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component systems. Chapter 5 adds consideration to the distribution of potential

minima and how it affects structural and charge transport measurements.
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Abstract

Organic semiconductors are quietly revolutionising the modern world, finding appli-

cation in light-emitting diodes, thin-film transistors and photovoltaics. However their

short device lifetimes and reduced power-conversion efficiencies have limited their com-

mercial uptake. Both experimental and computational work to find new materials and

architectures and study of their charge transport properties continues.

Computational studies of the charge transport properties of organic semiconductors de-

pend heavily on the structure/morphology. Structures are often assumed to be a regular

lattice, even in the case of amorphous materials, with some groups using molecular dy-

namics (MD) and Monte Carlo (MC) methods to capture the disorder. However these

approaches have significant drawbacks, some of which are technical (MD and MC can

be computationally arduous at large system size) and some of which are physical (below

the glass transition, the energy landscape makes it difficult to sample a large number of

states). Other approaches such as coarse-grained and basin-hopping methods attempt

to overcome these problems but often create new problems such as the need to develop

new force-fields, having to regain full-atomic representation of molecules afterwards,

and still being hindered by the landscape.

In this work, a new method, Simulation of Atomistic Molecular Structures using an

Elastic Network (SAMSEN), is proposed and applied to molecular and polymeric sys-

tems. SAMSEN contains both a structural and dynamical model that individually

attempt to overcome the technical and physical problems of current methods. The

structural model requires that molecules are split into rigid sections, which retain their

atomistic representation and are constructed to interlock with their neighbouring sec-

tions, and restrict the maximum displacement of atoms from their locally optimised

positions. Atomic collision rules, limiting minimum separations, are also enforced.

The combination allows SAMSEN to recreate the short-range structure of weakly-

interacting non-polar small molecules. The dynamical model creates an elastic net-

work between the rigid sections and displaces them along the low-frequency vibrational

modes to achieve collective large-scale motion and computationally-fast structural re-

laxation.

SAMSEN is applied to systems of spheres to study the structural and dynamical pa-

rameters and a regime is found where a band of collective low-frequency modes can be

found, sampling rate can be increased without altering structure and the mean overlap

of atoms can be controlled without altering sampling rate. The structural parameters

are determined entirely by the class of system being studied, leaving the dynamical pa-
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rameters to be chosen to maximise sampling rate. SAMSEN is then applied to systems

of small molecules and is shown to be widely applicable, providing good approximations

to the short-range structures produced by full atomistic force-field methods. SAMSEN

phenyl-C61-butyric acid methyl ester (PCBM) states are found to have structures close

to those of the higher energy minima in a potential energy landscape of an all-atom

potential and the distribution of these potential minima is found to be near-Gaussian.

SAMSEN outputs are then used as inputs of MD simulations, recreating the full-MD

structures and quickly finding the lower-energy minima. This method provides a useful

pathway for those interested in sampling the distribution of morphologies at equilib-

rium. The diffusion of electrons is simulated for each state in the distribution of MD

and SAMSEN inherent structures and it is found that the diffusion coefficient is near-

independent of the potential of the minima, despite short-range structural differences.

Turning to polymers, the coarse-graining into rigid sections now controls the rela-

tive structure between repeat units. The structure and vibrational modes of poly(3-

hexylthiophene) (P3HT) is studied in the pure amorphous phase and also when blended

with PCBM. Increased persistence of the P3HT backbone is found upon mixing with

PCBM but the density of neighbouring chains is unaffected up to the miscibility limit.

Studying the long time (low frequency) modes, the rate of relaxation of the P3HT

backbone is slowed by the addition of PCBM due to a shift in frequencies, rather than

a change of collective behaviour of the individual modes. The excitonic transport prop-

erties of P3HT are then studied in the amorphous and crystalline phase in a transfer

matrix approach, finding the exciton diffusion length in the low charge limit and com-

paring to experimental and previous computational work on P3HT nanoparticles. Low

disorder polymer, Indacenodithiophene-co-benzothiadiazole (IDT-BT), is also studied,

with a morphology generated, the inter-molecular transfer integrals calculated using a

quantum chemistry package and the diffusion constant for holes determined for a range

of intra-molecular transport rates. Comparing the hole diffusion constant to experi-

mental and computational work, an estimate of the intra-molecular transport rate is

made.

This work serves as a framework for researchers interested in determining the structures,

long-time vibrations and charge transport properties of weakly-interacting amorphous

organic semiconductors where sampling of states is required. It can achieve this without

molecule-specific parameters or forces and does so at modest computational cost and

therefore opens the possibility of sampling a large number of states or simulating bigger

system sizes (approaching device scale) without requiring access to high-performance

computing resources. Further opportunity exists to constrain the dihedral angles, con-
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sider electrostatic interactions, as well as to study the charge transport properties of

polymer systems incorporating an accurate model for intra-chain charge-transport.
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Chapter 1

Introduction

Organic semiconductors are re-shaping modern electronics. These molecular-based

semiconducting materials hold a significant advantage over traditional solid-state elec-

tronic materials: they are cheap to manufacture. Unlike silicon-based technology,

these materials can be solution processed at room temperature, driving down pro-

duction costs for companies willing to make the transition. With an expansive range

of molecules to choose from, a manufacturer can pick an organic semiconductor (or

modify an existing molecule) that has a property specific to its needs; for instance,

the band gap can be selected to provide a certain colour or a material can be used

which allows greater mechanical flexibility. Benefits such as these have begun to make

organic semiconductors (OSCs) commercially competitive and they have already found

a home in a wide-range of devices including televisions and mobile-phone displays as

organic light-emitting diodes (OLEDs), wearable devices and biological sensors as or-

ganic field-effect transistors (OFETs) and solar cells in organic photovoltaics (OPV)

[1].

Research into organic semiconductors and device manufacturing began in earnest after

the award of the 1992 Nobel Prize in Chemistry to Rudolph A. Marcus whose reac-

tion rate equation is used to describe the transfer of charge between two neighbouring

molecules [2] and the 2000 prize to a group “for the discovery and development of

conductive polymers” [3]. Since then, different device architectures were designed and

tested. Experimental groups began work on optimising parameters such as layer thick-

nesses, processing temperatures and solvent evaporation rates [4]. Computational work

was carried out on modelling charge mobility through master equation and, later, ki-

netic Monte Carlo approaches [5, 6, 7, 8]. And new theories, such as the semi-band-like
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transport were created to account for transport in materials with more delocalised

charges both within and between molecules [9, 10, 11].

These efforts have led to the selection of better combinations of molecules such that de-

vices now produce higher operating voltages and currents, higher absorption/emission

efficiency, and exhibit lower degradation rates [12, 13, 14]. This has been in attempt

to improve the three properties that determine if a material is suitable for commercial

use: device lifetime, power-conversion efficiency and charge mobility.

The problem with OSCs

In the silicon solar panel industry, it is common to guarantee a given output - usually

80% of initial performance - for 25 to 30 years after purchase [15]. This allows buyers

to calculate the break-even point on the purchase and installation of a solar panel.

For silicon this usually occurs within the guaranteed device lifetime (the exact time

depends on the level of subsidies and the electricity tariffs in the given jurisdiction). In

organic photovoltaics (OPV), device lifetime is still a significant factor for investors to

consider, with most commercial devices lasting around 2-3 years [16, 13, 17]. A shorter

lifetime than silicon is acceptable due to the lower unit cost of OPV modules, however

the break-even time needs to be lowered before OPV is widely adopted in capital-

rich economies. Degradation pathways include delamination, chemical reactions with

contaminants and mechanical damage caused by repeat flexing or impact. Investigation

into reducing degradation and/or the lowering of the unit cost by molecular-selection

or alternate processing methods is therefore a current topic of research [17, 15, 12, 18].

Another strategy for improving the commercial viability of OPV is to maximise the

amount of power generated and in the case of OLEDs the aim is to maximise the reverse

process - light emitted from a given power input. The device’s effectiveness in these

processes is known as the power conversion efficiency. This accounts for the energy

that could have been absorbed and passed to the connecting circuitry (or received from

the circuit emitted and released as light, in the case of OLEDs) but was not. In OPV

this accounts for a range of losses such as low absorption coefficient, thermalisation and

charge recombination. These losses are again dependent on the material, device archi-

tecture and processing methods. In particular, the device morphology—the structure

and arrangement of molecules, including the structure and arrangement of domains of

molecules in blends—has a strong effect as it directly affects a charge’s ability to move

through an organic semiconductor film and either reach an electrode to do useful work

or recombine with an opposite charge to release light [19, 5, 20].
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For all organic devices, however, the charge mobility is seen as key to their commercial

advancement. This quantity determines how a charge responds to an applied field, and

therefore influences the electrical characteristics of the device, as well as the internal

quantum efficiency. In OFETs, the key metrics for applications such as communications

and displays is switching time and the on/off voltage ratio [21, 22, 23]. A high device

mobility means a stronger or faster response to an applied field which reduces the

switching time, allowing for faster electronics. This property is also dependent on the

material and the morphology.

Computer simulation as a strategy to optimise OSC performance

As has already been demonstrated, the choice of organic semiconductor matters sig-

nificantly and as a result, a large amount of experimental and computational work

is being performed to find new, better-suited organic materials. It is also clear that

the morphology of the organic layers has a strong effect on device performance and

a significant amount of computational work is being performed to determine how the

micro-structure affects the macro-scale properties [5, 20, 24, 25, 26, 27]. Computer

simulations to study these two factors will be the primary concern of this work.

Computer simulations of organic semiconductors can, for the most part, be split into

three categories: molecular and electronic structure prediction, morphology prediction,

and charge transport simulations. All three are, in principle, required to assess the

suitability of a new molecule for use in an OSC device.

The first is usually accomplished by density-functional theory (DFT) methods and

provides the optimised unexcited molecular structure and energy, its associated ex-

cited/reduced energy levels, and other properties such as its internal vibrational modes.

This quantum-level approach is burdensome to compute and is therefore often limited

to single molecules or oligomers in the gas phase (e.g. PCPDTBT [28]) or a few unit

cells for molecular crystals such as pentacene [29], ruberene [30] or perylene [31]. How-

ever, the results are essential as they determine the parameters used in the abstraction

to larger scale simulation.

The second category is usually performed by less computationally intensive methods

such as molecular dynamics (MD), coarse-grained (CG) molecular dynamics or Monte

Carlo methods (MC) such as Metropolis Monte Carlo (MMC). These rely on classi-

cal (or semi-classical) force-fields, parameterised from lower-level simulations such as

DFT or ab-initio dynamics, to determine the energy (and control other thermodynamic
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properties) of a simulated state [32]. This provides the basis for evolving one state into

future states. In MD, particles step forwards in time according to their calculated

velocities and accelerations often using the velocity-verlet algorithm [33]. In MMC, a

new state is proposed and then accepted if the energy is less than the current state or

with an Arrhenius-like probability if there is an increase in energy [34]. These methods

are computationally simpler to perform than DFT methods, but can get expensive as

system sizes increase. Most simulations are limited to roughly a thousand molecules, as

this can take CPU weeks or months to perform at high densities - where the slowing of

dynamics limits the number of states that can be sampled [35]. Coarse-grained methods

have been developed to reduce the number of calculations required by parameterising

the force-field further by grouping atoms and their interactions together, reducing the

number of calculations needed to be performed [35, 36, 37]. This has an impact on the

overall accuracy but increases the system sizes that can be studied.

The third category, charge transport simulations, is then performed on a generated

device morphology. These methods can be broken down into continuous approaches,

such as drift-diffusion (DD) and direct master equation (ME) methods, and discrete

event approaches such as kinetic Monte Carlo (KMC). In the steady-state limit using

on-lattice models, the three approaches are equivalent, however the level of detail and

convergence time vary. The DD and ME approaches smear charges into densities

which reside on given sites (such as a molecule), the probability of charges flowing to a

neighbouring site is calculated and the densities updated accordingly [38, 39, 40, 41]. In

principle, the steady state can be solved for exactly (a stable solution is guaranteed) [42]

unlike in KMC where the steady-state properties are only approximated from samples

in the long-time limit. In a KMC, particles hop around the morphology with calculated

rates modified by randomly picking from a log-uniform distribution [19]. This means

that microscopic events in the system such as charge extraction and recombination, as

well as correlations and interactions with other particles, can also be recorded.

In all cases of charge transport simulation, finite size effects and a limited number of

sample morphologies can lead to significant inaccuracies in the prediction [43, 44]. In

lattice ME approaches, for instance, systems of millions of sites (or 100 nm dimension)

are required before finite size effects become unobservable [43, 45]. Similarly, the set

of morphologies which are used for simulation must also be distributed to reflect the

real-world distribution before it can be said that a charge transport prediction predicts

the real-world device characteristics. However, producing morphologies on this scale is

a computationally expensive task. Most studies are limited to a handful of atomistic

states of approximately a thousand molecules for this reason. If charge transport
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predictions on non-crystalline morphologies are to become systematically reliable, the

obstacle of limited system sizes and limited states needs to be addressed.

The purpose and outline of this thesis

This work is primarily concerned with addressing those two problems: improving sys-

tem size and increasing the number of sampled morphologies. This is achieved by

creating a new coarse-grained method, Simulation of Atomistic Molecular Structures

using an Elastic Network (SAMSEN) [46], which retains the atomistic representation of

a molecule by preserving the strongly repulsive region of atomistic interactions and the

stiffness of the bonded potentials but removes the longer range interactions. This al-

lows larger systems to be studied through a reduction in the computational work. The

method is also molecule-agnostic as it doesn’t require a molecule-specific force-field and

applies well to non-polar amorphous small molecules and polymers.

However, the main benefit of SAMSEN is it overcomes the problem of long-time re-

laxation (experienced by MD and MC) and therefore poor sampling of the potential

energy surface by instead calculating the dynamics between coarse-grained units and

evolving the system along the low-frequency (long-timescale) modes. It is possible

to use this method to generate morphologies of small molecules and polymers in the

amorphous phase with structures similar to those from classical simulation methods

with a distribution of potential energies that is only very weakly biased. It is then also

possible to recover the finer details by using the output states as inputs in a very brief

MD simulation. By performing MD (or at least minimising) in an atomistic-force field

across a large sample of SAMSEN states it is then possible to attempt to study the

material in thermodynamic equilibrium.

I shall demonstrate that using this method it is therefore possible to reach a large

number of states or system sizes in CPU weeks and therefore possible to produce charge

transport predictions without significant sampling errors or finite size effects. I shall

also demonstrate the broad applicability of this method to organic semiconducting

systems, including polymers, and discuss the prospects for improving the structural

model.

The rest of this work is therefore laid out as follows. In chapter 2, I will present the

background material and theory underpinning this work, describing organic semicon-

ductors from the level of molecules to devices and considering their charge transport,

the physical effects that limit dynamical simulations and how they might be overcome.
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In chapter 3, I shall then establish the structural and dynamical model and the SAM-

SEN algorithm used to generate and sample morphologies. I will also describe the

transfer matrix approach that will be used for charge transport prediction. I will go

on, in chapter 4 to describe the effect of changing simulation parameters by studying

systems of hard spheres. The structural and dynamical model will be tested and inde-

pendent control over the structures and sampling rate will be established. In chapter

5 I will then proceed to demonstrate the validity of the structural model by studying

three small molecules and comparing their structures to those of other simulation tech-

niques. I will also show that by following the long-time dynamics of the low-frequency

vibrational modes, it is possible to relax the structure in short compute times. I will

also discuss the distribution of the potential energy of the configurational states gen-

erated using SAMSEN and show one can use MD, starting from the SAMSEN states

(minimised in an atomistic force-field) to obtain the lower energy amorphous states.

From chapter 6 onwards, the model is used investigate the structure, low frequency

modes and charge transport in typical OPV and OLED materials. I present a study of

polymer-fullerene blends in chapter 6 and how the mixing ratio alters their dynamics

and the conformations of the polymers. In chapter 7, I also study exciton diffusion in

crystal and amorphous morphologies of poly(3-hexylthiophene) (P3HT) and compare

to experimental measurements of P3HT nanoparticles. Consideration is also given to

the finite size effects on the charge transport predictions. In chapter 8 I then pro-

ceed to study hole diffusion in a donor-acceptor co-polymer and its dependence on

the intra-chain charge transport rate. In chapter 9 I will then summarise my find-

ings and comment on the suitability of the models employed here to simulate organic

morphologies and predict charge transport properties of organic semiconductors.
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Chapter 2

Background

2.1 Organic Semiconductors

In many ways, organic semiconductors (OSCs) can be considered similar to conventional

inorganic semiconductors: electrons fill distinct energy levels in the material and these

energy levels are such that there is a gap between a valence state (the bonding band

which in OSCs is the highest occupied molecular orbital or HOMO) and the conduction

state (the lowest unoccupied molecular orbital, the LUMO). Electrons in the LUMO

and the absence of electrons (holes) in the HOMO can then move throughout the

material and respond to an applied electric field. This similarity has allowed OSCs

to begin to compete and, in some cases, displace silicon in semiconductor applications

such as field-effect transistors and light-emitting diode displays. In other ways, OSCs

have some distinct differences from the conventional materials which can provide some

advantages and disadvantages in their charge transport, mechanical and structural

properties. This chapter shall be dedicated to describing these key intrinsic differences

which also modify how organic semiconductor devices are designed and fabricated and

alter how they need to be both theoretically and computationally modelled.

2.1.1 Molecules, HOMO, LUMO and the Band Gap

The conducting and semiconducting properties of organic molecules is determined by

the bonding arrangement of its constituent atoms. A simple alkane chain consists of

carbon atoms bonded to two other carbon atoms (one at the ends of the chain) and also

to two hydrogen atoms (three at the ends of the chain). This alkane, take hexane as an
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example, can be drawn as a Lewis structure that has only single bonds connecting any

carbon to another [47]. In other molecular structures, such as benzene, it is possible to

draw alternating double and single bonds between two carbon atoms (there are multiple

resonant structures) [48]. This alternating double and single bond pattern allows the

electron p-orbitals to overlap across the σ-bond (the single bonds in this case), forming

a conjugated system. π-orbitals, which are delocalised orbitals across the aligned set

of p-orbitals, then form. In the case of benzene, two π-orbitals form and lie above and

below the plane of the molecule and are delocalised across the diameter of the molecule.

The delocalised molecular orbitals are of chief concern in organic semiconductors as they

contain the states that are the equivalent of those in the valence band and conduction

band in inorganic semiconductors [49]. These two electronic states/orbitals, referred to

as the highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular

orbital (LUMO), represent the ionisation potential of the neural molecule and the

electron affinity (the energy change for adding an electron to the neutral molecule)

respectively [50, 51, 49]. These are sometimes taken to be the energies at which, after

absorption of a photon, the electron vacancy (the hole) and the excited electron exist

- but due to an interaction between the hole and electron, this is not strictly the

case [49]. They must both be calculated at the quantum chemistry/density-functional

theory level and the precise methodology used can alter the result [50].

Between the HOMO and LUMO, a gap in energy levels exists: the HOMO-LUMO gap

(sometimes the energy gap), which is often referred to as the band gap or the optical

gap or the fundamental gap. Strictly speaking, each of these has a different and precise

meaning described well by Bredas [50] and Kahn [49]. In this work, we shall follow

that convention and ‘HOMO-LUMO gap’ shall be used to describe the difference in

the calculated HOMO and LUMO energy in vacuum and ‘energy gap’ the difference

between the two levels for a specific molecule in the bulk.

It is, however, difficult to consider a small molecule or polymer organic semiconductor

having HOMO and LUMO bands in the same way that inorganic semiconductors have

valence and conduction bands. Due to disorder, the HOMO and LUMO electronic

wavefunction is often confined to an individual molecule (or conjugated region) and

lacks the extend bonded structure of inorganic crystals required to exhibit band-like

transport or to even draw a band-diagram [50, 26]. Instead, many individual molecules

with their valence and conduction states are positioned in proximity to one another

to form a bulk material. The HOMO and LUMO energies of a given molecule is then

altered by interactions with neighbouring molecules. Small scale structural changes of

the molecule due to thermal fluctuations or interactions with surfaces or electric fields
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also alter the energy levels [50, 49]. This creates a distribution of energy levels of the

HOMO and LUMO within the bulk material - a ‘band’ of HOMO and LUMO levels

is then sometimes referred to and the band-gap represents the difference between the

lowest LUMO energy and the highest HOMO energy in the system [50].

It should be noted that in some cases (particularly molecular crystals with low disorder),

inter-molecular delocalisation also occurs and charge transport can also sometimes

be described as band-like [24, 25, 52, 53, 50, 54, 55], however this work shall focus

on amorphous organic semiconductors and inter-molecular delocalisation shall not be

considered in further detail here.

2.1.2 Polymers and Charge Delocalisation

Across a larger molecule, such as a polymer, with an extended conjugated system, these

orbitals can, in principle, be delocalised over the length of the polymer. However, the

amount of delocalisation depends strongly on the given conformation of the polymer

and its chemical structure [56]. In the case of the former, it is understood to be

important to consider how twists (change in the torsional angles between polymer

segments) and bends (change in the bonding angle) alter both the delocalisation of the

electronic states and, if a polymer consists of multiple delocalised states, the rate of

charge transfer between the delocalised states [56, 11, 9].

The extent of intra-molecular delocalisation therefore depends strongly on the torsional

potential that biases the distribution of torsional angles. In some polymers, such as

P3HT, this torsional potential is very weak and it is common to find 180◦ rotations away

from the minimum-potential configuration [57]. Therefore, before considering charge

transport in a polymer, strict consideration of the extent of delocalisation should be

made on a per-polymer basis (the regions over which the conjugation is unbroken should

be identified). These regions should be re-identified whenever the polymer moves. Then

on a per delocalised orbital basis, the amount of overlap between the orbitals and the

rate of electron transfer between the orbitals can then be calculated. Methods such

as the flexible surface hopping or a method such as that of Fornari et al. provide a

framework for incorporating these effects [9, 11].
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2.1.3 Excitons

As in inorganic semiconductors when light is absorbed by the material, an electron,

under the correct conditions, can absorb the energy of the photon and elevate itself

into an excited state. This transition is from the valence band to a higher energy state,

ideally at or above the bottom of the conduction band. In organics this transition is

from the HOMO to the LUMO (or LUMO+1, LUMO+2, etc.) and the change in energy

is known as the optical gap which also accounts for the interaction between the excited

electron and the electron vacancy/hole [50, 51, 58, 54]. These charges are unable to

separate at room temperature, as they might in inorganic semiconductors, due to the

low dielectric constant of OSCs, often given as εr ≈ 3.5 [19, 51, 54]. This creates an

attraction - the binding energy - calculated by the Coulomb potential with a distance

of approximately the size of the molecule/conjugated region, that is larger than the

thermal energy at room temperature (≈ 0.026 meV). The electron and hole, unable to

separate, are then treated as a charge-neutral quasi-particle: an exciton [51, 59, 54, 60].

The exciton will be delocalised over some region, defined by the wavefunction and

often over large sections of the molecule or several repeat units in a polymer. Further

coupling of the exciton to low-frequency vibrations, torsional changes to the structure

of the molecule (or the polymer) and the influence of the local environment can all

increase the localisation of the excited state [54, 56, 61]. The excited electron is then

either able to transfer to neighbouring conjugated regions in the system or transition

to lower energy states by releasing another photon.

Excitons can be either spin singlets or spin triplets with the singlets being the emissive

species in π-conjugated molecules [62, 63]. The ratio of formation of singlet and triplet

excitons can vary between molecule/polymer [64, 65] but is usually taken to be 1:3

[66]. The singlet exciton is usually modelled as transporting via a resonance energy

transfer process (see section 2.2.1) and the triplet via a Dexter-type transfer [60, 67].

We will not, however, consider the distinguishing characteristics in further detail and

only consider singlets in this work.

In order for an organic photovoltaic device to do useful work, the exciton must find an

additional amount of energy so that the electron and hole can separate. This is usually

achieved by constructing a device with an interface between two materials which have

been selected such that the total energy difference when one of the species transfers

into the other material is larger than the exciton binding energy [68, 19, 51, 58]. If an

exciton reaches an interface and the charges separate, the electron and hole then move

in opposite directions under the influence of an external electric field. The charges
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continue to attract one another however and can recombine and re-form an exciton

[68, 19, 5]. If separation doesn’t occur quickly enough, the exciton can relax back to

the ground state and release that energy as a photon.

2.2 Charge Transport Models

The process of charge transfer in organic semiconductors is different to inorganic semi-

conductors, as already noted: the localisation of electronic states to a molecule or con-

jugated region means band-like transport with a momentum vector is a poor description

of charge transport in organics [60, 25, 52]. Instead, transport is often described as a

series of hops between discrete sites - taken as the centre of a molecule or the centre of

the wavefunction of the HOMO or LUMO. A model for hopping, often dependent on

the particle species or structure of the material, must be chosen before simulation can

begin. Throughout the rest of this work the following three transport models will be

used.

2.2.1 Hopping Models

Marcus Theory

Perhaps the choice charge hopping model in the organic semiconductor literature, Mar-

cus theory attempts to describe the rate at which a pair of redox reactions involving

two neighbouring molecules will take place [2, 60]. The idea is that there exists an

energy surface which describes the energy of many possible states of the system (the

molecules involved in the reaction and surrounding solvent molecules). This landscape

includes the two states (or range of states) which are the reactant and products of

the reaction. To reach the products, the reactants must gain enough energy to cross

the barriers in the landscape and reach the product states. Between the two states a

saddle-point region may exist known as the transition state(s) which can be used to

determine reaction rates from statistical mechanics [2]. The increase in energy must de-

scribe the rearrangement of the nuclear coordinates of the molecules and solvent as well

as the change in electronic energy. To calculate the rates of reaction, Marcus assumes

the potential energy surface around the reactants and products can be approximated

as two parabolas, neglecting electronic coupling, which intersect. An electron transfer,

now calculated including electronic coupling, can occur at this point of intersection

[2, 69, 70].
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The standard free energy of reaction is ∆G0 and is the difference between the minima

of reactants and products, ∆G∗ represents the activation barrier for the reaction and

is related to the reorganisation energy λ, which includes both solvent and vibrational

components and describes the transition from reactant to product state (in the ge-

ometry of the reactant state) [2, 71]. The Marcus rate expression is of the form of a

chemical reaction rate with barrier ∆G∗ which can, due to the parabolic approxima-

tion, be described by the free energy of the minimum structures and is often written

as

kij =
|Jij |2

~

√
π

λijkBT
exp (−

(∆G0
ij − λij)2

4λijkBT
) (2.1)

Determination of the Marcus rate of charge transfer between two molecules therefore

requires knowledge of three quantities: the electronic coupling (sometimes electronic

overlap’) between two molecules/segments, Jij , the molecular reorganisation energy for

the transfer λij and the relative energy levels of the product and reactant states (includ-

ing the difference in HOMO or LUMO, as appropriate), ∆G0
ij and kB is the Boltzmann

constant, T is the temperature. The calculation of these values can become a serious

undertaking. They, strictly, require quantum-level calculation of electronic wavefunc-

tions of the two molecules, i and j, in their local environment before and after transfer.

Approximations are often made, such as the HOMO, LUMO and re-organisation en-

ergy can be calculated in a vacuum (with the HOMO and LUMO modified to mimic

the local disorder). However, alterations to the molecular or external geometry are

usually taken to not persist or alter the environment of other molecules for subsequent

electrons transfers. For simplicity, we will also follow that convention here.

Miller-Abrahams

Another expression for charge transport often found in the literature is the Miller-

Abrahams equation [72], given by

νij = ν0 exp (−2αrij)×

{
exp (−∆E/kBT ), ∆E > 0

1 ∆E ≤ 0 .
(2.2)

where α is the inverse localisation constant, ∆E is the difference in site-occupation

energy for the relevant charge, ν0 is a rate prefactor constant and νij is the rate of the

charge transfer between two sites. The Miller-Abrahams equation is therefore a repre-
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sentation of a polaron (a charge that distorts the local structure) which, due to disorder

and a lack of band-structure, undergoes a tunnelling process in low-temperature con-

ditions and has been described as a low-temperature version of the Marcus expression

[60]. It has therefore found widespread use in organic semiconductor charge-transport

simulations [73, 74, 75, 36, 5] and has been shown to produce similar results to Marcus

theory in some instances [76]. For instance, considering inter-chain hops, the Miller-

Abrahams expression (excluding the energetic term) was once described to be a good

representation of the electronic couplings |J | of the Marcus expression [19] (although

it should be noted that |J | strictly depends on both the distance and orientation of

neighbouring molecules while equation 2.2 does not). It has also been used to describe

charge injection from an electrode into the organic layers of OSC devices [77].

We will use the Miller-Abrahams expression here in situations where we do not have

the electronic couplings between molecules and use an appropriate value of α taken

from the literature.

Förster Resonance Energy Transfer

For the transfer of excitons an alternate model is required. Förster resonance energy

transfer (FRET) is a quantum-mechanical description of energy transfer of the excited

state. In the original paper published in 1948 [78], Förster describes a point-to-point

model of energy transfer between excited states in organic molecules. In that work,

the formal quantum-mechanical treatment is presented, which describes the interaction

energy between two dipoles (the bound electron and hole in OSCs) at a given relative

orientation and separation. The result was that for two dipoles in separate molecules,

i and j, the rate of transfer between them can be described by a rate

νij =
1

τ

(
R0

rij

)6

×


exp

(
−εj − εi

kbT

)
, ∆E > 0

1, ∆E ≤ 0

(2.3)

where R0 is the Förster radius (which describes the localisation of the exciton) and

ε represents the exciton energy at that site (strictly, the S0 → S1 optical gap for

singlet excitons) [78, 79]. Excitons are also able to recombine (sometimes ‘decay’ as it

describes the de-excitation of the electron to the HOMO) and do so at a rate with a

decay constant equal to the reciprocal of the characteristic exciton lifetime, τ , as [78]
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νrec =
1

τ
. (2.4)

The Förster radius, R0, is strictly defined in terms of τ - it is the distance at which

there is a 50% chance of the exciton transferring if one waited over a period of time, τ

[73]. This property, combined with equation 2.3, means τ does not alter the statistical

distance an exciton might travel before decaying [80]. In the 1948 paper it was also

written that R0
6 ∝ κ2 where κ was the dipole orientation factor which is given as

κ = ûD · ûA − 3(rDA · ûD)(r · ûA) (2.5)

where ûD and ûA are the unit vectors for the donor and acceptor transition dipoles

respectively (molecules i and j, previously) and rDA is the separation between their

centres [73, 78]. In situations where the the molecules can reorient under rotational

Brownian motion at a rate much faster than the rate of energy transfer, the number

of energy transfers per unit time can simply become an average across all relative

orientations of the pair of molecules at that separation. However, in more viscous

materials, the theory strictly requires that the transfer rate between two molecules

is determined for their specific relative orientations. For a dynamic system that can

reorient fast and freely, κ2 = 2/3 for all pairs. For a static system of molecules in

random orientations, 〈κ2〉 = 2/3, and for a completely aligned system, 〈κ2〉 = 4.

In some work [81, 82, 83], the effect of incorporating the relative orientations into

the transfer rate has been studied. This static transfer rate is then compared to the

dynamic (fast rotation) transfer rates. Other studies [84, 85] used the system average

relative dipole orientations and applied it to all pairs in the system and, in their polymer

film, reported it as being less than the unconstrained dynamical time average. For the

truly dynamical model, κ2ij = 2/3 while, for the polymer system, 〈κ2〉 = (0.845
√

2/3)2.

The strict application of the Förster theory requires the rate to be determined from

individual pairs of dipoles, however [78].

2.2.2 Intra-chain Transport

Charge transport in polymers is usually described by a different mechanism to the

charge hopping and resonance transfer described in the previous section. For instance,

with excitons, it is common to employ some form of Dexter transfer [67, 73, 86] between

conjugated regions where the torsion within the polymer has not broken the conjuga-
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tion of π-orbitals [56]. For electrons and holes, several methods exist with their basis in

quantum-mechanical approaches that describe how the wavefunction moves through-

out. One such approach is the flexible surface hopping approach discussed by Wang

et al. [9]. Another method is described by Fornari and Troisi [11, 87]. Other research

has taken a simpler approach and, assuming charges travel much faster intra-chain, use

a high-valued fixed rate constant as an intra-chain hopping rate or, at a given time-

step in a KMC simulation, giving a particle a random position within a polymer chain

(which is equivalent to a very fast rate) [19].

In some research it is still common, however, to treat charge transport as hopping

within the polymers. Some lattice-models perform this implicitly or do not make the

distinction between intra- and inter-chain transport [80, 18, 88]. As the study of the

mechanism of intra-chain transport is outside the scope of this thesis, charge transport

within polymers will here be described as hopping using a combination of the Marcus

theory rates and a constant internal transport rate. For exciton transport, only Förster

transfer rates, described previously, will be considered. However, it should be noted

that a more accurate representation exists and could be utilised in principle.

2.3 Disorder in OSC Simulations

The hopping models discussed in the previous section all explicitly describe some degree

of disorder in the charge-transfer efficiency between any two given sites. The Marcus

equation attempts to describe the vibrational/geometric disorder as the limiting process

for charge transfer, with the reorganisation energy and the energy of the reactant

and product states for defined for a single transfer process between two molecules [2].

This, however, can vary across the system and between pairs of molecules involved

in potential transfer processes. The Förster rate for exciton transfer also puts great

important on the alignment of the molecular dipoles involved in the transfer process

which can, again, vary greatly between all points of molecules in the system and over

time [78].

For the Marcus theory, Miller-Abrahams and FRET rate equations the most obvious

source of disorder, however, is in the energy of the before and after states. In the Marcus

equation, the energies of the reactants and product states as well as the reorganisation

energy, while in Miller-Abrahams and FRET it is the change in electronic energy before

and after transfer. The dependence of the rate equations on energy change acts to

reduce the probability of a charge increasing in energy and, in the case of the Marcus
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equation, increase the probability of a charge hopping to a site with a lower potential.

The energetic disorder therefore has a large influence on the charge dynamics within a

simulation.

This disorder substantially increases the computational work required to mimic charge-

transfer of an organic semiconductor system in a computer simulation. Each of the

rates depends on the relative position (Marcus: |J |2; Miller-Abrahams: exp (−αrij);
FRET: (R0/rij)

6), the relative orientation (Marcus: |J |2; FRET: R0
6 ∝ κ2) and the

energy of the states before and after transfer (which themselves strictly depend on

the relative positions of other molecules’ position and orientation). Each system of

molecules studied therefore has to be parameterised in isolation: quantum chemistry

packages such as the Versatile Object-oriented Toolkit for Coarse-graining Applications

(VOTCA) [89] or Amsterdam Density Functional (ADF) [90] should be used to find the

HOMO and LUMO energies for each molecule/conjugated region in their environment

(and also to obtain |J |2 for the Marcus rate) and each charge transport simulation would

then represent that one state. If one takes Marcus theory literally, the minimised state

of the potential landscape that contains the reactants and products for that process

(with the ion on one molecule and another) would need to be found and used to

calculate ∆G0 before every transfer process. This is perhaps too computationally and

practically arduous to perform before each charge-transfer process and, instead, some

approximations and more tractable disorder models are often applied.

2.3.1 Static Morphology and Dynamic Dipole Approximation

The first assumption often made is that the structure, on which the charge transport

simulation is being performed, is completely static throughout the simulation. This is

similar to the Born-Oppenheimer approximation, where the nuclear motion within the

molecule can be treated separately to the electronic motion. Marcus’ theory implies

that a geometric relaxation after transfer should occur, however this approximation

drastically speeds up the computation. As the molecules are often residing close to a

stable (or metastable) potential minima and charges hop on the femtosecond timescale,

this adiabatic picture of charge transfer is usually retained in the literature [91, 92, 71],

although non-adiabatic methods exist and are described in recent review articles [71,

92]. In this approximation where the charges move instantaneously compared to the

molecular motion, there is no need to consider the effect of molecular ions on the

surrounding geometry and a single minimised state or an average of thermalised states

can be used to find the electronic couplings and the HOMO and LUMO levels of each
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molecule [91]. It is also often assumed that the reorganisation energy for the transfer

processes is the same within a single material: λij → λ. These approximations will

also be made in this work.

A consequence of the static nuclei assumption is that the molecules are not able to

undergo any dynamics during the charge transport simulation. The translational and

rotational vibrations, representing the thermal energy of the molecules, no longer occur.

In simulations where charges move on longer timescales (i.e. exciton transport under

FRET) the dynamical processes are no longer included in the simulation. This means

that the dipole alignments, which govern the efficiency of exciton transfer between

molecular dipole pairs, become static. To represent the motion of the dipoles, the

dynamical dipole approximation is made which assumes that the molecules can rotate

freely and on a timescale faster than the transfer processes, such that the average dipole

orientation factor, κ, can be used between all pairs of dipoles. This means setting

κ2 = 2/3. This approximation (or one assuming perfect alignment) is taken widely in

the literature [78, 93, 80, 94]. Other researchers have taken to using the system-average

dipole orientation [84, 85]. However, the true representation requires the relative dipole

orientation between the pair undergoing transfer to be considered, the effect of this

model compared to a system-averaged value has been discussed in recent work [81,

83]. This latter model is more appropriate for a system where rotational dynamics

is hindered and the system-average model appropriate for a freely-rotating system (a

non-viscous liquid) or a highly-ordered lattice. The dynamic dipole approximation will

be made in this work and compared to a static dipole model with complete alignment

in chapter 7.

2.3.2 Gaussian Disorder Model

Due to the computational intensity or calculating the electron wavefunctions (or ap-

proximating them through parameterisation) of each conjugated region in an organic

morphology and the difficulty in determining the effect of the thermal disorder on such

a property, the HOMO and LUMO levels for each molecule are often approximated by a

Gaussian distribution. The Gaussian disorder model [95] takes the energy of each con-

jugated region from a Gaussian distribution of width, σ around a mean HOMO/LUMO

level (with the mean value calculated in vacuum conditions at the DFT level) for that

material. The width of the Gaussian density of states must be either assumed, taken

from literature or calculated beforehand (using quantum-chemistry methods or inferred

from experiment) and a combination of these approaches has been previously used in
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simulations using all three types of hopping models considered here [96, 74, 19, 80, 6, 97].

Use of a Gaussian disorder model, therefore can allow the HOMO and LUMO levels

of a molecule to be determined for a given simulation without quantum-chemistry

calculations. This has enabled disorder to be captured in on-lattice charge transport

simulations. Of course, it is important to average over many simulations, each assigning

energies from the same Gaussian distribution for an average to be obtained. Other

versions of this disorder model such as the correlated Gaussian disorder model [98, 77]

which introduce correlations in neighbouring HOMO/LUMO energies and the extended

correlated Gaussian disorder model [99, 75] also exist but will not be considered further.

In this work, the energetic disorder will only be captured by taking a value of σ from

the literature for the relevant material and no correlations will be introduced.

2.4 OSC Devices

As we have seen already, organic semiconductor devices differ in terms of their elec-

tronic states in a significant way compared to inorganic semiconductors: charges do

not travel through the device in band-like motion and do so instead by thermally ac-

tivated hopping (or some ‘semi-band-like’ transport in polymers and crystals) [11, 26];

an electron, excited to a higher state, cannot do useful work until it is separated from

its associated hole; the energetics of the OSC material is much more varied than an in-

organic crystal. These differences have all contributed to changes in the typical device

architecture of OSCs compared to regular semiconductors.

The most notable architectural change is the emergence of the bulk hetero-junction.

This architecture involves blending two materials together (with an offset in HOMO and

LUMO energies) such that exciton separation into free holes and electrons is enhanced.

As an exciton only exists for a relatively short lifetime, τ , covering a diffusion length,

LD, in that time, it is important that an exciton is formed close to an interface with

a neighbouring material. This places a restriction on material domain sizes within the

mixed film, forcing them to be smaller. However, once the charges separate it is also

important there is a pathway of their respective lower energy states (a contiguous route

through a single material) to the device electrodes so that useful work can be done on

an external system. If a charge cannot escape it then hinders motion of other charges

or undergoes recombination with an opposite charge to form an exciton - which can

then decay and release the absorbed energy. This limits the fineness of domains and

places a lower limit on domain size. These two constraints need balancing to optimise
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the efficiency of an OPV or OLED device [5, 19].

2.5 Structure of Organic Films

The morphology of organic semiconductors can vary depending on the processing meth-

ods and techniques as well as the molecules and blends of molecules used. A spray

deposition of Phenyl-C61-butyric acid methyl ester (PCBM) can result in an ordered,

even structure which, as an electron-transporting layer, has enhanced efficiencies of per-

ovskite solar cells [100]. A solution deposition process such as spin-coating, followed by

a high temperature annealing stage (in P3HT-PCBM blends for instance), can also im-

prove transport performance (compared to non-annealed films) by allowing molecules

to re-arrange into a crystal or semi-crystalline structure where charge delocalisation (al-

luded to in section 2.1.2) increases charge mobility [24, 101, 102]. However, processes

with a high solvent evaporation rate without annealling can produce an amorphous

structure in many OSC materials and annealling, while enabling crystallisation, can

also induce phase segregation and lower performance [103, 104, 105].

In early work on organic semiconductors, crystalline structures were seen as essential

for finding charge mobilities that could compete with silicon, for instance. However,

in recent years, organic semiconductor devices which are amorphous in structure have

been created that have charge mobilities that can compete with amorphous silicon

(some crystalline materials can exceed amorphous silicon) [1] and low-disorder poly-

mers such as IDT-BT (indacenodithiophene-co-benzothiadiazole) and derivatives, have

shown high charge mobility thanks to fast intra-molecular transport [106, 96]

Polymers can also introduce an extra degree of complexity into the characterisation of

the structure of organic semiconductors. Polymers can exist in the amorphous phase

(where chains have uncorrelated positions and orientations with their neighbours), the

crystalline phase (where all chains are strongly co-aligned and regularly spaced (such as

in cellulose, and sometimes P3HT, which often forms fibrils)[105, 107, 108]) and also a

semi-crystalline phase where a small number of neighbours will be aligned and the rest

may still be highly disordered [57, 109, 110]. If one were to hope to simulate the charge-

transport properties of organic semiconductors that are polymeric or polymer-fullerene

blends, for instance, one needs to capture the right degree of crystalline-to-amorphous

content and their interfaces as well as capturing semi-crystallinity (often characterised

by the paracrystalinity in a given plane - for instance, the degree of π-π stacking

[111, 112, 113, 114]) and the relevant length scales of and between the different phases
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[110].

2.6 Simulations of OSC Transport

Before a charge transport simulation can begin, the morphology on which it is to

be performed must be created. In many charge-transport simulations these are of-

ten represented as regular cubic lattices, including in simulations designed to study

amorphous/semi-crystalline systems, with periodic boundary conditions in all dimen-

sions or all but one dimension which represents the contact electrodes [80, 18, 6, 97,

5, 19, 88, 74, 115, 45, 75, 93] . The transport in these systems is commonly modelled

using one of the hopping models described in section 2.2.1 (often Miller-Abrahams or

Förster, as there is often no atomistic molecular morphology from which to calculate

electron orbital overlaps), between nearest neighbours or neighbours within a cut-off

radius. The value of α (or Ro in FRET), the spacing between sites and the distribution

in site energies and, in some cases, the combination of materials, then determine the

layer/device transport properties. In some cases, an atomistic morphology is gener-

ated using methods such as molecular dynamics, coarse-grained molecular dynamics or

Monte Carlo methods [57, 113, 116, 35, 109, 36, 117, 118, 119, 120, 96, 106]. The mor-

phology can then be used to calculate electronic orbital overlaps and the parameters

for the Marcus Theory rates (∆G0 and |J |) calculated in quantum-chemistry packages.

Other charge-transport methods relying on atomistic morphologies include quantum-

mechanical approaches such as Flexible Surface Hopping (as previously discussed) and

even methods involving non-adiabatic transfer processes have been used [92, 9, 11, 87].

When performing charge-transport simulations there are a few quantities of interest

which are commonly calculated and provided to those attempting to model the per-

formance of organic devices. These are generally the diffusivity/diffusion constant, D,

which describes how quickly charges can navigate the organic film, the charge-mobility,

µ, which describes the charge response to the electric field, and the density of states of

the electronic energy levels. The latter can be provided through the quantum chem-

istry calculations performed on an atomistic morphology and the diffusion constant

and charge mobility need to be inferred from simulation of charge motion through the

organic morphology.

Simulations of hopping charge-transport processes in organic semiconductors are very

often performed by one of two methods. The first is the kinetic Monte Carlo (KMC)

approach (performed in one of two numerically equivalent flavours) which considers
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the individual hops of individual charges [5, 19] and a master-equation approach (ME)

which considers the flow of a concentration of particles [75, 45]. Both methods are able

to calculate properties such as the steady-state distribution of charges and responses to

electric fields, however the KMC method requires sampling of the carrier motion until

approximate convergence to obtain some of this information while the ME approach

can calculate the exact steady-state for a given transport model. KMC is perhaps

better suited to situations where consideration of individual charge trajectories becomes

important while the ME approaches are more suited for quickly measuring properties

such as the diffusion coefficient and charge mobility. For this reason an ME-type

approach will be used in this work and the full description of the method is provided

in section 3.4.

There are some further constraints on the charge-transport simulations (in-part, already

alluded to) which must be considered before accepting a predicted value of the charge-

transport properties produced by either of these approaches. The first is finite size

effects. One such effect is that if the system is very small and under periodic boundary

conditions, it is much more likely that a percolation pathway (a route of very high

reaction rates and therefore probability of hopping) exists that spans the simulation

volume, increasing the predicted charge diffusivity/mobility [45]. If the system is too

small there is then also a poor representation of the Gaussian distribution of the density

of states of the HOMO/LUMO (it is likely that low-energy tail states, which charges are

slow to hop away from due to the Boltzmann factor in the Miller-Abrahams and Förster

rates and the ∆G0 term in the Marcus rate, are missing from the charge transport

simulation) which also increases the predicted rate [43]. Beyond these limitations, one

also needs to perform a sufficient sample of transport simulations (each using a new

set of energies from the same Gaussian density of states) and, in some instances, may

also need to perform these transport simulations on a sufficient number of atomistic

morphologies to obtain an accurate picture of charge-transport of a given material [40].

2.7 Simulation of OSC Materials

Moving away from lattice-based charge-transport simulations towards atomistic amor-

phous or semi-crystalline morphologies brings obvious benefits: it allows the simulations

to better capture the structural disorder and explore different length-scales where or-

der may exist. Capturing the balance of order and disorder, something which can only

be predicted through generation of atomistic morphologies, then allows the charge-

transport simulations to capture the fast straight intra-chain and crystalline transport
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and the slower amorphous regions that connect them [110] in a way a lattice model

cannot.

There are already some conventional ways of creating an atomistic morphology of OPV

materials in silico. The, ‘go-to’ method, is to perform a molecular dynamics or Monte

Carlo simulation. These take a set of atoms, a set of forces that describe inter- and

intra-molecular interactions and calculate moves based on an energy condition as in

Metropolis Monte Carlo (MMC) or by using force-velocity information to calculate

subsequent steps in the particle trajectories as in the velocity verlet algorithm imple-

mented in molecular dynamics packages. By setting a temperature (and pressure or

volume), the move accept/reject condition (in MMC) or the particle velocities (in MD)

are adjusted, biasing the probability of visiting different states during a simulation. The

force-field for an atomistic (sometimes all-atom) MD/MC simulation is often param-

eterised from DFT-level calculations (which involves observing the energetic response

when an atom is moved) or taken from a generalised force-field for the relevant class

of material, such as the General Amber Force-Field (GAFF) [121].

Evolving the system along a trajectory in MD or determining the next Monte Carlo

move to accept/reject can be a computationally expensive process, especially as the

size of the system being studied increases [35]. Not only does it take longer to reach

equilibrium, but it takes longer to find a new state that represents a new configuration

(in another basin in the energy landscape) rather than just thermal fluctuations [35]. In

some simulations it can take tens of millions of time-steps to obtain one new statistically

independent state in a system of 50,000 atoms and this increases with system size

[35]. This makes it difficult to sample the equilibrium distribution of states. It is

therefore common for simulations of OPV and OLED materials to be approximately

1,000 molecules (or repeat units) in size and only a small sample of states considered

or little consideration given to the ensemble [24, 118, 122, 116, 123].

To overcome this computational limitation on system size, researchers have turned

to coarse-grained simulations, including coarse-grained molecular dynamics (CGMD)

[109, 57, 116, 113, 36, 123, 124]. CGMD lowers the number of particles in the system

by instead representing a group of atoms (and the forces acting between them) by a

single large particle, or bead, interacting with other representations of groups of atoms.

This effectively reduces the number of atom velocities and accelerations that need to

be calculated at each time step, lowering the computational load or enabling the study

of longer polymer chains and larger systems [124, 35]. While in an atomistic MD

simulation, the time-step might be advanced by a femtosecond (to prevent instability)

in coarse-grained simulation this time-step can be much larger, sometimes as high as
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a picosecond [125, 35]. This coarse-graining, however, also alters the dynamics of the

simulation and measures such as the density, melting temperature, glass transition

temperature and other observables have been known to change between the atomistic

and the corresponding coarse-grained approximation [126, 127] and the quality of the

coarse-graining is therefore measured in comparison to the ability to recreate some

physical property, such as density [109].

2.8 Glassy Dynamics

When performing atomistic or coarse-grained simulations of organic semiconductor

morphologies, some physical effects which are present in an experiment will also be

found in the computer experiments. One of these, with a major consequence for the

required simulation time, is dynamical slowdown [40]. This is perhaps best explained

by considering the inter-atomic potential and the associated potential energy landscape

of a simulation beginning in the gas phase.

The potential energy landscape describes all of the possible configurations of the system

in 3N -dimensional space (where N is the number of atoms), the associated potential

of each state, and can be used to describe transitions between states [128]. In the gas-

phase this landscape is smoothly varying with atomic coordinates, with high-energy

states occurring only when atoms are in very close proximity to others (with separations

in the repulsive region of the chosen force-field). If the force-field has an attractive

region (e.g. pairwise Lennard-Jones potential where the attractive region is negative

in energy at rij > σij) then low energy states will occur when neighbouring atoms are

in this region. It should be recalled that, at a given thermal energy, the chance of

visiting a state that is high in energy is generally lower than the probability of finding

a low energy configuration and (in a smooth landscape) if the system has been left

for a long enough period of time the time average will represent the ensemble average.

This statement describes the thermodynamic equilibrium of an ergodic system [129].

As the system gets denser (at a given pressure and temperature the box may reduce

in volume), the number of states at high energy (say, above the thermal energy) will

increase in-proportion to those low in energy. To get between the most likely-observed

states (the minima in this energy landscape), the system must now pass through higher

energy states (the barriers or saddle-points) more often, and in liquids, the rate at which

this happens is often well described as being Arrhenius [130]. At very high density,

these barriers dominate and, at temperatures below the glass transition temperature,

the relaxation time (measured through decay in polarisation or spatial correlation,
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for instance) becomes longer than is experimentally observable. For all intents and

purposes, the structure may be considered solid [131, 130, 132]. If the crystalline

phase is avoided (by cooling the system rapidly enough) and the system has become a

viscous liquid, the relation time can show sub-Arrhenius temperature dependence (the

activation barrier itself becomes dependent on temperature) [130].

The properties of a glass are known to depend on the exact processing method (for in-

stance, the glass transition temperature depends on the initial cooling-rate [130]). This

is because, during glass formation, the time the system has to sample new configura-

tions (or states in a given potential energy landscape) depends on the temperature and

therefore the cooling rate. In a very slow cooling system beginning at a temperature

above Tg, the system should have enough time to establish thermodynamic equilib-

rium, however, at much faster cooling rates the time provided to find equilibrium is

diminished and a non-equilibrium state may be found with different properties. As

described by Debenedetti & Stillinger [130]

“This falling out of equilibrium occurs across a narrow transformation range

where the characteristic molecular relaxation time becomes of the order of

100 seconds, and the rate of change of volume or enthalpy with respect to

temperature decreases abruptly (but continuously) to a value comparable

to that of a crystalline solid. The resulting material is a glass.”

With many commonly used organic semiconductors having a glass transition temper-

ature at or above room temperature (e.g. PCBM: 118.3 to 132.2◦C; P3HT: 40◦C;

PCPDTBT: 130◦C; α-NPD: 88.9◦C; TCTA: 144.9◦C), relaxation times, inaccessible to

a computer, let alone experiment, can also occur in organic semiconductor simulations

[133, 134, 135, 136, 137]. This means that an atomistic molecular dynamics simulation,

starting from the gas phase and attempting to find a morphology at thin-film density,

will not only struggle to reach the an equilibrium density, but will likely find an out-of-

equilibrium state and struggle to undergo relaxation and sample further configurations

in other basins - doing so on longer and longer timescales. Given that molecular dy-

namics simulations are run on the femtosecond timescale and relaxation times can be

hundreds of seconds, it is simply too computationally expensive to use molecular dy-

namics as a tool to sample non-equilibrium states or find the most likely equilibrium

state in the potential energy landscape of many amorphous organic semiconductors.

The mechanically stable set of states are the minima in this potential energy landscape.

These minima of amorphous configurations have a large variation in depth (and there

is often a deep minima, sometimes the global minimum, that represents a crystalline
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state). Each minimum is surrounded by a basin of states where the surrounding states

are all higher in energy. If, in one of the higher energy states of a given basin, all the

particles were allowed to come to rest, the structure/configuration found would be the

same as that of the minima of the basin. The structure at the potential minima is

therefore referred to as the inherent structure - the configurational structure with the

additional vibrational/thermal disorder removed (by a minimisation or quenching, for

instance) [138].

Inherent structures become useful means of describing the configurations of an amor-

phous system at constant density by providing a new statistical-mechanical basis (a

partition function over only the potential energy) of the system [139]. Therefore one

way of representing the structure of the macrostate on a computer simulation would

be to capture the distribution (or a representative distribution) of inherent structures

in the energy landscape and weight each states’ contribution to a structural property

according to this new partition function. They also bring practical benefits, such as

providing sharp features in structural measurements such as g(r) (the radial distribu-

tion function) and s(q) (the structure factor) without needing to average over many

states due to the lack of vibrational disorder [139, 140]. In terms of organic semi-

conductors, using the inherent structure also provides self-consistency as the Marcus

theory picture relies on a minima in energy of the product and the reactant states. To

determine the charge transport properties using a Marcus transfer model, the inherent

structures would then be used as the atomistic morphologies which a quantum chemical

transfer integral calculation and a subsequent KMC or ME simulation performed and

their contribution to a physical property (e.g. diffusion constant) weighted according

to the new partition function in potential energy of the inherent structure.

2.9 Alternative Simulation Methods

The problem remains of finding these different inherent structures given the slowing

down of relaxational dynamics in dense amorphous packings, including those of organic

semiconductors. Typically an MD simulation is performed with a high-temperature

annealling phase, then followed by a cooling phase (often a nanosecond to tens of

nanoseconds in length) to reach room temperature and pressure, and a sampling phase

where frames of a simulation are captured periodically (often once a nanosecond or

tenth of a nanosecond) [141, 57, 116, 118, 24]. While this annealing phase helps avoid

some of the out-of-equilibrium basins, the room temperature simulation does not allow

large-scale rearrangement or the escaping of deeper minima. For instance, if a semi-
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crystalline region is found, it is unlikely it will break and each of the frames included

in the average measurement will contain this feature. The sampling is then instead

limited to sampling within a single basin or a small set of basins with the same or

similar inherent structures.

This restricted sampling occurs because MD and MC are thermodynamic methods

[142]. Slow rate (long-timescale) processes such as the escape of energy basins in the

potential energy landscape are less likely than high rate (short timescale) vibrations

within the basin. If one is interested in sampling many basins or many minima, then a

different method which either alters the energy landscape so as to make it thermody-

namically more likely a barrier/saddle-point is crossed or a method which biases away

from thermodynamically likely states is required. Methods such as the minima-hopping

method of Goedecker [142], which discourages the system from returning to previously

visited states, have been shown to be effective at finding the structure of the global

minimum of potential energy. Other methods such as metadynamics, described by Laio

& Parrinello [143], where the currently occupied basin is ‘filled’ with additional poten-

tial are designed to increase the rate at which barriers are crossed. In the simulation

of glasses, procedures such as Swap Monte Carlo where two different types or species

of particles are swapped with an acceptance rate like that of the metropolis algorithm

has also been shown to ‘avoid’ the glass transition, increasing thermalisation/sampling

rate at a given temperature compared to MMC which does not include swap moves

[144, 145]. Other techniques such as coarse-graining also alters properties such as the

glass transition temperature and increases sampling rates.

For sampling structures of organic semiconductors, a desirable method would therefore

be one which is able to overcome the energetic barriers between different potential

minima very quickly and in an unbiased way such that, with a large enough sample

and after performing a minimisation, the distribution of the potential energy of the

simulated inherent structures represents the real density of states of inherent structures.

It is not necessarily desirable to find the lowest energy configuration (like in the method

of Goedecker) if the fabrication process of the device that one intends to model does

not include a high temperature annealling process. It is also clearly undesirable to be

thermodynamically biased to low energy states as this still experiences slow relaxation

[142]. Using MD in NPT conditions followed by a high temperature anneal in NVT

conditions and performing periodic minimisations is still hindered by the slow-down

experienced while the system is yet to reach its physical density (this author is yet

to reach equilibrium density for simulations in the range of 0 to 300 K and at 1 atm

for a system of 1,000 PCBM molecules after 160 CPU hours on a 16-core node on a
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supercomputer). A method where structural relaxation is not constrained by the shape

of the energy landscape is therefore highly desirable.

Lessons from simulations of proteins

In simulations of proteins, long-dynamical processes have also historically created sig-

nificant limitations on the processes that could be modelled [146, 147, 148]. Proteins

are very large organic molecules consisting of one or many long chains of amino-acids

(they are polymeric) which, due to its size, exhibit dynamics on much more disparate

timescales than those of organic semiconductors [149, 150]. The high-frequency atomic

vibration is similar, but the oscillations of these large structures or parts of these large

structures —events such as protein folding— are performed over timescales of millisec-

onds [151, 148, 146]. However, an atomistic molecular dynamics simulation must be

performed on time-steps of femtoseconds and a coarse-grained molecular dynamics sim-

ulation still requires roughly a picosecond time-step (although strictly it depends on

the coarseness of the groupings) [113, 57]. For those considering atomistic molecular

dynamics, MD simulations were often performed on relatively small systems for du-

rations of hundreds of picoseconds to tens of nanoseconds [152, 153, 154]. Simulating

events like evolution of the active pathway and protein folding has therefore been a

significant computational challenge.

In more recent years, researchers moved to other methods which have allowed these

long-timescale processes to be studied. Some early approaches involved forcing the

rotation of torsional angles to sample new conformations [155, 156]. Other researchers

used multi-canonical molecular dynamics to enhance sampling rate [157, 158]. Another

approach was to identify the fully-constrained atoms [159] within the proteins’ structure

(constrained by bonding and, later, other electrostatic forces) and treating sections of

the protein as rigid. In some work, this rigidity classification was performed using the

pebble game rigidity analysis algorithm between atoms and across bonds to determine

which atoms were fully constrained by their neighbours [160, 161]. One such pack-

age, Floppy Inclusion and Rigid Substructure Topography or FIRST, also attempts to

identify when non-bonded forces acting between two atoms (such as hydrogen bonds)

are sufficiently strong that their separation is unlikely to vary [161, 162]. In these sce-

narios where atoms are constrained by bonded and non-bonded forces, their relative

positions are maintained by forcing subsets of atoms to be within a small distance from

their ‘ghost’/template positions. These templates are re-positioned and rotated to min-

imise the squared distance between template and atom before applying any distance
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constraint [163, 164, 148, 165]. Subsequent large-scale net displacement then occurs

without changing the relative separation between atoms that are members of the same

template. These templates, effectively, become the coarse-grained units which rela-

tive motion occurs between. The coarse-grained simulation performed in this manner

was implemented in Framework Rigidity Optimized Dynamic Algorithm (FRODA).

Using FRODA, random atomic displacements were used with templates that spanned

large areas of the protein, with large-scale diffusive motion observed across the protein

structure [148].

A subsequent expansion to FRODA with relevance to this work is the elastic network

model (ENM) [166, 167]. In the FRODA-ENM model, the random motion is replaced

by directed motion. Normal mode analysis is performed between Cα chains or other

large-scale groups and the large-scale dynamics (the functional motion of the protein)

induced by displacing the coarse-groups along the direction of the low-frequency modes.

This method of combining both atomistic structural information and coarse-grained

dynamical information does not consider or encourage high-frequency motion in the

system (such as atomic vibrations and changes in bond-lengths or angles) however

these contribute an insignificant amount towards the large-scale, long-time motion,

which ENM methods do encourage [147, 166, 168]. Normal-mode analysis and studies

of the low-frequency motion have therefore been used extensively in protein simulation

[169, 147, 170, 166, 167, 171, 172, 173, 174, 175].

2.10 Low-frequency Modes

Low-frequency modes have also been widely studied in amorphous, glassy and jammed

systems [176, 177, 178, 179, 180, 181, 182, 183, 184], in systems of ellipses/ellipsoids

[185, 186], in spheres undergoing active oscillation [187], under shear [188, 189] and

under compression [178, 190]. Links between the physical structure and the vibrational

modes as well as the collective relaxation and the low-frequency modes have been made

extensively [182, 183, 180, 181, 176, 178, 179, 190, 191, 188, 192, 193]. Common to both

studies of glasses and protein structures is the concept of rigidity, in some cases, also

identified through playing the pebble game on a network of constraints [193] or, more

generally, counting the number of contacts in a system [176, 194, 179] and comparing

to the Maxwell criterion for rigidity [176, 195].
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The Character of Vibrational Modes

The low-frequency modes describe the more collective vibrational motion. By ‘collec-

tive’ I mean that the direction of motion and the amplitude is spatially correlated -

the neighbouring points will move in a direction and at a speed, reaching an end point,

which is more similar than that of further particles. For the most collective motion

this will encompass more neighbours than less collective motion. Collectivity is of-

ten assessed using measures such as the participation ratio and the mode localisation

[196, 197, 187, 180, 181, 182, 183, 192]. The participation ratio is calculated as

pm =
1

N

(
∑N

i ‖ui‖2)2∑N
i ‖ui‖4

(2.6)

where N is the number of particles and ui is the displacement vector for particle i in a

vibrational mode. This describes the similarity in the distribution of the length of the

displacement vectors of a given vibrational mode, with the most collective motion (here,

the most uniform amplitudes/displacements) having a value of 1 if all particles have

the same displacement in a given mode and a value of 1/N when only one particle has a

non-zero displacement vector. This measurement alone is therefore able to distinguish

between different types of low-frequency modes: the collective low-frequency modes

where displacement is often system-wide [183] and the soft-modes which are localised

or semi-localised and occur when a given particle has too few contacts with neighbouring

particles [176, 194]. A localised soft-mode can be created when an isotatic system (a

system considered rigid by the Maxwell criterion with the average number of contacts

per particle, Z ≥ 6) has enough contacts removed such that Z < 6 or the number of

local contacts on an individual particle is less than 4 (the local criterion for rigidity)

[176, 195]. This soft-mode would then be identified by a low frequency and a very low

participation ratio [176].

These low-frequency modes and soft modes (they will be distinguished in this way

throughout this work) have been studied in relation to their role in structural relax-

ation processes. In a series of papers by Widmer-Cooper et al., the low-frequency

modes and, later more specifically, the soft modes were liked to ‘irreversible structural

reorganisation’ in 2D systems of super-cooled liquids [180, 181, 182, 183]. These soft-

modes were therefore seen as an indicator of structural relaxation - the system was

able to find new configurations following the detection of a soft mode. These have also

been described as ‘failure points’ where a system under shear stress is likely to give way

due to their indication of mechanical instability (they can also be induced by the shear
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stress) [194, 193, 188]. The soft modes are considered excess modes (beyond that of

the Debye model) and exist in the shoulder/plateau in the vibrational density of states

(the Boson peak) which can be continuous in frequency down to zero-frequency, when

a system is near jamming [178, 176, 192, 132, 193].

The vibrational modes are regularly studied through the creation of a Hessian ma-

trix (although sometimes the modes are inferred from particle dynamics in molecular

dynamics simulation) [189, 192, 194, 178, 198, 147, 187]. The Hessian describes the

curvature of the potential in space around each particle and can be calculated from the

second derivatives of the potential with respect to each of the Cartesian components,

which is often approximated as being harmonic. The Hessian matrix where elements

are weighted by their masses leads to the dynamical matrix which can be used to

find the Newtonian vibrational dynamics (within the harmonic approximation). The

diagonalisation of this matrix produces the square of the vibrational frequencies (the

eigenvalues) and the displacement vectors of the corresponding normal mode (the eigen-

vectors) [198, 166, 147]. The instantaneous normal-modes describe the curvature for

any given structure and, if particles are not at their local minima in the potential field,

imaginary modes will exist that define the directions to minima (the mechanical equilib-

rium structure) [199]. When particles are at equilibrium separations the normal modes

will all point to increases in energy and only positive real modes will exist, as well as

the zero energy modes of uniform translation (one per dimension) and the soft modes

if there are too few contacts and a low/zero energy displacement exists [199, 176]. The

low-frequency modes produced by this matrix are usually high in participation ratio,

and therefore more collective, than the modes at the high-frequency end of the spec-

trum [184, 192, 197, 187]. This is not necessarily always true however, as is the case of

the modes in the Boson peak [192].

Collectivity can also be measured in terms of the local average dot product [187] and

the phase quotient [197, 184] and other measures such as the stretching character. The

average local dot product, here

〈ui · uj〉 =
1

N

N∑
i=1

1

N i
c

Nc∑
j=1

ûi · ûj (2.7)

where N i
c is the number of interacting neighbours surrounding particle i and ûi is the

unit vector of particle i in a given mode. This therefore represents the local directional

collectivity between neighbouring particles and does not consider the relative ampli-

tude between a particle and its neighbours. The average local dot product produces
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values from 1 to -1 where a value of 1 represents all of the particles moving in the

same direction and -1 all particles moving in opposite directions to their neighbours,

with 0 representing a lack of local collectivity as would be the case in a large system

and averaged over all particle pairs or in an ideal gas. This measure, along with the

stretching character (which represents an amplitude weighted version and measures the

amount of changing spring length) [184], allows classification of the behaviour of the

vibrational modes. In the case of the linear-chain spring model with a basis, there is a

clear division in the type of behaviour of the modes with distinct acoustic and optical

branches producing highly collective and in-phase (acoustic) and less collective and

out-of-phase (optical) motion [200]. In this case, the optical motion would represent

a negative average dot local product while the acoustic modes would produce highly

positive values (both of which become less collective with increasing frequency).

The analogy of the linear chain model does not apply itself well to amorphous/disordered

solids or liquids, however [201]. There is a distinct lack of periodicity in an amorphous

system and the phonon dispersion and group velocity are ill-defined [201, 192]. In an

article by Silbert et al., each vibrational mode was found to contain contributions of

multiple wavevectors in Fourier-space [192]. In these amorphous systems, the modes are

diffusons/locons and not generally described by travelling waves (propogons). Instead

of considering amorphous or optical modes, the vibrational modes of amorphous sys-

tems are more commonly described as being amorphous-like or optical-like in character

through measures such as the phase quotient [201, 184, 197]

ϕm =

∑N
i

∑Nc
j ui · uj∑N

i

∑Nc
j ‖ui · uj‖

(2.8)

which is again measured between particles and all of their interacting neighbours. The

phase quotient, like the average local dot product, produces values in the range of 1

to -1, however a value of 1 describes a vanishingly small frequency acoustic-like mode

which represents a complete coherence of the direction of travel of the neighbours (gen-

erally found in simulations as the translational modes) while a value of -1 describes an

entirely out-of-phase displacement of an optical-like mode [197, 201]. Distinct from the

average local dot product which captures the average angular separation in displace-

ment vectors, this measure describes the coherence of the vibration. In several studies,

the low-frequency vibrations are modes with phase quotient that is very high, falling

to lower values at larger frequencies [201, 184]. The low phase-quotient modes are also

often accompanied by low participation ratio modes, indicating that the modes are
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also localised or semi-localised in amplitude as directional collectivity is reduced [201],

meanwhile the low-frequency (non-soft) modes are generally high in both participation

ratio and phase quotient.

Low-frequency, collective modes and structural relaxation

The highly collective low-frequency modes, considered distinct from the soft modes,

have been linked to structural relaxation in amorphous solids and super-cooled liquids

[202, 187, 203]. An argument for this takes root in their being long-time period pro-

cesses: the short-time processes may represent individualistic (uncollective) vibrations

of within a configurational basin on the potential energy landscape, while the long

time processes represent much larger-scale (collective) rearrangements of the system

as a whole. While the high-frequency motion, occurring more often, may induce more

local structural relaxation in physical systems, the low-frequency motion still plays

a role and regions of high amplitude in low-frequency modes correlate with regions

of strong relaxation of regions of the material [183, 203]. This reliable structural re-

laxation has been seen in comparisons of the participation ratio of the low-frequency

modes and the areas where structural rearrangement was strongest in a variety of sys-

tems [183, 202, 187]. One such system using active oscillation at selected frequencies

found fast relaxation and diffusive motion when enhancing the low-frequency modes

in an athermal 2D jammed system [187], demonstrating the propensity low-frequency

motion has for achieving structural relaxation.

In comparisons between participation ratios and frequency, localisation and frequency,

and phase quotient and frequency, the low-frequency modes were the most collective

and the amplitude of these collective low-frequency modes has been found on multiple

occasions to correlate with structural relaxation processes [187, 182, 202]. Other studies

have attempted to link structural causes to relaxation events or relaxation pathways

[190, 194, 179, 191, 203]. Two relatively recent studies, one of elastic polymer rings

at high density and one of soft repulsive spheres at variable density have shown how

relaxation time can increase upon increasing the density, finding ballistic and diffusive

motion respectively [191, 190]. This dynamical slowdown followed by a re-emergence

of liquid-like dynamics is known as a re-entrant fluid-glass phase transition. This has

been observed in soft systems and would appear to suggest that there exists a regime in

which the dynamics are again able to relax some of the densest systems. A method such

as that of Tjhung & Kawasaki that actively enhances the low-frequency motion [187]

or a softening of the structure as with Gnan et al. [191] or softening of the potential
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as performed by Berthier et al. [190] may therefore prove a useful way of sampling the

configuration space of the energy landscape diffusively [187].

2.11 Summary

In this section, the requirements placed upon simulations of organic semiconductors,

particularly those of amorphous systems, such that the physical reality could be cap-

tured were put plainly. Charge transport in organic semiconductors must be performed

using an appropriate transport model which can vary from non-adiabatic quantum me-

chanical treatments [92] to point-to-point hopping/transfer models [2, 78] with a range

of parameterisations in between [72, 67]. These simulations should be performed on

a morphology that is representative of the system being studied which, in the case of

amorphous materials, is often captured on small scales by a molecular dynamics or

Monte Carlo simulation.

Organic semiconductor morphologies must also be generated in a way that captures

the thermodynamics of the system being studied with considerations given to the fab-

rication process and the appropriate configurations on the potential energy landscape

[138, 130, 35]. However, simulations of organic morphologies must also overcome the

thermodynamic constraints of the energy landscape which is often exhibits slow struc-

tural relaxation at such high densities and, instead, consideration should be given to

methods which overcome this slow relaxation [142, 138]. Methods such as coarse-

graining are able to alter the dynamics such that relaxation is somewhat faster and the

computational workload reduced. However, the parameterisation of a fully-atomistic

system into a system of larger atomic point-clusters can also lead to artefacts in the

structure (in the case of a Marcus theory transport model, these morphologies must

also be converted back to an atomistic morphology for calculation of the transport rates

too). This approach has been used widely as it allows the simulation of much larger

systems, required to mitigate finite size effects in the subsequent charge transport sim-

ulations [43, 45] and to capture the variability in domain size required for simulations

of exciton dissociation in a bulk hetero-junction, for instance.

Methods in the diverse field of soft matter, including protein simulation and glass

physics, have also attempted to study the slow relaxation of structures. In proteins, the

large-scale motion of the molecule(s) requires a timescale several orders of magnitude

larger than the vibrations of individual atoms within the structure. Attempts to model

the large scale motion have therefore attempted to ‘freeze-out’ the small-scale motion
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by treating sections of the protein as rigid. Using low-frequency modes to determine

the displacement of the larger-clusters, the large-scale motion can be further enhanced,

effectively increasing the simulation speed. Similar approaches have been taken in

simulations of amorphous, jammed (or very dense) soft spheres where the enhancement

of the low-frequency motion (at the expense of the high-frequency) can enable diffusive

motion of the particles [187, 191]. Other approaches also suggest that a soft potential

enables the rediscovery of fluid-like motion following compression starting in the glass-

phase [190].

Considering the importance of the contribution of the low-frequency modes to struc-

tural relaxation in non-ergodic dense amorphous glassy systems and their enhancement

in simulations of glasses and proteins provides us with a way in which these organic

semiconductor structures might be generated and sampled. Combining this with the

benefit of a suitable coarse-graining scheme may also reduce the computational burden

and improve sampling rate, as well as further enhancing the rate of structural relax-

ation. A combined scheme such as that of the FRODA-ENM method applied to dense

amorphous packings of organic semiconductors under the fluid-like regime past the

re-entrant glass-fluid transition, may therefore be a suitable approach worth studying

further. This thesis will focus on the development and application of such a method

applied to organic semiconductors and contain studies of their low-frequency vibrations

and charge transport properties.
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Chapter 3

Methodology

In order to study the electronic processes of organic semiconductors, we were forced to

face the fact that current simulation methods are a computationally-arduous process

and that the scale of any simulations that were to be performed would be limited, for

reasons previously described. Combining a suitable coarse-graining and low-frequency

mode displacements, inspired and informed by previous work on proteins and soft

glasses, a new method for simulating morphologies of organic semiconductors was cre-

ated.

The method, Simulation of Atomistic Molecular Structures using an Elastic Network,

or SAMSEN, takes the wisdom and computational speed-up from the coarse-grained

techniques of protein simulations while retaining its atomistic structure. It also gains

the benefits of selectively displacing along the low-frequency modes in a soft potential

regime where dynamics, and specifically structural relaxation, begins to speed up again.

In this chapter, SAMSEN (the model and its implementation) will be described in

great detail, outlining its relationship to the FRODA-ENM method and explaining

the creation of an initial simulation state, the coarse-graining scheme, the construction

of the Hessian and the displacement along the vibrational modes. The simulation

parameters that control sampling performance will be described in this chapter and

explored in the following chapter, providing the reader with a recipe for achieving an

approximate structure of organic morphologies and exploring new configurations with

computationally-fast relaxation rates.

The end of this chapter will then describe the details of the charge transport model

that will later be used to calculate charge transport properties such as the diffusion

constant of electrons and holes and the diffusion length of excitons.
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3.1 From Molecules to Rigid Sections

3.1.1 Molecules, Polymers and Functional Groups

To begin, we must first design the coarse-graining scheme that shall be applied to the

molecules. In the research on proteins, the large-scale motion that described the protein

folding and the functional motion, could be well described as relative displacement

between large clusters of atoms spanning large sections of the overall structure. To

model motion on this timescale, atoms could be limited to approximately fixed distances

from their neighbours within these larger structures and the vibrational modes and

low-frequency displacements calculated between the geometric centres of these large

functional groups.

The timescale disparity is smaller in smaller structures such as organic molecules, how-

ever their large scale motion also ignores individual atom displacements and vibrations

and consists of movement between a molecule’s functional groups. In molecules and

polymers, the functional groups represent bonding motifs in their chemical structure

such as alcohol, phenyl and carbonyl groups, and fullerene cages, for instance, often

with well defined internal bond lengths and angles which are energetically expensive

to change. If these groups are provided with enough dynamical freedom between one

another (by not being constrained by double bonds or stiff dihedral potentials which

limit rotational motion), then these functional groups with their own characteristic

internal structure and relative displacement between them provide a strong analogy to

the large-scale motion of the proteins.

3.1.2 FRODA

In the FRODA model, the internal structure of the larger groups of the proteins were

maintained by a mismatch-fitting correction procedure which ensured that atoms had

approximately static positions within a given functional group. This was performed by

creating ‘ghosts’/templates (here ‘rigid sections’) of the relative positions of groups of

atoms within sections of the structure where the atomic positions were sufficiently con-

strained by the chemical bonding (and other strong interactions e.g. hydrogen bonds)

of the molecule as determined by the pebble game [161]. Similar rigidity constraints

will be considered here.

Throughout the simulation, the atoms will be displaced by either random motion [148],

through the chosen low-frequency eigenmodes [166] or by interacting with other atoms.
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To test the mismatch condition, the templates are then placed at the new geometric

midpoint of the set of atoms in the corresponding rigid section and rotated following the

procedure described by Wells et al. (2004) [164] and Wells et al. (2015) [165]. Briefly,

this method utilises information about the relative displacements of atoms from the

template to determine an optimal direction of rotation of the template. The rotation

direction is determined and a rotation performed in a series of steps to iteratively

find a least squares mismatch between the template and the real set of atoms. The

implementation used here follows the same algorithm, was based upon the FRODA

source code and written by Thomas McManus, and was then adapted for the SAMSEN

implementation used here.

Once the optimal rotation has been found, a simple distance calculation between the

current positions of the atoms and the optimally rotated templates can be performed.

In FRODA, a bias is added to the next displacement of the atoms in the direction of

their templates [148]. Therefore, at each step FRODA attempts to provide a restoring

displacement so that the rigid sections are (internally) in their low-energy configuration.

This fitting bias was balanced against inter-atomic collisions, which act to distort the

internal structure of neighbouring rigid sections but protect the effective volume of their

own rigid section. In a similar manner, the collisions are determined by measuring the

closest approach between two atoms and, if they overlap (if they are separated by a

distance less than the sum of their van der Waals radii, specified in Wells et al. 2005

[148]), a bias is added to the next displacement to act to repel overlapping atoms.

In addition to the collision-fitting biases were contributions from the eigenmodes. In

the FRODA-ENM model, the eigenmode is selected by the user and the normal modes

calculated between the rigid sections (in the larger rigid sections of the proteins, the

eigenmodes were calculated between Cα atoms) using the Hessian construction as de-

scribed by Atilgan et al. [147] which uses relaxed springs with spring constants and

masses set to unity [166]. The eigenvectors for that chosen eigenmode were calculated

for the initial structure and the biases added to the atom displacements (according

to their membership of the rigid sections, taking the average if an atom is a member

of multiple sections). This eigenmode bias is unchanged in the FRODA-ENM model

and the simulation ends when the protein can no longer move along the chosen eigen-

modes without creating overlaps or mismatches larger than the mismatch and collision

conditions.
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3.1.3 Conversion to Rigid Sections

FRODA created its rigid section templates from pebble game rigidity analysis as im-

plemented in FIRST (which also considered non-bonded constraints, such as hydrogen

bonding) [161]. For the bonded-constraints, the pebble game is a method for working

out how many degrees of freedom are removed from a given atom by forces exerted by

neighbouring atoms [159]. This is in many ways similar to the Maxwell criterion for

mechanical stability [195], but considers local interactions which a system-wide average

does not [159]. The pebble game is also an explicit degree of freedom counting method,

but is played by ‘moving’ degrees of freedom between neighbouring atoms. If a ‘spare’

degree of freedom cannot be removed from a section of the molecule (within the rules

of the game), then that region is internally rigid and can move with respect to other

rigid sections. The pebble game is described in more detail in Thorpe [159] and the

FIRST implementation in Jacobs et al. [161].

A similar analysis can be performed for small molecules in order to inform which

parts of a given molecule are unlikely to change their relative position (the bonds

are approximately rigid rods/bars). However, a common set of rules emerge which,

for the most part when considering bonded-forces only, can determine which sections

are rigid. These, generally speaking, permit angular changes between functional groups

within the chemical structure. Such examples are: fullerene cages and cyclic regions are

internally rigid (reflecting the low energy of the delocalised structure), atoms between

double bonds are rigid and prevent dihedral angle changes locally, single bonds fix

neighbouring bond lengths but do not prevent changes in dihedral angle to an atom

four bonds away.

In SAMSEN we consider rigid regions within the molecule to be those where internal

deformation is not possible due to bonding constraints. Short lived perturbations such

as bond vibrations are ignored and not considered deformation under this definition.

We also do not consider other effects such as hydrogen bonding or electrostatics from

formal or partial charges. Therefore, only a region where the bonding arrangement of

atoms prevents deformation shall be considered internally rigid. This form of rigidity

can be calculated using the pebble game upon the molecules network of covalent bonds,

however in this work we use a simpler framework to determine which sections are rigid.

This picture of rigidity is similar to that of Thorpe [159] where we do not consider the

precise temperature, entropy or free energy (as in Phillips [204]) but instead consider

if a section of a molecule can undergo relative motion continuously with respect to a

neighbouring region without experiencing any change in energy. When making this
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consideration we are only calculating the potential associated with the bond length

and bond angle and do not consider any form of intermolecular interaction. In these

conditions it is sufficient to determine rigidity by counting the number of contacts (or

identifying zero frequency modes) [159] and techniques such as the pebble game, which

calculates the number of degrees of freedom in regions of such a network, apply. If

the two sections can move freely with respect to each other, then the two sections do

not form a single rigid section. If the two sections cannot, then they are considered

a single rigid section. In SAMSEN this scheme of rigidity is (with a small amount of

permitted bond stretching / bending) how we shall try to retain the molecular structure

while permitting some flexibility which will become particularly important in polymeric

systems.

In SAMSEN, molecules shall be created and coarse-grained with the following set of

rules that attempt to create the chemically intuitive picture just described. Prior

to the beginning of the simulation, rigid section templates are constructed from the

molecular structure (which shall be considered the geometrically-optimised structure)

using these rules and the templates shall remain unchanged. These shall be referred to

in the simulation and used to test a mismatch condition between the current atomic

positions and the template positions - the template is optimally rotated to minimise

the square mismatches (for the precise method used in this implementation, see Wells

et al. [164, 165]) and the difference in template to current atomic positions calculated

and compared to a maximum distance condition (see section 3.2.3). If the maximum

mismatch condition is not broken then the simulation proceeds. If the condition is

broken, all atoms in the system are then returned to the positions of their (optimally

rotated) rigid section templates. This method therefore allows rotational motion of

a rigid section as a whole, but only places constraints on changes in bond length and

angular changes of bonds within and between rigid sections, maintaining the small-scale

geometry of the molecule. The dihedral angles between bond-pairs in different rigid

sections are not constrained by the scheme described below and becomes the dominant

form of intra-molecular structural change within SAMSEN (but could, in principle, be

restricted for molecules where it is required such as polymers with a large dihedral

potential between repeat units). These allow medium- and large-scale changes, such

as the breaking of polymer head-tail configurations and the curling-up of polymers

respectively, as have been seen in simulations of P3HT, for example [57].

The procedure for determining the rigid sections produces similar results to the methods

described in Jacobs et al. [161] (detecting zero frequency modes and the pebble game)

if one neglects non-bonded constraints. The five-step procedure published by Smith
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1. 
Create 
initial 
rigid 
sections

2. 
Extend 
to 
bonded 
atoms

3. 
Merge 
over 
double 
bonds

4. 
Merge 
over 
cyclic 
regions

5.  
Merge  
if fully 
contained

Figure 3-1: Step-by-step demonstration of creating rigid sections for an example
molecule. In step 1, rigid sections are created containing each atom (excluding hy-
drogen) - a subset are shown here. In step 2, rigid sections extend to include bonded
atoms. In step 3, rigid sections connected by double bonds are merged (one section now
contains all atoms from the sections involved in the merger). In step 4, rigid sections
in cyclic regions are merged if their inital atom is part of a ring. In step 5, any rigid
sections fully contained by another are merged into the one that contains it - this step
is unecessary in many molecules.
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et al. [46] are reproduced here with modifications made for additional clarity and the

process is shown in figure 3-1 for an example molecule:

1. Create initial rigid sections. Each atom in the system (excluding the hydrogen

atoms) will initially form their own rigid section consisting of a single atom with a

geometric centre at the midpoint of the atom. In figure 3-1 this is shown for a subset

of atoms in an aromatic compound with rigid sections donated by the colour of the

enclosing circle(s).

2. Extend to bonded atoms. Any atoms which are chemically bonded to an atom

are also granted membership of the rigid section of their neighbouring atom and vice

versa. Atoms can be members of multiple rigid sections. In figure 3-1 we see different

rigid sections beginning to overlap with their neighbours as rigid sections expand to

include bonded neighbours.

3. Merge over double bonds. Atoms that share a double-bond will have their rigid

sections merged. One rigid section will now contain all member atoms from both rigid

sections, whilst the other rigid section shall contain none and be deleted. In figure

3-1 we see the purple and yellow sections merge as well as some rigid section mergers

within the cyclic regions.

4. Merge over cyclic regions. If a region of a molecule is cyclic, then all of the rigid

sections within that cyclic region are merged, as described in step three (in the case of

benzene, the entire molecule would now form a single rigid section). In figure 3-1 we

see entire cyclic regions merging leaving one unhindered rotational degree of freedom.

5. Merge if fully contained. If, at this point, any rigid section in a molecule contains

no unique set of member atoms (if all of its atoms are a subset of another rigid section’s

member atoms), then this rigid section is merged with the one(s) that contain it. In

figure 3-1 we see no change to the number of rigid sections and this is common, however

in the case of chlorobenzene the rigid section that begun on the chlorine atom would

now be merged and a single rigid section would contain all atoms in the molecule.

However, in many cases such as in figure 3-1, atoms will still be members of multiple

rigid sections.

For molecules that produce multiple rigid sections, it is important in step 2 that atoms

are members of the neighbouring rigid sections - this is what will maintain the overall

molecular structure. By restricting only bond length, bond angles and not restricting

the dihedral angles, the coarse-graining scheme effectively connects rigid sections by

concentric hollow rods with a difference in radius equal to the maximum mismatch.
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This picture describes the relative rotational motion that is available between two

neighbouring rigid sections - there is completely free rotation about the shared axis

of the rods (which run along the connecting bond), but off-axis rotation is restricted,

limiting the angle that can be formed between the two rods (and therefore between

the template positions for atoms that are members of both sections). The transla-

tions between sections are also limited by a value enforced by the maximum mismatch

condition. This picture also holds for atoms within the rigid section as well, with an

additional restriction that the internal dihedral angles are restricted by the number of

bond constraints (the condition for rigidity, as would be determined explicitly by the

pebble game).

The mismatch constraints, that hold the molecular structure together, will be combined

with a collision/overlap constraint which will act to repel neighbouring molecules and

create an excluded volume for the rigid sections that represent (or at least attempt

to capture) the shape of the molecule in its current state. As we shall see later,

these two conditions together will determine the structure of the organic morphologies

in SAMSEN. The dynamics of the morphologies will be determined by the relative

molecular structure, with the Hessian matrix constructed assuming a relaxed harmonic

potential between the rigid section centres.

3.2 The Model

In this section I will describe the SAMSEN model used to describe both the structures

and the dynamics. While this separation is not usually possible in conventional meth-

ods, these two components can, in a wide-range of circumstances within this model, be

considered separate and will be referred to as the structural model and the dynamical

model. The first will control the internal and external structure of the molecular mor-

phologies, dictate how particles interact and therefore dominate measurements of the

structure. The second will determine how collections of particles move and how quickly

new morphologies are sampled, but, as we shall see later, will have little impact on the

measured structure.

While this section will focus on the rules of the SAMSEN model, the following section

will describe details of its implementation and setup procedure.
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3.2.1 Simulation Volume

We begin by constructing a simulation volume with orthogonal sides of length Lx, Ly,

Lz with periodic boundary conditions. In this volume we wish to place our molecules.

3.2.2 Atoms, Rigid Sections and Molecules

Each molecule consists of atoms which are grouped into n rigid sections in the manner

described in section 3.1.3. The total number of atoms in the system will be denoted A

and the total number of rigid sections denoted N .

Every atom a is a sphere with a position at point ra, a radius Ra, and a mass ma.

Atoms must be members of at least one rigid section. Each rigid section, s, is a set

of ps atoms. Atomic positions and masses give each rigid section a geometric centre

rs = 1
ps

∑ps
a ra and a mass ms =

∑ps
a ma.

The rigid section retains knowledge of the original relative position of its atoms through-

out the simulation. The template position of atom a in rigid section s in the frame of

reference of s is defined as

T s
′

a = ra − rs (3.1)

and is calculated once the molecules are loaded into the simulation volume. T s
′

a , there-

fore, is a vector of constant length. We will use T sa to represent the template position

in the global coordinate frame.

3.2.3 Conditions of a Valid State

All states that meet the following collision and fitting conditions are considered valid.

If the conditions are met, the simulation can proceed to the next state. If not, the state

must be modified until a valid state is reached. This modification is analogous to a

minimisation, terminating at a desired tolerance. In this model, the minimisation is of

overlapping volumes (∆Vab) and template mismatch (∆T sa ) and terminates at collision

threshold χc and fitting threshold χf .

Put another way, this is how the structural model attempts to achieve states where

the atoms are in positions which we estimate to be energetically likely at a given
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Figure 3-2: For a pair of atoms that are not members of the same rigid section, their
separation rij must be less than the sum of the boundary radii Ra and RB minus the
collision threshold χc. χc is therefore length at which two spheres can overlap.

temperature —the molecules are not over deformed, the atoms are not too close to

one another and the system is not in a state of very high potential. The minimisation

of overlaps and mismatches are often competing and are here intended to reflect the

competition between the external (Lennard-Jones) and internal (bond length, bond

angle) potentials of organic systems in the General Amber Force-Field.

Collision Condition

Any two atoms a and b which are not members of a common rigid section cannot be

separated by a distance rab that is smaller than the sum of their boundary radii Ra

and Rb less a collision threshold χc. Therefore in each valid state

rab ≥ (Ra +Rb)− χc (3.2)

or, considering figure 3-2, atoms cannot penetrate/overlap with another atom by a

length greater than χc.

Fitting Condition

Any atom a that is a member of a rigid section s must be within a distance χf of its

template position, T sa
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Figure 3-3: An atom must remain within a distance χf of its template positions in
every rigid section in which it is a member. χf therefore controls both the maximum
change in bond length and also the change in bond angle.

|ra − T sa | ≤ χf (3.3)

as shown in figure 3-3 for atom C in a rigid section containing atoms A, B and C.

Minimisation of Overlaps and Mismatches

To maintain these rules, at every simulation step, the system is checked for pairs of

atoms breaking collision conditions. If a collision rule is found to be broken, then all

overlapping atoms in the system (unless they are a both member of a common rigid

section) are displaced such that their boundary radii are just touching (rab = Ra+Rb).

If an atom has multiple overlaps, then the average correction vector is used.

Rigid sections are also checked to make sure no atoms break fitting conditions. The

template T s is positioned at the new geometric centre and rotated to minimise the

squared displacements of atoms. The fitting conditions are then tested. If a fitting

condition is found to be broken, all atoms in the system are moved to their template

positions (ra = T sa ). If an atom is a member of more than one rigid section, it is moved

to its average template position.

Collisions are checked by measuring the overlap length and atomic positions adjusted

(if the condition is broken), then the fitting condition is checked by measuring the
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maximum mismatch length and atomic positions adjusted (if the condition is broken). If

either condition is broken and a correction applied, both collision and fitting conditions

are checked again. This continues ad infinitum or until both conditions are satisfied

system-wide. The state is then declared valid and the simulation may proceed.

Note on the resulting structures

Enforcement of the collision-fitting conditions produces a system where atoms deviate

from their template positions by an amount depending on the local environment, and

pairs of atoms overlap depending on how far they have strayed from their template

positions. This process attempts to balance the two globally and, if the thresholds

χc and χf were set to zero, would attempt to find configuration with the minimum

deviation from template positions and external atomic overlaps. As shown later in

figure 4-14 for spheres and figure 5-8 for α-NPD, there are very few atoms on the

limit of the collision and fitting conditions, and instead a broad distribution is formed,

with the atoms mostly near their template positions and only penetrating others by

a small amount. The distribution of overlaps and mismatches have similarities to

the Maxwell-Boltzmann distribution and in certain conditions (low χc in the case of

a sphere) resemble the likely population in an appropriate potential (e.g. Lennard-

Jones, Harmonic). We shall see later that these rules alone are enough to create good

approximations to the structure of disordered systems.

This is the essence of this geometric simulation - emulating something physical by en-

forcing rules based upon shape. This is how SAMSEN will approximate configurations

of weakly-interacting molecules where short-range interactions dominate and to do so

with little computational effort.

3.2.4 Choosing Conditions

Determining the appropriate values for χc and χf is straightforward - one just needs

to make a choice about the force-field and temperature that the simulation should

capture. Class 1 force-fields such as the Optimized Potential for Liquid Simulations

(OPLS) or the General Amber Force-Field (GAFF) and a suitable temperature, here

300 K, allow both thresholds to be determined. Taking GAFF as an example, where

the potential is given by
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Epotential =
∑
atoms

qaqb
εr2ab

+ [
Aab
r12ab
− Bab
r6ab

]

+
∑
bonds

k(r − r0)2

+
∑
angles

kθ(θ − θ0)2

+
∑

dihedrals

Vn
2

(1 + cosnφ− ψ)

(3.4)

where qa and qb are the charges on atoms a and b, and rab represents their separation,

Aab and Bab represents the Lennard-Jones constants for their interaction, k represents

a spring constant for their chemical bond treated as a harmonic spring with r0 the

bond equailibirum length and r the current bond length, kθ represents the constant for

the harmonc angular potential around their equilibrium bond-angle θ0 and actual bond

angle θ, and Vn the constant for the n-th harmonic of the dihedral with an angular

offset of ψ. We can see that the force-field is separated into its component terms:

electrostatic, pairwise, bond length, bond angle and dihedral angle. These can be

separated into their external set and bonded set of forces. The external set (pair and

electrostatic) will be used to inform the atomic overlaps and the bonded set (length,

angle, dihedral) will inform the templates.

For the external/atomic set, the pairwise force is a Lennard-Jones 6-12 which acts

over short distances between pairs of atoms. This is often called the van der Waals

term. The electrostatic potential is a typical Coulombic repulsion which acts over

long distances between partial of full charges on pairs of atoms. In this work, we are

going to assume that partial charges are very small and we can ignore the Coulombic

term. This is not compulsory and electrostatics could, in principle, be incorporated

with a suitable scheme. This choice limits the range of systems that can be studied

but means χc is the only external structural parameter and is only related to how close

two atoms can approach one another at a given energy - determined by van der Waals

forces alone. This closest approach for a pair of atoms, rminab , is found when a pair

of atoms approaching one another increase their potential by a maximum amount of

energy (when the initial kinetic energy at equilibrium has been converted to potential

energy). The collision threshold is then determined as the largest atomic overlap across

all possible combinations of atom pairs
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Figure 3-4: The displacements of length χf that produces the largest change in angle
for a set of three atoms is a chord that joins two points on a circle with a radius of the
bond length and a displacement of the central atom down the central axis of the set.

χc = max(Ra +Rb − rminab ) . (3.5)

For the bonded set, the bond length and bond angles are both harmonic forces within

the molecule between groups of two and three atoms respectively. For the bond length,

the furthest possible separation is then determined when the chosen kinetic energy of

the atoms equals the potential energy as the atoms move away from their equilibrium

positions. This change in bond length is χabf . For the bond angles, the equivalent

is when the three atoms move from their original positions, changing the angle until

the two energies are equal. If three atoms are bound to their original positions by a

common limiting distance, the maximal displacement is found when the central atom

moves to maximise bond length and the other two atoms move to a position where the

circle of radius equal to their limit intercepts with the circle of radius equal to their

bond length. This is shown diagrammatically in figure 3-4. If their maximum angle

is determined, then the limit of displacement from their equilibrium position can be

determined. This maximum change in positions is χabcf . For a given force-field, we then

determine the fitting threshold as

χf = max( max(χabf ), max(χabcf ) ) . (3.6)

To determine when the maximum kinetic energy equals the potential energy, we must
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first determine the maximum kinetic energy. One way of doing this would be to deter-

mine the distribution of kinetic energies and then to truncate the distribution at a high

percentile. For the calculations below, we do just this with the Maxwell-Boltzmann dis-

tribution at 300 K and truncating at the 95th percentile which we then take to be our

maximum kinetic energy (and therefore maximum increase in potential available). This

value of energy can then be used to calculate the maximum overlap (collision) length

and template mismatch, below which, we aim to create a distribution of overlaps and

mismatches.

For the General Amber Force-Field [121], using the boundary radii of Boyd [205] (with

the exception of hydrogen, which is set to be equal to χc), at 300 K and removing

elements such as the heavy metals, it is found that

χc ≈ 0.6Å (3.7)

and

χf ≈ 0.3Å (3.8)

across all possible combinations of atoms and are the appropriate values of the collision

and fitting thresholds for the organic systems of interest. It should be noted once more

that χc and χf are extremal values —we are assuming that all energy is expended in

the direction parallel to the steepest increase in potential and choosing a largest likely

energy to find the largest possible displacement.

If some atomic species are missing from the simulation, it is possible to reduce the

thresholds to match the system being studied. For example, when only H, C, N, O

are present, it may be appropriate to use χf = 0.2Å to reflect the stiffer harmonic

potentials (about the minimum) of the lighter elements.

It should also be restated that without additional constraints, the dihedral angle is not

controlled by χf . This is perhaps suitable for systems where the dihedral potential has

many very shallow minima and less so for systems of deep minima. If deep minima are

present, it may be preferable to constrain the dihedral angles using a similar approach.

One should create a new set of (larger) templates that cover the sets of atoms that

determine the unrestricted dihedral angles, find a new fitting parameter and further

constrain the molecules. Such an approach was not taken in this work.
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Figure 3-5: A diagram of a hydrogen molecule and its minimum volume enclosing
ellipsoid (solid) and inflated ellipsoid (dashed)

3.2.5 Minimum Volume Enclosing Ellipsoids

An ellipsoid of least volume, centred on the rigid section centre rs, shall be constructed

around rigid section s, which encloses the volumes of all atoms in s. This minimum

volume enclosing ellipsoid (MVEE), then defines a natural volume and orientation for a

rigid section. A minimum volume enclosing ellipsoid for a hydrogen molecule is shown

in figure 3-5.

Instead of using radial cutoffs we shall use the ellipsoids, which better capture the

anisotropy (if present) of the rigid sections, to determine if two neighbours interact. In

the case of a radial cutoff, it is possible for a disc-like section to contain more neighbours

in the direction of the normal axis, than around its circumference. By using MVEEs,

we can reduce the likelihood of this happening.

The size of the ellipsoidal cutoff can be adjusted by multiplying the MVEE axes by an

inflation factor α. As we shall see later, the precise value of α will have a significant

impact on the simulations (we shall use the inflated MVEEs to select which rigid

sections are interacting neighbours). The inflated MVEE of rigid section s will be

referred to as Es. We will use the inflated ellipsoids of each rigid section and test for

intersections when building an elastic network (section 3.2.6) and to aid computation we

will also use the MVEEs and find intersections when checking the collision conditions.

Like the rigid section templates, the ellipsoid will also hold the same shape throughout

the simulation and Es will always be rotated and translated to maintain a constant
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relative orientation and position to s in the global frame.

Ellipsoid Intersections

To determine if two ellipsoids are intersecting we can frame the problem as an eigen-

problem. The method used here is that of Alfano & Greer [206].

An ellipsoid E can be described in matrix form by

XEXT = 0 (3.9)

where

E =
1

2


2A D E G

D 2B F H

E F 2C J

G H J 2K

 (3.10)

and

X =
[
x y z 1

]
(3.11)

This describes the surface of the ellipsoid in any position and orientation in the Carte-

sian frame. One can then formulate an eigenproblem in the usual manner for a system

of two ellipsoid surfaces

X(λE1 − E2)X
T = 0 (3.12)

and as Alfano & Greer demonstrate, a simple inspection of the eigenvalues or substi-

tution of the eigenvectors into the equations of the ellipsoids allow one to determine if

two ellipsoids intersect. For instance, if the real-component of the eigenvectors produce

points inside or on the surface of both ellipsoids or if there are real eigenvalues, then

the ellipsoids must intersect.

If in the simulation, two rigid section ellipsoids intersect, then the rigid sections shall

be described as being in-contact.
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Figure 3-6: The construction of the dynamical system is performed between rigid
sections that are in-contact (their ellipsoids intercept) including those over periodic
boundaries.

3.2.6 The Elastic Network

To create the dynamics of the system, SAMSEN employs an elastic network model. The

elastic network model describes a set of local contacts connected by harmonic springs

and forming a point-spring network. The energy landscape of this network can be

described by the Hessian matrix – the second-derivatives of the potential energy around

each point. The eigenvalues of this matrix describe the vibrational frequencies and the

eigenvectors describe the vibrational displacements at the corresponding frequencies.

These are the normal modes of vibration. In SAMSEN, we shall use these normal modes

to try and overcome the dynamical slowdown experienced by molecular dynamics, by

neglecting the higher frequency displacement and instead moving the system along the

low-frequency modes.

To construct the elastic network, nodes (points) are placed at the positions, rs, of the

rigid sections. The ellipsoid intersections are then determined throughout the system.

If any two rigid sections are in-contact, then they are given an interaction in the elastic

network: a harmonic spring is created between rigid sections i and j with an equilibrium

length equal to their current separation (the spring is relaxed). This is governed by the
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potential

V (rij) =
1

2
k(rij − r0ij)2 (3.13)

where k is the spring constant for the pair which shall be assumed to be equal for all

interacting pairs k = 1 kg s−2. For all pairs in-contact, rij = r0ij therefore Vij = 0.

Construction of such an elastic network is portrayed in figure 3-6. If a rigid section

ellipsoid does not intercept with another it is not given an interaction in the Hessian.

To calculate the Hessian, the partial second-derivative with respect to each Cartesian

component is determined. This creates a 3 × 3 array or super-element which fills off-

diagonal rows and columns (3i, 3j) to (3i+2, 3j+2) and vice versa. This super-element

is of the form

Hij =



∂2Vij
∂xi∂xj

∂2Vij
∂xi∂yj

∂2Vij
∂xi∂zj

∂2Vij
∂yi∂xj

∂2Vij
∂yi∂yj

∂2Vij
∂yi∂zj

∂2Vij
∂zi∂xj

∂2Vij
∂zi∂yj

∂2Vij
∂zi∂zj


(3.14)

where

∂2V

∂xi∂yj
= −k (xj − xi)(yj − yi)

r2ij
. (3.15)

The diagonal super-elements for interactions (i, i) and (j, j) are filled with similar com-

ponents of the form

∂2V

∂xi∂yj
= k

∑
j

(xj − xi)(yj − yi)
r2ij

. (3.16)

3.2.7 Vibrational Modes

Diagonalisation of the Hessian produces a set of 3N eigenvalues and 3N × 3N eigen-

vectors which are the vibrational frequencies and displacements of the normal modes
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respectively. As the Hessian is constructed with each node at a minima (Vij = 0, k = 1

or 0), all eigenmodes are real with positive or zero frequency.

In a system where no springs are formed across the periodic boundaries, there are

6 trivial modes at zero-frequency. These modes describe global/uniform translations

and global/uniform rotations - they describe no change of the relative position of the

particles, but instead the reference frame. In a periodic volume where springs are

formed across the boundary, the rotational modes do not exist and instead there are

only 3 trivial modes that describe uniform translation. These modes are to be neglected

and we shall instead refer to the lowest frequency non-trivial modes as the lowest

frequency modes for the remainder of this work.

Amplitude of Vibration

For a given mode, one can scale its amplitude according to a suitable scheme by stretch-

ing the eigenvectors. In SAMSEN, we assume that a wave’s amplitude can be calculated

through equipartition

3

2
kbT ∝

1

2
〈A2〉ω2 (3.17)

where A is the mean amplitude of the wave, ω is the wave’s frequency and T is the

temperature of the system in which the wave exists. This may not be achieved in a real

system: the wave may not reach its maximum amplitude (due to anharmonic effects,

change in forces, etc.), not all oscillations are activated at a given temperature, and the

vibrational energy may be distributed across the activated modes, for instance. How-

ever, we do not intend to recreate the true vibrational dynamics here. We, instead, are

interested in neglecting the short timescale dynamics and enhancing the low-frequency

dynamics. We shall therefore replace T with ε and refer to it as the effective temper-

ature of the dynamic model (to prevent misunderstanding) where each mode is given

an r.m.s. amplitude βm, calculated as

β2m =
3kbε

ω2〈δ2m〉
(3.18)

where 〈δ2m〉 is the average displacement across all rigid sections in mode m
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〈δ2m〉 =
1

N

N∑
i

|δim|2 . (3.19)

This means that all eigenvectors are re-scaled such that the r.m.s. displacement is equal

to βm, and ε provides a way of controlling the kinetic energy of the wave at mechanical

equilibrium (by construction) and therefore the displacement length.

Assuming Similar Frequencies

If a subset of the modes are chosen in the range mmin ≤ m ≤ mmax (which shall

be compactly written mmmax
mmin

throughout) which consists of a number of modes over

a narrow frequency range, then we can make the assumption that the vibrational

frequencies are similar

ωmmax − ωmmin ≈ 0 . (3.20)

Under this assumption, the period of the mode oscillations are also similar and all waves

reach their peak displacement at the same time. This assumption allows a linear sum

of the scaled eigenvectors to represent the displacement, rather than a superposition of

waves which vary as a function of time.

Therefore, the total displacement for each rigid section in a SAMSEN cycle will be a

linear sum over the displacements in each mode in the selected range

Di =
1√
Mi

mmax∑
mmin

βmδim (3.21)

where Mi is the mass of rigid section i, which in this work shall be assumed to be

M = 1 a.m.u. for all rigid sections - if accurately considered and included in the

construction of the Hessian along with pair-specific equilibrium lengths (yielding the

dynamical matrix), then the displacements calculated from equation 3.21 would become

the Newtonian dynamics (as approximated).

Each atom will then move by the average rigid section total displacement vector that

the atom is a member of. This will be performed in a series of steps so that collision-

fitting conditions can be maintained as the particles move. As the masses and spring

constant are equal and the wave frequencies (and therefore the acceleration) are similar,
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instead of displacing by shorter distances as the vibration approaches its peak, the time

interval at each step can be re-scaled (physically getting longer and longer) so that at

each step an equal distance interval is covered. The displacement at each step is then

given by Di/S where S is the number of steps chosen for the oscillations to reach peak

r.m.s. amplitude.

Assuming similar frequencies also means that each displacement period has a time

associated with it. This is simply equal to a quarter of the full oscillation period for

any of the modes in the range mmmax
mmin

.

3.2.8 Repeat

At each step in the displacement, the collision and fitting conditions must be checked

and maintained before proceeding onto the next step. In this way, the structural

and dynamical models are applied in-turn. One could imagine the structural model

managing the high frequency restoring forces, and the dynamical model controlling

the low-frequency motion and that the disparate timescales allow them to be applied

without consideration of the other.

Once the system has reached its full displacement (after performing S steps), a new

set of ellipsoid intercepts are found and a new elastic network is constructed. The old

set of displacements are then replaced by a new set over the same range of modes.

Displacement then continues until another S steps have passed. This is a SAMSEN

cycle and becomes the natural unit of simulation time (although, if required, it can be

related to a physical time through the frequency of the range of modes chosen).

3.3 Simulation

Now the rules that govern a SAMSEN simulation have been established, we can turn

to more practical considerations: the creation of an initial state, compression to the

required density, polymerisation; to name a few. This section should therefore be

considered to be the description of the experimental setup for the series of investigations

in this work and specific additional details of the computations performed.
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3.3.1 Creating Initial States

Preparation of Molecules

SAMSEN relies heavily on the creation of templates of rigid sections within a molecule

which are used the maintain the molecular structure, so it is important that they

reflect the likely configuration of the molecules (ideally the ground state configuration).

Therefore, before the simulation begins, one must construct or download a suitable

molecular structure and optimise its geometry.

This optimisation can be performed at the density functional theory level or, if the

molecule is too large, could also be performed using an energy minimisation (e.g.

steepest descent, conjugant-gradient) in an appropriate force-field. If, later, one in-

tends to perform charge transport simulations by calculating the electronic overlaps,

this optimisation using DFT methods will need to be performed anyway. One would

also expect this to present a more accurate representation.

For small molecules, the structures produced from a minimisation in an MD force-field

were used. However, for polymers, the optimisation was performed at the DFT level

on oligomers and the central repeat unit taken as the optimised structure.

Rigid Sections

Taking this geometry-optimised molecule (or repeat unit - I will, from time to time, use

‘molecule’ to refer to either), it can then be passed to the algorithm which determines

the rigid sections of the molecules, described in section 3.1.3.

For the entirety of this work, this was the method used to produce the rigid sections,

although I again note that this could be inferred from calculation of the internal vibra-

tional mode frequencies or other energetic consideration of internal motion and angular

potentials.

The membership list for each rigid section is stored for later reference and the minimum

volume enclosing ellipsoids are generated.

Polymers

To create polymers in SAMSEN, a series of molecules placed in a row is not sufficient.

Like with any simulation, it is important that the repeat units are connected. In
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MD/MC that is performed by including additional bonding forces between atoms, here

it is achieved by extending the rigid sections between repeat units.

In this work, the rigid section templates of the repeat unit were created with addi-

tional atoms present (not removed after the DFT optimisation of the oligomer), left

as placeholder atoms. When the simulation is launched, the placeholder atoms will be

deleted and the corresponding atoms on the neighbouring repeat units will assume all

rigid section memberships of the placeholder atoms. However, the assumed template

positions for the atoms in neighbouring repeat units will always be of the initial place-

holder atom positions. This subtle point means polymers can be placed/loaded in a

twisted configuration without affecting the shape of the templates.

Ellipsoids

To generate the minimum volume enclosing ellipsoids, the coordinates of each atom in

the rigid section, as well as the atom types (the element) is given to an optimisation

algorithm. This algorithm places each atom in space, centres the set around the origin

and places additional markers to represent the size of the atoms (at the boundary radii

of Boyd [205]). Using a guess ellipsoid that is much larger than and completely encloses

the set of atoms and markers, the program then performs a sequential least squares

optimisation on the ellipsoid axes, where the optimal ellipsoid is of smallest volume with

the constraint that all atoms and markers must remain within the ellipsoid volume and

the volume must be positive. It is similar to a gradient descent, where the gradient

is the change in ellipsoid axis length. Other techniques including genetic algorithms

also produce similar solutions. The ellipsoid axes are then stored for later use. The

implementation of the volume minimisation under constraints used here was written

by Ian Thompson of the University of Bath using the optimisation in the SciPy library

[207].

Generating an Input

We then place the chosen number of molecules into the simulation volume with random

positions and orientations. Each time a molecule is entered, we check to ensure that the

ellipsoids between any two rigid sections, that are not a member of the same molecule,

do not intercept.

For polymers also, the placement of the first repeat unit is random, the rigid sections
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checked for intercepts, but the placement of the neighbouring repeat units is restricted.

The rule is that placeholder atoms must be positioned so that the atoms that will

assume their membership have the same coordinates (a slight rotation of the new

repeat unit is permitted if the rotation angles are small enough to produce a mismatch

between the two that is within χf ). The new repeat units must also contain no ellipsoids

which intercept with ellipsoids from other polymers/molecules and also not intercept

with ellipsoids of rigid sections in the neighbouring repeat units.

If any of these ellipsoid intercept tests are failed, then that entire molecule or polymer

is deleted and a new attempt is made with random positions and orientations.

This method of ensuring no ellipsoids overlap is able to produce initial morphologies

at quite high density. In the case of spheres, more than a third of the box volume can

be filled using this random placement, but in the case of more awkwardly shaped small

molecules and polymers (for example, the ones mentioned in this work), a starting

density in the range of 0.05 to 0.15 g/cm3 can be readily achieved. Of course, high

density starting configurations create correlations in position/orientation - particularly

in the case of polymers - but we expect to experience this during the compression stage

and not be constrained by the initial conditions after the system repeatedly relaxes as

it follows the low-frequency modes.

Loading Inputs and Polymerisation

SAMSEN begins by loading in the optimised molecular structures in the given positions

and orientations. It then immediately generates the set of template positions for the

rigid sections of the molecules. The atoms in each rigid section are then moved to

match the positions and orientations specified in the input specification (this allows

previous simulation states to be loaded and molecular structures to deviate from the

optimised position if desired/required) - taking the average position of their template

if an atom is the member of multiple rigid sections.

The polymerisation process then takes place, with the placeholder atoms deleted and

the corresponding atoms on the neighbouring repeat units assuming all rigid section

memberships. The template positions remain unchanged so that the atoms that have

just assumed membership must conform to the fitting condition measured against the

template of the new rigid section(s) in the neighbouring repeat unit as well as ones

it is already a member of. By this mechanism the entire polymer structure becomes

interlocked and can be treated as a molecule in the normal way: considering only the
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atoms and rigid sections.

It is perhaps worth mentioning briefly that if one is interested in constraining the dihe-

dral angles in polymers, this could also be performed here by creating a set of dihedral

templates. More placeholder atoms would be required, and the second neighbour atoms

in neighbouring repeat units could then assume their position. A similar fitting condi-

tion, perhaps with a different threshold length, may be required to capture the strength

of the dihedral potential.

3.3.2 Compression

Converting a gas/liquid-like density input state into a state at a solid thin-film density

is performed by a basic compression algorithm which represents the inverse process of

the Lubachevsky-Stillinger compression algorithm [208] at zero temperature - instead

of inflating particles, the space between particles is shrunk. A compression is performed

in steps and, at each step, a fractional amount is removed from the coordinates of all

atoms in the system as well as the box dimensions. The system is then allowed to

locally relax - here by enforcing the collision-fitting conditions - before proceeding to

the next compression step.

In this work, all coordinates and box dimensions are multiplied by a small factor Cf

which, unless stated otherwise, is 0.99995. A Cf < 1 represents a compression while

Cf > 1 is an expansion. During this process, we shall also here set ε = 0 so that this

compression/expansion is athermal.

This compression (or expansion) is an essential, but non-integral, part of the process

we shall follow in this work. SAMSEN strictly only governs the validity of a state, the

enforcement of the collision-fitting conditions, and the long-time dynamics of following

the low-frequency modes. Starting from a crystal phase or from a molecular dynamics

output state would be equally valid approaches to SAMSEN. The only requirement is

that the input state satisfies the collision-fitting conditions of the templates generated

from the optimised molecular structure (if it is not, the collision-fitting correction

cannot guarantee that the input can be turned into a valid state).

3.3.3 The SAMSEN Cycle

Once a configuration has been found at the required density, we shall set ε to a non-zero

value, set Cf = 1 and start to use the dynamical model to sample configurations as
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Figure 3-7: A diagram of the SAMSEN cycle. It begins by ensuring the state is
valid, checking collision and fitting conditions and performing corrections if necessary.
Then an elastic network is constructed and the low-frequency modes calculated. The
rigid sections are then displaced along these modes over a period of steps, S, and the
conditions for a valid state are maintained at each step. After S steps a new set of
intercepts are determined and new modes calculated.

described in sections 3.2.6 and 3.2.7 and use the structural model of section 3.2.3 to

maintain a valid state which is designed to reproduce (or at least approximate) the

morphologies of other methods.

The stages of a SAMSEN cycle are described in this section and are depicted in figure

3-7. A cycle begins with the determination of neighbouring rigid sections and the

calculation of vibrational modes, which are used to displace the rigid sections over a

series of steps. At each step the collision and fitting conditions must be satisfied before

proceeding onto the next step. The cycle then ends after a predetermined number of

steps and a new one begins by calculating a new set of vibrational modes.

Calculate vibrational modes

The elastic network is constructed by placing harmonic springs (with rij = r0) between

any ellipsoids in the system which intercept one another (including across the periodic

boundary). This creates a 3N × 3N Hessian matrix.
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Consider the memory requirements for a moment: for such a matrix of double precision

floating point numbers, the Hessian at N = 5, 000 fills 1.8 GB, while at N = 10, 000 a

7.2 GB Hessian is constructed. To reduce the memory-burden, which quickly becomes

larger than some desktop PCs are capable of storing, sparse-matrix representations are

used.

However, memory is not the only concern. The diagonalisation of such a large matrix

is known to be very time-consuming. For instance, in some brief tests, a Hessian for

N = 1, 000 (with an average of 12 contacts each) required tens of minutes to produce the

full spectrum of vibrational modes for both eigenvalues and eigenvectors using the GSL

library [209] which was limited to a single CPU without parallelism. This, of course,

is not a particularly large system and this timescale for calculating the displacements

for one cycle is inconvenient, to say the least. This approach also involves calculating

information about modes that we do not intend to use - as we are only interested in a

low-frequency subset.

To speed up this process, it was found that using an Arnoldi shift-and-invert method

from the Arnoldi Package (ARPACK), specifically ARluSymStdEig in ARPACK++

[210], substantially lowered the time required to calculate the required number of

modes. For the same N = 1, 000 Hessian, in sparse-representation, and solved around

a central ‘guess’ frequency that was lower than the lowest frequency mode, the diago-

nalisation solving for 200 modes could be performed in seconds on a single CPU and

seemingly-instantly on 8 CPU cores. This process is faster for fewer modes, however it

is important that the central frequency is set so that the lowest frequency eigenmode

is found after the first diagonalisation, otherwise further attempts around new guess

frequencies will be required. This can be achieved by setting a low central frequency

such that the lowest modes are the lowest modes found or by having a wide search

range. To ensure that the lowest frequency modes have been found, a check for the

presence of the translation modes can be performed (by testing the dot product of the

eigenvectors - if they are translational they should all be ≈ 1). This shift-and-invert

method is approximate, but it appears using a larger search range also increases the

accuracy of the eigenvectors.

For this work, the search range used in SAMSEN was set to at least twice the number

of modes in the mode displacement range, mmmax
mmin

and, with a low central guess value,

usually 0.25, that falls between the lowest frequency eigenmodes and the translational

modes. If the translational modes were not in the search, successive diagonalisations

were performed with new guesses values until the translational modes were identified.

For the eigenvector analysis, the solve was performed with a guess value of 1 × 10−5
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using the SciPy interface to ARPACK [207].

Displace Rigid Sections

With the eigenmodes found, containing modes in the range mmmax
mmin

, the displacements

for each of the rigid sections were calculated using equation 3.21. These are summed

over the chosen mode range, creating one displacement vector per rigid section. This

is divided by the number of steps per cycle, S, which for the majority of this work was

set to S = 1, 000. This is the set of displacement vectors for the cycle.

Each atom is then given the displacement vector of the rigid section of which it is a

member. If it is a member of multiple rigid sections, it gets the average displacement

vector. At every step in the cycle the atoms then move along their displacement vectors.

Maintain Collision and Fitting Conditions

At each step, the collision and fitting conditions are checked and enforced, as described

in section 3.2.3 and is implemented as shown in the flowchart in figure 3-8.

The collisions checks are performed by identifying neighbouring rigid sections using a

cell list. This cell list contains the identifies of rigid sections within each cell and each

cell is cubic with sides having a minimum length equal to the maximum MVEE axis

length. From this list of local neighbours, ellipsoid intercepts using the MVEEs (not

inflated by factor α) are then used to determine if any of the atoms in the rigid sections

could intercept with those in a neighbouring rigid section (applicable when χf < 2χc).

If there are any MVEE intercepts, then all pairs of atoms in the two associated rigid

sections are then tested for overlaps. After storing all overlaps in the system, if collision

conditions are broken then the correction vectors (moving the spheres so they are just

touching, or taking an average if the atom is involved in multiple collisions) are applied.

The fitting checks are performed by finding the optimal rotation of the rigid section

template against the current positions of its member atoms. All mismatches are calcu-

lated and stored. After performing this for all atoms, if the fitting condition is broken

then all atoms are moved to their template positions (or an average correction is applied

if an atom is a member of multiple rigid sections).

If either of the collision or fitting conditions are broken then a re-check of both colli-

sion and fitting conditions will need to be performed. This loop continues until both
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conditions are met in a single loop.

This strategy, of filtering atoms by rigid sections, greatly improves the computational

speed without altering the simulation. This makes the collision detection scale quadrat-

ically with the number of rigid sections (and number of atoms per section) rather than

quadratically with the number of atoms in the system. The fitting and mismatch cal-

culation also scales with the number of rigid sections (and the number of atoms per

section). And, as the diagonalisation scales only with the number of rigid sections, then

the number of rigid sections becomes the natural way of describing the computational

complexity of a SAMSEN simulation.

No further mode displacement is applied until these conditions are met and the state

declared valid. When this is achieved the next step begins by reapplying the displace-

ment vectors.

Repeat

This displacement and collision-fitting correction sequence continues until the end of

the cycle, defined as after S steps have elapsed, which is when the r.m.s. displacement

vector applied for each mode (potentially distinct from the total r.m.s. displacement

achieved) is equal to βm. At this point the next cycle begins with the construction of

a new elastic network.

The SAMSEN simulation ends after a specified number of cycles have been completed.

3.3.4 Summary of SAMSEN Parameters

This section is dedicated to highlighting the different parameters introduced in this

chapter, in particular those that will have an effect on the simulation result, and is

intended as a reference. The effect of changing most of these parameters will be inves-

tigated further in chapters 4 and 5.

α

The ellipsoid inflation factor, α, was discussed in section 3.2.5. 3.2.5. It is used to

inflate the minimum volume enclosing ellispoids that were generated for each rigid

section when we come to calculate the vibrational modes. This factor will determine

how many ellipsoid intercepts are found and will be examined further in section 4.2.
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Figure 3-8: Flowchart describing the collision-fitting process implemented in this work,
simplified for visual clarity. At the beginning of the sequence, checks for collision and
fitting are turned on and we begin the loop of assessing if condition-fitting conditions
are met or if we need to enforce and re-check conditions. The loop starts by turning
the recheck indicator off and then, for each rigid section in the system, identifying
neighbouring rigid sections through use of a cell list and, for each neighbouring rigid
section, checking if their MVEEs intercept. If there are intercepts between the MVEEs
of two rigid section then, for each pair of atoms in those rigid sections, a distance
calculation and collision condition check is performed. Any overlaps are stored and
corrections only applied after all overlaps in the system have been calculated and if the
SAMSEN collision condition is broken. The loop then continues, looking at the fitting
conditions by achieving a best fit of the rigid section templates to the member atoms
as they are currently positioned in the system and then by calculating and storing any
positional mismatch. If the SAMSEN fitting conditions are broken, atoms are moved to
their template positions and another collision-fitting check will need to be performed.
If not and if the collision condition was also not broken, the loop exits with the system
in a valid SAMSEN state.

65



ω

The vibrational mode frequency, ω, was first discussed in section 3.2.7. It is a result

of diagonalising the Hessian which, in turn, depends on the separation of connected

nodes (rigid sections) in the elastic network and constants such as the spring constant,

k (which we assume to be unity). ω is primarily used in equation 3.18 to calculate

βm and takes on a range of values which can be picked by mmin and mmax, however

we will assume ωmmax ≈ ωmmin (equation 3.20) for reasons which will become clear in

section 4.3.

mmax and mmin

The upper and lower mode numbers respectively, mmax and mmin, determine the range

of modes which displacement vectors will be summed over in equation 3.21. This

parameter has quite wide-ranging effects as it also determines ω and as a result βm.

We will also see how the nature (specifically quantities such as the collectivity) of the

modes vary in section 4.3 and mmax and mmin provides scope for the user to vary how

collective rigid section displacements are in SAMSEN. Changing these parameters will

be discussed (as with ω) in section 4.3 and for the majority of this work mmax = 12

and mlow = 1.

ε

The effective temperature of the dynamical model, ε, is described in section 3.2.7.,

replacing T in equation 3.17 and used to calculate βm in equation 3.18. It has units

of temperature. This parameter is the primary control of the length over which rigid

sections will be displaced in a given SAMSEN cycle as it contributes to βm. We will

investigate the effect of changing this parameter on the structure and sampling rate in

section 4.4.

S

The number of steps per cycle, S, was introduced in section 3.2.7 and describes how

many displacement steps the calculated rigid section displacements are performed over.

In many ways this is a coarse-graining of time within a SAMSEN cycle, with a small

value of S leading to large, sometimes unstable displacements and a large value of S
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leading to smooth displacements. Computationally, there may exist a most efficient

value somewhere between the two extremes for a given accuracy. For this work S =

1, 000 is commonly used, particuarly in the case of molecular systems, however it may

be beneficial to increase it for extremly large βm or reduce it for low βm (or ε).

χc

The collision threshold, χc, was explained in section 3.2.3 and its value is determined

in section 3.2.4. It is used in the collision condition (equation 3.2) and sets the upper

limit on which two atoms not in the same rigid section can penetrate one another (or

how much their volumes can overlap). It can be described as the maximum overlap

length for a valid SAMSEN state and has units of length. The effect of changing χc

will be examined in section 4.5.

χf

The fitting threshold, χf , was described in section 3.2.3 and its value is determined

in section 3.2.4. χf describes the maximum distance an atom can be from any of its

rigid section template positions in a valid SAMSEN state. It may also be described as

determining how much flexibility is granted both within rigid sections and between rigid

sections with χf = 0 Å representing true rigidity within a rigid section and allowing

only co-axial rotation between sections. It sets the upper limit on the fitting condition

and has units of length. It will be discussed in section 5.2.1 and 5.2.2 in the context

simulations of a small molecule where the method of determining rigid sections is also

evaluated.

φ

The packing fraction, φ, describes the volume of occupied space to the total simulation

volume. In this work φ is controlled by setting the volume which the original simu-

lation box is compressed to and is measured exactly in the case of hard spheres, and

also measured for inflated rigid section ellipsoids (where overlapping is allowed). We

will briefly examine how the value of φ impacts the vibrational modes in section 4.1.

However, for molecular systems, ρ, the density will become the quantity of interest as

this makes comparison with other published work much easier.
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Cf

The compression factor, Cf , determines the rate at which the simulation is reduced

in volume until the desired volume (or density) is reached. It is described in section

3.3.2 and is the multiplicative factor used to modify the lengths of the sides of the

simulation volume. Once the required density/packing fraction is reached, Cf is set to

1 and compression ceased for the rest of the simulation. In this work, no displacement of

rigid sections along the vibrational modes is performed during the compression phase,

however collision and fitting conditions must be maintained.

3.4 Charge Transport Model

To investigate charge transport within the organic semiconductor morphologies, the

following model will be used. It solves the master equation, under low-charge density

conditions and requires knowledge of the rate of transport between all pairs of sites

in the system. These charge transport rates will be later calculated using the Förster

equation (section 2.2.1) for excitons in P3HT, using the Miller-Abrahams rate for elec-

trons in PCBM and using Marcus theory rates in the case of hole transport in IDT-BT.

With this information it is possible to calculate the steady-state distribution of charges

(which amounts to the probability of occupation in a single particle system) and, using

the same transfer rates, calculate properties such as the diffusion constant, D and the

exciton diffusion length, LD. Other methods such as kinetic Monte Carlo can also be

used to determine such values but will not be used in this work.

3.4.1 Master Equation

The master equation describes the movement of charges within a system through time,

in a treatment that works with the charge densities (or probability of occupation) and

rates (or probabilities) of transfer between discrete sites [11, 38, 211]. In the case of

charge transport, it is based upon the Pauli master equation, which also incorporates

the reduced probability of moving to a site that is already occupied, and is given by

∑
i 6=j

νijpi(1− pj)− νjipj(1− pi) = 0 (3.22)

where νij is the charge transfer rate between two sites, i and j, and pi is the probability

68



of a given site being occupied. Note here that the amount of transfer from site i to site

j is reduced depending on the probability that site j is already occupied through the

1− pij term. At all times, the amount of charge in the system is conserved (although

sources and drains can be added), and at steady-state the density moving forwards (i

to j) is equal to the density moving backwards (j to i).

In the low-charge limit, when charges are considered isolated, or when particles are

entirely non-interacting, 1− pij ≈ 1 and the Pauli exclusion term can be neglected and

equation 3.22 becomes

∑
i 6=j

νijpi − νjipj = 0 . (3.23)

We shall use this form of the master equation (without the Pauli exclusion term) in

this work. However, it should be reiterated that this restricts the applicability of

results to the low-charge limit and will alter the calculated charge transport properties

(potentially increasing the calculated diffusion constant in single species systems for

instance). To attain self-consistency, the electric potential induced by neighbouring

charges will also not be included in the calculation of hopping rates between sites.

3.4.2 Transfer Matrix

The transfer of charges between sites under the master equation can be described

by a transition rate matrix [212]. As we shall see later, this matrix contains all the

information required to calculate a range of charge transport properties. The transition

rate matrix is an N ×N matrix where N is the number of sites and contains elements

that describe the rate at which particles will move to all other sites. In population

analysis, these are sometimes called transient states and absorbing states respectively

[212]. The off-diagonal elements are filled with the rate, νij which corresponds to a

transfer from state (site) i to state (site) j [212]. This matrix is not symmetric and a

transfer νji in the matrix element for a transfer from j to i can be different to a transfer

νij (with the energy differences between sites, it is very likely they are different under

a Gaussian disorder charge hopping model, for instance). The diagonal elements are

then filled with the negative sum of the off-diagonal elements (in a single forward or

backward direction) such that (i, i) contains the negative sum of all values in row i (the

rows sum to zero).

The transition rate matrix can also be converted to a transfer matrix (sometimes simply
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the transition matrix but for clarity, we shall call it the transfer matrix), which describes

the amount of transfer occurring in a given time. In this context, it describes the

probability that a charge will move from one site to another in a time, t, which can be

calculated from knowledge of the transfer rate [213]. In this way, the transition rate

matrix and transfer matrix are related. If the off-diagonal elements in the transition

rate matrix can be described by

ν(ij) = −1

t
ln (1− T (ij)) (3.24)

where T (ij) is the probability of transfer from site i to j (previously pij) [212], then

the off-diagonal elements in the transfer matrix can be written as

T (ij) = 1− exp(−νijt) (3.25)

with νij the rate of transfer from i to j as written in the off-diagonal of the transition

rate matrix [213]. The diagonal elements of the transfer matrix are then filled such that

the sum across a given row of the matrix is equal to 1, which is the condition for the

steady-state [212]. It is also possible to modify this matrix to include charges leaving

and entering the system (light absorption, exciton recombination/decay) and to use it

to consider density-dependent systems [212], however this will not be considered in this

work as this can create non-linearity which requires the more direct iterative approach

(or KMC) [43, 211, 212]. Readers should refer to books such as Matrix Population

Models by Caswell (2001) for further information on the properties and application of

the transfer matrix approach [212].

Both of these matrices can be used to find the steady-state distribution of charges.

The transfer matrix, which is perhaps conceptually simpler to follow, describes the

probability of charges moving. Given an initial distribution of charges or probability of

occupation of a set of sites, application of the transfer matrix through matrix multipli-

cation will provide the distribution of sites at time t0 + t where t0 is an initial time at

which an initial distribution of charges exists and t is the time interval between states.

If there is a population of charges (or a probability of occupancy), described by a vector

P of N sites, then the population at time t0 + t can be calculated through the formula

P |t0+t = TP |t0 (3.26)
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which is accurate for small t and, when applied iteratively, converges to the steady-state

distribution, as does the average occupation in a kinetic Monte Carlo simulation, for

instance. As the charges are non-interacting in the low-charge limit, the probabilities

in the transfer matrix or the rates in the transition rate matrix do not need to be

updated.

Unlike the stochastic methods, calculating the steady-state charge distribution and

charge transport properties is much faster with the transfer matrix approach. This is

because the simulation does not need to be run to convergence as in kinetic Monte

Carlo which can take many millions of steps [38]. Instead of iteratively multiplying

the transfer matrix, the steady-state can also be calculated by diagonalisation of the

transfer matrix (or the transition rate matrix) [212] to find the dominant-eigenvalue

which, using a partial diagonalisation such as that provided by the shift-and-invert

method in packages such as ARPACK [210], can be calculated very quickly. And as

the steady-state eigenvalue is known a priori, the calculation can be performed for

very few eigenvalues (and eigenvectors) and therefore even faster. For instance, in

the transport calculations on systems of 1,000 PCBM molecules in section 5.3.2, the

diagonalisation and calculation of the diffusion constant were be performed in less than

a second on an 8 core machine.

When diagonalising the transfer matrix, the steady-state is represented by an eigenvalue

of 1 (which indicates no further change to the distribution of charges upon multipli-

cation) [212] and for the transfer rate matrix an eigenvalue of 0 corresponds to the

steady-state distribution. The corresponding eigenvector, then contains the distribu-

tion of charges which is equal to the probability of site occupation times the number

of charges in the system.

3.4.3 Diffusion and the Exciton Diffusion Length

With knowledge of the probabilities of a site being occupied and the probabilities of

transferring between sites in a time period of length t (held in the transfer matrix), the

average displacement of populations/particles over time can be calculated. If vector

P is transformed into an N × N matrix, with the probability of occupation stored in

the diagonal and the remaining elements set to zero, the matrix multiplication now

described by equation 3.26 can be performed to determine the probability of particles

moving from a given starting site to a neighbouring site, weighted by the probability

of the particle starting on that initial site. This yields an N × N matrix with the

probability/density of charge that started on the diagonal in any given row reduced
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and redistributed to the remaining columns in that row. Repeating the multiplication

and summing over columns then shows how the charges move throughout the system,

weighted by the initial distribution of the site occupancies. This property can be used

to determine the likely ‘traffic’ of given routes or establish which routes in the system

dominate or how easy it is for a charge to travel from A to B. After enough iterations

all rows will then converge again to steady-state, albeit with different total populations.

The mean-squared displacement of a single exciton in the system can then be described

by the products of distances between sites and occupancy-weighted probability of trans-

fer (a similar approach for calculating velocity and charge mobility was taken by Yu

et al. and Koster [42, 214]). Put more succinctly, the mean-squared displacement 〈S2〉
over time t is simply given by

〈S2〉 =
N∑
i

Pi

N∑
j

r2ijTij (3.27)

Due to the density-based approach and its convergence to steady-state, this calcula-

tion is most accurate with a fewer iterations of the transfer matrix and at small time

intervals. Therefore, in this approach we will consider a single iteration, which equates

to the product of the squared distance between sites i and j and their associated prob-

abilities of transfer, weighted by the probability of a charge being on that site, in a

known time period, t, as in equation 3.27.

This then leads us the ensemble average diffusion constant, D, for a single particle

the system (through Fick’s law of diffusion, which takes the same form as the heat

equation)

∂n

∂t
−D∇2n = 0 (3.28)

where the 3D diffusion constant, D, can be determined as the occupancy-weighted

transfer probability-weighted mean-squared displacement per unit time 6D = 〈s2〉/t as

t→ 0 and shall be calculated as such using small t for electrons and holes.

For excitons, the quantity of interest is not the diffusion constant but the diffusion

length, which defines the distance excitons are likely to travel before decaying and

the electron returns to the HOMO level (in an exciton lifetime, τ) [79, 215, 80]. The

diffusion length, LD, is then given by
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LD =

√
τ
〈s2〉
t

=
√

2ZDτ (3.29)

where Z is the dimensionality of the system, in this case Z = 3. It is, however, common

for the factor of two to be omitted from calculations in the scientific literature [79].

It is also common in the literature to refer to the 1D diffusion length [215, 80]. In

this thesis, the one-dimensional diffusion length shall always be given but the diffusion

constant shall be given assuming

6D =
〈s2〉
t

(3.30)

and can be determined from the gradient of the mean-squared displacement as a func-

tion of time.
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Chapter 4

Behaviour of the Structural and

Dynamical Models

In this chapter, the SAMSEN method will be applied to systems of spheres in order to

probe the effect of changing parameters upon a simulation and also to demonstrate the

validity of the structural and dynamical model in comparison to those of conventional

methods.

As established in chapter 3, SAMSEN simulations contain six parameters which can

be readily changed, φ (the packing fraction), α (the ellipsoid inflation factor), ω (the

frequency of the mode, controlled indirectly through mmmax
mmin

, ε (the ’effective’ tempera-

ture of the mode displacement), and the collision and fitting thresholds χc and χf , and

in principle, they describe the state point of a SAMSEN system. These parameters

relate to, or are analogous with, the usual physical/computational parameters such

as density, temperature, cut-off, although making the link to physical quantities can

be challenging at times. This chapter is therefore dedicated to making this link and

showing how changing these parameters alters the simulation and, therefore, what kind

of states have been generated.

By using spheres, we can do away with the complexity of the shape of molecules and

readily make comparisons with the literature on hard and soft spheres. For instance,

we shall look at the changing timescales of the vibrational modes in the context of

glasses and the structure (through the radial distribution function) in comparison to

dense amorphous packings of hard spheres. This chapter will provide key insight which

we shall draw upon throughout the rest of this thesis. We will return to molecules in

the following chapter.
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In the simulations that follow, systems of 8192 spheres of 1 Å radius were randomly

inserted into a cubic box volume of sides 51.6 Å. Unless specified otherwise, they were

compressed following the method of section 3.3.2 at Cf = 0.9999 every step to a box

volume of sides 38.316 Å (φ = 0.61), calculating the modes only after compression

ended, and the remaining parameters set to ε = 6, α = 1.15, mmmax
mmin

= m12
1 (see section

3.2.7), χc = 0.001 and χf = 0.00001 (although this last parameter is irrelevant as each

atom constitutes a single rigid section so in all circumstances, ra − T sa = 0). For each

of the variables we will change that one parameter in turn and study its effect. We will

assume the spring constant, k and masses m are 1 and unitless throughout.

4.1 Changing φ

The first parameter, φ, is the packing fraction. This is simply the volume of objects in

the system divided by the volume of the simulation box. This is a direct representation

of the packing fraction used in simulations of spheres [132, 194, 179, 190, 193] and

is similar to density, ρ. For simulations of molecules we may switch between φ and

ρ, however for situations where the mass is less important, it is natural to choose φ

to measure the sparseness of the simulation volume. When calculating the ellipsoid

packing fraction, φ is the only choice and can take on values greater than 1.

The packing fraction is an important state parameter in simulations of glasses as the

structural relaxation time has a strong dependence on φ [190]. This is the dynamical

slow-down which, when increasing the packing/density, turns a liquid into a substance

so slow moving that it appears to be solid at accessible timescales i.e. a glass [130, 132]

(it should also be noted that temperature, pressure and the preparation pathway also

alters the structure and properties during manufacturing [216, 130, 217]). Therefore,

during a compression, we should expect to see the dynamics slowing down until, as

written by Parisi and Zamponi [218],

“the relaxation time is expected to diverge so that the system freezes in

a metastable state, on the experimental timescale, [at the glass transition

temperature]...”

This effect can be seen widely across molecular dynamics and Monte Carlo simulations

of spheres [190, 219, 145]. The argument goes that particles get more and more con-

fined until their neighbours trap them in position and motion is split into fast motion

inside these new neighbour cages, and larger, slower, collective motions between cages

[218]. This is the argument that motivates the use of SAMSEN as a method for sam-

75



pling a large number of states and overcoming this timescale barrier to accessing new

states/morphologies.

If this slowing down of the dynamics until the time timescale for relaxation diverges has

structural causes, it should be visible in the spectrum of vibrational modes. The Hessian

only knows about the relative distribution of separations and the increase in potential

for making particles move in certain directions. At high φ, the nearest neighbour peak in

the radial distribution of hard spheres tends towards a delta function [132, 217], which

means approximations about spring equilibrium lengths (ro = rij) become accurate as

they all approach a single fixed length. The radial distribution function is given by

g(r) =
V

N2
〈
N∑
i

N∑
i 6=j

δ(r − rij)〉 (4.1)

where δ is the Dirac delta-function and V is the volume of the system [220]. Figure 4-1

shows that we achieve such structures with the SAMSEN structural model using the

compression procedure described in section 3.3.2. This means our calculated vibrational

mode spectrum approaches an accurate representation that is greatly informed by the

structure (in a vast energy landscape of many states).

To test if this dynamical slowdown could be observed, a randomly placed set of 8192

unit-radius spheres were compressed until collisions could not be resolved (the spheres

were too too structurally arrested to be able to locally relax and maintain a valid state

- we will consider this distinct from the jamming point, where there is one state with

vanishing entropy, insofar as we will not establish that we are truly at this point and stop

attempting to resolve collisions after 10,000 attempts). The radial distribution function

for this state is shown in figure 4-1 and it has all the features of hard-sphere glasses

approaching jamming [132, 217]. A value of α = 1.2 was used for this compression

and ε was set to zero. At each step during the compression, a Hessian was constructed

using the ellipsoid intercept method (although in this case α simply represents a radial

cut-off distance) and the eigenvalues calculated for the lowest 200 modes. The result

is displayed in figure 4-2 as a function of φ (on the lower axis, we calculate φ using

spheres of unit radius, on the top axis we calculate the packing as spheres of radius α).
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Figure 4-1: Radial distribution function for a system of 8192 spheres compressed until
φ = 0.6162. The nearest neighbour peak becomes very large as the system approaches
jamming (like O’Hern et al. [132]) . A zoomed-in version is provided in the inset.
These peaks broaden as the system gets sparser or when spheres get softer (see figure
4-19).
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Figure 4-2: Frequencies of the vibrational modes for the hard sphere system during
compression as a function of packing fraction (bottom) and inflated MVEE packing
fraction (top) for α = 1.20. The dotted lines indicates when the average number of
contacts reaches 6 and larger integer values as φ is increased.

As can be seen clearly, the squared frequencies of the vibrational modes, ω2, change

dramatically throughout the compression. At low packing fraction, they begin in a

range between 0.12 and 0.40). As the system is compressed, the frequencies begin to

converge and decrease in value until φ ≈ 0.442 (φ · α3 ≈ 0.765). At this point, the

frequencies are not visible on this scale and all take values below 0.001. Beyond this

point, the frequencies then increase in value until, at φ ≈ 0.525 where all ω2 take

values larger than 0.01. At φ ≈ 0.54, the frequencies cease to form a continuum and

begin to split off into distinct bands. These bands increase in ω2 linearly with φ while

the remaining trunk continues to appear parabolic with increasing φ. The width of

the bands also appears to depend on system size, getting narrower for larger systems,

although I do not further examine that effect. On figure 4-2, I have also drawn vertical

lines to mark where the average number of contacts takes on integer values of 6 and

greater.

There are three key moments during this compression which we should take the time

to examine further. The first is the approach to φ = 0.442 where the frequencies

reach their minimum. The approach to this point from smaller φ appears to match
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the Parisi-Zamponi description almost perfectly. The timescales for the oscillations of

the normal modes get longer and longer (the frequencies get smaller) until eventually

they reach an impractically long time. This φ ≈ 0.442 point, is a packing fraction

well below the expected glass transition density for hard spheres (φ ≈ 0.58), while the

ellipsoid packing fraction φ · α3, takes on a value much larger than would be expected.

However the observed increase in dynamical timescales up to this point would appear

a good representation of the description of the glass transition and at this point the

elastic network satisfies the Maxwell criterion for rigidity (where the average number of

contacts is 6) [195] which would indicate mechanical stability. I therefore posit that this

is the rigidity transition for the ellipsoid (network) system and that in the hard-sphere

limit (χc → 0, α→ 1) and with infinite attempts to resolve collisions, this inflection in

ω2(φ) would be the jamming point. We shall return to this later.

The second is the passing of this rigidity transition, which leads to the reduction in

vibrational period (increased frequency). It would appear that the return of mechan-

ical motion occurs beyond the rigidity transition. Whether or not this is similar to

vibrations in a crystal is unclear (it is an amorphous-looking solid and I am unable

to find an obvious wavevector - Silbert et al. found many wavectors contributing to a

given mode [192]). It could be a re-entrant melting phenomena, observed previously

by Berthier et al. and Gnan et al. [190, 191]. In the case of Gnan et al. [191], their

simulation was of a chain of particles forming a soft colloid and the deformation of

the chain allowed this re-entrant melting to occur and the observation of ballistic-like

dynamics beyond the glass transition, while Berthier et al. used a binary-mixture of

soft-spheres.

The final moment which I shall remark upon is the appearance of vibrational bands

at φ = 0.55 which is also where the average number of contacts is 8, in this case. The

bands formed take on varying number of modes, with the lowest containing 12 modes

(coloured blue) and the next containing 24 (half aquamarine and half red), the next 14

and the next 8 (both coloured tan) and the next 12 (purple). There are more bands

containing further modes, but an uncounted, number of modes. Vibrational bands

have recently been observed in amorphous solids [221]. In a linear chain model with

a basis where an acoustic and an optical vibrational band emerge, the acoustic modes

are collective and the optical modes out of phase [201, 200]. While the analogy breaks

down for amorphous solids and instead the modes are described as being acoustic-like

or optical-like without a clear single associated wavevector, the question arises: are

there analogous characteristic differences in the vibrational bands here also? We shall

return to this later too.
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4.2 Changing α

As was observed in the previous section, there appears to be some rigidity transition

in the elastic network where the average number of contacts is 6 and the vibrational

frequencies become vanishingly small. At higher densities we see that the dynamics

begin to speed up again before observing the emergence of vibrational bands at yet

higher densities. For an elipsoid inflation factor of α = 1.2 (each axis is stretched by

a factor of 1.2) we identified this rigidity transition at a value of φ outside the range

of expected values (similarly for the value of φ · α3 which most closely represents the

packing fraction of the elastic network, which we form from intercepts of the inflated

ellipsoids).

For hard-spheres we expect to observe a glass transition at a packing fraction in the

region of φg ≈ 0.58 above which exists a hard-sphere glass. Returning to Parisi-

Zamponi, they state that a glass transition should occur at φg ≈ 0.56 and an ideal

glass transition (the Kauzmann transition), φK , should occur around 0.58 to 0.62 [218].

At higher densities, rearrangements of the system become no longer possible and the

system reaches a jammed state in the region of 0.62 < φJ < 0.67 [218, 132].

The initial objective of this section is therefore to identify what the values of φ and

φ · α3, at which the rigidity transition takes place, signify —have we indeed found the

rigidity transition and does this compare at all with the expected Kauzmann density

or jamming density? We shall attempt to do this by running the previous compression

across many values of α until we find the packing fraction at which the observed rigidity

transition takes place. For now, this shall be denoted φRT . In the α → 1 limit, we

should expect to obtain the rigidity transition for a hard sphere system and therefore

obtain an estimate for φJ . For α = 1.0, we also know that φRT = φ = φ · α3, but we

have seen this is not true for all values of α. In which case other questions emerge:

how does α effect φRT ? And why isn’t φRT · α3 always in the range of 0.58 to 0.62 if

it really is the rigidity transition?

Let us begin by observing the effect of altering α on the spectrum of vibrational modes

during compression. In figure 4-3, I have provided the 200 lowest-frequency modes

during the compression from three different random configurations of 8192 unit spheres

using the parameters and procedure as in the previous section, only altering α which

is set to 1.005 (top) and 1.100 (middle). I have also reproduced the α = 1.20 (bottom)

simulation for convenience. As before, when the average number of contacts reach an

integer number of 6 or greater, I have marked it with a vertical dashed line.
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First, observing the different frequency scales in each of the simulations it almost

appears, at first glance, that increasing α has the effect of stretching or translating

the φ-axis. Perhaps this should be expected as α controls the packing fraction of the

inflated system (α3 is the relevant scaling factor between the soft and hard systems),

although some volume is lost to overlap. However, it is not easy to find a point that

is invariant to this scaling. It would be convenient if the stretch occurred around the

minimum in the frequencies (the rigidity transition) on the inflated φ axes, however this

point moves between all three graphs and differently across both the hard and ellipsoid

packing fraction axes. This means that φRT according to the vibrational modes is

changing. However, this point appears to be moving towards the expected value of φJ

(on both hard and ellipsoid scales) as α→ 1 as expected.

Second, the emergence of the bands is not trivially related to α. At low α, the bands

do not have time to appear at all, while for α = 1.10 only some of the bands emerge.

This limited emergence of some bands also occurs across a range of α. In figure 4-4

I have produced the frequency spectrum for a range of α at φ = 0.6162. For small

α the band structure is distorted by the presence of a large number of low-frequency

modes. These soft modes have been observed in systems of soft spheres just below

the jamming threshold when neighbour contacts are removed [176]. They occur when

there are too few contacts to pin a particle in place (4 contacts per particle), in which

case a localised low-energy mode exists. An example of a soft mode can be seen here

for α = 1.04 near ω2 ≈ 0 in figure 4-4. At higher α (1.05 or greater) there are enough

contacts in the elastic network to prevent these soft modes from forming and the band

structure begins to emerge. However, the size and position of the bands varies until

α ≈ 1.15, seen most notably in the tan-coloured band which begins adjoined to the

purple band across most of the the range until it separates at around α = 1.13. For

α ≥ 1.15, the band structure appears relatively stable with only some slight variation

in the higher frequency modes. In all cases the dynamics speed up after φRT .

Performing compressions for a large range of α, each with three repeats and with each

system starting from its own random initial configuration, I have found the first instance

where N̄c >= 6 (which corresponds to the inflection in the vibrational spectrum) and

taken the value of φ = φRT at that point for both the hard (unit radius spheres) and

ellipsoid (spheres of radius α) volumes and, in figure 4-5, plotted them as a function of

α. As can be discerned, there is a linear increase in φRT for the hard packing fraction

at high α which then increases sharply as α→ 1. Similarly the soft packing decreases

linearly, turns sharply and meets the hard packing at α = 1.005. This is slightly above

the α = 1 value expected and may be because of the value of χc which effectively
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Figure 4-3: Calculated vibrational modes for the hard sphere system as a function of
packing fraction (and soft/ellipsoid packing fraction) for α = 1.005 (top), 1.100 (mid-
dle), 1.200 (bottom). The dotted line indicates when the average number of contacts
reaches an integer number of 6 or greater. An inflection always occurs at N̄c = 6.
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Figure 4-4: The spectrum of vibrational modes for α between 1.005 and 1.2 at φ =
0.6162 for the 8192 sphere systems starting from a random configuration. Each mode
is drawn with a width of 0.002, however some still overlap. Bands emerge containing 12
(blue), 24 (aquamarine and red, 12 each), 16 (tan, lower), 6 (tan, higher), 12 (purple),
48 (green, lowest), 48 (green, second lowest), 12 (green, third lowest) and 22 (green,
highest) modes.
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Figure 4-5: The packing fraction (hard and soft) at the inflection point, where N̄c = 6
(the rigidity transition), for a range of α values between 1.005 and 1.18. At α = 1.0,
the rigidity transition for hard spheres in SAMSEN (with a tolerance of χc = 0.001)
occurs. This corresponds to a packing fraction, φ = 0.63.

lowers the value of the hard packing and increases the inflationary factor between that

packing and the calculated soft packing. The difference in volumes is about 0.6% which

accounts for the early intercept between the soft and hard packing.

Extrapolating the curves to α = 1, the value of φRT is found to be 0.630 ± 0.001,

which is on the high end of the expected range of φK but slightly lower than the

jamming transition of hard spheres at 0.639 reported by O’Hern et al. [132]. This

would suggest that, what we have been referring to as the rigidity transition, is indeed

the rigidity transition of the ellipsoid system (elastic network) and for α = 1 our system

of approximately hard spheres would mechanically jammed at this point (although we

never achieve this state computationally). We can now refer to this point as φJ and

we predict a value of φj = 0.63± 0.001 in a system of hard spheres.

It is in this light that the deviation in φ · α3 and φRT from the expected φJ should

be addressed. In the limit of α → 1, the soft system matches the hard system as the

amount of overlap between the hard spheres (collisions) and the soft spheres (network

cut-off) is approximately the same. This means that the structure of the soft system

is perfectly represented by the hard system and the calculated vibrational modes are
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those of a dense amorphous solid under a harmonic potential. At higher α, the amount

of overlap between the two is different - the soft system overlaps with more neighbours

than the hard system can geometrically come into contact with. As α is increased, φRT

then takes on smaller values as the rigidity transition, in terms of the average number

of neighbours in the elastic network, is reached at lower hard packing fractions, and

the soft system deviates away from a hard sphere glass.

This deviation in behaviour should not be considered inherently problematic. Being

able to control which dynamical regime we are in during simulation has some obvious

benefits if one is only concerned with sampling a larger number of independent amor-

phous states. By increasing α one is able to ensure that there are enough contacts so

that localised soft modes cannot exist and therefore do not contribute to the particle

displacements. In the case of amorphous solids, a large number of low-frequency modes

appear as systems approach the jamming/isostatic point - sometimes referred to as the

Boson peak [176, 178, 179, 140]. In figure 4-6, it can be seen that SAMSEN is also able

to detect the excess modes and, if the system is at a packing fraction either side of the

inflection point in the vibrational mode spectrum, the anomalous low-frequency modes

dominate the calculated spectra. These modes are highly localised [178, 222] (as we

shall see later) and under equation 3.18 would produce very large displacements while

the rest of the system remained roughly still. This behaviour is perhaps sub-optimal for

producing system-wide relaxation. Instead, through α, one is able to choose a regime

where an entire band exists and a vibrational spectrum that is is uninterrupted by

soft or anomalous modes, with modes approximately constant in frequency, and there-

fore grants approximate control over the mean squared displacement of particles. In a

moment, we shall see that by doing just this β2m, as defined in equation 3.18, can be

controlled (through ω and ε) and used to determine the rate at which states are gen-

erated. Of course, if one is studying the dynamics of real-systems where the harmonic

potential is a good representation then α will need to be selected appropriately (as we

have attempted to do here for the comparison to hard-sphere systems).

Looking again at figure 4-4, it is highly reminiscent of figure 4-2 for φ > φRT . The

squared frequencies increase increase almost linearly with α here, while in figure 4-

2 they increased linearly with φ. It would again appear that increasing the packing

fraction of the soft system by increasing α has a similar effect on the modes produced

by the elastic network as increasing φ does. So while the regime where the modes

split into bands, and the dynamics associated with those modes, is inaccessible to the

hard sphere system, it is possible to recreate those dynamics by increasing the cut-off

radius when constructing the elastic network. We will therefore fix φ for the sphere
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Figure 4-6: The population of vibrational modes for the α = 1.005 system at several
packing fractions around φRT ≈ 0.6096. The left pane depicts the approach to the
isostatic point, φ = φRT , and the right pane shows the distribution of modes after
compressing beyond this density.

systems and fix the density, ρ, for molecular systems to a desired density (ideally the

physical density, if known) and control our position on the spectrum of vibrational

modes through α.

4.3 Changing ω

Having now established that the frequency (ω) spectrum of vibrational modes have a

band-like structure after φRT and that we can access them by increasing α (rather

than constructing the Hessian based upon the physical contacts between touching

spheres), it will be useful to probe the dynamics of such modes and attempt to estab-

lish how materially different these modes are from each other. Reviewing the literature

[201, 197, 184, 221], one may expect that lower-frequency bands have more collective

dynamics than higher frequency ones in a similar (but perhaps less discrete) way to the

comparison between the acoustic and the optical branches in the linear-chain model

with a basis. If collectivity can be found in these dense amorphous systems, then

perhaps this provides us with a suitable pathway for making large displacements and

achieving structural relaxation - even in materials approaching structural arrest. We

expect this is the case and if so one would expect this to be a highly efficient path-

way to generate new configurations and escape the dynamical slowdown experienced

in conventional simulation methods (and in the physical world too).

I therefore begin by taking a new set of random configurations of 8192 unit radius
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spheres and compress them down to a packing fraction of φ = 0.6162 (a direct com-

parison to figure 4-4) and afterwards, for α = 1.20, 1.15, 1.10, 1.05, 1.005, calculate the

eigenvectors of the lowest 200 vibrational modes. I then calculate quantities which will

allow us to assess the collectiveness of a mode: the average local dot product, the phase

quotient and the participation ratio of the modes.

Briefly, the average local dot product, 〈ui · uj〉, describes the how similar the average

travelling direction of a given particle’s neighbours are to that particle, the phase

quotient, ϕm, is a system-wide measurement of vibrational coherence often used in

the literature, and the participation ratio pm considers the distribution of vibrational

amplitude in the system. In all of these measures a value near 1 is the most collective

motion. In figure 4-7, I present the average local dot product (top), the phase quotient

(middle) and the participation ratio (bottom) against ω2 of the given mode for the five

values of α at φ = 0.6162.

Starting with the average local dot product, you immediately get a sense of the highly

collective nature of the lowest-frequency modes. For the lowest 12 non-trivial modes

at all α ≥ 1.1, the eigenvector of a given sphere is pointing within 20 degrees of the

eigenvector of a neighbouring sphere, on average. This means they are moving in a

very similar direction to their neighbours. For α ≥ 1.05, you can also clearly see a

drop in this local dot product as you go to higher frequency bands - although there

are a couple of exceptions for α = 1.20 and 1.15 in the upper tan band (m58
53) and the

third green band (m178
167), referring to the colours used in figures 4-4 and 4-3. For the

lower α values this does not occur and those bands do not exist. Here, the average

local dot product falls off very quickly with frequency, significantly between the lowest

bands, with the 200th mode of α = 1.05 possessing an average local dot product of

≈ 0.55. Meanwhile α = 1.10 yields 〈ui · uj〉 ≈ 0.65, α = 1.15 produces 〈ui · uj〉 ≈ 0.7

and α = 1.2 finds 〈ui · uj〉 ≈ 0.73.

Similarly for the phase quotient, the smaller values of α produce much quicker reduc-

tions in collectivity throughout the system as ω increases. The distinction between

the bands is less clear than in the average local dot product, although there are some

points, such as the transition from the purple (m70
59) to the higher frequency green

bands, where there is a noticeable change - particularly in the gradient of ϕ(ω) (if such

a quantity is meaningful). It would appear to me, looking at the plateau (particularly

in the case of α = 1.10), that a new type of mode appears at ω71 where the variability

becomes becomes less directional - perhaps a new style of movement appears which is

still mostly collective and in-phase but distinct from the modes at lower frequencies.
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Figure 4-7: The local average dot product (top), phase quotient (middle) and partici-
pation ratio (bottom) as a function of ω2 for the 200 lowest-frequency modes of 8192
spheres of unit-radius at φ = 0.6162 at five values of α (1.005, 1.05, 1.10, 1.15, 1.20)
immediately after compression. This behaviour is typical in SAMSEN simulations,
including at many cycles after compression.
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Looking at the mode participation ratios, it would appear that there is now a large

variability in the distribution of amplitudes after ω71 for the α = 1.10 case. This

variability is a reduction, not an increase, in the uniformity of the distribution of

amplitudes in comparison to the shape of pm(ω) for higher values of α. This would

suggest either that some particles are taking a role similar to nodes in an acoustic wave

analogy and not moving at all, or very slowly, some particles have a very high amount of

energy, or a combination of the two. For the remaining α ≥ 1.15 values the participation

ratio is similar for low modes at all α, with a small drop in participation occurring in

the green bands (m200
71 ) and a much larger drop off for m200

179. For α = 1.05 this is not

the case and, while the participation of lowest 12 modes (excluding translational and

soft modes), appear similar to those of the higher α modes, they become much more

localised for the remainder of the spectrum.

α = 1.005 is the one simulation which consistently does not fit any of these patterns

and approximately has a constant average local dot product (≈ 0.36), constant phase

quotient (≈ 0.62) and constant participation ratio (≈ 0.38), for modes in the range

m200
1 , including the soft modes where ω ≈ 0 and distinguish themselves from the

translational modes by not having a value of 1 in any of the measures (it is possible

the translational modes were obscured by soft modes). What is remarkable, is that

there is now no obvious extended collective character, indicating these may be the

localised/semi-localised modes in the Boson peak. Spheres are moving more coherently

than random displacements but not at all as collectively as at α ≥ 1.10 for instance.

This perhaps gives credence to the benefit of displacing particles along the low-frequency

normal modes at a chosen α and not just running molecular dynamics, for instance, for

a long time. The benefit here is that we can calculate the normal modes for given struc-

ture, for which ever portion of the spectra we like. In the case of hard spheres, instead

of being trapped with a lot of long-timescale processes which are not that collective

and appear highly localised, we can use a larger cut-off (increase α) and then calculate

the vibrational modes for the faster dynamics (such as those in the re-entrant fluid),

which appears to have highly collective behaviour and should lead us to relatively-

efficient structural relaxation. We also now know that we can find a regime where

narrow vibrational bands emerge and chose which bands we want to use to displace

the particles. Looking at figure 4-7, I would suggest using m12
1 at any α ≥ 1.05 as they

appear to have the most collective character and I would expect would produce more

computationally-efficient structural relaxation than higher frequency modes at this φ.

We can test this by performing a SAMSEN simulation, compressing the spheres to a

solid density, calculating the normal modes, and displacing our spheres by setting ε > 0.
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Figure 4-8: The intermediate scattering function as a function of the number of SAM-
SEN cycles for hard sphere simulations following different modes captured over 7 cycles.
An exponential decay has been fitted to the raw data. The colours indicate the range
of modules used (and the decay constant follows the same order) - from highest to
lowest they are: blue (m12

1 ), aquamarine (m24
13), red(m36

25), tan(m48
37), magenta (m60

49),
olive (m72

61), black (m84
73), sky blue (m96

85), pink (m108
97 ) and yellow (m120

109).

We can then follow the procedure outlined in chapter 3, recalculating the modes when

we reach peak amplitude and continuing the displacement. By using a different set of

modes, therefore altering ω and the collectivity of the displacements, we can observe

how the structural relaxation time changes with mode frequency.

Another 10 randomly placed sets of 8192 unit radius spheres were randomly generated

as before and compressed to φ = 0.61. We set χc = 0.001, as before, and we set α to

1.15. For the displacement, ε = 6.0 and S = 1000. Each simulation used a different

range of modes, but all summed over 12 modes. One simulation encompassed the

entire first band (blue, m12
1 ), another the lower half of the second (aquamarine, m24

13),

the third took the upper half of the second band (red, m36
25), the fourth took the lowest

twelve in the third band (lower tan, m48
37), and the remaining took m60

49, m
72
61, m

84
73, m

96
85,

m108
97 m120

109. The displacements were completed after S steps and a new set of modes

recalculated. Approximately 200 of these mode displacement cycles were carried out

before the simulation terminated.
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To measure structural relaxation, the self-intermediate scattering function, Fs(q, t),

is commonly used. This measures the correlation of the particle positions between a

chosen initial time and a later time and is expressed in terms of an inverse length q.

The self-intermediate scattering function is given by

Fs(q, t) = 〈 1

N

N∑
i

exp(−iq[ri(t+ t0)− ri(t0)])〉 (4.2)

whereN is, again, the number of particles, q = 2π/2R (2R being the particle’s diameter,

in this case 2) and t0 is some initial time to compare positions against and t+t0 is some

later time. Fs(q, t) = 1 at t = 0 and 0 when the structure has completely decorrelated.

The structural relaxation time is usually given as when Fs(q, t) falls to 1/e and that

convention shall also be used here [183, 187, 223, 220].

In figure 4-8, I have measured Fs(q, t) for each of the simulations at the end of every

cycle up to a period of 8 cycles, resetting positions and then restarting the measure-

ment for another 8 cycles. The raw data is provided as a scatter plot and a decaying

exponential fit (least-squares) performed for each range of modes used. Looking at the

self-intermediate scattering functions, it seems quite clear that the SAMSEN simula-

tion following the lowest frequency modes m12
1 produces the fastest decay of Fs(q, t) (in

terms of the number of SAMSEN cycles) and therefore produces the most structurally

decorrelated/independent states for a given number of cycles. This would make follow-

ing the lowest frequency modes the most efficient way to generate many independent

amorphous structures. For higher frequencies, the rate of decay is markedly reduced.

However all of the simulations show a single step relaxation and do not appear to show

any signs of structural arrest (such as a plateau in Fs(q, t) at short times) usually found

in simulations of glasses. It would imply that the dynamics are at least diffusive, some-

thing which could be verified by looking at the mean-squared displacement (which I do

find indeed to be linear with time and we will study more closely for C60).

The similarity in decay rates between m24
13 (aquamarine) and m32

25 (red), as well as the

visual similarity to the band-structure in figure 4-4 raises an obvious question. Is the

rate of relaxation simply proportional to 1/ω2? If we refer back to the equation for the

amplitude of the waves (equation 3.18), you will see that β2m is proportional to 1/ω2,

so one would indeed expect relaxation time to depend on the frequency of the chosen

mode(s). However, it is unclear how changing the collective behaviour changes the rate

of decay of Fs(q, t) - one would expect more collisions in higher frequency modes but

it is unclear if that effect is larger or smaller than changing β2m.
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Figure 4-9: The reciprocal of the relaxation time, determined by an exponential fit
to Fs(q, t), against

∑
β2m (the applied mean squared displacement for each simulation

following different modes).

To separate the effect of the collectivity of the modes and differing amplitudes upon the

rate of structural relaxation, I have displayed the decay constant of the self-intermediate

scattering function (the reciprocal of the structural relaxation time), τ−1, against the

sum of β2m across the chosen range of modes in figure 4-9. This is therefore a direct

comparison between applied displacement and relaxation time. While it is again made

clearer that the lowest frequency modes (largest β2m) have the shortest relaxation time

(τ < 1 cycle), it should be immediately obvious that the relaxation is not directly

proportional to the applied displacement (and therefore ω2) as a linear fit shows a

negative intercept on the τ−1 axis. This would imply that there is a frequency at which

structural relaxation becomes impossible. However, a negative time is unphysical and

I would instead expect an intercept at τ−1 = 0 and therefore, at even higher frequency

modes, would find that a linear fit is no longer sufficient. Either way, it appears that

the highest frequency modes must suffer from the a similar kind of structural arrest

that is experienced in conventional simulation methods (and physical processes) and

one may even expect a plateau region in Fs(q, t) at very high frequency modes. If

the relaxation time were related to the amplitude alone (and not to other factors such

as the collectivity of a mode) then one would expect direct proportionality, but we

see something else here. This suggests that there is indeed some added benefit in
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Figure 4-10: The radial distribution function, g(r), averaged at the end of each cycle
after compression for a selection of the mode-ranges studied, including the very lowest
and highest-studied modes. The features of g(r) are retained regardless of the mode-
range used.

terms of structural relaxation caused by the character of the low frequency modes

which cannot be explained by increasing the amplitude. It also cannot be explained in

terms of differing structure, as across the range of modes studied, there is almost no

change in measures such as the radial distribution function (shown in figure 4-10). In

order to verify and quantify that it is the character of the modes themselves, we must

subtract the effect of solely increasing the amplitude (which we shall do in a moment

by varying ε over a single mode-band). However, at this point we can still say that

the lowest frequency modes are the most efficient at generating structures per applied

displacement, and therefore one may also expect them to be computationally efficient

too.

Before I move on, I should be clear that the lowest frequency modes producing the

fastest structural relaxation in SAMSEN, does not necessarily mean that these modes

contribute the most to structural relaxation in molecular dynamics or in the real-world.

The frequencies of these oscillations (and therefore the time period) are very different,

such that the real contribution to structural relaxation may be less pronounced than

shown here.
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Figure 4-11: The intermediate scattering function, Fs(q, t), as a function of the number
of SAMSEN cycles for hard sphere simulations with different values of ε. As before,
an exponential decay has been fitted to the raw data. This time the colours (with the
addition of silver) go from highest to lowest ε and this corresponds to fastest to slowest
decay of Fs(q, t).

4.4 Changing ε

To finish examining the effect of the choice of vibrational modes on the structural re-

laxation time, it is important to quantify the effect of solely altering the assigned am-

plitude of the mode, controlled readily by ε through equation 3.18. This will then allow

us to separate the effect of changing amplitude (via the frequency) and changing mode-

character. We therefore follow the same procedure as before, compressing the spheres to

φ = 0.61 and with α = 1.15, however we select the 12 modes with the lowest-frequencies

(m12
1 , the entire blue band) and, for ε = 0.3, 0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0,

displace the spheres over a period of S = 1000 and repeat this for the same number of

cycles and produce the intermediate scattering function in the same form as before.

In figure 4-11 the fastest decays in Fs(q, t) correspond to the highest values of ε. There-

fore the fastest relaxation corresponds to the highest values of β2m as before. However,

looking at the relaxation times in figure 4-12 we now find something close to direct

proportionality between amplitude and inverse relaxation time. If there is zero dis-

placement it follows that relaxation never takes place, so an intercept at (0,0) should

94



Figure 4-12: The relaxation time, determined by an exponential fit to Fs(q, t), against
β2m for simulations of varying ε.

be found for smaller ε. The fact it does not might suggest that the fit is dominated by

the variation in the middle of the range.

However, what this shows is that the gradient, and therefore the relationship between

total displacement and inverse relaxation time, is stronger in figure 4-9 than in figure

4-12. This means that there is additional benefit in switching from a simulation using

high frequency modes to one following low frequency modes, in terms of how many

decorrelated states you are able to generate per SAMSEN cycle. In the case of these

spheres at this φ we find it is only marginally more effective than increasing the ampli-

tude through ε - around a 20% increase in the gradient - however, in the case of small

molecules (most notably here, C60) we find this effect to be much stronger.

That the relationship is linear for ε means that, in principle, almost full control of

the relaxation time per cycle is provided by ε - something that α is unable to achieve

by varying the spectrum (the soft, localised modes at α = 1.005 for instance) and

something which controlling ω2 through mhigh
low cannot achieve due to the discreteness

of the bands. So with φ fixed by the material, α and ω limited by the desire for

collectiveness, ε becomes the main lever for controlling dynamics. This is, however,

entirely natural given its status as effective temperature for the dynamical model. We

can once more look at the g(r) for some values of ε across the range (figure 4-13)
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Figure 4-13: g(r) for a subset of the ε values studied. The highest and lowest studied
have been included as well as some in the middle of the range, the rest have been omitted
for clarity only. Again, the features are fully retained across the range, although there
is some alteration at ε = 0.3 (the lowest epsilon) with an almost indistinguishable peak
shift or broadening to higher separations and a slight dip at 2.3 angstroms.

and see that the structure is, again, almost undisturbed by changing the amplitude

of displacements (perhaps there is minor broadening at low ε). This suggests that

changing both ε and ω (the dynamical temperature) has little effect on the structure

of the morphology (the structural temperature) which, as we shall see in a moment, is

controlled by the χ’s.

4.5 Changing χc

The last controls for the user are the χ’s, controlling the amount of overlap permis-

sible between unbound spheres and the range of separations between particles bound

together by the rigid sections. In the case of hard spheres, the fitting threshold, χf ,

is meaningless as each particle constitutes an entire rigid section, leaving the collision

threshold, χc, as the only parameter available to the user for controlling the tempera-

ture of the structural model.

As stated in section 3.2.3, χc, is the parameter which controls the amount of overlap

96



0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Ra+Rb−rab

0.00

0.01

0.02

0.03

0.04

P

χc

Figure 4-14: Distribution of collisions (overlap lengths) for the 8192 sphere system at
φ = 0.61 with χc = 0.001, sampled over 30 cycles following m12

1 with ε = 6.

between two atoms. This gives the user direct control over the closest approach between

two atoms and, indirectly, control over the maximum potential increase that can be

achieved by any atom approaching another. Once this maximum has been passed, all

atoms in the system are displaced away from any atoms which share their volume - on

an individual basis, by a distance so that they are just touching, but by the average

of these if that atom is overlapping with many neighbours. This process is repeated

until the collision condition is met. This creates a distribution of overlaps, with the

largest at or below χc and, often, a modal and mean overlap length greater than 0.

Such a distribution of overlap lengths is shown in figure 4-14 and has a mean overlap of

0.0001258 and a modal overlap of 0.00005452 with no overlaps greater than χc = 0.001.

As a SAMSEN simulation has no simple description of potential or kinetic energy or

temperature in the same way one might describe a molecular dynamics simulation hav-

ing for a given force-field, we seek a different way of expressing (or at least representing)

these quantities. In SAMSEN, the obvious proxies for quantities such as temperature

are the χs, which as we have just seen for the case of the collision threshold, χc, in figure

4-14 represents the upper bound on the distribution of atomic overlaps. As we shall see

in a moment, χc grants control over other aspects of this distribution, which (were a

force-field applied) is related to the systems potential energy. The fitting threshold, χf ,
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Figure 4-15: The mean collision length for values of χc in 8192 unit sphere systems at
φ = 0.61, sampled over 30 cycles following m12

1 with ε = 3. The blue, aquamarine, red
and tan points correspond to χc values of 0.001, 0.01, 0.1 and 0.25 respectively and
produce radial distributions shown in figure 4-19.

which controls the rigidity of rigid sections also has an impact on the structures (which

are considered in chapter 5). The χ’s will therefore be referred to as the ‘structural

temperature’ and should be considered an analogy rather than a direct comparison.

We will investigate the effect of changing χc in this section on that distribution and

consider its effect (if any) on the dynamics.

One can recreate the above distribution for a range of χc’s and observe how the distri-

bution in overlaps change. This is SAMSEN’s analogy to observing how the potential

energy of a system changes with temperature. In figure 4-15 I have plotted the mean

overlap, averaged over all collisions across 30 cycles for 8192 spheres at φ = 0.61 using

α = 1.15, m12
1 and ε = 3 for 21 values of χc in the range 0.0001 to 1. This produces

a smooth function mapping χc to mean overlap length. A similar and proportional

mapping can be also produced from a comparison of the implied Maxwell-Boltzmann

temperature and χc by fitting a Maxwell-Boltzmann distribution to the overlap distri-

bution. There are three key regions of figure 4-15 which must be discussed.

The first region is the low-χc region where the relationship to mean overlap appears

approximately linear. Assuming a linear relationship in this region, a fit to the first
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4 points finds proportionality constant 0.112 and an intercept at 1.75 × 10−5. That

there is an intercept implies that, at a value of χc = 0, there would not be any valid

states (as the mean overlap would be greater than the maximum permissible overlap),

even this far below the jamming density. This intercept represents the limit of the

collision correction procedure’s ability to minimise overlap. There is something inherent

about the system being at this packing fraction which forces the spheres to have a

non-zero overlap. This is perhaps the structural model’s expression of pressure. By

releasing the pressure (expanding the box) one would expect this intercept to reduce,

at least up until the point where the low-χc region is indistinguishable from the mid-χc

region and the high pressure no longer dominates the structure of the morphology.

In mid-χc region, spanning several orders of magnitude, the mean overlap is directly

proportional to χc. This region, where the permissible overlap is roughly 0.1% to

40% of the radius of the particle. As we shall see later, this middle region is where

we shall perform simulations of molecular systems. Beyond this range, in the high-χc

region with overlaps lengths of between 40% and 100% of the radius permitted, there is

another inflection and a break in the linearity. This high-χc region is where the concept

of structural temperature begins to fail and the structure becomes increasingly altered

by the dynamical temperature - that of ω, ε and the nature of the modes. At χc = 2,

full overlap is permitted, pressure should be zero, and the dynamics - those of the

low-frequency eigenmodes - entirely determine the relative positions of the particles.

The beginning of the dominance of dynamical temperature on the structural model can

be seen as low as χc = 0.4 in a few measures. The number of collisions with an overlap

length of χc, for instance, does not approach 0 for these low χc values, the number of

collision-corrections attempts required to achieve a valid state is less than ten (it is zero

in the χc = 1 case) in the latter half of the simulation. Most interesting, is the average

number of collisions per step (averaged over collision-fitting minimisations) during the

simulation, which is shown for 4 values of χc in figure 4-16. For χc = 0.001 there is a

brief period immediately after compression where the average number of collisions is

high and the remaining period where it remains lower. More importantly, there is a

pattern of sharp drops in the number of collisions followed by a sub-linear increase which

has smooth form with time. This pattern repeats every SAMSEN cycle. However, for

such low χc values, the change in the number of collisions at the end of a cycle and

the beginning of the next cycle is largest. Meanwhile for mid-χc values, the correction

is much smaller and, for the higher-χc values after the initial post-compression period,

there is no sudden change in the average number of collisions and is a smooth function

across both steps and cycles as collision conditions are always met throughout this part

of the simulation (after the first 3 cycles). The distribution in separations is therefore,
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Figure 4-16: The average number of collisions per step (averaged over the fitting-
collision attempts within each step) for χc = 0.001, 0.01, 0.01, 1. The cycle period is
S = 1000 and this may be seen as collisions build-up until the new mode calculation is
performed.

for the most part if not entirely, governed by the low frequency modes for χc ≥ Ra

(although one must acknowledge the contribution of the collision condition, rij ≥ 1 for

χc = 1, immediately after compression).

It should also be noted that this period of high collisions occurs for up to the 1st struc-

tural relaxation time immediately following compression. We therefore acknowledge

that, in future results, it is important to stay clear of this post-compression region

before beginning any averaging or sampling, just as one would wait for the system to

equilibrate in molecular dynamics, for instance.

We can also study the reverse effect: what impact does the structural temperature

have on the dynamical temperature? ε and ω represent the dynamical parameters of

a SAMSEN simulation. ε (under the right conditions) might be considered a direct

comparison to temperature. ω is closely linked to time. However, a further quantity,

τ (the relaxation time) is also of interest as represents the time it takes for an object

(in this chapter, spheres) to travel a characteristic distance. Therefore τ might be

considered a good proxy for representing the kinetics. As τ is expressed in cycles

which, in principle, have a link to time through ω and is dependent upon ε (which

the user has direct control over) and also the collective behaviour of the modes, we
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will refer to these quantities collectively and consider them as part of a ‘dynamical

temperature’. However, as with χ, this is to build an analogy rather than to provide

a direct comparison with other methods. While the structural temperature relates to

the severity of atomic overlaps, the dynamical temperature will relate to the speed at

which structural units move throughout the system.

To examine the link between the structural parameters and the dynamical properties

we can look at the effect of χc on the vibrational modes and on the relaxation time. One

may expect that, with an increase in χc, comes an increase in the amount of overlap

and an increased variation in the nearest neighbour distance (we shall verify this in a

moment), so one may expect a change in the vibrational modes and therefore, at the

same ε, a change in relaxation time. This is not what is seen. In figure 4-17 is a plot

of the average frequency for the 50 lowest-frequency modes at each value of χc studied.

All have similar values, similar variability and the bands have similar widths across the

range of χc, with perhaps the exception of χc = 1 which, as we have just discussed,

is dominated by the dynamical temperature. So despite an increased disorder in the

nearest neighbour separations, the modes do not change in frequency in response to a

change in structural temperature in the linear region. For the same ε and the same

ω, any observed change in the relaxation time could perhaps therefore be attributed

to resistance caused by the collision condition. However, looking at figure 4-18 where,

τ , the relaxation time (the decay constant of the intermediate scattering function) for

each value of χc is shown, it would appear there is little correlation between χc and

τ . There is perhaps weakly negative correlation, so that smaller χc values are more

resistive to relaxation, but this is a small effect over many orders of magnitude of χc.

This, perhaps, has the effect of lengthening the relaxation time by one cycle over the

entire range of χc —the variance is itself much larger than this, however. If one assumes

none of the data points are outliers, then the gradient of a linear fit is found to be very

small across the range and there is very little dependence of τ upon χc. In both cases,

structural temperature (particularly in the linear region of figure 4-15) has little-to-no

effect upon the dynamical temperature.

Having examined the effect of changing χc within SAMSEN, we can finish by examin-

ing its effect upon the output structures (which has already been alluded to and has

consequences for the remainder of this work). We shall mostly restrict ourselves to the

the mid-χc region where structural temperature can be controlled, in great part, by χc.

In figure 4-19, I present the radial distribution function for χc = 0.001, 0.01, 0.1, 0.25, 1,

zoomed so as not to capture the change in peak height but to focus on the change in

shape of the various neighbour peaks. With lower values of χc the radial distribution
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Figure 4-17: The spectrum of the lowest 50 vibrational modes averaged at the end of
each cycle (22 cycles after compression) for each of simulations running different values
of χ. With the exception of χ = 1, which experiences a minor increase in frequency,
the spectrum remains nearly constant for all values of χ.
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Figure 4-18: The relaxation time, τ , as a function of χc used in each of the simulations,
determined from an exponential fit to the decay of Fs(q, t).

looks like the O’Hern et al. result for an amorphous solid (I have reproduced this

simulation from the beginning of the chapter) and, as χc (the structural temperature)

is increased, the peaks all broaden and the g(r) begins to resemble a liquid - a feat

near-completed for χc = 1, albeit with a skew to higher separations. We, of course,

understand that the peak height diminishes when a peak broadens and this pattern

across χc is true of the nearest neighbour peak which is largest at low-χc and smallest

at high-χc (for χc = 1 the amplitude of the nearest neighbour peak is below 5, while

we recall it is approximately 140 for χ = 0.001).

There are, of course, some differences in the shape of the nearest neighbour peak when

compared to simulations of a Lennard-Jones spheres for all χc. Instead of forming a

smooth crest, it is sharp at rij = Ra + Rb, and broadens unevenly on each side, with

a larger density at larger distances. There is also a kink at 2.2 angstroms, followed

by a divot at 2.3 in the high-χc distributions. This shows the limit of the ability of

the collision condition/correction to capture the likely distribution of separations. This

perhaps presents the limit of SAMSEN’s applicability - it most accurately captures the

structure of systems at high density and with small overlap (the same argument was

also made about constructing the Hessian for the dynamical model at the beginning

of the chapter). Were these details, smoothed out, only then would they appear to
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Figure 4-19: The radial distribution function, g(r), for χc = 0.001, 0.01, 0.1, 0.25, 1.
Compared to χc = 0.001, we now see large changes in the features, including diminished
peak heights (from 140 at χc = 0.001 to 5 at χc = 1), broadening (with a bias to
higher separations, a transition from a hard-sphere system near jamming to something
resembling a liquid, and a divot forming at rij = 2.3 as χc is increased. For χc = 0.001
and 0.01 there is little noticeable change (except in the nearest neighbour peak height)
and for χc = 0.1 there is a similar story, except in the peak at ≈ 3.95Å and the
broadening at rij < 2Å

look like the expected radial distribution. We will later show, for small molecules, how

this can be achieved and how these states relate in structure to those on the energy

landscape in a classical force-field.

4.6 Summary

Through studying SAMSEN simulations of spheres, we have gained some insight into

how the structural and dynamical models behave across a wide parameter-space.

We understand that both components of SAMSEN require high-φ (at least locally) for

the approximations to produce results that compare well to known results. We argue

that this is because a narrower distribution of nearest-neighbour separations means

the network is better-represented by the harmonic approximation and the equivalent
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equilibrium length approximation and that the lack of long-range interactions means

that the generated structures are only informed by collisions at small distances. This

is not to worry us, as many of the molecular systems we intend to study are at high

density and have weak electrostatic interactions.

We also see that increasing α has a similar effect upon the vibrational modes to in-

creasing the density (it is increasing the packing fraction of the ellipsoid system and

therefore determines the vibrational spectrum produced). By using this parameter, we

are able to ensure that our network is above its rigidity transition, without localised

soft modes, and produces bands of vibrational modes - each with a different collective

nature. Using the most collective band (the lowest ω band), we find that structural re-

laxation (in terms of decorrelation in a particle’s position) is achieved fastest and that

going from high-frequency to low-frequency modes, increases the rate of relaxation

faster than simply increasing ε (and therefore increasing the amplitude of the modes).

However, that does not mean we cannot still further increase the rate of relaxation by

increasing ε.

We then considered the effect of structural temperature through χc and how it is, for

the most part, able to determine the output structures, distribution of overlaps and

the number of collisions without altering the vibrational frequencies or significantly

altering the relaxation time. This means the method allows amorphous structures

to be generated, with some influence on desired properties (such as width of nearest

neighbour peak), without altering the rate at which these states are generated. We

also find the opposite is true - that the dynamical temperature can be changed without

significantly altering the structure.

In considering small molecules in a moment, we will attempt to draw similar compar-

isons to the results found here. I hope that, for anyone using this method, that these

pages have so far provided an understanding of the role of each of the parameters,

appreciation that control over parameters such as χ and φ is limited by the systems

you intend to study and that a prescription for α and ω has been provided, and that ε

is, in principle, the only variable one needs to consider before running a simulation and

that this has, for the most part, no effect on the structures produced (only the rate at

which they are produced).

Therefore, if one is only considering studying structures and not dynamics, one does not

need to put any effort into finding the correct parameters. With χc and χf extracted

from an appropriate force-field such as the General Amber Force-Field [121] and density

determined for you by the system-at-hand, one can leave the dynamical parameters α,
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ω and ε entirely unchanged across a range of molecules.
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Chapter 5

Generating Structures of Small

Molecules

This chapter intends to demonstrate the wider applicability of SAMSEN by applying

the method to three small molecule organic semiconductors still used in current OSC

architectures. This chapter is expands upon work previously published in the Journal

of Chemical Physics, 150(16) 2019 [46]. Here we shall study C60, α-NPD and PCBM,

starting from random low-density configurations, compressed to their respective thin-

film densities and displaced using the SAMSEN dynamical model to produce a series of

states which can be used to compare SAMSEN structures to those of other simulation

methods.

The SAMSEN parameters described in the previous section were set to α = 1.2, m12
1 ,

ε = 200 K, χc = 0.6 Å, χf = 0.2 Å, Mi = 1 a.m.u., k = 1 kg ps−2, S = 1, 000,

Cf = 0.99995 for all systems studied, except where noted for the C60 simulations.

The optimised structures for these molecules were created by downloading structure

files from the Royal Society of Chemistry’s ChemSpider service [224] and minimising

them in the Universal Force Field using the Avogadro package [225], with the exception

of PCBM which was minimised in the Large-scale Atoic/Molecular Massively Paral-

lel Simulator (LAMMPS) [226] using an OPLS-AA (Optimised Potentials for Liquid

Simulation-all atom) force-field [227] previously published by Cheung & Troisi [24]

who’s structures we will compare SAMSEN structures to.

We will then go one step further and try to recreate the Cheung & Troisi PCBM struc-

tures by running a short molecular dynamics simulation using the SAMSEN states as
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inputs. We will then consider the distribution of energy minima sampled by SAMSEN

and how that may relate to the thermodynamic distribution of states. In later sections

we will consider how the position on the energy landscape affects the charge transport

properties in the amorphous phase and consider SAMSEN’s treatment of polymers and

polymer blends.

5.1 C60

One thousand buckminsterfullerene (C60) molecules were placed randomly as described

in section 3.3.1. C60 forms a single rigid section (due to it being completely cyclic) so

N = 1, 000 and the MVEE for the rigid section represents that for the entire molecule

and has axis lengths 5.23 Å, 5.21 Å and 5.17 Å. The packing fraction of the initial

configuration was slightly below 0.25. This initial system was then compressed as

described in section 3.3.2 until the collision-fitting conditions could no longer be main-

tained. This occurred at a packing fraction of φH = 0.627. Here, for C60 we define the

hard packing fraction, φH , as the packing fraction of hard spheres with radius equal to

the half the nearest neighbour separation (inferred from the peak position of the radial

distribution function) at this maximum density - this is measured to be ≈ 4.25 Å. We

will also make use of the ellipsoid packing fraction using the inflated MVEE axes to

calculate the total ellipsoid volume and try to use both values to make comparisons to

the unit sphere systems studied in the previous section.

5.1.1 Vibrational Modes During Compression

Performing the compression of C60 with ε = 0, the elastic network was constructed at

each compression step and the 200 lowest-frequency eigenvalues were calculated. In

figure 5-1, I have plotted the values of these modes (using the same colour scheme as

with the unit spheres) as a function of the hard-packing fraction (bottom), φH , and

the soft (ellipsoid) packing fraction (top), φE = α3 ·NVEs/(LxLyLz) where VEs is the

volume of the C60 MVEE. In this case, because the hard-packing fraction is calculated

as the effective radius, φE 6= φH · α3.

From the frequencies found during compression, we find that there are some features

common to both the unit spheres and C60. Beginning with a decrease in frequency,

there follows an increase in the vibrational frequencies after φH = 0.342, φE ≈ 0.75

which we previously identified as indicating the elastic network’s rigidity transition.
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Figure 5-1: The frequencies of the 200 lowest-frequency vibrational modes for the C60

system during compression at α = 1.2.1

As the modes begin the increase in frequency, we find zero-frequency (and non-trivial)

modes - the soft modes - which are present up to φ = 0.44 where the fewest number

of network contacts reaches four - the minimum number required to pin a particle in

place (the condition of local rigidity) [176]. There is also a quadratic increase in ω2

around this point and is a linear increase for each of the vibrational bands as they split

off from the main trunk as φ is increased. The band structure takes a very similar

form, with the exception that the tan band is not split into a lower and upper half (as

in the case of the spheres) - something which could possibly be attributed to system

size. The magenta band is also slow at breaking away from the main tranche of modes

and only does so at the very last moment, where the system approaches jamming at

φH = 0.627.

The appearance of these bands in molecular systems (they are also found in α-NPD,

PCBM and P3HT, for instance) justifies the approach suggested in the previous section:

that there is a natural choice of low-frequency modes to use which we expect will

achieve the fastest structural relaxation and that we can access these by creating an

elastic network of inflated MVEE contacts.

1Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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5.1.2 Structural and Dynamical Model at High Density

Using the configuration at φH = 0.62, five simulations were performed using different

modes ranges at ε = 200 K, each for 200 cycles. The modes used were m12
1 , m24

13, m
36
25,

m45
37 and m70

59 which represent the lowest 12 within each band and the upper half of

the second band (as coloured but excluding the top 10 most in the tan band and the

remaining 3N − 73 modes). This density was chosen as, after a cycle, there is a minor

increase in frequencies and the magenta band can be distinctly identified. Beyond a

cycle the modes remained approximately constant in frequency.

In figure 5-2, the mean-squared displacement, the self-intermediate scattering function

(using q = 2π/9.5 Å−1 as the length-scale to probe correlations) and the radial dis-

tribution function are shown for each of the simulations following their given mode

ranges. These plots are analogous to those in section 4.3 and reproduced from Smith

et al. [46]. Figure 5-2a shows the mean-squared displacement over a 20 cycle period,

averaged over 10 lots of 20 cycle periods. For all modes ranges used, this appears com-

pletely linear, even at this high density, which would imply that our system is diffusive

and unhindered by nearest neighbour cages. This is confirmed by the intermediate

scattering function in figure 5-2b which follows an exponential decay and shows the

system is able to avoid a two-step relaxation. The lowest frequency modes (blue) pro-

duce the fastest structural relaxation (fastest decay rate constant, τ−1) which takes

approximately three cycles and can be compared between modes ranges in the inset.

Here, the applied displacement
∑
β2m is shown against τ−1 and, again, we find a linear

relation and that there is a negative intercept on the τ−1 axis - implying the highest

frequency modes produce are unable to relax the structure or, as is more likely, there

is a different regime here where the high frequency modes are just highly inefficient

per displacement applied. As it stands this picture looks exactly like the one presented

for the unit spheres and the conclusions drawn about the dynamical model appear to

apply to C60 too.

This direct analogy also appears to extend to the structural model. Looking at the

radial distribution function for C60 (which was averaged ever 5 cycles) in figure 5-

2c and comparing back to figure 4-10, we find a very similar structure with C60 also

resembling an amorphous configuration of spheres at high-density. The sharpness of

the peak is much lower than the unit sphere system owing to this difference in density

(the difference in the measure of packing too) and C60 possessing many flat faces

rather than a smooth surface. However, we also find that C60 demonstrates a similar

resistance to changes in the features of g(r) as ω is varied - through the majority of
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the structure there is perhaps little or no change with the only noticeable differences

being in the peak height and an almost imperceptible divot between 10 and 10.5 Å.

For clarity, an inset has been provided which has zoomed in on the peak at nearest

neighbour separation. From this it can be gleaned that the lowest frequency modes

(with the largest displacements, but the most highly collective motion) produce the

sharpest structure which is marginally diminished as the frequencies are increased.

We can also once again try to distinguish the benefit of exploiting the collective char-

acter of the low-frequency modes from the increased applied amplitude under equation

3.18. We can, as before, vary ε for a fixed range of modes and compare the relation-

ship between applied displacement and relaxation time. We can also use this to finally

attempt to observe if the dynamical temperature produces noticeable changes to the

structural temperature. For this set of simulations, modes were used in the range m24
1

and ε set to 50, 100, 200, 250 and 300 K.

In figure 5-3 we present both the radial distribution function and intermediate scatter-

ing function (q = 2π/9.5 Å−1) for each of the ε simulations. Again in the g(r) shown

in figure 5-3(a), there is a very similar structure found between the simulations, re-

gardless of the value of ε used, with only a minor change in peak height for the nearest

neighbour peak (shown again in the inset) - perhaps less obvious than in the ω-varying

simulations - and with the highest value of ε (the simulation with the highest ampli-

tudes) producing the sharpest structures. This counter-intuitive behaviour was seen

before in section 4.4.

In the intermediate scattering function (figure 5-3(b)), we find, naturally, that the

largest amplitude simulations produce the fastest structural relaxation and that there

is a linear relationship between applied amplitude and relaxation time (inset). We also

find that this is, almost, direct proportionality (there is a slightly positive intercept,

which is impossible because at zero amplitude, there is zero motion and therefore τ =

∞, τ−1 = 0, so direct proportionality, τ−1 = C ·
∑
β2m, may be the expected behaviour).

Comparing the gradients of both the ε-varying and ω-varying simulations, we find that

the gradients are 1.63×10−7 and 3.87×10−7Å−2cycle−1 respectively, making the effect

of increasing the amplitude at the same time as increasing the collectivity more than

twice as influential on the relaxation time as increasing the amplitude alone.

The recipe for generating states of small molecules is therefore the same as spheres:

use a value of α that puts you in a regime where modes split into distinct bands, follow

2Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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Figure 5-2: (a) the mean-squared displacement, (b) the self-intermediate scattering
function and (c) the radial distribution function for the C60 system following different
ranges of modes, each containing 12 modes. The inset of (b) shows the reciprocal of
the relaxation time against total applied displacement and the inset of (c) shows an
enlarged view of the nearest neighbour peak in the g(r).2
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the lowest-frequency band and apply a large ε. This will not (significantly) alter the

output structures generated, but let you generate many and do so very quickly. The

short-range structures are dominated by the value of χc picked, while the long-range

structure resembles a dense liquid or amorphous solid.

Distribution of collisions and mismatches

One must recall that in the unit sphere simulation, we varied χc in order to investigate

the effect it had on the structure produced. Looking at g(r) when both varying ω and

ε, we see that they produced near identical radial distribution functions. This again

is true of the C60 simulations and it would again appear that the ‘temperature’ of the

dynamical model is very much separate from that of the structural model. Of course,

there are differences in the structure (between a sphere and a fullerene, as we have

already noted) but, if one were to try and make the comparison, it would be hard not

to suggest that the C60 g(r) using χc = 0.6 Å most closely resembles the unit sphere

g(r) at χc = 0.25 and would probably be closest to one in the range 0.1 < χc < 0.25.

This can again be seen in the distribution of particle overlaps for the m12
1 simulation,

shown in figure 5-4, with very few overlap lengths near χc but a modal overlap of

approximately χc/22 and a mean of 0.0655 Å, placing this distribution in the linear

region of mid-range χc values. This is perhaps surprising, as χc/R is closer to 0.5

for the carbon atoms in C60 so one may have expected a broader, smoother g(r) as

was the case with the spheres. However, this is perhaps due to the poor quality of

the comparison and this simply demonstrates the enhancement of the local structure

by having many atoms bound together in rigid sections. We shall come back to this

thought when considering α-NPD.

α-NPD will also present an opportunity to examine the distribution of mismatches.

In the case of C60, there is a single rigid section and, as χc > χf , it is impossible

to produce a valid state that has a non-zero mismatch - in the case of no collision

correction the template will make the same displacement as the atoms in the rigid

section do following their modes and, if there is a collision correction, it will always

trigger a mismatch correction which will always put the atoms on their ideal template

position. C60 is therefore a special case and α-NPD will be the first chance to examine

the distribution of mismatches and the effect of adding more degrees of freedom as we

split a geometry-optimised molecule into groups of locally optimised sections.

3Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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Figure 5-3: (a) the radial distribution function with an enlarged view of nearest neigh-
bour peak in the inset and (b) the self-intermediate scattering function with the inverse
relaxation time against applied displacement in the inset for the C60 system under vary-
ing applied displacement for the lowest 24 modes (changing ε).3
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Figure 5-4: The distribution of sphere overlaps of atoms in different rigid sections for
the C60 system following the lowest 12 frequency modes (overlaps for atoms between
molecules). No collisions are larger than the threshold χc (also marked).

5.2 α-NPD

N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine, or α-NPD, is an or-

ganic small molecule that has found common use as a hole-transporting material in

OLED devices [228, 119, 229]. α-NPD is found to form amorphous layers, with only

a slight preference in orientation in thin-films [119], which means it falls into a class

of materials which we expect SAMSEN will be able to simulate. This molecule also

has a chemical structure which we will find convenient for examining how altering the

rigidity of the molecule alters the simulated structure and the rate of relaxation.

Molecular Structure and Rigid Sections

α-NPD is a molecule built from several cyclic regions, each separated by at least one

single bond as shown in figure 5-5. The two phenyl groups at the centre are connected

by a single bond (this forms the biphenyl group) and on the opposing side of the

phenyl rings they are connected to nitrogen atoms. These two nitrogen atoms are then

connected by single bonds to another phenyl group and to a napthyl group (which is the

double-ringed section). These phenyl and napthyl groups, in the α configuration, are

positioned at opposite ends and on opposite sides of the molecule. This large number

4Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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Figure 5-5: α-NPD and the 8 rigid sections generated following the method used in
section 3.1.3. The molecule contains two amine-centres, two phenyl and two napthyl
groups each with their own rigid section as well as a biphenyl group in the centre which
forms two separate rigid sections. The measurements used in this section relate to the
geometric centre of the molecule as a whole or the geometric centre for each of the rigid
sections as depicted, with the exception of the biphenyl group where measurements are
taken from the middle of the bond connecting the two parts (rings) of the biphenyl
group.

Figure 5-6: The three rigid section groupings of α-NPD used in this section to study
the impact of the rigid section approximations. The colours indicate the different
rigid section groupings. The left image represents a single rigid section. The middle
represents the three rigid section grouping comprising the biphenyl centre and the
two amine-phenyl-napthylene ends. The right groupings shows the eight rigid sections
formed by the method in 3.1.3 which consists of each ringed group forming a rigid
section as well as the amine-centres. Recall that the atoms bonded to each of the
described sections has membership of that section e.g. nitrogen has membership of the
phenyl sections.4
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of completely rigid groups (cyclic) connected by single bonds gives us great flexibility

in observing how the structural and dynamical models respond to altering the rigid

sections, in particular, by merging different sections.

In figure 5-6 is α-NPD with three different rigid section groupings which we shall use

to investigate the method for determining rigid sections in section 3.1.3. The first is

α-NPD as a single rigid section. This mimics a scenario where the dihedral potentials

are so large that there is great restriction of the ability of the phenyl and napthly

groups to rotate or flex with respect to their neighbours. This is a full-merger of the

molecule’s rigid sections that would be produced by the algorithm of section 3.1.3. The

middle rigid section grouping then represents a situation where the these phenyl and

napthyl groups can rotate as a group with respect to the biphenyl group at the centre

of the molecule. This is a merging of the phenyl, napthyl and amine-centre sections

on either side of the molecule, as well as merging the two phenyl ring sections in the

biphenyl group at the centre of the molecule. Finally, full rotational freedom for each

of the ring sections is granted in the final rigid section breakdown, including within the

biphenyl group in the centre. This final grouping is the one produced using the method

of generating rigid sections used in section 3.1.3. We will run simulations on each of

these three rigid section groupings and examine how they alter the local structure of

this organic molecule and assess the applicability of the calculation of rigid sections

used in section 3.1.3.

Simulation

A random input state of one thousand α-NPD molecules was generated for each of the

rigid section groupings (each with their own set of MVEEs). Each simulation began

at a density of 0.12 g/cm3 in a cubic volume with periodic boundary conditions and

was compressed at Cf = 0.99995 to a density of 1.15 g/cm3 which matches that of of

Symalla et al. [228]. This density is in the range of reported thin-film densities which

varies from 0.9 to 1.45g/cm3 [230, 228, 231]. This took 22,818 compression steps and

at each step the usual collision-fitting conditions were enforced as appropriate with

χc = 0.6 Å, χf = 0.2 Å.

Once the three α-NPD simulations reached their target density, the compression was

halted and the rigid sections displaced by the lowest 12 eigenmodes (m12
1 ) at ε = 200

K for 200 cycles with a period S = 1, 000 steps.
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Figure 5-7: The radial distribution function (g(r)) for the three rigid section groupings
of α-NPD as measured between the different functional groups within the molecule. The
sharp peaks for the fewer rigid section simulations correspond to internal separations
(neighbouring points within the same molecule). These broaden as extra rotational
freedom is allowed within the molecule as the number of rigid sections increases. The
g(r) is measured between the geometric centre of (a) the biphenyl groups of each
molecule, (b) between all napthyl groups in the system (two per molecule), (c) between
all phenyl groups (not including those in the biphenyl groups) in the system and (d,e,f)
between combinations of aforementioned groups.5

5.2.1 Structures of α-NPD

For each of the simulations we aim to compare their structures through the radial dis-

tribution function as measured between the different functional groups in the molecule.

To do this we compute the g(r) in the normal way, but instead take a point of one type

and only count contributions to the g(r) at a given r for points of a second type —in

this case other functional groups in the molecule. The normalisation factor is altered

to account for the number of points in the modfiied sample. The radial distribution

function can be seen in figure 5-7, averaged over 20 states separated by 10 cycles for 6

different pairings built from the sections described in figure 5-5: (a) between the cen-

tre of the biphenyl groups, (b) between the centre of the napthyl groups, (c) between

the centre of the phenyl groups (not including biphenyl), and (d-f) the three mixed

combinations, comparing the positions of one type to positions of other types.
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From each of the radial distribution functions, it is clear that SAMSEN produces a dense

fluid-like g(r) again without any obvious long-range order and only with sharp features

when there is a neighbour to sample within the same molecule (these particularly sharp

peaks correspond to the separation in the optimised molecule structure). What can

be seen, however, is that when additional rotational freedom and angular freedom is

granted, the structures diminish and tend towards a featureless g(r).

The simulations each produce similar short-range structure. In the case of biphenyl-

to-biphenyl (representing the α-NPD centre-to-centre g(r)), each of the rigid section

groups produce a minor peak between 5 and 6 Å and another larger peak at 11 Å. In

coarse-grained MD these peaks should reach an amplitude of 0.8 and 1.2 respectively

[232]. These slightly muted peak amplitudes, albeit at the correct radial positions,

followed by poorly pronounced minima appears to be a common feature of SAMSEN

simulations - the distribution of separations is broader than would be expected. In

coarse-grained MD, one would expect a reduced structure when the representation is

coarsened however, for SAMSEN, the opposite is true and the coarser simulation (the

fully rigid molecule) produces the best representation - perhaps indicating that the

bending and rotating of the sections is significantly restricted in α-NPD.

For the internal-internal peaks, this is especially true. On the whole, these are only

prominent for the 1 rigid section and 3 rigid section simulations and become significantly

broader for 8 rigid sections. In the case of napthyl-to-phenyl there is little change in

the leading edge, no change in the sharpest peak at 5 Å and the loss of the peak at

≈ 13.5 Å (the internal separation on the far side of the molecule is lost) between the

1 and 3 rigid section simulations. The 13.5 Å peak does not appear very strongly in

MD simulations [232], which means the 3 rigid section simulation produces the most

accurate representation of the g(r), as measured from that particular pair. For the

biphenyl-to-napthyl g(r), a similar pattern emerges where additional sharpness (here

too large a peak amplitude at ≈ 7Å) occurs for the 1 rigid section, but the 3 rigid

section simulation best captures the g(r) from the all-atom MD [232]. The same is

true again for biphenyl-to-phenyl and napthyl-to-napthyl. Something similar is true

for phenyl-to-phenyl, however, the far internal peak at 14 Å is too tall and narrow in

the 3 rigid section case. Across all of the simulations the 3 rigid section appears to

match the all-atom MD closest, while the 8 rigid section perhaps most closely matches

a CGMD simulation [232] - perhaps with the exception of figure 5-7(a) as discussed.

5Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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I lay this out in such detail because the alteration in peak heights can be explained by

the additional rotational freedom granted as the number of rigid sections are increased

and the overall rigidity of the molecule lowered. This informs us, in an indirect way,

about which parts of the physical molecule are relatively rigid (or can be considered as

such) and allows us to evaluate the scheme for constructing rigid sections used here.

From the additional napthyl-to-phenyl 13.5 Å peak and the enhanced sharpness of

the first internal peak in all but panel (a), it is clear that complete rigidity (within

a distance χf , at least) is a step too far and the molecules are too structurally cold

and low in energy (internally). That the 3 rigid section simulation best captures the

structure as measured between the biphenyl-to-napthyl groups means that the napthyl

group, which has gained partial rotational freedom from the biphenyl rigid section

as part of the amine-napthyl-phenyl rigid section, has a similar distribution of bond

angles (napthyl-nitrogen-biphenyl) to this in other simulations (with freedom on the

atomic level, granted by an all-atom MD). This would suggest that additional bending

created by not including the napthyl group in the amine-centred rigid section (in the

case of the 8 rigid section simulation) does not capture the real internal potentials.

Meanwhile, for the phenyl-to-phenyl 14 Å internal peak, additional freedom is required

to diminish the peak amplitude and the reverse —including it in the amine-centred

rigid section—doesn’t accurately represent the internal potentials. This might suggest

that taking the 8 rigid section groupings, merging the amine-centre with the napthyl

group on both sides and treating α-NPD as 6 rigid sections might be appropriate the

recreate the 3 section g(r) in figure 5-7(a,b,d,e), but broaden the far internal peaks in

(c,f) and produce the best representation of potentials and therefore internal and short-

range structure. Altering the rigidity of the molecule will, however, have consequences

for the sampling of amorphous states by altering the number of nodes in the elastic

network as we shall soon see.

Distribution of overlaps and mismatches

As well as altering the separation between the different functional groups in α-NPD,

changing the number of rigid sections also alters the distribution of overlap and mis-

match lengths. As discussed, this represents the first opportunity to examine this

effect. Calculating the overlap and mismatch lengths between atoms not in the same

rigid section and against all assigned template positions respectively, figure 5-8 shows

(a) the distribution of collisions/overlaps and (b) the distribution of mismatches for

each of the three α-NPD groupings, sampled over states produced at the end of the

final three cycles using equal bin widths and normalised so that the sum of all points
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Figure 5-8: The distribution of collisions (a) and the distribution of mismatches (b)
for the three α-NPD rigid section groupings. The average number of collisions was
16,175.666 for the 1 rigid section, 13,163.333 for the three rigid section and 20,852.0
for the 8 rigid section simulation.

is equal to 1.

In the distribution of collisions we find a similar shape to that in the unit-sphere and

C60 systems - a broad distribution with a low mean and modal values with very few

overlaps near χc. It is clear that the chance of finding an atom at high overlap increases

for the 8 rigid section compared to the 3 rigid sections grouping. However, we find a

similar distribution at higher overlap for both the 1 and 8 rigid section simulations,

with some differences as Ra + Rb − rij → 0 (the 1 rigid section reduces in probability

here, the 8 rigid section reaches its peak). It would appear that the 1 rigid section

simulation moves to higher overlaps (mean length of 0.082 Å with 16,175.666 collisions

per state) with respect to the 3 rigid section simulation (mean length of 0.073 Å with

13,163.333 per state) while the 8 rigid section simulation (mean length of 0.085 Å with

20,852.0 collisions per state) broadens the distribution to higher and lower overlaps.

Looking at the peak heights, they appear to shift to lower overlaps as the number of

rigid sections is increased.

The mismatch distribution shows simpler behaviour. For the 1 rigid section simulation

all mismatches are zero just as they were for C60 due to the order in which the collision-

fitting corrections are applied and χc > χf . For the 3 rigid section simulation, the

distribution broadens away from an mismatch of |ra−T sa | ≈ 0 (which now only accounts

for 50% of atoms) and we find almost all atoms have a mismatch of less than 0.01 Å

with an almost flat region up to χf . For 8 rigid sections we see significant change.

|ra−T sa | ≈ 0 is no longer the most likely position to find atoms in and the distribution
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significant broadens with a significant number of atoms having mismatches up to 0.10

Å and a near flat, but more populous, region beyond that up to χf .

It is perhaps unexpected that there should be fewest collisions for the 3 rigid section

grouping, just as it was perhaps unexpected that this produced the most accurate

structure. It should also be noted that, of the three rigid section groupings, the 3 rigid

section simulation was also the fastest to compute.

5.2.2 Relaxation of α-NPD

The number of rigid sections in the coarse-graining of α-NPD alters the elastic network.

It does this due to the differing structures (the relative position of the rigid section

centres —the nodes in the network) but also because it increases the number of nodes

and harmonic springs in the network as well as changing the size and shape of the

MVEEs used to find the neighbour contacts. These effects will therefore be expected

to alter the eigenvectors and the eigenvalues produced and therefore also alter the

structural relaxation time.

We can evaluate this by measuring the intermediate scattering function of α-NPD,

measured at the molecular centres across each of the simulations, and extracting their

relaxation time from a fit of an exponential decay, as performed previously. In figure

5-9, the intermediate scattering function has been measured across a period of 30

cycles and averaged over the length of the simulation for each of the rigid section

groupings. The 1 rigid section grouping (blue) shows the slowest relaxation, with a

relaxation time (inferred from an exponential fit) to be 30 cycles. The next slowest is

the 3 rigid section simulation which has a relaxation time of approximately 10 cycles

and almost decorrelating by the end of the 30 cycle period. The 8 rigid section has

the fastest relaxation time for approximately 8 cycles and, in this measurement, finds

that positions entirely decorrelated over the same time period as the 3 rigid section

simulation - it is as if there is some slowdown, or a second relaxation step, after the

characteristic relaxation time.

It is challenging to find an explanation for why the intermediate scattering function for

the 3 and 8 rigid section simulations align so closely after their characteristic relaxation

time. One argument could be that the increased number of collisions for the 8 rigid

section simulation show that there is clearly some action against the mode displace-

ments which could be hindering particle motion. This may be what is occurring for the

1 rigid section simulation, where there is deviation from an exponential fit of the first
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Figure 5-9: The intermediate scattering function for the α-NPD simulations for the 1
(navy), 3 (aquamarine) and 8 (red) rigid section groupings.

10 cycles at high Fs(q, t) which corresponds to slowdown at shorter distances. This

hindrance in the 8 rigid section simulation could also be due to enforcement of the

mismatch condition if the displacements applied to the individual rigid sections are not

highly collective - the opposing displacements would diminish the displacement of the

molecule as a whole. However, this argument would only suggest that the relaxation is

consistently slowed (beyond a distance of χf ) system-wide, not that it is slowed after

some number of cycles or intermittently or at distances similar to the molecule’s diam-

eter. Perhaps this is instead due to the behaviour of the dynamical model, rather than

the structural.

Looking at the average frequencies of the vibrational modes in figure 5-10 for the

different number of α-NPD rigid sections, we can begin to see some large differences

in the vibrations of the elastic network. Looking at 1 rigid section, we see a picture

very similar to C60 with distinct bands, including the splitting of the upper tan band,

however the frequencies are significantly higher and over a broader range and the gaps

between the bands altered. In the 3 rigid section simulation, the first 200 modes are

over a much narrower range of frequencies and, correspondingly, the bands become

narrower. For the 8 rigid section α-NPD, the bands move yet again to a lower and

narrower range of frequencies and the band splitting becomes somewhat obscured by
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Figure 5-10: The value of the average eigenvalue of the 200 lowest frequency modes
for each of the α-NPD rigid section groupings, plotted as horizontal lines with a width
equal to the standard deviation.

the variation in frequencies.

The change in characteristic relaxation time can, here, be mostly explained by the

change in ω and the corresponding change in β2m and the therefore the applied dis-

placement (which we have established for spheres and C60 has a linear relationship

to relaxation time when following the collective modes). However, the blurring of the

bands due to the large variation in frequencies in the 8 rigid section simulation may

help us begin explain why the decay of Fs(q, t) begins to slow at large number of cycles.

If one studies the vibrational modes of the 8 rigid section simulation, it becomes clear

that this variation is caused by the appearance of a number of soft modes which peri-

odically disrupt the distribution of frequencies and, most notably, alters the frequency

distribution of the modes selected during the SAMSEN simulation to include some very

low-frequency modes. This means that, occasionally, the character of the modes used

is altered significantly. Recall the reduced collective character of the unit spheres in

the presence of soft modes in figure 4-7. If similar behaviour is occurring here and,

periodically, the collectivity is compromised, then one may expect a relaxation at vari-

able rates and an increase in collisions too. This may be what is occurring here and

creating the late slowdown. This could perhaps be overcome by modifying the ellipsoid
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inflation factor, α, to remove the presence of soft modes and performing larger averages

to produce a more accurate Fs(q, t).

A note on rigid sections

In this section we have explored how approximating parts of molecules as rigid alters

the behaviour of the structural and dynamical models. We have seen that the method

described in section 3.1.3 produces structures that are less accurate than other approx-

imations about which parts of the molecules should be considered rigid with respect to

one another and that finding a scheme, which best captures reality (inferred from mea-

surements such as g(r), is preferable to the one discussed here. For those considering

following a similar approach, I would encourage them to determine the applicability

of the scheme for generating rigid sections in section 3.1.3 and also consider other ap-

proaches, also discussed in that section. Again, it should be reiterated that if dihedral

angles require more control than provided by the scheme for determining rigid sections

of section 3.1.3, then the method may require extension to include dihedral templates,

as also discussed previously. In the case of biphenyls (such as those in α-NPD), there

are known minima in the dihedral angular potential representing highly likely configu-

rations which SAMSEN will not capture and one may instead expect to see a uniform

likeihood at all angles or one dominated by collisions with other molecules. Similarly,

we do not include electrostatic forces and effects such as π-π will also be weaker in

SAMSEN than in reality.

This, of course, is only true if the exclusion of the high energy internal configurations

of the molecule is of importance. If one is trying to produce an accurate structure from

which one immediately attempts a charge transport simulation, then this approach of

further constraining the molecule so that the dihedral angles between rigid sections are

maintained is an appropriate route. If, on the other hand, one would prefer to obtain

a large sample of states and intends to use these states as starting points for molecular

dynamics simulations, then restriction of the dihedral angle is of less importance and

can be performed with full accuracy in a fully-atomic MD force field. The only limita-

tion is if one is only performing a minimisation in a force-field, not an MD simulation,

and the dihedral potential has multiple minima. In this scenario it may be better to

constrain as much of the molecule as possible around its optimised geometry and limit

disorder to disorder external to the molecule. We will take such an approach in the

next section.

For the remaining work presented in this document, the method of creating rigid sec-
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tions in section 3.1.3 will be used in systems where the dihedral angles should be allowed

to significantly change e.g. polymers such as P3HT. However, in systems where they

are more strongly bound or the molecules are sufficiently small, such as PCBM in the

following section, we will assume the entire molecule is rigid and therefore constrained

by the collision and fitting conditions near its optimised geometry. In situations where

there is a mixture of molecules, some with highly constrained angles and others where

the potential is not strong enough to prevent dihedral angles from changing, the method

of determining rigid sections described in section 3.1.3 will be used for all components

of the system.

5.3 PCBM

Now that the applicability of SAMSEN’s structural and dynamical models to molecular

systems has been examined, we can now employ SAMSEN to generate a series of states

for a commonly-studied small molecule and make comparisons between the structures

produced by SAMSEN and those of other methods such as molecular dynamics. Most

notably, we shall also attempt to convert the series of SAMSEN output state into a

molecular dynamics input state and find the local minima in a chosen force-field. This

will allow us to begin to examine SAMSEN’s ability to sample different parts of an

energy landscape. By then using these minimised states and performing molecular

dynamics under constant NPT conditions at room temperature and pressure and also

performing a similar procedure under constant NVT conditions, we can then access

SAMSEN’s suitability as a platform for improving sampling rate of the distribution of

configurational states and also consider the diffusion of charges through the material

at different points on the potential energy landscape.

Phenyl-C61-butyric acid methyl ester (PC60BM, here PCBM) is perhaps the most

widely-studied semiconducting small molecule and still finds use as electron transport-

ing layer in OSCs and perovskite photovoltaic applications. It is a fullerene-derivative

and is usually processed to form a crystalline structure, however under certain con-

ditions it is possible to find an amorphous morphology [123, 233]. Its sister molecule

PC70BM readily forms an amorphous material [123].

In the scheme of section 3.1.3, PCBM forms 8 rigid sections. However, as we have noted,

we will constrain it to form a single rigid section for the following simulations. This

will allow us to better capture the short-range structure (by limiting dihedral rotation

for the phenyl group and side chain), at the expense of the sampling rate. Taking a
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single PCBM molecule, it was minimised in LAMMPS in an OPLS-AA force-field (as

published by Cheung & Troisi [24]) using conjugant-gradient minimisation. This was

taken as the optimised structure from which the rigid section template and MVEE was

made.

5.3.1 In Comparison to Molecular Dynamics

One thousand PCBMs (each treated as a single rigid section) were then randomly

positioned and orientated in a periodic box of Lx = Ly = Lz = 300 Å and compressed

in steps by a factor Cf = 0.99995, ensuring each state was valid under SAMSEN

collision-fitting conditions (and applying the correction as described), to a density of

1.45 g/cm3. This is marginally above the density of Cheung &Troisi (1.44 g/cm3).

Using the lowest 12 frequency modes (m12
1 ) the molecules were displaced at ε = 200 K

over a period of S = 1, 000 steps per cycle for 500 cycles. The structural relaxation

time was measured by fitting an exponential decay to the self-intermediate scattering

function and found to be 8 cycles with Fs(q, t) decaying to zero after 30 cycles. For all

sampling we therefore require a larger period to separate frames to minimise correlations

between states in our sample. A sampling period of 10 cycles (excluding the first 10

cycles) will be used throughout, producing a sample size of 50 states.

The radial distribution function, as measured from centre-to-centre, fullerene-centre-to-

fullerene-centre and phenyl-centre-to-phenyl-centre, is shown in figure 5-11, averaging

over 50 sampled states. Figure 5-11(a), the centre-to-centre g(r) appears very liquid-like

with a broad first peak and a broader, weaker, second neighbour peak and shows strong

resemblances to the g(r) presented by Neumann et al. [120] although statistical noise

makes further comparison difficult. Figure 5-11(b), the fullerene-to-fullerene takes on

a form closer to the unit sphere radial distributions, with features somewhat broader

as one might expect given the difference in shape of the molecule and shows strong

similarity to the g(r) presented by Cheung & Troisi [24], albeit with a nearest neighbour

peak at shorter distances and a reduced first minima. The phenyl-to-phenyl (c), also

looks similar to Cheung-Troisi, with a similar sharpness of the first peak, broad leading

edge and, in the case of their 300 K simulations, retains the two additional peaks

between 10 and 15 Å, however loses detail in the minima at approximately 7 Å and

therefore more closely resembles the 400 K Cheung-Troisi g(r).

6Reproduced from Alexander R. Smith, Ian R. Thompson, and Alison B. Walker. Simulating
morphologies of organic semiconductors by exploiting low-frequency vibrational modes. Journal of
Chemical Physics, 150(16):164115, 2019, with the permission of AIP Publishing
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Figure 5-11: Radial distribution functions (solid) and corresponding U(r) (dotted) for
PCBM, measured between the (a) centre-to-centre, (b)fullerene-fullerene groups and (c)
phenyl-phenyl groups for the SAMSEN outputs, the states minimised in an OPLS-AA
force-field and the LAMMPS NPT states.6
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Each sampled PCBM state was then minimised in LAMMPS with the same OPLS-AA

force-field using conjugant-gradient minimisation (CG-MIN). The radial distribution

functions, averaged over the sample, is presented in the same figure. As, it should be

clear to the reader, the difference in structure between the SAMSEN and the CG-MIN

states is minimal as can be seen in the centre-to-centre and the fullerene-to-fullerene

g(r). The similarity in structure shows that SAMSEN is able to approximate the short-

range structure, such that the structures are close to those on the energy landscape

produced by the OPLA-AA force-field. This statement says little about the kind of

minima or the energetic distance from that minima, just that the structures produced

by SAMSEN look like those in the energy landscape of a commonly-used potential

in this measure. The only major difference is in (c) the phenyl-to-phenyl g(r) where

the first peak shifts to slightly higher separations and broadens when minimised. This

difference most probably reflects the decision to make PCBM a single rigid section and

that the phenyl group should be given slightly more room to bend than a single rigid

section allows.

Following minimisation, each of the CG-MIN states were then used as a starting point

for a molecular dynamics simulation. An NVT simulation (with a Nosé-Hoover ther-

mostat [226, 234]) was performed over a period of 50 ps to heat the states up to 300 K.

This was then followed by an NPT simulation (with an anisotropic barostat) until the

pressure stabilised at 1 atm, which required around 10 ps. During this NPT simula-

tions, the density decreased to 1.446 ± 0.002 g/cm3. This required an average of 90

minutes per state to perform on 24 CPUs using MPI. This is in addition to SAMSEN’s

6 hour average required to perform 10 cycles and produce an independent state on a

single CPU (without parallelism). The g(r) for each component, averaged over the

sample, is also presented in figure 5-11(a-c) and is labelled ‘LAMMPS’.

These LAMMPS radial distributions all show marked differences to SAMSEN and CG-

MIN however they reproduce the radial distribution functions of Cheung & Troisi [24].

The most obvious differences are the increase in peak height and more pronounced min-

ima for the three g(r) compared to CG-MIN. There is also a lengthening of the nearest

neighbour separation in the fullerene-to-fullerene and phenyl-to-phenyl radial distribu-

tions. Importantly, as charge transport in PCBM occurs between fullerene cages, the

fullerene-to-fullerene separation was captured by performing the MD simulation from

the minimised SAMSEN states. In the fullerene-to-fullerene g(r) there is also an in-

crease in nearest neighbour peak height (the 8 of LAMMPS, somewhat shallower than

Cheung-Troisi which achieved just over 8) and the minima in g(r) becomes pronounced.

In (c), the phenyl-to-phenyl, there are only minor differences such as the slight shift to

129



longer separations and a sharper minima just after 7 Å.

The features of the states produced by SAMSEN and then minimised and then pro-

duced by a short MD simulation, strongly resemble both Cheung & Troisi (from which

the force-field was obtained) and Tummala et al. [122] in both the amplitudes and

peak positions. Importantly, that fullerene-to-fullerene g(r) was captured, as electron

transport is predominately between these units [24]. This will give us confidence later

when we measure the diffusion coefficient of these systems.

Perhaps more remarkable, however, is the similarity in the potential of mean force

which is calculated as

U(r) = −kbT ln (g(r)) (5.1)

and shown as dotted lines in figure 5-11(a-c) for the SAMSEN, CG-MIN and LAMMPS

states. For the centre-to-centre g(r) all three overlap almost perfectly albeit with some

larger differences for the LAMMPS U(r) at the 15 Å maximum (the g(r) minimum).

For the phenyl-to-phenyl there is a clear increase in the separation at which an effective

repulsive force appears to act as one goes from SAMSEN to CG-MIN to LAMMPS. The

gradient of this increase in short range potential is more or less the same however, indi-

cating a similar broadness in g(r). The same can be said for the fullerene-to-fullerene

U(r) too. Here the SAMSEN and CG-MIN match each other, but the LAMMPS U(r)

has its minima at higher separations and has a strong repulsive region around 12 Å not

captured by SAMSEN and CG-MIN (like the g(r)). The absence of this minimum might

be a result of the simplified interactions (and therefore energy landscape) expressed by

the structural model (it may be that the increased penetration of the fullerene cage is

reflected by a dampened effective potential at short distances), however it might also be

a reflection of how the sampling of states is different between SAMSEN and LAMMPS,

with MD attempting to sample in thermodynamic equilibrium and SAMSEN explicitly

trying to avoid that by following the low-frequency modes.

5.3.2 Distribution of Inherent Structures

The manner in which SAMSEN samples morphologies is worth discussing in more de-

tail. Is is clear from figure 5-11 that SAMSEN states are close enough to the minima

of the energy landscape in an OPLS-AA force-field that they capture the structure of

minima in that energy landscape. However, it is also clear that SAMSEN produces dif-
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ferent structures to those produced after a molecular dynamics run —even one starting

from a SAMSEN state. They, in large part, resemble the MD structures, but there are

clear differences, even in the g(r) which we have just noted.

However, it is also clear that the SAMSEN states, minimised (CG-MIN) and then

evolved in molecular dynamics (LAMMPS) capture the same structure as a pure molec-

ular dynamics simulation, by comparison to Cheung & Troisi, Neumann et al. and

Tummala et al. [24, 122, 120] and others [233, 123].

This would suggest that beginning molecular dynamics simulations from the SAMSEN

states and averaging without additional bias or weighting does not necessarily bias the

measurement of the structures of MD states away from the equilibrium distribution.

This, of course, would only be true if the distribution of states in SAMSEN was the

same as the real distribution of states (sampling thermodynamically, starting from this

distribution of states, one may expect to obtain the equilibrium distribution) or not

adding significant bias. As had already been suggested, SAMSEN does not sample

with a thermodynamic bias (as this would hinder structural relaxation), however it

is unclear how exactly SAMSEN samples states and if any significant bias has been

introduced.

In the same fashion as the previous simulation, another 25 sets of 1,000 PCBM molecules

were placed randomly in a periodic simulation volume. The SAMSEN parameters and

target density were the same as before. A SAMSEN simulation on each of the 25

starting points was performed and, following compression, and a state extracted every

10 cycles. The simulations were running simultaneously without parallelism on a 16

CPU machine and terminated after 3 weeks. 1,469 states were obtained, each sepa-

rated by a number of cycles greater than than the relaxation time. These states were

then minimised, as before, using conjugant-gradient minimisation in the Cheung-Troisi

OPLS-AA force-field for PCBM and the energies of the states stored. A molecular

dynamics simulation was then performed on the minimised states in NVT conditions.

The initial velocities were set as a Gaussian representing 300 K using the LAMMPS

velocity command [226]. The temperature was held at 300 K and the MD simulation

progressed for 40 ps until the pressure began to stabilise. The MD states were then

minimised using conjugant-gradient minimisation and the energies stored. In figure 5-

12, the distribution of the potential of the SAMSEN states minimised in an OPLS-AA

force-field and the minimised states following the molecular dynamics run are shown.

From figure 5-12 it can be seen that the minimised SAMSEN states are all of a much

higher energy than those of the minimised states produced after performing molecular
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Figure 5-12: Distribution of the total OPLS-AA potential observed after performing a
minimisation on the 1469 SAMSEN states and the same distribution after then running
an NVT simulation on each those minimised states for 40 ps at 300 K and performing
another minimisation.
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dynamics at constant NVT. This would suggest that, in the picture of a vast energy

landscape, that SAMSEN produces states which are high in the energy landscape and

around very shallow minima. These shallow minima are surrounded by barriers which

are low enough in energy that the systems can quickly escape their basin (potentially

more than once) and find deeper minima. This picture would support the idea that

SAMSEN, which assumes a smooth harmonic potential in the dynamical model and

only repulsive elements in the structural model, fails to reproduce a deep attractive

region followed by a second repulsive region (in the g(r) or U(r), for instance) with

the structural model and is therefore unaware of the deep thermodynamic traps of the

energy landscape. Not being tied to the energy landscape represented by the OPLS-AA

force-field, SAMSEN is then able to sample many states across the landscape without

being biased towards lower energy levels or spending a large amount of time in the

deep minima.

The shape of the distribution of the SAMSEN minimised states is broadly Gaussian

with some deviation (an increase in population) at higher energies. For glass-forming

spheres in a Lennard-Jones potential, the density of inherent structures is said to be

Gaussian [235, 236, 237]. This is claimed, in part, to be due to the central-limit

theorem. One may therefore expect a large degree of ‘Gaussianity’ in the distribution

of inherent structures of PCBM. Unfortunately we do not know how the addition of

the phenyl group and side chain to a fullerene would modify the density of inherent

structures. However, if one assumes SAMSEN does not introduce significant bias into

its sampling of the distribution of inherent structures, then it would appear here that

the non-Gaussian behaviour is small. Put the other way around, if the non-Gaussian

behaviour really is small then SAMSEN appears to have captured the shape of the

density of inherent structures, with the proviso that it has failed to capture the high-

energy or low-energy tail states (this may be an inherent property of the method or

simply that a much larger sample is required).

That SAMSEN does not capture the low-energy minima is an issue for direct struc-

ture prediction. One cannot simply perform a suitably-weighted average to produce

a radial distribution function or an electron mobility for that material when there is

not a low-energy state contributing to the average. This means SAMSEN must be

limited to sampling the high energy states from which molecular dynamics will need

to be performed to find thermodynamic equilibrium and sample the low-energy states.

If the distribution of inherent structures produced by minimising SAMSEN states is

unbiased and did represent an accurate distribution, then this would be an efficient

method of creating a representative sample from which one could then produce repre-
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sentative predictions of the material properties of glassy amorphous solids. However,

this has not strictly been established here. All that can be said at this point is that

the SAMSEN distribution is near-Gaussian and, if central-limit theorem dominates,

this may approximate the PCBM distribution of inherent structures and therefore not

introduce significant bias away from thermodynamic equilibrium into the distribution

of MD states.

Energy and Structure

Each potential minima on this energy landscape represents a different structural con-

figuration of the PCBM system with all atoms at their rest positions and therefore

without thermal fluctuations. Among these different configurations we may expect to

find different structural measurements and even charge transport properties. As dis-

cussed previously, with the full sample, or at least continuous distribution between the

low-energy MD minima and SAMSEN minima, and an appropriately-weighted average

we might then expect to be able to attempt to determine the bulk equilibrium prop-

erties. However this is not necessarily an option here. We are, however, able to probe

the different minima and observe how their structures and other properties differ.

In figure 5-13, I have plotted the direct average radial distribution function (measured

between the fullerene cages, as figure 5-11(b)) of the structures with potential minima

in different ranges for the SAMSEN inherent structures. I have split the distribution

into ranges of 1,000 kcal mol−1 (188-189, 189-190, 190-191, 192-192, 192-193, 193-194,

194-195 and 195-196 ×103 kcal mol−1), labelled as the upper limit of their range, and in

figure 5-13(a) produced the average g(r) in the range and in (b) produced the difference

between the average g(r) for the different energy ranges and the average of the 188-189

×103 kcal mol−1 range.

Across the ranges of potentials a similar radial distribution is produced, showing that

the SAMSEN inherent structures do not at all capture the minima between 11 and

12 Å. The nearest-neighbour peak of the lower energy potential minima is shifted to

larger separations compared to the high energy minima, with fewer neighbours at the

shortest ranges and a higher number past the nearest neighbour peak. The resolution

on the produced g(r) limits true comparison but the peak value (all in the 9.78 to

9.98 Å range) reduces with reduced energy of the potential minima. These changes

are better captured in figure 5-13(b) showing the differences between the lowest energy

g(r) and the g(r) of the range of potential minima. This better captures the shift in

nearest neighbour peak (this time to closer separations for higher energy), its increase
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Figure 5-13: The (a) average radial distribution function for ranges of potentials of
the minimised SAMSEN structures and (b) the difference between the average radial
distribution function for the range of potentials and the 188,000 to 189,000 kcal mol−1

range

135



in sharpness and also the decrease in neighbours in the tail of the nearest neighbour

peak. The remaining features of g(r) are almost unchanging (although noise limits

this comparison) with the exception of the second neighbour peak below 20 Å which

shifts again to higher separations for the low energy structures. All of these changes

were found to greater extents by the inherent structures produced after the brief MD

simulation in figure 5-11(b) and in the results produced by Cheung & Troisi [24] - both

the nearest and second nearest neighbour peak are shifted to higher separations and

the minimum is also more strongly pronounced.

These subtle changes in structure correspond with the decrease in potential. Although

the forces are atomic pairwise, a reduction in proximity for the fullerene cages, which

contain almost three quarters of the atoms, will likely dominate the measure of poten-

tial. Assuming this, one would then expect the low energy configurations to represent

larger separations of the fullerene cages.

5.3.3 Steady-State Electron Transport

Observing how the structure correlates with the potential of the minima is pertinent

to studies of organic semiconductors as the electron transport of PCBM occurs pre-

dominately through the fullerene cages. In figure 5-14 the electronic wavefunction for

an electron in the lowest unoccupied molecular orbital (LUMO) with the lower orbitals

occupied is shown. This wavefunction was calculated at the DFT level in CP2K by

Dibyajyoti Ghosh formerly at the University of Bath, now Los Alamos National Labo-

ratory. It shows clearly the delocalisation of the wavefunction across the fullerene cage

and an absence of the wavefunction in the phenyl group and side-chain. As the PCBM

configurations across the distribution have variable separation of fullerene cages and

the states with the most separated fullerene cages are the lowest energy states, then

one might expect a change in charge mobility or even the diffusion constant as inherent

structures of different potentials are sampled.

Charge hopping is significantly dependent on the separation between localised sites - in

the Miller-Abrahams hopping expression it is exponentially decaying with distance, in

Marcus theory it depends on the coupling of electronic orbitals which has been shown

to also have an exponential decay with separations [24, 238] (and the dependence of

other properties such as reorganisation energy have also been correlated with distance

[40]). Although Cheung-Troisi continue to explore the delocalisation of charges, finding

a localisation length of around 50 Å and the electron delocalised over distances that

are comparable to their simulation cell length, we will continue to assume charges hop
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Figure 5-14: The electronic wavefunction of an electron in the lowest unoccupied molec-
ular orbital of PCBM

between the centre of mass of the fullerene cages. Other researchers have simulated

transport this way using a Miller-Abrahams hopping rate with an inverse localisation

of α = 2 nm−1 [74, 239] and, without access to facilities that would enable calculations

of the transfer integrals for each of the configurations we are unable to use a Marcus or

more quantum mechanical approaches. However, one may still expect to draw similar

conclusions to those presented here for systems where charge transport is well defined

by hopping between localised sites and where low energy configurations are those with

larger separations between hopping sites.

Using the transfer matrix method described in section 3.4.2, each of the 1469 inherent

structures of both the SAMSEN and NVT states introduced in the previous section were

used as the morphology upon which a charge transport calculation was performed. In

each state, the centre of mass of each of the fullerene sections of PCBM were obtained

and used as the coordinates of the hopping sites. A list of all neighbours within a

cut-off radius of 20 Å was obtained. The fullerene site energies were picked from a

Gaussian distribution with width σ = 0.1 eV (the value obtained from Athanasopoulos

et al. and Kimber [74, 239]). As we are only considering single-species transport —here

electrons—the absolute energy level is of little consequence. For the Miller-Abrahams

rate expression α = 2 nm−1 and v0 = 1 ps [74, 239] and the temperature was set to 300

K. Between all neighbouring sites (within cut-off) the rates were calculated for the given

energy differences between sites and the probabilities at t = 10−15 seconds entered into
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Figure 5-15: The diffusion coefficient for the inherent structures produced by conjugant
gradient minimisation of the sample of states produced by SAMSEN and the conjugant
gradient minimisation of those states after performing an NVT molecular dynamics
simulation at 300 K.

the transfer matrix. The matrix was diagonalised and the eigenvalue corresponding to

the steady state found. In the event of multiple eigenvalues represented numerically

as 1, the last eigenvalue in the range was used. The corresponding eigenvector was

then tested for steady-state conditions by performing a matrix multiplication with

the transfer matrix. If no change was observed, this was then considered the steady-

state occupation probabilities of the given state. The mean squared displacement

in time, t, was then determined from the probability of hopping to a neighbour at

square distance, r2, weighted by the probability of occupancy, which leads directly to

the diffusion constant, D. This process was repeated 200 times picking a new set of

energies from a Gaussian distribution each time to obtain an average for the state.

This was performed for all SAMSEN and NVT inherent structures and the diffusion

constant is plotted against the potential of the minima in figure 5-15. The uncertainty

is represented as the standard deviation of the diffusion constant for the 200 energy

distributions of that state.

In both samples of inherent structures, there is a narrow distribution of the average

diffusion coefficients for each morphology, themselves representing a much broader dis-
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tribution of calculated diffusion coefficients for each distribution of site energies. For the

SAMSEN distribution there is a very small negative skew at −8.38×10−7 Å2 ps−1/kcal

mol−1 (significantly smaller than the associated uncertainty in a linear fit) and for the

NVT simulation there is a very small positive skew at 5.07× 10−7 Å2 ps−1/kcal mol−1

(again smaller than the associated uncertainty). Over the entire range of energies, com-

bining both distributions, there is even less of a dependence of the diffusion constant

on potential of the minimised configuration at −1.53× 10−7 Å2 ps−1/kcal mol−1. This

would suggest a 0.0023 Å2 ps−1 change across the entire range of detected minima in

this energy landscape.

This lack of change can also be seen in figure 5-16 where the distribution of the aver-

age diffusion coefficient across all states minimised after SAMSEN and after NVT is

shown, across the potential energy range there is little change to the measured diffusion.

Perhaps there is a change in the width of the distribution, with the minimised NVT

states producing a slightly narrower distribution of D than the minimised SAMSEN

states suggests however it, for the most part, any change appears negligible. From

this analysis, it would appear that the diffusion coefficient is a constant, regardless of

the potential energy of the minimised structure and therefore, in a localised hopping

transport model, the material produced in non-equilibirum conditions produces similar

properties to that producing an equilibrium state.

In the SAMSEN minimised states there are several data points at the same energy,

indicating that a longer relaxation period was required. The number of unique energy

basins sampled was 367. However, the NVT simulation contains no duplicates. This

would suggest that the barriers to escape the SAMSEN minima are low in energy

and many in number - which would reflect the idea of the SAMSEN states being

high energy minima but perhaps suggest that the inherent structures sampled are not

potential minima within much larger ‘superbasins’. As discussed by Goedecker [142],

methods without ‘a history’ (without discouraging the revisiting of previously sampled

states) are prone to repeat sampling. It is possible that the average relaxation time

(inferred from Fs(q, t)) was a poor representation for that configuration (a longer time

was required) or that, after relaxing, the modes displaced the system back to a previous

basin. These additional states should be removed from any future weighted-average of

properties of the structure to prevent unintended bias.

It is perhaps remarkable that, as the structure is changing (the neighbours moving to

higher separations as energy is decreased) that the charge diffusion coefficient is seem-

ingly unaffected, uncorrelated and independent of the energy of the inherent structure.

This may be a reflection of the large delocalisation and the small inverse localisation
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Figure 5-16: Distributions of the average diffusion coefficient for the minimised SAM-
SEN and SAMSEN-NVT states.

length in the Miller-Abrahams rates, which would limit the impact of small changes in

separation. A different story might be told if delocalisation or a semi-band transport

model applied. It could, however, be a reflection of the small system size. The wide

distribution of diffusion coefficients for each state is perhaps dominated by this - the

distribution in energies and the correlation in site energies has a much larger effect on

smaller systems [43, 45] and overestimates of the diffusion constant also occur in such

circumstances [45]. We will consider finite system size in more detail in chapter 7.

5.4 Summary

In this chapter, SAMSEN was applied to three small molecules in order to assess the

structural model’s ability to produce structures in comparison to those of other simu-

lation methods. From the C60 simulations we saw that SAMSEN continues to produce

amorphous structures and that the displacements of the dynamical model which follow

the low-frequency modes are highly efficient pathways to achieve structural relaxation

and fast sampling rates of states in the energy landscape of amorphous molecular sys-

tems. We later saw that for PCBM, the states were generally high in energy and close
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to the structures of the high energy minima and not those of the equilibrium states

which accounts for the differences in structural measurements between MD states and

SAMSEN states.

α-NPD was also used to investigate the rigid section approximations, comparing the

rigid section groupings produced by the algorithm of section 3.1.3 to both coarse-

grained and atomistic MD simulations of α-NPD. This is solely an assessment of how

well the structures are approximated by the assumed rigidity of the dihedral bonds

between the cyclic regions. It would appear that the method of section 3.1.3 un-

der estimates the rigidity of the dihedral forces and that merging some rigid sections

(restricting the motion of the napthyl groups) may produce the best structural repre-

sentation of α-NPD morphologies. It may also be wise, going forward, to introduce

dihedral constraints between rigid sections (although that will not be performed in this

work and, as we shall see in a moment with P3HT, there are instances where such

constraints are inappropriate). For sampling, the fastest relaxation time was produced

with the rigid section groupings created from the algorithm described in section 3.1.3

and, as we saw with PCBM, it is possible to use molecular dynamics to find the struc-

tures representative of equilibrium after a SAMSEN simulation, in which case it may

be unnecessary to constrain dihedral angles at this point.

For PCBM, the samples of minimised states produced from SAMSEN morphologies as

well as the minimised MD states (themselves produced from the SAMSEN morpholo-

gies) were used as the structures for performing charge transport simulations. Here

the fullerene cages act as the transport centres and electrons hopped between them

(although in some cases charges in reality delocalise [24]) using the transfer matrix de-

scribed in section 3.4.2 with a Miller-Abrahams model using parameters from literature

[74, 239]. Despite the large differences in potential energy of the morphologies and the

associated structural differences (particularly that of the nearest neighbour distances),

very little change was observed in the electron diffusion constant between the SAMSEN

high energy minima and the MD low energy minima.

While this section shows that large sample sizes and states that span a large number

of minima in the energy landscape can be produced by SAMSEN, it should also be

emphasised that large system sizes can also be studied. Figure 5-17 shows such a system

of 60,000 PCBM molecules in a system with dimensions 25 nm × 25 nm × 100 nm.

In the one rigid section approximation of PCBM a system of thin-film thicknesses can

therefore be modelled and, with enough computer memory, the low-frequency modes

can still be used to sample new states. These states can then be used for a much shorter

MD simulation (compared to a full MD simulation). In this way SAMSEN provides a
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new method for sampling states out-of and in-equilibirum and on much larger scales

than often employed in modern computational studies.
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Figure 5-17: A VMD visualisation of a SAMSEN PCBM morphology with dimensions
25 nm × 25 nm × 100 nm and containing 60,000 molecules (5.28 million atoms).
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Chapter 6

Structure and Vibrational Modes

of Polymer-Fullerene Blends

Polymer-fullerene blends have been at the core of OPV research for many years [240,

109, 118]. The bulk hetero-junction, for instance, requires a hole and an electron trans-

porting material to be blended and retain enough correlation in structure (large enough

hole-transporting domains and interconnects) so that the charges can be successfully

extracted. Blends of a hole-transporting polymer, P3HT, and electron-transporting

fullerene, PCBM, perhaps, the most widely studied. [241, 242, 133, 109, 134, 19, 57,

243, 114, 240, 122, 113, 35, 118].

The addition of fullerenes and their derivatives into a host polymer system has been

shown to alter the dynamics and structure of the system. Pertinently, this has been ob-

served in P3HT, with the polymer backbone shown to be wrapping around the fullerene

cage of PCBM. This has been argued to frustrate the vibrations of the polymer, re-

ducing the relaxation time and restricting the orientation of the polymer backbone

[118].

This chapter will look at both of these effects in an attempt to gain further insight into

SAMSEN’s behaviour as well as the structural, vibrational properties of P3HT. The

following chapter will then study exciton transport in both amorphous and crystalline

phases of pure P3HT.
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Figure 6-1: P3HT and the rigid sections produced using the algorithm in section 3.1.3
with their geometric centres marked by red crosses. The centre of the thiophene section
is offset from the centre of the pentagon.

6.1 Structures

6.1.1 P3HT

Poly(3-hexylthiophene) (P3HT) is a hole-transporting semiconducting polymer used

widely in OPV research. The repeat unit consists of a thiophene pentagonal-ring

with a hexyl side-chain at the base of the thiophene pentagon. Polymerisation occurs

between the atoms bonded to the two carbon atoms nearest the sulphur at the top of

the pentagon. The bond between two repeat units is therefore not aligned with the axis

between repeat units and this creates an offset between the repeat units, forcing the

polymer to adopt either a twisted position or a head-tail position - where the tip of the

pentagon is pointing in the opposite direction (a 180◦ rotation). In reality a mixture

occurs and bending of the polymer chain is accompanied by a rotation away from the

180◦ conformation [57]. Despite the head-tail pattern repeating over two monomer

units, here a repeat unit will be referred to as a single monomer.

In the scheme of section 3.1.3, P3HT forms 6 rigid sections. One contains the thiophene

ring (as well as the first atom in the hexyl side-chain and also the two polymerisation
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markers, indicated in purple in figure 6-1) and the remaining contain the hexyl side-

chain, each with 3 carbon atoms (the first hexyl section containing the adjoining carbon

in the thiophene ring). When polymerisation occurs the neighbouring thiophene rings

will be connected by a single bond, with the rigid section from the neighbouring thio-

phene ring also containing the connecting atom. The structure of figure 6-1 will be

used for the entirety of this chapter and was produced by optimising a P3HT 6-mer

in a regioregular head-tail configuration, terminated with methyl groups, at the DFT

level in the CP2K package (this calculation was performed by Dibyajyoti Ghosh) and

then removing all but one of the central repeat units and placing markers where the

adjoining atoms were. This optimised structure therefore represents the P3HT repeat

unit in a polymer rather than the monomer.

6.1.2 Incorporation of PCBM

We shall begin by studying the P3HT structure for a range of PCBM concentrations,

including pure P3HT. The blends used here are 0, 5, 10, 20, 30, 40, 50 wt % (percent

by weight) of PCBM. Performing a range of SAMSEN simulations and analysing the

structure of the morphology, we can then compare how the polymer structure changes

upon addition of PCBM and progress towards studying how the dynamical model reacts

to the difference in structure.

For each of the blends, a random input was generated in a periodic cubic volume of

sides 300 Å (a starting density of between 0.06 and 0.12 g/cm3). The polymers were

placed first, with the next repeat unit rotated by 180◦ degrees about the axis connecting

the polymerisation markers, and without any further rotations. This was continued to

create a straight P3HT regioregular 20-mer in a head-tail configuration and repeated

for each polymer. After the polymer chains were generated, the PCBM was then

placed by finding random positions and orientations. Here, PCBM was treated as a

molecule containing the 8 rigid sections that the scheme of section 3.1.3 produces (to

be consistent with P3HT as discussed in section 5.2). If the ellipsoids of any rigid

section intercepted with another MVEE outside of that molecule or, in the case of

P3HT, any ellipsoids intercepted with another that were not in the same repeat unit

or neighbouring repeat units (within the same polymer), then both the molecule or

the entire polymer chain was deleted and a new random position and orientation was

attempted.

The number of P3HT repeat units was held constant at 6,000 (300 chains of 20-mers)

while the amount of PCBM was modified. As it is known that the addition of PCBM
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wt % P3HT PCBM Density / g/cm−3 Lx = Ly = Lz / Å

0 6000 0 1.075 115.539
5 6000 59 1.089 117.057
10 6000 125 1.104 118.701
20 6000 280 1.134 122.426
30 6000 481 1.167 126.908
40 6000 748 1.201 132.431
50 6000 1122 1.237 139.458

Table 6.1: The number of P3HT repeat units and PCBM molecules used in the P3HT-
PCBM blends. The corresponding system density and dimensions after compression
are also provided.

modifies the film density [244, 118], with pure PCBM at a density of 1.45 g/cm3

(as in the previous chapter) and pure P3HT in the amorphous phase has a density

of approximately 1.1 g/cm3, the new densities for each of the blend needed to be

determined. The pure P3HT (1.075g/cm3 [118]), the 20% mixture [118, 244] and

the pure PCBM [24, 123] were known. The rest of the densities were determined by

calculating the volume per molecule at known densities and determining the new total

volume at the new mixing ratios [245]. Table 6.1 provides values for the number of

molecules, the density and the box length for each of the simulations.

Each of the blends were compressed every step with Cf = 0.99995 until the specified

density was reached, ensuring no conditions of a valid SAMSEN state were broken with

χc = 0.6 Å and χf = 0.3 Å. Upon reaching the target density, the system was displaced

using the low-frequency modes in the manner described in chapter 3 with α = 1.2, m24
1 ,

S = 1, 000, ε = 200 K for 30 cycles.

A visualisation of one of the blends is shown in figure 6-2, showing the P3HT backbone

(the sulphur and the two carbons that bond to neighbouring repeat units) and the

PCBM surrounding it. In this image you can observe how the bends in the P3HT chain

are accompanied by rotation of the repeat units away from the low-energy configuration

as has previously been observed [57].

Radial Distribution Function

Figure 6-3 shows the radial distribution function for the various P3HT-PCBM blends

at their respective densities averaged over samples separated by 3 cycles and measured

between the centre of the thiophene ring sections as marked in figure 6-1. This is

therefore just a measure of the P3HT backbone structure in their respective blends.
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Figure 6-2: VMD generated image of a P3HT-PCBM blend only showing the PCBM
(grey) and the P3HT sulphur (yellow) and neighbouring carbon (blue) atoms. Note
how the twists in the polymer chain are accompanied by a rotation of the repeat unit.
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Figure 6-3: Radial distribution function, g(r), measured between the P3HT-backbone
units in the different P3HT-PCBM blends. The exact location from which this mea-
surement is made is indicated by the red cross in figure 6-1 panel 0 (the geometric
centre of the thiophene rigid section) and is between all P3HT backbone units in the
system.
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Figure 6-4: Radial distribution function, g(r), between P3HT-backbone units that are
not a member of the same polymer. This measure is made for each of the different
P3HT-PCBM blends. The exact location from which the measurement is made is
indicated by the red cross in figure 6-1 panel 0 and is between a backbone unit and all
other backbone units in different polymers and normalised accordingly.

This g(r) is dominated by the neighbours in the same polymer chain, with separations

which become irregular and ‘fade-in’ to the background density after 3 (perhaps 4)

repeat units down the chain. This gives a length-scale to the persistence (the charac-

teristic distance over which the polymer bends, reducing correlation in the orientation

of the monomers in the chain) of the polymer which appears to be of greater lengths in

higher concentrations of PCBM. This is indicated by the sharpness of the peaks and, at

low concentrations, the slight shift to closer separations (a reduced distance indicating

increased curvature). In the background, there appears to be little structure with the

system average density (of the subset of the system of P3HT thiophene rings) being

acquired at around 12 to 15 Å separation.

In figure 6-4, I have removed the internal contributions to the g(r) of figure 6-3 and

re-normalised accordingly for the new sample so that at large r (for a large enough

system), g(r) = 1. Figure 6-4 shows more clearly how the neighbouring polymer

chains are positioning themselves in relation to any given thiophene rigid section centre.

Unfortunately, there are few structural features. This due to there only normally being
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a weak peak (6.5 Å) and minimum (8 Å) —at least in coarse-grained simulations

[116, 113, 109] —but also because the rigid section centre is offset from the centre of

the thiophene ring and the extra degrees of freedom obscure detail in this measure (this

was seen in the g(r) for the PCBM centre-to-centre compared to fullerene-to-fullerene

in figure 5-11, for instance) and because SAMSEN tends to generate structures with

slightly muted peaks and minima.

Looking at the work of To and Adams [57] as well as Jones [116] these particular radial

distribution functions look closer to one of a 600 K P3HT simulation. In the work of

Jones which performs a CGMD simulation and an atomistic simulation of 72 P3HT

decamers under NPT conditions, the atomistic g(r) measured between the thiophene

rings is approximately zero until approximately 5 Å before rising and plateauing be-

tween 6 and 8 Å with a subsequent shoulder at 10 Å and a smaller one at 15 Å while

the CG g(r) takes a similar shape with much less pronounced features (most noticeably,

the plateau is only a shoulder). To and Adams show the same measurement for a P3HT

system of 12 polymers with a degree of polymerisation of 45 at 600 K in a CGMD and

atomistic MD simulation. The atomistic radial distribution here has a similar shape

to the CGMD simulation of Jones, while the CGMD appears a smoother version, with

g(r) rising from a value of 0 as early as 3 Å and only showing a plateau in the region

of 12 to 17 Å (with a g(r) at 15 Å) of approximately 0.9). The g(r) for the simulations

in this work (shown in figure 6-4) show very few features for the purest P3HT blends

with only the 40% and 50% blends capturing a shoulder between 8 and 12 Å with a

slow rise continuing until 15 and 17 Å respectively where the g(r) begins to match

the featureless g(r) of the purer blends. It would appear they most closely match the

coarse-grained treatment by To and Adams but still reflects a much more disordered

P3HT structure than both To and Adams and Jones while the purest blends appear

highly disordered and do not capture the features of other work.

It would therefore again appear that SAMSEN is navigating the high portion of the

energy landscape and I would suggest that, following a brief NVT simulation, the 300

K structure might again be obtained. The system may, however, struggle to achieve

features associated with crystallinity or π-π stacking and be trapped in a disordered

state as electrostatics were not considered during the SAMSEN simulation.

Across the range of PCBM concentrations, we find that there is little change in the

external g(r) except for a slight reduction in counts at all r (as PCBM now occasion-

ally dilutes the system) and also for the 40 and 50 wt % mixtures where there is a

pronounced absence of thiophene rings in the 8 to 15 Å range and, for the 30, 40 and

50 wt % mixtures, there is a reduced count for another 15 Å or so. These two ratios are
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well above the miscibility limit of PCBM in P3HT where one would now expect to see

crystalline aggregates of PCBM [118, 246, 247]. In this situation it may be, at least in

part, a more strongly pronounced absence of thiophene neighbours contributing to the

reduced structure rather than any aggregates in the SAMSEN simulation, which were

not observed for any of the blends and would require g(r) > 1 at some r < 1
2Lx,y,z.

We can again check numerically for aggregation of PCBM by looking at the PCBM-

PCBM g(r) for the fullerene centres (this measure is different to that of section 5.3 as

here the measurement is made between the centre of the rigid sections which contains

atoms outside the fullerene cage, so the centre is just above that of the fullerene section).

In figure 6-5, I have plotted that partial g(r) for the P3HT-PCBM blends above and

including 5% PCBM by weight. The 5% mixture is very noisy - there are only 59

molecules in each sample so there is large variability. There does appear to be a

second neighbour peak, but it takes very few occurrences to cause such a large peak.

The remaining blends do not appear to show this behaviour and show a reduced peak

amplitude at 10 Å as the statistics start to improve and all tend towards a value of

1 by around 30 Å. Importantly, a value of g(r) ≈ 1 at this distance (rather than

g(r) > 1 and converging on to 1 at half the box-size), means there are no significant

density fluctuations (such as clustering, phase separation or aggregation) for this type

of particle (PCBM fullerenes), including for 40 and 50 wt %. This may suggest that the

absence of external thiophene-thiophene counts in figure 6-4 is most probably due to

the larger population of PCBM (a dilution of the P3HT) rather than any aggregation

of PCBM. The lack of thiophene-neighbours may, however, also relate to the increased

persistence length.

Persistence Length

The persistence length of the polymer chains can be more accurately determined than

by inspecting the decay of the internal peaks of the g(r). The persistence length is the

correlation length of the tangent vectors along the chain. In a worm-like chain model

this function can be continuous [248]. In the case of P3HT the tangent of interest is

that between the thiophene rings along the backbone, best represented by the tangent

at the centre of the thiophene section. With neighbouring repeat units offset from that

tangent due to the angle formed between repeat units and, as we have not actively

constrained the dihedral angle, the more appropriate polymer model is that of the

freely-rotating chain. This is a model for polymers where neighbouring monomer units

are offset at a constant angle, but are able to rotate about their shared bond, the full
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Figure 6-5: Radial distribution function, g(r), measured between the PCBM fullerene
rigid section centres in the different P3HT-PCBM blends.

path of that rotation drawing out a cone [249]. In the case of P3HT that rotation can

occur (although it requires a bend in the chain) and the cone is drawn out by the centre

of the thiophene ring.

The persistence length, Lp, in this model is given by

〈cos(θij)〉 = exp (
−l(j − i)

Lp
) (6.1)

where l is the monomer-monomer repeat length and θ the angle between tangent vec-

tors at monomers i and j. For neighbouring monomers in the freely-rotating chain

this should be the angle of the cone drawn out by the neighbouring monomer. The

persistence of the P3HT backbone, measured between the centre of the thiophene rigid

sections and excluding the first and last thiophene section in each polymer chain, is

shown in figure 6-6.

For each of the blends, the decay in correlation of the tangent vectors begins by following

the expected exponential decay. However, approaching half the chain length (j−i ≈ 8),

the correlation is increased in each of the blends, before then falling and decaying once

more. The chains here are short and the correlation doesn’t completely diminish, but
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Figure 6-6: Tangent correlation function assuming a free-rotating chain model polymer
for the P3HT backbone (thiophene rigid sections) in the different P3HT-PCBM blends.
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wt % Persistence / monomers Persistence / Å

0 3.493 13.971
5 3.745 14.978
10 3.879 15.516
20 3.958 15.832
30 4.366 17.464
40 4.445 17.781
50 5.164 20.654

Table 6.2: The persistence lengths of the P3HT backbone in each of the P3HT-PCBM
blends, measured by an exponential decay to the early portion of the tangent correlation
function.

a significant final reduction in correlation occurs after distances of 12 to 17 monomer

units. The angle made between the tangent of a monomer and the tangent of the

nearest neighbouring monomer unit is, on average, 35.9◦ in all of the simulations.

An increase in correlation far down the chain was an unexpected result. It is possible

that the decorrelation at short distances is a result of the lack of dihedral potential

and the structural model is very quickly able to locally rotate the repeat units which,

as discussed previously, forces the chain to bend. However, it would appear that while

there is a large degree of bending at short distances (perhaps due to the lack of dihedral

constraints), the chains themselves are not yet disordered at intermediate distances.

The cause of this is unknown: it could be that a sufficient number of cycles following

compression have not passed and chains still partially resemble the initial straight

chains. This is unlikely to be the sole cause given the the large differences in tangent

correlation between the blend ratios even at similar box size and, as we shall see in a

moment, similar relaxation times which were very short. It could also be a consistent

curling of the polymer chains which have been occasionally observed qualitatively in

visualisations of the morphologies.

It also appears that systems with higher blending ratios of PCBM maintain more

directionally correlated chains and increased persistence even at short distances. The

persistence length of the fast decay (fitting an exponential decay of the form in equation

6.1 to the first 5 neighbouring monomers) for each of the blends is shown in table 6.2

with the persistence length displayed in terms of the number of monomers and the

distance along the chain using the first peak of the internal contributions to the g(r)

(≈ 4 Å).

The change in persistence length as the PCBM ratio is increased is in keeping with the

reduction in neighbours observed in the external g(r) measured between between the
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thiophene rigid section centres in different chains in figure 6-4. The largest reduction

in neighbours (in the 50 wt % g(r)) coincides with a significant increase in chain

persistence. As the packing efficiency of straighter objects is significantly reduced [250,

251, 252] one would expect a reduction in P3HT neighbours and either a compensatory

increase in local PCBM concentration or voids to form. However, as we have picked the

system density based upon the volume fractions of each component, I would suggest

that vacant regions of the simulation box are unlikely - they were not observed, despite

great efforts to measure them.

Wrapping

Guilbert et al. [118] observed that the P3HT thiophene rings tend to wrap around the

PCBM dopants such that the face of the thiophene pentagon lies planar to one of the

faces of the PCBM fullerene cage. They go on to argue that this constrained position

around the fullerene leads to the mechanical frustration of the P3HT backbone which

they observe as a reduction in relaxation time through quasi-elastic neutron scattering

(QENS) measurements.

In the system of P3HT-PCBM blends, we see an increase in PCBM proximity to P3HT

chains as the PCBM concentration is increased, however, using the order parameter of

Guilbert et al. (a similar one is also used by To and Adams [57]) we find no increase

in co-faciality at different mixing ratios. We find that the systems have slightly more

orientational order at short distances than a hot P3HT system of To and Adams [57]

but less orientational order at longer distances than Guilbert et al. [118]. At short

distances the 360K results of Guilbert et al. are captured well, but it appears SAM-

SEN’s structural model cannot maintain orientational correlation at larger distances

and misses the additional alignment present at 12Å. This can be seen figure 6-7 which

shows 〈3 cos2(θ) − 1〉 as a function of r (a direct comparison to figure 4a of Guilbert

et al. [118]). Here θ is the angle formed between two vectors, the first being the vec-

tor connecting the centre of the fullerene cage of a PCBM molecule and the second

being the normal vector to the plane of the thiophene ring in a P3HT repeat unit

and 〈3cos2(θ) − 1〉 is an orientational order parameter which produces a value of 0 if

there is no orientational preference, 2 if a flat side of the PCBM fullerene cage and the

thiophene ring and co-facial and -1 if they are perpenducilar to each other.

The SAMSEN P3HT structures are more disordered than those of their counterparts,

showing weaker peaks in structural measurements such as g(r) and appearing a much

hotter system. It would seem that the most blended systems have straighter P3HT
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Figure 6-7: Orientational order parameter measuring the alignment of the thiophene
ring to the faces of the fullerene cage for each of the P3HT-PCBM blends.

chains, decreasing the number of P3HT thiophene rings in the local area but increasing

the proximity of PCBM to the polymer. Despite this, the alignment of PCBM with

the thiophene rings is not enhanced and is found to be similar to Guilbert et al. at

short distances for all P3HT-PCBM blends.

6.2 Frustration of P3HT

Having quantified the structure of the P3HT-PCBM blends, we can now begin to

examine the vibrational modes of the system and the SAMSEN dynamical model in

the context of polymeric systems. We shall attempt to observe the frustration of the

P3HT backbone, as shown by a prolonged relaxation time observed by Guilbert et al.,

and proceed to investigate if the nature of the vibrational modes change accordingly.

6.2.1 Diffusion

Beginning with the relaxation time of the P3HT backbone, the self-intermediate scat-

tering function of the thiophene rings, measuring the correlation in position over an
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Figure 6-8: Self-intermediate scattering function, Fs(q, t), of the P3HT-backbone units
in the different P3HT-PCBM blends. The raw data has been provided along with a fit
using an exponential decay.

inverse distance q = π/
√

(a)2 + (b)2 + (c)2 where a, b and c are the length of the min-

imum volume enclosing ellipsoid axes (for a unit radius sphere, |a| = |b| = |c| = 1), is

shown in figure 6-8. The raw data is shown as a scatter plot and an exponential decay

has been fit to the data points. Again, there appears to be a single step relaxation with

the characteristic relaxation time of approximately 0.6 cycles for the thiophene rings

in each of the blends. There is no clear dependence of the relaxation on blend mixing

ratio and the variability in relaxation time is dominated by uncertainty in Fs(q, t).

It should again be stated that this is the relaxation time is within the SAMSEN model.

The physical relaxation process which is driven by a vast distribution of modes and their

relative contribution to relaxation will, in part, be determined by the frequency, with

the dynamics playing out on much shorter timescales. The harmonic displacements

are also only strictly valid over short distances. However, if one accepts a harmonic

treatment can be used on these structures (by assuming proximity to the minima

in a potential acting between coarsened rigid sections rather than atoms and can be

described at short displacements by a harmonic approximation) and that the modes

describe a propensity to move, then it would appear that the propensity of the low-

frequency modes to relax the structure is unaltered between the different P3HT-PCBM
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Figure 6-9: Distributions of the lowest 1,200 vibrational modes for the different P3HT-
PCBM blends by weight-percent of PCBM averaged over 20 states separated by 2
SAMSEN cycles.

mixing ratios.

6.2.2 Vibrational Modes

Looking at the frequencies of the vibrational modes themselves, we can now examine the

timescale of the low-frequency mode relaxation pathways. In figure 6-9, the distribution

of the frequencies of the lowest 1,200 vibrational modes for the different P3HT-PCBM

blends are displayed. The frequencies have been sampled every 2 cycle periods.

Between the different mixing ratios we see that the distributions of the vibrational

modes of the system shift in frequency to lower frequencies as the concentration of

PCBM is increased. The band-like structure is maintained for the distributions, al-

though the band gaps do begin to narrow. The shift affects the entirety of the spectrum,

including the lowest 24 modes (m24
1 ) which were used here to relax the system.

As the relaxation time (in terms of the number of cycles) was approximately equal

between the different systems, a decrease in frequency of the modes implies a decrease

in frequency of the relaxation event. This means that as the pure P3HT system is
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doped by increasing amounts of PCBM, the vibrational modes slow and the relaxation

time increases. Looking at the quasi-elastic neutron scattering results of Guilbert et

al. [118], a shift in relaxation time to longer timescales is seen for both the system

as a whole and each of the components at 360K as P3HT is blended with PCBM.

Capturing this result is perhaps unsurprising - we have a simulated system which, for

a large part, captures the structure of an amorphous P3HT system, including local

orientation, and, as we expect the structure to determine the vibrational modes, we

also would expect to capture a similar shift in vibrational modes if the assumptions

underlying the dynamical model were valid. We are, however, unable to calculate the

full spectrum for the samples in reasonable computational timescales and the validity is

limited by our approximations (i.e. harmonic potential without restoring forces, k = 1

kg ps−1, rij = r0, α = 1.1, etc.). We also have not performed a molecular dynamics

simulation, so should assume we are considering the modes of the structures that are

near the high-energy minima on the potential energy landscape.

However, it would appear that the increased linearity of P3HT chains, not at increased

wrapping around the PCBM, coincides with a reduction in the relaxation time. The

frustration of the P3HT backbone would appear to be caused by proximity to PCBM,

still adopting a partially co-facial position, but with less curvature of the chain and not

an increase in the strength of wrapping. The argument presented here is, instead, that

the increased concentration of PCBM increases the local density around the polymer

chain which creates greater structural arrest and slows relaxation.

This idea is reinforced by looking at the character of the vibrational modes, shown

in figure 6-10. There is no difference in the average local dot product or the phase

quotient of the P3HT thiophene rings: the collectivity of the polymer backbone in

terms of just the direction of displacements and the overall coherence of the vibration

is the same, regardless of blending ratio. However, there are some differences in the

relative contribution of the thiophene rigid sections to the participation ratio with

higher PCBM concentrations limiting the amplitude of displacement of the polymer

backbone. This change in contribution to the participation ratio, however, corresponds

to an increase in the number of nodes in the elastic network (the polymer background

contribution is reduced as the number of nodes increases with increasing PCBM ratio).

In summary, SAMSEN’s dynamical model finds that the propensity for the low-frequency

modes to relax the structure (produced by the SAMSEN structural model) and the col-

lectiveness of those modes is unaltered by altering the P3HT-PCBM mixing ratio.
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Figure 6-10: The local average dot product, the phase quotient and the participation
ratio of the P3HT backbone units in the different P3HT-PCBM blends.
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6.3 Summary

This chapter was devoted to the application of SAMSEN to polymeric systems. Using

the SAMSEN structural model, which does not constrain the dihedral angle between

rigid sections, morphologies of poly(3-hexylthiophene) (P3HT) were generated in the

pure amorphous phase and in blends with PCBM. P3HT was an ideal candidate for use

in SAMSEN, having a weak torsional potential. The structure of the morphologies were

found to suffer from the same limitations that the small molecule systems did: that the

structures appeared to be of a higher temperature than was intended. Once again we

expect that SAMSEN does not bias its sampling of states thermodynamically to low

energy configurations (resulting in the appearance of higher temperature structures).

In this model, the only structural difference observed as the PCBM concentration is

increased is that the polymer chains appear straighter, or at least, the tangents along

the backbone are more correlated. These less bent chains appear to allow more PCBM

to occupy the volume surrounding the P3HT thiophene units, however no increase in

the tendency for the P3HT thiophene rings to align with the face of the PCBM fullerene

cages is observed.

The SAMSEN dynamical model applied to P3HT was also found to achieve a computa-

tionally fast structural relaxation time. Again, the low frequency modes showed highly

collective motion (albeit with narrower gaps between bands) and specifically showed

high collectivity of the thiophene backbones within each mode. The dynamical model

was also able to demonstrate that there is an increase in relaxation timescales as more

PCBM is added to the P3HT system, as found by Guilbert et al. [118]. However the

cause did not appear to be increased wrapping of the polymer backbone around the

PCBM fullerene cages as had been suggested, instead showing similar local structures

and collective dynamics at all PCBM concentrations (including a system containing no

PCBM). It would appear that the reasoning that increased polymer chain wrapping is

frustrating the polymer backbone is not supported by the simulation results presented

here. Instead, the increased persistence length and increased packing density (the only

observed structural changes in this analysis) corresponds to shift in the vibrational

frequencies of the system to lower frequencies (longer timescales). Translating the re-

laxation time in cycles to relaxation time on a relative scale (1/ω), it would therefore

appear that the increased PCBM concentration and P3HT persistence are the cause of

the reduced relaxation time.

It should however be reiterated that the lack of control over the torsional angles as well

as the neglect of any electrostatic forces will have had an impact upon the simulations.
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Most notably, effects such as π-π stacking will not have been encouraged by this model

in a way they might have been under a conventional force-field applied in a molecular

dynamics or Monte Carlo simulation. This is perhaps likely to have been a cause of

the lack of alignment between the thiophene rings in P3HT and the fullerene cage of

PCBM. Similarly, any form of crystallinity or medium-to-long range order in either

the P3HT or the PCBM will have been muted in this simulation compared to other

methods such as MD or MC. As the dihedral potential is not considered at all by the

SAMSEN simulation, the polymer may be expected to appear much more disordered

as neighbouring repeat units can rotate (relatively) freely about their shared bonds.

This may also help to explain why the system appeared at a higher temperature than

intended and the persistence length shorter than expected.
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Chapter 7

Excitons in P3HT Nanoparticles

P3HT has been the cornerstone of OPV research for the last two decades but has slowly

been displaced by other hole transporting polymers and donor-acceptor co-polymers.

In recent years, P3HT has found use in organic nanoparticle-based OPV devices which,

due to significantly lower manufacturing costs of the particular process, is approaching

commercial viability [253, 254, 18].

The group at the Centre for Organic Electronics, University of Newcastle, Australia,

fabricate their P3HT nanoparticles using water as their solvent. They can perform a

similar process for PCBM and the fabricated device consist of a blend of P3HT and

PCBM nanoparticles which are then heated and sintered - creating a pure core and a

blended interface between the particles. By varying the heating process they can alter

the amount of blending that occurs and, by varying the concentration of sodium dodecyl

sulfate (SDS), they can modify the size of the nanoparticles [18]. This modifies both

the structure of the material and transport properties such as the exciton dissociation

efficiency. However, during previous experimental and computational work on exciton

transport in these nanoparticles, Holmes et al. [18] noticed extremely large exciton

dissociation efficiencies which could only explained by a very large Förster radius -

larger than the group had previously determined it to be experimentally [80].

The previous computational work employed a lattice model. The nanoparticle films

were imaged by scanning electron microscope (SEM) and using a Hough transform,

the shape of the nanoparticles were captured and, accordingly, the type of nanoparticle

(the PCBM nanoparticles tend to be much smoother and rounder, while the P3HT

nanoparticles are more jagged with distinct faces). A lattice with 3 nm spacings was

overlaid and, if a nanoparticle enclosed the lattice point, the lattice was then designated
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as that material. If no nanoparticle enclosed the lattice then that point was removed.

A kinetic Monte Carlo simulation was performed to estimate the exciton dissociation

efficiency - an exciton separated into an electron and hole when reached a boundary

of two nanoparticles. Using this model, the high exciton dissociation efficiency could

be only explained by large diffusion length of approximately 50 nm [18] (and a cor-

respondingly large Förster radius). This model, however, does not take into account

position, orientation and any correlations into account, nor account for the difference

in structure between the amorphous and crystalline sub-domains - both of which are

present in P3HT nanoparticles and P3HT films [18, 244, 255].

During a collaboration and secondment to the Centre for Organic Electronics the fol-

lowing work was performed to take morphology into account. In this chapter, the

amorphous/crystalline structure of the nanoparticles will be characterised by compar-

ing to an amorphous P3HT system produced by SAMSEN as well as a perfect crystal

based upon the DFT optimised P3HT 6-mer and X-ray diffraction (XRD) measure-

ments. These structures will also be used as the base morphology for exciton diffusion

length calculations using the transfer matrix method described in section 3.4.1.

7.1 Creating P3HT Structures

Amorphous Morphologies

The amorphous morphologies used in this section were created in a similar manner to

that in the previous section. The chosen number of polymers were created at random

positions and orientations, replicating the chain in the straight line so that they are

the desired number of monomers long. These are then compressed at a rate of Cf =

0.99995 each step, ensuring the conditions of a valid SAMSEN state are maintained

with thresholds set to χc = 0.6 Å and χf = 0.3 Å.

Due to the size of systems being studied, the dynamical model was not employed in this

section. The increased number of nodes increases the size of random-access memory

required by the ARPACK++ implementation to diagonalise the Hessian matrix - the

factorisation process undermines any memory reduction achieved by sparse-matrix rep-

resentation. At more than 70,000 rigid sections, the requirements are larger than the

computing resources available for this project (32 GB). If a less memory-demanding im-

plementation of diagonalisation is available, this will enable the modes to be employed

on larger systems, and I encourage its use. Preliminary investigation would suggest
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No. of Polymers Chain Length / monomers Box Length / Å Density / g/cm3

50 10 50 1.106
399 10 100 1.103
1345 10 150 1.102
3187 10 200 1.101

Table 7.1: The specifications of the amorphous P3HT systems used in the transport
calculations. Larger systems of 6225, 10756 and 25496 were generated but were too
large to perform the matrix diagonalisation upon

a package such as the Multifrontal Massively Parallel Sparse Direct Solver (MUMPS)

version 5.2.0 [256] onwards may solve the factorisation memory issue.

Table 7.1 provides the specification of the morphologies produced after compression

which will be used in the transport calculations that follow.

Nanoparticle

In an attempt to replicate the nanoparticle morphology, a system of 30,000 P3HT

repeat units (300 polymers, each 100 monomers long, terminated with hydrogens) in a

box of dimensions Lx = Ly = Lz = 120 nm without periodic boundary conditions was

created. Atoms which reach the boundary of the simulation volume would be displaced

so that the coordinate beyond the box boundary becomes equal to the box boundary

- however this did not occur. The system was compressed towards the centre of the

box (rather than the box edges) by multiplying the difference in coordinates between

the given atom and the centre of the box by 0.00005 and subtracting this value from

the given coordinate. The box dimensions remained unchanged. This was continued

until the collision and mismatch correction could not establish a valid SAMSEN state

after 50,000 attempts. At this point the multiplication factor was lowered to 0.00001

and the simulation continued for 5 days. The final state was then taken to be the

nanoparticle morphology. This simulation was performed on the University of Bath’s

High Performance Computing Facility, Balena.

Producing a nanoparticle morphology, rather than relying on those with periodic

boundary conditions, allows us to also consider the effect of density profile within

the nanoparticle. In the morphology produced here, the centre is significantly denser

at approximately 1.35 to 1.40 g/cm3 and the system becomes sparser near the edges

reducing to around 1.2 g/cm3.

The final nanoparticle is roughly 20 nm in diameter and mostly spherical although
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Figure 7-1: VMD generated image of the P3HT nanoparticle morphology.

some straighter faces (artefacts from the initial setup) remain in the final system. A

visualisation of the final nanoparticle produced using VMD [257] is shown in figure 7-1.

Crystal

Two P3HT monomer units, in head-tail configuration as well as XRD data of the P3HT

nanoparticles (performed by Levi Tegg, University of Newcastle, New South Wales,

Australia) were used to create the basis of the P3HT crystal. The optimised DFT

structure and its repeat head-tail structure determined the length of one of the unit

cell axes. The XRD data, showed that the stacking distance (between two neighbouring

thiophene rings in adjacent chains) was 3.75 Å and that the final axes in the unit cell

(the length between chains in the direction of the side chains) was 16.5 Å. Taking the

original two monomers (the unit cell), these were replicated in each of the axes for a

chosen number of unit cells. The structure was created such that the chains continued

unbroken over the periodic boundary and no terminating atoms were added.
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No. of Unit Cells No. of Monomers Lx/Å Ly/Å Lz/Å Density / g/cm3

103 2,000 165.0 37.5 77.7677 1.15
153 6,750 247.5 56.25 116.457 1.15
203 16,000 330.0 75.0 115.275 1.15
253 31,250 412.5 93.75 194.094 1.15

Table 7.2: The specifications of the crystalline P3HT systems used in the transport
calculations in this section with structures based upon XRD data from P3HT nanopar-
ticles

This structure therefore represents a cold, perfect crystal. The structures generated

lack any disorder and these will be the crystal structures used in the following sections.

To thermalise the crystal a molecular dynamics run at the desired temperature could

be performed, however this was not done in this work. The sizes of crystals used in

this section are detailed in table 7.2.

7.2 XRD of P3HT Nanoparticles

Having produced amorphous, crystal and nanoparticle morphologies, we can begin to

characterise them and compare their structure to those of the real P3HT nanoparticles,

fabricated at the Centre for Organic Electronics, University of Newcastle, Australia.

X-ray diffraction (XRD) measurements of the structure of the nanoparticles were also

performed on four different sized P3HT nanoparticles (controlled by SDS concentration)

suspended in water and at low density (constituting around 0.05% of the solution) such

that interactions with other nanoparticles could be ignored. The XRD measurement

was performed using a Phillips X’Pert MPD XRD operated in a Bragg-Brentano 2θ

reflection geometry with a Cu Kα anode at wavelength, λ = 1.541 Å. A beam mask

was used to maintain a constant irradiated area of 15 nm × 15 nm.

The P3HT nanoparticle (NP) samples (with water and SDS) were placed in 26 mm

diameter 3D-printed PLA cups and left unsealed. The samples were rotated at 0.25

revolutions per second in the sample holder. The XRD measurement was performed

over 40 minutes. During the series of measurements, much of the water in the samples

evaporated. To attempt to maintain a roughly constant water-level, when the water

level lowered, additional water was added to the sample holder to return it to the

correct level - this assessment and correction was performed manually. A background

measurement of a pure water sample was also taken. The diffraction patterns for the

water sample was subtracted from the pattern of the samples.
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Figure 7-2: XRD scattering intensities for the P3HT nanoparticles, fabricated with
differing SDS content.

The XRD data, presented in figure 7-2 shows few, if any, trends that we could use

to infer information about the effect of SDS concentration, and therefore nanoparticle

size, on the structure of the P3HT nanoparticles. To begin with, there is a broad peak

between 6◦ and 20◦ in both the 1 mg and 10 mg SDS spectra which are not present in

the 2 mg or 33 mg spectra. So it cannot be said that SDS concentration alone influences

this peak. There are also very few other discernible features apart from the 5◦ (100)

lamella stacking peak which has a similar broadness for each of the nanoparticles and

shifts to slightly lower angles with increasing SDS, and the 3.75 Å (010) π-π stacking

peak which follows no discernible trend in terms of amplitude or width.

The spectra also have some noteworthy issues. The large negative intensities at the

lowest angles for the 10 mg and 2 mg and around 30◦ for the 2 mg and 33 mg SDS

spectra are only possible because of the background subtraction. However, the spectra

are not negative for all SDS concentrations. This effect comes about because the water

in the PLA cups evaporated during the measurement. This means that, throughout

the spectra, there are slightly different amounts of water contributing to the pattern

and subtracting the XRD measurement of pure water creates these artefacts in the

spectra. The scan was performed from low-angle to high-angle so, these explain the

negative intensities at high angle. Ignoring any regions of negative intensity, the 2 mg

and 33 mg spectra look very similar to other reported XRD spectra of P3HT [258,
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259, 260, 261, 262]. The broad shoulder in the 1 mg and 10 mg spectra is not present

in other reports. This may be caused by the SDS (although the lack of a shoulder at

33 mg SDS perhaps discredits this suggestion) or by faster-than-expected evaporation

affecting the whole pattern. This uncertainty will affect some of the conclusions that

may be drawn from this chapter.

7.2.1 Comparison with SAMSEN Morphology

The intensities produced by coherent diffraction between planes in an powder X-ray

diffraction measurement can be calculated from the Debye scattering formula

I(Q) =

N∑
i

N∑
j

fi(Q)fj(Q)
sin (Qrij)

Qrij
(7.1)

where fi(Q) is the atomic scattering factor for the given element and has angular

dependence (which we will now omit from the notation for brevity) [263]. This equation

can be modified to separate the incoherent scattering (self-scattering) components

I(Q) = N〈f2〉+
N∑
i

N∑
j,j 6=i

fifj
sin (Qrij)

Qrij
(7.2)

and is suitable for calculation from simulated atomistic morphologies. The atomic

scattering factors (the angular dependence of intensities produced by a single atom of

a given element) are generally inferred from experiment or density-functional theory

calculations and can be looked up in suitable data tables. Here we shall use the data

from the International Tables for Crystallography (2006) [264] where the fit to the

angular dependence has one form at low angles and another at high angles.

For low angle (0 < sin (θ)/λ < 2Å−1) atomic scattering factors, this equation (and

appropriate coefficients) provide a good representation

f(sin(θ)/λ) =

4∑
i=1

ai exp (−bi sin2(θ)/λ2) + c (7.3)

while at high angles (2Å−1 < sin(θ)/λ < 6Å−1) this equation proves a better represen-

tation
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H C S

a1 0.489918 2.31000 6.90530
b1 20.6593 20.8439 1.46790
a2 0.262003 1.02000 5.20340
b2 7.74039 0.2075 22.2151
a3 0.196767 1.58860 1.43790
b3 49.5519 0.568700 0.253600
a4 0.049879 0.865000 1.58630
b4 2.20159 51.6512 56.1720
c 0.001305 0.215600 0.866900

Table 7.3: Coefficients used in the approximation to the atomic scattering factors for
each element

ln (f(sin(θ)/λ)) =
3∑
i=0

ai(sin(θ)/λ)i . (7.4)

Using values from table 7.3 in equation 7.3 and another set [264] for the high angle

equation 7.4, the X-ray diffraction patterns of the pure P3HT SAMSEN morphology

used in the previous chapter (6,000 monomers under periodic boundary conditions) and

the SAMSEN nanoparticle morphology were calculated. For the nanoparticle (NP),

there was no averaging as there was only a single frame, and the pattern for the

SAMSEN periodic boundary conditions (PBC) morphology was generated using atomic

positions from a single frame. The XRD pattern for the perfect crystal with 25 × 25

× 25 unit cells, introduced in section 7.1 was also calculated. The diffraction patterns

for all three morphologies, using λ = 1.541 Å and scanning the range 1◦ to 35◦ in 0.01◦

steps, is presented in figure 7-3.

Each of the SAMSEN XRD patterns are flat for much of the range (particularly at

double angles above 15◦). The peak at 5◦ (16.5 Å, associated with (100) lamella stacking

[261, 262]) —the only peak consistently found across the literature [258, 259, 260] —is

present but is very weak. At lower angles, the intensity increases greatly. Between

the NP and PBC morphologies, there are little differences at high angles, but the 5◦

peak is broadened and shifted to lower angles and the rise in intensity at smaller angles

is more profound. The crystalline morphology is dominated by a sinusoidal signal at

all angles in the probed range, however captures the 16.5 Å peak and also captures

additional intensity at ≈ 24◦ (3.75 Å, associated with (010) π-π stacking [261, 262]).

The crystalline spectrum also captures the 8.8 Å (200) peak at 10◦ and the 5.5 Å (111)

reflection associated with a two-layer unit cell [262] as well as additional reflections.
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Figure 7-3: The XRD patterns calculated for a pure P3HT crystal, the SAMSEN
amorphous system (6,000 monomers used in section 6.1) as well as the SAMSEN P3HT
nanoparticle attempt. The peak around 5◦ corresponds to the lamella stacking between
chains.
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These additional peaks, born from the order in the local structure (and potentially

some computational artefacts), are all missing from the SAMSEN spectra.

Once again it would appear that SAMSEN shows muted structural details compared

to the literature, even in the case of amorphous spectra. In this case the absence

of any peak at short distances (higher angles) and the diminished long range (low

angle) structure is also due to the structural model not incorporating electrostatics

or including torsional control between repeat units. This may aid the sampling of

states, but limits SAMSENs ability to predict structures without the assistance of a

short MD run, which was not performed here. The SAMSEN structures are highly

amorphous, while the literature data is often a mix of amorphous and semi-crystalline

morphologies which would act to amplify the 5◦ peak. This places strict limits on

the usefulness of such structural comparison with the nanoparticles or P3HT films.

However, in this particular instance, we can use the knowledge that our system is

amorphous and lacking in local order (and semi-crystallinity) to our advantage.

Bearing this in mind, we can now take both the amorphous SAMSEN structure which

we assume to be entirely devoid of local order (including a lack of π − π and lamella

stacking) and combine its diffraction pattern with that of the ‘perfect’ crystal. By

altering the mixing ratios of the spectra we can estimate the crystallinity or, more

accurately, the crystalline-to-amorphous ratio of the P3HT nanoparticles. If the XRD

spectra, experimentally measured, can be recreated by a simple mixture of an amor-

phous and crystalline XRD pattern we could begin to comment on the likelihood of

finding any given monomer in a crystalline or amorphous environment.

Using the XRD spectra of the P3HT nanoparticles, fabricated with different SDS con-

centrations, discussed in section 7.2 and shown in figure 7-2, as the optimal spectra, a

genetic algorithm was employed to try and find the ‘fittest’ (most optimal) combination

of the SAMSEN amorphous and ‘ideal’ crystalline spectra. Genetic algorithms are a

computational technique which, effectively, perform a minimisation of some function

based upon a corresponding cost function. Here, we are trying to minimise the distance

between a guess spectrum and a target spectrum: the measured XRD data.

The genetic algorithm was initialised by creating a population of 1,000 random com-

binations of amorphous and crystalline contributions which were normalised by the

number of monomers contributing to the respective spectra. The algorithm proceeded

as follows. At each step towards convergence, the population would be tested for fitness

by producing a spectrum adding the absolute contributions of each of the amorphous

and crystalline spectra by measuring the mean squared error between it and the target
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Figure 7-4: XRD scattering intensities for the P3HT nanoparticles compared to the
XRD pattern calculated for a mixture of a pure crystalline and SAMSEN amorphous
system as well as a pure P3HT crystal and the SAMSEN nanoparticle.
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spectrum (the P3HT nanoparticle XRD data). The population are then ranked, with

the lowest mean squared error placed first. The bottom (least fit) 35% of the popula-

tion ‘die’ and are replaced by: 5% produced by exclusive breeding of the top 10% of

the population (the average of both of the absolute spectra contributions is used for

the new contributions for their offspring), 20% produced by breeding randomly within

the top 40% of the population, and 10% filled by immigration into the system (a new

random selection of spectra contributions were generated). Randomly across this new

population, 2% were given a mutation of one of their absolute contributions (a new

random number was generated). This ranking, reforming of the population and muta-

tion, continued until convergence which was taken to be when 80% of the population

(before mutation) had absolute contributions within 10−9 of the ‘fittest’ member of

the population. This method was applied for the mixing of both the SAMSEN PBC

and ‘ideal’ crystalline systems and the SAMSEN NP and ‘ideal’ crystalline systems to

each of the XRD patterns for the different SDS concentrations during the nanoparti-

cle fabrication. The resulting ‘fittest’ spectra are shown in figure 7-4 and the relative

contributions to the spectra for the SAMSEN PBC and the crystalline-to-amorphous

ratios are displayed in table 7.4.

The fits of the combined simulation spectra to the XRD measurements are varied in

quality. Fits to the spectra of the P3HT nanoparticles fabricated with 1 mg and 10 mg

SDS concentrations are poor at many angles, except at the 25◦ peak - they generally

overestimate the intensity of the 5◦ peak and miss the broad shoulder between 6◦

and 20◦. This is true for both the SAMSEN PBC and SAMSEN NP fitted spectra,

although these two deviate from one another across the range of the broad shoulder.

In the case of the 2 mg and 33 mg SDS concentrations, the fits are much better with

close agreement across the range, with the exception of a slightly reduced 5◦ peak

and missing the decrease in intensity (below 0) at around 30◦. These 2 mg and 33

mg spectra also more closely match the literature (at 2θ < 20◦) which provides more

confidence in the ratio of crystalline-to-amorphous produced by the genetic algorithm.

As we have noted already, the XRD data is not perfect and perhaps distorted by the

measurement being performed with the nanoparticles suspended in water —a mea-

surement we believe has not been reported before. The broad shoulder could not be

attributed to any one reflection and is not observed in the literature data. The drop

in intensity at high angles is also a result of the water subtraction which was difficult

to perform reliably as the amount of water in the samples varied throughout the mea-

surements and needed to be replenished. This, along with interference, from the SDS

which coat the nanoparticles, and other surface effects may have altered the XRD mea-
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SDS content Amorphous Contribution Crystalline Contribution

1 mg 0.466 0.533
2 mg 0.366 0.633
10 mg 0.653 0.347
33 mg 0.330 0.670

Table 7.4: The relative contributions to the ’fittest’ XRD spectra - the combination of
the SAMSEN PBC and 0 K crystal XRD patterns that produced the closest fit to the
experimental XRD spectra of the P3HT nanoparticles (after background subtraction).

surement in a way which could not be replicated in these simulations. The SAMSEN

NP morphology, which attempted to recreate some of these effects (most notably the

non-uniform density profile), provided no improvement in comparison to the measured

spectra. Similarly the SAMSEN PBC morphologies themselves were not ideal (with an

MD simulation not performed the morphology was likely to be a high energy state).

Given these limitations on both the structures, the fit and the XRD data itself, I

present the ratio of amorphous and crystalline components of the P3HT XRD data

in table 7.4. Across the range, there is no clear dependency of crystallinity on SDS

concentration (and therefore nanoparticle size), as there is not for the XRD spectra

themselves. However, if one just looks at the 2 mg and 33 mg spectra, which conform

more strongly to the literature data and provide the closer fit, we find very little change

in the internal crystallinity despite the increased size of nanoparticle, with roughly one

third of the nanoparticle being amorphous in nature and the remaining two thirds

being crystalline. There is perhaps a slight increase in the crystalline contribution to

the XRD as we move from 2 mg to 33 mg of SDS during fabrication, but with so much

uncertainty (particularly over the water content, which limits the quality of the fit at

high angles) it can be hard to say this for sure. This is true of the spectra for the same

reasons.

There are, of course, obvious limitations of this fitting approach to determine the

crystal/amorphous content of the P3HT nanoparticles. The distribution of SAMSEN

structures sampled is, as we have previously shown with PCBM, unlikely to be at

thermodynamic equilibrium for a 300 K system. Similarly, the crystal presents a zero-

temperature structure and not a structure at room temperature. This means the

5◦ peak (the others too) is artificially enhanced and less crystallinity is required to

reproduce the experimental spectrum that a 300 K structure might. Conversely, the

SAMSEN PBC system potentially represents far too high a temperature, with its XRD

features diminished, and an increase in amorphous content is required. The ratios
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presented here are likely to overestimate the amorphous content and underestimate

the crystalline proportion of the real P3HT nanoparticles. Therefore, both of these

structures would first need to be put in molecular dynamics (or any thermodynamic

molecular simulation method) and equilibirated to 300 K. The combination of these

spectra, still taking the average over the now-equilibirated SAMSEN spectra, would

then be able to determine a more accurate crystal-to-amorphous ratio. However, being

able to separate the structures into a highly amorphous component and pure crystal

component enables such a study which methods, prone to finding mixed domains, may

not.

7.3 Exciton Diffusion in P3HT

Having quantified the structure of the SAMSEN morphologies and commented on its

validity with respect to experimental measurements, we can now begin to consider the

charge transport properties of this material and the P3HT nanoparticles themselves.

In this section we will focus on exciton diffusion, making comparison to previous com-

putational work on these nanoparticles and values of the diffusion length inferred from

experiment.

The Dipole Orientation Factor

In the SAMSEN morphologies of pure P3HT, the average dipole orientation factor is

〈κ2〉 = 2/3 indicating that the SAMSEN morphology has this amorphous, orientation-

ally uncorrelated structure, previously described. The distribution of κ2 for the 6,000

monomer morphology is shown in figure 7-5 and, statically, reproduces the distribution

of a dynamically rotating system [81]. This distribution is for all pairs of monomers in

the system and the large κ2 values occur on all length-scales and dominate the exciton

transport if a static dipole model is considered.

In principle, the relative dipole orientations should always be taken into account when

considering dense amorphous systems where the relaxation time is long and the material

below its melting temperature or, under the right preparation, under its glass transition

temperature. This was noted by Förster in 1948 [78]. However, in order to draw

comparison to the recent literature, calculating the relative orientation of static dipoles

is going to be ignored and instead a system average value will be used. The κ2 value

of Herz et al. [84, 85] will be used in both the amorphous and crystalline system.

177



0 1 2 3 4
κ2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ρ(
κ2

)

Figure 7-5: The distribution of the dipole orientation factor for all pairs of thiophene
sites in the SAMSEN P3HT system. The average value of this distribution corresponds
to the dynamic average value due to the high disorder in the system (〈κ2〉 = 2/3

However, we expect that alignment of dipoles does occur and we expect that these

pairs will have the largest exciton transfer efficiencies. Therefore, the same simulations

will also be repeated at a κ2 = 4 which represents the ‘best case’ scenario in terms

of dipole alignment. These will then represent the lower and upper bounds of the

expected exciton transport quantities such as the exciton diffusion length, produced by

the transport model on these morphologies.

Estimate of the Förster Radius

To begin, we must first extract the transfer parameters. In work by Feron et al.

[80], simulations of exciton diffusion and dissociation were performed for values of the

exciton lifetime, τ = 0.9 ns [80] and the energetic disorder, σ = 0.06 eV. Lattice-based

simulations were performed using these parameters with a lattice constant of a = 1 nm

and assuming a system-wide κ2 = 2/3 at a variety of Förster radii. This was repeated

until simulations produced a diffusion length of 8.5 nm from literature [215] at a Förster

radius of R0 = 2.3 nm.

Unfortunately, it is not ideal to re-apply the Förster radius to a different system.
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Figure 7-6: Exciton diffusion length, LD, as a function of the Förster Radius, R0. A
binary search was performed to find the value of R0 = 13.76 Å at LD = 8.5 nm.

The lattice spacing will alter the calculated diffusion length [79] (that was the test

for finding the original Förster radius itself in work by Holmes et al. [18]). Instead,

we shall follow a similar procedure here. The diffusion length, LD, will be calculated

using the transport model described in section 3.4.2 for a selection of Förster radii and

the value of R0 that produces the correct exciton 1D diffusion length (which shall be

assumed to be LD = 8.5 nm as reported by Feron et al. and Shaw et al. [80, 215]) will

be taken forward. To determine LD, equation 3.29 with Z = 1 shall be used. Finding

the correct R0 was performed using a binary tree search, starting with an initial range

of Förster radius between 40 Å and 1 Å. The midpoint of the range represents the

test point. If the value of LD found was smaller than desired, the R0 halfway between

the two extremes would become the new upper limit, if LD was too large then this R0

would become the lower limit. This continued until convergence. The results of this

search are shown in figure 7-6 and the expected relation [78, 79] LD ∝ R0
3 is found.

The value of R0 to be tested at each step will be assumed to have reflected the Herz et

al. estimate of κ2 rather than the dynamic model’s κ2 = 2/3. This point is important to

note when we shall swap to and from κ2 = 4 as this produces a larger R0 in the aligned

dipole system than it would had we assumed a κ2 = 2/3 value. For the unaligned
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dipoles, therefore, R0 = 13.01 Å and for the fully-aligned system R0 = 18.55 Å.

7.3.1 Ordered vs. Disordered

With the parameters for the Förster rate chosen and the morphologies generated, cal-

culations of the exciton diffusion length can begin. Here we shall look at the SAMSEN

amorphous PBC system (which we now believe represents roughly one third of the

content of P3HT nanoparticles) and the perfect crystal (which represents roughly two

thirds of the nanoparticle). We also accept the limitation of the SAMSEN states,

namely that they are high in the energy landscape and unlikely to be found at equi-

librium, and also the limitation of a perfect crystal which, at 300 K, would be much

more disordered.

Using the morphologies of various sizes (crystal: table 7.2, amorphous: table 7.1, the

transfer matrix method described in section 3.4.2 and the parameters just established,

the transfer rates for each pair of monomers (between the centre of the thiophene

rigid section, marked with a red cross in figure 6-1) were calculated over a time period

of 1 fs using the value of R0 that assumed κ2 = (0.845
√

2/3)2 and an upgraded R0

which was recalculated as κ2 → 4. The transfer matrix was populated with these rates

and diagonalised, taking the eigenvector with an associated eigenvalue of 1 to be the

steady state distribution. With knowledge of both the probability of occupancy and

probability of transfer, the diffusion constant could then be calculated and converted

to a 1D exciton diffusion length. This was performed for a range of cut-off radii, rc and

repeated 100 times taking site energies randomly from a Gaussian of width σ. The result

for the amorphous system with κ2 = (0.845
√

2/3)2, R0 = 13.01 Å is shown in figure

7-7(a) and the result for κ2 = 4, R0 = 18.55 Å is shown in figure 7-7(b). The result for

the crystalline system is shown in figure 7-8 with κ2 = (0.845
√

2/3)2, R0 = 13.01 Å in

panel (a) and κ2 = 4, R0 = 18.55 Å in panel (b).

For the amorphous system with unaligned dipoles (R0 = 13.01 Å) it becomes clear that

short cut-off radii hinders the exciton diffusion and a plateau in LD is only achieved

when the cut-off is increased to a much larger value. For the smaller systems (5 nm

and 10 nm) there is also large uncertainty and also, again, restricted diffusion. The

small systems also begin to show spurious behaviour when the cut-off radius reaches

half the box dimension, although this is perhaps not unexpected. When system sizes

are sufficiently large (15 nm and 20 nm) the diffusion is no longer hindered by the

size of the simulation cell and a good estimate can be obtained. For the amorphous

system with unaligned dipoles κ2 = (0.845
√

2/3)2, R0 = 13.01 Å, this full analysis
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Figure 7-7: Diffusion length for the various amorphous system sizes as a function of
the cut-off radius with (a) a dynamic dipole model (κ2 = 2/3) and (b) a static dipole
model with all dipoles aligned (κ2 = 4). This last case is unrealistic in a disordered
system such as this.
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predicts an exciton diffusion length of LD = 8.8 nm —deviating slightly from the value

against which R0 was calibrated. Upgrading the Förster radius to correspond to a

κ2 = 4 (R0 = 18.55 Å) produces similar results. Above half the cut-off the smaller

systems produce spurious results and show large uncertainties throughout. The larger

systems show a plateau at around LD = 25 nm which this analysis suggests is the

1D exciton diffusion length for a structurally amorphous system with fully aligned

electronic dipoles.

These values of the exciton diffusion length, assuming a system of disordered dipoles

or a system of complete dipole alignment in a morphology of amorphous structure,

of course are much smaller than the predicted 50 nm suggested by Holmes et al. for

P3HT nanoparticles [18]. Of course, it should be noted that this second picture may

be unphysical. This would suggest that the amorphous domains of the P3HT nanopar-

ticles cannot dominate the transport properties. That they form only a third of the

nanoparticle (from fitting SAMSEN and crystalline XRD patterns to experimentally

measured ones in the previous section), means that this may indeed be the case and

that exciton transport is dominated by crystalline regions and longer-range transport

between them. This is expected for electrons and holes [110] and also for resonance

transfer [81] due to the orientational order.

Looking at the diffusion lengths for the crystalline morphology in figure 7-8, we find

that there is an increase in the diffusion length as the order is increased. This may be, in

part, explained by a decrease in the average separation of monomers in the crystalline

structure compared to the amorphous morphology which is understood to increase

the diffusion length (LD ∝
√
D ∝ 1/a2 [78]). In these simulations the uncertainty

(here assuming solely from the sampling of the energy distributions) is initially much

higher but decreases as the system size is increased. There is also a much less obvious

dependence on rc, even as low as rc = 8 Å which would suggest that this transport

is dominated by transfer in the π − π stacking direction and along the polymer chain,

with less contribution from hops in the lamella stacking direction. The values of LD

do begin to stabilise at cut-offs where these hops become accessible however, with all

system sizes (with perhaps the exception of the 5 × 5 × 5 unit cell system) producing

similar diffusion lengths. For κ2 = (0.845
√

2/3)2, the crystalline morphology produces

an LD of ≈ 11.7 nm and for a fully aligned κ2 = 4, LD = 33.7 nm.

These 1D diffusion lengths are again much smaller than Holmes et al., including the

fully aligned dipole model which was an initially surprising find. The crystalline system

makes up a large portion of the nanoparticles and it was expected that exciton trans-

port in the crystalline domains would be the dominant pathway. With a 0 K crystal
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structure, amplifying the transfer rates by assuming all dipoles are fully aligned and as-

suming the excitons are isolated, this simulation was anticipated to be an overestimate

of the true exciton diffusion length. That is is smaller can only mean that there are

aspects of exciton transport that are missing from this model and is therefore limiting

the calculated exciton diffusion lengths.

One promising candidate is exciton delocalisation. The exciton is not a point-object

and in a polymer it is known to delocalise along many segments of the polymer chain

[56, 116, 265]. In P3HT, the weak torsional potential breaks the π−π conjugation and,

in some instances, localises the exciton [265, 56]. However, the extent of localisation

can still be over many repeat units. Crystalline domains are also expected to increase

the delocalisation and exciton lifetime, with the π− π stacking enabling delocalisation

between chains [266]. In this circumstances, the point-dipole model begins to break

down and a new model may be required to describe transport of the exciton through the

material - both between the chains and along the polymer backbone. Considerations

of these effects are beyond the scope of this work, however.

In the diffusion length calculations above there was a clear impact of system size on

the uncertainty in LD. For small systems, the uncertainty was profound, but is dras-

tically narrowed in the case of the large systems. In figure 7-9, we can inspect this

more closely. At a cut-off radius rc = 30 Å, the exciton diffusion length for both the

amorphous and crystalline system is shown as a function of system size (in terms of

the number of monomers) in panel (a) and the uncertainty for each average (the 100

repeats picking site energies from a Gaussian) against system size in panel (b). Figure

7-9(a) demonstrates this reduction in uncertainty incredibly clearly. In small systems,

the exact distribution of site energies can become the dominant contribution to the

diffusion length and produces a much wider distribution. This can be rationalised as

small correlations in energy having a much larger impact as they cover a large portion

of the box, while in large systems, correlations that are large enough to impact the

diffusion length become highly improbable [45]. For large systems, the distribution

of energies also more reliably resembles a Gaussian and is more resilient to statistical

noise [43].

These finite size effects are an important feature of charge transport modelling. It has

been suggested that a too small system size means the tail of the Gaussian distribution

is not sampled correctly. Since, the low energy end is most populated by charges,

missing these tails states mean that charge mobility in a simulation can be artificially

enhanced if a system is too small [43]. Similarly it has been shown that if a lattice is too

small, then the chance of finding a percolation pathway (a path of very fast transport
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Figure 7-8: Diffusion length for the P3HT crystals as a function of the cut-off radius
with (a) a dynamic dipole model (κ2 = 2/3) and (b) a static dipole model with all
dipoles aligned (κ2 = 4). This last case represents a crystal with no thermal structural
disorder.
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spanning the simulation cell) for a given distribution of energy is much higher and

this also inflates reported charge mobilities [45]. In the simulations presented here, it

would appear that the crystal is much more resilient to percolation problems (perhaps

because Förster transfer is longer range) while in the amorphous system morphology

dependence is strong below 104 monomers. It would seem that we have reached systems

where the uncertainty is small enough and the diffusion length result constant enough

that we have overcome much of the finite size effects due to the morphology itself and

sampling the distribution of site energies.

In this analysis we have not considered the sampling of morphologies as we did with

PCBM. This too would need to be considered and transport simulations performed over

a wide range of morphologies, especially in smaller systems as shown in figure 7-9(b)

(where the standard deviation is 1/3 of the result itself) and where the importance of

doing so is demonstrated in figure 5-16, showing that the distribution of the average

diffusion constant for each PCBM morphology is rather broad.

7.4 Summary

In this chapter the structure of the SAMSEN-produced amorphous P3HT morphol-

ogy, a generated ‘ideal’ P3HT crystal and an amorphous SAMSEN-generated P3HT

nanoparticle morphology were compared to experimental measurements of P3HT nanopar-

ticles suspended in water. Characterised by XRD measurements, the nanoparticles

showed a mixed amorphous-crystalline character, the proportions of which were slightly

modified by the size of the nanoparticles. Using the simulated structures and per-

forming a computer XRD measurement upon them, an estimate of the crystalline-

amorphous ratio was made with a very small decrease in amorphous content for smaller

nanoparticles.

The amorphous pure P3HT system and the crystalline P3HT system were then used

as the basis for exciton diffusion calculations and provided a comparison to both ex-

perimental and computational work on P3HT nanoparticles. Exciton diffusion was

significantly increased in the crystal phase and increased even more strongly when the

dipole alignment was considered. However, even assuming perfect dipole alignment

exciton diffusion length calculated was lower than one which would explain the high

exciton dissociation efficiency found in the nanoparticles. We therefore expect that a

Förster point-to-point transfer model is inappropriate and other effects such as exci-

ton delocalisation or faster internal transfer mechanisms are present within the P3HT
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Figure 7-9: (a) the diffusion length and (b) the standard deviation in the diffusion
length for excitons in the crystalline and SAMSEN amorphous sytems at a selection of
system sizes.
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nanoparticles and would need to be considered in further work on exciton transport

modelling. This is true of charge transport in polymers in general and also of delo-

calised charges in small molecules systems too and research on this topic is on-going

[9, 26, 11, 56, 265].
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Chapter 8

IDT-BT: the ‘Disorder-free’

Polymer

Indacenodithiophene-co-benzothiadiazole (IDT-BT) is an organic semiconducting poly-

mer which has attracted attention in recent years, in particular as a candidate OFET

material. This is, in part, due to a seemingly low energetic disorder which is believed to

enhance hole transport through the morphology [106]. This has even been found to be

true in the amorphous phase and IDT-BT has therefore been described as a ‘disorder-

free’ polymer [106], although it also forms a well defined crystalline phase [106, 267].

IDT-BT is also an interesting material for environmental reasons as it can be used in

production processes with non-halogenated solvents [268].

In this short chapter, the charge transport, specifically the hole diffusion, of an IDT-

BT morphology shall be calculated using a SAMSEN morphology and a Marcus theory

hopping model between chains. The typical intra-molecular transport rates (within the

polymer) shall be estimated by comparison to experimental results.

8.1 Creating Morphologies

The IDT-BT repeat unit was initially computer-generated in Avogadro [225] from a

SMILES formula for the molecule, with methyl groups placed at the end of the repeat

unit. An energy minimisation was then performed in the General Amber Force-Field

using conjugant-gradient minimisation in Avogadro until convergence of the potential

energy of the structure. This was repeated with the side chains in varying positions,
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Figure 8-1: The wavefunction of the HOMO in an IDT-BT monomer (terminated with
methyl groups) produced in CP2K.

with two minimised structures found. These were then geometry optimised at the

density functional theory level in CP2K (performed by Dibyajyoti Ghosh), and two

low-energy structures were confirmed to exist. The lowest energy structure was used

as the likely optimal configuration for the SAMSEN simulations and is shown in figure

8-1 with the associated HOMO wavefunction. The terminating methyl groups were

then removed and replaced by the polymerisation markers. This structure was then

converted to rigid section templates using the method in section 3.1.3 and a set of

MVEEs created for the repeat unit. The rigid sections for the IDT and BT sections

are shown in figure 8-2 with the side chains omitted (the rigid sections of the side chains,

being an alkyl chain, are mostly three carbon atoms plus two hydrogens connecting the

central atom, with the exception of the ends of the chain). There are a total of 66 rigid

sections per repeat unit.

100 IDT-BT chains, each with 10 repeat units in a heal-tail arrangement were placed

randomly in a box volume of 400 Å × 400 Å × 400 Å with periodic boundary conditions.

The values of χc and χf from the previous chapter (0.6 Å and 0.3 Å, respectively) were

retained. Compression was performed using a Cf = 0.99995 every step. At each step,

the rigid sections were given a small random displacement of up to 0.05 Å in each of the

Cartesian co-ordinates to prevent jamming (practically speaking, the atoms were dis-

placed as a group according to their rigid section membership, taking an average value

if they were members of multiple rigid sections). At each step, after compression and

after random displacement, the collision-fitting conditions were checked and enforced

as described in chapter 3. The compression was continued until the target density of
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Figure 8-2: The rigid sections for the IDT and BT units in IDT-BT. The purple atoms
indicate the polymerisation markers. The side-chains and their 64 rigid sections have
been omitted for clarity.

0.84 g/cm3 was reached. This density was chosen as it was the density determined by

molecular dynamics simulations performed by collaborators at the University of Mons.

Due to the number of rigid sections in the system, it was once again impractical to

meet the memory requirements of the Hessian and calculate the eigenmodes. Random

displacements were continued for 10,000 steps in an attempt to obtain a morphology

away from the initially compressed state.

Applying the random motion in a similar way to the original FRODA algorithm was

an essential step for obtaining the target density. Without it, the polymer chains

would be unable to relax back to their template structures while also maintaining the

collision conditions. In 21 other attempts at this compression process without random

displacement, all failed to reach the target density, producing a density distribution

shown in figure 8-3. The polymer repeat units can be considered a pair of long and

short rigid rods that can flex by a small angle controlled by χf at their connecting

points (with 16 additional short rods for each of the the side-chains). Knowing that

high-aspect ratio objects have a lower-maxmum packing fraction [250, 251] explains why

the density in this system is so low, it may also explain why there is a large variation

in densities obtained by SAMSEN. This, along with the lack of dihedral angle control

between rigid sections, should be investigated in future work. While, there may indeed

be a range of densities on the microscale in the physical IDT-BT films, such a claim

about that distribution cannot yet be made here using the SAMSEN structural model

alone. If such a range of densities did exist however, it would appear that SAMSEN
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Figure 8-3: Densities at which the collision-mismatch conditions of the SAMSEN struc-
tural model could no longer be enforced during 21 compressions of IDT-BT. Only one,
not included in this figure but used for the remainder of this chapter, reached the target
density of 0.84 g/cm3.
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Figure 8-4: The radial distribution function between the geometric centre of the IDT
rigid sections and other IDT rigid sections in separate polymer chains and BT rigid
sections and BT rigid sections in other polymer chains in the distance range covering
the closest approach. These close contact points will come to dominate charge transport
between the chains.

once again finds the high-energy states which in this case may represent non-equilibirum

states produced by rapid quenching. Assuming the MD density represents a system

closer to equilibirum, the results in the next section shall be performed on the 0.84

g/cm3 system created by adding random motion during compression and continuing

for 10,000 steps afterwards.

8.2 Hole Diffusion in IDT-BT

IDT-BT is a hole-transporting polymer and the HOMO for the repeat unit (with methyl

termination) is shown in figure 8-1. There is strong delocalisation of the HOMO wave-

function across the entire length of the conjugated regions in both the indacenodithio-

phene (IDT) and benzothiadiazole (BT) sections. In the polymer, this delocalisation

extends across repeat units, in part due to the low structural and energetic disorder

of the polymer in the bulk [106, 96]. Hole transport along the polymer backbone is
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therefore considered to be very fast and is assumed to dominate and be the cause of

the high-hole mobilities in experimental measurements [106].

Between polymer chains, however, charge transport is far more restrictive. Due to the

size of the four extended side chains that, in their low-energy configuration at least,

span out of the plane of the conjugated region, the distance of closest approach between

any two neighbouring repeat units is highly constrained. As can be seen in figure 8-4

which shows the g(r) of external IDT and BT units (only considering neighbours in

different polymer chains). This shows that there are very few conjugated sections in

different polymer chains in proximity to a given IDT or BT portion of a repeat unit.

Even at distances as large as 1.2 nm, there is still (effectively) a lack of neighbouring

repeat units for charges to hop between than a measure like the density might suggest.

Were a potential of mean-force generated for these interactions, it would suggest that

there is a small effective repulsive potential at these distances and imply some exclusion

in the local volume. At the shortest distances (below 6 Å), it would appear that the

BT sections are able to approach one another to a much greater extent than the IDT

sections which are bonded to the side-chains. I would therefore expect that overlaps in

the wavefunction in the BT portion of the repeat unit would dominate hole transport.

8.2.1 Internal and External Transport Rates

To calculate the transport rates between IDT-BT repeat units, a quantum-chemical

approach was taken. The IDT-BT morphology was passed to Yoann Oliver at the Uni-

versity of Mons who employed the ADF package [90, 269, 270] using a dimer fragment

approach (based upon two repeat units to capture the head-tail conformation). Here,

the orbitals of a pair are expressed as a linear combination of the molecular orbitals

of the fragments fragment, calculated by solving the Kohn-Sham equations. From this

the site energies (in principle) and the transfer integrals can be computed. Here, the

transfer integrals for repeat units containing atoms within 6 Å of atoms in neighbouring

units in different polymer chains were calculated. With this information, as well as an

estimation of the reorganisation energy taken from previous work (here, we also use

the same estimate of the energetic disorder due to static contributions as the width of

the Gaussian) [96], we then have all the information required to calculate the Marcus

hopping rate for transfers between polymer chains.

This quantum-chemistry approach, however, does not tell us about the internal trans-

port rate within a polymer chain. Previous reports suggests that this dominates [106],

so simply choosing a high internal transport rate (as has been previously suggested
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[19]) will not prove a satisfactory estimate that leads us to a valid estimate of a charge

transport property within this material. While other methods for calculating the intra-

molecular transport rates exist (some of which require further DFT calculations and/or

parameterisation) [9, 11], determination of the exact mechanism for intra-chain trans-

port is perhaps outside the scope of this work.

Instead an approach was taken where a uniform intra-chain (internal) transport rate

was used between nearest neighbour repeat units within the chain. This rate was varied

over several orders of magnitude around the average Marcus theory rates for inter-

chain (external) hops, allowing the dependence of the diffusion constant on the intra-

molecular rate to be studied. In this approach, only by comparison to experimental

measurements of the charge mobility, could an internal transfer rate be estimated.

8.2.2 Estimating the Internal Transfer Rate

Using the IDT-BT morphology generated in section 8.1 and the associated transfer

integrals within the 6 Å nearest atom cut-off as determined by colleagues, a series

of calculations of the steady-state occupation probabilities of holes and the diffusion

constant were performed using the master-equation transfer matrix method described

in section 3.4.2. The site energies were approximated by a Gaussian distribution with a

width of σ = 33 meV and a reorganisation energy of λ = 0.25 eV taken from colleagues’

previous work [96, 106]. The sites were defined as the centre-of-mass of the repeat units

(when excluding the side-chains) and the hopping was modelled as occurring between

these points.

An internal (intra-chain) rate constant for hopping to neighbouring repeat units in

the chain, KI , was chosen and used for 100 sets of site energies taken from the speci-

fied Gaussian distribution. The steady-state was calculated by finding the eigenvalue

corresponding to an unchanging distribution of probability of occupancy and the dif-

fusion constant calculated. KI was then doubled and the same calculation performed.

This process continued until the timescales of the external and internal hops were too

disparate for the probabilistic transfer matrix method to operate - numerically the ex-

ternal rates became negligible and, in that time window of t = 1 fs, the probability of

transfer reached approximately 1. This complete transfer (max (Tij) ≈ 1) simulation

and associated D value was removed from the dataset.

The remaining values of the diffusion constant for a KI in the range of 0.001 and

524 ps−1 are shown in figure 8-5. For reference, the average Marcus transfer rate
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Figure 8-5: Diffusion constant for the IDT-BT system as a function of the internal rate
constant for transport between neighbouring repeat units within a polymer chain, KI .
The (external) hops between chains were calculated using quantum chemistry package,
ADF, by Joann Olivier at the University of Mons and incorporated the effects of the
relative positions and orientations of the monomers in neighbouring chains. The cut-
off radius for external hops was 6 Å between any atom in either monomer unit. This
calculation is performed for a transport assuming energetic barriers have no effect to
intra-chain charge transport and performed again assuming it has an Arrhenius-like
effect on the intra-chain transport rates.
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between chains was approximately 0.5 ps−1. It is when the KI reaches a similar value

that the diffusion constant becomes dominated by the internal hopping rate. At lower

values of KI , the transport is dominated by external hops with a diffusion constant

of approximately 18.89 ± 0.01 Å2 ps−1 if one assumes no perturbation to the internal

transport rate due to conformational changes altering the site energy, but as low as 2.7

± 2.0 Å ps−1 when an Arrhenius barrier to hopping intra-chain transport is assumed.

These two models produces values of D that appear to begin to converge as a low KI

increases towards KI ≈ 〈KMarcus〉, separate, and hold similar rates of increase towards

much greater values of KI , with the barrier-free transport producing diffusion constants

slightly less than double the barrier-hopping transport model.

It is worth once again emphasising that the transport models used here (barrier-free

and barrier-hopping hole transport) are not necessarily the correct models. It is likely

that they both make approximations which the physical picture does not possess. For

instance, it is unlikely that the transport rates are uniform throughout the film and

that some energetic disorder [96, 106], bending [106], break in conjugation [56] or

nuclear motion [9, 92] may occur and slow hole transport within a single polymer

chain. However, the other extreme of assuming charges are localised on a single repeat

unit and hop between chains with an Arrhenius-like barrier is probably an under-

estimate of the physical transfer rates between sections. A semi-band-like or more

quantum mechanical approach should be considered due to the low structural disorder

potentially enabling greater delocalisation of charges [9, 26, 11, 267]. I present these

two results as the likely extreme cases and with an expectation that the physically

representative diffusion constant and intra-molecular transport rate lie somewhere in

between.

One can, however, estimate the diffusion constant from experimental data, from which

one can then estimate the likely range of an effective intra-chain transport rate in a

given transport model. The Einstein-Smoluchowski relation provides the ratio between

the diffusion constant, D, and the charge mobility, µ and is given as

D = µkBT (8.1)

where kBT is the Boltzmann temperature which is ≈ 0.026 eV at 300 K. Using the

experimental measurement for mobility of 1.5 cm2 / V s [271, 267], this implies an

experimental diffusion constant of D ≈ 390 Å2 ps−1. Looking to figure 8-5, a diffusion

constant at this value occurs at a KI of approximately 0.83 ps−1 for the barrier-free

transport and 1.4 ps−1 for the Arrhenius-like hopping models. Unfortunately, results
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for the effective intra-chain transport rate or even the intra-chain charge mobility for

IDT-BT do not appear to be published in the literature to the author’s knowledge,

hindering comparison and evaluation of the approach taken here.

8.3 Summary

In this short chapter, the hole diffusion of IDT-BT was studied. After requiring random

displacements to be added to the SAMSEN structural model during compression, a

morphology of IDT-BT was created at 0.84 g/cm3. Calculating the transfer integrals

and using a Marcus theory description of transport between chains, the dependence

of the material diffusion constant upon the intra-chain transfer rates was assessed in

barrier-free and Arrhenius charge-hopping models.

The barrier-free intra-chain transport rate approach produces diffusion constants ap-

proximately two times greater than that of the localised hopping model in the regime

where intra-chain transport dominates. Comparing to experimental values of mobility

and inferring the experimental diffusion constant would suggest that, in an amorphous

IDT-BT system, the energetic disorder reduces the rate of intra-chain transport by up

to 0.6 ps−1 if the physical transport could be described as hopping. It is, however,

likely not a pure hopping model with Arrhenius rates that describes the physical re-

ality, nor a fully band-like disorder-free model either. Future work should consider

applying quantum mechanical methods or methods such as flexible surface hopping [9]

to calculate the intra-chain transport rates in this ‘disorder-free’ material.
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Chapter 9

Conclusion

9.1 SAMSEN

The model presented in chapter 3 and demonstrated with hard spheres in chapter 4

has some clear benefits for improving sampling and some undesirable drawbacks for

generating structures of organic semiconductors which should be discussed in closing.

9.1.1 The Structural and Dynamical Models

SAMSEN is a method which is very adept at taking high-density packings or amor-

phous systems and finding new configurations in different basins in the potential energy

landscape. The low-frequency modes are, indeed, highly collective pathways and there-

fore the structural hindrance to relaxation is limited, enabling computationally-fast

sampling of states. Using high-amplitude displacements and low-frequency modes, the

dynamical model within SAMSEN is able to propel the nodes in its elastic network

far away from their starting point such that, in as little as one or two mode displace-

ments, a structurally independent state can be achieved. After minimisation in a class

1 all-atom force-field such as OPLS [227] or the GAFF [121], a large sample of inherent

structures can be found using modest computational resources. In the case of PCBM

this was 720 CPU minutes per independent state, with a roughly even split between

time spent equilibrating the state in LAMMPS and finding a new state in SAMSEN.

The structural model of SAMSEN also plays a role. It limits the states that are

created by the low-frequency modes to those that are not extreme in energy (in a

Lennard-Jones potential) by enforcing collisions when atomic spheres reach a maximum
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overlap distance, the collision threshold χc. This restriction on the closest approach,

however, does not appear to interfere with the relaxation time (here the number of

cycles before positional decorrelation of molecules in the SAMSEN state occurs). The

collision condition, combined with the fitting condition, is able to approximately convey

the shape of the molecule and produce structures which are similar to that of the

minima in an OPLS force-field (in the case of PCBM). The fitting condition, where

no atoms can stray beyond mismatch threshold, χf , from their rigid section template

is able to constrain the bond lengths and angles within the rigid sections but also

between them, such that the molecular structure is maintained. In the case of P3HT,

the angular constraints and lack of dihedral angle constraints between repeat units

enabled behaviour captured in coarse-grained simulations such as head-tail flipping

and the associated bending in the polymer backbone.

Structures

Each of the SAMSEN structures produced have shown reduced structural features

compared to those in other published works. It was also common to find the peaks of

the g(r) to be at slightly smaller separations than in other data and even when compared

against the molecular dynamics simulations performed upon the minimised SAMSEN

states (we found this under constant NPT conditions, but later found it under constant

NVT conditions too). These structures are therefore only approximate representations

of those expected to be produced by a thermodynamic simulation with a class 1 force-

field and, instead, higher energy structures are found. Clearly the structural model,

which does not take into account the specific atomic environments (which alter forces)

and ignores electrostatics and does not sample thermodynamically, has its shortcomings

as a model for structure prediction. However, this loss in structure can be regained

by performing an MD simulation on the state afterwards. This is not ideal, but the

shortened simulation time in terms of maintaining an individual molecular structure

and not interfering with the dynamical model’s ability to generate a large sample of

independent states means this structural model brings great benefit.

Perhaps an interesting feature of the structural model is the proximity of the SAMSEN

states to the minimised states. The structural model appears to be able to capture

something about the shape of the molecules and, importantly, the excluded volumes of

the molecules. This appears to place the structures close to something representative

of the real energy landscape. As we saw on a large sample of PCBM states, these

configurations appear to be relatively high energy states which were approximately
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Gaussian distributed. It may be that, by only placing an upper limit on the energy

of overlap and separation and by preventing the sampling of the most extreme states

(high overlap, large bond stretches), we are not creating significant thermodynamic

bias and the sampling of states appears to reflect something close to the likely density

of states of the inherent structures. Of course, without knowing the density of states of

the minimised PCBM structures, this assertion can only be made weakly assuming the

central limit theorem and the fullerene-portion of the molecular structure dominates

the potential energy landscale and the density of states of inherent structures of PCBM

resembles the density of states of inherent structures of spheres.

Modes

The vibrational modes calculated using the harmonic approximation assuming the cur-

rent particle separations are the equilibrium separations is applicable in some circum-

stances: a dense amorphous packing of spheres considering only physical contacts. How-

ever, the highly collective motion that we used here was away from such a regime. By

increasing the interaction cut-off distance, the spectrum of vibrational modes changes.

In chapter 4 this method revealed a rigidity transition and, at higher cut-offs, a return

to fast dynamics and the appearance of bands of vibrational modes. These bands have

appeared in all simulations with a sufficiently large value of α.

Studying the collective dynamics of the vibrational modes through measures such as

the participation ratio, the average local dot product and the phase quotient, it was

established that the lowest frequency modes are the most collective and between bands

this collectivity can significantly reduce. Computationally, the fastest structural relax-

ations occured when following the lowest band of modes and this was identified as the

optimal choice for efficiently generating a series of independent structures. Across each

range of modes studied, the self-intermediate scattering function followed a one-step

exponential decay indicating that they did not suffer from structural arrest which we

attributed to the high collectivity of the low frequency modes. This high collectivity

and sampling efficiency was found to be true for spheres using radial cut-offs but also

for small molecules, with the interactions determined by ellipsoid intercepts, and with

small molecules broken into rigid sections, each with their own enclosing ellipsoids.
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9.1.2 Spheres, Jamming and the Vibrational Modes

Looking at the approximately hard-sphere glass structures produced in chapter 4, it

would appear that the SAMSEN structural model is able to find dense, highly-packed

states, in this case, approaching jamming through athermal compression alone. As we

saw later when studying small molecules, the SAMSEN structures appear similar to

those of quenched states. We then used this fact as our starting point for the study of

the vibrations.

Creating an elastic network of relaxed harmonic springs with equal spring constant

between neighbouring spheres, the vibrational modes of the sphere system were studied

during compression up to the maximum achievable density. During this compression

the timescale of the vibrational modes altered significantly, slowing down as density

was increased, finding an inflection point at the Maxwell criterion for rigity, and, if α

was set to values greater than unity, the dynamics were then found to speed up again

at higher densities. At this point, the vibrational modes split into distinct bands. By

altering α the occurance of these bands and the packing fraction at which mechanical

rigidity was achieved could also be altered. This allows us to both ensure that we can

find a region where bands exist by varying α and also to estimate the the maximum

packing fraction SAMSEN can achieve (representing the α→ 1 limit) which was found

to be φ = 0.63 which is on the upper end of the suspected range of Kauzmann densities

and just below the jamming density predicted by others.

Another benefit of changing α was that it allowed us to find the more collective modes.

The soft-modes around the boson peak were not found to be highly collective and were

potentially more localised. By moving to higher α, these soft/excess modes, usually

found near mechanical stability, could be avoided and the highly collective modes where

the bands emerge could then be used in the dynamical model. The lowest-frequency

vibrational band were found to have the most collective mode displacements and, when

moving the densely packed spheres along them, were found to produce the fastest

structural relaxation. The rate of structural relaxation could also be increased by

increasing the maximum amplitude of displacement through ε.

Conventiently, changing ω and ε was found to have little-to-no effect on the measures

of the structure such as the radial distribution function g(r). Conversely, changing

the parameters of the structural model, χc was also found to have little-to-no effect

on the rate at which the dynamical model allowed the system to undergo structural

relaxation. The modes were unchanging in frequency as χc (and therefore the maximum

overlap of the spheres) was modified. During this variation, it was observed that the
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distribution of overlaps was Maxwell-Boltzmann distributed and the average overlap

and the implied temperature of the system) could be linearly controlled for χc in the

range of 0.001 to 0.4 times the sphere radius. This separation in structural temperature

and dynamical temperature allowed us to exploit the rapid structural relaxation of the

low-frequency modes without changing our approximation of the strucutres of spheres,

small molecules and polymers.

9.2 Small Molecules

9.2.1 C60, α-NPD and PCBM

Knowing the response of the SAMSEN structural and dynamical models to changing

the parameters, φ, α, ω, ε, χ, we proceeded to apply the model to small systems of

semiconducting small molecules. Using C60 as a sphere-like case study, we compressed

the system and, as the density increased, saw that the mode response was similar to the

spheres with a slowing down, an inflection at stability, and an increase in the frequencies

at higher densities, with the appearance of bands of modes possessing similar structure.

We found computationally quick structural relaxation that could be controlled by ω and

ε without altering the measured structure of the morphology and again demonstrated

the benefit of using the collective modes. The structure of C60 states generated was

highly amorphous —extirely lacking in the multiple peaks in the g(r) that would be

expected for this usually crystalline material.

OLED material, α-NPD, was then studied in three different rigid section groupings

designed to allow us to inspect the effect of increasing the internal degrees of freedom

and assess the impact of turning off control of the dihedral angles. A range of radial

distributions measured between different pairs of points within the molecular structure

was produced in 5-7. These showed that dihedral angle control has a strong impact on

the structure throughout the system and that, in the case of α-NPD, determination of

which sections are rigid requires more than simple bonding information. Each of the

structures failed to reproduce certain details and it appears that the 8-body model,

the most free (and closest to the method of 3.1.3), with alterations such as the merger

of the anime-centres and the napthyl groups, may be the closest representation of the

freedoms within α-NPD.

Energetic methods such as FIRST or analysis of force-fields inferred from DFT simu-

lation are methods worth exploring to determine which sections are rigid. It may also
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be wise to consider limiting the dihedral motion through dihedral templates. Both of

these approaches would allow SAMSEN to better represent the likely states in which

one may expect to find α-NPD at a given temperature. However, to create an accu-

rate measure of structure, a thermodynamic bias will need to be introduced into the

simulation at some point.

Considering PCBM as a single rigid section, a series of morphologies were created

through structural relaxation enabled by the dynamical model and used as inputs for

conjugant-gradient minimisation and molecular dynamics simulations in an OPLS all-

atom force-field. Comparison was made between all three as well as the work of Cheung

& Troisi’s (2010) and it was found the MD simulation recreated their structure. The

comparison between the SAMSEN structures was more interesting, however. It ap-

peared that the SAMSEN states lacked some of the structure (such as the repulsive

region after the nearest neighbour peak in the fullerene-fullerene radial distribution

function) and the nearest neighbour separations for the fullerene cages were at higher

separations. However, in comparison to the minimised structures, there was very little

difference observed in terms of the centre-to-centre and fullerene-to-fullerene g(r). The

only change observed during minimisation was due to the single rigid section approxi-

mation, which prevented the broadening of the phenyl-phenyl structural features.

9.2.2 Minimisation, Potenial Energies and the Diffusion Constant

The minimisation of the SAMSEN PCBM states in an OPLA-AA force field revealed

the similarity in structure of the SAMSEN states and those of the minimised states.

However, it also showed that the minimisation did not reproduce the the sharper struc-

tural features of the MD simulation, as one might expect, and therefore raised a question

about what the distribution of SAMSEN minimised states represented.

Performing a series of simulations from 25 random initial configurations and obtaining

states separated by at least one characteristic structural relaxation time, a distribution

of 1469 SAMSEN PCBM states were obtained. Minimising these states, a broad distri-

bution of potential minima were obtained (some of which were duplicates). However,

performing an MD simulation under NVT conditions and performing a subsequent min-

imisation showed that the distribution of SAMSEN minima was not the equilibrium

distribution and instead represented a higher energy set of minima than those found

from the MD simulation. Looking in detail at the structures, the low energy end of the

distribution represented larger separations in the nearest neighbour peak than the high

energy end of the distribution, explaining why the SAMSEN states did not accurately
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reproduce the MD or Cheung & Troisi measurements.

It was noteworthy that the distribution of SAMSEN minima was of near-Gaussian shape

as this may represent a distribution with very low thermodynamic bias (the density

of states for Lennard-Jones spheres is Gaussian and the central limit theorem plays a

significant role). That the MD states (having been created from the SAMSEN minima)

managed to recreate the Cheung & Troisi structures may suggest that the distribution

is indeed of very low bias or that the low-energy amorphous structures are similar. It

may also suggest that the SAMSEN minima were generally very shallow basins, with

small barriers to escape into other configurational basins that could be achieved by the

short MD simulation. All of these points may suggest that SAMSEN is a useful tool for

sampling non-equilibrium states of organic semiconductors or creating an equilibrium

distribution of states by performing a short MD simulation on the SAMSEN states.

For those interested in organic semiconductors, studying the charge transport prop-

erties of a material is quintessential. Using the large sample of SAMSEN minimised

states, as well as the minimsed MD states, the electron diffusion constant was de-

termined for each configuration using a Miller-Abrahams hopping model in a master

equation transfer matrix approach. Across all states in the sampled regions of the po-

tential energy landscape, it was found that the diffusion constant was almost entirely

unaffected by the potential or the structure, of the minimised states.

This raises some important questions. Are charge transport properties such as the diffu-

sion constant really independent of the potential and small scale changes in separation

or is a more quantum-mechanically accurate model required? In this particular case, is

the energetic Gaussian disorder model in the charge transport model dominating the

results (as it might be expected to [45]) such that the structural variation has little

effect or, in a system where electron transport is expected to be semi-band-like has the

structural variation been under-represented by the transport model? An investigation

into the change in electron delocalisation length or effective mass across the poten-

tial energy landscape should be considered where practical. Other approaches such as

using quantum-chemistry packages ADF [90] or VOTCA [89] to calculate the LUMO

energies, transfer integrals and charge transport simulation, still in a hopping model,

may be able to provide additional insight into properties such as the energetic disorder

for different states in the energy landscape and higher accuracy diffusion constants. It

would also be interesting to see if other properties such as the charge mobility show a

different response.
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9.3 Polymers

9.3.1 Structure and Vibrational Modes in P3HT-PCBM Blends

Turning our attention to polymers, SAMSEN was applied to systems of P3HT and

P3HT-PCBM blends to further test the structural and dynamical model, drawing

comparisons to coarse-grained and fully-atomistic molecular dynamics simulations and

experimental measurements.

Frustration of P3HT

Morphologies of P3HT were generated using the now-established simulation parame-

ters at seven different mixing ratios, all achieving structural relaxation of the thiophene

backbone within one cycle. The structures produced were once again amorphous, show-

ing very few features in structural measurements and showing no sign of clustering or

phase separation of the particles. Structural measurements were mostly dominated by

structure internal to the polymer and were characterised by short persistence lengths

of the polymer chains, with systems having higher PCBM concentrations showing in-

creased persistence of the P3HT backbone and all showing a slight preference for face-

to-face alignment of the thiophene ring to the fullerene cages.

Calculating the collective properties of the thiophene units within the vibrational

modes, it was found there was no difference in angular or phase collectivity as PCBM

mixing ratio was increased and only absolute changes to the mode participation, with

the thiophene rigid sections receiving proportionally the same amount of mode dis-

placement. This explains the similarity in relaxation rate (in terms of the number of

SAMSEN cycles) between the simulations. The only difference between the vibrational

modes were in the frequencies themselves, which shifted to lower frequencies as the

concentration of PCBM increased, as was also reported in quasi-elastic neutron scat-

tering experiments [118]. However, seeing no changes to the strength of the alignment

of thiophene finds to fullerene cages, the data presented here does not suggest that

wrapping around the PCBM causes frustration of the P3HT backbone. Instead these

simulations would suggest that an increased persistence and an increased density are

the only causes of the change in timescale of the relaxation of the P3HT backbone.
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9.3.2 P3HT as Amorphous, Crystalline and Nanoparticle Morpholo-

gies

Looking further at the structure of SAMSEN P3HT morphologies, an X-ray diffrac-

tion pattern was generated for an amorphous morphology in periodic boundary con-

ditions, an amorphous nanoparticle-like morphology (generated by applying a central

compression force without periodic boundaries), and a zero-temperature crystal struc-

ture generated using the DFT-optimised structure and XRD measurements of P3HT

nanoparticles. Experimental nanoparticle XRD patterns, for nanoparticles of varying

size, were measured while the nanoparticles were suspended in water which introduced

some error into the series of measurements. The SAMSEN structures were indeed

highly disordered, lacking the π − π and lamella stacking peaks. However, by using a

genetic algorithm to find optimal mixing ratios of the amorphous and crystalline struc-

tures, an estimate was made of the crystallinity of the P3HT nanoparticles which was

in the region of expected values [244]. The size of the P3HT nanoparticles appeared to

do little to change the crystallinity in this analysis.

Exciton Diffusion in P3HT

Studying exciton transport in amorphous and crystalline P3HT through a transfer ma-

trix approach and considering the orientation of the dipoles, it would appear that this

model does not sufficiently capture the physics within the material and therefore pro-

duces too low an exciton diffusion length to explain the high dissociation efficiency in

P3HT nanoparticles. The amorphous system produced a diffusion length of 8.8 nm (as

calibrated) and a crystalline system with a diffusion length of 11.7 nm in a dynamic

dipole approximation and 33.7 nm in a fully alligned static dipole simulation. This

is approximately 16.3 nm short of the expected result based upon previous work by

Holmes et al. [18]. This would suggest that other behaviour such as faster transport

within a polymer chain (this was observed in the Förster model, but it is clearly insuf-

ficient) or delocalisation between chains (caused by the π−π stacking in the crystalline

and semi-crystalline phases [266]) should be included in further simulations.

To improve the transport calculations and to try and understand the high diffusion

length in the P3HT nanoparticles there are some steps which could be taken in subse-

quent simulations. The, perhaps most difficult, would be to generate a P3HT structure

that represents that of the real nanoparticle. This would mean a system large enough

to capture the size of the crystalline domains, with the minimum size inferred from
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the XRD data (using the Scherrer equation) and to also capture the semi-crystalline

and amorphous domains in between. The morphology should have a crystalline-to-

amorphous ratio similar to the one presented here, using paracrystallinity as a proxy

or performing structure factor or diffraction pattern calculations to confirm. Producing

a system such as this and on this size is only practical in a coarse-grained MD sim-

ulation, still requiring access to supercomputer or other high-performance computing

facilities. With this representative system (or systems) an exciton transport calculation

should then be performed which takes into account the delocalisation of the exciton

—a point-to-point resonance transfer model will be insufficient, as demonstrated here

for the fully aligned crystal.

9.3.3 IDT-BT

The molecular structure of IDT-BT represents an interesting problem for SAMSEN

due to its high dihedral and angular potentials between repeat units and the presence

of its extended side chains. It also represents a practical problem, as the number of

succesful attempts at reaching the chosen density (achieved by MD) was very low, as

was shown in figure 8-3 and instead a distribution of densities was produced. It would

be worthwhile remeasuring this density in larger MD simulations using a general force

field or determining an experimental density, but if 0.84 g/cm3 is an accurate value

then some modifications to the structural model (already mentioned) may need to be

performed so that this density can be reliably achieved.

Remarks on SAMSEN

From inspection of the measurement of collisions and the mismatches, it would appear

that the simulation was very much dominated by high mismatches and required a great

effort to maintain them. This may suggest that, for this polymer at least, the dihedral

forces may need to be represented within the structural model. This could be achieved

with a new set of templates that span the bond and second neighbour bonds between

the IDT and BT units within and between repeat units. The maximum displacement

away from these new templates would need to be determined by picking an energy

cut-off and, as before, calculating the maximum displacement that corresponds to a

change in dihedral angle. A similar correction/minimisation procedure to the other

used in the fitting correction could be applied. A new structural parameter, χd, may

need to be chosen if the value of χf is inappropriate.
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The length of the side chains also causes some problems for the dynamical model.

Calculation of the vibrational modes in the current implementation uses a sparse matrix

representation which is then expanded to a dense representation for the solve. This

behaviour is suboptimal as it begins to limit the number of rigid sections that can be

included in the elastic network, as discussed in chapter 3. It may be beneficial therefore,

to find a new method or a new implementation of the diagonalisation with less memory

requirements for calculating the eigenmodes as has been suggested in previous chapters.

This will also help extend the length of polymers and increase the system sizes that

can be simulated under this method.

Remarks on Charge Transport Modelling

In chapter 8 it was suggested that a characteristic rate constant for charge transport

processes within the IDT-BT polymer chains may be approximately 0.83 ps−1, with a

larger rate constant (1.4 ps−1) if energetic disorder is assumed to have an Arrhenius

effect. However, assuming a localised hopping model within a polymer (and such a

low-disorder polymer as IDT-BT at that) may be a poor way of representing transport

and charge delocalisation within chains. As we saw with P3HT, this approach also is

a poor representation of delocalisation between chains. We also saw in chapter 7 that

Förster resonance transfer, even assuming fully aligned dipoles in a crystal, was unable

to produce the large exciton diffusion lengths inferred from experimental work and, in

chapter 5, it was found that the electron diffusion coefficient was insensitive to changes

in PCBM morphologies in both non-equilibirium and low energy states. Throughout

this work it would therefore appear that not considering delocalisation and employing

the commonly used hopping transport processes under a Gaussian disorder model was

an insufficient approach to modelling charge transport.

Instead one should consider using a more detailed approach for charge/exciton trans-

port throughout organic semiconductor materials. At the very least, a Marcus type

approach with transfer integrals and site energies calculated from quantum-chemistry

calculations should be used where delocalisation is small. In instances where this is

still inappropriate, other methods such as the flexible surface hopping are designed to

capture the delocalisation of charges within polymers and subsequent transport [9].

Similarly the work of Fornari et al. [11, 87] attempts to capture the effect of the tor-

sional angles on the localisation and movement of charges within chains. It may also

be useful to consider the effect of nuclear motion on the charge transport dynamics as

was performed by Troisi et al. [26] and in nonadiabatic methods [92].
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D. Marsitsky, and K. Müllen. Effects of aggregation on the excitation transfer in

perylene-end-capped polyindenofluorene studied by time-resolved photolumines-

cence spectroscopy. Phys. Rev. B, 64:195203, 2001.

[85] Hannah J. Eggimann, Florian Le Roux, and Laura M. Herz. How -phase con-

tent moderates chain conjugation and energy transfer in polyfluorene films. The

Journal of Physical Chemistry Letters, 10(8):1729–1736, 2019. PMID: 30900449.

[86] E.N. Wright. Modelling Charge and Energy Transport in Organic Devices. (The-

sis) University of Bath, 2014.

[87] Rocco P. Fornari and Alessandro Troisi. Narrower bands with better charge trans-

port: The counterintuitive behavior of semiconducting copolymers. Advanced

Materials, 26(45):7627–7631, 2014.

[88] Haoyuan Li and Jean-Luc Bredas. Modeling of actual-size organic electronic

devices from efficient molecular-scale simulations. Advanced Functional Materials,

28(29):1801460, 2018.

[89] Victor Rühle, Christoph Junghans, Alexander Lukyanov, Kurt Kremer, and De-

nis Andrienko. Versatile Object-Oriented toolkit for Coarse-Graining applica-

tions. Journal of Chemical Theory and Computation, 5(12):3211–3223, 2009.

[90] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A.

van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with adf. J. Comput.

Chem., 22(9):931–967, 2001.

[91] Veaceslav Coropceanu, Jrme Cornil, Demetrio A. da Silva Filho, Yoann Olivier,

Robert Silbey, and Jean-Luc Brdas. Charge transport in organic semiconductors.

Chemical Reviews, 107(4):926–952, 2007. PMID: 17378615.

217



[92] Timothy Clark. Simulating charge transport in flexible systems. Perspectives in

Science, 6:58 – 65, 2015. Proceedings of the Beilstein Bozen Symposium 2014

Chemistry and Time.

[93] Reinder Coehoorn, Harm van Eersel, Peter Bobbert, and Ren Janssen. Kinetic

monte carlo study of the sensitivity of oled efficiency and lifetime to materials

parameters. Advanced Functional Materials, 25(13):2024–2037, 2015.

[94] K. Feron, X. Zhou, W. J. Belcher, and P. C. Dastoor. Exciton transport in organic

semiconductors: Frster resonance energy transfer compared with a simple random

walk. Journal of Applied Physics, 111(4):044510, 2012.

[95] H. Bssler. Charge transport in disordered organic photoconductors a monte carlo

simulation study. physica status solidi (b), 175(1):15–56, 1993.

[96] Tudor H. Thomas, David J. Harkin, Alexander J. Gillett, Vincent Lemaur, Mark

Nikolka, Aditya Sadhanala, Johannes M. Richter, John Armitage, Hu Chen, Iain

McCulloch, S. Matthew Menke, Yoann Olivier, David Beljonne, and Henning

Sirringhaus. Short contacts between chains enhancing luminescence quantum

yields and carrier mobilities in conjugated copolymers. Nature Communications,

10(1):2614, 2019.

[97] J. J.M. Van Der Holst, F. W.A. Van Oost, R. Coehoorn, and P. A. Bobbert.

Electron-hole recombination in disordered organic semiconductors: Validity of

the Langevin formula. Phys. Rev. B - Condensed Matter and Materials Physics,

80(23):1–8, 2009.

[98] Yu. N. Gartstein and E. M. Conwell. High-field hopping mobility in molecular

systems with spatially correlated energetic disorder. Chemical Physics Letters,

245(4):351–358, 1995.

[99] M. Bouhassoune, S. L. M. van Mensfoort, P. A. Bobbert, and R. Coehoorn.

Carrier-density and field-dependent charge-carrier mobility in organic semicon-

ductors with correlated gaussian disorder. Organic Electronics, 10(3):437–445,

2009.

[100] Yifan Zheng, Jaemin Kong, Di Huang, Wei Shi, Lyndsey McMillon-Brown,

Howard E. Katz, Junsheng Yu, and Andr D. Taylor. Spray coating of the PCBM

electron transport layer significantly improves the efficiency of p-i-n planar per-

ovskite solar cells. Nanoscale, 10:11342–11348, 2018.

218



[101] Tracey M. Clarke, Amy M. Ballantyne, Jenny Nelson, Donal D. C. Bradley, and

James R. Durrant. Free energy control of charge photogeneration in polythio-

phene/fullerene solar cells: The influence of thermal annealing on P3HT/PCBM

blends. Advanced Functional Materials, 18(24):4029–4035, 2008.

[102] Tom J. Savenije, Jessica E. Kroeze, Xiaoniu Yang, and Joachim Loos. The

formation of crystalline P3HT fibrils upon annealing of a PCBM:P3HT bulk

heterojunction. Thin Solid Films, 511-512:2 – 6, 2006. EMSR 2005 - Proceedings

of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics.

[103] C. A. Otlora, A. F. Loaiza, and G. Gordillo. Influence of solvent on the molecular

ordering of thin films of P3HT:PCBM blends and precursor solution. In 2014

IEEE 40th Photovoltaic Specialist Conference (PVSC), pages 1754–1757, 2014.

[104] Y.-M. Lu, C.-H. Chiang, and S. Lien-Chung Hsu. The performance of polymer so-

lar cells based on P3HT:PCBM after post-annealing and adding titanium dioxide

nanoparticles. Materials Research Innovations, 18(sup3):S3–102–S3–105, 2014.

[105] David E. Motaung, Gerald F. Malgas, Steven S. Nkosi, Gugu H. Mhlongo,

Bonex W. Mwakikunga, Thomas Malwela, Christopher J. Arendse, Theophillus

F. G. Muller, and Franscious R. Cummings. Comparative study: the effect of an-

nealing conditions on the properties of P3HT:PCBM blends. Journal of Materials

Science, 48(4):1763–1778, 2013.

[106] Deepak Venkateshvaran, Mark Nikolka, Aditya Sadhanala, Vincent Lemaur, Ma-

teusz Zelazny, Michal Kepa, Michael Hurhangee, Auke Jisk Kronemeijer, Vin-

cenzo Pecunia, Iyad Nasrallah, Igor Romanov, Katharina Broch, Iain McCulloch,

David Emin, Yoann Olivier, Jerome Cornil, David Beljonne, and Henning Sirring-

haus. Approaching disorder-free transport in high-mobility conjugated polymers.

Nature, 515:384–388, 2014.

[107] M. R. Stalker, J. Grant, C. W. Yong, L. A. Ohene-Yeboah, T. J. Mays, and S. C.

Parker. Molecular simulation of hydrogen storage and transport in cellulose.

Molecular Simulation, 2019.

[108] Daniel J. Cosgrove. Growth of the plant cell wall. Nature Reviews Molecular Cell

Biology, 6(11):850–861, 2005.

[109] David M. Huang, Roland Faller, Khanh Do, and Adam J. Moule. Coarse-grained

computer simulations of polymer/fullerene bulk heterojunctions for organic pho-

tovoltaic applications. J. Chem. Theory Comput., 6(2):526–537, 2010.

219



[110] Rodrigo Noriega, Jonathan Rivnay, Koen Vandewal, Felix P V Koch, Natalie

Stingelin, Paul Smith, Michael F. Toney, and Alberto Salleo. A general relation-

ship between disorder, aggregation and charge transport in conjugated polymers.

Nat. Mater., 12(11):1038–1044, 2013.

[111] Ilhan Yavuz, Blanton N. Martin, Jiyong Park, and K. N. Houk. Theoreti-

cal study of the molecular ordering, paracrystallinity, and charge mobilities of

oligomers in different crystalline phases. Journal of the American Chemical So-

ciety, 137(8):2856–2866, 2015. PMID: 25658235.

[112] A M Hindeleh and R Hosemann. Paracrystals representing the physical state of

matter. Journal of Physics C: Solid State Physics, 21(23):4155–4170, 1988.

[113] M. L. Jones, D. M. Huang, B. Chakrabarti, and Chris Groves. Relating molecular

morphology to charge mobility in semicrystalline conjugated polymers. J. Phys.

Chem. C, 120(8):4240–4250, 2016.

[114] Samuel E. Root, Nicholas E. Jackson, Suchol Savagatrup, Gaurav Arya, and Dar-

ren J. Lipomi. Modelling the morphology and thermomechanical behaviour of

low-bandgap conjugated polymers and bulk heterojunction films. Energy Envi-

ron. Sci., 10(2):558–569, 2017.

[115] Stavros Athanasopoulos, Evguenia V. Emelianova, Alison B. Walker, and David

Beljonne. Exciton diffusion in energetically disordered organic materials. Phys.

Rev. B, 80:195209, 2009.

[116] Matthew L. Jones. Examining the Links Between Organic Photovoltaic Operation

and Complex Morphological Structures. Durham University, 2015.

[117] Ian R. Thompson, Mary K. Coe, Alison B. Walker, Matteo Ricci, Otello M.

Roscioni, and Claudio Zannoni. Microscopic origins of charge transport in triph-

enylene systems. Phys. Rev. Materials, 2:064601, 2018.

[118] Anne A.Y. Guilbert, Mohamed Zbiri, Alan D.F. Dunbar, and Jenny Nelson.

Quantitative Analysis of the Molecular Dynamics of P3HT:PCBM Bulk Hetero-

junction. J. Phys. Chem. B, 121(38):9073–9080, 2017.

[119] Pascal Friederich, Vadim Rodin, Florian Von Wrochem, and Wolfgang Wenzel.

Built-in potentials induced by molecular order in amorphous organic thin films.

ACS Appl. Mater. Interfaces, 10(2):1881–1887, 2018.

220



[120] Tobias Neumann, Denis Danilov, Christian Lennartz, and Wolfgang Wenzel.

Modeling disordered morphologies in organic semiconductors. J. Comput. Chem.,

34(31):2716–2725, 2013.

[121] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and

David A. Case. Development and testing of a general amber force field. Journal

of Computational Chemistry, 25(9):1157–1174, 2004.

[122] Naga Rajesh Tummala, Christopher Bruner, Chad Risko, Jean Luc Brédas, and

Reinhold H. Dauskardt. Molecular-scale understanding of cohesion and fracture

in P3HT:Fullerene blends. ACS Appl. Mater. Interfaces, 7(18):9957–9964, 2015.

[123] Monika Williams, Naga Rajesh Tummala, Saadullah G. Aziz, Chad Risko, and

Jean Luc Brédas. Influence of molecular shape on solid-state packing in disordered

PC61BM and PC71BM fullerenes. J. Phys. Chem. Letters, 5(19):3427–3433,

2014.

[124] Roland Faller. Automatic coarse graining of polymers. Polymer, 45(11):3869 –

3876, 2004.

[125] A.R. Leach. Molecular Modelling: Principles and Applications. Prentice Hall,

2001.

[126] Robert E. Rudd and Jeremy Q. Broughton. Coarse-grained molecular dynamics

and the atomic limit of finite elements. Phys. Rev. B, 58:R5893–R5896, 1998.

[127] John Tinsley Oden, Kathryn Farrell, and Danial Faghihi. Estimation of error in

observables of coarse-grained models of atomic systems. Advanced Modeling and

Simulation in Engineering Sciences, 2(1):5, 2015.

[128] Frank H. Stillinger and Thomas A. Weber. Inherent structure theory of liquids in

the hardsphere limit. The Journal of Chemical Physics, 83(9):4767–4775, 1985.

[129] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms

to Applications. Academic Press, 1996.

[130] Pablo G. Debenedetti and Frank H. Stillinger. Supercooled liquids and the glass

transition. Nature, 410(6825):259–267, 2001.

[131] Kurt Binder and Walter Kob. Glassy Materials and Disordered Solids. World

Scientific, revised edition, 2011.

221



[132] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel. Jamming at zero tem-

perature and zero applied stress: the epitome of disorder. Phys. Rev. E, 68:1–19,

2003.

[133] Jun Zhao, Ann Swinnen, Guy Van Assche, Jean Manca, Dirk Vanderzande, and

Bruno Van Mele. Phase diagram of P3HT:PCBM blends and its implication for

the stability of morphology. J. Phys. Chem. A, 113:1587–1591, 2009.

[134] Trinh Tung Ngo, Duc Nghia Nguyen, and Van Tuyen Nguyen. Glass transition

of PCBM, P3HT and their blends in quenched state. Adv. Nat. Sci: Nanosci.

Nanotechnol., 3(4):045001, 2012.

[135] Christian Mller. On the glass transition of polymer semiconductors and its impact

on polymer solar cell stability. Chemistry of Materials, 27(8):2740–2754, 2015.

[136] Diane M. Walters, Lucas Antony, Juan J. de Pablo, and M. D. Ediger. Influence

of molecular shape on the thermal stability and molecular orientation of vapor-

deposited organic semiconductors. The Journal of Physical Chemistry Letters,

8(14):3380–3386, 2017. PMID: 28677392.

[137] Shakeel S. Dalal, Diane M. Walters, Ivan Lyubimov, Juan J. de Pablo, and

M. D. Ediger. Tunable molecular orientation and elevated thermal stability of

vapor-deposited organic semiconductors. Proceedings of the National Academy of

Sciences, 112(14):4227–4232, 2015.

[138] Frank H. Stillinger and Thomas A. Weber. Packing structures and transitions in

liquids and solids. Science, 225(4666):983–989, 1984.

[139] Frank H. Stillinger and Thomas A. Weber. Hidden structure in liquids. Phys.

Rev. A, 25(2):978–989, 1982.

[140] Frank H. Stillinger. A topographic view of supercooled liquids and glass forma-

tion. Science, 267(5206):1935–1939, 1995.

[141] Sai Manoj Gali, Gabriele DAvino, Philippe Aurel, Guangchao Han, Yuanping Yi,

Theodoros A. Papadopoulos, Veaceslav Coropceanu, Jean-Luc Brdas, Georges

Hadziioannou, Claudio Zannoni, and Luca Muccioli. Energetic fluctuations in

amorphous semiconducting polymers: Impact on charge-carrier mobility. The

Journal of Chemical Physics, 147(13):134904, 2017.

222



[142] Stefan Goedecker. Minima hopping: An efficient search method for the global

minimum of the potential energy surface of complex molecular systems. The

Journal of Chemical Physics, 120(21):9911–9917, 2004.

[143] Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceed-

ings of the National Academy of Sciences, 99(20):12562–12566, 2002.

[144] Andrea Ninarello, Ludovic Berthier, and Daniele Coslovich. Models and algo-

rithms for the next generation of glass transition studies. Phys. Rev. X, 7:021039,

2017.

[145] Tomás S. Grigera and Giorgio Parisi. Fast monte carlo algorithm for supercooled

soft spheres. Phys. Rev. E, 63:045102, 2001.

[146] B Brooks and M Karplus. Harmonic dynamics of proteins: normal modes and

fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A.,

80(21):6571–6575, 1983.

[147] A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and

I. Bahar. Anisotropy of fluctuation dynamics of proteins with an elastic network

model. Biophys. J., 80(1):505–515, 2001.

[148] Stephen Wells, Scott Menor, Brandon Hespenheide, and M. F. Thorpe. Con-

strained geometric simulation of diffusive motion in proteins. Phys. Biol.,

2(4):S127–S136, 2005.
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