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Summary

The Helmholtz equation is the simplest possible model of wave propagation, describing time-
harmonic solutions of the wave equation. We study the Helmholtz equation with heterogeneous
and random coefficients, corresponding to wave propagation through a medium with spatially
variable and random physical characteristics.

In Chapter 2 we study h-finite-element approximations of the (deterministic) heterogeneous
Helmholtz equation. We prove the first sharp error bounds (explicit in the frequency) for the
higher-order h-finite-element method for the Helmholtz equation in heterogeneous media

In Chapter 3 we move on to the stochastic Helmholtz equation, i.e., the Helmholtz equation
with random field coefficients. We prove the first frequency-independent well-posedness results
for the stochastic Helmholtz equation. (I.e. we prove existence and uniqueness of a solution,
and we prove a frequency-explicit bound on the solution, under a suitable assumption on the
coefficients that corresponds to the problem being ‘nontrapping’ almost surely.) To prove this
well posedness, we develop general, abstract arguments that allow us to prove well-posedness for
three different formulations of stochastic PDEs; these arguments can be applied more widely
than just to the stochastic Helmholtz equation.

In Chapter 4 we study nearby preconditioning, a computational technique for speeding up
solving many linear systems arising from discretisations of realisations of the stochastic Helm-
holtz equation. This speedup is achieved by reusing the preconditioner corresponding to one
realisation for many other realisations. We prove rigorous results on when nearby preconditioning
is effective, and investigate this effectiveness numerically in a range of situations.

Also in Chapter 4, we combine nearby preconditioning with a Quasi-Monte-Carlo method
(i.e., a high-dimensional integration rule) to compute quantities of interest of the stochastic
Helmholtz equation. We see that nearby preconditioning offers a significant computational
saving, with 98% of linear-system solves being made with a previously-calculated preconditioner.
As a by-product of these results we also provide some preliminary computational evidence, of
independent interest, that when using QMC methods for the Helmholtz equation the total
number of realisations used must increase with the frequency.

Finally, in Chapter 5, we study the Multi-Level Monte-Carlo method for the Helmholtz
equation, where one reduces the variance in an Uncertainty Quantification calculation by solving
the underlying PDE on a hierarchy of meshes. We generalise the standard Multi-Level Monte-
Carlo convergence theory to the frequency-dependent case and prove rigorous frequency-explicit
bounds on the computational cost of Monte Carlo and Multi-Level Monte-Carlo methods for
the Helmholtz equation. We see that in many cases the Multi-Level Monte-Carlo method gives
theoretical speedup over the Monte-Carlo Method.

1





Acknowledgements

I feel incredibly blessed that I have many people to thank for their support and help through
the years I’ve spent working on this thesis.

My thanks first go to my supervisors, Ivan Graham and Euan Spence. Ivan—thank you so
much for all the support you’ve given me throughout my mathematical career, from being my
personal tutor as an undergraduate, through supervising my undergraduate project, and now
supervising this thesis. I’ve appreciated your honesty, the way you strive for excellence, and the
way you’ve shown me that simple examples can often illuminate bigger mathematical truths.
Euan—thank you for pushing me hard throughout my PhD, for forcing me to read Krantz and
Higham, and for making me into (I hope) a much better writer and mathematician. Thank you
also for generously funding me to travel to lots of conferences, for making those conferences a
lot of fun, and for introducing me to lots of the ‘waves’ community. Both—thank you for your
pastoral support, especially through the more demanding parts of this PhD; I truly feel that I
have had one of the best supervisory teams.

There are lots of people to thank in the Department of Mathematical Sciences at the University
of Bath; all of the SAMBa team past and present—Susie, Jess, Anna, Andreas, Paul, and many
others—thank you for building a centre that is a fun place to study, and a great place to learn.
My thanks also go to the Numerical Analysis group, for being a great blend of a friendly bunch
of people who are also a stimulating group in which to do research. I’d also like to thank the
High-Performance Computing team at Bath for their support in running my code on Balena,
Bath’s high-performance computer.

There are also numerous individuals to thank from Bath—Kieran Jarrett helped me get my
head around measure theory for Chapter 3, Tony Shardlow gave us really helpful feedback on
that same chapter. Tom Finn and Dan Ng helped me understand stopping times, and if Federico
Cornalba hadn’t discovered Example A.1, then Chapter 3 may never have been written! I’ve
also been blessed with numerous office mates who have provided both stimulating conversation
and welcome distraction (mathematical or otherwise); my thanks in particular go to Aoibheann
Brady, Matt Durey, Matt Parkinson, and Kate Powers.

A special thanks goes to Will Saunders and Jack Betteridge, for putting up with my endless
programming questions, often spending lots of their own time fixing my code, and convincing
me to use version control and write tests for my code. A special thanks goes to Jack for being my
Student-Led-Symposium-organising partner-in-crime and SAMBa-numerical-analysis-friend.

Looking at the wider academic community, I want to thank Rob Scheichl and Ralf Hiptmair
for examining my thesis. Rob—thank you for lots of probing yet supportive questions and
comments throughout my PhD and during my viva. Ralf—thank you for taking the time to read
and examine my thesis, and for your very generous hospitality when I travelled to Zürich for my
viva. My thanks also go to Stefan Sauter, Nilima Nigam and Théophile Chaumont-Frelet, for
their suggestions which led to me proving the weaker-norm bounds in Section 4.5. I’m also very
grateful to the Firedrake team for building the Firedrake software (without which, I wouldn’t
have been able to do all the numerical experiments in this thesis) and for very patiently answering

3



my questions when I got stuck. I’m also very thankful to EPSRC for funding my studentship,
through SAMBa.

I’m also very blessed to have many people outside of mathematics who love me, support me,
and tell me when I need to stop doing maths. A huge thanks should go to everyone at my church,
St Bart’s Bath, but especially to our very dear friends Will, Hannah, Emma, and Rich. Thank
you all for lots of fun, laughter, love, support, and prayers. I’m also phenominally grateful to my
parents; Mum and Dad, thank you for pushing me to do my best when I was younger, but more
than that, thank you for your love, care, support, and prayers in many, many ways, over many,
many years. To my sister Anwen and brother-in-law Paul, thank you both for your friendship,
companionship and love over the years, I’m incredible grateful. Also, Paul, thank you very much
for helping me with the design of this thesis, so that it looks good!

Above else, my thanks go to God. He is the incredible Trinity who has created me, has
created mathematics and has enabled me to spend my time thinking about and wrestling with
His creation. But more than that, LO R D, thank You for revealing Yourself in the Bible. Father,
thank You for choosing me before the foundation of the world, not because of anything I have
done, but because You love me. Jesus, thank You for being incarnate as a man, and loving me so
much that You would die on the cross for me, taking all the punishment and pain that I deserve
as a sinner. Holy Spirit, thank You for dwelling within me, and reassuring me that I have the
hope of a glorious future with You. LO R D, Your love for me is beyond compare.

And lastly, but by no means leastly, my thanks go to my wife, Rebecca. Reb, when we
married I had already commited to studying for this PhD, and you have been such a wonderful
support throughout it all. You’ve loved me dearly, supported and cared for me when I’ve needed
it, persuaded me to keep going when I’ve wanted to give up, prayed for me, and had the wisdom
to tell me when I should keep working and when I should stop for the evening. I don’t think I’d
have got here without you. As I finish this thesis, I’m reminded again of how blessed I am to be
loved by you.

Rebecca, this thesis is dedicated to you.

4



Contents
Contents 5

List of Figures 9

List of Tables 11

List of Algorithms 13

1 Introduction 15

1.1 The Subjects of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Motivation from Applications for the High-Frequency Stochastic Helm-
holtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2 Solving the Helmholtz Equation Numerically . . . . . . . . . . . . . . . . . . 17

1.2 The Main Achievements of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 PDE theory for the deterministic Helmholtz equation and the theory of its finite-
element discretisation 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Wavenumber- and coefficient-explicit PDE
theory of the deterministic Helmholtz
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Deterministic Helmholtz problems . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Well-posedness and a priori bounds . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Discussion of results on well-posedness and a priori bounds for the Helm-
holtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The theory of the h-finite-element discretisation of the Helmholtz equation . . . 38

2.3.1 Variational formulations for the Helmholtz equation . . . . . . . . . . . . . 38

2.3.2 Background concepts in finite-element theory . . . . . . . . . . . . . . . . . . 39

2.3.3 Discussion of the finite-element method for the Helmholtz equation . . . 42

2.3.4 Extended discussion of proof techniques for finite-element errors for the
Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 New finite-element-error bounds for the heterogeneous Helmholtz equation . . . 62

2.4.1 Main result: new finite-element-error bounds . . . . . . . . . . . . . . . . . . 63

2.4.2 Decomposition of solution and best approximation bound . . . . . . . . . 68

2.4.3 Routine analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4.4 Error bounds for Galerkin projections . . . . . . . . . . . . . . . . . . . . . . . 76

2.4.5 Discrete Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5



6 CONTENTS

2.4.6 Proof of Theorem 2.39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4.7 Constants from Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3 Well-posedness of formulations of the stochastic Helmholtz equation 109

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.1.1 Statement of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1.2 Random fields satisfying Condition 3.8 . . . . . . . . . . . . . . . . . . . . . . 117

3.1.3 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.1.4 Discussion of the main results in the context of other work on UQ for
time-harmonic wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.2 General results proving a priori bounds and well-posedness of stochastic varia-
tional formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.2.1 Notation and definitions of the variational formulations . . . . . . . . . . . 120

3.2.2 Conditions onA ,L , and c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2.3 Results on the equivalence of Problems MAS, SOAS, and SV . . . . . . . . 122

3.3 Proof of the results in Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.3.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.3.2 Proofs of Theorems 3.23, 3.25, and 3.26 and Lemmas 3.24 and 3.28 . . . . 126

3.4 Proofs of Theorems 3.7 and 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.4.1 Placing the Helmholtz stochastic EDP into the framework of Section 3.2 130

3.4.2 Verifying the Helmholtz stochastic EDP satisfies the general conditions
in Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.4.3 Proofs of Theorems 3.7 and 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Nearby preconditioning for the Helmholtz equation 137

4.1 Introduction and Motivation from UQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1.1 Motivation from uncertainty quantification for the Helmholtz equation . 137

4.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.1 Definition of variational problems and conditions used to prove main
results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.2 Definition of finite-element matrices, weighted norms, and weighted
GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.4 PDE analogues to Theorems 4.11 and 4.12 . . . . . . . . . . . . . . . . . . . . 144



CONTENTS 7

4.3 Numerical experiments verifying and investigating the sharpness of Theorems
4.11 and 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4 Proofs of Theorems 4.11, 4.12, and 4.15 and Lemma 4.16 . . . . . . . . . . . . . . . . 147
4.4.1 Proof of the main ingredient of the proofs of Theorems 4.11 and 4.12 . . 147
4.4.2 Proofs of the finite-element results Theorems 4.11 and 4.12 . . . . . . . . . 159
4.4.3 Proofs of the PDE results Theorem 4.15 and Lemma 4.16 . . . . . . . . . . 160

4.5 Extension of the nearby preconditioning results to weaker norms . . . . . . . . . . 163
4.5.1 Theory in weaker norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.2 Numerics in weaker norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.6 Applying nearby preconditioning to a Quasi-Monte-Carlo method for the Helm-
holtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.6.1 Brief description of QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.6.2 Methods for applying nearby preconditioning to QMC . . . . . . . . . . . . 173
4.6.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.7 Review of related techniques in the literature . . . . . . . . . . . . . . . . . . . . . . . . 186
4.8 Probabilistic nearby preconditioning results . . . . . . . . . . . . . . . . . . . . . . . . 194

4.8.1 Probabilistic theory for nearby preconditioning . . . . . . . . . . . . . . . . . 195
4.8.2 Numerical probabalistic results for nearby preconditioning . . . . . . . . . 197

4.9 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5 Monte-Carlo and Multi-Level Monte-Carlo methods for the stochastic Helmholtz
equation 201
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2 Background on both Monte-Carlo and Multi-Level Monte-Carlo methods . . . . . 202

5.2.1 The ideas of Monte-Carlo and Multi-Level Monte-Carlo methods . . . . . 202
5.2.2 Challenges in Monte-Carlo and Multi-Level Monte-Carlo methods for

the Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2.3 Literature Review of Multi-Level Monte-Carlo methods . . . . . . . . . . . 204

5.3 An abstract setting for both the Multi-Level Monte-Carlo and Monte-Carlo meth-
ods, motivated by the Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.4 Monte-Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.5 Multi-level Monte-Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.6 Placing the stochastic Helmholtz equation in the abstract k-dependent setting . . 218

5.6.1 Model problem and quantities of interest . . . . . . . . . . . . . . . . . . . . . 219
5.6.2 Main result on Monte-Carlo and Multi-Level Monte-Carlo methods for

the Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5.6.3 Proof of Theorem 5.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.7 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



8 CONTENTS

5.7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A Failure of Fredholm theory 227

B Recap of basic material on measure theory and Bochner spaces 229
B.1 Recap of measure theory results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
B.2 Recap of results on Bochner spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C Measurability of series expansions (used in Section 3.1.2) 233

D Error estimators for complex random variables 237

E Numerical investigation of QMC 241

F Additional probabilistic results 265

G Computational set-up 269

Bibliography 271



List of Figures
1.1 Number of unpreconditioned GMRES iterations for the homogeneous Helmholtz

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 The increasing interpolation error if the mesh is not refined with increasing
frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 The pollution effect for the 1-d Helmholtz equation. . . . . . . . . . . . . . . . . . . . 20

2.1 An example of the sets in the definitions of the Helmholtz Exterior Dirichlet
Problem and Truncated Exterior Dirichlet Problem. . . . . . . . . . . . . . . . . . . . 29

2.2 An example of an impenetrable obstacle with a cavity containing trapped rays. . 35

2.3 A schematic of the expected behaviour of an hka -accurate finite-element method. 46

2.4 A schematic of the sets Dint and eDint from the proof of Theorem 2.51. . . . . . . . 70

2.5 A schematic of the set Dscat from the proof of Theorem 2.51. . . . . . . . . . . . . . 71

2.6 A schematic of the set Dtrunc from the proof of Theorem 2.51. . . . . . . . . . . . . 71

3.1 The relationship between the different variational formulations of stochastic PDEs123

4.1 Maximum GMRES iteration counts when




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β

for β= 0,0.1,0.2,0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2 Maximum GMRES iteration counts when




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β

for β= 0.4,0.5,0.6,0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Maximum GMRES iteration counts when




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β

for β= 0.8,0.9,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4 Maximum GMRES iteration counts when




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for

β= 0,0.1,0.2,0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.5 Maximum GMRES iteration counts when




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for

β= 0.4,0.5,0.6,0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.6 Maximum GMRES iteration counts when




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for

β= 0.8,0.9,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.7 GMRES iteration counts when




n(1)− n(2)






Lq (D ,R)
= 0.2× k−β, for any 1≤ q <

∞ and β= 0,0.1,0.2,0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.8 GMRES iteration counts when




n(1)− n(2)






Lq (D ,R)
= 0.2× k−β, for any 1≤ q <

∞ and β= 0.4,0.5,0.6,0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.9 GMRES iteration counts when




n(1)− n(2)






Lq (D ,R)
= 0.2× k−β, for any 1≤ q <

∞ and β= 0.8,0.9,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.10 The computed Quasi-Monte-Carlo convergence rate for Q(u) =
∫

D u. . . . . . . . 187

4.11 The computed Quasi-Monte-Carlo convergence rate for Q(u) = u(0). . . . . . . . 188

9



10 LIST OF FIGURES

4.12 The computed Quasi-Monte-Carlo convergence rate for Q(u) = u(1,1). . . . . . . 189
4.13 The computed Quasi-Monte-Carlo convergence rate for Q(u) =∇u(1,1). . . . . . 190
4.14 The number of LU factorisations in the sequential nearby-preconditioning-QMC

algorithm as a percentage of the total number of solves. . . . . . . . . . . . . . . . . . 191
4.15 The empirical probability that GMRES applied to a nearby-preconditioned linear

system converges in at most 12 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

E.1 Quasi-Monte-Carlo error, for Q =
∫

D u and k = 10. . . . . . . . . . . . . . . . . . . . 241
E.2 Quasi-Monte-Carlo error, for Q =

∫

D u and k = 20. . . . . . . . . . . . . . . . . . . . 242
E.3 Quasi-Monte-Carlo error, for Q =

∫

D u and k = 30. . . . . . . . . . . . . . . . . . . . 243
E.4 Quasi-Monte-Carlo error, for Q =

∫

D u and k = 40. . . . . . . . . . . . . . . . . . . . 244
E.5 Quasi-Monte-Carlo error, for Q =

∫

D u and k = 50. . . . . . . . . . . . . . . . . . . . 245
E.6 Quasi-Monte-Carlo error, for Q =

∫

D u and k = 60. . . . . . . . . . . . . . . . . . . . 246
E.7 Quasi-Monte-Carlo error, for Q = u(0) and k = 10. . . . . . . . . . . . . . . . . . . . 247
E.8 Quasi-Monte-Carlo error, for Q = u(0) and k = 20. . . . . . . . . . . . . . . . . . . . 248
E.9 Quasi-Monte-Carlo error, for Q = u(0) and k = 30. . . . . . . . . . . . . . . . . . . . 249
E.10 Quasi-Monte-Carlo error, for Q = u(0) and k = 40. . . . . . . . . . . . . . . . . . . . 250
E.11 Quasi-Monte-Carlo error, for Q = u(0) and k = 50. . . . . . . . . . . . . . . . . . . . 251
E.12 Quasi-Monte-Carlo error, for Q = u(0) and k = 60. . . . . . . . . . . . . . . . . . . . 252
E.13 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 10. . . . . . . . . . . . . . . . . . 253
E.14 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 20. . . . . . . . . . . . . . . . . . 254
E.15 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 30. . . . . . . . . . . . . . . . . . 255
E.16 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 40. . . . . . . . . . . . . . . . . . 256
E.17 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 50. . . . . . . . . . . . . . . . . . 257
E.18 Quasi-Monte-Carlo error, for Q = u((1,1)) and k = 60. . . . . . . . . . . . . . . . . . 258
E.19 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 10. . . . . . . . . . . . . . . . . 259
E.20 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 20. . . . . . . . . . . . . . . . . 260
E.21 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 30. . . . . . . . . . . . . . . . . 261
E.22 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 40. . . . . . . . . . . . . . . . . 262
E.23 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 50. . . . . . . . . . . . . . . . . 263
E.24 Quasi-Monte-Carlo error, for Q =∇u((1,1)) and k = 60. . . . . . . . . . . . . . . . . 264

F.1 An upper bound on the number of GMRES iterations required for a nearby-
preconditioned linear system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

G.1 A sample mesh, similar to those used in all the computations in this thesis. . . . . 269



List of Tables
1.1 The number of degrees of freedom required to obtain various properties of finite-

element approximations of the solution of the Helmholtz equation. . . . . . . . . . 21

2.1 All the results in the literature on
�

hka , hk b �-accuracy for h-finite-element dis-
cretisations of the Helmholtz equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 All the results in the literature on
�

hka , hk b �-data-accuracy for h-finite-element
discretisations of the Helmholtz equation. . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 All the results in the literature on hka -quasi-optimality for h-finite-element dis-
cretisations of the Helmholtz equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 The constants from Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 GMRES iteration counts when




n(1)− n(2)






Lq (D ,R)
= 0.2× k−β, for any 1≤ q <

∞ and β= 0,0.1, . . . , 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.2 The value of α0 and α1 for different QoIs, where the QMC error≈C N−(α0−α1 ln(k))

QMC . 184
4.3 The ideal and actual number of QMC points NQMC used in the numerical ex-

periments summarised in Tables 4.4 and 4.5, chosen so that the QMC error is
empirically bounded for all k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.4 Results for the sequential nearby-preconditioning-Quasi-Monte-Carlo algorithm. 192
4.5 Results applying our parallel nearby-preconditioning-Quasi-Monte-Carlo algo-

rithm with the target proportion of preconditioners as (−0.04+ 0.02k)%. . . . . . 192

5.1 Computational complexity of Monte-Carlo and Multi-Level Monte-Carlo algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11



12



List of Algorithms
4.1 The sequential nearby-preconditioning-Quasi-Monte-Carlo algorithm . . . . . . . . 177
4.2 The main part of the parallel nearby-preconditioning-Quasi-Monte-Carlo algorithm.180

13



14



C H A P T E R 1

Introduction
1.1 T H E S U B J E C T S O F T H E T H E S I S
The subjects of this thesis are rigorous theory and fast methods for the stochastic Helmholtz
equation

∇ · (A∇u)+ k2 n u =− f , (1.1)

where A, n, and f are random fields (i.e., they are spatially heterogeneous and random). We are
particularly interested in theory and methods that are applicable for large values of the wavenum-
ber k, as the case of large k is of interest in applications, and theoretically and computationally
demanding.

1.1.1 Motivation from Applications for the High-Frequency Stochastic Helmholtz
Equation

The Helmholtz equation is the simplest possible model of wave propagation. Indeed, if one seeks
time-harmonic solutions of the scalar wave equation

n
∂ 2U
∂ t 2

−∇ · (A∇U ) = F , (1.2)

that is, solutions of the form U (t ,x) = e−i k t u(x), where F (t ,x) = e−i k t f (x), then the spatial part
u satisfies (1.1); equivalently, (1.1) is the Fourier transform in time of (1.2). In certain scenarios,
the time-harmonic Maxwell’s equations reduce to (1.1), see, e.g., [152, Remark 2.1] for this
derivation.

The physical motivation for studying (1.1) is, therefore, any physical scenario in which wave
propagation can be modelled by either (1.2) or Maxwell’s equations. One prominent example
of the usage of (1.2) is in subsurface imaging, where the rock structures of the earth’s crust are
imaged by generating waves at the earth’s surface, and recording the reflections of these waves
from the rock structures. The waves within the earth’s rock structures satisfy the elastic wave
equation, but under the so-called acoustic approximation, this equation can be approximated by
(1.2); see [118, Sections 1.1 and 1.2] for discussion of the acoustic and elastic wave equations, and
the PhD thesis [43] for a detailed physical derivation of the elastic wave equation [43, Section 1.2],
and a derivation and discussion of the acoustic approximation [43, Section 1.2.6]. Other physical
scenarios involving waves modelled by either (1.2) or Maxwell’s equations are the propagation of
sound in an inviscid fluid [50, Section 2.1], and Microwave imaging (see, e.g., [27, Section 6.4]).

A mathematical and computational motivation for studying (1.1) is that many of the difficulties
one encounters when studying and numerically solving more complex wave-propagation models,
such as the elastic wave equation, are also encountered with (1.1). Therefore (1.1) is an appropriate

15
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starting point for mathematical study of, and numerical algorithms for, wave propagation models.
We now consider three characteristics of the above examples that will drive the theoretical

and computational work in this thesis: high effective frequency, heterogeneity, and stochasticity.
The real-life examples above can have high effective frequency, that is, the wavenumber k

is large. The wavenumber may be large because either (i) the physical frequency is large, or
(ii) the waves are low-frequency, but propagate over a large domain. Situation (i) arises in, e.g.,
non-destructive testing, where waves of frequency 1× 106–1× 107 Hz (see, e.g., [31]) are passed
through materials to image their interior, and situation (ii) arises in, e.g., seismic imaging, where
the wave frequencies are in the range 1-100 Hz (see, e.g., [193]) but the domain of interest is on
the kilometre scale1. These low-frequency, large-domain problems have many wavelengths in the
domain, and hence, when they are scaled to a domain of size ≈ 1, they give rise to problems with
large (effective) frequency.

Also, many of the examples above are modelled by the Helmholtz equation with heterogeneous
coefficients. For example, in subsurface imaging of the Earth’s crust, waves will pass through
the sea, different types of rock, and materials contained within these rocks, such as water or oil.
Each of these materials will have different properties, such as density and Lamé parameters, and
therefore the coefficients A and n in (1.1) will be heterogeneous (see, e.g. [43, Section 1.2.4] for
an explanation of how the density and Lamé parameters manifest themselves in (1.2)).

To understand the prescence of stochasticity in the above examples, we consider two possible
problems associated with (1.1):

1. The forward problem, where one knows the coefficients A and n, and wishes to find proper-
ties of the solution u, and

2. The inverse problem, where one knows properties of the solution u and wishes to find the
coefficients A and n.

The Helmholtz equation with random coefficients arises when we model physical situations
with uncertainty in the material parameters; this uncertainty can arise in both the forward and
inverse problem. In the inverse problem, where one has sent an incident wave into an unknown
medium, recorded the scattered wave, and reconstructs the medium, there will be uncertainties
inherent in the process. For example, (i) the scattered wave will only be recorded at discrete points
in space, rather than everywhere, and these recordings will be subject to measurement error,
and (ii) the operator giving the properties of the solution u may inherently lose information
(e.g., if it is the far-field operator, see the discussion in [50, pp. 37–38] of the ill-posedness of the
inverse problem with the far-field operator). These uncertanties in the inference will result in
uncertanties in the inferred properties of the medium. Alternatively, uncertainty arises in the
forward problem, when we are already aware of uncertainty in our knowledge of the medium,
and we wish to quantify the uncertainty in the wave passing through the uncertain medium. This
occurs, for example, in radar imaging of ice sheets, where one wishes to know properties of the
wave scattered by the ice, as in [126].

1E.g., the SEG Overthrust model [4], a common benchmark for seismic imaging applications, has domain size
20km × 20km × 4.65 km.
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This thesis will only focus on UQ for the forward problem. The forward problem and inverse
problem share the common computational difficulty of needing to solve many (deterministic)
realisations of (1.1). Whether the uncertainty in A and n has arisen as a result of the inverse or
forward problem, most UQ algorithms will require many samples of the (random) solution of
(1.1). As will be discussed below, obtaining one sample of the solution of (1.1) is a considerable
computational task, and so obtaining many (and ‘many’ could easily mean thousands) of such
samples is an even harder task. Reducing the computational cost of obtaining many samples of
the solution of (1.1) will be a main focus of the algorithms developed and studied in this thesis.

1.1.2 Solving the Helmholtz Equation Numerically

We have just stated that it is hard to solve the (deterministic) Helmholtz equation

∇ · (Adet∇udet)+ k2 ndet udet =− fdet, (1.3)

i.e., a single realisation of (1.1), numerically; we now provide some background on why this is
the case. When solving (1.3) numerically we discretise it to obtain a linear system

Au= f. (1.4)

Issues from finite elements We are exclusively concerned with discretisation via finite elements,
see Chapter 2 for the details of such a discretisation. The linear systems (1.4) arising from standard
finite-element discretisations of (1.3) are hard to solve, as the matrices A are:

1. non-Hermitian,

2. indefinite, and

3. large.

We will now briefly discuss each of these properties in turn, outlining why the matrices A have
these properties, and how these properties affect the numerical solution of (1.4).

For 1, the matrices A are non-Hermitian because the underlying boundary-value problems
are not self-adjoint (see [200, Section 4.2] for a discussion of the non-self-adjointness of exterior-
boundary-value problems for the Helmholtz equation). This lack of self-adjointness means
the sesquilinear forms arising in standard variational formulations of (1.1) are not conjugate
symmetric, and this lack of conjugate symmetry is inherited by the discretisation matrices A.
If one uses an iterative solver for the linear system (1.4), then the non-Hermitian nature of the
matrices means that a solver that is suitable for such matrices, such as GMRES, must be used.

For 2, the matrices A are indefinite because the sesquilinear forms arising from standard
variational formulations of (1.1) are not coercive. This indefiniteness means that GMRES applied
to (1.4) may exhibit poor convergence properties, especially as the wavenumber k is increased—see
Figure 1.1. In addition, the standard convergence theory for GMRES does not apply to indefinite
systems, and so proving convergence results is also challenging.
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Figure 1.1: Number of unpreconditioned GMRES iterations for the homogeneous Helmholtz
equation on the unit square, with zero impedance boundary condition and f = 1.

For 3, the matrices A are large because the number of degrees of freedom must increase as k
increases. One can see this from interpolating the solution of (1.3); solutions u of (1.3) oscillate on
a scale 1/k, and therefore the number of degrees of freedom (interpolation points) must increase
like kd (where d is the spatial dimension) in order to keep the interpolation error for u bounded.
This need for increasing degrees of freedom with k is illustrated in Figure 1.2, where we see the
interpolation error grows if the number of degrees of freedom is not increased with k. In practice
one typically chooses to use 6–10 discretisation points in each dimension for each wavelength in
the domain—this choice empirically keeps the interpolation error at a reasonable size, but means
the linear systems (1.4) will have O

�

kd � unknowns.

However, discretising (1.3) with a fixed number of points per wavelength is not enough to
keep the error in the finite-element solution of (1.3) bounded as k→∞ when using fixed-order
methods. This is because standard-finite-element methods applied to the Helmholtz equation
suffer from pollution, where the numerically calculated wave has a different wavelength to the
true solution u, and so ‘drifts’ away from u; moreover, this error increases as k increases. See
Figure 1.3 for an illustration of this phenomenon, and Section 2.3.3 for an extended discussion of
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Figure 1.2: The increasing interpolation error if the mesh is not refined with increasing frequency.
The left-hand plot show the interpolant of sin(10x) on a mesh with 10 points per wavelength.
The right-hand plot shows the interpolant of sin(50x) on the same mesh.

how this phenomenon is reflected in the accuracy of finite-element methods for the Helmholtz
equation.

In summary, numerically solving the Helmholtz equation gives rise to large (size at least∼ kd )
linear systems, and the size of these linear systems increases as k increases. Table 1.1 presents
the sizes of the linear systems one obtains for different values of k, depending on the spatial
dimension, and the properties of the finite-element solution that one requires.

Issues from linear solvers We now turn our attention to how one might solve the large, indefinite,
non-Hermitian linear systems (1.4). One option is to solve the linear systems (1.4) using a direct
solver (solvers that, up to machine precision, invert the linear system (1.4) exactly, see, e.g., [62]).
Such solvers are incredibly competitive for solving (1.3) in 2-D, if (1.4) has up to 106 unknowns;
however, for larger linear systems (1.4), such as those obtained from 3-D discretisations, direct
solvers are not as competitive as so-called iterative solvers, see, e.g., [68, p. 70]. An iterative solver
is one that does not solve (1.4) exactly, but rather produces a sequence of approximations to the
solution of (1.4). A standard iterative solver to use for non-Hermitian linear systems is GMRES;
this is the solver we will use throughout this thesis. However, as seen in Figure 1.1, GMRES
applied to (1.4) can perform very badly (the number of interations to achieve convergence can
grow dramatically with k, and moreover, one cannot apply the standard convergence results
for GMRES (originally presented in [66] and given in a helpful form in [19, Section 1]) to (1.4)
because the matrices A are typically indefinite. An explanation of how the wave-nature of the
solution of the Helmholtz equation causes slow convergence of iterative methods for (1.4) is
explained in [69, Section 2.1], using a finite-difference approximation of the Helmholtz equation
as an example.
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Figure 1.3: The pollution effect for the 1-d Helmholtz equation u ′′+ k2u = 0 for k = 1000, with
a zero Dirichlet boundary condition on the left endpoint, and an impedance boundary condition
on the right endpoint, chosen so that the exact solution u = sin(k x). The solid line denotes
the true solution, the dashed line denotes the finite-element approximation with 10 points per
wavelength.

As GMRES applied to (1.4) performs badly, we consider preconditioning (1.4), that is, solving
the equivalent linear system

(P)−1Au= (P)−1f (1.5)

for some matrix P. The goal of preconditioning2 is to choose the preconditioner P such that:

1. The equation (1.5) is easy to solve iteratively, and

2. The action of (P)−1 is cheap to compute.

The ideal preconditioner from the point of view of Requirement 1 is P= (A)−1, however, in view
of Requirement 2, if we could cheaply compute the action of (A)−1, we could cheaply solve (1.4),
and there would be no need for preconditioning. Hence, one needs to balance the Requirements 1
and 2 so that one obtains a good preconditioner for A that is cheap to apply. There are several
groups around the world working on the construction of good preconditioners for the Helmholtz
equation, and this is an open research area. The design of such preconditioners is not the focus
of this thesis, but we refer to, e.g., [85] for an overview of many recent preconditioners for the
Helmholtz equation.

Issues from UQ On top of all the above issues in solving the deterministic Helmholtz equation
(1.3), when seeking to perform UQ calculations for the stochastic Helmholtz equation (1.1) one

2We have only considered left-preconditioning, that is, multiplying A from the left by (P)−1. However, one can
also-consider right-preconditioning, that is, solving the linear system A(P)−1

eu = f, the solution u is then given by
u= (P)−1

eu.
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Interpolation error bounded Finite-element error bounded Quasi-optimality
(h =π/5× k−1) (h = k−3/2) (h = k−2)

2-D 3-D 2-D 3-D 2-D 3-D

k

10 ≈ 2.5× 102 ≈ 4× 103 103 ≈ 3× 104 104 106

100 ≈ 2.5× 104 ≈ 4× 106 106 109 108 1012

1000 ≈ 2.5× 106 ≈ 4× 109 109 ≈ 3× 1013 1012 1018

Table 1.1: The number of degrees of freedom that would be required to obtain various properties
of piecewise-linear finite-element approximations of the solution u of (1.3), for various values of k,
in 2-D and 3-D. All errors etc. would be measured in the weighted H 1 norm

�

|·|2H 1 + k2‖·‖2L2

�1/2.
See Section 2.3 for discussion of why one chooses the mesh conditions used here.

often needs to solve many realisations of (1.1). E.g., if one wants to calculate E[Q(u)], where Q
is some quantity of interest, then one can use the sample average of many realisations of u;

E[Q(u)] =
∫

Ω
Q(u(ω))dP(ω)≈ 1

N

N
∑

j=1

Q(u(ω( j ))),

whereω ∈Ω denotes a random sample. Observe that to compute the sample average, one needs
to solve many (which we emphasise again, could easily be thousands) different deterministic
Helmholtz problems which, as has just been discussed, are each individually difficult to solve.
This situation arises when using either sampling-based methods (such as Monte-Carlo methods)
or interpolation-based methods (such as Stochastic-Collocation methods) to compute properties
of the solution u of (1.1), or approximations to u itself. Rigorously studying (1.1), devising
computational techniques to reduce the cost of such UQ calculations, and rigorously justifying
this reduction, is the subject of this thesis.

1.2 T H E M A I N AC H I E V E M E N T S O F T H E T H E S I S
The main achievements of the thesis are as follows:

1. New error bounds for the higher-order h-finite-element method applied to the (deter-
ministic) Helmholtz equation in heterogeneous media; these bounds are explicit in their
dependence on the wavenumber k and on the coefficient n.

These error bounds are the first for the Helmholtz equation in a heterogeneous medium;
similar bounds have been proved for the Helmholtz equation in a homogeneous medium in,
e.g., [216, 59, 44] and for a homogeneous medium with a small, frequency-dependent nonlinear
perturbation in [217]. These bounds (and their explicit dependence on k and n) are crucial for
the analysis of the numerical methods developed in this thesis.
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2. Well-posedness results and a priori bounds on the solution of the Helmholtz equation in
random media, where the results and bounds obtained are frequency-independent. The
arguments behind these results are written in a sufficiently general way that they can be
used, in principle, to conclude similar results for a range of stochastic PDEs.

This work is an advance on the only previous work in the literature, [80], in which similar
results and bounds were proved, but under restrictions that became more stringent as the frequency
increased; in contrast the results in this thesis are frequency-independent. To prove such frequency-
independent results, we will consider classes of random media that are almost-surely nontrapping.
This nontrapping assumption will allow us to obtain our frequency-independent results. These
results on well-posedness and a priori bounds are crucial for analysing the numerical methods
that follow. Our results show that the problems we are solving are well-posed, and will enable us
to rigorously prove properties of the numerical methods considered in this thesis. We expect that
the arguments behind these results can be used in other cases where the bilinear form given by
the PDE is indefinite, such as for the time-harmonic Maxwell’s equations.

3. A computational strategy, which we call ‘nearby preconditioning’, that reduces the compu-
tational cost of solving many realisations of the Helmholtz equation in random media.

4. Numerical experiments that indicate that nearby preconditioning is, in practice, more
effective than can be rigorously proved at present. We demonstrate the effectiveness of
nearby preconditioning when applied to a Quasi-Monte-Carlo method for the Helmholtz
equation.

The nearby preconditioning strategy seeks to reduce the computational cost of assembling
preconditioners for many deterministic Helmholtz problems. This reduction is achieved by re-
using a preconditioner from one deterministic Helmholtz problem for other Helmholtz problems,
provided the coefficients are close in some metric (hence the term ‘nearby’). As far as we are
aware, this is the first time such a strategy has been rigorously studied for the Helmholtz equation.

5. Theoretical analysis of the Monte-Carlo and Multi-Level Monte Carlo methods applied to
the Helmholtz equation in random media.

6. Computational investigation into Quasi-Monte-Carlo methods applied to the Helmholtz
equation in random media.

Multi-Level Monte-Carlo is a variance reduction technique that uses computations on a
sequence of meshes to reduce the variance in UQ calculations, and therefore to reduce the number
of realisations of the Helmholtz equation that need to be solved. We extend the existing abstract
Multi-Level Monte-Carlo analysis in the literature to the case where the finite-element error is
dependent on an additional parameter (here this parameter is the wavenumber k), and then apply
this abstract analysis to the Helmholtz equation, showing that we obtain theoretical speedup over
Monte-Carlo. We also perform preliminary computations giving insight into the behaviour of
QMC methods for the Helmholtz equation; these results are the first available in the literature.
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1.3 T H E ST RU C T U R E O F T H E T H E S I S
In Chapter 2 we give background material on the (deterministic) Helmholtz equation and its
discretisation via finite elements; this material will be necessary to understand the rest of this
thesis. We present recent results in [105] concerning the well-posedness of the deterministic
heterogeneous Helmholtz equation and a priori bounds on its solution of which the author of
this thesis was a co-author. These results are used in some of the developments in this thesis,
especially in Chapter 3. We also give an overview of the theory of finite-element discretiations of
the Helmholtz equation, and prove the results in Achievement 1.

In Chapter 3 we prove the results in Achievement 2 for three formulations of the stochastic
exterior Dirichlet problem (SEDP) for the Helmholtz equation in random media. These results
are underpinned by the well-posedness results and a priori bounds obtained in [105] for the
heterogeneous (but non-random) Helmholtz equation. Chapter 3 is a lightly-edited version of
[176], accepted for publication in the SIAM/ASA Journal on Uncertainty Quantification.

In Chapter 4 we develop the nearby preconditioning strategy described in Achievement 3,
prove the results on its effectiveness, and perform the numerical investigation of its effectiveness
as in Achievement 4. We then provide preliminary numerical investigation into QMC methods
for the Helmholtz equation, as in Achievement 6 before applying nearby preconditioning to a
QMC method for the Helmholtz equation, obtaining speedup, as in Achievement 4.

In Chapter 5 we develop abstract Multi-Level Monte-Carlo theory as in Achievement 5,
and then apply this to the Helmholtz equation, observing theoretical speedup compared to the
Monte-Carlo method.
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C H A P T E R 2

PDE theory for the deterministic Helm-
holtz equation and the theory of its finite-
element discretisation
2.1 I N T R O D U C T I O N
This chapter has two main foci:

1. Recapping theory for the deterministic Helmholtz equation in heterogeneous media, espe-
cially well-posedness results and a priori bounds on the solution, and

2. Recapping and extending theory of the finite-element method (FEM) for the deterministic
heterogeneous Helmholtz equation, especially error bounds.

In Section 2.2.1 we define two Helmholtz problems, one on an infinite exterior domain, and
the other on a truncated domain, and discuss their physical relevance. In Section 2.2.2 we recap
in some detail the well-posedness results and a priori bounds from [105]; these results will be
crucial for our analysis of stochastic Helmholtz problems in Chapter 3. Then in Section 2.2.3 we
set these results in their wider context with a review of the related literature. We then move on
to the FEM for these problems; in Section 2.3.1 we give the variational formulations of our two
Helmholtz problems. In Section 2.3.2 we recap basic concepts of the FEM, and in Sections 2.3.3
and 2.3.4 we give an overview of the literature on error bounds and quasi-optimality for the
Helmholtz equation, including an extended discussion of proof techniques for these results.
Finally in Section 2.4 we prove new error bounds for the FEM for the heterogeneous Helmholtz
equation.

The material from [105] presented in Section 2.2 is not presented as original work in this
thesis, even though the author of this thesis is one of the authors of [105]; this material is given to
set the scene for the original work in the rest of this thesis. We also note that the literature review
in Section 2.2.3 is based on the literature reviews in in [40, Section 1.1] and [105, Sections 1 and
2.4]. The work in Sections 2.3 and 2.4 is, however, presented as original work.

2.2 WAV E N U M B E R - A N D C O E F F I C I E N T- E X P L I C I T PDE
T H E O RY O F T H E D E T E R M I N I S T I C H E L M H O LT Z

E Q UAT I O N
We begin by defining the two deterministic Helmholtz problems that we consider in this thesis;
we consider their stochastic counterparts in subsequent chapters.
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2.2.1 Deterministic Helmholtz problems

We first state our problems of interest, largely following the presentation in [105]. For D ⊆Rd ,
we define matrix-value function spaces by letting L∞

�

D ;Rd×d � be the set of all measurable
matrix-valued functions A : D→Rd×d such that Ai , j ∈ L∞(D ;R) for all i , j = 1, . . . , d . We define
W 1,∞�D ;Rd×d � and C 0,1

�

D ;Rd×d � (the spaces of componentwise W 1,∞ and Lipschitz functions
respectively) analogously. We let SPD be the set of all symmetric-positive-definite matrices in
Rd×d , and then define L∞(D ;SPD) =

�

A : D→ SPD : A∈ L∞
�

D ;Rd×d �	, and W 1,∞(D ;SPD) =
�

A : D→ SPD : A∈W 1,∞�D ;Rd×d �	. Observe, however, that SPD is not a vector space, and
therefore L∞(D ;SPD) and W 1,∞(D ;SPD) are not vector spaces. For other function spaces, where
the range of functions is C we suppress the second argument, e.g. we write L2(D) for L2(D ;C).

Problem 2.1 (Exterior Dirichlet Problem (EDP)). Let D− be a bounded Lipschitz open set such that
the open complement D+ :=Rd \D− is connected and let ΓD := ∂ D−. Let γD : H 1(D)→H 1/2(ΓD )
denote the Dirichlet trace operator on ΓD . Given

• k > 0,

• f ∈ L2
�

D+
�

with compact support,

• gD ∈H 1/2(ΓD ),

• n ∈ L∞
�

D+;R
�

such that supp(1− n) is compact inRd and there exist 0< nmin < nmax <∞
such that

nmin ≤ n(x)< nmax for almost every x ∈D+, (2.1)

and

• A∈ L∞
�

D+;Rd×d � such that supp(I −A)) is compact in Rd , A is symmetric, and there exist
0<Amin <Amax <∞ such that

Amin|ξ |
2 ≤ (A(x)ξ ) · ξ <Amax|ξ |

2 for all ξ ∈Cd for almost every x ∈D+, (2.2)

we say u ∈H 1
loc

�

D+
�

satisfies the exterior Dirichlet problem if

∇ · (A∇u)+ k2nu =− f in D+, (2.3)

γD u = gD , (2.4)

and u satisfies the Sommerfeld radiation condition

∂ u
∂ r
(x)− i k u(x) = o

�

1
r (d−1)/2

�

as r := |x| →∞, uniformly in x̂ := x/|x|. (2.5)

As in [105, pp. 2874-2875], we note that (2.3) is understood in the sense that

∫

D+

(A∇u) · ∇φ− k2nuφ=
∫

D+

f φ for all φ ∈C∞0
�

D+
�

,
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and we can impose the radiation condition (2.5) on u because u is C∞ outside some ball, by
elliptic regularity.

One particular case of Problem 2.1 is the sound-soft scattering problem, where u is the
acoustic pressure field resulting from the scattering of an incoming wave ui by the scatterer1 D−,
c.f., [118, Section 1.1] and [50, Section 1.1] In this problem, the total field uT = u + ui satisfies
∆uT + k2nuT = 0 in D+, with γD uT = 0. If there are no sources in the domain, and the incident
field satisfies ∆ui + k2ui = 0 in D+, then u satisfies Problem 2.1 with f = ∇ · ((A− I )∇ui ) +
k2(n− 1)ui , and gD =−γD ui .

Physically, the Sommerfeld radiation condition (2.5) ensures that the solutions of Problem 2.1
correspond to ‘outgoing’ waves (see, e.g., [118, Section 1.1.3]), and mathematically, it guarantees
the uniqueness of the solution to Problem 2.1, see, e.g., [39, Corollary 2.9]. Observe that
Problem 2.1 is defined on an infinite spatial domain; if one discretises Problem 2.1 using domain-
based methods (such as FEMs) the infiniteness of the domain causes an issue. Therefore a common
appproach is to truncate Problem 2.1 with an artificial boundary that is sufficiently large to contain
D− and all the inhomogeneities in A, n, and f .

If one was able to compute the Dirichlet-to-Neumann operator2 for the homogeneous Helm-
holtz equation in the exterior of the artificial boundary, then one could discretise Problem 2.1
exactly. See Problem 2.10 for the variational formulation of Problem 2.1, which is posed on a
finite domain and includes the exact Dirichlet-to-Neumann operator. In practice, however, the
Dirichlet-to-Neumann operator is expensive to compute, and so is approximated with a different
boundary condition on the truncated boundary. Options for the truncated boundary condition
include a perfectly matched layer, first introduced in [22] for Maxwell’s equations, which mimics
the whole of the external domain, or FEM-BEM coupling (a numerical method, where BEM
stands for boundary-element method), as in, e.g., [116], where a boundary element method is
used to approximate the solution in the exterior of the truncated domain. However, in this thesis,
as a model problem we consider imposing an impedance boundary condition

∂νu − i k u = gI (2.6)

on the truncated boundary. If gI = 0, then (2.6) can be seen as a first-order approximation to
(2.5) (see, e.g., [82, p. 353], where it is shown that in certain asymptotic limits, the Dirichlet-
to-Neumann map for the homogeneous Helmholtz equation is equal to multiplication by i k).
Moreover, we note that a common Helmholtz model problem in the numerical-analysis commu-
nity is the interior impedance problem (IIP), where an impedance boundary condition (2.6) is used,
and it is assumed that D− = ;. Truncating Problem 2.1 with an impedance boundary condition
gives rise to the following deterministic Helmholtz problem.

Problem 2.2 (Truncated Exterior Dirichlet Problem (TEDP)). Let D− be an open bounded
Lipschitz set such that the open complement D+ := Rd \ D− is connected. Let eD be a bounded
connected Lipschitz open set such that D− ⊂⊂ eD . Let D := eD \D−, ΓD := ∂ D−, and ΓI := ∂ eD . Let

1In the literature the scattered field is sometimes denoted us , in which case u usually denotes the total field ui + us .
2The operator T such that ∂ν u = T γ u.
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γI : H 1(D)→H 1/2(ΓI ) denote the Dirichlet trace operator on ΓI , and ∂ν : H 1(D)→H−1/2(ΓI ) the
Neumann trace operator. Given

• k > 0,

• f ∈ L2(D),

• gD ∈H 1/2(ΓD ),

• gI ∈ L2(ΓI ),

• n ∈ L∞(D ;R) such that supp(1− n) is compact in Rd , satisfying (2.1) with D+ replaced by
D, and

• A∈ L∞
�

D ;Rd×d � such that supp(I −A) is compact inRd and A is symmetric, satisfying (2.2)
with D+ replaced by D,

we say u ∈H 1(D) satisfies the truncated exterior Dirichlet problem if

∇ · (A∇u)+ k2nu =− f in D , (2.7)

γD u = gD , on ΓD and

∂νu − i kγI u = gI on ΓI . (2.8)

Observe that, by construction, ∂ D = ΓI ∪ ΓI and ΓD ∩ ΓI = ;.
Whilst the impedance boundary condition (2.8) is only an approximation to the Sommerfeld

radiation condition (2.5), the solutions of Problem 2.2 are still ‘wave-like’, and we see below that
the k-dependence of the solution operator of Problem 2.2 is the same as that of Problem 2.1.

2.2.2 Well-posedness and a priori bounds

We now recap the well-posedness results and a priori bounds for Problems 2.1 and 2.2 from
[105]; these results will be crucial for proving well-posedness results and a priori bounds for the
stochastic analogues of Problems 2.1 and 2.2 in Chapter 3. The novelty of the bounds in [105] is
that the results are for all k and are explicit in A, n and k; this explicitness is necessary in order to
prove similar a priori bounds for stochastic A and n. We prove these results under conditions
on A and n that require A and n to be, in some sense, ‘nontrapping’. Informally, a medium is
‘nontrapping’ if all rays travelling through the medium escape in a uniform time; this definition,
and the sense in which our conditions are ‘nontrapping’, is discussed in Section 2.2.3 below.

We first define the classes of A and n that we consider. We say, for A0 ∈Rd×d and µ> 0 that
A0 ≥µ in the sense of quadratic forms if

ξ ·
�

A0ξ
�

≥µ|ξ |2 for all ξ ∈Cd .
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D−

D := eD \D−

ΓD

BR

ΓI

supp f

supp(I −A)

supp(1− n)

Figure 2.1: An example of the sets D−, ΓD , BR, eD, D, and ΓI and supp f , supp(I − A), and
supp(1− n) from Problems 2.1, 2.2, 2.10, and 2.12.
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Definition 2.3 (Class of nontrapping media). Let A ∈ C 0,1
�

D+;Rd×d
�

, n ∈ C 0,1
�

D+;R
�

, and
µ1, µ2 > 0. We say that A∈NTmat,D+

(µ1) if

A(x)− (x · ∇)A(x)≥µ1, (2.9)

in the sense of quadratic forms, for almost every x ∈D+. We say that n ∈NTscal,D+
(µ2) if

n(x)+ x · ∇n(x)≥µ2 (2.10)

for almost every x ∈D+.
If D is as in Problem 2.2, then we define NTmat,D (µ1) and NTscal,D (µ2) analogously.

Definition 2.3 defines a sufficient, but not necessary, condition for a medium to be non-
trapping; see [105, Section 7] for the connection between a related condition on A and n and
nontrapping media.

Remark 2.4 (Definition 2.3 makes sense). Both A and n are supported inside some bounded Lipschitz
open set D, and on such sets, C 0,1(D) =W 1,∞(D) (see, e.g., [74, Section 4.2.3, Theorem 5]). Since A
and n are both Lipschitz functions (from Definition 2.3), it follows that they are in W 1,∞�D ;Rd×d �

and W 1,∞(D ;R) respectively. By construction A= I and n = 1 outside D, and so it follows that
A∈W 1,∞

�

D+;Rd×d
�

and n ∈W 1,∞
�

D+;R
�

, i.e., A and n have weak first-order derivatives.

Our well-posedness results require the scatterer D− to be star-shaped, and our results for
Problem 2.2 require the truncation domain eD to be star-shaped with respect to a ball. We now
recall these definitions.

Definition 2.5 (Star-shaped, star-shaped with respect to a ball). We say that D− is star-shaped
with respect to the point x0 if for all x ∈D−, the line segment [x0,x] ∈D−.

We say that D− is star-shaped with respect to the ball B if D− is star shaped with respect to x0,
for all x0 ∈ B .

We can now state well-posedness results and a priori bounds for the Helmholtz equation in
the class of heterogeneous media we have just defined. We denote the ball of radius R about the
point x0 by BR(x0). We denote BR(0) by BR.

Theorem 2.6 (Well-posedness and bound for Problem 2.1). If D−,A, n, and f satisfy the require-
ments in Problem 2.1, gD = 0, D− is star-shaped with respect to the origin, and there exist µ1,µ2 > 0
such that A∈NTmat,D+

(µ1) and n ∈NTscal,D+
(µ2), then the solution of Problem 2.1 exists and is

unique. Furthermore, given R > 0 such that supp(I −A), supp(1− n), and supp f are compactly
contained in DR =D ∩BR, then

µ1‖∇u‖2L2(DR)
+µ2k2‖u‖2L2(DR)

≤C1‖ f ‖2L2(DR)
,

for all k > 0, where

C1 := 4
�

R2

µ1
+

1
µ2

�

R+
d − 1

2k

�2�

.
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For the proof of Theorem 2.6, see [105, Theorem 2.5].
The following result is the analogue of Theorem 2.6 for the solution of Problem 2.2. However,

the statement is slightly more complicated than the statement of Theorem 2.6 due to the presence
of the impedance boundary ΓI . In particular, we have additional data gI on ΓI , and we bound the
norm of u on ΓI and well as on D .

Theorem 2.7 (Well-posedness and bound for Problem 2.2). If D−,A, n, f , and gI satisfy the
requirements in Problem 2.2, gD = 0, D− is star-shaped with respect to the origin, eD is star-shaped
with respect to a ball, and there exist µ1,µ2 > 0 such that A∈NTmat,D (µ1) and n ∈NTscal,D (µ2),
then the solution of Problem 2.2 exists and is unique. Let:

• LI :=maxx∈ΓI |x| and

• aLI be the radius of the ball with respect to which eD is star-shaped.

Then

µ1‖∇u‖2L2(D)+µ2k2‖u‖2L2(D)+ aLI





∇ΓI γI u






2

L2(ΓI )
+ 2LI k2‖γI u‖2L2(ΓI )

≤C2‖ f ‖2L2(DR)
+ eC2‖gI‖

2
L2(ΓI )

(2.11)

for all k > 0, where∇ΓI is the surface gradient on ΓI ,

C2 := 4

�

L2
I

µ1
+

1
µ2

�

β+
d − 1

2k

�2
�

,

eC2 := 2

�

2
�

1+
2
a

�

+
β

LI
+
(d − 1)2

4

�

LI ,

and

β := LI

�

2+
1

(kLI )
2 + 2

�

1+
2
a

�

�

.

For the proof of Theorem 2.7, see [105, Theorem A.6 (i)].
Observe that the above results are stated only in the case that gD = 0. Whilst there is no

mathematical difficulty in proving analogous results in the case gD 6= 0, the calculations in this
case are more involved, as one must consider the surface gradient on ΓD and this surface gradient
depends on A. In the case A= I , these calculations are significantly simplified, and so in the case
A= I and gD 6= 0 results analogous to Theorems 2.6 and 2.7 are proved in [105, Theorem 2.19(ii)]
(for Problem 2.1) and [105, Theorem A.6(iv)] (for Problem 2.2); although the proofs of these
results require gD ∈H 1(ΓD ).

We highlight that Theorems 2.6 and 2.7 and the similar results in [105] are significant for the
following two reasons.

1. These are the first A, n, and k-explicit bounds on the solution of the Helmholtz equation
in the case where both A and n are heterogeneous. As will be discussed in more detail
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in Section 2.2.3 below, previous results were either not A, n, and k-explicit, or did not
have A and n varying. The k-explicitness of these results is crucial for understanding how
the solution of the Helmholtz equation (and numerical methods for its approximation)
behave for large k; the A-and-n-explicitness is crucial for proving bounds on the stochastic
Helmholtz equation, as in Chapter 3, and for understanding how numerical methods are
affected by the heterogeneity in A and n.

2. These are the first bounds explicit in A and n where the bound and the restrictions on A
and n are independent of k . Previous results in the literature only proved such bounds by
imposing conditions on A and n that became more stringent as k→∞; again, this literature
will be more fully discussed in Section 2.2.3 below.

Remark 2.8 (Extensions of Theorems 2.6 and 2.7). Theorems 2.6 and 2.7 are extended to wider
classes of heterogeneous A and n and to the case gD 6= 0 in [105]. As stated above, the case gD 6= 0
(with A= I ) is treated in [105, Theorem 2.19(ii)] (for Problem 2.1) and [105, Theorem A.6(iv)] (for
Problem 2.2), and the case n = 1 is covered in [105, Theorem 2.19(i)] (for Problem 2.1) and [105,
Theorem A.6(ii)]. We highlight that when either A = I or n = 1 (but not both) the condition on
the non-constant coefficient can be slightly weakened from those in Definition 2.3. When A and
n are discontinuous, [105, Condition 2.6] gives analogues of the conditions in Definition 2.3, and
then the result corresponding to Theorem 2.6 is proved in [105, Theorem 2.7]. Letting A and n be
L∞-perturbations of nontrapping media is discussed in [105, Remark 2.15], and relaxing the Lipschitz
assumption on ΓD is outlined in [105, Remark 2.13], with the caveat that when ΓD is non-Lipschitz,
we instead formulate Problem 2.1 as a variational problem, which is discussed in Section 2.3.1 below.
The above extensions and generalisations can all be applied to Problem 2.2, as mentioned in [105, p.
2916].

2.2.3 Discussion of results on well-posedness and a priori bounds for the Helm-
holtz equation

We now review the historical development of well-posedness results and a priori bounds for the
Helmholtz equation.

Well-posedness results
By ‘well-posedness’, we mean that a solution of the problem under consideration exists, is unique,
and continuously depends on the data ( f , gD , and gI ).

We note that proving well-posedness results and a priori bounds for the Helmholtz equation
is much more involved than proving such results for the stationary diffusion equation

∇ · (A∇u) =− f in D . (2.12)

In (2.12) if A is bounded above and bounded away from zero, then the associated bilinear form is
bounded and coercive. Then the Lax–Milgram Theorem applies, and one immediately obtains
well-posedness and an a priori bound (in H 1(D)) that is explicit in A.
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However, for Helmholtz problems, the situation is much more subtle. Even if A and n are
bounded above and bounded away from zero, in general one cannot prove a bound

‖u‖H 1
k (D+)

≤C‖ f ‖L2(D+), (2.13)

where C depends explicitly on A, n, and the wavenumber k and

‖v‖H 1
k
(D) :=

�

‖∇v‖L2(D)+ k2‖v‖L2(D)

�1/2
(2.14)

is the weighted H 1 norm used frequently when studying Helmholtz problems3. A fundamental
cause of this difficulty is the fact that the sesquilinear form a associated with the standard varia-
tional formulation of the Helmholtz equation is not coercive. However, a does satisfy a Gårding
inequality

ℜa(v, v)+ k2(Amin+ nmax)‖v‖
2
L2(D) ≥Amin‖v‖

2
H 1

k
(D), (2.15)

where ℜ denotes the real part. The Gårding inequality means ℜa(v, v) is ‘coercive’ if an appro-
priate multiple of the L2-norm is added to it.

Because of the Gårding inequality, if the solution of the Helmholtz equation is unique, then
existence and an a priori bound on the solution follow from Fredholm Theory (see, e.g. [200,
Theorems 5.10 and 5.18]). Therefore the challenge of proving well-posedness reduces to proving
uniqueness. However, we note that the a priori bound one obtains using Fredholm theory is
generally not explicit in k , A or n.

For homogeneous problems (with A= I and n = 1) uniqueness follows from the Sommerfeld
radiation condition (see, e.g., [39, Corollary 2.9]); for heterogeneous problems, the Unique
Continuation Principle (UCP) gives uniqueness, under some additional smoothness assumptions
on A and n. The UCP was first applied to Helmholtz problems by Melenk [147, Remark 8.1.1],
following [137]; see, e.g., [137, Section 4.3], [105, p. 2871] for a discussion of the UCP and [99,
Section 2] for a more detailed application of the UCP to show uniqueness for heterogeneous
Helmholtz problems. Therefore, as well-posedness results for the Helmholtz equation are essen-
tially well-understood4, we now turn our attention to a priori bounds on the solution that are
explicit in k , A, and n.

k-, A-, and n-explicit a priori bounds
All the bounds we now discuss will, unless otherwise stated, be for the weighted H 1 norm
‖·‖H 1

k (D)
defined in (2.14). We only consider the case where the scatterer D− is compact, and the

3The norm ‖·‖H 1
k
(D) is used because solutions of the Helmholtz equation typically have∇u ∼ k u; therefore the

norm ‖·‖H 1
k
(D) should contain terms of roughly the same size. This relationship between the solution and its gradient

is exactly the case for plane waves u = exp(i kx ·d) (for some d ∈Rd ), where∇u = i kdu.
4Observe that if one can prove an a-priori bound of the form (2.13), then one can conclude uniqueness (as the

solution of the Helmholtz equation with zero data must therefore be the zero function). Therefore, if one can prove
such a priori bounds without the restrictions on A and n needed to apply the UCP, one can conclude uniqueness (and
well-posedness, as outlined above) in a wider class of media; see [105, pp. 2873, 2883] for more details on how the
results in [105] can be used in this way.
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inhomogeneities in A and n are compactly supported, as in Problem 2.1. Research into so-called
rough surface scattering, where either D− or the inhomogeneities in A and n are not compactly
supported, is itself a rich area of research (see, e.g., the literature reviews in [205]), but this area
is not the concern of this thesis. Throughout this section we use ® notation— we say a ® b if
a ≤C b , where C is independent of k. We define ¦ similarly, and say a ∼ b if a ® b and a ¦ b .

Techniques for proving a priori bounds There are two main classes of techniques for proving
a priori bounds on the Helmholtz equation. The first class uses techniques from semiclassical
analysis (a branch of microlocal analysis), and studies the behaviour of rays through the medium.
For this approach to be used D−, A, and n must all be smooth, so that rays and the notion of
reflections from the scatterer D− can be defined (the notion of a reflection is difficult to define
rigorously if the scatterer has a corner).

When one uses microlocal analysis tools, the key geometric condition on A, n, and D− is
that of being nontrapping. The problem is nontrapping if, for any bounded set S ⊆ D+ there
exists a time t (S) such that any ray starting in S and evolving according to the laws of geometrical
optics leaves S by time t (S). The rigorous definition is more technical; see [105, Section 6] for
an overview. The problem is called trapping if it is not nontrapping. Once one has proved the
problem is nontrapping, one combines the paramatrix argument of Vainberg [211] with the
propagation of singularities results of Melrose and Sjöstrand [150] to conclude a bound with
the same k-dependence as Theorem 2.6. Observe that trapping behaviour can be caused by an
impenetrable obstacle (where, informally, rays ‘bounce’ off the obstacle), a penetrable obstacle
(where rays penetrate and are then ‘trapped’ inside), or variations in the medium (that can also
‘trap’ rays).

We see below that one can prove k-independent bounds even when rays cannot be defined,
typically when D−, A, and n are not smooth. In such situations, one usually uses the mutiplier
techniques discussed below. In an abuse of terminology, we call all situations where a bound
holds with the same k-dependence as Theorem 2.6 ‘nontrapping’.

The second class of techniques is multiplier techniques, where the PDE (2.3) is multiplied by
carefully chosen multiples of, e.g., u and x ·∇u, and the resulting expression is then integrated by
parts and rearranged. Whilst conceptually simpler than semiclassical analysis tools, multiplier
techniques allow one to prove bounds in situations that are inaccessible to semiclassical analysis,
e.g., when the scatterer or coefficients are not smooth. However, multiplier techniques typically
require more severe restrictions on the geometry of the scatterer (and truncation boundary, in the
case of Problem 2.2) than semiclassical analysis techniques5. Multiplier methods were first used
for wave problems by Morawetz in the 1960s for studying energy decay for the wave equation. See
[84] for an overview of this, and other aspects of Morawetz’s work and [212, Theorem 1.1] for the
connection between energy decay for the wave equation and a priori bounds on the Helmholtz
equation.

5One can choose more complicated multipliers to mitigate some of these restrictions, as in [156], but most of the
works we discuss below do not.
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Figure 2.2: An example of an impenetrable obstacle with a cavity containing trapped rays.

Situations in which to prove a priori bounds We now summarise the state of the field regarding a
priori bounds of the form (2.13), and especially the dependence of the constant C on k , A, n, and
D−. Some of these results are proved in the context of energy decay results for the time-domain
wave equation; for simplicity’s sake, we do not distinguish in our comments between these results,
and those proving bounds (2.13) directly. This section borrows heavily from the literature reviews
in [40, Section 1.1] and [105, Sections 1 and 2.4].

As noted above trapping behaviour can be caused either by the obstacle (either an impenetrable
obstacle D− or a penetrable obstacle, modelled by a jump in A and n) or by variations in the
medium, defined by heterogeneous A and n. For example, if an impenetrable obstacle D− contains
a cavity in which rays can be ‘trapped’, see, e.g., Figure 2.2, then trapping occurs. Similarly, if A
and n jump, modelling a penetrable obstacle, the jumps can cause rays to be trapped in a manner
analogous to the concept of total internal reflection.

This review will focus mainly on scattering induced by inhomogeneities in the medium, as
this setting is the main concern of the results in Theorems 2.6 and 2.7 above (where the scatterer
is assumed to be star-shaped). This is also the setting of the corresponding stochastic results
in Chapter 3, where the medium is stochastic, and not the boundary of the scatterer. For an
overview of results around impenetrable obstacle scattering, where C can grow logarithmically,
polynomially, or exponentially in k depending on the scatterer, we refer the reader to the recent
literature reviews in [40, Sections 1.1 and 1.3].

The ‘worst case’ a priori bounds In the worst case, when A, n, and D− are trapping, the constant
C can depend exponentially on k; i.e.,

C =C1 exp(kC2), (2.16)

for some constants C1 and C2 depending on D−, A, and n. This worst case bound was proved
for a general impenetrable obstacle and A being C∞ (with n = 1) by Burq [33] and for a for
penetrable obstacle (defined by A and n, jumping across a shared C∞ interface) by Bellasoued
[21]. This worst case bound was proved for trapping by the medium when A = I and n is a
Lipschitz perturbation of 1 by Shapiro [196].

Moreover, the bound (2.16) is sharp. This was shown to be sharp through a sequence of
wavenumbers by Betcke, Chandler-Wilde, Graham, Langdon, and Lindner in [23, Equation 2.22].
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For Problem 2.1 with constant media and an impenetrable scatterer whose boundary contains a
certain part of an ellipse, they found a sequence (km)m∈N (with corresponding solutions um and
right-hand sides fm of (2.3)) such that

k‖um‖L2(D+) ¦ exp(γkm)‖ fm‖L2(D+),

for some γ > 0. Similarly, Popov and Vodev [178] used semiclassical analysis techniques to prove
the existence of a sequence km such that the growth in ‖um‖L2(D+) is superalgebraic for scattering
by a penetrable obstacle (given by A= I , and n jumping downwards across a C∞ interface).

However, the recent works [36, 152, 134] have shown that the exponential growth of C (2.16)
is realised at very few frequencies. Moiola and Spence [152] provided numerical evidence (for
the transmission problem through a sphere) that the realisation of super-algebraic growth is very
sensitive to the value of k. More rigorously, Capdeboscq [36] obtained k-independent bounds
for a penetrable circular obstacle in 2-d after excluding a small set of frequencies; and Lafontaine,
Spence, and Wunsch [134] used microlocal analysis techniques to show that one can exclude a set
of frequencies of arbitrarily small measure, and then obtain merely algebraic growth of C .

‘Nontrapping’ a priori bounds In contrast to the results above, in the best case the constant C
in (2.13) has the same k-dependence as in Theorem 2.6, i.e., C ∼ 1 for all k ≥ k0. These ‘best
case’ results hold in a wide variety of settings, that we outline below, and in a slight abuse of
terminology, we call all of these settings nontrapping. This is a slight abuse of terminology as for
nonsmooth A, n, and D− we cannot always define ‘nontrapping’ in the sense of rays given above.
In what follows, unless otherwise specified, the boundary conditions on impenetrable obstacles
are Dirichlet boundary conditions.

In the full-space problem (i.e., Problem 2.1) when A, n, and D− are smooth, bounds with
C ∼ 1 are proved with semiclassical analysis techniques by using (a) Melrose and Sjöstrand’s results
on propagation of singularities [150] combined with either (i) Vainberg’s paramatrix argument
from [211], or (ii) Lax–Phillips theory [136] or (b) Burq’s defect measure argument [34]. An
explicit value for C is given in [83].

For the full-space problem where A and n are not smooth, one typically uses multiplier
techniques. These techniques were introduced by Morawetz and her collaborators in the 1960s
and 1970s, who obtained bounds with C ∼ 1 for a variety of obstacle types [153, 155, 154, 156]
in constant media. Multiplier techniques were also used to prove bounds with C ∼ 1 by Bloom
and Kazarinoff [24, 25] and Perthame and Vega [177] when A or n are not compactly supported
and not C∞, but decay sufficently quickly at infinity, and posses sufficiently many derivatives for
multiplier techniques to be used. Graham, the author of this thesis, and Spence also used multiplier
techniques for a certain class of A and n possessing first-order derivatives (see Theorem 2.6 and
[105]. In general whilst multiplier techniques do not work over the full range of nontrapping
obstacles6, they allow one to conclude bounds when A, n, and D− are less than C∞.

6An exception is in [154], where the condition placed on the obstacle in [154, Equation (1.3)] is shown later in that
paper (see [154, Equation (1.3a)]) to be equivalent to nontrapping in two dimensions.
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For the full-space problem where A and n jump (i.e. are discontinuous), it was proved that
C ∼ 1 for Problem 2.1 by Cardoso, Popov, and Vodev [37, 179] using semiclassical analysis
techniques when A= I and n jumps up across a strictly convex, smooth boundary; and by Moiola
and Spence [152] using multiplier techniques when both A and n jump, under assumptions on
the jumps. Also, Theorem 2.6 and its related extensions discussed in Remark 2.8 prove C ∼ 1 for
Problem 2.1 in a variety of situations, including when A and n jump.

For the truncated problem, i.e., Problem 2.2 or the IIP (Problem 2.2 with D− = ;) a bound
with C ∼ 1 is proved using semiclassical analysis techniques by Baskin, Spence, and Wunsch for
the IIP with A = I and n = 1 when ΓI is C∞ in [17]7. Bounds for the case A = I and n = 1
(but with a scatterer D− and/or less smoothness on ΓI were proved by Melenk [147], Cummings
and Feng [52], and Hetmaniuk [115]. Recently, similar bounds for the PML problem, that is,
Problem 2.1 truncated with a perfectly matched layer have been obtained by Li and Wu [139] (for
no obstacle) and Chaumont-Frelet, Gallistl, Nicaise, and Tomezyk (for a star-shaped impenetrable
obstacle) [46].

For the truncated problem with variable, possibly jumping, media, multiplier techniques
have been used to prove bounds with C ∼ 1 in a variety of recent work. Feng, Lin, and Lorton
[80] proved a bound for random media (although the techniques in their proof are, in essence,
for deterministic media), under the k-dependent assumption that A = I and n = 1+ η, with
η a random field and ‖η‖L∞(D) ® 1/k almost surely. Brown, Gallistl, and Peterseim proved a
bound in [30], under conditions related to, but more restrictive than, those in [105]. Barucq,
Chaumont-Frelet and Gout [16] proved a bound for 2-D piecewise-constant media, under a
suitable condition on n. Graham and Sauter [99] took a very similar approach to [105], proving
a bound for heterogeneous media when A= I under conditions on n that are analogous to those
in [105]. In related results, for the 1-dimensional Helmholtz equation in heterogeneous media,
Chaumont-Frelet [43, Section 2.1.5, Theorem 3] used multiplier methods with specially-chosen
test functions to show a bound for piecewise constant media, under assumptions on the media that
limit the number of ‘pieces’. Sauter and Torres [190] used properties of the 1-dimensional Green’s
function to prove a bound for the 1-dimensional Helmholtz equation in piecewise-constant media
with arbitrarily many ‘pieces’, and with C independent of k, but dependent on the number of
pieces. Also, all of the results proved in [105] for Problem 2.1 have analogues for Problem 2.2.

Finally, we note that there is a small collection of work with k growing polynomially in k.
For the IIP with general Lipschitz boundary, Spence [199] used bounds on layer potentials to
show

‖u‖H 1
k
(D) ® k‖ f ‖L2(D)+ k

1
2 ‖gI‖L2(ΓI )

,

building on work by Esterhazy and Melenk [73] and Feng and Sheen [76]. Ohlberger and Verfürth
[163], studied the case where n = 1, A is heterogeneous and scalar-valued, and the heterogeneity
is given by many small inclusions. They proved a bound with C ∼ k3 in this case. We suspect
that both of these bounds are not sharp in their k-dependence, and that future work may improve
the estimates of C in these cases.

7And these arguments can be generalised to certain classes of heterogeneous coefficients, see [17, Remark 5.6].
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Remark 2.9 (Bounds explicit in the parameters). As stated previously, bounds on the heterogeneous
Helmholtz equation that are explicit in all parameters of interest (such as k, A, and n) are crucial for
proving k-explicit bounds on the corresponding stochastic Helmholtz equation; such bounds on the
stochastic Helmholtz equation are the subject of Chapter 3. We observe in passing that of the works
we described above, the only ones that have bounds explicit in all the parameters of interest are those
of Moiola and Spence [152]; Galkowski, Spence, and Wunsch [83]; and Graham, the author of this
thesis, and Spence [105].

2.3 T H E T H E O RY O F T H E h - F I N I T E - E L E M E N T D I S C R E T I -
S A T I O N O F T H E H E L M H O LT Z E Q UAT I O N

We now shift our attention to the numerical analysis of the Helmholtz equation in heterogeneous
media; in particular, we study the conforming finite-element method for the Helmholtz equation.
We first state the variational formulations of the Helmholtz equation, define the finite-element
method, and recall results on the approximation properties of finite-element spaces. We then prove
our main result, error bounds for the finite-element method for the heterogeneous Helmholtz
equation, where the bounds hold for arbitrary (fixed) degree finite elements, and are explicit in A
and n in a sense made clear in Section 2.4 below.

2.3.1 Variational formulations for the Helmholtz equation

The finite-element method is based on the variational formulation of the Helmholtz equation;
for simplicity of exposition, we state the variational formulation of Problems 2.1 and 2.2 in the
case gD = 0, although these can be generalised to the case gD 6= 0.

Problem 2.10 (Variational formulation of EDP when gD = 0). Let D+,A, n, and f be as in
Problem 2.1. Choose R> 0 such that supp f , supp(I −A), supp(1− n)⊂⊂ BR, and define DR :=
D+ ∩BR.

We say u ∈H 1
0,D(DR) satisfies the variational formulation of the exterior Dirichlet problem

with gD = 0 if
a(u, v) = L(v) for all v ∈H 1

0,D(DR),

where
a(w, v) :=

∫

DR

�

(A∇w) · ∇v − k2n wv
�

− (TRγRw,γRv)ΓR (2.17)

and
L(v) :=

∫

DR

f v, (2.18)

where TR : H 1/2(ΓR)→H−1/2(ΓR) is the Dirichlet-to-Neumann map for the homogeneous Helmholtz
equation ∆u + k2u = 0 combined with the Sommerfeld radiation condition in the exterior of BR;
and (·, ·)ΓR is the duality pairing on ΓR.

Lemma 2.11 (Equivalence of formulations for the EDP). Problems 2.1 and 2.10 are equivalent
in the following sense. If u ∈H 1

loc

�

D+
�

solves Problem 2.1, then u
�

�

DR
∈H 1

0,D(DR) and u
�

�

DR
solves



2.3. FE THEORY FOR THE HELMHOLTZ EQUATION 39

Problem 2.10 (for R as in Problem 2.10). Conversely, if u ∈H 1
0,D(DR) solves Problem 2.10, then u

solves Problem 2.1, if u is extended to H 1
loc

�

D+
�

by the solution of the exterior Dirichlet problem (in
the exterior of DR) for the homogeneous Helmholtz equation with the Sommerfeld radiation condition
(with Dirichlet data γ u on ∂ BR).

For a proof of Lemma 2.11, see [105, Lemma 3.3].

Problem 2.12 (Variational formulation of TEDP when gD = 0). Let D ,A, n, f , and gI be as in
Problem 2.2. We say u ∈ H 1

0,D(D) satisfies the variational formulation of the truncated exterior
Dirichlet problem with gD = 0 if

aT (u, v) = LT (v) for all v ∈H 1
0,D(D), (2.19)

where
aT (w, v) :=

∫

D

�

(A∇w) · ∇v − k2n wv
�

− i k(γI w,γI v)ΓI (2.20)

and
LT (v) :=

∫

D
f v +(gI ,γI v)ΓI

Lemma 2.13 (Equivalence of formulations for the TEDP). Problems 2.2 and 2.12 are equivalent,
i.e., u ∈H 1

0,D(D) solves Problem 2.2 if, and only if, u solves Problem 2.12.

For a proof of Lemma 2.13, see [105, Lemma A.7].

2.3.2 Background concepts in finite-element theory

We now give a brief summary of elementary concepts in finite-element theory. For brevity, we
focus only on those concepts that we need to prove the new error bounds for finite-element
discretisations of the Helmholtz equation in Theorem 2.39 below. We denote the spatial domain
by D .

Throughout this thesis, we will assume that our finite-element space is defined on a conforming
triangulation of simplices in the sense of Ciarlet [48, Paragraphs (FEM1) p. 61 and (Th5) p. 71]
which we now recall.

Definition 2.14 (Conforming triangulation of simplices). We say that T is a conforming trian-
gulation of simplices over D (or simply triangulation) if D is subdivided into a finite number of
simplices T ∈ T such that

1. For each T ∈ T , the set T is closed and the interior �T is nonempty and connected.

2. The equality
D =

⋃

T∈T
T

holds.

3. For each T1 6= T2 ∈ T , we have �T1 ∩ �T2 = ;.



40 CHAPTER 2. PDE AND FE THEORY

4. For any T1 ∈ T , any face of T1 is either a subset of ∂ D of a face of a different simplex T2 ∈ T .

We also define the mesh size of a triangulation.

Definition 2.15 (Mesh size). The mesh size of a triangulation T is given by

h :=max
T∈T

diamT .

We will frequently denote a triangulation with mesh size h by Th .

Having defined a triangulation, we are in a position to define the finite-element spaces that we
will consider throughout this thesis.

Definition 2.16 (Finite-element space). Let Th be a triangulation of D , and let p ≥ 1 be an integer.
We let Vh, p be the set of continuous piecewise-polynomials of degree p on Th , i.e.

Vh, p :=
�

vh ∈C 0(D) : for all T ∈ Th , vh
�

�

T is a polynomial of degree at most p
	

.

Remark 2.17 (Do Th and Vh, p exist?). Observe that one can only construct a triangulation Th of
D if D is a polyhedron (since ∂ D must be the union of faces of simplices).

However, if D is not a polyhedron (for example, if D is Lipschitz, or D is smooth), then one cannot
construct a triangulation Th , and therefore cannot construct Vh, p . The solution to this problem is
to modify the elements near to the boundary, using, e.g., isoparametric finite elements. When using
isoparametric finite elements, the reference element is mapped to elements near the boundary using
finite-element functions of degree p, instead of using affine functions (as for standard finite elements).
The result of this higher-order mapping is that one constructs an approximation of D, such that the
distance from boundary of the approximation to ∂ D is O

�

h p+1
�

(see, e.g., [29, Section 4.7]). One
can then construct a finite-element space on this ‘curved’ mesh, although this finite-element space will
still be nonconforming (i.e., Vh, p 6⊂H 1(D)), and so one must analyse the resulting nonconforming
error, as in, e.g., [29, Section 10.4].

However, in this thesis, we do not work with isoparametric finite elements, because:

• The analysis of isoparametric finite elements is standard (see, e.g.8, [29, Section 10.4]) and would
complicate the presentation of our main results on the h- and k-dependence of the finite-element-
error bounds. Moreover, a similar approach is taken in other literature on the h-finite-element
method for the Helmholtz equation, see, e.g., [59, Top of p.785] and [135, Top of p.5].

• The only properties of Vh, p that we use are the existence of a best approximation (see Lemma 2.22
below) and the existence of an inverse inequality (see Lemma 2.71 below). Since one can prove
an analogous best approximation result for isoparametric finite elements (see, e.g., [29, Theorem
4.7.3]), and we expect one can also prove an analogous inverse inequality (c.f. the proof of
the standard inverse inequality in [29, Section 4.5] with the definition of isoparametric finite
elements in [29, Section 4.7]), we expect that our original results in Section 2.4.1 below will
also hold in the case of isoparametric finite elements.

8Although [29, Section 10.4] works with the stationary diffusion equation, rather than the Helmholtz equation.
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Therefore, throughout this thesis, we make the following assumption on our triangulations and
finite-element spaces, for any spatial domain D arising in this thesis.

Assumption 2.18 (Conforming triangulation and subspace). We work with a family of triangu-
lations (Th )h>0 and their corresponding finite-element spaces

�

Vh, p

�

h>0
, where for any h > 0, Th

is a triangulation of D (in the sense of Definition 2.14), and Vh, p as defined in Definition 2.16 is a
subspace of H 1(D).

Throughout this thesis, we only consider the h-finite-element method, i.e., the degree p of
the polynomials associated with the space is assumed fixed, and we consider refining h. This is in
contrast to the p-finite-element method, where h is fixed and p is increased, and the h p-finite-
element method, where h is decreased and p is increased according to some rule. Throughout
this section we use ‘finite-element method’ to refer to the h-finite-element method.

Remark 2.19 (Why not consider the h p-finite element method?). h p-finite-element methods for
the homogeneous Helmholtz equation were analysed by Melenk and Sauter in [148, 149], who showed
that the h p-finite-element method is quasi-optimal if k h/p is sufficiently small, and p ¦ 1+ log(k)
(i.e., we take p growing logarithmically with k, and a ( p-dependent) fixed number of points per
wavelength). Such methods can be very effective; the error for such methods can converge exponentially
with respect to the number of degrees of freedom (see, e.g., [194, Theorem 4.51]). However, their
analysis relies on a fully p-explicit analysis of the best approximation error of the Helmholtz equation
in h p-finite-element spaces; such analysis is currently not available for the heterogeneous problem.
Moreover, in practical applications one often works with fixed p, since implementing higher-order
finite-elements can be challenging. Therefore it is still of interest to analyse the h-finite-element method.

With the concept of a finite-element space established, we can now define the finite-element
approximation to the variational problems Problems 2.10 and 2.12.

Problem 2.20 (Finite-element approximation of Problem 2.12). Find uh ∈Vh, p such that

aT (uh , vh ) = LT (vh ) for all vh ∈Vh, p . (2.21)

We say that uh is the finite-element approximation of u (the solution to Problem 2.12). The
finite-element approximation of Problem 2.10 is defined analagously.

To state an approximation bound for Vh, p , we first need to define the notion of a shape-regular
mesh.

Definition 2.21 (Shape-regular). For h > 0 and τ ∈ Th , let Bτ be the largest ball contained in τ.
The mesh family (Th )h>0 is shape-regular if there exists ρ > 0 such that for all h > 0 and for all
τ ∈ Th

diamBτ ≥ ρdiamτ.

The following lemma shows how the approximation properties of the space Vh, p depend on
h and p:
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Lemma 2.22 (Existence of approximation). Let the mesh family (Th )h>0 underlying
�

Vh, p

�

h>0
be

shape-regular. Let v ∈H m(D), m ≥ 1, and p ∈ {1, . . . , m}. Then there exists a constant CBA,m > 0
independent of v and evh, p ∈Vh, p such that





v − evh, p







L2(D)
≤CBA,m h s‖v‖H s (D)

and




v − evh, p







H 1(D)
≤CBA,m h s−1‖v‖H s (D)

for 1≤ s ≤min{p + 1, m}.

For a proof of Lemma 2.22 see, e.g., [29, Theorems 4.4.4 and 4.4.20 and Remark 4.4.27].

2.3.3 Discussion of the finite-element method for the Helmholtz equation

We now discuss three possible properties of the h-finite-element method for the Helmholtz
equation that we wish to investigate:

• The relative error
‖u − uh‖H 1

k
(D)

‖u‖H 1
k (D)

is bounded,

• The error ‖u − uh‖H 1
k
(D) is bounded in terms of norms of the data f and gI , and

• The finite-element method is quasi-optimal, ‖u − uh‖H 1
k
(D) ® inf

vh∈Vh, p

‖u − vh‖H 1
k
(D),

with a hidden constant independent of k and h.
The key question we ask is: What mesh conditions lead to each of the three properties above?

(I.e., how must one refine h as k increases in order for the finite-element method to satisfy each of
the three properties above?)

We will now summarise the state of the literature regarding each of the three properties above.
We will:

1. Define each of the three properties formally,

2. State the sharpest results known in the literature,

3. Give a complete overview of all results in the literature concerning the three properties,
and

4. Give a detailed discussion of proof techniques for each of the three properties.

Regarding Items 2 and 3: there is not a complete overview of all of these three properties
anywhere in the literature. Moreover, research interest in these three properties has recently
increased (e.g., the recent papers [44, 46, 45, 139] are all concerned with one or more of these
properties, and have all been completed within the last two years), and so we believe it will be
helpful and timely to provide a complete overview of the state of the literature. Regarding Item 4:
although the different proof techniques are related, we do not know of anywhere in the literature
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where these techniques are expounded, compared, and contrasted. We therefore hope that such a
review will be valuable for the research community.

Intuition for fixed number of points per wavelength Before discussing the three properties listed
above, we first give a brief discussion of the commonly-used heuristic ‘take a fixed number of points
(or elements) per wavelength’. Recall from Section 1.1.2 that if one takes the mesh size in the finite
element method h ∼ 1/k, then one expects that the interpolation (or best approximation) error
is bounded uniformly in k. More rigorously, as solutions of the Helmholtz equation typically9

have ‖u‖H 2(D) ∼ k , one can bound the H 1-norm of the interpolation error independently of k if
h ∼ 1/k using Lemma 2.22:





u − euh, p







H 1(D)
® h‖u‖H 2(D) ® hk ∼ 1.

As explained in Section 1.1.2, this restriction ensures there are a fixed number of discretisation
points per wavelength of the solution, since the wavelength λ= 2π/k .

An alternative motivation for taking h ∼ 1/k is the Nyquist–Shannon sampling theorem
(proved by Shannon in his seminal paper in information theory [195, Theorem 1]). The theorem
states that any function v (in 1-d) whose Fourier transform lies inside [−k , k], for some k > 0,
is completely determined (via its Fourier series) by the point values v(0), v(±µ), v(±2µ), . . .,
for any µ < 1/(2k). Observe that k is then the highest frequency present in v. That is, if we
interpolate v at points spaced less than λ/(4π) = 1/(2k) apart, where λ= 2π/k is the wavelength
associated with oscillations of frequency k, we can reconstruct v from its Fourier transform. See,
e.g., [9, §5.21] for an explicit formula for reconstructioning v . Therefore, in the 1-d case we may
reasonably expect that interpolating v with points spaced less than λ/(4π) apart will be a good
approximation of v , as the Nyquist–Shannon theorem suggests such a spacing of points ‘captures’
all of the oscillations in v.

Formal definition of the properties of the finite-element method above
These definitions may seem overly technical, however their technical definition is necessary
to capture the, at times, complicated behaviour of finite-element methods for the Helmholtz
equation. Whilst stating the definitions, we give some examples of what they mean for finite-
element discretisations of the Helmholtz equation. These definitions are based on, and developed
from, [55, Definition 2.3]. We define all of these properties for Problem 2.12 only, although one
could define them completely analogously for Problem 2.10.

In the following definitions, we consider Problem 2.12, and its discretisation Problem 2.20, as
parameterised by the wavenumber k , that is, we write u(k) for the solution of Problem 2.12 with
wavenumber k, and uh (k) for its finite-element approximation, the solution of Problem 2.20.

Definition 2.23 (hka -quasi-optimal). Given a > 0, we say that the h-finite-element method for the

9If f and gD are independent of k, and D is smooth enough, or a convex polygon, combining Theorem 2.6 and
standard elliptic regularity results, gives the fact that ‖u‖H 2(D) ® k, see, e.g., [86, Lemma 2.12].
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Helmholtz equation is hka -quasi-optimal if, given k0 > 0, there exist C1(k0),Cqo(k0)> 0 such that if

hka ≤C1,

then the Galerkin solutions uh (k) exist, are unique (for each k), and satisfy

‖u(k)− uh (k)‖H 1
k
(D) ≤Cqo inf

vh∈Vh, p

‖u(k)− vh‖H 1
k
(D),

for all k ≥ k0.

Definition 2.24 (
�

hka , hk b �-data-accurate). Given a, b > 0, we say that the h-finite-element method
for Problem 2.12 is

�

hka , hk b �-data-accurate if, given 0 < ε < 1, and k0 > 0, there exist C1(k0),
C2(ε, k0)> 0 such that if

hka ≤C1 (2.22)

and
hk b ≤C2, (2.23)

then the Galerkin solutions uh (k) exist, are unique (for each k), and satisfy

‖u(k)− uh (k)‖H 1
k
(D)

‖ f ‖L2(D)+ ‖gI‖H 1/2(ΓI )
≤ ε or

‖u(k)− uh (k)‖H 1
k
(D)

‖ f ‖L2(D)+ ‖gI‖L2(ΓI )
≤ ε (2.24)

for all k ≥ k0.
If a = b we say the h-finite-element method is hka -data-accurate.

To aid understanding of the above definition, we give the following illustrative example.

Remark 2.25 (Example achieving
�

hka , hk b �-data-accuracy). In [222, Corollary 4.2], Zhu and
Wu proved that if u is the solution of Problem 2.12, uh is the solution of Problem 2.20, k ≥ k0, and
h p+1k p+2 ≤C1, then

‖u(k)− uh (k)‖H 1
k
(D) ≤ eC2

�

h + h p k p + h2 p k2 p+1�
�

‖ f ‖L2(D)+ ‖gI‖H 1/2(ΓI )

�

(2.25)

for some k0,C1, eC2 > 0.
For 0< ε< 1, if we take

C2 =min







ε

3 eC2

k
2 p+1

2 p

0 ,

�

ε

3 eC2

k
1
2
0

�
1
p

,

�

ε

3 eC2

�
1

2 p







(2.26)

then the h-finite-element method is
�

hk (p+2)/(p+1), hk (2 p+1)/(2 p)�-data-accurate.
When hk (2 p+1)/2 p ≤C2, the first term in the minimum (2.26) ensures h ≤ ε/

�

3 eC2

�

, the second

term in (2.26) ensures h p k p ≤ ε/
�

3 eC2

�

, and the third term in (2.26) ensures h2 p k2 p+1 ≤ ε/
�

3 eC2

�

.
Therefore by (2.25) the bound (2.24) holds.

We choose this example to illustrate:
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• Many results in the literature have a 6= b ; here a > b .

• Often (as in this case) a > b . I.e., whilst the mesh constraint ‘hk b sufficiently small’ makes the
finite-element error small, the additional constraint ‘hka sufficiently small’ is more restrictive.

Definition 2.26 (
�

hka , hk b �-accurate). Given a, b > 0, we say that the h-finite-element method for
the Helmholtz equation is

�

hka , hk b �-accurate if, given 0< ε < 1, and k0 > 0, there exist C1(k0),
C2(ε, k0)> 0 such that if

hka ≤C1 (2.27)

and
hk b ≤C2, (2.28)

then the Galerkin solutions uh (k) exist, are unique (for each k), and satisfy

‖u(k)− uh (k)‖H 1
k
(D)

‖u(k)‖H 1
k
(D)

≤ ε (2.29)

for all k ≥ k0.

If a = b we say the h-finite-element method is hka -accurate.

Remark 2.27 (Why have two mesh conditions in Definitions 2.24 and 2.26?). Frequently a more
restrictive mesh condition is needed to show existence and uniqueness of a finite-element solution,
but once one has shown existence and uniqueness, the finite-element error can be bounded under a
less restrictive mesh condition. Therefore, as will be made clear in Section 2.3.4 below, the first mesh
conditions (2.22) and (2.27) are needed to show existence and uniqueness of the finite-element solution,
and the second mesh conditions (2.23) and (2.28) are needed to show that the finite-element error is
bounded.

To give some intuition behind the definition of hka -accuracy, we refer to Figure 2.3, where
we assume we have a hka -accurate finite-element method. Observe that if h is chosen to depend
on k so that hka is constant, then (after a pre-asymptotic phase), the relative finite-element error
is constant. However, if h is chosen so that hka2 is constant, where a < a2, then the relative finite-
element error decreases after a pre-asymptotic phase. This decrease is because the finite-element
mesh is being over-refined, and therefore all the terms in a finite-element error bound such as (2.29)
decrease with respect to k . Similarly, if h is chosen so that hka1 is constant, where a1 < a, then
the relative finite-element error increases after a pre-asymptotic phase, because the finite-element
mesh is being under-refined10. We note that intuition for

�

hka , hk b �-accuracy is more complex,
since one must also consider the criterion (2.27) for the existence of the finite-element solution.

10Observe that Figure 2.3 does not tell the whole story, since under hka -accuracy, one also requires hka to be
sufficiently small in order to guarantee that the finite-element solution uh (k) exists. Therefore, if we only have that
hka1 is sufficiently small, then we cannot guarantee the existence of uh (k). However, for the purposes of intuition, we
ignore this detail here.
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k

‖ u
(k
)−

u h
(k
)‖

H
1 k
(D
)

‖ u
(k
)‖

H
1 k
(D
) hka =C

hka1 =C

hka2 =C

Figure 2.3: A schematic of the expected behaviour of an hka -accurate finite-element method,
when hka1 =C , hka =C , and hka2 =C , for C > 0 chosen appropriately, where 0< a1 < a < a2.

Remark 2.28 (hka -Quasi-optimality implies (better than) hka -data-accuracy). Observe that, under
standard assumptions on u, if the finite-element method is hka -quasi-optimal, then it is hka -data-
accurate. We show this fact in the first order case, i.e., we take p = 1 and a = 2. We assume
‖u‖H 2(D) ≤ CH 2 k‖ f ‖L2(D) for some k-independent constant CH 2 > 0 (see, e.g., [86, Lemma 2.12]
for a setting in which this bound holds), and refer to Table 2.3 below for references for the fact that the
first-order finite-element method is usually hk2-quasi-optimal.

We show, in fact, that the finite-element method is
�

hk2, hk1
�

-data-accurate. If hk2 ≤C1 (where
C1 is given in the definition of hk2-quasi optimality), then

‖u − uh‖H 1
k
(D) ≤Cqo





u − euh, p







H 1
k
(D)

where euh, p is the approximation in Lemma 2.22,

≤Cqo

�




u − euh, p







H 1(D)
+ k





u − euh, p







L2(D)

�

≤CqoCBA,2

�

h‖u‖H 2(D)+ h2k‖u‖H 2(D)

�

by Lemma 2.22,

≤CqoCBA,2CH 2

�

hk + h2k2�‖ f ‖L2(D). (2.30)

Therefore, for ε ∈ (0,1) we define

C2(ε) =
1

CqoCBA,2CH 2

min
�

ε,
p
ε
	

.

Hence if hk2 ≤ C1 and hk ≤ C2, then ‖u − uh‖H 1
k
(D)/‖ f ‖L2(D) ≤ ε, i.e. the finite-element

method is
�

hk2, hk1
�

-data-accurate (and therefore if k ≥ k0 > 0 the finite-element method is
hk2-data-accurate, because hk ® hk2).

Observe, however, that the finite-element method is actually better than hk2-data-accurate,
because the finite-element error decreases as k increases. With the above choices for C1, C2, and h,
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from (2.30) we have

‖u − uh‖H 1
k
(D) ≤CqoCBA,2

�

C1

k
+

C 2
1

k2

�

‖ f ‖L2(D)→ 0 as k→∞.

I.e., because we only need hk sufficiently small to bound the interpolation error, but have taken
hk2 sufficiently small to ensure quasi-optimality, the finite-element error decreases as k→∞.

Remark 2.29 (Relationship between
�

hka , hk b �-accuracy and
�

hka , hk b �-data-accuracy).
The only difference between the definitions of

�

hka , hk b �-accuracy and
�

hka , hk b �-data-accuracy
is that in (2.29) the error is measured relative to the solution u, whereas in (2.24) the error is measured
relative to the ‘data’ f and gI . However, if an a priori bound such as (2.11) holds, then

�

hka , hk b �-
accuracy implies

�

hka , hk b �-data-accuracy, since ‖u‖H 1
k (D)
® ‖ f ‖L2(D)+ ‖gI‖L2(ΓI )

.

On the other hand, to conclude
�

hka , hk b �-accuracy from
�

hka , hk b �-data-accuracy, one would
need to show the physically realistic criterion

‖ f ‖L2(D) ® ‖u‖H 1
k
(D). (2.31)

However, in general (2.31) does not hold (as one can see by taking the unphysical solution u = e i k2xχ ,
where χ is a smooth cut-off function; in this case f = −

�

∆u + k2u
�

∼ k4, but ‖u‖H 1
k
(D) ∼ k2).

Therefore one cannot, in general, conclude
�

hka , hk b �-accuracy from
�

hka , hk b �-data-accuracy.

Remark 2.30 (The above conditions for heterogeneous problems). For a heterogeneous problem,
the constants C1,C2, and Cqo in Definitions 2.23, 2.24, and 2.26 will all depend on the coefficients A
and n. In general, this dependence is unknown. However, in Section 2.4 below we prove that the h-
finite-element method with polynomial degree p is hk (2 p+1)/(2 p)-data-accurate, where the dependence
of C1 and C2 on n is completely known.

Remark 2.31 (Generalisations of
�

hka , hk b �-data-accuracy). For discretisations of other Helmholtz
problems (e.g., full-space problems with no truncation boundary ΓI , or problems truncated with a
perfectlly matched layer (PML)), then the denominator in (2.24) should be adapted appropriately, e.g.,
the denominator should equal ‖ f ‖L2(D) for full-space problems and PML problems. In our discussion of
the literature below (which includes such problems), we will make such an adaption without comment.

Optimal mesh conditions for the finite-element method
We now provide a brief overview of the optimal values of a and b for

�

hka , hk b �-accuracy,
�

hka , hk b �-data-accuracy, and hka -quasi-optimality. By ‘optimal’, we mean the values of a and b
that are smallest, corresponding to the least restrictive conditions on the mesh size h. We also,
where possible, comment on whether these optimal conditions have been shown to be sharp.
The literature reviews in this, and the next, section draw heavily on the literature reviews in
[101, pp. 182–183] and [55, p. 112]. Unless otherwise stated, all the problems treated in this
literature review are nontrapping (in the wider sense discussed under ‘Techniques for proving
a priori bounds’ in Section 2.2.3), have constant coefficients, and have a impedance boundary
condition on at least part of the boundary.
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Remark 2.32 (h p-methods for the Helmholtz equation). We briefly mention the mesh conditions
one obtains for h p-finite-element methods, even though they are not the focus of this thesis. The
landmark results on h p-finite-element methods for the Helmholtz equation were achieved by Melenk
and Sauter [148, 149] who used a novel splitting of the solution of the Helmholtz equation (see the
comments at the start of Section 2.4.2 below) to show that the h p-finite-element method is quasi-optimal
if hk/p ≤ c1 and p ≥ c2ln(k) (for some constants c1, c2 > 0). Melenk and Sauter proved this result
for the full-space problem in [148] and for: (i) the exterior Dirichlet problem, and (ii) the interior
impedance problem in an analytic domain or a 2-d convex polygon in [149]. These results were
generalised to an arbitrary 2-d Lipschitz polygon by Esterhazy and Melenk in [73, Theorem 4.2]. Other
results in the literature for h p-finite-element methods are those of Zhu and Wu [222, Equation (1.7)]
who showed the h p-finite-element method for the Helmholtz equation is data-accurate11 provided

k h
p
≤C0

� p
k

�
1

p+1
,

where C0 > 0 is some constant.

�

hka , hk b �-accuracy In 1-d the h-finite-element method has been proved to be hk3/2-accurate for
first-order finite elements by Ihlenburg and Babuška in [119, Theorem 5 and Equation (3.25)] and
[118, Equation (4.5.15)]. For higher-order finite-elements (still in 1-d) they proved the h-finite-
element method is hk (2 p+1)/(2 p)-accurate in [121, Corollary 3.2] and [118, Theorem 4.27 and
Equation 4.7.41]. However, all the above results were only measured in the H 1 seminorm (and
so we are slightly abusing the notation of hka -accuracy here), and the higher-order results were
proved under the assumptions that f ∈H p−1(D), u ∈H p+1(D), and |u|H p+1(D) ∼ k p |u|H 1(D).

These hka -accuracy results were confirmed numerically (for p = 1) to be sharp by [119,
Figure 11] and [118, Figure 4.13], which showed that the relative error is bounded if h ∼ k−3/2

and by [118, Figure 4.10], which showed that the relative error is not bounded if h ∼ k−1.

These results were proved using the properties of the ‘discrete Green’s function’ for the
Helmholtz equation. This function was used to first prove an a priori bound on the finite-element
approximation of the solution, and the error bounds were then concluded from this a priori
bound. Furthermore, the higher-order proofs in [121, 118] showed the finite-element error was
bounded by |u|H p+1(D), and then used the fact that

|u|H p+1(D)

|u|H 1(D)
∼ k p (2.32)

to bound the finite-element error by |u|H 1(D), and hence conclude a bound on the relative error.
The relation (2.32) follows because the solution of the Helmholtz equation in 1-d is given by

Acos(k x)+B sin(k x) (2.33)

11We do not use the
�

hka , hk b
�

-accurate, etc., terminology for h p-methods, as it does not represent the interplay
between the polynomial degree p and the wavenumber k.
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(for some constants A and B).

As the discrete Green’s function is only known explicitly in 1-d, and because (2.33) only holds
in 1-d (and therefore one can, in general, only prove (2.32) in 1-d), the proofs of hka -accuracy
have not been extended to higher dimensions, although we conjecture they are true. The only
computational results for higher dimensions are those by Bayliss, Goldstein, and Turkel, who
observed in [18, Section 3, Tables 1–3] that, for low wavenumbers k ∈ (4.16,8.32) the relative
error for first-order finite-elements is bounded if h ∼ k−3/2, but is not bounded if h ∼ k−1.

�

hka , hk b �-data-accuracy The best results known to date are the same (in terms of a and b ) as
those for

�

hka , hk b �-accuracy, except results for
�

hka , hk b �-data-accuracy hold in higher dimen-
sions. In [59, Theorem 5.1, Corollary 5.2]Du and Wu essentially proved that the h-finite-element
method for the IIP is hk (2 p+1)/(2 p)-data-accurate for arbitrary (fixed) polynomial degree p and
d = 2 or 3, provided u ∈H p+1(D) (although this result can be shown for lower-regularity solu-
tions by combining [59, Theorem 5.1] with [59, Lemma 3.5]). This result was proved for the IIP
in d = 2 or 3 for p = 1 by Wu in [216]. We recall from Remark 2.29 that in physically realistic
cases where (2.31) holds,

�

hka , hk b �-data-accuracy implies
�

hka , hk b �-accuracy.

hka -quasi-optimality The best known result for hka -quasi-optimality for the Helmholtz equa-
tion is that the h-finite-element method is hk (p+1)/p -quasi-optimal. This was first proved for
p = 1 in 1-d by Aziz, Kellog, and Stevens in [6, Theorem 3.1] and Ihlenburg and Babuška in [119,
Theorem 3] and [118, Theorems 4.9 and 4.13], with [119, Figures 7-9] and [118, Section 4.5.4 and
Figures 4.11-4.12] showing this result is sharp in 1-d (although Ihlenburg and Babuška only work
in the H 1-semi norm). The result was proved for p = 1 and d = 2 for the IIP by Melenk [147,
Proposition 8.2.7], and for higher-order finite elements (for the full-space problem, IIP, and EDP)
by Melenk and Sauter in [148, Corollary 5.6] and [149, Theorem 5.8] respectively. This result was
shown for a PML problem by Chaumont-Frelet, Gallistl, Nicaise, and Tomezyk in [46, Theorem
5.1], and extended to a class of time-harmonic wave propagation problems by Chaumont-Frelet
and Nicaise in [45, Theorem 2.15], who showed that if the constant in the a priori bound (2.13)
grows like kα, then the h-finite-element method is hk (p+α+1)/p -accurate. They give numerical
experiments in [45, Figure 8] showing the sharpness of hk (p+1)/p -quasi-optimality for p = 1,2
for a heterogeneous IIP.

Link with dispersion error When computing on regular grids, one can mathematically analyse
the ‘dispersion error’ of the finite-element method for the Helmholtz equation; i.e., the difference
between the wavenumber of the true solution u (i.e., k) and the wavenumber of the approximation
uh . We mention briefly that Ainsworth analysed the dispersion error for the h p-finite-element
method for the Helmholtz equation and proved the dispersion error is of the order h2 p k2 p+1

[1, Equation (3.5)] (cited in [59, Remark 5.3(a)]). Observe that this is the same order as the
best-available results for hka -accuracy and hka -data-accuracy discussed above. Therefore, results
from finite-element error analysis and dispersion analysis both suggest that the error (measured
in a suitable sense in each case) is bounded if h2 p k2 p+1 is sufficiently small. See, e.g., [59, Remark
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5.3(a)] for more references on dispersion error analysis for the Helmholtz equation.

Remark 2.33 (Comparison with h p-finite-element methods). Observe that the optimal results
for higher-order finite elements become less stringent as p increases, i.e., the finite-element method is
hk (2 p+1)/(2 p)-data-accurate, and (2p + 1)/(2p) ↓ 1 as p→∞. Therefore, in the p→∞ limit, we
recover the mesh condition ‘hk is sufficiently small’; that is, a fixed number of points per wavelength
(recall the discussion on page 43 above).

Observe that the mesh condition ‘hk is sufficiently small’ implies that the number of degrees of
freedom in the resulting linear systems is of the order kd . This same scaling for the number of degrees
of freedom is obtained for h p-methods for the Helmholtz equation, see [149, Remark 5.9]. Therefore,
in the p→∞ limit, the number of degrees of freedom required for the h-finite-element method scales
optimally, as for the h p-finite-element method.

Complete summary of results in the literature
In Tables 2.1–2.3 we list all of the mathematical (as opposed to computational) results in the
literature for

�

hka , hk b �-accuracy,
�

hka , hk b �-data-accuracy, and hka -quasi-optimality. We list
these in chronological order, with any relevant comments in the ‘Notes’ column. The ‘Proof
technique’ column details the method used in the proof; see Section 2.3.4 below for an extended
discussion of these techniques. However, we now make a few general comments on the history
of these results.

Lack of coercivity Recall that proving quasi-optimality (or an error bound) for the finite-element
method for the Helmholtz equation is more difficult than for the stationary diffusion equation
(2.12). For the stationary diffusion equation, one immediately obtains quasi-optimality for any
mesh by Céa’s Lemma (and one then obtains that the relative error is bounded by Lemma 2.22).
We emphasise again that this result holds for any shape-regular mesh, with no restriction on h.

However, Céa’s Lemma relies on the coercivity of the sesquilinear form, and the sesquilinear
forms arising from standard discretisations of the Helmholtz equation are not coercive for large k.
Therefore, to prove quasi-optimality, one instead uses the so-called Schatz argument, a modification
of the standard Aubin–Nitsche duality argument12 However, using the Schatz argument, one
only obtains quasi-optimality under some k-dependent restriction on the mesh size h.

Quasi-optimality using the Schatz argument The Schatz argument was first used for problems
satisfying a Gårding inequality by Schatz [192] and first used for Helmholtz problems by Aziz,
Kellogg, and Stephens [6]. In [6] they proved that in 1-d the finite-element method for the
Helmholtz equation is hk2-quasi-optimal, and this result was extended to d = 2 by Melenk [147]
in his PhD thesis. However, the Schatz argument was first presented in the framework we use
below by Sauter [188, Section 2]. Observe that for large values of k , hk2-quasi-optimality and
the related mesh restriction ‘hk2 is sufficiently small’ is computationally prohibitive—it would
result in linear systems of size, e.g., 1012, for the Helmholtz equation with k = 100 in 3-d.

12First introduced by Aubin [5] and Nitsche [159] for coercive problems.
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Error bounds using elliptic projections Because of the severe mesh restrictions required for quasi-
optimality for Helmholtz problems, recent research efforts have been focused on directly proving
error bounds for the finite-element method. The key proof techniques are so-called elliptic
projection ideas; these ideas are at the heart of our results in Section 2.4 below, and are discussed
in more detail in Section 2.3.4 below. To our knowledge, the first use of elliptic projections to
prove error estimates for Galerkin approximations was by Wheeler13 [214, Theorem 3.1 ff.],
who proved bounds on the error for a nonlinear parabolic problem by splitting the error into
the error from an elliptic projection and the remaining error between the elliptic projection
and the Galerkin approximation. The idea of using elliptic projections for Helmholtz problems
was first introduced to prove error bounds for discontinuous Galerkin methods for Problem 2.2
by Feng and Wu [78, 79], and then used for standard finite-element methods (or closely-related
continuous-interior-penalty methods) beginning with the work of Wu and Zhu [222, 216].

2.3.4 Extended discussion of proof techniques for finite-element errors for the
Helmholtz equation

We now discuss in some detail the proof techniques used to obtain either
�

hka , hk b �-accuracy,
�

hka , hk b �-data-accuracy, or hka -quasi-optimality. We note that frequently quasi-optimality
results are refereed to as asymptotic error estimates, and accuracy or data-accuracy results (when
they are proved under weaker mesh constraints than asymptotic estimates) are referred to as
pre-asymptotic error estimates. This terminology is used because the mesh conditions to ensure
quasi-optimality are more restrictive than those for bounded error, and therefore they hold only
for smaller values of h.

For simplicity, our exposition below will assume that we are treating Problem 2.12 with ho-
mogeneous coefficients (i.e., A= I and n = 1) with gI = 0, and that the problem is nontrapping14,
and therefore in particular the solution u of Problem 2.12 is unique. Also, we suppress all of the
constants involved, instead opting to use® notation, where a ® b if a ≤C b , with C independent
of k and h. The new results we present in Theorem 2.39 consider heterogeneous problems that
may be trapping, and state all of the constants involved explicitly, at the price of being more
technical to state.

Comparison of the different classes of argument
We first briefly discuss the positive and negative points for each of the two classes of argument we
will outline below: (modified) duality arguments and error-splitting arguments.

The merits of duality arguments are their simplicity—we will state the arguments in their
entirety in this overview section. Moreover, the mesh conditions and error bounds one obtains
are completely h-, p-, and k-explicit. However, the main drawback of duality arguments (when
used to prove data-accuracy) is their lack of sharpness in the conditions imposed on h, see, e.g.,
the discussion in Remark 2.25 above.

13Mentioned in [145].
14Recall that we say that the problem is nontrapping if C in (2.13) is bounded independent of k , for k ≥ k0.
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�

hka , hk b �-accuracy Notes Proof technique

[119, Equation (3.25)]
�

hk1, hk
3
2

�

d = 1, unit interval,
u(0) = 0,

impedance boundary condition at 1
H 1 seminorm

Discrete Green’s function
(specific to d = 1)

[120, Theorem 4]
�

hk1, hk
3
2

�

d = 1, unit interval,
u(0) = 0,

impedance boundary condition at 1
L2 norm1

Discrete Green’s function
error splitting using interpolant

[121, Corollary 3.2]
�

hk1, hk
2 p+1

2 p

�

d = 1, unit interval,
u(0) = 0,

impedance boundary condition at 1
H 1 seminorm

Discrete Green’s function,
error splitting using interpolant

[118, Theorem 4.13 and equation (4.5.15)]
�

hk1, hk
3
2

�

d = 1, unit interval,
u(0) = 0,

impedance boundary condition at 1
H 1 seminorm

Discrete Green’s function

[118, Theorem 4.27 and equation (4.7.41)]
�

hk1, hk
2 p+1

2 p

�

d = 1, unit interval,
u(0) = 0,

impedance boundary condition at 1
H 1 seminorm

Discrete Green’s function,
error splitting using interpolant

1 Actually, [120, Theorem 4] only proves a bound on the L2-norm of the error in terms of the H 2-seminorm of the solution. However, when
d = 1, |u|H 2(D) ∼ k2‖u‖L2(D) and so one can conclude

�

hka , hk b �-accuracy.

Table 2.1: All the results in the literature on
�

hka , hk b �-accuracy for h-finite-element discretisations of the Helmholtz equation.
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�

hka , hk b �-data-accuracy Notes Proof technique

[58, Lemma 2.6] hk
3
2

d = 1, unit interval,
impedance boundary condition at both endpoints

Modified Schatz

[119, Theorem 5]
�

hk1, hk
3
2

� d = 1, unit interval, u(0) = 0,
impedance boundary condition at 1

Discrete Green’s function
error splitting using interpolant

[222, Corollary 4.2]
�

hk
p+2
p+1 , hk

2 p+1
2 p

�
d = 2,3, IIP, D smooth,

bounds obtained for h p-finite-element method,
so fully p-explicit

Modified Schatz

[216, Theorem 5.1] hk3/2 d = 2,3, IIP,
D a star-shaped polygon/polyhedron

Error splitting

[59, Corollary 5.2] hk
2 p+1

2 p d = 2,3, IIP, D smooth, star-shaped Error splitting

[44, Theorem 5.5]
�

hk
3+σ
1+α , hk3/2

�
d = 2, TEDP with re-entrant corners,

a priori bound grows like kσ , α ∈ (1/2,1)
related to strength of corner singularities

Modified Schatz

[139, Theorem 4.4
and Remark 4.5(iv)]

hk3/2 d = 1,2,3, full-space problem truncated with PML,
posed in a ball

Modified Schatz

[217, Lemma 3.3] hk3/2
IIP, D convex, n heterogeneous with

‖n− 1‖L∞(D ;R) ® 1/k, part of an argument for a
nonlinear heterogeneous Helmholtz problem

Error splitting

[46, Theorem 5.4]
�

hk
p+2
p+1 , hk

2 p+1
2 p

� d = 2, EDP truncated with PML,
posed in a ball

Modified Schatz

Table 2.2: All the results in the literature on
�

hka , hk b �-data-accuracy for h-finite-element discretisations of the Helmholtz equation.
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hka -quasi-optimality Notes Proof technique

[6, Theorem 3.1] hk2 d = 1 Schatz

[119, Theorem 3] hk2 d = 1, H 1 seminorm Schatz

[119, Corollary 2] hk2 d = 1, H 1 seminorm
Discrete Green’s function,

error splitting using interpolant1

[118, Theorems 4.9
and 4.13]

hk2 d = 1, H 1 seminorm,
[118, Theorem 4.9] is [119, Theorem 3]

Schatz and error splitting
using interpolant, respectively

[147, Proposition 8.2.7] hk2 d = 2, IIP, D smooth and star-shaped or convex Schatz

[148, Corollary 5.6] hk
p+1

p Full-space problem Schatz

[44, Theorem 5.3] hk2+σ d = 2, TEDP with re-entrant corners
a priori bound grows like kσ

Schatz

[46, Theorem 5.1] hk
p+1

p d = 2, EDP truncated with PML, posed in a ball Schatz

[45, Theorem 2.15] hk
p+α+1

p
Class of time-harmonic wave problems,

a priori bound grows at rate kα
Schatz

[99, Theorems 4.2 and
4.5, Remark 4.6(ii)]

hk2 IIP, D Lipschitz, star-shaped w.r.t. a ball,
n heterogenenous, constants fully explicit in n

Schatz

[83, Theorem 3] hk2 EDP, A and n heterogeneous, D−, A, and n C∞,
constants fully explicit in A and n

Schatz

1 Actually, [119, Corollary 2] proves quasi-optimality with contstant proportional to k if hk is sufficiently small.

Table 2.3: All the results in the literature on hka -quasi-optimality for h-finite-element discretisations of the Helmholtz equation.
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In contrast, the merit of error-splitting arguments is that they can give mesh conditions that
are sharp in their h-dependence; in [59], Du and Wu proved that the finite-element method is
hk (2 p+1)/2 p -data-accurate, i.e., the mesh restriction needed for existence and uniqueness of uh is
of the same order as the mesh restriction needed to bound the finite-element error uniformly in k .

However, the drawback of error-splitting arguments is their complexity. They involve proving
bounds on the solution of discrete Helmholtz problems; such bounds are complicated to prove,
especially in the higher-order cases, and the constants involved depend on the polynomial degree
p in highly complicated ways. These drawbacks limit the likelihood that such bounds can be
used for h p-finite-element methods, where the dependence on the polynomial degree must be
known explicitly.

(Modified) duality arguments

These arguments are used to prove quasi-optimality and data-accuracy results; they include the
more commonly known Schatz argument for Helmholtz problems. We first give the Schatz
argument (for proving quasi-optimality), before going on to outline modified Schatz arguments
(for proving data-accuracy).

Before we proceed we establish some notation that will enable us to discuss best approximation
errors for solutions of Helmholtz problems. We let S : L2(D)→ H 1(D) denote the solution
operator for Problem 2.12 with zero impedance boundary condition, and we let S † denote the
solution operator for the corresponding adjoint problem. That is, for any ef ∈ L2(D) and for all
v ∈H 1

0,D(D),

aT (S ( ef ), v) =
�

ef , v
�

L2(D)

and
aT (v,S †( ef )) =

�

v, ef
�

L2(D)
.

We next define the approximability constants:

η := sup
ef ∈L2(D)

inf
vh∈Vh, p





S ( ef )− vh







H 1
k
(D)







ef






L2(D)

(2.34)

and

η† := sup
ef ∈L2(D)

inf
vh∈Vh, p





S †( ef )− vh







H 1
k
(D)







ef






L2(D)

.

Observe that the definitions of η and η† imply that for all ef ∈ L2(D)

inf
vh∈Vh, p





S ( ef )− vh







H 1
k
(D)
≤ η







ef






L2(D)
(2.35)
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and
inf

vh∈Vh, p





S †( ef )− vh







H 1
k
(D)
≤ η†







ef






L2(D)
. (2.36)

We will use the bounds (2.35) and (2.36) in the Schatz and modified Schatz arguments below.

When dealing purely with the Schatz argument for quasi-optimality (as in [188, Section 2.2])
one only needs to consider the approximation of adjoint problems in the duality-argument step,
and hence one only needs η†. However, in our exposition of elliptic-projection-based arguments
below, we will also need to consider the approximation of standard Helmholtz problems, and
hence we introduce notation for both η and η†.

The Schatz argument for quasi-optimality The first step is to use the Gårding inequality (2.15)
satisfied by the Helmholtz equation to show that the error in the weighted H 1 norm is bounded
by the best approximation error, plus the error in the L2 norm15. We assume uh exists, and
observe that by the Gårding inequality (2.15) (with aT as in (2.20))

‖u − uh‖
2
H 1

k
(D) ≤ℜaT (u − uh , u − uh )+ k2‖u − uh‖

2
L2(D)

=ℜaT (u − uh , u − vh )+ k2‖u − uh‖
2
L2(D) by Galerkin orthogonality,

® ‖u − uh‖H 1
k
(D)‖u − vh‖H 1

k
(D)+ k2‖u − uh‖

2
L2(D), (2.37)

for any vh ∈Vh, p .

We now use a modified version of the standard Aubin–Nitsche duality argument to bound
‖u − uh‖L2(D) by η†‖u − uh‖H 1

k (D)
(and recall that η† can be made small). Let ξ ∈H 1

0,D(D) solve
the adjoint Helmholtz problem

aT (v,ξ ) = (v, u − uh )L2(D) for all v ∈H 1
0,D(D). (2.38)

Then, taking v = u − uh , we have

‖u − uh‖
2
L2(D) = aT (u − uh ,ξ ) (2.39)

= aT (u − uh ,ξ − vh ) by Galerkin orthogonality for u − uh , for any vh ∈Vh, p

® ‖u − uh‖H 1
k
(D)‖ξ − vh‖H 1

k
(D)

® ‖u − uh‖H 1
k
(D)η

†‖u − uh‖L2(D) by (2.36).

Cancelling a factor of ‖u − uh‖L2(D), we obtain

‖u − uh‖L2(D) ® η
†‖u − uh‖H 1

k (D)
. (2.40)

15Recall that for the stationary diffusion equation, one can show the finite-element error is bounded by the
approximation error simply using coercivity and boundedness of the bilinear form—this is Cea’s Lemma.
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Combining (2.37) and (2.40), we have

‖u − uh‖
2
H 1

k (D)
® ‖u − uh‖H 1

k
(D)‖u − vh‖H 1

k
(D)+

�

kη†�2‖u − uh‖
2
H 1

k (D)
,

and hence by cancelling a factor ‖u − uh‖H 1
k
(D) and taking the final term on to the left-hand side,

we obtain
‖u − uh‖H 1

k
(D) ® inf

vh∈Vh, p

‖u − vh‖H 1
k
(D) if kη† is sufficiently small. (2.41)

All results showing quasi-optimality for the Helmholtz equation (for different finite-element
spaces and different domains) can then be seen as simply obtaining estimates on η† in these different
scenarios; this literature is summarised in Table 2.3. For example, if p = 1, then one can show
η† ∼ hk , and hence we can conclude the first-order finite-element method is hk2-quasi-optimal.

We have just shown quasi-optimality under the assumption that uh exists. For proof of
existence, we follow the proof of [200, Theorem 5.21]. Via the rank-nullity theorem (since (2.21)
is equivalent to a finite-dimensional linear system) existence and uniqueness of uh are equivalent.
We now show uniqueness of uh . By linearity, uniqueness of uh is equivalent to showing uniqueness
of the solution of

aT (euh , vh ) = 0 for all vh ∈Vh, p ,

i.e., showing euh = 0. Clearly euh is a finite-element approximation of eu ∈H 1
0,D(D), where eu solves

aT (eu, v) = 0 for all vh ∈H 1
0,D(D).

Since our problem is assumed nontrapping, it follows that eu is unique, and hence eu = 0. Therefore
(2.41) becomes

‖euh‖H 1
k
(D) ® inf

vh∈Vh, p

‖vh‖H 1
k
(D) if kη† is sufficiently small. (2.42)

The right-hand side of (2.42) is 0, and therefore euh = 0. As outlined above, uniqueness of uh

follows and therefore uh exists and is unique.

Modified Schatz arguments for data-accuracy The main difference between the Schatz argument
and modified Schatz arguments is that modified Schatz arguments only prove a bound on the
finite-element error, rather than proving quasi-optimality. Modified Schatz arguments (and error-
splitting arguments, that we outline later) use the elliptic projection of a function. Therefore, we
first outline the definition and some properties of elliptic projections.

The elliptic projection of a function w ∈H 1
0,D(D) is the finite-element functionPh w that has

the same action as w on the finite-element space Vh, p with respect to a coercive and continuous
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sesquilinear form16; i.e.,Ph w is defined by

a?(vh ,Ph w) = a?(vh , w) for all vh ∈Vh, p ,

for some coercive and continuous sesquilinear form a?. For Problem 2.12, with sesquilinear form
given by (2.20), choices for a?(v1, v2) used in the literature are either

a?(v1, v2) = (∇v1,∇v2)L2(D), (2.43)

a?(v1, v2) = (∇v1,∇v2)L2(D)+(v1, v2)L2(D), (2.44)

or
a?(v1, v2) = (∇v1,∇v2)L2(D)− i k(v1, v2)L2(ΓI )

. (2.45)

These elliptic projections correspond to finding finite-element approximations of the solution of
the PDEs

∆w = F in D , (2.46a)

w = 0 on ΓD , and (2.46b)

∂νw = 0 on ΓI ; (2.46c)

∆w +w = F in D , (2.47a)

w = 0 on ΓD , and (2.47b)

∂νw = 0 on ΓI ; (2.47c)

or

∆w = F in D , (2.48a)

w = 0 on ΓD , and (2.48b)

∂νw − i kw = 0 on ΓI (2.48c)

respectively, where F is an appropriately chosen function. In the following exposition, we will
assume a? is given by (2.45), and to ease the exposition, we assume the solution of (2.48) is in
H 2(D). One can show in this case that the energy norm ‖·‖? corresponding to (2.45) is equivalent

16The definition of the elliptic projection depends on the exact sesquilinear form used in the discretisation of the
Helmholtz equation, and on the norm one is using to measure the error. For example, elliptic projection arguments
for the Helmholtz equation originated in the study of discontinuous Galerkin methods for the Helmholtz equation
(in [78, 79]); therefore the sesquilinear forms associated with the discretisation included penalty terms. These penalty
terms were incorporated into the sesquilinear form a? and the norms used to measure the error also included these
penalty terms. In the following exposition, we will work with standard finite-element discretisations of the Helmholtz
equation and standard Sobolev norms, and so the elliptic projections we used will be based on this setting.
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to the weighted H 1-norm ‖·‖H 1
k
(D), with equivalence constants independent of k, i.e.,

‖v‖? ∼ ‖v‖H 1
k
(D) for all v ∈H 1

0,D(D), (2.49)

by the multiplicative trace inequality (Theorem 2.57) and the Poincaré–Friedrich’s inequality
(Lemma 2.58). Since Ph is a Galerkin projection, one can show that in its energy norm , a? is
coercive and continuous17, and hencePh is quasi-optimal:

‖w −Ph w‖? ® inf
vh∈Vh, p

‖w − vh‖?. (2.50)

Also, by the Aubin–Nitsche duality argument (since a? is coercive),

‖w −Ph w‖L2(D) ® h‖w −Ph w‖?. (2.51)

Combining (2.50) and (2.51) is a modification of the Schatz argument above. We first adopt the
notation that, for v ∈H 1

0,D(D), the function Ih v ∈Vh, p is the function achieving the infimum
in (2.35). We assume uh exists, and start from (2.39), but instead of introducing an arbitrary
vh ∈Vh, p into the second argument, we instead introduce the elliptic projectionPhξ by Galerkin
orthogonality for u − uh :

‖u − uh‖
2
L2(D) = aT (u − uh ,ξ −Phξ )

= a?(u − uh ,ξ −Phξ )− k2(u − uh ,ξ −Phξ )L2(D) by (2.45),

= a?(u −Ih u,ξ −Phξ )− k2(u − uh ,ξ −Phξ )L2(D)

by Galerkin orthogonality for ξ −Phξ ,

® ‖u −Ih u‖?‖ξ −Phξ ‖?− k2(u − uh ,ξ −Phξ )L2(D)

® η‖ f ‖L2(D)‖ξ −Phξ ‖?+ k2‖u − uh‖L2(D)‖ξ −Phξ ‖L2(D) by (2.49) and (2.35),

® η‖ f ‖L2(D)η
†‖u − uh‖L2(D)+ k2‖u − uh‖L2(D)‖ξ −Phξ ‖L2(D)

by (2.50), (2.49), (2.38), and (2.36)

® ηη†‖ f ‖L2(D)‖u − uh‖L2(D)+ k2‖u − uh‖L2(D)hη‖u − uh‖L2(D) (2.52)

by (2.51), (2.50), (2.49), and (2.35).

Therefore if hk2η is sufficiently small, the second term on the right-hand side of (2.52) can be
absorbed into the left-hand side, and cancelling a factor of ‖u − uh‖L2(D), we obtain

k‖u − uh‖L2(D) ® kηη†‖ f ‖L2(D) if hk2η is sufficiently small. (2.53)

To obtain a bound on the error in the weighted H 1 norm, we put (2.53) into (2.37) to get

‖u − uh‖
2
H 1

k
(D) ® ‖u − uh‖H 1

k
(D)‖u − vh‖H 1

k
(D)+

�

kηη†�2‖ f ‖2L2(D),

17For comment on showing coercivity and continuity for the other definitions of a?, see Remark 2.62 below.
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and taking vh =Ih v, by (2.35) we have

‖u − uh‖
2
H 1

k (D)
® ‖u − uh‖H 1

k
(D)η‖ f ‖L2(D)+

�

kηη†�2‖ f ‖2L2(D),

We then obtain for any ε > 0 by Cauchy’s inequality (2.85)

‖u − uh‖
2
H 1

k
(D) ® ε‖u − uh‖

2
H 1

k
(D)+

1
ε
η2‖ f ‖2L2(D)+

�

kηη†�2‖ f ‖2L2(D). (2.54)

Taking ε sufficiently small, moving the first term on the right-hand side of (2.54) to the left-hand
side, and taking a square root, we obtain

‖u − uh‖H 1
k
(D) ®

�

η+ kηη†�‖ f ‖L2(D) if hk2η is sufficiently small. (2.55)

Finally, we conclude existence and uniqueness of uh using a similar argument to the one used
for the Schatz argument above, except now we use the bound (2.55) with f = 0 to conclude
uniqueness of euh .

By definition of η (2.35), the term η‖ f ‖L2(D) on the right-hand side of (2.55) is, up to a constant,
the best-approximation error for u (i.e., the error when one interpolates/quasi-interpolates u),
and the term kηη† is the pollution term arising from the numerical method.

Error-splitting arguments

The second class of arguments used in the literature are error-splitting arguments, used to prove
accuracy and data-accuracy results. In these arguments the finite-element error is split using the
elliptic projection of the solution u. To begin, we assume uh exists and make the observation that

u − uh = (u −Ph u)+ (Ph u − uh )

and therefore
‖u − uh‖H 1

k
(D) ≤ ‖u −Ph u‖H 1

k
(D)+ ‖Ph u − uh‖H 1

k
(D).

An error bound for u − uh can therefore be obtained by proving an error bound for the elliptic
projection error u −Ph u and proving a bound on the difference Ph u − uh . The former can
either be accomplished by showing quasi-optimality of the elliptic projection (as above) or by
proving such an error bound directly. The first approach is taken in [59, 46, 139], and the second
approach is taken in [78, Lemma 5.2]18. In [78, 79, 216] the bound on the elliptic projection error
is proved by observing that the sesquilinear form (∇v1,∇v2)L2(D) is coercive on H 1

0,D(D), and
then also controlling the additional term arising from the impedance boundary condition.

To bound the differencePh u − uh , one first shows that it solves a deterministic Helmholtz
problem: For any vh ∈Vh, p we have aT (u − uh , vh) = 0 and a?(u −Ph u, vh) = 0 by Galerkin

18Although the proof is only contained in [77, Lemma 5.2]), [79, Lemma 4.3], and [216, Lemma 4.2].
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orthogonality for u − uh and u −Ph u respectively19. Therefore

aT (Ph u − uh , vh ) = aT (Ph u − u, vh )+ aT (u − uh , vh )

= aT (Ph u − u, vh )

= a?(Ph u − u, vh )− k2(Ph u − u, vh )L2(D)

=−k2(Ph u − u, vh )L2(D),

that is,Ph u − uh solves the discrete Helmholtz problem

aT (Ph u − uh , vh ) =
�

ef , vh

�

L2(D)
for all vh ∈Vh, p , (2.56)

where ef =−k2(u −Ph u). One then uses this fact thatPh u − uh satisfies a discrete Helmholtz
problem to prove a bound on the differencePh u − uh directly.

All that remains to be discussed is how to prove the bound onPh u − uh , using the fact that
it solves the discrete Helmholtz problem (2.56). In [78, 79, 216] a discrete multiplier argument
is used to prove a bound onPh u − uh , reminiscent of the multiplier arguments used to prove a
priori bounds on Helmholtz problems in Section 2.2. In [59] an argument using higher-order
(discrete) norms is used in an argument conceptually similar to the modified duality arguments
above; this argument is the heart of the proof in Section 2.4 below. In essence the argument in
[59] reduces to showing the bounds

‖Ph u − uh‖L2(D) ®
�

h +(hk)p
�

‖u −Ph u‖H 1
k
(D)+

�

h p+1k2+ h2 p k p+2�‖Ph u − uh‖p−1,h

(2.57)
and

‖Ph u − uh‖p−1,h ® h2−p‖u −Ph u‖H 1
k
(D)+ k p−1‖Ph u − uh‖L2(D), (2.58)

where ‖·‖p−1,h is a discrete norm analogous to the Sobolev norm of order p − 1. The bounds
(2.57) and (2.58) are then combined (under the assumption that hk ® 1) to show

‖Ph u − uh‖L2(D) ®
�

h +(hk)p
�

‖u −Ph u‖H 1
k
(D)+

�

(hk)p+1+ h2 p k2 p+1
�

‖Ph u − uh‖L2(D),

and the final term can be absorbed into the left-hand side if h2 p k2 p+1 is sufficiently small.
When using the elliptic projection in such an error-splitting argument, there are therefore

two differences compared to the use of an elliptic projection in modified duality arguments:

1. One does not need the elliptic projection to be quasi-optimal (2.50), rather, one only needs
to bound the error ‖u −Ph u‖H 1

k
(D), where u solves a Helmholtz problem, in terms of

‖ f ‖L2(D).

2. The elliptic projection should be defined in the first argument, not the second, i.e.

aT (Ph u, vh ) = aT (u, vh ) for all vh ∈Vh, p . (2.59)
19For the arguments in this section, we define the elliptic projection in the first argument, see (2.59) below.
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2.4 N E W F I N I T E - E L E M E N T- E R R O R B O U N D S F O R T H E H E T-
E R O G E N E O U S H E L M H O LT Z E Q UAT I O N

We now prove our new error bounds for higher-order finite-element approximations of the
solution of the Helmholtz equation in heterogeneous media (Theorem 2.39 below)— we show
that (for nontrapping media) the finite-element method applied to Problem 2.2 is hk (2 p+1)/(2 p)-
data-accurate, with constants depending on the medium. Our results are a generalisation of results
proved by Du and Wu [59] for higher-order finite-element approximations of the Helmholtz
equation in homogeneous media; our results and proofs broadly follow those in [59], with the
main differences that:

1. We modify the proofs to cater for the heterogeneity of the coefficients, and

2. The dependence of our results on n is explicit.

In particular our results are explicit in n and k and are (in principle) explicit in A—see Remark 2.43
below for a discussion of why the results are not fully explicit in A. The only other result on
data-accuracy for heterogeneous Helmholtz problems are by Wu and Zou [217, Lemma 3.3] (see
Table 2.2), where they prove the h-finite-element method (with p = 1) is hk3/2-data-accurate in
the case A= I and ‖n− 1‖L∞(D ;R) ® 1/k . However, the mesh conditions and error bounds in
[217, Lemma 3.3] are not explicit in n.

The proofs of our results have many parts, and appear technical, largely due to the burden of
explicitly keeping track of all of the constants involved. However, in essence, the proof consists
of three ideas:

1. Decompose the error u−uh = (u−Ph u)+(Ph u−uh ), wherePh u is an elliptic projection
of u.

2. Bound the error u −Ph u using the fact thatPh u is a Galerkin projection.

3. Bound the errorPh u − uh in higher-order ‘discrete’ norms, using the fact thatPh u − uh

solves a discrete Helmholtz problem.

The structure of the remainder of this section is as follows. In Section 2.4.1 we state our new
finite-element-error bounds in Theorem 2.39. In Section 2.4.2 we prove a decomposition of the
solution that allows us to prove a higher-order analogue of Lemma 2.22. In Section 2.4.3 we
collect together some routine analysis results needed for our proofs. In Section 2.4.4 we prove
error bounds for a number of different Galerkin projections (including the elliptic projection)
that we use in subsequent proofs. In Section 2.4.5 we develop a notion of discrete derivatives
and discrete norms, and prove properties of these norms. These norms will allow us to define
higher-order discrete norms of functions in our finite-element space. Finally in Section 2.4.6 we
prove our main finite-element error bounds.
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2.4.1 Main result: new finite-element-error bounds

Recall that throughout this thesis we work under Assumption 2.18, i.e., we assume the spatial
domain D is triangulated exactly, and the finite-element space Vh, p is conforming; see the discus-
sion in Remark 2.17 above. Recall that under Assumption 2.18, if our mesh family (Th )h>0 is
shape-regular, then Lemma 2.22 on the existence of a best approximation in Vh, p holds.

Since we are using higher-order finite elements (which we assume are of degree p), the argu-
ments we use to obtain full convergence rates will require smoothness assumptions on A, n, and
the boundaries ΓD and ΓI . We also make simple assumptions on k , nmin, and ‖n‖L∞(D ;R) in order
to simplify our calculations. We first recall the definition of quasi-uniformity (c.f. [29, Definition
4.4.13]):

Definition 2.34 (Quasi-uniform). Let {Th}h>0 be a set of triangulations of D indexed by their mesh
size h. For each S ∈ Th , let BS denote the largest ball contained in S. If there exists ρ> 0 such that

min{diamBS : S ∈ T } ≥ ρh,

then {Th}h>0 is said to be quasi-uniform.

Assumption 2.35 (Assumptions for higher- p finite-element method bounds). Assume

• ΓD 6= ;,

• ΓD and ΓI are C p,1,

• Ai , j ∈C p−1,1
�

D
�

for all i , j , and

• n ∈H max{p−1,dd/2e+1}(D).

• Vh, p is defined on a quasi-uniform family of meshes.

The assumption ΓD 6= ; allows us to show the elliptic projection operator defined in (2.87)
below is well-defined (see Remark 2.62 below for a more detailed discussion). The regularity
assumptions on ΓD , ΓI , and A ensure that we can apply a shift theorem for a related stationary
diffusion equation up to order p − 1 (see Theorem 2.51 below). The assumption on n ensures
that for all m ∈ [0, p − 1] and for all v ∈H m(D), the product nv ∈H m(D) (see Theorem 2.55
below). However, observe that we make no additional assumptions on the data f and gI , and so
the solution u may not be smoother than H 2.

We make the following assumption on the solution of Problem 2.12. Recall that the adjoint
boundary-value problem of Problem 2.12 is the same as Problem 2.12, except (2.19) is replaced by

aT (v, u) = LT (v) for all v ∈H 1
0,D(D), (2.60)

see, e.g., [200, Section 4.2].
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Assumption 2.36. For any f ∈ L2(D) and gI ∈ L2(ΓI ), Problem 2.12 (and its adjoint) has a unique
solution u in H 2(D), and there exists Cstab > 0 (possibly dependent on A, n, and k) such that

k‖u‖L2(D)+ |u|H 1(D)+
1
k
|u|H 2(D) ≤CstabC f ,gI

, (2.61)

where
C f ,gI

:= ‖ f ‖L2(D)+ ‖gI‖L2(ΓI )
.

Remark 2.37 (One can derive Assumption 2.36 for the adjoint from Assumption 2.36 for Prob-
lem 2.12). Suppose Assumption 2.36 only holds for solutions of Problem 2.12, not its adjoint. Observe
that by taking complex conjugates of both sides of (2.60), we can write the adjoint problem (2.60) as:
Find eu ∈H 1

0,D(D) such that

a†
T (eu, v) = LT (v) for all v ∈H 1

0,D(D),

where
a†

T (w, v) =
∫

D

�

(A∇w) · ∇v − k2n wv
�

+ i k
∫

ΓI

γI w γI v.

Therefore, by Corollary 4.23 in Chapter 4 below, we see eu satisfies Problem 2.12 with right-hand
side LT (v) =

∫

D f v +
∫

ΓI
gI γI v. That is, eu satisfies Problem 2.12 with right-hand sides f and gI .

Therefore, by Assumption 2.36, eu exists, is unique, is in H 2(D) and satisfies (2.61), and hence all these
properties also hold for eu, i.e., for the adjoint problem.

Finally, we make the following assumption to simplify the proofs in this section. Assump-
tion 2.38 is by no means necessary, but greatly simplifies the proofs.

Assumption 2.38 (Assumptions for convenience of proofs). Assume: nmax := ‖n‖L∞(D ;R) ≥ 1,
k ≥ 1, nmin ≤ 1, hk ≤ 1, and Cstab ≥ 1.

Throughout this section, we adopt the following piece of notation.

nvar =
nmax

nmin
.

Our main result is the following theorem.

Theorem 2.39 (Error bound for higher-order finite-element approximation of the heterogeneous
Helmholtz equation). Let u be the solution of Problem 2.12. Under Assumptions 2.35, 2.36, and 2.38,
there exist constants CFEM,L2 ,CFEM,H 1 ,Ccond > 0, independent of h, k, and n, such that if

h ≤CcondC (n)C
− 1

2 p

stab
k−1− 1

2 p , (2.62)

then the finite-element solution uh of Problem 2.20 exists, is unique, and satisfies the error bounds

‖u − uh‖L2(D) ≤
�

h2+Cstabh(hk)p +C 2
stab(hk)2 p�CFEM,L2CL2(n)C f ,gI

and (2.63)
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‖u − uh‖H 1
k (D)
≤
�

h +Cstab(hk)p +C 2
stabk(hk)2 p�CFEM,H 1CH 1(n)C f ,gI

, (2.64)

where

C (n) =
�
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1
(Cerr(n)nvar)

1
2 (
� p−1

2

�

+1)n2
maxPp−2(n)

�− 1
2 p

,

CL2(n) =
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1
n5

varn−(p+1)
min (Cerr(n)nvar)

1
2 (
� p−1

2

�

+1)Pp−2(n)
2

+ Pp−2(n) (2.65)

and

CH 1(n) =max

¨

Pp−2(n),

�

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

�

CL2(n)
Pp−2(n)

− 1

�

+
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax

�

Pp−2(n),

CL2(n)− Pp−2(n)
«

,

where the function P j (x) is defined in (2.69) below, and the n-dependent constant Cerr(n) is defined
in (2.95) below.

The proof of Theorem 2.39 is on page 99 below.

Remark 2.40 (Theorem 2.39 is a higher-order result). At first glance, Theorem 2.39 appears not to
be a higher-order result, because the lowest-order terms in (2.63) and (2.64) are h2 and h, respectively.
However, we make two observations:

1. In general the solution u is only in H 2(D) (as in Assumption 2.36), and so we do not expect a typ-
ical higher-order error bound in h (involving h p+1 for ‖u − uh‖L2(D) or h p for ‖u − uh‖H 1

k
(D)).

2. The bounds (2.63) and (2.64) are higher-order bounds in h, in the sense that the lower-order
terms in h do not dictate the rate of convergence. For example, if one takes k(hk)2 p ∼ 1 (so that
(2.62) is satisfied and the final term in (2.64) is bounded) then for k large, h ∼ k−(2 p+1)/2 p � 1
and (hk)p ∼ k−1/2� 1. Therefore the dominant term in (2.64) (with regards to the magnitude
of the finite-element error) is the final term. (Moreover, if k(hk)2 p ∼ 1, then the magnitude of
the other terms decreases as k→∞.) One could perform a similar analysis for (2.63).

Corollary 2.41 (hk (2 p+1)/(2 p)-data-accuracy). Under the assumptions of Theorem 2.39, if Cstab ® 1
(i.e., Problem 2.2 is nontrapping), then the finite-element method is hk (2 p+1)/(2 p)-data-accurate (where
the constants C1 and C2 in Definition 2.24 depend on A and n).
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Whilst the calculations in this section are explicit in all the constants involved, these dependen-
cies are complicated and, to a large extent, unnecessary to understand the flow of the arguments.
Therefore, for ease of reference, the definition of all the constants in this section (which are
many-layered and interdependent) are given in Section 2.4.7; i.e., any constant introduced or
defined in Section 2.4 will be listed in Section 2.4.7. Also, for ease of reference, if a constant is
only used inside a proof (and not in the statement of a theorem, or similar) it will typically be
numbered using the equation number of its first appearance, similar to the approach in [42].

Discussion of new finite-element-error bounds in Theorem 2.39
Remark 2.42 (Relationship of new bounds to the work of Du and Wu). In [59]Du and Wu proved
that the h-finite-element method for the homogeneous Helmholtz interior impedance problem is
hk (2 p+1)/(2 p)-data-accurate. Our proof follows theirs, and achieves analogous results, see Corollary 2.41.
We note as above that our results and proof have the following modifications to those of Du and Wu
(the modifications listed in order of their impact upon the proof).

1. We prove bounds for heterogeneous coeffcients, whereas [59] only has bounds for homogeneous
coefficients. In particular, [59] uses the splitting argument of Melenk and Sauter (developed in
[148, 149]) to prove a bound on the interpolation error that is higher-order in h. However, such
a splitting argument only works in the homogeneous case, and so we instead use the recent work
of Chaumont-Frelet and Nicaise [45], who provide a similar splitting in the heterogeneous case.

2. Because we work with heterogeneous coefficients, in several places in the proof we must work
with n-weighted inner products and norms; see Remark 2.76 for more details on why n-weighted
inner products and norms are required.

3. We explicitly track all of the constants involved in the proof—our results are completely explicit
in n, and are in theory explicit in A (see Remark 2.43 below for information on the explicitness
in A).

4. We allow for the possibility that the Helmholtz problem is trapping—the constant Cstab appearing
in (2.62) may depend on k (as well as A and n). If the Helmholtz problem was nontrapping,
Cstab would be independent of k.

5. We assume the existence of a Dirichlet scatterer D−, as opposed to only considering the interior
impedance problem, where D− = ;.

Remark 2.43 (Why are the results not fully explicit in A?). The condition (2.62) and the bounds
(2.63) and (2.64) are not fully explicit in A, i.e. the constants Ccond,CFEM,L2 , and CFEM,H 1 may
depend on A. This dependence is because the constants in the shift theorem for the stationary diffusion
equation (Theorem 2.51 below) are not explicit in their A-dependence. In principle one can determine
this dependence (it is determined for a right-hand side in L2(D) and a solution in H 2(D) in [42,
Appendix A]).

Remark 2.44 (Why the appearance of nvar?). The quantity nvar = nmax/nmin appears in multiple
places in the definition of the n-dependent constants C (n),CL2(n), and CH 1(n). This appearance is
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mainly due to the fact that in multiple places in the proof of Theorem 2.39, we must convert from
working in an n-weighted norm to a standard norm, and then later convert back to an n-weighted
norm again.

This conversion is usually necessary because certain results (such as Theorems 2.51, 2.54, and 2.57
and Lemma 2.58) are only available in the literature in standard (non-n-weighted) norms, and so to
apply these results we must first transfer to non-n-weighted norms, apply the results, and then transfer
back. If one could prove these results for n-weighted norms (under sufficient smoothness conditions
on n) with constants that were completely explicit in n, then many of the instances of nvar could be
removed.

Remark 2.45 (Bounds not sharp in n). The n-dependence of the three constantsC (n),CL2(n), and
CH 1(n) is almost certainly not sharp, because

1. The proof of Theorem 2.39 is complicated, and involves recursively applying bounds on finite-
element functions (as in, e.g., the proof of Lemma 2.75, see (2.113) and (2.120)). These arguments
may well result in non-sharp n-dependence.

2. As described in Remark 2.44 above, many of the appearances of nvar in the constants C (n),
CL2(n), andCH 1(n) are purely due to changing to non-n-weighted norms, using results such as
Theorem 2.51, then changing back, and so it is possible that the dependence of these constants
on nvar (and therefore n) is not sharp. One could mitigate these appearances of nvar by proving
versions of, e.g., Theorem 2.51 in n-weighted norms, but it is not clear what n-dependence
would result.

Nevertheless, Theorem 2.39 is the first finite-element error bound for the heterogeneous Helmholtz
equation that is completely explicit in n.

Remark 2.46 ( p-dependence). To prove error bounds for h p-finite-element methods, one must know
explicitly how the error bounds (2.63) and (2.64) depend on p as well as h and k. Establishing the p-
dependence for our finite-element error bounds would be challenging, and moreover, the p-dependence
may not be sharp. It would be challenging because several of the constants in our argument depend on
p in unknown ways (although this dependence could, in principle, be determined); e.g., the constants
in Theorems 2.49, 2.51, 2.54, and 2.55 and Lemmas 2.56, 2.60, and 2.61. Moreover, even if one knew
the p-dependence of all these constants explicitly, the p-dependence may still not be sharp, for similar
reasons that the n-dependence of our results may not be sharp, as outlined in Remark 2.45 above.

Remark 2.47 (Special cases of n). In order to better understand the constants C (n),CL2(n), and
CH 1(n) it may be instructive to note their behaviour in the following three cases:

• If n = 1, then C (n) = 1,CL2(n) = 1, and CH 1(n) = 2.

• If either nmin is fixed, and nmax→∞, or nmax is fixed, and nmin→ 0, then C (n)→ 0, (i.e.,
the condition (2.62) becomes more restrictive), CL2(n) →∞, and CH 1(n) →∞ (i.e., the
right-hand sides of the error bounds (2.63) and (2.64) become larger).
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Remark 2.48 (Extension to different boundary conditions on ΓI ). As in [59, Remark 5.3(e)], we
remark that it is not obvious how to extend the proof of Theorem 2.39 to a Helmholtz problem with
an exact Dirichlet-to-Neumann (DtN) boundary condition on ΓI . In Lemmas 2.79 and 2.81 below one
must bound terms involving







eT θh







L2(ΓI )
= k‖θh‖L2(ΓI )

, where eT is the impedance approximation

to the DtN map TR, i.e., eT = i k. These bounds are achieved using Lemma 2.78, where we bound
‖θh‖L2(ΓI )

by higher-order discrete norms of θh and by the k-weighted H 1-norm of ρ. However,

a crucial part of the proof of Lemma 2.78 is the fact that one has the equality
�

eT θh ,θh

�

L2(ΓI )
=

ℑ
�

eT θh ,θh

�

L2(ΓI )
(see (2.130) below).

To replicate the proofs of Lemmas 2.79 and 2.81 for an exact DtN boundary condition, one would
need to bound terms involving ‖TRθh‖L2(ΓI )

. However, repeating the proof of Lemma 2.78 for an
exact DtN boundary condition only gives a bound on ℑ(TRθh ,θh )L2(ΓI )

. Therefore, it is at this stage
not clear how one can bound the terms on ΓI for an exact DtN boundary condition.

2.4.2 Decomposition of solution and best approximation bound

For the first part of the proof of Theorem 2.39, we prove a best approximation bound (Lemma
2.56 below) in Vh, p for the solution of the Helmholtz equation, via a decomposition of the
solution into functions of increasing regularity (Theorem 2.49 below). This technique was
developed by Chaumont-Frelet and Nicaise in [45], and we follow their presentation (although
we explicitly keep track of the constants involved at each point). Chaumont–Frelet and Nicaise
were motivated by the work of Melenk and Sauter (see [45, Section 7]) in [148, 149] who showed
for the homogeneous Helmholtz equation that the solution u can be decomposed as u = uH 2+uA ,
where uH 2 ∈H 2(D) but is not oscillatory (‖uH 2‖H 2(D) ® 1), and uA is analytic but is oscillatory
(‖uA ‖H m(D) ® k m+β for all m ≥ 0 and some β ∈ R, where β depends on the problem being
considered)20. Melenk and Sauter use their decomposition in [148, 149] to prove convergence
results for h p-finite element methods for the Helmholtz equation. Whilst the work of Melenk
and Sauter is very powerful, it is only valid for homogeneous media, and so Chaumont-Frelet
and Nicaise developed their technique to handle heterogeneous media.

Theorem 2.49 (Expansion of the solution of the Helmholtz equation). Under Assumptions 2.35
and 2.36, if u is the solution of Problem 2.2 or its adjoint then there exists uosc ∈ H p+1(D) and a
sequence u j ∈H j+2(D), j = 0, . . . , p − 2 such that

u = uosc+
p−2
∑

j=0

u j . (2.66)

Furthermore,




u j







H j+2(D)
≤Cexpansion, j P j (n)k

j C f ,gI
, (2.67)

20These results are proved with no obstacle and f given by a Dirac delta function in [148, Lemma 3.5] and for: (i) the
IIP with a bounded Lipschitz boundary that is either a 2-d polygon or analytic, or (ii) the EDP with an analytic scatterer,
in [149, Theorems 4.10, 4.20] respectively. In the former case the proof is under an assumption of a polynomial growth
of the a priori bound [149, Assumption 4.8], i.e., Cstab is a polynomial in k.
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and
‖uosc‖H p+1(D) ≤CoscCstabk pC f ,gI

, (2.68)

where

P j (n) =

(

1 j = 0,1

‖n‖H max{p−1,dd/2e+1}(D)P j−2(n)+ P j−1(n) 2≤ j ≤ p − 2,
(2.69)

where
‖n‖H max{p−1,dd/2e+1}(D) =max

¦

‖n‖H p−1(D),‖n‖H dd/2e+1(D)

©

.

The proof of Theorem 2.49 is on page 73 below.
Recall that Cstab and C f ,gI

are defined in Assumption 2.36. The constants Cexpansion, j and Cosc

are defined in Section 2.4.7. Theorem 2.49 is essentially just [45, Theorem 1] in the particular
case of a Helmholtz problem, but with the dependence on all the constants kept track of. The
results in [45] are stated for a wider class of time-harmonic wave propagation problems, but the
dependence on all of the constants is not made explicit. The main advantage of Theorem 2.49
is that it enables us to prove a higher-order best-approximation bound (Lemma 2.56 below) for
solutions of the Helmholtz equation, even though the solutions do not have high regularity.

Remark 2.50 (How oscillatory are the functions in Theorem 2.49?). Recall that a higher power of
k appearing in an a priori bound indicates that a function is more oscillatory. In (2.67) below, the
( j + 2)th-order norm of u j is of order k j (i.e., the power of k is two orders of magnitude less than
the order of the norm) whereas in (2.68) the (p + 1)st-order norm of uosc is of order k p (the power of
k is one order of magnitude less than the order of the norm). Therefore, in this sense, uosc is ‘more
oscillatory’ than u j .

In order to obtain bounds for high p, we require the following shift theorem:

Theorem 2.51 (Shift theorem). Under Assumption 2.35, for all integers l ∈ [0, p − 1] there exists a
constant CA,l > 0 (depending on A) such that if ef ∈H l (D) and egI ∈H l+1/2(ΓI ), then there exists a
unique eu ∈H l+2(D) such that eu solves

∇ · (A∇eu) =− ef , (2.70)

∂ν eu = egI , and (2.71)

γD eu = 0 (2.72)

and eu satisfies the bound

‖eu‖H l+2(D) ≤CA,l

�






ef






H l (D)
+ ‖ egI‖H l+1/2(ΓI )

�

. (2.73)

Proof of Theorem 2.51. The uniqueness and existence of eu (in H 1
0,D(D)) follows from the Lax–

Milgram theorem, as the variational formulation of (2.70)–(2.72) is bounded and coercive. The
proof of the higher regularity bounds uses standard elliptic regularity estimates in the interior
and near the boundaries ΓD and ΓI , and the work of the proof is combining these estimates. As a
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D−
ΓD

ΓI
Dint

eDint

Figure 2.4: A schematic of the sets Dint (between solid circles only) and eDint (between dotted
circles) from the proof of Theorem 2.51.

reference for these estimates we use [146, pp. 137-138]. By Assumption 2.35 we can apply these
estimates, as we have the necessary higher regularity of the coefficients and the boundaries ΓD
and ΓI .

To deal with the interior regularity and regularity near the boundary separately, we define
the following subsets of D : Dint, eDint, Dscat, and Dtrunc (see Figures 2.4–2.6 for a schematic) with
the following properties:

• Dint ⊂⊂ eDint ⊂⊂D ,

• ΓD ⊂Dscat

• dist(Dscat,ΓI )> 0

• ΓI ⊂Dtrunc

• dist(Dtrunc,ΓD )> 0

First applying interior regularity [146, Theorem 4.16] in eDint, we obtain the bound

‖eu‖H l+2(Dint)
≤Cint,A,l

�

‖eu‖H 1
�

eDint

�+






ef






H l
�

eDint

�

�

. (2.74)

Applying regularity up to the boundary for Dirichlet data [146, Theorem 4.18 (i)] in Dscat, we
obtain (as γD eu = 0)

‖eu‖H l+2(Dscat)
≤Cscat,A,l

�

‖eu‖H 1(D)+






ef






H l (D)

�

(2.75)
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D−
ΓD

ΓI

ΓD

Dscat

Figure 2.5: A schematic of the set Dscat from the proof of Theorem 2.51.

D−
ΓD

ΓIDtrunc
ΓI

Figure 2.6: A schematic of the set Dtrunc from the proof of Theorem 2.51.
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and similarly for Neumann data [146, Theorem 4.18 (ii)] in Dtrunc, we obtain

‖eu‖H l+2(Dtrunc)
≤Ctrunc,A,l

�

‖eu‖H 1(D)+ ‖∂ν eu‖H l+1/2(ΓI )
+






ef






H l (D)

�

. (2.76)

Combining (2.74)–(2.76), we obtain (2.73).

Remark 2.52 (Relaxing Assumption 2.35). Observe that one can relax the assumption that ΓD and
ΓI are C p,1 to piecewise-C p,1 in certain scenarios, see, e.g., [45, Section 2.1].

The following corollary follows from Theorem 2.51.

Corollary 2.53. Under Assumption 2.35, let ef ∈ H l (D) and eg ∈ H l+1(D), for 0≤ l ≤ p − 1. If
eu ∈H l+2(D) solves

∇ · (A∇eu) =− ef ,

γD u = 0,

and
∂νu = γI eg ,

then
‖eu‖H l+2(D) ≤CA,l

�

1+CTr,l+1
�

�






ef






H l (D)
+ ‖γI eg‖H l+1(D)

�

.

The proof of Corollary 2.53 requires the Trace theorem.

Theorem 2.54 (Trace Theorem). If v ∈H m(D), for 1/2< m ≤ p + 1, then there exists CTr,m > 0
independent of v such that

‖γI v‖H m−1/2(ΓI )
≤CTr,m‖v‖H m(D).

For a proof of Theorem 2.54, see [146, Theorem 3.37]

Proof of Corollary 2.53. By Theorems 2.51 and 2.54

‖eu‖H l+2(D) ≤CA,l

�






ef






H l (D)
+ ‖γI eg‖H l+1/2(ΓI )

�

≤CA,l

�






ef






H l (D)
+CTr,l‖eg‖H l+1(D)

�

,

and the result follows.

The proof of Theorem 2.49 requires the following result on the multiplication of functions in
Sobolev spaces.

Theorem 2.55 (Multiplication in H m(D)). For m ∈ N let em ≥ m and em > d/2. For all v1 ∈
H m(D), v2 ∈ H em(D), the product v1v2 ∈ H m(D) and there exists a constant Cmult,m, em > 0
independent of v1 and v2 such that

‖v1v2‖H m(D) ≤Cmult,m, em‖v1‖H m(D)‖v2‖H em(D).
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Proof of Theorem 2.55. The proof is immediate from the more general result on the multiplication
of functions in Sobolev spaces defined on Lipschitz domains given in [20, Theorem 6.1, Corollary
6.3].

Proof of Theorem 2.49. We give the proof only for Problem 2.2, as the proof for its adjoint is
essentially identical. The idea of the proof is as follows. We write u as a formal series expansion

u =
∞
∑

j=0

u j , (2.77)

and then substitute this series into the PDE (2.7) and the boundary condition (2.8). Equating
powers of k, we derive a recursive sequence of stationary diffusion equations for the functions
u j , with right-hand sides dependent on u j−1 and u j−2. We use this recursive sequence and
Corollary 2.53 to prove the a priori bounds (2.67).

We then define the l th remainder rl = u −
∑l−1

j=0 u j , and by applying the operator∇ · (A∇·)
with Neumann boundary conditions to rl , we obtain a recursive sequence for the remainders rl ,
and can similarly prove a priori bounds for the functions rl . The oscillatory function uosc is then
just rp−1. The format of this proof is identical to that in [45, Theorem 1], except we keep track
of all of the constants involved.

For the purposes of the proof, it is more convenient to define v j = u j/k j , so that the series
expansion (2.77) becomes21

u =
∞
∑

j=0

k j v j (2.78)

as in [45]. Also, in this proof, all the boundary-value problems involved included a zero Dirichlet
condition on the scatterer ΓD ; we omit this boundary condition throughout the proof for brevity.

By applying the Helmholtz operator to the formal series (2.78)and equating powers of k we
obtain the following equations for v j ∈H j+2(D), j ≥ 1:

∇ · (A∇v0) =− f and ∂νv0 = gI ,

∇ · (A∇v1) = 0 and ∂νv1 = iγI v0,

and
∇ ·

�

A∇v j

�

=−nv j−2 and ∂νv0 = iγI v j−1 for j ∈ [2, p − 2]. (2.79)

By Theorem 2.51 we immediately conclude the bound

‖v0‖H 2(D) ≤CA,0C f ,gI
≤Cexpansion,0C f ,gI

, (2.80)

21In [45] the notation is changed slightly, and the series expansion is defined as u =
∑∞

j=0 k j u j , i.e., the functions v j

in our proof are denoted u j in [45].



74 CHAPTER 2. PDE AND FE THEORY

i.e., (2.67) for j = 0. By Corollary 2.53 and (2.80) we can conclude the bound

‖v1‖H 3(D) ≤CA,1
�

1+CTr,2
�

‖i v0‖H 2(D)

≤max
�

1,CA,1
	�

1+CTr,2
�

Cexpansion,0C f ,gI

=Cexpansion,1C f ,gI
,

i.e., (2.67) for j = 1.

We prove the bound (2.67) for higher j by induction. First observe that by Theorem 2.55, for
any j ∈ {0,1, . . . , p − 2} and any v ∈H j (D)

‖nv‖H j (D) ≤Cmult‖n‖H max{p−1,dd/2e+1}(D)‖v‖H j (D).

Let j ∈ [2, p − 2] and suppose (2.67) holds for all s ∈ [0, j − 1]. Using Corollary 2.53, we
conclude that





v j







H j+2(D)
≤CA, j

�

1+CTr, j+1

�

�





nv j−2







H j (D)
+




v j−1







H j+1(D)

�

≤CA, j

�

1+CTr, j+1

�

�

Cmult‖n‖H max{p−1,dd/2e+1}(D)





v j−2







H j (D)
+




v j−1







H j+1(D)

�

≤CA, j

�

1+CTr, j+1

�

�

CmultCexpansion, j−2‖n‖H max{p−1,dd/2e+1}(D)P j−2(n)

+Cexpansion, j−1P j−1(n)
�

C f ,gI
, by induction,

=Cexpansion, j P j (n)C f ,gI

by definition of Cexpansion, j and P j (n).

We will now define the remainders rl , and proceed similarly. Let r1 ∈H 3(D) solve

∇ · (A∇r1) =−k2u and ∂ν r1 = i kγI u.

Then by Corollary 2.53

‖r1‖H 3(D) ≤CA,1
�

1+CTr,2
�

�

k2‖u‖H 1(D)+ k‖u‖H 2(D)

�

≤CA,1
�

1+CTr,2
�

k2CstabC f ,gI

=Crem,1k2CstabC f ,gI

by definition of Crem,1. Let r2 ∈H 4(D) solve

∇ · (A∇r2) =−k2u and ∂ν r2 = i kγI r1.
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Then by Corollary 2.53

‖r2‖H 4(D) ≤CA,2
�

1+CTr,3
�

�

k2‖u‖H 2(D)+ k‖r1‖H 3(D)

�

≤CA,2
�

1+CTr,3
��

1+Crem,1
�

Cstabk3C f ,gI

=Crem,2Cstabk3C f ,gI
.

Then for j ≥ 3, let r j ∈H j+2(D) solve

∇ ·
�

A∇r j

�

=−k2 r j−2 and ∂ν r j = i kγI r j−1.

By induction and Corollary 2.53 again, letting uosc = rp−1, we have (2.68). It is straightforward

to see that rp−1+
∑p−2

j=1 u ( j ) solves Problem 2.2, and therefore (2.66) holds, since u is unique.

Using the expansion in Theorem 2.49, we can prove the following error bound for the best
approximation of u in Vh, p :

Lemma 2.56 (Best approximation error bound). If Assumptions 2.35 and 2.36 hold, there exist
constants CFEM,1,CFEM,2 > 0 independent of k and n (although dependent on A and p) such that if u
solves Problem 2.12 or its adjoint, then there exists ûh ∈Vh, p such that

‖u − ûh‖L2(D) ≤ Pp−2(n)
�

CFEM,1h2+CFEM,2Cstabh(hk)p
�

C f ,gI
, (2.81)

‖u − ûh‖H 1
k (D)
≤ 2Pp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

C f ,gI
. (2.82)

Proof of Lemma 2.56. We apply Lemma 2.22 to all the u j and uosc in Theorem 2.49, and obtain
that there exist u j ,h ∈Vh, p j = 0, . . . , p − 2 and uosc,h ∈Vh, p such that





u j − u j ,h







L2(D)
+ h





u j − u j ,h







H 1(D)
≤CBA, j+2Cexpansion, j P j (n)h

j+2k j C f ,gI

and




uosc− uosc,h







L2(D)
+ h





uosc− uosc,h







H 1(D)
≤CBA, p+1CoscCstabh p+1k pC f ,gI

.

Therefore, by letting ûh = uosc,h+
∑p−2

j=0 u j ,h , we have (2.81) and (2.82) (using the facts that hk ≤ 1
and Pp−2(n)≥ P j (n)≥ 1 for all j ≤ p − 2 since ‖n‖H max{p−1,dd/2e+1}(D) ≥ 1).

Observe that the bounds (2.81) and (2.82) are not fully p-explicit, as the constants CBA, j are
dependent on p in an unknown way.

2.4.3 Routine analysis results

In this section we collect together routine results that we use throughout the following proofs.

• For N ∈N and a1, . . . ,aN > 0
√

√

√

√

N
∑

j=1

a2
j ≤

N
∑

j=1

a j . (2.83)
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• (Young’s inequality) If s , q ∈ (1,∞) and 1/s + 1/q = 1 then for all a, b > 0

ab ≤ a s

s
+

b q

q
. (2.84)

• (Cauchy’s inequality) For all ε,a, b > 0

ab ≤ a2

2ε
+
εb 2

2
. (2.85)

Theorem 2.57 (Multiplicative Trace Inequality). There exists a constant CMT > 0 such that for all
v ∈H 1(D)

‖v‖L2(∂ D) ≤CMT‖v‖
1
2
L2(D)‖v‖

1
2
H 1(D).

A proof of Theorem 2.57 can be found in [107, Last formula on p. 41].

Lemma 2.58 (Poincaré–Friedrichs Inequality). Let Γ ⊆ ∂ D have nonvanishing d − 1-dimensional
measure. There exist constants CP, eC > 0 depending only on D and Γ such that for all v ∈H 1(D)

‖v‖2L2(D) ≤CP|v |
2
H 1(D)+ eC‖v‖2L2(Γ ).

In particular, taking Γ = ΓD , for all v ∈H 1
0,D(D)

‖v‖L2(D) ≤CP|v |H 1(D). (2.86)

For a proof of Lemma 2.58 see [208, Lemma A.14].

2.4.4 Error bounds for Galerkin projections

In this section we state a sequence of error bounds in negative Sobolev norms for two different
projection operators. The proofs of these error bounds are all simple modifications of the
standard duality-argument proofs of finite-element errors in negative Sobolev norms, as in, e.g.,
[29, Theorem 5.8.3]. We first define the projections we use.

Given w ∈ H 1
0,D(D), define the elliptic projection Ph w as the solution of the variational

problem: FindPh w ∈Vh, p such that.

a?(Ph w, vh ) = a?(w, vh ) for all vh ∈Vh, p , (2.87)

where
a?(v1, v2) = (A/∇v1,∇v2)L2(D). (2.88)

Observe that this construction defines the mapPh : H 1
0,D(D)→Vh, p . Also, observe thatPh w

is the finite-element approximation of the solution of the stationary diffusion problem with
‘diffusion coefficient’ A and right-hand side in

�

H 1
0,D(D)

�∗
given by a?(w, ·).
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Define the L2(D) projection in the n-weighted norm, Qh,n : H 1
0,D(D)→ Vh, p by, for w ∈

H 1
0,D(D)

�

Qh,n w, vh
�

L2(D),n = (w, vh )L2(D),n for all vh ∈Vh, p ,

where, for v, w ∈ L2(D), (v, w)L2(D),n is the n-weighted inner product

(v, w)L2(D),n :=
∫

D
nvw.

We also define the corresponding n-weighted L2(D) norm ‖v‖L2(D),n =
Æ

(v, v)L2(D),n and
for m ∈N, the n-weighted H m(D) norms

‖v‖2H m(D),n :=
∑

α:|α|≤s

‖Dαv‖L2(D),n ,

and the negative n-weighted Sobolev norms

‖v‖H−m(D),n := sup
w∈H m(D)

(v, w)L2(D),n

‖w‖H m(D),n
. (2.89)

Observe that, for v ∈H m(D),

nmin‖v‖H m(D) ≤ ‖v‖H m(D),n ≤ nmax‖v‖H m(D). (2.90)

The proofs of the error bounds for the Galerkin projections will use the following notation for
the solution operator of a particular stationary diffusion problem. We let Sn : L2(D)→H 2(D)
denote the solution operator for the following stationary diffusion equation: given ef ∈ L2(D)
find eu ∈H 2(D) such that

∇ · (A∇eu) =−n ef in D , (2.91a)

γD eu = 0 on ΓD , and (2.91b)

∂ν eu = 0 on ΓI . (2.91c)

For the reason why there is a factor n on the right-hand side of (2.91a), see Remark 2.76 below.
Observe that Sn is well-defined by Theorem 2.51 as n ef ∈ L2(D). Also, observe that S m

n is
well-defined for any m ∈N, as H 2(D)⊆ L2(D), and so one can place Sn

ef on the right-hand side
of (2.91a). For any ef ∈ L2(D) and for any v ∈H 1

0,D(D), we have, by Green’s identity,

∫

D

�

A∇
�

Sn
ef
��

· ∇v =
∫

D
n ef v,

i.e.,
�

A∇
�

Sn
ef
�

,∇v
�

L2(D)
=
�

ef , v
�

L2(D),n
. (2.92)

We now state and prove error bounds for the two projections given above. As stated above,
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the proofs below are all modifications of the standard proof (in, e.g., [29, Theorem 5.8.3]). We
can, in essence, use the standard proof because all the projections defined above are Galerkin
projections defined in terms of coercive and bounded sesquilinear forms on H 1(D) (forPh ) or
L2(D) (for Qh,n).

Lemma 2.59 (Existence and uniqueness of Galerkin projections). For any w ∈H 1
0,D(D) the elliptic

projectionPh w and the n-weighted L2 projection Qh,n w exist and are unique.

Proof of Lemma 2.59. The existence and uniqueness ofPh w and Qh,n w follows from the Lax–
Milgram Theorem (see, e.g., [29, Theorem 2.7.7]) applied in Vh, p (as in, e.g., [29, Corollary
2.7.13]), because Ph w and Qh,n w are defined by sesquilinear forms that are continuous and
coercive on H 1

0,D(D) (equipped with the k-weighted H 1 norm ‖·‖H 1
k
(D)) and L2(D) respectively.

Continuity and coercivity are immediate in the case of the n-weighted L2 projection Qh,n .
For the elliptic projectionPh , continuity is immediate, and coercivity follows from the Poincaré
inequality (2.86), because we work in H 1

0,D(D), and so all the functions we consider vanish on
ΓD .

Lemma 2.60 (Error bounds for the elliptic projection). Under Assumption 2.35, for any integer
m ∈ [−1, p − 1], there exists a constant Cproj,−m > 0 such that for all w ∈H 1

0,D(D)

‖w −Ph w‖H−m(D) ≤Cproj,−m h m+1 inf
wh∈Vh, p

‖w −wh‖H 1(D). (2.93)

Because Ph is defined in terms of a coercive and bounded sesquilinear form, the proof of
Lemma 2.60 is completely standard, see, e.g., [29, Theorem 5.8.3].

Lemma 2.61 (Error bounds for the elliptic projection in n-weighted norms).
Under Assumption 2.35, for any integer m ∈ [−1, p − 1], there exists a constant Cweight,−m > 0 such
that for all w ∈H 1

0,D(D)

‖w −Ph w‖H−m(D),n ≤Cweight,−mCerr,m(n)h
m+1 inf

wh∈Vh, p

‖w −wh‖H 1(D),n ,

where

Cerr,m(n) =











‖n‖H max{p−1,dd/2e+1}(D)

n2
min

nvar if p > 1 and m ∈ [1, p − 1]

nvar if m =−1,0.

(2.94)

We define
Cerr(n) := max

m=−1,..., p−1

�

Cerr,m(n)
	

. (2.95)

Proof of Lemma 2.61. For the case m = 0, using Lemma 2.60 and then converting to the n-
weighted L2 norm yields (2.94). For the other cases, first observe that if we apply Céa’s Lemma
toPh in the n-weighted H 1 norm, we find

‖w −Ph w‖H 1(D),n ≤
2‖A‖L∞(D ;op)

min
�

1,1/C 2
P

	

Amin
nvar inf

wh∈Vh, p

‖w −wh‖H 1(D),n , (2.96)
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since Ph corresponds to a sesquilinear form with continuity constant ‖A‖L∞(D ;op)/nmin and
coercivity constant

Amin min
�

1,1/C 2
P

	

2nmax
.

For the case m =−1, (2.96) immediately gives (2.94).
If p = 1, then the proof is finished. If p > 1, let m ∈ [1, p − 1]. Let φ ∈H m(D), and observe

that by Assumption 2.35 and Theorem 2.55, the product nφ ∈ H m(D). Let ev = Sn(φ) and
observe ev ∈H m+2(D) by Theorem 2.51. Observe that for all v ∈H 1

0,D(D), by the definition of
ev and the n-weighted inner product (·, ·)L2(D),n , we have

(A∇v,∇ev)L2(D) = (nv,φ)L2(D) = (v,φ)L2(D),n (2.97)

(where we multiply the complex conjugate of (2.91a) by v, and integrate by parts). Taking
v = w −Ph w in (2.97), we have (with Ih v as defined in Lemma 2.22)

(v,φ)L2(D),n = (A∇(w −Ph w),∇(ev −Ih v))L2(D) by Galerkin orthogonality forPh ,

≤CBA,m+2‖A‖L∞(D ;op)‖ev‖H m+2(D)h
m+1|w −Ph w|H 1(D) by Lemma 2.22,

≤CBA,m+2CA,m‖A‖L∞(D ;op)‖nφ‖H m(D)h
m+1|w −Ph w|H 1(D) by Theorem 2.51.

(2.98)

To bound the term ‖nφ‖H m(D) in (2.98) we use Theorem 2.55 and (2.90) to bound (2.98)
above by

CBA,m+2CA,mCmult,m,max{p−1,dd/2e+1}

‖A‖L∞(D ;op)

‖n‖H max{p−1,dd/2e+1}(D)

nmin
‖φ‖H m(D),n h m+1|w −Ph w|H 1(D). (2.99)

Therefore we have, by definition of ‖·‖H−m(D),n and ‖·‖H 1(D),n ,

‖w −Ph w‖H−m(D),n ≤

CBA,m+2CA,mCmult,m,max{p−1,dd/2e+1}‖A‖L∞(D ;op)

‖n‖H max{p−1,dd/2e+1}(D)

n2
min

h m+1‖w −Ph w‖H 1(D),n .

(2.100)

Combining (2.96) and (2.100), we obtain (2.94).

Remark 2.62 (Subtleties regarding Ph for the IIP). If we consider the IIP (i.e., we remove the
assumption ΓD 6= ; in Assumption 2.35), then we can no longer prove Lemmas 2.59, 2.60, or 2.61,
because the sesquilinear form a? is no longer coercive on H 1

0,D(D). (Note H 1
0,D(D) =H 1(D) in this

case.)
This lack of coercivity stems from the fact that we cannot apply the Poincaré inequality (2.86) to
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functions in H 1(D), because such functions are no longer zero on a portion of ∂ D with non-zero
d−1-dimensional measure. (Recall Lemma 2.58 requires such a property.) One can alternatively view
this problem as arising from the fact that the stationary diffusion equation with Neumann boundary
conditions does not have a unique solution (as one can simply add a constant to any solution and get
another solution). In the case ΓD = ;, the PDE corresponding to the elliptic projection is precisely such
a stationary diffusion equation: (2.46).

The remedy for this lack of coercivity/lack of uniqueness is to change the sesquilinear form a? from
(2.43) to either (2.44) or (2.45) (both of which are coercive in the k-weighted H 1 norm, and so the
proof of Lemma 2.59 goes through as before). This change corresponds to changing the PDE underlying
the elliptic projection from (2.46) to either (2.47) or (2.48) respectively.

However, if one uses (2.45) to define a? (i.e., one incorporates the impedance boundary condition
into the sesquilinear form), then one cannot obtain results with the same (sharp) k-dependence as we
do in Theorem 2.39.

The reason for this lack of sharp k-dependence is that there does not exist a higher-order k-indepen-
dent shift theorem (analogous to Theorem 2.51) for the underlying PDE (2.48). Such a shift theorem is
used in the proof of Lemmas 2.60 and 2.61 to prove bounds in negative-order norms. If one rewrote
(2.48) as

−∆w = F in D and

∂νw = i kw on ΓI

and then used Theorem 2.51 (which is a higher-order shift theorem) to obtain results analogous to
Theorem 2.51, the constants in the resulting bounds (2.73) would now be k-dependent. Whilst a
k-independent first-order shift theorem for (2.48) has been proved by Chaumont-Frelet, Nicaise, and
Tomezyk [47, Theorems 3.1, 4.3, and 5.1], this is only a lowest-order shift theorem (i.e., the analogue
of Theorem 2.51 for l = 0) and no mention is made in [47] of an extension to higher order.

In summary, for the IIP, one cannot use (2.43) to define a?, because a? is now not coercive, and
one cannot use (2.45) to define a?, because it does not have a k-independent higher-order shift theorem.
Therefore, for proving higher-order results, one must define a? using (2.44). In this case one can then
repeat the proof of Theorem 2.51 almost verbatim (as the results from [146] used in the proof of
Theorem 2.51 also hold for the PDE (2.47)), and the proofs of Lemmas 2.60 and 2.61 proceed as before.

Lemma 2.63 (Error bounds for n-weighted L2(D) projection). Under Assumption 2.35, for any
integer m ∈ [0, p − 1], for all w ∈H 1

0,D(D)





w −Qh,n w






H−m(D),n
≤CBA,m nvarh m inf

wh∈Vh, p

‖w −wh‖L2(D),n . (2.101)

Proof of Lemma 2.63. Fix ev ∈ H m(D). Then using Galerkin orthogonality for w −Qh,n w we
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have

�

w −Qh,n w, ev
�

L2(D),n ≤




w −Qh,n w






L2(D),n
‖ev −Ih ev‖L2(D),n

≤CBA,m nvar





w −Qh,n w






L2(D),n
h m‖ev‖H m(D),n

by Lemma 2.22. Taking the supremum over ev, we have





w −Qh,n w






H−m(D),n
≤CBA,m nvarh m





w −Qh,n w






L2(D),n
,

and hence by Céa’s Lemma (since the inner product (·, ·)L2(D),n is clearly bounded and coercive
(with continuity and coercivity constants equal to 1) in the n-weighted L2-norm ‖·‖L2(D),n) the
result follows.

2.4.5 Discrete Sobolev spaces

When we analyse the high-order finite-element method, we need to measure higher-order norms of
functions in the finite-element space Vh, p . However, as these functions do not have higher-order
weak derivatives, we must first define a notion of higher-order discrete derivatives, and then
develop some theory of so-called discrete Sobolev spaces. We follow the presentation in [59],
albeit working in the heterogeneous case, and with some changes of notation. The main result of
this section is Lemma 2.75 below giving the relationship between negative-order discrete Sobolev
norms and negative-order continuous Sobolev norms.

Definition 2.64 (Discrete derivative operator). Define the A-weighted discrete second derivative
operator∆h : Vh, p →Vh, p by, for zh ∈Vh, p ,

(∆h zh , vh )L2(D),n = (A∇zh ,∇vh )L2(D) for all vh ∈Vh, p . (2.102)

Lemma 2.65 (Discrete derivative operator is well-defined). For any wh ∈Vh, p ,∆h wh exists and
is unique.

Proof of Lemma 2.65. Choose an orthonormal (in the n-weighted inner product) basis (φ j ) j for
Vh, p . Write∆wh =

∑

j w jφ j , and take in turn vh =φ j for each j ; then (2.102) is equivalent to

the linear system Iw = b, where b j =
�

A∇wh ,∇φ j

�

L2(D),n
. The solution of this linear system

clearly exists and is unique.

Since A is real and symmetric, it is self-adjoint. Hence it follows that∆h is self-adjoint in the
n-weighted inner product, since

(∆h wh , vh )L2(D),n = (A∇wh ,∇vh )L2(D)

= (∇wh ,A∇vh )L2(D) = (∆h vh , wh )L2(D),n = (wh ,∆h vh )L2(D),n .

Therefore∆h is diagonalisable, i.e., there exists a set of eigenfunctions φ1,h , . . . ,φdim(Vh, p),h with
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corresponding real eigenvalues λ1,h , . . . ,λdim(Vh, p),h such that the φm,h form an orthonormal (in
the n-weighted inner product) basis of Vh, p . The diagonalisability of ∆h allows us to define
arbitrary powers of∆h .

Definition 2.66 (Higher-order discrete derivative operators).

For vh ∈Vh, p , if vh =
∑dim(Vh, p)

m=1 amφm,h , then for j ∈R define

∆ j
h
vh =

dim(Vh, p)
∑

m=1
λ j

m,h
amφm,h .

Observe that for wh ∈Vh, p ,∆−1
h (∆h wh ) = wh , i.e., one can think of∆−1

h
as being in some

sense a ‘discrete solution operator’ for the stationary diffusion equation (2.91a)–(2.91c). I.e.,∆−1
h

is a discrete counterpart to Sn . We can use the higher-order derivative operators to define discrete
higher-order norms:

Definition 2.67 (Discrete higher-order norm). For vh ∈Vh, p and m ∈R, define

‖vh‖m,h,n =




∆
m/2
h

vh







L2(D),n
.

Remark 2.68 (Related literature for higher-order discrete norms). To our knowledge, [59] is
the only place in the literature where the above construction of higher-order discrete norms appears,
although Thomée defines these norms for negative integers m in [206, Equation above Lemma 1].
However, the idea of using a self-adjoint, coercive operator to define a norm can be found in, e.g., [29,
Section 6.2], [28, p. 238 ff.], where mesh-dependent norms are used to analyse multigrid methods,
and [140, Section 2.1], where [140, Text at the bottom of page 9] observes that one can use a spectral
decomposition to define arbitrary powers of such operators (analogous to Definition 2.66). See [10,
Section 2.1] for a simpler exposition of defining a (fractional-order) Sobolev norm via an operator.

We observe in passing that Definition 2.66 is analogous to the spectral definition of the fractional
Laplacian (−∆)m ; see the recent review article [141, Section 2.5.1] for an overview of this idea.

We will use the following lemma to bound the inner product of two discrete functions by
their negative- and positive-higher-order discrete norms, or to transfer discrete derivatives from
one argument of the inner product to the other.

Lemma 2.69 (Introduction of derivatives into inner product). For vh , wh ∈Vh, p , and m ∈R we
have

(vh , wh )L2(D),n =
�

∆−m/2
h

vh ,∆m/2
h

wh

�

L2(D),n
(2.103)

and
�

∆m
h vh , vh

�

L2(D),n =
�

∆m/2
h

vh ,∆m/2
h

vh

�

L2(D),n
. (2.104)

Proof of Lemma 2.69. We only prove (2.103), as the proof of (2.104) is analogous. Since vh , wh ∈

Vh, p , there exist sequences (a j ) j=1,...,dim(Vh, p), (bl )l=1,...,dim(Vh, p) such that vh =
∑dim(Vh, p)

j=1 a jφ j ,h
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and wh =
∑dim(Vh, p)

l=1
blφl ,h . Then we have

�

∆−m/2
h

vh ,∆m/2
h

wh

�

L2(D),n
=
∫

D
n





dim(Vh, p)
∑

j=1

λ−m/2
j a jφ j ,h









dim(Vh, p)
∑

l=1

λm/2
l

blφl ,h





=
dim(Vh, p)
∑

j ,l=1

λ−m/2
j λm/2

l
a j bl

∫

D
nφ j ,hφl ,h as the λ j are real,

=
dim(Vh, p)
∑

j

a j b j

∫

D
n
�

�

�φ j ,h

�

�

�

2
as the φ j ,h are orthonormal, (2.105)

= (vh , wh )L2(D),n (2.106)

where (2.106) follows from (2.105) by repeating the above process in reverse without the factors
λ−m/2

j and λm/2
l

.

The next corollary follows from Lemma 2.69 and the Cauchy–Schwarz inequality.

Corollary 2.70 (Inner product bounded by discrete norms). If vh , wh ∈Vh, p , then for all m ∈R

(vh , wh )L2(D),n ≤ ‖vh‖−m,h,n‖wh‖m,h,n .

We recall the standard inverse inequality for finite-element functions, so that we can prove an
analogous inverse inequality for discrete norms.

Lemma 2.71 (Standard inverse inequality). Under Assumption 2.35 there exists Cinv, p > 0 such that
for all vh ∈Vh, p

‖vh‖H 1(D) ≤Cinv, p h−1‖vh‖L2(D).

For a proof of Lemma 2.71 see, e.g., [29, Theorem 4.5.11 and Remark 4.5.20].

Lemma 2.72 (Inverse inequality for discrete norms). For all m ∈R, for all vh ∈Vh, p

‖vh‖m,h,n ≤Cdisc,inv, p
1

nmin
h−1‖vh‖m−1,h,n .

Proof of Lemma 2.72. We only prove the case m = 1, as the other cases will follow immediately.
We have

‖vh‖
2
1,h,n =

�

∆1/2
h

vh ,∆1/2
h

vh

�

L2(D),n

= (∆h vh , vh )L2(D),n by (2.104),

= (A∇vh ,∇vh )L2(D) by definition of∆h ,

≤ ‖A‖L∞(D ;op)C
2
inv, p h−2 1

n2
min

‖vh‖
2
L2(D),n
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by the standard inverse estimate, and the result follows as ‖·‖0,h,n = ‖·‖L2(D),n .

For m 6= 1 we have

‖vh‖m,h,n =








∆
m
2

h
vh









L2(D),n

=








∆
1
2
h

�

∆
m−1

2
h

vh

�








L2(D),n

=








∆
m−1

2
h

vh









1,h,n

≤Cdisc,inv, p
1

nmin
h−1









∆
m−1

2
h

vh









0,h,n

by the result for m = 1, and the result for m 6= 1 follows.

Lemma 2.73 (Relationship between standard and discrete H 1 norms). Let vh ∈Vh, p . Then

|vh |H 1(D) ≤A−
1
2

min‖vh‖1,h,n .

Proof of Lemma 2.73. We have, using (2.104),

‖vh‖
2
1,h,n =

�

∆1/2
h

vh ,∆1/2
h

vh

�

L2(D),n

= (∆h vh , vh )L2(D),n = (A∇vh ,∇vh )L2(D) ≥Amin‖∇vh‖
2
L2(D),

and the result follows.

To prove Lemma 2.75 below we require the following lemma giving the shift theorem in
negative n-weighted norms. Recall that the n-weighted solution operator Sn is defined as the
solution operator of (2.91a)–(2.91c).

Lemma 2.74 (Shift theorem in negative n-weighted norms). Let ef ∈ L2(D) and m ∈ [−1, p − 1]
be an integer. Under Assumption 2.35 we have





Sn
ef






H−m(D),n
≤Cshift,−mCshift,m(n)







ef






H−(m+2)(D),n
, (2.107)

where

Cshift,m(n) :=















n2
max if m =−1.

nmaxnvar if m = 0

‖n‖H max{p−1,dd/2e+1}(D)nvar if m ∈ [1, p − 1]

We define
Cshift(n) = max

m=−1,..., p−1

�

Cshift,m(n)
	

.
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Proof of Lemma 2.74. We first observe that the operator S1 is self-adjoint on L2(D). Let ∆A :
H 2(D)→ L2(D) denote the stationary diffusion operator∇· (A∇·)with no boundary conditions
applied. Then for any v1 ∈ L2(D),

∆A ◦S1v1 = v1. (2.108)

Moreover, ∆A is self-adjoint on the set
�

v ∈H 2(D) : v satisfies (2.91b) and (2.91c)
	

by Green’s
Theorem; this set contains the image of S1. Therefore, for any v1, v2 ∈ L2(D), we have

(S1v1, v2)L2(D) = (S1v1,∆A ◦S1v2)L2(D) = (∆A ◦S1v1,S1v2)L2(D) = (v1,S1v2)L2(D), (2.109)

using (2.108) and the fact that∆A is self adjoint. I.e., (2.109) shows S1 is self-adjoint on L2(D).
Observe that by Theorem 2.55, if v ∈ H m(D) then nv ∈ H m(D), and therefore by Theo-

rem 2.51, S1(nv) ∈H m+2(D). With these facts in place we can compute





Sn
ef






H−m(D),n
= sup

v∈H m(D)

�

Sn
ef , nv

�

L2(D)

‖v‖H m(D),n

= sup
v∈H m(D)

�

S1

�

n ef
�

, nv
�

L2(D)

‖v‖H m(D),n

= sup
v∈H m(D)

�

ef ,S1(nv)
�

L2(D),n

‖v‖H m(D),n
as S1 is self-adjoint,

≤ sup
v∈H m(D)







ef






H−(m+2)(D),n
‖S1(nv)‖H m+2(D),n

‖v‖H m(D),n

≤ sup
v∈H m(D)

CA,m nmax‖nv‖H m(D)







ef






H−(m+2)(D),n

‖v‖H m(D),n

and by applying Theorem 2.55 to the term ‖nv‖H m(D) (or, in the case m = 0, by observing that
‖nv‖L2(D) ≤ nmax‖v‖L2(D)), the result follows, except for m =−1.

For m =−1, we have, by the Lax–Milgram Theorem in non-weighted norms,





Sn
ef






H 1(D)
≤




n ef






H−1(D)
/Amin.

From (2.90) we have that




Sn
ef






H 1(D),n
≤ nmax





Sn
ef






H 1(D)

and




n ef






H−1(D)
≤ nmax







ef






H−1(D),n
,

and so the result follows.

We can now prove the main result of this section.
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Lemma 2.75 (Relationship between discrete and continuous negative-order norms).

Under Assumption 2.35, for any integer j ∈ [0, p + 1], there exists a constant C2.110, j > 0 such that
for all vh ∈Vh, p ,

‖vh‖− j ,h,n ≤C2.110, j (Cerr(n)nvar)
� j

2

�

nmax

j
∑

m=0
h m‖vh‖H−( j−m)(D),n . (2.110)

Proof of Lemma 2.75. Let wh ∈Vh, p , and define zh =∆
−1
h

wh and z =Sn wh (observe z is well-
defined since Vh, p ⊆ L2(D)). Then, for all vh ∈Vh, p , we have

(A∇z,∇vh )L2(D) = (A∇(Sn wh ),∇vh )L2(D) = (wh , vh )L2(D),n , and

(A∇zh ,∇vh )L2(D) = (∆h zh , vh )L2(D),n = (wh , vh )L2(D),n ,

where the equalities in the first line follow from the definition of z and (2.92), and the equalities
in the second line follows from (2.102) and the definition of zh . Therefore, for all vh ∈ Vh, p ,
(A∇z,∇vh )L2(D) = (A∇zh ,∇vh )L2(D), i.e., zh =Ph z.

We now have, for m ∈ [−1, p − 1]





∆−1
h wh







H−m(D),n
≤ ‖z‖H−m(D),n + ‖z − zh‖H−m(D),n

≤ ‖z‖H−m(D),n +Cweight,−mCA,0CBA,2Cerr,m(n)nmaxh m+2‖wh‖L2(D)

by Lemmas 2.22 and 2.61 and Theorem 2.51, since zh =Ph z,

=Cshift,−mCshift,m(n)‖wh‖H−(m+2)(D),n

+C2.111,mCerr,m(n)nvarh m+2‖wh‖L2(D),n (2.111)

by Lemma 2.74.

From (2.111), we can conclude that, for l ∈N and vh ∈Vh, p , writing wh =∆
−l+1
h

vh ,





∆−l
h vh







H−m(D),n
≤Cshift,−mCshift,m(n)





∆−l+1
h vh







H−(m+2)(D),n

+C2.111,mCerr,m(n)nvarh m+2




∆−l+1
h vh







L2(D),n
(2.112)

as∆−l
h
=∆−1

h
∆−l+1

h
. We now use (2.112) recursively to bound ‖vh‖ j ,h,n .

If j = 2l , then one can show inductively using (2.112) that for any integer t ∈ [0, l ]

‖vh‖−2l ,h,n ≤ (Cerr(n)nvar)
t

t
∑

m=0
C2.113,m,t h2m‖vh‖H−2(t−m)(D), (2.113)
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where we define the constants C2.113,m,t inductively by

C2.113,0,0 = 1, (2.114)

C2.113,m,t =Cshift,−2(t−1−m)C2.113,m,t−1 for 0≤ m ≤ t − 1, and (2.115)

C2.113,t ,t =
t−1
∑

m=0
C2.111,2(t−1−m)C2.113,m,t−1. (2.116)

To see this recurrence, we prove the inductive step: suppose

‖vh‖−2l ,h,n ≤ (Cerr(n)nvar)
t−1

t−1
∑

m=0
C2.113,m,t−1h2m‖vh‖H−2(t−1−m)(D).

Then using (2.112), we have

‖vh‖−2l ,h,n ≤ (Cerr(n)nvar)
t−1

t−1
∑

m=0
C2.113,m,t−1h2m

�

Cshift,−2(t−1−m)Cshift,2(t−1−m)(n)




∆−l+t
h vh







H−(2(t−1−m)+2(D),n

+C2.111,2(t−1−m)Cerr,2(t−1−m)(n)nvarh2(t−1−m)+2




∆−l+t
h vh







L2(D),n

�

,

which upon rearranging, and using the fact thatCshift,2(t−1−m)(n)≤Cerr,2(t−1−m)(n) and nvar ≥ 1,
yields (2.113), with the recurrence (2.114)–(2.116).

If j = 2l + 1, then we first reduce ‖vh‖− j ,h to a point analogous to the even case, and then
proceed as before. Let wh and zh be as at the beginning of the proof, and let z solve the variational
formulation22 of (2.91a)–(2.91c) (i.e. (2.92)) with ef = wh . Observe that we still have zh =Ph z,
and

‖z‖H 1(D) ≤
1

Amin
‖nwh‖H−1(D) (2.117)

by the Lax–Milgram Theorem.

22We use the variational formulation here, as we will need to bound the H 1-norm of z by the H−1-norm of wh ,
which is immediate from the Lax–Milgram theorem.
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Then





∆
−1/2
h

wh







L2(D),n
=




∆
1/2
h

zh







L2(D),n

= (∆h zh , zh )L2(D),n by (2.104), (2.118)

= (A∇zh ,∇zh )L2(D)

≤ ‖A‖L∞(D ;op)‖Ph z‖H 1(D)

by the Cauchy–Schwarz inequality and the definition of zh ,

≤ ‖A‖L∞(D ;op)

�

‖z‖H 1(D)+Cproj,1‖0− z‖H 1(D)

�

by Lemma 2.60,

≤

�

1+Cproj,1

�

‖A‖L∞(D ;op)

Amin
‖nwh‖H−1(D) by (2.117) (2.119)

≤

�

1+Cproj,1

�

‖A‖L∞(D ;op)

Amin
nmax‖wh‖H−1(D),n

as in the proof of Lemma 2.74.

We now return to ‖vh‖− j ,h,n :

‖vh‖− j ,h,n =




∆
−l−1/2
h

vh







L2(D),n

=




∆
−1/2
h
∆−l

h vh







L2(D),n

≤

�

1+Cproj,1

�

‖A‖L∞(D ;op)

Amin
nmax





∆−l
h vh







H−1(D),n

by (2.119).

Similarly to (2.113), one can use (2.112) recursively to show that, for any integer t ∈ [0, l ]





∆−l
h vh







H−1(D),n
≤ (Cerr(n)nvar)

t

�

C2.120,0,t





∆−l+t
h vh







H−(2t+1)(D),n

+
t
∑

m=0
C2.120,m,t h2m+1





∆−l+t
h vh







H−2(t−m)(D),n

�

, (2.120)

where we define the C2.120,m,t inductively for t ∈ [0, l ] by

C2.120,0,0 = 1, (2.121)

C2.120,0,t =C2.120,0,t−1Cshift,−2(t−1)+1), (2.122)

C2.120,m,t =C2.120,m,t−1Cshift,−2(t−1−m) for m = 1, . . . , t − 1, and (2.123)

C2.120,t ,t =C2.111,2(t−1)+1+
t−1
∑

m=0
C2.120,m,t−1C2.111,2(t−1−m). (2.124)

To show (2.120)–(2.124), observe that the case t = 0, including only (2.121) is immediate. We
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show (2.120) for t ∈ [1, l ] and (2.122)–(2.124) by induction. Suppose





∆−l
h vh







H−1(D),n
≤ (Cerr(n)nvar)

t−1

�

C2.120,0,t−1





∆−l+t−1
h vh







H−(2(t−1)+1)(D),n

+
t−1
∑

m=0
C2.120,m,t−1h2m+1





∆−l+t−1
h vh







H−2(t−1−m)(D),n

�

.

(2.125)

Then applying (2.112) to the terms in (2.125), with l in (2.112) given by l − t +1 in (2.125), and m
in (2.112) given by 2(t −1)+1 when applying (2.112) to the first term in (2.125), and 2(t −1−m)
for the other terms, we have





∆−l
h vh







H−1(D),n
≤

(Cerr(n)nvar)
t−1C2.120,0,t−1

�

Cshift,−(2(t−1)+1)Cshift,2(t−1)+1(n)




∆−l+t
h vh







H−(2(t−1)+3)(D),n

+C2.111,2(t−1)t+1Cerr,2(t−1)+1(n)nvarh2t+1




∆−l+t
h vh







L2(D),n

�

+(Cerr(n)nvar)
t−1

t−1
∑

m=1
C2.120,m,t−1h2m+1

�

Cshift,−2(t−1−m)Cshift,2(t−1−m)(n)




∆−l+t
h vh







H−(2(t−1−m)+2)(D),n

+C2.111,2(t−1−m)Cerr,2(t−1−m)(n)nvarh2(t−m)




∆−l+t
h vh







L2(D),n

�

(2.126)

and rearranging (2.126), and using the facts that Cshift,m(n)≤Cerr,m(n) for all m and nvar ≥ 1,
we obtain (2.120) with the constants C2.120,m,t given by (2.121)–(2.124). Therefore, we conclude
that if j = 2l + 1 taking t = l in (2.120)

‖vh‖− j ,h,n ≤

�

1+Cproj,1

�

‖A‖L∞(D ;op)

Amin
nmax(Cerr(n)nvar)

l

�

C2.120,0,l‖vh‖H−(2l+1)(D),n +
l
∑

m=0
C2.120,m,l h2m+1‖vh‖H−2(l−m)(D),n

�

. (2.127)

The bound (2.113) gives the required bound for even j , and the bound (2.127) gives the required
bound for odd j , and so summing the right-hand sides of (2.113) and (2.127) gives the result for
any j , i.e., (2.110).

Remark 2.76 (Why is the factor n only on the right-hand side of (2.91a)?).

The reason we define Sn with a factor n on the right-hand side of (2.91a) but not on the left-hand
side is somewhat buried in the proof of Theorem 2.39 and its associated lemmas. However, we give an
overview of the reason here.

All the bounds in the proofs of Lemmas 2.78, 2.79, and 2.81 are in n-weighted discrete norms,
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because to prove bounds on the n-weighted L2 projection Qh,n we work in n-weighted higher-order
discrete norms (as in Lemma 2.63), rather than in non-weighted norms. Because we only work in
n-weighted norms, we need Lemma 2.69 above to hold in the n-weighted inner product. To prove
Lemma 2.69 in the n-weighted inner product, we therefore use the n-weighted inner product on the
left-hand side of (2.102), where the∆h operator appears. Because we use the n-weighted inner product
on the left-hand side of (2.102), we must then use the n-weighted inner product on the right-hand
side of (2.92). Using this inner product in (2.92) ensures the beginning of the proof of Lemma 2.75
works—see the proof for more details.

We do not, however, put a factor n on the left-hand side of (2.91a) or (2.92). If we did, when
we apply Theorem 2.51 to Sn

ef (as we do in Lemma 2.74), the resulting bounds would not be fully
explicit in n (because in Theorem 2.51 we do not know explicitly how the constants depend on the
‘diffusion coefficient’). Not putting a factor n on the left-hand side of (2.91a) is the reason why there is
a non-weighted inner product on the right-hand side of (2.102) (so that the beginning of the proof of
Lemma 2.75, as mentioned above, works).

2.4.6 Proof of Theorem 2.39

Having established the necessary preliminary results about discrete Sobolev spaces, we are now
in a position to prove our main theorem, Theorem 2.39, which we do via a series of lemmas. The
proof proceeds via a error-splitting argument, as discussed in Section 2.3.4. Recall that u solves
Problem 2.12 and uh solves Problem 2.20.

For ease of notation in the following lemmas, we follow the notation of [59] and let

ρ := u −Ph u, and

θh :=Ph u − uh = u − uh −ρ.

The following lemma shows that θh solves a discrete Helmholtz problem with data k2ρ (in
D) and i kρ (on ΓI ).

Lemma 2.77 (θh solves a discrete Helmholtz problem). For any vh ∈Vh, p ,

aT (θh , vh ) = k2�Qh,nρ, vh
�

L2(D),n + i k(ρ, vh )L2(ΓI )
. (2.128)

Proof of Lemma 2.77. Let vh ∈Vh, p . Then aT (θh , vh ) = aT (u− uh , vh )−aT (ρ, vh ) =−aT (ρ, vh )
by Galerkin orthogonality. By definition of aT , we have

−aT (ρ, vh ) =−(A∇ρ,∇vh )L2(D)+ k2(nρ, vh )L2(D)+ i k(ρ, vh )L2(ΓI )
.

By Galerkin orthogonality for ρ = u −Ph u we have (A∇ρ,∇vh )L2(D) = 0, and so by the
definition of the n-weighted L2 inner product, and the n-weighted L2-projection Qh,n , the result
follows.

As mentioned in Remark 2.62, the definition of the elliptic projectionPh ((2.87) and (2.88)
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above) uses a Neumann boundary condition on ΓI , rather than an impedance boundary condition,
and therefore the right-hand side of (2.128) includes a term defined on the truncation boundary
ΓI . If the definition of the elliptic projection instead used an impedance boundary condition, this
term would disappear. The presence of this term means that when we bound ‖θh‖L2(D),n and
‖θh‖p−1,h,n in the proofs of Lemmas 2.79 and 2.81 below, we will encounter terms involving
‖θh‖L2(ΓI )

. Therefore, we first prove a bound on ‖θh‖L2(ΓI )
.

Lemma 2.78 (Bound on ‖θh‖L2(ΓI )
by ‖θh‖p−1,h,n). Under the assumptions of Theorem 2.39, we

have

‖θh‖
2
L2(ΓI )

≤C2.129,1(Cerr(n)nvar)
2
�� p−1

2

�

+1
�

n4
maxk2h2 p−1‖θh‖

2
p−1,h,n+C2.129,2h‖ρ‖2H 1

k (D)
, (2.129)

Proof of Lemma 2.78. In (2.128), let vh = θh , and take the imaginary part to obtain

− k‖θh‖
2
L2(ΓI )

= ℑk2�Qh,nρ,θh
�

L2(D),n +ℜk(ρ,θh )L2(ΓI )
. (2.130)

Therefore by Corollary 2.70

‖θh‖
2
L2(ΓI )

≤ k




Qh,nρ






−(p−1),h,n
‖θh‖p−1,h,n + ‖ρ‖L2(ΓI )

‖θh‖L2(ΓI )
. (2.131)

We first bound the negative norm




Qh,nρ






−(p−1),h
, to do this we use Lemma 2.75. However,

since we will apply Lemma 2.75 we need to estimate negative (standard) Sobolev norms of Qh,nρ;
for integers m ∈ [0, p − 1] we have (observing that Qh,nPh u =Ph u sincePh u ∈Vh, p ).





Qh,nρ






H−(p−1−m)(D),n
≤




Qh,n u − u






H−(p−1−m)(D),n
+ ‖u −Ph u‖H−(p−1−m)(D),n

≤CBA,(p−1−m)nvarh (p−1−m)‖u −Ph u‖L2(D),n

+Cweight,−(p−1−m)Cerr,(p−1−m)(n)h
p−m‖u −Ph u‖H 1(D),n

by Lemmas 2.63 and 2.61,

taking wh =Ph u in Lemma 2.61 and (2.101),

≤
�

CBA,(p−1−m)Cweight,0+Cweight,−(p−1−m)

�

Cerr(n)nvarnmaxh p−m‖ρ‖H 1
k (D)

(2.132)

by Lemma 2.61. By Lemma 2.75 and (2.132) we have





Qh,nρ






−(p−1),h,n
≤C2.110, p−1(Cerr(n)nvar)

� p−1
2

�

nmax

p−1
∑

m=0
h m




Qh,nρ






H−(p−1−m)(D)

≤C2.133(Cerr(n)nvar)
� p−1

2

�

+1n2
maxh p‖ρ‖H 1

k
(D). (2.133)

To bound ‖ρ‖L2(ΓI )
appearing in the second term on the right-hand side of (2.131) we use Theo-

rem 2.57 and Lemma 2.60. We take wh =Ph u in (2.93) and use the fact that ‖·‖H 1(D) ≤ ‖·‖H 1
k
(D)
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to obtain

‖ρ‖L2(ΓI )
≤CMT‖ρ‖

1/2
H 1(D)‖ρ‖

1/2
L2(D) ≤CMTC

1
2

proj,0h
1
2 ‖ρ‖H 1(D) ≤CMTC

1
2

proj,0h
1
2 ‖ρ‖H 1

k (D)
. (2.134)

Therefore by (2.134) and Young’s inequality (2.84), we obtain

‖ρ‖L2(ΓI )
‖θh‖L2(ΓI )

≤ 1
2

C 2
MTCproj,0h‖ρ‖2H 1

k
(D)+

1
2
‖θh‖

2
L2(ΓI )

. (2.135)

By combining (2.131), (2.133), and (2.135) we have

‖θh‖
2
L2(ΓI )

≤ kC2.133(Cerr(n)nvar)
� p−1

2

�

+1n2
maxh p‖ρ‖H 1

k
(D)‖θh‖p−1,h,n

+
1
2

C 2
MTCproj,0h‖ρ‖2H 1

k
(D)+

1
2
‖θh‖

2
L2(ΓI )

. (2.136)

By using Young’s inequality on the first term in (2.136), and moving the ‖θh‖
2
L2(ΓI )

/2 term onto
the left-hand side, we obtain (2.129).

We can now prove the main two lemmas in the proof of Theorem 2.39.

Lemma 2.79 (Bound on higher-order discrete norms of θh by ‖θh‖L2(D)).

Under the assumptions of Theorem 2.39, for integer m ∈ [1, p − 1] there exist constants C2.137,m,1,
C2.137,m,2 > 0 such that

‖θh‖m,h,n ≤C2.137,m,1

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�m
k m‖θh‖L2(D)

+C2.137,m,2

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�m
n2

varnmaxn1−m
min h1−m‖ρ‖H 1

k
(D).

(2.137)

Proof of Lemma 2.79. By inserting the definitions of aT and∆h into (2.128) and rearranging, we
have for any vh ∈Vh, p

(∆hθh , vh )L2(D),n = k2(θh , vh )L2(D),n + k2�Qh,nρ, vh
�

L2(D),n + i k(θh , vh )L2(ΓI )
+ i k(ρ, vh )L2(ΓI )

.

Therefore, if we take vh =∆
m−1
h

θh , by Lemma 2.69 we have

‖θh‖
2
m,h,n = k2‖θh‖

2
m−1,h,n + k2

�

∆
m−1

2
h

Qh,nρ,∆
m−1

2
h
θh

�

L2(D),n

+ i k
�

θh ,∆m−1
h θh

�

L2(ΓI )
+ i k

�

ρ,∆m−1
h θh

�

L2(ΓI )
. (2.138)

We now proceed to bound the two terms in (2.138) defined on the truncation boundary ΓI . For
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the first term, we have

�

θh ,∆m−1
h θh

�

L2(ΓI )
≤ ‖θh‖L2(ΓI )





∆m−1
h θh







L2(ΓI )

≤CMTC 1/2
inv, p‖θh‖L2(ΓI )

h−
1
2





∆m−1
h θh







L2(D)

by Theorem 2.57 and Lemma 2.71,

=CMTC 1/2
inv, p h−

1
2 ‖θh‖L2(ΓI )

n−1
min‖θh‖2m−2,h,n

by the definition of ‖·‖2m−2,h,n ,

≤CMTC 1/2
inv, pC m−1

disc,inv, p n−m
min h−m+ 1

2 ‖θh‖L2(ΓI )
‖θh‖m−1,h,n

by Lemma 2.72 applied m− 1 times, (2.139)

≤CMTC 1/2
inv, pC m−1

disc,inv, p h−m+ 1
2 n−m

min
�

C
1
2

2.129,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxk h p− 1

2 ‖θh‖p−1,h,n

+C
1
2

2.129,2h
1
2 ‖ρ‖H 1

k
(D)

�

‖θh‖m−1,h,n

by Lemma 2.78 and (2.83),

≤
�

C2.140,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxn−p

mink‖θh‖m−1,h,n

+C2.140,2n−m
min h1−m‖ρ‖H 1

k
(D)

�

‖θh‖m−1,h,n (2.140)

by Lemma 2.72 applied p −m times.
To bound the second boundary term in (2.138), we have

�

ρ,∆m−1
h θh

�

L2(ΓI )
≤CMTC 1/2

inv, pC m−1
disc,inv, p n−m

min h
1
2−m‖ρ‖L2(ΓI )

‖θh‖m−1,h (2.141)

using the same reasoning as we used to obtain (2.139) above. By Theorem 2.57 and Lemma 2.60
(with wh =Ph u) we have

‖ρ‖L2(ΓI )
≤CMTC

1
2

proj,0h
1
2 ‖ρ‖H 1

k
(D). (2.142)

Inserting (2.142) into (2.141) we obtain

�

ρ,∆m−1
h θh

�

L2(D)
≤C2.143n−m

min h1−m‖ρ‖H 1
k
(D)‖θh‖m−1,h . (2.143)
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Therefore, from (2.138), (2.140), (2.143), and the Cauchy–Schwarz inequality, we have

‖θh‖
2
m,h,n ≤ k2‖θh‖

2
m−1,h,n + k2





Qh,nρ






m−1,h,n
‖θh‖m−1,h,n

+ k
�

C2.140,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxn−p

mink‖θh‖m−1,h,n

+C2.140,2n−m
min h1−m‖ρ‖H 1

k
(D)

�

‖θh‖m−1,h,n

+ kC2.143n−m
min h1−m‖ρ‖H 1

k
(D)‖θh‖m−1,h

Therefore using Young’s inequality (2.84) with s = q = 2 we have

‖θh‖
2
m,h,nX S ≤ k2

�

3
2
+C2.140,1(Cerr(n)nvar)

� p−1
2

�

+1n2
maxn−p

min

+
1
2

C 2
2.140,2n−2m

min +
1
2

C 2
2.143n−2m

min

�

‖θh‖
2
m−1,h,n

+
k2

2





Qh,nρ






2

m−1,h,n
+ h2(1−m)‖ρ‖2H 1

k (D)
,

and by (2.83)

‖θh‖m,h,n ≤ k

�s

3
2
+C

1
2

2.140,1(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

+
1
p

2
C2.140,2n−m

min +
1
p

2
C2.143n−m

min

�

‖θh‖m−1,h,n

+
k
p

2





Qh,nρ






m−1,h,n
+ h1−m‖ρ‖H 1

k (D)
. (2.144)

We now proceed to bound




Qh,nρ






m−1,h,n
: By Lemma 2.72 we have





Qh,nρ






m−1,h,n
≤C m−1

disc,inv, p n1−m
min h1−m





Qh,nρ






L2(D),n

≤C m−1
disc,inv, p n1−m

min h1−m
�




Qh,n u − u






L2(D),n
+ ‖u −Ph u‖L2(D),n

�

(2.145)

as in the proof of Lemma 2.78, using the fact that Qh,nPh u =Ph u.

Using Lemma 2.63 we can bound the first of these terms by the second:





Qh,n u − u






L2(D),n
≤CBA,0nvar‖u −Ph u‖L2(D),n . (2.146)

We can also bound

‖u −Ph u‖L2(D),n ≤Cweight,0nvarh‖ρ‖H 1(D),n ≤Cweight,0nvarnmaxh‖ρ‖H 1
k
(D) (2.147)
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by Lemma 2.61. Therefore by (2.145)–(2.147) we have (as k h ≤ 1)

k




Qh,nρ






m−1,h,n
≤C m−1

disc,inv, pCweight,0
�

1+CBA,0
�

n2
varnmaxn1−m

min h1−m‖ρ‖H 1
k (D)

. (2.148)

Therefore using (2.144) and (2.148) (and the fact that nmax, n−1
min ≥ 1, and so Cerr(n), nvar ≥ 1 and

n−p/2
min , n−m

min ≤ n−p
min) we obtain

‖θh‖m,h,n ≤C2.149,1

�

1+(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

k‖θh‖m−1,h,n

+C2.149,2,m n2
varnmaxn1−m

min h1−m‖ρ‖H 1
k
(D). (2.149)

Using (2.149) recursively, and the facts that n−1
min ≥ 1 and hk ≤ 1, we obtain (2.137).

The following lemma is straightforward to prove, and is used in the proof of Lemma 2.81
below.

Lemma 2.80 (Continuity of aT ). For any v1, v2 ∈H 1
0,D(D),

|aT (v1, v2)| ≤CCnmax‖v1‖H 1
k (D)
‖v2‖H 1

k
(D).

Note, we keep nmax out of the definition of the continuity constant CC so that we can explicitly
keep track of how all the constants in this section depend on n.

Lemma 2.81 (Bound on ‖θh‖L2(D) by ‖θh‖p−1,h,n). Under the assumptions of Theorem 2.39,

‖θh‖L2(D) ≤
�

C2.150,1‖ρ‖H 1
k
(D)+C2.150,2k2h p‖θh‖p−1,h,n

�

(Cerr(n)nvar)
� p−1

2

�

+1n2
max

Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

. (2.150)

Proof of Lemma 2.81. The proof initially uses the standard duality technique, but then becomes
more complex than standard proofs. This complexity is due to the facts that: (i) we are bounding
θh , not the finite-element error u − uh , and (ii) we are bounding θh by its higher-order-discrete
norms, rather than by its H 1-norm as in the Aubin–Nitsche argument.

Consider the adjoint variational problem: Find w ∈H 1
0,D(D) such that for all v ∈H 1

0,D(D)

aT (v, w) = (v,θh )L2(D). (2.151)

(I.e., w solves the adjoint problem (2.60) with right-hand side given by θh .)
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Let eh := u − uh be the finite-element error, put v = eh in (2.151) and take the complex
conjugate23 to obtain

(θh , eh )L2(D) = aT (eh , w −Ph w)

= a?(w −Ph w, eh )− k2(w −Ph w, eh )L2(D),n + i k(w −Ph w, eh )L2(ΓI )

(recalling the definition of a? in (2.88)). By Galerkin orthogonality for w−Ph w, we have (recalling
eh = ρ+θh )

(θh , eh )L2(D) = a?(w −Ph w,ρ)− k2(w −Ph w, eh )L2(D),n + i k(w −Ph w, eh )L2(ΓI )

= aT (ρ, w −Ph w)− k2(w −Ph w,θh )L2(D),n − i k(w −Ph w,θh )L2(ΓI )
. (2.152)

Therefore since θh = eh −ρ we can rearrange (2.152) and use the Cauchy-Schwarz inequality
to obtain

‖θh‖
2
L2(D) ≤CCnmax‖ρ‖H 1

k (D)
‖w −Ph w‖H 1

k
(D)+ k2

�

�

�(w −Ph w,θh )L2(D),n

�

�

�

+ k
�

�

�(w −Ph w,θh )L2(ΓI )

�

�

�+ ‖ρ‖L2(D)‖θh‖L2(D) (2.153)

By combining Lemmas 2.56 and 2.60, we can show (since w satisfies an adjoint Helmholtz problem
with right-hand side θh )

‖w −Ph w‖L2(D) ≤Cproj,0Pp−2(n)
�

CFEM,1h2+CFEM,2Cstabh(hk)p
�

‖θh‖L2(D) (2.154)

and

‖w −Ph w‖H 1(D) ≤ 2Cproj,−1Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D). (2.155)

We will be able to use (2.154) and (2.155) to bound the terms involving w −Ph w in (2.153).

23The reason we take the complex conjugate is that to apply Galerkin orthogonality for w−Ph w, the term w−Ph w
must be the first argument of aT . Alternatively, one could define ÝPh to be the analogue of the elliptic projection but
defined in the second argument, show analogues of the error bounds in Lemma 2.60 and proceed with the proof of the
current lemma. However, for simplicity, we instead take the complex conjugate of (2.151).
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We first estimate the inner product terms in (2.153):

�

�

�(w −Ph w,θh )L2(D),n

�

�

�=
�

�

�

�

Qh,n w −Ph w,θh
�

L2(D),n

�

�

�

≤ ‖θh‖p−1,h,n





Qh,n w −Ph w






−(p−1),h,n
by Lemma 2.69,

≤ ‖θh‖p−1,h,nC2.110, p−1(Cerr(n)nvar)
� p−1

2

�

nmax

p−1
∑

m=0
h m
�





Qh,n w −w






H−(p−1−m)(D),n
+ ‖w −Ph w‖H−(p−1−m)(D),n

�

by Lemma 2.75,

≤ ‖θh‖p−1,h,nC2.110, p−1(Cerr(n)nvar)
� p−1

2

�

nmaxh p−1

p−1
∑

m=0

�

CBA, p−1−m nvar‖w −Ph w‖L2(D),n

+Cweight, p−1−mCerr, p−1−m(n)h‖w −Ph w‖H 1(D),n

�

by Lemmas 2.63 and 2.61,

taking wh =Ph u in Lemma 2.61 and (2.101),

≤ 2‖θh‖p−1,h,nC2.110, p−1

p−1
∑

m=0

�

CBA, p−1−mCproj,0+Cweight, p−1−mCproj,−1

�

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxh p Pp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D) by (2.154) and (2.155),

= ‖θh‖p−1,h,nC2.156(Cerr(n)nvar)
� p−1

2

�

+1n2
maxh p Pp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D). (2.156)

We now estimate the other inner product term

�

�

�(θh , w −Ph w)L2(ΓI )

�

�

�≤CMTCinv, p

�

C
1
2

2.129,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxk h p− 1

2 ‖θh‖p−1,h,n

+C
1
2

2.129,2h
1
2 ‖ρ‖H 1

k
(D)

�

h−
1
2 ‖w −Ph w‖L2(D)

by Lemma 2.78, (2.83), Theorem 2.57, and Lemma 2.71,

≤CMTCinv, pCproj,0

�

C
1
2

2.129,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxk h p‖θh‖p−1,h,n

+C
1
2

2.129,2h‖ρ‖H 1
k
(D)

�

Pp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D) (2.157)

by (2.154).
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We now insert (2.154)–(2.157) into (2.153):

‖θh‖
2
L2(D) ≤

�

CCnmax‖ρ‖H 1
k
(D)

�

Cproj,0+ 2Cproj,1

�

+ k2‖θh‖p−1,h,nC2.156(Cerr(n)nvar)
� p−1

2

�

+1n2
maxh p

+ kCMTCinv, pCproj,0

�

C
1
2

2.129,1(Cerr(n)nvar)
� p−1

2

�

+1n2
maxk h p‖θh‖p−1,h,n

+C
1
2

2.129,2h‖ρ‖H 1
k
(D)

�

�

Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D)

+ ‖ρ‖L2(D)‖θh‖L2(D)

≤
��

CC

�

Cproj,0+ 2Cproj,1

�

nmax+CMTCinv, pCproj,0C
1
2

2.129,2+
Cproj,0

CFEM,1
nvar

�

‖ρ‖H 1
k
(D)

+
�

C2.156(Cerr(n)nvar)
� p−1

2

�

+1n2
max

+CMTCinv, pCproj,0C
1
2

2.129,1(Cerr(n)nvar)
� p−1

2

�

+1n2
max

�

k2h p‖θh‖p−1,h,n

�

Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D). (2.158)

Rearranging (2.158) and using Lemma 2.60 and the fact that hk ≤ 1 we have

‖θh‖
2
L2(D) ≤

��

CC

�

Cproj,0+ 2Cproj,1

�

+CMTCinv, pCproj,0C
1
2

2.129,2+
Cproj,0

CFEM,1

�

‖ρ‖H 1
k
(D)

+
�

C2.156+CMTCinv, pCproj,0C
1
2

2.129,1

�

k2h p‖θh‖p−1,h,n

�

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D).

(2.159)

Using Young’s inequality (2.84) to separate out the ‖θh‖L2(D) term on the right-hand side of
(2.159) and then moving the resulting ‖θh‖

2
L2(D) term to the left hand side, followed by (2.83), we

obtain

‖θh‖L2(D) ≤
��

CC

�

Cproj,0+ 2Cproj,1

�

+CMTCinv, pCproj,0C
1
2

2.129,2+
Cproj,0

CFEM,1

�

‖ρ‖H 1
k
(D)

+
�

C2.156+CMTCinv, pCproj,0C
1
2

2.129,1

�

k2h p‖θh‖p−1,h,n

�

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

. (2.160)

Upon rearranging (2.160) we obtain (2.150).
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With all our lemmas proved, we can now prove our main theorem.

Proof of Theorem 2.39. By inserting (2.137) (with m = p − 1) into (2.150) and using the fact that
nmax,Cerr(n), nvar ≥ 1, we have

‖θh‖L2(D) ≤
�

C2.150,1+C2.150,2k2h pC2.137, p−1,2

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1

n2
varnmaxn1−(p−1)

min h1−(p−1)
�

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖ρ‖H 1
k
(D)

+C2.150,2k2h pC2.137, p−1,1

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1
k p−1

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖θh‖L2(D),

(2.161)

and observe that the second summand in (2.161) is equal to

C2.150,2C2.137, p−1,1

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1(hk)p+1+CFEM,2Cstabh2 p k2 p+1�‖θh‖L2(D)

Choosing h according to (2.62), (2.161) simplifies to

‖θh‖L2(D) ≤
�

C2.150,1+C2.150,2k2h pC2.137, p−1,2

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1

n2
varnmaxn1−(p−1)

min h1−(p−1)
�

(Cerr(n)nvar)
� p−1

2

�

+1n2
maxPp−2(n)

�

CFEM,1h +CFEM,2Cstab(hk)p
�

‖ρ‖H 1
k
(D)

+
1
2
‖θh‖L2(D),

and therefore (since k2h p h1−(p−1) = k2h2 ≤ 1) it follows that

‖θh‖L2(D) ≤
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�p−1
n5

varn−(p+1)
min (Cerr(n)nvar)

1
2 (
� p−1

2

�

+1)Pp−2(n)
�

C2.162,1h +C2.162,2Cstab(hk)p
�

‖ρ‖H 1
k
(D) (2.162)

=
�

CL2(n)
Pp−2(n)

− 1

�

�

C2.162,1h +C2.162,2Cstab(hk)p
�

‖ρ‖H 1
k
(D) (2.163)

(recall the definition of CL2(n) from (2.65)).

By Lemmas 2.56 and 2.60 (using (2.83) and the fact that k ≥ 1)

‖ρ‖H 1
k
(D) ≤C2.164Pp−2(n)

�

h +Cstab(hk)p
�

C f ,gI
, (2.164)
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and therefore

‖θh‖L2(D) ≤
�

CL2(n)− Pp−2(n)
�

C2.165

�

h2+Cstabh(hk)p +C 2
stab(hk)2 p

�

C f ,gI
. (2.165)

We can now bound ‖u − uh‖L2(D):

‖u − uh‖L2(D) ≤ ‖ρ‖L2(D)+ ‖θh‖L2(D)

≤Cproj,0Pp−2(n)
�

CFEM,1h2+CFEM,2Cstabh(hk)p
�

C f ,gI
+ ‖θh‖L2(D),

by Lemmas 2.56 and 2.60,

≤Cproj,0 max
�

CFEM,1,CFEM,2
	

Pp−2(n)
�

h2+Cstabh(hk)p +C 2
stab(hk)2 p

�

C f ,gI

+
�

CL2(n)− Pp−2(n)
�

C2.165

�

h2+Cstabh(hk)p +C 2
stab(hk)2 p

�

C f ,gI
,

which gives (2.63), as required.
We can now proceed similarly as above to bound |θh |H 1(D), and hence to bound the error

‖u − uh‖H 1
k
(D). By Lemmas 2.73 and 2.79 (with m = 1) we have

|θh |H 1(D) ≤A
1
2
min

h

C2.137,1,1

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

k‖θh‖L2(D)

+C2.137,1,2

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax‖ρ‖H 1

k
(D)

i

, (2.166)

and by combining (2.163) and (2.166) we obtain (since hk ≤ 1)

|θh |H 1(D) ≤C2.167

�

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

�

CL2(n)
Pp−2(n)

− 1

�

(1+Cstabk(hk)p )

+
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax

�

‖ρ‖H 1
k (D)

. (2.167)
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Substituting (2.164) into (2.167) we have

|θh |H 1(D) ≤C2.167C2.164

�

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

�

CL2(n)
Pp−2(n)

− 1

�

+
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax

�

Pp−2(n)

(1+Cstabk(hk)p )
�

h +Cstab(hk)p
�

C f ,gI

≤ 2C2.167C2.164

�

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

�

CL2(n)
Pp−2(n)

− 1

�

+
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax

�

Pp−2(n)

�

h +Cstab(hk)p +C 2
stabk(hk)2 p

�

C f ,gI
. (2.168)

We can now proceed to bound ‖u − uh‖H 1
k
(D):

‖u − uh‖H 1
k
(D) ≤ ‖ρ‖H 1

k (D)
+ ‖θh‖H 1

k
(D)

≤ ‖ρ‖H 1(D)+ k‖ρ‖L2(D)+ |θh |H 1(D)+ k‖θh‖L2(D)

≤ 2
�

Cproj,−1+Cproj,0

�

Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

C f ,gI

+ |θh |H 1(D)+ k‖θh‖L2(D), by Lemmas 2.56 and 2.60,

≤ 2
�

Cproj,−1+Cproj,0

�

Pp−2(n)
�

CFEM,1h +CFEM,2Cstab(hk)p
�

C f ,gI

+ 2C2.167C2.164

�

�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

�

CL2(n)
Pp−2(n)

− 1

�

+
�

(Cerr(n)nvar)
1
2 (
� p−1

2

�

+1)nmaxn−
p
2

min

�

n2
varnmax

�

Pp−2(n)

�

h +Cstab(hk)p +C 2
stabk(hk)2 p

�

C f ,gI

+
�

CL2(n)− Pp−2(n)
�

C2.165k
�

h2+Cstabh(hk)p +C 2
stab(hk)2 p

�

C f ,gI
,

by (2.165) and (2.168). Using the fact that hk ≤ 1, and the definitions of CH 1(n) and CFEM,H 1 ,
we then obtain (2.64), as required.

2.4.7 Constants from Section 2.4

To summarise the constants used in Section 2.4, we use the following table, where the constants
are given in order of appearance in the text. As well as giving the definitions of the constants, we
also state the place (Theorem, Lemma, etc.) where they are defined. If a constant is not defined in
terms of other constants, but rather is given in the statement of a Theorem or Lemma (as for, e.g.,
the definition of CMT in Theorem 2.57), then the ‘Definition’ column is left blank.

We recall that where a constant is only used inside a proof it will usually be numbered using
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Table 2.4: The constants from Section 2.4

Constant Definition Defined/Introduced

CBA,m — Lemma 2.22

Cstab — Assumption 2.36

C f ,gI
— Assumption 2.36

Cint,A,l — Proof of Theorem 2.51

Cscat,A,l — Proof of Theorem 2.51

Ctrunc,A,l — Proof of Theorem 2.51

CA,l Cint,A,l +Cscat,A,l +Ctrunc,A,l . Theorem 2.51

CTr,m — Theorem 2.54

CH m ,prod — Proof of Theorem 2.55

Cmult,m, em — Theorem 2.55
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Table 2.4: (continued)

Constant Definition Defined/Introduced

Cmult maxm=2,..., p−2 Cmult,m,max{p−1,dd/2e+1} Proof of Theorem 2.49

Cexpansion, j















maxCA,0, j = 0

max
�

1,CA,1
	�

1+CTr,2
�

Cexpansion,0, j = 1

CA, j

�

1+CTr, j+1

�

max
¦

CmultCexpansion, j−2,Cexpansion, j−1

©

j ∈ [2, p − 2]

Theorem 2.49

Crem, j















CA,1
�

1+CTr,2
�

, j = 1

CA,2
�

1+CTr,3
�

1+Crem,1
��

, j = 2

CA, j

�

1+CTr, j+1

�

Crem, j−1+Crem, j−1

��

, j = 3, . . . , p − 1

Proof of Theorem 2.49

Cosc Crem, p−1 Theorem 2.49

CFEM,1
∑p−2

j=0 CBA, j+2Cexpansion, j Lemma 2.56

CFEM,2 CFEM,2 =CBA, p+1Cosc Lemma 2.56
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Table 2.4: (continued)

Constant Definition Defined/Introduced

Cproj,−m































2‖A‖L∞(D ;op)

min
n

1/ 1
C 2

P

o

Amin

, m =−1

‖A‖L∞(D ;op)CBA,2CA,0Cproj,−1, m = 0

CBA,m+2CA,m‖A‖L∞(D ;op)Cproj,−1, m ∈ [1, p − 1]

Lemma 2.60

Cweight,−m

(

Cproj,m , m =−1,0

Cmult,m,max{p−1,dd/2e+1}Cproj,m , m ∈ [1, p − 1]
Lemma 2.60

Cinv, p — Lemma 2.71

Cdisc,inv, p Cinv, p‖A‖
1/2
L∞(D ;op) Lemma 2.72

Cshift,−m















1/Amin, m =−1

CA,0, m = 0

2CA,mCmult,m,max{p−1,dd/2e+1}, m ∈ [1, p − 1]

Lemma 2.74

C2.111,m Cweight,−m,1CA,0CBA,2 Proof of Lemma 2.75

C2.113,m,t See (2.114)–(2.116) Proof of Lemma 2.75
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Table 2.4: (continued)

Constant Definition Defined/Introduced

C2.120,m,t See (2.121)–(2.123) Proof of Lemma 2.75

C2.110, j max
m∈{0,...,l}







C2.113,m,l ,

�

1+Cproj,1

�

‖A‖L∞(D ;op)

Amin
C2.120,m,l







Proof of Lemma 2.75

C2.133 C2.110, p−1

�

∑p−1
m=0 CBA,(p−1−m)Cweight,0+Cweight,−(p−1−m)

�

Proof of Lemma 2.78

CMT — Theorem 2.57

C2.129,1 C 2
2.133 Lemma 2.78

C2.129,2

�

1+C 2
MTCproj,0

�

/2 Lemma 2.78

C2.140,1 CMTC 1/2
inv, pC p−1

disc,inv, pC
1
2

2.129,1 Proof of Lemma 2.79

C2.140,2 CMTC 1/2
inv, pC m−1

disc,inv, pC
1
2

2.129,2 Proof of Lemma 2.79

C2.143 C 2
MTC

1
2

inv, pC m−1
disc,inv, pC

1
2

proj,0 Proof of Lemma 2.79
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Table 2.4: (continued)

Constant Definition Defined/Introduced

C2.149,1

s

3
2
+C

1
2

2.140,1+
C2.140,2p

2
+

C2.143p
2

Proof of Lemma 2.79

C2.149,2,m
1
p

2
C m−1

disc,inv, pCweight,0
�

1+CBA,0
�

+ 1 Proof of Lemma 2.79

C2.137,m,1 C m
2.149,1 Proof of Lemma 2.79

C2.137,m,2
∑m

j=1 C m− j
2.149,1C2.149,2, j Proof of Lemma 2.79

C2.156 2C2.110, p−1
∑p−1

m=0

�

CBA, p−1−mCproj,0+Cweight, p−1−mCproj,−1

�

Proof of Lemma 2.81

CC 2max

¨

‖A‖L∞(D ;op), 1,
C 2

MT

2

«

Lemma 2.80

C2.150,1 CC

�

Cproj,0+ 2Cproj,1

�

+CMTCinv, pCproj,0C
1
2

2.129,2+
Cproj,0

CFEM,1
Proof of Lemma 2.81

C2.150,2 C2.156+CMTCinv, pCproj,0C
1
2

2.129,1 Proof of Lemma 2.81

C2.162,1 2
�

C2.150,1+C2.150,2C2.137, p−1,1

�

CFEM,1 Proof of Theorem 2.39
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Table 2.4: (continued)

Constant Definition Defined/Introduced

C2.162,2 2
�

C2.150,1+C2.150,2C2.137, p−1,1

�

CFEM,2 Proof of Theorem 2.39

C2.164 2
�

Cproj,−1+Cproj,0

�

max
�

CFEM,1,CFEM,2
	

(2.164)

C2.167 A
1
2
min max

�

C2.137,1,1C2.162,1,C2.137,1,1C2.162,2,C2.137,1,2
	

Proof of Theorem 2.39

C2.165 2C2.164 max
�

C2.162,1,C2.162,2
	

(2.165)

CFEM,L2 max
¦

Cproj,0 max
�

CFEM,1,CFEM,2
	

,C2.165

©

Theorem 2.39

CFEM,H 1 max
¦

2
�

Cproj,−1+Cproj,0

�

max
�

CFEM,1,CFEM,2
	

, 2C2.167C2.164,C2.165

©

Theorem 2.39

Ccond
1

42 p

�

C2.150,2C2.137, p−1,1

�− 1
2 p min

�

C
− 1

2 p

FEM,1,C
− 1

p+1

FEM,2

�

Theorem 2.39
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the equation number of its first appearance.

2.5 S U M M A RY A N D F U T U R E W O R K

2.5.1 Summary

In this chapter we gave the requisite background theory and setup for Helmholtz problems in
heterogeneous media and their finite-element discretisation, before proving new finite-element-
error bounds for the Helmholtz equation in heterogeneous media. In particular:

• In Section 2.2 we gave the setup for deterministic heterogeneous Helmholtz problems,
reviewed the literature around the k-dependence of a priori bounds on the solution of the
Helmholtz equation, and discussed these results in the context of trapping phenomena.

• In Sections 2.3.1 and 2.3.2 we gave the setup for the finite-element discretisation of hetero-
geneous Helmholtz problems.

• In Section 2.3.3 we introduced concepts such as
�

hka , hk b �-accuracy as a means of classifying
results on the h- and k-dependence of finite-element discretisations of the Helmholtz
equation, and gave a complete survey of the literature on rigorous quasi-optimality and
error bounds.

• In Section 2.3.4 we discussed proof techniques for quasi-optimality and error bounds for
finite-element discretisations of the Helmholtz equation, giving a detailed discussion and
taxonomy of the proof techniques in the literature.

• Finally, in Section 2.4 we proved new finite-element error bounds for higher-order finite-
element methods for the Helmholtz equation in heterogeneous media. These results are the
first for higher-order methods and heterogeneous media, and are explicit in their dependence
on the squared slowness n, and are sharp in their h- and k-dependence.

2.5.2 Future work

There are several possibilities for future work building on the new finite-element error bounds in
Section 2.4.1. E.g.,

• Using simpler proof techniques, such as Modified Schatz arguments for data-accuracy
to prove error bounds that (may) have a simpler n-dependence that those in Section 2.4.
However, such proof techniques may not give sharp h- and k-dependence for elements of
degree p > 1, see the discussions in Sections 2.3.3 and 2.3.4.

• Numerical experiments confirming the h- and k-dependence of the results in Section 2.4.

• Numerical experiments investigating whether the dependence on Cstab in our main result,
Theorem 2.39, is as predicted, or whether this dependence is pessimistic, given one expects
trapping behaviour to only be manifested for very few values of k .



C H A P T E R 3

Well-posedness of formulations of the sto-
chastic Helmholtz equation
3.1 I N T R O D U C T I O N
The goals of this chapter are to prove results on the well-posedness of variational formulations of
the stochastic Helmholtz equation

∇ · (A(ω)∇u(ω))+ k2n(ω)u(ω) =− f (ω), (3.1)

as well as a priori bounds on its solution that are explicit in the wavenumber k and the material
coefficients A and n.

We consider (3.1) with physical domain either Rd , d = 2,3, or Rd \D−, where D− (referred
to as the obstacle) is as in Problem 2.1, and

• ω is an element of the underlying probability space,

• A is a symmetric-positive-definite matrix-valued random field such that supp(I − A) is
compact,

• n is a positive real-valued random field such that supp(1− n) is compact,

• f is a real-valued random field such that supp f is compact, and

• k > 0 is the wavenumber,

and as in the rest of this thesis we are particularly interested in the case where the wavenumber k
is large. See Section 3.1.1 below for a rigorous definition of the problems we consider.

Motivation The motivation for establishing well-posedness and proving a priori bounds on the
solution of (3.1) is the growing interest in Uncertainty Quantification (UQ) for the Helmholtz
equation; see, e.g., [220, 209, 32, 87, 80, 81, 138, 117, 14]. (In this PDE context, by ‘UQ’ we mean
theory and algorithms for computing statistics of quantities of interest involving PDEs either
posed on a random domain or having random coefficients.) There is a large literature on UQ for
the stationary diffusion equation

−∇ · (κ(ω)∇u(ω)) = f (ω), (3.2)

due in part to its large number of applications (e.g. in modelling groundwater flow), and a priori
bounds on the solution are vital for the rigorous analysis of UQ algorithms; see e.g. [8, 7, 96, 157,

109
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42]. In contrast, whilst (3.1) has many applications (see, e.g., Section 1.1.1 above), there is much
less rigorous theory of UQ for the Helmholtz equation. The main reason for this is that the
(deterministic) PDE theory of (3.1) when k is large is much more complicated that the analogous
theory for (3.2).

Related previous work To our knowledge, the only work that considers (3.1) with large k and
attempts to establish either (i) well-posedness of variational formulations or (ii) a priori bounds is
[80], which considers both (i) and (ii) for (3.1) posed in a bounded domain with an impedance
boundary condition. We discuss the results of [80] further in Section 3.1.4, but we highlight here
that (a) [80] considers A= I and n = 1+η, with η random and the magnitude of η decreasing with
k , whereas we consider classes of A and n that allow k-independent random perturbations, and (b)
in its well-posedness result, [80] invokes Fredholm theory to conclude existence of a solution, but
this relies on an incorrect assumption about compact inclusion of Bochner spaces—see Appendix A
below. In Section 3.1.4 we also discuss the papers [32, 122, 123, 117, 191, 71] on the theory of
UQ for either (3.1) or the related time-harmonic Maxwell’s equations; in these papers either the
k-explicit well-posedness is not a primary concern or k is assumed to be small. Our hope is that
the results in this chapter can be used in the rigorous theory of UQ for Helmholtz problems with
large k .

The contributions of this chapter The main results in this chapter, Theorems 3.7 and 3.10 below,
concern well-posedness and a priori bounds for the solutions of various formulations of the
stochastic Helmholtz equation; these formulations include those used in sampling-based UQ
algorithms (Problems 3.1 and 3.2 below) and in the stochastic Galerkin method (Problem 3.3
below). These are the first such results for arbitrarily large k and for Aand n varying independently
of k. These results are proved by combining:

1. bounds for the Helmholtz equation in [105] (detailed in Section 2.2.2 above) with A and n
deterministic but spatially-varying, with

2. general arguments (i.e. not specific to Helmholtz) presented here for proving a priori bounds
and well-posedness of variational formulations of linear time-independent SPDEs.

Regarding 1: the k-dependence of the bounds on u in terms of f depends crucially on whether
or not A, n, and D− are such that there exist trapped rays. In the trapping case, the solution
operator can grow exponentially in k; in contrast, in the nontrapping case, the solution operator
is bounded uniformly in k (see the review in Section 2.2.3 above). The bounds in [105] are under
conditions on A, n, and D− that ensure nontrapping of rays; the significance of these bounds is
that they are the first (deterministic) bounds for the Helmholtz scattering problem in which both
A and n vary and the bounds are explicit in A and n (as well as in k). This feature of being explicit
in A and n is crucial in allowing us to prove the results in this chapter when A and n are random
fields.

Regarding 2: the main reason these general arguments are needed is the fact that the variational
formulations of both the deterministic and the stochastic Helmholtz equation are not coercive,
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and so one cannot use the Lax–Milgram theorem to conclude well-posedness and an a priori
bound. In the deterministic case, the remedy for the lack of coercivity of the Helmholtz equation
is to use Fredholm theory, but this is not applicable to the stochastic variational formulation
of the Helmholtz equation because the necessary compactness results do not hold in Bochner
spaces (see Appendix A below). Our solution to this lack of coercivity and failure of Fredholm
theory is to use well-posedness results and bounds from the deterministic case to prove results for
the stochastic case. We work ‘pathwise’ by integrating the deterministic results over probability
space, identifying conditions under which the necessary quantities are indeed integrable. Our
approach is given in a general framework that, given (i) deterministic well-posedness results and
a priori bounds that are explicit in all the coefficients, and (ii) measurability and integrability
conditions on the stochastic quantities, returns corresponding well-posedness results, a priori
bounds, and equivalence results for different formulations of the stochastic problem. One reason
we state our well-posedness results in general (i.e. not only in the specific case of the Helmholtz
equation) is that we expect that they can be used in the future to prove well-posedness results for
the time-harmonic Maxwell’s equations in random media. A nontechnical summary of the ideas
behind our general well-posedness results is given in Remark 3.29 below. Some of these results
are similar in spirit to the results about the PDE (3.2) in [96, 157] (which deal with the failure of
Lax–Milgram for the stochastic variational problem for (3.2) in the case when the coefficient κ is
not uniformly bounded above and below), and our general arguments use some of the ideas and
technical tools from these two papers.

3.1.1 Statement of main results

Notation and basic definitions We now give the setting for our stochastic Helmholtz problems.
Whilst this setting is similar to the deterministic setting in Section 2.2.1 above, one key difference
is that we specify the ball BR which contains the inhomogeneities in A, n, and f . In contrast, in
Section 2.2.1 we simply assume I −A, 1−n, and f have compact support. Let either (i) D− ⊂Rd ,
d = 2,3, be a bounded Lipschitz open set such that 0 ∈ D− and the open complement D+ :=
Rd \D− is connected, or (ii) D− = ;. Let ΓD = ∂ D−. Fix R> 0 and let BR be the ball of radius R
centred at the origin. Define ΓR := ∂ BR and DR := D+ ∩BR (see Figure 2.1). Let γ denote the
trace operator from DR to ∂ DR = ΓD∪ΓR and define H 1

0,D(DR) :=
�

v ∈H 1(DR) : γv = 0 on ΓD
	

.

Let TR : H 1/2(ΓR) → H−1/2(ΓR) be the Dirichlet-to-Neumann map for the deterministic
equation∆u + k2u = 0 posed in the exterior of BR with the Sommerfeld radiation condition

∂ u
∂ r
(x)− ik u(x) = o

�

1
r (d−1)/2

�

as r := |x| →∞, uniformly in
x
|x|

; (3.3)

see [158, Section 2.6.3] and [38, Equations 3.5 and 3.6] for an explicit expression for TR in terms of
Hankel functions and Fourier series (d = 2)/spherical harmonics (d = 3). Let (·, ·)ΓR be the duality
pairing on ΓR between H−1/2(ΓR) and H 1/2(ΓR) and write dλ for Lebesgue measure. Throughout
this chapter we explicitly include the measure when writing integrals, to help distinguish between
integrals over the spatial domain (using dλ) and integrals over the probability space (using dP).
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For A0 ∈ Rd×d , we write ‖A0‖op for the operator norm induced by the Euclidean vector

norm on Cd , and for A : DR→Rd×d , we write ‖A‖L∞(DR;op) for the norm




‖A(x)‖op







L∞(DR;R)
.

Observe that, by the equivalence of all norms on the finite-dimensional space Rd×d , ‖·‖L∞(DR;op)

is equivalent to the more standard norm

‖A‖L∞(DR;Rd×d ) := sup
i , j=1,...,d





Ai , j







L∞(DR;R)
. (3.4)

We define ‖·‖W 1,∞(DR;Rd×d ) by

‖A‖W 1,∞(DR;Rd×d ) := sup
i , j=1,...,d





Ai , j







W 1,∞(DR;R)
. (3.5)

We write D1 ⊂⊂D2 if D1 is a compact subset of the open set D2. Throughout this chapter,
unless stated otherwise we equip a topological space with its Borel σ -algebra. See Appendix B for
a summary of the measure-theoretic concepts used in this chapter. Let

• (Ω,F ,P) be a complete probability space,

• f :Ω→ L2
�

D+
�

be such that supp f (ω)⊂⊂ BR almost surely,

• n :Ω→ L∞
�

D+;R
�

be such that supp(1−n(ω))⊂⊂ BR almost surely and there exist nmin,
nmax :Ω→R such that 0< nmin(ω)≤ n(ω)(x)≤ nmax(ω) for almost every x ∈D+ almost
surely, and

• A :Ω→ L∞
�

D+;SPD
�

be such that supp(I−A(ω))⊂⊂ BR and there exist Amin,Amax :Ω→
R such that 0 < Amin(ω) < Amax(ω) almost surely and Amin(ω)|ξ |

2 ≤
�

A(ω)(x)ξ
�

· ξ ≤
Amax(ω)|ξ |

2 for almost every x ∈D+ and for all ξ ∈Cd almost surely.

If v :Ω→ Z for some function space Z of functions on Rd , we abuse notation slightly and write
v(ω,x) instead of v(ω)(x).

Variational Formulations We consider three different formulations of the Helmholtz stochastic
exterior Dirichlet problem (stochastic EDP); Problems 3.1–3.3 below.

Define the sesquilinear form a(ω) on H 1
0,D(DR)×H 1

0,D(DR) by

[a(ω)](v1, v2) :=
∫

DR

�

(A(ω)∇v1) · ∇v2− k2n(ω)v1 v2

�

dλ−



TRγv1,γv2
�

ΓR
, (3.6)

and the antilinear functional L(ω) on H 1
0,D(DR) by

[L(ω)](v2) :=
∫

DR

f (ω)v2 dλ. (3.7)

Define the sesquilinear form a on L2
�

Ω; H 1
0,D (DR)

�

× L2
�

Ω; H 1
0,D (DR)

�

and the antilinear func-
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tional L on L2
�

Ω; H 1
0,D (DR)

�

by

a(v1, v2) :=
∫

Ω
[a(ω)](v1(ω), v2(ω))dP(ω) and L(v2) :=

∫

Ω
[L(ω)](v2(ω))dP(ω). (3.8)

We consider the following three problems:

Problem 3.1 (Measurable EDP almost surely). Find a measurable u :Ω→H 1
0,D(DR) such that

[a(ω)](u(ω), v) = [L(ω)](v) for all v ∈H 1
0,D(DR) almost surely.

Problem 3.2 (Second-order EDP almost surely). Find u ∈ L2
�

Ω; H 1
0,D (DR)

�

such that

[a(ω)](u(ω), v) = [L(ω)](v) for all v ∈H 1
0,D(DR) almost surely.

Problem 3.3 (Stochastic variational EDP). Find u ∈ L2
�

Ω; H 1
0,D (DR)

�

such that

a(u, v) =L(v) for all v ∈ L2
�

Ω; H 1
0,D(DR)

�

.

Problem 3.2 is the foundation of sampling-based UQ methods, such as Monte-Carlo and
Stochastic-Collocation methods; its analogue for the stationary diffusion equation is well-studied
in, e.g., [218, 7, 160, 41, 42, 204, 131, 114]. Similarly Problem 3.3 is the foundation of the
Stochastic Galerkin method (a finite-element method in Ω×D , where D is the spatial domain),
and is studied for the Helmholtz Interior Impedance Problem in [80], and its analogue for the
stationary diffusion equation is considered in, e.g., [8, 129, 15, 108].

Remark 3.4 (Why consider Problem 3.1?). The difference between Problems 3.1 and 3.2 is that
Problem 3.1 requires no integrability of u over Ω, but Problem 3.2 requires u ∈ L2(Ω, H 1

0,D(DR)).
Since all the theory for sampling-based UQ methods assume some integrability of the solution, the
natural question is: why consider Problem 3.1 at all?

The main reason we consider Problem 3.1 is that, given the existing PDE theory for the Helmholtz
equation, we can prove existence of a solution to Problem 3.1 under general conditions on A and
n, but there is no current prospect of proving existence of a solution to Problem 3.2 under general
conditions on A and n. The explanation for this consists of the following three points:

1. The only two known ways to obtain a solution to Problem 3.2 are: (i) obtain a deterministic
a priori bound, explicit in all parameters, and integrate (followed, e.g., in [42] for (3.2) with
lognormal coefficients) and (ii) obtain a solution to Problem 3.3 and show this is a solution to
Problem 3.2. In the Helmholtz case, doing (ii) is difficult as neither the Lax–Milgram theorem
nor Fredholm theory is applicable (as explained in the introduction), and so we follow the
approach in (i).

2. The only known bounds on the solution of the Helmholtz equation explicit in all parameters
are those recently obtained for nontrapping scenarios in [105, 83].
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3. Obtaining a bound explicit in all the parameters for any general class of A and n, e.g., A ∈
W 1,∞(DR;SPD) and n ∈ L∞(DR;R) is well beyond current techniques. Indeed, a general
class of A and n will include both trapping and nontrapping scenarios, and such a bound would
need to capture the exponential blow-up in k for trapping A and n, the uniform boundedness in
k for nontrapping A and n, and be explicit in A and n.

Given this fact that there is no current prospect of proving existence of a solution to Problem 3.2 under
general conditions on A and n we keep Problem 3.1 so that we prove an (albeit weaker) existence result
for the Helmholtz equation with general coefficients.

Remark 3.5 (Measurability of u in Problem 3.1). It is natural to construct the solution of Problem 3.1
pathwise; that is, one defines u(ω) to be the solution of the deterministic problem with coefficients
A(ω) and n(ω). However, is it then not obvious that u is measurable. In the proof of Theorem 3.7
below, we show that the measurability of u follows from

1. a natural condition on the measurability of the coefficients and data (Condition C1 below), and

2. the continuity of the map taking the coefficients of the deterministic PDE to the solution of the
deterministic PDE (see Lemma 3.54 below).

In Theorems 3.7 and 3.10 we prove results on the well-posedness of Problems 3.1–3.3 under
conditions on A, n, f , and D−. Although A, n, and f are defined on D+, since supp(I − A),
supp(1− n), and supp f are compactly contained in DR we can consider A, n, and f as functions
on DR.

Condition 3.6 (Regularity and stochastic regularity of f , A, and n). The random fields f ,A, and
n satisfy f ∈ L2

�

Ω; L2(DR)
�

, A : Ω → W 1,∞(DR;SPD) with A ∈ L∞
�

Ω; L∞
�

DR;Rd×d ��, and
n ∈ L∞(Ω; L∞(DR;R)).

Theorem 3.7 (Equivalence of variational problems). Under Condition 3.6:

• The maps a and L (defined by (3.8)) are well-defined.

• u ∈ L2
�

Ω; H 1
0,D (DR)

�

solves Problem 3.2 if and only if u solves Problem 3.3.

• If u ∈ L2
�

Ω; H 1
0,D (DR)

�

solves Problem 3.2, then any member of the equivalence class of u
solves Problem 3.1.

• The solution of Problem 3.1 exists and is unique up to modification on a set of measure zero in
Ω.

• The solution of Problems 3.2 and 3.3 is unique in L2
�

Ω; H 1
0,D (DR)

�

.

The proof of Theorem 3.7 is on page 135 below.
Observe that the only relationship between formulations not proved in Theorem 3.7 is:

if u : Ω→ H 1
0,D(DR) solves Problem 3.1 then u ∈ L2

�

Ω; H 1
0,D (DR)

�

and u solves Problem 3.2.
Theorem 3.10 below includes this relationship, but we need additional assumptions on A, n, and
D−. We use the notation established in Definition 2.3.
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Condition 3.8 (k-independent nontrapping conditions on (random) A and n).
The random fields A and n satisfy A : Ω → W 1,∞(DR;SPD) and n : Ω → W 1,∞(DR;R) with
supp(I −A(ω))⊂⊂ BR and supp(1− n(ω))⊂⊂ BR almost surely. Furthermore, there exist µ1,µ2 :
Ω→ R, independent of f , with µ1(ω),µ2(ω) > 0 almost surely and 1/µ1, 1/µ2 ∈ L2(Ω;R) such
that A(ω) ∈NTmat,DR

(µ1(ω)) almost surely and n(ω) ∈NTscal,DR
(µ2(ω)) almost surely.

Definition 3.9 (Star-shaped). The set D ⊆Rd is star-shaped with respect to the point x0 if for any
x ∈D the line segment [x0,x]⊆D .

Theorem 3.10 (Equivalence of variational problems in a nontrapping case).
Let D− be star-shaped with respect to the origin. Under Conditions 3.6 and 3.8:

• The maps a and L (defined by (3.8)) are well-defined.

• Problems 3.1–3.3 are all equivalent.

• The solution u ∈ L2
�

Ω; H 1
0,D (DR)

�

of these problems exists, is unique, and, given k0 > 0, satisfies
the bound

‖∇u‖2L2(Ω;L2(DR))
+ k2‖u‖2L2(Ω;L2(DR))

≤ ‖C1‖L1(Ω)‖ f ‖2L2(Ω;L2(DR))
(3.9)

for all k ≥ k0, where C1 :Ω→R is given by

C1 =max
�

1
µ1

,
1
µ2

�

�

R2

µ1
+

2
µ2

�

R+
d − 1
2k0

�2�

. (3.10)

The proof of Theorem 3.10 is on page 136 below.

As highlighted above, Theorem 3.10 is obtained by combining deterministic a priori bounds
from Theorem 2.6 with the general arguments in Section 3.2 about well-posedness of variational
formulations of stochastic PDEs. Theorem 3.10 uses the most basic a priori bound proved in [105]
(from [105, Theorem 2.5]), but [105] contains several extensions of this bound. Remarks 3.11–
3.15 outline the implications of these (deterministic) extensions for the stochastic Helmholtz
equation.

Remark 3.11 (Dirichlet boundary conditions on ΓD and plane-wave incidence).
The formulations of the stochastic EDP above assume that u = 0 on the boundary ΓD . An

important scattering problem for which u 6= 0 on ΓD is when u is the field scattered by an incident
plane wave; in this case γ u =−γ uI , where uI is the incident plane wave [39, p. 107].

The results in this chapter can be easily extended to the case when u 6= 0 on ΓD using [105, Theorem
2.19(ii)] which proves a priori (deterministic) bounds in this case. One subtlety, however, is that f
is then not necessarily independent of µ1 and µ2. Indeed in this case f =−∇ · (A∇uI )− k2nuI . If
µ1 depends on A and µ2 depends on n then f may be not be independent of µ1 and µ2. One can
produce an analogue of Theorem 3.10 in the case where f ,µ1, and µ2 are dependent, but one requires
1/µ1, 1/µ2 ∈ L4(Ω) and f ∈ L4

�

Ω; L2(D)
�

; see Remark 3.58 below.
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Remark 3.12 (The case when either n = 1 or A= I ). When either n = 1 or A= I , [105, Theorem
2.19] gives deterministic bounds under weaker conditions on A and n respectively; the corresponding
results for the stochastic case are that:

• When n = 1 almost surely, the condition A(ω) ∈NTmat,DR
(µ1(ω)) in Condition 3.8 can be

improved to 2A(ω)− (x · ∇)A(ω)≥µ1(ω) for almost every x ∈D+, almost surely.

• When A= I almost surely, the condition n(ω) ∈NTscal,DR
(µ2(ω)) in Condition 3.8 can be

improved to:

2n(ω)+ x · ∇n(ω)≥µ2(ω) for almost every x ∈D+, almost surely. (3.11)

Remark 3.13 (The Helmholtz stochastic truncated exterior Dirichlet problem).
When applying the Galerkin method to Problems 3.1–3.3, the Dirichlet-to-Neumann map TR is

expensive to compute. Therefore, it is common to approximate the DtN map on ΓR by an ‘absorbing
boundary condition’ (see, e.g., [118, Section 3.3] and the references therein), the simplest of which is
the impedance boundary condition ∂ u/∂ ν − ik u = 0. We call the Helmholtz stochastic EDP posed
in DR with an impedance boundary condition on ΓR the stochastic truncated exterior Dirichlet
problem (stochastic TEDP). In fact, since we no longer need to know the DtN map explicitly on the
truncation boundary, the truncation boundary can be arbitrary (i.e. it does not have to be just a
circle/sphere). Note that in the case when the obstacle is the empty set, the TEDP is just the Interior
Impedance Problem.

The results in this chapter also hold for the stochastic TEDP (with arbitrary Lipschitz truncation
boundary) under an analogue of Condition 3.8 based on the deterministic bounds in [105, Theorem
A.6(i)] instead of [105, Theorem 2.5].

Remark 3.14 (Discontinuous A and n). The requirements on A and n in Condition 3.8 require them
to be continuous (since W 1,∞(DR) =C 0,1(DR) as DR is Lipschitz; see, e.g., [74, Section 4.2.3, Theorem
5]). In addition to proving deterministic a priori bounds for the class of A and n in Condition 3.8,
the paper [105] proves deterministic bounds for discontinuous A and n satisfying (2.9) and (2.10) in a
distributional sense; see [105, Theorem 2.7]. In this case, when moving outward from the obstacle to
infinity, A can jump downwards and n can jump upwards on interfaces that are star-shaped. (When
the jumps are in the opposite direction, the problem is trapping; see [178] and [152, Section 6]). The
well-posedness results and a priori bounds in this chapter can therefore be adapted to prove results
about the stochastic Helmholtz equation for a class of random A and n that allows nontrapping jumps
on randomly-placed star-shaped interfaces.

Remark 3.15 (k-dependent A and n). In this chapter we focus on random fields A and n varying
independently of k; this corresponds to a fixed physical medium, characterised by A and n, with waves
of frequency k passing through. In Section 3.1.2 below we construct A and n as (k-independent) W 1,∞

perturbations of random fields A0 and n0 satisfying Condition 3.8. We note, however, that results for
A and n being k-dependent L∞ perturbations (i.e. rougher, but k-dependent perturbations) of A0

and n0 satisfying Condition 3.8 can easily be obtained.
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The basis for these bounds is observing that deterministic a priori bounds hold when (a) A ∈
NTmat,DR

(µ1), n = n0+ η, where n0 ∈NTscal,DR
(µ2) and k‖η‖L∞(DR;R) is sufficiently small, and

(b) A = A0 + B, n = n0 + η, where A0 ∈ NTmat,DR
(µ1), n0 ∈ NTscal,DR

(µ2), k‖η‖L∞(DR;R) and
k‖B‖W 1,∞(DR;Rd×d ) are both sufficiently small, and A, n, and D− are such that u ∈ H 2(DR) (see,
e.g., [146, Theorem 4.18(i)] or [107, Theorems 2.3.3.2 and 2.4.2.5] for these latter requirements).
Given these deterministic bounds, the general arguments in this chapter can then be used to prove
well-posedness of the analogous stochastic problems.

To understand why bounds hold in the case (a), observe that one can write the PDE as

∇ · (A∇u)+ k2n0u =− f − k2ηu; (3.12)

if k‖η‖L∞(DR;R) is sufficiently small then the contribution from the k2ηu term on the right-hand side
of (3.12) can be absorbed into the k2‖u‖2L2(DR)

term appearing on the left-hand side of the bound (the
deterministic analogue of (3.9)). In the case n0 = 1, this is essentially the argument used to prove the a
priori bound in [80, Theorem 2.4] (see [105, Remark 2.15]). The reason bounds hold in the case (b) is
similar, except now we need the H 2 norm of u on the left-hand side of the bound (as well as the H 1

norm) to absorb the contribution from the∇ · (B∇u) term on the right-hand side.

3.1.2 Random fields satisfying Condition 3.8

The main focus of this chapter is proving well-posedness of the variational formulations of the
stochastic Helmholtz equation, and a priori bounds on the solution, for the most-general class
of A and n allowed by the deterministic bounds in [105]. However, in this section, motivated
by the Karhunen-Loève expansion (see e.g. [143, p. 201ff.]) and similar expansions of material
coefficients for the stationary diffusion equation [131, Section 2.1], we consider A and n as
series expansions around known non-random fields A0 and n0 satisfying Condition 3.8 (i.e.,
Condition 3.8 is satisfied for n0, A0 independent ofω ∈Ω, and therefore µ1,µ2 independent of
ω). Define

A(ω,x) =A0(x)+
∞
∑

j=1

Y j (ω)
Æ

Λ jΨ j (x) and n(ω,x) = n0(x)+
∞
∑

j=1

Z j (ω)
q

λ jψ j (x), (3.13)

where:

• supp(1−A0), supp(I − n0)⊂⊂ BR,

• A0 and n0 satisfy Condition 3.8 with µ1 and µ2 independent ofω ∈Ω

• Y j ,Z j ∼Unif(−1/2,1/2) i.i.d.,

• Λ j ,λ j > 0 for all j = 1, . . . ,∞,

• Ψ j ∈W 1,∞(DR;SPD) with suppΨ j ⊂⊂ BR for all j = 1, . . . ,∞,

∞
∑

j=1

Æ

Λ j





Ψ j







W 1,∞(DR;Rd×d )
<∞, and (3.14)
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∞
∑

j=1

Æ

Λ j





Ψ j







L∞(DR;op)
< 2A0,min, (3.15)

where A0,min > 0 is such that A0,min|ξ |
2 ≤

�

A0(x)ξ
�

· ξ for almost every x ∈D+ and for all
ξ ∈Cd .

• ψ j ∈W 1,∞(DR;R) with suppψ j ⊂⊂ BR for all j = 1, . . . , m,

∞
∑

j=1

q

λ j





ψ j







W 1,∞(DR;R)
<∞, and (3.16)

∞
∑

j=1

q

λ j





ψ j







L∞(DR;R)
< 2n0,min, (3.17)

where n0,min := ess infx∈DR
n0(x).

The assumptions (3.15) and (3.17) ensure that A> 0 (in the sense of quadratic forms) and n > 0
almost surely, and the assumptions (3.14) and (3.16) are used to prove A and n are measurable.

Regarding the measurability of A and n defined by (3.13): the proof that A and n given by
(3.13) are measurable is given in Lemma C.12, and relies on the proof that the sum of measurable
functions is measurable. This latter result is standard, but we have not been able to find this result
for this particular setting of mappings into a separable subspace of a general normed vector space,
and so we briefly give it in Lemma C.7.

The following lemmas give sufficient conditions for the series in (3.13) to satisfy Condition 3.8.

Lemma 3.16 (Series expansion of A satisfies Condition 3.8). Let µ > 0, δ ∈ (0,1) be fixed. If
A0 ∈NTmat,DR

(µ), and

∞
∑

j=1

Æ

Λ j





Ψ j (x)− (x · ∇)Ψ j (x)






L∞(DR;op)
≤ 2δµ, (3.18)

then A∈NTmat,DR
((1−δ)µ) almost surely.

Proof of Lemma 3.16. Since A0 ∈NTmat,DR
(µ), we have

�

(A(ω,x)− (x · ∇)A(ω,x))ξ
�

·ξ ≥µ|ξ |2+
∞
∑

j=1

�

Y j (ω)
Æ

Λ j

�

Ψ j (x)− (x · ∇)Ψ j (x)
�

ξ
�

·ξ (3.19)

for all ξ ∈Cd , for almost every x ∈DR, almost surely. As Y j ∼Unif(−1/2,1/2) for all j and the
bound (3.18) holds, the right-hand side of (3.19) is bounded below by

µ|ξ |2− 1
2

2δµ|ξ |2 = (1−δ)µ|ξ |2 almost surely.

Since ξ ∈Cd was arbitrary, it follows that A(ω) ∈NTmat,DR
((1−δ)µ)) almost surely, as required.
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Lemma 3.17 (Series expansion of n satisfies Condition 3.8). Let µ > 0 and δ ∈ (0,1). If n0 ∈
NTscal,DR

(µ) and
∞
∑

j=1

q

λ j





ψ j (x)+ x · ∇ψ j (x)






L∞(DR;R)
≤ 2δµ, (3.20)

then n ∈NTscal,DR
((1−δ)µ).

The proof of Lemma 3.17 is omitted, since it is similar to the proof of Lemma 3.16; in fact it
is simpler, because it involves scalars rather than matrices.

3.1.3 Outline of the chapter

In Section 3.1.4 we discuss our results in the context of related literature. In Section 3.2 we state
general results on a priori bounds and well-posedness for stochastic variational formulations. In
Section 3.3 we prove the results in Section 3.2. In Section 3.4 we prove Theorems 3.7 and 3.10.

3.1.4 Discussion of the main results in the context of other work on UQ for time-
harmonic wave equations

In this section we discuss existing results on well-posedness of (3.1), as well as analogous results for
the elastic wave equation and the time-harmonic Maxwell’s equations. The most closely-related
work to this chapter is [80] (and its analogue for elastic waves [75]), in that a large component
of [80] consists of attempting to prove well-posedness and a priori bounds for the stochastic
variational formulation (i.e. Problem 3.3) of the Helmholtz Interior Impedance Problem; i.e.,
(3.1) with A = I and stochastic n posed in a bounded domain with an impedance boundary
condition ∂ u/∂ ν − i k u = g . (Recall that this boundary condition is a simple approximation
to the Dirichlet-to-Neumann map TR defined above (3.3).) Under the assumption of existence,
[80] shows that for any k > 0 the solution is unique and satisfies an a priori bound of the form
(3.9) (with different constant C1), provided n = 1+η where the random field η satisfies (almost
surely) ‖η‖L∞ ≤C/k for some C > 0 independent of k. [80] then invokes Fredholm theory to
conclude existence, but this relies on an incorrect assumption about compact inclusion of Bochner
spaces—see Appendix A below. However, combining Theorem 3.7 and Remarks 3.13 and 3.15
with A = I and n0 = 1+ η (with η as above) produces an analogous result to Theorem 3.10,
and gives a correct proof of [80, Theorem 2.5]. Therefore the analysis of the Monte Carlo
interior penalty discontinuous Galerkin method in [80] can proceed under the assumptions of
Theorem 3.7 and Remarks 3.13 and 3.15.

The papers [117] and [191] consider the Helmholtz transmission problem with a stochastic
interface, i.e. (3.1) posed in Rd with both A and n piecewise constant and jumping on a com-
mon, randomly-located interface. A component of this work is establishing well-posedness of
Problem 3.1 for this setup. To do this, the authors make the assumption that k is small (to avoid
problems with trapping mentioned above—see the comments after [117, Theorem 4.3]); the
sesquilinear form a is then coercive and a priori bounds (in principle explicit in A and n) follow
in Sobolev norms [117, Lemma 4.5] and Hölder norms [191, Theorem 5.1 and Corollary 5.2].
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By Remark 3.14, the results of this chapter can be used to obtain the analogous well-posedness
result for large k in the case of nontrapping jumps.

The paper [32] studies the Bayesian inverse problem associated to (3.1) with A= I and n = 1
posed in the exterior of a Dirichlet obstacle. That is, [32] analyses computing the posterior
distribution of the shape of the obstacle given noisy observations of the acoustic field in the
exterior of the obstacle. A component of the analysis in [32] is the well-posedness of the forward
problem for an obstacle with a variable boundary [32, Proposition 3.5]. Instead of mapping the
problem to one with a fixed domain and variable A and n, [32] instead works with the variability
of the obstacle directly, using boundary-integral equations. The k-dependence of the solution
operator is not considered, but would enter in [32, Lemma 3.1].

The papers [123] and [122] consider the time-harmonic Maxwell’s equations with (i) the
material coefficients ε,µ constant in the exterior of a perfectly-conducting random obstacle and (ii)
ε,µ piecewise constant and jumping on a common randomly located interface; in both cases these
problems are mapped to problems where the domain/interface is fixed and ε and µ are random
and heterogeneous. The papers [123] and [122] essentially consider the analogue of Problem 3.1
for the time-harmonic Maxwell’s equations, obtaining well-posedness from the corresponding
results for the related deterministic problems. Similarly the paper [71] considers analogues of
Problem 3.1 for the Helmholtz equation with constant coefficients and a random (penetrable or
inpenetrable) obstacle. The paper [71] obtains deterministic tensor-product boundary-integral
equations for the statistical moments of u.

3.2 G E N E R A L R E S U LT S P R OV I N G A P R I O R I B O U N D S A N D

W E L L - P O S E D N E S S O F S T O C H A S T I C VA R I AT I O N A L F O R -
M U L AT I O N S

In this section we state general results for proving a priori bounds and well-posedness results for
variational formulations of linear time-independent SPDEs.

3.2.1 Notation and definitions of the variational formulations

Let (Ω,F ,P) be a complete probability space. Let X and Y be separable Banach spaces over a
field F, (where F=R or C). Let B(X ,Y ∗) denote the space of bounded linear maps X → Y ∗. Let
C be a topological space with topology TC . Given maps

c :Ω→C , A :C → B(X ,Y ∗), andL :C → Y ∗,

let A : L2(Ω;X )→ L2(Ω;Y )∗ and L ∈ L2(Ω;Y )∗ be defined by

�

A(v1)
�

(v2) :=
∫

Ω

�

Ac(ω)v1(ω)
��

v2(ω)
�

dP(ω) and L(v2) :=
∫

Ω
Lc(ω)

�

v2(ω)
�

dP(ω) (3.21)

for v1 ∈ L2(Ω;X ), v2 ∈ L2(Ω;Y ). Recall that a bounded linear map X → Y ∗ is equivalent to a
sesquilinear (or bilinear) form on X ×Y ; see e.g. [189, Lemma 2.1.38]. To keep notation compact,
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we writeAc(ω) = (A ◦ c)(ω) andLc(ω) = (L ◦ c)(ω).

Remark 3.18 (Interpretation of the spaceC ). The spaceC is the ‘space of inputs’. For the stochastic
Helmholtz EDP in Section 3.1.1 the spaceC is defined in Definition 3.47 below, but the upshot of this
definition is that for any ω ∈Ω the triple (A(ω), n(ω), f (ω)) is an element of C . The maps c ,A ,
andL are given by c = (A, n, f ),A = a, andL = L, where a and L are given by (3.6) and (3.7)
respectively and the equalityA = a is meant in the sense of the one-to-one correspondence between
B(X ,Y ∗) and sesquilinear forms on X ×Y.

The following three problems are the analogues in this general setting of Problems 3.1–3.3 in
Section 3.1.

Problem MAS (Measurable variational formulation almost surely). Find a measurable function
u :Ω→X such that

Ac(ω)u(ω) =Lc(ω) in Y ∗ (3.22)

almost surely.

Problem SOAS (Second-order moment variational formulation almost surely).
Find u ∈ L2(Ω;X ) such that (3.22) holds almost surely.

Problem SV (Stochastic variational formulation). Find u ∈ L2(Ω;X ) such that

Au =L in L2(Ω;Y )∗. (3.23)

Remark 3.19 (Immediate relationships between formulations). Since L2(Ω;X )⊆B(Ω,X ) (the
space of all measurable functions Ω→X ) it is immediate that if u solves Problem SOAS then every
member of the equivalence class of u solves Problem MAS.

3.2.2 Conditions onA , L , and c

We now state all the conditions under which we prove results about the equivalence of Prob-
lems MAS–SV.

Condition A1 (A is continuous). The functionA :C → B(X ,Y ∗) is continuous, where we place
the norm topology on X , the dual norm topology on Y ∗, and the operator norm topology on B(X ,Y ∗).

Condition A2 (Regularity ofA ◦ c ). The mapA ◦ c ∈ L∞(Ω;B(X ,Y ∗)).

We note that Condition A2 is violated in the well-studied case of a log-normal coefficient κ for
the stationary diffusion equation (3.2); in order to ensure the stochastic variational formulation is
well-defined in this case, one must change the space of test functions as in [96, 157].

Condition L1 (L is continuous). The function L : C → Y ∗ is continuous, where we place the
dual norm topology on Y ∗.

Condition L2 (Regularity ofL ◦ c ). The mapL ◦ c ∈ L2(Ω;Y ∗).



122 CHAPTER 3. THE STOCHASTIC HELMHOLTZ EQUATION

Condition C1 (c is measurable). The function c :Ω→C is measurable.

To state the next condition, we need to recall the following definition.

Definition 3.20 (P-essentially separably valued [186, p26]). Let (S,TS ) be a topological space. A
function h :Ω→ S is P-essentially separably valued if there exists E ∈F such that P(E) = 1 and
h(E) is contained in a separable subset of S.

Condition C2 (c is P-essentially separably valued). The map c :Ω→C is P-essentially separably
valued.

Remark 3.21 (Why do we need Condition C2?). The theory of Bochner spaces requires strong
measurability of functions (see Definitions B.9 and B.14 below). However, the proof techniques used
in this chapter rely heavily on the measurability of functions (see Definition B.1 below). In separable
spaces these two notions are equivalent (see Corollary B.19). However, some of the spaces we encounter
(such as L∞(DR;R)) are not separable. Therefore, in our arguments we use Condition C2 along with
the Pettis Measurability Theorem (Theorem B.18 below) to conclude that measurable functions are
strongly measurable.

Condition B (A priori bound almost surely). There exist C j , f j :Ω→R, j = 1, . . . , m such that
C j f j ∈ L1(Ω) for all j = 1, . . . , m and the bound

‖u(ω)‖2X ≤
m
∑

j=1

C j (ω) f j (ω) (3.24)

holds almost surely.

Remark 3.22 (Notation in the a priori bound). We use the notation f j in the right-hand side of
(3.24) to emphasise the fact that typically these terms relate to the right-hand sides of the PDE in
question. For the stochastic Helmholtz EDP, m = 1, f1 = ‖ f ‖2L2(D), and C1 is given by (3.10).

Condition U (Uniqueness almost surely). ker
�

Ac(ω)

�

= {0} P-almost surely.

The condition ker
�

Ac(ω)

�

= {0} P-almost surely can be stated as: given L ∈ Y ∗, for P-almost
everyω ∈Ω the deterministic problemAc(ω)u0 = L has a unique solution.

3.2.3 Results on the equivalence of Problems MAS, SOAS, and SV

Theorem 3.23 (Measurable solution implies second-order solution).
Under Condition B, if u solves Problem MAS then u solves Problem SOAS and satisfies the

stochastic a priori bound

‖u‖2L2(Ω;X ) ≤
m
∑

j=1





C j f j







L1(Ω)
. (3.25)

The proof of Theorem 3.23 is on page 126 below.
Note that the right-hand side of the stochastic a priori bound (3.25) is the expectation of the

right-hand side of the bound (3.24).
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Lemma 3.24 (Stochastic variational formulation well-defined).
Under Conditions A1, A2, L1, L2, C1, and C2, the maps A and L defined by (3.21) are well-defined
in the sense that

[A(v1)](v2), L(v2)<∞ for all v1 ∈ L2(Ω;X ), for all v2 ∈ L2(Ω;Y ). (3.26)

The proof of Lemma 3.24 is on page 126 below.

Theorem 3.25 (Second-order solution implies stochastic variational solution).
Under Conditions L1, L2, C1, and C2, if u solves Problem SOAS then u solves Problem SV.

The proof of Theorem 3.25 is on page 127 below.

Theorem 3.26 (Stochastic variational solution implies second-order solution). If Problem SV is
well-defined and u solves Problem SV, then u solves Problem SOAS.

The proof of Theorem 3.26 is on page 128 below.
Theorems 3.23, 3.25, and 3.26 and Lemma 3.24 are summarised in Figure 3.1.

Problem MAS

Problem SOAS

Problem SV

Under Condition B, get
stochastic a priori bound

(3.25) (Theorem 3.23)
Immediate

Under Conditions L1, L2,
C1, and C2, (Theorem 3.25)

If Problem SV is well-
defined (Theorem 3.26)

Well-defined under Conditions A1,
A2, L1, L2, C1, and C2 (Lemma 3.24)

Figure 3.1: The relationship between the variational formulations. An arrow from Problem P
to Problem Q with Conditions R indicates ‘under Conditions R, the solution of Problem P is a
solution of Problem Q’

Remark 3.27 (Condition L2 in Theorem 3.25). In Theorem 3.25 we could replace Condition L2
with Condition A2, and the result would still hold—see the proof for further details. However,
Condition L2 is less restrictive than Condition A2, as it only requires L2 integrability ofL ◦ c as
opposed to essential boundedness ofA ◦ c .

Lemma 3.28 (Showing uniqueness of the solution to Problems MAS–SV).
If Condition U holds, then

1. the solution to Problem MAS (if it exists) is unique up to modification on a set of P-measure 0 in
Ω,

2. the solution to Problem SOAS (if it exists) is unique in L2(Ω;X ), and
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3. if Problem SV is well-defined, the solution to Problem SV (if it exists) is unique in L2(Ω;X ).

The proof of Lemma 3.28 is on page 129 below.

Remark 3.29 (Informal discussion on the ideas behind the equivalence results). The diagram in
Figure 3.1 summarises the relationships between the variational formulations, and the conditions under
which they hold. Moving ‘up’ the left-hand side of the diagram, we prove a solution of Problem SV is a
solution of Problem SOAS in Theorem 3.26; the key idea in this theorem is to use a particular set of
test functions and the general measure-theory result of Lemma B.22 below; this approach was used for
the stationary diffusion equation (3.2) with log-normal coefficients in [96], and for a wider class of
coefficients in [157].

Moving ‘down’ the right-hand side, we prove a solution of Problem MAS is a solution of Prob-
lem SOAS in Theorem 3.23; the key part of this proof is that the bound in Condition B gives information
on the integrability of the solution u. (In the case of (3.2) with uniformly coercive and bounded coeffi-
cient κ, the analogous integrability result follows from the Lax–Milgram theorem; [41, Proposition
2.4] proves an equivalent result for (3.2) with lognormal coefficient κ with an isotropic Lipschitz
covariance function.) Proving a solution of Problem SOAS is a solution of Problem SV in Theo-
rem 3.25 essentially amounts to posing conditions such that the quantities

�

Ac(ω)(u(ω))
�

(v(ω)) and
Lc(ω)(v(ω)) are Bochner integrable for any v ∈ L2(Ω;Y ), so that (3.23) makes sense. Lemma 3.24
shows that the stronger property (3.26) holds, and requires stronger assumptions than Theorem 3.25,
since the proof of Theorem 3.25 uses the additional information that u solves Problem SOAS.

Remark 3.30 (Changing the condition u ∈ L2(Ω;X )). Here we seek the solution u ∈ L2(Ω;X ) but
we could instead require u ∈ Lp (Ω;X ), for some p > 0 and require Au =L in Lq (Ω;Y )∗, for some
q > 0 (i.e. use test functions in Lq (Ω;Y )). In this case, the proof of Theorem 3.26 would be nearly
identical, as the spaceD of test functions used there is a subset of Lq (Ω;Y ) for all q > 0. One could also
develop analogues of Theorems 3.23 and 3.25 and Lemma 3.24 in this setting—see, e.g., [96, Theorem
3.20] for an example of this approach for the stationary diffusion equation with lognormal diffusion
coefficient.

Remark 3.31 (Non-reliance on the Lax-Milgram theorem). The above results hold for an arbitrary
sesquilinear form and hence are applicable to a wide variety of PDEs; their main advantage is that they
apply to PDEs whose stochastic variational formulations are not coercive. For example, as noted in
Section 3.1, for the stationary diffusion equation (3.2) with coefficient κ bounded uniformly below in
ω, the bilinear form of Problem SV is coercive; existence and uniqueness follow from the Lax-Milgram
theorem, and hence the chain of results above leading to the well-posedness of Problem SV is not
necessary.

Remark 3.32 (Overview of how these results are applied to the Helmholtz equation in Section 3.4).
We obtain the results for the Helmholtz equation via the following steps (which could also be applied
to other SPDEs fitting into this framework):

1. Define the map c (via A, n, and f ) such that for almost every ω ∈Ω there exists a solution of
the deterministic Helmholtz EDP corresponding to c(ω).



3.3. PROOF OF THE RESULTS IN SECTION 3.2 125

2. Define u : Ω→ X to map ω to the solution of the deterministic problem corresponding to
c(ω).

3. Prove that Conditions A1, A2, L1, L2, C1, C2, B, and U hold, so that one can apply Theo-
rems 3.23, 3.25, and 3.26 along with Lemmas 3.24 and 3.28 to show Problem 3.3 is well-defined
and u is unique and satisfies Problems 3.1–3.3.

Steps 1 and 2 can be thought of as constructing a solution pathwise.

3.3 P R O O F O F T H E R E S U LT S I N S E C T I O N 3.2
A key ingredient in proving that the stochastic variational formulation is well-defined (Lemma
3.24) is showing that the mapsω 7→ [(L ◦ c)(ω)](v2(ω)) andω 7→ [[(A ◦ c(ω)](v1(ω))](v2(ω))
are measurable, for appropriate functions v1 and v2. Showing that these functions are measurable
is not straightforward, because they both depend onω in multiple places. However, the structure
of theω-dependence in each case is similar, and so we first prove some general results that will be
applicable to both of these cases.

3.3.1 Preliminary lemmas

Throughout this section, we assume we have two separable Banach spaces Z1 and Z2, and maps
P :Ω→ B(Z1,Z2) and v :Ω→ Z1. To simplify notation, we introduce the following definition.

Definition 3.33 (Pairing map). We define the map πP ,v :Ω→ Z2 by

πP ,v (ω) := [P (ω)](v(ω)). (3.27)

Definition 3.34 (Product map). Let PP ,v :Ω→ B(Z1,Z2)×Z1 be defined by

PP ,v (ω) = (P (ω), v(ω)).

Lemma 3.35 (Product map is measurable). When B(Z1,Z2)× Z1 is equipped with the product
topology, ifP and v are measurable, then PP ,v :Ω→ B(Z1,Z2)×Z1 is measurable.

Proof of Lemma 3.35. By the result on the measurability of the Cartesian product of measureable
functions (Lemma B.6), PP ,v is measurable with respect to

�

F ,B
�

B(Z1,Z2)
�

⊗B(Z1)
�

(where
B denotes the Borel σ -algebra—see Definition B.2), as both of the coordinate functionsP and
v are measurable. Since B(Z1,Z2) and Z1 are both metric spaces, they are both Hausdorff. As
Z1 is separable, Lemma B.7 on the product of Borel σ -algebras impliesB

�

B(Z1,Z2)
�

⊗B(Z1) =
B
�

B(Z1,Z2)×Z1
�

. Hence PP ,v is measurable with respect to
�

F ,B
�

B(Z1,Z2)×Z1
��

.

Definition 3.36 (Evaluation map). The function ηZ1,Z2
: B(Z1,Z2)×Z1→ Z2 is defined by

ηZ1,Z2

�

(H , v)
�

:=H (v) forH ∈ B(Z1,Z2) and v ∈ Z1. (3.28)
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Observe that the pairing, product, and evaluation maps (πP ,v , PP ,v , and ηZ1,Z2
respectively)

are related by πP ,v = ηZ1,Z2
◦ PP ,v .

Lemma 3.37 (Evaluation map is continuous). The map ηZ1,Z2
is continuous with respect to the

product topology on B(Z1,Z2)×Z1 and the norm topology on Z2.

The proof of Lemma 3.37 is straightforward and omitted.

Lemma 3.38 (Pairing map is measurable). IfP and v are measurable, then πP ,v is measurable.

Proof of Lemma 3.38. By Lemma 3.35 PP ,v is measurable and by Lemma 3.37 ηZ1,Z2
is continuous.

Therefore Lemma B.4 implies that πP ,v = ηZ1,Z2
◦ PP ,v is measurable.

Lemma 3.39 ((L ◦ c)(v) is measurable). Under Conditions L1 and C1, for any measurable v2 :
Ω→ Y, the function ω 7→ [(L ◦ c(ω)](v(ω)) is measurable.

Proof of Lemma 3.39. The map c is measurable (by Condition C1) and L is continuous (by
Condition L1), therefore Lemma B.4 implies thatL ◦ c is measurable. Applying Lemma 3.38
with Z1 = Y, Z2 = F (because Y ∗ = B(Y,F)),P =L ◦ c , and v = v2, the result follows.

Lemma 3.40 (((A ◦ c)(v1))(v2) is measurable). If Conditions A1 and C1 hold and v1 :Ω→X and
v2 :Ω→ Y are measurable, then the function ω 7→ [[A ◦ c(ω)](v1(ω))](v2(ω)) is measurable.

Proof of Lemma 3.40. Since Conditions A1 and C1 hold, A ◦ c is measurable by Lemma B.4.
Therefore by Lemma 3.38 with Z1 = X , Z2 = Y ∗, P = A ◦ c and v = v1, the map ω →
[A ◦ c(ω)](v1(ω)) is measurable. Therefore applying Lemma 3.38 again with Z1 = Y, Z2 = F,
P (ω) = [A ◦ c(ω)](v1(ω)), and v = v2, the result follows.

3.3.2 Proofs of Theorems 3.23, 3.25, and 3.26 and Lemmas 3.24 and 3.28

Proof of Theorem 3.23. We need to show u : Ω→ X is strongly measurable, satisfies the bound
(3.25), and therefore is Bochner integrable and is in the space L2(Ω;X ). Our plan is to use Corol-
lary B.12 to show u is Bochner integrable, and establish (3.25) as a by-product. Since u solves
Problem MAS, u is measurable. As X is separable, it follows from Corollary B.19 that u is
strongly measurable. Define N : X →R by N (v) := ‖v‖2X . Since N is continuous, Lemma B.4
implies N ◦ u : Ω → R is measurable. Therefore, since both the left- and right-hand sides of
(3.24) are measurable and (3.24) holds for almost everyω ∈Ω we can integrate (3.24) over Ω with
respect to P and obtain

∫

Ω
‖u(ω)‖2X dP(ω)≤

m
∑

j=1





C j f j







L1(Ω)
, (3.29)

the right-hand side of which is finite since Condition B includes that C j f j ∈ L1(Ω) for all j =
1, . . . , m. Since u is strongly measurable, the bound (3.29) and Corollary B.12 with p = 2 imply
that u is Bochner integrable. The norm ‖u‖L2(Ω;X ) is thus well-defined by Definition B.13 and
(3.29) shows that (3.25) holds, and so in particular ‖u‖L2(Ω;X ) <∞.

Proof of Lemma 3.24. We must show that for any v1 ∈ L2(Ω;X ) and any v2 ∈ L2(Ω;Y ):
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• The quantities
�

Ac(ω)v1(ω)
��

v2(ω)
�

andLc(ω)
�

v2(ω)
�

are Bochner integrable, so that the
definitions of A and L as integrals over Ωmake sense.

• The maps A(v1) and L are linear and bounded on L2(Ω;Y ), that is, A : L2(Ω;X ) →
L2(Ω;Y )∗ and L ∈ L2(Ω;Y )∗.

It follows from these two points that A and L are well-defined. Thanks to the groundwork
laid in Section 3.3.1,

�

Ac(ω)v1(ω)
��

v2(ω)
�

andLc(ω)
�

v2(ω)
�

are measurable by Lemmas 3.39
and 3.40 (which need Conditions A1, L1, and C2). Their P-essential separability follows from
Conditions A1, L1, and C2 and Lemma B.20 and thus their strong measurability follows from
Corollary B.19 on the equivalence of measurability and strong measurability when the image is
separable. Their Bochner integrability then follows from the Bochner integrability condition in
Theorem B.11 (with V = F) and the Cauchy–Schwarz inequality since

∫

Ω

�

�

�Lc(ω)
�

v2(ω)
�

�

�

�dP(ω)≤
∫

Ω
‖(L ◦ c)(ω)‖Y ∗‖v2(ω)‖Y dP(ω)

≤ ‖L ◦ c‖L2(Ω;Y ∗)‖v2‖L2(Ω;Y ), (3.30)

which is finite by Condition L2, and

∫

Ω

�

�

�

�

Ac(ω)v1(ω)
��

v2(ω)
�

�

�

�dP(ω)≤ ess supω∈Ω




Ac(ω)







B(X ,Y ∗)

∫

Ω
‖v1(ω)‖X ‖v2(ω)‖Y dP(ω)

≤ ‖A ◦ c‖L∞(Ω;B(X ,Y ∗))‖v1‖L2(Ω;X )‖v2‖L2(Ω;Y ), (3.31)

which is finite by Condition A2.
We now show L ∈ L2(Ω;Y )∗ and A : L2(Ω;X )→ L2(Ω;Y )∗. Observe that

|L(v2)| ≤
∫

Ω

�

�

�Lc(ω)(v2(ω))
�

�

�dP(ω) and |[A(v1)](v2)| ≤
∫

Ω

�

�

�

�

Ac(ω)v1(ω)
�

(v2(ω))
�

�

�dP(ω) and thus
by (3.30) and (3.31) L and A(v1) are bounded. They are clearly linear, and so it follows that
L ∈ L2(Ω;Y )∗ and A(v1) ∈ L2(Ω;Y )∗, i.e., A : L2(Ω;X )→ L2(Ω;Y )∗.

Proof of Theorem 3.25. In order to show that u solves Problem SV, we must show:

1. either the functional L ∈ L2(Ω;Y )∗ or the functional A(u) ∈ L2(Ω;Y )∗, and

2. the equality (3.23) holds.

For Point 1 we show that L ∈ L2(Ω;Y )∗, (since this is easier than showing A(u) ∈ L2(Ω;Y )∗);
in fact the proof of this is contained in the proof of Lemma 3.24.

For Point 2, since u solves Problem SOAS, for P-almost everyω ∈Ω we haveAc(ω)u(ω) =
Lc(ω) in Y ∗. Hence, for any v ∈ L2(Ω;Y ) we have

�

Ac(ω)u(ω)
��

v(ω)
�

=Lc(ω)
�

v(ω)
�

(3.32)

for P-almost everyω ∈Ω. Since L ∈ L2(Ω;Y )∗, the right-hand side of (3.32) is a strongly measur-
able function with finite integral. Hence the left-hand side of (3.32) is as well, and we can integrate
over Ω to conclude

�

Au
�

(v) =L(v) for all v ∈ L2(Ω;Y ), that is, Au =L in L2(Ω;Y )∗.



128 CHAPTER 3. THE STOCHASTIC HELMHOLTZ EQUATION

The following lemma is needed for the proof of Theorem 3.26.

Lemma 3.41. Let δ : Ω× Y → F. For y ∈ Y, define Ωy := {ω ∈Ω : δ(ω, y) = 0} and define
eΩ := {ω ∈Ω : δ(ω, y) = 0 for all y ∈ Y }. If

• for all ω ∈Ω, δ(ω, ·) is a continuous functional on Y and

• for all y ∈ Y, the map δ(·, y) :Ω→ F is measurable and P(Ωy ) = 1,

then P(eΩ) = 1.

Proof of Lemma 3.41. We must show that the set eΩ ∈ F , and P(eΩ) = 1. Observe that, for any
y ∈ Y , the set Ωy ∈F , since Ωy = δ(·, y)−1({0}), which is the preimage under a measurable map
of a measurable set.

Since Y is a Hilbert space, it is separable, and therefore it has a countable dense subset
(yn)n∈N. We will show that P

�

∩n∈NΩyn

�

= 1 and eΩ= ∩n∈NΩyn
. The set ∩n∈NΩyn

∈F , asF is

a σ -algebra and P
�

∪n∈NΩ
c
yn

�

≤
∑

n∈NP
�

Ωc
yn

�

= 0, and hence P
�

∩n∈NΩyn

�

= 1. To next show
eΩ= ∩n∈NΩyn

we observe that eΩ= ∩y∈YΩy and ∩y∈YΩy ⊆∩n∈NΩyn
. It therefore suffices to show

∩n∈NΩyn
⊆∩y∈YΩy to conclude eΩ= ∩n∈NΩyn

.

Fix y ∈ Y. By density of (yn)n∈N, there exists a subsequence
�

ynm

�

m∈N
such that ynm

→ y
as m→∞. Fix ω ∈ ∩n∈NΩyn

. Note that ω ∈ ∩m∈NΩynm
; that is, for all m ∈N, δ(ω, ynm

) = 0.
As δ(ω, ·) is a continuous function on Y , δ(ω, ynm

)→ δ(ω, y) as m→∞. But as previously
noted, δ(ω, ynm

) = 0 for all m ∈N. Hence we must have δ(ω, y) = 0, and thus ω ∈ Ωy . Since
ω ∈ ∩n∈NΩyn

was arbitrary, it follows that ∩n∈NΩyn
⊆ Ωy , and since y ∈ Y was arbitrary, it

follows that ∩n∈NΩyn
⊆∩y∈YΩy as required.

Proof of Theorem 3.26. Let u ∈ L2(Ω;X ) solve Problem SV. We need to show that u solves Prob-
lem SOAS. Observe that u solving Problem SOAS means Ac(ω)(u(ω)) =

�

Lc(ω)

�

(ω) in Y ∗

for almost every ω ∈ Ω. We now use an idea from [96, Theorem 3.3]. Our plan is to use test
functions of the form y1E , where y ∈ Y and E ∈F to reduce Problem SV to the statement

∫

E

�

Ac(ω)
�

u(ω)
�

�

�

y(ω)
�

dP(ω) =
∫

E

��

Lc(ω)

�

(ω)
�

�

y(ω)
�

dP(ω) for all E ∈F

and then show this implies u satisfies Problem SOAS via Lemma B.22.
First define the spaceD := {y1E : y ∈ Y, E ∈F}. It is straightforward to see that the elements

of D are maps from Ω to Y. The fact that D ⊆ L2(Ω;Y ) follows via the following three steps:

1. The elements of D are measurable, indeed the indicator function of a measurable set is a
measurable function Ω→R, and multiplication by y ∈ Y is a continuous function R→ Y.
Hence elements of D are measurable by Lemma B.4.

2. As Y is a separable Hilbert space, it follows from Corollary B.19 that the elements of D
are strongly measurable.

3. ‖y1E‖L2(Ω;Y ) =
p

P(E)‖y‖Y <∞ for all y ∈ Y, E ∈F .
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Since Problem SV is well-defined, and u solves Problem SV, and D ⊆ L2(Ω;Y ), we have that
[Au](v) =L(v) for all v ∈D. Therefore, we have

∫

Ω

�

Ac(ω)(u(ω))
�

(y1E (ω))dP(ω) =
∫

Ω

�

Lc(ω)

�

(y1E (ω))dP(ω) (3.33)

for all y ∈ Y and E ∈ F . If we define δ : Ω×Y → F by δ(ω, y) :=
�

Ac(ω)(u(ω))−Lc(ω)

�

(y)
then, by the definition of 1E , (3.33) becomes

∫

E
δ(ω, y)dP(ω) = 0 for all E ∈F . (3.34)

To conclude u solves Problem SOAS we must show δ(ω, y) = 0 for all y ∈ Y, almost surely.
We will use Lemma B.22, so the first step is to show that for all y ∈ Y δ(·, y) is Bochner in-
tegrable. This follows from the fact that Problem SV is well-defined, and thus the quantities
�

Ac(ω)v1(ω)
��

v2(ω)
�

and Lc(ω)
�

v2(ω)
�

are Bochner integrable for any v1 ∈ L2(Ω;X ), v2 ∈
L2(Ω;Y ). In particular, they are Bochner integrable when v1 = u, and v2 = y1E and thus
their difference δ is Bochner integrable. Secondly, δ(ω, ·) is a continuous function on Y since
Ac(ω)(u(ω)),

�

Lc(ω)

�

(ω) ∈ Y ∗, for allω ∈Ω.

We now show δ(ω, y) = 0 for all y ∈ Y, almost surely. For y ∈ Y define the set Ωy :=
{ω ∈Ω : δ(ω, y) = 0}; by (3.34) and Lemma B.22 we have that P(Ωy) = 1 for all y ∈ Y. By
Lemma 3.41, δ(ω, y) = 0 for all y ∈ Y , almost surely, that is,Ac(ω)u(ω) =Lc(ω) almost surely;
it follows that u solves Problem SOAS.

Remark 3.42 (Connection with the argument in [157, Remark 2.2]). The argument in

Lemma 3.41 and the final part of Theorem 3.26 closely mirrors the result in [157, Remark 2.2]. Indeed,
we prove in general that

P
�

δ(ω, y) = 0
�

= 1 for all y ∈ Y implies P
�

δ(ω, y) = 0 for all y ∈ Y
�

= 1,

and [157, Remark 2.2] shows an analogous result for the stationary diffusion equation (3.2) with
non-uniformly coercive and unbounded coefficient κ.

Proof of Lemma 3.28. Proof of Part 1. Suppose u1, u2 : Ω → X solve Problem MAS. Let E =
{ω ∈Ω : u1(ω) 6= u2(ω)}. Denote by E1 and E2 the sets (of measure zero) where the variational
problems for u1 and u2 fail to hold, i.e. E1, E2 ∈F with P(E1) = P(E2) = 0 and

Ac(ω)(u1(ω)) 6=Lc(ω) iffω ∈ E1, and Ac(ω)(u2(ω)) 6=Lc(ω) iffω ∈ E2.

As ker
�

Ac(ω)

�

= {0} P-almost surely, there exists E3 ∈F such that P(E3) = 0 and

ker
�

Ac(ω)

�

6= {0} iffω ∈ E3. We claim E ⊆ E1 ∪ E2 ∪ E3. Indeed, if u1(ω) 6= u2(ω) then either:
(i) at least one of u1 and u2 does not solve Problem MAS at ω or (ii) u1 and u2 both solve
Problem MAS atω, but ker

�

Ac(ω)

�

6= {0}. SinceP(E j ) = 0, j = 1,2,3, we haveP(E1∪E2∪E3) = 0.
Therefore E ∈ F and P(E) = 0 since (Ω,F ,P) is a complete probability space; hence u1 = u2
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almost surely, as required.

Proof of Part 2. By Remark 3.19, if u1, u2 ∈ L2(Ω;X ) solve Problem SOAS, then all the
representatives of the equivalence classes of u1 and u2 solve Problem MAS. Hence, by Part 1,
any representative of u1 and any representative of u2 differ only on some set (depending on the
representatives) of P-measure zero in Ω. Therefore u1 = u2 in L2(Ω;X ), by definition of L2(Ω;X ).

Proof of Part 3. As Problem SV is well-defined, by Remark 3.19 and Theorem 3.26, if u1 and
u2 solve Problem SV, then u1 and u2 also solve Problem MAS. We then repeat the reasoning in
the proof of Part 2 to show u1 = u2 in L2(Ω;X ).

3.4 P R O O F S O F T H E O R E M S 3.7 A N D 3.10
In Section 3.4.1 we place the Helmholtz stochastic EDP into the framework developed in Sec-
tion 3.2. In Section 3.4.2 we give sufficient conditions for the Helmholtz stochastic EDP to satisfy
Conditions A1, L1, C1, etc.. In Section 3.4.3 we apply the general theory developed in Section 3.2
to prove Theorems 3.7 and 3.10.

3.4.1 Placing the Helmholtz stochastic EDP into the framework of Section 3.2

Recall R> 0 is fixed. We let X = Y =H 1
0,D(DR) and define the norm ‖v‖2H 1

k
(DR)

:= ‖∇v‖2L2(DR)
+

k2‖v‖2L2(DR)
on H 1

0,D(DR). Throughout this section, A0, n0, and f0 will be deterministic functions.
Recall that since the supports of 1− n, I −A, and f are compactly contained in BR, we can
consider A, n, and f as functions on DR rather than on D+. In order to define the space C and
the maps c ,A , andL we define the following function spaces on DR.

Definition 3.43 (Compact-support spaces). Let

L2
R(DR) :=

�

f0 ∈ L2(DR) : supp( f0)⊂⊂ BR
	

,

L∞R,min(DR;R) :=
�

n0 ∈ L∞(DR;R) : supp(1− n0)⊂⊂ BR,

there exists αn0
> 0 such that n0(x)≥ αn0

almost everywhere
	

,

L∞R (DR;SPD) :=
n

A0 ∈ L∞(DR;SPD) : supp(I −A0)⊂⊂ BR

o

, and

W 1,∞
R (DR;SPD) :=

�

A0 ∈ L∞R (DR;SPD) : A0 ∈W 1,∞(DR;SPD)
	

.

Observe that the norms on L∞(DR;R), L∞
�

DR;Rd×d �, W 1,∞�DR;Rd×d �, and L2(DR) in-
duce metrics on L∞R,min(DR;R), L∞R (DR;SPD), W 1,∞

R (DR;SPD), and L2
R(DR) respectively. These

spaces are not vector spaces, and are not complete, but completeness and being a vector space is
not required in what follows—we only need them to be metric spaces.

Definition 3.44 (Deterministic form and functional). Given some (A0, n0, f0) ∈ L∞R (DR;SPD)×
L∞R,min(DR;R)×L2

R(DR), let the sesquilinear form aA0,n0
on H 1

0,D(DR)×H 1
0,D(DR) and the antilinear
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functional L f0
on H 1

0,D(DR) be given by

aA0,n0
(v1, v2) :=

∫

DR

�

(A0∇v1) · ∇v2〉− k2n0 v1 v2

�

dλ−



TRγv1,γv2
�

ΓR
, and

L f0
(v2) :=

∫

DR

f0 v2 dλ, for v1, v2 ∈H 1
0,D(DR).

We now restate Problem 2.10 in the notation of this chapter.

Problem 3.45 (Helmholtz EDP). For (A0, n0, f0) ∈ L∞R (DR;SPD)× L∞R (DR;R)× L2
R(DR) find

u0 ∈H 1
0,D(DR) such that aA0,n0

(u0, v) = L f0
(v) for all v ∈H 1

0,D(DR).

Definition 3.46 (d∞ metric). Let (X1, d1), . . . , (Xm , dm) be metric spaces. The d∞ metric on the
Cartesian product X1× · · ·×Xm is defined by

d∞((x1, . . . , xm), (y1, . . . , ym)) := max
j=1,...,m

d j

�

x j , y j

�

.

Definition 3.47 (The input space C ). We let C :=W 1,∞
R (DR;SPD)× L∞R,min(DR;R)× L2

R(DR)
with topology given by the d∞ metric.

Definition 3.48 (The input map c ). Define c :Ω→C by c(ω) = (A(ω), n(ω), f (ω)).

Definition 3.49 (The mapsA andL for the Helmholtz stochastic EDP). Let

A ((A0, n0, f0)) := aA0,n0
and L ((A0, n0, f0)) := L f0

, (3.35)

where the definition ofA is understood in terms of the equivalence between B(X ,Y ∗) and sesquilinear
forms on X ×Y.

3.4.2 Verifying the Helmholtz stochastic EDP satisfies the general conditions in
Section 3.2

Lemma 3.50 (Conditions C1 and C2 for Helmholtz stochastic EDP). If A, n, and f are strongly
measurable, then c defined by Definition 3.48 satisfies Conditions C1 and C2.

Proof. Since A, n, and f are strongly measurable, by Theorem B.18 they are measurable and
P-essentially separably valued. By Lemma B.6, it follows that c is measurable, so c satisfies
Condition C1. By Lemma B.23, it follows that c is P-essentially separably valued, so c satisfies
Condition C2.

Lemma 3.51 (Conditions A1 and L1 for Helmholtz stochastic EDP). The two mapsA andL
given by (3.35) satisfy Conditions A1 and L1.

Proof of Lemma 3.51. We need to show that if we have (Am , nm , fm)→ (A0, n0, f0) in C , then
A ((Am , nm , fm))→A ((A0, n0, f0)) in B(X ,Y ∗), and similarly forL . We have, for v1 ∈X , v2 ∈
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Y,

�

�

�

�

h

�

A (Am , nm , fm)−A (A0, n0, f0)
�

(v1)
i

(v2)
�

�

�

�

=

�

�

�

�

�

∫

DR

�

�

(Am −A0)∇v1
�

· ∇v2− k2(nm − n0)v1v2

�

dλ

�

�

�

�

�

≤ ‖Am −A0‖L∞(DR;op)‖∇v1‖L2(DR)
‖∇v2‖L2(DR)

+ k2‖nm − n0‖L∞(DR;R)‖v1‖L2(DR)
‖v2‖L2(DR)

≤ 2d∞((Am , nm , fm), (A0, n0, f0))‖v1‖H 1
k
(DR)
‖v2‖H 1

k
(DR)

,

Hence if (Am , nm , fm)→ (A0, n0, f0) in C , thenA ((Am , nm , fm))→A ((A0, n0, f0)) in

B(X ,Y ∗). We also have

�

�

�

�

L ((Am , nm , fm), )−L ((A0, n0, f0))
�

(v2)
�

�

�=

�

�

�

�

�

∫

DR

( fm − f0)v2 dλ

�

�

�

�

�

≤ ‖ fm − f0‖L2(DR)

‖v2‖H 1
k (DR)

k
.

Hence if (Am , nm , fm)→ (A0, n0, f0) in C , thenL ((Am , nm , fm))→L ((A0, n0, f0)) in Y ∗.

Definition 3.52 (The solution operator S ). Define the operator S :C → H 1
0,D(DR) by letting

S (A0, n0, f0) ∈H 1
0,D(DR) be the solution of the Helmholtz EDP (Problem 3.45).

Theorem 3.53 (S is well defined). For (A0, n0, f0) ∈C the solutionS ((A0, n0, f0)) of the Helmholtz
EDP (Problem 3.45) exists, is unique, and depends continuously on f0.

Proof of Theorem 3.53. Since R
�

−〈TRγv,γv〉ΓR
�

≥ 0 for all v ∈ H 1
0,D(DR) (see, e.g. [158, The-

orem 2.6.4]), aA0,n0
satisfies a Gårding inequality. Since the inclusion H 1

0,D(DR) ,→ L2(DR) is
compact, Fredholm theory shows that uniqueness implies well-posedness (see, e.g. [146, Theorem
2.34]). Since A is Lipschitz and n is L∞, uniqueness follows from the unique continuation results
in [124, 89]; see [99, Section 2] for these results specifically applied to Helmholtz problems.

Lemma 3.54 (Continuity of solution operator for Helmholtz stochastic EDP). For the
Helmholtz stochastic EDP, the solution operator S :C →H 1

0,D(DR) is continuous.

Sketch Proof of Lemma 3.54. Let (A0, n0, f0), (A1, n1, f1) ∈ C , such that S ((A0, n0, f0)) = u0 and
S ((A1, n1, f1)) = u1. Then for any v ∈H 1

0,D(DR) we have, for j = 0,1,

��

A ((Aj , n j , f j ))
�

(u j )
�

(v) =
�

L ((Aj , n j , f j ))
�

(v).

Continuity of S then follows from:

1. Deriving the Helmholtz equation with coefficients A0 and n0 satisfied by ud := u0− u1.

2. Recalling that the well-posedness result of Theorem 3.53 holds when f0 ∈ L2
R(DR) is replaced

by a right-hand side in (H 1
0,D(DR))

∗; see, e.g., [146, Theorem 2.34].
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3. Applying the result in Point 2 to obtain a bound ‖ud‖H 1
k (DR)

≤C (A0, n0)‖F ‖�H 1
0,D(DR)

�∗ .

4. Showing ‖F ‖�H 1
0,D(DR)

�∗ depends on each of ‖∇u1‖L2(DR)
, ‖u1‖L2(DR)

, ‖A1−A0‖L∞(DR;op),

‖n1− n0‖L∞(DR;R), and ‖ f0− f1‖L2(D).

5. Eliminating the dependence on u1 by writing u1 = u0− ud and moving terms in ud to the
left-hand side, to obtain a bound on ud of the form

‖∇ud‖L2(DR)
+ k‖ud‖L2(DR)

≤ eC
�

u0,A0, n0,‖A1−A0‖L∞(DR;op),‖n1− n0‖L∞(DR;R),‖ f0− f1‖L2(DR)

�

.

6. Concluding that ud → 0 in H 1
0,D(DR) as (A1, n1, f1)→ (A0, n0, f0) in C .

Lemma 3.55 (Condition U for the Helmholtz stochastic EDP).

The Helmholtz stochastic EDP satisfies Condition U.

Proof of Lemma 3.55. This condition holds immediately from Theorem 3.53.

To prove that Condition B holds for the Helmholtz stochastic EDP, we first state the deter-
ministic analogue of Theorem 3.10. This is essentially a restatement of Theorem 2.6, but on the
set DR, rather than on D+. Theorem 3.56 uses the notation of Definition 2.3.

Theorem 3.56 (Well-posedness of the Helmholtz EDP [105, Theorem 2.5]).
Let (A0, n0, f0) ∈ C and suppose A0 ∈NTmat,DR

(τ1) and n0 ∈NTscal,DR
(τ2). Then the solution of

the Helmholtz EDP (Problem 3.45) exists and is unique. Furthermore, given k0 > 0, for all k ≥ k0,
the solution u0 of the Helmholtz EDP satisfies the bound

τ1‖∇u0‖
2
L2(DR)

+τ2k2‖u0‖
2
L2(DR)

≤C1‖ f0‖
2
L2(DR)

, where C1 := 4

�

R2

τ1
+

1
τ2

�

R+
d − 1
2k0

�2�

.

(3.36)

We can now prove Condition B holds for the Helmholtz stochastic EDP.

Lemma 3.57 (Condition B for Helmholtz stochastic EDP). If Conditions 3.6 and 3.8 hold, then
Condition B holds for the Helmholtz stochastic EDP.

Proof of Lemma 3.57. As Condition 3.8 holds, the conditions of Theorem 3.56 hold for P-almost
every ω ∈ Ω (with A0 = A(ω), n0 = n(ω), τ1 = µ1(ω), and τ2 = µ2(ω)). Hence, by Theo-
rem 3.56 the bound (3.24) holds for all k ≥ k0, with X =H 1

0,D(DR), m = 1,

C1(ω) =
4

min{µ1(ω),µ2(ω)}

�

R2

µ1(ω)
+

1
µ2(ω)

�

R+
d − 1
2k0

�2�

,
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and f1 = ‖ f (ω)‖2L2(DR)
. It now remains to show that C1 ‖ f ‖2L2(DR)

∈ L1(Ω). We first show that
C1 ‖ f ‖2L2(DR)

is measurable and then show that it lies in L1(Ω). To show measurability, we rewrite
C1(ω) as

C1(ω) =max

¨

2R2

µ2
1(ω)

+
2

µ1(ω)µ2(ω)

�

R+
d − 1
2k0

�2

,
2R2

µ1(ω)µ2(ω)
+

2
µ2

2(ω)

�

R+
d − 1
2k0

�2«

.

The functions µ−1
1 and µ−1

2 are measurable by assumption; to conclude C1 is measurable we
use the facts (see e.g. [110, Theorems 19.C, 20.A]): (i) the square of a measurable function is
measurable, and (ii) the product, sum, and maximum of two measurable functions are measurable.
Under Condition 3.6, the function f lies in the Bochner space L2

�

Ω; L2(DR)
�

. Therefore, f is
strongly measurable and hence f is measurable by Theorem B.18. The map f 7→ ‖ f ‖2L2(DR)

is clearly continuous, and therefore f1 is measurable by Lemma B.4. As the product of two
measurable functions is measurable, it follows that C1 ‖ f ‖2L2(DR)

is measurable.

We now show that C1‖ f ‖2L2(DR)
∈ L1(Ω). The assumptions 1/µ1, 1/µ2 ∈ L2(Ω) and the

Cauchy–Schwarz inequality imply 1/(µ1µ2) ∈ L1(Ω). Therefore the maps,

ω 7→ 2R2

µ2
1(ω)

+
2

µ1(ω)µ2(ω)

�

R+
d − 1
2k0

�2

andω 7→ 2R2

µ1(ω)µ2(ω)
+

2
µ2

2(ω)

�

R+
d − 1
2k0

�2

are in L1(Ω). Since the maximum of two functions in L1(Ω) is also in L1(Ω), it follows that
C1 ∈ L1(Ω). Condition 3.6 implies that ‖ f ‖2L2(DR)

∈ L1(Ω).

To conclude C1‖ f ‖2L2(DR)
∈ L1(Ω), observe that the only dependence of C1 onω is through

µ1 and µ2. As µ1 and µ2 are assumed independent of f , and measurable functions of independent
random variables are independent [142, p.236] it follows that C1 and ‖ f ‖2L2(DR)

are independent,
and therefore





C1‖ f ‖2L2(DR)







L1(Ω)
=
∫

Ω
C1(ω)‖ f (ω)‖2L2(DR)

dP(ω)

=
�∫

Ω
C1(ω)dP(ω)

��∫

Ω
‖ f (ω)‖2L2(DR)

dP(ω)
�

= ‖C1‖L1(Ω)





‖ f ‖2L2(DR)







L1(Ω)
<∞. (3.37)

Therefore C1‖ f ‖2L2(D) ∈ L1(Ω) as required. We take the expectation (equivalently, the L1 norm)
of (3.36) (with A0 =A(ω) etc.) and use (3.37) to obtain (3.9).

Remark 3.58 (The case when f , µ1, and µ2 are not independent). Remark 3.11 shows that in the
physically relevant case of scattering by a plane wave, f , µ1, and µ2 may not be independent. In this
case, if we replace the requirements in Condition 3.8 that f ∈ L2

�

Ω; L2(D)
�

and 1/µ1, 1/µ2 ∈ L2(Ω)
with the stronger requirements f ∈ L4

�

Ω; L2(D)
�

and 1/µ1, 1/µ2 ∈ L4(Ω), then one can obtain the
bound

‖∇u‖2
L2
�

Ω;H 1
0,D(DR)

�+ k2‖u‖2
L2
�

Ω;H 1
0,D(DR)

� ≤ ‖C1‖L2(Ω)‖ f ‖2L4(Ω;L2(DR))
.
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Indeed, instead of independence, we use the Cauchy–Schwarz inequality in (3.37) to conclude





C1‖ f ‖2L2(DR)







L1(Ω)
≤ ‖C1‖L2(Ω)





‖ f ‖2L2(DR)







L2(Ω)
= ‖C1‖L2(Ω)‖ f ‖2L4(Ω;L2(DR))

.

Lemma 3.59 (Condition L2 for Helmholtz stochastic EDP). If f ∈ L2
�

Ω; L2(DR)
�

and A and n
are strongly measurable, then Condition L2 holds for the Helmholtz stochastic EDP.

Proof of Lemma 3.59. Since A, n, and f are strongly measurable, Conditions C1 and C2 hold
by Lemma 3.50; i.e., c is both measurable and P-essentially separably valued. Furthermore,
by Theorem B.18 c is strongly measurable. By Lemma 3.51, Condition L1 holds, so the map
L is continuous. Hence, by Lemma B.21, L ◦ c is strongly measurable. We also have that
‖(L ◦ c)(ω)‖Y ∗ = ‖ f (ω)‖L2(DR)

/k , and thusL ◦c ∈ L2(Ω;Y ∗) since f ∈ L2
�

Ω; L2(DR)
�

, i.e. Con-
dition L2 holds.

Lemma 3.60 (Condition A2 for the Helmholtz stochastic EDP).
If A∈ L∞(Ω; L∞(DR;SPD)), n ∈ L∞(Ω; L∞(DR;R)), and f is strongly measurable, then Condi-
tion A2 holds for the Helmholtz stochastic EDP.

Proof of Lemma 3.60. A near-identical argument to the argument at the beginning of the proof of
Lemma 3.59 showsA ◦ c is strongly measurable. Recall that the Dirichlet-to-Neumann operator
TR is continuous from H 1/2(ΓR) to H−1/2(ΓR), see e.g. [158, Theorem 2.6.4]. Let v1 ∈X , v2 ∈ Y,
and observe that the Cauchy–Schwarz inequality and these properties of TR imply that there
exists C (k)> 0 such that

�

�

�

�

h

�

Ac(ω)

�

(v1)
i

(v2)
�

�

�

�

=

�

�

�

�

�

∫

DR

�

(A(ω)∇v1) · ∇v2− k2n(ω)v1v2

�

dλ−



TRv1, v2
�

ΓR

�

�

�

�

�

≤ ‖A(ω)‖L∞(DR;op)‖∇v1‖L2(DR)
‖∇v2‖L2(DR)

+ k2‖n(ω)‖L∞(DR;R)‖v1‖L2(DR)
‖v2‖L2(DR)

+C (k)‖γv1‖H 1/2(ΓR)
‖γv2‖H 1/2(ΓR)

.

Since the trace operator γ is continuous from H 1(DR) to H 1/2(ΓR) (see, e.g. [146, Theorem
3.38]), there exists eC > 0 such that

‖(A ◦ c)(ω)‖B(X ,Y ∗) ≤ eC max
¦

‖A(ω)‖L∞(DR;op),‖n(ω)‖L∞(DR;R),C (k)
©

‖v1‖H 1
k
(DR)
‖v2‖H 1

k
(DR)

.

and henceA ◦ c ∈ L∞(Ω;B(X ,Y ∗)).

3.4.3 Proofs of Theorems 3.7 and 3.10

Proof of Theorem 3.7. We construct a solution of Problem 3.1 by letting u =S ◦ c (which is well-
defined by Theorem 3.53), and observe that, by construction, [a(ω)](u(ω), v) = [L(ω)](v) for
all v ∈H 1

0,D(DR) almost surely. It follows that u is measurable by Condition 3.6 and Lemmas 3.54
and B.4, and so u solves Problem 3.1. We therefore proceed to apply the general theory.

Conditions A1 and L1 hold by Lemma 3.51; Condition A2 holds by Lemma 3.60; Condi-
tion L2 holds by Lemma 3.59; Conditions C1 and C2 hold by Lemma 3.50 and Condition 3.6; and
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Condition U holds by Lemma 3.55. Hence we can apply Theorems 3.25 and 3.26 and Lemmas 3.24
and 3.28 to conclude the results.

Proof of Theorem 3.10. All the conclusions of Theorem 3.7 hold, and we only need to show that
if u solves Problem 3.1 then it also solves Problem 3.2. Condition B holds by Conditions 3.6
and 3.8 and Lemma 3.57. The result then follows from Theorem 3.23.

3.5 S U M M A RY A N D F U T U R E W O R K

3.5.1 Summary

In this chapter we proved existence, uniqueness, and a k-independent a priori bound for the Helm-
holtz equation in random media under a k-independent nontrapping condition. In particular:

• In Section 3.1.1 we gave sufficient conditions for (i) the equivalence of three different
formulations of the Helmholtz equation in random media, (ii) existence and uniqueness of
a solution, and (iii) a k-independent a priori bound on the solution.

• In Section 3.2 in an abstract setting we gave three different formulations of linear spatial
stochastic PDEs, along with abstract sufficient conditions for (i) the equivalence of these
formulations, (ii) existence and uniqueness of a solution, and (iii) an a priori bound on the
solution. These abstract conditions were then applied to the Helmholtz equation.

3.5.2 Future work

There are several possibilities for applying and extending the results in this chapter:

• Applying the abstract results in Section 3.2 to other linear spatial stochastic PDEs, especially
those whose standard variational formulations are not coercive, similar to the Helmholtz
equation. One such example would be the time-harmonic Maxwell’s equations, which are
closely related to the Helmholtz equation, see the discussion in Section 1.1.1.

• Extending the abstract results in Section 3.2 to cover coefficients that are not bounded
almost surely; this extension should be straightforward, as the proofs in Section 3.3 are
based on those in [96, 157], which treat coefficients that are not bounded almost surely.

• Attempting to extend the abstract results in Section 3.2 to nonlinear spatial stochastic PDEs.
We expect this possibility would require substantially adapting the ideas and proofs in
Sections 3.2 and 3.3 to the nonlinear case. However, if possible it would potentially allow
one to prove well-posedness results for certain classes of nonlinear spatial stochastic PDEs.



C H A P T E R 4

Nearby preconditioning for the
Helmholtz equation
4.1 I N T R O D U C T I O N A N D M O T I VAT I O N F R O M UQ
4.1.1 Motivation from uncertainty quantification for the Helmholtz equation

Consider the stochastic Helmholtz equation

∇ ·
�

A(ω,x)∇u(ω,x)
�

+ k2n(ω,x)u(ω,x) =− f (x), x ∈D+, (4.1)

as defined in Chapter 3. If Q(u) is some quantity of interest of the solution, then the simplest
way to approximate E[Q(u)] is via a sampling-based method, i.e. using the approximation

E[Q(u)]≈ 1
N

N
∑

l=1

Q(u(ω l )), (4.2)

where theω l are elements of the sample space Ω. To calculate the right-hand side of (4.2), one
must solve many deterministic Helmholtz problems, corresponding to different samplesω l , i.e.
corresponding to different realisations of the coefficients A(ω, ·) and n(ω, ·). Solving all these
deterministic problems is a very computationally-intensive task because linear systems arising
from discretisations of the Helmholtz equation are notoriously difficult to solve; see the discussion
in Section 1.1.2 above. In particular, direct solvers involving a sparse LU decomposition of the
linear system have a computational cost of the order O

�

N 3/2
�

in 2-d and O
�

N 2
�

in 3-d (see [61,
Section 1] and [61, Equation 3], respectively, for a particular regular grid).

However, if one already has access to the LU decomposition, then the cost of applying a
direct solver using the LU decomposition is much cheaper; O (N logN ) in 2-d [61, Section 1] and
O
�

N 4/3
�

in 3-d [61, Equation 4]. In the context of Uncertainty Quantification for the Helmholtz
equation this reduction in cost when one has access to an LU decomposition suggests the following
question: When can the LU decomposition corresponding to a particular realisation of (4.1) be
used as a preconditioner for other realisations of (4.1)?

This question of reusing preconditioners is more widely applicable than just for LU de-
compositions. For any preconditioner for the Helmholtz equation, one could ask when the
preconditioner corresponding to one realisation of (4.1) can be re-used for other realisations. In
this chapter, for simplicity, we restrict our attention to the case where the preconditioner is an
exact LU decomposition.

One expects this reuse of the preconditioner to work well if the two realisations are ‘nearby’
in some sense. This idea of reusing preconditioners is the ‘nearby preconditioning’ strategy
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proposed in this chapter. To analyse this ‘nearby preconditioning’ strategy rigorously, we first
consider the following problem and question.

Let A( j ), n( j ), j = 1,2 satisfy the properties of A and n in Problem 2.10 or Problem 2.12 (we
will prove results for both problems), with u ( j ) the corresponding solution and D−, f , etc. as in
Problem 2.10 or Problem 2.12. Let A( j ), j = 1,2, be the Galerkin matrices for the corresponding
h-finite-element discretisations (see (4.9) below for a precise definition of A( j )). We seek to answer:

Q1. How small must




A(1)−A(2)




 and




n(1)− n(2)




 be (in some norm to be defined, in terms of

k-dependence) for GMRES applied to (A(1))−1A(2) to converge in a k-independent number
of iterations for arbitrarily large k?

The rigorous answer of Q1 is contained in Theorems 4.11 and 4.12 below. However, an
informal statement of the answer to Q1 is that if

k




A(1)−A(2)






L∞
and k





n(1)− n(2)






L∞
are both sufficiently small, (4.3)

then GMRES applied to (A(1))−1A(2) in some weighted norm converges in a k-independent number
of iterations (and a similar result for standard GMRES with (4.3) replaced by a slightly stronger
condition).

4.1.2 Outline of the chapter

In Section 4.2 we state and discuss the main results of this chapter on the effectiveness of nearby
preconditioning, and give their analogues on the PDE level. In Section 4.3 we describe numerical
experiments investigating the sharpness of the nearby-preconditioning results in Section 4.2. In
Section 4.4 we prove the results in Section 4.2. In Section 4.5 we extend the results in Section 4.2 to
hold in weaker spatial norms, and we describe numerical experiments investigating the sharpness
of these new results. In Section 4.6 we then apply the idea of nearby preconditioning to a Quasi-
Monte-Carlo (QMC) method for the stochastic Helmholtz equation; in Section 4.6.2 we describe
two algorithms for applying nearby preconditioning to QMC methods and in Section 4.6.3 we
describe numerical experiments on the effectiveness of nearby preconditioning applied to QMC
methods. In Section 4.7 we briefly review the related literature. Finally, in Section 4.8, we show
how one can prove probabilistic results about the behaviour of nearby preconditioning, and we
describe numerical experiments that investigate these probabilistic results.

4.2 ST AT E M E N T O F T H E M A I N R E S U LT S

4.2.1 Definition of variational problems and conditions used to prove main re-
sults

As this chapter concerns finite-element discretisations of the Helmholtz equation, we will work
with the variational formulation of the Helmholtz equation. However, because the arguments we
use do not directly rely on the boundary condition used to truncate the computational domain, we
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will state our Helmholtz problems in sufficient generality to include both the EDP (Problem 2.10)
and TEDP (Problem 2.12) above.

Problem 4.1 (General variational Helmholtz problem). Let D ,A, and n be as in Problem 2.2. We
say u ∈H 1

0,D(D) satisfies the variational formulation of a general exterior Dirichlet problem with
gD = 0 if

aG(u, v) = LG(v) for all v ∈H 1
0,D(D), (4.4)

where
aG(w, v) :=

∫

D

�

(A∇w) · ∇v − k2n wv
�

− (T γI w,γI v)ΓI , (4.5)

T : H 1/2(ΓI )→ H−1/2(ΓI ) is a bounded linear map, (·, ·)ΓI is the duality pairing on ΓI , and LG ∈
�

H 1
0,D(D)

�∗
.

Remark 4.2 (Problem 4.1 is a generalisation of Problems 2.10 and 2.12). With the exception of
some overlap in notation, it is straightforward to see that appropriate choices of D , ΓI , T , and LG

allow Problem 4.1 to be either Problem 2.10 or Problem 2.12. Taking D =D, ΓI = ΓR, T = TR and
LG(v) =

∫

D f v (for f as in Problem 2.10) in Problem 4.1, we see Problem 4.1 becomes Problem 2.10.
Additionally, taking D and ΓI in Problem 4.1 to be the same as the D and ΓI in Problem 2.12, taking
T = i k , and LG(v) =

∫

D f v +
∫

ΓI
gI γI v (for f and gI as in Problem 2.12), Problem 4.1 becomes

Problem 2.12.

Remark 4.3 (Problem 4.1 allows for other boundary conditions). The strength of the general
formulation in Problem 4.1 is that it allows us to treat a wide variety of Helmholtz problems at
once. Indeed, any Helmholtz problem that can be written in the form (4.4) and (4.5) and satisfies
Conditions 4.8 and 4.9 below can be treated using the analysis in this chapter.

For the remainder of this chapter, we let (Vh, p )h>0 be the family of finite-element spaces.

Assumption 4.4 (Properties of finite-element spaces). We assume (Vh, p)h>0 is a family of finite-
dimensional subspaces of H 1

0,D(D), whose union is dense in H 1
0,D(D). Moreover, we assume Vh, p

consists of nodal finite-element functions given by piecewise-polynomials on a quasi-uniform simplicial
mesh Th with mesh-size h and fixed polynomial degree p.

Note that the dimension N of Vh, p satisfies N ∼ h−d , with hidden constant dependent on p.
(The assumption of quasi-uniformity can, in principle, be relaxed, see Remark 4.7 below.) As in
Remark 2.17 above, we ignore any variational crimes resulting from this discretisation. We now
define the finite-element approximation of Problem 4.1.

Problem 4.5 (Finite-element approximation of Problem 4.1). Find uh ∈Vh, p such that

aG(uh , vh ) = LG(vh ) for all vh ∈Vh, p . (4.6)

We say that uh ∈Vh, p is the finite-element approximation of u (the solution to Problem 4.1).
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4.2.2 Definition of finite-element matrices, weighted norms, and weighted GM-
RES

Finite-element matrices and weighted norms
We now define the matrices associated with our finite-element discretisation. First, let {φi , i =
1, . . . ,N} be a basis for Vh, p with each φi real-valued. Let

�

SA
�

i j
:=
∫

D

�

A∇φ j ) · ∇φi ,
�

Mn
�

i j
:=
∫

D
nφi φ j , and

�

N
�

i j
:=
∫

ΓR

T (γφ j )γφi (4.7)

be the stiffness, domain-mass, and boundary-mass matrices, respectively. Note that both SA and
Mn are real-valued, but in general N is complex-valued (because both the DtN operator TR and the
impedance operator i k are complex-valued). Let

A := SA− k2Mn −N, (4.8)

and let uh :=
∑

j u jφ j . Then (4.6) implies that the coefficient vector u= (ui )
N
i=1 ∈C

N satisfies

Au= f,

where (f)i := L(φi ). Similarly to above we let

A( j ) := SA( j ) − k2Mn( j ) −N. (4.9)

Our main results about Q1 are Theorems 4.11 and 4.12 below. Theorem 4.12 gives results in
the Euclidean norm on matrices, denoted by ‖ · ‖2 (induced by the Euclidean norm on vectors),
whereas Theorem 4.11 gives results in the weighted norms ‖·‖Dk

and ‖·‖D−1
k

. These weighted
norms are induced by the corresponding vector norms

‖v‖2Dk
:=
�

Dkv,v
�

2 = ‖vh‖
2
H 1

k
(D) and ‖v‖2

D−1
k

:=
�

D−1
k v,v

�

2 (4.10)

where Dk is given in terms of familiar finite-element stiffness- and mass-matrices by

Dk := SI + k2M1,

and vh =
∑

i viφi , where the φi are the finite-element basis functions.

As described in Section 2.2.3, the PDE analysis of the Helmholtz equation naturally takes
place in the norm ‖·‖H 1

k
(D), and (4.10) shows that the norm ‖·‖Dk

is simply the norm on the
finite-element space induced by ‖·‖H 1

k (D)
. The norms ‖·‖Dk

and ‖·‖D−1
k

recently appeared in results
about the convergence of domain-decomposition methods for the Helmholtz equation [102, 106],
and a related norm appeared in similar results for the time-harmonic Maxwell equations [27].

The statement and proof our main results, Theorems 4.11 and 4.12 will require the following
lemma.
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Lemma 4.6 (Norm equivalences of FE functions). There exist m± > 0 and s+ > 0, independent of
h (but dependent on p), such that

m−hd/2‖v‖2 ≤ ‖vh‖L2(D) ≤ m+hd/2‖v‖2, (4.11)

and
‖∇vh‖L2(D) ≤ s+hd/2−1‖v‖2, (4.12)

for all finite-element functions vh =
∑

i viφi ∈Vh, p , with v= (vi )
N
i=1 ∈C

N .

The proof of Lemma 4.6 is on page 147 below.

Written in terms of the matrices M1 and SI defined in (4.7), the bounds (4.11) and (4.12) are,
respectively, the bounds

(M1v,v)2 ∼ hd‖v‖22 and (SI v,v)2 ® hd−2‖v‖22.

Remark 4.7 (Relaxing the assumption of quasi-uniformity). We assume that {Th}h>0 is a quasi-
uniform family of meshes so that the proof of Lemma 4.6 is straightforward. However, this assumption
can almost certainly be relaxed. In [86] (on which the bulk of the arguments in this chapter are
based) Gander, Graham, and Spence prove results both for quasi-uniform meshes and also for shape-
regular meshes (see [86, Sections 3.4 and 4.1.2]). Given the results in [86] for shape-regular meshes are
analagous to those they obtain for quasi-uniform meshes, we expect the results in this chapter can also be
extended to shape-regular meshes. However, we note that [86] only contains bounds on preconditioned
mass matrices (analogous to Lemma 4.19 below) but not preconditioned stiffness matrices (analogous to
Lemma 4.20 below. Therefore it remains open to prove that our results in this chapter can be extended
in their entirety to shape-regular meshes.

Weighted GMRES
We now give the set-up for weighted GMRES, first introduced in by Essai in [72]; we largely
follow [102, Section 5]. Consider the abstract linear system Cx= d in CN , where C ∈CN×N is
invertible. Let x0 be the initial guess, and define the initial residual r0 := d−Cx0 and the standard
Krylov spaces:

K m(C, r0) := span
�

C j r0 : j = 0, . . . , m− 1
	

.

Analagously to the definition of ‖·‖Dk
above, let (·, ·)D denote the inner product onCn induced by

some Hermitian positive-definite matrix D, i.e. (v,w)D := (Dv,w)2, and let ‖ · ‖D be the induced
norm. For m ≥ 1, define the mth GMRES iterate xm to be the unique element ofK m satisfying
the minimal residual property:

‖rm‖D := ‖d−Cxm‖D = min
x∈K m(C ,r0)

‖d−Cx‖D.

Observe that when D= I this is the standard GMRES algorithm. We also note that in general,
weighted GMRES requires the use of weighted Arnoldi process, also introduced by Essai in [72],
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see also the alternative implementations of the weighted Arnoldi process in [109].

4.2.3 Main results

Theorems 4.11 and 4.12 are proved under the following two conditions, which are the minimal
conditions needed for the proof of Theorems 4.11 and 4.12. Therefore, in particular, Condition 4.9
is a very weak condition on the finite-element space Vh, p , since it does not even require convergence
(for fixed k) as the mesh is refined.

Condition 4.8 (Nontrapping bound on u (1)). A(1), n(1), and D are such that, given f ∈ L2(D) the
solution of Problem 4.1 with

LG(v) =
∫

D
f v, (4.13)

u (1), exists, is unique, and, given k0 > 0, u (1) satisfies the bound



u (1)




H 1
k
(D) ≤C (1)

bound
‖ f ‖L2(D) for all k ≥ k0, (4.14)

where C (1)
bound

is independent of k, but dependent on A(1), n(1), D, and k0.

Condition 4.9 (k-independent accuracy of the FE solution for a(1)(·, ·)).

1. Given k0 > 0, h and p are chosen to depend on k such that for all k ≥ k0, if f = n
∑

j α jφ j

for some α j ∈C and n ∈ L∞(DR) (i.e. f is an arbitrary element of Vh, p multiplied by n), then

• The solution uh of Problem 4.5 (with aG = a(1)G , and LG(v) given by (4.13)) exists and is
unique, and

• The error bound
‖u − uh‖H 1

k
(D) ≤C (1)FEM1‖ f ‖L2(D) , (4.15)

holds, where C (1)FEM1 is independent of k and h, but dependent on A(1), n(1), D , k0, and p.

2. Given k0 > 0, h and p are chosen to depend on k such that for all k ≥ k0, if LG(v) =
(A∇ ef ,∇v)L2(D), where A ∈ L∞

�

D ;Rd×d � and ef :=
∑

j α jφ j with α j ∈ C (i.e. ef is an
arbitrary element of Vh, p ), then,

• The solution uh of Problem 4.5 with aG = a(1)G exists and is unique, and

• The error bound
‖u − uh‖H 1

k
(D) ≤C (1)FEM2 k ‖LG‖(H 1

k
(D))∗ , (4.16)

holds, where C (1)FEM2 is independent of k and h, but dependent on A(1), n(1), D , k0, and p.

For details of when Conditions 4.8 and 4.9 are satisfied (for Problems 2.10 and 2.12), see
Section 2.2 (for Condition 4.8) and Section 2.3.3 (for Condition 4.9 part 1). Conditions 4.8 and 4.9
can be informally stated as
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• the obstacle D− and the coefficients A(1) and n(1) are such that u (1) exists, is unique, and
the problem is nontrapping (in the sense described in Section 2.2.3 above), and

• the meshsize h and polynomial degree p in the finite-element method are chosen to depend
on k to ensure that the finite-element approximation to the solution of the problem with
coefficients A(1) and n(1) exists, is unique, and has bounded error in the H 1

k -norm as k→∞.

Remark 4.10 ((4.16) has the same k-dependence as (4.15)). Observe that the bound (4.16) has
the same k-dependence as (4.15) despite the fact that a factor k appears on the right-hand side. If
LG(v) =

∫

D f v, then

‖LG‖(H 1
k
(D))∗ = sup

v∈H 1
0,D(D)

|LG(v)|
‖v‖H 1

k
(D)
≤ sup

v∈H 1
0,D(D)

‖ f ‖L2(D)‖v‖L2(D)

‖v‖H 1
k
(D)

®
1
k

sup
v∈H 1

0,D(D)

‖ f ‖L2(D)‖v‖L2(D)

‖v‖L2(D)

=
‖ f ‖L2(D)

k
.

The factor k appears in (4.16) since we use the weighted norm ‖·‖H 1
k
(D) in the definition of ‖·‖(H 1

k
(D))∗ ,

rather than the unweighted norm ‖·‖H 1(D).

Theorem 4.11 (Answer to Q1: k-independent weighted GMRES iterations).
Let k0 ≥ 0, k ≥ k0, and assume that D−, A(1), and n(1) satisfy Condition 4.8, h and p satisfy
Condition 4.9, and A(2) and n(2) are as in Problem 4.1. Then there exist constants C1 and C2

independent of h and k (but dependent on D−,A(1), n(1), p, and k0) such that if

C1 k




A(1)−A(2)






L∞(D ;op)
+C2 k





n(1)− n(2)






L∞(D ;R)
≤ 1

2
, (4.17)

then both weighted GMRES working in ‖ · ‖Dk
(and the associated inner product) applied to

(A(1))−1A(2)u= f (4.18)

and weighted GMRES working in ‖ · ‖(Dk )−1 (and the associated inner product) applied to

A(2)(A(1))−1v= f (4.19)

converge in a k-independent number of iterations.

The constants C1 and C2 are given explicitly in (4.32) and (4.35) below. The proof of Theo-
rem 4.11 is on page 160 below.

Theorem 4.12 (Answer to Q1: k-independent (unweighted) GMRES iterations).
Let k0 ≥ 0, k ≥ k0, and assume that D−, A(1), and n(1) satisfy Condition 4.8, h and p satisfy
Condition 4.9, and A(2) and n(2) are as in Problem 4.1. Let C1 and C2 be as in Theorem 4.11, and let
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s+ > 0 and m± > 0 be as in Lemma 4.6 (note that all these constants are independent of k, h, and p).
Then if

C1

�

s+
m−

�

1
h





A(1)−A(2)






L∞(D ;op)
+C2

�

m+
m−

�

k




n(1)− n(2)






L∞(D ;R)
,≤ 1

2
(4.20)

then standard GMRES (working in the Euclidean norm and inner product) applied to either of the
equations (4.18) or (4.19) converges in a k-independent number of iterations.

The proof of Theorem 4.12 is on page 160 below.

Three notes regarding Theorems 4.11 and 4.12: (i) The L∞ norms of A1−A2 and n1− n2 in
Theorems 4.11 and 4.12 can be replaced by Lp norms with p <∞, at the price of making the
conditions (4.17) and (4.20) more restrictive; see Section 4.5 for more details. (ii) The ‖·‖L∞(D ;op)

norm on matrix-valued functions appearing on the right-hand sides of (4.28) and (4.29) is defined
by (3.4). (iii) The factor 1/2 on the right-hand sides of (4.17) and (4.20) can be replaced by any
number < 1 and the result still holds, although the number of GMRES iterations may then be
different—but is still independent of k.

Remark 4.13. When h ∼ k−1, the bounds (4.17) and (4.20) are identical in their k-dependence;
however, when h � k−1 (as one needs to take to overcome the pollution effect, as discussed in
Section 2.3.3) the bound (4.20) for standard GMRES is more pessimistic than the bound (4.17) for
weighted GMRES.

Remark 4.14 (Link to the results of [86]). A result analogous to the Euclidean-norm bounds in
Theorem 4.18 was proved in [86] for the case that A(1) =A(2) = I , n(2) = 1, and n(1) = 1+ iε/k2, with
the ‘absorption parameter’ or ‘shift’ ε satisfying 0< ε® k2. (Recall from Remark 4.7 that the proof
strategy used in this chapter is based on the strategy in [86].) The motivation for proving the results
in [86] was that the so-called ‘shifted Laplacian preconditioning’ of the Helmholtz equation is based
on preconditioning (with these choices of parameters) A(2) with an approximation of A(1). Similar
to Theorem 4.11, bounds on ‖I− (A(1))−1A(2)‖2 and ‖I−A(2)(A(1))−1‖2 then give upper bounds on
how large the ‘shift’ ε can be for GMRES for

�

A(1)
�−1

A(2) to converge in a k-independent number of
iterations in the case when the action of (A(1))−1 is computed exactly.

The main differences between [86] and this work are that: (i) [86] focused on the TEDP, not both
the TEDP and the EDP, (ii) [86] focused on the particular case that D− is star-shaped with respect to a
ball, finding a k- and ε-explicit expression for C (1)

bound
in this case using Morawetz identities, whereas

we assume the existence of C (1)
bound

, (iii) [86] required a bound on (A(1))−1Mn , analogous to the bounds
in Lemma 4.19 along with one on (A(1))−1N (in the case that TR is approximated by i k), but not on
(A(1))−1SA, and (iv) [86] only proved bounds in the ‖ · ‖2 norm.

4.2.4 PDE analogues to Theorems 4.11 and 4.12

Numerical experiments in Section 4.3 below indicate that the condition (4.17) is sharp, i.e., that the
k in (4.17) cannot be replaced by kα for α < 1. This indicated sharpness of (4.17) is also supported
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by the PDE-result Theorem 4.15 below. Indeed, Theorem 4.15 shows that the condition

k




A(1)−A(2)






L∞(D ;op)
and k





n(1)− n(2)






L∞(D ;R)
both sufficiently small (4.21)

is not only an answer to Q1 (about finite-element discretisations), but is also the natural answer
to the analogue of Q1 at the level of PDEs, namely

Q2. How small must




A(1)−A(2)






L∞(D ;op)
and





n(1)− n(2)






L∞(D ;R)
be (in terms of their k-

dependence) for the relative error in approximating u (2) by u (1) to be bounded independently
of k for arbitrarily-large k?

Lemma 4.16 shows that the condition “k




n(1)− n(2)






L∞(D ;R)
sufficiently small" is the provably-

sharp answer to Q2 when A(1) =A(2) = I .
To state these PDE results, we use the notation for a, b > 0 that a ® b when a ≤C b for some

C > 0, independent of k, and a ∼ b if a ® b and b ® a.

Theorem 4.15 (Answer to Q2 (the PDE analogue of Q1)). Let k0 > 0 and k ≥ k0. Let D−, A(1),
and n(1) satisfy Condition 4.8 applied to Problem 2.10 (so that the solution of Problem 2.10 u (1) exists,
is unique, and satisfies a k-independent a priori bound). Let D−, A(2), and n(2) be such that u (2) exists
for any f ∈ L2(D) such that supp f ⊂ BR. Then, there exists C3 > 0, independent of k and given
explicitly in terms of D−, A(1), and n(1) in (4.62) below, such that



u (1)− u (2)




H 1
k
(D)



u (2)




H 1
k
(D)

≤C3 k max
n




A(1)−A(2)






L∞(D ;op)
,




n(1)− n(2)






L∞(D ;R)

o

(4.22)

for all k ≥ k0.

The proof of Theorem 4.15 is on page 160 below.

Lemma 4.16 (Sharpness of the bound (4.22) when A(1) =A(2) = I ). There exist particular choices
of f , n(1), and n(2) (with n(1) 6= n(2) both continuous) such that the corresponding solutions u (1) and
u (2) of Problem 2.1 with A(1) =A(2) = I exist, are unique, and satisfy





u (1)− u (2)






H 1
k
(D)



u (2)




H 1
k
(D)

∼





u (1)− u (2)






L2(D)


u (2)




L2(D)
∼ k





n(1)− n(2)






L∞(D ;R)
. (4.23)

The proof of Lemma 4.16 is on page 161 below.

Remark 4.17 (Physical interpretation for k-dependence). It is perhaps unsurprising that the condi-
tion (4.21) is a sufficient condition to answer both Q1 and Q2. Recall that 1/k is proportional to the
wavelength 2π/k of the wave u (at least when A= I and n = 1). As the wavelength is the natural
length scale associated with the wave u, one expects perturbations of magnitude up to O (1/k) to be
‘unseen’ by the PDE or numerical method. This is exactly what we see; perturbations of size (up to) 1/k
give bounded relative difference (in Q2) and bounded GMRES iterations for the nearby-preconditioned
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linear system (in Q1). Also, on a PDE level, perturbations of order 1/k being ‘unseen’ by the PDE can
also be seen in bounds proved for u where n = n1+η, with n1 nontrapping and ‖η‖L∞(D ;R) ® 1/k ,
see Remark 3.15 above.

4.3 N U M E R I C A L E X P E R I M E N T S V E R I F Y I N G A N D I N V E S -
T I G AT I N G T H E S H A R P N E S S O F T H E O R E M S 4.11 A N D

4.12
The numerical experiments in this section seek to verify Theorems 4.11 and 4.12 for Problem 2.12,
and investigate their sharpness. More specifically, the experiments seek to verify if the condition
(4.17) is:

1. sufficient, and

2. necessary

for standard GMRES applied to (4.18) to converge in a number of iterations that is independent
of k .

Based on the PDE results Theorem 4.15 and Lemma 4.16 above, we expect that the condition
(4.21) is a necessary and sufficient condition for standard GMRES applied to (4.18) to converge in
a k-independent number of iterations, even though we can only prove this is a sufficient condition
for weighted GMRES. We expect this because (4.21) is a sufficient condition for Q2, the PDE
analogue of Q1. Indeed, this is exactly the behaviour we observe in numerical experiments; we see
that if (4.21) holds, then standard GMRES applied to (4.18) converges in a k-independent number
of iterations, and moreover, (4.21) may be sharp. We now describe our numerical experiments in
more detail.

To verify this expected behaviour, we perform numerical experiments with the setup described
in Appendix G with A(1) = I and n(1) = 1. We define f and gI to correspond to a plane wave
incident from the bottom left passing through a homogeneous medium given by coefficients A(1)

and n(1). We perform experiments for A and n separately, i.e., first we perform experiments with
A(2) = I and n(2) varying, and then we perform experiments with A(2) varying and n(2) = 1. When
we vary A(2) we measure A(1)−A(2) in the ‖·‖L∞(D ;Rd×d ) norm, as this norm is easier to control

than the ‖·‖L∞(D ;op) norm. However, these two norms are equivalent on L∞
�

D ;Rd×d � (see the
comment above (3.4)).

We define A(2) and n(2) to be piecewise constant (matrix-valued and real-valued respectively)
on a 10× 10 square grid, with their values on each square chosen independently at random
from a Unif(1−α, 1+α) distribution, with α ∈ (0,1) chosen as described below. For A(2), we
impose the restriction that on each square A(2) is positive-definite almost surely. We solve the
linear systems (4.18) for k = 20,40,60,80,100 using standard GMRES and record the number of
GMRES iterations taken to achieve a (relative) tolerance of 10−5 (relative to ‖b‖2).

We perform experiments taking α= 0.5× k−β for β ∈ 0,0.1, . . . , 0.9, 1. We expect that when
β 6= 1 the number of GMRES iterations required for convergence will increase as k increases,
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whereas we expect that when β= 1 the number of GMRES iterations required for convergence
will remain bounded as k increases, even though this behaviour for β= 1 has only been proved
for





A(1)−A(2)






L∞(D ;op)
for weighted GMRES (compare the restrictions on





A(1)−A(2)






L∞(D ;op)
in Theorems 4.11 and 4.12).

In Figures 4.1–4.6, when β ∈ {0, . . . , 0.3} (for




A(1)−A(2)






L∞(D ;Rd×d )
) and β ∈ {0, . . . , 0.5}

(for




n(1)− n(2)






L∞(D ;R)
) we see growth in the maximum number of GMRES iterations needed

(over all realisations) to achieve convergence, otherwise we see that the number of GMRES
iterations is bounded as k increases. This behaviour is better than expected; as the number of
GMRES iterations is apparently bounded for a range of β < 1. However, we note that this
behaviour could be (i) because we are in a pre-asymptotic regime, and the number of GMRES
iterations would grow if we increased k further, or (ii) the particular structure of n(2) (being
piecewise constant, with the pieces independently, randomly chosen) could result in some kind
of ‘averaging’ behaviour, meaning the preconditioner is better than would otherwise be expected.
However, we do not investigate these issues further in this thesis.

4.4 P R O O F S O F T H E O R E M S 4.11, 4.12, A N D 4.15 A N D L E M -
M A 4.16

4.4.1 Proof of the main ingredient of the proofs of Theorems 4.11 and 4.12

As the first step towards proving Theorems 4.11 and 4.12, we prove Lemma 4.6, concerning norm
equivalences of finite-element functions.

Proof of Lemma 4.6. We first show (4.11) by direct computation, before concluding (4.12) from
(4.11) and a standard inverse inequality. Throughout this proof, when we use ∼ the hidden
constants are independent of τ ∈ Th , the mesh size h, and vh ∈Vh, p , but may depend on p.

For any vh ∈Vh, p we have (letting n j denote a node of Th )

‖vh‖
2
L2(D) =

∑

τ∈Th

∫

τ
|vh |

2 (4.24)

∼
∑

τ∈Th

|τ|
∑

n j∈τ

�

�

�vh (n j )
�

�

�

2
(4.25)

∼ hd
∑

τ∈Th

∑

n j∈τ

�

�

�vh (n j )
�

�

�

2
, by quasi-uniformity,

∼ h2‖u‖2, (4.26)

i.e., (4.11). The expression (4.25) follows from (4.24) because the terms defined on τ are equivalent
norms on τ of functions in Vh, p .

To show (4.12) we recall the standard inverse inequality (see, e.g., [29, Theorem 4.5.11 and
Remark 4.5.20])

‖vh‖H 1(D) ® h−1‖vh‖L2(D). (4.27)
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Figure 4.1: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where n(1) = n(2) = 1 and




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β for β= 0,0.1,0.2,0.3.
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Figure 4.2: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where n(1) = n(2) = 1 and




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β for β= 0.4,0.5,0.6,0.7.
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Figure 4.3: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where n(1) = n(2) = 1 and




A(1)−A(2)






L∞(D ;Rd×d )
= 0.5× k−β for β= 0.8,0.9,1.
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Figure 4.4: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where A(1) =A(2) = 1 and




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for β= 0,0.1,0.2,0.3.
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Figure 4.5: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where A(1) =A(2) = 1 and




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for β= 0.4,0.5,0.6,0.7.
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Figure 4.6: Maximum GMRES iteration counts for solving systems with matrix
�

A(1)
�−1

A(2),

where A(1) =A(2) = 1 and




n(1)− n(2)






L∞(D ;R)
= 0.5× k−β for β= 0.8,0.9,1.
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By combining (4.27) and the right-hand side of (4.11), we obtain (4.12).

The main part of the proofs of Theorems 4.11 and 4.12 is the following theorem.

Theorem 4.18 (Main ingredient of the answer to Q1). Let k0 ≥ 0, k ≥ k0, and assume D−, A(1),
and n(1) satisfy Condition 4.8, and assume that h and p satisfy Condition 4.9. Let the k- and h-
independent constants m± and s+ be given as in Lemma 4.6. Then there exist C1,C2 > 0, independent
of h and k (but dependent on D−,A(1), n(1), p, and k0) such that

max
n




I− (A(1))−1A(2)






Dk
,




I−A(2)(A(1))−1






(Dk )−1

o

≤C1 k




A(1)−A(2)






L∞(D ;op)
+C2 k





n(1)− n(2)






L∞(D ;R)
(4.28)

and

max
n




I− (A(1))−1A(2)






2
,




I−A(2)(A(1))−1






2

o

≤C1

�

s+
m−

�

1
h





A(1)−A(2)






L∞(D ;op)
+C2

�

m+
m−

�

k




n(1)− n(2)






L∞(D ;R)
. (4.29)

The proof of Theorem 4.18 is given after the following two lemmas, that are the heart of the
proof of Theorem 4.18.

Lemma 4.19 (Bounds on (A(1))−1Mn). Assume that Condition 4.8 holds, and assume that part (i) of
Condition 4.9 holds. Then, for n ∈ L∞(D ;R),

max
n



(A(1))−1Mn




Dk
,


Mn(A
(1))−1



(Dk )−1

o

≤C2

‖n‖L∞(D ;R)

k
(4.30)

and

max
n



(A(1))−1Mn




2,


Mn(A
(1))−1



2

o

≤C2

�

m+
m−

� ‖n‖L∞(D ;R)

k
, (4.31)

where
C2 :=C (1)FEM1+C (1)

bound
. (4.32)

The proof of Lemma 4.19 is on page 156 below.

Lemma 4.20 (Bounds on (A(1))−1SA). Assume that Condition 4.8 holds, and assume that part (ii) of
Condition 4.9 holds. Then, for A∈ L∞

�

D ;Rd×d �,

max
n



(A(1))−1SA




(Dk )−1 ,


SA(A
(1))−1



Dk

o

≤C1 k‖A‖L∞(D ;op) (4.33)

and

max
n



(A(1))−1SA




2,


SA(A
(1))−1



2

o

≤C1

�

s+
m−

�

1
h
‖A‖L∞(D ;op), (4.34)
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where

C1 :=



C (1)FEM2+
1

min
�

A(1)min, n(1)min

	

�

1
k0
+ 2C (1)

bound
n(1)max

�



 . (4.35)

The proof of Lemma 4.20 is on page 158 below.

Proof of Theorem 4.18 using Lemmas 4.19 and 4.20. Using the definition of the matrices A( j ),SA,
and Mn in (4.9) and (4.7), we have

I− (A(1))−1A(2) = (A(1))−1�A(1)−A(2)
�

= (A(1))−1 �SA(1) − SA(2) − k2�Mn(1) −Mn(2)
��

= (A(1))−1 �SA(1)−A(2) − k2Mn(1)−n(2)
�

, (4.36)

and similarly
I−A(2)(A(1))−1 =

�

SA(1)−A(2) − k2Mn(1)−n(2)
�

(A(1))−1. (4.37)

The bounds in (4.28) on




I− (A(1))−1A(2)






Dk
and





I−A(2)(A(1))−1






D−1
k

then follow from using

the bounds (4.30) and (4.33) in (4.36) and (4.37). The bounds in (4.29) on




I− (A(1))−1A(2)






2
and





I−A(2)(A(1))−1






2
follow completely analagously, except we use the bounds (4.31) and (4.34)

instead of the bounds (4.30) and (4.33).

Proofs of Lemmas 4.19 and 4.20
The proofs of Lemmas 4.19 and 4.20 require the concept of the adjoint sesquilinear form to aG(·, ·).

Definition 4.21 (The adjoint sesquilinear form a†
G(·, ·)). Let D, A, and n be as in Problem 4.1. The

adjoint sesquilinear form, a†
G(·, ·), to aG(·, ·) defined in (4.5) is given by

a†
G(w, v) :=

∫

D

�

(A∇w) · ∇v − k2nwv
�

− (γI w,T (γI v))ΓI . (4.38)

It is then straightforward to check that

A† := SA− k2Mn −N† (4.39)

(where † denotes conjugate transpose) is the Galerkin matrix for the sesquilinear form a†
G(·, ·);

i.e. (A†)i j = a†
G(φ j ,φi ).

The following lemma shows that if w solves an adjoint Helmholtz problem, then w solves a
(standard) Helmholtz problem with a related right-hand side.

Lemma 4.22 (Link between variational problems involving aG(·, ·) and a†
G(·, ·)).

If the source term LG is as in Problem 4.1, w is the solution to Problem 4.1, the boundary operator T
satisfies

�

Tψ,φ
�

ΓI
=
�

Tφ,ψ
�

ΓI
for all φ,ψ ∈H 1/2(ΓI ), (4.40)

and
a†

G(w, v) = LG(v) for all v ∈H 1
0,D(D), (4.41)
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then w satisfies
aG(w, v) = LG(v) for all v ∈H 1

0,D(D). (4.42)

Proof of Lemma 4.22. From (4.41) we have that

a†
G(w, v) = LG(v) for all v ∈H 1

0,D(D).

Using the definition of a†
G(·, ·) and the property (4.40) in the left-hand side of this last equation,

we find (4.42).

Corollary 4.23 ((4.42) holds for Problems 2.10 and 2.12). If Problem 4.1 is chosen to represent
either Problem 2.10 or Problem 2.12, then (4.42) holds.

Proof of Corollary 4.23. The only thing we need to check is that (4.40) holds for both Prob-
lems 2.10 and 2.12. For Problem 2.12, when T = i k, the proof is straightforward. For Prob-
lem 2.10 when T = TR we need the following property of the DtN map TR:

�

TRψ,φ
�

ΓR
=
�

TRφ,ψ
�

ΓR
for all φ,ψ ∈H 1/2(ΓR). (4.43)

This property follows from the fact that, if u1 and u2 are solutions of the homogeneous Helmholtz
equation∆u+k2u = 0 inRd \BR, both satisfying the Sommerfeld radiation condition (3.3), then

∫

ΓR

(γ u1)∂νu2 =
∫

ΓR

(γ u2)∂νu1;

which follows from Green’s theorem and, e.g., [200, Lemma 4.10].

We can now prove Lemmas 4.19 and 4.20.

Proof of Lemma 4.19. We first concentrate on proving (4.30). Given f ∈CN and n ∈ L∞(D ;R),
we create a variational problem whose Galerkin discretisation leads to the equation A(1)eu=Mn f.
Indeed, let ef :=

∑

j f jφ j ∈H 1
0,D(D). Define eu to be the solution of the variational problem

a(1)(eu, v) =
�

n ef , v
�

L2(D)
for all v ∈H 1

0,D(D), (4.44)

and let euh be the solution of the finite-element approximation of (4.44), i.e.,

a(1)(euh , vh ) =
�

n ef , vh

�

L2(D)
for all vh ∈Vh, p , (4.45)

and let eu be the vector of nodal values of euh . The definition of ef then implies that (4.45) is
equivalent to the linear system A(1)eu = Mn f, and so to obtain a bound on ‖(A(1))−1Mn‖Dk

we
need to bound ‖eu‖Dk

in terms of ‖f‖Dk
. (Recall f ∈CN was arbitrary.) Because of the definition

of ‖ · ‖Dk
in (4.10), this bound is equivalent to bounding ‖euh‖H 1

k
(D) in terms of ‖ ef ‖H 1

k
(D).
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Using the triangle inequality and the bounds (4.14) and (4.15) from Conditions 4.8 and 4.9
respectively, we find

‖euh‖H 1
k
(D) ≤ ‖eu − euh‖H 1

k
(D)+ ‖eu‖H 1

k
(D) ≤C (1)FEM1





n ef






L2(D)
+C (1)

bound





n ef






L2(D)
(4.46)

≤
�

C (1)FEM1+C (1)
bound

�

‖n‖L∞(D ;R)







ef






L2(D)
(4.47)

≤
�

C (1)FEM1+C (1)
bound

�

‖n‖L∞(D ;R)




ef




H 1
k (D)

k
;

the bound on ‖(A(1))−1Mn‖Dk
in (4.30) then follows from the definition of ‖ · ‖Dk

in (4.10) and
the definition of C2 (4.32).

To prove the bound on ‖Mn(A
(1))−1‖(Dk )−1 in (4.30), first observe that the definitions of ‖ ·‖Dk

and ‖ · ‖(Dk )−1 in (4.10) imply that, for any matrix C ∈CN×N and for any v ∈CN ,



Cv




(Dk )−1



v‖(Dk )−1

=



C†w




Dk


w‖Dk

(4.48)

where w := (Dk )
1/2v, and where C† is the conjugate transpose of C (i.e. the adjoint with respect to

(·, ·)2). Therefore, since Mn is a real, symmetric matrix,



Mn(A
(1))−1v





(Dk )−1

‖v‖(Dk )−1

=









�

�

A(1)
�−1

Mn

�†
w









Dk

‖w‖Dk

=



((A(1))†)−1Mnw




Dk

‖w‖Dk

,

so that


Mn(A
(1))−1



(Dk )−1 =


((A(1))†)−1Mn




Dk
. (4.49)

Recall from the text below (4.39) that (A(1))† is the Galerkin matrix corresponding to the vari-
ational problem (4.41) – the adjoint problem. Lemma 4.22 implies that if the EDP satisfies
Conditions 4.8 and 4.9, then so does the adjoint problem. Therefore, the argument above leading
to the bound on ‖(A(1))−1Mn‖Dk

under Condition 4.8 and Part (i) of Condition 4.9 proves the
same bound on ‖((A(1))†)−1Mn‖Dk

, and then, using (4.49), also on


Mn(A
(1))−1



(Dk )−1 .

To prove the bound on ‖(A(1))−1Mn‖2 in (4.31), we use the bounds

m−hd/2k‖eu‖2 ≤ k‖euh‖L2(D) ≤ ‖euh‖H 1
k
(D) and




ef




L2(D) ≤ m+hd/2‖f‖2,

on either side of the inequality (4.46), with these bounds coming from (4.11). The proof of
the bound on ‖Mn((A

(1))†)−1‖2 in (4.31) follows in a similar way to above, using the fact that
‖Mn(A

(1))−1‖2 = ‖((A(1))†)−1Mn‖2 (compare to (4.49)).

The proof of Lemma 4.20 uses the following lemma, which one can prove using the Gårding
inequality (2.15); see [105, Lemma 5.1].
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Lemma 4.24 (Bound for data in
�

H 1
0,D(D)

�∗
). Given eLG ∈

�

H 1
0,D(D)

�∗
, let eu be the solution of

the variational problem

find eu ∈H 1
0,D (D) such that a(1)(eu, v) = eLG(v) for all v ∈H 1

0,D (D).

If Condition 4.8 holds, then eu exists, is unique, and satisfies the bound

‖eu‖H 1
k
(D) ≤

1

min{A(1)min, n(1)min}

�

1+ 2C (1)
bound

n(1)maxk
�



eLG




(H 1
k
(D))∗ (4.50)

for all k ≥ k0.

Proof of Lemma 4.20. In a similar way to the proof of Lemma 4.19, given f ∈ CN and A ∈
L∞

�

D ;Rd×d �, let ef :=
∑

j f jφ j and observe that ef ∈ H 1
0,D(D). Define eu to be the solution

of the variational problem

a(1)(eu, v) = eLG(v) for all v ∈H 1
0,D(D), where eLG(v) :=

�

(A∇ ef ,∇v
�

L2(D)
. (4.51)

Observe that the definition of the norms ‖ ·‖(H 1
k
(D))∗ and ‖ ·‖H 1

k
(D) (2.14) and the Cauchy-Schwarz

inequality imply that



eLG




(H 1
k
(D))∗ ≤



A∇ ef




L2(D)

≤ ‖A‖L∞(D ;op)


∇ ef




L2(D) (4.52)

≤ ‖A‖L∞(D ;op)



ef




H 1
k
(D). (4.53)

Let euh be the solution of the finite element approximation of (4.51), i.e.,

a(1)(euh , vh ) = eLG(vh ) for all vh ∈Vh, p , (4.54)

and let eu be the vector of nodal values of euh . The definition of ef then implies that (4.54) is
equivalent to A(1)eu= SA f.

Similar to the proof of Lemma 4.19, using the triangle inequality, the bound (4.16) from
Condition 4.9, the bound (4.50) from Lemma 4.24, the bound (4.53), and the definition of C1

(4.35), we find

‖euh‖H 1
k
(D) ≤ ‖eu − euh‖H 1

k
(D)+ ‖eu‖H 1

k (D)
,

≤



C (1)FEM2k +
1

min{A(1)min, n(1)min}

�

1+ 2C (1)
bound

n(1)maxk
�







eLG




(H 1
k
(D))∗ ,

≤C1 k ‖A‖L∞(D ;op)


∇ ef




L2(D), (4.55)

≤C1 k ‖A‖L∞(D ;op)



ef




H 1
k
(D),
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and the bound on ‖(A(1))−1SA‖Dk
in (4.33) follows.

The bound on ‖SA(A
(1))−1‖(Dk )−1 follows in a similar way to how we obtained the bound on

‖Mn(A
(1))−1‖(Dk )−1 from the bound on ‖(A(1))−1Mn‖Dk

in Part (i). Indeed, (4.48) and the fact that
SA is a real, symmetric matrix imply that



SA(A
(1))−1



(Dk )−1 =




�

(A(1))†
�−1

SA




Dk
(4.56)

(c.f. (4.49)), and then the arguments in the proof of part (i) imply that the bound in (4.33) on
‖(A(1))−1SA‖Dk

also holds for ‖((A(1))†)−1SA‖Dk
.

To prove the bound on ‖(A(1))−1SA‖2 in (4.34), we use the bounds

m−hd/2k‖eu‖2 ≤ k‖euh‖L2(D) ≤ ‖euh‖H 1
k
(D) and



∇ ef




L2(D) ≤ s+hd/2−1‖f‖2,

on either side of the inequality (4.55), with these bounds coming from (4.11) and (4.12) respectively.
The proof of the bound on ‖SA((A

(1))†)−1‖2 in (4.34) follows in a similar way to above, using
(4.53).

4.4.2 Proofs of the finite-element results Theorems 4.11 and 4.12

We first recall properties of (weighted) GMRES that we will use to prove Theorems 4.11 and 4.12.
Let

WD(C) :=
n

(Cx,x)D : x ∈CN ,‖x‖D = 1
o

; (4.57)

WD(C) is called the numerical range or field of values of C (in the (·, ·)D inner product).

Theorem 4.25 (Elman estimate for weighted GMRES). Let C be a matrix with 0 /∈WD(C). Let
β ∈ [0,π/2) be defined such that

cosβ :=
dist

�

0,WD(C)
�

‖C‖D
. (4.58)

If the matrix equation Cx= y is solved using weighted GMRES then, for m ∈N, the GMRES residual
rm satisfies

‖rm‖D
‖r0‖D

≤ sinmβ. (4.59)

The bound (4.59) with D= I was first proved in [66, Theorem 6.3] (see also [64, Theorem
3.3]) and was written in the above form in [19, Equation 1.2]. The bound (4.59) (for arbitrary
Hermitian positive-definite D) was stated implicitly (without proof) in [35, p. 247] and proved in
[102, Theorem 5.1].

Theorem 4.25 has the following corollary, and the proofs of Theorems 4.11 and 4.12 follow
from combining this with Theorem 4.18.

Corollary 4.26. If ‖I−C‖D ≤ α < 1, then, with β defined as in (4.58),

cosβ≥ 1−α
1+α
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and

sinβ≤ 2
p
α

(1+α)2
. (4.60)

Proof of Theorem 4.11. This follows from Theorem 4.18 by applying Corollary 4.26 first with C=
(A(1))−1A(2), D=Dk , and α= 1/2, and then with C= A(2)(A(1))−1, D= (Dk )

−1, and α= 1/2.

Proof of Theorem 4.12. This follows from Theorem 4.18 by applying Corollary 4.26 first with
C= (A(1))−1A(2), D= I, and α= 1/2, and then with C= A(2)(A(1))−1, D= I, and α= 1/2.

Remark 4.27 (The improvement of the Elman estimate (4.59) in [19]). A stronger result than
(4.59) is given for standard (unweighted) GMRES in [19, Theorem 2.1], and then converted to a result
about weighted GMRES in [27, Theorem 5.3]; indeed, the convergence factor sinβ is replaced by a
function of β strictly less than sinβ for β ∈ (0,π/2). Using this stronger result, however, does not
improve the k-dependence of Theorem 4.11.

4.4.3 Proofs of the PDE results Theorem 4.15 and Lemma 4.16

Proof of Theorem 4.15. Because we assumed Condition 4.8 holds for the EDP (Problem 2.10),
u (1) and u (2) exist, are unique, satisfy a(1)(u (1), v) = LG(v) and a(2)(u (2), v) = LG(v) for all
v ∈H 1

0,D(D), respectively, where LG is given by (2.18). Subtracting these equations, we find that
u (1)− u (2) satisfies the variational problem

a(1)(u (1)− u (2), v) = eLG(v) for all v ∈H 1
0,D (D) (4.61)

where
eLG(v) :=

∫

D

�

(A(2)−A(1))∇u (2)
�

·∇v + k2(n(1)− n(2))u (2)v.

Now, by the Cauchy-Schwarz inequality and the definition of the norm ‖ · ‖H 1
k (D)

(see (2.14)), we
have

|eLG(v)| ≤




A(1)−A(2)






L∞(D ;op)



∇u (2)




L2(D)‖∇v‖L2(D)

+ k2




n(1)− n(2)






L∞(D ;R)



u (2)




L2(D)‖v‖L2(D)

≤max
n




A(1)−A(2)






L∞(D ;op)
,




n(1)− n(2)






L∞(D ;R)

o



u (2)




H 1
k
(D)‖v‖H 1

k
(D)

(by Cauchy–Schwarz in R2). Therefore, by the definition of the norm ‖ · ‖(H 1
k
(D))∗



eLG




(H 1
k
(D))∗ ≤max

n




A(1)−A(2)






L∞(D ;op)
,




n(1)− n(2)






L∞(D ;R)

o

.


u (2)




H 1
k
(D).
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Since Condition 4.8 holds, we can then apply Lemma 4.24, i.e. the bound (4.50), to the solution
of the variational problem (4.61) to find that



u (1)− u (2)




H 1
k
(D)



u (2)




H 1
k
(D),

≤ 1

min
�

A(1)min, n(1)min

	

�

1+ 2C (1)
bound

n(1)maxk
�

�

max
n




A(1)−A(2)






L∞(D ;op)
,




n(1)− n(2)






L∞(D ;R)

o�

,

and then the result (4.22) follows with

C3 :=
1

min
�

A(1)min, n(1)min

	

�

1
k0
+ 2C (1)

bound
n(1)max

�

. (4.62)

Proof of Lemma 4.16. We actually prove the stronger result that given any function c(k) such that
c(k)> 0 for all k > 0, there exist f , n(1), and n(2) (with n(1) 6= n(2)) with





n(1)− n(2)






L∞(D ;R)
∼ c(k) (4.63)

such that the corresponding solutions u (1) and u (2) of Problem 2.10 with A(1) =A(2) = I exist, are
unique, and satisfy (4.23).

The heart of the proof is the equation

(∆+ k2)
�

e i k rχ (r )
�

= e i k r
�

∆χ (r )+ 2i k
∂ χ

∂ r
(r )+ i k

d − 1
r
χ (r )

�

=:− ef (r ), (4.64)

where χ (r ) is chosen to have suppχ ⊂D . Observe that (4.64) is the Helmholtz operator applied
to a circular wave e i k r , with the added factor χ which can be chosen to have compact support.
The equation (4.64) can be proved using the formula for the Laplacian in d -dimensional spherical
coordinates

∆χ =
1

r d−1

∂

∂ r

�

r d−1 ∂ χ

∂ r

�

+
1
r 2
∆Sd−1χ , (4.65)

where ∆Sd−1 is the Laplace–Beltrami operator on the d − 1-dimensional sphere (see, e.g., [184,
Equations (17.23) and (17.25)] for (4.65) in d = 2 and 3.). Observe that∆Sd−1 e i k rχ (r ) = 0.

We expect that (4.64) will be key in the proof of the sharpness of (4.22), for the following
reasons. Observe that (4.64) proves the sharpness of the nontrapping resolvent estimate (4.14),
since







ef






L2(D)
∼ k and





e i k rχ (r )






H 1
k
(D)
∼ k and hence





e i k rχ (r )






H 1
k
(D)
∼






ef






L2(D)
(see, e.g.,

[38, Lemma 3.10], [199, Lemma 4.12]).

Also, recall that the nontrapping resolvent estimate (4.14) was used in the proof of the PDE
bound (4.22) applied to u (1)− u (2). Therefore we expect that if we set things up so that

u (1)− u (2) = e i k rχ (r ), (4.66)
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then combining (4.64) and (4.66) will show the sharpness of the PDE bound (4.22). Moreover,
the function e i k rχ (r ) was used to prove the sharpness of resolvent estimates in [38, Discussion
on p. 1445 and Lemma 3.10] and [199, Lemma 4.12], and so we can expect it will also be effective
for proving sharpness in our setting.

We now set things up so that (4.66) holds. We define n(1) = 1 and

n(2) = n(1)+ c(k) eχ (r ), (4.67)

for some function eχ (r ) such that eχ ∈ C∞(D), eχ 6= 1 (so that n(2) 6= n(1)), supp eχ ⊂⊂ D, and
‖ eχ ‖L∞(D ;R) = 1 (so that





n(1)− n(2)






L∞(D ;R)
= c(k)). As above, let χ = χ (r ) with χ ∈C∞(D)

and supp χ ⊂⊂D . We will specify eχ and χ in more detail later.

Let ef (r ) be as defined in (4.64), and define

u (2)(x) :=− 1
k2c(k)

ef (r )
eχ (r )

(4.68)

and
f (x) :=−

�

∆+ k2n(2)(x)
�

u (2)(x). (4.69)

I.e., u (2) solves Problem 2.10 with coefficients A(2) = I and n(2) given by (4.67), and right-hand side
f . We will define χ and eχ below in such a way that u (2) ∈H 1(D) and f ∈ L2(D). In particular,
we choose χ and eχ so that if eχ = 0, then χ = 0. Since ef depends on χ , this relation means
we understand the right-hand side of (4.68) to be zero if eχ is zero. In addition, since eχ (r ) has
compact support and ef depends on χ , we need to tie both the support of eχ and how fast eχ
vanishes in a neighbourhood of its support to the definition of χ for both u (2) and f to be well
defined. As the final part of the setup, let u (1) solve

�

∆+ k2�u (1) =− f .

I.e., u (1) solves Problem 2.10 with coefficients A(1) = I and n(1) = 1 and right-hand side f .

Now observe that by construction (since n(2) is given by (4.67))

�

∆+ k2�
�

u (1)− u (2)
�

=
�

∆+ k2�u (1)−
�

∆+ k2n(2)− k2
�

n(2)− 1
��

u (2)

=− f + f + k2
�

n(2)− 1
�

u (2)

= k2
�

n(2)− 1
�

u (2)

= k2c(k) eχ
−1

k2c(k)

ef
eχ

=− ef

=
�

∆+ k2�
�

e i k rχ (r )
�

.
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Therefore, by uniqueness of the solution of Problem 2.10 (with constant coefficients)

u (1)(x)− u (2)(x) = e i k rχ (r ). (4.70)

Therefore, by (4.70) and the properties of e i k rχ (r ) discussed above, we have



u (1)− u (2)




L2(D) ∼ 1 and


u (1)− u (2)




H 1
k
(D) ∼ k . (4.71)

Furthermore, the definitions of u (2) and ef imply that



u (2)




L2(D) ∼
1

k c(k)
and



u (2)




H 1
k
(D) ∼

1
c(k)

, (4.72)

and, since ‖n(1) − n(2)‖L∞(D) = c(k), by combining (4.71) and (4.72), we see (4.63) holds, as
required.

Therefore, to complete the proof, we only need to show that there exists a choice of χ and eχ

for which u (2) and f defined by (4.68) and (4.69) are in H 1(D) and L2(D) respectively (in fact,
we prove that they are in W 1,∞(D) and L∞(D) respectively). Because χ and eχ are in C∞(D)
and we choose χ and eχ so that if eχ = 0, then χ = 0, the only issue is what happens at the
boundary of the support of eχ , where u (2) has the potential to be singular. Since D− ⊂ BR, there
exist 0< R1 < R2 < R such that D− ⊂ BR2

\BR1
⊂ BR. Let suppχ = BR2

\BR1
and let χ vanish

to order m at r = R1 and r = R2; i.e. χ (r ) ∼ (r − R1)
m as r ↓ R1 and χ (r ) ∼ (R2 − r )m as

r ↑ R2. The definition of ef (4.64) then implies that ef vanishes to order m−2. Let eχ (r ) vanish to
order em at r = R1 and r = R2. We now claim that if m > em+ 4, then u (2) ∈W 1,∞(D) and f
∈ L∞(D). Indeed, straightforward calculation from (4.68) shows that u (2)(r )∼ (r −R1)

m− em−2,
∇u (2)(r )∼ (r −R1)

m− em−3, and∆u (2)(r )∼ (r −R1)
m− em−4 as r ↓ R1, with analogous behaviour

at r = R2. The assumption m > em+ 4 therefore implies that u (2),∇u (2), and∆u (2) vanish (and
hence are finite) at r = R1 and r = R2.

Remark 4.28 (Why doesn’t Lemma 4.16 cover the case A(1) 6= A(2)?). When n( j ) := 1, j = 1,2,
A(1) := I , and A(2) := I + c(k) eχ , the variational problem (4.61) implies that

∆
�

u (1)− u (2)
�

+ k2�u (1)− u (2)
�

= c(k)∇ ·
�

eχ∇u (2)
�

. (4.73)

It is now much harder than in (4.73) to set things up so that u (1)(x)− u (2)(x) = e i k rχ (r ) (so that one
can then use (4.64)).

4.5 E X T E N S I O N O F T H E N E A R B Y P R E C O N D I T I O N I N G R E -
S U LT S T O W E A K E R N O R M S

Recall from Sections 4.2 and 4.3 that GMRES applied to
�

A(1)
�−1

A(2) converges in a k-independent
number of iterations if k





n(1)− n(2)






L∞(D ;R)
is sufficiently small (with an analagous result for

A(1)−A(2)). This result (and the related numerics) shows that 1/k may be a sharp threshold when
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we consider the maximum norm of the difference between n(1) and n(2). However, this result
does not say anything if n(1)−n(2) is merely small in some integral norm. For example if n(1) and
n(2) (defined on the unit square) are given by

n(1)(x) =











1 if x1 ≤
1
2

2 if x1 >
1
2

(4.74)

and

n(2)(x) =











1 if x1 ≤
1
2
+α

2 if x1 >
1
2
+α

(4.75)

for some 0 < α < 1/2, then




n(1)− n(2)






L∞(D ;R)
= 1 for all α, but one would expect that for

small α the corresponding solutions of Problem 2.1 would satisfy u (1) ≈ u (2). In addition, one
might expect that GMRES applied to

�

A(1)
�−1

A(2) would converge in a k-independent number of
iterations. Therefore, in this section we seek to obtain analogues of Theorems 4.11, 4.12, and 4.18
with the difference in n(1)− n(2) and A(1)−A(2) measured in weaker norms than the L∞ norm.

The (realistic) best-case result we could obtain would be that GMRES applied to
�

A(1)
�−1

A(2)

converges in a k-independent number of iterations if




n(1)− n(2)






L1(D ,R)
® 1/k. This result is

‘best’ in the sense that it depends optimally on k; recall the discussion in Remark 4.17 that 1/k
is the length scale governing the behaviour of Helmholtz problems. In addition, we measure
n(1) − n(2) in the L∞ norm as above, we are able to control the magnitude of n(1) − n(2), but
not the spatial variability; if n(1)− n(2) 6= 0 only on a set of small (but nonzero) measure, and
n(1)−n(2) = 1 on this small set, then





n(1)− n(2)






L∞(D ;R)
= 1, regardless of the measure of the set.

In contrast, the L1 norm allows us to control both the magnitude of n(1)− n(2) and the measure
of the sets on which it is nonzero.

We will give numerical results indicating that this theoretical best-case result can be achieved
(our numerical results actually indicate that we can obtain k-independent convergence when




n(1)− n(2)






Lq (D ,R)
∼ 1/k for any 1≤ q <∞). We will also provide theory results that are, to our

knowledge, the best one can prove, although they are sub-optimal in both q and the dependence
on k .

4.5.1 Theory in weaker norms

Before we prove results analogous to Theorems 4.11 and 4.12 in weaker norms (using a result
analogous to Theorem 4.18 in weaker norms), we first recap why the terms





A(1)−A(2)






L∞(D ;op)

and




n(1)− n(2)






L∞(D ;R)
appear in Theorem 4.18. These terms appear in Theorem 4.18 because

the terms ‖n‖L∞(D ;R) and ‖A‖L∞(D ;op) appear in Lemmas 4.19 and 4.20, respectively. These terms
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appear in these lemmas because in (4.47) and (4.52) we use the bounds





n ef






L2(D)
≤ ‖n‖L∞(D ;R)







ef






L2(D)
(4.76)

and




A∇ ef






L2(D)
≤ ‖A‖L∞(D ;op)





∇ ef






L2(D)
(4.77)

respectively, for an arbitrary function ef ∈Vh, p , and these bounds are carried through the rest of
the proof.

However, we observe that we have the following generalisation of Hölder’s inequality: If
q , s > 2 such that 1/2= 1/q + 1/s , then

‖v1v2‖L2(D) ≤ ‖v1‖Lq (D)‖v2‖Ls (D). (4.78)

If we instead use (4.78) to bound (4.76) and (4.77) we obtain





n ef






L2(D)
≤ ‖n‖Lq (D ,R)







ef






Ls (D)
(4.79)

and




A∇ ef






L2(D)
≤ ‖A‖Lq (D ;op)





∇ ef






Ls (D)
. (4.80)

As ef ∈Vh, p , we can apply an inverse inequality to bound






ef






Ls (D)
by






ef






L2(D)
. The required

inverse inequality is (see [29, Theorem 4.5.11 and Remark 4.5.20]







ef






Ls (D)
≤Cinv,s hd( 1

s −
1
2 )






ef






L2(D)
. (4.81)

If we then apply (4.81) to (4.79) and (4.80) we obtain





n ef






L2(D)
≤Cinv,s‖n‖Lq (D ,R)h

d( 1
s −

1
2 )






ef






L2(D)
=Cinv,s‖n‖Lq (D ,R)h

− d
q







ef






L2(D)
(4.82)

and





A∇ ef






L2(D)
≤Cinv,s‖A‖Lq (D ;op)h

d( 1
s −

1
2 )




∇ ef






L2(D)
=Cinv,s‖A‖Lq (D ;op)h

− d
q





∇ ef






L2(D)
. (4.83)

Replacing (4.47) and (4.52) with (4.82) and (4.83) in the proofs of Lemmas 4.19 and 4.20,
and proceeding as in those proofs, we can obtain the following theorems, the analogues of
Theorems 4.11 and 4.12.

Theorem 4.29 (Alternative answer to Q1: k-independent weighted GMRES iterations).
Let the assumptions of Theorem 4.11 hold. Given q > 2, there exist eC1, eC2 > 0, independent of h and
k (but dependent on d , D−,A(1), n(1), p, q, and k0) such that if

eC1k h−
d
q





A(1)−A(2)






Lq (D ;op)
+ eC2k h−

d
q





n(1)− n(2)






Lq (D ,R)
,≤ 1

2
(4.84)
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then both weighted GMRES working in ‖·‖Dk
(and the associated inner product) applied to (4.18) and

weighted GMRES working in ‖ · ‖(Dk )−1 (and the associated inner product) applied to (4.19) converge
in a k-independent number of iterations.

Theorem 4.30 (Alternative answer to Q1: k-independent (unweighted) GMRES iterations).

Let the assumptions of Theorem 4.12 hold. Given q > 2, there exist eC1, eC2 > 0, independent of h and
k (but dependent on d , D−,A(1), n(1), p, q, and k0) such that if

eC1

�

s+
m−

�

h−
d
q −1





A(1)−A(2)






Lq (D ;op)
+ eC2

�

m+
m−

�

k h−
d
q





n(1)− n(2)






Lq (D ,R)
≤ 1

2
, (4.85)

then standard GMRES (working in the Euclidean norm and inner product) applied to either of the
equations (4.18) or (4.19) converges in a k-independent number of iterations.

A sketch proof of Theorems 4.29 and 4.30 is on page 168 below.

Remark 4.31 (Trade off between the type of norm and powers of h and k). Observe that in
Theorems 4.29 and 4.30 there is a trade-off between the norm that one uses to measure n(1)− n(2) (or
A(1)−A(2)) and the restriction on the magnitude of this norm. E.g., the condition on n(1)− n(2) in
both Theorems 4.29 and 4.30 can be summarised as





n(1)− n(2)






Lq (D ,R)
k h−

d
q is sufficiently small. (4.86)

with analogous conditions on A(1)−A(2). Observe that as q ↓ 2, we measure n(1)− n(2) in a weaker
norm, but the condition (4.86) becomes more restrictive; the power of h increases. Conversely, as
q ↑∞, we measure n(1)− n(2) in a stronger norm, but the condition (4.86) becomes less restrictive;
the power of h decreases. (Also observe that in the q ↑∞ limit we recover the condition (4.21) we
previously proved for





n(1)− n(2)






L∞(D ;R)
.

Remark 4.32 (Theorems 4.11 and 4.12 are a special case of Theorems 4.29 and 4.30). Observe that
in the case q =∞ Theorems 4.29 and 4.30 become our previous results in the L∞ norm, Theorems 4.11
and 4.12.

The numerical experiments in Section 4.5.2 below suggest that, at least in certain cases, a
sufficient condition for nearby preconditioning to be effective is

‖n1− n2‖Lq (D ,R)k is sufficiently small, (4.87)

for any q ≥ 1, and moreover (4.87) appears sharp in its k-dependence. (This requirement would
fit with our previous observation about 1/k being the length scale below which perturbations
cannot be seen—see Remark 4.17 above.) However, we do not say that (4.87) is sufficient for
all cases; recall that for transmission problems, very small perturbations in n can lead to very
different behaviour in the solution u if k is a quasi-resonance for n1 or n2; see the discussion at
the end of Section 2.2.3 above.
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Proof of Theorems 4.29 and 4.30
We first state analogues of Lemmas 4.19 and 4.20 in weaker norms; these lemmas are the key to
the proofs of Theorems 4.29 and 4.30 above. The essence of the proofs of Lemmas 4.33 and 4.34
are the discussion at the start of Section 4.5.1.

Lemma 4.33 (Alternative bounds on (A(1))−1Mn). Under the assumptions of Lemma 4.19, for
n ∈ L∞(D ;R) and for any q > 2,

max

¨









�

A(1)
�−1

Mn









Dk

,








Mn

�

A(1)
�−1









D−1
k

«

≤ eC2h−
d
q
‖n‖Lq (D ,R)

k
(4.88)

and

max
§








�

A(1)
�−1

Mn









2
,








Mn

�

A(1)
�−1









2

ª

≤ eC2

�

m+
m−

�

h−
d
q
‖n‖Lq (D ,R)

k
, (4.89)

where
eC2 :=Cinv,s C2, (4.90)

where C2 is defined by (4.32) and 1/s = 1/2− 1/q .

Lemma 4.34 (Alternative bounds on (A(1))−1SA). Under the assumptions of Lemma 4.20, for
A∈ L∞(D ,Rd×d ) and for any q > 2

max

¨









�

A(1)
�−1

SA









Dk

,








SA

�

A(1)
�−1









D−1
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«

≤ eC1h−
d
q k‖A‖Lq (D ;op) (4.91)

and

max
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SA
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SA

�
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ª

≤ eC1

�

s+
m−

�

h−
d
q −1‖A‖Lq (D ,R), (4.92)

where
eC1 :=Cinv,s C1, (4.93)

where C1 is given by (4.35) and 1/s = 1/2− 1/q .

The proofs of Lemmas 4.33 and 4.34 are virtually identical to the proofs of Lemmas 4.19
and 4.20, with the modifications for Lq norms detailed at the beginning of Section 4.5.1.

Remark 4.35 (Reduction to Lemmas 4.19 and 4.20). Observe that in the case s = 2 and q =∞
Lemmas 4.33 and 4.34 reduce to our previous results Lemmas 4.19 and 4.20.

We can use Lemmas 4.33 and 4.34 in place of Lemmas 4.19 and 4.20 to obtain the following
analogue of Theorem 4.18 in weaker norms.

Theorem 4.36 (Alternative main ingredient to answer to Q1). If all the assumptions of Theorem
4.18 hold, then there exist eC1, eC2 > 0, independent of h and k (but dependent on d , D−,A(1), n(1), p,
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q, and k0) such that
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(4.94)

and
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. (4.95)

The proof of Theorem 4.36 is identical to the proof of Theorem 4.18, with Lemmas 4.19
and 4.20 replaced by Lemmas 4.33 and 4.34.

Sketch proof of Theorems 4.29 and 4.30. The proofs of Theorems 4.29 and 4.30 are completely
analagous to the proofs of Theorems 4.11 and 4.12, with the exception that we use Theorem 4.36
in place of Theorem 4.18.

4.5.2 Numerics in weaker norms

For our computations, we use the computational setup as in Appendix G, with f and gI cor-
responding to a plane wave passing through homogeneous media. We let A(1) = A(2) = I ,
and we define n(1) and n(2) by (4.74) and (4.75). For α = 0.2k−β, β = 0,0.1, . . . , 0.9,1 and for
k = 10,20, . . . , 100 we used GMRES to solve

�

A(1)
�−1

A(2) =
�

A(1)
�−1

f (for f given by the Helmholtz
problem), and we record the number of GMRES iterations taken to achieve convergence.

Our results in Figures 4.7–4.9 (also displayed in Table 4.1) indicate the following conclusions
for





n(1)− n(2)






Lq (D ,R)
∼ 0.1/k−β, for all 1≤ q <∞:

• For β ∈ (0,0.6) there is clear growth of the number of GMRES iterations with k,

• For β= 1 there is clear boundedness of the number of GMRES iterations with k, and

• for β ∈ (0.7,0.9) it is unclear if the number of GMRES iterations grows with k .

We note that the results in Figures 4.7–4.9 are the analogues of those in Figures 4.4–4.6.

If we compare our numerical results with the theory results in Theorem 4.30, we see that the
theory (if h ∼ k−3/2 and d = 2, as in our computational experiments) predicts that the number of
iterations will remain bounded if





n(1)− n(2)






Lq (D ,R)
k1+3/q is sufficiently small, for any q > 2.

Our computed results indicate that this result is not sharp. The computed results indicate that if




n(1)− n(2)






Lq (D ,R)
∼ k−1 for any q ≥ 1, then the number of GMRES iterations is bounded as k

increases. Observe again that the ‘best case’ 1/k condition is only predicted by the theory in the
q→∞ limit.
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Figure 4.7: GMRES iteration counts for
�

A(1)
�−1

A(2) given by (4.74) and (4.75), where α =
0.2× k−β, for β= 0,0.1,0.2,0.3.
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Figure 4.8: GMRES iteration counts for
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A(1)
�−1

A(2) given by (4.74) and (4.75), where α =
0.2× k−β, for β= 0.4,0.5,0.6,0.7.
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0.2× k−β, for β= 0.8,0.9,1.
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β\k 10 20 30 40 50 60 70 80 90 100

0.0 14 40 119 258 427 627 940 1274 1695 2116

0.1 13 27 70 147 262 394 590 825 1128 1393

0.2 12 22 40 77 134 199 292 419 551 726

0.3 11 18 25 40 58 86 119 163 209 270

0.4 10 15 20 25 30 42 53 64 81 98

0.5 10 13 16 19 22 25 28 31 37 41

0.6 9 11 13 14 16 17 19 19 21 22

0.7 8 9 10 11 12 13 13 14 14 14

0.8 8 8 9 9 10 10 10 10 10 10

0.9 7 7 8 8 8 8 8 8 8 8

1.0 7 6 7 7 7 7 7 7 7 7

Table 4.1: GMRES iteration counts for
�

A(1)
�−1

A(2) given by (4.74) and (4.75), whereα= 0.2×k−β.

4.6 A P P LY I N G N E A R B Y P R E C O N D I T I O N I N G T O A Q UA S I -
M O N T E -C A R L O M E T H O D F O R T H E H E L M H O LT Z E Q UA -
T I O N

We now apply nearby preconditioning in the implementation of a Quasi-Monte-Carlo (QMC)
method for the Helmholtz equation. We begin with a brief description of QMC methods, before
detailing two ways in which we apply nearby preconditioning to these methods. Finally, we give
computational results illustrating this application.

4.6.1 Brief description of QMC

QMC methods (or rules) are high-dimensional quadrature rules, designed to give rates of con-
vergence (with respect to the number of integration points) which are superior to those of
Monte-Carlo methods, under certain conditions. Suppose one wants to approximate E[Q],
where Q is some random variable (later in this section, Q will be a function of the solution u(ω)
of a stochastic Helmholtz equation). By definition, the expectation is

E[Q] =
∫

Ω
Q(ω) dP(ω). (4.96)

If we now suppose Q depends on the sample space Ω via a finite set of random variables
U1, . . . , UJ , then we can rewrite (4.96) as

E[Q] =
∫

Ω
Q
�

(U1(ω), . . . , UJ (ω)
�

dP(ω). (4.97)

If, for example, the Uj are all independant uniform random variables on [−1/2,1/2], then (4.97)
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can be rewritten as
E[Q] =

∫

[−1/2,1/2]J
Q(y)dλ(y), (4.98)

where λ denotes Lebesgue measure.
Any quadrature rule, or method for approximating E[Q], can then be seen as a method for

approximating the J -dimensional integral on the right-hand side of (4.98) and vice-versa. Equal-
weight quadrature rules choose points y1, . . . ,yNpoints

∈ [−1/2,1/2]J and use the approximation

E[Q]≈ 1
Npoints

Npoints
∑

l=1

Q(yl ).

Monte-Carlo and Quasi-Monte-Carlo rules correspond to different choices of the points yl . In a
Monte-Carlo rule the points are chosen at random in accordance with the associated probability
distribution. For example, in the case that the Uj are Unif(−1/2,1/2) random variables, the points
yl are chosen according to the Uniform distribution on [−1/2,1/2]J . Observe that Monte-Carlo
rules do not need the dependence of Q onω to take the form prescribed in (4.97), indeed, they
apply to any random variable.

Quasi-Monte-Carlo rules, in contrast to Monte-Carlo rules, do require the dependence on
ω to be via finitely- or countable-many random variables. This is because QMC rules are high-
dimensional quadrature rules (in the simplest case performing quadrature on the high-dimensional
cube [−1/2,1/2]J ). In pure QMC rules the points yl are chosen deterministically, unlike Monte-
Carlo rules.

The main advantage of QMC rules is that they can exhibit higher rates of convergence
compared to Monte-Carlo rules; Monte Carlo rules typically converge with rate N−1/2

points (see, e.g.,

[95, Section 1.1]), whereas QMC rules can converge with rates up to N−1
points or with even higher

rates for higher-order QMC rules, see, e.g., [131, Penultimate paragraph of Section 1.2].
In applying QMC rules to stochastic PDEs, we assume that the random coefficient (n in our

case) is defined via finitely many (or countably many) random variables, as in (4.97) above, and
we then use QMC rules to estimate expectations of quantities of interest of the solution u, i.e.,
Q =Q(u). We note that applying QMC rules to stochastic PDEs is a vibrant and active research
area. For recent overviews of this field, see [131, 133] (and the associated tutorial [132]). We
note that there is currently no rigorous study of how QMC methods behave for the Helmholtz
equation, although we understand some such work is currently underway by Ganesh, Kuo, and
Sloan [88].

4.6.2 Methods for applying nearby preconditioning to QMC

In all of our previous uses of nearby preconditioning, we have fixed n(1), the value for which
we calculate the preconditioner, and have then used A(1) to precondition A(2) for different values
of n(2). However, the key idea for applying nearby preconditioning to QMC methods for the
Helmholtz equation is to choose a number of different realisations of n(1) and use each realisation
of n(1) as a preconditioner only for those realisations of n(2) for which A(1) is a good preconditioner
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for A(2). We adopt this approach because it is highly unlikely that a single realisation of n(1) will
be a good preconditioner for every realisation of n(2).

Therefore, the algorithms presented in this section seek to answer the two questions:

1. For which realisations of n should a preconditioner be calculated?

2. To which realisations of n should each preconditioner be applied?

We now detail two methods for using nearby preconditioning to speed up QMC methods
for the Helmholtz equation. To apply these methods, we use the following model problem: We
consider the Interior Impedance Problem in 2-d with f = 1 and gI = 0, A= I , and n given by

n(ω,x) = 1+
10
∑

j=1

Uj (ω)
q

λ jψ j (x), (4.99)

where
q

λ j = j−2 (4.100)

and
ψ j (x) = cos

� jπ
4

x
�

cos
� ( j + 1)π

4
y
�

. (4.101)

Observe that




ψ j







L∞(DR)
= 1 for all j , and

Æ

λ j → 0 as j →∞. Also note that nmin = 1−
�

∑10
j=1 j−2

�

/2 ≈ 0.225. This expansion is based on the random-field expansion used in [92,
Section 5.1], although the main change we make from [92] is to introduce the factors 1/4 in
(4.101). We introduce this factor to ensure that the oscillations in the medium n are ‘low frequency’
compared to the frequency k of the waves passing through the medium1. Expansions similar
to (4.99) are often decribed as ‘artificial Karhunen–Loève expansions’ due to their similarity
with the Karhunen–Loève expansion of a random field. In a Karhunen–Loève expansion the Uj

are independent random variables whose distribution is determined by the distribution of the
random field, and the λ j and ψ j are the eigenvalues and eigenvectors of the covariance operator,
see, e.g., [143, Section 7.4].

In the remainder of this section we will be using QMC methods to approximate E[Q(u)] (for
some quantities of interest Q). Observe that this expectation can be written

E[Q(u)] =
∫

Ω
Q(u(ω))dP(ω) =

∫

[− 1
2 , 1

2]
10

Q(u(U1, . . . , U10))dU1 · · ·dU10,

where we consider n (and therefore u) as depending on each of the Uniform random variables Uj

individually. Therefore, because of this correspondence between n as function on Ω, and n as a
function on [−1/2,1/2]10 we will sometimes instead write n(y) for y ∈ [−1/2,1/2]10, by which

1The highest ‘frequency’ associated with the oscillations in the medium is (10+ 1)π/4≈ 26, whereas we consider
waves with frequencies k = 10, . . . , 60. Therefore (for k > 26) the waves are of a ‘higher frequency’ than the medium.
Moreover, we would see if there is any change in the behaviour of our algorithm as the frequency of the waves increases
past the ‘frequency’ of the medium. However, we do not see any such change.
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we mean

n(y) = 1+
10
∑

j=1

y j

q

λ jψ j .

There is no a priori reason that one must have such an affine dependence of the random field
on the randomness in order to apply nearby preconditioning to QMC methods. One could,
for example, take n to be a lognormal random field, in which case n would take the form
n(y) = exp

�

n0+
∑

j N j

Æ

λ jψ j

�

where the N j are Normal(0,1) random variables. However, in
the case of affine dependence there is a ‘parallelisable’ nearby-preconditioning-QMC algorithm
which we present below.

We stress that the results in this section are strictly numerical; there is no current theory
to support these calculations. In particular, we observe in Section 4.6.3 below that in these
experiments, for the QMC error for Helmholtz problems to remain bounded as k increases, one
must increase the number of QMC points with k . We again remark that there is currently no
theoretical justification for this behaviour.

Terminology Before we describe the nearby-preconditioning-QMC algorithms in detail, we
establish two pieces of terminology that will be of use in describing them. Firstly, we will use
the word ‘point’ to refer to a point in the parameter space [−1/2,1/2]J , and use phrases such as
‘calculate a preconditioner at the point y’ as shorthand for ‘calculate the LU decomposition of
the system matrix A corresponding to the finite-element discretisation of the Helmholtz IIP (as
described above) with coefficient n(y)’.

We also use the words ‘nearby’ and ‘nearest’ (when referring to QMC points) to mean: nearest
in the metric

dapprox(y1,y2) :=
J
∑

j=1

q

λ j

�

�

�y1 j − y2 j

�

�

�. (4.102)

The approximate metric The metric dapprox is an approximation of the metric

dQMC(y1,y2) = ‖n(y1)− n(y2)‖L∞(D ;R), (4.103)

i.e., the metric on [−1/2,1/2]J induced by the spatial L∞ norm. The metric dapprox is an approx-
imation of dQMC in the sense made precise in the following lemma.

Lemma 4.37 (dapprox approximates dQMC). For all y1,y2 ∈ [−1/2,1/2]J ,

dQMC(y1,y2)≤ dapprox(y1,y2).

The proof of Lemma 4.37 is straightforward and omitted.

Observe further that the structure of dapprox is similar to that of dQMC and dapprox is a weighted
L1 metric on [−1/2,1/2]J , with the weights corresponding to the terms in (4.99). Recall that
Æ

λ j → 0 as j →∞; therefore the higher dimensions contribute less to the value of dapprox (or,
informally, points are ‘closer’ in higher dimensions, or higher dimensions are ‘smaller’ than lower
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dimensions).
Ideally, for the purposes of utilising nearby preconditioning, we would use the metric dQMC

when describing the geometry of the QMC points (and computing the nearest QMC point),
since the best rigorous results on the behaviour of nearby preconditioning (in terms of their
k-dependence) are proved in Section 4.4 for the spatial L∞-norm2. However, computing dQMC

exactly is, in principle. complicated. In contrast, it is easy to compute with dapprox, since dapprox

enables one to think of [−1/2,1/2]J as the high-dimensional rectangle
�

0,
p

λ1

�

×· · ·×
�

0,
Æ

λJ

�

equipped with the standard L1 metric. Moreover, as discussed above, dapprox is an approximation
of dQMC, and therefore we expect that it will induce a similar geometry on [−1/2,1/2]J .

Computational complexity of calculating the nearest point At various points in the two nearby-
preconditioning-QMC algorithms we present below, given a point y ∈ [−1/2,1/2]J and a subset
S of [−1/2,1/2]J we must calculate nearest(y, S) ∈ [−1/2,1/2]J , that is the element of S that is
closest to y in the metric dapprox. In all of the numerical results we present below, we calculate
nearest(y, S) by brute force, i.e., we calculate dapprox(y,ey) for all ey ∈ S, and choose the element
of S that minimises dapprox(y,ey). Since calculating dapprox(y,ey) involves O (J ) operations, the brute
force approach to calculating dapprox(y,ey) involves O (J |S |) operations. Clearly, this method of
calculating nearest(y, S) does not scale in J , the stochastic dimension, although it is computa-
tionally feasible for our numerical experiments (with J = 10) below. See Section 4.9.2 below for a
suggestion of an alternative, scalable way to calculate nearest(y, S).

A sequential algorithm
We first describe a straightforward algorithm that uses nearby preconditioning to speed up a
QMC calculation. We call this a ‘sequential’ algorithm because, unlike the ‘parallel’ algorithm
that we describe below, it is intrinsically sequential and cannot be parallelised, i.e., finite-element
solves for different realisations of the random field n cannot be treated in parallel. Although,
when performing the individual finite-element solves, one is not restricted to a single core, i.e.,
one can use parallelisation for each finite-element solve if the linear systems A are large enough to
warrant this.

An overview of the algorithm is:

1. Choose a QMC point y for which to calculate a preconditioner

2. Find the nearest QMC point y′ to y and attempt a GMRES solve of the problem at y′ using
the LU decomposition of the system at y as a preconditioner.

3. If GMRES converges quickly (i.e., in fewer than a preset number of iterations), return to
Step 2.

4. If GMRES takes too long to converge, recalculate the preconditioner at y′, set y= y′, and
return to Step 2.

The algorithm is written in more formal pseudocode in Algorithm 4.1.
2Although, in line with the results in Section 4.5, we could instead use a spatial Lq norm, for some q ≥ 1 in (4.103).
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Input :Itsmax, SQMC

Choose starting point y(start)

y(pre)← y(start)

Sremaining← SQMC \
�

y(pre)	

Calculate and store preconditioner LU= (Apre)−1

y(current)← nearest(y(pre), Sremaining)
while Sremaining 6= ; do

if GMRES applied to (U)−1(L)−1Ay(current) = (U)−1(L)−1f converges in fewer than Itsmax
iterations then

Sremaining← Sremaining \
�

y(current)	

y(current)← nearest(y(pre), Sremaining)
else

y(pre)← y(current)

Calculate and store preconditioner LU= (Apre)−1

end
end

Algorithm 4.1: The sequential nearby-preconditioning-Quasi-Monte-Carlo algorithm.
Itsmax is the maximum allowed number of GMRES iterations and SQMC is the set of all
QMC points. nearest(y(pre), Sremaining) denotes the point in SQMC nearest to y(pre) in the
dQMC metric.

A parallel algorithm
The main disadvantage of the ‘sequential’ algorithm described above is that the points at which
preconditioners are calculated are identified as the algorithm progresses. The algorithm cannot
be parallelised by sending different collections of QMC points to different processors (as one
does not know a priori which preconditioner to use for each QMC point). Therefore, we now
suggest an alternative algorithm that allows one to specify the number of preconditioning points
before the algorithm begins. The algorithm then calculates which points to use as preconditioning
points, before performing the linear solves. Because the preconditioners are known in advance,
the solves can be computed in parallel if required. The most complicated part of the algorithm
is deciding at which points to calculate the preconditioners, and so we describe this part of the
algorithm in more detail here. A more formal pseudocode description of the algorithm is given
in Algorithm 4.2.

Suppose we are given a set SQMC =
¦

y1, . . . ,yNQMC

©

of QMC points and a number Npre,target;
the target number of preconditioners to compute. The aim of this algorithm is to select (approxi-
mately) Npre,target QMC points that are (approximately) equally spaced with respect to the dQMC

metric defined above. If such a goal is achieved, then one expects that the preconditioning points
are best located to minimise the total number of GMRES iterations across the solves for all of the
QMC points.

The algorithm contains two key ideas:

1. Use an approximate metric in place of dQMC, and
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2. Locate the preconditioning points according to a tensor-product rule.

We now describe each of these two ideas in turn, before describing our final algorithm.

Approximate metric Whilst the metric dQMC is the metric in which nearby preconditioning
is analysed (as described in Section 4.1 above), in practice dQMC is difficult to work with. This
difficulty is because the geometry dQMC induces on [−1/2,1/2]J is nontrivial, since the geometry
is dependent on the interaction between the functions ψ j in the expansion (4.99). Therefore, we
use the approximate metric dapprox, defined by (4.102) above.

Tensor-product algorithm for locating preconditioning points We first describe the intuition behind
our use of a tensor-product rule to locate the preconditioning points (even though we do not
use this intuition in the final algorithm). Once we have described this intution, we will then
show how it can be adapted to provide the final algorithm. To understand why we use locate
the preconditioning points using a tensor-product rule, we first decribe the heuristic we use. Let
us assume we want to cover [−1/2,1/2]J with ‘balls’ of radius r . Observe that these balls are
measured in the dapprox metric, and therefore have a similar geometry to balls on [−1/2,1/2]J in
the L1 metric. Therefore, given the centres c1 and c2 of two adjacent balls, we will have

dapprox(c1,c2) = 2r. (4.104)

The question now arises of how we choose c1 and c2 so that (4.104) holds. We observe that, by
the definition of dapprox, if we choose c1 and c2 such that

q

λ j

�

�

�c1 j − c2 j

�

�

�=
2r
J

for all j = 1, . . . , J ,

then we will have (4.104) by construction, because

dapprox(c1,c2) =
J
∑

j=1

2r
J
= 2r.

Therefore, in dimension j we choose the centres of the balls to be spaced

min

(

2r

J
Æ

λ j

, 1

)

apart (where we include the minimum so that, for high dimensions, we include at least one centre).
That is, in dimension j , we take

N j :=max

(

1,
J
Æ

λ j

2r

)

(4.105)
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equally spaced points in the sets C j =
¦

c j ,1, . . . , c j ,N j

©

, and then we form the centres c1, . . . ,cNpre

by taking all possible tensor products of the points in C1, . . . ,CJ , giving a total of

Npre =N1× · · ·×NJ (4.106)

preconditioning points.
However, we face three immediate difficulties with the above approach:

1. The above procedure assumes we know the radius r , and then returns the total number of
preconditioning points, and their locations. However, we only know in advance the ideal
total number of preconditioning points.

2. There is no guarantee that the numbers of points N j calculated above are integers.

3. There is no guarantee the preconditioning points given by the above procedure are QMC
points.

These questions are all completely valid, and so we slightly modify the above procedure to deal
with them.

Definition of the parallel algorithm Recall that we assume that we are given a target number of
preconditioners Npre,target. The above procedure (amongst other things) defines a map Npre,ideal :
R+→R+ given by r 7→Npre, where Npre is defined by (4.106) and the number of preconditioners
in each dimension is given by (4.105). Therefore we can numerically invert this map (or more
precisely, calculate numerically the value rideal such that Npre,ideal(rideal) = Npre,target). (In our
computations, we do this calculation via interval bisection.)

Given we expect that the size of the balls over which nearby preconditioning is effective
decreases with O (1/k) (in line with Theorem 4.11), and the number of QMC points needed to
keep the error bounded increases with k (see Section 4.6.3 below), it is not obvious that we should
know Npre,ideal in advance. See page 184 for how we use the sequential algorithm to determine
how Npre,ideal scales with k for the parallel algorithm. We assume for now that we know Npre,ideal

and hence rideal.
Once we know the value of rideal, we can then calculate the numbers of centres in each di-

mension N1(rideal), . . . ,NJ (rideal) as above (recalling that the N j (rideal) are not necessarily integers).

We then obtain integers Npre,actual, j = round
�

N j (rideal)
�

, where round(·) denotes rounding to the
nearest integer. (Recall N j (rideal) ≥ 1 for all j by construction, so Npre,actual, j will be a positive
integer for all j .)

We then use Npre,actual, j centres in each dimension and define the sets C j as described above,
with N j =Npre,actual, j . We then obtain a total of Npre,actual =Npre,actual,1×· · ·×Npre,actual,J precon-
ditioning points.

These points may not be QMC points. We could simply calculate the preconditioners at these
non-QMC points. However we instead replace each calculated centre with its nearest QMC point
(calculated using brute-force) and calculate the preconditioners at these QMC points. We denote
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the set of preconditioning points by Spre. Finally, we calculate the map Prenearest : SQMC→ Spre,
i.e., for each QMC point we find its nearest preconditioning point, and use the corresponding
preconditioner for the linear solve.

This algorithm is summarised more formally in Algorithm 4.2.

Remark 4.38 (Is calculating Prenearest computationally expensive?). We note that calculating the
map Prenearest : SQMC→ Spre is an O

�

NQMCNpre

�

operation, because for each QMC point we must
find the nearest preconditioning point. Given that Spre ⊆ SQMC, it is possible that calculating Prenearest

could actually be an O
�

N 2
QMC

�

operation.

However, we expect that Npre will be small relative to NQMC (and this is borne out in the numerical

experiments summarised in Table 4.5 below) and therefore we expect O
�

NQMCNpre

�

≈O
�

NQMC

�

.
Hence calculating Prenearest should not be an expensive computational task.

A similar line of reasoning shows that calculating the nearest QMC point to each of calculated
tensor-product points (as outlined above) should also be an O

�

NQMC

�

task.

Input :Npre,target ∈N
Output :The set Spre, the map Prenearest : SQMC→ Spre

Solve (numerically) Npre,ideal(rideal) =Npre,target for rideal

for j = 1 to J do
Calculate Npre,actual, j = round(Npre,ideal, j (rideal))
Define Spre,j to be set of Npre,actual, j equally spaced points in [−1/2,1/2]

end

Define Npre =
J
∏

j=1

Npre,actual, j

Define Spre by taking all possible tensor products of points in Spre,j, and then finding the
nearest QMC point to each one

for l = 1 to NQMC do
Calculate Prenearest

�

y(l )
�

end

Algorithm 4.2: The main part of the parallel nearby-preconditioning-Quasi-Monte-Carlo
algorithm. This part of the algorithm determines Spre and Prenearest. Spre is the set of
preconditioning points, and Prenearest : SQMC→ Spre maps each QMC points to its nearest
preconditioning point.

Comparing and Constrasting the two algorithms
We now briefly list the main differences in the two algorithms given above.

Complexity The sequential algorithm is simple and intuitive to describe, given that it mainly
revolves around ‘finding the nearest point’. However, the parallel algorithm is much more
complicated, both in the underlying ideas, but also in its technical definition.
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Heuristics The sequential algorithm has very minimal heuristics; one only needs to specify
the maximum number of GMRES iterations and this could be determined, for example, by the
memory constraints of the machine one is using. In contrast, for the parallel algorithm one needs
a heuristic for how many preconditioning points to choose, as this is not given by the algorithm.
(In our numerical experiments below, we obtain this heuristic by using the sequential algorithm
for low k, and then extrapolating the proportion of preconditioning points used for low values
of k to larger values of k .

Parallelisability Unsurprisingly (given the name) the sequential algorithm is inherently serial;
one must see whether a given solve converges in the required number of GMRES iterations before
knowing whether we must recalculate the preconditioner for subsequent solves. (In principle one
could parallelise the algorithm by splitting the QMC points up onto different groups of processors,
and then use the sequential algorithm on each group of processors. However, there is no guarantee
one would split the QMC points up in a way that grouped nearby points, therefore this approach
could lead to a substantial increase in computational work.) In contrast, the parallel algorithm is
fully parallelisable; once the preconditioning points and the map Prenearest : SQMC→ Spre have
been calculated, one can send different linear solves to different groups of processors as one
chooses. (Although note that, unless one sends all of the QMC points corresponding to a single
preconditioner to the same group of processors, one may need to calculate the same preconditioner
several times, on different groups of processors3 However, the decrease in computational time
gained from parallelisation should more than offset this increase in computational effort.)

Choice of preconditioning points Neither algorithm will necessarily pick the optimal set of
preconditioning points (optimal in the sense of the minimal number of preconditioning points
needed). In the sequential algorithm, there is no guarantee that this method for exploring
the sample space and choosing the preconditioning points will give an optimal collection of
preconditioning points. Also, whilst for the parallel algorithm the preconditioning points should
fill the parameter space ‘well’ (given the points are chosen a priori to be well spaced according to
the dapprox metric), the number of preconditioning points generated is not exactly Npre,target due
to rounding the ‘ideal’ number of centres in each dimension to the nearest integer. Therefore,
even in the parallel case, one may not end up with an optimal set of preconditioning points.

4.6.3 Numerical Experiments

We now describe numerical experiments that demostrate the effectiveness of the above algorithms.
Our main result is that, for a particular QMC model problem, nearby preconditioning gives a
substantial speedup, with around 98% of solves being computed using a previously-calculated LU
decomposition.

For the computational setup, including the algorithm we use to generate our QMC points,
see Appendix G.

3In our code, we split up the points with respect to the order they are generated by the QMC code. This was purely
to make the code simpler.
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Before we perform our numerical experiments, we need to determine:

• How the number of QMC points should scale with k, and

• How many preconditioners we should choose.

Throughout this section we use the model problem detailed in (4.99)–(4.101) above.

QMC error estimators
To determine how the number of QMC points should scale with k, we first estimate how the
QMC error grows as k increases. The QMC rule we use is a randomly shifted QMC rule, we use
such a rule because there exists an error estimator for this rule, see (4.107) below. Our exposition
below follows that in [100, Section 4.2].

Suppose our QMC points are y1, . . . ,yNQMC
, and the resulting QMC rule is

QNQMC
(Q) =

1
NQMC

NQMC
∑

l=1

Q(u(yl )).

For a ‘shift’ s ∈ [−1/2,1/2]J we define the shifted QMC rule

QNQMC,s(Q) =
1

NQMC

NQMC
∑

l=1

Q(u(yl ⊕ s)),

where y⊕ s denotes y+ s ‘wrapped around’ onto the hypercube [−1/2,1/2]J . (Formally y⊕ s=
frac

��

y+ 1
2

�

+ s
�

− 1
2 , where frac(·) denotes the fractional part and 1

2 denotes the J -dimensional
vector with every entry 1/2.)

We can then define the randomly-shifted QMC rule (with multiple randomly-chosen shifts
s1, . . . , sNshifts

)

Qrand
NQMC,Nshifts

(Q) =
1

Nshifts

Nshifts
∑

s=1
QNQMC,ss

(Q) =
1

NQMCNshifts

Nshifts
∑

s=1

NQMC
∑

l=1

Q(u(yl ⊕ ss )).

Having defined the randomly shifted QMC rule, one can use the standard statistical estimator
of the standard deviation of the statistical error inQrand

NQMC,Nshifts
(Q) [100, Equation (4.6)]

ErrQMC

�

NQMC,Nshifts

�

=

 

1
Nshifts(Nshifts− 1)

Nshifts
∑

s=1

�

QNQMC,ss
(Q)−Qrand

NQMC,Nshifts
(Q)

�2
!

1
2

.

(4.107)
(See Appendix D for proof that ErrQMC

�

NQMC,Nshifts

�2
is an unbiased estimator of the variance

ofQrand
NQMC,Nshifts

(Q); recall that it does not then follow that ErrQMC

�

NQMC,Nshifts

�

is an unbiased

estimator of the standard deviation ofQrand
NQMC,Nshifts

(Q).)



4.6. APPLYING NEARBY PRECONDITIONING TO QMC 183

k-dependence of the number of QMC points
We first sought to determine how ErrQMC

�

NQMC,Nshifts

�

depends on k . We estimated the error

ErrQMC

�

NQMC,Nshifts

�

for the setup described in Appendix G with NQMC = 2048 and Nshifts = 20
(i.e., 40,960 PDE solves in total) for k = 10,20,30,40,50,60. We set h = 0.002 for all of the
computations (as 0.002≈ 60−3/2), as then by Theorem 2.39 the finite-element error is of the order
h2k3 ∼ (k/60)3 ® 1 for all the values of k we consider4. The quantities of interest (QoIs) we
considered were:

• The integral of u over the whole domain [0,1]2,

• The value of u at the origin,

• The value of u at the top-right corner of the domain, and

• The x-component of∇u at the top-right corner of the domain.

Observe that these QoIs require a certain amount of regularity of the solution. (The integral is
defined for functions in L1(D), point evaluation for functions in H 3/2+ε(D) and point evaluation
of the gradient for functions in H 5/2+ε(D) (in 3-d - the corresponding function spaces are H 1+ε(D)
and H 2+ε(D) in 2-d) for any ε > 0.) Therefore computing for this range of QoIs will give a good
insight into the behaviour of QMC applied to the Helmholtz equation5.

Motivated by QMC theory for other applications, e.g., [100, Equation 4.2], we test experi-
mentally the assumption that the QMC error satisfies

ErrQMC(Q,Nshifts) =C N−αQMC, (4.108)

for some C ,α > 0. Using data for the values of k listed above, Figures 4.10–4.13 plot the computed
values of C and α against k. (In Appendix E, we plot the QMC error for increasing NQMC for
each k ∈ {10,20,30,40,50,60} and for each QoI—these plots allow us to determine the values of
C and α for each value of k .) For the QoIs that are point evaluations (Figures 4.11 and 4.12), C
appears not to vary very much; thus we assume C is constant in all of the following calculations.

Figures 4.10–4.13 (bottom panes) show α decreasing at a rate proportional to log k. Therefore
we conjecture

α(k) = α0−α1 ln(k), (4.109)

for some constants α0,α1 > 0. (Throughout this section, ln denotes the natural logarithm.) We
fitted α0 and α1 numerically, and have plotted the resulting line of best fit on Figures 4.10–4.13.
(Observe that the conjectured form (4.109) cannot hold for k very large, as then α(k) would
be negative, and there would be no convergence as the number of QMC points is increased.

4Observe that we do not let h depend on k, in contrast to the rest of this thesis. This decision means we do not
have to consider the effect of changing the mesh on the resulting interpolation of the random field n, and how this
interpolation may affect the overall error. In addition, since k ≤ 60, our particular choice of mesh ensures that the
finite-element error is small for all the values of k we consider.

5We can evaluate point values of uh because uh is continuous, and we use the constant value of ∇uh on the
upper-rightmost mesh element as a proxy for∇uh ((1,1)); such a use is possible due to the structure of our mesh, see
Figure G.1, and the fact that we use first-order finite elements.



184 CHAPTER 4. NEARBY PRECONDITIONING

Nevertheless, for the range of k we consider in these numerical experiments, the form (4.109)
seems to give a good fit with the data.) The values of C and α for the different QoIs are given in
Figures 4.10–4.13.

Having understood how the QMC error increases with k for fixed NQMC, we now use this
knowledge to determine how one should increase NQMC with k in order to keep the QMC error
bounded. Recalling that we assume C in (4.108) is constant, if we take

NQMC(k) = exp
�

eCα(k)−1
�

, (4.110)

for some constant eC > 0, then substituting (4.110) into (4.108), we see that the QMC error should
remain bounded, with

ErrQMC(Q,Nshifts) =C exp
�

− eC
�

.

Observe that, since α(k) decreases as k increases, (4.110) will increase as k increases.

In our numerical experiments with increasing NQMC(k) below, we set eC so that NQMC(10) =
2048, because in our numerical experiments to determine the behaviour of the QMC error, we
used NQMC = 2048 (with 20 shifts). Also in our numerical experiments below we take the number
of QMC points to be a power of 2, because the lattice rule we use to generate the points is a
complete lattice rule if NQMC is a power of 2 (see [162]). We choose NQMC to be a power of 2 by
setting NQMC(k) = 2M (k), where

M (k) = round
�

log2

�

exp
�

eCα(k)−1
���

.

Based on the results for the QoIs in Table 4.2 (excluding the results for the QoI being the
integral of u and∇u((1,1)), as these seem to display slightly different convergence characteristics),
in our numerical experiments below we take α(k) = 1.38− 0.19 ln(k). The resulting values of
NQMC are summarised in Table 4.3.

Q =
∫

D u Q = u(0) Q = u((1,1)) Q =∇u((1,1))

α0 1.34 1.38 1.51 1.51

α1 0.16 0.19 0.21 0.21

Table 4.2: The value of α0 and α1 for different QoIs, where the QMC error ≈C N−(α0−α1 ln(k))
QMC .

Numerical results for nearby preconditioning applied to QMC
Now that we have an estimate of how the number of QMC points should scale with k in
order to keep the QMC error bounded, we apply nearby preconditioning to QMC (with the
number of points chosen as in Table 4.3) and observe how the computational work of this
nearby-preconditioning-QMC (NP-QMC) algorithm scales with k .

As outlined above, we combine our sequential- and parallel-NPQMC algorithms:
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k exp
�

eCα(k)−1
�

NQMC

10 211 211

20 212.78 213

30 214.12 214

40 215.26 215

50 216.28 216

60 217.21 217

Table 4.3: The ideal and actual number of QMC points NQMC used in the numerical experiments
summarised in Tables 4.4 and 4.5, chosen so that the QMC error is empirically bounded for all k.

• We first use the sequential algorithm for low k (fixing the maximum number of GMRES
iterations) and observe how the number of preconditioners (as a proportion of the number
of QMC points) changes with k. We thus obtain an empirical relationship between k and
the proportion of QMC points used to construct preconditioners.

• We then use the parallel algorithm (with the above proportion of preconditioners) for
higher values of k .

We remark that, in principle, one could use the sequential algorithm for all values of k, however,
this would take an incredibly long time— we see in Table 4.3 that for k = 60 we must perform 217

Helmholtz solves; if we performed these solves sequentially, and each solve took 10 seconds, this
computation would take over 2 weeks to complete.

The results for the sequential algorithm are summarised in Table 4.4, for k = 10, 20, 30. The
results show that nearby preconditioning is effective, with the number of preconditioners growing
(approximately) linearly in k, but at a very low percentage of the total number of solves. Also,
observe than nearby preconditioning is much more effective than mean-based preconditioning,
where we use a single preconditioner, corresponding to the mean of n, to precondition all the
realisations.

Performing a linear fit for the percentage of LU-factorisations used in the nearby-precondi-
tioning algorithm, we obtain that the percentage of LU-factorisations grows like −0.04+ 0.02k
(see Figure 4.14). This result indicates that although the radius of the balls in which nearby
preconditioning is effective decreases with O (1/k), the fact that the number of QMC points
increases with k means that a large proportion of the solves are computed using a previously-
calculated LU decomposition. Observe that if the number of QMC points remained constant in
k, we would expect the number of preconditioners to (potentially) increase like k J , because the
number of balls of radius ∼ 1/k in [−1/2,1/2]J is ∼ k J .

Based on these sequential results, we then used the parallel algorithm with a target proportion
of preconditioners of (−0.04+0.02k)%. (Although recall from our discussion above that the actual
proportion of preconditioners used can vary due to rounding in the algorithm.) The results of
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these computations are summarised in Table 4.5. We observe that the fraction of preconditioners
is approximately −0.04+ 0.02k, but the maximum (and average) number of GMRES iterations
appears to grow slowly with k . This growth (which did not occur with the sequential algorithm)
may be because the placement of the preconditioning points is not optimal with respect to
the dQMC metric; we conjecture that oversampling the number of preconditioners needed (for
example, taking a proportion of (0.05k)%) may result in a bounded number of GMRES iterations
Nevertheless, we see that nearby preconditioning gives considerable speedup, drastically reducing
the number of preconditioners that must be calculated.

In conclusion, we see that nearby preconditioning gives a significant speedup when applied to
a QMC model problem.

4.7 R E V I E W O F R E L AT E D T E C H N I Q U E S I N T H E L I T E R A -
T U R E

Having proved rigorous results on the effectiveness of nearby preconditioning, and also applied it
to a UQ algorithm, we now review similar computational techniques (applied to other problems)
which can be found in the literature. Whilst the idea of nearby preconditioning introduced
here is, as far as we are aware, novel, there has been a body of work on the closely-related
idea of mean-based preconditioning. In mean-based preconditioning a single preconditioner is
calculated corresponding to the mean of the random coefficient. This is in contrast to nearby
preconditioning, where multiple preconditioners are calculated, corresponding to each realisation
in a particular subset of all the realisations. Mean-based preconditioning has been most extensively
studied for the stationary diffusion equation

∇ · (κ∇u) =− f ,

with a small number of works analysing other PDEs, including two works on the Helmholtz
equation. We will first explain the idea of mean-based preconditioning before we review the
literature applying it to the stationary diffusion equation and other PDEs, and finally turning
our attention to mean-based preconditioning for the Helmholtz equation. In general, the com-
putational and mathematical results in the literature show that mean-based preconditioning is
effective if the variance of the random parameters is small enough, i.e., if most of the samples are
sufficiently close to the mean.

Mean-based preconditioning was first developed for the stationary diffusion equation in the
context of so-called Stochastic Spectral Finite-Element Methods (SSFEMs). In these methods,
the random field a is given by a series expansion, such as a Karhunen–Loève expansion, and the
dependence of u on the random parameters is computed using a Polynomial Chaos expansion
(see, e.g., [91, Section 2.4.2]. The resulting problem is then discretised in the whole space D ×Ω,
where D is the spatial domain and Ω the probability space. The resulting discrete problems
involve very large matrices of the form

A⊗G, (4.111)
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Figure 4.10: Plots of the computed values of C (top) and α (bottom) against k in (4.108) for
Q(u) =

∫

D u. Observe the x-axes are on a log10 scale, but ln is the natural logarithm.



188 CHAPTER 4. NEARBY PRECONDITIONING

101 2× 101 3× 101 4× 101 6× 101

k

0.0080

0.0085

0.0090

0.0095

0.0100

C

101 2× 101 3× 101 4× 101 6× 101

k

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

α

α= 1.3794− 0.1897ln(k)

Figure 4.11: The computed values of C (top) and α (bottom) against k in (4.108) for Q(u) = u(0).
Observe the x-axes are on a log10 scale, but ln is the natural logarithm.
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Figure 4.12: The computed values of C (top) and α (bottom) against k in (4.108) for Q(u) =
u((1,1)). Observe the x-axes are on a log10 scale, but ln is the natural logarithm.
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Figure 4.13: The computed values of C (top) and α (bottom) against k in (4.108) for Q(u) =
∇u((1,1)). Observe the x-axes are on a log10 scale, but ln is the natural logarithm.
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Total #
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# LU factorisations/

# linear systems
(%)

Average #
GMRES
iterations

Max. #
GMRES
iterations

Average #
GMRES iterations
using mean-based
preconditioning

Max. #
GMRES iterations
using mean-based
preconditioning

10 5 2048 0.24 7.13 10 9.47 15

20 39 8192 0.48 7.26 10 14.74 40

30 127 16384 0.78 7.47 10 21.00 80

Table 4.4: Results applying our sequential nearby-preconditioning-Quasi-Monte-Carlo algorithm with the maximum number of GMRES iterations = 10,
alongside results for mean-based preconditioning.

k # LU factorisations
Total #

linear systems
# LU factorisations/

# linear systems
(%)

Average #
GMRES iterations

Max. #
GMRES iterations

10 4 2048 0.20 6.46 10

20 33 8192 0.40 6.42 11

30 127 16384 0.78 6.66 13

40 207 32768 0.63 7.16 15

50 1027 65536 1.57 7.07 14

60 1444 131072 1.10 7.41 16

Table 4.5: Results applying our parallel nearby-preconditioning-Quasi-Monte-Carlo algorithm with the target proportion of preconditioners as
(−0.04+ 0.02k)%.
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where A is a standard finite-element matrix, G is a matrix corresponding to the discretisation in Ω,
and ⊗ is the Kronecker product. For SSFEMs (and the closely-related stochastic-Galerkin FEMs,
see, e.g. [8], which also have discretisations of the form (4.111)) a mean-based preconditioner is a
matrix of the form

A(mean)⊗ IΩ, (4.112)

where A(mean) is the standard finite-element matrix corresponding to the mean of κ and IΩ is the
identity matrix associated with the discretisation on Ω. Using a mean-based preconditioner of the
form (4.112) gives considerable computational savings, as only one preconditioner of a standard
finite-element matrix needs to be calculated.

When stochastic Galerkin methods are used with so-called ‘doubly-orthogonal bases’ (see,
e.g., [70, Section 3.2]), then the linear system (4.111) decouples into many distinct standard
finite-element matrices; mean-based preconditioning has also been investigated in this context
(and in the context of stochastic collocation methods (see, e.g., [7]), where one similarly obtains
many different standard finite-element matrices) as will be discussed below.

The main insight gleaned from studies of mean-based preconditioning is that, as stated above,
if the variance of κ (or any other stochastic coefficients) is sufficiently small, then mean-based
preconditioning is effective.

The initial computational work on mean-based preconditioning for the stationary diffusion
equation was carried out by Ghanem and Kruger [90], Pellissetti and Ghanem [167], and Keese
[127], with theory (proving bounds on the eigenvalues of the preconditioned matrices) following
from Powell and Elman [180] and Ernst, Powell, Silvester, and Ullmann [70]. These eigenvalue
bounds are analagous to results in Section 4.2 above, as they allow one to infer convergence
properties of the iterative method used. All of the above results were for κ given by a (real
or artificial) Karhunen–Loève expansion; that is, in the case where κ depends linearly on the
random parameter. In the case where κ is a lognormal random field (and so the dependence is
no longer linear), Powell and Ullmann [182] declared mean-based preconditioners to be ineffec-
tive, and so developed more advanced preconditioners; in contrast, Ullmann, Elman and Ernst
[210] transformed a stationary diffusion problem with lognormal coefficient into a stationary
convection-diffusion problem with a random coefficient depending linearly on the noise, before
proving eigenvalue bounds as before. With a more computational slant, Tipireddy, Phipps, and
Ghanem [207] and Rosseel and Vandewalle [185] compared the computational properties of
several mean-based preconditioners and Elman, Miller, Phipps, and Tuminaro [67] compared
the computational cost of mean-based preconditioners for stochastic Galerkin and stochastic
collocation methods.

Seeking to apply mean-based preconditioning to more challenging problems, Powell and
Silvester [181] performed computational investigations for mean-based preconditioners applied
to stochastic Galerkin discretisations of the steady-state Navier–Stokes equations, and Sousedík
and Elman [198] introduced a Gauss–Seidel-type preconditioner, using mean-based ideas, for
the steady-state Navier–Stokes equations. Finally, Khan, Powell, and Silvester [128] applied
mean-based preconditioning to stochastic Galerkin discretisations of the equations for nearly-
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incompressible elasticity.

The works applying mean-based preconditioning to many individual systems (for the station-
ary diffusion equation) are those of Eiermann, Ernst and Ullmann [63]; Ernst, Powell, Silvester,
and Ullmann [70]; and Gordon and Powell [98]. [63] contained computational results in a
(decoupled) stochastic Galerkin setting; [70] proved eigenvalue bounds in the same setting, and
[98] proved rigorous eigenvalue bounds in a stochastic collocation setting. All these works assume
linear dependence on the noise, and show that mean-based preconditioning works well when the
variance is sufficiently small.

We now turn our attention to mean-based preconditioning for the Helmholtz equation. The
first work we discuss is the recent work of Wang and Liao [213]. They discretise a stochastic
Helmholtz problem with k = 10 and n given by a truncated Karhunen–Loève expansion (with
either 4 terms or 1 term) and use a generalised polynomial chaos (gPC) expansion (see, e.g., [219])
for the solution u. Whilst they use mean-based preconditioning (in the ‘Kronecker product’ sense)
they are more interested in investigating the effect of the number of terms in the gPC expansion
on the accuracy of the discrete solution. Nonetheless, they see convergence using the mean-based
preconditioner, although more iterations are needed when the random field is ‘close to’ exciting a
resonant frequency (see [213, Example 4.2]).

The work most similar to ours is the work of Jin and Cai [125], who use a stochastic Galerkin
discretisation with a doubly-orthogonal basis for a stochastic Helmholtz equation, resulting in
around 5000 linear systems. They take k = 225 and a Karhunen–Loève expansion with 4 terms
for both (scalar-valued) A and n. The random variables in the Karhunen–Loève expansions are
Unif(−

p
3,
p

3) and Unif(−45
p

3,45
p

3) for A and n respectively. Their mean-based precondi-
tioner is a 1-level additive Schwarz preconditioner, and they compare resuing the preconditioner
with reusing the Krylov subspaces (an idea first introduced by Parks, De Sturler, Mackey, Johnson,
and Maiti in [166]), as well as combining both techniques. Intriguingly, they see no additional
benefit from reusing the preconditioner, but considerable benefit from recycling the Krylov
subspaces. Based on our results in this chapter, we conjecture that they see no benefit from a
single mean-based preconditioner because k is reasonably large, and therefore for most of the real-
isations, k





E[n]− n( j )






L∞(D ;R)
and k





E[A]−A( j )






L∞(D ;Rd×d )
are not sufficiently small, and so

there is little-to-no effect on the number of GMRES iterations from mean-based preconditioning.
We conjecture that if they had used multiple preconditioners distributed around the stochastic
parameter space, they would have seen computational improvements, as described in this chapter.

4.8 P R O B A B I L I S T I C N E A R B Y P R E C O N D I T I O N I N G R E S U LT S
We now briefly overview how one can prove probabilistic results on the effectiveness of nearby
preconditioning. All of the results in Sections 4.1 and 4.3–4.5 above have been for deterministic
(as opposed to stochastic) coefficients A and n (and we then applied these deterministic results to
QMC methods for the Helmholtz equation in Section 4.6). Therefore we now turn our attention
to obtaining probabilistic results on the effectiveness of nearby preconditioning for stochastic
Helmholtz problems, i.e., Problems 3.1–3.3 from Chapter 3. Firstly, in Corollary 4.40 below, we
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prove an ‘essentially deterministic’ result on the effectiveness of nearby preconditioning, before
proving probabilistic results on the effectiveness of nearby preconditioning applied to stochastic
problems. However, we will see that our efforts to prove probabilistic results are restricted by the
applicability of the Elman estimate (Theorem 4.25 above).

Throughout this section we consider Problem 3.1 from Chapter 3 but with A= I , i.e., for
simplicity we only consider the case of random n, although everything we say could be easily
extended to include random A. To maintain consistent notation with the rest of this chapter we
will use a superscript (2) to refer to the stochastic problem (e.g., the random coefficient will be
n(2)(ω), the solution will be u (2)(ω), the matrices arising from the finite-element discretiation
will be A(2)(ω), etc.). We let n(1) ∈ L∞(D ;R) define a deterministic Helmholtz problem. We will
use the discretisation of this deterministic Helmholtz problem to precondition the discretisations
of the realisations of the stochastic Helmholtz problem. I.e., we will consider the performance of
GMRES applied to

�

A(1)
�−1

A(2)(ω)u=
�

A(1)
�−1

f. (4.113)

For simplicity, in all that follows we will measure n1− n2 in the L∞ norm, although one could
use any of the weaker norms discussed in Section 4.5 above, and obtain analogous results.

4.8.1 Probabilistic theory for nearby preconditioning

Definition 4.39 (Number of GMRES iterations required for convergence).

Let GMRES
�

ε, n(1), n(2)
�

denote the number of iterations required for GMRES in the unweighted
norm ‖·‖2 with ‖r0‖2 = 1, applied to

�

A(1)
�−1

A(2)u=
�

A(1)
�−1

f

to converge to within a tolerance ε, i.e., to achieve

‖rm‖2
‖f‖2

< ε.

Note that GMRES
�

ε, n(1), n(2)
�

is a random variable, see Lemma 4.41 below.

If we apply Theorem 4.12 to the problem (4.113) we can straightforwardly conclude the
following corollary.

Corollary 4.40 (Almost-sure nearby preconditioning). Let 0 < ε < 1, n(2) : Ω → L∞(D ;R)
satisfy the assumptions at the start of Section 3.1.1, n1, D−, and f be as in Problem 4.1, and let the
assumptions of Theorem 4.12 hold. Then GMRES

�

ε, n(1), n(2)
�

is bounded independently of k almost
surely if





n(1)− n(2)(ω)






L∞(D ;R)
≤ 1

2C2k
(4.114)

almost surely.
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Lemma 4.41 (GMRES(ε, n1, n2) is a random variable). Under the assumptions of Corollary 4.40,
GMRES

�

ε, n(1), n(2)
�

is a random variable, i.e., GMRES
�

ε, n(1), n(2)
�

:Ω→R is measurable.

Sketch Proof of Lemma 4.41. All of the operations used in constructing the vectors xm in the GM-
RES algorithm are measurable functions of xm−1 and

�

A(1)
�−1

A(2) (see, e.g., [97, Algorithms 11.4.2
and 5.1.3]), therefore (rm)

N
m=1 is a sequence of random variables, i.e., a stochastic process (see, e.g.,

[164, Definition 2.1.4]). The stopping criterion ‖rm‖2/‖f‖2 < ε is an exit time for the stochastic
process xm from the set CN \BC

N

x∗ (ε‖f‖2), where x∗ is the true solution. Therefore, because we
assume (Ω,F ,P) is a complete probability space, it follows from, e.g., [164, Example 7.2.2] that
GMRES(ε, n1, n2) is a stopping time (see [164, Definition 7.2.1]). Because GMRES(ε, n1, n2) is a
stopping time, it is measurable with respect to the associated filtration (see, e.g., [164, Definition
3.2.2]), and so is measurable with respect toF ; i.e., GMRES(ε, n1, n2) is a random variable.

The numerical results in Section 4.3 above can be seen (in part) as confirming Corollary 4.40.
Recall that in Section 4.3 we let n(1)− n(2) be a piecewise-constant random field, and we fixed
α =





n(1)− n(2)






L∞(D ;R)
or




A(1)−A(2)






L∞(D ;Rd×d )
almost surely. When we fixed α = 0.5/k

almost surely (see Figures 4.3 and 4.6) we saw that the number of GMRES iterations was bounded
independently of k . This behaviour is precisely that given in Corollary 4.40.

Remark 4.42 (Drawbacks of Corollary 4.40). There are two drawbacks of Corollary 4.40:

1. The condition (4.114) must hold almost surely, and

2. Corollary 4.40 does not give any explicit information on how the distribution of the number of
GMRES iterations depends on the distribution of





n(1)− n(2)






L∞(D ;R)
.

Drawback 1 is not ideal because in many physically realistic problems ‖n1− n2(ω)‖L∞(D ;R) may be
unbounded (e.g., if n2 is a lognormal random field) or even if bounded may not satisfy the condition
(4.114) almost surely.

To correct the deficiencies described in Remark 4.42 one would aim to prove a bound on
the number of GMRES iterations depending explicitly on





n(1)− n(2)(ω)






L∞(D ;R)
, and then use

this bound to prove a probabilistic estimate for the number of GMRES iterations. Such a bound
is given in Lemma F.1 in Appendix F. However, such a bound will be highly pessimistic, and
will impart little useful information. The reason for this lack of information is that the Elman
estimate (Corollary 4.26 above) when applied to the nearby-preconditioned system

�

A(1)
�−1

A(2))
only applies when k





A(1)−A(2)






L∞(D ;op)
and k





n(1)− n(2)






L∞(D ;R)
are sufficiently small (as we

saw in Theorem 4.11 above). Therefore one can only obtain detailed information on how the
number of GMRES iterations depends on





A(1)−A(2)






L∞(D ;op)
and





n(1)− n(2)






L∞(D ;R)
when

these quantities are small (informally, when they are ® 1/k). In all other cases (again, informally,
when these quantities are ¦ 1/k) the only statement one can make about the convergence of GM-
RES is that there will be at most N iterations, where N is the number of degrees of freedom (this
result is recalled in Corollary F.2 below). In summary, current results on GMRES convergence
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will only allow us to prove what are likely to be very pessimistic bounds on how the number
of GMRES iterations for

�

A(1)
�−1

A(2) depends on




A(1)−A(2)






L∞(D ;op)
and





n(1)− n(2)






L∞(D ;R)
.

For completeness, we record these results in Appendix F.

4.8.2 Numerical probabalistic results for nearby preconditioning

Notwithstanding the fact that we are limited in the probabilistic results that we can prove about
nearby preconditioning, we will now see that we observe reasonable probabilistic behaviour when
we perform numerical experiments. We again recall that (informally) Corollary 4.40 states that
we obtain almost-surely bounded GMRES iterations if





n(1)− n(2)






L∞(D ;R)
® 1/k . A plausible

probabalistic analogue of this result would be that we have bounded average number of GMRES
iterations if the standard deviation of





n(1)− n(2)






L∞(D ;R)
is of the order 1/k. We expect this result

because the standard deviation of a random variable is a (probabilistic) measure of its variation.
In Corollary 4.40 we show that the number of GMRES iterations is bounded almost surely if
the variation in





n(1)− n(2)






L∞(D ;R)
is bounded (of the order 1/k) almost surely. Therefore, it

reasonable to assume that the probabilistic analogue of the number of GMRES iterations (the
average) is bounded if the probabilistic analogue of the variation in





n(1)− n(2)






L∞(D ;R)
(the

standard deviation) is bounded (of the order 1/k). We will see exactly this behaviour in our
numerical experiments.

In our numerical experiments we use the computational setup described in Appendix G, with
f = 1 and gI = 0, A(1) = A(2) = I , n(1) = 1, and





n(1)− n(2)






L∞(D ;R)
given by an exponential

random variables with standard deviation σ . We consider three cases:

1. σ = 1,

2. σ =
1
k

, and

3. σ =
1
k2

.

For each of these cases we calculate

P(GMRES(ε, n1, n2)≤ 12). (4.115)

Based on the reasoning above we expect that in case 2 the probability (4.115) is constant as k
increases, and using similar reasoning, we expect that in case 1 the probability (4.115) decreases as
k increases and in case 3 the probability (4.115) increases as k increases. This is approximately
the behaviour we observe in Figures 4.15a–4.15c. This behaviour demonstrates that whilst the
theory developed in the rest of this chapter does not allow us to easily prove useful results about
the probabalistic behaviour of nearby preconditioning, the theory does give us intuition as to
what the probabilistic behavour will be.
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(a) The empirical probability that GMRES(ε, n1, n2)≤ 12 for σ = 1.

10 20 30 40
k

0.992

0.994

0.996

0.998

1.000

E
m

pi
ri

ca
lp

ro
ba

bi
lit

y
th

at
G

M
R

E
S�

ε,
n(

1)
n(

2)
�

≤
12

(b) The empirical probability that GMRES(ε, n1, n2)≤ 12 for σ = 1/k
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(c) The empirical probability that GMRES(ε, n1, n2)≤ 12 for σ = 1/k2.

Figure 4.15: The empirical probability (calculated from 1000 realisations) thatGMRES(ε, n1, n2)≤
12 for k = 10,20,30,40, where R = 12, ε = 10−5, n(1) = 1, and ‖n1− n2‖L∞(DR)

∼ Exp(σ) for
different functional forms of σ .
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4.9 S U M M A RY A N D F U T U R E W O R K

4.9.1 Summary

In this chapter we introduced, studied, and applied a nearby-preconditioning technique for
multiple realisations of finite-element discretisations of heterogeneous Helmholtz problems
motivated by Uncertainty Quantification (UQ). In particular:

• In Section 4.2 we gave rigorous results on the effectiveness of nearby preconditioning,
giving k-explicit sufficient conditions (in terms of the L∞-norm of the difference in the
coefficients) for nearby-preconditioned linear systems to achieve k-independent numbers of
GMRES iterations. These results were confirmed by numerics, and supported by analogous
PDE results.

• In Section 4.5 we extended the results in Section 4.2, by giving alternative k-explicit condi-
tions in terms of the Lp -norms of the difference in the coefficients, for a range of exponents
p. Numerical experiments indicated these conditions were not sharp in their k-dependence.

• In Section 4.8 we proved probabilistic analogues of the results in Section 4.2 and showed
the results of some numerical experiments into the probabilistic behaviour of nearby
preconditioning.

• In Section 4.6 we applied nearby preconditioning to a Quasi-Monte-Carlo (QMC) method
for the Helmholtz equation, requiring thousands of individual PDE solves. We gave
numerical evidence for how the number of QMC points must scale with k , and showed
that nearby preconditioning applied to this problem is very effective, with around 98% of
PDE solves using a previously-calculated preconditioner.

4.9.2 Future work

There are many possibilities for extending, improving, and applying the work in this chapter:

• Applying the idea of nearby preconditioning to other problems for which it is computa-
tionally intensive to construct preconditioners and, where possible, proving results on
the effectiveness of nearby preconditioning. For linear problems, e.g., the time-harmonic
Maxwell’s equations, we would expect the behaviour and proofs of effectiveness to be anal-
ogous to that for the Helmholtz equation. For nonlinear problems (e.g., the steady-state
Navier-Stokes equations, see, e.g., [181]), it is less clear how effective nearby precondition-
ing would be, and if it is possible to prove results on its effectiveness, but this could be a
profitable line of future research.

• Investigating stochastic-dimension-independent methods for choosing the preconditioning
points when applying nearby preconditioning to QMC methods. E.g., one may be able
to use the nestedness of QMC points (as is the case with embedded lattice rules, see, e.g.,
[51, Property 3, p.2169]) to choose preconditioning points in a stochastic-dimension-
independent way.
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• Applying nearby preconditioning to other UQ methods for the Helmholtz equation. For
example, applying nearby preconditioning to Multi-Level Monte-Carlo methods for the
Helmholtz equation (see Chapter 5), where a preconditioner could be calculated on one
‘level’ (one discretisation), and then transferred other ‘levels’, perhaps using multigrid
smoothing/prolongation. Alternatively, applying nearby preconditioning Markov Chain
Monte-Carlo methods for Bayesian inverse problems for the Helmholtz equation. Nearby
preconditioning is a natural fit for such problems, where realisations are chosen one at a
time, with the next realisation typically being close to the current one.

• Analysing rigorously the behavour of QMC methods applied to the Helmholtz equation.
We understand that such work is already underway in [88], but there is clearly scope to
develop the theory; in particular, in understanding how the number of QMC points should
scale with k in order to obtain bounded QMC error.



C H A P T E R 5

Monte-Carlo and Multi-Level
Monte-Carlo methods for the Helmholtz
equation

5.1 I N T R O D U C T I O N

In Section 4.6 we considered how to speed up solving the individual linear systems in UQ
algorithms for the stochastic Helmholtz equation via nearby preconditioning. We now consider
how, using a Multi-Level Monte-Carlo method, one can reduce the total number of linear systems
we must solve. In particular, we prove bounds on the computational effort needed for Monte Carlo
(MC) and Multi-Level Monte-Carlo (MLMC) methods for the stochastic Helmholtz equation. We
compare and constrast the behaviour of these methods for different wavenumbers and tolerances
and we show that Multi-Level Monte-Carlo methods asymptotically (as the prescribed tolerance
goes to 0) require less work than Monte-Carlo methods.

We highlight that, in contrast to our empirical analysis of Quasi-Monte-Carlo (QMC) methods
in Section 4.6.3, in this chapter we provide a rigorous analysis of Monte-Carlo and Multi-Level
Monte Carlo methods. We prove how Monte-Carlo and Multi-Level Monte-Carlo methods must
be adapted for increasing k to ensure the overall error (both numerical and statistical) remains
bounded, and we prove bounds on the expected computational cost of both the Monte-Carlo and
Multi-Level Monte-Carlo methods.

We now provide a brief overview of this chapter. In Section 5.2 we give an introduction
to Monte-Carlo and Multi-Level Monte-Carlo methods, and discuss some of the challenges in
applying them to the Helmholtz equation. We then review literature on Multi-Level Monte-Carlo
methods, focusing only on those works that are relevant for our study of Multi-Level Monte-
Carlo methods applied to the stochastic Helmholtz equation. In Section 5.3 we give an abstract
setting for a k-dependent analysis of Multi-Level Monte-Carlo methods. In Section 5.4 we prove
a bound on the computational work for the Monte-Carlo method in this abstract setting and in
Section 5.5 we prove an analogous result for the Multi-Level Monte-Carlo method. Finally, in
Section 5.6 we show that the stochastic Helmholtz equation fits into this abstract setting, and we
then compare and contrast the behaviour of Monte-Carlo and Multi-Level Monte-Carlo methods
for the stochastic Helmholtz equation.

201
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5.2 BAC KG R O U N D O N B O T H M O N T E -C A R L O A N D M U LT I -
L E V E L M O N T E -C A R L O M E T H O D S

5.2.1 The ideas of Monte-Carlo and Multi-Level Monte-Carlo methods

Throughout this section we assume our goal is to compute an approximation of E[Q], where
Q :Ω→R is a random variable. We assume we have access to a family of random variables Qh :
Ω→R, indexed by h > 0, where Qh approximates Q in a sense made precise in Assumption 5.1
below. We assume we can compute samples of Qh , for any h > 0. When we consider quantities
of interest corresponding to the solution of a stochastic PDE, Q will be a function of the true
solution u, and Qh will be a function of the finite-element approximation uh of u. However,
to explain the ideas behind Monte-Carlo and Multi-Level Monte-Carlo methods we will only
occasionally need to mention u and uh . Therefore, for most of this chapter we will instead work
with Q and Qh . Our exposition throughout this chapter is based on that of Cliffe, Giles, Scheichl,
and Teckentrup [49], who proved the first results for Multi-Level Monte-Carlo methods for
elliptic PDEs.

Monte-Carlo Estimators

The Monte-Carlo estimator Q̂MC
h of Q is the simplest possible estimator of E[Q]. The estimator is

given by

Q̂MC
h :=

1
NMC

NMC
∑

j=1

Qh

�

ω( j )
�

,

where theω( j ) are independent and identically distributed samples from the probability space Ω.

One would expect that reducing h and increasing NMC would give a more accurate approx-
imation of E[Q]. Therefore our analysis of Q̂MC

h seeks to answer the question ‘How should
we choose h and NMC to ensure the error is less than a prescribed tolerance ε > 0 (with mini-
mal computational work)?’ The standard relationship between ε and NMC is that one should
take NMC ∼ ε−2, see, e.g., [49, Text after equation (3)]. We prove a generalised version of this
relationship in Theorem 5.10 below.

Multi-Level Monte-Carlo Estimators
In contrast to the Monte-Carlo estimator, where all of the approximations Qh (ω

( j )) are performed
for a single specified mesh size1 h, the Multi-Level Monte-Carlo estimator computes approxima-
tions for a hierarchy of mesh sizes h0 ≥ h1 ≥ · · · ≥ hL. The rationale for this computation is the
observation that the telescoping sum identity

E
�

QhL

�

=E
�

Qh0

�

+
L
∑

l=1

E
�

Qhl
−Qhl−1

�

(5.1)

1For technical reasons due to the randomness of the coefficients, some of these meshes may be refined on a
sample-by-sample basis, see Section 5.3 below. We ignore this technicality in the current discussion, but it will be fully
addressed in Section 5.3.
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holds and therefore, if one computes estimators Ŷ0 for E
�

Qh0

�

and Ŷl for E
�

Qhl
−Qhl−1

�

, then

one can construct an estimator for E
�

QhL

�

,

Q̂ML
hL

:= Ŷ0+
L
∑

l=1

Ŷl .

In this chapter, the estimators Ŷl will be Monte-Carlo estimators using N0 samples of Qh0
(for

Ŷ0) and Nl samples of Qhl
−Qhl−1

(for Ŷl , l ≥ 1).

Our analysis of Q̂ML
hL

then seeks to answer the question ‘How should we choose hL and
N0,N1, . . . ,NL to ensure the error is less than a prescribed tolerance ε > 0 (with minimal compu-
tational work)?’ The answer is long, and so we answer this question fully in our main, new result,
Theorem 5.13 below.

The reason one expects the Multi-Level Monte-Carlo estimator to require less computational
effort than the Monte-Carlo estimator is that one expects the varianceV

�

Qhl
−Qhl−1

�

to decrease
as l increases. One expects this decrease because the quantities of interest Qhl

and Qhl−1
are

obtained from finite-element approximations uhl
and uhl−1

, and one expects these approximations
to get closer together as l increases. A basic calculation confirms this; indeed, provided the
solution u is sufficiently smooth, and hl ∼ hl−1 uniformly in l , (e.g., we obtain mesh l by
uniform refinement of mesh l − 1,) then





uhl
− uhl−1







H 1
≤




uhl
− u







H 1
+




u − uhl−1







H 1
® hl + hl−1 ∼ hl−1→ 0 as l → L.

Therefore uhl
and uhl−1

get closer together as l increases, and one expects analogous behaviour
for Qhl

and Qhl−1
(if Q is a continuous function of u, this behaviour is immediate). Since one

takes the number of samples in a Monte-Carlo estimator to be proportional to the variance of the
sampled quantity (i.e., Qh0

or Qhl
−Qhl−1

in this case), the fact that V
�

Qhl
−Qhl−1

�

gets smaller
as l increases should mean the number of samples of Qhl

−Qhl−1
can decreases as l increases. As

the computational cost of performing numerical solves is higher for finer meshes (i.e., the cost
of computing Qhl

−Qhl−1
increases as l increases), we expect that the Multi-Level Monte-Carlo

estimator allows us to perform a large number of (cheap) solves on the coarser meshes, and a
small number of (expensive) solves on the fine meshes, i.e. N0 ≥N1 ≥ · · · ≥NL. Replacing solves
on finer meshes with solves on coarser meshes in this way should result in computational savings,
as is seen for the stationary diffusion equation in [49].

5.2.2 Challenges in Monte-Carlo and Multi-Level Monte-Carlo methods for the
Helmholtz equation

Analysing Monte-Carlo and Multi-Level Monte-Carlo methods for the Helmholtz equation has
two main challenges that are not present in the analysis of these methods for, e.g., the stationary
diffusion equation.

Firstly, the behaviour of Monte-Carlo and Multi-Level Monte-Carlo methods for the Helm-
holtz equation will be k-dependent, because the behaviour of the finite-element method for the
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Helmholtz equation is k-dependent, see Section 2.3. Because of this k-dependent behaviour, we
would like our analysis of these methods to be completely k-explicit. In particular, since we
have access to k-explicit finite-element-error estimates for the Helmholtz equation in Section 2.4
above, we are able to make our analysis of Monte-Carlo and Multi-Level Monte Carlo methods
k-explicit; we can re-prove the standard results on computational complexity for Monte-Carlo
and Multi-Level Monte-Carlo methods with the k-dependence incorporated explicitly.

Secondly, the finite-element approximation uh of the solution u of the stochastic Helmholtz
equation may not exist for all h > 0, and the criteria to prove its existence and uniqueness may
be dependent on the coefficients A and n. I.e., for fixed h, uh(ω

(1)) may exist and be unique,
but uh(ω

(2)) may not, for some ω(1) 6= ω(2) ∈ Ω. To see why this is the case, recall from the
definitions of

�

hka , hk b �-accuracy and -data-accuracy for the finite-element solution of the Helm-
holtz equation (Definitions 2.24 and 2.26) that the finite-element approximation uh only exists
for h sufficiently small (with the definitions of

�

hka , hk b �-accuracy and -data-accuracy defining
‘sufficiently small’ in terms of k and other quantities). Moreover, the criteria for ‘sufficiently
small’ also depend on the coefficients A and n (see Remark 2.30). Therefore, when A and n are
stochastic, the existence and uniqueness of uh (ω) is not only h-dependent but alsoω-dependent.
Putting the above challenge into the language of the random variables Qh , the random variable
Qh may not exist or be unique for all h > 0, and moreover, its existence and uniqueness may be
sample-dependent. I.e., Qh (ω

(1))may exist and be unique, but Qh (ω
(2))may not, forω(1) 6=ω(2).

This sample-dependence poses an issue for Monte-Carlo and Multi-Level Monte-Carlo meth-
ods. The method may require us to compute Qh(ω

( j )), but there is no guarantee that Qh(ω
( j ))

exists. Therefore, we need to modify our methods to deal with this sample-dependence. Such
a modification to Monte-Carlo and Multi-Level Monte-Carlo methods for sample-dependent
existence and uniqueness criteria was given by Graham, Parkinson, and Scheichl in [104] (and in
Parkinson’s PhD thesis [165]), in the context of the Radiative Transport Equation (RTE). The
RTE is an integro-differential equation whose numerical approximations have similar sample-
dependent existence and uniqueness criteria to the Helmholtz equation. We adopt their approach
for dealing with the sample-dependence, this approach is discussed in Section 5.3 below.

5.2.3 Literature Review of Multi-Level Monte-Carlo methods

We focus our literature review on (i) foundational works in Multi-Level Monte-Carlo methods, to
provide a little context for our work on the Helmholtz equation, and (ii) applications of Multi-
Level Monte-Carlo methods to problems sharing the challenges outlined in Section 5.2.2 above.
As far as we are aware, there is no prior work on Multi-Level Monte-Carlo methods explicitly
incorporating the dependence on an additional parameter, and so we just mention works dealing
with sample-dependent criteria for the numerical approximation. For a wider-ranging overview
of the literature, we refer the reader to the review article [95] and the webpage [93], the latter of
which is kept up-to-date with a range of recent work on Multi-Level Monte-Carlo methods.

Multi-level Monte Carlo methods for stochastic differential equations were first introduced by
Giles [94] for time-dependent SDEs, with applications mostly arising in finance, although the ideas
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were present in earlier work by Heinrich [111, 112] on multilevel methods for parametric integra-
tion. Multi-Level Monte-Carlo methods were first applied to elliptic (i.e., non-time-dependent)
PDEs by Barth, Schwab, and Zollinger in [15] and Cliffe, Giles, Scheichl, and Teckentrup in [49]
for the stationary diffusion equation with an application in porous media flow. In particular, the
statement of the Multi-Level Monte-Carlo complexity theorem in [49, Theorem 1] is the basis
for our statement of a Multi-Level Monte-Carlo complexity theorem for the Helmholtz equation
in Theorem 5.13 below. We highlight that a key result of [49, Theorem 1] is that Multi-Level
Monte-Carlo methods always outperform Monte-Carlo methods, at least in the setting given in
[49].

We mention the work of Scarabosio [191], who applied the Multi-Level Monte-Carlo method
to a Helmholtz transmission problems with an uncertain boundary (i.e. a Helmholtz problem
where A and n are piecewise constant, both jumping across a random interface). Her particular
emphasis was on quantities of interest given by point evaluations of the solution; other UQ
algorithms do not behave well for such QoIs, see [191, Section 3.3]. She works under the
assumption that k is small, i.e., a ‘large wavelength assumption’ [191, Assumption 3.1]. In this
setting she shows that the Multi-Level Monte-Carlo method for the transmission problem fits
into the standard framework of Multi-Level Monte-Carlo methods [191, Proposition 4.2] (as in,
e.g., [49, 95]) and that the numerical behaviour of the method is as predicted by the theory [191,
Section 6].

We now highlight two bodies of work on Multi-Level Monte-Carlo methods with sample-
dependent criteria; the work of Mishra, Schwab, and Šukys on Monte-Carlo and Multi-Level
Monte-Carlo methods for time-domain wave propagation and the work of Graham, Parkinson,
and Scheichl on Monte-Carlo and Multi-Level Monte-Carlo methods for the Radiative Transport
Equation.

The work of Mishra, Schwab, and Šukys covers Monte-Carlo and Multi-Level Monte-Carlo
methods for a range of linear and nonlinear hyperbolic problems, see, e.g., [201]. However,
we focus just on their results for linear problems, as then the PDE involved is the time-domain
wave equation with random coefficients and random initial data, whose Fourier transform in
time is the Helmholtz equation (recall the discussion in Section 1.1.1). This work on linear
wave propagation is contained in the papers [202, 151] and in Šukys’ PhD thesis [201]. They
discretised the individual realisations of the wave problems using a finite-volume method in
space and specialised time-stepping algorithms in time (see, e.g., [151, Section 3.1]). Because the
PDEs in these works have random coefficients, the CFL condition for the numerical method
(this condition depends on the coefficients) is also random, meaning the number of time steps
used in the time-stepping algorithm is random. (The spatial discretisation is fixed across all
realisations.) In [202] the authors analyse the error against the expected work (analagous to
our analysis in Sections 5.4 and 5.5 below). In [151] the authors present more realistic test
cases, and a load-balancing algorithm for applying the Multi-Level Monte-Carlo method on high-
performance computers. The load-balancing algorithm is needed because the different individual
solves have different computational requirements, because of the random number of timesteps
mentioned above. They see that the Multi-Level Monte-Carlo method consistently outperforms
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the Monte-Carlo method.
Another collection of relevant work is that of Graham, Scheichl, and Parkinson [103, 165, 104]

on UQ methods (including Multi-Level Monte-Carlo methods) for the Radiative Transport
Equation (RTE), as mentioned above. The main relevance of this work for our study of the
Helmholtz equation is that, as mentioned above, proving the numerical approximation of the
solution of the RTE exists and is unique requires a coefficient-dependent discretisation condition
(see [104, Theorem 4.12]). (This condition is analogous to a mesh constraint, except the RTE is
not discretised with a traditional mesh, as it is defined on both spatial and angular variables.) When
this discretisation constraint is carried over into a UQ setting, the RTE has a sample-dependent
discretisation condition. Therefore, for some samples a given discretisation may be too coarse to
guarantee existence and uniqueness. This sample-dependence is very similar to the situation we
encounter for the Helmholtz equation, where the condition to ensure data-accuracy is A- and
n-dependent (see Corollary 2.41 above), and therefore there will be a sample-dependent condition
in the UQ setting.

The remedy proposed for this sample-dependence by Graham, Parkinson, and Scheichl is
to selectively refine the discretisation only for those samples that require a finer discretisation.
We adopt this strategy for the Helmholtz equation, as outlined in Section 5.3 below. Moreover,
Graham, Parkinson, and Scheichl show that (under suitable assumptions on the randomness, that
are satisfied for a range of realistic random field models) this sample-wise refinement does not
affect the asymptotics of the expected cost of the algorithm, because it only needs to happen
on a set of samples of small measure, see [104, Lemma 5.8]. We obtain similar results for the
Helmholtz equation in Lemma 5.6 below.

5.3 A N A B S T R AC T S E T T I N G F O R B O T H T H E M U LT I -L E V E L

M O N T E -C A R L O A N D M O N T E -C A R L O M E T H O D S , M O -
T I VAT E D B Y T H E H E L M H O LT Z E Q UAT I O N

We now define the concepts and quantities needed to define and discuss Monte-Carlo and Multi-
Level Monte-Carlo methods for the Helmholtz equation. However, at this stage we work at
an abstract level, i.e., we consider random variables Q and Qh rather than the solution u of a
stochastic Helmholtz equation and its approximations uh . This abstraction will help simplify
the presentation of the additional challenges one has for the Helmholtz equation. However,
when constructing this abstract setting, our definitions will be motivated by properties of the
finite-element solution of the Helmholtz equation. Therefore in Section 5.6 below, we will show
that the Helmholtz equation fits into our abstract setting, and therefore our abstract results are
applicable to the Helmholtz equation itself.

We assume that we have a parameter k > 0 (corresponding to the wavenumber k in the
Helmholtz equation), that there exists a random variable Q : Ω → R depending on k, and
that our goal is to approximate E[Q]. Our first aim would be to define a family of random
variables (Qh )h>0 (corresponding to the finite-element approximations uh ). However, as has been
discussed in Section 5.2.2, the existence and uniqueness of finite-element approximations of the
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Helmholtz equation is sample-dependent, and therefore we want our abstract setting to reflect
this dependence.

If we recall our finite-element-error bound in Theorem 2.39 above (from which we con-
cluded the h-finite-element method for the heterogeneous Helmholtz equation is hk (2 p+1)/2 p -
data-accurate in Corollary 2.41), then we see that the existence and uniqueness criteria and the
error bound are h-, k-, A-, and n-dependent. (For simplicity, in this chapter we assume Cstab ∼ 1,
i.e., the Helmholtz problem is nontrapping almost surely, although one could easily generalise the
results of this chapter to the trapping case, albeit with a worse k-dependence.) Therefore, when
we move to the UQ case, where A and n are random fields, the existence and uniqueness criterion
will be h-, k-, and sample-dependent. Motivated by this dependence, we make the following
assumption on the existence and uniqueness of the random variable Qh .

Assumption 5.1 (Probabilistic version of Theorem 2.39). There exist random variables C1 and ec1,
with E[ec1]<∞, and constants a,α,σ > 0 all independent of h and k such that, for h > 0 if

h <C1(ω)k
−a , (5.2)

then Qh (ω) exists, is unique, and satisfies

|Q(ω)−Qh (ω)| ≤ ec1(ω)h
αkσ . (5.3)

Remark 5.2 (Comments on Assumption 5.1).

• As an example, Theorem 2.39 shows Assumption 5.1 holds for the stochastic Helmholtz equation
with Q(·) = ‖·‖H 1

k
(D), a = (2p + 1)/2p, α = 2p, and σ = 2p + 1, where we have used the

fact that as discussed in Remark 2.40, the final terms in the bounds (2.63) and (2.64) are the
dominant terms.

• In principle, one can obtain explicit formulae for C1 and ec1 from (2.62)–(2.64). However, as
noted in Remarks 2.43 and 2.45, (2.62)–(2.64) may not depend optimally on n, and are not
completely explicit in their A-dependence. Therefore, using (2.62)–(2.64) to define C1 and ec1

would mean C1 and ec1 may not depend optimally on ω, nor be completely explicit in their
ω-dependence. Therefore we do not specify (here, or in Section 5.6 below) the form of C1 or ec1.

A crucial consequence of Assumption 5.1 is that, as stated above, for a given h > 0 the
value Qh(ω)may not be defined for allω ∈Ω. To cope with this issue, we follow the approach
of Graham, Parkinson, and Scheichl in [104]. For a fixed h > 0, we define the set Ωbad =
{ω ∈Ω : (5.2) is not satisfied}. OnΩbad we refine the mesh on a sample-by-sample basis so that (5.2)
is satisfied on the refined mesh. We then show that this additional refinement does not change the h-
dependence of the expected cost of a single sample. (The proof of this fact requires the assumption
that Ωbad has small probability; this assumption is stated more formally in Assumption 5.5 below,
and is proved by Graham, Scheichl, and Parkinson in the neutron-transport context in [104,
Lemma 5.3].)
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We now give the above scheme more precisely. For fixed h > 0, and givenω ∈Ω, we define

hmax
ω =C1(ω)k

−a , (5.4)

that is, hmax
ω is the largest mesh size that satisfies (5.2). We then define

hω =min{h, hmax
ω }, (5.5)

that is, the behaviour of hω as h ↓ 0 is governed by h, but hω is always small enough so that it
satisfies (5.2). We can now define the quantity

eQh (ω) =Qhω
(ω). (5.6)

Observe that, by construction, eQh (ω) exists for allω ∈Ω, because ifω ∈Ωbad, then hω = hmax
ω

and by definition of hmax
ω , the value Qhmax

ω
(ω) exists.

Remark 5.3 (Is eQh a random variable?). Throughout this chapter, we assume eQh is a random
variable. One could, in principle, prove this fact, but the proof would likely be very involved. One
would need to show the map (ω, h) 7→Qh(ω) is measurable (for all pairs (ω, h) such that this map
is defined) with respect to a suitable σ -algebra, and then combine this fact with the fact that hω is a
random variable (and thus measurable) to conclude that the mapω 7→ eQh is measurable. Proving that
the map (ω, h) 7→Qh (ω) is measurable in the context of finite-element discretisations of the Helmholtz
equation would be very technical, and would contribute little to the discussion of Monte-Carlo and
Multi-Level Monte-Carlo methods for the Helmholtz equation. Therefore, we instead assume eQh is a
random variable.

Because eQh is associated with a random mesh size hω, the cost of computing one realisation
of eQh will also be a random variable. Therefore, we make the following assumption on the cost
of computing one realisation of eQh . In particular, we assume that the cost is driven by the actual
mesh size that is used in the computations, hω. We let C (·) denote the cost of computing one
realisation of a random variable.

Assumption 5.4 (Cost of one realisation of eQh ). There exists γ > 0 and a positive random variable
ec3, where ec3 does not depend on h and k, such that

C
�

eQh (ω)
�

≤ ec3(ω)h
−γ
ω ,

We can now show that, provided the set Ωbad has small probability (in a sense made precise
in Assumption 5.5 below), the expected cost of computing one realisation of eQh is driven only
by h. I.e., the expectation does not ‘see’ the additional refinement needed forω ∈Ωbad, because
these samples occur with low probability.

Assumption 5.5. The quantity
c3 :=E

�

ec3

�

1+C−γ1

��

(5.7)
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is finite.

One can conclude from Assumption 5.5 that the set Ωbad has low probability, as in [104, Text
at the bottom of p. 21]. Observe that C1 governs where the mesh needs to be refined (since if
C1(ω) is small, then a smaller mesh size is needed). Therefore if terms involving C−1

1 have finite
expectation (as in (5.7)), then C1 is small with low probability, i.e., Ωbad has low probability.

Lemma 5.6 (Expected cost of one sample of eQh ). If Assumptions 5.4 and 5.5 hold, then

E
�

C
�

eQh

��

≤ c3
�

h−γ + kaγ �. (5.8)

Proof of Lemma 5.6. The proof follows closely that in [104, Lemma 5.8]. We have

C
�

eQh (ω)
�

≤ ec3(ω)h
−γ
ω ≤ ec3(ω)

�

h−γ +(hmax
ω )−γ

�

(5.9)

by Assumption 5.4 and (5.5). Then using (5.4) and (5.9) we obtain the bound

C
�

eQh (ω)
�

≤ ec3(ω)h
−γ +

�

ec3C−γ1

�

(ω)kaγ , (5.10)

and therefore since Assumption 5.5 holds, we obtain (5.8).

To prove results on the expected computational cost and convergence of Monte-Carlo and
Multi-Level Monte-Carlo methods, we need not only the previous lemma on the expected com-
putational cost of a single sample of eQh , but also the following lemma on the convergence of eQh

to Q, analagous to [104, Theorem 5.14].

Lemma 5.7 (Convergence of eQh to Q). Under Assumption 5.1

E
�
�

�

�

eQh −Q
�

�

�

�

≤ c1kσ hα, (5.11)

where c1 =E[ec1].

Proof of Lemma 5.7. The proof is immediate from (5.6), Assumption 5.1 and the fact that hω ≤ h
(by (5.5)).

Remark 5.8 (Assumption 5.1 is sufficient, but not necessary). The proofs of Theorems 5.10 and
5.13 below (our main technical results) only require a bound on

�

�

�E
�

eQh −Q
�
�

�

�≤ c1kσ hα; (5.12)

a weaker condition than the bound (5.11) which we use in these proofs. Therefore, in principle one
could replace Assumption 5.1, a pathwise assumption which leads to (5.11), with the weaker assumption
on the difference in mean (5.12).

Before we move on to study Monte-Carlo and Multi-Level Monte-Carlo methods, we define
the notion of error that we use when studying these methods.
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Definition 5.9 (Root-mean-squared error). Given a random variable Q and an estimator Q̂ of Q,
the root-mean-squared error of Q̂ is

Err
�

Q̂
�

:=
�

E
h
�

�

�Q̂ −Q
�

�

�

2i�
1
2
.

5.4 M O N T E -C A R L O M E T H O D S

We now prove a k-explicit bound on the expected computational complexity of the Monte-Carlo
method in the above abstract setting (which is, of course, motivated by the stochastic Helmholtz
equation). Recall that the Monte-Carlo estimator of Q is defined by

Q̂MC
h =

1
NMC

NMC
∑

j=1

eQ ( j )
h

,

where the eQ ( j )
h

are independently and identically distributed samples of eQh .

We have the following theorem on the computational complexity of the Monte-Carlo estima-
tor Q̂MC

h , which is a generalisation of the standard proof of the complexity of the Monte-Carlo
method (see, e.g., [49, Section 2.1]) to the above k-dependent setting. In this theorem, the notation
∼ denotes a hidden constant that is independent of h, k , and ε.

Theorem 5.10 (Computational complexity of Monte-Carlo). Let Assumptions 5.1, 5.4, and 5.5
hold. Given ε ∈ (0,1), if

h ∼
�p

2c1

�− 1
α k−

σ
α ε

1
α , (5.13)

and
NMC ∼ 2V

�

eQh

�

ε−2 (5.14)

then
Err

�

Q̂MC
h

�

∼ ε (5.15)

and the computational complexity of Q̂MC
h satisfies

E
�

C
�

Q̂MC
h

��

∼V
�

eQh

��

ε−2− γα k
γσ
α + ε−2kaγ

�

. (5.16)

The first term in (5.16) is analgous to the standard cost term one obtains in the analysis of
Monte-Carlo methods (see, e.g., [49, Section 2.1]). The second term in (5.16) arises from the
k-dependence of (5.4). The reason the second term in (5.16) has a better ε-dependence than the
first term is that (5.2) is an ε-independent criterion, whereas ensuring the error is small (via the
mesh constraint (5.13)) is an ε-dependent criterion.

Proof of Theorem 5.10. The proof is nearly identical to the standard proof for Monte-Carlo meth-
ods, see, e.g., [49, Section 2.1]. We can first perform a so-called bias–variance decomposition of
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the error

Err
�

Q̂MC
h

�2
=E

h
�

�

�E[Q]−E
�

Q̂MC
h

�

+E
�

Q̂MC
h

�

− Q̂MC
h

�

�

�

2i

=
�

�

�E[Q]−E
�

Q̂MC
h

�
�

�

�

2
+E

h
�

�

�E
�

Q̂MC
h

�

− Q̂MC
h

�

�

�

2i

=
�

�

�E[Q]−E
�

Q̂MC
h

�
�

�

�

2
+V

�

Q̂MC
h

�

, (5.17)

where the second line follows from first due to the fact that E
�

Q̂MC
h −E

�

Q̂MC
h

��

= 0, and the
third line follows from the second by the definition of the variance. The first term in (5.17) is the
‘bias’ (i.e., the error introduced by the discretisation), and the second term in (5.17) is the variance
of the estimator Q̂MC

h .

By definition of Q̂MC
h , and the fact that the samples eQ ( j )

h
are independent, we have

V
�

Q̂MC
h

�

=
1

N 2
MC

NMC
∑

j=1

V
�

eQ ( j )
h

�

=
1

NMC
V
�

eQh

�

. (5.18)

Therefore we can conclude from (5.17) and (5.18) that the root-mean-squared-error satisfies

Err
�

Q̂MC
h

�2
=
�

�

�E
�

eQh −Q
�
�

�

�

2
+

1
NMC
V
�

eQh

�

. (5.19)

By (5.13) and Lemma 5.7 the first term in (5.19) is proportional to ε2/2, and by (5.14) the second
term in (5.19) is proportional to ε2/2, and therefore (5.15) holds. All that remains is to estimate
the (expected) computational complexity. We have

E
�

C
�

Q̂MC
h

��

=NMCE
�

C
�

eQh

��

≤NMCc3
�

h−γ + kaγ � by Lemma 5.6,

∼ 2V
�

eQh

�

ε−2
�

c3

�p
2c1

�
γ
α k

γσ
α ε−

γ
α + kaγ

�

by (5.13) and (5.14)

as required.

5.5 M U LT I - L E V E L M O N T E -C A R L O M E T H O D S

We now analyse the Multi-Level Monte-Carlo method in the k-dependent abstract setting given
above. Aside from the k-dependence and the sample-dependent existence and uniqueness criterion
(the latter of which has been discussed and dealt with through introducing the random variables
eQh above), our approach and final result is analogous to the standard Multi-Level Monte-Carlo
complexity result given in, e.g., [49, Theorem 1]. Recall that the goal is to choose the number of
levels L and the numbers of samples on each level Nl to acheive a root-mean-squared error of at
most ε with minimal cost. Our main result, showing how to achieve this goal, is Theorem 5.13
below. We now give precise details of the setup for Multi-Level Monte-Carlo.
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We define a set of levels {hl }
L
l=0 (with L to be chosen) such that

hl =
hl−1

s
(5.20)

for s > 1 and l ≥ 1. In particular
hL = s−Lh0. (5.21)

(Observe that when hl corresponds to the mesh width of a finite-element mesh, then (5.20) is
achieved if we obtain successive meshes by uniform refinement.) We then define the correction
operators between the levels by

Yl := eQhl
− eQhl−1

, l ≥ 1, Y0 = eQh0
. (5.22)

Observe that by construction

E[Y0]+
L
∑

l=1

E[Yl ] =E
�

eQh0
+

L
∑

l=1

eQhl
− eQhl−1

�

=E
�

eQhL

�

. (5.23)

We let Ŷl be the Monte-Carlo estimator of Yl , i.e.,

Ŷl :=
1

Nl

Nl
∑

j=1

Y ( j )
l

, (5.24)

with Nl to be chosen, where the Y ( j )
l

are independent samples of Yl . Note that it follows that the

estimators Ŷl are independent of each other. (To simplify the notation, we do not include Nl in
the notation for Ŷl .) Finally we define the multi-level Monte Carlo estimator of Q

Q̂ML
hL

:=
L
∑

l=1

Ŷl .

As we discussed in Section 5.2.1 above, the reason the Multi-Level Monte-Carlo method
delivers a lower computational cost than the Monte-Carlo method is that the variance of the
estimators Ŷl decreases as l increases. Therefore the more expensive simulations (for higher
l ) need fewer samples. To quantify the behaviour of these variances, we assume V[Yl ] has the
following property, c.f. the behaviour of the error in (5.3). (The similarity in the form of (5.25)
below and (5.3) is no coincidence, one usually proves bounds of the form (5.25) via bounds of the
form (5.3); see the proof of Lemma 5.19 below for an example of this proof technique.)

Assumption 5.11 (Variance of correction operators). There exist c2,β,τ > 0, such that c2 is
independent of h and k , and

Vl :=V[Yl ]≤ c2hβ
l

kτ . (5.25)

As we will see in Theorem 5.13 below, the interplay between β and γ (i.e., the interplay
between the variances and the cost of computing a single sample) governs the behaviour of the
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cost of the Multi-Level Monte-Carlo method.
We make the following simplifying assumption, that the coarse mesh h0 has the same k-

dependence as the criterion for existence and uniqueness (5.2).

Assumption 5.12 (Dependence of coarse space on k). Let Ccoarse > 0 be independent of k and

h0 =Ccoarsek−a . (5.26)

We can now state our main theorem on the complexity of the Multi-Level Monte-Carlo
mthod in the k-dependent abstract setting above. In particular, we show

• how the number of levels L should be chosen, and

• how the number of samples Nl on each level should be chosen

so that the root-mean-squared error of the Multi-Level Monte-Carlo estimator is of the order
ε with minimal work. Observe that Theorem 5.13 is analogous to the standard Multi-Level
Monte-Carlo complexity theorem, see, e.g., [49, Theorem 1], but adapted for our k-dependent
setting.

We let
Cl := c3

�

h−γ
l
+ kaγ

�

, (5.27)

i.e., Cl is the bound on the expected cost of computing one sample of eQhl
(see Lemma 5.6).

Theorem 5.13 (Computational Complexity of Multi-Level Monte-Carlo). Under Assumptions
5.4, 5.5, 5.1, 5.12, and 5.11, if L is given by

L=max
§¡

1
α

logs

�p
2c1C α

coarsekσ−aαε−1
�

¤

, 0
ª

, (5.28)

the number of samples on each computational level is given by

Nl =

&

2ε−2
�

Vl

Cl

�
1
2 L
∑

j=0

�

V jC j

�
1
2

'

, (5.29)

ε < 1, and
α≥ 1

2
min{β,γ},

then Err
�

Q̂ML
hL

�

≤ ε and, if L≥ 1, the computational cost of Q̂ML
hL

satisfies

E
�

C
�

Q̂ML
hL

��

®



















�

kτ−a(β−γ )+ k
γσ
α

�

ε−2 if β> γ ,

kτε−2
�

�

logs
�

ε−1kσ−aα��2+ 1
�

+ k
γσ
α ε−2 if β= γ ,

kτ+(γ−β)
σ
α ε−2− γ−βα + k

γσ
α ε−2 if γ >β.

(5.30)

However, if L= 0, then C
�

Q̂ML
hL

�

is given by Theorem 5.10.
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The proof of Theorem 5.13 is given on page 215 below. It is surprising that in (5.28) we must
take the maximum to ensure L is non-negative; this requirement is due to a subtle point about the
values of a, α, and σ , see Section 5.6.1 below. The assumption that α≥min{β,γ}/2 is standard
in studies of Multi-Level Monte-Carlo methods, in order to simplify the expressions involving ε
in (the equivalent results to) (5.30), see, e.g. [49, Theorem 1].

Remark 5.14 (The finest mesh size in Theorem 5.13). Observe that if the number of additional
levels L is given by (5.28), then one can simplify the dependence on Ccoarse and a using (5.21) and (5.26)
to obtain

hL =min







�

ε
p

2c1kσ

�
1
α

, h0







. (5.31)

In the proof of Theorem 5.13, we will need to bound sums of the form
∑L

l=0 sδ l , where L is
given by (5.28) and δ is some constant. Therefore, we first prove these bounds in the following
lemma, that contains an abstract version of (5.28), before proceeding to the proof of Theorem 5.13.

Lemma 5.15 (Bounds on sums occuring in the proof of Theorem 5.13). If L is given by

L=
�

CL logs
�

ηε−1��, (5.32)

for some CL,η > 0, then, for s > 1 and δ ∈R, we have the bounds

L
∑

l=0

sδ l ≤



















L+ 1 if δ = 0,
sδ

1−s−δ η
δCLε−δCL if δ > 0,

s−δ

s−δ−1
if δ < 0.

(5.33)

Proof of Lemma 5.15. The case δ = 0 is immediate. For δ 6= 0 the proof follows that in [49,
Appendix A]. We first observe that, for δ > 0,

L
∑

l=0

sδ l =
sδ(L+1)− 1

sδ − 1

=
sδL− s−δ

1− s−δ

≤ sδL

1− s−δ
, (5.34)

since sδL ≥ s−δ .

Then, since L is given by (5.32), it follows that the bound

L<CL logs
�

ηε−1�+ 1 (5.35)
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holds. Rearranging (5.35), we obtain the bound

s L <
�

ηε−1�CL s . (5.36)

From (5.36) we can then obtain
sδL < ηδCLε−δCL sδ . (5.37)

Combining (5.34) and (5.37), we obtain (5.33) in the case δ > 0.

For the case δ < 0, we observe

L
∑

l=0

sδ l =
sδ(L+1)− 1

sδ − 1

=
s−δ − sδL

s−δ − 1

≤ s−δ

s−δ − 1
,

since s−δ ≥ sδL, that is, (5.33) in the case δ < 0.

We are now in a position to prove Theorem 5.13.

Proof of Theorem 5.13. Throughout the proof, we assume L > 0. In the case L = 0, the Multi-
Level Monte-Carlo estimator becomes the Monte-Carlo estimator, whose behaviour is given by
Theorem 5.10.

We recall the bias–variance decomposition of the (squared) mean-squared error analagous to
(5.17)

Err
�

Q̂ML
hL

�2
=
�

�

�E
�

Q̂ML
hL
−Q

�
�

�

�

2
+V

�

Q̂ML
hL

�

, (5.38)

where the first term in (5.38) is the bias and the second term is the variance. We now proceed
to choose the parameters L and Nl , l = 0, . . . , L, such that we can bound both the bias and the

variance by ε2/2, thereby making Err
�

Q̂ML
hL

�

≤ ε.

We first bound the bias. To do this, we only need to choose L large enough, i.e., choose hL

small enough. By the construction of the Multi-Level Monte-Carlo estimator Q̂ML
hL

, it follows

that E
h

Q̂ML
hL

i

=E
�

eQhL

�

, see (5.23). Therefore the bias term in (5.38) is equal to
�

�

�E
�

eQhL
−Q

�
�

�

�

2
.

By Lemma 5.7 with h = hL, a sufficient condition for the bias term to be at most ε2/2 is

c1kσ hαL ≤
ε
p

2
, (5.39)

which, when rearranged, gives the first term in (5.31). As hL = h0 s−L, it follows from rearranging
(5.39) that a sufficient condition for the bias term to be ≤ ε2/2 is

L=
¡

1
α

logs

�p
2c1kσ hα0 ε

−1
�

¤

. (5.40)
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Under Assumption 5.12, since h0 =Ccoarsek−a , we can simplify (5.40) to obtain the first term in
(5.28), as required.

We now seek to bound the variance term in (5.38) with minimal cost. I.e., we choose the
numbers of samples Nl such that the variance term is at most ε2/2 and the computational cost is
minimised. Similar to the expression (5.18) for the variance of the Monte-Carlo estimator, one
can show that the variance of the Multi-Level Monte-Carlo estimator is given by

V
�

Q̂ML
hL

�

=
L
∑

l=0

Vl

Nl
, (5.41)

and the expected cost of Q̂ML
hL

is: (following [104])

E
�

C
�

Q̂ML
hL

��

≤
L
∑

l=0

E
�

C
�

Ŷl

��

=
L
∑

l=0

Nl
∑

j=1

E
�

C
�

Y ( j )
l

��

by the definition of Ŷl (5.24),

≤
L
∑

l=0

Nl
∑

j=0

�

E
�

C
�

eQhl

��

+E
�

C
�

eQhl−1

���

by the definition of Yl (5.22),

=
L
∑

l=0

Nl
�

1+ s−γ
�

c3

�

h−γ
l
+ kaγ

�

by Lemma 5.6,

=
�

1+ s−γ
�

L
∑

l=0

NlCl , (5.42)

by the definition of Cl , (5.27).

We now find an optimal number of samples for each level. To find this optimal number of
samples we formulate this task as an optimisation problem: Find N0,N1, . . . ,NL > 0 to minimise
(5.42) subject to

L
∑

l=0

Vl

Nl
=
ε2

2
.

This is exactly the formulation used in [95, Section 1.3], and therefore as in [95, Section 1.3] we
can use a Lagrange multiplier to solve this minimisation problem, resulting in the values of Nl as
defined in (5.29). (The ceiling function in (5.29) is introduced because the values of Nl solving the
optimisation problem may not be integers, however, the number of samples in the Multi-Level
Monte-Carlo method must be integers. Increasing the optimal values of Nl slightly (by using
the ceiling) will decrease the variance (as the variance is given by (5.41)), and so we will still have
V
h

Q̂ML
hL

i

≤ ε2/2.)

We now infer the expected computational complexity of the Multi-Level Monte-Carlo method
with L given by (5.28) and the Nl given by (5.29). To simplify the calculation, we first bound
Cl purely in terms of hl , rather than hl and k , as in Lemma 5.6. From Lemma 5.6 we have
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Cl ≤ c3

�

h−γ
l

kaγ
�

, and therefore

Cl ≤ c3

�

h−γ
l
+C γ

coarseh−γ0

�

by Assumption 5.12

= c3

�

h−γ
l
+C γ

coarse

�

hl s l
�−γ�

by definition of hl (5.20)

= c3

�

1+C γ
coarse s−γ l

�

h−γ
l

≤ c3
�

1+C γ
coarse

�

h−γ
l

because γ > 0 and s > 1, so s−γ l < 1.

We can now bound the expected computational complexity. From the expression (5.42), we
have

E
�

C
�

Q̂ML
hL

��

≤
�

1+ s−γ
�

L
∑

l=0

Cl Nl

≤
�

1+ s−γ
�

L
∑

l=0

Cl

 

2
ε2

�

Vl

Cl

�
1
2 L
∑

j=0

�

V jC j

�
1
2 + 1

!

(by (5.29)),

= 2ε−2�1+ s−γ
�

� L
∑

l=0

(VlCl )
1
2

�2

+
�

1+ s−γ
�

L
∑

l=0

Cl

= 2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2

� L
∑

l=0

h
β−γ

2
l

�2

+ c3
�

1+C γ
coarse

��

1+ s−γ
�

L
∑

l=0

h−γ
l

(by Assumptions 5.11 and 5.12 and Lemma 5.6),

= 2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2hβ−γ0

� L
∑

l=0

s l
�

γ−β
2

�

�2

+ c3
�

1+C γ
coarse

��

1+ s−γ
�

h−γ0

L
∑

l=0

sγ l , (5.43)

by definition of hl .

We now bound the two sums in (5.43) using Lemma 5.15. Using Lemma 5.15 with CL = 1/α,
η=
p

2c1C α
coarsekσ−aα, and δ = γ > 0, the second term in (5.43) can be bounded by

c3
�

1+C γ
coarse

�

(1+ s−γ )h−γ0 sγ
�p

2c1

�
γ
α C γ

coarse

1− s−γ
k
γσ
α −aγε−

γ
α

=
(1+ s−γ )c3

�p
2c1

�
γ
α sγ

�

1+C γ
coarse

�

1− s−γ
k
γσ
α ε−

γ
α .

≤
(1+ s−γ )c3

�p
2c1

�
γ
α sγ

�

1+C γ
coarse

�

1− s−γ
k
γσ
α ε−2, (5.44)
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since α≥ γ/2.
To bound the first sum in (5.43), we must distinguish three cases, γ =β, γ >β, and γ <β.
If γ =β, then the first part of (5.43) becomes (using Lemma 5.15 with CL and η as above, and

δ = 0 and (5.28))

2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2(L+ 1)2

≤ 2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2
�

1
α

logs

�

ε−1
p

2c1C α
coarsekσ−aα

�

+ 2
�2

= 2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2
�

1
α

�

logs
�

ε−1kσ−aα�+ logs

�p
2c1C α

coarse

�

+ 2
�

�2

® kτε−2
�

�

logs
�

ε−1kσ−aα��2+ 1
�

(5.45)

In the case γ >β, to simplify the notation, we let

Csum,δ :=

�p
2c1

�
δ
α Cδ

coarse

1− s−δ
.

Then using Lemma 5.15 with CL and η as above, but δ = (γ −β)/2 > 0, the first term in
(5.43) becomes

ε−22c2c3
�

1+C γ
coarse

��

1+ s−γ
�

kτε−2hβ−γ0

�

C
sum, γ−β2

s
γ−β

2 k
γ−β

2
σ
α k−a γ−β2 ε−

γ−β
2α

�2

=Cγ>βkτ+(γ−β)
σ
α ε−2− γ−βα , (5.46)

where
Cγ>β := 2c2c3

�

1+C γ
coarse

��

1+ s−γ
�

C 2
sum, γ−β2

sγ−βCβ−γ
coarse;

and the second equality in (5.46) follows from the definition of h0 in Assumption 5.12.
If γ <β, then using Lemma 5.15 with CL and η as above, but with δ = (γ −β)/2< 0, the

first term in (5.43) is
Cγ<βkτ−a(β−γ )ε−2, (5.47)

where

Cγ<β := 2c2c3
�

1+C γ
coarse

��

1+ s−γ
�

Cβ−γ
coarse

sβ−γ
�

s
β−γ

2 − 1
�2 .

We now combine (5.43)–(5.47) and supress all the constants to obtain (5.30).

5.6 P L AC I N G T H E S T O C H A S T I C H E L M H O LT Z E Q UAT I O N

I N T H E A B S T R AC T k - D E P E N D E N T S E T T I N G
We now show that the stochastic Helmholtz equation fits into the abstract k-dependent setting
given above. We use the abstract results on the computational complexity of Monte-Carlo and
Multi-Level Monte-Carlo methods in Theorems 5.10 and 5.13 to derive fully k-explicit complexity
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bounds for Monte-Carlo and Multi-Level Monte-Carlo methods for the stochastic Helmholtz
equation, given in Theorem 5.22.

5.6.1 Model problem and quantities of interest

We let u : Ω → H 1
k (D) solve the TEDP-analogue of Problem 3.1 (see Remark 3.13), and let

euh :Ω→Vh, p solve the stochastic analogue of Problem 2.20. (I.e., euh solves Problem 2.20 sample-
wise with coefficients A(ω) and n(ω), T = i k, and meshsize hω.) We assume euh is measurable,
see Remark 5.3. Further, we assume that the stochastic Helmholtz equation is nontrapping almost
surely, i.e., the TEDP-analogues of Conditions 3.6 and 3.8 and Theorem 3.10 hold. We consider
two quantities of interest (QoIs) of the solution u; the two norms ‖u‖L2(D) and ‖u‖H 1

k
(D), where

D is the computational domain.

Remark 5.16 (Why consider these QoIs?). We consider the norms ‖u‖L2(D) and ‖u‖H 1
k
(D) as QoIs

because the Helmholtz equation is an elliptic PDE, and therefore it is natural to consider terms
depending on u and ∇u (and these are, arguably, the simplest such terms). Moreover, we expect
different k-dependence of the computational complexity for QoIs involving u compared to QoIs
involving∇u (c.f., Theorem 2.39 and Assumption 5.1). Considering both ‖u‖L2(D) and ‖u‖H 1

k
(D) as

QoIs will allow us to see if this is the case.

The values of α, σ , β, τ, γ , and a
For the two QoIs ‖u‖L2(D) and ‖u‖H 1

k
(D), the provable values of α, σ , β, and τ are given in

Lemmas 5.19 and 5.20 below. Their values are obtained straightforwardly from Theorem 2.39
above. However, determining the value of γ , and especially the value of a, is more involved. In
addition, we note that in practice the value of, in particular, αmay be larger than predicted by the
theory, see, e.g., [49, Section 4]. In this section, however, we will work with the provable values.

The value of γ The value of γ represents the efficiency of the solver one uses to solve the linear
systems arising from the finite-element discretisations of the individual Helmholtz problems.
Recall that the number of degrees of freedom in the linear systems is of the order h−d (if the
mesh size for the finite-element mesh is h). In the following analysis we take γ = d , i.e. we
assume that we have access to an optimal Helmholtz solver, that can solve linear systems with
N unknowns arising from finite-element discretisations of Helmholtz problems in O (N ) time.
Obtaining such a solver is the subject of much current research, and we refer to, e.g., the recent
works [102, 221, 203] for a selection of modern solvers achieving close to this optimal scaling.

The values of a In our analysis below, we consider two different values of a, a = (2p + 1)/2p
(where p is the polynomial degree of the finite-elements) and a = 1. We now explain why
a = (2 p + 1)/2 p is the natural choice, but has some limitations in the Multi-Level Monte-Carlo
method. We then go on to explain how the choice a = 1 removes these limitations, and we the
discuss whether the choice a = 1 is reasonable.
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The first choice of a is motivated by the finite-element results in Theorem 2.39 above. Recall
from (2.62) that if hk (2 p+1)/2 p is sufficiently small (if Cstab ∼ 1, with hidden constant dependent
on A and n), then the finite-element solution uh exists, is unique, and satisfies the error bounds
in both the L2- and H 1

k -norms. Therefore, since Assumption 5.1 is concerned with existence,
uniqueness, and error bounds for Qh , the choice a = (2 p + 1)/2 p is natural.

However, certain choices of a and Q mean that the number of levels L will not grow with k .
In (5.28) above, L depends on kσ−aα; i.e., the k-dependence of L is governed by the relationship
between a (i.e., the k-dependence of the coarsest level) and σ/α (the k-dependence of the finest
level—see (5.31)). Taking a = (2 p + 1)/2 p and Q = ‖u‖H 1

k
(D), so that α= 2 p and σ = 2 p + 1 (see

Lemma 5.19 below for details of why these values for α and σ are correct) then kσ−aα = 1, and
therefore L is k-independent.

It may, however, be interesting to study the case where the number of levels L increases with
k. If we instead choose a = 1 (i.e., the condition for existence and uniqueness (5.2) simply requires
a fixed number of points per wavelength), then we would have kσ−aα = k , and so the number of
levels L would increase with k .

Therefore, the question arises, ‘Is the choice a = 1 (with α and σ still given by Theorem 2.39)
reasonable?’

In 1-d, the answer is ‘yes’. In [121, Corollary 3.2] and [118, Theorem 4.27 and equation
(4.7.41)] Ihlenburg and Babuška prove that the h-finite-element method for the homogeneous
Helmholtz equation in 1-d is

�

hk1, hk (2 p+1)/2 p�-accurate; i.e., finite-element error bounds of a
form similar to those in Theorem 2.39 hold if hk is sufficiently small. Translated into the multi-
level context, this result implies that for d = 1, Assumption 5.1 holds with a = 1. We note that
this result has not been proved in higher dimensions (see the discussion in Section 2.3.3). However,
we will assume that Assumption 5.1 holds in higher dimensions with a = 1; i.e., we make the
following assumptions, and we will prove results on the computational complexity of Monte-Carlo
and Multi-Level Monte-Carlo under these assumptions (as well as when a = (2 p + 1)/2 p).

Assumption 5.17 (Assumptions for Q(u) = ‖u‖H 1
k
(D) with a = 1). In the setting given at the

beginning of Section 5.6.1, if Q(u) = ‖u‖H 1
k
(D), then Assumptions 5.1 and 5.11 hold with a = 1,

α= 2 p, σ = 2 p + 1, β= 4 p, and τ = 4 p + 2, for some random variables C1, ec1, and c2.

Assumption 5.18 (Assumptions for Q(u) = ‖u‖L2(D) with a = 1). In the setting given at the
beginning of Section 5.6.1, if Q(u) = ‖u‖L2(D), then Assumptions 5.1 and 5.11 hold with a = 1,
α= 2 p, σ = 2 p, β= 4 p, and τ = 4 p, for some random variables C1, ec1, and c2.

5.6.2 Main result on Monte-Carlo and Multi-Level Monte-Carlo methods for the
Helmholtz equation

We are now in a position to state our main result on the computational complexity of Monte-Carlo
and Multi-Level Monte-Carlo methods applied to the Helmholtz equation, Theorem 5.22 below.
We first verify Assumption 5.1 for each of our QoIs in the following two lemmas.
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Lemma 5.19 (Verifying assumptions for Q(u) = ‖u‖H 1
k
(D)). In the setting given at the beginning

of Section 5.6.1, if Q(u) = ‖u‖H 1
k (D)

, then Assumptions 5.1 and 5.11 hold with a = (2p + 1)/2p,
α= 2 p, σ = 2 p + 1, β= 4 p, τ = 4 p + 2, and C1 and ec1 given by the constants in (2.62) and (2.64)
respectively, and c2 =E

�

ec2
1

�

(1+ sα)2.

Proof of Lemma 5.19. By the assumptions of this lemma, it is immediate from (2.64) that As-
sumption 5.1 holds with α= 2p and σ = 2p + 1. (See Remark 2.40 for why we can neglect the
lower-order terms in (2.64).) To show Assumption 5.11, we follow [42, Proof of Proposition 4.2]
and use the triangle inequality and Assumption 5.1 to show

�

�

�Ŷl (ω)
�

�

�≤
�

�

�

�

eQhl
−Q

�

(ω)
�

�

�+
�

�

�

�

Q − eQhl−1

�

(ω)
�

�

�≤ ec1(ω)
�

hαl + hαl−1

�

kσC f ,gI
. (5.48)

We then use (5.48) and the fact that V
�

Ŷl

�

= E
h
�

�

�Ŷl

�

�

�

2i

−
�

�

�E
�

Ŷl

�
�

�

�

2
≤ E

h
�

�

�Ŷl

�

�

�

2i

to show (5.25),

with c2 =E
�

ec2
1

�

(1+ sα)2.

Lemma 5.20 (Verifying assumptions for Q(u) = ‖u‖L2(D)). In the setting given at the beginning of
Section 5.6.1, if Q(u) = ‖u‖L2(D), then Assumptions 5.1 and 5.11 hold with a = (2 p+1)/2 p, α= 2 p,
σ = 2 p, β= 4 p, τ = 4 p, and C1 and ec1 given by the constants in (2.62) and (2.63) respectively, and
c2 =E

�

ec2
1

�

(1+ sα)2.

Proof of Lemma 5.20. The proof is exactly analagous to the proof of Lemma 5.19, except we use
(2.63) instead of (2.64).

We require the following assumption on the variance of the approximations eQh . Such an
assumption is standard, see, e.g., [49, Text below equation (3)].

Assumption 5.21. The variance V
�

eQh

�

is constant with respect to h.

Theorem 5.22 (Computational complexity of Monte-Carlo and Multi-Level Monte-Carlo meth-
ods for the Helmholtz equation). Suppose Assumptions 5.4, 5.5, and 5.12 (on the cost of one realisation
of eQh , on the integrability of a combination of constants related to the size of Ωbad, and on the coarse
space) and Assumption 5.21 hold.

1. If the assumptions of Lemmas 5.19 and 5.20 hold, and c2 as defined in Lemmas 5.19 and 5.20 is
finite, then the Monte-Carlo and Multi-Level Monte-Carlo methods achieve a root-mean-squared
error of at most ε, and their computational complexity (up to factors independent of h and k) is
given by the first two lines of Table 5.1, where ‘kε small’ means

kε <
p

2c1C 2 p
coarse. (5.49)

2. If Assumptions 5.17 and 5.18 hold instead of the assumptions of Lemmas 5.19 and 5.20, then
the Monte-Carlo and Multi-Level Monte-Carlo methods achieve a root-mean-squared error of at
most ε, and their computational complexity (up to factors independent of h and k) is given by
the last two lines of Table 5.1.
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Q(u) a Monte-Carlo Multi-Level Monte-Carlo

‖u‖H 1
k
(D)

2 p + 1
2 p

kd 2 p+1
2 p ε−2− d

2 p kd 2 p+1
2 p ε−2

‖u‖L2(D)
2 p + 1

2 p
kd 2 p+1

2 p ε−2− d
2 p

kdε−2 if kε small,

otherwise kd 2 p+1
2 p ε−2− d

2 p

‖u‖H 1
k
(D) 1 kd 2 p+1

2 p ε−2− d
2 p kd+2ε−2

‖u‖L2(D) 1 kdε−2− d
2 p kdε−2

Table 5.1: Computational complexity of Monte-Carlo and Multi-Level Monte-Carlo algorithms

The proof of Theorem 5.22 is given on page 224 below.
We now discuss the results in Theorem 5.22. The results for Multi-Level Monte-Carlo methods

are consistently better than those for Monte-Carlo methods in terms of ε-dependence, unless
the condition for existence and uniqueness of uh is more restrictive than the condition to keep
the error bounded2. In such a case, for ε small and/or k small, Multi-Level Monte-Carlo out-
performs Monte-Carlo, but if ε and/or k are large, then Multi-Level Monte-Carlo is identical to
Monte-Carlo (because there are no additional levels, i.e., in (5.28) the first term in the maximum
is negative, and so L= 0).

However, the k-dependence of the Multi-Level Monte-Carlo and Monte-Carlo methods (and
which method has the more favourable k-dependence) is more complicated, and so we discuss it
in more detail.

Identical k-dependence Observe that in the cases (i) a = (2 p+1)/2 p and Q(u) = ‖u‖H 1
k
(D) and (ii)

a = 1 and Q(u) = ‖u‖L2(D), the k-dependence of the Monte-Carlo and Multi-Level Monte-Carlo
methods is the same. This is unsurprising; in each case the criterion on the coarse space (5.26) has
the same k-dependence as the definition of hL (5.31), since a = σ/α. Consequently, the number
of levels L is independent of k (see also that the factor kσ−aα in (5.28) is k-independent in each
of these cases). Since the number of levels is independent of k, and the k-dependence of the
coarse and fine levels is the same, it is unsurprising that the computational complexity of the two
estimators has the same k-dependence.

However, in the other two cases, the k-dependence of the complexity of the Multi-Level
Monte-Carlo method is different to that of the Monte-Carlo method. We consider each of these
cases in turn.

When Multi-Level Monte-Carlo has better k-dependence In the case a = (2 p + 1)/2 p and Q(u) =
‖u‖L2(D), we see that the k-dependence of the Multi-Level Monte-Carlo method is better than that

2In the cases we consider, this scenario only occurs when we take a = (2p + 1)/2p and Q(u) = ‖u‖L2(D), so
α= σ = 2 p.
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of the Monte-Carlo method. To understand this improvement, observe that the k-dependence of
the criterion (5.26) on the coarse space (h0 ® k−(2 p+1)/2 p ) is more restrictive than the k-dependence
one would otherwise impose to ensure the bias error is small (‘h2 p

L k2 p is sufficiently small’).
Therefore, if we take hL ∼ k−(2 p+1)/2 p , (to satisfy the coarse space requirement) the bias error (of
the order h2 p

L k2 p = k−1) will decrease as k increases. Moreover, the variance of the Multi-Level
Monte-Carlo estimator (given by (5.41)) will also decrease as k increases. Even on the coarsest
level, the variance will be of the order h4 p

0 k4 p = k−2 (see Assumption 5.11). Therefore, because
the variance on each level decreases as k increases, the number of samples on each level will also
decrease as k increases, reducing the overall computational cost in a k-dependent way.

When Multi-Level Monte-Carlo has worse k-dependence Conversely, in the case a = 1 and Q(u) =
‖u‖H 1

k
(D), we see that the k-dependence of the cost of the Multi-Level Monte-Carlo estimator

is worse than that of the Monte-Carlo estimator. The reason for this worse dependence is, in
essence, the converse of the reason for the improved dependence in the discussion above. The
difference between the coarse space (of the order k−1) and the fine space (with hL of the order
k−(2 p+1)/2 p , see (5.31)) increases as k increases, and therefore the number of levels L will increase
as k increases (see (5.28), and observe that in this case kσ−aα = k). Moreover, on any level l
where hl ¦ k−(2 p+1)/2 p (i.e., not the finest level), the variance Vl will increase as k increases,
since Vl ∼ h4 p

l
k4 p+1. Therefore, on each level the variance (and thus the number of samples) will

increase as k increases, resulting in an overall k-dependent increase in the computational cost.

It remains to be seen how these theoretical predictions are borne out in numerical computa-
tions; such computations should be the subject of future research.

Remark 5.23 (Proving probabilistic bounds on the cost). In [104], the authors extend their bounds
on the expectation of the computational cost for Monte-Carlo and Multi-Level Monte-Carlo methods
for the radiative transport equation to bounds on the exceedance probabilities of the computational
cost. I.e., they prove bounds of the form

P
�

C
�

Q̂
�

<M (ε,δ, Q̂)
�

> 1−δ2, (5.50)

for some function M , where Q̂ is the Monte-Carlo or Multi-Level Monte-Carlo estimator (see [104,
Theorems 5.12 and 5.13]). They make only mild additional assumptions on the randomness to prove
bounds of the form (5.50); these assumptions mean they can bound V

�

eQh

�

and hence V
�

C
�

Q̂
��

. The

probabilistic bounds (5.50) then follow from bounds on V
�

C
�

Q̂
��

using Chebyshev’s inequality.

We could apply these proof techniques to prove a probabilistic bound of the form (5.50) for Monte-
Carlo and Multi-Level Monte-Carlo methods for the Helmholtz equation. However, the calculations
for the Helmholtz equation would be conceptually similar to those in [104], albeit more involved, as
we would need to keep track of the k-dependence. Given we expect the results we obtain would be
similar to those in [104], we elect not to pursue them.
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5.6.3 Proof of Theorem 5.22

We first prove that the assumptions in the abstract setting of Sections 5.3–5.5 hold for the stochastic
Helmholtz equation, before applying the theory developed in Sections 5.3–5.5 to prove The-
orem 5.22. Recall that we have assumed the stochastic Helmholtz problem is almost-surely
nontrapping. In particular, when we apply Theorem 2.39, the constant Cstab will be independent
of k .

Proof of Theorem 5.22. The proof follows immediately from the case β > γ in Theorem 5.13,
because we have β = 4p or 4p + 1 (depending on the QoI), for p ≥ 1 and γ = d . We then
substitute the appropriate values of a, α, β, etc. into (5.30), and identify which of the terms
kτ−a(β−γ ) or kγσ/α dominates for large k, and which of the terms ε−2 or ε−γ/α dominates for
small ε.

Two cases require explaining a little further. Firstly, the case a = (2p + 1)/2p and Q(u) =
‖u‖L2(D) (so α= σ = 2 p.) In this case, the expression for L in (5.28) evaluates as

L=max
��

1
2 p

logs

�p
2c1C 2 p

coarsek−1ε−1
�

�

, 0
�

(5.51)

Observe that for k (or ε) sufficiently large, the first term in the maximum in (5.51) may be negative
(i.e. if (εk)−1 is suffciently close to 0, then the logarithm will be negative). In such a case, the
maximum of the two quantities on the right-hand side of (5.51) will be 0, and in such a case the
Multi-Level Monte-Carlo method reverts to the Monte-Carlo algorithm since L= 0, i.e., there
are no additional levels of refinement. The criterion for the first term to be positive (and so for
the Multi-Level Monte-Carlo method to be distinct from the Monte-Carlo method) is

p
2c1C 2 p

coarsek−1ε−1 > 1,

which is equivalent to the condition (5.49).

In the case that the condition (5.49) holds we can apply (5.30), and by substituting in the
appropriate values of a, α, etc., the right-hand side of (5.30) becomes

k
� 2 p+1

2 p d
�

−2ε−2+ kdε−
d

2 p . (5.52)

To see which of the k-dependent terms in (5.52) dominates for large k , observe that

d ≥
2 p + 1

2 p
d − 2

if, and only if, p ≥ d/4. As p ≥ 1 and d ≤ 3, we always have p ≥ d/4, and hence the kd term
dominates.

Secondly, when a = 1 and Q(u) = ‖u‖H 1
k
(D), on substituting the appropriate values of a, α,
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etc. into (5.30), the right-hand side of (5.30) becomes

kd+2ε−2+ k
2 p+1

2 p dε−
d

2 p . (5.53)

Observe that, analagously to above, d+2≥ (2 p+1)d/(2 p) if, and only if, p ≥ d/4, and therefore
the kd+2 term in (5.53) dominates.

5.7 S U M M A RY A N D F U T U R E W O R K

5.7.1 Summary

In this chapter we analysed the computational cost of Monte-Carlo (MC) and Multi-Level Monte-
Carlo (MLMC) methods for the Helmholtz equation. In particular:

• In Sections 5.3–5.5 we adapted the standard Monte-Carlo and Multi-Level Monte-Carlo
complexity theory to the k-dependent case.

• In Section 5.6 we the applied the adapted theory to two Quantities of interest (QoIs), under
two different assumptions on the behaviour of the underlying finite-element method, and
saw that MLMC is consistently cheaper than MC, with respect to the required tolerance ε.

5.7.2 Future work

There are several immediate possibilities for building on the work in this chapter:

• Applying the adapted theory to other, more physically realistic QoIs, e.g., the far-field
pattern of u (see, e.g., [50, Section 2.5]).

• Performing numerical experiments to investigate if the predicted speedup of MLMC meth-
ods over MC methods is obtained in practice.

• Investigating extensions of MLMC methods, as has already been done for the stationary
diffusion equation, e.g., Multi-Level Quasi-Monte-Carlo methods, see, e.g., [130] and
Multi-Level Markov-Chain Monte-Carlo methods [56].
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Failure of Fredholm theory for a stochas-
tic variational formulation of Helmholtz
problems
The standard approach to proving existence and uniqueness of a (deterministic) Helmholtz BVP
is to show that the associated sesquilinear form satisfies a Gårding inequality, and then apply
Fredholm theory to deduce that existence and uniqueness are equivalent; see, e.g., [146, Theorem
4.10]. This procedure relies on the fact that the inclusion H 1

0,D(DR) ,→ L2(DR) is compact; see,
e.g., [146, Theorem 3.27].

As noted in Section 3.1.4, the analysis in [80] of Problem 3.3 for the Helmholtz Interior
Impedance Problem mimics this approach and assums that L2

�

Ω; H 1(D)
�

is compactly contained
in L2

�

Ω; L2(D)
�

, where D is the spatial domain. Here we briefly show L2
�

Ω; H 1(D)
�

is not
compactly contained in L2

�

Ω; L2(D)
�

by giving an explicit example of a bounded sequence in
L2
�

Ω; H 1(D)
�

that has no convergent subsequence in L2
�

Ω; L2(D)
�

. Necessary and sufficient
conditions for a subset of Lp ([0,T ];B), for B a Banach space, to be compact, can be found in
[197]. In particular, [197] shows that a space C being compactly contained in a space B does not
by itself imply L2([0,T ];C ) is compactly contained in L2([0,T ];B).

Example A.1. Let (Ω,F ,P) = ([0,1],B([0,1]),λ). Let D be a compact subset of Rd . Since L2(Ω)
is separable, it has an orthonormal basis, which we denote by ( fm)m∈N. Let um ∈ L2

�

Ω; H 1(D)
�

be
defined by um(ω)(x) := fm(ω), for all x ∈D , i.e., for each value ofω, um(ω) is a constant function
on D and so ‖um(ω)‖H 1(D) = ‖um(ω)‖L2(D). Then

‖um‖
2
L2(Ω;H 1(D)) =

∫

Ω
‖um(ω)‖

2
H 1(D)dP(ω) = λ(D)

2
∫

Ω
| fm(ω)|

2dP(ω) = ‖ fm‖
2
L2(Ω)λ(D)

2,

and so um is a bounded sequence in L2
�

Ω; H 1(D)
�

. However, for n 6= m, we have

‖um − un‖
2
L2(Ω;L2(D)) =

∫

Ω
‖um(ω)− un(ω)‖

2
L2(D)dP(ω)

= λ(D)2
∫

Ω
|um(ω)− un(ω)|

2dP(ω) = λ(D)2‖ fm − fn‖
2
L2(Ω) = 2λ(D)2

if n 6= m, since the fm form an orthonormal basis for L2(D). Therefore (um)m∈N is bounded in
L2
�

Ω; H 1(D)
�

but does not have a convergent subsequence in L2
�

Ω; L2(D)
�

, and thus the inclusion of
L2
�

Ω; H 1(D)
�

into L2
�

Ω; L2(D)
�

cannot be compact.
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Recap of basic material on measure theory
and Bochner spaces
Recall that here, and in the rest of this thesis, (Ω,F ,P) is a complete probability space.

B.1 R E C A P O F M E A S U R E T H E O RY R E S U LT S
We first recall some results from measure theory, with our main reference [26]. Even though
[26] mainly considers maps with image R, the results we quote for more general images are
straightforward generalisations of the results in [26].

Definition B.1 (Measurable map). If (M ,M ) and (N ,N ) are measurable spaces, we say that
f : M →N is measurable (with respect to (M ,N )) if f −1(E) ∈M for all E ∈N .

Definition B.2 (Borel σ -algebra). If (S,TS ) is a topological space, the Borel σ -algebraB(S) on S is
the σ -algebra generated by TS .

If V is any topological space (including a Hilbert, Banach, metric, or normed vector space)
then we will always take the Borel σ -algebra on V unless stated otherwise.

Lemma B.3 (Continuous maps are measurable [26, Theorem 2.1.2]). Any continuous function
between two topological spaces is measurable.

Lemma B.4 (The composition of a measurable map with a continuous map is measurable [26,
Text at the top of p. 146]). Let (M ,M ) be a measurable space and let (S,TS ) and (T ,TT ) be
topological spaces. Let f : M → S be measurable and let h : S → T be continuous. Then h ◦ f is
measurable.

Definition B.5 (Product σ -algebra [57, Section IV.11]). Let (M1,M1), . . . , (Mm ,Mm) be measur-
able spaces. The product σ -algebra M1⊗ · · ·⊗Mm is defined as the σ -algebra generated by the set of
measurable rectangles {R1× · · ·×Rm : R1 ∈M1, . . . , Rm ∈Mm}.

Lemma B.6 (Measurability of the Cartesian product of measurable functions).
Let (M1,M1), . . . , (Mm ,Mm) be measurable spaces and h j : Ω→ M j , j = 1, . . . , m be measurable
functions. Then the product map P : Ω→ M1× · · · ×Mm given by P (ω) := (h1(ω), . . . , hm(ω)) is
measurable with respect to (F ,M1⊗ · · ·⊗Mm).

Sketch proof of Lemma B.6. Let Rect(M1, . . . ,Mm) denote the set of measurable rectangles, as in
Definition B.5. LetP :=

�

C ⊆M1× · · ·×Mm : P−1(C ) ∈F
	

. The proof of the lemma consists
of the following straightforward steps, whose proofs are omitted: (i) Show Rect(M1, . . . ,Mm)⊆
P . (ii) ShowP is a σ -algebra. (iii) DeduceM1⊗· · ·⊗Mm ⊆P (sinceM1⊗· · ·⊗Mm is generated
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by measurable rectangles). (iv) Conclude P is measurable with respect to (F ,M1⊗ · · ·⊗Mm).

Lemma B.7 (The product of Borel σ -algebras is the Borel σ -algebra of the product [26, Lemma
6.2.1 (i)]). Let H1, H2 be Hausdorff spaces and let H2 have a countable base (e.g. H2 could be a
separable metric space). Then B(H1×H2) = B(H1)⊗B(H2), where B(H1×H2) is the Borel
σ -algebra of the product topology on H1×H2.

B.2 R E C A P O F R E S U LT S O N B O C H N E R S PAC E S
We now recap the theory of Bochner spaces, using [54] as our main reference. In what follows
the space V is always a Banach space.

Definition B.8 (Simple function). A function v : Ω→V is simple if there exist v1, . . . , vm ∈V
and E1, . . . , Em ∈F such that v =

∑m
i=1 viχEi

, where χEi
is the indicator function on Ei .

Definition B.9 (Strongly measurable). A function v : Ω→ V is strongly measurable1 if there
exists a sequence of simple functions (vn)n∈N such that limn→∞‖vn − v‖V = 0, P-almost everywhere.

Definition B.10 (Bochner integrable [54, p. 49]). A strongly measurable function v : Ω→V is
called Bochner integrable if there exists a sequence of simple functions (vn)n∈N such that

lim
n→∞

∫

Ω
‖vn(ω)− v(ω)‖V dP(ω) = 0.

Theorem B.11 (Condition for Bochner integrability [54, Theorem II.2.2]).
A strongly measurable function v :Ω→V is Bochner integrable if and only if

∫

Ω
‖v‖V dP<∞.

Corollary B.12 (Sufficient condition for Bochner integrability). Let p ≥ 1. If a strongly measurable
function v :Ω→V has

∫

Ω
‖v‖p

V dP<∞, then v is Bochner integrable.

Definition B.13 (Bochner norm). For a Bochner integrable function v :Ω→V , let

‖v‖Lp (Ω;V ) :=
�∫

Ω
‖v(ω)‖p

V dP(ω)
�1/p

, 1≤ p <∞, and ‖v‖L∞(Ω;V ) := ess supω∈Ω‖v(ω)‖V .

Definition B.14 (Bochner space). Let 1≤ p ≤∞. Then

Lp (Ω;V ) :=
¦

v :Ω→V : v is Bochner integrable,‖v‖Lp (Ω;V ) <∞
©

.

Definition B.15 (Complete probability space). A probability space (Ω,F ,P) is complete if for
every E1 ∈F with P(E1) = 0, the inclusion E2 ⊆ E1 implies that E2 ∈F .

Definition B.16 (Separable space). A topological space is separable if it contains a countable, dense
subset.

1In [54] the authors use the termµ-measurable instead of strongly measurable (whereµ is the measure on the domain
of the functions under consideration).



B.2. RECAP OF RESULTS ON BOCHNER SPACES 231

Definition B.17 (σ -finite). A probability space (Ω,F ,P) is σ -finite if there exist E1, E2, . . . ∈ F
such that Ω= ∪∞m=1Em .

Theorem B.18 (Pettis measurability theorem [186, Proposition 2.15]). Let (Ω,F ,P) be complete
and σ -finite. The following are equivalent for a function v :Ω→V : (i) v is strongly measurable, (ii)
v is measurable and P-essentially separably valued.

Corollary B.19 (Equivalence of measurable and strongly measurable when the image is separable).
Let (Ω,F ,P) be σ -finite. If V is a separable Banach space, then a function v : Ω→ V is strongly
measurable if, and only if, it is measurable.

Lemma B.20 (The composition of a continuous map and a P-essentially separably valued map).
Let (S,TS ) and (T ,TT ) be topological spaces. If f1 : Ω → S and f2 : S → T are such that f1 is
P-essentially separably valued and f2 is continuous, then f2 ◦ f1 is P-essentially separably valued.

Proof of Lemma B.20. As f1 is P-essentially separably valued, there exists E ∈F such that P(E) =
1 and f1(E)⊆G ⊆ S, where G is separable. As f2 is continuous, f2(G) is separable [215, Theorem
16.4(a)]. Therefore, since ( f2 ◦ f1)(E) ⊆ f2(G), it follows that f2 ◦ f1 is P-essentially separably
valued.

Lemma B.21 (The composition of a continuous map and a strongly measurable map).
If B1 and B2 are Banach spaces and there exist f1 : Ω→ B1 and f2 : B1→ B2 such that f1 is strongly
measurable and f2 is continuous, then f2 ◦ f1 is strongly measurable.

Proof of Lemma B.21. By Theorem B.18, f1 is both measurable and P-essentially separably valued.
Therefore we can apply Lemmas B.4 and B.20 to conclude f2 ◦ f1 is both measurable and P-
essentially separably valued. Hence by Theorem B.18 f2 ◦ f1 is strongly measurable.

Lemma B.22 (Zero in all integrals implies zero almost everywhere [54, Corollary II.2.5]).
If α is Bochner integrable and

∫

E α(ω)dP(ω) = 0 for each E ∈F then α= 0 P-almost everywhere.

Lemma B.23 (Cartesian product of P-essentially separably valued maps). Let
�

C1,TC1

�

, . . . ,
�

Cm ,TCm

�

be topological spaces, and let s j : Ω→C j , j = 1, . . . , m be P-essentially
separably valued. Define C :=C1× · · ·×Cm and equip C with the product topology. Then the map
f :Ω→C given by s(ω) := (s1(ω), . . . , sm(ω)) is P-essentially separably valued.

The proof of Lemma B.23 is straightforward and omitted.
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Measurability of series expansions (used in
Section 3.1.2)
Here we collect together results from measure theory that allow us to conclude in Lemma C.12 that
the series expansions for A and n in Section 3.1.2 are measurable. As mentioned in Section 3.1.2,
the proof that the sum of measurable functions is measurable is standard, but we have not been
able to find this result stated in the literature for this particular setting of mappings into a separable
subspace of a general normed vector space.

Lemma C.1. If U is a separable normed vector space, m ∈ N, and φ j : Ω→ U , j = 1, . . . , m are
measurable functions, then φ1+ · · ·+φm :Ω→U is measurable.

Sketch proof of Lemma C.1. By induction, it is sufficient to show the result for m = 2. We let
B U

r (v) denote the ball of radius r > 0 about v ∈ U . To show φ1 +φ2 is measurable, we let
v ∈U , r > 0 and we show (φ1+φ2)

−1�B U
r (v)

�

∈F . LetQU denote a countable dense subset of
U , which exists as U is separable. LetQF denote a countable dense subset of the field F, which
exists as F=R or C.

For s ∈QF, q ∈QU let

Ss ,q =
§

ω ∈Ω :








φ1(ω)−
1
2

v − q








U
< s

ª

∩
§

ω ∈Ω :








φ2(ω)−
1
2

v + q








U
< r − s

ª

.

We claim
(φ1+φ2)

−1�B U
r (v)

�

=
⋃

s∈QF

⋃

q∈QU

Ss ,q , (C.1)

and the result then follows as the right-hand side is an element of the σ -algebra F . To show
(C.1), let ω ∈ ∪s∈QF ∪q∈QU

Ss ,q , and let s ∈QF, q ∈QU be such that ω ∈ Ss ,q . Then it follows
from the triangle inequality that ω ∈ (φ1+φ2)

−1�B U
r (v)

�

. Now let ω ∈ (φ1+φ2)
−1�B U

r (v)
�

,
define rω := r −‖φ1(ω)+φ2(ω)− v‖U > 0, fix s ∈ QF ∩ (0, rω/2), and choose q ∈ QU such
that ‖φ1(ω)− v/2− q‖U < s . Then again it follows from the triangle inequality thatω ∈ Ss ,q ,
and thus (C.1) holds, as required.

Corollary C.2. If V is a normed vector space, U ⊆ V is a separable subspace, and φ j : Ω→ U ,
j = 1, . . . , m are measurable functions, then φ1+ · · ·+φm :Ω→U is measurable.

Lemma C.3. Let V be a normed vector space. If v ∈V and Y : Ω→ F is a measurable function,
then Yv :Ω→V is a measurable function.

Proof of Lemma C.3. The map Mv : F→V given by Mv (x) = xv is continuous. As Yv =Mv ◦Y,
it follows from Lemma B.4 that Yv is measurable.
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Lemma C.4. If V is a normed vector space and U ⊆ V , then the inclusion map ι : U → V is
measurable.

Proof of Lemma C.4. As ι is continuous, it immediately follows that it is measurable.

Corollary C.5. If V is a normed vector space, U ⊆V andφ :Ω→U is measurable, thenφ :Ω→V
is measurable.

Proof of Corollary C.5. This is immediate from Lemma C.4 and Lemma B.4.

Lemma C.6. If V is a normed vector space, m ∈ N, and φ1, . . . ,φm ∈ V for j = 1, . . . , m then
span{φ1, . . . ,φm} is a separable subspace of V .

Sketch Proof of Lemma C.6. As F=R or C, it has a separable subsetQF. Since a finite product of
countable sets is countable, the set

¦

BV
1/n(q1φ1+ · · ·+ qmφm) : n ∈N, q1, . . . , qm ∈QF

©

is a countable base for the topology on span{φ1, . . . ,φm} induced by the norm ‖·‖V .

Lemma C.7. If V is a normed vector space, m ∈N, and for j = 1, . . . , m, φ j ∈V and Y j :Ω→ F
are measurable, then the function φ :Ω→V given by

φ(ω) =φ0+
m
∑

j=1

Y j (ω)φ j

is measurable.

Proof of Lemma C.7. The subspace U = span{φ0,φ1, . . . ,φm} is separable by Lemma C.6, and it
is clear that the image ofφ lies in U . By Lemma C.3 and Corollary C.2, φ :Ω→U is measurable,
and therefore φ :Ω→V is measurable by Corollary C.5.

We now prove that almost-surely convergent sequences of measurable functions are measur-
able, and we then apply this result to the partial sums in the definitions of A and n in (3.13).

We will use the following theorem to establish that the almost-sure limit of a sequence of
measurable functions is measurable.

Theorem C.8 ([60, Theorem 4.2.2]). Let (W , d ) be a metric space. Suppose the functions ζ j :Ω→W
are measurable, for all j ∈N. If the limit

ζ (ω) = lim
j→∞

ζ j (ω)

exists for every ω ∈Ω, then the function ζ :Ω→W is measurable.

Corollary C.9. Let (W , d ) be a metric space. Suppose the functions ζm :Ω→W are measurable, for
all m ∈N. If the limit

lim
m→∞

ζm(ω) (C.2)
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exists almost surely, then there exists a measurable function ζ :Ω→W such that

ζ (ω) = lim
m→∞

ζm(ω)

whenever the limit exists.

Proof of Corollary C.9. Following [65], we define eΩ= {ω ∈Ω : (C.2) exists}. Then, for m ∈N
define eζm :Ω→W by

eζm(ω) =







ζm(ω) ifω ∈ eΩ

0 ifω 6∈ eΩ

Observe that, by construction, the limit eζ (ω) = limm→∞
eζm(ω) exists for all ω ∈ Ω and the

functions eζm are measurable. Therefore, by Theorem C.8, eζ is measurable.

Lemma C.10. Let V be a normed vector space. If there exist φ j ∈V , j = 0,1, . . . and measurable
functions Y j :Ω→ F, j ∈N such that the series

φ0+
∞
∑

j=1

Y j (ω)φ j

exists in V almost surely, then there exists a measurable function φ :Ω→V such that

φ(ω) =φ0+
∞
∑

j=1

Y j (ω)φ j

almost surely.

Proof of Lemma C.10. By Lemma C.7, the partial sums φ0 +
∑m

j=1 Y j (ω)φ j , for m ∈ N are
measurable, and by assumption their limit as m→∞ exists almost surely. Therefore, applying
Corollary C.9 to the partial sums, we obtain the result.

Lemma C.11. The series expansions for both A and n defined by (3.13) exist in W 1,∞�DR;Rd×d �

and W 1,∞(DR;R) almost surely, respectively.

Proof of Lemma C.11. The spaces W 1,∞�DR;Rd×d � and W 1,∞(DR;R) are Banach spaces, by
definition of their norms (see (3.4) and (3.5)). Therefore it suffices to show that the partial sums
of the series expansions for A and n in (3.13) are Cauchy sequences. As the proofs for A and n are
completely analogous, we only give the proof for A here.

First observe that since each of the random variables Y j in (3.13) is uniformly distributed on

[−1/2,1/2], it follows that for all j ∈N, ess supω∈Ω
�

�

�Y j (ω)
�

�

�= 1
2 . Therefore, we can conclude that

the bound ess supω∈Ω sup j∈N

�

�

�Y j (ω)
�

�

�≤ 1
2 holds. (For if not, then, there would exist Ω̂⊆Ω with

P(Ω̂) > 0 such that for all ω ∈ Ω̂, sup j∈N

�

�

�Y j (ω)
�

�

� > 1
2 . Then there would exist ĵ ∈ N such that

�

�

�Y ĵ (ω)
�

�

�> 1/2 for allω ∈ Ω̂, which would give the contradiction ess supω∈Ω |Y ĵ (ω)|>
1
2 .)
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It now suffices to show that for P-almost everyω ∈Ω, the partial sums of the series expansion
in (3.13) form a Cauchy sequence. Recall that for P-almost everyω ∈Ω

sup
j∈N

�

�

�Y j (ω)
�

�

�≤
1
2

.

For such anω, and m ∈N, define the mth partial sum

Am(ω) =A0+
m
∑

j=1

Y j (ω)Ψ j .

It is straightforward to show that (Am(ω))m∈N is a Cauchy sequence in W 1,∞�DR;Rd×d �, using
the assumption (3.14); therefore, the series expansion for A(ω) in (3.13) exists almost surely.

Lemma C.12. The functions A and n defined by (3.13) are measurable.

Proof of Lemma C.12. The result immediately follows from Lemmas C.10 and C.11.
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Error estimators for complex-valued ran-
dom variables
In this appendix, we recall the definition of some elementary properties of complex-valued random
variables, properties that are slightly different to their analogues for real-valued random variables.
We then prove that the standard unbiased estimator of the variance (with Bessel’s correction) of a
complex-valued random variable is indeed an unbiased estimator of the variance.

Definition D.1 (Complex-valued random variable [165, Equation (4.2)]). If (Ω,F ,P) is a proba-
bility space, then a complex-valued random variable is a map Y :Ω→C, such that ℜY and ℑY are
real-valued random variables.

Definition D.2 (Mean and variance of a complex-valued random variable [165, Equations (5.8)
and (5.27)]). Let Y be a complex-valued random variable. The expectation of Y is

E[Y ] :=E[ℜY ]+ iE[ℑY ],

if it exists. The variance of Y is

V[Y ] :=E
�

|Y |2
�

− |E[Y ]|2

if it exists.

Definition D.3 (σ -algebra generated by a random variable). Let Y be a complex-valued random
variable. The σ -algebra generated by Y is

σ(Y ) :=
�

Y−1(E) : E ∈ σ(C)
	

,

where Y−1 denotes the pullback.

Definition D.4 (Independent σ -algebras). Two σ -algebrasF1 andF2 on Ω are independent if all
their sets are independent, i.e.

P(E1)∩P(E2) = P(E1)P(E2)

for all E1 ∈F1 and E2 ∈F2.

Definition D.5 (Independent random variables). Two complex-valued random variables Y1 and
Y2 are independent if their respective generated σ -algebras are independent.

Lemma D.6 (Independent implies uncorrelated). If Y1 and Y2 are independent complex-valued
random variables, then

E
�

Y1Y2

�

=E[Y1]E
�

Y2

�

.
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The proof of Lemma D.6 is identical to the real case.

Definition D.7 (Monte-Carlo estimator for E[Y ].). Let Y be a complex-valued random variable,
and Y1, . . . ,YN be independent and identically distributed to Y . The Monte-Carlo estimator of
E[Y ] is

Ŷ :=
1
N

N
∑

l=1

Yl .

Definition D.8 (Unbiased estimator of the variance of the Monte-Carlo estimator). Let Y be a
complex-valued random variable, and Ŷ the Monte-Carlo estimator of E[Y ]. The estimator sN

�

Ŷ
�

of V
�

Ŷ
�

is

sN

�

Ŷ
�

:=
1

N (N − 1)

N
∑

j=1

�

�

�Y j − Ŷ
�

�

�

2
. (D.1)

Observe that (D.1) defines an estimator for the variance of the Monte-Carlo estimator Ŷ ; this is
in contrast to more standard statistical settings, where one constructs an estimator of the variance
of Y . The factor 1/(N − 1) in (D.1) is known as Bessel’s correction, and ensures the estimator is
unbiased, as we now prove.

Lemma D.9 (The unbiased estimator is unbiased). Let Y be a complex-valued random variable
and Ŷ the Monte-Carlo estimator of E[Y ]. Then sN

�

Ŷ
�

is unbiased, i.e.,

E
�

sN

�

Ŷ
��

=V
�

Ŷ
�

.

The proof of Lemma D.9 is nearly identical to the proof for an unbiased estimator for V[Y ]
in the real-valued case. Nevertheless, we write the proof out in full, as we have not been able to
find this exact result anywhere in the literature.

Proof of Lemma D.9. Firstly, note that

V
�

Ŷ
�

=V
�

1
N

N
∑

l=1

Yl

�

=
1

N 2
V
� N
∑

l=1

Yl

�

=
1
N
V[Y ].

Therefore, it is sufficient to show that sN

�

Ŷ
�

is an unbiased estimator forV[Y ]/N , or equivalently,

N sN

�

Ŷ
�

is an unbiased estimator for V[Y ] (i.e. E
�

N sN

�

Ŷ
��

= V[Y ]). We show the latter by
direct computation. Observe that

E
�

N sN

�

Ŷ
��

=
1

N − 1
E





N
∑

j=1

�

�

�Y j − Ŷ
�

�

�

2



=
1

N − 1

N
∑

j=1

E
h
�

�

�Y j − Ŷ
�

�

�

2i

,

therefore, it is sufficient for us to show

E
h
�

�

�Y j − Ŷ
�

�

�

2i

=
N − 1

N
V[Y ], (D.2)
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as the Y j s are all independently and identically distributed. We show (D.2) by direct computation.

E
h
�

�

�Y j − Ŷ
�

�

�

2i

=E
h
�

�

�Y j

�

�

�

2
−Y j Ŷ −Y j Ŷ +

�

�

�Ŷ
�

�

�

2i

=E
h
�

�

�Y j

�

�

�

2i

− 1
N

N
∑

l=1

�

E
�

Y j Yl +Y j Yl

��

+E
h
�

�

�Ŷ
�

�

�

2i

=E
h
�

�

�Y j

�

�

�

2i

− 2
N
E
h
�

�

�Y j

�

�

�

2i

− 1
N

∑

l 6= j

�

E
�

Y j

�

E
�

Yl

�

+E
�

Y j

�

E[Yl ]
�

+E
h
�

�

�Ŷ
�

�

�

2i

=
N − 2

N
E
�

|Y |2
�

−
2(N − 1)

N
|E[Y ]|2+E

h
�

�

�Ŷ
�

�

�

2i

, (D.3)

since the Yl s have has the same distribution as Y . We now turn our attention to simplifying

E
h
�

�

�Ŷ
�

�

�

2i

. We have

E
h
�

�

�Ŷ
�

�

�

2i

=E





�

1
N

N
∑

l=1

Yl

��

1
N

N
∑

m=1
Ym

�





=
1

N 2
E





N
∑

l=1

|Yl |
2+

N
∑

l=1

∑

l 6=m

Yl Ym





=
1
N
E
�

|Y |2
�

+
N (N − 1)

N 2
|E[Y ]|2, (D.4)

since the Yl are i.i.d. Therefore combining (D.3) and (D.4), we obtain

E
h
�

�

�Y j − Ŷ
�

�

�

2i

=
N − 2

N
E
�

|Y |2
�

−
2(N − 1)

N
|E[Y ]|2+ 1

N
E
�

|Y |2
�

+
N − 1

N
|E[Y ]|2

=
N − 1

N
E
�

|Y |2
�

− N − 1
N
|E[Y ]|2

=
N − 1

N

�

V[Y ]+ |E[Y ]|2
�

− N − 1
N
|E[Y ]|2,

which gives us (D.2), as required.
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Numerical investigation of QMC conver-
gence for the Helmholtz equation
In this appendix we give plots showing the dependence of the QMC error ErrQMC

�

NQMC,Nshifts

�

on NQMC for fixed values of k and increasing NQMC. Aside from the fact that we vary NQMC, our
computational setup is as in Section 4.6.3.
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Q
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C
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rr
or

0.0053N−0.8959
QMC

Figure E.1: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 10.
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Figure E.2: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 20.
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Figure E.3: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 30.
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Figure E.4: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 40.
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Figure E.5: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 50.
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Figure E.6: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =

∫

D u and k = 60.
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Figure E.7: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 10.
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Figure E.8: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 20.
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Figure E.9: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 30.
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Figure E.10: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 40.
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Figure E.11: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 50.
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Figure E.12: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u(0) and k = 60.
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Figure E.13: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 10.
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Figure E.14: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 20.
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Figure E.15: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 30.
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Figure E.16: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 40.



257

100 101 102 103

NQMC

10−3

10−2

10−1

Q
M

C
E

rr
or

0.1883N−0.7396
QMC

Figure E.17: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 50.
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Figure E.18: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q = u((1,1)) and k = 60.
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Figure E.19: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 10.
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Figure E.20: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 20.
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Figure E.21: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 30.



262 APPENDIX E. NUMERICAL INVESTIGATION OF QMC

100 101 102 103

NQMC

10−1

100

Q
M

C
E

rr
or

6.4336N−0.7528
QMC

Figure E.22: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 40.
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Figure E.23: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 50.
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Figure E.24: Quasi-Monte-Carlo error with increasing number of Quasi-Monte-Carlo points, for
Q =∇u((1,1)) and k = 60.
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Additional probabilistic results for nearby
preconditioning
Lemma F.1 (Maximum number of GMRES iterations). Let 0< ε< 1, n(2) :Ω→ L∞(D ;R) be
a random field, and n1, D−, and f be as in Problem 4.1, and let N denote the number of degrees of
freedom, i.e. the size of the matrices A(1) and A(2). Then there exists a function Gε :R+→ [0,N ] such
that

GMRES
�

ε, n(1), n(2)
�

≤Gε

�

n(1)− n(2)
�

.

Moreover, Gε is given by

Gε

�




n(1)− n(2)






L∞(D ;R)

�

=























min











N ,
lnε

ln
�

2α1/2

(1+α)2

� + 1











if α < 1

N if α≥ 1,

(F.1)

where α=C2k




n(1)− n(2)






L∞(D ;R)
, where C2 is given by (4.32).

See Figure F.1 for some examples of the function Gε.

The proof of Lemma F.1 uses the following corollary [187, Corollary 3] of [187, Proposition
2] on the ‘lucky breakdown’ of GMRES.

Corollary F.2 (Guaranteed convergence of GMRES). For an N ×N problem GMRES converges
in at most N iterations.

Proof of Lemma F.1. For α ≥ 1, the result is immediate from Corollary F.2. For α < 1, if we
insert (4.60) (the corollary of the Elman estimate) into the Elman estimate (4.59) (with D= I, so
‖·‖D = ‖·‖2), we obtain, for m ∈N

‖rm‖2
‖r0‖2

≤
�

2
p
α

(1+α)2

�m

. (F.2)

To obtain a bound on the number of iterations needed to obtain the solution to within a tolerance
ε, we set the right-hand side of (F.2) to be less than ε and solve for m to obtain that the GMRES
residual is less than ε (recall we assume ‖r0‖2 = 1, see Definition 4.39) if

m ≥ lnε

ln
�

2α1/2

(1+α)2

� . (F.3)
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Hence, if m∗ is the smallest integer satisfying (F.3), then

m∗ ≤ lnε

ln
�

2α1/2

(1+α)2

� + 1. (F.4)

The result for α < 1 therefore follows from (F.4) and Corollary F.2, since GMRES will have
converged to within a tolerance ε within m∗ iterations.

Remark F.3 (Why not use the ceiling in (F.4)?). One could replace the bound (F.4) by the equality

m∗ =











lnε

ln
�

2α1/2

(1+α)2

�











.

However, the change in the definition of Gε (F.1) would mean Gε would only be piecewise continuous.
As we must use numerical methods to calculate probabilities associated with Gε (see Theorem F.5
and Remark F.6 below), it is convenient if Gε is continuous, and so we use (F.4).

Remark F.4 (Why the dependence on α in Lemma F.1?). The reason that (F.1) has two cases
depending on α=C2k





n(1)− n(2)






L∞(D ;R)
is because Corollary 4.26 only holds if α < 1. Therefore

if α≥ 1 the only result available to us is Corollary F.2.

Lemma F.1 gives us the relationship between the (bound on the) number of GMRES itera-
tions required for convergence and





n(1)− n(2)(ω)






L∞(D ;R)
. We can use this relationship to infer

probabalistic properties of the number of GMRES iterations required for convergence from the
probability distribution of





n(1)− n(2)(ω)






L∞(D ;R)
. (For the probabalistic notation, we refer the

reader to Chapter 3.)

Theorem F.5 (Probabilistic GMRES convergence). Let n(1) ∈ L∞(D ;R) be fixed, and let n(2) :
Ω→ L∞(D ;R) be a random field. Let ε and N be as in Lemma F.1, and let A(1) = A(2) = I . Fix
R ∈N. Then

P
�

Gε

�




n(1)− n(2)






L∞(D ;R)

�

≤ R
�

≤ P
�

GMRES
�

ε, n(1), n(2)
�

≤ R
�

. (F.5)

Proof of Theorem F.5. By Lemma F.1 we have the implication: if Gε

�

n(1)− n(2)(ω)
�

≤ R, then
GMRES

�

ε, n(1), n(2)(ω)
�

≤ R. Therefore we have the set inclusion

¦

ω ∈Ω : Gε

�

n(1)− n(2)(ω)
�

≤ R
©

⊆
¦

ω ∈Ω : GMRES
�

ε, n(1), n(2)(ω)
�

≤ R
©

.

The result immediately follows.

Remark F.6 (The expression (F.5) is computable). Because the function Gε is not invertible (as is
clear from Figure F.1), one cannot write the left-hand side of (F.5) as

P
�




n(1)− n(2)






L∞(D ;R)
≤G−1

ε ([0, R])
�

.
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Figure F.1: The function Gε for ‖n1− n2‖L∞(D ;R) ∈ (0.01,1.0), for k = 20,40,100, C2 = 0.1,
N =

�

k3
�

, and ε= 10−5.
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However, one can still compute the set

G−1
ε ([0, R]) = {α : Gε(α) ∈ [0, R]} (F.6)

(where G−1
ε in (F.6) denotes the pullback), and therefore one can compute the probabilities in (F.5). The

main effort in computing G−1
ε ([0, R]) is finding if there are any values of α < 1 such that Gε(α) = R,

since the existence, or not, of such values determines the range of α over which we must integrate.
However, these values can be computed numerically using standard root-finding algorithms.
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Computational set-up
All of the computations in this thesis were performed with the following computational setup,
unless otherwise stated.

PDE/FEM The PDE we solve is the Interior Impedance Problem, i.e., Problem 2.12 with
D− = ;, posed on the 2-d unit square; D = [0,1]2. We use first-order continuous finite elements,
with h = k−3/2. We use regular grids, see Figure G.1 for an example grid. Where we needed to
calculate a preconditioner

�

A(1)
�−1, we calculated the exact LU decomposition of A(1).

Figure G.1: A sample mesh, similar to those used in all the computations in this thesis.
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Numerical setup All finite-element calculations were carried out using the Firedrake software
library [183, 144], which uses PETSc to perform its linear solves [12, 11, 53, 13] and Chaco [113]
to perform graph partitions. PETSc uses the MUMPS [2, 3] solver to perform LU factorisations
and direct solves. When GMRES was used, the stopping criterion was a relative error (relative
to the 2-norm of the right-hand side) of 10−5 or an absolute error of 10−50. To generate QMC
points, we made use of Dirk Nuyen’s ‘Magic Point Shop’ code [161, 131], which uses a base-2
lattice sequence with generating vector from [51]. Many of the computations were carried out on
the Balena High Performance Computing (HPC) Service at the University of Bath.

Code Access The LATEXfiles used to produce this thesis, along with all the code required to
produce the figures and tables, and to perform the numerical experiments can be found at https:
//github.com/orpembery/thesis and in other repositories accessible from that repository.
Snapshots of all the repositories and data used in the production of this thesis can be found at
[168, 169, 171, 170, 175, 173, 172, 174].

https://github.com/orpembery/thesis
https://github.com/orpembery/thesis
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