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Summary

In this thesis, we investigate the potential for automation in the scoring process

of Psoriatic Arthritis x-rays. We focus on the identification of bones structures

through a latent space shape model that is driven by a Gaussian Process.

We describe a top to bottom approach to designing such a model that includes

the data collection and annotation process. We highlight the importance of cap-

turing and modelling uncertainties associated with having automated systems in

medical imaging. The main tool for this is noise models in a Bayesian setting.

The main mathematical contribution we make takes the form of a shape model

for which we perform an exact Bayesian marginalisation of the model parameters.

These parameters include the shape and the pose. We define a dependence struc-

ture that models the uncertainties present in a segmentation task. We show that

the Active Appearance Model of Cootes et al. [2001] falls under our framework.

We believe that this is significant as previous work has only focused on the real

world performance of the models as opposed to the probabilistic interpretation.

Such an interpretation is important as it allows us to better understand the model

uncertainties.
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Chapter 1

Introduction

In this thesis we develop an automated bone identification tool. This tool is to

be used by rheumatoligists who score hand x-rays of Psoriatic Arthritis Patients

(PsA). This chapter introduces this work and the philosophy we developed as

part of this work.

We give our motivation in section 1.1. We introduce some medical concepts

in section 1.2 where we describe the anatomy of the human hand and the scor-

ing methods used by rheumatologists. We mathematically formulate the hand

anatomy in section 1.3. We then give an overview of the current state of things

and how our work compares to the literature in section 1.4. Assessing a multi

disciplinary work such as this one should not be done in the traditional way. We

discuss this in section 1.5. We finish this chapter by describing the set up of this

thesis in section 1.6.

1.1 Problem Statement and Motivation

Psoriatic Arthritis (PsA) is an inflammatory arthritis that affects up to 20% of

people having the skin condition Psoriasis (Ogdie et al. [2012]). The most com-

mon symptoms are swelling and tenderness at the joints in the hands and wrist

along with damage to the nails. The inflammation leads to pain and stiffness.

Untreated inflammation will lead to damage of the joint structures, impaired

physical function and reduced quality of life. Early intervention to suppress in-

flammation is required to preserve function and prevent damage accumulation.

Genetics, obesity and ethnicity are contributing factors to the onset of the disease.

The aims of drug treatment are to improve pain and prevent damage though

the suppression of inflammation. The most widely available tool to assess dam-
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Figure 1-1: The flowchart shows the semi supervised learning process for an
automatic scoring system.

age is the plain radiograph (X-Ray). Clinicians use plain radiographs as part

of routine clinical care to ensure treatment is suppressing damage progression.

Little is known about the natural course of damage progression determined by

plain radio-graphs in PsA because progression is slow over years and decades.

Longitudinal cohort studies are conducted to answer clinical questions relat-

ing to disease progression, prognosis and response to treatment. However little

clinical data has been reported because the quantification of damage on x-rays

(scoring methods) are time consuming to conduct. Moreover, drug treatments

for PsA tends to be expensive in a rationed system. Consequently, such clinical

data needs to be collected to increase the impact of prescriptions made. The
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easiest way to achieve this is to score existing x-rays for damage in a faster and

more efficient manner.

Our proposed solution is to create an automated system that would assist

rheumatologists in scoring x-rays. One important aspect of this system is experi-

ence acquisition. As rheumatologists see more cases of PsA, they become better

at detecting the disease and at assessing its severity. We therefore favor a system

that assimilates information from new, unseen cases via online learning.

Figure 1-1 shows a flowchart of our proposed diagnosis system. It consists of

two main processes. The first is the bones identifier, whose aim is to find the

location of each bone in the hand x-ray. The second system will use the output

of the bone identifier to score the bone for damage. In the initial stages of the

deployment, both of these systems will operate under the supervision of a trained

rheumatologist. If the first system fails to delineate a bone, the rheumatologist

will correct the output by delineating the bone themselves. The new bone outline

is stored in a stack of wrong labels and the bone identifier is updated when this

stack reaches a certain capacity. The same process is used with the bone scorer.

Having such a semi supervised system makes it easy for online learning to

happen. The assimilation of the new example is done via additional training of

the machine learning models that drive the bone identifier and the bone scorer.

Moreover, it solves the problem of a lack of initial training data for training and

testing such models. As we later show, collecting and annotating quality data for

our models is a time consuming process. The process of correcting the prediction

from new example also serves the purpose of data collection.

1.2 Medical Background

It is of paramount importance to understand the expectations of the medical

community in projects like this one. Failure to do so might cause a divergence in

the research direction. Hence, for completeness, we introduce the hand anatomy

and briefly describe the scoring process that PsA x-rays undergo.

1.2.1 The Human Hand

The human hand has three types of bones, namely the carpals, the metacarpal

and the phalanges. There are 8 carpal bones, 5 metacarpal (MP) bones (1 for

3



Figure 1-2: The Figure shows the bones of the hand along with their labels. The
image is courtesy of the book of Anatomy and Physiology by Openstax (Betts
et al. [2014]).

Area Bone Name Abbreviation
Phalanges Distal Phalange DP

Middle Phalange MP
Proximal Phalange PP

Metcarpals Metacarpal MC
Carpals Trapezium Tm

Trapezoid Td
Capitate C
Hamate H
Scaphoid S
Lunate L
Triquetrum Tr
Pisiform P

Joints Distal Interphalangeal Joint DIP
Proximal Interphalangeal Joint PIP
Metacarpophalangeal Joint MCP
Carpometacarpal Joint CMC

Table 1.1: The Table shows the bones of the hand along with their commonly
used abbreviations.

each finger) and 14 phalangial bones. With the exception of the thumb, the pha-

langes in each fingers are are the proximal phalanges (PP), the middle phalanges

(MP) and the distal phalanges (DP). As for the thumb, it only has the proximal

4



and distal phalanges. Each finger in the hand is labelled with a number with the

1, 2, 3, 4 and 5 representing the thumb, the index finger, the middle finger, the

ring finger and the small finger respectively.

Starting from the DP the area between the bones (joints) are the distal inter-

phalangeal joint (DIP), the proximal interphalangeal joint (PIP), the metacar-

pophalangeal joint (MCP) and the carpometacarpal joint. As the names suggest

they are the joints between the DP and the MP; the MP and the PP; the PP

and the MP and the MP and the carpals respectively.

The joints are of particular interest to rheumatologists as this is where most of

the damage due to PsA manifests itself. We describe this in section 1.2.2. Table

1.1 summarise the abbreviations used for the hand bones. Figure 1-2 shows the

locations of the different bones in the hands.

1.2.2 Scoring for Damage

The current standard in the severity assessment of Psioratic Arthritis (Psa) in-

volves the grading of hand X-rays by experts. The scores take into account three

types of damage which are illustrated in Figure 1-3:

(1) Bone Erosion: The spacing between bones is the same but the bone erodes,

(2) Joint Space Narrowing (JSN): The bone is intact but the distance sep-

arating them becomes smaller,

(3) Osteoproliferation: The joint space is intact but extra bone starts to grow

at the joint.

Rheumatologists specialising in PsA will usually grade each condition in each

joint of a hand or feet using four scoring techniques. Steinbrocker (Rahman

et al. [1998]) is a global scoring technique that will take into account the radio-

graphic features of tissue as well as bone. The Ratingen (Wassenberg et al.

[2001]) scoring rule measures osteoproliferation and erosion at each joint. The

Modified sharp (Sharp et al. [1985]) and Sharp-van der Heijde or SvH (Van

der Heijde et al. [2000]) scoring rules measure erosion and JSN at each joint re-

spectively. Rheumatologists then combine those scores to come up with a global

PsA score.

One metric used to measure the performance of a scoring system is the In-

terobserver intraclass correlation coefficient (ICC). The ICC is used to assess

conformity among scorers. Its aim is in effect to make sure that the scores suffers

5



Figure 1-3: X-ray showing the different type of joint degradation with P denot-
ing proliferation; E denoting erosion; N denoting joint space narrowing in a hand.
The right most picture shows an enlarged picture of each type of damage in a
joint. From left to right one can see JSN, osteoproliferation and bone erosion.

Ratingen Destruction score
Score value Meaning
0 normal
1 1 or more erosions with < 10% of the joint area destroyed
2 1 or more erosions with 11− 25% of the joint area destroyed
3 26− 50% of the joint area destroyed
4 51− 75% of the joint area destroyed
5 > 75% of the joint area destroyed or bony ankylosis
Ratingen Proliferation score
Score value Meaning
0 normal
1 1-2 mm proliferation or bone growth covering 25% of original size
2 2-3 mm proliferation or bone growth covering 25% of original size
3 >3 mm proliferation or bone growth covering 25% of original size
4 bony ankylosis

Table 1.2: The Table shows the Ratingen Score values and their corresponding
symptoms. The Ratingen score was developed specifically to assess the x-rays of
PsA patients. Bony Ankylosis is the condition where the joint becomes stiff due
to extensive damage.

from the least amount of bias. However, Table 1.2 shows that the score depends

on a subjective interpretation of the damage extent.

Indeed, the damage is expressed as a percentage of the total area. There

is therefore a need to measure the area before (normal) and after the onset of

PsA. This is almost impossible as x-rays are usually taken once the patient has

developed PsA. Scorers do use other joints in the hand as a proxy for normality,

but this also can be misleading. Another issue that comes out of subjectivity is

the notion of what is normal. This is made even harder when one considers the

natural progression of the joint appearance.
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Scoring is also a time consuming exercise. If one were to score an x-ray using

the Ratingen method, then each joint in the hand needs to be scored. This would

require the careful analysis of damaged areas. This is not made easy by the fact

that a joint might suffer from multiple damage types, the presence of which affects

one’s ability to ascertain the exact type of damage.

1.3 Mathematical Model of a Hand X-ray

As we are dealing with hand x-rays, it is important to have a mathematical for-

mulation of the anatomical description of the hand. Let u : Ω ⊂ R2 → [0, 255]

be a hand x-ray. Each bone in the hand can be described as an open subset of

Ω. There are 19 phalanges in a hand that we treat as subsets Oi, i = 0, ..., 18 of Ω.

The boundaries ∂Oi of these areas take the form of closed non-overlapping

curves mmmi : [0, 1] → R2. We have Nb = 19 such curves in a hand x-ray. The

location of each bone is given by the midpoint dddi = (d
(i)
x , d

(i)
y ), i = 1, .., 19 of its

bounding curve. Given a parametric representation mmmi : [0, 1]→ R2 of the curve

bounding bone i, the midpoint is

arg min
xxx

∫ 1

0

‖mmmi(s)− xxx‖2ds =

∫ 1

0
mmmi(s)ds

|∂Oi|
(1.1)

where |∂Oi| is the circumference of the bone. The orientation of the bone with

respect to each other is controlled by the angle ψi the i−th bone and the horizon-

tal. For our purposes, (ψi, ddd
(i),mmmi) fully parametrise the shape of the hand. ψi

can be found by considering the orientation of bones with respect to each other.

We describe in Chapter 4 how to extract the shape and pose (denoted in this

section by ψi, ddd
(i)) of each bone from this description.

Usually, the regions Oi can be identified by a change in the intensity profile.

This is controlled by the so-called texture information of the image which we

describe in Chapter 5. This formulation of a hand x-ray allows us to use an

Active Latent Space Shape Model (ALSSM) to model the shape of bones. As

we show in Chapter 6, this involves using a shape model and a texture model to

identify the bones of the index finger.
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1.4 Related Work

The use of computer vision in medical imaging goes back to the invention of Mag-

netic Resonance Imaging. It was necessary at the time to be able to reconstruct

the organ being imaged. Bertero and Boccacci [1998] is a good reference for the

methods used in that field. In addition to reconstructing the image of the organ,

there was a need to be able to identify the region of the image that contained the

organ. Segmentation and registration algorithms were invented to deal with these

problems. One noteworthy registration algorithm is the Lucas-Kanade model in-

troduced in Lucas et al. [1981]. More complex registration algorithms that seek

to align landmarks were later introduced. Modersitzki [2003] is a good reference

for the algorithms used in image registration. Other algorithms that rely on the

clustering of pixel values can be found in Haralick and Shapiro [1985].

Nowadays, machine learning algorithms are being used for transfer learning

via a labelled data set. Greenspan et al. [2016] highlights the promise of Deep

Learning in the field of medical imaging. For example Bar et al. [2015] use Convo-

lutional Neural Networks (CNN) to locate abnormalities in Chest X-rays. Deep

learning requires a lot of data for training and testing and tend to exhibit a black

box behaviour.

The examples we have just given all fall into the discriminative category. Gen-

erative models of appearance tend to exhibit a better control on the uncertainties

being propagated. The Active Appearance Model (AAM) of Cootes et al. [2001]

falls into this category, although the model matching procedure does involves a

discriminative step.

Kauffman [2009] provides a detailed study of automating scoring in Rheuma-

toid Arthritis. We believe that it is the piece of work that most closely resembles

ours. Indeed, much of the material there would complement this thesis. The main

tool used by Kauffman [2009] is the Active Appearance model of Cootes et al.

[2001], which is the reference when it comes to statistical modelling of images.

Lindner et al. [2013] uses Constrained Local Models for medical segmentation and

has patented a bone identification technology for x-rays. A successful application

of the AAM in a medical setting is demonstrated by Minciullo et al. [2018].
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1.5 Evaluation of our work

The aim of projects like the one we present is to ultimately make machine learning

and computer vision play an integral part in medical diagnosis. Getting approval

from the concerned bodies is a lengthy process. One needs to have sufficient

proof that the method presented works. As we enter a scientific age where the

lines between disciplines get blurred, it is important for scientists to engage in a

discussion about how best to evaluate research outcomes.

In the machine learning community, the performance of models is usually eval-

uated using the training set and the test set diagnosis. In the case of a classifier

for example, one would treat the test set accuracy1 to be a good representation

of performance. These metrics are also compared to those of other models to

ascertain whether it is an improvement over the current norm. Medical research,

on the other hand, concerns itself with large trials when it comes to evaluating

new methods. Van der Heijde et al. [2005], for example, compare the performance

of scoring methods when used in large cohort studies.

Even when it comes to metrics, the notion of what should be used and what

should not deviates between the two communities. Rambojun et al. [2019] use

the Adjusted Rand Score or ARAND (Rand [1971]) on a test set data to evaluate

the performance of the ALSSM presented in Chapter 6. However, the ARAND

score is not used in the medical community and might not be a good enough

metric to prove the reliability of such models.

Hence, even though a model is accepted as a good one by the machine learning

community, it might not be viewed as such by the medical community. One rea-

son for this is the lack of mutual understading regarding the approval process of

the two communities. Collaborative works such as ours helps with this problem.

Another problem is the way the approval process in the medicaly community

works.

Minciullo et al. [2018] is an example where a computer vision method was

rigorously tested by the medical community. However, this piece of work uses

the Active Appearance Model which has been around since 2001 (Cootes et al.

[2001]). This is an example where an extablished model in the machine learning

community takes time to find itself accepted by the medical community.

1The percentage of the test data set that was correctly classified
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In our opinion, there needs to be a shift in the way digital medical technology

is evaluated. Currently, models are evaluated first from the machine learning

community and then by the medical community. There needs to be a greater

shift towards a joint assessment. Such an approach is inevitable given the rise

of machine learning and artificial intelligence in day to day life. We are strong

proponents of the systems illustrated in Figure 1-1. Indeed, such systems need to

be made accessible to as many qualified practitioners as possible so that studies

like the one performed by Minciullo et al. [2018] can be done more easily.

It is with this mindset that we believe that our work and any future work of

the same nature should be evaluated in a hybrid manner. Convergence of our

models is monitored in the typical machine learning fashion. For example, we

use the accuracy versus the iteration number plot in Chapter 5 to conclude that

our texture discriminator is trained. However, assessing this individual model for

the medical community should be done alongside its other components (which is

the shape model). Moreover this should be done so as to satisfy the demands of

the medical community when it comes to their approval process.

We finish this section by noting that, even though new technology evaluation

appears to be different between the two mentioned communities, they are basi-

cally doing the same thing. What we want is a technology that is robust to all

possible scenarios. This is a fast process in the machine learning community as

the evaluation involves numerical computations on an already labelled dataset.

On the other hand, the medical community performs the labelling as well as the

evaluation. It is the labelling part that is the most time consuming part. The

hybrid system we show in Figure 1-1 will help with labelling while live testing for

robustness.

1.6 Outline of the Thesis

The main body of this thesis is found in Chapters 4, 5 and 6. Chapter 4 is ded-

icated to the treatment of shape as a mathematical concept. We also describe

how we can use the formulation of shape that we adopt to build a statistical

model of a shape. We re-interpret the Active Shape Model (ASM) of Cootes

et al. [1995] in a probabilistic way. In particular we show that under the dual

treatment of probabilistic Principal Components Analysis (PCA), we are able to

extend the ASM to model non linear maps from a latent space. We do this by
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using Gaussian Process Latent Variable Models (GPLVM).

Chapter 5 is dedicated to defining texture. We do not have a generative tex-

ture model in this thesis, but instead consider ways in which we could build a

discriminator. We use a CNN to predict areas of a hand x-ray that correspond

to a one edge.

Our main contribution comes in Chapter 6. We argue that a GPLVM provides

us with a better latent space shape model when viewed from a model specification

point of view. We also show how to build a Bayesian model that incorporates

uncertainty from the shape model, the texture model and the image quality. We

perform a full marginalisation of the joint likelihood by using a Radial Basis

Function (RBF). This is a significant contribution as we are able to provide error

bounds on the integration we perform.

Much of the work leading to this thesis involved collecting and pre-processing

data. We describe this process in Chapter 2. We build an annotation software

used to delineate areas of interest. We then show how we can induce shape cor-

respondence on our dataset, which consists of bones outlines. We believe that

this is a novelty in itself as it reduces the complexity of delineating bone areas.

Traditionally, landmarks had to be manually placed in specific regions. By us-

ing curves and their geometric properties as part of the data pre-processing, we

eliminate the need for this exact placing of landmarks.

Chapter 3 is dedicated to key mathematical concepts used throughout this

thesis. We describe variational Bayesian inference and how it is used in the

Variational GPLVM that we use to determine the dimensionality of the shape

model latent space. We then describe GPLVMs and interpret it as the dual of

Probabilistic PCA. This allows us to extend the ASM model of Cootes et al.

[1995]. We then give some error bounds on RBF interpolation of compactly

supported functions.
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Chapter 2

Data Aquisition

2.1 Introduction

We describe in this chapter how we collected the data used in this thesis. The

Royal National Hospital for Rheumatic Diseases (RNHRD) has a database of

X-rays taken from PsA patients. Much of these X-rays have been scored for PsA

damage. These measurements were taken as part of the Long term Outcomes

in Psoriatic Arthritis II (LOPAS II) study, the aim of which is to assess work

disability in PsA.

A subset of the X-rays with no damage was collected. The data collection

was conducted according to the principles of the Declaration of Helsinki and eth-

ical approval was obtained from the National Research Ethics Services (NRES)

Committee South West Wales Panel D. All patients included in this study gave

full written informed consent for participation.

Each patient that had an X-ray scored has been assigned with a study number

by the RNHRD. The X-rays were assigned this number along with the year that

the X-ray was taken. For example a patient with study number CPSA001 who

had a hand X-ray taken on January 4, 2015 would have the hand X-ray assigned

the identifier CPSA001h2015. If that X-ray had been a foot then the identifier

would change to CPSA001f2015. All of the X-rays were stored in a portable net-

work graphics (png) format due to its lossless property.

The X-rays came with no information on the shape of bones. We describe in

section 2.2 how this annotation was performed. The result of the annotation is an

ordered point distribution representing curve outlines. These need to be cleaned

for use in the shape model we describe in chapter 6. We describe in section 2.3

12



Figure 2-1: The figure shows the functionality of the Aspax Annotator 1.0 beta.
It allows the user to mark the location of a bone by drawing a set of points around
the bone that act as a discretised version of a curve.

how these points were upsampled and aligned.

Not all the collected X-rays came from the same health centre. As a result,

they exhibit intensity variations coming from different exposure settings in the

X-ray machines. This is something we want to get rid of as this will improve the

performance of the texture models we describe in Chapter 5. We describe how

this is done in section 2.4

2.2 Annotation

The data annotation process consisted of manually extracting bone outlines from

the X-rays we collected. This was done by a trained rheumatologist1 and hence

was an expensive and time consuming process. This is why we only annotated

the index finger of the right hand. This finger was chosen as it was previously

shown to exhibit the most amount of damage in Tillett et al. [2016].

Outlines of the MC,PP,MP and DP were drawn using a piece of software called

the ASPAX annotator. This was written in python3 using PyQt (Summerfield

[2007]). It is a user interface that allows the user to draw polylines around each

bone in a hand. As part of this annotation process, landmarks were placed on

each bone. Figure 2-1 shows the annotator in use. 103 hand X-rays were thus

1Dr William Tillett
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annotated.

The shape of each bone was saved as a point distribution array that represents

a discretised version of the bone outline. We assume that this outline is a closed

curve and hence the data collected for the n-th X-ray can be expressed as yyyn =

(yyy
(0)
n , .., yyy

(J)
n ), where yyy

(j)
n ∈ R2 is the coordinate of the j-th point on the discretised

curve.

2.3 Curve outline pre-processing

We want to use the curve outlines that we have drawn to model the shape of

bones. As we describe in section 4.2, our definition of shape requires us to re-

move variations coming from rigid transformations of the bones as well as those

coming from the parametric representation we adopt. In other words, we want

each coordinate on one curve to be in correspondence with the same coordinates

from other curves (see section 4.2.1).

Hence, the curves drawn using the ASPAX annotator have to be processed to

remove the following sources of variability coming from the annotation process.

(a) The number of points di in each saved example is not the same.

(b) The curves are not aligned as the X-rays were not all in the same pose.

(c) The curves do not have the same arc length.

(d) The curves are not in parametric correspondence.

We show how to fix (a) in section 2.3.1. It is important to have the same

number of points representing the same bone so as to be able to build statistical

models. Indeed, we want this data to be saved as an array Y ∈ RN×P . P here is

the dimension of the features of our data set, which in this case is the number of

points that represent a bone outline as a curve. We have that P = 2D, where D

is the number of points representing the discretised bone curve. N is the number

of annotated curves. This allows us to use the methods described in section 4.3

to build a shape model.

Once (a) is done, we have curves that are not in shape correspondence. As

described in section 4.2.1, this involves curves of unit arc length being in align-

ment and in parametric correspondence. Removing the variability described in

(b),(c) and (d) is equivalent to putting the curves in shape correspondence. We
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Points before upsampling with 67 points Points after upsampling to 110 points Points before upsampling with 85 points Points after upsampling to 110 points

Points before upsampling with 49 points Points after upsampling to 110 points
Points before upsampling with 45 points Points after upsampling to 110 points

(a) Upsampling using a Fourier representation the bounding curve.
Points before upsampling with 67 points Points after upsampling to 110 points Points before upsampling with 85 points Points after upsampling to 110 points

Points before upsampling with 49 points Points after upsampling to 110 points

Points before upsampling with 45 points Points after upsampling to 110 points

(b) Upsampling using a spline representation for the bounding curve.

Figure 2-2: The Figure shows the point distribution for the MC, PP, MP, and
DP (clockwise from top left). In each case, the raw annotation is shown on the
left and the upsampled points are shown on the right. The curves were upsampled
to D = 110 points.
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(a) MC curve being transformed onto a template.
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(b) MP curve being transformed onto a template.

Figure 2-3: The figure shows the process of minimising
∑D−1

d=1 Dtemp(Tr,φ ◦ ŷyy(d))
with respect to the scale r and rotation angle φ where Dtemp is the distance
transform from the template curve and ŷyy is curve that is to be made invariant
to scale and rotation. The template curve is shown in cyan and its distance
transform is shown as a colormap. The blue curve is being transformed to have
the same scale and orientation as the cyan curve.

descibe this process in section 2.3.2. Once this is done, the only variation we see

comes from shape and any statistical model we fit to this cleaned data will be a

statistical shape model (as opposed to ones capturing pose variation).

2.3.1 Parametric curve representation

To have the same number of points in each discretised curve, a parametric form

is fit to each curve and is used to sample the outline with the same number of

points D. Let mmmθ : [0, 1]→ R2 be a parametric representation for a bone outline

with parameters θ. Then, fitting the representation to the current curve data
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Figure 2-4: The Figure shows a set of PP curves that have been aligned but not
yet set in parametric correspondence (top) and the same set of PP curves that
have been now set in parametric correspondence (bottom). The bottom curves
now exhibit shape correspondence.

yyy ∈ R2J is equivalent to finding
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θ∗ = arg min
θ

J∑
j=0

(mmmθ(tj)− yyy(j))T (mmmθ(tj)− yyy(j)) (2.1)

Let D be the desired number of points in the discretised representation of the

curve. We set sd = d
D

for d = 0, ..., D−1. Then the upsampled discretised curve is

given by ŷyy = (mmmθ∗(s0), ...,mmmθ∗(sD−1)). Running this optimisation for each curve

outlines yields a parametric representation mmmn for each ŷyyn.

The curve outlines drawn were closed curves with yyy(J) = yyy(0). This implies

that t0 = 0 and tJ = 1. However, it is not clear what the values tj for 0 < j < J

should be. Ideally, equation (2.1) should be a minimised with respect tj as well.

We seek to upsample the curves in such a way that the point density around areas

of high gradient in the curve is higher. Hence, our choice of tj should depict this

beaviour.

As shown in Figure 2-2 the raw data already was collected in such a way.

Hence using a uniform parametrisation will force the parametric curve to have

such a behaviour in these areas. Consequently, we found that setting tj = j/J

worked well when trying to upsample the curves. Due to the continuity of the

representation, ifD is not too different from J , then this behaviour is preserved for

the finer discretisation sd. We now show two possible parametric representations

for mmmθ.

2.3.1.1 Fourier representation

One can express a closed curve as a Fourier expansion as follows:

fff θ(t) = (x(t), y(t)) =

(
L−1∑
l=0

αl cos (2lπt) + βl sin (2lπt) ,
L−1∑
l=0

γl cos (2lπt) + δl sin (2lπt)

)
(2.2)

For each curve, the set of coefficients is

θθθ = (α1, ..., αL−1, β1, ..., βL−1, γ1, ..., γL−1, δ1, ..., δL−1).

It was found by doing a least-squares fit in SciPy (Jones et al. [2001–]). Such a

representation ensures that the curves are closed due to the periodic nature of

the basis functions. The results are shown in Figure 2-2a.
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2.3.1.2 Spline representation

We can represent a 1-d function with domain [0, 1] with piecewise polynomials.

Let 0 =: t0 < t1 < ... < tJ := 1 be the control points as previously described and

define intervals Ij = [tj, tj+1) for j = 0, ..., J−1. Then we have that a polynomial

spline is given by

Sθ(t) =
J−1∑
j=0

It∈IjPj(t) (2.3)

where Pj is a polynomial of degree O given by

Pj(t) = aj,0 +
O∑
o=1

aj,o(t− tj)o (2.4)

The parameters are given by

θθθ = {aj,o : o = 0, .., O, j = 0, .., J − 1}

They are found by solving a linear system which consist of the following conditions

Pj(tj) = y(j)

Pj−1(tj) = y(j)
(2.5)

for j = 0, .., J − 1. We impose the following gluing condition for o = 1, .., O − 2

that ensures picewise smoothness of up to degree O − 1

do

dto
Pj(tj) =

do

dto
Pj−1(tj) (2.6)

for o = 1, .., O − 1. To impose periodicity we have set the boundary coundition

given by

Pd−1(1) = P0(0) (2.7)

We use a cubic spline (O=3) representation on each coordinate of the curve. That

is

fff θ(t) = (Sx(t),Sy(t)) (2.8)

We fit the curves and perform the upsampling by using the interpolation module

in SciPy (Jones et al. [2001–]). The results are shown in Figure 2-2b.
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2.3.2 Imposing shape correspondence

After upsampling, we have a set of discretised curves Ŷ = (ŷyy0, .., ŷyyN−1) for each

bone in the index finger. To impose shape correspondence on Ŷ, we remove the

effect of rotation and scaling from the centred curve outlines. Once this is done,

we use the process described in Campbell and Kautz [2014] to induce parametric

correspondence on these curves.

2.3.2.1 Removing rotation and scale

We want to rotate and scale the curves in our dataset to match the orientation

and size of a template curve ŷyytemp chosen from the dataset. To do this, we build

a map representing the distance transform from this curve, i.e. for xxx ∈ R2 we

define

Dtemp(xxx) = min
d∈{0,...,D−1}

‖xxx− ŷyy(d)
temp‖ (2.9)

Now let Tr,φ represent a scaled rotation on R2, i.e. for xxx = (x0, x1) we have that

Tr,φ ◦ xxx = (rx0 cos(φ)− rx1 sin(φ), rx0 cos(φ) + rx1 sin(φ)). (2.10)

Then we have that for an upsampled curve ŷyy, solving the following minimisation

problem

(r∗, φ∗) = arg min
r,φ

D−1∑
d=1

Dtemp(Tr,φ ◦ ŷyy(d)) (2.11)

and gives us a scaling factor r∗ and an angle of rotation φ∗ that would transform

ŷyy so that it has the same scale and orientation as the template curve ŷyytemp.

We perform this operation for each curve in the upsampled dataset. This can

be seen in Figure 2-3 We have then for each curve ŷyyn, a transformation Tn, that

when applied to ŷyyn yields a dataset that is invariant to rigid tranformations. We

denote this data set by ŶT = (T0◦ŷyy0, ...,TN−1◦ŷyyN−1). Without loss of generality,

we can assume that at this point, the data we have consists of curves of unit arc

length.

2.3.2.2 Setting the curves in parametric correspondence

From now on, we assume that Ŷ = ŶT. We introduce the following notation.

Let S = (sss0, ..., sssN−1) where sssn = (s
(0)
n , ..., s

(D−1)
n ) be the arc length at which
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the curves Ŷ are sampled. That is for a discrete curve ŷyyn in our dataset with

parametric representation mmmn we have that ŷyyn =
[
mmmn

(
s

(0)
n

)
, ...,mmmn

(
s

(D−1)
n

)]
.

As we describe in section 4.2.1, the defining factor for curves of unit length

to be in parametric correspondence is for them to have the same geometry at

the equivalent parametric positions. In our case, this means that the geometric

properties of our discrete curves must be the same at every coordinate ŷyy(d)
n .

This can be done by finding the arc length s
(d)
n for each curve and each coor-

dinate from which to sample the data point ŷyy(d)
n from the parametric form mmmn.

Note that this form needs to be found again as we have rotated and scaled our

data in section 2.3.2.1. We use an energy minimisation approach similar to that

used by Campbell and Kautz [2014] to achieve this. We recover S by minimising

the following energy function:

E(S) =
N−1∑
n=0

[
1− exp

(
− γ

2D

D−1∑
d=0

(κn(s(d)
n )− κ̄(d))2

)]

+
N−1∑
n=0

D−1∑
d=0

[
s(d+1)
n − s(d)

n −
1

D

]2
(2.12)

where κn is the curvature operator applied to the n−th curve example and κ̄(d) is

the mean curvature at coordinate d. The first term gathers the sampling points

so that they are close to the mean curvature at their respective coordinates. The

second term ensures that they are somewhat equally spaced.

This optimisation also requires the monotonicity constraint s
(d+1)
n > s

(d)
n for

all n and for d = 0, ..., D − 1. We use the identity

s(d)
n =

∑d
k=0 exp(r

(d)
n )∑D−1

k=0 exp(r
(k)
n )

(2.13)

to force this constraint and optimise (2.12) with respect to r
(d)
n instead using

SciPy (Jones et al. [2001–]). We show the result of this optimisation in Figure

2-4.

2.4 Intensity normalisation

As we describe in section 5.2, the texture around a pixel neighbourhood is the

normalised filtered intensities around that neighbourhood. We find that different
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Figure 2-5: The Figure shows the intensity normalisation process. The input
X-ray is shown on the top left. The same X-ray is shown in the bottom left
after its histogram was matched to that of a template X-ray. The change in the
histograms is shown on the right plots, where it can be seen that the input X-ray
now has the same histogram as the template X-ray.

test centres participating in the LOPAS II study have different exposure settings

on their X-ray acquisition process. Hence, there is a need to correct the X-rays

in our data for exposure differences. We perform histogram matching to achieve

this.

2.4.1 Histogram Matching

Given two images U1,U2 ∈ [0, 255]Nx×Ny we want to induce a transformation on

U2 such that the distribution of pixel intensities of the two images match each

other. This process is called histogram matching. We call U2 the input image

and U1 the target image. We briefly describe how this is done.

We split the range [0, 255] into B equal intervals Ib (bins). Each image U1,U2

induces a cumulative density function F1, F2 respectively on these intervals. Now

let I2 be the interval for which F2(I2) = F1(I1) for some I1. That is I1 and I2

are the intervals at which the CDF of U1 and U2 match each other.

Now, if for the input image, the locations at which the pixels fall into I2 are

known, then we can replace the pixel values at these locations with some pixel

value that falls into the interval I1. This process shifts the mass on the pixel
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values around until the quantiles in each image are the same. This is repeated

for all the B intervals we have defined.

2.4.2 Histogram matching the dataset

To correct the intensity variations introduced by the different exposure settings,

we choose a template X-ray that was captured at the RNHRD2. We then sequen-

tially perform the operation just described on the X-rays coming from different

acquisition centres. We choose an example from the RNHRD because it is the

centre that generated the most data. The result of histogram matching on a test

X-ray is shown in Figure 2-5.

2Royal National Hospital for Rheumatic Diseases
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Chapter 3

Mathematical Tools

3.1 Introduction

We give a short introduction to the concepts used in this thesis. The core phi-

losophy underpinning the models we later introduce is Bayesian Inference. We

dedicate section 3.2 to a discussion of the Bayesian philosophy. We also demon-

strate the use of variational inference, where a so called variational distribution

is used to approximate an intractrable integral. We then show in section 3.2.3

how one can think of segmentation as a Bayesian problem.

We introduce Gaussian Process Latent Variable models in section 3.3. These

are used in Chapter 4 to model shape. We show how these are derived from a

latent model Directed Acyclic Graph (DAG) in section 3.3.4. This derivation

reveals an important dual relationship between probabilistic principal compo-

nents analysis and GPLVMs. We use this dual relationship later in section 6.2.1

as part of our argument justifying a move away from AAMs (Cootes et al. [2001]).

One of the contributions of this thesis is the exact marginalisation that we

present in section 6.2.4. This uses a Radial Basis Function (RBF) interpolant to

approximate an intractable integral. We introduce RBF interpolation in section

3.4. We also give some error estimate for the integration we perform in chapter

section 6.2.4.

3.2 Bayesian Inference

The Bayesian philosophy comes from the belief that one cannot measure every

state of a system. Models that we use to explain the world will therefore have

an inherent uncertainty associated to it. The major drawback of mathemati-
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cal modelling is that models come from the subjective human observer. What

Bayesians truly seek to quantify is the uncertainty we should observe given the

assumptions we make about the system. Probability theory provides us with a

framework within which this can be attempted.

In the eyes of the Bayesian Scientist, every statement coming from a particular

model of a system is a statement about the distibution of the state of the system

given the model used to explain it. Hence, Bayesian Inference is very attractive

when it comes to formalising this belief. Mathematically, one would like to make

statements about events that are conditioned upon each other. This builds on

the definition of independent events. We say A,B are independent events iff

P(A ∩ B) = P(A)P(B). We also define the conditional probability of A given B

as

P(A|B) :=
P(A ∩B)

P(B)

Coming back to the more general Bayesian philosophy, this is useful as one

can then make statements about a modelM which predicts states yyy of the system

that take the form p(M|yyy). I.e., we make a probabilistic statement about how

good the model is given the observations we have of the system yyy. We usually

have an expression for p(yyy|M). Bayes’ Rule allows us to invert this probability:

Theorem 3.1 (Bayes’ Rule). Let (Z,F ,P) be a probability space, with Z being

the sample space, F being the σ−algebra and P being the probability measure. Let

A,B ∈ F be events, then we have that:

P(A|B) =
P(B|A)P(A)

P(B)

Bayesian methods have experienced a rise in popularity in the statistics com-

munity since the discovery of Markov Chain Monte Carlo (MCMC) methods

(Hastings [1970]) which made it possible to iteratively compute p(M|yyy). In

more recent years, cheaper and more powerful computers along with research

into efficient sampling methods have greatly increased the popularity of Bayesian

Inference. For example in uncertainty quantification, one seeks to quantify the

error in the spatial dependent diffusion coefficient a through the evolution of the

following PDE:

−∇ · (a∇u) = f on D ⊂ Rd

Using Multilevel Monte Carlo methods (Giles [2008]) along with efficient
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solvers, one is able to compute the distribution of a given noisy observations

of the system. More recently, Rynn et al. [2019] uses Bayesian Inversion to get

a distribution instead of a point value for the conductivity of a material. In the

machine learning community, priors are put on the weights of neural networks

(Kingma and Welling [2013]) to quantify their uncertainty. The computation in

this case relies on variational optimisation instead of sampling methods such as

MCMC.

This all shows that the Bayesian Philosophy is starting to spread in all as-

pects of science and hints towards a general movement where scientists start to

acknowledge the need to quantify the deviation of models from reality. In particu-

lar, science is moving towards recognising that from our subjective point of view,

there cannot be just one state of the observed universe. We rather have to treat

our observations as realisations of some hidden process. While this is happening,

new discoveries are making it easier to apply this philosophy in practice through

Bayesian inference. At the risk of being self referential, it is unclear whether the

change of philosophy caused the rise of Bayesian inference or vice versa.

3.2.1 Setting

Traditionally, we set up a likelihood model yyy ∼ p(yyy; θ) for the observed vector

of data Y = (yyy0, ..., yyyN−1). In other words, data is just realisations of a random

variable having probability density function (pdf) p(yyy; θ). Here θ parametrises

p(yyy; θ), and is sometimes called the model parameters. One can then calculate the

likelihood of the data observations which we denote by p(Y; θ) =
∏N−1

n=0 p(yyyn; θ).

The aim of model fitting then is to find the optimal value of θ which explains the

observed data. This is achieved traditionally via Maximum Likelihood Estima-

tion (MLE) where we find arg maxθ p(Y; θ).

In Bayesian Inference, one would treat the paramaters of the likelihood model

to be random variables themselves. These would have their own prior distribu-

tions p(θ;α). The likelihood model is now a conditional distribution p(yyy|θ;α)

with α now acting as hyper-parameters. The main aim of Bayesian Inference is

to quantify the uncertainty in model parameters. The prior distributions on the

data likelihood model is what captures this uncertainty.

Introducing a likelihood model and a prior distribution automatically gener-

ates a dependence structure in the model. A Directed Acyclic Graph (DAG) is
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used to simplify the dependence structure of variables. This can be seen in Figure

3-1. The arrows represent the dependence of the variables with respect to each

other. In our case, Y depends on θ. An arrow thus points from θ to Y. Here,

we point out that the dependence structure that we refer to is not necessarily a

statement about causation. Rather, we are saying that if we knew the value of

α, we would be able to model the data through the prior and likelihood model.

Yθα

Figure 3-1: The Figure shows a simple DAG. The arrows shows the dependence
structure of the variables

One is usually interested in the posterior distribution, which using Theorem

3.1 is given by

p(θ|Y;α) =
p(Y|θ;α)p(θ;α)

p(Y;α)
. (3.1)

We call

p(Y;α) =

∫
p(Y, θ;α)dθ

=

∫
p(Y|θ;α)p(θ;α)dθ

(3.2)

the marginal likelihood. The posterior distribution is what quantifies the uncer-

tainty with the parameters of the model we want to fit. One would like to sample

from this posterior. Most sampling techniques require the normalising factor of

the distribution to be known. The normalising factor in equation (3.2) is often

hard to compute, making traditional sampling techniques inappropriate.

Markov Chain Monte Carlo methods are popular when trying to sample from

target distributions with intractable normalising factors. These methods have

several drawbacks. The samples come from a Markov Chain and hence are cor-

related. To get independent draws from the target distribution, one would have

to thin the chain, i.e. only keep samples from the chain at every l steps. l here

is the number of steps before the autocorrelation is sufficiently low for the n-th

and n+ l-th sample to be considered uncorrelated. Secondly, these methods can

be very slow with runtimes of the order of weeks being very common. In general,

MCMC methods are not used in Machine Learning for these reasons.
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Instead of sampling from the posterior, we can maximise the posterior distri-

bution with respect to θ, thus obtaining the mode of the posterior. This method

is called maximum a posterior probability (MAP) estimation. The result is a

point estimate arg maxθ p(Y|θ;α)p(θ;α). The objective to be maximised is a

function of α. Often, this is an unknown value and needs to be computed as well.

Recently, there has been a strong focus in the machine learning community

to directly optimise the marginal likelihood with respect to the hyperparameters

α. Doing this is equivalent to finding the distribution parametesrised by α that

explains the data. We describe how this is done in the next section.

3.2.2 Variational Inference

In what follows, we drop α from our notation. Our aim is to maximise the

marginal posterior introduced in the previous section or equivalently, to maximise

the log marginal likelihood

log p(Y) =

∫
p(Y|θ)p(θ)dθ

Often, the above integral is intractable. We can instead optimise the lower bound

induced by the introduction of another distribution Q(θ) as follows:

log p(Y) = log

(∫
p(Y, θ)

Q(θ)
Q(θ)dθ

)
≥
∫

log

(
p(Y, θ)

Q(θ)

)
Q(θ)dθ

By Jensen’s inequality

=

∫
log

(
p(Y|θ)p(θ)
Q(θ)

)
Q(θ)dθ

=

∫
log (p(Y|θ))Q(θ)dθ −

∫
log

(
Q(θ)

p(θ)

)
Q(θ)dθ =: L(Q)

(3.3)

We also have that
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log p(Y)− L(Q)

= log

(∫
p(Y, θ)

Q(θ)
Q(θ)dθ

)
−
∫

log

(
p(Y, θ)

Q(θ)

)
Q(θ)dθ

= log

(∫
p(Y, ψ)dψ

)
−
∫

log

(
p(Y, θ)

Q(θ)

)
Q(θ)dθ

Through cancellation of Q, and the introduction of dummy variable ψ to replace θ

=

∫
log

(∫
p(Y, ψ)dψ

)
Q(θ)dθ −

∫
log

(
p(Y, θ)

Q(θ)

)
Q(θ)dθ

as Q(θ) should integrate to 1

=−
∫

log

(
p(Y, θ)∫

p(Y, ψ)dψQ(θ)

)
Q(θ)dθ

=−
∫

log

(
p(Y, θ)

p(Y)Q(θ)

)
Q(θ)dθ

=−
∫

log

(
p(θ|Y)

Q(θ)

)
Q(θ)dθ

=

∫
log

(
Q(θ)

p(θ|Y)

)
Q(θ)dθ

=:DKL(Q||ppost)

(3.4)

where DKL(Q||ppost) is the Kullback-Leibler divergence from the posterior p(θ|Y)

to Q(θ). Making the lower bound L(Q) a tight one is equivalent to finding Q(θ)

that minimises DKL(Q||ppost). In other words, we are approximating the poste-

rior with Q. We call Q in such a setting the variational distribution. Using

variational analysis and the convexity of the Kullback-Leibler divergence, we find

that Q(θ) ∝ p(θ|Y) is a minimiser.

However, this fact alone does not solve the problem of an intractable integral.

Moreover, we seek to get an expression whose gradients can be computed so that

some sort of gradient based optimisation can be done. Q need to be chosen so

that these conditions are satisfied. Hence variational inference, in general, tends

to be more of an art when it comes to choosing the right form of Q. In section

3.3.6 we show how such a distribution can be chosen when fitting a Variational

GPLVM.

3.2.3 Segmentation as a Bayesian Problem

The task of any segmentation process is, given a noisy image u0, to find the sets

Oi whose union forms the domain Ω of the intensity function. We point the
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reader to Younes [2010] for a mathematical presentation of segmentation based

on geometrical considerations.

3.2.3.1 Mumford Shah

The Mumford Shah model (Vese and Chan [2002]) is a popular denoising tool

that also identifies regions Oi for i = 1, ..., N as being areas where the image

intensity is smooth. The aim of the model is to identify the ideal, uncorrupted

image intensity profiles and the edge set M = {∂Oi}.

As described in Section 3.2.1, we set a likelihood model p(u0|u,M; X) and priors

p(M) and p(u|M) where u is the ideal image intensity function.

p
(
∪Ni=1Oi|u0

)
= p (M, u|u0 )

∝ p(u0|u)p(u|M)p(M)
(3.5)

This generates the following DAG:

u0uM

For simplicity, we set N = 2. The acquisition noise is treated as Gaussian noise

with a certain variance r, that is:

p(u0|u) ∝ 1√
2rπ

exp

(
− 1

2r

∫
Ω

(u(xxx)− u0(xxx))2 dxxx

)
(3.6)

The edge set is assumed to be a smooth curve. That is M = mmm for some curve.

A prior is set on the length of the curve. As in the previous equation, we have a

variance parameter w controlling the length of the curve.

p(M) = exp

(
− 1

2w
|mmm|
)

(3.7)

The ideal intensity profile is also forced to be smooth inside the different regions.

A variance parameter s controls how smooth the function should be. In the case

of the two region segmentation algorithm the, prior is given by:

p(u|M) ∝ 1√
2sπ

exp

(
− 1

2s

∫
O

∇|u(xxx)|2dxxx− 1

2s

∫
Oc

|∇u(xxx)|2dxxx

)
(3.8)

To find the edge set, the negative log of the posterior is optimised and the

ideal image u∗ and the edge set Γ∗ are given by:
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arg min
u,Γ

1

r

∫
Ω

(u(xxx)− u0(xxx))2 dxxx+
1

s

∫
O

∇|u(xxx)|2dxxx+
1

s

∫
Oc

|∇u(xxx)|2dxxx+
1

w
|∂O|

(3.9)

The solution to equation (3.9) involves the evolution of the intensity function

u as well as that of the edge set M. The dynamics for such an optimisation is

described in Younes [2010]. It closely ressembles the set of equations for the mov-

ing front or Stefan Problem (Rubinštĕın [2000]). The numerical solution of this

problem has been well studied and allows one to solve this problem numerically.

Moreover, Ambrosio and Tortorelli [1990] provides an approximation that can be

optimised instead of the full functional in equation (3.9).

3.2.3.2 Snakes Model

The snakes model (Kass et al. [1988]) is a simpler segmentation algorithm that

only requires the evolution of a curve on the image domain. For simplicity, we

again set the number of regions to be two. Like in the Mumford Shah, the edge

set is considered to be a smooth curve mmm. However, we have an expression for

p(M|u) that also incorporates the smoothness of the curve as a regulariser. The

model does not consider any acquisation noise and hence, u = u0. We have

p(M|u) ∝ exp

(
−1

2

∫
Vu (mmm(t)) dt− λ

∫
|∇mmm(t)|2 dt− β

∫
|∆mmm(t)|2

)
(3.10)

where Vu is a potential that increases away from areas of high gradient in the

image function u. Ideally, the curve should lie at an area where the gradient is

high. Instead of forcing smoothness on the ideal intensity function u, it requires

smoothness of the boundary and hence, a prior is set on the lapacian. We would

also like the curve to be the one of minimum length, hence the term involving

the gradient of the curve.
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3.3 Gaussian Process Latent Variable Models

We introduce Gaussian Process Latent Variable Models. They can be inter-

preted as a non-linear dimensionality reduction technique. It extends on the

ideas of Probabilistic Principal Component Analysis as presented in Tipping and

Bishop [1999]. Titsias and Lawrence [2010] later introduced a bayesian version

of GPLVM (Bayesian GPLVM) where priors were introduced on the weights.

We explore the numerics of this model later in this Chapter. We first describe

Gaussian Processes and then move on to describing GPLVMs.

3.3.1 Gaussian Processes: A quick overview

Definition 3.2 (Gaussian Processe). Let Q ∈ N, a stochastic process Z : Ω ×
RQ → R is called a Gaussian process if for any finite collection ttt0, ..., tttN−1 ∈
RQ, we have that ZZZ = Z(ttt0), ..., Z(tttN−1) jointly follows a multivariate Gaussian

distribution with mean µµµ and covariance matrix K ∈ RQ×Q the joint density of

ZZZ is given by:

N (ZZZ|µµµ,K) =
1√

det(2πK)
exp

(
−1

2
(ZZZ − µµµ)TK−1(ZZZ − µµµ)

)
A Gaussian process comes with a symmetric, positive definite kernel k that

gives the covariance between the Gaussian Process evaluated at two indexing

points

k(ttt1, ttt2) = Cov(Z(ttt1), Z(ttt2)) (3.11)

The covariance matrix in Definition 3.2 is given by Ki,j = k(ttti, tttj) for i, j =

0, ..., N − 1. See Rasmussen [2006] for more details of how to handle covariance

kernels. The Gaussian process also has a mean function

m(ttt) = E[Z(ttt)] (3.12)

We have that µµµ = (m(ttt0), ...,m(tttN−1)). One would often define a Gaussian

process by specifying the covariance kernel and mean function explicitly. We then

write ZZZ ∼ GP (m(·), k(·, ·)) to specify the distribution of the Gaussian Process

Z.

3.3.2 Gaussian Process Regression

In Gaussian process regression, we observe a signal (dependent variable) Y =

[yyy0, ..., yyyN−1]T ∈ RN×P (N data points with P features) that come with a set
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of independent variables t = [ttt0, ..., tttN−1]N ∈ RN×Q. They are assumed to be

related by:

yyyn = fff(tttn) + ηηηn n = 0, ..., N − 1 (3.13)

where each component of fff , fp ∼ GP(mp(·), kp(·, ·)), p = 0, ..., P−1 is a Gaussian

process and ηηηn are Multivariate Gaussian random variables with mean zero and

diagonal covariance matrix β−1IN (zero mean Gaussian noise). Such a setting

is called a multiple-output Gaussian process. Each of the component of fff are

assumed to be independent. Hence, the full density is given by

f(Y) =
P−1∏
p=0

1√
|2π(Kp + σ2IN)|

exp

(
−1

2
(Y:,p − µµµp)T (Kp + σ2IN)−1(Y:,p − µµµp)

)
(3.14)

where Y:,p, the p-th column of Y has components that represents the value of

the p-th feature for each data point; Kp ∈ RN×N has entries given by kp(ttti, tttj)

for i, j = 0, ..., N − 1; and µµµp has components given by [mp(ttt0), ...,mp(tttN−1)].

Covariance kernels characterise the similarity structure of the data set and hence

they are often a function of distance. In such cases, they are called isotropic.

Definition 3.3. Let k : RQ ×RQ → R be a positive definite kernel. We say that

k is a stationary kernel if ∀xxx,yyy ∈ RQ we can write k(xxx,yyy) = kS(xxx−yyy) for some

function kS : RQ → R We further call a stationary kernel isotropic if we can

write kS(xxx− yyy) = kI(‖xxx− yyy‖) for some euclidean norm ‖ · ‖ and some function

kI : R≥0 → R.

Predicting an unseen yyy∗ for an unseen value of ttt∗ is called krigging. This

involves finding the posterior mean and variance for that value of ttt∗. For one

component y∗p of the feature vector yyy∗, these are given by:

µ∗p = kp(t, ttt
∗)T (Kp + β−1IN)−1Yp,:

k∗p(ttt
∗, ttt∗) = kp(ttt

∗, ttt∗)− kp(t, ttt∗)T (Kp + β−1IN)−1kp(t, ttt
∗).

(3.15)

where we write kp(t, ttt
∗) = [kp(ttt0, ttt

∗), ..., kp(tttN−1, ttt
∗)]. Then we have that y∗p|Y ∼

N (µ∗p, k
∗
p(ttt
∗, ttt∗)) is a univariate Gaussian random Variable.
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3.3.3 GPLVM

Gaussian Process Latent Variable (GPLVM) models are a form of dimensionality

reduction technique that make the same assumption as in equation 3.13. The

two differences are Q << P and we only have an observation of Y. We wish to

then find the latent space position matrix t.

The data we observe is now thought of as realisations of a multiple-output

Gaussian process f with a covariance operator k(ttti, tttj) that is corrupted by noise

with covariance operator β−1δji . The latent space RQ is now the indexing set of

the Gaussian process. Previously, we had a different covariance kernel for each

component of the multiple-output Gaussian Process. In the case of the GPLVMs

used in this paper, however, we will have the same covariance structure across the

outputs of the Gaussian Process. One such kernel is the Automatic Relevance

Determination (ARD) kernel given by:

k(ttt, ttt′) = σ2 exp

(
−1

2

Q−1∑
q=0

αq(tq − t′q)2

)
. (3.16)

σ, α0, ..., αQ−1 are hyper-parameters that need to be identified. Note that we

assumed that the covariance operator is the same across the outputs of fff which

allows us to write

µµµpost(ttt
∗) = k(t, ttt∗)T (K + β−1IN)−1Y ∈ RP

Kpost(ttt
∗, ttt∗) = k(ttt∗, ttt∗)− k(t, ttt∗)T (K + β−1IN)−1k(t, ttt∗) ∈ R

(3.17)

for the distribution of a new indexing point ttt∗ of the GPLVM. Using this equa-

tion, one can generate new instances of the data coming from indexing locations

that correspond to none of the training data. Note that this distribution can

be re-interpreted as white noise around a mean µµµpost as there is no correlation

between the components of the features at location ttt∗. A pictorial representation

of a GPLVM is given in Figure 3-2.

Our aim is to optimise the likelihhood l(Y) :=
∏P−1

p=0 f (yyyp|t, β) by finding

the optimal value of the latent variable for each data observation. This is done

by finding arg maxt,θ logf(Y) where f is given in equation (3.14) and θ are the

hyper parameters of the covariance kernels. For the ARD kernel, these are the

length scales αq and the variance σ2. Note that this yields the following objective

function for a GPLVM with zero mean
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L(t, θ) =
PN

2
log(2π) +

P

2
log |K|+ 1

2
tr(K−1YYT ). (3.18)

A GPLVM tries to match the variance across the dataset by through the trace

term. This matching is regularised by the determinant of the covariance matrix

which prevents it from being too specific to the data.

ttt1 ttt2 ttti tttN

Feature 1

Feature 2

Feature 3

Feature 4

Y1,i

Y2,i

Y3,i

Y4,i

Figure 3-2: The figure shows a GPLVM. The coloured line represent one Gaus-
sian process. In this case any one of those lines is a feature of the data Y that
we observe (P = 4). Hence we see N of those features which occur at the cor-
responding latent space variable tttn. What we have are P Gaussian processes
that have indexing set tttn (the latent space). Each coloured curve represents one
feature for the N data point and each vertical line represents one data point with
P features.

3.3.4 Probabilistic PCA and dual PPCA

We describe a dual formulation of GPLVMs that use the formulation given by

Lawrence [2005]. We assume that data is the result of a linear transformation on

some latent space as follows:

YT = WtT + η (3.19)

where W ∈ RP×Q is a linear map from RQ to RP ; η ∈ RN×P is the observa-

tion error with ηi,j being i.i.d Gaussians centred at zero and with variance β−1;

Y ∈ RN×P is the observed data; and t ∈ RN×P is are the latent variables. This

induces the DAG in Figure 3-3.
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Y

tW

Figure 3-3: The DAG shows the linear latent space noise model. Marginalising
over the latent space t yields PPCA while marginalising over the linear map W
yields a GPLVM.

In such a latent space model, one can either focus on modelling the linear

map or the latent space. This is done by marginalising over one of the two and

then looking at the resulting distribution. We state the following lemma which

allows us to do this.

Lemma 3.4. Consider

yyy = Wxxx

where yyy ∈ RP ,xxx ∈ RQ and W ∈ RP×Q. Let f(yyy|W,xxx) = N (yyy|Wxxx, βIP ) and

f(xxx) = N (xxx|000, αIQ), then under the above model, we have that

f(yyy|W) = N (yyy|000, αWWT + βIP )

Proof. We have that

f(yyy|W) =

∫
f(yyy|W,xxx)f(xxx)dxxx

∝
∫

exp

(
− 1

2β
(yyy −Wxxx)T (yyy −Wxxx)− 1

2α
xxxTxxx

) (3.20)
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Looking at the inner products,

1

β
(yyy −Wxxx)T (yyy −Wxxx) +

1

α
xxxTxxx

=xxxT
(

1

β
WTW +

1

α
IQ

)
xxx− 2

1

β
yyyTWxxx+

1

β
yyyTyyy

=xxxT
(

1

β
WTW +

1

α
IQ

)
xxx

− 2xxxT
(

1

β
WTW +

1

α
IQ

)(
1

β
WTW +

1

α
IQ

)−1

WT yyy

β

+
1

β2
yyyTW

(
1

β
WTW +

1

α
IQ

)−1

WTyyy

+
1

β
yyyTyyy − 1

β2
yyyTW

(
1

β
WTW +

1

α
IQ

)−1

WTyyy

=

(
xxx−

(
1

β
WTW +

1

α
IQ

)−1

WT yyy

β

)T (
1

β
WTW +

1

α
IQ

)

×

(
xxx−

(
1

β
WTW +

1

α
IQ

)−1

WT yyy

β

)

+ yyyT

(
1

β
IP −

1

β2
W

(
1

β
WTW +

1

α
IQ

)−1

WT

)
yyy

(3.21)

The first quadratic form gets integrated out in equation (3.20). We note that by

using the Sherman-Woondbury matrix inversion formula

(βIP + W(αIQ)WT )−1 =
1

β
IP −

1

β2
W

(
1

β
WTW +

1

α
IQ

)−1

WT (3.22)

Hence giving the result.

3.3.4.1 Latent space marginalisation

The following proposition gives the distribution of the data when the latent space

variables have been marginalised.

Proposition 3.5. Let tn,: ∼ N (000, IQ), then under the assumptions of equation

(3.19), after marginalising t, the n-th row of Y follows a multivariate normal

given by f (zzz|W) = N (zzz|000,WWT + β−1I)

Proof. The n−th row of Y is given by yyy = Wxxx where xxx = tTn,:. We also have that

f(yyy|W,xxx) = N (yyy|Wxxx, βIP ). Applying lemma 3.20 completes the proof.

Proposition 3.5 yields the following negative log-likelihood
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Lw(Y) =
NP

2
(log(2π|βIP + WWT |) +

N−1∑
n=0

YT
n,:(βIP + WWT )−1Yn,: (3.23)

Fitting the model would amount to maximising the above with respect to the

linear map. Tipping and Bishop [1999] show that the above is maximised when

W = UQ(ΣQ − βIP )
1
2 (3.24)

where

UQ =


∣∣∣ ∣∣∣ ....

∣∣∣
uuu0 uuu1 .... uuuQ−1∣∣∣ ∣∣∣ ....

∣∣∣
 , ΣQ =



σ0 0 0 .... 0

0 σ1 0 .... 0

. . .

. . .

0 0 0 σQ−1


Here σq,uuuq form the eigenvalue pair of 1

P
YTY with σq ≥ σq+1.

3.3.4.2 Linear map marginalisation

The following proposition gives the distribution of the data when the linear map

has been marginalised.

Proposition 3.6. Let Wp,: ∼ N (000, IQ) then the assumptions of equation (3.19),

after marginalising W the p-th column of Y follows a multivariate normal given

by f (zzz|t) = N (zzz|000, ttT + β−1IN).

Proof. Let wwwp be the p-th row of W expressed as a column vector, then we have

that the p-th column of Y is given by yyy = twwwp. We then have that f(yyy|t,wwwp) =

N (yyy|twwwp, βIN). Applying lemma 3.20 completes the proof.

Proposition 3.6 yields the following negative log-likelihood

Lt(Y) =
NP

2
(log(2π|βIN + ttT |) +

P−1∑
p=0

YT
:,p(βIN + ttT )−1Y:,p (3.25)

Fitting the model would amount to maximising the above with respect to the

latent space variables. Lawrence [2005] show that the above is maximised when

t = VQ(ΛQ − βIN)
1
2 (3.26)
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where

UQ =


∣∣∣ ∣∣∣ ....

∣∣∣
vvv0 vvv1 .... vvvQ−1∣∣∣ ∣∣∣ ....

∣∣∣
 , ΣQ =



λ0 0 0 .... 0

0 λ1 0 .... 0

. . .

. . .

0 0 0 λQ


Here λq, vvvq form the eigenvalue pair of 1

N
YYT with λq ≥ λq+1.

3.3.4.3 Discussion

Propositions 3.5 and 3.6 provide a dual treatment of the same model. Equation

(3.24) treats one data sample Yn,: ∈ RP as a multivariate Gaussian. Its co-

variance structure is modelled after the inner product YTY of the data and the

dimensionality reduction comes from the principal subspace of the data as shown

in equation (3.24). This type of model is called probabilistic principal component

analysis (PPCA). By sending the variance β to zero, we note that we recover the

traditional PCA solution in equation (3.24).

Equation (3.26) on the other hand treats one feature Y:,p ∈ RN as a multivari-

ate Gaussian. Its covariance structure is modelled after the outer product YYT

of the data and the dimensionality reduction comes from the principal subspace

of the features as shown in equation (3.26).

Moreover, marginalising out the map allows us to recover the latent space

position of each data point. Note that equation (3.26) is the likelihood of a multi

output Gaussian process where the covariance structure for each component fp is

given by Kp(ttt, sss) = tttTsss and where one has a diagonal i.i.d Gaussian noise model

with variance β. We can extend this model to allow Kp(ttt, sss) to be a general

covariance kernel. This yields a Gaussian Process Latent Variable model.

3.3.5 Back Constrained GPLVM

The geometry of the latent space is guided by how well the latent point covari-

ance matrix K + β−1I matches the data covariance YYT as shown in equation

(3.18). Assuming that we are using an isotropic kernel, the data examples that

are close together in data space will have latent point positions that are also close

together. However, it is not guaranteed that latent point positions that are close
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together will generate data examples that are also close to each other. Lawrence

and Quiñonero-Candela [2006] propose to modify the objective function in equa-

tion (3.18). The new model is called a Back-Constraind GPLVM.

Let φ be an isotropic kernel and let v ∈ Q× N. We replace the latent space

position by one that is forced to be close to each other via the following kernel

projection

sssn =

(
N−1∑
j=0

v0,jφ(tttm, tttj), ...,
N−1∑
j=0

vQ−1,jφ(tttm, tttj)

)
(3.27)

and instead maximise

L(t, θ,v) =
PN

2
log(2π) +

P

2
log |K(s, s)|+ 1

2
tr(K(s, s)−1YYT ). (3.28)

with respect to t, θ,v. This regularises the objective function by introducing

a local distrance preserving term. This is referred to as a back constraint by

Lawrence and Quiñonero-Candela [2006].

3.3.6 Variational GPLVM

We have shown in the section 3.3.4.2 that a GPLVM can be thought of a latent

noise model where the mapping has been marginalised over. We now want to

marginalise over the latent space variables of the GPLVM.

Let Y ∈ RN×P be data coming from a noise corrupted zero mean GPLVM

with covariance operator K : RQ × RQ → R.

Y = F + η (3.29)

where η ∈ RN×P is the observation error with ηi,j being i.i.d Gaussians centred

at zero and with variance β−1; and F ∈ RN×P are realisation from a multi-output

Gaussian Process mapping the latent space t ∈ RN×Q onto the data space.

Our aim is to perform the following marginalisation

p(Y) =

∫
p(Y|t)p(t)dt (3.30)

with the following priors and variational distribution on the latent space:
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p(t) =
N−1∏
n=0

N (tttn|000, IQ)

Q(t) =
N−1∏
n=0

N (tttn|µµµn,Σn)

(3.31)

That is, the rows of t are assumed to be independent. Using Jensen’s inequality,

this becomes:

L(Q) =

∫
log (p(Y|t))Q(t)dt−

∫
log

(
Q(t)

p(t)

)
Q(t)dt

=
P−1∑
p=0

∫
log (p(Y:,p|t))Q(t)dt−

∫
log

(
Q(t)

p(t)

)
Q(t)dt

(3.32)

This integral consists of two parts

1.

I1 =

∫
log

(
Q(t)

p(t)

)
Q(t)dt

=
N−1∏
n=0

∫
log

(
N (tttn|µµµn,Σn)

N (tttn|000, IQ)

)
N (tttn|µµµn,Σn) dtttn

=
N−1∏
n=0

[
−Q

2
− 1

2

(
µTnµn + tr(Σn)

)
− Q

2
log |Σn|

] (3.33)

which we compute in section 3.3.7. Note that this is the K-L divergence

from Q(t) to p(t), which we denote by DKL(Qt||pt)

2.

I2 =
P−1∑
p=0

∫
log (p(Y:,p|t))Q(t)dt

≥
P−1∑
p=0

log

[∫
exp

(
EQ(t)

[
logN

(
Y:,p|µµµMN , β

−1IN
)])

p(Z:,p)dZ:,p

]
− P × β

2
EQ(t) [tr (KNN −QNN)]

(3.34)

which we caculate and describe in section 3.3.8. Here, we have introduced

inducing points Z, which are draws from the same distribution as F.
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3.3.7 Computing I1

Using the distributions in equation (3.31) and setting tttn = ttt, µµµn = µµµ and Σn = Σ

for ease of notation, we get that

∫
log

(
N (ttt|µµµ,Σ)

N (ttt|000, IQ)

)
N (ttt|µµµ,Σ) dttt

=

∫ [
−1

2
(ttt− µµµ)TΣ−1(ttt− µµµ)− 1

2
tttTttt− Q

2
log |Σ|

]
N (ttt|µµµ,Σ) dttt

=− 1

2
tr(IQ)− 1

2

(
µTµ+ tr(Σ)

)
− Q

2
log |Σ|

(3.35)

3.3.8 Computing I2

Recall that for a multi output Gaussian Process that is corrupted by noise, the

likelihood is given by p(yyy|ttt) = N (yyy|000,Kp + β−1IN). Hence we have that

I2 = −
P−1∑
p=0

EQ(t)

[
1

2
YT

:,p(Kp + β−1IN)−1Y:,p + log

(√
|(2π(Kp + β−1IN)|

)]
.

(3.36)

with EQ(t) denoting an expectation with respect to the variational distribution

on t and Y:,p denoting the p-th column of the data. t appears in the inverse of

the covariance martix and hence the first integral is hard to compute. Titsias

and Lawrence [2010] use the method described by Titsias [2009] where a set of

M inducing variables Z is used to facilitate the computation of equation (3.32).

Z ∈ RM×P is assumed to be realisations of the same Gaussian process as the

GPLVM at latent point locations s ∈ RM×Q. The DAG below introduces an

augmented model where the values of the Y depend on the values of the inducing

points.

Y:,pF:,p

t

Z:,p

s

For ease of notation let zzz = Z:,p, fff = F:,p and yyy = Y:,p. We approxi-

mate p(yyy|t, s) with p(yyy|t). Under the above DAG, we have that p(yyy|t, s) =∫ ∫
p(yyy|fff)p(fff |zzz, t)p(zzz|s)dzzzdfff . Omiting the dependence on the latent space pa-
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rameters, and by using the variational distribution Q(zzz,fff) = p(fff |zzz)φ(zzz) on zzz

and fff , we have that:

log p(yyy)

= log

∫ ∫
p(yyy|fff)p(fff |zzz)p(zzz)dzzzdfff

≥
∫ ∫

log

(
p(yyy|fff)p(fff |zzz)p(zzz)

p(fff |zzz)φ(zzz)

)
p(fff |zzz)φ(zzz)dzzzdfff

=

∫
φ(zzz)

[∫
log (p(yyy|fff)) p(fff |zzz)dfff +

∫
log

(
p(zzz)

φ(zzz)

)
p(fff |zzz)dfff

]
dzzz

=

∫
φ(zzz)

[∫
log (p(yyy|fff)) p(fff |zzz)dfff + log

(
p(zzz)

φ(zzz)

)]
dzzz

(3.37)

Note that, for the first integral, we have that p(yyy|fff) = N (yyy|fff, β−1I) and p(fff |zzz) =

N (fff |µµµMN ,KNN −QNN). The second distribution is a posterior Gaussian where

• KNN = K(t, t)

• KMM = K(s, s)

• KT
NM = KMN = K(s, t)

• QNN = KNMK−1
MMKMN

• and µµµMN = KNMK−1
MMzzz.

We now perform the inner integration:

∫
log (p(yyy|fff)) p(fff |zzz)dfff

=

∫ [
−β

2
(yyy − fff)T (yyy − fff) +

N

2
log

(
β

2π

)]
N (fff |µµµMN ,KNN −QNN)dfff

=

∫
−β

2

[
yyyTyyy − 2fffTyyy + fffTfff

]
N (fff |µMN ,KNN −QNN)dfff +

N

2
log

(
β

2π

)
=− β

2

[
yyyTyyy − 2µµµTMNyyy + µµµTMNµµµMN + tr(KNN −QNN)

]
+
N

2
log

(
β

2π

)
=N

(
yyy|µµµMN , β

−1IN
)
− β

2
tr(KNN −QNN)

(3.38)

Substituting this in equation (3.39), we have that
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log p(yyy|t, s)

≥
∫
φ(zzz)

[
N
(
yyy|µµµMN , β

−1IN
)
− β

2
tr(KNN −QNN) + log

(
p(zzz)

φ(zzz)

)]
dzzz

=

∫
φ(zzz)

[
log

(
N (yyy|µµµMN , β

−1IN) p(zzz)

φ(zzz)

)]
dzzz − β

2
tr(KNN −QNN)

(3.39)

Putting this inside the integral with respect to ttt

∫
log (p(yyy|t))Q(t)dt

=

∫
log

(∫ ∫
p(yyy|fff)p(fff |zzz, ttt, s)p(zzz|s)dzzzdfff

)
Q(t)dt

≥
∫ (∫

φ(zzz)

[
log

(
N (yyy|µµµMN , β

−1IN) p(zzz)

φ(zzz)

)]
dzzz − β

2
tr(KNN −QNN)

)
Q(t)dt

=

∫
φ(zzz)EQ(t)

[
log

(
N (yyy|µµµMN , β

−1IN) p(zzz)

φ(zzz)

)]
dzzz − β

2
EQ(t) [tr(KNN −QNN)]

(3.40)

Using variational calculus, we find that φ(zzz) needs to be proportional to

EQ(t)

[
logN

(
yyy|µµµMN , β

−1IN
)]
p(zzz).

We also want φ(zzz) to be a probability distribution, and hence we can set it to be

p(zzz). By reversing the jensen inequality we get that:

∫
φ(zzz)EQ(t)

[
log

(
N (yyy|µµµMN , β

−1IN) p(zzz)

φ(zzz)

)]
dzzz

≤ log

(∫
exp

{
EQ(t)

[
log
(
N
(
yyy|µµµMN , β

−1IN
)
p(zzz)

)] }
p(zzz)dzzz

) (3.41)

3.3.9 Final Bound

The final lower bound for p(Y) is given by

L(Q)

=
P−1∑
p=0

log

[∫
exp

(
EQ(t)

[
logN

(
Y:,p|µµµMN , β

−1IN
)])

p(Z:,p)dZ:,p

]
− P × β

2
EQ(t) [tr (KNN −QNN)]−DKL(Qt||pt)

(3.42)

44



Note that now, t does not appear inside the inverse of a matrix inside the expec-

tation with respect to Q(t). Instead, when using a squared exponential kernel

such as

k(ttt, ttt′) = σ2 exp

(
−1

2

Q−1∑
q=0

αq(tq − t′q)2

)
the expectation with respect to Q looks like the convolution of two Gaussians,

which has a closed form expression. Moroever, the integration of the exponential

with respect to Z:,p is one that can be computed as it will take the form of inner

products integrated against a Gaussian. The exact form of this integral is given

in Titsias and Lawrence [2010].

3.3.10 Summary

We have thus found a lower bound for
∫
p(Y|t)p(t)dt by introducing new real-

isations of the Gaussian Process. Note that these realisations and their latent

space positions s need to be found. This is done by optimising the lower bound

with respect to these latent spoint parameters. The final expression will also be a

function of the variational means µµµn and Σn. They parametrise the distribution

on t and act as a proxy for the point estimates on t made in the regular GPLVM.

It is worth mentioning that (3.42) is a lower bound on p(Y|s) as opposed to

being lower bound for p(Y). However, the literature treats s as hyperparameters

that need to be learned. Strictly speaking, s are not random variables. They are

parameters that allow us to approximate
∫

log(p(Y|t))Q(t)dt.
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3.4 Radial Basis Function Interpolation

We use a Radial Basis Function (RBF) interpolant in Chapter 6 to turn an

intractable integral into a tractable one. We first introduce RBF kernel interpo-

lation and analyse the interpolation error. Using results from functional analysis

and material from Fröhlich [2013], we then give error estimates for the approxi-

mation we make in the marginalisation in (6.7).

3.4.1 Setting

Consider a function f : Ω ⊂ Rd → R which we wish to approximate using Radial

Basis Functions

φl(xxx) =
1√

2πv2
exp

(
−‖x

xx− pppl‖2

2v2

)
(3.43)

We assume that we know the value of the function f over a set X := {ppp0, ..., pppL−1 :

pppi 6= pppj∀i 6= j}. Usually, interpolating f using φl would require us to solve the

system given by



φ0 (ppp0) . . . φL−1 (ppp0)

. . .

. . .

. . .

φ0 (pppL−1) . . . φL−1 (pppL−1)





w0

.

.

.

wL−1


=



f(ppp0)

.

.

.

f(pppL−1)


(3.44)

The interpolant will then be given by

If (xxx) =
L−1∑
l=0

wl√
2πv2

exp

(
−‖x

xx− pppl‖2

2v2

)
(3.45)

3.4.2 Interpolation error estimate

In Interpolation Theory one is interested in controlling the maximum difference

between the interpolant and the function f within a bounded domain Ω, i.e,

one wants to bound maxx∈Ω |f(xxx) − Ip(xxx)|. We have the following Lemma from

Fröhlich [2013]

Lemma 3.7. Let Ω be a cube in Rd and let If be the radial basis function inter-

polant through a set X := {ppp0, ..., pppL−1} ⊂ Ω of a smooth, differentiable function
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f . Then we have that

max
x∈Ω
|f(xxx)− Ip(xxx)| ≤ exp

(
− log(hΩ,X )

hΩ,X

)
‖f‖φ,Ω

where

‖f‖2
φ,Ω =

1

(
√

2π)d

∫
Ω

f̂ 2(ω)

Îf (ω)
dω

is constant with Where f̂ and Îf denote the Fourier transform of f and If re-

spectively, and

hΩ,X := sup
xxx∈Ω

min
ppp∈X
‖xxx− ppp‖2

Remark 3.8. Fröhlich [2013] requires that the function to be interpolated lies

in the so call native space of the interpolant. For our purposes, this requires for

f(xxx) := p(M|u)

∣∣∣∣
xxx

to satisfy ∫
Ω

f̂ 2(ω)

Îf (ω)
dω ∈ R

. We hence require that the Fourier transform of f decays at most as fast as that

of a Gaussian. Let Ω be a square bounded domain on R2 and let Γ ⊂ R2 be the

boundary of some open set in Ω. Define Vu to be given by

Vu(xxx) = min
yyy∈Γ
‖xxx− yyy‖ (3.46)

Then for

f :R2 → R

xxx 7→ exp(−Vu(xxx))
(3.47)

We have that f behaves like a Gaussian at its tails. This ensures that the Fourier

transform decays like a Gaussian at infinity, gauranteeing that f lies in the Native

space of the RBF interpolant.

What interests us ins Lemma 3.7 is the behaviour of hΩ,X .

Lemma 3.9. There exists a sequence Xi s.t. limi→∞ hΩ,Xi
= 0

Proof. Consider a general X . We define the following subset of Ω

Bl(X ) = {xxx ∈ Ω : ‖xxx− pppl‖2 = min
ppp∈X
‖xxx− ppp‖2} (3.48)

which contains all the elements of Ω which is in the maximum range of some

pppl ∈ X . This often referred to as the Voronoi Cell associated with the site pppl. We

set
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‖Bl(X )‖ := sup
x∈Bl

‖pppl − xxx‖ (3.49)

Then we have that

hΩ,X = max
l=0,..,L−1

‖Bl(X )‖ (3.50)

We define a neighbourhood structure on the elements of X . Let pppl ∈ X . Then

pppk ∈ X is a neighbour of pppl if there exists a curve mmm : [0, 1]→ Rd with mmm(0) = pppl

and mmm(1) = pppk s.t. mmm ∩ Bl ∩ Bk = mmm. Equivalently, pppl ∼ pppk if Bk ∩ Bl 6= ∅. Let

di = maxp∼q∈Xi
‖ppp− qqq‖. Consider now pppl ∼ pppk. From the definition of a Voronoi

cell we have that for xxx ∈ Bk(Xi) and yyy ∈ Bk(Xi) ∪ {pppk},

‖pppk − xxx‖ < ‖pppl − yyy‖

setting yyy = pppk

< di ⇒

‖Bk(Xi)‖ < di

(3.51)

For each such pair of neighbours, we choose a curve such that ‖mmm‖2 =

‖pppl − pppk‖2 and pick a point halfway on the curve. We construct Xi+1 to be the

union of Xi and the points that we just created out of the neighbouring structure

of Xi.

As Ω is a box in Rd, we can define X0 to be the set of points lying on the

corners of Ω. Under the above construction rule, the new points are added on

lines joining adjacent elements of X0, as illustrated below.

X0

B0(X0)B1(X0)

B2(X0)B3(X0)

B0(X0)B1(X0)

B2(X0)B3(X0)

X1

In fact, with X0 described above, Bl(Xi) is a square domain for every l and

every i and each new point is added on the corners of Bl(Xi). For such a construc-

tion, we have that d0 is the distance between diagonal neighbours. Moreover, for

all p ∈ X0 we have that:

d0 = max
q:q∼p∈X0

‖ppp− qqq‖2
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As we are adding new points that lie halfway between neighbours we necessarily

have that di+1 = 1
2
di yielding

‖Bl(Xi)‖ ≤
1

2i
d0 ∀l⇒ hΩ,Xi

≤ 1

2i
d0 (3.52)

Hence we have created a sequence whose limit is zero as i goes to infinity.
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Chapter 4

Mathematical representation of

shape

4.1 Introduction

PsA damage causes the shape of bones to change through erosion, fusion and

proliferation. It is thus important to identify a representation for bone shapes

which allows us to detect these shape changes. In this chapter, we describe how

we can use statistical models of shapes for this purpose. In particular, we show

how one can build latent shape representations for shapes. These treat shapes as

realisations from a random variable that is in turn the result of a hidden process.

Currently, the most popular latent space representation involves a linear map

from the latent space to the curve space as originally introduced by Cootes et al.

[1995]. We argue that a move towards more general mappings should be favoured

as this captures a wider varieties of shapes. This can be easily done by instead

using a latent space representation that is characterised by a GPLVM (Lawrence

[2005]) such as the one used by Prisacariu and Reid [2011] to set a prior on the

Mumford Shah model.

Section 4.2 is dedicated to introducing shapes as closed curves and defining

a family of shapes in terms of deformations. We then describe in section 4.3

how by treating a discretised curve as a point cloud, one can use dimensionality

reduction techniques to build a statistical model of a shape. In particular, we

introduce and describe the PCA representation used in the Active Shape Model

(ASM) by Cootes et al. [1995]. In section 4.3.2, we use the dual representation of

PCA described in section 3.3.4 to extend this representation to include non-linear

maps from the latent space by using a GPLVM. We then demonstrate the use of
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GPLVMs as latent space shape representation models in section 4.4.

4.2 Shape Definition

Kendall [1984] describes shapes as being geometric information that is invariant

to similarity transformations. Building on this notion, two objects have the same

shape if they can be translated, rotated or scaled to match one another exactly.

Hence, when speaking of a family of shapes, we wish to isolate the effect of such

transformations from the definition.

If two distinct shapes come from the same family, then after undergoing an

alignment process through some similarity tansform, they would still differ from

each other. The size of this difference is what characterises the family of shapes.

At this point, one shape can be mapped exactly onto the other by some non-

linear transformation T . We define a family of shapes as shapes that can be

transformed onto each other through some small deformation T , after having

undergone some initial alignment. The range of shapes that is admissible within

a family is then captured by some constraint on T . This could, for example, be

a constraint on the norm of T .

One way to characterise this family of shapes is to model T as a deformation

that is applied on R2. I.e one would induce a diffeomorphic flow that transforms

space in a global way. Younes [2010] explores how diffeomorphisms can be used in

image analysis. These diffeomorphisms can be built by inducing a time-dependent

flow field. These methods are popular in the field of image registration, where

one tries to align one image onto another. When modelling T in such a way, the

family of shapes is then characterised by a norm that one would set on this flow

field. This norm is usually a time integral of a sobolev norm on the flow field

that defines the diffeomorphism.

In general, shapes appearing in images are the boundary of some open domain

O which is a subset of the image function domain. As we are dealing with

bones, which have a smooth boundary, we can treat their shapes as being smooth

closed non overlapping curves. As we want to remove the effect of similarity

transformations, we can force them to be centered around zero. More formally,

shape are functions coming from the set
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C = {mmm ∈ C1
(
[0, 1];R2

)
: mmm(0) = mmm(1), mmm(t) 6= mmm(s) for 0 < s 6= t < 1

and

∫ 1

0

mmm(t)dt = (0, 0)}
(4.1)

This interpretation now provides us with a new characterisation of shape families.

Given a template shape m̄mm ∈ C we can model the small deformation T through a

curve ζζζ ∈ C. Applying T on m̄mm would be equivalent to performing the operation

m̄mm+ζζζ. The norm we would then use on T would be an integral curve norm on ζζζ.

4.2.1 Shape correspondence

As we have previously described, we can check whether two shapes are from

the same family if, after having undergone some alignment they differ from each

other by a small amount. Two curves exhibit shape correspondence if they are

in alignment as well as bein in paramteric correspondence.

Let two curves mmm1,mmm2 represent two distinct members from the same shape

family. Without loss of generality, we assume that they are of unit arc length.

They are in alignment if for an arc length parametrisation of the curves, there

exists t ∈ [0, 1) for which ‖mmm1(s) − mmm2(s + t mod 1)‖2 is minimised for any

s ∈ [0, 1]. Here, t plays the role of an offset at which we start measuring the arc

length. mmm1 and mmm2 are in parametric correspondence if they have the same

geometry at any s along their arc length. The geometry of a curve is captured

by its derivatives and one can quantify it using a function of the form

G ◦mmm =
R∑
r=0

gr ◦
dr

dsr
mmm. (4.2)

where G is a linear combination of derivative operators gr of order r. Parametric

correspondence means that if one were to sample a point from mmm1 and mmm2 at the

same arc length, then the points would correspond to each other. Hence for an

aligned curve that is in parametric correspondence, we have that ‖mmm1(s)−mmm2(s)‖2

is minimised for all s ∈ [0, 1].

In this thesis we align pairs of curves as follows. First the distance transform

given by

D(xxx) = min
yyy∈mmm1

‖xxx− yyy‖2
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of a template curve mmm1 is found. Then the following minimisation is performed

with respect to a similarity transform T

T∗ = arg min
T

∫ 1

0

D(T ◦mmm2(s))ds.

T∗◦mmm2 andmmm1 are now in alignment. One can then use the geometric information

of aligned curves to put them in parametric correspondence. Campbell and Kautz

[2014] define an energy that takes the same form as equation (4.3) that, when

minimised, gives a new parametrisation which puts aligned curves in parametric

correspondence.

E(t) = ‖G ◦mmm1(s)− G ◦mmm2((s+ t) mod 1)‖2 (4.3)

We use a similar type of energy minimisation approach in (2.12) to set our data

in parametric correspondence.

4.3 Statistical shape models

The previous definition we have given about shape families uses a norm to mea-

sure how far away shape examples are from each other and then choosing how big

this norm should be. A more practical approach would be to fit a distribution

on a data set of similar shapes and use this distribution to define the central

tendency of this shape family.

From now on, we treat shapes as closed C1 curves. Given a traning set of

shape outlines, we model them as curves that we put in shape correspondence.

We describe this process in section 2.3.2. We then discretise each curve so that

for the training data Y = (yyy0, ..., yyyN−1)T we have that yyyi = (yyy
(0)
i , .., yyy

(di)
i ), where

yyy
(k)
i = (xk, yk) is the coordinate of the k-th point on the discretised curve. The

aim of statistical shape modelling is to find a multivariate distribution f from

which we can sample new shapes.

In the field of statistical shape modelling, the concept of a shape family is

defined by the observed data. The most common approach is to model the

deviation away from a template shape within that family of shapes. The extent by

which shapes are allowed to deviate from each other is learned from the observed

data. One could then say that the concept of a shape family is defined by the

observed examples from this family.
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4.3.1 Linear Shape Model

The simplest way to model deviations of shapes away from each other is through

a linear combination of orthogonal vectors. Cootes et al. [2001] does this by

modelling shape as a mean shape to which orthogonal variation modes are added.

The Linear Shape Model is characterised by

yyy = ȳyy +

Q−1∑
q=0

ωqvq (4.4)

where ȳyy is the mean shape and vk are the Q orthogonal variation modes. Given

a training set Y, vq are the eigenvectors of 1
N

(Y− Ȳ)T (Y− Ȳ).

That is, Cootes et al. [2001] performs a dimensionality reduction on Y via its

principal component analysis. One can use the eigenvalues of 1
N

(Y−Ȳ)T (Y−Ȳ)

as a proxy to the variance allowed in the weights ωq. However, the classical

formulation of the ASM does not provide us with a distribution over the space of

shapes. We provide a probabilistic version of ASM by adopting the formulation

of section 3.3.4 where

YT = WtT + η (4.5)

for some diagonal Gaussian noise η with variance β. We also set a Gaussian prior

on the rows of t which as zero mean and a diagonal covariance given by αIQ.

Recall that we show in section 3.3.4 that PCA is the result of marginalising the

latent space in the above linear relationship. Lemma 3.4 provides the following

expression for the resulting distribution.

f(yyy|W) = N (yyy|ȳyy, αWWT + βIP )

where ȳyy is the empirical mean of Y. After maximising the induced likelihood

with respect to W and sending the variance of the observation error η to zero

one gets that the linear map W is given by the matrix of principal components

of Y. One then recovers the ASM from equation (4.5) where the rows of Y are

expressed as a linear combination of the orthogonal variation modes described in

equation (4.4).
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4.3.2 Latent Space Representation through GPLVMs

Interpreting ASM as probabilistic PCA allows us to generate new shapes via sam-

pling as we have a well-defined distribution over the space of shapes. However,

what we are seeking is a distribution that is indexed by the latent space position

of each shape example. We argue our case for this requirement in section 6.2.1.

Lawrence [2005] provides a dual treatment of the model in equation (4.5) that

recovers a distribution that is dependent on the latent position.

In fact, as we have shown in section 3.3.4.1 and as argued by Lawrence [2005],

this dual treatment is easily extended to treat the shape yyy as a realisation of a

GPLVM. GPLVMs have two advantages over a PCA representation. Firstly, the

distribution is expressed as a posterior Gaussian that is dependent on the latent

point position. Secondly, the linear relationship between observed data and la-

tent space is relaxed to allow for more general mappings. GPLVMs can also be

extended to set a prior over the latent space, hence adopting a fully Bayesian

treatment of latent space models as described in section 3.3.6.

For completeness, we summarise the content of section 3.3 when applied to

our curve dataset Y. We say that Y is the realisation of a GPLVM if each row of

the centered data Ŷ = Y−ȳyy is a noise corrupted realisation of a Gaussian Process

with covariance operator given by k(·, ·) : RQ × RQ → R and whose indexing set

locations or latent point positions need to be estimated. Here, ȳyy ∈ RN×2D is

the matrix with rows equal to the mean of Y. As is customary in the Gaussian

Process literature, we use a Gaussian noise model with a diagonal covariance

matrix variance 1
β
IN . The data likelihood is given by:

f(Ŷ) =
2D−1∏
d=0

1√
det
(

2π
(
K + 1

β
IN

)) exp

(
−1

2
Ŷ
T

:,d

(
K +

1

β
IN

)−1

Ŷ:,d

)
(4.6)

where K is a symmetric positive matrix with entries given by k(ttti, tttj). The model

is fitted by optimising this with respect to the latent point positions and the co-

variance operator hyper-parameters.

Given the latent point positions t ∈ RN×Q for the training data Y, the shape

generation process for a GPLVM model takes the form of a posterior Gaussian

distribution f(yyy∗|ttt∗, t,Y) with mean and variance given by
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Kpost(ttt
∗) = k(ttt∗, ttt∗)− k(t, ttt∗)T

(
K +

1

β
IN

)−1

k(t, ttt∗)

µµµpost(ttt
∗) = ȳyy + k(t, ttt∗)T

(
K +

1

β
IN

)−1

Ŷ

(4.7)

where k(t, ttt∗) = [k(ttt0, ttt
∗), ..., k(tttN−1, ttt

∗)] ∈ RN .

4.3.3 Discussion

The shape generation process for both the GPLVM model and the PPCA model

involves adding a mean to some variation modes. In the case of the PPCA repre-

sentation in equation (4.4), the variation modes consists of the basis elements for

the data space. Equation (4.7) on the other hand uses a basis expansion given by(
K + 1

β
IN

)−1

Ŷ as the variation modes. The weights for a new example is then

given by how similar the new data example is to the already observed examples

through the covariance k(ttt∗, t).

Another interpretation of the GPLVM model comes from the fact that pre-

dicting unseen examples using Gaussian processes is analogous to using basis

functions to learn a general function mapping. Indeed, due to their properties,

covariance functions behave as basis functions in Reproducing Kernel Hilbert

spaces, and hence can be used to approximate functions. The data examples

then serve as weights for the basis functions.

Both of the models we have described so far do not make any explicit as-

sumptions about the space of shape families. Instead their properties are learned

from data. In particular, when using a GPLVM to represent a discretised curve,

the samples produced from the posterior distribution in equation (4.7) are not

necessarily smooth curves. They, in fact take the form of a curve that can be

thought of as white noise. One way to get around this problem is to use a non

parametric curve representation as the data Y. For example, we could express

curves using an elyptic Fourier representation given by

mmm(s) =

(
Na−1∑
j=0

aj cos (2jπs) + bj sin (2jπs) ,
Na−1∑
j=0

cj cos (2jπs) + dj sin (2jπs)

)
(4.8)

and then use a GPLVM or a PCA representation on the Fourier coefficients

yyy = (a0, ..aNa−1, b0, ..bNa−1, c0, ..cNa−1, d0, ..dNa−1) instead of on the curve points.
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Even in this case, we would require the higher Fourier frequencies to be small so

as not to get curves samples that are not smooth. We choose to model a point

cloud directly as it is more useful for the bone identification algorithm that we

later present in Chapter 6.

Even though the GPLVM gives us a posterior distribution from which we can

sample curves, we are not interested in these samples per se. Instead, we consider

the posterior mean to be the shape that is generated at the corresponding latent

position. The posterior variance then gives us a measure of how confident we are

that the shapes being generated is one that comes from our shape family.

4.4 Shape modelling through GPLVMs

The main purpose of a shape model in this thesis is the role of shape prior in

the bone identification algortithm that we present in Chapter 6. As we later de-

scribe, the GPLVM prior will take the form of a generative shape model. Hence,

we want the shape generation process to capture as much variation as is allowed

within the shape family it is modelling.

We investigate three types of generative GPLVM models:

(a) a shared latent space for different shape classes,

(b) an individual latent space for each shape class, and

(c) a latent space for a compound object.

In particular, we show that when it comes to modelling a single shape, it is better

for our purpose to have one latent space per class as opposed to one latent space

for multiple shape classes.

We show the shape generation process for the three different models we have

described in Figures 4-2, 4-3 and 4-4. In each figure, the middle and right plots

show the posterior variance given by equation (4.7) using a colour plot. The right-

most figure shows the most dominant latent space dimension while the middle

plot shows the next two dominant dimension. We explain how the dimensions

are sorted in section 4.4.1.

The latent space plot on the right shows how the variance changes as one

moves through the first two sorted dimensions while the next two dimensions are
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Figure 4-1: The Figures shows a bar plot of the sorted lengthscales α−1
q for

Variational GPLVMs that uses the kernel given in equation (3.16) to model the
bone shapes of the right index finger when we set the latent space dimension
Q = 10.

kept constant, the value of which is given by the location of the bold black cross

in the middle plot. The same applies for the middle plot. The left most plot

show the shape generated at the latent point positions given by the black cross

in the latent space plots.

We use Variational GPLVMs in all of our experiments. The reason we do so is

that it allows us to choose the dimension of the latent space as we describe next.

It is worth at this point to mention what this means for our shape generation pro-

cess. In a Variational GPLVM, we marginalise out ttt to fit the model through an

approximation. This approximation yields values for the hyperparameters that

would not necessarily be optimal if we were able to optimise p(Y|t)p(t) directly.

From a modelling point of view though, we still have that p(Y|t) is a Gaussian

Process. We hence maintain that p(yyy∗|ttt∗,Y, t) should have the distribution given

by equation (4.7). In our case, the point values we choose for t are prior means

that we recover from fitting the Variational GPLVM.

4.4.1 Choosing the latent space dimension

The latent space dimension is to be chosen. Using the covariance kernel we de-

scribe in equation (3.16), we are able to sort the dimensions in order of importance

through the length scales. Large values of αq means small contributions of the
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Figure 4-2: The figure shows a Variational GPLVM modelling the MC in the
right index finger. The curve points were upsampled from the hand drawn curve
outlines using a spline representation. The latent space dimension for each case
is 4. The right-most plot shows how the posterior variance varies with the two
most dominant dimensions of the latent space while the middle one shows the
same relationship but with the two least dominant dimensions.

q-th dimension of the latent space to the variability of the model.

In practice, we choose a large latent space dimension and look at the length

scale plots. We choose the dimension based on how fast the lengthscales decay.

Figure 4-1 shows the values of the length scale when we set Q = 10. It can be

seen that the lengthscales start to level from dimension 5 onwards. This suggests

that latent space dimension of Q = 4 is warranted.
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Figure 4-3: The figure shows a Variational GPLVM modelling the four bones
in the right index finger. The curve points were upsampled from the hand drawn
curve outlines using a spline representation. The latent space dimension for each
case is 4. The right-most plot shows how the posterior variance varies with the
two most dominant dimensions of the latent space while the middle one shows
the same relationship but with the two least dominant dimensions.

4.4.2 Single Bone outline data

We use a Variational GPLVM to model the outline of a single bone. For the

shared latent space model, the data takes the form of all the outlines of the right

index finger bones that have been aligned. As for the single latent space models,

the data consists of the outlines from only one bone class. We use the process

described in section 4.4.1 to choose the latent space dimension for each model.

The models are fitted using a Tensorflow (Abadi et al. [2015]) implementation

by the University of Bath Centre for the Analysis of Motion, Entertainment Re-

search and Applications (CAMERA) group.
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Figure 4-4: The figure shows a Variational GPLVM modelling the right index
finger. The curve points were upsampled from the hand drawn curve outlines
using a spline representation. The latent space dimension for each case is 4.
The right-most plot shows how the posterior variance varies with the two most
dominant dimensions of the latent space while the middle one shows the same
relationship but with the two least dominant dimensions.

We show the results of the shape generation process for the single latent space

model in Figure 4-2. The black dots on the latent space plots represent the mean

of the prior given in equation (3.31) that we set on the latent space positions for

each data point while the white stars are the inducing points Z that allow use to

marginalise out the latent point position in section 3.3.6.
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We do not plot the inducing points in the shared latent space models in Figure

4-3 but instead show only the mean of the latent point positions for each data

example. The MC examples are shown as blue dots; the PP as cyan stars; the

MP as green dots; and the DP as black crosses 1. It can be seen that the first two

dominant dimensions perform some form of clustering on the data examples. As

is to be expected, the DP and the MP are close together in the latent space due

to their similar sizes. As the MC is the biggest bone in the right index finger, it

lies further away from the other classes in the latent space.

We find that the shared latent space model struggles to perform the shape

generation task that we are interested in. In particular, Figure 4-3 shows that

it cannot generate a DP from a latent point position that corresponds to a DP

example. It is therefore preferable to use one latent space representation per

shape class.

To understand why this is the case, recall that in equation (4.7) the shape

generation process involves modelling a posterior perturbation given by

k(ttt∗, t)

(
K +

1

β
IN

)−1

Ŷ

to which the mean shape is added. The mean shape of one bone in the case of

the dataset consisting of the three phalanges and the meta carpal will not nec-

essarily represent the mean shape of any one class. Hence, generating a sensible

bone shape depends on the ability of k(ttt∗, t)
(
K + 1

β
IN

)−1

Ŷ to capture varia-

tions away from this mean shape.

Moreover, the variation that needs to be added to generate a shape at latent

point position ttt∗ can be viewed as a weighted sum of the variation that was

already observed through
(
K + 1

β
IN

)−1

Ŷ. Hence, if one wants to generate, say

a DP, then the latter will share some characteristics with a MC. Given that this

is the case, it is hard to add enough variation to the mean shape so as to generate

a sensible shape.

4.4.3 Multiple Bone outline data

The data used is a set of aligned bones from the index finger. We show the

results of the shape generation process in Figures 4-4. The black dots on the

1Recall that MC stands for metacarpal, PP for proximal phalanx, MP for middle phalanx
and DP for distal phalanx
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latent space plots represent the mean of the prior given in equation (3.31) that

we set on the latent space positions for each data point. The white stars are the

inducing points Z that allow use to marginalise out the latent point position in

section 3.3.6.

The Variational GPLVM mostly captures variation coming from the relative

positions of bones within the right index finger. In other words, it is modelling

the relative pose of bones with respect to each other. We hence use this model

to initialise the pose parameters of our bone identification algorithm in Chapter

6.

4.5 Concluding remarks

We have shown that when a dual probabilistic treatment of the latent space map

is done, the ASM model uses a GPLVM as the latent space representation. This

probabilistic treatment equips GPLVM shape models with an inherent density.

We later use this property to marginalise out the shape generation process in our

bone identification algorithm in Chapter 6.

It is possible to build a latent space out of an ASM model. From a shape

generation point of view, the latent space is given by the weights ωq in equation

(4.4). One could then build a density on this space by looking at the distribution

of the training weight set. However, from a Bayesian point of view, it is unclear

how this density propagates through to the data space. GPLVMs on the other

hand, have this property built into the model. Finally, GPLVMs relaxes the

linearity assumption on the shape generation process, which we believe is very

important.
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Chapter 5

Mathematical representation of

texture

5.1 Introduction

Erosion and fusion as well as the tissue swelling that is common around PsA

joint damage are characterised by a shape change as well as a texture change

within the x-ray. Hence it is important for us to model the texture of an image.

Moreover, the model we describe in chapter 6 uses texture information to guide

the shape model matching. We show in this chapter how one can use learnable

image filters to extract the relevant texture information.

More precisely, given an image u : Ω → [0, 255], and a subset of the image

domain A, the task that we are trying to perform is to model a potential Vu :

Ω→ [0,∞) such that for a pixel location xxx we have that

P(xxx ∈ A|u) ∝ exp

(
−1

2
Vu

)
(5.1)

This is the data term in the snakes model that we describe in equation (3.10).

We later extend this notion of data term in Chapter 6 to be the energy of a shape

model within an image domain .

The earliest attempts at modelling Vu involved using simple edge detectors,

examples of which include thresholding and gradient based method such as the

Canny edge detector (Canny [1987]). Once the edge set Γ is found, Vu takes the

form of a distance transform given by

DΓ(xxx) = min
y∈Γ
‖yyy − xxx‖2 (5.2)
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Note that, given annotated data, modelling Vu could be seen as a supervised

learning task. Cootes et al. [2012] uses regression trees to determine which direc-

tion one should move in to find the area of interest A. Even though, a heat map

of votes is built, this is in effect, modelling the global gradient of Vu.

This chapter is organised as follows. We give a definition for texture in section

5.2. We then show two ways that one can form statistical models of texture in

section 5.2 where we justify our use of a discriminative model as opposed to a

generative model. We then show how the discriminative task can be performed

using Neural Networks in Section 5.4. In particular we introduce the two archi-

tectures we use in sections 5.4.2.1 and 5.4.2.1. The results of these architectures

are presented in section 5.5. We describe how we aim to build Vu from output of

these models in section 5.5.3.

5.2 Texture Definition

The literature does not have a rigorous mathematical treatment of texture, the

definition of which changes based on the task at hand. If we were to adopt the

philosophy present in the mathematical definition shape, then texture would be

what remains after one removes the effect of exposure and luminosity from an

image. Unlike shape, however, texture tends to exibit more variations and hence

properly defining what it means to remove these effects is more challenging.

For the purpose of this thesis, we view the texture of an image at a spatial

location xxx within the image domain to be the intensity profile in a neighbourhood

of that image when the effects of exposure and luminosity have been removed.

Hence, before modelling texture, we would have to normalise the image in some

way.

We could also define texture by the representation we choose to adopt to

model it. One of the earliest representations comes from the definition of scale

space given by Lindeberg [1994] where images are transformed via some kernel

indexed by t

Lt(xxx) = Kt ? u(xxx) (5.3)

The scale space representation is in a loose sense what the human visual cortext

would perceive as the object is moved further away from the observer. Linde-

berg [1994] concluded that Kt should be a Gaussian kernel of variance t centered
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Figure 5-1: The Figure shows the imaginary part of a gabor filtered image
for different values of θ and σ. The imaginary response is good to model the
occurence of edges in images.

around xxx. In his interpretation, all the texture information comes from blurring

images with Gaussian kernels of varying length scales.

The Fourier decomposition of an image is also a popular way of representing

texture in the signal processing literature. Images can be thought of as a super-

imposition of sinusoidal waves of varying frequencies and orientation. The higher

frequencies tend to represent finer details in the image that correspond to areas

of high variation within the image surface. Hence, texture modelling methods

tend to focus on isolating the different components of this superimposition. This

is done by using band pass filters that cut off certain frequencies.

One popular such filter is the Gabor filter. The kernel used is given by

K(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

2
θ + γ2y2

θ

2σ2

)
exp

(
i
[
2π
xθ
λ

+ ψ
])

(5.4)

where xθ = x cos θ + y sin θ and yθ = −x sin θ + y cos θ. The angle of incidence θ

66



θ=
0.

00

σ = 6.00 σ = 10.00 σ = 20.00

θ=
0.

79
θ=

1.
57

θ=
3.

14

Real Image responses for Gabor filter kernels, λ = 200.00, γ = 1.00

Figure 5-2: The Figure shows the real part of a gabor filtered image for different
values of θ and σ. As opposed to the imaginary part, the real part is not affected
by the angle θ. It is equivalent to blurring the image with a Gaussian blur.

determines the orientation of the wave that is being extracted. The Filter is split

into two parts, the real and the imaginary.

The real part is controlled by the blurring length scale σ and the stretching

parameter γ. σ determines the scale at which the features are being extracted in

the same way that a Gaussian blur operates. γ stretches space and controls the

direction in which most of the blurring occurs. A smaller value for γ means less

bluring in the yθ direction. The imaginary part is controlled by the wavelength

λ, and a phase shift ψ. These control the frequency of the wave to be isolated.

Figures ?? and 5-2 show an image which has been convolved with Gabor filters.

We finish this section by adopting the following representation for texture.

Given a filter bank (K0, K1, ..., KL−1) consisting of L filters, we define the tex-

ture of an image around a spatial location xxx to be the stack (K0 ? u(xxx), K1 ?

u(xxx), ..., KL−1 ? u(xxx)) of length L of filtered image intensities. Here, Ki ? u(xxx) is
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the filtered image intensity at pixel location xxx.

5.3 Texture Modelling

We have defined a representation for image texture. As we have previously de-

scribed for shape modelling, we would like to fit a statistical model for damage

detection. There are two main approaches one could use when modelling texture.

The first one is the generative approach. That is, one fits a distribution to

the stack of filtered image intensities and new texture examples are generated by

sampling.

In fact an extension to Cootes et al. [1995] is presented by Cootes et al.

[2001] and has texture as part of the modelling. This model is called the Active

Appearance Model (AAM). It treats appearance as a mixture of texture and

shape information. The training data is given by M = (M0, ..,MN−1) where

Mi = (yyyi, fff i) ∈ R2D+DL is a vector of spatial locations concatenated with a

vector of texture intensities fff at these respective spatial locations. As in the

ASM, the appearance vector is given by

M = M̄ +

Q−1∑
q=0

ψquq (5.5)

where M̄ is the mean appearance and uq are orthogonal variation modes. The

vector fff is usually obtained after applying a texture extracting filter to the train-

ing image set. The problem with such an approach is that knowing which filter

to use is hard.

More recently, Variational Autoencoders (Doersch [2016]) have been used to

generate image textures. These are similar to latent space shape models that

we have described in Chapter 4. They are an extension of autoencoders which

use Neural Networks to compress information about data into a lower dimen-

sional case. By setting a prior which is learned on this low dimensional space,

Variational Autoencoders allows one to sample images by sampling from this low

dimensional space.

Providing a definition for texture, as we have loosely done, provides one with a

sense of direction when it comes to trying to model them. However, in practice,

modelling texture is done with a certain goal in mind. We can treat texture

extraction as an intermediate step in a bigger supervised learning task. I.e.,
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given an image u and a function F that represents a supervised learning task, we

have that

F ◦ u(xxx) = g (K0 ? u(xxx), K1 ? u(xxx), ..., KL−1 ? u(xxx)) (5.6)

where g is a function RL 7→ R mapping the texture onto the output space of the

supervised learning task.

This is called the discriminative approach to texture modelling. It involves

learning the kernels K0, .., KL−1 that best do a classification or regression task.

We focus our attention on performing a classification task with image textures.

That is, we aim to characterise a spatial image location based on the texture at

that location.

5.4 Discriminative Texture Modelling with Neu-

ral Networks

The goal we wish to achieve is to areas within an x-ray that corresponds to a

bone edge or to a bone region. I.e., we want to perform the classification task

given by

P(xxx ∈ A|u) = F ◦ u(xxx) (5.7)

where A is either a bone edge or an actual bone. The function F can be mod-

elled by a convolutional neural network (CNN). As described in section A.3.4.2,

convolutional layers can be thought of as learnable filters that extract texture

from images. Hence, we choose to find the locations of bone edges in an x-ray by

using a neural network (NN) function fnet.

5.4.1 Some Notation

We use the notation of section A.3 to describe NNs. For clarity, we summarise

this notation here. We denote the output of an NN with L layers by ZL. The

neural network function fnet is a composition of simpler functions given by equa-

tion (A.24). Each layer in a neural network is mapped to each other via some

transformation given by Zl = φl ◦ Tl (Zl−1).

A fully connected layer maps its input Zl ∈ RNl to the output Zl+1 ∈ RNl+1

via a matrix multiplication with weight vectors Wl ∈ RNl×Nl+1 to which a bias

bbbl ∈ RNl+1 is added. This is followed by the application of an activation function.
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Figure 5-3: The Figure shows the patch-net architecture described in section
5.4.2.1. It has M = 3 downsampling layers, N = 1 fully connected layer and an
initial patch size of N0 = 17.

We denote this operation using φl (WlZl + bbbl).

A convolutional layer maps its input Zl ∈ RNx
l ×N

y
l ×Cl to the output Zl+1 ∈

RNx
l+1×N

y
l+1×Cl+1 via a kernel operation with a kernel Wl ∈ RSx

l ×S
y
l ×Cl×Cl+1 to

which a bias bbbl ∈ RNx
l+1×N

y
l+1×Cl+1 is added. Like a fully connected layer, this is

followed by the application of an activation function. We denote this operation

by φl (Wl ? Zl + bbbl). Cl+1 is the number of features (texture) being extracted

from the image present in the previous layer.

Convolutional layers are usually followed by a pooling layer, which we rep-

resent by KKK l ? Zl. This is used to change the scale of the image by making it

smaller. For an input of size Nx
l ×N

y
l ×Cl, pooling layers output a tensor of size⌊

Nx
l

2

⌋
×
⌊
Ny

l

2

⌋
× Cl. Section A.3 has a more thorough presentation of NN layers.

5.4.2 Patch Based Texture Modelling

The most naive way of building fnet would be to split the image into patches and

then feed these patches into a CNN. The CNN would output a vector of length

Nc that would have the probability of the centre pixel belonging to each one of

the classes. We call such an architecture patch-net.
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5.4.2.1 Patch-net Architecture

The architecture consists ofM downsampling layers followed byN fully connected

layers for a total of L = 3M+N+1 layers. Because of the fully connected layers,

the square input spatial dimensions N0 × N0 should be predefined. Figure 5-3

shows the architecture for M = 3, N = 1 and N0 = 17.

Downsampling layers: Each downsampling layer consists of two convolutional

layers followed by a pooling layer. The first convolutional layer doubles the

number of features from the previous layer. The second one preserves the number

of features. The pooling layer halves the size of the twice convolved image in each

spatial dimension. Hence we have for l = 1, ..,M

Z3l = KKK3l ? φ3l−1 ◦W3l−1 ? φ3l−2 ◦W3l−2 ? Z3(l−1) (5.8)

where W3l−1,W3l−2 are convolutional kernels of sizes S ×S × 2C3(l−1)× 2C3(l−1)

and S × S × C3(l−1) × 2C3(l−1) respectively. These are applied with padding

P =
⌊
S
2

⌋
for odd S and strides dx = dy = 1. The pooling kernel KKK3l has size 2 in

each spatial dimension. It is applied with a stride of 2 on the unpadded output

of the 2 convolutional layers. As per equation (A.36), this halves the size of each

spatial dimension of the input.

Fully connected layers: For l = M + 1, ...,M +N

Zl = φl (WlZl−1 + bbbl) (5.9)

where Wl is a matrix of weights of size Nl ×Nl−1 and bbbl is the bias term of size

Nl. Note that for an input of size N0 × N0, we require the NM =

⌊
N2

0

22M

⌋
CM .

That is, we want the number of columns in Wl to be equal to the total number

of neurons present in the final downsampling layer.

Output Layer: The output layer is a fully connected layer where the activation

function is the softmax as given in equation (A.26).

ZM+N+3 = σ (WM+N+3 ? ZM+N+2 + bbbM+N+3) (5.10)

WM+N+3 is the matrix of weights of size NM+N+2 ×Nc where Nc is the number

of classes.
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Figure 5-4: The Figure shows the U-net architecture described in section 5.4.3.1.
It has M = 3 downsampling layers and C1 = 16. The arrows represent the
mapping from one layer to the next. The skip connections are shown as archs
above the main architecture. The network outputs a segmentation map as shown
in the figure. It takes as input a masked image with the mask drawn around the
finger.

5.4.3 Purely convolutional semantic segmentation

Using patch-net to make fnet involves breaking an image down into patches and

then reshaping the collection of predictions into the correct shape. This involves

a lot of preprocessing and can be very computationally intensive.

A purely convolutional architecture, on the other hand could get rid of all this

processing by instead producing an output having the same spatial dimensions

as the input. Given an input image tensor U ∈ RNx
0×N

y
0 We would then get an

prediction map ZL ∈ RNx
0×N

y
0×Nc such that

ZL[i, j, h] = P ((i, j) ∈ class h) . (5.11)

where (i, j) is the discrete pixel location within the image tensor U.

Such architectures have become very popular for semantic segmentation. Ron-

neberger et al. [2015] shows how one can use a purely convolutional architecture

to segment images of arbitrary sizes. The resulting CNN is called U-net. We

describe the architecture in the next section.

5.4.3.1 U-net Architecture

The U-net architecture consists of M downsampling layers, 1 bottleneck layer

and M upsampling layers for a total of L = 6M + 3 layers. Figure 5-4 shows the

architecture for M = 3.

Downsampling layers: Each downsampling layer consists of two convolutional

layer followed by a pooling layer. The first convolutional layer doubles the number
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of features from the previous layer. The second one preserves the number of

features. The pooling layer halves the size of the twice convolved image in each

spatial dimension. Hence we have for l = 1, ..,M

Z3l = KKK3l ? φ3l−1 ◦W3l−1 ? φ3l−2 ◦W3l−2 ? Z3(l−1) (5.12)

where W3l−1,W3l−2 are convolutional kernels of sizes S ×S × 2C3(l−1)× 2C3(l−1)

and S × S × C3(l−1) × 2C3(l−1) respectively. These are applied with padding

P =
⌊
S
2

⌋
for odd S and strides dx = dy = 1. The pooling kernel KKK3l has size 2 in

each spatial dimension. It is applied with a stride of 2 on the unpadded output

of the 2 convolutional layers. As per equation (A.36), this halves the spatial

dimensions of the input to the next downsampling or bottle neck layer.

Bottleneck layers: Once the image has undergone downsampling, it goes through

2 convolutional layers. These two layers are often called the bottleneck layers.

As in the previous downsampling layer, the first convolutional layer doubles the

number of features from the previous downsampling layer. The second layer keeps

the number of features constant. Thus we have:

Z3M+2 = φ3M+2 ◦W3M+2 ? φ3M+1 ◦W3M+1 ? Z3M (5.13)

where W3M+2,W3M+1 are convolutional kernels of sizes S × S × 2C3M × 2C3M

and S × S ×C3M × 2C3M respectively. These are applied with padding P =
⌊
S
2

⌋
for odd S and strides dx = dy = 1.

Upsampling layers: The input to the upsampling layer undergoes a transposed

convolution. The output from the second convolutional layer in a downsampling

layer is chosen such that is has the same size as the current upsampled output.

It is then concatenated with the ouput. This is demonstrated in Figure 5-4. The

augmented tensor is then passed through 2 convolutional layers. Hence, we have

for l = M + 1, .., 2M

Z3l+2 = φ3l+2 ◦W3l+2 ? φ3l+1 ◦W3l+1 ?
[
Z6M+2−3l,

(
φ3l ◦W3l ? Ẑ3l−1

)]
(5.14)

where W3l+2,W3l+1 are convolutional kernels of sizes , S×S× C3l−1

2
× C3l−1

2
; W3l

is a transposed convolutional kernel of size S×S×C3l−1× C3l−1

2
; and Ẑ3l−1 is the

output of the previous bottleneck or upsampling layer that has been dilated by a

factor of two in each dimension (see section A.3.4.4). All of the kernel operations

are applied with padding P =
⌊
S
2

⌋
for odd S and strides dx = dy = 1.
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Output Layer: The output layer consists of a a convolutional layer and the

application of a softmax as in equation (A.26)

Z6M+3 = σσσ ◦W6M+3 ? Z6M+3 (5.15)

where W6M+3 is a convolutional kernel with size S×S×C6M+3×Nc. The softmax

acts on spatial slices W6M+3?Z6M+3[i, j, :] of the tensor that have length Nc. The

output of the network is therefore a spatial map of class probabilities.

5.5 Experimental results

We use both of the models described above on the x-ray data that we have. Each

x-ray in our training and test set comes with a raw annotation that takes the

form of the hand drawn curve outline described in section 2.2. We adjust the

intensity of the training data as described in section 2.4. We are interested in

building a classifier that predicts where the bones are. The aim of these models is

to use them as the data term in the bone identification algorithm that we present

in Chapter 6.

We do not have a set of annotations that covers the whole hand and hence

we could only train the models described above on the right index finger. This

means that we had to be careful when designing the architectures and when

pre-processing the training data. Nevertheless, we found that both patch-net

and U-net extended the knowledge gained from this area to the rest of the hand

where they achieve a good performance. We present the results for patch-net and

U-net in sections 5.5.1 and 5.5.2 respectively.

In both patch-net and U-net the training data we use is artificially modified

so as to only expose the areas of the hand for which labels are available. What

we are seeking is a model that is able to perform the texture discrimination task

over the whole hand. To measure this, we want our labels to cover the whole

hand. Hence, even though we report the training and testing accuracy for the

Neural Networks we train, these should not be regarded as a good measure of

performance of the individual models. The accuracy of a classifier on a batch of

input examples is defined to be the number of correct predictions made divided

by the total number of examples in that batch.

The loss function we use in our experiments is the cross entropy loss. For a

74



Algorithm 1: posSamp: Algorithm to sample positive patches for patch-net
in an annotated image

input : Mask M showing locations of positive examples with a value
of 1

output : Set P of positive patches coordinates, N of negative patches
coordinates

parameter: spacing s, patch size p, Poisson sampling rate θ, max distance
from true patch dmax

for (x, y) in {(x, y) :M(x, y) = 1} do
if ‖(x, y)− P‖1 > s ∗ p then
P ← append(P , (x, y)) ;
S ← negSamp(M, (x, y), θ, dmax) (algorithm 2);
N ← append(N ,S) ;

end

end

batch of size B that is fed into a NN, let ZL ∈ RB×Nc be the output of a neural

network classifier and let Z̄ ∈ RB×Nc be the labels for that particular batch where

Z̄[b, n] =

1 if the b− th example is in class n

0 otherwise

Then the cross entropy loss on this batch is given by

R(Θ; Z̄,ZL) = − 1

B

B−1∑
b=0

Nc−1∑
n=0

Z̄[b, n] log (ZL[b, n]) (5.16)

Where Θ represents the neural network weights Wl and biases bbbl for l = 1, ..., L.

The loss becomes a function of the NN parameters through the mapping induced

on the input by the NN.

5.5.1 Patch-net

We use Patch-net on two tasks. The first one is finding the edges separating the

bone from the tissue and the second one is finding the pixels belonging bones

within an image.

5.5.1.1 Data

The data for the Patch-net takes the form of square patches centred around pixels

that represent a particular area in the x-ray. Figure 5-5 shows how the patches

were sampled by using a mask that shows the region of interest. Figure 5-5c

shows the patches used to train the bone discriminator while figure 5-5d shows
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Algorithm 2: negSamp: Algorithm to sample negative patches for patch-
net in an annotated image

input : Mask M showing the coordinates of the positive examples
with a 1, coordinates of a true patch (x, y), patchsize p

output : Set S of coordinates of negative patches
parameter: Poisson sampling rate λ, max distance from true patch dmax

N ← Poi(λ);
for i← 1 to N do

z ← unif[p/2 + 1, p/2 + dmax] ;
w ← unif[p/2 + 1, p/2 + dmax];
while

∑
M(x+ z, y + w) > 0 do

z ← unif[p/2 + 1, p/2 + dmax] ;
w ← unif[p/2 + 1, p/2 + dmax];
z ← z × (2× ber(0.5)− 1) (right or left of true patch);
w ← w × (2× ber(0.5)− 1) (above or below of patch);

end
S ← append(S, (x+ z, y + w))

end

the patches that were used to train the bone edge discriminator.

We devised an algorithm to iteratively sample a collection of positive and

negative patches. The positive patches come from areas where the mask has a

non zero pixel value. We sample each positive sample to have a distance of at

least sp from the center of all positive patches that have been collected so far.

We show how this is done in Algorithm 1.

For each positive patch that is sampled, we sample a random number of

negative samples as per algorithm 2. The number of negative patches to be

sampled around a positive patch is given by a Poisson random variable with rate

λ. For each dimension of the image, the coordinate of the false patch is chosen

to be a random at a random distance d from the centre of the positive patch. We

sample d from the set {p+ 1, ..., p+ dmax} with the uniform measure.

5.5.1.2 Training

We use M = 2 downsampling layers and N = 1 fully connected layer in the bone

region discriminator. We find that using a patch width1 of 9 works well for the

bone region discriminator. We use M = 3 downsampling layers and N = 1 fully

connected layer in the edge discriminator. We use a patch width of 17.

1Size of input image described in section 5.4.2.1 which was denoted by N0
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(a) Mask showing the bones. (b) Mask showing the bone edges.

(c) Samples generated by the mask in
Figure 5-5c.

(d) Samples generated by the mask in
Figure 5-5d.

Figure 5-5: The Figure shows two masks and the samples they generate that
are used to train patch-net. The black squares are the sampled negative patches
while the empty squares show the sampled positive samples.

For each discrminator that we train, we split the patches that have been col-

lected in a training and validation set. We use an Adam optimiser (see section

A.2.0.6) with a learning rate of 0.0001. We train the model for 200 epochs and

with a batch size of 400. We report a test accuracy of 94.66% for the edge dis-

criminator and 88.75% for the bone discriminator. Figure 5-6 shows the trace

plot for the accuracy.

The trace plots do not depict any over fitting as the test set accuracy and

the training set accuracy do not diverge from each other. Our models do not

achieve a very high accuracy rate when compared to modern Neural Network

performances. This is partly because our sampling algorithm introduces false

negatives.This has a higher chance of happening in the bone discriminator as

depicted by Figure 5-5c, which explains the higher accuracy of the edge detector.

The algorithm starts to sample patches inside the MC of the middle finger and

treats them as negative samples.
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(a) Edge discriminator trace plot.

(b) Bone discriminator trace plot.

Figure 5-6: The Figure shows the accuracy for the patch-net discriminators
evolve as training progresses. The x-axis shows the stochastic gradient descent
iteration number and the y-axis shows the accuracy at the corresponding step.
We show the test set accuracy (blue) and the training set accuracy (red). The
cyclical behaviour or the test set accuracy for the bone discriminator comes from
alternating between easy to pedict batches and hard to predict bacthes.

5.5.1.3 Prediction

We test the models on full hand x-rays. A typical x-ray has a resolution of

2400 × 2000 pixels. This amounts to running the prediction step on 4.8 × 106

patches. Using patch-net to create predictions for one image is hence very ex-

pensive.

Algorithm 3 shows how the prediction can be done faster. We use a sliding

window on the image. The window selects a section of the image on which we

run tensorflow’s patch extraction function. This operation is parallelised on a

GPU. Then for each patch that is extracted, we find the class probabilities using

fnet. The resulting predictions are then reshaped and glued together after each

pass of the window so as to build the probability map. We assume in algorithm

3 that the image is padded so that the windowing operation is valid.
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(a) Edge discriminator prediction.

(b) Bone discriminator prediction.

Figure 5-7: The Figure shows a full hand prediction for the patch-net edge and
bone discriminators. The right plots shows the probability of a pixel being either
a bone edge or a bone.

Figure 5-7 shows the result of running patch-net on two whole images that

have not been annotated. We can see that the model predicts areas of the hand

that it was not trained on. We also see that the model is more confident when

predicting edges than when predicting bones. This might be due to the fact that

there are more false positives in the bone discriminator training data than in the

bone edge discriminator training data.

5.5.2 U-net

As described by Ronneberger et al. [2015], we use U-net as a bone region dis-

criminator. We find that it works better for this task. We find that it does not

work as well as patch-net for an edge discriminator task.

5.5.2.1 Data

As with patch-net, we did not have a full set of annotations for whole hand x-

rays. We masked the areas for which annotations were not available and cropped

the image around this masked area. As for the labels, they do not take the form
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Algorithm 3: predPatch: Algorithm for fast prediction with patch-net.

input : image U of size Nx ×Ny, patch-net predictor fnet
output : Probability map P of size Nx ×Ny ×K showing the

probability of pixel i, j being in class k for k = 1, .., K
parameter: Size of sliding window Sx × Sy, patchsize p

nx ←
⌊
Nx

Sx

⌋
;

ny ←
⌊
Ny

Sy

⌋
;

U← pad(U, xborder = p, yborder = p);
for i← 0 to nx − 1 do

for j ← 0 to ny − 1 do
C← U[iSx −

⌊
p
2

⌋
+ 1 : (i+ 1)Sx +

⌊
p
2

⌋
+ 1, jSx −

⌊
p
2

⌋
+ 1 :

(j + 1) ∗ Sy +
⌊
p
2

⌋
+ 1] (sliding window operation);

C← tf.extract patches(C);
C← reshape(C, (nxny, p, p));
C← fnet(C);
C← reshape(C, (nx, ny, K));
C← C[iSx : (i+ 1)Sx, jSy : (j + 1)Sy];
extra borders are removed;
if j = 0 then

R← C;
end
else

R← right-append(R,C);
end

end
if i = 0 then

P← R;
end
else

P← down-append(P,R);
end

end
return P

of a single class assignment. Instead for each training image, we have an image

whose pixel values show the class to which the corresponding pixel in the image

is assigned to.

The artificially masked areas of the training images would interfere with the

output of the model. To fix this, we treat pixels coming from that area as being

from a different class. For a model seeking to discriminate between K classes, we

end up having a label with K + 1 classes. This can be seen in Figure 5-8.

Just like the data for patch-net, the data here will consist of false negatives
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Figure 5-8: The Figure shows the input image, the target label, the cost map
and the cost map after it has been masked by the background class (left to right)
for U-net. Note that the cost map is shown at initialisation, which explains its
salt and pepper appearance.

Figure 5-9: The Figure shows the accuracy for the U-net discriminators evolve
as training progresses. The x-axis shows the stochastic gradient descent iteration
number and the y-axis shows the accuracy at the corresponding step. We show
the test set accuracy (blue) and the training set accuracy (red).

especially at the base of the index finger. As we do not have annotations for these

areas, some parts of the bones in the metar carpal soup and from the adjacent

fingers are wrongly labelled as not being bones.

5.5.2.2 Training

As previously mentioned, we do not want the model to learn features from the

blurred out background. We modify the cost function we use so that this does not

happen. We use the background label to create an image that has pixel values of

ones for the area showing the finger and pixel values of zero for the area showing

the masked background.

We then multiply this with the cost map. Pixels of the output map corre-

sponding to the masked background hence have a zero contribution to the cost
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Figure 5-10: The Figure shows a test set input image, the true location of the
bone in that image and the prediction for the bone location made by U-net (left
to right).

Figure 5-11: The Figure shows a full hand prediction for the U-net bone dis-
criminator. The right plots shows the probability of a pixel being either a bone
edge or a bone while the left plot shows the input image.

and they back propagate a gradient of zero. This ensures that the model does

not learn anything about these pixels.

We use M = 4 downsampling layers with C1 = 16 features for the first

downsampling layer. We split the data into a training set and validation set. We

use a momentum optimiser (see section A.2.0.6) with a momentum γ = 0.8 and

a decaying learning rate. The learning rate decays with the epochs according to

the folowing formula

ηi = η0r
i (5.17)

where the r is the decay rate, η is the initial learning rate and i is the epoch
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number. We use a batch size of 1 with r = 0.95 and η = 0.01. As described by

Ronneberger et al. [2015], the high momentum ensures that information from the

previous batch gets transferred to the current batch during training. We train

the model for 300 epochs. We report a test accuracy of 88.64%. Figure 5-9 shows

the trace plot for the accuracy.

To deal with images of different sizes during training, we can either resize

them or pad them to the same dimensions. We found that both approaches

worked well. The results we present use padded images.

5.5.2.3 Prediction

We want to see how well the model performs when run on full sized images. We

show the predictions for the validation data used during training. The model

predicts the bones locations for this set as shown in Figure 5-10. However, it

does not perform as well for full sized images as shown in Figure 5-11. This is

because it was not trained to discriminate full sized images. We believe that this

problem will be solved for data which have a full set of annotations.

As opposed to patch-net, using U-net for prediction is a much faster opera-

tion. Moreover, the convolutional architecture allows prediction to be performed

on images of arbitrary sizes. One problem though, is the fact that the image loses

dimensions as it gets downsampled and upsampled again. The prediction maps

hence need to be padded back to the original input dimensions when comparing

it with the input.

5.5.3 Concluding remarks

In chapter 6, we want a potential that guides a shape model towards a likely

candidate for that shape. The way we do this is inspired by the snakes model

(Kass et al. [1988]). That is, we build Vu to model the areas that are likely to

contain a bone edge. Given a bone region O we have that

P(xxx ∈ ∂O|u) ∝ exp

(
−1

2
Vu(xxx)

)
. (5.18)

We have modelled P(xxx ∈ ∂O|u) directly by using patch-net. Once the bone edge

set Γ is found, we set Vu to be the distance transform DΓ from this set. This is

given by
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DΓ(xxx) = min
y∈Γ
‖yyy − xxx‖2 (5.19)

However, finding the kernels that would cause Vu to model only the edge set

of the bones is hard. This can be seen in Figure 5-7b where the bone edge dis-

criminator also finds the edges around tissue. Hence, we sought to instead model

P(xxx ∈ O|u), through U-net. The hope was that, by finding the outlines of the

bone regions, we would remove the contribution of the tissue edge set from the

potential Vu.

The incomplete training data that we have does not allow us to do this for

the full hand. Moreover, unless trained with a weight applied on the edge set of

the image (see Ronneberger et al. [2015]), U-net does a bad job of finding the

gaps between the bones. The potential that we then build from the output of

U-net is more useful as a global initialisation for a shape matching model. Once

the templates are initialised, the output from an edge detector such as patch-net

can then be used to fit the shape model to a new image. We describe how this is

done in more detail in section 6.4.
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Chapter 6

Bone identification through

shape modelling

6.1 Introduction

Bone identitification forms an integral part of our system. We present in this

chapter a hybrid model that uses a discriminator and a shape generator to iden-

tify bones in a hand X-ray. The literature has a lot of such algorithms. We

inspire ours from the snake model and from its extension the Active Shape model

of Cootes et al. [1995].

Active Shape Models involves the use of a statistical model to regularise a

segmentation task taking the form of (3.10). Later, a texture model was incopo-

rated into the model as an extension to the potential Vu (the data comparison

term). The joint model was called an Active Appearance Models (AAM) Cootes

et al. [2001]. Shape and texture are broken into linear combinations of a mean

and variation modes which are learned from training examples of aligned images.

These have been used in facial recognition tasks inEdwards et al. [1998]. A weak-

ness of AAMs is that they require the alignment of features in training examples.

Kruger et al. [2015] performs the training and alignment in one optimisation.

The strengths of Shape models in segmentation tasks lies in the fact that they

can capture the modes of variability of shapes very well. For that to happen, the

training data needs to only exhibit variation due to shape and not due to relative

and absolute spatial locations. This means that AAMs, on their own struggle to

model compound objects. AAMs can be combined to form a compound AAM as

in Contrained Local Models (CLMs) Cristinacce and Cootes [2006] which them-

selves are an extension to Felzenszwalb and Huttenlocher [2005]. Minciullo et al.
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[2018] shows a successful application of all these techniques in a medical imaging

segmentation task.

We introduce the Active Latent Space Shape Model (ALSSM). This uses a a

mapping from a latent space to generate shape examples. Our model incorporates

uncertainty from the shape generation process, the shape matching process and

the image to be segmented. We develop a fully bayesian framework that allows

us to marginalise out each step of the fitting procedure. We make our case for

using a discriminator as the data comparison term or potential Vu, which turns

our model into a hybrid one.

We describe the dependence structure within the model in section 6.2. We

then describe the latent space generation process in section 6.2.1, where we jus-

tify a move away from traditional linear decomposition of shapes. We show how

we can have a probabilistic interpretation of the data term in section 6.2.2.

Our main contribution is in section 6.2.4, where we approximate the data

term using radial basis functions and perform the full bayesian marginalisation.

This yields an objective function in section 6.2.5 which we can optimise to fit the

model. We discuss the approach we have taken and the contributions we make

in section 6.3. In particular, we show why the approximation we use is justified

when considering the errors it introduces.

We show in section 6.4 how one can use a coarse to fine strategy to partially

solve the problem of initialising pose parameters. We finish the chapter by show-

ing how we can interpret the AAM (Cootes et al. [2001]) to be part of the ALSSM

framework in section 6.5.

6.2 Active Latent Space Shape Model

In what follows, we will use the following notation:

(a) X ∈ RQ represents the latent space position of a shape example generated

from a latent space representation of shape (shape model).

(b) F = (F0, ..,FD−1) ∈ RP , with Fd = (F
(x)
d ,F

(y)
d ), is the vector of representing

the shape outline generated from a shape model such as a GPLVM. Here

P = 2D whereD is the discretisation used on the curve outlines when training

the shape model.
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(c) M ∈ RP is the observed shape in an image. It is given by M = F + η where

η is a white noise process. Similar to F, we have that Md = (M
(x)
d ,M

(y)
d ) are

the coordinates of the d-th point on a discretised curve.

(d) T = (r, ψ, dx, dy) represents the pose parameters. It defines a similarity

transform on R2.

(e) u is the observed image.

Building on the DAG in Figure 6-1, we define a new class of shape models

which we call Active Latent Space Shape Models. A shape F is generated from

a latent space X. This generative process is captured by a conditional density

p(F|X). p(M|u,F,T) specifies the mapping of the generated shape onto observ-

able real world examples of such shapes that appears in an image u.

X

F T

M

u

Figure 6-1: The Figure shows how the shape M depends on the shape model
F and its prior X. We also assume that shape is generated from the observed
image u

By imposing in Figure 6-1 that M depends on the model generated shape F

and the image u, we are looking for the model generated shape that fits some

candidate shape in the image u. Equivalently, we are looking for the model

generated shape that best matches a candidate shape from the image. We simplify

this problem further by making the following assumption

p(M|u,F,T) = p(M|F,T)p(M|u) (6.1)

This splits the inference into 2 parts. On one part, we have the shape model

defined by the prior p(M|X) and on the other, we have the data term p(M|u)

which specifies the type of interaction between the generated shape M and the

image u. More importantly though, such a factorisation along with the introduc-

tion of p(M|F) allows us to specify a fitting procedure where the uncertainty at

each step can be quantified.
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6.2.1 Latent Space Representation

p(F|X) has two purposes. The first one is to quantify the uncertainty in the gen-

erated shape given a value for the latent space parameters X. We use a Gaussian

model for this purpose, with mean µµµ(X) ∈ RP and diagonal covariance matrix

given by K(X)IP ∈ RP×P depending on the latent variable X. The uncertainty

we have just mentioned is captured by K(X). That is, the higher the variance of

a given shape, the less likely it is to be a valid one.

The second purpose is to define the nature of the mapping from the latent

space onto the space of shapes. We treat µµµ(X) to be this mapping. The most

likely candidate for this is a statistical shape model. Cootes et al. [1995] uses

a PCA decomposition in the Active Shape Model (see section 4.3). Such a de-

composition has been shown to be a very good candidate in the literature. We,

however, choose to use a GPLVM as our statistical shape model as we believe

that they are a better candidate when viewed from a model specification point

of view. We make our case for this choice here.

We have previously expressed the need for a latent space dependent distribu-

tion on the space of shapes in section 4.3.2. Note that when using a GPLVM, the

shape generation uncertainty is already part of the model. Were we to use the

PCA decomposition of Cootes et al. [1995], we would have to model this uncer-

tainty through further analysis of the distribution of the weights1 ωq in equation

(4.4) to come up with a sensible latent space indexed variance K(X).

GPLVMs also relaxes the linearity constraints on the shape generation pro-

cess when viewed as a mapping from the latent space. We show in section 4.3.3

that when one considers the expression for the posterior mean of a GPLVM, one

realises that it is in fact a linear combination of data examples. This seems to

counter our claim about a GPLVM being able to model more complex mappings.

At this point, we refer the reader to equation (4.5) where the map is from the

latent space and not from data space. Moreover, it is clear from equation (6.2)

that the shape generation process happens via some non-linear transformation

on the latent space X.

We again stress that our arguments come from model specification considera-

tions. We do not claim that a GPLVM will necesarily deliver superior results to a

PCA decomposition of shape space. In fact, the results shown by Cristinacce and

1these weights are the equivalent of a latent space in the ASM
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Cootes [2006] suggests that ASMs are very powerful tools when used in medical

imaging.

Now that we have justified the use of a GPLVM as our shape prior, let us define

the form that the latter takes. As previously described, a GPLVM automatically

induces a multivariate Gaussian distribution p(F|X). In particular, under the

setting of section 4.4 the predictive density of a GPLVM with covariance kernel

k that has been trained on shape data Y ∈ RN×P is a multivariate normal

N(F|µµµ(X),K(X)I) where

K(X) = k(X,X)−K(t,X)TK−1K(t,X)

µµµ(X) = K(t,X)TK−1Y
(6.2)

t ∈ RN×Q is the matrix of latent parameters whose n-th row ttt is the latent space

value of the n−th training example. K ∈ RN×N is the training data covariance

matrix where the entries are given by k(ttti, tttj). K(t,X) ∈ RN is the vector having

entries k(ttti,X).

6.2.2 Data term

The observed image has many candidates for shapes that can be extracted from it.

This relationship is captured by p(M|u). This term is analogous to the potential

function Vu in equation (3.10). In the model that we present in this thesis, we

set

p(M|u) ∝ exp

(
− 1

D

D−1∑
d=0

Vu(Md)

)
(6.3)

We have that

Vu(xxx) = min
yyy∈Γ
‖xxx− yyy‖ (6.4)

where Γ is some set in the image domain whose texture resembles that of an

object boundary. We describe how we can use discrminative texture models (see

Chapter 5) to build the function Vu in section 6.4.1. Note that Vu has support in

the image domain Ω ⊂ R2.

Equation (6.3) is similar to the data term used by Cristinacce and Cootes

[2006]. However, instead of specifying a distribution for p(M|u), Cristinacce and

Cootes [2006] provides a Gibbs type distribution for p(u|M). Computationally,
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this does not change the marginalisation that we perform next. However, in our

case, the form of the function Vu depends on the image, and so, from a conceptual

point of view, it is more appropriate to define p(M|u).

6.2.3 Setting

Hence, our shape model consists of a shape M which is controlled by a shape

parameter F. F = [F0, .., F2D−1] is itself the realisation of a conditional multi-

output Gaussian Process that comes from the fitting of a GPLVM on the curve

outlines delineating bone regions to be segmented. The shape parameters X are

the latent space values of this GPLVM. The pose parameters T = (r, ψ, dx, dy)

define a rigid transformation T ◦M on M given by

T ◦ (M
(x)
d ,M

(y)
d ) = (r ∗M

(x)
d cosψ−M

(y)
d sinψ, r ∗M

(x)
d sinψ+ M

(y)
d cosψ) + (dx, dy)

(6.5)

The DAG is characterised by the following conditional densities:

• p(M|u) ∝ exp(−
∑D−1

d=0 Vu(Md))

• p(M|F,T) = 1√
2πβ2

exp

(
−‖T ◦M− F‖2

2β2

)

• p(F|X) = 1√
2πK(X)

exp

(
−‖F− µ

µµ(X)‖2

2K(X)

)
(from equation (6.2))

We set the latent space priors and shape priors to be Dirac functions. We can

consider them to be hyperparameters of our model which need to be found. The

curve points Mj can only be defined inside the image domain Ω and hence, p(M|u)

has support in ΩD, which is a bounded 2D-dimensional cube in R2D.

6.2.4 Marginalisation and model fitting

We wish to fit the model to a new data point (image) u. This is achieved by

maximising

log p(u; X,T) = log

∫
ΩD

∫
RP

p(u,M,F; X,T)dFdM (6.6)

with respect to X,T. We have that
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∫
ΩD

∫
RP

p(u,M,F)dFdM

=

∫
ΩD

∫
RP

p(M|u)p(M|F; T,X)p(F; X)dFdM

=

∫
ΩD

p(M|u)

[∫
RP

p(M|F; T,X)p(F; X)dF

]
dM

(6.7)

Using the fact that for D−dimensional vector, ‖aaa‖2 =
∑D−1

d=0 a
2
j , we have that

we can integrate in a component wise fashion. To integrate out F, we look at

its components and without loss of generality, we can re-index T ◦M = [T ◦
M0, ..., T ◦M2D−1]. Then the d−th component of the integral is given by:

∫
R
N (Fd|µµµ(X)d,K(X))N

(
Fd|T ◦Md, β

2
)

dFd

=

∫
R
N
(
Fd|

µµµ(X)dβ
2 + T ◦MdK(X)

K(X) + β2
,
β2K(X)

K(X) + β2

)
N
(
Md|T−1 ◦ µµµ(X)d, β

2 + K(X)
)

dFd

using Lemma A.1

=N
(
Md|T−1 ◦ µµµ(X)d, β

2 + K(X)
)

(6.8)

Gathering the components of the integral back, equation (6.7) becomes

∫
ΩD

p(M|u)

[∫
F

p(M|F; T,X)p(F; X)dF

]
dM

=

∫
ΩD

p(M|u)N
(
M|T−1 ◦ µµµ(X),

(
β2 + K(X)

)
I
)

dM

(6.9)

The term p(M|u) makes the above intractable, however we note that it can be

approximated well by an RBF expansion Radial Basis Function (RBF). p(M|u)

is a function with domain Ω ∈ R2D. We therefore use RBF kernels

φl(M) =
1√

2πv2
exp

(
−‖M− p

ppl‖2

2v2

)
centred around pppl ∈ R2D with scalar spread v to build the following interpolant:

Ip(M) =
L−1∑
l=0

wlφl(M) (6.10)

where wl are the weights and pppl are the nodes we describe in Section 3.4. This ap-

proximation allows us to turn the integral in (6.9) into one consisting of products
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of Gaussians, thus making it tractable as follows:

∫
ΩD

Ip(M)N
(
Mj

∣∣T−1 ◦ µµµ(X)j, β
2 + K(X)

)
dM

=
L−1∑
l=0

wl

∫
ΩD

N
(
M
∣∣pppl, v2I

)
N
(
M
∣∣T−1 ◦ µµµ(X)j,

(
β2 + K(X)

)
I
)

dM

=
L−1∑
l=0

w̃lN
(
T−1 ◦ µµµ(X)

∣∣pppl, [β2 + K(X) + v2
]
I
)

=
L−1∑
l=0

w̃l√
2π(v2 + β2 + K(X))

exp

(
− ‖T

−1µµµ(X)− pppl‖2

2(v2 + β2 + K(X))

)
(6.11)

where, using Lemma A.1,

w̃l = wl

∫
ΩD

N
(

M

∣∣∣∣pppl(β2 + K(X)) + T−1µµµ(X)v

v2 + β2 + K(X)
,
v2(β2 + K(X))

v2 + β2 + K(X)

)
dM (6.12)

is the coefficient of the l−th basis function of the RBF expansion of p(M|u)

reweighted by the Gaussian measure of the region Ω. We note that we can make

ΩD arbitrarily big by simply extending the domain of p(M|u) beyond the image

domain. This would force its Gaussian Measure to get closer and closer to 1. We

can then assume without loss of generality that w̃l = wl.

6.2.5 Objective function

Equation (6.11) yields the following objective function to be minimised

L(X,T) =
L−1∑
l=0

wl√
2π(v2 + β2 + K(X))

exp

(
− ‖T

−1µµµ(X)− pppl‖2

2(v2 + β2 + K(X))

)
(6.13)

where we have ommitted the weighting given in equation (6.12) of the basis

function weights wl. This is equivalent to a convolution of the form

l(X,T) = N (0,
(
β2 + K(X)

)
I) ? Ip(T−1µµµ(X)) (6.14)

which we can approximate with

l(X,T) = N (0,
(
β2 + K(X)

)
I) ? p(M|u)

∣∣∣∣
M=T−1µµµ(X)

(6.15)

Fitting the shape model to a new image is thus similar to fitting the snakes model

as described in Section 3.2.3. We evolve a discretised curve M on a potential Vu.
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Figure 6-2: The black curve (left) is a local minimum of p(M|u). After Gaussian
smoothing, the gradient around the local minimum has been decreased as shown
on the red curve(right).

However, the optimisation takes place with respect to the latent space parame-

ters that regularise the shape of the curve as opposed to the curve points directly.

6.3 Discussion

6.3.1 Uncertainty propagation

We have presented a model where the shape is regularised by a GPLVM con-

straint. We have split the uncertainty into different parts by introducing p(M|F)

and p(F|X). In particular, we are able to control how certain we are about the

effect of the shape model by varying the hyperparameter β.

In fact, during fitting, the uncertainty from each part of our model gets trans-

ferred into the final objective function through gaussian blurring. This blurring

causes the gradient around a local minimum of exp(−Vu) to decrease in magni-

tude as shown in Figure 6-2. Adopting the snakes formulation of a segmentation

problem, this blurring allows for more variation in the shape of the curve min-

imising the snakes energy. Most of this behaviour in our model is controlled by

β in p(M|F,T) which controls the balance between the observed data and the

learned space of shapes in our minimisation.

p(M|F) takes the form of Gaussian noise, and hence, draws from this distri-

bution will lack the smoothness that we expect in shapes appearing in images.

However, this does not affect the fitting of the model. Moreover, in the fitting

procedure, we are only interested in the posterior mean of the GPLVM shape

model. This is smooth as the kernel that we use is a smooth one. Comparing

this to the snakes algorithm, it is this smoothness on the mean shape µµµ(X) that

replaces the smoothness term in equation (3.10).
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6.3.2 Full Bayesian Marginalisation

The typical way in the literature to marginalise intractable integrals such as the

one in equation (6.9) is to use a variational distribution. The main guarantees of

such an approximation given in the literature relies on the approximation being

a lower bound on the integral. As far as we know, no estimates of the error are

given. The RBF approximation we make in our marginalisation has error esti-

mates that are well studied, which are presented in section 3.4.

Moreover, variational integration usually results in an objective function that

differs from the original marginal data likelihood. This happens through the

introduction of a new distribution q that is different from the marginals of the

model DAG. In our case, we get an objective function that only depends on the

original formulation of the model DAG.

6.3.3 Marginalisation Error Estimate

Let

f : ΩD ⊆ RP → R

xxx 7→ p(M|u)

∣∣∣∣
M=xxx

be compactly supported and let Ip be the interpolant described in equation (6.10).

Let

hΩD,X := sup
xxx∈ΩD

min
ppp∈X
‖xxx− ppp‖2

where X is the set of interpolating nodes {ppp0, ..., pppL−1}. We have the following

bound from Fröhlich [2013]

max
xxx∈ΩD

∣∣Ip(xxx)− f(xxx)
∣∣ ≤ exp

(
−

log(hΩD,X )

hΩD,X

)
(6.16)

Using this, we have that for any normal density N (xxx)
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∣∣∣∣ ∫
ΩD

Ip(xxx)N (xxx) dxxx−
∫

ΩD

f(xxx)N (xxx) dxxx

∣∣∣∣
≤
∫

ΩD

∣∣ (Ip(xxx)− f(xxx))N (xxx)
∣∣dxxx

≤max
xxx∈ΩD

∣∣Ip(xxx)− f(xxx)
∣∣ ∫

ΩD

N (xxx) dxxx

using Holder’s inequality

≤C exp

(
−

log(hΩD,X )

hΩD,X

)
(6.17)

Hence we get a bound on approximating the integral in equation (6.9) using an

RBF interpolant. We now show that we get a bound for the approximation of

(6.14) by (6.15). If we now set the mean of the normal density N (xxx) to be zero,

we have for any yyy ∈ Ω

∣∣∣∣f ?N (yyy)− Ip ?N (yyy)

∣∣∣∣
=

∣∣∣∣ ∫
ΩD

Ip(xxx)N (xxx− yyy) dxxx−
∫

ΩD

f(xxx)N (xxx− yyy) dxxx

∣∣∣∣
≤
∫

ΩD

∣∣ (Ip(xxx)− f(xxx))N (xxx− yyy)
∣∣dxxx

≤max
xxx∈ΩD

∣∣Ip(xxx)− f(xxx)
∣∣ ∫

ΩD

N (xxx− yyy) dxxx

using Holder’s inequality

≤C exp

(
−

log(hΩD,X )

hΩD,X

)

(6.18)

where C is a constant depending on f and whose form is given in Lemma 3.7.

Equations (6.17) and (6.18) both give us guarantees about the error we get in

the approximation we make in the marginalisation and the subsequent use of the

smoothed data likelihood as the objective function. In particular, we are able,

through the right choice of interpolating point grid as described in Lemma 3.9 to

send the error in these approximations to zero.

The error estimates for the RBF interpolation of p(M|u) rely heavily on its

compact support. However, we seem to violate this assumption in equation (6.12).

We show in Lemma 3.9 that for any cube domain in RP we can find a good ap-

proximation to p(M|u). Hence, even though the size of ΩD is increasing, we can

still find a good interpolant, provided ΩD stays compact.
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Algorithm 4: Multi-level fitting of a compound ALSSM. The objective
function E is given by equation (6.19).

Multi level ALSSM Fitting;
Input : Image u0

Number of levels H and number of models per level nh
Initialised pose and latent space parameters
X0
l ,T

0
l , l = 0, .., n0

Output: XH−1
l ,TH−1

l , l = 0, .., nH−1

for h = 0 to H − 1 do
{X∗l ,T∗l : l = 0, .., nh − 1} ←− arg minΘ,QE(X,T);
if h 6= H − 1 then

Extract {Th+1
l : l = 0, ..., nh+1 − 1} from {T∗l : l = 0, ..., nh}

else
TH−1
l ←− T∗l ;

XH−1
l ←− X∗l ;

end

end

We stress that the approximation we make allows us to marginalise out M,

but plays no role in the numerical fitting of the model. Hence, we never have to

compute any parameters of the RBF interpolants in equation (6.10). In fact, in

practice, we minimise

p(M|u)

∣∣∣∣
T−1µµµ(X)

with respect to T,X. We are able to do this because Vu is a functional of the

output of a discriminative texture model which we are able to evaluate as we later

describe in section 6.4.1. Furthermore, we are able to calculate numerical gradi-

ents of Vu very easily, which experiments have shown to be a good approximation

of the true gradient.

6.4 Experimental Results

The main aim of this thesis is to apply computer vision and machine learning

techniques to the problem of PsA diagnosis. Hence, our dataset comes from PsA

hand radiographs. Given a GPLVM and a discriminator that were both trained

on PsA X-rays, we minimise −log (p(M|u)). That is, our objective function is

given by

E(X,T) :=
1

D

D−1∑
i=0

Vu
(
T−1µµµ(X)i

)
(6.19)

This is different from equation (6.15) as it is missing the variance terms K(X)
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(a) Potential built from p-net output.
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(b) Potential built from u-net output.

Figure 6-3: The Figures shows the distance transform from the edge set that p-
net and u-net find. We set Vu to be this distance transform. The left-most figure
is the masked input image, the middle figure is the probability map generated by
the two discriminators and the left most map is the distance transform from the
edge-set.

and β2. This is because in practice, the numerics perform better on our dataset

when these are ommitted. In particular, because of the small number of data

points available, using the variance term K(X) forces the latent space parameters

to stay close to big data clusters. This prevents the algorithm from exploring

new shapes when it comes to fitting the model to a new example.

As mentioned earlier, the parameter β balances the uncertainty between the

data term Vu and the model generated shape F. In the absence of K(X), β is
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Figure 6-4: The Figures show the result of fitting an ALSSM when using a
GPLVM that models the compound interactions of the bones in the right index
finger. The bone outlines have the correct pose. The pose parameters for each
bone is extracted and used as initialisation in ALSSMs where a GPLVM models
the shape of that respective bone.

only a scaling factor in the objective function in equation (6.19). It would affect

the model fiting were we to optimise equation (6.15) due to the presence of the

exponential term.

Sending β to zero has significance in the marginalisation of F in equation (6.9).

This essentially turns p(M|F) into a Dirac centred around F. From a model spec-

ification however, we maintain that the Gaussian p(M|F) should be kept as it is

a more realistic representation of the uncertainties present in a segmentation task.

In the following sections, we run our model on unlabelled masked images of

the right hand index. This is because most of the models we use in this thesis

draw their training data from this region of the hand. It would be unfair for us

to expect good results on the whole hand.

6.4.1 Data term Vu

We run p-net and U-net on our test data and build potentials Vu as described in

section 5.5.3. Let Γ be the edge set of bone regions. Then we have that

Vu(xxx) = min
y∈Γ
‖yyy − xxx‖2 (6.20)

The output of p-net shows the location of the edges directly. We find the edge set

Γ by simple thresholding. As for the output of u-net, we use a simple gradient

98



Target pose
Shape model pose

0

100

200

300

400

500

600

700
0 iterations

Target pose
Shape model pose

0

100

200

300

400

500

600

700
14 iterations

Figure 6-5: The Figures show how the pose is extracted from the full finger
model. The bone of interest is isolated from the model and a distance transform
is built. We then rotate the shape from the single bone model so that it lies on
the zero level set of the distance transform.

based edge detector on the probability map that it generates. Recall that the

output of u-net shows the probability of a pixel belonging to a bone region. The

fact that this output is smooth allows us to use gradient based edge detectors to

find the edges. The result of these operations is shown in Figure 6-3.
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Figure 6-6: The Figures show the ALSSM output for the DP, MC, MP and PP
(clockwise from top left). The shape template are initialised by using the pose
extracted from the coarser ALSSM model fit shown in Figure 6-4.

6.4.2 Coarse to fine approach

6.4.2.1 Description

In an image where the set Γ is quite big and complex, Vu suffers from multiple

local minima. This is because locally, the edges of bones look the same. The fact

that we are not exploring Vu in a pointwise manner when minimising (6.19) does

not guarantee that the solution will not get stuck in a local minima.

Hence, it is important to properly initialise the pose parameters when fitting

the model. In medical imaging, we have the advantage that there is a strong

prior on the relative pose of objects to be identified. One way to use this prior is

to actually fit a shape model that incorporates this information.

More formally, we use a coarse to fine approach in the model fitting. The

coarseness is defined by the number of latent space models in the ALSSM fitting.
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At level h we have nh latent spaces {Xh
l ; l = 0, ..., nh− 1} that generate nh differ-

ent groups of shapes. These groups {Mh
l ; l = 0, ..., nh − 1} are also accompanied

by their respective pose parameters {Th
l ; l = 0, ..., nh− 1}. The latent space cap-

tures the relative positions of shapes within the group.

In the next level h + 1, the individual groups split and we now have nh+1

latent shape models for the smaller, but more numerous groups. It is easy to

extract the pose parameters that maintain the relative position of objects when

switching levels. Hence, each time the ALSSM undergoes fitting, the location

of each object in the image frame is properly initialised. Algorithm 4 shows the

steps of the multi level fitting we have just described.

6.4.2.2 Example using bone outline data

In the coarsest level, we use the GPLVM shown in Figure 4-4 as our shape model.

The latter models the relative position of the four bones in the index finger. We

minimise equation (6.19) where now the shape is generated from the full finger

GPLVM. The result of this fit is shown in Figure 6-4. We now have a set of curves

that delineate the outlines of the bones in the hand. Note that this will not be

perfect as the shape model is mostly able to explore the relative positions of bones.

We use the outlines of the bones from this shape to extract the pose informa-

tion for each individual bone. Let M(t) be the curve delineating a bone that the

coarser model generates. We call this the target outline. For a GPLVM modelling

the shape of this single bone, we generate a source outline M(s) from the mean of

the training latent space position. We then align this source shape on the outline

of the target shape (generated from fitting the coarser shape model).

We use the same process as in section 2.3.2.1. We build the distance transform

Dt of the target outline. We then find the pose parameters for that bone outline

by performing the following minimisation

(r∗, φ∗) = arg min
r,φ

D−1∑
d=1

Dt(T ◦M
(s)
d ) (6.21)

We now have an initial set of pose parameters for each bone in the index

finger. We initialise the shapes using these and now minimise equation (6.19)

by this time using a GPLVM that is generating a single bone shape (one for the

MC, PP, MP and DP). The result is shown in Figure 6-6.
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Figure 6-7: The Figure shows how the average ARAND score between the
model generated bone area and the true area varies with the dimension Q of
the GPLVM latent space in a 10-fold validation. For each training-test set, we
use four methods to build the potential function Vu: p-net outline predictions
(pnet); u-net region predictions (unet); a gradient based edge detector (edge);
and the true bone outline (true). The vertical lines represent error bars (standard
deviation) of each mean.

6.4.3 Model evaluation

Given the correct pose, we want to evaluate whether the GPLVM latent space

can match the shape observed on a new example. We use the Adjusted RAND

or ARAND (Rand [1971]) score to measure how well our model identifies the

bone. The ARAND score is mainly used to measure the accuracy of cluster-

ing methods. In our case, by considering the pixels inside and outside the bone

curve, we are able to cluster pixels based on whether they are part of the bone

being investigated or not. We describe the ARAND score in section A.4. We also

report the L-2 distance between the true outline and the model generated outline.

Using these two scores, we evaluate the goodness of fit of our ALSSM when
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Figure 6-8: The Figure shows how the average L-2 distance (mm) between the
model generated bone outline and the true outline varies with the dimension Q
of the GPLVM latent space in a 10-fold validation. For each training-test set,
we use four methods to build the potential function Vu: p-net outline predictions
(pnet); u-net region predictions (unet); a gradient based edge detector (edge);
and the true bone outline (true). The vertical lines represent error bars (standard
deviation) of each mean.

the latent space dimension of the GPLVM varies. We initially only wish to mea-

sure the performance of our ALSSM, and hence use the true outline to build the

potential function Vu. We then perform the same experiments by using potential

functions resulting from a gradient based edge detector, p-net edge predictions

and u-net region predictions. Hence, we are able to assess the goodness of fit of

different potential functions as well. We perform a 10 fold validation on each bone

in the right hand index finger when using the four different potential functions

described above for Q = 2, 4, 6, 10. We use the hand drawn outlines in section

2.2 as the true outlines.

We report our full findings in section A.4 and show the accuracy variation of
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our model with the latent space dimension Q in Figures 6-7 and 6-8. We can ob-

serve that both the average ARAND score and the average L-2 distance improve

as the dimension Q of the latent space increases when using the true potential.

This is to be expected as the higher the number of dimensions in the latent space,

the bigger is the range of small scale variations that the model captures.

However we do not observe the same behaviour when using other types of po-

tential. This is because these potential functions fail to capture fine scale shape

variations that the higher dimensional latent space can model. In fact, we actu-

ally observe a decrease in performance as the dimension Q increases.

We also notice that the simple edge detector can be out performed by a Neural

Network architecture. This is especially apparent when looking at the MC. This is

because Neural Networks are able to separate the MC edges from the metacarpal

soup at the base of the finger, which is something that simple edge detectors

struggle to do. We thus propose to use convolutional architectures such as u-net,

which have the potential to perform better than gradient based edge detectors.

These architectures also do not require much more processing time as shown in

section A.4.

6.5 AAMs interpreted as ALSSM

In our formulation of ALSSMs, we have treated M to only represent the shape

of objects. However, employing the formulation of Cootes et al. [2001], we can

treat M as being a vector of locations (xi, yi) along with sampled texture values

fff i = (f 0
i , .., f

d−1
i ) in the neighbourhood of (xi, yi). Hence we have that for M =

(M0, ..,MD), Mj = (xj, yj, fff). To define the ALSSM, we only need to specify the

latent space representation µµµ(X) and the data term p(M|u).

6.5.1 Latent space representation

Cootes et al. [2001] interpret Images of the same object as being a warped mean

appearance to which orthogonal variation modes are added. A warp in our case is

any diffeomorphism acting on the domain of the image intensity function. Hence

an image is given by:

u(xxx) = ū(T ◦ xxx) +

Q−1∑
q=0

ωqvq(T ◦ xxx) (6.22)
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where ū is the mean image (appearance) and vk areQ orthogonal variation modes,

that is we have vl1 · vl2 = Il2l1. Given training data Y that has the same form

as M, fitting this representation is equivalent to performing PCA on the data.

That is, the orthogonal variation mode are given by the first Q eigenvectors of

the matrix 1
N

(Y − Ȳ)T (Y − Ȳ). Where Ȳ is the matrix of row average of Y.

With X = ωωω being the weights applied to the orthogonal variation modes and Λ

being the matrix where the columns correspond to vvvq, we have that

µµµ(X) = Ȳ + Λωωω (6.23)

As shown in Section 4.3.2, such a latent space representation is not so different

from our GPLVM representation of shape. Indeed, under the DAG in Figure 3-3,

it is a dual formulation of our latent space model when the covariance structure

we use is based on euclidean inner products.

6.5.2 Data term

As M now contains texture information, it is possible to directly compare how

well the texture fits the current image. Hence we have that

p(M|u) =
1√

2πv2
exp

(
1

2v2

D−1∑
j=0

‖fff j −F ? u(xj, yj)‖2

)
(6.24)

In the above equation, we have introduced a filter F applied to the image at

location (xi, yj) that produces a stack of texture values. For example Krüger

et al. [2017] uses Gabor Filters to generate fff j.

6.5.3 Marginalisation and objective function

Using the notation in equation (6.3) and the marginalisation procedure we intro-

duce in Section 6.2.4, we have that the objective function is given by equation

(6.19). In this case however, the pose parameter only acts on the first 2 coordi-

nates of M = (x, y,fff) and hence, only acts on the first 2 coordinates of µµµ(X). We

have that

Vu(M) = ‖fff −F ? u(x, y)‖2 (6.25)

We again point out that for such a potential function with support in U ×
[0, 255]D−2, the assumptions made in Section 3.4 hold and hence the marginalisa-

tion we perform in equation (6.11) is still valid. The objective function that we

have hence recovered is exactly the one that is minimised in Cootes et al. [2001].

Hence we have shown that AAMs fall under the ALSSM DAG framework.
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Chapter 7

Final Conclusions and Outlook

We have shown a top to bottom process for building a segmentation tool for

rheumatologists. We have shown how the data was collected, cleaned and pro-

cessed in Chapter 2. We have shown how the data was used to build a statistical

model of the hand in Chapter 4. Shape correspondence was an important part

of this thesis. Using a curve to represent shapes allows us to eliminate the need

to align points during annotation, hence speeding this process up.

We use CNNs in Chapter 5 to model texture in a discriminative fashion. We

have compared the performance of two architectures, one of which delivers good

results for bone region discrimination (U-net). The patch-net architecture was

shown to perform better at a edge detection task.

We argued in Chapter 6 for a move towards models that are a more realistic

representation of the mapping one can have between a latent space and the shape

space. We also have shown that a GPLVM shape model can be viewed as the dual

of a probabilistic treatment of the ASM. We maintain that model specification

is an important part of solving problems such as the one presented here. This

not only allows for better interpretation of the models but also to have a more

realistic representations of uncertainties present in the system.

7.1 Outlook

7.1.1 Full hand model

A major weakness of this Thesis is the lack of labelled data which prevents us

from performing a full hand segmentation. Hence the most achievable improve-

ment that we can suggest over our work involves collecting bone outline data for

106



all the bones present in a hand x-ray. This will cause U-net to have a better per-

formance. We will also be able to add more levels to the coarse to fine approach

we describe in section 6.4.2, and hence be able to segment a whole hand x-ray.

We do anticipate though that the pose initialisation will be an issue when

trying to segment a whole hand. However, this issue has been tackled in the

literature and we believe that it can be overcome. For example, Cootes et al.

[2012] induces a potential for a global search scheme by using random forest

voting.

7.1.2 Clinical applications

We believe that our model can be used for semi supervised longitudinal studies

involving the joint space width. This is an important metric used to assess JSN

and proliferation. The shape of bones from the same individual can be extracted

from x-rays taken at different time points. This will allow us to log the progres-

sion of JSN and proliferation for individuals that have PsA and those that do

not. The process will be semi supervised in the sense that it will involve a human

to assess whether the bone was correctly segmented as shown in Figure 1-1.

However, the work done in this thesis will have to be supplemented with more

research on the texture of bones suffering from the various types of damage de-

scribed in section 1.2. One way to do this is to isolate bones that suffer from

certain types of damage and performing a regression task on its texture. Again,

the semi supervised system shown in Figure 1-1 will allow us to label (assign

scores to the respective bones) while building example of images suffering from a

particular type of damage.

Such an approach to the deployment and improvement of our system fits with

our philosophy of having new ways of evaluating digital health care technology.

We believe that the entire process described above will provide the health care

sector with a valuable proof of concept. We hope then, that our philosophy

towards deployment and testing will become more widespread.

7.1.3 Fully Generative Models

We have shown how one can use the ALSSM to also include generative texture

information in section 6.5.1. We believe that we can use a GPLVM to generate

texture as well as shape. One interesting question however, involves using two
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different types of generative process: one for shape and another one for texture.

More specifically, it would be interesting to see if a Variational Autoencoder

(Doersch [2016]) an be used alongside a GPLVM shape model under the ALSSM

framework. These have been shown to do a good job of generating texture.

7.2 Statistical models of deformation fields

Recall that in section 4.2 we describe shape variations within a family to be the

effect of small perturbations of the shape domain. We have used curves to repre-

sent this perturbation. This led to statistical models of shapes being statistical

models of point clouds. We would like to explore in the future the possibility of

directly modelling the distribution of the small perturbations.

Generating a new shape would then be equivalent to perturbing the domain

of a template curve. Taking the latent space approach, each latent space would

generate a diffeomorphism on R2, that when applied to a template shape, would

generate another shape from the same family. Wang et al. [2006] uses a Gaussian

Process to model a dynamical system. This hints towards the possibility of fitting

distributions on gradient flows that usually characterise diffeomorphisms on R2.
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Appendix A

Appendix

A.1 Product of Gaussians

We use the following result for the marginalisation we perform in section 6.2.4.

Lemma A.1. Let f1(x) = N (x|µ1, σ
2
1) and f2 = N (x|µ2, σ

2
2), then we have

that f1(x)f2(x) is a scaled Gaussian with mean µ =

(
µ1

σ2
1

+
µ2

σ2
2

)
σ2 and variance

σ2 =
σ2

1σ
2
2

σ2
1 + σ2

2

. The scaling factor is given by

1√
2π(σ2

1 + σ2
2)

exp

(
−(µ1 − µ2)2

σ2
1 + σ2

2

)
Proof. We complete the square inside the exponential. We neglect the negative

sign for ease of notation

1

2σ2
1

(x− µ1)2 +
1

2σ2
2

(x− µ2)2

=
x2

2

(
1

σ2
1

+
1

σ2
2

)
− 2x

2

(
µ1

σ2
1

+
µ2

σ2
2

)
+
µ2

1

σ2
1

+
µ2

2

σ2
2

(A.1)

Comparing the form of a Gaussian quadratic form to equation (A.1) we get that
1
σ2 = 1

σ2
1

+ 1
σ2
2

as required. To get the mean we introduce σ into the term involving

x as follows:

109



2x

2

(
µ1

σ2
1

+
µ2

σ2
2

)

=
2x

2

(
µ1

σ2
1

+
µ2

σ2
2

) σ2
1σ

2
2

σ2
1+σ2

2

σ2
1σ

2
2

σ2
1+σ2

2

which yields the result for µ

=
2x

2σ2

(
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)
(A.2)

we can now use this to complete the square in equation (A.1)

x2

2

(
1

σ2
1

+
1

σ2
2

)
− 2x

2

(
µ1

σ2
1

+
µ2

σ2
2

)
+
µ2

1

σ2
1

+
µ2

2

σ2
2

=
1

2σ2
(x− 2xµ) +

µ2
1

σ2
1

+
µ2

2

σ2
2

using the expanded form for µ in equation (A.2)

=
1

2σ2
(x− µ)2 +

µ2
1

σ2
1

+
µ2

2

σ2
2

− 1

2σ2

(
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

(A.3)

Now we simplify the expression that is independent of x in equation (A.3).

µ2
1

σ2
1

+
µ2

2

σ2
2

− 1

2σ2

(
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

)2

=
1

2σ2
1σ

2
2

[
σ2

2µ
2
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1µ
2
2 −

µ2
1σ

4
2 + 2µ1σ

2
1µ2σ

2
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4
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]
=

1
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=
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(A.4)

Putting equations (A.4) and (A.3) together and putting the quadratic forms in

an exponential yields

1√
2πσ2

1

exp

(
− 1

2σ2
1

(x− µ1)2

)
1√

2πσ2
1

exp

(
− 1

2σ2
2

(x− µ2)2

)
=

1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
1√

2π(σ2
1 + σ2

2)
exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

) (A.5)
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as required.
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A.2 Stochastic Gradient Descent

We describe some Stochastic Gradient Descent algorithms as background material

for the training of the Neural Network models in Chapter 5. In statistics and

machine learning, the objective function to be optimised is often an empirical

expectation

R(Θ; Y) =
1

N

N−1∑
i=0

r(Θ;yyyi) (A.6)

Often, because of the dimensionality of data Y, it becomes necessary to optimise

the above on a smaller subset of the data to make the optimisation tractable.

This turns equation (A.6) into

R(Θ; Y(t)) =
1

B

B−1∑
i=0

r(Θ;yyyti) (A.7)

where B < N and {yyyti : i = 0, .., B − 1} ⊂ {yyyi : i = 0, .., N − 1}.

Batching in such a way introduces stochasticity into the algorithm. The sequence

Θ(t), t = 0, 1, ... that is generated from an iterative scheme hence becomes a

stochastic process. More formally, the update step becomes

Θ(t+1) = Θ(t) − v(t) (A.8)

where v(t) drives the stochasticity of the process. There are two main factors to

consider when building SGD algorithms

1. Stochasticity due to the mini-batch

We want the chain v(t) to reach its steady state distribution with respect

to the stochaticity induced by the random batching of the data.

2. Efficient direction and step size computation

Quasi newton methods tend to be too computationally intractable when the

data dimension is too big. Hence, more efficient alternatives to linesearch

and descent direction computation need to be found.

We describe a few algorithms that aim to achieve these goals. For ease of

notation, we write ∇ΘR(Θ(t)) = ∇ΘR(Θ(t); Y(t)). We call η the learning rate.

It is usually pre defined. It is analogous to the step size α that one takes when

using gradient descent update steps of the form

xxx(t+1) = xxx(t) − α∇xf(xxx) (A.9)
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where f : RM → R is a function to be minimised with respect to xxx ∈ RM . All

the operations defined below are element wise in nature unless otherwise stated.

A.2.0.1 Momentum (Qian [1999])

The momentum algorithm seeks to achieve a steady state via the accumulation

of information from previous gradients. The step-size η needs to be determined

v(t) = γv(t−1) + η∇ΘR(Θ(t)) for 0 < γ < 1 (A.10)

This can be thought of a moving average over a sliding window, the length of

which is controlled by the momentum γ.

A.2.0.2 Nesterov accelerated gradient (Nesterov [1983])

The Nesterov accelerated gradient algorithm seeks to improve on the momentum

algorithm. It does so by evaluating the gradient at the next possible parameter

estimation. This is analogous to the stepping used in implicit Ordinary differen-

tial equation solvers, where one solves a system to find the value of the function

at the next time step.

v(t) = γv(t−1) + η∇ΘR(Θ(t−1) − γv(t−1)) for 0 < γ < 1 (A.11)

A.2.0.3 Adagrad (Duchi et al. [2011])

Define

G(t) =
t−1∑
k=0

[
∇ΘR(Θ(k))

]2
(A.12)

The update step is given by

v(t) =
η√

G(t) + ε
∇ΘR(Θ(t)) (A.13)

for 0 < ε ≈ 10−8. Adagrad tries to fix the problem of choosing the step size.

Even though the learning rate still has to be chosen, as the algorithm progresses,

dimensions of Θ that have had significant updates will change by smaller amounts

due to the scaling used. This might be a problem as certain dimensions of Θ might

not get updated at all.
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A.2.0.4 RMSprop (Tieleman and Hinton [2012])

Let x(t) ∈ Rd, t = 0, 1, ... stationary stochastic process with zero mean then we

define

E[x2](t) = γE[x2](t−1) + (x(t))2

=
t∑
i=0

γt−i(x(i))2
(A.14)

as being an estimate of the second moment of the stochastic process. RMSprop

is an attempt at fixing the fast decay of Adagrad by instead using this estimate

as a per-dimensional scaling in the following way

v(t) =
η√

E[g2](t) + ε
g(t) (A.15)

where g(t) = ∇ΘR(Θ(t)). Adagrad makes the assumption of an autocorrelation

decays slowly with lag. RMSprop makes a more realistic assumption about this

rate of decay which can be controlled by the hyperparameter γ as shown in

equation (A.14).

A.2.0.5 Adadelta (Zeiler [2012])

Then for 0 < ε ≈ 10−8

v(t) =

√
E[v2](t−1) + ε

E[g2](t) + ε
g(t) (A.16)

A big problem in the machine learning community is tuning the learning rate to

fit the current optimisation problem. Adadelta removes the need to choose it,

as the step size is determined by the ratio

√
E[v2](t−1) + ε

E[g2](t) + ε
. The latter provides

a way to balance information from past iterations with information from the

current iteration about the geometry of the random surface.

A.2.0.6 Adam (Kingma and Ba [2014])

For predefined decay rates 0 < β1, β2 < 1 we define for i = 1, 2

m
(t)
i = βim

(t−1)
i + (1− βi)(g(t))i

= (1− βti)
t∑

k=0

βt−k(g(k))i
(A.17)
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Like equation (A.14), the above is a biased estimate for the i-th moment of the

gradient where past values of the gradient contribute less to the current moment

estimate. We the define

m̂
(t)
i =

m
(t)
i

1− βti
(A.18)

which turns equation (A.17) into unbiased estimates of the i−th moment of the

stochastic gradient gt. As we then have:

E[m̂
(t)
i ] =

1

1− βti
E

[
(1− βi)

t∑
k=0

βt−k(g(k))i

]

=
1

1− βti
E
[
(g(t))i

]
(1− βi)

t∑
k=0

βt−k

= E
[
(g(t))i

]
(A.19)

It also mitigates the problem of m
(t)
i being close to zero in the initial stages of

the optimisation. The update step is given by:

v(t) =
η√

m̂
(t)
2 + ε

m̂
(t)
1 . (A.20)

Adam tries to solve the stochaticity problem and the step size and direction

problem by exploiting the assumed stationarity of the stochastic process g(t). It

still requires a learning rate to be specified, but like Adagrad and RMSprop, these

only affects the initial behaviour of the algorithm.
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A.3 Introduction to Neural Networks

We give an introduction on Neural Networks to support the material in Chapter

5. Traditionally, artificial neural networks (ANNs) were an attempt to solve the

supervised learning problem where a signal yyy was being explained from a set of

observed features xxx through the map

yyy = f(xxx) (A.21)

It had been known for a long time that the human visual cortex and the hu-

man cognitive system relied on a highly non linear map f for general inference.

Much work of the early neural network framework was based on the description

made by Hebb [2005] of the human cerebral cortex. It was then understood that

an artificial brain would be based on a large number of logic gates.

Attempts at simulating this network of logic gates such as the one by Farley

and Clark [1954]. Hence, even though ANNs had been known in the literature

since the 1940s, the lack of processing power and the difficulty in approximating

neuron activations made them very unpopular. It was not until the description

of backpropagation by Werbos [1974] that the research community started to

delve into ANNs again. The arrival of parallel computing in the 1980s further

accelerated the development of ANNs.

A.3.1 Setting

From now on, we assume that Neural Networks are being used for image data.

Data Z0 is fed through a neural network and is mapped through succesive layers

via a composition of an affine transform with a non linear activation function.

Hence, each layer l is related to the previous by:

Zl = φl ◦ Tl (Zl−1) (A.22)

where φl is the activation function and Tl is the affine transformation.

In general, the affine transformation is parametrised by a set of weights and

biases which we denote by θl. The weights Wl define the linear part of the

transformation and the bias bbbl defines an offset similar to the ones used in linear

regressions. The output of a neural network with L layers is denoted by ZL while

the input is denoted by Z0. They are related by the ANN map
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ZL = fnet (Z0) (A.23)

where

fnet (Z0) = φL ◦ TL ◦ φL−1 ◦ TL−1 ◦ ... ◦ φ1 ◦ T1 (Z0) (A.24)

We shall employ the convention used in computer tensor algebra when index-

ing arrays. I.e, for an array aaa of size Nx×Ny×Nz, we shall use aaa[i, j, k] to denote

its entries. We also use the notation [h1 : h2, i1 : i2, j1 : j2] to denote the discrere

interval {h1, h1 + 1, ..., h2} × {i1, i1 + 1, ..., i2} × {j1, j1 + 1, ..., j2}. We denote by

aaa[h1 : h2, i1 : i2, j1 : j2] the ordered slice of the array corresponding to the set

defined by {h1, h1 + 1, ..., h2} × {i1, i1 + 1, ..., i2} × {j1, j1 + 1, ..., j2}.

A.3.2 Activation Functions

The middle layers of neural networks consist of neurons. The neurons are elements

of the vector Zl. In traditional ANN theory, these neurons are made to behave

like logic gates. Hence activation functions were used that were approximations

of the indicator function

1(x) =

1 if x > 1

0 otherwise
(A.25)

In fact Funahashi [1989] showed that we actually require activation functions

to be basis functions. We give a few examples in Table A.1 of some commonly

used activation functions. Note that most of these can be used as so called uni-

versal function approximators.

Much of the focus in the deep learning community has been to find activation

functions whose gradients would behave reasonably well during training. A com-

mon problem in training is that of vanishing gradients. For example, for large

values of |x|, the derivative of the sigmoid function in Table A.1 tends to 0. This

means that during training, neurons that have a big pre-activation 1 will receive

little updating. This is similar to getting stuck in a local extremum.

A common activation used for the output layer is the softmax function. It

acts on a vector of length Nc (usually number of classes in a classification task).

It is given by

1the state or value of the neuron before passing through the activation function
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Name f(x) f ′(x)
Sigmoid 1

1+e−x
ex

(1+ex)2

Tanh
ex − e−x

ex + e−x
4

ex+e−x

Arctan tan−1(x) 1
x2+1

Relu x1(x) 1(x)

Table A.1: The table shows different activations and their derivatives.

σσσ(zzz)i =
ezi∑Nc−1

n=0 ezn
(A.26)

The output of the softmax at index i usually represents the probability that the

input data is in class i.

A.3.3 Discrete kernel operations

Before describing the layers in ANNs, we give a description of the generalised

discrete kernel convolution of a 2-d kernel with a 2-d array. We have a kernel

KKK ∈ RSx×Sy
applied to an image U ∈ RNx×Ny

. The operation is split in two.

First, a window of size Sx × Sy is selected inside the padded image domain.

Padding is the process of appending and prepending the image with Px rows and

Py columns. Then, each element in this window is multiplied by the corresponding

entry in the kernel. The second part of the operation is a reduction operation fr

on the newly created array.

KKK ?U[m,n] = fr (KKK �U [sx(m) : sx(m) + Sx − 1, sy(n) : sy(n) + Sy − 1])

(A.27)

sx and sy map the target coordinates of the output map to the source coordinate

in the input map. It is given by

sx(m) = −Px +mdx

sy(m) = −Py +mdy
(A.28)

dx and dy are the stride lengths of the kernel. They are the jumps that the ker-

nel makes as the window of operation moves along the spatial dimensions of the

array. Hence, as per equation (A.28), the source pixels are then separated by

dx − 1 and dy − 1 pixels in each dimension. For an image that has been padded,

we adopt the convention U[x, y] = 0 when (x, y) /∈ [0 : Nx − 1, 0 : Ny − 1].
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Definition A.2 (Kernel Window Operation). Consider a one dimensional kernel

of size S being applied to an array of size N with padding P and stride d. We

call the the interval [s(m) : s(m) + S − 1] the kernel window of of operation at

source location s(m). Here s(m) is given by

s(m) = −P +md (A.29)

The kernel window of operation for a kernel acting on many dimensions is

given by the product of the windows of operation in each dimension. The size

of the output is given by the value of m in equation (A.28) for which the kernel

window [sx(m) : sx(m) + Sx − 1, sy(n) : sy(n) + Sy − 1] is completely inside the

padded image. Without loss of generality, we solve

sx(m) = (Nx − 1)− (Sx − 1) + Px ⇔

−Px +mdx = (Nx − 1)− (Sx − 1)⇔

mdx = (Nx − 1)− (Sx − 1 + 2P )⇔

m =

⌊
Nx − Sx + 2P

dx

⌋
+ 1

(A.30)

Solving equation (A.30) for Nl+1 is equivalent to finding the number of parti-

tions one can make in an array of size Nx
L − 2

(⌊
Sx

2

⌋
− P x

)
through jumps of size

dx that stay within the array.

Lemma A.3. Consider a one dimensional kernel of size S being applied to an

array of size N with padding P and stride S. The size of the output array is

given by

Nout =

⌊
N − S + 2P

d

⌋
+ 1 (A.31)

Figure A-1 shows a kernel operation when the number of valid jumps match

with the dimension of the image perfectly, resulting in the same size image. Fig-

ures A-2 shows what happens when a lack of padding causes information to be

lost. Figure A-3 shows how this problem can be fixed by using padding.

In general, one would use a stride of 1 and a padding of size
⌊
S
2

⌋
in each

dimension to preserve the size of an image. It is common to want to half the size

of the image in each dimension, in which case a kernel size of 2 with a stride of

2 and no padding is used.
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Figure A-1: The Figure shows a kernel of size 3× 3 being applied to an image
of size 6× 6 with a stride of 1 in each dimension and a padding of 1. This yields
an output of size 6× 6 as per equation (A.31).

Figure A-2: The Figure shows a kernel of size 4× 4 being applied to an image
of size 11 × 11 with a stride of 3 in each dimension and a padding of 0. This
yields an output of size 3× 3 as per equation (A.31). This is an example where
the last row and column of the image do not contribute to the output.
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Figure A-3: The Figure shows a kernel of size 5× 5 being applied to an image
of size 6× 6 with a stride of 3 in each dimension and a padding of 2. This yields
an output of size 3× 3 as per equation (A.31).

A.3.4 Layers

The types of layers in a Neural Network are generally characterised by the type

of affine transformation between layers. The affine transformation dictates the

level of connectivity between successive layers.

A.3.4.1 Fully Connected Layers

Fully connected layers are characterised by a matrix multiplication between layers

that acts as the affine map T. That is for Zl ∈ RNl

Zl = φl (WlZl−1 + bbbl) (A.32)

where Wl ∈ RNl−1×Nl is the weight matrix and bbbl ∈ RNl . If each element of Zl

is treated as a neuron, then the weight matrix Wl defines a dense connection

between layers where each neuron in the current layer is mapped to each neuron

in the next layer as shown in Figure A-4.

A.3.4.2 Convolutional Layers

Convolutional Layers on the other hand, use a kernel convolution between layers

as the linear part of the Affine map. Equation (A.22) becomes
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Zl−1

φl (WlZl−1 + bbbl)

Zl

φl+1 (Wl+1Zl + bbbl+1)

Zl+1

Figure A-4: The Figure shows the relationship between three fully connected
layers of a Neural Network. The components of Zl represent the neurons in the
network. These are represented by the circles. The Weight matrix Wl creates a
dense connection between individual neurons between layers.

Zl+1 = φl (Wl ? Zl + bbbl) (A.33)

One of the motivations of Convolutional Layers is that the dense connection in

fully connected layers are not invariant to rotations and shifts of objects present

in image space. Using a sliding window of weights such as a kernel convolution,

partly addresses this issue.

Moreover, for a long time, researchers have focused on finding filtering meth-

ods that would extract texture information from images. Canny [1987] showed

how to use a variety of filters to detect edges in an image. Later, Gabor filters

were used by Jain and Farrokhnia [1991] for text recognition. Convolutional lay-

ers are an extension of such efforts, where now, the filter is specifically designed

for the inference at hand through backpropagation.

In general, data between convolution layers take the form a multi channel

image. That is Zl ∈ RNx
l ×N

y
l ×Cl where Nx

l , N
x
l are the width and height of the

image2 respectively and Cl is the number of channels. Wl ∈ RSx
l ×S

y
l ×Cl×Cl+1 is a

discrete convolution kernel with horizontal spatial extent Sxl and vertical spatial

extent Syl defining a mapping KKK l : RNx
l ×N

y
l ×Cl → RNx

l+1×N
y
l+1×Cl+1 . We usually

2Nx
l , N

x
l are the spatial dimensions of Zl
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have that Sxl , S
y
l are odd. Setting S = Syl = Sxl for ease of notation, we have

(Wl ? Zl) [m,n, o] =

Cl−1∑
h=0

∑
0≤i≤S−1

∑
0≤j≤S−1

Wl[i, j, h, o]Zl [sx(m) + i, sy(n) + j, h]

(A.34)

Equation (A.34) is a discrete convolution operation as defined in Section A.3.3.

In this case, fr is the reduce sum operation across the channels and within the

window of operation. sx, sy are as in section A.3.3 and are defined by equation

(A.28). The bias term bbbl ∈ RNx
l+1×N

y
l+1×Cl+1 is a constant along the first 2 dimen-

sions. That is, each output channel gets shifted by a constant term.

The padding Px and Py and the strides dx and dy determine the dimension of

the output map. The output size Nx
l+1 and Ny

l+1 of each dimension is given by

equation (A.31).

A.3.4.3 Pooling Layers

One central aspect of Convolutional Neural networks is that they try to replicate

the early efforts in the computer vision community to represent the human visual

cortex. The Nyquist sampling theorem along with descriptions by Koenderink

[1984] of the human visual cortex have led researchers to conclude that it is nec-

essary to represent images at different scales or sizes. Scale space was described

by Lindeberg [2001] which then led to the development of feature extractors such

as Scale Invariant Feature Transform algorithm by Lowe [2004].

For convolutional layers to replicate those efforts, pooling layers were intro-

duced, which would downsample the image after a convolutional operation. More-

over, they impose an additional layer of translation invariance to the image, as

the value of the pooling layer loses some spatial information about the source

image.

Like a convolutional layer, a pooling layer consists of a kernel operation

followed by an activation function. Pooling layers however differ in two ways.

Firstly, the activation function that is applied after the kernel operation is the

identity function. Secondly, the kernel used is a slicing kernel with entries that

are all ones. Moreover, unlike in convolutional layers, the kernel weights do not

get updated during training.

We have the input Zl ∈ RNx
l ×N

y
l ×Cl . The kernel has size KKK l ∈ RSx

l ×S
y
l and
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consists of only ones and maps the input onto the output Zl+1 ∈ RNx
l+1×N

y
l+1×Cl .

We can rewrite equation (A.27) as

KKK l ? Zl[m,n, h] = fr (Zl [sx(m) : sx(m) + Sx − 1, sy(n) : sy(n) + Sy − 1, h])

(A.35)

Common reduction operation used are

• the max pooling operation given by fr(xxx) = max{x0, ..., xn−1};

• the average pooling operation given by fr(xxx) = 1
n

∑n−1
i=0 xi; and

• the median pooling operation given by fr(xxx) = median{x0, ..., xn−1}

In pratice, pooling is performed with a kernel of size 2 in each spatial dimen-

sion and a stride of length 2 on an unpadded image to produce an output of half

the size of the input in each dimension. Indeed, with these values of d, P and S,

equation (A.31) yields

Nl+1 =

⌊
Nl

2

⌋
(A.36)

for all spatial dimensions.

A.3.4.4 Transposed Convolution

As we have previously described, images are downsampled, or compressed, by

applying a convolutional layer and a pooling layer. It is often desirable to up-

sample the image in deeper layers. Moreover, we want the type of upsampling to

be application specific by letting the operation be updated through backpropa-

gation. This is achieved through the transpose convolution operation.

As in Section A.3.4.2, Zl ∈ RNx
l ×N

y
l ×Cl is the input to the layer, and Wl ∈

RNx
l ×N

y
l ×Cl×Cl+1 is a discrete convolution kernel with horizontal spatial extent Sxl

and vertical spatial extent Syl .

Before applying the kernel operation to Zl, the latter is first augmented by

mapping it to a tensor Ẑl ∈ RN̂x
l ×N̂

y
l ×Cl where N̂x

l = δxN
x
l and N̂y

l = δyN
y
l . We

call δx, δy > 1 ∈ N the horizontal and vertical dilations respectively. We have

that
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Ẑl[i, j, k] =

Zl

[
i
δx
, j
δy
, k
]

if i mod δx = 0 and j mod δy = 0

0 otherwise
(A.37)

Then the output to the layer is given by

Zl+1 = φl

(
Wl ? Ẑl + bbbl

)
(A.38)

where

(
Wl ? Ẑl

)
[m,n, o] =

Cl−1∑
k=0

∑
0≤i≤S−1

∑
0≤j≤S−1

Wl[i, j, k, o]Ẑl [sx(m) + i, sy(n) + j, k]

(A.39)

and bbbl is the bias term as in section A.3.4.2. This is equivalent to adding δy−1 after

every column of Zl and δx−1 rows after every row of Zl before convoluting it with

a kernel. It is common to not use striding when using the transposed convolution.

In fact dilation can be considered as the dual of the striding operation as it

negates the effect that the latter has on size. This dual treatment is extended by

Dumoulin and Visin [2016] who also defines a dual padding. However, we treat

a transposed convolution as a dilated convolution operation with stride 1. By

using equation (A.31) we get the following equation for the output size

Nx
l+1 = Nx

l δx − Sxl + 2P + 1

Ny
l+1 = Ny

l δy − S
y
l + 2P + 1

(A.40)

Using a kernel size of 2P + 1 with a dilation of 2 will cause the dimension to

double. It is common in the literature to use S = 3 and P = 1. It is also

common practice to use have S ≥ δx to capture local dependencies.

A.3.4.5 Skip Connections

Skip connections arise when the output of a previous layer is appended to the

input of a deeper layer. That is

Zl+1 = φl+1 ◦ Tl+1 (Zl,Zk) (A.41)

where k < l. These usually arise in purely convolutional neural networks, where

the dimension of the current layer is augmented along the channels by concate-

nating the input with the output of a previous convolutional layer. In these
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Figure A-5: The Figure shows a transposed convolution operation of a kernel
of size 3× 3 with an image of size 5× 5. A dilation of 2 is used with no padding.
The output has size 8 as per equation (A.40).

Figure A-6: The Figure shows a transposed convolution operation of a kernel
of size 3× 3 with an image of size 5× 5. A dilation of 2 is used with no padding.
The output has size 8× 8 as per equation (A.40).
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Figure A-7: The Figure shows a transposed convolution operation of a kernel
of size 3× 3 with an image of size 5× 5. A dilation of 2 is used with no padding.
The output has size 8× 8 as per equation (A.40).

situations, it is necessary for Zk and Zl to have the same spatial dimension.

Figure 5-4 shows the use of skip connections in the unet architecture, which we

later describe. However, it is possible to have more general maps φl+1 ◦ Tl+1 in

equation (A.41).

A.3.5 Training

Given training data X = (xxx0, ...,xxxN−1)T and their corresponding labels Ŷ =(
ŷyy0, ..., ŷyyN−1

)T
, we want to find the set of weights and biases Θ = {θl, l = 1, .., L}

such that the difference between the predictions yyy = fnet (xxx) and the labels ŷyy is

minimised. As yyy is a function of the set Θ, we can define an energy on Θ through

a loss function between the predictions and labels as follows

R(Θ) =
N−1∑
i=0

r (yyyi, ŷyyi) (A.42)

Where r is a loss function. We Θ∗ = arg minΘR(Θ) that minimises the loss

r (yyy, ŷyy) between labels and predictions.

A.3.5.1 Backpropagation and Forward propagation

Minimising equation (A.42) is usually done through stochastic gradient descent

as described in section A.2. The gradient ∇ΘR is calculated through the chain
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rule.

Theorem A.4 (Chain Rule). Let f : RN → RK and g : RK → RM be differ-

entiable functions with continuous derivatives. Let h := f ◦ g be the composition

of the 2 functions, then the jacobian of h is given by the matrix multiplication of

the jacobian of g evaluated at x and the jacobian of f evaluated at g(x).

Jh(x) = Jg(x)Jf (g(x))

The recursive nature of fnet and the chain rule provides an efficient algorithm

for calculating the gradients ∂L
∂θl

. Using equation (A.22), we have that

∂Zl

∂θl
= φ′l (Tl ◦ Zl−1)

∂Tl

∂θl
(Zl−1) (A.43)

Using this an equation (A.24) we have that for any l,

∂R

∂θl
=

∂R

∂ZL

L−l∏
k=0

∂ZL−k

∂θL−k
(A.44)

where
∏

here denotes matrix multiplication. The process of recursively calcu-

lating the gradient for the parameters in each layer given in equation (A.44)

is called back propagation.
∂R

∂θl
requires the computation of Zl,Zl+1, ..,ZL.

Hence each time back propagation is carried out, the output of each layer has

to be recomputed. The process of passing the input data forward through the

network to generate an output is called Forward Propagation. The training

of a neural network iteratively alternates between the backpropagation and the

forward propagation steps.

As described in section A.2, the data is split into minibatches X(t),Y(t) of size

B. One epoch is the number of SGD steps such that the whole data has passed

through the algorithm and is given by
⌊
N
B

⌋
+ 1. As the batching is random, it is

not guaranteed that every data point will pass through the SGD algorithm in one

epoch. However sampling methods can be devised to ensure that this happens.

A.3.5.2 Dropout

Dropout works by randomly setting the weight and bias contribution of a neuron

in a layer to zero. The probability of any one neuron being switched off in this

manner in a layer is called the dropout rate. This is depicted in Figure A-8.

Drop out is performed during training. It reduces the dependence of the predic-

tion on any one particular neuron as the latter is not optimised in all the runs of

the gradient descent algorithm. This is demonstrated by Srivastava et al. [2014].
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Figure A-8: The figure shows two instances of a fully connected layer. On the
left, dropout is applied, with the result that some of the hidden neurons have no
contribution to the value of the output neurons.

It is now widely accepted that in the community that dropout does indeed speed

up training by reducing the overfitting effect.

Dropout can also be viewed from a model selection point of view. Consider

a layer with P neurons on which dropout is applied. This creates a stochastic

classifier during training. One can think of dropout as creating 2P different neu-

ral networks which undergo sparse training at the dropout layer. Hence, when

predicting, keeping dropout on that layer would create a random prediction that

is analogous to the predictions created by random forests. One would then create

an ensemble of predictions from which the mode is reported.

However, neural networks tend to be expensive to evaluate and creating en-

semble predictions is not feasible. Srivastava et al. [2014] shows that dropout need

only by applied when training. During test time and when using the trained net-

work, dropout need not be used. In Figure A-8, the diagram on the left would

represent the fully connected layer during training while the diagram on the left

would be that same layer when using the neural network on new examples.

A.4 Experiment Results

In this section, we tabulate the results of the experiments we carry out in section

6.4.3. We perform a 10 fold cross validation on the ALSSM fitting procedure.

At each run, 10% of the data set is omitted from the training set and the fitted

model is tested on this set. This is performed 10 times so that the whole dataset

is covered in this way. For each test example, we compute the ARAND score
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between the model generated classification and the true classification and the

L-2 distance between the generated outline and the true outline.

A.4.1 ARAND score

By fitting a curve outline to a bone in an X-ray, we are able to classify pixels as

being inside or outside the curve, or alternatively as having positive or negative

labels. Consider the following:

(a) Let c+ be the number of pixels that are correctly classified as positive by the

model;

(b) c− be the number of pixels that are correctly classified as negative by the

model;

(c) b+ be the number of pixels that are incorrectly classified as positive by the

model; and

(d) b− be the number of pixels that are incorrectly classified as negative by the

model

Then the ARAND index is given by

ARAND =
c+ + c−

c+ + c− + b+ + b−
(A.45)

A.4.2 Tabulated results

Hence the following table shows mean and standard deviation for the ARAND

score, the L-2 pixel distance, the average L-2 distance in millimeters, the time the

model takes to find a bone outline data, and the time taken to build the potential

function for each test batch. The experiments are repeated for Q = 2, 4, 6, 8, 10

using four potential functions. The potential functions generated using the true

outline, a gradient based edge detector, u-net (5.4.2.1) and p-net (5.4.3.1). We

extract the pixel spacing in millimetres from the dicom file that stores the X-ray

image.
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