F1(b1)), · · · , C(bn−1, Fn(c))→ C(a,G(c)) .
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In the other direction, suppose that we have some extranatural transforma-
tion

φ
a,~b,c

: C(a, F1(b1)), · · · , C(bn−1, Fn(c))→ C(a,G(c)) .

Then we can take components of the form

φa,F1◦···◦Fn(c),··· ,Fn(c),c : C(a, F1◦· · ·◦Fn(c)), · · · , C(Fn(c), Fn(c))→ C(a,G(c))

and compose with id, η, · · · , η to get our natural transformation

C(a, Fa ◦ · · · ◦ Fn(c))→ C(a,G(c)) .

It is easy to check that these two constructions are inverses and that they
respect composition of natural transformations.

7.13 Promonads are categories

Since a monad was defined to be a monoid in the category of endofunctors on
a category C, we can define a promonad to be a monoid in the multicategory
of endoprofunctors on C.

Proposition 7.13.1 (See, e.g., [SG12]). Let V be a symmetric closed multi-
category. Let C be a V-enriched category. Then a promonad D : C−7−→C is the
same thing as a V-enriched category D together with an identity-on-objects
functor j : C → D.

Proof. This is a matter of unwrapping the definitions.

Let D : C−7−→C be such a promonad. So D is given by a V-enriched functor
D : Cop, C → V1, together with extranatural transformations

ma,b,c : D(a, b),D(b, c)→ D(a, c) ea,b : C(a, b)→ D(a, b)

such that the following diagrams commute (see Definition 7.5.1).

D(a, b),D(b, c),D(c, d) D(a, c),D(c, d)

D(a, b),D(b, d) D(a, d)

ma,b,c,id

id,mb,c,d ma,c,d

ma,b,d

C(a, b),D(b, c) D(a, c)

D(a, b),D(b, c)

p

ea,b,id ma,b,c

D(a, b), C(b, c) D(a, c)

D(a, b),D(b, c)

p

id,ea,b ma,b,c

If we set a = b in the second diagram and b = c in the third, and compose
with the identity multimorphisms η, then these are exactly the diagrams
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(see Definition 7.6.1) for D to have the structure of a V-enriched category
on the collection of objects of C!

Then the full versions of the second and third diagrams give us our desired
enriched functor C → D. It is the identity on objects and is the multimor-
phism ea,b on morphisms.

We can show that this is indeed a functor using the diagram in Figure 7.4.

C(a, b), C(b, c) C(a, c)

C(a, b),D(b, c)

D(a, b),D(b, c) D(a, c)

;a,b,c

ea,b,eb,c

ideb,c

ea,c

ea,b,id p

ma,b,c

Figure 7.4: Proof that the identity-on-objects functor arising from a
promonad is indeed a functor. The proof uses naturality of ea,b for com-
mutativity of the large triangle at the top right.

Consider the case that D is an actual functor, so that D(a, b) = C(a, F (b))
for some endofunctor F : C → C. Then, by Proposition 7.12.1, a promonad
structure on D is the same thing as a monad structure on F . If we consider
D as a category, then the objects of D are the objects of C, and morphisms
from a to b are morphisms from a to F (b) in C; i.e., Kleisli morphisms for
F .

If we work the definitions through the proof of Proposition 7.12.1, then we
see that the composition of morphisms f : a → F (b) and g : b → F (c) in D
is given by the composite

a
f−→ Fb

Fg−−→ FFc→ Fc ,

where the rightmost arrow arises from the promonad structure on D. In
other words, D is precisely the Kleisli category for the monad F :

Slogan 7.13.2. The Kleisli category is the category we get by considering
functors as profunctors.
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7.14 The multicategory of functors

Let X be a monoidal category and let M be a multicategory. We define a
multicategory [X ,M] where the objects are ordinary functors

X →M1

and where multimorphisms F1, · · · , Fn → G are natural transformations

φx1,··· ,xn : F1(x1), · · · , Fn(xn)→ G(x1 ⊗ · · · ⊗ xn) .

Remark 7.14.1. Suppose that X is small and suppose thatM is the category
of sets, regarded as a multicategory through its Cartesian structure. Let
x1, · · · , xn, y1, · · · , yp be objects of X . Then for any collection of functors

F1, · · · , Fn, G1, · · · , Gp, H : X → Set ,

the set of natural transformations

φ~x,~y :
∏
i

Fi(xi)×
∏
j

Gj(yj)→ H(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yp)

may be written as the end∫
~x,~y

∏
i

Fi(xi)×
∏
j

Gj(yj), H

⊗
i

xi ⊗
⊗
j

yj

 .
We may then perform some co/end calculus (See the similar computation
in [Pis14], but note that that version is not quite sufficient to prove repre-
sentability according to Theorem 7.2.1).∫

~x,~y

∏
i

Fi(xi)×
∏
j

Gj(yj), H

⊗
i

xi ⊗
⊗
j

yj


∼=
∫
~x,z,~y

X (⊗
i

xi, z

)
,

∏
i

Fi(xi)×
∏
j

Gj(yj), H

z ⊗⊗
j

yj


∼=
∫
~x,z,~y

∏
i

Fi(xi)×X

(⊗
i

xi, z

)
×
∏
j

Gj(yj), H

z ⊗⊗
j

yj


∼=
∫
z,~y

∫ ~x
(∏

i

Fi(xi)×X

(⊗
i

xi, z

))
×
∏
j

Gj(yj), H

z ⊗⊗
j

yj


In other words, this multicategory is representable by the Day convolution
that we met in Definition 5.1.7:

(F ⊗Day G)(z) =

∫ x,y

F (x)×G(y)×X (x⊗ y, z) .
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However, this multicategory is not representable in general, particularly in
the cases when we are working with enriched multicategories (not defined
here), where the enriching multicategory is not cocomplete, if X is large, or
when the category M is not the enriching multicategory.

7.15 Monoids on functors are multifunctors

It might seem strange that the objects of the multicategory of functors are
ordinary functors rather than multifunctors. We appear to have ignored the
monoidal structure of X and the multicategory structure of M.

One way to make sense of this fact is to note that an object of a category C
is the same thing as a functor

1→ C .

In the same way, perhaps the correct way to think of an ‘element’ of a
multicategory is that it is a multifunctor

1→M ;

i.e., a monoid in M.

Then the following proposition tells us that the ‘elements’ of X → M in
this sense are the multifunctors.

Proposition 7.15.1. Let X be a monoidal category and let M be a mul-
ticategory. Then a monoid in [X ,M] is the same thing as a multifunctor
X →M.

This can be proved by setting N = 1 in the following stronger result.

Proposition 7.15.2 ([Pis14, 2.8]). Let X be a monoidal category and let
M,N be multicategories. Then a multifunctor N → [X ,M] is the same
thing as a multifunctor N ×X →M.

7.16 Two perspectives on monoids in Set

We now come to our main result of the chapter. We will approach it from
an oblique perspective. First note the following two rather different gener-
alizations of the notion of an internal monoid in Set.

1. A monoid in Set may be regarded as a lax monoidal functor (i.e., a
multifunctor) 1 → Set. This generalizes to arbitrary lax monoidal
functors X → Set, for monoidal categories X .
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2. A monoid in Set may also be regarded as a category with a single
object. This generalizes to arbitrary categories.

We shall now attempt to unify these into a single grand unifying generaliza-
tion of a monoid. From Proposition 7.13.1, we know that a category with
one object is the same thing as a monoid in the category EndoprofSet(∗),
where ∗ is the category with a single object and only an identity morphism.

We can clearly generalize this to the idea of a monoid in EndoprofSet(C)
for an arbitrary category C. This then generalizes to the universal idea of a
multifunctor

X → EndoprofSet(C) ,

(which we might call a parametric promonad on C parameterized by X ),
which generalizes both lax monoidal functors X → Set (when C = ∗) and
Set-enriched categories (when X = 1).

However, we can also do things the other way round. From Proposition
7.15.1, a lax monoidal functor X → Set is a monoid in the multicategory
[X ,Set]. This is the same thing as an [X ,Set]-enriched category with a
single object, so another way of generalizing monoids in Set is to generalize
them to monoids in the multicategory

Endoprof [X ,Set](C)

for some monoidal category X and some [X ,Set]-enriched category C.

This generalizes categories in the case that X = 1. It generalizes monoidal
functors X → Set in the case that C is the [X ,Set]-enriched category ∗[X ,Set]
with a single object (), where the morphisms ()→ () are given by the functor
[I, ], for I the monoidal unit in X , this being the initial object in [X ,Set].

Our main result will tell us that it doesn’t actually matter which way round
we choose: these two ways of unifying the two generalization of a monoid
in fact give the same result. The only ingredient we are missing is an ap-
propriate change of base to move from ordinary Set-enriched categories to
[M,Set]-enriched categories.

Definition 7.16.1. Let X be a small monoidal category. We have a multi-
functor

X → [Set,Set]

given by
x 7→ X (I, x)× .

By Proposition 7.15.2, this may equivalently be given as a multifunctor

∂X : Set→ [X ,Set]
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that sends a set A to the functor

X (I, )×A .

The important property of this particular multifunctor is as follows.

Proposition 7.16.2. If C1, · · · , Cn are categories, then [X ,Set]-enriched
functors ∂X ∗C1, · · · , ∂X ∗Cn → [X ,Set] are the same thing as ordinary func-
tors from C1 × · · · × Cn to [X ,Set].

Proof. Let C1, · · · , Cn be categories. An [X ,Set]-enriched functor

F : ∂X ∗C1, · · · , ∂X ∗Cn → [X ,Set]

is given by a map

F : Ob(C1)× · · · ×Ob(Cn)→ Ob([X ,Set]) ,

together with, for all objects ai, bi of Ci, a multimorphism

∂X∗C1(a1, b1), · · · , ∂X∗Cn(an, bn), F (a1, · · · , an)→ F (b1, · · · , bn) ;

i.e., a natural transformation(∏
i

X (I, xi)× C(ai, bi)

)
× F (a1, · · · , an)(y)→

F (b1, · · · , bn)(x1 ⊗ · · · ⊗ xn ⊗ y) .

By the Yoneda lemma, such a natural transformation is the same thing as
a natural transformation∏

i

C(ai, bi)× F (a1, · · · , an)(y)→ F (b1, · · · , bn)(I ⊗ · · · ⊗ I ⊗ y) ;

i.e., a natural transformation

C(a1, b1)× · · · × C(an, bn)× F (a1, · · · , an)(y)→ F (b1, · · · , bn)(y) .

But this is precisely the data of an ordinary functor C1×· · ·×Cn → [X ,Set].

By naturality of the Yoneda transformation (and the left unitor), this process
preserves and reflects the property of respecting composition and units.

Theorem 7.16.3 (‘Stokes’s Theorem’). Let X be a small monoidal category
and let C be a category. Then we have an isomorphism of multicategories

[X ,EndoprofSet(C)] ∼= Endoprof [X,Set](∂X ∗C) .
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Proof. Let F : X × Cop × C → Set be an ordinary functor. We may view F
either as the object

F (x, , ) : X → EndoprofSet(C)1

of [X ,EndoprofSet(C)] or, by Proposition 7.16, as the object

F ( , a, b) : Cop × C → [X ,Set]

of Endoprof [X ,Set](∂X ∗C). Moreover, every object of each of the two cate-
gories arises in such a way. Our aim is to show that the two categories give
rise to identical notions of multimorphisms between such F .

Let F1, · · · , Fn, G : X × Cop × C → Set be functors. Considering the Fi as
objects of [X ,EndoprofSet(C)], a multimorphism F1, · · · , Fn → G is given
by a transformation

F1(x1, , ), · · · , Fn(xn, , )→ G(x1 ⊗ · · · ⊗ xn, , ) ;

natural in the xi i.e., a transformation

F1(x1, a, b1)× · · · × Fn(xn, bn−1, c)→ G(x1 ⊗ · · · ⊗ xn, a, c) .

natural in the xi, a, c and extranatural in the bi.

A multimorphism → G is given by a multimorphism

→ G(I, , ) ;

i.e., a morphism
C(a, c)→ G(I, a, c) .

Now let us consider the Fi, G as objects of Endoprof [X ,Set](∂X ∗C). A multi-
morphism F1, · · · , Fn → G is given by a transformation

F1( , a, b1), · · · , Fn( , bn−1, c)→ G( , a, c)

natural in a, c and extranatural in the bi; i.e., a transformation

F1(x1, a, b1)× · · · × Fn(xn, bn−1, c)→ G(x1 ⊗ · · · ⊗ xn, a, c)

natural in a, c and the xi and extranatural in the bi.

A multimorphism → G is given by an extranatural transformation

∂X (C(a, c))→ G( , a, c) ;

i.e., a natural transformation

X (I, x)× C(a, c)→ G(x, a, c) ,

which by the Yoneda lemma is the same thing as a natural transformation

C(a, c)→ G(I, a, c) .

Thus, the two multicategories are isomorphic.
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Now consider the case that we have a parametric monad . : X × C → C
on a category C. By considering functors as profunctors, we may identify
this with a multifunctor X → EndoprofSet(C), which is the same thing as a
monoid in [X ,EndoprofSet(C)]. Then, by Theorem 7.16.3, we may identify
this multifunctor with a monoid in Endoprof [X ,Set](∂X ∗C); i.e., an [X ,Set]-
enriched promonad on ∂X ∗C.

But now, by Proposition 7.13.1, this promonad is the same thing as an
[X ,Set]-enriched category that has the same objects as C and admits an
identity-on-objects [X ,Set]-enriched functor out of ∂X∗(C).

The objects of this [X ,Set]-enriched category are the objects of C. By work-
ing the definitions through the proofs of Proposition 7.12.1 and Theorem
7.16.3, we see that the object of morphisms from a to b is the functor

x 7→ C(a, x.b) : X → Set ,

and that composition of morphisms is the multimorphism

C(a, x.b)× C(b, y.c)→ C(a, (x⊗ y).c)

in [X ,Set] given by sending morphisms f : a → x.b, g : b → x.c to the
composite

a
f−→ x.b

x.g−−→ x.y.c
m−→ (x⊗ y).c ,

which is precisely the definition of composition in the Melliès category.

We get a new analogue of Slogan 7.13.2.

Slogan 7.16.4. The Melliès category is precisely the [X ,Set]-enriched cate-
gory that we get by considering functors as profunctors.

249



Chapter 8

Parametric Monads and Full
Abstraction

Let a monoidal category Y with a small descendent set act on a category
G, where G is a suitable model of some programming language. In this
chapter we will investigate the adequacy and full abstraction properties of
the resulting category G/X , as we did with Kleisli categories in Chapter 4.

As in Chapter 4, we shall generally require G to be a Cartesian closed cat-
egory that admits a computationally adequate denotational semantics of
Idealized Algol, and we shall require that G may be regarded as being en-
riched in algebraic directed-complete partial orders in such a way that every
compact morphism between the denotations of types is the denotation of
some term.

As hinted at in Chapter 5, we shall also require the action of Y on G to
be a reader action corresponding to an oplax symmetric monoidal functor
Y op → G that satisfies the condition in Theorem 5.11.2, so that the category
G/X is Cartesian closed.

We fix a symmetric monoidal category X (corresponding to Yop above) with
a small ancestral set and an oplax monoidal functor j : X → Set such that
for any object p of X there are morphisms h : p→ p⊗ p and h0 : p→ I such
that the composite

j(p)
jh−→ j(p⊗ p)

mjp,p−−−→ j(p)× j(p)

is equal to the diagonal on j(p).

Fix a model G of Idealized Algol as above and suppose that the datatypes in
G are interpreted via an oplax monoidal functor Set→ G. Then we get an
oplax monoidal functor X → G, inducing a reader action of X op on G such
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that the category G/X op is Cartesian closed. We will define a language and
an interpretation of this language in the category G/X op.

8.1 The language IAX

Definition 8.1.1 (The language IAX ). The language IAX is formed by
taking Idealized Algol, and adding to it new constants

choosep

for each object p of X such that j(p) ∈ {C,B,N}, with typing rule

Γ ` choosep : j(p)
.

The interpretation of choosep is that it requests an element a of the set j(p).

Let G be a model of Idealized Algol as described above, and suppose that
there is an oplax monoidal functor Set → G that is used to interpret
datatypes. We will use an underline to indicate this functor; so, for ex-
ample, the object of G that is used to denote the natural number type is
written N.

By our description of G/X op as a lax colimit in Cat (i.e., Corollary 5.6.1),
we have a natural functor J : G → G/X op and a natural transformation
φp,a : J(jp → a) → Ja. We define our denotational semantics of IAX in
the category G/Xop as follows. The denotation of any type T of Idealized
Algol is the object J(JT KG), where JT KG is the original denotation in G. The
denotation of any sequent Γ `M the morphism JΓ `MK = J(JΓ `MKG),
where J−KG is the original denotation in G. The denotation of choosep is the
morphism ωp : 1→ j(p) given by the composite

1
Λ(idJjp)
−−−−−→ (Jjp→ Jjp)→ J(jp→ jp)

φp,jp
−−−→ Jjp .

This denotation may alternatively be defined in a non-compositional way:
given a term Γ `M : T in context of IAX , we can write

M = N [choosep /xp] ,

where (xp) is a finite collection of free variables in M .

Since the categories G and G/X are Cartesian closed, the β-rule is valid in
the semantics, and so if N is a term of IAX that refers to (choosep)p∈P for
some finite collection P of objects of X , then we may write the denotation
of Γ `N as the composite

JΓK
〈id,(ωp)〉−−−−−→ JΓ, (xp)K

JΓ,(xp)`N [xp/ choosepK−−−−−−−−−−−−−−→ JT K ,
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where the denotation at the right is that of ordinary Idealized Algol.

This is a morphism in G/X op. If we consider it as a morphism in G, we see
that it is given by the curried form of the composite

JΓK× j

(⊗
p

p

)
JΓK×mj−−−−−→ JΓK×

∏
p

j(p)
JΓ,(xp)`N [xp/ choosep]K−−−−−−−−−−−−−−−→ JT K .

The example to have in mind is that of probability; here, the objects p of our
category X are discrete random variables, with j(p) giving the codomain of
the random variable, and the term choosep : j(p) can be thought of as ran-
domly sampling a single element of that set with the probability distribution
coming from that random variable.

8.2 Operational Semantics

We inductively define a relation

Γ, s `M ⇓U c, s′ ,

where Γ is a Var-context, s, s′ are Γ-stores, Γ `M,Γ ` c are IAX terms-in-
context such that c is an IA canonical form, and U is a sequence of pairs of
the form (p : a), where p is an object of X and a ∈ j(p). The definition of
this rule is shown in Figure 8.1.

We notice immediately that all but one of these rules are exactly the same as
the corresponding rules from IAX , except that the symbol ⇓ is now decorated
with a sequence of pairs rather than a simple sequence. The one major
difference is the rule for choosep.

8.3 Translation into IAX

Having noted the connection between the operational semantics of IAX and
IAX , we now link the denotational semantics of the two languages. Recall
that a morphism A→ B in our model of IAX was a Kleisli morphism; i.e.,
a morphism of the form

A→ (X → B)

in the original category, while a morphism A→ B in the category G/X op is
a Melliès morphism; i.e., a morphism

A→ (j(x)→ B)

for some object x of X . Now, if we can ensure that j(x) is a set corresponding
to an IA datatype, then we can treat this Melliès morphism as a Kleisli
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Γ, s ` c ⇓ε c, s
Γ, s `M ⇓U λx.M ′, s′ Γ, s′ `M ′[N/x] ⇓V c, s′′

Γ, s `MN ⇓U++V c, s′′

Γ, s `M(YM) ⇓U c, s′

Γ, s `YM ⇓U c, s′
Γ, s `M ⇓U n, s′

Γ, s ` succM ⇓U n+ 1, s′
Γ, s `M ⇓U n+ 1, s′

Γ, s ` predM ⇓U n, s′

Γ, s `M ⇓U 0, s′

Γ, s ` predM ⇓U 0, s′
Γ, s `M ⇓U skip, s′ Γ, s′ `N ⇓V c, s′′

Γ, s `M ;N ⇓U++V c, s′′

Γ, s `M ⇓U t, s′ Γ, s′ `N ⇓V c, s′′

Γ, s ` IfM then N else P ⇓U++V c, s′′

Γ, s `M ⇓U f, s′ Γ, s′ ` P ⇓V c, s′′

Γ, s ` IfM then N else P ⇓U++V c, s′′

Γ, s `M ⇓U 0, s′ Γ, s′ `N ⇓V c, s′′

Γ, s ` If0M then N else P ⇓U++V c, s′′

Γ, s `M ⇓U n+ 1, s′ Γ, s′ ` P ⇓V c, s′′

Γ, s ` If0M then N else P ⇓U++V c, s′′

Γ, s `M ⇓ c′, s′ Γ, s′ `N [c′/x] ⇓ c, s′′

Γ, s ` letx = M in N ⇓ c, s′′

Γ, s ` E ⇓U n, s′ Γ, s′ ` V ⇓V x, s′′

Γ, s ` V ← E ⇓U++V skip, (s′′|x 7→ n)
x ∈ Γ

Γ, s ` V ⇓U x, s′

Γ, s`!V ⇓U n, s′
s′(x) = n

Γ, x : Var, (s|x 7→ 0) `M ⇓U c, (s′|x 7→ n)

Γ, s ` new λx.M ⇓U c, s′

Γ, s ` E ⇓U n, s′ Γ, s′ ` V ⇓V mkvarWR, s′′ Γ, s′′ `Wn ⇓W skip, s′′′

Γ, s ` V ← E ⇓U++V++W skip, s′′′

Γ, s ` V ⇓U mkvarWR, s′ Γ, s′ `R ⇓V n, s′′

Γ, s`!V ⇓U++V n, s′′

Γ, s ` choosep ⇓(p:a) a, s
a ∈ j(p)

Figure 8.1: Operational semantics for IAX .
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morphism and start to pull results from Chapter 4 over to the parametric
monad case.

We have already required that the terms choosep are such that j(p) is al-
ways an IA datatype. However, when we compose two Melliès morphisms
together, we take the tensor product of the corresponding objects of X .
Therefore, we need to ensure that we can represent j(p1 ⊗ · · · ⊗ pn) using
an IA datatype, for any finite collection pi of objects of X such that j(pi) is
an IA datatype for all i.

We shall therefore assume that, whenever p1, · · · , pn is a finite collection of
objects of X such that the set j(pi) is an IA datatype for all i.

The case we have in mind is when the j(pi) = B for all i and N is the natural
number object, so that we can choose some way of representing elements of
jp as elements of N .

Definition 8.3.1. Let p1, · · · , pn be a sequence of objects of X and let N
be an object of X such that j(N) is a datatype of Idealized Algol (i.e.,
j(N) ∈ {C,B,N}). Suppose we have a morphism

f : N → p1 ⊗ · · · ⊗ pn

in X such that jf is a surjection. Define functions πi : j(N) → j(pi) (de-
pending on f) to be given by the composites

j(N)
jf−→ j(p1 ⊗ · · · ⊗ pn)

mj−−→ j(p1)× · · · × j(pn)
pri−−→ j(pi) .

Let u ∈ j(N)∗ be a sequence of elements of j(N), and let U be a sequence
of pairs (p : a), where each p is one of the pi. We say that u covers U with
respect to f if U and u have the same length and if whenever U (k) = (pi : a),
we have a = πi(u

(k)).

Recall that, in the definition of the category G/X op, the Melliès morphisms
are left unchanged by precomposing with a morphism in the image of the
functor j; therefore, if M : T is a closed term of IAX referring to choosep1 ,
· · · , choosepn , then we may write the denotation of M as the composite

jN
jf
−→ j(p1 ⊗ · · · ⊗ pn)

mj−−→ jp1 × · · · × jpn
Jx1,··· ,xn`M [xi/ choosepi ]KG−−−−−−−−−−−−−−−−−−→ JT K ;

i.e., as

jN
〈π1,··· ,πn〉−−−−−−→ jp1 × · · · × jpn

Jx1,··· ,xn`M [xi/ choosepi ]KG−−−−−−−−−−−−−−−−−−→ JT K .

Lemma 8.3.2. Let Γ `M be an IAX term-in-context, where M refers to
terms choosep1 , · · · , choosepn, and no other choose terms. Let N be an object
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of X such that j(N) is an IA datatype and let f : N → p1 ⊗ · · · ⊗ pn be a
morphism, as in Definition 8.3.1. Suppose that the functions πi are all
definable in Idealized Algol; that is, that there are terms Πi : j(N) → j(pi)
of IA such that the following inference is valid.

Γ, s `M ⇓ m, s′

Γ, s `ΠiM ⇓ πi(m), s′

Let s, s′ be Γ-stores, and let Γ ` c be a canonical form. Suppose U is a
sequence such that we have

Γ, s `M ⇓U c, s′ .

Then
Γ, s `M [new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓u c, s′

in IAj(N) for all sequences u ∈ j(N)∗ that cover U .

Proof. Induction on the derivation of Γ, s `M ⇓U c, s′. Suppose that the
last rule in the derivation takes the following form.

Γ1, s
(0) `M1 ⇓U1 c1, s

(1) · · · Γn, s
(n−1) `M ⇓Un cn, s(n)

Γ, s(0) `M ⇓U1++···++Un c, s
(n)

Suppose a sequence u covers U1 ++ · · · ++ Un. Then we may write u =
u1 ++ · · ·++ un, where ui covers Ui.

By induction, then, we may derive that

Γk, s
(k) `Mk[new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓uk ck, s

(k)

for k = 1, · · · , n. Now note that Lemma 4.6.3 still holds if we use the terms
choosepi instead of the askX ; this means that we have a valid IAj(N) inference
given by

Γ1, s
(0) `M1[new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓u1 c1, s

(1)

· · · Γn, s
(n−1) `Mn[new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓un cn, s(n)

Γ, s(0) `M [(λz.Πi) askj(N) . choosepi ] ⇓u c, s(n) ,

from which we can deduce that

Γ, s(0) `M [new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓i c, s(n) ,

as desired.

The other possibility is that the final step in the derivation takes the form

Γ, s ` choosepj ⇓(pj :a) a, s .
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Let U be a (length 1) sequence covering (pj : a). So U = t, where t ∈ j(P )
is such that πj(t) = a.

Then

choosepj [new(λv.v ← askj(N); Πi!v)/ choosepi ] = new(λv.v ← askj(N); Πj !v) ,

and we may derive

Γ, s ` new(λv.v ← askj(N); Πj !v) ⇓t a, s .

To prove the converse, we prove a lemma about substitution analogous to
Lemma 4.7.1.

Lemma 8.3.3. Let

Γ, s(0) `M1 ⇓u1 c1, s
(1) · · · Γ, s(n−1) `Mn ⇓un cn, s(n)

Γ, s(0) `M ⇓u1++···++un c, s
(n)

be an inference of IAj(N), where every instance of askj(N) occurs as part of
some term of the form new(λv.v ← askj(N); Πi!v), and suppose that M 6=
new(λv.v ← askj(N); Πj !v) for any j. Suppose we have sequences U1, · · · , Un
such that uk covers Uk for k = 1, · · · , n. Then

Γ, s(0) `M1[choosepi / new(λv.v ← askj(N); Πi!v)] ⇓U1 c1, s
(1)

· · · Γ, s(n−1) `Mn[choosepi / new(λv.v ← askj(N); Πi!v)] ⇓Un cn, s(n)

Γ, s(0) `M [choosepi / new(λv.v ← askj(N); Πi!v)] ⇓U1++···++Un c, s
(n)

is a valid inference of IAX .

Proof. As in Lemma 4.7.1, we can prove this by looking at cases. For ex-
ample, consider the sequencing rule

Γ, s `M ⇓u skip, s′ Γ, s′ `N ⇓v c, s′′

Γ, s `M ;N ⇓ c, s′′
.

We have

(M ;N)[choosepi / new(λv.v ← askj(N); Πi!v)]

= M [choosepi / new(λv.v ← askj(N); Πi!v)];

N [choosepi / new(λv.v ← askj(N); Πi!v)] ,

and so we certainly get a rule

Γ, s `M [choosepi / new(λv.v ← askj(N); Πi!v)] ⇓U skip, s′

Γ, s′ `N [choosepi / new(λv.v ← askj(N); Πi!v)] ⇓V c, s′′

Γ, s ` (M ;N)[choosepi / new(λv.v ← askj(N); Πi!v)] ⇓ c, s′′ .
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The only case where we need to be careful is for the new rule:

Γ, x, (s|x 7→ 0) `M ⇓u c, (s′|x 7→ n)

Γ, s ` new λx.M ⇓u c, s′ .

If new λx.M 6= new(λv.v ← askj(N); Πj !v), then we have

(new λx.M)[choosepi / new(λv.v ← askj(N); Πi!v)]

= new λx.(M [choosepi / new(λv.v ← askj(N); Πi!v)]) .

Then we can apply the rule

Γ, x, (s|x 7→ 0) `M [choosepi / new(λv.v ← askj(N); Πi!v)] ⇓U c, (s′|x 7→ n)

Γ, s ` (new λx.M)[choosepi / new(λv.v ← askj(N); Πi!v)] ⇓ Uc, s′ .

We now prove the converse to Lemma 8.3.2.

Lemma 8.3.4. Let Γ, y1 : j(p1), · · · , yn : j(pn) `M : T be a term-in-context
of ordinary Idealized Algol, where Γ is a Var-context. Let U be a sequence
and let N, πi,Πi be as above. Suppose that there exists some sequence u ∈
j(N)∗ such that u covers U and such that

Γ, s `M [new(λv.v ← askj(N); Πi!v)/yi] ⇓u c, s′ .

Then
Γ, s `M [choosepi /yi] ⇓U c, s′ .

Proof. Induction on the derivation. Suppose thatM is not one of the yi; then
M [new(λv.v ← askj(N); Πi!v)/yi] is not equal to new(λv.v ← askj(N); Πi!v).
Moreover, every instance of askj(N) in M occurs as part of an expression of
the form new(λv.v ← askj(N); Πi!v), and so we win by Lemma 8.3.3 and the
inductive hypothesis.

Otherwise, M = newλv.v ← askj(N); Πj !v for some j. Now, if we have

Γ, s ` new(λv.v ← askj(N); Πj !v) ⇓u c, s′ ,

then a simple examination of the reduction tells us that we must have s′ = s,
and that u must have length 1 – say u = m – where the single element m of
u satisfies πj(m) = c.

But now we certainly have

Γ, s ` choosepj ⇓(pj :c) c, s ,

and the sequence m covers the sequence (pj : c).
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Lemmas 8.3.2 and 8.3.4 together prove the following.

Lemma 8.3.5. Let Γ, x1, · · · , xn`M be a term-in-context of Idealized Algol,
where Γ is a Var-context. Then the following are equivalent.

i) Γ, s `M [choosepi/xi ] ⇓U c, s′ in IAX .

ii) Γ, s `M [new(λv.v ← askj(N); Πi!v/xi] ⇓u c, s′ in IAN for all u covering
U .

iii) Γ, s`M [new(λv.v ← askj(N); Πi!v/xi] ⇓u c, s′ in IAN for some u covering
U .

Proof. (i) ⇒ (ii): Lemma 8.3.2.

(ii) ⇒ (iii): By assumption, the function j(f) : N → j(
⊗

i pi) is surjective,
so for any U there is some u ∈ j(N)∗ covering U .

(iii) ⇒ (i): Lemma 8.3.4.

8.4 Computational Adequacy

We are now ready to make the definitions we need to state our Computa-
tional Adequacy result.

Recall that if σ was a Kleisli morphism 1→ C (i.e., a morphism 1→ (X →
C) in the original category, where X was an Idealized Algol datatype), then
we wrote σ ↓u if the composite

1
σ−→ (X → C)

ηu−→ (Var→ N)
new−−→ N

t|u|−−→ C

was not equal to ⊥, where ηu was the denotation of the Idealized Algol
term-in-context

f : X → com ` λv.v ← 0; f(v ← succ !v; tru !v); !v : Var→ nat .

We want to extend this definition to morphisms in the category G/X op.
There are a couple of problems here.

Firstly, the morphisms in G/X op are equivalence classes of Melliès mor-
phisms, and the equivalence relation does not respect this predicate ↓u –
especially since the X in the above formula could change when we choose a
different representative of the equivalence class.

Secondly, a morphism 1 → C in G/X op is given by an (equivalence class
of) morphisms 1 → (j(p) → C) in G, and the object j(p) need not be an
Idealized Algol datatype.
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To solve the second problem, we make an additional small assumption on
our category G. We require that our category G contains morphisms

ξu : (X → C)→ C

for any set X and any finite sequence u ∈ X∗ such that for any function
f : X → Y , we have (f → C); ξu = ξf∗u (where f∗u is the sequence formed
by applying f pointwise to u), and such that if X is an IA datatype, then

ξu = (X → C)
ηu−→ (Var→ N)

new−−→ N
t|u|−−→ C .

Example 8.4.1. In the category of games, the morphisms ξu can be taken to
be the strategies containing the plays ε, qq and plays of the form

X C C
q

q
q

u(0)

...
q

u(k)

X C C
q

q
q

u(0)

...
q

u(|u|−1)

a
a

(so the strategy has no reply if player O asks the question in X fewer than
|u| times before returning, or tries to ask it more than |u| times).

Definition 8.4.2. Given a set X and a morphism σ : 1→ (X → C), we say
that σ accepts a sequence u ∈ X∗ if σ; ξu 6= ⊥. We write Acc(σ) for the set
of all sequences accepted by σ.

Recall that a morphism 1→ C in G/X op is given by an equivalence class of
Melliès morphisms 1→ (j(p)→ C) in G, where p ranges over the objects of
X , and where the equivalence relation is generated by identifying all pairs
of morphisms σ : 1→ (j(p)→ C) and τ : 1→ (j(q)→ C) such that there is
a morphism f : p→ q such that τ ; (j(f)→ A) = σ.

Definition 8.4.3. We define an equivalence relation on pairs (p,U), where
p is an object of X and U ⊆ j(p)∗ is a set of finite sequences drawn from
j(p) to be the equivalence relation generated by identifying (p,U) and (q,V)
whenever there is a morphism f : p→ q in X such that for all u ∈ j(p)∗, we
have u ∈ U if and only if j(f)∗u ∈ V.
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It is instructive to consider the equivalence relation on pairs (p,U) in the
case that X = RvΩ is the category of random variables on some probability
space Ω. Given a random variable V taking values in a set X, we get an
induced notion of probability for the elements of X∗: given a sequence u of
elements of x, we write

P(u) =

|u|−1∏
i=0

P(V = u(i)) .

If we have a random variable W on a set Y and a function f : X → Y such
that W = f ◦X, and if U ⊆ X∗ and V ⊆ Y ∗ are such that u ∈ U if and only
if f∗u ∈ V, then the induced probabilities of the sets U and V are the same.
So, in this case, the equivalence relation on sets of sequences is subsumed
into the very natural equivalence relation of having the same probability.

Proposition 8.4.4. Let σ : 1 → (j(p) → A), τ : 1 → (j(q) → A) be two
representatives of the same morphism 1 → A in G/X op. Then (p,Acc(σ))
and (q,Acc(τ)) are equivalent.

Proof. Since the relation on pairs (p,U) is an equivalence relation, it suf-
fices to assume that σ and σ′ are related by the relation that generates the
equivalence relation on Melliès morphisms; i.e., that there is a morphism
f : p→ q such that σ = τ ; (j(f)→ C).

Let u ∈ j(p)∗. Then we have

u ∈ Acc(σ)⇔ σ; ξu 6= ⊥
⇔ τ ; (j(f)→ A); ξu 6= ⊥
⇔ τξj(f)∗u 6= ⊥
⇔ j(f)∗u ∈ Acc(τ) .

Therefore, (p,Acc(σ)) and (q,Acc(τ)) are equivalent.

We can now state and prove our Computational Adequacy result. For this
result, given a term M : com mentioning objects p1, · · · , pn, we shall assume
the existence of some IA datatype N admitting a morphism f : N → p1 ⊗
· · · ⊗ pn such that the corresponding projections πi on to the objects j(pi)
are IA-definable.

For example, if j(pi) = B for all i, then we can take N = N and use the
binary encoding.

Definition 8.4.5. Let M be a closed term of IAX of type com mentioning
p1, · · · , pn. Let S(M) be the set of all sequences U such that M ⇓U skip.
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We define B(M), the behaviours of M , to be the equivalence class corre-
sponding to the pair

(p1 ⊗ · · · ⊗ pn,U) ,

where U is the set of all sequences u ∈ j(p1 ⊗ · · · ⊗ pn)∗ that cover some
sequence U ∈ S(M), via the projections

j(p1 ⊗ · · · ⊗ pn)
mj−−→ j(p1)× · · · × j(pn)

pri−−→ j(pi) .

Theorem 8.4.6 (Computational Adequacy for IAX ). Let M : com be a
closed term of IAX referring to p1, · · · , pn. Suppose the denotation of M
is given by a morphism 1→ (j(p)→ C) in G/X op.

Then (p,Acc(JMK)) is equivalent to B(M).

Proof. By Proposition 8.4.4, we may assume that the denotation of M is in
a particular form, namely the (curried form of) the composite

j(N)
〈π1,··· ,πn〉−−−−−−→ j(p1)× · · · × j(pn)

Jx1,··· ,xn`M [xi/ choosepi ]KG−−−−−−−−−−−−−−−−−−→ C .

But if we consider this as a Kleisli morphism in the category KlRj(N)
G, then

this is the denotation of the IAj(N) term

M [new(λv.v ← askj(N); Πi!v)/ choosepi ] .

By Lemma 8.3.5, if u ∈ j(N)∗ is a sequence, then

M [new(λv.v ← askj(N); Πi!v)/ choosepi ] ⇓u skip

if and only if u covers a sequence U such that M ⇓U skip. By our Compu-
tational Adequacy result for IAX (Propositions 4.6.9 and 4.7.4), this means
that for all u ∈ j(N)∗, u ∈ Acc(JMK) (for this particular form of JMK) if
and only if u ∈ U . Therefore, (N,Acc(JMK)) = (N,U ′), where U ′ ⊆ j(N)∗

is the set of all sequences u that cover some U such that M ⇓U skip via the
projections πi. Lastly, we note that (N,U ′) is equivalent to B(M), through
the morphism f : N → p1 ⊗ · · · ⊗ pn.

8.5 Equational Soundness

We transfer to an Equational Soundness result in our standard way. First,
we make a definition of observational equivalence of IAX terms.

Definition 8.5.1 (Observational Equivalence). Let M,M ′ : T be closed
terms of IAX . We say that M and M ′ are observationally equivalent if
B(C[M ]) and B(C[M ′]) are equivalent for all contexts C : com with a hole
of type T .
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We then make definitions that will mirror this equivalence in the denota-
tional semantics.

Definition 8.5.2 (Equivalence of morphisms 1 → C). Let σ, τ : 1 → C be
morphisms in G/X op, considered as morphisms σ : j(p)→ C and τ : j(q)→
C in G. We say that σ ≈ τ if (p,Acc(σ)) is equivalent to (q,Acc(τ)).

Definition 8.5.3 (Intrinsic Equivalence). Let σ, τ : A → B be morphisms
in G/X op. Then we say that σ ∼ τ if for all α : (A → B) → C, we have
Λ(σ);α ≈ Λ(τ);α.

Now we can prove Equational Soundness as we did in Proposition 3.4.13.

Theorem 8.5.4 (Equational Soundness for IAX ). Let M,M ′ : T be closed
terms of IAX such that JMK ∼ JM ′K. Then M and M ′ are observationally
equivalent.

Proof. First suppose that M and M ′ are not observationally equivalent – so
there is some context C such that B(C[M ]) and B(C[M ′]) are inequivalent.
Now B(C[M ]) is equivalent to (N,U) and B(C[M ′]) is equivalent to (N,U ′),
where U ⊆ j(N)∗ is the set of sequences that cover some U ∈ S(C[M ]) and
U ′ the set of sequences that cover some U ∈ S(C[M ′]) via the projections
πi.

Let α be the denotation of the term-in-context f : T `C[f ]. Then Λ(JMK);α
is the denotation of C[M ] and Λ(JM ′K);α the denotation of C[M ′]. By
Theorem 8.4.6, the sets (N,Acc(Λ(JMK);α)) and (N,Acc(Λ(JM ′K ;α))) are
inequivalent, and so JMK 6∼ JM ′K.

8.5.1 Full Abstraction for IAX

In order to prove Full Abstraction, we first prove a compact definability
result.

Definition 8.5.5. Let σ : A → B be a morphism in G/(RvFSΩ )op. We say
that σ is compact if it is compact when considered as a morphism in G.

Remark 8.5.6. When we say ‘considered as a morphism in G’ in the above
definition, we mean ‘in at least one of its possible interpretations as a mor-
phism in G’. Note, however, that the continuous image of a compact element
is compact, and so if we pass to a new representative of σ by composing on
the left by the image of some morphism in RvFSΩ , then the resulting repre-
sentative of σ will also be compact.

Lastly, if G is the category of games, this compactness property is invariant
under the choice of representative for σ.
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In order to prove compact definability, we need to make a further assump-
tion.

Proposition 8.5.7 (Compact Definability for IAX ). Suppose the functor
j : X → Set is strong monoidal and that for any object x of X there is a
finite collection p1, · · · , pn such that j(pi) is an IA datatype for each i and
such that there is a morphism

h : p1 ⊗ · · · ⊗ pn → x .

Then any compact morphism in G/X op between denotations of IA types is
definable.

Proof. Let σ : JSK → JT K be a morphism in G/X op, where S and T are IA
types. After composing with some suitable h as above, we may assume that
σ is given by a compact morphism

JSK→ j(p1 ⊗ · · · ⊗ pn)→ JT K

in G. After precomposing with the multiplicative coherence for j on the pi,
we get a compact morphism

JSK→ (j(p1)× · · · × j(pn)→ JT K) ,

which is the denotation of some term-in-context

v : S, a1 : p1, · · · , an : pn `M : T

by compact definability for G. Then, by our earlier work, we know that σ
itself is the denotation of the term

v : S `M [choosepi /ai] : T .

We can now prove Full Abstraction.

Theorem 8.5.8 (Full Abstraction for IAX ). Suppose that our action sat-
isfies the conditions of Proposition 8.5.7. Let M,M ′ : T be closed terms
of IAX . Then M and M ′ are observationally equivalent if and only if
JMK ∼ JMK′.

Proof. The right-to-left direction is Theorem 8.5.4. For the other direc-
tion, suppose that JMK 6∼ JMK′. Then, without loss of generality there
is some α such that the sets (N,Acc(Λ(JMK);α)) and (N,Acc(Λ(JM ′K ;α))
are inequivalent. Since G is enriched in algebraic domains, α may be taken
to be compact, and is therefore the denotation of some term-in-context
L : T → com. Then, by our Computational Adequacy result, we have that
B(LM) and B(LM ′) are inequivalent; i.e., that M is not observationally
equivalent to N .
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8.6 Probability

We now specialize to the case where X is a category of random variables
on some fixed probability space (Ω,F ,P), in order to model a probabilistic
language. For our purposes, it will suffice to take Ω to be the real interval
(0, 1) with its Lebesgue σ-algebra and measure. Note that the Lebesgue
measure satisfies the conditions from Example 6.3.6 and Proposition 6.3.7 –
every countable set is measurable and every subset of a measure-zero set is
measurable.

A random variable on Ω is a measurable function V : Ω → X. Given such
a random variable, and A ⊆ X, we write P(V ∈ A) for P(V −1(A)), and
P(V = x) for P(V ∈ {x}).

The category X = RvFSΩ will then be the category whose objects are random
variables of finite support ; that is, discrete spaces X together with measur-
able functions V : Ω → X, such that there is some finite subset Y ⊆ X
satisfying P(V ∈ Y ) = 1.

The morphisms in RvFSΩ from V : Ω → X to W : Ω → Y are probability-
preserving functions X → Y ; i.e., functions X → Y such that for all A ⊆ Y ,
we have P(f(V ) ∈ A) = P(W ∈ A).

There is a natural strict monoidal functor RvFSΩ → Set (sending V : Ω→ X
to the set X), which gives us an oplax monoidal functor RvFSΩ → G and
hence a lax reader action of RvFSΩ on G. By our discussion in Chapter 6, this
action satisfies all of the requirements we imposed in the previous section.

Recall that the tensor product of two random variables V : Ω → X and
W : Ω→ Y is their pairing V ⊗W = 〈V,W 〉 : Ω→ X × Y .

We define a language Probabilistic Algol (PA) to be the sublanguage of
IARvFSΩ

generated by the terms of Idealized Algol and the terms

chooseVp ,

where p ∈ [0, 1], and where we have identified Vp is the Bernoulli random
variable

Bp : Ω→ B

that returns t if its input is less than p and f if it is greater than or equal
to p.

The denotation of a base term of PA of type S is a Melliès morphism taking
the form

(1)→ JSK

(for the IA terms) or the form

(B)→ JSK
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for the term choosep. When we compose or tensor these together, we take
the tensor products of the objects on the left in X , which corresponds, after
application of the oplax monoidal functor j, to taking Cartesian products
in Set, and thence to taking Cartesian products in G.

The denotation of any term of PA of type T , then, will be an (equivalence
class of) morphisms

Bn m−→ Bn → JT K ,

together with some random variable taking values in Bn (formed by taking
the tensor product of Bernoulli random variables).

Lastly, given such a random variable V : Ω→ Bn, there is a random variable
Ṽ : Ω→ N such that for each ~v ∈ Bn, we have

P

(
Ṽ =

n∑
i=1

2i−1~vi

)
= P(V = ~v)

and such that P(Ṽ = k) = 0 for any k ≥ 2n. Then there is a function
f : N → Bn that sends

∑n
i=1 2i−1ai to (a1, · · · , an) and sends k ≥ 2n to

some fixed value (say, (f, · · · , f)). This function f satisfies

f ◦ Ṽ = V .

Moreover, Ṽ has finite support.

Now suppose that X is a finite discrete probability space. Then the set Xω

of all infinite sequences of elements of X may be given the product topology,
and equipped with the resulting Borel σ-algebra. A basic open subset of Xω

is a set S ⊆ Xω for which there exists some n such that if s ∈ S and t is
a sequence such that s and t are identical on the first n terms, then t ∈ S.
We can define a pre-probability measure on these basic open sets by setting

P(S) =
∑
u∈S|n

n−1∏
i=0

P(u(i)) ,

where S|n is the set of all length-n prefixes of elements of S.

Then the Carathéodory Extension Theorem tells us that there is a unique
extension of this to a probability measure on the whole space (see, for ex-
ample, [Shr04, 1.1.4]).

If V : Ω → Z is a finitely-supported random variable, then V induces a
probability measure on its support Im(V ) ⊆ Z. This gives us a probability
measure on Im(V )∗, which we can extend to a probability measure on Z∗

by setting
P(A) = P(A ∩ Im(V )∗)

for any A ⊆ Z∗.
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Definition 8.6.1. Let V : Ω → X be a finitely supported random variable
and let U ⊆ X∗ be a set of sequences. Then we define

P(V,U) = P(Uω) ,

where Uω ⊆ Xω is the set of all infinite sequences having some prefix in U .
Note that Uω is an open subset of Xω, so is in particular measurable.

An easier way to define P(V,U) is that it is the sum of the probabilities of
all the sequences in U ; i.e.:

P(V,U) =
∑
u∈U

|u|−1∏
i=0

P(u(i)) ,

where the infinite sum refers to the supremum of the sums over all finite
subsets of U .

Proposition 8.6.2. Suppose that (V,U) and (W,V) are equivalent pairs, in
the sense of Definition 8.4.3, where V : Ω → X, W : Ω → Y are finitely-
supported random variables, and U ⊆ X∗, V ⊆ Y ∗ are sets of sequences.
Then P(V,U) = P(W,V).

Proof. Without loss of generality, we may assume that there is a probability-
preserving function f : X → Y ; i.e., a function such that for any A ⊆ Y we
have P(W ∈ A) = P(f(V ) ∈ A) and such that U = f−1

∗ (V). Then we have

P(V,U) = P(V, f−1
∗ (V))

=
∑
u∈X∗
f∗u∈V

|u|−1∏
i=0

P(V = u(i))

=
∑
v∈V

∑
u∈X∗
f∗u=v

|u|−1∏
i=0

P(V = u(i))

=
∑
v∈V

|v|−1∏
i=0

∑
x∈X

f(x)=v

P(V = x)

=
∑
v∈V

|v|−1∏
i=0

P(f(V ) = v(i))

=
∑
v∈V

|v|−1∏
i=0

P(W = v(i))

= P(W,V) .
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We now define the operational semantics for Probabilistic Algol.

Definition 8.6.3. Let M : com be a closed term of PA mentioning proba-
bilities p1, · · · , pn. We define P(M ⇓) to be P(B(M)); i.e.,

P(Vp1 ⊗ · · · ⊗ Vpn ,U) ,

where U is the set of all sequences u ∈ j(Vp1 ⊗ · · · ⊗ Vpn)∗ that cover some
sequence U such that M ⇓U skip.

We can define a corresponding notion for morphisms in the denotational
semantics.

Definition 8.6.4. Let σ : 1→ C be a morphism in G/(RvFSΩ )op, considered
as a morphism σ : 1 → (X → C) in G, together with a finitely-supported
random variable V : Ω→ X.

Then we define P(σ ↓) to be

P(V,Acc(σ)) .

Remark 8.6.5. By Propositions 8.6.2 and 8.4.4, Definitions 8.6.3 and 8.6.4
are well defined.

Now we are ready to prove computational adequacy.

Proposition 8.6.6 (Computational Adequacy for PA). Let M : com be a
closed term of PA. Then P(M ⇓) = P(JMK ↓).

Proof. By Theorem 8.4.6, B(M) is equivalent to (p,Acc(JMK)). Therefore,
by Proposition 8.6.2,

P(M ⇓) = P(B(M)) = P(V,Acc(JMK)) = P(JMK ↓) .

We can define observational equivalence for terms.

Definition 8.6.7. Let M,N : T be closed terms of PA. Then we say that
M and N are (probabilistically) observationally equivalent if for all contexts
C : com with a hole of type T , we have

P(C[M ] ⇓) = P(C[N ] ⇓) .

We then have the usual corresponding definition in the denotational seman-
tics.
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Definition 8.6.8. Let σ, τ : A → B be morphisms in G/(RvFSΩ )op. We
write σ ∼P τ if for all morphisms α : (A→ B)→ C in G/(RvFSΩ )op we have

P(Λ(σ);α ↓) = P(Λ(τ);α ↓) .

Then, by our standard argument, we may derive Equational Soundness from
Computational Adequacy.

Proposition 8.6.9. Let M,N : T be closed terms of PA such that JMK ∼P
JNK. Then M and N are probabilistically observationally equivalent.

Our next goal will be to prove the converse to this result: Full Abstraction.

8.7 Full Abstraction for Probabilistic Algol

In order to prove a definability result, we would like to know that any
morphism A→ B in G/(RvFSΩ )op may be considered as a pair

(Vp1 ⊗ · · · ⊗ Vpn , f : A→ (Bn → B))

for appropriately chosen p1, · · · , pn.

This is because every morphism definable in PA takes this form. By Propo-
sition 8.5.7, it will suffice to prove the following.

Proposition 8.7.1. Let V : Ω→ X be a finitely supported random variable.
Then there exist p1, · · · , pn and a function

f : Bn → X

such that for all x ∈ X we have P(V = x) = P(f(Vp1 , · · · , Vpn) = x).

Proof. Recall that the Vp are not independent in our formulation; indeed, if
p < q, then Vp = t⇒ Vq = t.

Enumerate those elements x ∈ X such that P(V = x) 6= 0 as x1, · · · , xn,
and for each k = 1, · · · , n, define

pk =

n∑
i=1

P(X = xi) .

Note that we must have pn = 1. Then we define

f(~b) =

{
x1 if ~b = ~f

min{k : bk = t} otherwise .

268



Fix x ∈ X. If x is not one of the xi, then we have P(f(Vp1 , · · · , Vpn) = x) =
0 = P(V = x). Otherwise, suppose x = xk. If ω ∈ Ω and pk−1 ≤ ω < pk,
then Vpk(ω) = t, and Vpi(ω) = f for all i ≤ k. So f((Vp1⊗· · ·⊗Vpn)(ω)) = xk.
If ω < pk−1, then Vpk−1

(ω) = t, so f((Vp1 ⊗ · · · ⊗ Vpn)(ω)) 6= xk. If ω ≥ pk,
then Vpk(ω) = f, so f((Vp1 ⊗ · · · ⊗ Vpn)(ω)) 6= xk. Therefore,

P(f(Vp1 , · · · , Vpk) = xk) = P([pk−1, pk)) = pk − pk−1 = P(X = xk) .

It follows that f is probability preserving in the sense required.

Remark 8.7.2. This also proves that RvFSΩ has a small ancestral set.

Then if we have an arbitrary morphism σ : A → B (given by a morphism
σ̃ : A → (j(X) → B) in the base category), Proposition 8.7.1 gives us the
morphism f mediating between σ̃ and a morphism of the form specified at
the start of this section.

We can now prove our compact definability result.

Proposition 8.7.3 (Compact definability for PA). Let T be an Idealized
Algol type and let σ : 1 → JT K be a compact morphism in G/(RvFSΩ )op.
Then there is some closed term M : T such that σ = JMK.

Proof. Let (V, σ : 1→ (X → JT K)) be a compact representative of σ, where
X is a set and V is a finitely-supported random variable taking values in
X. By Proposition 8.7.1, we may choose p1, · · · , pn such that there is a
probability-preserving function

f : Vp1 ⊗ · · · ⊗ Vpn → V .

After composing on the right by (f → JT K), we may assume that σ is of the
form

(Vp1 ⊗ · · · ⊗ Vpn , σ : 1→ (Bn → JT K)) .

Now this σ necessarily factors as

1
σ̂−→ (Bn → JT K)

(m→JT K)−−−−−−→ (Bn → JT K) ,

where σ̂ is compact. Then, by compact definability in G, σ̂ is the denotation
of some term N : bool → · · · → bool → T , and it follows that our original
morphism σ in G/(RvFSΩ )op is the denotation of

N choosep1 · · · choosepn .

Theorem 8.7.4 (Full Abstraction for PA). Let M,N : T be observationally
equivalent terms of PA. Then JMK ∼P JNK.
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Proof. Suppose that JMK 6∼P JNK. So there is some α : JT K → C such that
P(JMK ;α ↓) 6= P(JNK ;α ↓).

Let P(JMK ;α ↓) = p and P(JNK ;α ↓) = q, and suppose without loss of gen-
erality that p > q. Now there must be some finite subset V of Acc(JMK ;α ↓)
such that the combined probability of the sequences in V is still greater than
q. For each u ∈ V, we can choose some compact αu ⊆ α such that u is still
accepted by JMK ;αu, by algebraicity. Since the set of compact elements
below α is directed, there is some α′ ⊆ α such that αu ⊆ α′ for each u ∈ V.
Then we have

P(JMK ;α′ ↓) > q P(JNK ;α′ ↓) ≤ q ,

and therefore P(JMK ;α′ ↓) 6= P(JNK ;α′ ↓).

By Proposition 8.7.3, α′ is the denotation of some term L : T → com, and
our Computational Adequacy result (Proposition 8.6.6) then tells us that

P(LM ⇓) = P(JMK ;α′ ↓) 6= P(JNK ;α′ ↓) = P(LN ⇓) .

Therefore, M and N are not observationally equivalent.

8.8 Comparison with a Kleisli Category Model

The probabilistic language is our main example of an application of the the-
ory of parametric monads that we have developed. However, it is worth
noting that it is possible to model a probabilistic language within the lan-
guage IAB from Chapter 4. Specifically, we can consider the language IAB
as a probabilistic Algol variant, by treating the term askB as a coin flip that
returns t or f each with probability 1

2 .

Given a closed term M : com of IAB, we define

P(M ⇓) =
∑

u∈B∗ : M⇓uskip
2−|u| ,

since 2−|u| is the probability of a particular sequence u of t and f values oc-
curring. Here, the infinite sum means the supremum over all sums over finite
subsets. Similarly, given a Kleisli morphism σ : 1 → C – i.e., a morphism
σ : 1→ (B→ C) in G, we can define

P(σ ↓) =
∑

u∈Acc(σ)

2−|u| .

Our Computational Adequacy result for IAX (Propositions 4.6.9 and 4.7.4)
then gives us a Computational adequacy result for this model.
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Proposition 8.8.1. Let M : com be a closed term of IAB. Then P(M ⇓) =
P(JMK ↓).

Proof. Propositions 4.6.9 and 4.7.4 tell us that the set of sequences u such
that M ⇓u skip is the same as the set Acc(JMK).

We can define probabilistic observational equivalence and the probabilistic
intrinsic equivalence ∼P in exactly the same way as we did for PA. Then the
same argument we used in Theorem 8.7.4 proves Full Abstraction for this
model.

Theorem 8.8.2. Let M,N : T be closed terms of IAB. Then M and N are
probabilistically observationally equivalent if and only if JMK ∼P JNK.

Since this model relies on a lot less theory, it is worth spending a bit of time
thinking about what our existing parametric monad model gives us that this
one doesn’t.

The most obvious answer is that our original model allowed us to work
with arbitrary probabilities, rather than using a fixed coin with probability
1
2 . However, this is not such a great advantage as it might seem, since
if p ∈ [0, 1] is any real number whose binary expansion is computable as
a function N → B, then we can simulate choosep within the probabilistic
version of IAB

1.

Perhaps a better way of thinking about the difference between the two mod-
els, then, is to consider what the denotation of a term actually looks like.
For comparison, we look at the denotations of the term choose 2

3
in the two

different semantics.

In the language IAB, we can define a term that converges to t with proba-
bility 2

3 and to f with probability 1
3 by

Ybool(λb. If choose 1
2
then t else (If choose 1

2
then b else f)) .

Here, we have renamed askB to choose 1
2

to give a better idea of what the

term does in the probabilistic setup.

Now the denotation of this term in KlRB G is given by the denotation of the
term-in-context

c : bool `Ybool(λb. If c then t else (If c then b else f))

1Idea: build up a sequence of intervals In of width 2n by repeatedly flipping the coin
and using the result to choose either the lower or the upper half of In−1. If at any point
the upper bound of In is less than or equal to p (which can be checked by computing the
first n terms of the binary expansion of p), then return t. If at any point the lower bound
of In is greater than or equal to p, return f.
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in G. If G is the category of games, then this morphism is the strategy with
maximal plays taking one of the following two forms.

q(qfqt)nqtt q(qfqt)nqfqff

In other words, it is not at all clear from the denotation that the term should
give t with probability 2

3 and f with probability 1
3 .

In G/(RvFSΩ )op, however, we can model a term that has the same behaviour
using the morphism (

V 2
3
, idB

)
,

which makes it much clearer what the probabilistic behaviour is.

Let us now examine two more models based on Kleisli categories.

One idea we might have is to use the datatype game (0, 1) (corresponding
to the open unit interval of reals) as our reader object. That way, we could
model the term choosep as the morphism

(0, 1)→ B

that returns t if its input is less than p and f if its input is greater than or
equal to p. Unfortunately, however, this model allows us to construct too
many strategies, including some that have no probabilistic interpretation.
If X ⊆ (0, 1) is a non-measurable set, for instance, then there is a perfectly
valid morphism2

χX : (0, 1)→ B

corresponding to the indicator function of X, but there is now no sensible
answer to the question ‘What is the probability that χX returns t?’3 Fixing
this problem would require us to impose further measurability conditions
on strategies, taking us away from our core idea of sticking to the category-
theoretic constructions as closely as possible.

A more successful approach is to replace the datatype (0, 1) with the (game-
theoretic) product of a countably infinite collection of copies of B, indexed
by (0, 1), each corresponding to one of the choosep. Computationally, this
corresponds to ‘encapsulating’ the chosen value in (0, 1) behind a countably
infinite family of ‘methods’, each of which will only tell you whether the
value is less than some fixed number. Since any program can call only

2At least, in the category of games and any other model satisfying the condition from
Definition 2.15.1.

3Recall also from Section 6.4 that this Kleisli category is precisely what we end up
with if we relax the discreteness condition on random variables – so we are left trying
to model continuous probability distributions (such as the uniform distribution on (0, 1))
with games that are very much discrete.

272



finitely many of these ‘methods’, we avoid introducing any non-measurable
behaviour.

There is then, at least in the category of games, some clear idea about how to
define the probability of a particular play occurring in a strategy. Since any
play must make at most countably many appeals to the product-of-booleans
oracle, and since each such appeal has an associated probability, we can
associate a probability to each such play by multiplying these probabilities
together.

It is less clear, however, how to prove Adequacy and Full Abstraction for this
model. The approach that we have adopted in this chapter – a translation
into IAX– does not work for a strategy of the form

σ :
∏

p∈(0,1)

B→ A ,

where the left-hand side is an uncountable product of booleans and certainly
cannot be embedded inside any IA datatype game.

We could reason about such a strategy by asking whether it factored through
any finite product of booleans; i.e., whether there was any σ̂ such that σ
factors as ∏

p∈(0,1)

B
〈prp1 ,··· ,prpn 〉−−−−−−−−−→ Bn σ̂−→ A ,

for some finite collection p1, · · · , pn of probabilities. We could then reason
about the strategy σ̂. But if we are doing that, then why not reason about
the strategy σ̂ from the start? And if we have two possible choices for
this σ̂, why not make it explicit in the model that they are equal? This
is exactly what our G/(RvFSΩ )op model is doing. Rather than try and rely
on some global probabilistic oracle, our strategies can form their own mini
(i.e., finite/countable) oracles that give them what they need. Composition
of morphisms automatically groups these mini oracles together into one, and
the equivalence relation on morphisms ensures that we can always enlarge
our mini oracle if we need to (for example, by converting from a product
of finitely many booleans to a natural number to help the translation into
IAX).

8.9 Game Semantics and Probability

So far, we have considered things in the abstract. We now specialize to
the case that G is the category of arenas and single-threaded strategies that
we developed in Chapters 2 and 3. This will allow us to capture the close
relationship between the sequences u that we have been considering and the
plays in a strategy.
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Definition 8.9.1. Let X be a set and let u ∈ X∗ be a sequence. Consider
X as an arena X. Then we write qu for the play in X given by

q u(1) · · · q u(|u|−1) .

Note that any P -position in X is of the form qu for some sequence u.

Definition 8.9.2. Let A be an arena, let V be a random variable taking
values in a set X, and let σ : X → A be a single-threaded strategy. We may
consider X as a game X. Let s be a legal play of A. If t ∈ σ, we write
t/s if t|A = s and if the last move of t is the last move of s (this implies in
particular that t|X is a P -position in X). Then we define

Accs(σ) = {u ∈ X∗ : ∃t ∈ σ . t/s, t|X = qu} .

We define
PV (s ∈ σ) = P(V,Accs(σ)) .

We would like use this definition to define P(s ∈ σ) for σ a morphism in
G/(RvFSΩ )op, but we first need to check that this is well-defined with respect
to the equivalence relation on Melliès morphisms.

Proposition 8.9.3. Let

(V : Ω→ X,σ : X → (A→ B)) (W : Ω→ Y, σ : Y → (A→ B))

be representatives of the same morphism A → B in G/(RvFSΩ )op, where X
and Y are sets. Let s be a legal play of A → B. Then (V,Accs(σ)) and
(W,Accs(σ

′)) are equivalent as pairs in the sense of Definition 8.4.3.

Proof. It suffices by induction to prove this in the case that the two repre-
sentatives are related by the relation that generates the equivalence relation
on morphisms; i.e., that there is a probability-preserving function f : X → Y
such that σ = σ′; (j(f)→ A).

Let u ∈ X∗. Then we have

u ∈ Accs(σ)⇔ ∃t ∈ σ . t/s, t|X = qu

⇔ ∃t ∈ σ′; (j(f)→ A) . t/s, t|X = qu

⇔ ∃t′ ∈ σ′ . t/s, t|Y = q(f∗u)

⇔ f∗u ∈ Accs(σ
′) .

Therefore, (V,Accs(σ)) and (W,Accs(σ
′)) are equivalent.

It follows by Proposition 8.6.2 that PV (s ∈ σ) = PW (s ∈ σ′) for all s.
Therefore, the following is well-defined.
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Definition 8.9.4. Let σ : A→ B be a morphism in G/(RvFSΩ )op, where G
is the category of arenas and single-threaded strategies, and suppose that σ
is given (after currying) by a morphism

σ̃ : X → (A→ B)

in G, together with a random variable V taking values in X. Then we define

P(s ∈ σ) = PV (s ∈ σ̃) .

Definition 8.9.5. Let σ, σ′ : A→ B be morphisms in G/(RvFSΩ )op, where G
is the category of arenas and single-threaded strategies. We say that σ ≈P σ

′

if for all legal plays s of A→ B we have

P(s ∈ σ) = P(s ∈ σ′) .

We now relate this definition to Melliès composition of strategies.

Definition 8.9.6. Let A,B,C be arenas and let s be a play in A→ C. We
write

witB(s) = {s ∈ int(A,B,C) : s|A,C = s} .

Proposition 8.9.7. Let σ : A→ B, τ : B → C be morphisms in the category
G/(RvFSΩ )op. Let s be a legal play in A→ C. Then

P(s ∈ σ; τ) =
∑

s∈witB(s)

P(s|A,B ∈ σ)P(s|B,C ∈ τ) .

Proof. Suppose that σ and τ are given by (equivalence classes of) pairs

(V : Ω→ X, σ̃ : A→ (X → B)) (W : Ω→ Y, τ̃ : B → (Y → C)) ,

where V and W are random variables and σ̃, τ̃ are strategies in G. Then the
composition σ; τ in G/(RvFSΩ )op is given by V ⊗W : Ω→ X × Y , together
with the Melliès composition

A
σ̃−→ (X → B)

X→τ̃−−−→ (X → (Y → C))→ ((X × Y )→ C)

µ→C−−−→ (X × Y → C) ,

where µ is 〈prX ,prY 〉.
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First suppose that s is a sequence in A → C, and let s ∈ witB(s). Let t
be a sequence in σ̃‖(X → τ) such that t|A,B,C = s. Then t|A,X→B ∈ σ̃ and
t|B,Y ,C ∈ τ̃ .

Moreover, since we have t|A,B = s|A,B and t|B,C = s|B,C , we must have

t|X ∈ Accs|A,B (σ̃) t|Y ∈ Accs|B,C (τ̃) ,

where we have identified a play qu occurring in the arena X with its under-
lying sequence u of elements of X, and likewise for Y .

This gives us a function

{t ∈ σ̃‖(X → τ̃) : t|A,B,C = s} → Accs|A,B (σ̃)×Accs|B,C (τ̃) .

We claim that this function is a bijection.

Indeed, suppose that t, t′ are two interactions in σ̃‖(X → τ̃) such that
t|A,B,C = t′|A,B,C = s, t|X = t′|X and t|Y = t′|Y . Next we claim that t = t′.

To see why, suppose for a contradiction that t 6= t′: then there are prefixes
rp v t and rq v t′, where r is the longest common subsequence of t and t′

and p 6= q are moves.

By our earlier analysis (see, for example, the proof of 2.4.9), we know that
p and q must either both occur in the A→ (X → B)-component, or both in
the (X → B) → (X → (Y → C))-component. But since t, t′ ∈ σ̃‖(X → τ̃)
are both interactions of deterministic strategies, we also know that they
must both be O-moves in that component – otherwise, they would have
to be equal. In particular, neither p nor q may be a move in the middle
component X → B, since then it would be a P -move in one of the two
components.

Therefore, p and q are both O-moves in one of the outer components A and
X → (Y → C). By Corollary 2.4.4, we know that only Player P may switch
between games in X → (Y → C), and therefore p and q must occur in the
same component game – i.e., both in A, both in X, both in Y or both in
C. But now the conditions that t|A,B,C = t′|A,B,C , t|X = t′|X and t|Y = t′|Y
mean that we must have p = q. For example, if p and q are both moves in
C, then we have r|Cp v t|C and r|Cq v t′|C ; since t|C = t′|C , we must have
p = q. This is the desired contradiction.

For surjectivity, let u ∈ Accs|A,B (σ) and v ∈ Accs|B,C (τ). We seek a sequence
t ∈ σ̃‖(X → τ̃) such that t|A,B,C = s, t|X = qu and t|Y = qv.

Since u ∈ Accs|A,B (σ), there is some sequence s ∈ σ such that s|A,B = s|A,B
and s|X = qu. Similarly, since v ∈ Accs|B,C (τ), there is some sequence t ∈ τ
such that t|B,C = s|B,C and t|Y = qv. We form the sequence t as a suitable
interleaving of s and t, noting that they have the same B-components: we
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start with the sequence s, and then insert the appropriate moves from (the
left-hand copy of) X and Y between the corresponding moves from A, B
and C. Lastly, we insert moves from the right-hand copy of X adjacent
to the corresponding moves in the right-hand copy, inserting an O-move q
in the right-hand copy of X immediately after each O-move q in the left-
hand copy, and a P -move x in the right-hand copy immediately before each
P -move x in the left-hand copy.

This tells us that we have

P(s|A,B ∈ σ)P(s|B,C ∈ τ)

=

 ∑
u∈Accσ̃(s|A,B)

|u|−1∏
i=0

P(V = u(i))

 ∑
v∈Accτ̃ (s|A,B)

|v|−1∏
i=0

P(W = v(i))



=
∑

(u,v)∈Accσ̃(s|A,B)×Accτ̃ (s|B,C)

|u|−1∏
i=0

P(V = u(i))

|v|−1∏
i=1

P(W = v(i))

=
∑

t∈σ̃‖(X→τ̃)

t|A,B,C=s

|u|−1∏
i=1

P(V = u(i))

|v|−1∏
i=0

P(W = v(i))

∣∣∣∣∣∣
where
t|X = qu
t|Y = qv

 .
Now let s ∈ LA→C and let t ∈ σ; τ be such that t/s. By the argument in

Proposition 2.4.9, there is a unique interaction sequence

S ∈ σ‖(X → τ)‖(Λ−1;µ)

such that S|A,X×Y→C = t. Define t = S|A,X→B,X→(Y→C), and s = t|A,B,C .
Now we must have s|A,C = t|A,C = s, so s ∈ witB(s).

Consider the sequence t|X,Y , which has the same length as S|X×Y = t|X×Y .
This sequence is made up of pairs of moves qx for x ∈ X or qy for y ∈ Y .

By the definition of µ, we know that if the i-th pair of moves in t|X,Y is
qx for x ∈ X, then the i-th pair of moves in t|X×Y is q(x, y0) for some y0,
and if the i-th pair of moves in t|X,Y is qy for y ∈ Y , then the i-th pair of
moves in t|X×Y is q(x0, y) for some x0 ∈ X. Moreover, if t′ is some other
sequence such that t′/s and such that t′ differs only from t in the choice of the
‘irrelevant’ moves x0, y0, then there is some S′ ∈ σ‖(X → τ)‖(Λ−1;µ) such
that S|A,X×Y→C = t′ and S|A,X→(Y→C) = t. Then the combined probability
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of all such sequences is given by

∑
t∈σ̃‖(X→τ̃)

t|A,B,C=s

|u|−1∏
i=1

P(V = u(i))

|v|−1∏
i=0

P(W = v(i))

∣∣∣∣∣∣
where
t|X = qu
t|Y = qv

 ,
and we can combine this with our calculations above to get the desired
result.

A consequence of Proposition 8.9.7 is that the probabilistic equivalence re-
lation defined in 8.9.5 is respected by composition of strategies. We may
therefore take the quotient of this category by the probabilistic equivalence
relation to form a new category

(G/(RvFSΩ )op)\ ≈P .

Then next proposition shows that we do not lose anything by doing this,
since the probabilistic equivalence relation gets subsumed into our intrinsic
equivalence.

Proposition 8.9.8. Suppose that [σ], [τ ] : A→ B are morphisms in the quo-
tiented category, given by equivalence classes of strategies in G/(RvFSΩ )op.
Then [σ] and [τ ] are probabilistically intrinsically equivalent in the quotiented
category if and only if σ and τ are probabilistically intrinsically equivalent
in the original category.

Proof. If σ, τ are not intrinisically equivalent, then there is some α : (A →
B) → C such that P(Λ−1(σ);α ↓) 6= P(Λ−1(τ);α; ↓). Then we have P(qa ∈
Λ−1(σ);α) 6= P(qa ∈ Λ−1(τ);α), and therefore Λ−1(σ);α 6≈P Λ−1(τ);α.

Conversely, if [σ], [τ ] are not intrinsically equivalent in the quotiented cate-
gory, then there is some [α] : (A→ B)→ C such that

[Λ−1(σ);α] 6≈P [Λ−1(τ);α] .

It follows that

P(qa ∈ Λ−1(σ);α) 6= P(qa ∈ Λ−1(τ);α) ;

i.e., that
P(Λ−1(σ);α ↓) 6= P(Λ−1(τ);α ↓) ,

and so σ and τ are not intrinsically equivalent in the original category.
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8.10 The Probabilistic Game Semantics of Danos
and Harmer

The work in the previous section shows that two strategies that are related
by the probabilistic equivalence relation ≈P are automatically observation-
ally equivalent. This suggests that the real content of a probabilistic strategy
consists in the quantities P(s ∈ σ). An idea, then, is to take the quantities
P(s ∈ σ) as primitives, rather than defining them indirectly.

That is the approach taken by Danos and Harmer in [DH00] – the original
game semantics for a probabilistic variant of Algol. Danos and Harmer
define an arena as we do, but define a probabilistic strategy on an arena A
to be given by a function

σ : Leven
A → [0, 1]

such that for any even-length s, and any extension sa, we have

σ(s) ≥
∑

sab∈LA

σ(sab) .

for any even-length s, and any extension sa, we have

σ(s) ≥
∑

sab∈LA

σ(sab) .

These quantities σ(s) take the role of our P(s ∈ σ), but now they are part
of the definition of the strategy σ, rather than being a calculated quantity.

Proposition 8.10.1. For any Melliès strategy σ : A→ B given by a random
variable V taking values in a set X and a strategy σ̃ : A→ (X → B), we get
a probabilistic strategy in the sense of Danos and Harmer by setting

σ(s) = P(s ∈ σ) .

Proof. We need to check that for any odd-length legal play sa ∈ LA we have

P(s ∈ σ) ≥
∑

sab∈LA

P(sab ∈ σ) .

But for any u ∈ Accsab(σ), there must be some prefix v of u such that
v ∈ Accs(σ). Then all the sequences u arising in this way that have v as a
prefix are pairwise incomparable (since σ̃ is a deterministic strategy), and
so their combined probability is at most the probability of v.

Clearly, two morphisms in G/(RvFSΩ )op give rise to the same probabilistic
strategy in this way if and only if they are probabilistically equivalent.

Danos and Harmer then define the composition of two probabilistic strate-
gies using the formula that we derived in Proposition 8.9.7:
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Definition 8.10.2. Let σ : A → B, τ : B → C be probabilistic strategies.
Then their composition σ; τ is given by

(σ; τ)(s) =
∑

s∈witB(s)

σ(s|A,B)τ(s|B,C) .

By Proposition 8.9.7, the composition of strategies in the quotiented cate-
gory agrees with this composition of Danos and Harmer. Our proof above
then gives an alternative proof of Full Abstraction for Danos and Harmer’s
probabilistic game semantics.
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Chapter 9

Further Directions

We conclude by examining a few avenues that we are left unexplored in this
thesis.

9.1 Stateless Languages

So far, the base language we have used has been the stateful language Ide-
alized Algol. One further question to ask is whether the techniques we have
developed allow us to build models of effectful versions of stateless languages
such as PCF.

One immediate problem we face is that the addition of nondeterministic
effects to PCF allows us to distinguish terms that cannot be distinguished
within PCF itself. For instance, the PCF term

M = λxbool. If x then Ω else (If x then t else Ω)

is observationally equivalent (in PCF) to Ω – informally, because the term
x must have the same ‘value’ both time it is called, so if it is false the first
time, then it must be false the second time. However, the same term inside
PCF with finite nondeterminism is not observationally equivalent to Ω: if
we substitute a nondeterministic oracle in for x, then the nondeterministic
oracle could return false the first time and true the second, causing the
term to converge to t. Note that this problem does not arise in Idealized
Algol: nondeterminism does not allow us to distinguish terms that were
indistinguishable in the deterministic language, as we proved in Section 4.16.

This means that if G is a ‘truly Fully Abstract’ model of PCF – i.e., one
in which observational equivalence of terms corresponds to equality of mor-
phisms rather than intrinsic equivalence1 – then there can be no natural

1As an example, take any model that is full abstract in our sense, and take the quotient
by the intrinsic equivalence relation.
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inclusion functor from G into a model of PCF with finite nondeterminism.
Indeed, in such a model JMK and JΩK are the same morphism, so they would
have to be sent to the same morphism in the model of nondeterministic PCF.

This is a problem for us, since it means that our model of PCF cannot be
the Kleisli category for a monad on G (or a category of the form G/X ), since
then we do have a functor coming out of G.

A way to get around this program is to insist that our category G is not ‘truly
Fully Abstract’, but is still fine-grained enough to distinguish between terms
that will eventually be distinguished when we add in the nondeterminism. A
convenient requirement to make is that G should be embeddable into some
model GIA of Idealized Algol (as is the case for Hyland and Ong’s game
semantics). The idea is that since GIA must necessarily distinguish between
observationally inequivalent terms of nondeterministic PCF, then G must
distinguish between them too.

The other advantage of going via an Idealized Algol model is that we can
automatically apply many of the results that we have already obtained.

Let us try this out with an example. Fix X ∈ {B,N} and let Nondetermin-
istic PCF be the language PCF, together with a constant askX : bool that
plays the role of a nondeterministic oracle. It is the language with types
given by

T ::= bool | nat | T → T ,

and with a type theory as shown in Figure 9.1. We endow this language
with an operational semantics of may testing. Define a canonical form of
the language to be a term taking one of the following forms.

• At type bool, the constants t and f;

• at type nat, the numerals n; and

• at type S → T , terms of the form λxS .M .

We then define a relation M ⇓ c (read ‘M may converge to c’), for M a term
of Nondeterministic PCF and c a canonical form, inductively as in Figure
9.2. This rule is the restriction of the ⇓ rule from Nondeterministic Idealized
Algol to the set of those terms that are terms of Nondeterministic PCF.

It is a quick check to see that every term of Nondeterministic PCF may
be regarded as a term of IAX , giving us a denotational semantics of the
Nondeterministic PCF within KlRX G, where G is the category of arenas
and single-threaded strategies. But we can be more precise than this: we
know from [HO00] that the denotation of any term of ordinary PCF is
an innocent strategy, so that the denotational semantics of PCF within G
factors through the inclusion Ginn ↪→ G, where Ginn is the category of arenas
and innocent strategies. In particular, the denotation within KlRX G of any
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Γ, x : T ` x : T

Γ `M : S → T Γ `N : S

Γ `MN : T

Γ, x : S `M : T

Γ ` λxS .M : S → T

Γ ` t : bool Γ ` f : bool

Γ `M : bool Γ `N : T Γ ` P : T

Γ ` IfM then N else P : T
T ∈ {bool, nat}

Γ ` n : nat

Γ `M : nat

Γ ` succM : nat

Γ `M : nat

Γ ` predM : nat

Γ `M : nat Γ `N : T Γ ` P : T

Γ ` If0M then N else P : T
T ∈ {bool, nat}

Γ `M : S Γ, x : S `N : T

Γ ` letx = M in N : T
S, T ∈ {bool, nat}

Γ `M : T → T

Γ `YTM : T

askX : bool

Figure 9.1: Type theory for a variant of PCF with nondeterminism. Note
that although ordinary deterministic PCF does not include the let construct,
it has to be included in the nondeterministic (see [Lai15]) and probabilistic
(see [EPT18]) versions.
In ordinary PCF, we may simulate the term letx = M in N by the term
(λx.N)M , which is less efficient than the version with let (If N contains
multiple occurrences of the variable x, then we end up compute M multiple
times), but which still gives the same result.
In nondeterministic variants of PCF, however, evaluating M multiple times
may give a different answer each time, in contrast to the version with let, in
which we get a single answer and use it multiple times.
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c ⇓ c
M ⇓ λx.M ′ M ′[N/x] ⇓ c

M N ⇓ c

M ⇓ t N ⇓ c
IfM then N else P ⇓ c

M ⇓ f P ⇓ c
IfM then N else P ⇓ c

M ⇓ n
succM ⇓ n+ 1

M ⇓ n+ 1

predM ⇓ n
M ⇓ 0

predM ⇓ 0

M ⇓ 0 N ⇓ c
If0M then N else P ⇓ c

M ⇓ n+ 1 P ⇓ c
If0M then N else P ⇓ c

M(YM) ⇓ c
YM ⇓ c askX ⇓ t askX ⇓ f

Figure 9.2: Big-step operational semantics for Nondeterministic PCF and
may testing

term of ordinary PCF lives within KlRX Ginn. Moreover, the denotation of
the new term askX , being given by the identity morphism in G, also lives in
the category

Ginn,X := KlRX Ginn ,
giving us a denotational semantics of Nondeterministic PCF within Ginn,X .

It is also quick to check that our operational semantics in Figure 9.2 may be
regarded as a subset of the rules for IAX with May Testing, as we studied
in §4.10. Specifically, if M is a term of PCF and c a canonical form, then
M ⇓ c if and only if

, () `M ⇓ c, ()
in IAX .

We want to use our Computational Adequacy result for IAX with May Test-
ing (Corollary 4.10.3) to get a Computational Adequacy result for Nondeter-
ministic PCF. The only slight problem is that Corollary 4.10.3 is stated for
terms of type com, whereas our language has no such type. We get around
this by using nat as our main ground type rather than com, and by using
the following easy lemma.

Lemma 9.1.1. Let M : nat be a term of IAX . Then there exists n such
that Γ, s `M ⇓ n, s′ if and only if

Γ, s ` If0M then skip else skip ⇓ skip, s′ .
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We will write δ : N→ C for the denotation of the term-in-context

x : nat ` If0x then skip else skip : com .

Then we immediately get the following result as a special case of Corollary
4.10.3.

Corollary 9.1.2 (Computational Adequacy for Nondeterministic PCF).
Let M : nat be a closed term of Nondeterministic PCF. Consider the deno-
tation JMK : 1→ N in KlRX Ginn as a morphism 1→ (X → N) in Ginn, and
thence as a morphism 1→ (X → N) in G.

Then there exists some sequence u ∈ X∗ such that the composite

1
JMK−−→ (X → N)

X→δ−−−→ (X → C)
ηu−→ (Var→ N)

JnewK−−−→ N
t|u|−−→ C

is not equal to ⊥, if and only if M ⇓ n for some n.

Note that Corollary 9.1.2, which does not depend on any specific details
of the models Ginn and G beyond the fact that they are computationally
adequate for ordinary PCF and Idealized Algol, uses morphisms δ, ηu, JnewK
and t|u| that do not occur in the category Ginn.

In the case that G is the category of arenas and single-threaded strategies,
and Ginn the category of arenas and innocent strategies, we can restate
Corollary 9.1.2 in a way that does not refer to Idealized Algol terms at all.

Corollary 9.1.3. Let M : nat be a closed term of Nondeterministic PCF
and consider the denotation JMK : 1→ N in KlRX Ginn as a morphism 1→
(X → N) in Ginn.

Then, for all n ∈ N, there exists some sequence s ∈ JMK such that s|N = qn
if and only if M ⇓ n.

Proof. Corollary 9.1.2, together with our earlier analysis, immediately tells
us that we have

∃s ∈ JMK . s|N = qn for some n⇔ ∃n . M ⇓ n .

The problem is that the two n’s might be different. However, we can obtain
the desired result for a given n from this one by composing with an appro-
priate term nat → nat that converges if and only if its input is equal to
n.

The passage to full abstraction, via innocent definability for PCF is essen-
tially the same as for Idealized Algol (though, as before, if X = N, then we
need to cut down to a category of recursive strategies).
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If we so desire, we can continue with the programme from §4.10, declaring
two Kleisli strategies A → (X → B) to be equivalent if they contain the
same plays after restriction to A → B. We can then do away with the
plays in X altogether and give a model that involves only nondeterministic
strategies.

At this point, we run into a well-known problem: under what circumstances
should a nondeterministic strategy be described as innocent? The answer
that we get from our model is that it is innocent if and only if it takes the
form

A
σ−→ (X → B)

JaskXK→B−−−−−−→ B ,

where σ is an innocent deterministic strategy. This is the definition con-
sidered – and ultimately rejected for being too indirect – by Harmer in his
thesis [Har99, §3.7]. This definition is correct, but, perhaps surprisingly,
does not coincide with what we would get by naively applying the usual
definition of innocence to nondeterministic strategies.

Consider, for example, the denotation of the term

If askB then (λf.ft) else (λf.ff) ,

which has maximal plays taking one of the following two forms.

q

q

q

t

...

q

t

a

a

q

q

q

f

...

q

f

a

a

Note that this strategy displays typically non-innocent behaviour: if player
P has played t on the left, then she must play t again whenever player O
asks, even though the original move t occurs outside the current P -view.

In the Kleisli category model, the innocence of this strategy becomes clear:
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plays are either of the form

q

q

t

q

q

t

...

q

t

a

a

or of the form
q

q

f

q

q

f

...

q

f

a

a ,

where now the move t or f in the nondeterministic oracle game (on the very
left) locks the ‘branching-time information’ into the P -view.

Moving away from our Kleisli-category model, there is a surprising and el-
egant definition of nondeterministic innocence within the usual category of
games (see Levy [Lev14], with the correction given by Tsukada and Ong
in [TO15, Proposition 46]), which we shall not detail here. Tsukada and
Ong have also demonstrated that it is instructive to consider strategies as
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presheaves over plays, where we assign to each individual play a set of pos-
sible branches that lead us to that play. In this formalism, the innocent
nondeterministic strategies are precisely those presheaves that are sheaves
with respect to a certain natural Grothendieck topology.

Even given this theory, however, our Kleisli category model is still worth-
while, since it provides a general setting in which we can prove results such as
adequacy without worrying about the specific details of a nondeterministic
construction. For example, we can prove a computational adequacy result
for Tsukada and Ong’s model GTO from Corollary 9.1.3 by noting that the
denotational semantics in that category factors through the natural functor
KlRB G → GTO. Tsukada and Ong have provided their own proof of Compu-
tational Adequacy in the finite nondeterminism case, but this method could
be useful if, for example, we wanted to extend their model to deal with
countable nondeterminism.

9.2 Stateful Effects

In Chapters 2 and 3, we presented a categorical algebra of scoped state via
sequoidal categories. The category theory that we used in those chapters is
fairly non-standard, and a natural question to ask is whether we can come
up with a treatment of state from the point of view of monads or lax actions.

Indeed, there is a well known state monad

A 7→ (W → (A×W )) ,

which can be constructed in categories of games. More ambitiously, we
might hope to capture a parametric notion of local state, via the action

(R,W ).A = R→ (A×W ) .

of Gop × G on G.

In this section, we will present some of the problems involved in this case.

One issue, which we have touched on already, is that the state monad is not
a monoidal functor, which was the condition we needed in order to ensure
that its Kleisli category inherited a monoidal structure. Indeed, there is no
obvious natural morphism

(W → (A×W ))× (W → (B ×W ))→ (W → ((A×B)×W )) .

The parametric version suffers from a different problem. Suppose we have
two Melliès morphisms

f : A→ (R→ (B ×W )) g : B → (R′ → (C ×W ′)) .
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Then their composition will be given by a Melliès morphism

f ; g : A→ ((R×R′)→ (C × (W ×W ′))) :

in other words, we will have combined the two inputs R and R′ and the two
outputs W and W ′.

This works well up to a point, but the main point of state is that we want
to be able to write to a variable once and then read from it later. So we’d
need some way of wiring up the output on the right to the input on the left,
and it’s not clear how to deal with this in a category-theoretic way.

Linear type theory provides a perspective on this problem. Note that the
state monad and the parametric action above can both be defined inside an
arbitrary monoidal category. However, if we want our language to exhibit
any typically stateful behaviour, then we need to be able to refer to the
same variable more than once: there is little point writing a value into a
cell if we are not able to read from it later. This is not a problem in a
monolithic stateful system – such as we have with the state monad – but if
we want to refer to individual storage cells using variables in the language,
then we need our category to admit diagonals, to allow us to refer to a
storage cell twice. Since the state action above does not interact in any way
with the Cartesian structure of the category (i.e., the diagonals and terminal
morphisms), it cannot hope to capture local state in this way.

One avenue that could shed some light on this issue is the sequoidal seman-
tics which we developed for game semantics, in which the stateful behaviour
is intimately connected to the Cartesian structure of the category, via the
exponential.

There is also a local state monad, due to Plotkin and Power [PP02] and based
on a construction by Levy [Lev01], which is defined on the category [Inj,Set]
of functors from Inj, the category of natural numbers and injections, into
the category of sets. It is given by the following formula, where V denotes
a fixed set of values.

(TA)(n) = V n →
(∫ p : Inj

V p ×A(p)× Inj(n, p)

)
Here, if A : Inj → Set is a functor, then we think of A(n) as the set of all
values that A takes on in the presence of n local variables taking values in
V .

We cannot construct this coend in the category of games, but there is a clear
link with our constructions with probabilistic monads. Note that the ‘state
action’

(W,A) 7→W → (A×W )
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has mixed variance in W , suggesting a modification of our C/X construction
that uses a coend rather than an ordinary colimit.

9.3 Relational Models

The archetypal Cartesian closed category is the category Set of sets and
functions. Most of the work in this thesis has been to do with reader actions
(including reader monads as a special case), and we have already provided
a classification of the reader actions on Set in Propositions 6.1.1 and 6.3.1:
namely, they are classified by lax monoidal functors F : Set→ Set, in such
a way that if a reader action given by an oplax monoidal functor j : X → Set
corresponds to the functor F : Set → Set, then Set/X op is isomorphic to
the category F∗Set formed from Set by base change along F . Thus, the
theory in the case of Set reduces to the theory of Set-enriched base change.

There are, however, many more examples in the literature of models of
programming languages that ultimately derive from Kleisli categories for
monads not of the reader kind. The problem with this, from our point
of view, is that the resulting Kleisli categories will not be automatically
Cartesian. This means that we need different methods to ensure that we
end up with a category suitable for modelling a compositional semantics.

For example, the Kleisli category for the powerset monad on Set is the
category Rel of sets and relations. This is a monoidal closed category, so
can be used to model multiplicative linear type theory. By using a linear
exponential comonad based on finite multisets, we can transform it into a
Cartesian closed category.

An important category derived from the category of sets and relations is the
category Coh of coherence spaces. A coherence space is a set with some
additional structure on it – namely, the structure of an undirected graph –
and a morphism between coherence spaces is a relation between sets that
respects this structure in a particular way (see [Mel14] for details).

Danos and Ehrhard in [DE11] develop a probabilistic version of coherence
spaces, which is still monoidal closed. By using the finite multiset comonad,
we can transform it into a Cartesian closed category. A striking result of
Ehrhard, Pagani and Tasson [EPT18] is that this category is already fully
abstract for a probabilistic variant of PCF.

This suggests an alternative way to get round the Cartesianness hurdle when
adding effects: start with a model of the base language that is constructed
by applying a linear exponential comonad to a monoidal closed category,
and then delay application of the linear exponential comonad until after we
have added the effect.
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Unfortunately, there is no real guarantee that a linear exponential comonad
on the base category will give us a linear exponential comonad on a Kleisli
category or one of the other effectful categories we have considered. Some
work is required to investigate the conditions in which we can lift an expo-
nential construction in this way, given the functorial results from Chapter
5. This will pave the way for us to understand the relational and coherence-
space models using the ideas developed in this thesis.

9.4 Adequacy Proofs

In Chapters 4 and 8 we proved Computational Adequacy via a factorization
and operational techniques. This is good, because it allows us to assume very
little about the underlying model, other than that it is itself computationally
adequate. Nevertheless, our techniques rely very heavily on the fact that our
base language is Idealized Algol. Although we outlined ways to get around
this in Section 9.1, it would also be useful to have a conventional logical
relations-based proof of Computational Adequacy.

Assume that G is a Cartesian closed category enriched in directed-complete
partial orders (dcpos). If M : G → G is a monoidal monad, then the Kleisli
category associated to M inherits an order, whereby σ ≤ τ : A → B in
KlM G if σ ≤ τ : A → MB in G. Moreover, since composition in the Kleisli
category is given by a composition in the base category, this partial order
will be respected by composition, as will be limits of directed sets.

Suppose again that G is a dcpo-enriched category, and that a monoidal
category X acts on G via a lax action. Then the construction of Melliès
yields an [X ,Dcpo]-enriched category MellX G. Since Dcpo is cocomplete
[Mes77], we can construct the coends we need to define the Day convolution
product in [X ,Dcpo].

If X is small, or if the required colimits exist for other reasons, then we may
take the change of base with respect to the colimit functor [X ,Dcpo] →
Dcpo to MellX G to give us a Dcpo-enriched category G/X .

Concretely, the underling set of morphisms in G/X contains all the usual
morphisms from the Set-enriched case, while the order structure is given by
a transfinite construction as in [Fie96, 2.17]. In particular, if σ, τ : A → B
in G/X are given by morphisms

σ̃ : A→ X.B τ̃ : A→ Y.B

in G, and if there are morphisms h : X → Z, k : Y → Z in X such that

σ; (h.B) ≤ τ ; (k.B) ,

then σ ≤ τ in G/X .
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A slight problem is that it is not true in general that the colimit of cpos
with bottom elements has itself a bottom element. For example, let −[n]
be the partial order {−n < · · · < 0}. Then, −[n] is a dcpo with a bottom
element for each n, but the colimit of the chain

−[0] ↪→ −[1] ↪→ −[2] ↪→ · · ·

is the partial order of non-positive integers.

However, if all the morphisms in a diagram of dcpos are such that they
preserve bottom elements, then the colimit of that diagram will have a
bottom element.

In particular, if the action of X on G is a reader-style action that factors
through the category of sets (as in all our examples), then every arrow in
the colimit diagram that defines G/X (A,B) will be of the form

G(A, Y → B)
G(A,f.B)
−−−−−−→ G(A,X → B)

for some sets X,Y , considered as objects X,Y of G, and some function
f : X → B considered as a morphism f : A→ B such that composition with
f preserves bottom elements. Therefore, the map G(A, f.B) of dcpos will
also preserve bottom elements.

A second problem is that the setwise colimit of the G(A,X.B), with the
order from [Fie96], is not necessarily itself a dcpo. In fact, to get the correct
colimit of the diagram, we need to perform an extra step of completion.
However, with a little more care, we can show that if the action is a reader
action that factors through the category of sets, then the colimit is already
directed complete under the order, at least in the category of games.

Having given the definition of the order-enriched structure of G, we may
define the interpretation of the fixpoint combinator Y using the properties
of this new order, which will be enough to prove adequacy along the lines
of Theorem 3.4.9.

It is worth mentioning that although we can prove computational adequacy
for our various Kleisli categories (and categories of the form G/X ), it does
not automatically follow that we can prove adequacy in the same way for
the various quotiented categories. An important example is our model of
countable nondeterminism with must testing. It is well known (see, e.g.,
[AP86, AP81]) that countable nondeterminism is inextricably linked to dis-
continuity of composition, which robs us of an important ingredient in the
standard order-theoretic proof of adequacy.

The solution is to prove adequacy in the normal way for the semantics of
IAN in GN, and then to apply the argument from Corollary 4.11.8 to reduce
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this to a Computational Adequacy result for the semantics of Idealized Al-
gol with countable nondeterminism and must testing. Here, we are using an
idea due to Levy [Lev08]: that if we want to prove adequacy for countable
nondeterminism, then we need a form of explicit forcing, in which we un-
cover some information about the points at which we have made an infinite
nondeterministic branch. In our case, the explicit forcing is done through
the language IAN, which creates a complete record of the nondeterministic
values we have chosen along the way. We have then applied the second part
of Levy’s technique – hiding – to remove the explicit information and yield
a pure, computationally adequate model of countable nondeterminism.

9.5 Afterword

The aim of this thesis was to demonstrate how techniques of categorical
algebra can be applied to the study of Full Abstraction for programming
languages. I can think of two main benefits of this combination. The first is
a technical one: the results that we have proved are very generally applica-
ble, and it would not be unreasonable to hope that they could be applied in
the future to help construct new Fully Abstract models of programming lan-
guages. The second reason is less precise, but equally important: throughout
this thesis, we have endeavoured to clear up some of the mystery surrounding
Full Abstraction, particularly in Game Semantics. The idea of using monads
and Kleisli categories to model computational effects has a long history, but
work in Full Abstraction, though it sometimes uses category-theoretic tech-
niques, has often seemed fairly ad hoc. My hope is that the work presented
here – including both the sequoidal-exponential semantics for Idealized Al-
gol and the work on Kleisli categories and parametric monads – has gone
some way towards explaining where some of the constructions used in Game
Semantics come from.

One of the themes in this thesis has been an attempt to push results as
far as they can go: thus, we have tried as far as possible to use, for exam-
ple, Computational Adequacy results for a base language in order to prove
Computational Adequacy for an extended language, rather than writing on
a stand-alone proof. To an extent, we have been forced to do this by the
level of generality we have been working at, but I hope that our focus on
syntactic rather than semantic results has helped shift the focus away from
the properties of any particular model.
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