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Abstract

Cells are the fundamental units of life and, as such, the most simple entities for which

we can meaningfully talk about behaviour. All living creatures, including humans, can

be considered the result of the behaviour of a group of cells and their interactions.

Some cellular behaviours play more central roles than others. For example, cell mi-

gration and cell division constitute the main driving forces of many homeostatic and

pathological processes in human body. Elucidating the role of a specific cell behaviour

on the emergence of a biological phenomenon is a fundamental step for many med-

ical interventions. Despite the great experimental advances of the past century, we

are still lacking a full understanding of how complex biological processes, such as the

development of a multicellular organism, arise from the interactions of significantly

simpler entities - cells. In this context, multiscale mathematical modelling represents

a powerful assistive tool which, by employing a combination of discrete and continuum

approaches, provides a theoretical framework to bridge between the microscopic and

macroscopic dynamics of the cell population.

The goal of this thesis is to elucidate some complex dynamics driven by cell migra-

tion and proliferation. Throughout the work we will make systematic use of multiscale

modelling. We will introduce a series of stochastic and deterministic models describing

cell migration and proliferation with increasing levels of realism. By exploiting the

mutual benefits o↵ered by these di↵erent paradigms, we will develop an equivalence

framework which allows the connection of microscopic cellular properties with the dy-

namics of the total population. In particular, the first part of this study will focus on

the interaction between the phenomena of directional persistence with excluding prop-

erties and on the spatial correlation that emerges from their interplay. In the second

part, we will explore the role of stochastic cell proliferation in the context of an invading

cellular front and its importance when interpreting experimental observations.



Contents

1 Introduction 1

1.1 Summary of original papers . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A note on the thesis format . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Stochastic and deterministic modelling of cell migration 4

2.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Modelling persistence of motion in a crowded environment: The dif-

fusive limit of excluding velocity-jump processes 62

3.1 Outline of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Pair correlation functions for identifying spatial correlation in discrete

domains 84

4.1 Outline of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 The invasion speed of cell migration models with realistic cell cycle

time distributions 116

5.1 Outline of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Synchronised oscillations in growing cell populations are explained by

demographic noise 129

6.1 Outline of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Final Conclusions and Outlook 150

7.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Chapter 1

Introduction

In many fields of biology, complex behaviours arise at the macro-scale as a result

of many simple interactions at the micro-scale. Examples of these phenomena are

ubiquitous in biological science, ranging from cell biology [Erban and Othmer, 2004,

Baker et al., 2010, Yates et al., 2012] to animal behaviour [Couzin et al., 2002, Couzin,

2009, Yates et al., 2009, Berdahl et al., 2018]. The macroscopic level represents the

level emergent phenomena manifest and, normally, the main object of interest is either

to predict, or control, the occurrence of the event (e.g. tumour invasion [Sherratt and

Chaplain, 2001], embryogenesis [Simpson et al., 2007, Mort et al., 2016], pest infestation

[Yates et al., 2009]). The microscopic level describes the fundamental principles of the

phenomenon and it often represents the level at which interventions can be made.

Among all the examples of complex behaviours observed in nature, those which take

place at the cell level are of particular interest to me and have been the main object of

the research during my PhD. There are several reasons why studying cell behaviour is

important. The most evident are related to medical applications [McLean et al., 2005,

Beltman et al., 2009]. Indeed a wide variety of human processes can be studied as

collective cellular phenomena (morphogenesis [Keller, 2005, Mort et al., 2016], wound

healing [Deng et al., 2006, Maini et al., 2004], tumour growth [Hanahan and Weinberg,

2000, Haass et al., 2014]).

However, there is another, often overlooked, motivation for studying these mecha-

nisms: their intrinsic simplicity. Single cells, as the building blocks of life, are simpler

than any other living organism (birds, fish, locusts, etc), but at the same time they

represent the minimal living units for which we can meaningfully talk about behaviour.

Therefore, multi-scale cellular behaviour represents one of the real frontiers between

physics and biology, where active matter becomes a living system. As such, it is a

field in which we can ask and answer fundamental questions about the basic principles

underlying complex behaviours.

A crucial step in the understanding of complex cellular behaviour consists of linking

the microscopic level of the individual cell with the macroscopic level of the whole pop-

ulation. This potentially allows us to explain the emergence of global events in terms of

individual cell properties and, hence, to point out the main cellular mechanisms driving

a particular biological phenomenon. In this context, mathematical modelling plays a

central role for hypothesis formulation and data analysis. In particular, employing a

multiscale modelling approach, which combines two, or more, levels of representation

has became more and more popular in the past few decades [Othmer et al., 1988, Keller

and Segel, 1971, Bodnar and Velazquez, 2005, Simpson et al., 2009].

The aim of my research is to improve the understanding of multi-scale phenomena

1



in cell populations with particular focus on the process of cell migration. During my

studies I concentrated on two aspects of cell behaviour which together represent the

main driving forces of cell invasion: cell motility and cell proliferation. Specifically,

in the first part of my PhD I studied the role of cell directional persistence and its

interplay with volume exclusion properties. Motivated by my findings in this, I also

invested some time investigating methods for quantifying spatial correlation in discrete

domains. In the second part of my PhD I studied the impact of accounting for real-

istic distributions of cell proliferation time in models of cell migration and population

growth.

My work has led to a review book chapter [Gavagnin and Yates, 2018b] and four

original papers (three published [Gavagnin and Yates, 2018a, Gavagnin et al., 2018,

2019] and one in preparation). The review chapter is presented in Chapter 2 and pro-

vides a broad overview of the state of the art of cellular multiscale modelling with

particular focus on cell invasion. A substantial part of the review is devoted to ex-

plaining the derivation of macroscopic, deterministic representations of agent-based

stochastic models of cell movement. In the remainder, a series of cell behaviours and

cell-cell interactions are considered and some relevant modelling techniques are pre-

sented. Chapter 2 does not include original results, but it is used in this thesis as

general introduction to the field. In rest of the thesis I present the results of my origi-

nal research following the “Alternative Format” or “Thesis by Publications” style. In

other words, each of the remaining chapters (Chapters 3, 4, 5 and 6) comprises one of

my published or in preparation manuscripts and is accompanied by a short introduction

and conclusion which help to place the corresponding chapter into the context of the

thesis. In Chapter 7, I conclude by discussing my results from a broader perspective

and suggesting some future work.

1.1. Summary of original papers

Chapter 3 - Modelling persistence of motion in a crowded environment: The di↵usive

limit of excluding velocity-jump processes

In this chapter we study the interplay of volume exclusion - the ability of cells to sense

and avoid neighbours - and directional persistence - the tendency of cell to maintain

the same direction of motion for short time scales. We develop a stochastic agent-based

model embedded on a lattice which describes cell movement from which we derive an

advection-di↵usion PDE representing the total cell density at the macroscopic level.

The results highlight some crucial di↵erences and similarities between the microscopic

(individual-based) and the macroscopic (advection-di↵usion) modelling approaches. In

particular, the macroscopic model is capable of capturing non-trivial phenomena, such

as the spontaneous aggregation of cells.
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Chapter 4 - Pair correlation functions for identifying spatial correlation in discrete

domains

In this chapter we present a work about identifying and quantifying spatial correlation

in multi-agent systems. We develop a set of statistical functions, specifically designed

for discrete domains (such as lattices and networks), which determine whether the

positions of individuals are positively or negatively correlated. These functions can

then be used to detect the level of cell aggregation in agent-based models, such as

those presented in Chapter 3.

Chapter 5 - The invasion speed of cell migration models with realistic cell cycle time

distributions

In this chapter we focus on the realistic incorporation of the cell cycle into models of

cell invasion, and the impact that this has on the speed of an invading wavefront. By

using a multi-stage representation of the cell cycle, we extend previous models of cell

invasion in order to account for a more realistic representation of the cell cycle. We

demonstrate two analytical results obtained by adopting a mean field approximation,

that elucidate the connection between the cell-cycle time distribution and the speed of

the invasion.

Chapter 6 - Synchronised oscillations in growing cell populations are explained by de-

mographic noise

In this chapter we further explore the importance of adopting realistic models of the

cell cycle and its implications to growing population dynamics. We design multi-stage

models representing two subpopulations of melanoma cells (depending on the phase of

their cell cycle) in a proliferation assay. By comparing the results with the experimen-

tal data, the model explains the emergence of noise-induced oscillations on the relative

proportion of the subpopulations which agrees with the experimental observations.

1.2. A note on the thesis format

Chapter 2 contains a review chapter published in the Elsevier Handbook of Statistics:

Integrated Population in Biology. Chapters 3 and 4 contain two papers published in

Physical Review E. Chapter 5 contains a paper published in the Journal of Theoretical

Biology. Chapter 6 contains a preprint to be submitted for publication to Nature

Communications. In all the published and submitted articles reported I am a lead

author.

All the published material in this thesis (Chapter 2, 3, 4 and 5) is presented in the

original format of the publication. The submitted manuscript (Chapter 6) is formatted

to match the style of the thesis. The reader should consider the number in the footer

as global page-number throughout the thesis.

3



Chapter 2

Stochastic and deterministic modelling of cell mi-

gration

The majority of this chapter comprises a review which I wrote for the Elsevier Hand-

book of Statistics: Integrated Population in Biology. The aim of this chapter is to give

a general introduction to the field of multiscale cell modelling with particular emphasis

on the application of cell invasion. In the review, we outline a series of stochastic and

deterministic models which incorporate a broad range of cell behaviours and cell-cell

interactions. However, the subject of cell motility plays a central role in the discussion

and it is used as emblematic example to illustrate the main techniques for deriving

deterministic representations from stochastic microscopic models.

In the context of the thesis, the role of this chapter is to provide the relevant

background for the further papers. In particular, all the derivations in Section 2.1.1 of

this chapter are relevant for Chapters 3 and 5. Section 3.1 contains an introduction

to multi-stage models of the cell-cycle which is the main object of Chapters 5 and 6.

Section 3.4 of this chapter can be considered to be an extended introduction to and a

summary of Chapter 3. The remaining sections cover topics which have not been the

direct object of my research and are, therefore, not necessary for the understanding of

the following chapters. However, since they are closely related to the objects of the

following papers, their role is to help to place the thesis in the wider context of the

background literature.

2.1. Outline of the chapter

In Section 1, we give a general overview of the process of cell invasion, we highlight

the need for mathematical models and we underline the strengths and weaknesses

of typical modelling approaches. Section 2 is entirely dedicated to the problem of

modelling cell movement. A series of deterministic di↵usive models are derived from

stochastic agent-based models based on random walks. The derivation is carried out

in detail for one-dimensional discrete and continuum random walks, with and without

volume excluding properties (Section 2.1). Extensions of these basic models to higher

orders of approximation and higher spatial dimensions are discussed in Section 2.2

and 2.3, respectively. In Section 3 other model extensions are considered. Particular

attention is given models of cell proliferation (Section 3.1), growing domains (Section

3.3) and directional persistence (Section 3.4). Some direct and indirect forms of cell-cell

interactions are considered in Section 3.2. Finally, Section 4 contains a short concluding

discussion.

4
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Chapter 2

Stochastic and Deterministic
Modeling of Cell Migration

Enrico Gavagnin1 and Christian A. Yates
Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
1Corresponding author: e-mail: e.gavagnin@bath.ac.uk

ABSTRACT
Mathematical models are vital interpretive and predictive tools used to assist in the
understanding of cell migration. There are typically two approaches to modeling cell
migration: either microscale, discrete or macroscale, continuum. The discrete approach,
using agent-based models (ABMs), is typically stochastic and accounts for properties at
the cell-scale. Conversely, the continuum approach, in which cell density is often mod-
eled as a system of deterministic partial differential equations (PDEs), provides a global
description of the migration at the population level. Deterministic models have the
advantage that they are generally more amenable to mathematical analysis. They can
lead to significant insights for situations in which the system comprises a large number
of cells, at which point simulating a stochastic ABM becomes computationally expen-
sive. However, finding an appropriate continuum model to describe the collective
behavior of a system of individual cells can be a difficult task. Deterministic models
are often specified on a phenomenological basis, which reduces their predictive power.
Stochastic ABMs have advantages over their deterministic continuum counterparts. In
particular, ABMs can represent individual-level behaviors (such as cell proliferation
and cell–cell interaction) appropriately and are amenable to direct parameterization
using experimental data. It is essential, therefore, to establish direct connections
between stochastic microscale behaviors and deterministic macroscale dynamics.

In this chapter we describe how, in some situations, these two distinct modeling
approaches can be unified into a discrete-continuum equivalence framework. We carry
out detailed examinations of a range of fundamental models of cell movement in one
dimension. We then extend the discussion to more general models, which focus on
incorporating other important factors that affect the migration of cells including cell
proliferation and cell–cell interactions. We provide an overview of some of the more
recent advances in this field and we point out some of the relevant questions that remain
unanswered.

Keywords: Cell migration, Discrete-continuum equivalence, Agent-based models,
Partial differential equation, Collective behavior

Handbook of Statistics, Vol. 39. https://doi.org/10.1016/bs.host.2018.06.002

© 2018 Elsevier B.V. All rights reserved. 37
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1 INTRODUCTION

The process of cell migration plays an essential role in several developmental
and pathological mechanisms. For example, cell migration orchestrates mor-
phogenesis throughout the development of the embryo (Gilbert, 2003;
Keller, 2005) and plays a crucial role in wound-healing (Deng et al., 2006;
Maini et al., 2004) and immune responses (Madri and Graesser, 2000). Migra-
tion also contributes to many pathological processes, including vascular dis-
ease (Raines, 2000) and cancer (Hanahan and Weinberg, 2000).

Many of these phenomena are highly complex and involve the collective
behavior of a set of interacting cells. At the individual-cell-level, a variety
of mechanisms can be involved, including cell–cell adhesion (Niessen,
2007; Trepat et al., 2009), attraction (Yamanaka and Kondo, 2014), and repul-
sion (Carmona-Fontaine et al., 2008). In other cases, cells can respond to a
chemical gradient which regulates and guides their motility (chemotaxis)
(Keynes and Cook, 1992; Ward et al., 2003). In addition, when the migration
occurs over a sufficiently long time, cell proliferation and death can also play
important roles in the process (Mort et al., 2016). An understanding of the
impact that these (and other) individual-cell mechanisms have on global col-
lective migration is important, since it can illuminate the origin of major dis-
eases and suggest effective therapeutic approaches.

Over the past few decades, great progress has been made in understanding
many aspects of cell migration (Friedl and Gilmour, 2009; Ridley et al.,
2003). However, we still lack a proper understanding of many of its underly-
ing mechanisms. In particular, there are aspects which remain impenetrable to
experimental biologists (Staton et al., 2004). One of the major issues when
studying cell migration is obtaining and interpreting experimental data. For
example, a comprehensive controlled experiment (in vivo) or a realistic
(in vitro) set up can be difficult or impossible to obtain. In other cases, it
may be extremely complicated to investigate the microscopic origin of a mac-
roscopic phenomenon, given the number of different actions that a single cell
can perform (Dworkin and Kaiser, 1985; Tambe et al., 2011; Trepat et al.,
2009; Westermann et al., 2003). In this context, mathematical modeling has
become a necessary interpretive and predictive tool to assist in the under-
standing of such complex phenomena (Maini et al., 2004; Noble, 2002;
Simpson et al., 2006).

Mathematical models have been employed as tools for validation of exper-
imentally generated hypotheses. Moreover, due to the advances in computa-
tion of the last few decades, mathematical models are becoming more
detailed and accurately parametrized, which makes them capable of generat-
ing experimentally testable hypotheses and exploring new questions that are
still not approachable from an experimental prospective (Tomlin and
Axelrod, 2007). For example, the use of stochastic mathematical models facil-
itates the investigation of biological systems in which randomness plays an
important role and for which viewing only a single instance of the evolution

38 SECTION I Cellular Population Dynamics
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of a system can be inconclusive (Lee and Wolgemuth, 2011). In a mathemati-
cal modeling framework, the system can be repeatedly simulated using the
same deterministic or randomized initial conditions. Equally, repeats with
slightly altered initial conditions or parameters are useful for quantifying the
sensitivity of systems in which a small fluctuation in the initial state can have
a significant effect on the outcome of the experiment, or in understanding the
sensitivity of the system to certain parameter choices, respectively. In addi-
tion, the outcome of a mathematical simulation can be examined easily since
all the variables of the system are explicitly accessible (Flaherty et al., 2007).

There are typically two approaches to modeling cell migration, depending
on the scale of interest. At the level of an individual cell, stochastic, discrete
agent-based models (ABMs) are popular. Each cell is modeled as a single
individual (agent) with its own rules of movement, proliferation, and death.
Alternatively, to model collective cell migration at the population level, a
deterministic, continuum partial differential equation (PDE) for the population
density is normally used1. These two modeling paradigms have complemen-
tary advantages and disadvantages which we summarize in Table 1.

TABLE 1 Summary of the Advantages and Disadvantages of Adopting a
Discrete/Stochastic Approach, Such as an ABM, as Opposed to a
Continuum/Deterministic Approach, Typically Represented by a PDE

Advantages Disadvantages

Discrete/
stochastic

Detailed structure and
explicit implementation

High computational cost

Direct connection to
experimental data

Multiple simulations required

Incorporation of randomness Relatively inaccessible to
mathematical analysis

Continuum/
deterministic

Fast to simulate Lack of fine detailed structure

Amenable to mathematical
analysis

Difficult to link experimental
data

Suitable for systems of large
numbers of cells

Ignore the effects of
randomness

1. Although deterministic ABMs (Kurhekar and Deshpande, 2015) and stochastic continuum
models (Dickinson and Tranquillo, 1993; Schienbein and Gruler, 1993) have also be considered,

the most common pairing in the literature involves stochastic ABMs and population-based deter-

ministic models. Therefore, these are the two modeling subtypes that we will consider in this
review.

Stochastic and Deterministic Modeling of Cell Migration Chapter 2 39
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Generally speaking, ABMs are attractive because their macroscale behavior
is completely self-induced, rather than being superimposed on a phenomeno-
logical basis (Ben-Jacob et al., 2000; Shapiro, 1988). This is particularly inter-
esting when a complex structure emerges at the population-level (Othmer and
Stevens, 1997; Thompson et al., 2011, 2012). In fact, although the agents rep-
resent the driving force of such structure, typically they are unaware, as indivi-
duals, of the macroscopic configuration of the system, since their behavior is
dictated only by their local environment.

Another advantage of ABMs is that their formulation is generally more
intuitive than continuum models. Each cell’s actions can be easily incorporated
in the model by implementing appropriate rules for the corresponding agent,
which mimic specific known biological behaviors. The parameters regulating
each of these rules can then be inferred directly from real observations which
makes ABMs more easily relatable to experimental data.

Mort et al. (2016), for example, used a simple ABM to study the migration
of mouse melanoblasts, the embryonic precursors of melanocytes, responsible
for pigmentation (see Fig. 1). The authors studied the effects of a family of
mutations in the gene for the receptor tyrosine kinase, Kit. These mutations
affect the success of the colonization of the growing epidermis by melano-
blasts, leading to unpigmented regions of hair and skin. Mort et al. (2016)
employed an ABM to study the interplay between movement and proliferation
of melanoblasts. Further they carried out a statistical analysis on single-cell

FIG. 1 A time-lapse sequence of melanoblasts migrating in ex vivo culture of E14.5 (14.5 days

postfertilization) mouse skin. The Feret’s diameter of each cell body is indicated in cyan. The path
of a single migrating cell is indicated in red. Melanoblasts migrate along their Feret’s diameter—

the longest distance between any two points along a given cell boundary. Reproduced from
Mort, R.L., Ross, R.J.H., Hainey, K.J., Harrison, O.J., Keighren, M.A., Landini, G., Baker, R.E.,
Painter, K.J., Jackson, I.J., Yates, C.A., 2016. Reconciling diverse mammalian pigmentation pat-
terns with a fundamental mathematical model. Nat. Commun. 7, 10288 with the permission of
Nature Communications.

40 SECTION I Cellular Population Dynamics
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trajectories in order to parametrize the model against experimental data. By
simulating their ABM and comparing the results with experimental data,
Mort et al. (2016) were able to show that belly-spot formation in Kit mutants
is likely to be induced by a reduction in proliferation rate, rather than motil-
ity, a result which was contrary to the received wisdom in the experimental
literature.

Deterministic models also have their advantages. For example, when the
population size becomes large, a PDE model is generally desirable, since
there exist a wide range of well-developed numerical tools for their rapid
solution. This is in direct contrast to agent-based models which are typically
coded up ad hoc and require multiple computationally intensive repeats in
order to gather reliable ensemble statistics. Moreover, continuum models
have the advantage that they are generally more amenable to mathematical
analysis than ABMs, and this analysis can often lead to significant and gen-
eral insights. For example, PDEs can be used to carry out stability analysis
to determine the conditions which lead to pattern formation (Anguige and
Schmeiser, 2009). In other scenarios, one can use traveling wave analysis
to obtain expressions for the speed of the cell invasion in terms of the model
parameters (Murray, 2007).

Depending on the biological questions of relevance and available experimen-
tal data, either deterministic-continuum or stochastic-discrete models (or some
combination of both) may be appropriate. Ideally, the individual-level repre-
sentation can be used to parametrize the model, and the continuum level-
description should link the population-level results back to the parameters of
interest. The problem of connecting the parameters of the individual-level
model to those of a representative population-level description represents,
therefore, a crucial step of the multiscale modeling process.

In this chapter, we provide an overview of a range of techniques which can
be used to connect ABMs of cell migration to macroscopic PDEs for average
cell density. We review a series of stochastic and deterministic models which
are capable of reproducing some of the key features of the behavior of cells
and describe how these two modeling regimes can be linked to form a multi-
scale mathematical framework.

In Section 2.1 we carry out a detailed derivation of deterministic models
from ABMs which focus on cell movement. We present derivations in two
different scenarios, depending on whether the spatial domain in which the
ABM is defined is partitioned into a finite lattice (the on-lattice case) or not
(the off-lattice case). In each of these situations, we first study the case in which
cells move independently of others (noninteracting cells) and then we intro-
duce the ability of cells to sense the occupancy of neighboring regions of space
and to avoid overlapping with other cells (interacting cells). All the derivations
in Section 2.1 are carried out in one dimension and assuming a mean-field
moment closure approximation. We discuss generalizations to higher dimen-
sions and other closure approximations in Sections 2.2 and 2.3, respectively.
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The remaining part of this chapter is devoted to reviewing a series of bio-
logically relevant features that can be incorporated in the models of cell
migration. In each case we highlight the implications of introducing a given
behavior both at the individual- and population-level. More precisely, in
Section 3.1 we present models which incorporate the ability of cells to repro-
duce by division. In Section 3.2.1 we present models in which cells can inter-
act indirectly through an external signal, e.g., chemotaxis or slime following.
Some examples of direct forms of cell–cell interactions, such as adhesion–
repulsion, pushing, and pulling, are discussed in Section 3.2. In Section 3.3
we review a series of recent papers which model cells migrating on a growing
domain. Finally, we discuss how to derive a macroscopic limit for ABMs
which are not based on simple random walks and which are capable of repre-
senting persistence of motion, in Section 3.4. We conclude this chapter with a
short discussion and final considerations in Section 4.

2 CELL MOTILITY

In this section we present a detailed description of the basic models of cell
motility, which represent the fundamental basis for the majority of the spatially
extended representations of the remaining part of this chapter. We use the case
of these models to illustrate standard approaches to deriving diffusive, deter-
ministic, continuum representation from ABMs, based on occupancy master
equations. We carry out the explicit derivations for one-dimensional versions
of the models in Section 2.1, and we discuss the generalization to higher dimen-
sions in Section 2.2. We consider two distinct cases, depending on whether the
motility mechanism of the ABM is implemented on- or off-lattice. In each case,
we focus on two variants of the model, both with and without crowding effects.
We explain the standard techniques for deriving the corresponding determin-
istic descriptions at the population-level in each case. Note that, throughout
this chapter, we adapt the notation of models taken from the literature for
consistency.

2.1 Connecting Stochastic and Deterministic Models of Cell
Movement

2.1.1 On-Lattice Models

Broadly speaking, on-lattice ABMs can be classified as cellular automata in
which a set of agents occupy some or all sites of a lattice. In general, these
agents have a number of state variables associated with them and a set of rules
prescribing the evolution of their state and position. There exists a great vari-
ety of forms of ABMs. The appropriateness of each representation depends on
the phenomenon that is being modeled. For example, cellular Potts models
have been used by Turner and Sherratt (2002) and Turner et al. (2004) in
the context of cancer modeling and by Graner and Glazier (1992) in the con-
text of cell sorting via differential adhesion. Othmer and Stevens (1997)
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modeled bacterial aggregation by using a position-jump process, and Painter
et al. (1999) adopted a similar approach to study the interplay of chemotaxis
and volume exclusion. One of the advantages of using these on-lattice models
is that their formulation and analysis tend to be straightforward in comparison
to their off-lattice counterparts. Moreover, the presence of the grid consider-
ably reduces the computational cost of simulations when a large number of
agents is involved. However, since in the majority of scenarios the assumption
that cells move on a discrete grid is not appropriate, the implementation of
cell behaviors is usually phenomenological.

Consider a one-dimensional domain, [0, L], with periodic boundary condi-
tions. An ABM on the domain [0, L] comprises a set of N 2 agents posi-
tioned in [0, L] and a range of stochastic rules which govern their evolution
in time. The ABMs that we consider throughout this section are all based
on continuous-time position-jump processes (Othmer and Stevens, 1997;
Othmer et al., 1988). This means that the position of the agents undergoes
series of sequential Markovian jumps, i.e., at any given time, the evolution
of the position of each agent depends only on its current position. An alterna-
tive approach is to use velocity-jump processes, in which the Markov property
applies to the velocity of the agents, instead of their position. We discuss this
approach in Section 3.4.

Discrete-time ABMs are popular in the literature (Simpson et al., 2007,
2009; Treloar et al., 2011, 2013), although, for the examples presented here,
we treat time as a continuous variable2 (Othmer and Stevens, 1997; Othmer
et al., 1988). As time evolves, agents can attempt movement events which
occur as a Poisson process with rate a. In other words, each agent attempts
to move after an independent exponentially distributed waiting time with
parameter a. When such attempts take place, we say that the agent has been
selected to attempt a movement.

Consider the on-lattice scenario, in which the domain is partitioned in k
intervals, each of length D ¼ L/k, whose centers are denoted by x1,…,xk,
respectively (see Fig. 2 for a schematic illustration). We denote the position
of the n-th agent at time t as cn(t), hence cnðtÞ2fx1,…,xkg for every t2 +

and n¼ 1,…,N .

FIG. 2 Schematic of the on-lattice ABM in one dimension. The domain is partitioned in k inter-
vals of length D. A single agent, n, is represented as a blue square and it occupies interval i, i.e.,
cn(t) ¼ xi. The agent moves, with rate a, to one of the two adjacent sites.

2. In general, when the time discretization step is sufficiently small, the behavior of the discrete-
time ABMs is similar to its continuous-time counterpart.
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2.1.1.1 Noninteracting Cells Undergoing Unbiased Movement

In this section, we consider the basic case of noninteracting agents. In partic-
ular, the movement rates of each agent are independent of the other agents’
positions and unbiased. If at time t an agent, n, is selected to move, it moves
with equal probability, 1/2, to either one of its adjacent sites, cn(t) $D. Equiv-
alently, we can say that each agent moves to the right and to the left with rates

T $ ¼ a=2, respectively. Notice that multiple agents can occupy the same lat-
tice site. We aim to obtain a deterministic representation of the mean evolu-
tion of the agent density at a given time t. Therefore, we assume the model
is simulated until time t for a large number, M, of independent realizations,
with each realization identically prepared. In Fig. 3A we consider 30 one-
dimensional lattices with L ¼ 100 and D ¼ 1. In each one-dimensional lattice
we populated the 20 central sites, i¼ 41,…,60, at random with 18 agents on
average (with multiple agents per site possible). In Fig. 3C, E, and G we show
three snapshots of these 30 identically prepared simulations of the ABM, as
time evolves. We denote by C(m)(xi, t) the number of agents which lie in the
interval i at time t of the m-th repeat simulation, with m¼ 1,…,M. Namely

CðmÞðxi, tÞ¼ jfnjcnðtÞ¼ xigj: (1)

If C(xi, t) ¼ 0, we say that the site i is empty and if C(xi, t) > 0 we say it is
occupied. We define the mean occupancy of site i at time t, averaged over
the number of realizations, as

Cðxi, tÞ¼
1

M

XM

m¼1

CðmÞðxi, tÞ: (2)

By considering all the possible agents movements we can write down a con-
servation law for the average occupancy at time t + dt, where dt is a suffi-
ciently small that the probability that two or more movements take place in
the interval [t, t + dt) is o(dt). This reads

Cðxi, t + dtÞ¼Cðxi, tÞ%adtCðxi, tÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{moving out of site i

+
adt
2

Cðxi%1, tÞ+Cðxi + 1, tÞ
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moving into site i

+Oðdt2Þ: (3)

The right-hand side of Eq. (3) comprises three parts: the first term, which
accounts for the occupancy of site i at time t, and two terms which determine
the expected loss of average occupancy due to agents moving out of site i and
the gain due to agents moving into site i, respectively.

If we rearrange Eq. (3), divide through by dt and take the limit as dt! 0,
we obtain the Kolmogorov equation (or continuous-time master equation) of
the process which reads
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FIG. 3 Comparison between stochastic and deterministic models of cell motility in on a one-

dimensional lattice. Panels (A)–(H) show four snapshots of 30 simulations of the ABM with non-
interacting agents as described in Section 2.1 (panels (A), (C), (E), and (G)) and with excluding

agents (panels (B), (D), (F), and (H)). The motility rate is a ¼ 1 and the simulations are shown

at times T ¼ 0, 50, 100, and 200. In each panel 30 independent repeats of the simulations are dis-

played on top each other. Empty sites are represented in white and occupied sites are represented
in blue. For the noninteracting model, the occupied sites are colored with a graded intensity of

blue corresponding to the number of agents which occupy the site, as indicated in the color
bar. In panels (I) and (J) we show a comparison between the occupancy of the ABM (blue line),
averaged over 500 repeats, and the numerical solution of corresponding deterministic PDE (red
line). Panel (I) is for the noninteracting model and panel (J) is for the model with volume exclu-

sion. In both cases, the profiles are displayed at the times T ¼ 0, 50, 100, 200, with the direction

of the black arrows indicating increasing time.
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∂Cðxi, tÞ
∂t

¼ a
2

Cðxi%1, tÞ%2Cðxi, tÞ+Cðxi+ 1, tÞ
" #

: (4)

Now we Taylor expand the terms C xi$1, tð Þ about the point xi to the second
order, i.e., we use the following approximations:

Cðxi+ 1, tÞ ¼Cðxi, tÞ+D
∂Cðxi, tÞ

∂x
+
D2

2

∂
2C

∂x2
+OðD2Þ, (5a)

Cðxi%1, tÞ ¼Cðxi, tÞ%D
∂Cðxi, tÞ

∂x
+
D2

2

∂
2C

∂x2
+OðD2Þ: (5b)

By substituting Eq. (5) into Eq. (4) and taking the limit as D! 0 while hold-
ing aD2 constant, we recover the diffusion equation for the continuous

approximation of the average occupancy function, C:

∂C

∂t
¼D

∂
2C

∂x2
, (6)

where D is the diffusion coefficient defined as

D¼ lim
D!0

aD2

2
: (7)

We refer to Fig. 3I for a comparison between the average occupancy of the
ABM and the diffusion equation (6). The results confirm the good agreement
between the two models.

The derivation of Eq. (6) from a simple random walk, as outlined above, is a
well-known result (Codling et al., 2008; Deutsch and Dormann, 2007; Murray,
2007). Alternatively, we could have carried out the derivation for the probabil-
ity density function, P(xi, t), of finding a single agent at position xi at time t.
This would result in a macroscopic PDE of the same form as Eq. (6). The equa-
tion for P can be obtained by dividing both sides of Eq. (6) by the total number
of agents, N .

The diffusion equation (6) is a classical PDE, also known as Fick’s diffu-
sion equation or the heat equation depending on the application. Extensive
discussions on this type of equation can be found in Crank (1979) or Welty
et al. (2009). The existence of an analytic solution of Eq. (6) depends on
the imposed initial and boundary conditions. For example, if we assume an
infinite domain and that all agents are initialized in the same position:

Cðx,0Þ¼ N x¼ x&,
0 otherwise,

$
(8)

Eq. (6) admits the fundamental solution given by

Cðx, tÞ¼ Nffiffiffiffiffiffiffiffiffiffi
4pDt

p e%
ðx%x&Þ2
4Dt : (9)
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In the basic model outlined above, agents can only move to their nearest-
neighbor sites. A generalization of this model, in which agents have the ability
to perform nonlocal jumps is studied by Taylor et al. (2015a). Specifically, in
the model of Taylor et al. (2015a) agents are allowed to jump up to Q sites
away from their current position. For q¼ 1,…,Q, each length-q jump occurs

with rate T ð$qÞ in the right- and left-directions, respectively. When the motil-

ity is unbiased, i.e., T ðqÞ ¼ T ð$qÞ for every q, the authors show that the behav-
ior of their agents in the continuum limit evolves according to the diffusion
equation (6), but with diffusion coefficient given by

DQ ¼ lim
D!0

D2
XQ

i¼1

q2T ð%qÞ: (10)

This implies that, when the following condition is satisfied,

a¼
XQ

i¼1

q2T ðqÞ, (11)

the local ABM and the nonlocal ABM are described by the same macroscopic

PDE. There are an infinite number of possible combinations of T ðqÞs which
satisfy condition (11). However, Taylor et al. (2015a) suggest that choosing

T ðqÞ ¼ a
q2Q

, (12)

is particularly appropriate, since it preserves the well-known property of dif-
fusive processes, that the mean-squared displacement scales linearly with time
(Codling et al., 2008; Othmer et al., 1988). A comparison of the simulations
of the two AMBs confirms the accuracy with which the nonlocal models typ-
ically correspond to their local equivalent. The results also reveal a significant
reduction in the average simulation time of the nonlocal ABM compared to
the local ABM. This time-saving potential, given that condition (11) is satis-
fied, is highlighted by Taylor et al. (2015a) as an important application of the
nonlocal models in order to reduce the computational cost of stochastic
simulations.

However, it should be noted that, when dealing with steep gradients in
agent numbers, the nonlocal model loses accuracy in comparison to the local
model. This inaccuracy stems from the choice of the transitional rates (12)
which match the terms of the local model only up to the second order of
the expansion. In order to address this issue, the authors propose a spatially
extended hybrid method in which regions containing steep gradients in agent
numbers are dealt with using the local representation and regions in which
gradients are more shallow using the nonlocal representation. This allows
the acceleration of simulations afforded by the nonlocal representation, while
maintaining the accuracy associated with the local method.
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In the second part of the paper, Taylor et al. (2015a) derive a general class
of boundary conditions for local and nonlocal ABMs, corresponding to classi-
cal boundary conditions in the deterministic, continuum, diffusive limit.

For a general nonlocal ABM, the authors study a class of first-order reac-
tive boundary conditions known as Robin conditions which, for the left
boundary, can be written as

D
∂Cð0, tÞ

∂x
¼Cð0, tÞB: (13)

Here B ¼ 0 corresponds to a purely reflective boundary and B¼∞ corre-
sponds to a purely absorbing boundary. In order to obtain the corresponding
stochastic boundary condition at the individual-level, Taylor et al. (2015a)
allow agents which attempt length-q jumps that result in them hitting the
boundary, to be absorbed (i.e., removed from the domain) with absorption
probability aq,Q. If no absorption occurs, the agents reach the boundary and
are then reflected in the opposite direction for the remaining number of steps
of the jump. By taking a diffusive limit from the corresponding occupancy
master equation, the authors determine the expression of the absorption rates
in terms of the parameter, B, of the Robin boundary condition. The absorption
rates are given by (13):

aq,Q ¼D
B

DQ
1 + q2

XQ

i¼q + 1

2

i2

 !

for q¼ 1…Q, (14)

where D is the lattice step, Q is the maximum jump length, and DQ is defined
as in Eq. (10). In particular, when a local ABM is considered, the absorption
rate, a1,1, for agents at the site adjacent to the boundary is given by

a1,1 ¼D
B

D
:

Finally, Taylor et al. (2015a) extend their study to the case in which
Neumann boundary conditions are imposed at the population level. For the
left boundary this condition is given as

∂Cð0, tÞ
∂x

¼F, (15)

where F < 0 represents the influx into the system at this boundary. The
corresponding ABM implementation requires new agents to enter the domain.
For a general nonlocal model with maximum jump length Q, these agents are
positioned in the Q nearest sites to the boundary. By postulating a discrete
master equation, which respects conservation of the total influx, F, and taking
a diffusive limit as dt,D! 0, the authors derive an expression for the rate of
introduction of agents into the k-th nearest site:
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fk,Q ¼%FDQ

QD

XQ

i¼k

2i%2k + 1

k2

 !

for k¼ 1…Q, (16)

which in the local case (Q ¼ 1), becomes

f1,1 ¼%FD

D
:

2.1.1.2 Excluding Cells

We now incorporate volume exclusion in the model following the approach of
Simpson et al. (2009). We modify the basic ABM of the previous section, by
introducing a specific form of agent–agent interaction which prevents two or
more agents from occupying the same lattice site. We initialize the domain
by populating the central interval, withN excluding agents, i.e., with the prop-
erty that any given site can be occupied by at most one agent. In the example in
Fig. 3B in each row we populated sites i¼ 41,…,60 with 18 agents, on average,
with a maximum of one agent per site. When an agent, n, is selected for a move-
ment event, one of its two neighboring sites, Cn(t) $D, is selected with equal
probability, 1/2. In order for the movement to be successful, however, the
new selected site has to be empty. When the selected site is occupied, the move-
ment is aborted and the selected agent remains in its position. This movement
rule prevents agents from moving into occupied sites. Therefore, the excluding
property of the initial condition is preserved as the time evolves. In particular,
this implies that C(m)(xi, t), defined in Eq. (1), takes only two values, 0 and 1
(see Fig. 3D, F, and H for snapshots of simulations of the ABM).

For a given a realization of the model, m, we make the usual moment clo-
sure approximation that the occupancies of different sites, i and j with i 6¼ j,
are independent, i.e.:

 CðmÞðxi, tÞ¼ 1,CðmÞðxj, tÞ¼ 1
" #

¼ CðmÞðxi, tÞ¼ 1
" #

 CðmÞðxj, tÞ¼ 1
" #

, (17)

for every t2 +. Eq. (17) is know as the mean-field assumption, and it provides
a good approximation in many scenarios; however, it becomes invalid when
spatial correlations play an important role in evolution, for example, when pro-
liferation or attractive forces between agents are involved (see Sections 3.1 and
3.2, respectively). We discuss the validity of this approximation and possible
alternative approaches to the mean-field assumption in Section 2.3.

By assuming the independence captured by Eq. (17), we can write down
the transition rates from a given site xi as

T +ðxi, tÞ ¼ adt
2

1%CðmÞðxi+ 1, tÞ
& '

,

T %ðxi, tÞ ¼ adt
2

1%CðmÞðxi%1, tÞ
& '

:
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Note that the terms 1%CðmÞðxi$1, tÞ
( )

keep into account the possibility of

abortion of the movement due to volume exclusion. Hence the occupancy
master equation at position xi reads

CðmÞðxi, t+ dtÞ¼CðmÞðxi, tÞ%
adt
2
CðmÞðxi, tÞ ð1%CðmÞðxi%1, tÞÞ + ð1%CðmÞðxi+ 1, tÞÞ

h izfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
moving out of xi

+
adt
2
ð1%CðmÞðxi, tÞÞ CðmÞðxi%1, tÞ+CðmÞðxi+ 1, tÞ

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moving into xi

+Oðdt2Þ:

If we divide by dt, rearrange and let dt! 0, we obtain

∂C mð Þ xi, tð Þ
∂t

¼ a
2

C mð Þ xi%1, tð Þ%2C mð Þ xi, tð Þ+C mð Þ xi+ 1, tð Þ
h i

, (18)

for m¼ 1,…,M. By summing equations (18) over each repeat and dividing by
the total number of realizations, M, we recover Eq. (4) for the average occu-

pancy, C xi, tð Þ. Remarkably, we obtain exactly the same macroscopic represen-
tation as in the case of noninteracting agents, which is given by the canonical
diffusion equation (6). In Fig. 3J we show a comparison between the average
occupancy of the ABM with excluding agents and the corresponding diffusion
equation at increasing times.

Notice that this inclusion of volume exclusion on a lattice does not affect
the population-level dynamics. In other words, since the diffusion equation (6)
arises as the limit equation of the standard random walks of noninteracting
agents, the effect of the local interaction between the agent in the simple
exclusion process disappears as we let D,dt! 0. Since agents are indistin-
guishable, the situation in which two agents occupy adjacent positions and
block each other’s movement is equivalent to the scenario in which the two
neighboring agents swap their positions in the noninteracting random walk.
If multispecies agents are considered, such equivalence no longer holds and
the exclusion property leads to different continuous equations (Simpson
et al., 2009).

Taylor et al. (2015b, 2016) study alternative approaches to implementing
volume exclusion in compartment-based models at different spatial scales.
They consider a coarse-grained representation of volume exclusion (as
opposed to fine-grained representation described above, in which at most
one agent can occupy a given site) in which S fine-grained sites are amalga-
mated together into a single coarse-grained site with capacity S and length
SD. This coarse-grained representation is referred to as a partially excluding
ABM. See the schematic in Fig. 4 for an illustration. Agents can perform
jumps between neighboring compartments with a rates proportional to 1/S2

and which scales linearly with the proportion of available space in the target
compartment.
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Taylor et al. (2015b) consider a uniform regular lattice. By comparing the
fully excluding model, S ¼ 1, and the partially excluding model, S > 1, the
authors show that the mean and variance of the number of agents in each com-
partment is the same in both representations. In other words, it is possible to
provide a consistent description of the effects of volume exclusion across dif-
ferent spatial scales with these coarse and fine representations. While the
usage of a coarse-grained, partially excluding approach leads to a significant
time saving in their example simulations, it also requires movement events
to occur across a wide range of spatial and temporal scales (Walpole
et al., 2013).

In a more recent work, Taylor et al. (2016) extend the study of these par-
tially excluding models to nonuniform lattices in which the sites’ carrying
capacities can vary across the domain. In particular, they develop a set of
hybrid methods which allow the interfacing of regions of partially excluding
sites with regions of fully excluding sites. The advantage of these hybrid
methods is that they allow for the study of complicated scenarios, in which
the accuracy of the fully excluding model is required in some regions of
space, but the partially excluding model can be exploited in other regions,
allowing a considerable reduction of computational cost in comparison to
the ubiquitous fully excluding model (Taylor et al., 2016).

Simpson et al. (2009) study other important extensions of the fundamental
volume-excluding ABM outlined toward the start of this section. In particular,
the authors incorporate the possibility of having multiple subpopulations of
agents with different motility parameters and a deterministic directional bias.

The ABM of Simpson et al. (2009) is defined in discrete time and on a two-
dimensional lattice with lattice step D. An exclusion property is implemented,
requiring that a lattice site can be occupied by at most one agent at the time.
Agents move according to a biased random walk with the bias modulated by
a parameter f 2 [%1, 1].

In the first part of the paper, a single population of identical cells is con-
sidered. Simpson et al. (2009) derived an advection-diffusion continuum
approximation of the model by writing down the occupancy master equa-
tion and letting the bias parameter scale with the spatial step f'OðDÞ.

FIG. 4 Schematics of the partially excluding lattice with different values of the carrying capac-

ity, S ¼ 1, 2, 4. Blue rectangle represent agents and white rectangles represent unused spaces. For

unit carrying capacity, S ¼ 1, the fully excluding model is recovered, but as S increases the spatial

resolution coarsens.

Stochastic and Deterministic Modeling of Cell Migration Chapter 2 51

20



The simulations of the ABM are averaged over the columns of the lattice and
over many realizations. The resulting density profiles are compared with con-
tinuum descriptions showing good agreement with the corresponding PDE.

In the second part of the paper, the model is extended to describe the
migration of U subpopulations or species of cells. The cells of each species
move according to a biased random walk, with the motility rate a(u) and bias
intensity f(u), with u¼ 1,…U, depending on the species. Using a similar der-
ivation as in the one-species case, the authors derive a system of U advection-
diffusion equations describing the evolution of the occupancy of the different

species, C
uð Þ
. When the bias is turned off, the system reads

∂CðuÞ

∂t
¼DðuÞ ∂

∂x
1%
XU

u¼1

CðuÞ

 !
∂CðuÞ

∂x
+CðuÞ ∂

∂x

XU

u¼1

CðuÞ

" #

, u¼ 1,…,U (19)

where

DðuÞ ¼ lim
D!0

aðuÞD2

2
:

In this case, the exclusion property leads to nonlinear diffusivity for the indi-
vidual species. However, in the case in which all species have the same motil-
ity parameters as each other, by summing all the equations, unsurprisingly,
simple diffusion is recovered for the total population.

To compare the two levels of description, the authors consider a popu-
lation of agents formed by two species initialized in adjacent regions with
different initial densities. The results highlight a spontaneous aggregation
in one of the species’ density profiles in the continuous model. From this
observation, Simpson et al. (2009) conclude that the single species densi-
ties do not obey any maximum principle, i.e., the monotonicity of the den-
sity profile is not preserved in time, although this is true for the total
population.

2.1.2 Off-Lattice Models

In off-lattice ABMs the positions of the agents are represented in continuous
space. This improvement adds realism to the model, since the movement of
real cells is not constrained to a discrete grid. Moreover, the continuous
framework introduces a larger variety of possible actions which cells can per-
form. For example, when modeling the migration of cells in two dimensions,
the off-lattice framework allows both the distance and the direction of the
movement to be a continuous variable, rather than being restricted to a dis-
crete set of values, as in the on-lattice case. This extension is consistent with
many biological observations of cell migration in which cells are not
restricted to a lattice (Plank and Sleeman, 2004; Stokes and Lauffenburger,
1991). However, it has the disadvantage that it makes the mathematical anal-
ysis more complicated and sometimes intractable.
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2.1.2.1 Noninteracting Cells Undergoing Unbiased Movement

We consider an ABM on a one-dimensional domain, [0, L], as in Fig. 5, with
periodic boundary conditions. Each agent, n, is defined by its position at time
t, cnðtÞ2 0,L½ ), and it occupies the interval cnðtÞ%R,cnðtÞ+Rð Þ, where R is the
analog of the cell’s radius. The model is defined in continuous-time and
agents perform unbiased jumps of fixed distance in one of the two direc-
tions. The rate and the distance of these jumps are denoted by a and d,
respectively (see the schematics in Fig. 5 for an illustration of the model).
A set of N agents are initially located uniformly at random in the interval
40,60½ ) (see Fig. 6A).

For now, we assume agents move independently of other agents’ positions,
as in Othmer et al. (1988). Consequently, a given point, x2 0,L½ ), can be occu-
pied by more than one agent simultaneously. In this case, obtaining a macro-
scopic description of the model can be achieved by employing a similar
method to the corresponding on-lattice case (Section 2.1.1). We consider M
identically prepared simulations of the model and aim to write down the mas-

ter equation for the average occupancy of position x at time t, C x, tð Þ, which is
defined as

Cðx, tÞ¼ 1

M

XM

m¼1

CðmÞðx, tÞ, (20)

where

Cmðx, tÞ¼ j n j cmn ðtÞ¼ x
* +

j: (21)

The master equation for Cðx, t+ dtÞ then reads

Cðx, t + dtÞ¼Cðx, tÞ%adtCðx, tÞ
zfflfflfflfflffl}|fflfflfflfflffl{moving out of x

+
adt
2

Cðx%d, tÞ+Cðx+ d, tÞ
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moving into x

+Oðdt2Þ, (22)

where dt is chosen sufficiently small that at most one movement event can

take place in [t, t + dt). By Taylor expanding the terms C x$d, tð Þ to the
second order about the point x and taking the limit dt,d! 0, while keeping

FIG. 5 Schematics of the off-lattice ABM in one dimension. A single agent, n, is represented by

an blue interval of length R and whose center, cn(t), is defined as the position of the agent. The

agent attempts to move with rate a a distance d in one of the two directions.
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FIG. 6 Comparison between stochastic and deterministic models of cell motility on a one-

dimensional off-lattice domain. Panels (A)–(H) show four snapshots of 30 simulations of the

ABM with noninteracting agents as described in Section 2.1 (panels (A), (C), (E), and (G)) and

with excluding agents (panels (B), (D), (F), and (H)). The parameters of the model are a ¼ 4,
d ¼ 0.5, R ¼ 0.2 and the simulations are shown at times T ¼ 0, 50, 100, and 200. In each panel

30 independent repeats of the simulations are displayed on top each other. Agents are represented

by a blue ball with radius R. In panels (I) and (J) we show a comparison between the occupancy of

the ABM (blue line), averaged over 500 repeats, and the numerical solution of corresponding
deterministic PDE (red line). Panel (I) is for the noninteracting model and panel (J) refers to

the model with volume exclusion. In both cases, the profiles are displayed at the times T ¼ 0,

50, 100, 200, with the direction of the black arrows indicating increasing time.
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ad2 a nonzero constant, we recover the diffusion equation (6), with the
diffusion coefficient defined as

D¼ lim
d!0

ad2

2
: (23)

In other words, when agents are not interacting, the off-lattice framework of
the ABM does not change the resulting population-level representation
which was obtained for the on-lattice case. In Fig. 6I we show a comparison
of the average agent density and the corresponding diffusion equation as time
evolves. The results confirm a good agreement between the stochastic and
the deterministic models.

2.1.2.2 Volume-Excluding Cells

Incorporating volume exclusion in an on-lattice model is a natural extension
of the simple multiple occupancy model. However, in an off-lattice frame-
work there are several ways that the effects of volume exclusion can be
incorporated. In this section we follow the approach of Dyson et al. (2012),
however, we highlight that other approaches can lead to slightly different
results both at the individual- and population-levels.

Dyson et al. (2012) consider an exclusion mechanism in which an
attempted move is aborted if it would lead to the overlap of two agents, i.e.,
the corresponding centers are closer than 2R. A schematic in Fig. 7 shows
an example in which an agent (blue) attempts to move in the rightwards direc-
tion and an examples of an agents (gray) which would obstruct the movement.
In order to write down the occupancy master equation for the average number

of agents, we need to compute the transition rates, T $ðx, tÞ. In particular, we
need to determine the probabilities that an agent located at position x at time t,
moves to the right- and left-directions, at time t + dt. By using the continuous
form of the mean-field assumption (17), we can write

FIG. 7 Illustration of the exclusion property for the one-dimensional off-lattice model. The

moving agent (blue interval) attempts to move in the right direction into position x + d (light blue
interval). In order for the movement to succeed, none of the other agents’ centers can occupy the

exclusion zone [x + 2R, x + 2R + d) (highlighted in pink). An example of agent that would obstruct
the movement is shown (light gray interval).
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T +ðx, tÞ ¼ adt
2

1%I +ðx, tÞð Þ, (24a)

T %ðx, tÞ ¼ adt
2

1%I%ðx, tÞð Þ, (24b)

where I +ðx, tÞ and I%ðx, tÞ are the number agents in the exclusion zones
[x+2R, x+2R+d) and [x%2R%d, x%2R), respectively, which impede the move-
ment. See the interval highlighted in pink in Fig. 7 for an illustration right
exclusion zone.

Hence the master equation for the occupancy, C(m)(x, t + dt), reads

CðmÞðx, t + dtÞ¼CðmÞðx, tÞ%adt
2
CðmÞðx, tÞ 1%I%ðx, tÞð Þ + 1%I +ðx, tÞð Þ½ )

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
moving out of x

+
adt
2
ð1%CðmÞðx, tÞÞ I%ðx, tÞ+ I +ðx, tÞ½ )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moving into x

+Oðdt2Þ,
(25)

where C(m) is defined as in Eq. (21). In order to compute I$ðx, tÞ, we reduce
to the case in which there is at most one other agent obstructing the movement
by assuming d < 2R. If we consider a number of agents, N , sufficiently large
and we use the continuous version of the mean-field approximation (17), we
can write

I +ðx, tÞ ¼
Z 2R+ d

2R
CðmÞðx+ y, tÞdy, (26a)

I%ðx, tÞ ¼
Z %2R

%2R%d
CðmÞðx+ y, tÞdy: (26b)

Notice that, due to the assumption on d, the two integrals on the right-hand
side of Eqs. (26) assume values in 0,1f g and so the two transition probabil-
ities defined in Eqs. (24) are meaningful. We can Taylor expand I +ðx, tÞ
and I%ðx, tÞ to second order to obtain

I%ðx, tÞ¼ dCðmÞðx, tÞ+ d

2
ð4R + dÞ∂Cðx, tÞ

∂x

+
d

6
ð12R2 + 6Rd + d2Þ∂

2CðmÞðx, tÞ
∂x2

+O ð2R+ dÞ4
h i

,

(27a)

I%ðx, tÞ¼ dCðmÞðx, tÞ%d

2
ð4R + dÞ∂Cðx, tÞ

∂x

+
d

6
ð12R2 + 6Rd + d2Þ∂

2CðmÞðx, tÞ
∂x2

+O ð2R+ dÞ4
h i

:

(27b)
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By substituting Eqs. (27) into Eq. (25) and taking the limit as dt! 0, we obtain

∂CðmÞ

∂t
¼ ad2

2

∂

∂x
1 + 4R%dð ÞCðmÞ

& '
∂CðmÞ

∂x

, -
+O ðR + dÞ4

& '
, (28)

for m¼ 1,…,M. We can now sum Eq. (28) over all values of m and divide by
the total number of realizations, M, to obtain an equivalent equation for the

average occupancy Cðx, t,Þ using the assumption that all agents are identically
uniformly distributed initially we find

∂C

∂t
¼ ad2

2

∂

∂x
1 + 4R%dÞC

( )( )∂C
∂x

, -
+O ðR+ dÞ4

& '
: (29)

The dependence on the agents’ size can be explained by noting that larger
agents will collide more often. Dyson et al. (2012) identify that when d is
large compared to R, the diffusion coefficient decreases to the point at which
it may be negative, which might suggest the occurrence of cell aggregation.
It is also important to notice that, if the agents are initialized on a lattice with
step D ¼ 2R, and we choose d ¼ 2R, the ABM is equivalent to the on-lattice
ABM with excluding agents. However, for such choice of d, the derivation of
Eq. (29) breaks down, which explains why simply setting d ¼ 2R in Eq. (29)
does not recover the simple diffusion equation as might be expected. By taking
the limit as d! 0, while keeping ad2 a nonzero constant, we arrive at a nonlin-
ear diffusion equation:

∂C

∂t
¼ ∂

∂x
DðCÞ∂C

∂x

, -
, (30)

with
DðCÞ¼D 1 + 4RC

" #

and D is defined as in Eq. (23).
Notice that the exclusion property results in a nonlinearity in the diffusion

coefficient of the population-level equation. In particular, the term 1 + 4RC in
Eq. (30) leads to faster diffusion where the average occupancy is large and
slower diffusion where the average occupancy decreases to zero, in which
case the diffusion coefficient reaches its minimum value, D. In Fig. 6J we
compare the average agent density with the numerical solution of Eq. (29)
at four subsequent times. The results confirm the good agreement between
the ABM and the corresponding continuum equation.

2.2 Higher Dimensions

Although the detailed derivations of the previous section are carried out for a
one-dimensional interval domain, discrete-continuum equivalence frame-
works can be extended to higher dimensions.
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In fact, for models which do not account for crowding effects, either on- or
off-lattice, the resulting macroscopic description can be obtained in a similar
manner to the one-dimensional case (Codling et al., 2008; Deutsch and
Dormann, 2007; Othmer et al., 1988). For the regular-square-lattice and the
off-lattice models, the resulting deterministic description is the natural gener-
alization of Eq. (6) which is given by

∂C

∂t
¼Dr2C, (31)

where r2 represents the Laplacian operator and the diffusion coefficient is
given by

D¼ lim
D!0

aD2

2r
,

where r is the dimension. Eq. (31) is an isotropic PDE, i.e., it is not biased in
any spatial direction. That such an isotropic equation can be derived from an
ABM which is defined on a regular, anisotropic lattice is perhaps surprising.
In other words, the intrinsic individual-level anisotropy of the ABM in the lat-
tice directions vanishes in the diffusive macroscopic description (Codling
et al., 2008; Deutsch and Dormann, 2007; Othmer et al., 1988). This same
property has been demonstrated to not hold for models of cell movement
which are based on velocity-jump processes (Gavagnin and Yates, 2018).
We refer the reader to Section 3.4 for a more detailed discussion of such
models.

Incorporating volume exclusion in higher dimensions does not lead to sub-
stantial changes for the on-lattice models in which case equation (31) still holds
(Simpson et al., 2009). However, higher dimensions significantly increase the
complexity of off-lattice ABMs with crowding effects. For example, Dyson
and Baker (2014) study an extension of their previous one-dimensional model
in two and three dimensions. In their ABMs, cells are represented as circular
or spherical agents of radius R. To include volume exclusion, agents movements
which would lead to an overlap of agents are aborted. In Fig. 8 we reproduce a
schematic of the volume exclusion property for the ABM of Dyson and Baker
(2014) in two dimensions. Notice that, to compute the probability of finding
obstructing agents, it is necessary to integrate the occupancy function over the
gray shaded region, Ai, of Fig. 8. This makes the computation complicated and
intractable from a mathematical point of view. To overcome this problem,
Dyson and Baker (2014) suggest a simplification of the calculation by extending
the integral to the two blue regions, b. Clearly, if the distance of each jump, dy, is
sufficiently small, this is a reasonable approximation which significantly simpli-
fies the analytical calculation.

By adopting this simplification, Dyson and Baker (2014) carry out the der-
ivation of diffusive PDEs for the average agent occupancy, leading to equa-
tions of the form of (29). In all cases, the nonlinear diffusion coefficients
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are increasing functions of the agents’ radii, R, and decreasing functions of the
jump distance, d.

Finally, the authors consider a system comprising multiple species of
agents in which the size and the movement rates of the agents depend on
the species to which they belong. The authors consider an example with
two species, one comprising agents that are large and slow moving, and the
other smaller but quicker. A system of PDEs for the densities of the two spe-
cies is derived and the results show that the species with smaller agents is less
affected by volume exclusion. Interestingly, the effect is reduced in the area
where the two species coexist, since the majority of the area is occupied by
smaller agents.

2.3 Higher Order Closure Approximations

In general, when agent–agent interactions are included in an ABM, as in the
example of volume exclusion above, the positions of the agents are not inde-
pendent. When this happens, the evolution of the average agent density
depends on the distribution of agent pairs, which also depends on the distribu-
tion of agent triples, and so on. Therefore, if we aim to derive a deterministic
representation of the model, we have to deal with an infinite system of
unclosed equations for each of the spatial moments of the agents’ distribution.
In order to overcome this problem, a moment closure approximation is neces-
sary in order to make the system amenable to mathematical analysis.

FIG. 8 Schematic representation of the volume exclusion property of the model of Dyson and
Baker (2014) in two dimensions. A moving agent (black circle) is attempting a movement to a

new position (red circle). The gray shaded region, Ai, is the area in which agent overlap must

be avoided for a successful movement event. To simplify the algebra involved, the authors extend

the integration region to include the blue shaded regions, b. Reproduced from Dyson, L.,
Baker, R.E., 2014. The importance of volume exclusion in modelling cellular migration. J. Math.
Biol. 71(3), 691–711 with the permission of Journal of Mathematical Biology.
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The mean-field closure, given by Eq. (17), represents the easiest form of
moment closure which is typically used (Cheeseman et al., 2014; Dyson and
Baker, 2014; Dyson et al., 2012; Simpson et al., 2009). Although such rudi-
mentary approximation provides good results in a wide range of scenarios,
when the spatial distribution of the agents is strongly correlated, the mean-
field closure can lead to under- or overestimations of the total agent density,
resulting in a poor agreement between the stochastic ABM and its determin-
istic representation.

Baker and Simpson (2010) investigate the role of spatial correlation in
exclusion processes and its effect on the agreement between the averaged
agent-based dynamics and the continuum approximation.

They consider an excluding ABM on two- and three-dimensional lattices.
Agents can move to neighboring lattice sites, with rate am, and proliferate by
placing daughter agents into neighboring lattice sites, with rate ap. The
authors derive a general set of master equations for the k-point distribution
functions, r(k) (of which the 1-point distribution function is simply the den-
sity, the 2-point distribution function is the pairwise occupancy, etc.). This
infinite hierarchy of master equations is unclosed: the differential equations
for the (k % 1)-point distribution functions depend on the k-point distribution
functions. Therefore, a closure approximation is required in order to solve for
the lower-order distribution functions. The authors compare the averaged den-
sity for the discrete model with the first-level moment closure (the mean-field
approximation), in which neighboring sites are assumed independent (see
Eq. 17). They also compare to a second-level moment closure (the Kirkwood
superposition approximation), which takes into account pairwise spatial corre-
lations. On the square lattice, the distance between two lattice sites increases

irregularly (D,
ffiffiffi
2

p
D, 2D,

ffiffiffi
5

p
D) and the neighbors for each site, therefore, have

to be calculated separately for each distance. This fact means that the number of
ODEs for the correlation functions becomes intractable very quickly. The sys-
tem of ODEs, therefore, needs to be truncated at a maximum distance rmax,
beyond which the sites are considered independent. Different values of rmax

are compared and the results suggest that, in two dimensions, the system can
be truncated at rmax ¼ 3 without losing accuracy. For the three-dimensional
case, the cut-off can be reduced to rmax ¼ 2. The inclusion of correlations in
the model, even if closed at level two, provides a significant improvement in
the approximation to the agent-based model.

Baker and Simpson (2010) also investigate the effects of motility, birth,
and death events on spatial correlations. As the proliferation parameter
increases with respect to the (fixed) motility parameter, spatial correlations
play a more important role and the mean-field prediction appears to overesti-
mate the growth of the population. This is due to the fact that cell motility can-
not break up the correlations, caused by the appearance of new agents close to
their parents, sufficiently quickly. This leads to cluster formation which, in
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turn, reduces the number of successful proliferation events, slowing population
growth. When agent death is included in the model, a counterintuitive effect
appears. We may naively expect that deaths would decrease spatial correlation
and so increase the agreement between the mean-field and the agent-based
models. Instead the opposite happens. A high death rate has a similar effect
to having a more sparsely populated initial seed. It provides opportunities for
correlations to build up where previously sites occupancies were uncorrelated.

Markham et al. (2013a) continue the work of Baker and Simpson (2010)
by deriving a deterministic, continuum analog of a spatially extended,
on-lattice, agent-based model. As in the previous paper, they look at the influ-
ence of including spatial correlations in the continuum model and determine
how this improves the agreement, in comparison with the mean-field model,
which assumes absence of spatial correlations.

The ABM considered is the same as in Baker and Simpson (2010), i.e., a
volume exclusion process on a lattice on which individuals can move, prolif-
erate, and die with rates am, ap, and ad, respectively.

Baker and Simpson (2010) truncate the pairwise correlation functions at a
maximum distance, rmax, resulting in a system of ODEs. The aim of Markham
et al. (2013a), however, is to derive a tractable deterministic PDE for the evo-
lution of the pairwise spatial correlation function. Specifically, as the lattice
step, D, is small relative to the size of the domain, one can Taylor expand
the correlation functions up to second order in D and then move to radial coor-
dinates. Finally, assuming that aD2 remains constant as D! 0, one obtains a
pair of PDEs.

A trivial analysis shows that, as the motility parameter, am, increases, the
diffusion coefficient of the PDE for the correlation function increases. This
agrees with the intuitive prediction that higher rates of movement break up
clusters of agents more effectively. On the other hand, the reaction term of
the PDE is negative and decreases as the proliferation rate, ap, increases.
This means that increasing proliferation leads to a decrease in correlations.
This fact appears to contradict the results of Baker and Simpson (2010).
Nevertheless, Markham et al. (2013a) provide an informal explanation for
this phenomenon.

The results of spatially extended simulations show good agreement
between the solution of the PDE and the discrete model. In particular, the
PDE approximation behaves similarly to the ABM which, in the case of
nonzero death rate, is significantly lower than the mean-field prediction.
Moreover, an improvement in the agreement between the PDE and the
ABM is obtained if the movement rate increases or if higher-dimensional
domains are considered.

Markham et al. (2013a) find that there exists a region of parameter space
for which the deterministic models (either with or without correlations) cannot
replicate the ABM dynamics. This phenomenon corresponds to high values of
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the death rate which leads the population of the discrete model to eventually
go extinct.

Markham et al. (2013b) extend their previous spatial correlation model
(Markham et al., 2013a) to an ABM with heterogeneous agents. They provide
other examples in which spatial correlations play a crucial role in predicting
the population-level behavior correctly. Agents are divided into U species

and can move, proliferate, and die with rates aIm, a
I
p, and aId, respectively,

where I2f0,…,Ug denotes the species of the selected agent. With the same
idea as their previous work, Markham et al. (2013b) focus on the evolution of
the pairwise correlation, closing the system at the level above. Firstly they
derive a set of ODEs for the system in which the pairwise correlation is
divided into auto-correlation, i.e., between agents of the same species, and
cross-correlation, if the agents belong to different species. Subsequently they
obtain a set of PDEs by Taylor-expanding and taking the limit as the lattice
step goes to zero. A key assumption throughout the chapter is that the pair-
wise correlation depends only on the distance between the agents, i.e., it is
translationally invariant and isotropic. For this reason, the agents are always
assumed to be spread uniformly across the domain initially.

The results for two species show a good agreement between the PDE
model and the ABM in comparison to the agreement between the mean-field
approximation and the ABM. The authors assume agent death is negligible
and consider two species of cells with the same proliferation rates but differ-
ent movement rates. While the logistic dynamics of the mean-field model
predicts that the densities of the two species will converge to the same
steady state, in the ABM, the species with the greater movement rate reaches
a higher density at the equilibrium. They also show, with specific values of
proliferation rates, that the results can be the reversed, i.e., in the mean-field
approximation, the density of one species at the equilibrium is greater than
the other species’ density, while the ABM predicts that, at equilibrium, the
two species reach the same density. Remarkably, the PDE model incorporat-
ing agent–agent correlation shows a good agreement with the ABM in all
these scenarios.

3 MODEL EXTENSIONS

The models, summarized in the previous section, represent the fundamental
basis for the vast majority of spatially extended models of cell migration. How-
ever, during the process of migration, cells perform a variety of other actions
and interactions whose role can dramatically impact upon the macroscopic
behavior of the system (Carmona-Fontaine et al., 2008; Keynes and Cook,
1992; Niessen, 2007; Tambe et al., 2011; Trepat et al., 2009; Ward et al.,
2003). Here we provide a brief overview of some of the most important exten-
sions and modification of the standard ABMs and demonstrate their effects on
the corresponding macroscopic models.
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3.1 Cell Proliferation

In all of the models considered so far, the ability of cells to divide and produce
daughter cells was not included. In reality, in certain circumstances (e.g., tumor
invasion and wound healing) the role of cell proliferation is crucial for the
dynamics of the system (Maini et al., 2004; Sherratt and Chaplain, 2001).

Simpson et al. (2007) propose an ABM which takes into account cells’
motility and proliferation. The ABM is defined on a two-dimensional lattice
with a simple exclusion property, meaning that each lattice site can be occu-
pied by at most one agent at the time. The model advances in discrete time. At
each time step, every agent can move and proliferate with probabilities Pm

and Pp, respectively. Agents move according to a simple, unbiased random
walk to one of the their four nearest sites (von Neumann neighbors). When
a proliferation event occurs, the proliferating agent moves to one of its eight
surrounding sites (Moore neighbors) and the new offspring is displaced to
the site diametrically opposite. If either of the two sites is already occupied,
the proliferation event is aborted. Both motility and proliferation events are
limited by a carrying capacity k 2f1,…,8g. In particular, if an agent attempts
to move or proliferate into a site with a number of surrounding neighbors
greater than k , the event is aborted.

Firstly, the authors simulate an invasion wave and investigate some of the
features of the ABM. They relate and compare the behavior of their ABM
with the traditional deterministic Fisher equation (Fisher, 1937):

∂C

∂t
¼D

∂
2C

∂x2
+ nC 1%C

K

. /
, (32)

where D is the diffusion coefficient, n is the growth rate, and K is the carrying
capacity. Note that the average speed of invasion of the deterministic Fisher

wave is known to be v& ¼ 2
ffiffiffiffiffiffi
Dn

p
.

The results of the ABM simulations show that, consistent with the contin-
uum equation, the wave speed of the invasion increases with motility param-
eter, Pm, and proliferation probability, Pp. However, the speed in the ABM is
more sensitive to variation in proliferation than in motility, in contrast to the
corresponding deterministic description which predicts equal sensitivity. As in
the continuum setting, the speed of invasion is found to be independent of the
carrying capacity.

To establish a connection between the ABM and the traditional continuum
model given by Eq. (32), Simpson et al. (2007) compare the behavior of the
two levels of description for scenarios in which either proliferation or motility
are active, but not both. When agents can only proliferate, the total density
evolves in a logistic manner and the authors identify a linear relationship
between the parameters of the agent-based and population-level models.
When agents can move but not proliferate, the results show that the diffusivity
of the model is a decreasing function of the background density. Nevertheless,
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a linear dependence is found between the motility probability of the ABM,
Pm, and the diffusion coefficient at zero agent density.

Finally, the ABM is used to investigate the individual cells’ trajectories
within the invasion wave. The authors use synthetic data to obtain statistical
information on the average direction of movement. The results compare the
behavior of the most advanced cell in the invasion with a second cell close
behind the wave front. Despite the cells moving according to an unbiased ran-
dom walk, the crowding effects inhibit the motility into highly populated
regions, inducing a bias toward the direction of the invasion in both of the
cells considered. By using the individual agent trajectories, this bias can be
quantified. Consistent with experimental data (Druckenbrod and Epstein,
2007), the observations on the ABM show a more evident bias for cells near
the wave front in comparison to cells behind the wave front.

Cheeseman et al. (2014) continued the study of cell proliferation by mod-
eling the spatial and temporal dynamics of different cellular lineages within
an invasion wave. The authors defined an ABM model on a two-dimensional
lattice with a volume exclusion property. The model is initialized with a pop-
ulation of cells located on one end of the domain (see Fig. 9A). Agents are
labeled according either to their generation number or the lineage to which
they belong. The results for the ABM simulation show a clear spatial organi-
zation in the distribution of the agent generation number. However, there is a
large individual variability in the spatial distribution of a single agent’s linage
tracing (see Fig. 9). In order to reproduce the dynamics of the agent genera-
tion number, a set of nonlinear diffusion equations are derived from the
ABM and are studied in one dimension. In particular, by using the same
approach as Simpson et al. (2009), Cheeseman et al. (2014) derive a system
of conservation of mass equations describing the density profile for each gen-
eration !i(x, t). In order to investigate the lineage tracings, they develop a
Generation-Dependent Galton-Watson (GDGW) process. The authors look
at the Lorenz curves, which describe the proportional contributions of each
of the initial seed cells’ lineages to the final population (Lorenz, 1905).

The results from agent-based and PDE models show that the invasion
wave is composed of spatially regular and predictable generations. As the
invasion occurs, the older generations reach a steady state behind the traveling
wave. This structure is more apparent when averaging over more realizations
of the ABM model. Indeed, both the mean and the variance of the generation
number increase linearly with the distance from the location of the initial
group of cells. Conversely, the individual agent lineages exhibit a clear asym-
metry in their contribution to the final population. A small group of cells
(superstars) generate the majority of the total population. The GDGW model
shows a good agreement with the ABM results. This fact is interesting, since
the GDGW process ignores some of the spatial and temporal correlations
between individual lineages. Nevertheless this phenomenon can be partially

64 SECTION I Cellular Population Dynamics

33



explained by noticing that the competition between agents affects the genera-
tion densities, !i, which are used in the Galton–Watson process.

As highlighted in Section 2, choosing between on- and off-lattice frame-
works can lead to differing macroscopic descriptions for excluding ABMs
incorporating motility only. The same can be said for models of cell prolifer-
ation. Plank and Simpson (2012, 2013) provide a pioneering comparison
between on-lattice and off-lattice models of proliferating and migrating cells.

The authors develop a new off-lattice discrete-time ABM for migration
and proliferation of cells in a two-dimensional domain. Agents are repre-
sented as incompressible circles of diameter D and the total number of agents
at time t is denoted N ðtÞ. At each time step, N ðtÞ agents are selected indepen-
dently and are given the chance to move with probability Pm. A selected agent
attempts to move a fixed distance, D, in a given direction, y, which is chosen
uniformly at random in [0, 2p). To include crowding effects, the movement is
aborted if any of the other agents lie within a distance D of the line segment

FIG. 9 Two simulations of the ABM of Cheeseman et al. (2014) for an invasion wave with
agent lineage tracings. Panel (A) shows the initial condition for all simulations. Panels (B) and

(C) show two realizations of the ABM in which the agents populate the domain through move-

ment and proliferation. The largest and second largest single agent lineage tracings (pink and tur-
quoise, respectively) and the 498 other agent lineage tracings (all collected together in blue) are

illustrated. Reproduced from Cheeseman, B.L., Newgreen, D.F., Landman, K.A., 2014. Spatial
and temporal dynamics of cell generations within an invasion wave: a link to cell lineage tracing.
J. Theor. Biol. 363, 344–356 with permission of Journal of Theoretical Biology.
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which connects the current location to its potential new location. Once all the
motility events have been attempted, another N ðtÞ agents are selected inde-
pendently to attempt proliferation events with probability Pp. A proliferating
agent attempts to divide into two daughter agents whose positions are chosen
diametrically opposite each other at distance D/2 from the original agent. The
chosen proliferation event takes place only if it does not cause overlap
between agents.

The authors derive a mean-field approximate ordinary differential equa-
tion for the spatially averaged agent density, Cm(t). In doing this, they assume
that the population of agents is homogeneous in the domain, which is known
to be a poor assumption for large values of proliferation (Baker and Simpson,
2010; Markham et al., 2013b).

Plank and Simpson (2012) show a comparison between their off-lattice
model and a standard on-lattice model (Simpson et al., 2010) for a spatially
uniform initial condition. For small values of agent density, the absence of
significant agent–agent interactions leads to similar behaviors for the on- and
off-lattice models. However, the two types of approach show a substantial dif-
ference for high densities. The on-lattice model leads to a faster growth of the
population density. The density eventually reaches the maximum value of unity
when all the lattice sites are occupied. Conversely, it is impossible for agents in
the off-lattice model to reach the theoretical maximum agent density. This
because the agents are not perfectly aligned, and at high densities become
jammed in more realistic, yet irregular configurations. The appearance of a nat-
ural carrying capacity in the off-lattice model, as opposed to the artificial value
induced by an on-lattice approach, suggests the off-lattice model is a more suit-
able representation for biological applications.

Plank and Simpson (2013) further investigate the behavior of their
on-lattice and off-lattice models in scenarios in which the spatial variability
of the cell density profile plays an important role. In particular, they initialize
the domain by uniformly populating only the left-hand side region with a rel-
atively low density. They then proceed to study the speed and the shape of the
resulting invasion waves in the two models.

Their results highlight that the two models behave differently behind the
invasion front. However, the models’ behaviors are similar at the leading edge.
These findings are consistent with the previous observation that the effects of
crowding are more evident in the off-lattice model than in the on-lattice model
(Plank and Simpson, 2012). Specifically, in the invaded region, where the agent
density is higher, the population size of the off-lattice model approaches carry-
ing capacity slower than the analogous on-lattice model. However, at the front
of the invasion, the low value of agent density makes the two models almost
indistinguishable. This implies that, in the long term, the speeds of the invasion
fronts in the on-lattice and off-lattice models are the same.

Finally, Plank and Simpson (2013) carry out a least-squares parameter
estimation in order to fit the two continuum representations to density profile

66 SECTION I Cellular Population Dynamics

35



data simulated using the off-lattice ABM. The solutions for both the on-lattice
and off-lattice PDEs are in good agreement with the simulated data and it is
hard to distinguish between the two fitted curves. The authors present this
as an example that highlights the difficulty of choosing the correct mathemat-
ical framework when modeling real experimental data.

Typically, cell proliferation is represented in ABMs as a Poisson process
with a certain rate ap, which means that each agent’s interdivision times are
exponentially distributed (Mort et al., 2016; Simpson et al., 2007; Treloar
et al., 2013; Turner et al., 2009). One of the advantages of this approach is
that, due to the memoryless property of the exponential distribution, the pro-
cess can be efficiently simulated using the popular Gillespie algorithm
(Gillespie, 1977).

However, assuming exponentially distributed cell interdivision times is not
biologically realistic (Golubev, 2016). In particular, the monotonicity of the
exponential distribution implies that the most likely time for a cell to divide
is immediately after its own creation. Recently, Yates et al. (2017) have pro-
posed a novel model for incorporating nonexponentially distributed cell cycle
times, based on a multistage scheme. The authors divide the cell cycle into
s stages. The waiting time for an agent to pass from the i-th phase to the
(i + 1)-th phase is exponentially distributed with rate li. When an agent exits
from the s-th stage, it divides into two daughter agents which are initialized in
the first phase. This can be summarized by the following chain of reactions:

X1!
l1
X2!

l2 ⋯00!lk%1 Xs!
lk
2X1:

In general, the resulting probability distribution of the total cell cycle is a
hypoexponential distribution. Note that this general implementation involves
k independent parameters (l1,…,lk), one for each stage transition and, if k
is large, this may lead to issues of parameter identifiability. In order to reduce
the number of free parameters while maintaining the advantage of using a
multistage representation, Yates et al. (2017) focus on two cases: the case in
which all the transition rates are identical, li ¼ l for i¼ 1,…,k, and the case
in which all the transition rates are identical apart from one, li ¼ l for
i¼ 1,…,k%1. The corresponding distribution for the total cell cycle in these
two cases are the Erlang distribution and exponentially modified Erlang distri-
bution, respectively. The authors show these distributions to be both biologi-
cally plausible and computational feasible.

In order to investigate how the multistage representation of the cell cycle
affects the total population growth, Yates et al. (2017) implemented two mod-
els (one spatial and one nonspatial). Firstly, they modified the model of
Turner et al. (2009) in which the spatial position of the cells is considered
unimportant. The authors investigate the stage distribution of agents at the
steady state for large times. By writing down a system of ODEs describ-
ing the average proportion of agents at each stage j, Mj, for j¼ 1,…,s,
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Yates et al. (2017) show that the number of agents in each stage is not propor-
tional to the average length of that stage. In particular, for identical transition
rates, as the total number of stages becomes large, the proportion of agents at
the first stage approaches twice that of agents at the last stage.

The authors also modify the spatially extended ABM of Baker et al.
(2010) to include their multistage proliferation scheme. The agents are initia-
lized uniformly on a lattice with periodic boundary conditions and a standard
volume exclusion property. Agents attempt movements with rate am. To facili-
tate the comparison with the traditional model with an exponentially distributed
waiting time of rate ap, the authors consider the case of identical transition rates
li ¼ sap for i¼ 1,…,k. Hence the average waiting time required for progress
through all the s stages is independent of the number of stages. In particular,
the two models, with and without multistage scheme, have the same average
attempted proliferation waiting time.

The simulations of the ABM highlight that, for low-density colonies, the
multistage scheme leads to a slower population growth compared to the model
with exponentially distributed proliferation. However, under the realistic
assumption that agents that fail to proliferate due to crowding remain at the
last stage (as opposed to returning back to the first stage of the cycle), a clear
proliferating rim of (gray) cells can be seen with the bulk of cells being kept
at stage s (see Fig. 10). Agents located in this rim, reattempt division after
aborted events quicker than in the single-stage cell cycle model since they
only have to wait a time ap/k on average. Therefore, the effective average
interdivision time for cells with a multistage cell cycle at the proliferating
rim of a cluster decreases in comparison with cells to a single-stage cell cycle.

3.2 Cell Interactions

Cells can undergo a great variety of interactions in response to their environ-
ment and more specifically, their neighboring cells (Cai et al., 2006; Dworkin
and Kaiser, 1985; Tambe et al., 2011; Trepat et al., 2009). Typically, these
can be divided in two broad categories: indirect and direct (Othmer and
Stevens, 1997).

Indirect interactions are when cells have the ability to detect the presence
of an external signal and change their behavior according to its concentration.
They can affect the movement speed or the turning rate (kinesis) (Cai et al.,
2006), they may induce a directional bias (taxis) (Painter and Hillen, 2002),
or they may involve a combination of these (Erban and Othmer, 2004). In
general, the external signal can depend on the cells themselves. For example,
it can be directly produced by a moving cell as it moves, forming a trail
behind it, as it has been shown for Myxobacteria (Dworkin and Kaiser,
1985). Notice that this type of interaction does not involve direct cell–cell
contact, communication is mediated only through the external signal. Direct
interactions are based on the ability of cells to detect and interact with
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surrounding cells. These include contact interactions such as volume exclu-
sion (Abercrombie, 1979) and adhesion–repulsion (Tambe et al., 2011;
Trepat et al., 2009).

The introduction of these interactions in models of cell migration is cru-
cial, since they often constitute the driving forces that generate spatial struc-
ture at the population scale. In this section we focus our attention on a set
of important cell interactions: the indirect response to a chemical signal, direct
adhesion–repulsion forces between cells, and the ability of cells to push and
pull each other.

100
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FIG. 10 Influence of multistage representation of the cell cycle on the spatial coverage of cells
populating the domain at t ¼ 10. Agents in different stages are represented by different shades of
gray. Darker shading corresponds to later stages, and white indicates empty sites. Parameters are

am ¼ 1, ap ¼ 1. The initial condition consists of 100 agents uniformly distributed on the lattice.

Panels (A), (B), and (C) correspond to the cases s ¼ 1, 10, 100, respectively. Increasing s causes
an increase in the total cell density in this scenario at time t ¼ 10. Reproduced from Yates, C.A.,
Ford, M.J., Mort, R.L., 2017. A multi-stage representation of cell proliferation as a Markov pro-
cess. Bull. Math. Biol. 79 (12), 2905–2928 with permission of Bulletin of Mathematical Biology.
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3.2.1 Chemotaxis

Othmer and Stevens (1997) derive a general class of PDEs from a set of
ABMs which incorporate a simple signal following mechanism. The aim of
their paper is to determine whether stable bacterial aggregation can arise as
a result of a simple chemotactic response.

The main ABM considered in the paper consists of a system of noninter-
acting agents which move on a one-dimensional lattice with unit step size,
according to a continuous-time, nearest-neighbor random walk. As time
evolves, agents produce an attracting signal, w, which sits on an embedded
lattice of half the step size.

The authors distinguish three types of model depending on the information
used to compute the transition rates. These are the localmodel, if the transitions
depend only on the signal concentration at the current site, wn; the barrier
model, in which cells only sense the value of the signal at the short-range,
nearest-neighbor sites, wn$1/2; and the gradient-basedmodel, in which the tran-
sition rates depend on the long-range, nearest-neighbor differences, wn% wn$1.
In the barrier and gradient-based cases, an additional distinction is made
between normalized and unnormalized transition rates. For unnormalized rates,
larger values of w lead to a faster total movement rate, whereas, for normalized
rates, the average waiting time at each site does not depend on the signal con-
centration. In all cases, by using a limiting argument, the authors derive the
corresponding continuous diffusive approximations for the average agent
density.

Othmer and Stevens (1997) carry out a stability analysis of the solutions of
the continuous barrier model with normalized transition rates. The analysis is
repeated with three different models for the evolution of the signal: linear
growth, exponential growth, and saturating growth. The results show that lin-
ear growth can only lead to uniform agent density profiles, even when starting
from a single peak in the initial distribution of agents (collapse). On the other
hand, when the signal grows exponentially, the system tends to converge to
a single peaked distribution (blow-up). Finally, when a saturation in the pro-
duction of w is assumed, stable aggregation can occur as a result of the inter-
play between the production of the signal and the short-range chemotactic
response. The formation of such aggregates strongly depends on the decay
rate of the signal and on the initial condition. In particular, a large decay rate
or a small initial value of w can lead to aggregation or blow-up, whereas in
the absence of signal decay, the agent density will eventually collapse to
uniformity.

3.2.2 Adhesion–Repulsion

Anguige and Schmeiser (2009) investigate the emergence of aggregation
through the mechanisms of cell–cell adhesion and volume exclusion. They
predict, under their model, that the spontaneous aggregation of cells is not

70 SECTION I Cellular Population Dynamics

39



possible if the initial cell density throughout the domain is too low, regardless
of the intensity of the adhesion force.

To describe cell migration, Anguige and Schmeiser (2009) consider a
discrete-space, continuous-time random walk model on the unit interval. Mul-
tiple agents can occupy the same compartment up to a carrying capacity, S,
and they move at random with given rates to one of the two nearest-neighbor
compartments. In order to include volume exclusion in the model, the transi-
tion rates in both directions are decreased linearly with the density of the tar-
get site. If a site is fully occupied, no transitions into that site can occur. To
incorporate adhesive forces, the rate of moving in a particular direction is
decreased linearly with the density of the adjacent site in the opposite direc-
tion, in proportion to an adhesion parameter, b.

By Taylor expanding and neglecting terms of third (or higher) order it is
possible to derive the diffusive limit of the discrete model as the number of
lattice sites goes to infinity. This macroscopic model is a nonlinear diffusion
equation as Eq. (30) with

DðCÞ¼D 3b C%2

3

. /2

+ 1%4

3
b

" #

,

for which the homogenous density profile is the only steady state. Anguige
and Schmeiser (2009) find that there is a critical value of the adhesion param-
eter bc ¼ 0.75. For the low-adhesion regime (b < bc), pattern formation is not
possible in either the discrete or continuum descriptions.

When the adhesion force is large (b > bc), the results of the discrete model
show complex behaviors such as pattern formation and spatial oscillations in
density. Patterns in the discrete model are found to be transient and metasta-
ble. All clusters which arise eventually coalesce to a single stable aggregate,
or to two aggregates separated by a single trough. For the macroscopic PDE
representation, the authors identify an interval of unstable values of density
for which the diffusion coefficient of the nonlinear PDE takes negative values
making the continuum model ill-posed.

To overcome the issue of the ill-posedness in the PDE and to obtain a rea-
sonable continuum description, Anguige and Schmeiser (2009) propose to
include more terms from the Taylor expansion of their discrete model. These
higher order corrections result in a fourth-order diffusion equation reminis-
cent of the Cahn–Hilliard equation (Sun and Ward, 2000). The presence of
a viscosity term in the revised equation allows the authors to prove it has a
well-posed initial value problem.

Thompson et al. (2012) continue the work of Anguige and Schmeiser
(2009) on the modeling of cell–cell adhesion at multiple scales. The authors
consider a modification of the ABM of Anguige and Schmeiser (2009) in
order to study the interactions with a second species of cell. In this new
model, agents are of two types, A and B, and the there are four different
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coefficients (bA,A, bB,B, bA,B and bB,A) governing the intra- and interspecies
adhesion forces, respectively. Thompson et al. (2012) show that the model
is capable of reproducing three configurations (complete sorting, engulf-
ment, and mixing), which have been observed previously both in experi-
ments and continuous models (Armstrong et al., 2006). In Fig. 11 we
report an example of these three configurations depending on the choice of
the adhesion parameters. Specifically, if interspecies adhesion is small and
intraspecies adhesion is large, the system reaches a structured configuration
(cell sorting) in which agents of the same species tend to cluster together
(see left column of Fig. 11). If interspecies adhesion is small and one of the
intraspecies adhesions is larger than the other, then engulfment of the species
with the larger adhesion occurs (see middle column of Fig. 11). Finally, when
interspecies adhesion is large and the intraspecies adhesion is small, then
mixing occurs, i.e., agents of the two species are uniformly distributed across
the domain (see right column of Fig. 11).

Recently, Binny et al. (2015) have studied a one-dimensional off-lattice
ABM (later extended to two-dimensions (Binny et al., 2016)) in which both
the rate and the direction of the movement of each agent are influenced by
the configuration of the neighboring agents. In their model an agent, n, moves
with a rate, an, which is computed by

anðtÞ¼ max 0, a' +
X

m 6¼n

w cmðtÞ% cnðtÞð Þ

( )

,

where a' is an intrinsic motility rate, independent of the other agents’ posi-
tions, and w(z) is a kernel function weighting the strength of interaction
between agents positioned a distance z from each other. Binny et al. (2015)
consider the case in which the kernel is Gaussian:

wðzÞ¼ gr exp % z2

s2r

. /
, (33)

where gr and sr determine the intensity and the range of the interaction. Notice
that if gr > 0, agents tend to move more often when they are surrounded by
other close agents. Conversely, for gr < 0, the presence of close neighbors inhi-
bits the motility. When a movement event takes place, the moving agent per-
forms a jump of random length and direction. The length of jump is drawn at
random from a Laplace distribution (i.e., short steps are more likely to be taken
than long jumps), independent of the other agents’ positions. For the direction
of the movement, the authors incorporate a directional bias, bn(t), such that the
presence of neighboring agents can affect the final direction. They defined the
directional bias for an agent, n, as

bnðtÞ¼
X

m 6¼n

v0cmðtÞ% cnðtÞð Þ,
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where v(z) is a Gaussian kernel function of the same form of Eq. (33) with
intensity and rage given by gb and sb, respectively. If gb > 0, agents are biased
to move away from highly concentrated regions, whereas if gb < 0, agents
tend to move toward one another.

To study the resulting spatial structure from a deterministic prospective,
Binny et al. (2015) develop a population-level model in terms of the first
two spatial moments of the ABM. By using the Kirkwood superposition
approximation (see Section 2.3 for a discussion about alternative approaches
to the mean-field approximation), the authors derive a closed system of
two ordinary differential equations (ODEs) describing the evolution of the
average density of single agents, Z1 and of pairs of agents separated by a
distance x, Z2(x).

In order to test the accuracy of their deterministic representation against
the numerically simulated individual-based model, the authors compare the
pair correlation functions (PCFs) (Illian et al., 2008) of the ABM with the
PCF predicted by the spatial moment model. The pair correlation function
can be expressed in terms of the first two spatial moments as

PCFSMðxÞ¼
ZðxÞ
Z2
1

: (34)

Notice that PCFSM * 1 corresponds to the case of absence of spatial structure,
whereas PCFSM(x) > 1 denotes evidence of spatial correlation and PCFSM(x)
< 1 implies anticorrelation, at length x.

Their findings show that the moment model provides a good approxima-
tion of the spatial structure predicted by the ABM for a wide range of param-
eter choices. The moment model underestimates or overestimates the spatial
structure only for large values of intensity gm and gb. Binny et al. (2015) sug-
gest that this is due to higher order interactions which are not incorporated in
the deterministic representation.

Binny et al. (2016) continue the study of agent–agent interactions by
extending the previous model to two dimensions and including agent prolif-
eration and death. In the new model, agents are allowed to proliferate with a
rate which is dependent on their neighborhood and defined similarly to an(t)
of Eq. (33). The rate of agent death is assumed independent of the location of
other agents. Following Binny et al. (2015), the authors derive a determin-
istic model for the first two spatial moments of the ABM. After comparing
the performance of four different types of moment closure, the authors select
an asymmetric power-2 closure as the most appropriate (Murrell et al., 2004;
Raghib et al., 2011) which they adopt throughout the paper. The results show
that the good agreement between the stochastic and deterministic models,
found in Binny et al. (2015), is preserved when proliferation and death are
incorporated in the model. Unsurprisingly, the presence of nonuniform spa-
tial structure leads to both population growth and the average cell density
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differing significantly from the predictions of a mean-field model that
ignores agent–agent interactions.

Finally, Binny et al. (2015, 2016) investigate the role of neighbor-
dependent movement and proliferation in the formation of spatial structure.
In general, movement tends to break up spatial structure because new agents
can move out of clusters generated by short-range proliferation (Baker and
Simpson, 2010). When movement is biased away from neighboring agent,
gb < 0, this effect appears more clearly, since agents undergo directed move-
ment out of clusters. The same dispersal of spatial structure is found for the
neighbor-dependent-inhibition of the motility rate, but it occurs in a less effi-
cient way. The authors also highlight that the crowding-induced inhibition of
proliferation is capable of counteracting the formation of clusters due to short-
range proliferation.

3.2.3 Pushing and Pulling

Yates et al. (2015) study how cell–cell pushing affects cells’ dispersal and
proliferation by considering on- and off-lattice ABMs. The authors begin by
considering a simple ABM incorporating exclusion on a two-dimensional lat-
tice, as in Simpson et al. (2007). They modify the basic model in order to
incorporate the ability of cells to push their neighbors (Ewald et al., 2008;
Schmidt and Friedl, 2010). Pushing is implemented according to four different
mechanisms with variable degrees of complexity and realism.

Consider an agent at position (i, j) which attempts a movement into an occu-
pied site to its right. In the most basic pushing mechanism, the authors allow the
moving agent push the agent at position (i + 1, j) into the site (i + 2, j), with a
given probability, H, with the pushing agent taking the pushed agents’ original
position, (i + 1, j). Pushing is successful only if the target site of the pushed
agent, (i + 2, j), is empty. Otherwise the entire movement is aborted. For the
next two mechanisms, the assumption about the location of the target site of
the pushed agent is relaxed. For one of these mechanisms the pushed agent is
allowed to move into each of its empty neighboring sites with equal probabil-
ity. If all neighboring sites of the pushed agent are occupied, then the whole
event is aborted. In the other mechanism, a target site is chosen uniformly at
random from among the pushed agent’s three nearest-neighbors, but if the cho-
sen site is found to be occupied then the entire event is aborted. In the final case
considered, the moving agent can attempt to push up to K other agents in a
straight line in a chosen direction.

In all the cases considered, the authors derive diffusive PDE approxima-
tions for the total agent density. For the basic pushing mechanism, for example,
the resulting nonlinear PDE takes the form of Eq. (30) with density-dependent
coefficient given by

DðCÞ¼D 1 + 4HC
( )

: (35)

Stochastic and Deterministic Modeling of Cell Migration Chapter 2 75

44



In most scenarios, the comparison between the ABM and the corresponding
PDE is good. However, the more complicated pushing mechanisms, such as
the linear pushing of multiple agents, introduce strong spatial correlation in
the occupancies of adjacent sites. Since the derivation of the continuum mod-
els is based on a mean-field approximation, the presence of such spatial cor-
relation leads to a divergence between the ABM and its deterministic
counterpart.

Yates et al. (2015) also investigate the effect of introducing pushing in an
off-lattice setup by modifying the one-dimensional model of Dyson et al.
(2012) (see Section 2.1). In this model, a pushing event is attempted with
probability H when a movement would lead to an overlap of agents, which
are represented as interval of length 2R. The moving agent can displace the
pushed adjacent agent far enough for it to complete its movement, but only
if this will not produce an overlap with a third agent. In this case the entire
movement would be aborted. By using a similar approach to that of Dyson
et al. (2012), a nonlinear diffusive PDE of the form (30) is derived with

DðCÞ¼D 1 + 2Rð2%HÞC
( )

, (36)

and the numerical solution of the PDE shows good agreement with the aver-
aged density of the ABM.

For both on- and off-lattice cases, Yates et al. (2015) find that the intro-
duction of pushing behavior leads to density-dependent diffusion coefficients
in the macroscopic descriptions. For the on-lattice models, pushing leads to a
faster diffusion, due to the larger number of possible movements for each agent
in comparison to the simple exclusion model. However, in the off-lattice sce-
nario, increasing the tendency to push leads to a decreasing diffusivity. To
explain this behavior, Yates et al. (2015) underline that when a pushing event
occurs in the off-lattice model, the moving agent and the pushed agent end
up being adjacent, even if they were not in contact prior to the movement. This
aggregation effect leads to a slower dispersal of agents corresponding to a
lower diffusion in comparison to the nonpushing case.

There is much evidence in the literature to suggest that cells can pull
each other while they are undergoing collective migration (Bianco et al.,
2007; Ghysen and Dambly-Chaudière, 2007). Chappelle and Yates (2018)
explore the effect of allowing cell–cell pulling in both on- and off-lattice
models of cell migration.

Firstly, the authors specify a simple on-lattice excluding ABM in which
agents are capable of pulling each other. For example, if an agent is moving
to the right and another agent is occupying the neighboring site to its left, the
moving agent will pull the neighboring agent rightwards, with probability o.

By writing down the occupancy master equation of the model and taking
appropriate limits, the authors obtain a nonlinear diffusion equation for the
average agent density, which takes the form of Eq. (30) with
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DðCÞ¼D 1 + 3oC2
( )

:

Pulling produces a quadratic density dependence in the diffusion coefficient
of the macroscopic PDE. A comparison with the corresponding model for
agents which are able to push each other (see Eq. (35)) highlights that the
density dependence of diffusivity due to pushing is larger than in the
pulling case.

In order to study the effect of pulling in off-lattice models, Chappelle and
Yates (2018) use a similar approach to that of Dyson et al. (2012) (see
Section 2.1). The one-dimensional model in Dyson et al. (2012) is extended
by introducing a pulling distance proportional to the moving distance, l ¼ kd,
such that, if an agent is chosen to move in a given direction and there is
another agent whose center is within distance l + 2R in the opposite direction,
both agents move in the given direction. The corresponding PDE is of the
form of Eq. (30) with

DðCÞ¼D 1 + 4RC 1%okð Þ
" #

,

which predicts that the effect of pulling is to decrease the effective diffusivity
in the off-lattice model, leading to a slower dispersion at the macroscopic
level. The apparent contradiction with the on-lattice counterpart is explained
in the paper by using a similar argument to Dyson et al. (2012).

3.3 Growing Domains

Considering cell motility on a purely stationary domain may often be unreal-
istic for biological processes: cell growth, division, and movement itself will
cause the size of the tissue to change dynamically in many biologically plau-
sible situations (Rogulja and Irvine, 2005; Wolpert et al., 2015). Surprisingly,
it is only in the last decade that attention has been given to investigating how
this phenomenon affects models at multiple scales. Baker et al. (2010) repre-
sents a pioneering example of the incorporation of domain growth into models
of cell migration.

For the motility scheme, Baker et al. (2010) follow the approach of Othmer
and Stevens (1997). At the individual-cell-level they consider a continuous-
time, discrete-space ABM. Agents are initialized on a one-dimensional lattice
with zero-flux boundary conditions. Agents have the ability to sense the con-
centration of a signal profile, w, at their current lattice site and at their two
nearest-neighbor sites. Agents can jump to immediately neighboring lattice
sites. These jumps are regulated by two transition rates that are linear combina-
tions of the signaling molecule concentration at the agent’s current and imme-
diately sites. The authors consider four types of transition rate comprising
different linear combinations of these concentrations (local, nonlocal, average,
and difference). If no signal profile exists then agents can either diffuse
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randomly (jumping with constant rates independent of their position) or
implement density-dependent transition rates. For each case, using a master
equation, the authors derive population-level descriptions, which comprise
an advection-diffusion PDE for the average agent density,C(x, t), as a function
of position, x, and time, t.

The inclusion of domain growth in the model is carried out in two
phases. Firstly, Baker et al. (2010) consider the case of exponential growth.
On the individual-level this implies that each lattice site divides at a constant
rate per unit time. When the site divides, a new daughter site is added adja-
cent to the parent site. The agents in the parent site are divided between
these two sites according to a symmetric distribution and the sites to the
right of the daughter site (and their contents) are all shifted one site’s width
to the right. A PDE description of cell density is derived both from a phe-
nomenological, continuum perspective, using a conservation of matter argu-
ment (Crampin et al., 1999), and from the master equation of the ABM. In
order to derive the corresponding PDE from the master equation, the authors
use a moment closure approximation on the number of agents in each lattice
site. This approximation is based on the assumption that movement occurs
on a faster time-scale than domain growth.

Secondly, the authors consider a more general type of domain growth
which is density-dependent. As before, upon being chosen to undergo a
growth event, a lattice site is divided into two daughter sites, but now with
a density-dependent rate, f Cðx, tÞð Þ. A continuous approximation is derived
using a further moment closure assumption—that the mean of a nonlinear
function of the agent density can be expressed as the same nonlinear function
of the mean agent density. The authors prove that domain growth is linear for
the case of linear density dependence on domain growth, while it must be
evaluated for numerically in the general case.

The paper shows comparisons between the simulations of the individual-
based models and the numerical solution of the PDEs. In addition, the predicted
macroscopic domain length is compared with the average value from simula-
tions. Results are displayed for the cases of the nongrowing domain, constant
growth, linearly density-dependent growth and quadratically density-dependent
growth. In each case, the results show a good agreement between the discrete
model density and the continuous approximation. However, the predicted
value of the domain length in the continuum approximation is underestimated
in comparison to the true value from the stochastic model in the case of the
nonlinear growth model.

The last part of the paper incorporates a signaling profile which agents can
sense and respond to. Specifically, an exponentially decreasing concentration
of signaling molecule, w, is placed in the domain and agents are assumed to
interact with it, both via the local and nonlocal schemes. Results show good
agreement between the simulation and the deterministic prediction for both
linear and logistic domain growth. As a last application, Baker et al. (2010)
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consider linearly density-dependent growth with both local and nonlocal sens-
ing again demonstrating good agreement between the two modeling regimes.

Yates et al. (2012) generalize the existing ABMs of Baker et al. (2010) to
a nonuniform lattice allowing the process of cell division on the underlying
domain to be modeled in a more realistic manner. The domain is allowed to
extend in a manner which can be made arbitrarily close to continuous, as
opposed to the discrete increments by which the domain is extended in
Baker et al. (2010).

The authors consider two distinct ways to discretize a one-dimensional
domain in a nonuniform way: the Voronoi partition method and the interval-
centered method. In the first case, the agent positions, c(n, t) for n¼ 1,…,N ,
are chosen first and the edges of the intervals are the bisectors of these
points. In the second case, the edges of the intervals are specified first and
the agents lie at the center of these intervals. As in Baker et al. (2010), no
exclusion property is implemented and multiple agents can occupy the same
lattice site.

In the first part of the paper the domain is fixed and agents move following
a position-jump process on the irregular lattice. The transition rates of an
agent in interval i are computed from the mean first passage times that a
Brownian particle, initialized at xi, takes to hit one of the neighboring particle
positions (xi%1 or xi+1). Using the master equation for agent densities, Yates
et al. (2012) derive a macroscale description of the model in the diffusive
limit. For the Voronoi partition, the density evolves according to the diffusion
equation and the comparison between the simulations and the PDE shows a
good agreement. In the case of the interval-centered partition, the agreement
between the individual-level behavior and the population-level diffusion
equation is poor since the transition rates are not inherently linked to the size
of the intervals.

The remainder of the paper focuses on the introduction of domain growth
to models of agent migration using the Voronoi partition. Yates et al. (2012)
start by defining a deterministic scheme for domain growth. Every time an
agent moves, each lattice interval grows an amount proportional to its length
and proportional to the time step between movement events. When an interval
reaches a threshold length, it splits into two daughter intervals. The bound-
aries of such daughter intervals are chosen in order to preserve the Voronoi
property of the domain partition. Each agent is redistributed to a new interval
with probability proportional to the overlap between the new intervals and
the old intervals. The authors also consider an alternative growth mechanism
in which, with a give rate, an interval is chosen at random to grow with
probability proportionally to its length. When a growth event occurs, both
the selected interval and an adjacent interval grow in order to preserve the
Voronoi property. For both growth schemes, a population-level description
can be obtained through the master equation for the densities. The resulting
PDEs are of the same form as in Baker et al. (2010).
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Finally, a series of comparisons between simulations and PDEs confirm
the good agreement between the microscopic and macroscopic models for
the Voronoi domain partition, but a poorer agreement for the interval-centered
domain partition, as expected.

In addition to their investigations into cell–cell adhesion and volume
exclusion on a static domain (see Section 3.2.2) Thompson et al. (2012) study
the interplay of the same properties on a growing domain using a modification
of the ABMs of Baker et al. (2010) and Yates et al. (2012). The authors incor-
porate a partially excluding property into the model of domain growth of
Baker et al. (2010) by allowing the carrying capacity of each compartment
to be proportional to its size (see Fig. 4 for a schematic illustration). When
a growth event occurs, a compartment is chosen at random and its carrying
capacity is increased by unity. Commensurately, its size it is also increased.
When a compartment reaches a predefined threshold, it is split into two com-
partments each with carrying capacity set to half of the previous value. To
compensate for the unequal compartment sizes generated by growth, the tran-
sition rates are amended as in Yates et al. (2012). A population-level descrip-
tion of the model is derived, but it is only valid for short time-scales,
specifically until the first splitting event occurs.

The results demonstrate that domain growth decreases the chance of cell
clustering occurring by cell–cell interactions. For high values of adhesion
and with small growth rates, clusters can still appear over short time-sales.
However, as the growth rate increases, the probability of clusters appearing
decreases and all initial cell clusters are eventually destroyed.

Hywood et al. (2013) suggest a modified version of the model of Baker
et al. (2010) to represent tissue growth. The authors initialize a one-
dimensional lattice with a set of contiguous nonoverlapping agents (tracers
agents). These agents are inactive (i.e., they do not perform any jumping
movement between sites) and their role is only to mark the position of the site
in which they are located as the underlying lattice grows. The authors focus
on the case of exponential growth with constant rate, b, which is implemented
similarly to Baker et al. (2010). If a marked site splits into two daughter sites,
the corresponding tracer agent moves to the right daughter site (see Fig. 12 for
an illustration). The usage of tracer agents follows from the previous work of
Binder and Landman (2009) in which, contrastingly, domain growth is imple-
mented in a deterministic manner.

By coupling the position of the tracers to a system of noninteracting random
walkers and writing down the corresponding occupancy master equation for the
tracers, Hywood et al. (2013) derive a formula for the infinitesimal mean and
variance of the underlying stochastic process, m (x, t) and s2(x, t), respectively.
These expressions can then be used as coefficients for an advection-diffusion
PDE (Fokker–Planck equation (FPE)) describing the spatio-temporal evolution

of the average occupancy of the tracer agents, Cðx, tÞ:
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∂Cðx, tÞ
∂t

¼ ∂
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∂x2
s2ðx, tÞ
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Cðx, tÞ
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% ∂

∂x
mðx, tÞCðx, tÞ
" #

: (37)

Yates (2014) extends the work of Hywood et al. (2013) to more general
scenarios in which the rate at which sites divide is time-dependent, b(t). This
extension allows the incorporation of a variety of biologically realistic
mechanisms of domain growth. By using similar steps, Yates (2014) obtains
a series of PDEs for the average occupancy of the tracer agents of the same
form as Eq. (37). In particular, the author provides the expressions of m (x, t)
and s2(x, t) for the case of linear growth, dL

dt ¼ r, generalized logistic growth,

dL
dt ¼ rL 1% L

R

. /nh i
, and Gompertzian growth, dL

dt ¼ rL ln L
R

( )( )
.

Finally, Yates (2014) studies the implications of implementing site death
in the model which can be done by removing sites with a given rate, d(t).
When this occurs, all the site to the right of the removed site are moved
to the left in order to fill the vacant space created by the site’s removal. If
a tracer agent occupied the removed site, it remains in its position. Notice
that this new mechanism can lead to multiple tracer agents occupying the
same site (see Fig. 12 for an illustration). The comparison between the
ABM simulations and the corresponding PDE preserves a good agreement
when site death is introduced, even for cases of net domain shrinkage, i.e.,
b(t) < d(t).

The results of Yates (2014) highlight the danger of neglecting death events
in the model, even when the net growth rate is positive, b(t)% d(t)> 0. In other
words, although the mean growth rate can be estimated correctly by using

purely growing dynamics (with growth rate given by b
'
ðtÞ¼ bðtÞ%dðtÞ), the

second and higher moments of the process will be incorrect. For example, the
higher value of variance leads to faster diffusivity of the agents when site death
is explicitly incorporated in the model.

FIG. 12 Schematics of the ABM of Yates (2014). White squares represent empty lattice spaces

and blue markers represent the tracer agents. Panel (A) shows an example of site division in which

the dividing site (yellow) is also marked by a tracer agent. The tracer agent moves with the divid-
ing agent to the right and a new site (green) is added in the vacant space. Panel (B) shows an

example of site death. A marked site (red) is removed from the lattice, its tracer agent remains

in its position and causes an overlap of two tracer agents.
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3.4 Persistence of Motion

A fundamental assumption of modeling cell movement with a position-jump
process (such as those implemented in Section 2) is that the cells’ positions
are subject to a series of Markovian jumps in space and, therefore, the direction
of motion between sequential jumps is totally uncorrelated. In reality, experi-
mental observations suggest that many types of cell show a tendency to preserve
their direction of motion for some time before reorienting (Berg and Brown,
1972; Gail and Boone, 1970; Hall, 1977; Wright et al., 2008), even when the
movement remains unbiased in the long term. This behavior is known as persis-
tence of motion or of direction (Patlak, 1953). The standard framework to model
persistence of motion in an ABM based is to employ a velocity-jump process
(Campos et al., 2010; Codling et al., 2008; Othmer and Hillen, 2000, 2002;
Othmer et al., 1988) in which the variable which is performingMarkovian jumps
is the velocity rather than the position of the agents (Othmer et al., 1988).

A simple example of an velocity-jump process ABM in one dimension was
analyzed by Goldstein (1951) and later by Kac (1974) and Othmer et al. (1988).
The model can be formulated as follows. Consider an ABM in which agents
have an assigned direction of motion, either right or left. As time evolves they
can either move, with rate a, or change their direction, with rate l. The two
events are assumed to occur independently. When a movement event takes
place, the moving agent performs a jump of distance, v, in its assigned direc-
tion. We can interpret $ va as the two possible values of the velocity of an
agent, depending whether it is moving in the right- or left- direction, respec-
tively. Notice that this formulation is valid for both on- and off-lattice models.
However, in an on-lattice framework, the distance, v, has to be an integer mul-
tiple of the lattice step D.

Let R x, tð Þ and L x, tð Þ denote the average occupancy of agents in position x
at time t with associated direction to the right and left, respectively. For a sys-
tem of noninteracting agents, the corresponding occupancy master equations
can be written as

Rðx, t+ dtÞ ¼Rðx, tÞ+ adt Rðx% v, tÞ%Rðx, tÞ
" #

+ ldt L%R
( )

,

Lðx, t + dtÞ ¼ Lðx, tÞ+ adt Lðx+ v, tÞ%Lðx, tÞ
" #

+ ldt R%L
( )

:

(

(38a,b)

By Taylor expanding the two terms R x% v, tð Þ and L x+ v, tð Þ about x to first
order and taking the limit dt,v! 0 with va kept constant, one obtains the sys-
tem of advective PDEs given by

∂R

∂t
¼%V

∂R

∂x
+ l L%R

( )
,

∂L

∂t
¼V

∂L

∂x
+ l R%L

( )
,

8
>><

>>:
(39a,b)

where V¼ lim v!0va. By adding Eqs. (39) and differentiating with respect to
t we can write
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∂t∂x

: (40)

Similarly, by subtracting Eq. (39a) from Eq. (39b) and differentiating with
respect to x, we obtain

∂
2ðL%RÞ
∂x∂t

¼V
∂
2ðR + LÞ
∂x2

%2l
∂ðL%RÞ

∂x
: (41)

Finally, substituting Eq. (40) into Eq. (41) and recalling Eqs. (39) we can write

∂
2C

∂t2
+ 2l

∂C

∂t
¼V2 ∂

2C

∂x2
, (42)

where C¼R+ L represents the total average occupancy. Eq. (42) is also
known as a telegraph equation since it was originally derived to describe
the propagation of signal waves traveling through a telegraph transmission
wire (Goldstein, 1951). Othmer et al. (1988) were the first to obtain such
equations from a system of noninteracting agents. Othmer and Hillen (2000)
demonstrated that it is possible to recover the canonical diffusion equation
as the parabolic limit of the telegraph equation by taking the limit as V and
l to infinity simultaneously, such that V2/l is constant. In other words, the
two ABMs with and without persistence are governed by continuum models
of the same form in the long term. This can be understood by noticing that
the short-term directional bias due to the presence of persistence becomes less
evident at the spatial scale which are much larger than the average distance
moved by an agent before reorienting and temporal scales which are much
larger than the average reorientation time (Codling et al., 2008; Othmer and
Hillen, 2000, 2002).

Notice that the derivation of the Eq. (42) from Eqs. (39a) and (39b) is pos-
sible only for the case of noninteracting agents in one dimension. When the
model is defined on a two-dimensional lattice, for example, we can still write
down a system of four advective PDEs for the average occupancies of agents
moving in the four direction of the lattice (Gavagnin and Yates, 2018). How-
ever, a closed formula for the total average occupancy is no longer obtainable.

A similar problem occurs when agent–agent interactions are added to the
model, in which case deriving an analog of the telegraph equation and, conse-
quently, its diffusive limit, is not possible. Treloar et al. (2011) have studied
the implication of incorporating crowding effects in a model of persistence.
At the stochastic-level, they consider a modification of the ABM of Othmer
et al. (1988) on a one-dimensional lattice with three different volume exclu-
sion properties each of increasing complexity. For each case, the authors
derive a system of advective PDEs describing the evolution of the average
occupancy of the two subpopulations of agents depending on their direction
of movement.

The results of Treloar et al. (2011) show that the details of the crowding
interactions lead to differences in the corresponding continuum models.
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This highlights a substantial difference from the analogous persistence-free
position-jump process (see Section 2.1), in which crowding effects do not
change the corresponding macroscopic representation.

The continuum models derived by Treloar et al. (2011) do not admit a dif-
fusive interpretation. A diffusive interpretation is desirable, since it allows a
direct comparison with other diffusive models and establishes a direct connec-
tion with commonly used statistical tools of movement analysis. Recently,
Gavagnin and Yates (2018) studied a generalization of the ABM of Treloar
et al. (2011) in two dimensions for which is possible to obtain a accurate dif-
fusive description at the population-level. The authors suggest the introduc-
tion of an additional parameter, ’ 2 [0, 1], in the ABMs of Treloar et al.
(2011) which modulates the intensity of the short-term directional bias and
hence the intensity of the persistence.

By rescaling the parameter with the size of the lattice step, ’'OðDÞ,
Gavagnin and Yates (2018) obtain a general set of advective-diffusive PDEs.
A comparison of the column-averaged density shows a good agreement
between the stochastic and the deterministic models for a wide range of para-
meters. However, when the agent jump length becomes large, the density pro-
file of the ABM presents regular peaks in density which are not captured by
the corresponding continuum models.

For strong values of persistence, Gavagnin and Yates (2018) find evidence
of a spontaneous form of agent aggregation as result of the interplay of persis-
tence and crowding effects in highly populated regions (see Fig. 13). Notice
that such a form of agent aggregation is not possible in ABMs which
do not incorporate persistence, since the overall behavior is governed by
simple diffusion (Simpson et al., 2009). Their deterministic model is capa-
ble of providing a qualitatively matching description of such aggregation
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FIG. 13 Spontaneous aggregation induced by persistence and volume exclusion. The top panels

show (A) the numerical solution of the PDE for the column-averaged total density and

(B) column-averaged density of the ABM, averaged overM ¼ 100 repeats. The profiles are shown
at time T ¼ 0, 50, 100, 200, 300 with the direction of the black arrows indicating increasing time.

Reproduced from Gavagnin, E., Yates, C.A., 2018. Modeling persistence of motion in a crowded
environment: the diffusive limit of excluding velocity-jump processes. Phys. Rev. E 97, 032416
with permission of Physical Review E.
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phenomenon, even though the presence of short-range correlations affects
the quality of the agreement (see Fig. 13).

Finally, the two-dimensional framework of Gavagnin and Yates (2018)
highlights a positive anisotropy of the model in the axial directions of the lat-
tice. This anisotropy appears as an intrinsic feature of the persistent model
combined with the lattice environment. Off-lattice models should have the
advantage that they are not afflicted by such anisotropy. However, the deriva-
tion of a corresponding macroscopic description becomes more complicated
and sometimes intractable.

4 CONCLUSION

Cell migration is essential in a wide range of biological contexts, including
many developmental and homeostatic mechanisms in the human body (Deng
et al., 2006; Gilbert, 2003; Keller, 2005; Maini et al., 2004). As a result, a
great deal of attention has been given to the study of such a complex phe-
nomenon in the last few decades. However, when an experimental approach
becomes difficult or even impossible, mathematical modeling provides an
avenue through which investigations can continue. The power of modeling
relies on its ability to test and verify experimental hypotheses, as well as
to make predictions which can indicate appropriate experimental directions.

In general there is a dichotomy between the types of models used for the
mathematical representation of cell migration. On one side of the divide are
continuum models. These models are capable of representing the population-
level characteristics of a group of cells and are often amenable to mathematical
analysis. When required, such models are fast to simulate numerically and can
often be linked explicitly to the model parameters. However, these models are
less useful for capturing individual-level detail and are consequently more dif-
ficult to link directly to experimental data; abilities which are inherent to the
discrete models, on the other side of the divide. Discrete models are often intu-
itive to formulate and are able to incorporate stochasticity in a natural manner.
However, it is often difficult to link the results of such models directly to the
model parameters in order to gain a population-level overview and their simu-
lation can be computationally expensive. Building equivalence frameworks
allows the exploitation of the two modeling paradigms’ complementary
strengths and the circumvention of their complementary weaknesses.

In the first part of this review we have outlined a class of methodologies
designed to bridge the divide between the individual-level and population-level
regimes. As fundamental examples, we have considered a series of simple
ABMs representing cell migrating on a one-dimensional domain. We have
recalled explicitly how the canonical diffusion equation (6) can be derived from
these models when agents are not interacting with each other. The same equa-
tion is obtained for both on- and off-lattice systems. By recapitulating the com-
putation for ABMs which incorporate crowding effects, we have underlined a
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substantial difference between on-lattice ABMs and off-lattice ABMs.
Although the on-lattice models for diffusion give the same PDE irrespective
of whether volume exclusion is implemented or not, the same cannot be said
in almost any other case, for example the off-lattice ABM that we considered.

In the second part of this chapter, we have provided a brief review of some
of the important features which can influence cell behavior at the population
level, either by suppressing or enhancing the collective movement. For each
case, we have summarized the relevant studies devoted to incorporating such
specific features into mathematical models both in the stochastic and deter-
ministic regimes.

In conclusion, although significant progress has been made toward the
understanding of cell migratory behaviors through mathematical modeling,
many questions concerning the direct relationship between single-cell beha-
viors and collective invasion remain unclear. For example, there is still little
understanding of the role of heterogeneity in cell behavior, such as leader–
follower mechanisms (McLennan et al., 2012, 2015; Schumacher et al.,
2017) or heterogeneitic cell proliferation (Smadbeck and Stumpf, 2016). In
this context, developing mathematical models capable of incorporating both
these aspects represents an important avenue for future research.
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2.2. Conclusions

This chapter provides an overview of the state of the art of mathematical modelling of

cell behaviour. Some of the techniques illustrated here provide a fundamental mathe-

matical basis which will be applied and extended throughout the thesis. For example,

in Chapters 3 and 5 we employed the di↵usive limit approach (which was explained in

detail in Section 2.1 of the review) to derive macroscopic PDEs. In addition, the multi-

stage model of cell proliferation introduced in Section 3.1 represents a key component of

the analysis of the cell invasion study of Chapter 5. Overall, the dichotomy between mi-

croscopic, individual-level models and macroscopic, population-level descriptions rep-

resents the essence of the multiscale modelling approach and the leitmotif of this thesis.

In the wider context of the current literature, the role of this review is to bring

together and summarise some of the main approaches of modelling cell behaviour. Many

mathematical models described here are based on very few assumptions which makes

this review applicable to broad areas of mathematical biology, beyond our primary

interest for cell behaviour. For example, Jhawar et al. [2019] has recently referenced

to this chapter in the general context of collective behaviour. Overall this chapter has

received a good level of attention from the community of mathematical biology and it

has been cited five times in the first year after being published.

It is important to underline that this review does not represent an exhaustive man-

ual for new generations of mathematical biologists. Instead, its main goal is to give a

general introduction to the topic of multiscale modelling and to highlight its potential

applications to cell biology. Some alternative approaches could not be considered in

this review, for reasons of space, even though they constitute an important component

of the multiscale modelling. In particular, while the majority of the discussion of this

chapter is devoted to the interface between microscale and macroscale, i.e. between

ABMs and PDEs, the roles of mesoscopic models, such as stochastic di↵erential equa-

tions (SDEs) or stochastic partial di↵erential equations (SPDEs), are omitted. The

idea behind mesoscopic modelling is to combine a continuum-deterministic model with

some noise terms which modulate the intrinsic stochasticity of the system. These mod-

els are relevant for a wide range of applications which involve a relatively large number

of cells, but in which stochasticity still plays an important role. In Chapter 6, we

present an example in which employing a mesoscopic multiscale modelling approach

turns out to be crucial for quantifying the role of demographic noise in a growing cell

population. A detailed discussion of mesoscopic models, however, is beyond the scope

of the review presented in this chapter. There are several more specific reviews on this

topic which can be found in the literature and that can be adopted to accompany the

reading of this chapter. Of particular relevance is the recent work of Jhawar et al.

[2019], in which the authors explain how to derive mesoscopic models from ABMs of

collective behaviour in a similar style to this chapter.
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Chapter 3

Modelling persistence of motion in a crowded en-

vironment: The di↵usive limit of excluding velocity-

jump processes

This chapter comprises a paper which I published in Physical Review E [Gavagnin and

Yates, 2018a]. In the paper we investigate the the interplay between cell directional

persistence and volume exclusion. Despite these two aspects of cell motion having

been intensively studied in di↵erent contexts, a comprehensive theory for the phenom-

ena arising from their interaction is still lacking. We define a series of ABMs based

on a velocity-jump process which incorporate excluding interactions of increasing com-

plexity. By taking a di↵usive limit from the occupancy master equation of the ABMs,

we obtain a set of PDEs describing the time evolution of the average cell density. We

analyse and compare the two modelling regimes to highlight their versatility and their

limitations.

3.1. Outline of the article

Section I of the paper contains an introduction to the the problem of modelling direc-

tional persistence in the context of cell behaviour. In Section II we define the on-lattice

ABM and four possible types of volume exclusion properties. The derivation of the

PDE models is carried out in Section III. In Section IV we present the results of the

comparison between ABMs and PDEs and we describe three phenomena of interest:

the appearance of density spikes in the profile of the ABMs (Section IV-A), the in-

trinsic anisotropy of the lattice-based models (Section IV-B) and the emergence of

spontaneous aggregation(Section IV-C). We conclude with a brief discussion in Section

V. The appendices contain the complete set of master equations and PDEs which were

omitted in the main text.
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Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales
without necessarily being biased in any direction in the long term. One of the most appropriate mathematical
tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the
mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph
equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential
equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained
from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is
desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with
commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a
diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on
a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive
limit and obtain a faithful population-level description. We investigate the properties of the model at both the
individual and population levels and we elucidate some of the models’ key characteristic features. In particular,
we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation
at both the micro- and macroscales.
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I. INTRODUCTION

Understanding the properties of cell movement is of funda-
mental interest in many biological contexts such as embryo-
genesis [1], epidermal wound healing [2], and tumor growth
[3]. Mathematical models are now considered essential tools
in cell biology for testing theoretical hypotheses, interpreting
experimental data, and extracting biological parameters [4–7].
There are typically two approaches to modeling cell motion,
either microscale discrete [4,8–13] or macroscale continuum
[8,14–16]. The discrete approach, using agent-based models
(ABMs), accounts for properties at the cell-scale, while the
continuum approach, often presented as a system of partial
differential equations (PDEs) or stochastic partial differential
equations (SPDEs), gives a global description of the migration
at the population level. Continuum models have the advantage
that they are generally more amenable to mathematical analysis
and can lead to significant insights for situations in which the
system comprises a large number of agents, at which point
simulating the ABM becomes computationally expensive.
Nevertheless, finding the appropriate continuum model to de-
scribe the collective behavior of a system of moving agents can
be a difficult task and continuum models are often specified on
a phenomenological basis, which may reduce their predictive
power. It is essential, therefore, to establish a connection
between microscale properties, which can be inferred directly
from experimental data, and macroscale dynamics [17–19].

*Corresponding author: e.gavagnin@bath.ac.uk

Many analyses of cell migration are based on the hypothesis
that the movement of a single cell can be described as a simple
random walk on a lattice [1,5,10,18]. In many models, the
behavior of a single cell is assumed to be independent of
the other cells’ positions, and multiple cells can occupy the
same lattice site simultaneously [20,21]. In many applications,
however, crowding effects play an important role that cannot be
neglected [2,4]. Crowding is incorporated into such models via
volume exclusion: each lattice site is allowed to be occupied by
at most one cell [22–26]. A macroscopic continuum description
of this type of model can be obtained by considering an
average mass conservation law for each lattice site and taking
an appropriate limit as the spatial and temporal discretization
steps go to zero simultaneously [10].

One of the key aspects of a simple random walk is that the
direction of motion undergoes a series of uncorrelated jumps
in space. In reality, experimental observations indicate that
many types of cell tend to preserve their direction of motion
for a certain time before reorienting [21,27–29], even though
the movement is globally unbiased. This tendency is normally
called persistence of motion or of direction [30]. There is vast
literature about modeling persistence at multiple scales for
non-interacting agents [20,31–34], but it is only in recent years
that there has been an increasing interest in studying the role
of persistence of motion for systems of self-interacting agents
[22–24,35–39] and persistence induced by crowding [40,41].

Typically, to incorporate persistence in the ABM, cell
movement is represented as a correlated random walk (CRW),
which is also known as a velocity-jump process [20,31]. In this
model, the cell has an assigned direction of motion (left or right
in one dimension) and it moves in this direction with constant
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velocity, v, until the assigned direction is changed, which
occurs according to a Poisson process with a given rate, λ.
Notice that the temporary preferential direction induces bias in
the motion for short time scales, which represents persistence,
but the resulting motion remains globally unbiased for longer
time scales.

In the case of non-interacting agents, the macroscale be-
havior of the velocity-jump process in one dimension is well
known to evolve according to the hyperbolic telegraph equation
for the cell density C(x,t) [31,42,43]:

∂2C

∂t2
+ 2λ

∂C

∂t
= v2 ∂2C

∂x2
. (1)

Notice that Eq. (1) was originally developed to describe the
propagation of waves which travel and reflect through a tele-
graph transmission line [44]. The same type of equation can be
derived from a system of non-interacting agents performing a
velocity-jump process in one dimension. In particular, Othmer
et al. [31] derived the telegraph equation for cells undergoing
velocity-jump processes without interactions. Othmer and
Hillen [32] demonstrated that it is possible to obtain a parabolic
limit as v and λ tend to infinity simultaneously, such that v2/λ
remains constant. In this limit the canonical diffusion equation
is recovered [32,33]. This is not a surprise, since the short-term
correlation effects become less evident at large time scales and
so the limit process is effectively equivalent to a simple random
walk.

When direct agent-agent interactions are introduced, how-
ever, the derivation of an exact closed form PDE for the total
mean agent density is not possible [20]. Recently, Treloar
et al. derived a system of macroscopic advective equations
from a velocity-jump process with three different forms of
direct interaction [22,23]. Although their continuum model
is successful in replicating the population-level behavior of
the ABM for a limited range of model parameters, the first
order approximation considered by Treloar et al. [22] enforces
restrictions in the initial condition (which must be sufficiently
smooth) and on the choice of the parameters.

The aim of our work is to ease these restrictions in order to
provide a better connection between discrete and continuum
models of volume excluding persistent agents. We consider a
generalization of the ABM of Treloar et al. [22] in which we
modulate the influence of persistence through an additional
parameter ϕ. This allows us to take a diffusive limit if the new
parameter ϕ scales with the lattice size. The resulting partial
differential equation (PDE) description includes a non-linear
diffusive term, which encapsulates the long-term diffusive
behavior of cells, and an advective part, which is consistent
with the findings of Treloar et al. [22]. Our new diffusive
model represents an extension of the previous advective model
and can be applied to study a wider range of scenarios. In
particular, we can consider situations with a steep gradient
in cell density, which have not previously been investigated.
Moreover, a diffusive limit is appropriate for the study of
the long-term behavior of the system, especially if we are
interested in statistical tools which are related to the diffusion
coefficient, such as the mean squared displacement and the
mean dispersal distance [20].

In this paper we study the two-dimensional version of a
model which incorporates persistence and volume exclusion.

We explain the derivation of the diffusive continuum descrip-
tion and finally we test the agreement between our discrete
and continuum models using some illustrative examples. Our
new diffusive PDEs correctly represent the population-level
behavior of our ABMs, particularly in scenarios that could
not be investigated with the previous advective models. Our
investigation highlights some peculiar aspects of the excluding
velocity-jump processes, which we discuss in the light of
the new macroscopic description. In particular, a spontaneous
form of aggregation, similar to that observed by Thompson
et al. [35] and Sepúlveda and Soto [36], appears in both our
agent-based and population-level models. We believe this is the
first reported example in which such a phenomenon appears at
both micro- and macroscales.

The paper is organized as follows. In Sec. II we define
the ABM and introduce three forms of cell-cell interaction.
In Sec. III, we derive the continuum diffusive description of
the ABM from the occupancy master equations. Our numer-
ical results on the comparison between the ABMs and the
corresponding PDEs are shown in Sec. IV, together with our
observations on some of the interesting model behaviors. We
conclude with a short discussion of our results and possible
avenues for future research in Sec. V.

II. THE AGENT-BASED MODEL

In this section we describe the basic ABM. The models
presented in the following sections are all adaptations of this
basic model. Cells are represented by agents on a square lattice
of size Lx × Ly sites and lattice step $ with periodic boundary
conditions in the y direction and zero-flux boundary conditions
in the x direction.1 Each site of the lattice can be occupied by
at most one cell, in which case we say the site is occupied;
otherwise the site is said to be empty.

We assign to each agent a polarization in one of the four
directions of the lattice. We denote such polarization with
the corresponding initial capital letter: right (R), left (L), up
(U), and down (D). Let v ∈ N+ be a positive integer which
denotes the number of lattice sites that an agent can move
during a single movement event. We can interpret this as a
non-dimensional measure of the agent’s velocity. Agents can
move or reorient their polarization in continuous time. Both of
these events occur at random as independent Poisson processes
with rates Pm and Pr , respectively. The role of the polarization
is to induce a temporary bias in the stochastic motion so that
the polarized agent is more likely to move in the corresponding
direction. Let ϕ ∈ [0,1] be a parameter which characterizes the
intensity of the bias. Consider, for example, an R-polarized
agent in two dimensions, located at site (i,j ). If the agent
is chosen to move, one of the four sites (i ± v,j ), (i,j ± v)
is selected, at random, as a target site. The right-hand site
(i + v,j ), corresponding to the R-polarization of that cell,
is chosen with probability given by 1+ϕ

4 . In the opposite

1We implement periodic boundary conditions in the vertical direc-
tion to avoid edge effects. In the horizontal direction we employ
zero-flux boundary conditions, although in reality agents rarely, if
ever, reach these boundaries. So other boundary conditions may be
employed with little consequence.
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FIG. 1. Diagram of the motility mechanism of an R-polarized
agent in the ABM with velocity v = 1. Red (dark grey) sites are
occupied by the moving agent with the polarization denoted by the
corresponding letter (R, right; L, left; U, up; D, down), black sites
are empty, and yellow (light grey) sites highlight the von Neumann
neighbor sites. The top panel shows the initial configuration and the
neighbor sites reachable by the agents. The middle panel shows the
four new potential configurations in the case that a movement occurs
(with rate Pm) with the corresponding probabilities. The bottom
panel shows the four new potential configurations in the case that
a reorientation event occurs (with rate Pr ), the agent remains in the
same site, and its polarization is chosen uniformly at random.

direction to the polarization, the left-hand site (i − v,j ) is
chosen with probability 1−ϕ

4 and each of the sites in the vertical
direction (i,j ± v) (orthogonal to the polarization direction)
are chosen with probability 1

4 (see the schematic in Fig. 1).2 The
transition probabilities for the other polarizations are obtained
analogously. Finally, if a reorientation event occurs, with rate
Pr , the agent changes its polarization uniformly at random to
one of the four possible polarizations (including the possibility
of maintaining its current polarization) (see Fig. 1).

Notice that if ϕ = 0, then the target site is chosen uniformly
and the movement corresponds to a classic uncorrelated ran-
dom walk (with non-local jumps for v > 1). On the contrary, if
we let ϕ = 1 we achieve the strongest bias where agents cannot
move in the opposite direction to their polarization.3

When the rates of reorientation and movement are chosen
such that Pr ≪ Pm together with a large value of the parameter

2Alternative transition probabilities could be considered. For exam-
ple, one could choose to reduce the movement probabilities in the
direction orthogonal to the polarization (up and down in the example
of an R-polarized agent) as well as in the direction opposite to the
current polarization. A similar derivation can be applied, which will
lead to a similar but slightly altered macroscopic model.

3Note that if the model is specified in one dimension and ϕ = 1,
the model corresponds to the velocity-jump process described by
Treloar et al. [22]. However, in the two-dimensional case the choice of
maximum bias leads to a different model. In particular, the target site
is still chosen at random (although not uniformly) between three of
the nearest neighbors while in the work by Treloar et al. [22], upon an
agent being selected to move, its target site is chosen deterministically.

ϕ, agents persist in their direction of motion. Figure 2 shows
two trajectories of a single agent for parameters Pm = 1, Pr =
0.05, and v = 1 and for Fig. 2(a) ϕ = 0 (no persistence) and for
Fig. 2(b) ϕ = 0.8 (strong persistence). Persistence of motion is
clearly evident in the shape of the track in Fig. 2(b). The long-
term behavior is unbiased, since none of the four directions is
preferred in the long term. As there is only one agent in the
domain, exclusion (specified in the next paragraph) does not
play any role in the dynamics.

Once the target site is selected, the agent moves according
to the exclusion property specified for the process. For con-
sistency with Treloar et al. [22], we consider four different
exclusion properties, one without agent interaction and three
with a variety of interactions. Figure 3 shows two typical
scenarios (for v = 3) in which an agent (red) at position i
attempts to move to the target site at i + 3. In scenario A the
target site is occupied by another agent (blue), while in scenario
B the target site is empty and the site i + 2 is occupied. We use
these two examples to explain the four exclusion properties as
follows.

Type 0: Non-interacting agents. In this case the moving
agent moves to the target site regardless of its occupancy. Such
a process is not an exclusion process since arbitrarily many
agents can occupy the same site. In both scenarios in Fig. 3 the
moving agent moves to the target site. In scenario A the agent
shares the site with the other agent (blue) and in scenario B it
occupies the target site alone.

Type 1: Only move if target site is available. In this case
the agent moves only when the target site is not occupied. In
scenario A of Fig. 3 this exclusion property causes the entire
movement to be aborted, whereas in scenario B the moving
agent jumps over the blue agent occupying the site i + 2 in
order to reach site i + 3.

Type 2: Farsighted agents. In this case the movement takes
place only if the target site and all the intermediate sites are
vacant. If at least one of the sites is occupied, the movement
is aborted and the moving agent remains at the initial position.
The assumption distinguishing this exclusion process is that
agents know the occupancy of distant sites in order to decide
whether to move to the target or not. If cells extend sensing
filopodia, this behavior can be justified for short distances
[45], but it becomes unrealistic for large values of v. In both
scenarios of Fig. 3 the movement under this movement type
is aborted since either the target or an intermediate site is
occupied.

Type 3: Shortsighted agents. This is the most mathemat-
ically sophisticated and realistic form of interaction that we
consider. With this scheme, the moving agent moves through
the intermediate sites between its position and the target site
and stops at the furthest site which it can reach without being
blocked by any of the other agents. If no blocking occurs, the
agent moves to the target site. In Fig. 3 we see that this exclusion
property allows the agent to move in both scenarios; the
distance depends on the position of the blocking agent (blue).

III. POPULATION-LEVEL MODEL

In this section we derive a family of PDEs which describe
the behavior of the ABMs introduced in Sec. II at the population
level. The general technique consists of writing down the
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FIG. 2. Trajectories of a single agent moving according to the ABM scheme on a two-dimensional square lattice with Lx = Ly = 100 and
$ = 1: (a) an example of a simple random walk (ϕ = 0) and (b) an example of a persistent random walk (ϕ = 0.8). The blue points represent
the subsequent positions, from light (t = 0) to dark (t = 400) blue (grey), of a single agent initialized in the center of the domain, (50,50). The
last position is highlighted in red (light grey with black border). In both panels the parameters are Pm = 1, Pr = 0.05, and v = 1.

continuous-time occupancy master equation for the average
occupancy of a general site of the ABM, Taylor expanding, and
finally taking a limit as the lattice step, $, and the time step, τ ,
go to zero jointly while holding $2/τ constant (see Chap. 4 of
[10]). The four types of agent interactions considered lead to
different PDEs; therefore, in what follows, we consider those
cases in different sections.

We denote by Ct
i,j (m) the occupancy of the site (i,j ) at

time t for the mth simulation of the ABM; i.e., Ct
i,j (m) = 1 if

FIG. 3. Schematics of the four different exclusion properties con-
sidered in one dimension. The first row shows the initial configuration
for the two scenarios considered. In both cases the moving agent (red)
[dark grey] attempts to move to the target site (yellow T) three sites to
the right (v = 3). The black sites are empty and the blue (light grey)
sites are occupied by other agents. Each of the subsequent four rows
represents the new configuration of cells under the exclusion property
chosen.

the site (i,j ) at time t in the mth simulation is occupied and
Ct

i,j (m) = 0 if it is empty. We denote with Ĉt
i,j the occupancy

of the site (i,j ) at time t averaged over all M realizations, i.e.,

Ĉt
i,j = 1

M

M∑

m=1

Ct
i,j (m). (2)

In addition, we define occupancy variables for the four sub-
populations of agents classified according to their polarization
(right, left, up, or down) and we denote these occupancies
with the capital corresponding to their first letter. For example,
Rt

i,j (m) represents the occupancy of right-polarized agents at
the site (i,j ) at time t for the mth simulation and R̂t

i,j the
corresponding occupancy averaged over the total number of
realizations. The total occupancy can be obtained by adding
together the occupancies of the four subpopulations as Ĉt

i,j =
R̂t

i,j + L̂t
i,j + Û t

i,j + D̂t
i,j . From now on, we omit the hats in

the averaged occupancies for simplicity. All the occupancies
are defined for t ∈ R+ and (i,j ) ∈ {1, . . . ,Lx} × {1, . . . ,Ly}.

A. Type 0 interaction

For the case of non-interacting agents we can write down
the occupancy master equations of the process, in sites away
from the boundary,4 as

Rt+τ
i,j = Rt

i,j + τPm

4

[
(1 + ϕ)Rt

i−v,j + (1 − ϕ)Rt
i+v,j

+Rt
i,j+v + Rt

i,j−v − 4Rt
i,j

]

+τPr

4

[
Lt

i,j + Ut
i,j + Dt

i,j − 3Rt
i,j

]
+ O(τ 2),

4Note that, for sites on the boundary, the occupancy equations will
be slightly different, but we employ zero-flux or periodic boundary
conditions on the vertical and horizontal boundaries (respectively) in
the continuum model to match our specification in the ABM.
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Lt+τ
i,j = Lt

i,j + τPm

4

[
(1 − ϕ)Lt

i−v,j + (1 + ϕ)Lt
i+v,j

+Lt
i,j+v + Lt

i,j−v − 4Lt
i,j

]

+ τPr

4

[
Rt

i,j + Ut
i,j + Dt

i,j − 3Lt
i,j

]
+ O(τ 2),

U t+τ
i,j = Ut

i,j + τPm

4

[
Ut

i+v,j + Ut
i−v,j + (1 − ϕ)Ut

i,j+v

+ (1 + ϕ)Ut
i,j−v − 4Ut

i,j

]

+τPr

4

[
Rt

i,j + Lt
i,j + Dt

i,j − 3Ut
i,j

]
+ O(τ 2),

Dt+τ
i,j = Dt

i,j + τPm

4

[
Dt

i+v,j + Dt
i−v,j + (1 + ϕ)Dt

i,j+v

+ (1 − ϕ)Dt
i,j−v − 4Dt

i,j

]

+ τPr

4

[
Rt

i,j + Lt
i,j + Ut

i,j − 3Dt
i,j

]
+ O(τ 2), (3)

where τ is sufficiently small such that the probability that more
than one event occurs in the time interval (t,t + τ ) is O(τ 2).
The terms in system (3) that contain Pm represent the transi-
tions into and out of the site (i,j ) due to the motility events,
while the terms which contain Pr represent the transition from
one polarization to another due to the reorienting events. In
order to obtain a continuous approximation of the model, we
Taylor expand terms such as Rt

i± v,j and Rt
i,j± v about position

(i,j ) as

Rt
i± v,j = R(xi± v,yj ,t)

= R(xi,yj ,t) ± v$
∂R

∂x
(xi,yj ,t)

+ 1
2

(v$)2 ∂2R

∂x2
(xi,yj ,t) + · · · ,

Rt
i,j± v = R(xi,yj± v,t)

= R(xi,yj ,t) ± v$
∂R

∂y
(xi,yj ,t)

+ 1
2

(v$)2 ∂2R

∂y2
(xi,yj ,t) + · · · . (4)

In order to take the diffusive limit we assume that ϕ rescales
with the spatial step of the lattice, i.e., ϕ = O($). This
assumption, that the local bias tends to zero, is necessary in
order to derive a finite advective term in the diffusive limit.
A similar assumption is made in order to derive consistent
continuum limits of models with global bias [5,20].

By substituting the truncated Taylor expansions [of which
Eqs. (4) are an example] into Eqs. (3) and rearranging terms,
we can take the diffusive limit as τ,$ → 0 in Eqs. (3) such
that $2/τ remains fixed. We obtain a system of PDEs for the
continuous occupancy functions R(x,y,t), L(x,y,t), U (x,y,t),
and D(x,y,t), where t ∈ R+ and (x,y) ∈ [0,$Lx] × [0,$Ly],

∂R

∂t
= v2µ∇2R − vν

∂R

∂x
+ Pr

4
(C − 4R),

∂L

∂t
= v2µ∇2L + vν

∂L

∂x
+ Pr

4
(C − 4L),

∂U

∂t
= v2µ∇2U − vν

∂U

∂y
+ Pr

4
(C − 4U ),

∂D

∂t
= v2µ∇2D + vν

∂D

∂y
+ Pr

4
(C − 4D), (5)

where

µ := lim
$→0

$2Pm

4
and ν := lim

$→0

ϕ$Pm

2
. (6)

The boundary conditions are chosen to be consistent with the
ABM. In particular, for every x ∈ [0,$Lx], y ∈ [0,$Ly], and
t ∈ R+ we impose

R(x,0,t) = R(x,$Ly,t),
∂R

∂x
(0,y,t) = ∂R

∂x
($Lx,y,t) = 0,

L(x,0,t) = L(x,$Ly,t),
∂L

∂x
(0,y,t) = ∂L

∂x
($Lx,y,t) = 0,

U (x,0,t) = U (x,$Ly,t),
∂U

∂x
(0,y,t) = ∂U

∂x
($Lx,y,t) = 0,

D(x,0,t) = D(x,$Ly,t),
∂D

∂x
(0,y,t) = ∂D

∂x
($Lx,y,t) = 0.

(7)

The two limits in Eqs. (6) exist and are finite owing to the
assumption on ϕ above. The right-hand sides of system (5)
comprise three terms (in order from left to right): a diffusive
term, an advective term, and a reactive term. The diffusive
terms capture the long-term unbiased motion of the agents.
In the case of the non-interacting agents, described above, the
diffusion coefficient is independent of the agent density. The
advective terms reflect the polarization of each subpopulation
and, as such, they involve the first partial derivative of density
in the direction of the polarization. The reactive terms represent
the uniform changing of polarization.

We can write down the PDE for the total averaged density
by adding the equations of system (5):

∂C

∂t
= v2µ∇2C + vν

∂

∂y
[(D − U )] + vν

∂

∂x
[(L − R)]. (8)

Note that a closed form for the equations in terms of the total
density is not possible unless ϕ = 0, in which case the total
density evolves according to the canonical diffusion equation,
consistently with [20,31].

Notice that advective-diffusive equations like the one of
system (5) are an extensively studied class of PDEs which can
be found in a wide range of applications. In particular, they
are traditionally used to represent transport phenomena such as
heat transfer [46,47], mass transfer [47], and virus propagation
[48,49].

B. Type 1 interaction

For the first non-trivial type of interaction that we consider,
the movement of the agents depends only on the occupancy
of the target site. Specifically, movement is aborted if, and
only if, the target site is occupied (see Fig. 3). The occupancy
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master equation for the right-moving subpopulation reads

Rt+τ
i,j = Rt

i,j + τPm

4

(
1 − Ct

i,j

)[
(1 + ϕ)Rt

i−v,j

+ (1 − ϕ)Rt
i+v,j + Rt

i,j+v + Rt
i,j−v

]

−τPm

4
Rt

i,j

[
(1 + ϕ)

(
1−Ct

i+v,j

)
+(1 − ϕ)

(
1 − Ct

i−v,j

)

+
(
1 − Ct

i,j+v

)
+

(
1 − Ct

i,j−v

)]

+τPr

4

[
Lt

i,j + Ut
i,j + Dt

i,j − 3Rt
i,j

]
+ O(τ 2). (9)

The equations for the other three subpopulations are given
in Appendix A. The main difference in comparison to the
non-interacting type 0 models is the introduction of terms that
reduce the probability of moving according to the density of
the target site. For example, the term (1 − Ct

i,j ) determines
the probability of success of a movement into the site (i,j )
at time t . If at time t the site (i,j ) is occupied in all the
realizations of the ABM we have Ct

i,j = 1 so the corresponding
probability of success is zero. Conversely, if the site (i,j ) is
empty in all the simulations, the probability of success is 1,
since the movement is always allowed to take place. Notice
that in writing down the occupancy master equation (9), we
are making the mean-field assumption that the occupancies of
neighboring sites are independent.

We can use the same steps as in Sec. III, for type 0 interac-
tions, to obtain a system of diffusive PDEs for the density of
the four different polarizations. The resulting equation for the
right-moving subpopulation is given by

∂R

∂t
= v2µ[R∇2C + (1 − C)∇2R]

− vν
∂

∂x
[R(1 − C)] + Pr

4
(C − 4R), (10)

where µ and ν are as defined in Eqs. (6). See system (B1) of
Appendix B for the full set of equations. We can see that the
switching rates between subpopulations remain the same as
in system (5), whereas the advective and the diffusive terms
of Eq. (B1) depend linearly on the cell density. Specifically,
both the advective and the original diffusive parts are scaled
by a factor of 1 − C, which takes into account the decrease in
motility due to the volume exclusion. An additional diffusive
term ∇2C appears, scaled by the density of each subpopulation.
Notice that, by adding together the equations for the four
subpopulations, we recover a normal diffusive term for the
total cell density:

∂C

∂t
= v2µ∇2C + vν

∂

∂y
[(D − U )(1 − C)]

+ vν
∂

∂x
[(L − R)(1 − C)] . (11)

Nevertheless, as in the previous case (type 0), the advective
terms make it impossible to close the PDE for the total density,
C(x,y,t), apart from in the trivial case, ϕ = 0.

C. Type 2 interaction

For the second type of non-trivial interaction, a chosen
movement event takes place from the current site if, and only

if, the target site and all the intermediate sites are available (see
Fig. 3). This leads to the following occupancy master equation
for the right-moving subpopulation:

Rt+τ
i,j = Rt

i,j + τPm

4

[

(1 + ϕ)Rt
i−v,j

v−1∏

s=0

(
1 − Ct

i−s,j

)

+ (1 − ϕ)Rt
i+v,j

v−1∏

s=0

(
1 − Ct

i+s,j

)

+Rt
i,j+v

v−1∏

s=0

(
1 − Ct

i,j+s

)
+ Rt

i,j−v

v−1∏

s=0

(
1 − Ct

i,j−s

)
]

− τPm

4
Rt

i,j

[

(1 + ϕ)
v∏

s=1

(
1 − Ct

i+s,j

)

+ (1 − ϕ)
v∏

s=1

(
1 − Ct

i−s,j

)

+
v∏

s=1

(
1 − Ct

i,j+s

)
+

v∏

s=1

(
1 − Ct

i,j−s

)
]

+τPr

4

[
Lt

i,j + Ut
i,j + Dt

i,j − 3Rt
i,j

]
+ O(τ 2). (12)

Again, we refer the reader to Appendix A [see system (A2)]
for the other three occupancy master equations. Upon Taylor
expansion and taking the appropriate limits, as before, we
obtain

∂R

∂t
=v2µ[R∇((1 − C)v−1∇C)+(1 − C)∇((1 − C)v−1∇R)]

− vν
∂

∂x
[R(1 − C)v] + Pr

4
(C − 4R), (13)

where µ and ν are defined in Eqs. (6). See system (B2) of
Appendix B for the full set of equations. The main difference
between Eqs. (B2) in comparison to the previous exclusion
type, characterized by Eq. (B1), is that the rescaling factor,
which accounts for the crowding effect, now depends on the
vth power of the total density. Notice that for v > 1, by adding
the equations for the four subpopulations, we obtain non-linear
diffusion for the total cell density:

∂C

∂t
= v2µ∇((1 − C)v−1∇C) + vν

∂

∂y
[(D − U )(1 − C)v]

+ vν
∂

∂x
[(L − R)(1 − C)v] . (14)

This suggests that the increase in aborted movements at the
microscale in these type 2 interactions affects the long-term
diffusive behavior.

D. Type 3 interaction

Finally, we consider the third (non-trivial) and most mathe-
matically complex form of interaction. This consists of a focal
agent moving to the furthest available site in its path towards the
target site before (potentially) being blocked. The occupancy
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master equation for the right subpopulation reads

Rt+τ
i,j = Rt

i,j + τPm

4

[

(1 + ϕ)Rt
i−v,j

v−1∏

s=0

(
1 − Ct

i−s,j

)
(1 − ϕ)Rt

i+v,j

v−1∏

s=0

(
1 − Ct

i+s,j

)
+ Rt

i,j+v

v−1∏

s=0

(
1 − Ct

i,j+s

)

+Rt
i,j−v

v−1∏

s=0

(
1 − Ct

i,j−s

)
]

− τPm

4
Rt

i,j

[

(1 + ϕ)
v∏

s=1

(
1 − Ct

i+s,j

)
+ (1 − ϕ)

v∏

s=1

(
1 − Ct

i−s,j

)
+

v∏

s=1

(
1 − Ct

i,j+s

)
+

v∏

s=1

(
1 − Ct

i,j−s

)
]

+τPm

4

[

(1 + ϕ)Ct
i+1,j

v−1∑

k=1

Rt
i−k,j

k−1∏

s=0

(
1 − Ct

i−s,j

)
+ (1 − ϕ)Ct

i−1,j

v−1∑

k=1

Rt
i+k,j

k−1∏

s=0

(
1 − Ct

i+s,j

)

+Ct
i,j−1

v−1∑

k=1

Rt
i,j+k

k−1∏

s=0

(
1 − Ct

i,j+s

)
+ Ct

i,j+1

v−1∑

k=1

Rt
i,j−k

k−1∏

s=0

(
1 − Ct

i,j−s

)
]

−τPm

4
Rt

i,j

[

(1 + ϕ)
v∑

k=2

k−1∏

s=1

Ct
i+k,j

(
1 − Ct

i+s,j

)
+ (1 − ϕ)

v∑

k=1

k−1∏

s=1

Ct
i−k,j

(
1 − Ct

i−s,j

)
+

v∑

k=2

k−1∏

s=1

Ct
i,j+k

(
1 − Ct

i,j+s

)

+
v∑

k=2

k−1∏

s=1

Ct
i,j−k

(
1 − Ct

i,j−s

)
]

+ τPr

4

[
Lt

i,j + Ut
i,j + Dt

i,j − 3Rt
i,j

]
+ O(τ 2). (15)

See system (A3) in Appendix A for the corresponding occupancy master equations for the other subpopulations. By Taylor
expanding and taking the appropriate limits, as before, we obtain the continuum approximation given by

∂R

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)(1 − C)∇R − k(k − 2)R∇C]

]

+ ν
∂

∂x

[
(1 − C)((1 − C)v − 1)

C
R

]
+ Pr

4
(C − 4R), (16)

where µ and ν are as defined in system (6). The full set of
equations is given in Appendix B. As with type 2 interactions,
the polynomial rescaling factor due to the volume exclusion is
of order v. Notice that the advective terms contain a factor C in
the denominator. We choose to write the advective coefficients
this way for notational convenience. Upon expansion of the
numerator we see that it also contains a factor C, which cancels
with the denominator, demonstrating that the coefficient, when
simplified, is a polynomial rather than a quotient. The diffusive
terms comprise a sum over k = 1, . . . ,v, which reflects the
possible movement events of length k. As for the previous
case, by adding all the diffusive terms together for the four
subpopulations, we obtain non-linear diffusion for the total
population:

∂C

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)∇C + (1 − k2)C∇C]

]

+ ν
∂

∂x

[
(1 − C)((1 − C)v − 1)

C
(R − L)

]

+ ν
∂

∂y

[
(1 − C)((1 − C)v − 1)

C
(U − D)

]
. (17)

As expected, the three systems (B1)–(B3) for the interacting
agent models (types 1, 2, and 3) are equivalent for v = 1. This is
consistent with the ABMs, since the three forms of interaction

differ only when movements across multiple lattice sites are
attempted, i.e., v > 1.

We should mention that the Taylor expansion in Eqs. (4)
could be terminated at first order and, by following the same
steps and taking the limit $ → 0, τ → 0 as such that $/τ
is constant, we would have obtained a family of equations
similar to systems (5) and (B1)–(B3) without the contribution
of the diffusive terms [22,23]. In this case the assumption on
the parameter ϕ is no longer necessary. Othmer and Hillen
[32,33] studied this type of system in detail in the case of
non-interacting agents and for the particular case ϕ = 1 in
one dimension. The model of Treloar et al. [22] represents
a particular case of the one-dimensional version of the model
defined in this paper with ϕ = 1. Treloar et al. [22] defined their
model in terms of the probabilities of a single cell moving and
reorienting in a given time step of length τ , which they denote
P and λ, respectively. The reorienting rate, Pr , of our models
corresponds to the limit ' = limλ,τ→0 λ/τ of the models of
Treloar et al. [22]. Notice, in contrast to the suggestions of
Treloar et al. [22], in our model there are no limitations on
the rate Pr ; it can be chosen to be arbitrarily large. Treloar
et al. considered a first order Taylor expansion that leads to
a system of advective PDEs consistent with our continuum
models. Apart from the special case λ = 1/2, for which a
simple diffusion equation can be recovered, the nature of their
model does not, in general, permit a diffusive limit to be taken.
The introduction of the new parameter ϕ in our models allows
us to consider a higher order Taylor expansion which results
in the diffusive terms in Eqs. (5) and (B1)–(B3).
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IV. RESULTS

In this section we compare the discrete simulations of the
ABM with the continuous approximation. Then we investigate
how the model behaves under particular choices of the param-
eters. We reveal three previously unobserved aspects of the
model that appear when a high level of persistence is enforced:
spike formation, anisotropy, and aggregation. Although such
phenomena are interesting from a mathematical perspective,
they represent potential obstacles for the application of such
models to experimental data. We discuss the implications of
such issues and future challenges in Sec. V.

All the ABMs and the corresponding PDEs are simulated on
a two-dimensional domain. For the purpose of visualization,
in most examples, we show the results for column-averaged
cell density profiles (i.e., averaged over the y coordinates). For
these examples, we define the total column-averaged density
as

C̄(x,t) = 1
Ly

∫ Ly

0
C(x,y,t) dy, (18)

and R̄, L̄, Ū , and D̄ correspondingly. In these simulations we
choose translationally invariant initial conditions in the vertical
direction. In other words,C(x,y,0) = C(x,0) for every (x,y) ∈
[1,$Lx] × [1,$Ly]. Similarly, the polarized species, R, L,
U , and D, are also initialized according to a translationally
invariant condition. The periodic boundary conditions on the
horizontal boundaries imply that translational invariance in the
vertical direction is conserved as time evolves, namely,

C(x,y,t) = C(x,t) , (19)

for every t ∈ R+ and for every (x,y) ∈ [1,$Lx] × [1,$Ly]
and similarly for the four subpopulations R, L, U , and D.

With this in mind, we can now derive the one-dimensional
PDEs for the column-averaged densities from the correspond-
ing two-dimensional equations. Formally, this is equivalent to
dropping the dependence on y in all the density functions.
As an example, we write down the averaged PDEs for the
model without interaction (type 0 interactions). We omit the
expressions for the other three cases, which can be obtained in
a similar way. By column averaging system (5), we obtain the
following system of equations:

∂R̄

∂t
= v2µ

∂2R̄

∂x2
− vν

∂R̄

∂x
+ Pr

4
(C̄ − 4R̄),

∂L̄

∂t
= v2µ

∂2L̄

∂x2
+ vν

∂L̄

∂x
+ Pr

4
(C̄ − 4L̄),

∂Ū

∂t
= v2µ

∂2Ū

∂x2
+ Pr

4
(C̄ − 4Ū ),

∂D̄

∂t
= v2µ

∂2D̄

∂x2
+ Pr

4
(C̄ − 4D̄), (20)

where µ and ν are defined as in Eqs. (6). The boundary
conditions, for every t ∈ R+, are given by

∂R̄

∂x
(0,t) = ∂R̄

∂x
($Lx,t) = 0 ,

∂L̄

∂x
(0,t) = ∂L̄

∂x
($Lx,t) = 0 ,

∂Ū

∂x
(0,t) = ∂Ū

∂x
($Lx,t) = 0,

∂D̄

∂x
(0,t) = ∂D̄

∂x
($Lx,t) = 0.

(21)

For Figs. 4–7 we use the same computational setup, which
can be described as follows. The domain is a 400 × 400 lattice
with $ = 1. We impose periodic boundary conditions on
the horizontal boundaries and zero-flux boundary conditions
on the vertical boundaries. The ABM is simulated using
the Gillespie algorithm [50] for M = 10 identically prepared
repeats. Few repeats are sufficient to compare the mean ABM
behavior to the solutions of the PDEs for the mean occupancy
because column averaging over 400 rows significantly reduces
the noise in the ABM solutions. The numerical solutions
of the PDEs are obtained through an implicit Euler method
with spatial step δx = 0.1 and time step δt = 0.1, and using
Picard iteration with tolerance ϵ = 10−3 to solve the non-linear
equations.

Figure 4 shows the comparison between the total column-
averaged density of the ABM and the PDE, for the four types
of interactions at different times. The system is initialized
such that the all sites with x coordinate between 161 and
240 are populated uniformly at random, with density d =
0.5. The polarization of the initial group of cells is chosen
uniformly at random, so there is no bias towards any of the
four polarizations. The PDE for the total column-averaged
density is correspondingly initialized as constant d = 0.5 in
the interval [160,240], with the density of the individual
subpopulations also being constant at d = 0.125 in this region.
The parameters for the model are Pm = 1, Pr = 0.2, ϕ = 0.8,
and v = 3.

The agreement between the discrete and the continuous
descriptions is generally very good for all four types of cell
interactions, although we note that discrepancies are most
noticeable for the type 3 interactions, for which our assumption
of independence of site occupancy is least valid. We also tested
our continuous approximation for different parameter values
and found that the good agreement with the discrete model
holds for a wide parameter range (results not shown). The
good agreement is lost, however, as the value of persistence
increases, i.e., Pr ≪ Pm and ϕ ≈ 1 [see Fig. 9(c) for an
example]. This disagreement is, in part, due to the significant
spatial correlations induced by persistence in these models.
Agents are highly likely to move to be adjacent to each
other rather than aborting their movements (compare type 3
interactions to type 2 interactions, respectively). This tendency
is ignored by our continuous approximations. We discuss this
issue and potential improvements further in Sec. V.

The hyperbolic nature of previous continuum models of
persistence of motion has meant that initial conditions with
steep gradients have been difficult to investigate. Due to
the diffusive nature of our continuous model, we are now
able to examine initial conditions which have steep density
gradients and still maintain a good agreement with the discrete
model. In particular, this allows us to consider the initial
condition described above with only a central region uniformly
populated.

To compare the behavior of the different interaction mech-
anisms, we increase the initial total density to d = 0.9 and
we display numerical solutions of the four PDEs (5) and
(B1)–(B3) at time T = 250 (see Fig. 5). Non-interacting agents
(type 0) lead to a faster agent spreading than any of the
interacting types 1–3. Type 1 interactions cause a slightly
slower spread of agents: although focal agents can jump
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FIG. 4. Comparison between ABMs (thin black) and PDEs (thick red) for total column-averaged densities, C̄(x,t), for various forms of
interaction. The solutions are displayed at the times T = 0, 50, 150, and 300, with the direction of the black arrows indicating increasing time.
The profiles are for (a) non-interacting agents [type 0, Eq. (5)], (b) the first type of non-trivial interaction [type 1, Eq, (B1)], (c) the second
type of non-trivial interaction [type 2, Eq. (B2)], and (d) the third type of non-trivial interaction [type 3, Eq. (B3)]. All the ABMs are simulated
using the Gillespie algorithm [50] averaged over M = 10 repeats.

over their neighbors, a small number of type 1 movement
events are aborted if there is a cell in the target site. Type 2
interactions lead to the slowest spreading due to the high
proportion of aborted movement events in which the focal
agent stays stationary. Agents interacting through the type 3
mechanism spread slightly faster than agents undergoing type 2
interactions: although a significant proportion of movement
events are aborted when agents are immediately adjacent to
the focal agent, some small movement events are permitted
towards a near neighbor which would otherwise be aborted
under the implementation of type 2 interactions.

In Fig. 6 we compare the ABM and the continuum approx-
imation for the right- and left-moving subpopulations in order

0 100 200 300 400
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type 0
type 1
type 2
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I.C.

FIG. 5. Comparison of the numerical solutions of the column-
averaged PDEs for the four types of interactions, types 0–3. The
blacked dotted line illustrates the initial condition.

to evidence that the agreement between the models does not
only hold at the population level. The density profiles of the up-
and down-moving subpopulations are indistinguishable and we
have omitted them for simplicity. However, the good agreement
between the discrete and continuum models also holds for
these cases (results not shown). We find good agreement, even
for large values of the reorienting parameter, Pr , which has
previously been thought not to be the case [22]. Note that
the appearance of loss of total mass is due to the fact that
we are only visualizing two of the four subpopulations in our
two-dimensional model.

In the following sections we outline some of the inherent
features of these models which have largely been overlooked,
but which must be considered if the model is to be used in real
applications.

A. Density spikes

In Fig. 7 we plot a zoomed-in density profile of the ABM
and PDE for the second type of interacting agents (type 2). The
parameters and the initial condition are as in Fig. 4 apart from
v = 5 and d = 0.8. The new values of the parameters v and d
are chosen in order to highlight the following phenomenon of
the ABM. The results reveal a substantial difference between
the behavior of the discrete model, in which regular spikes
appear clearly in the density profile, and the behavior of the
continuous model, whose density profile appears as a smooth
function. In other words, the PDE provides correct information
on the average number of agents in an interval of length v, but it
fails to reveal the behavior of the ABM at smaller scales. Notice

032416-9

72



ENRICO GAVAGNIN AND CHRISTIAN A. YATES PHYSICAL REVIEW E 97, 032416 (2018)

0 100 200 300 400
Column

0

0.2

0.4

0.6

D
en

si
ty

Rx-PDE
Lx-PDE
Rx-ABM
Lx-ABM

0 100 200 300 400
Column

0

0.2

0.4

0.6

D
en

si
ty

Rx-PDE
Lx-PDE
Rx-ABM
Lx-ABM

(a) (b)

FIG. 6. Comparison between ABMs (dotted line) and PDEs (solid line) of right (blue) and left (red) subpopulations of non-interacting agents
(type 0) for large values of reorienting rate Pr : (a) Pr = 1 and (b) Pr = 2. The simulations are initialized with the central region populated with
density d = 0.5 by only right-polarized cells. The solutions are displayed at the times T = 0, 1, and 2, with the direction of the black arrows
indicating increasing time. The numerical solutions of the PDEs are obtained as described in the text.

that such discrepancy is not due to the stochasticity of the ABM
but is a systematic feature of the model at the agent level. In
order to gain an intuition of how the spikes appear in the ABM,
notice that the agents which first leave the initial region (the
region of the domain in which agents are initiated) by making a
long jump of the maximum distance, v = 5, form an effective
barrier for the following agents. Subsequent agents leaving the
initial region accumulate behind this barrier. This mechanism
repeats itself as the furthest agents jump again, producing a
second effective barrier at distance $v = 5. This mechanism
produces a density profile characterized by multiple spikes at
distances which are multiples of v. The amplitude of the spikes
decreases with distance from the initial condition as some of
the barrier agents or their successors change orientation or
become less synchronized in their outward movements, leading
to successively more porous barriers. The same behavior
is also observed in the other form of complex interaction
(type 3, results not shown). This departure from the PDE model
becomes more evident as v increases.

B. Anisotropy

One of the key features of all of our models, for large value
of persistence, is the appearance of (positive) anisotropy in the
axial directions [35]. In Fig. 8 we show the two-dimensional
density contour lines CT

i,j = 0.01 of the ABMs (averaged over
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FIG. 7. A zoomed-in comparison between the column-averaged
ABM (thin black) and the PDE (thick red) for C̄(x,t) for the second
type of non-trivial interaction (type 2). Density spikes are clearly
visible in the ABM, but not in the PDE.

M = 1000 realizations) evolve as time increases. All the ABM
simulations are initialized by populating a central circular
region of diameter r = 40 (i.e., the sites whose centers lie less
than 40$ away from the center of the domain). The contour
density lines are recorded at times T = 50, 100, 200, and 300.
In all the examples we choose Pm = 1, Pr = 0.01, and v = 1.
Notice that with this choice of parameters the three types of
volume-excluding interactions (types 1–3) are equivalent. We
repeat the simulations for non-interacting agents [Figs. 8(a) and
8(b)] and for interacting agents [Figs. 8(c) and 8(d)]. For each
scenario we consider the non-persistent case, ϕ = 0 [Figs. 8(a)
and 8(c)], and the strongly persistent case, ϕ = 0.8 [Figs. 8(b)
and 8(d)]. When persistence is not included, the dynamics of
the agents correspond to simple excluding walks. In this case
the isotropy of the initial condition is known to be preserved
as the system evolves [Figs. 8(a) and 8(c)] [10,15,20]. In
particular, the density profiles conserve the circular shape of
the initial region, meaning that there is no preferential direction
of migration. When the persistence is switched on [Figs. 8(b)
and 8(d)], the isotropy is lost. Cells spread faster in the four
axial directions (red arrows), due to their polarizations, and
this leads to density contour lines with a “diamond” shape.

It should be noticed that this phenomenon is not produced
by the mechanism of jumping multiple lattice steps simulta-
neously; in fact we deliberately chose v = 1 to illustrate this.
The anisotropy is, instead, an intrinsic feature of the persistent
model combined with the lattice environment. Such anisotropic
behavior has not been observed in previous studies, which
focused on the one-dimensional scenario [22,23], because
the higher-dimensional setup is a necessary condition for the
anisotropy to appear [31].

C. Spontaneous aggregation

The last phenomenon that we highlight here is the emer-
gence of short-term aggregation in density profiles driven by
the interplay of persistence and volume exclusion. In Figs. 9(a)
and 9(b) we show the total density of the column-averaged PDE
and ABM, respectively, for the model with agent interaction
(types 1–3) and parameters Pm = 1, Pr = 0.01, ϕ = 0.9, and
v = 1. Such a choice of parameters leads to strong persistence.
This is needed in order to make the aggregation phenomenon
evident. Additionally, we increased the number of repeats,
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FIG. 8. Anisotropy of the ABM in two dimensions. The black contour lines represent values of equal total density, CT
i,j = 0.01, at times

T = 50, 100, 200, and 300 with time increasing in the direction of the red lines. Non-interacting agent profiles (type 0) (a) without persistence
of motion, ϕ = 0, and (b) with strong persistence of motion, ϕ = 0.8. Agent profiles for the non-trivial agent interactions (types 1–3) (c) without
persistence, ϕ = 0, and (d) with strong persistence, ϕ = 0.8.

to M = 100, to reduce the noise and better demonstrate the
phenomenon in the ABM averaged profiles. The profiles are
shown at times T = 0, 50, 100, 200, and 300. The plots show
a snapshot of the system in which total density towards the
edge of the initially populated region increases above the initial
value, producing a spontaneous non-monotonicity (traveling
outwards from the center of the domain in either direction) in
the density profile towards the edge of the initial interval. A
closer look at the density for right- and left-polarized agents
at time T = 50 [see Fig. 9(c)] reveals that the increment
on the left-hand side of the initial condition is caused by
an accumulation of right-polarized cells and vice versa for
the other side. Although in the early stages (T = 50) the
accumulation is visible only in the profiles of the differently
polarized populations [see Fig. 9(c)], eventually (T = 200) the
non-monotonicity appears at the total population level [see
Figs. 9(a) and 9(b)].

In order to explain this phenomenon of spontaneous aggre-
gation at the microscopic level, we consider a scenario with
initially high density and high values of persistence (Pr ≪ 1

and ϕ ≈ 1). In Fig. 9(d) we display a portion of a single ABM
simulation magnified in the region around the formation of the
left peak. We partition the figure into three regions: external,
which corresponds to the region outside the initially populated
region and that is empty at time t = 0; peripheral, which repre-
sents the region containing the border of the initially populated
region and where the aggregation takes place; and internal,
which represents the center of the initially populated region. In
the first phase of the simulation, the right-polarized cells in the
peripheral region are blocked by the high density in the internal
region and they are likely to remain in their position unless
they reorient, which happens with low probability. Meanwhile,
some of the other polarized cells, which occupy the peripheral
region, spread into the external region on the left-hand side
which creates a decrease in the total density of the peripheral
region. This allows the right-polarized cells in the peripheral
region to move rightwards, further into the peripheral region,
to aggregate and hence to form a barrier for the cells in the
internal region [see blue squares in the proximity of the dotted
yellow line in Fig. 9(d), for example]. The agents in the internal
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FIG. 9. Spontaneous aggregation induced by persistence and volume exclusion. (a) The numerical solution of the PDE for the column-
averaged total density and (b) the column-averaged density of the ABM, averaged over M = 100 repeats, for the model with interacting agents
(types 1–3 with v = 1). The profiles are shown at time T = 0, 50, 100, 200, and 300 with the direction of the black arrows indicating increasing
time. (c) The solutions of the PDE (continuous lines) and ABM (dotted lines) are compared for the partial column-averaged densities of
right-polarized agents (blue lines) and left-polarized agents (red lines) at time T = 50. (d) A zoomed-in snapshot of a single simulation of the
ABM (types 1–3) is shown at time T = 200. White sites are empty, blue sites are occupied by a right-polarized agent, red sites are occupied
by a left-polarized agent, and black sites are occupied by either an up- or down-polarized agent. The dotted black line represents the border of
the initially populated region which divides the external region from the peripheral region, and the dotted yellow line distinguishes between the
peripheral and the internal region.

region remain trapped by this obstruction. Notably, we can also
see a weak form of aggregation on the internal sides of the two
barriers in the PDE density profiles in Fig. 9(c). This is due
to a similar mechanism that occurs in the internal region; the
high density making the whole process slower and resulting
in a weaker aggregate. The noisiness of the data for the ABM
makes it difficult to see such a weak aggregation. As time
evolves, more agents in the internal region escape the two
barriers (and some of the cells forming the barriers reorient)
and reach the external region. The two barriers slowly move
towards the center and eventually coalesce.

The aggregation phenomenon appears in both the PDE and
the ABM [Figs. 9(a) and 9(b)]. However, the high level of spa-
tial correlation associated with the aggregation affects the qual-
ity of the agreement between the continuum and discrete mod-
els so the agreement is only qualitative and not quantitative.

Simpson et al. [5] observed a form of spontaneous non-
monotonicity in the continuous description of their multi-
species on-lattice ABM. The authors considered a population
of two identical, but distinctly labeled, species of cells moving
according to a simple excluding random walk. The two species
are initially confined in two adjacent regions with different
initial densities. As time evolves, a non-monotonicity appears
in the continuum profile of the species with lower density as
a consequence of the high density of the other species in the
adjacent region. No clear evidence of such behavior is present
in the corresponding ABM. Moreover, it should be noted that

any form of cell aggregation at the total population level is not
possible in the model of Simpson et al. [5], since the overall
behavior is governed by simple diffusion. Although the sponta-
neous formation of aggregates (jamming) has been described
previously in models which incorporate persistence [24,35–
39,51,52], to the best of our our knowledge, non-monotonicity
in average agent density has not been reported previously.

V. CONCLUSION

At the agent level, we have modeled persistence of mo-
tion for interacting agents through excluding velocity-jump
processes. Traditionally, such processes are associated with
systems of advective PDEs, which describe the model at a
population scale. Our work continues the investigation of this
type of model. First of all, we generalized the traditional
velocity-jump model, which allowed us to derive a system of
diffusive equations from the ABMs [Eqs. (5) and (B1)–(B3)].
Moreover, our observations reveal some unusual phenomena
(density spikes, anisotropy, and aggregation) caused by the
interplay of persistence and volume exclusion.

Despite the new diffusive PDEs correctly predicting the
macroscopic behavior of the ABM for a wide range of
parameters (including large values of reorienting rate), our
findings highlight unrealistic behaviors for certain choices
of parameters. Specifically, when the agent velocity is large
and we implement one of the two more complex forms of
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agent interaction (types 2 or 3), the density profile of the
ABM presents regular peaks (spikes) in density which are
not captured by the corresponding continuum models. We also
give evidence of an inherent anisotropy that occurs when we
implement persistence in an on-lattice context in two or more
dimensions [35]. This phenomenon represents a problem when
applying the model to experimental data, for which isotropy
is usually a natural feature. One possibility for reducing
the scale of this issue and still obtaining the macroscopic
description would be to work on a hexagonal lattice. This
would increase the number of preferential directions from
four to six, making the anisotropy less evident although not
completely removing it. Alternatively, one could allow cells
to move in diagonal directions as in Ref. [35], which may
also serve to mitigate, but not completely remove, anisotropy.
Off-lattice models should have the advantage that they are not
afflicted by anisotropy. However, the derivation of a corre-
sponding macroscopic description becomes more complicated
and sometimes intractable. Therefore, the problem of modeling
persistence of motion in an on-lattice context at multiple scales,
without incurring anisotropy in the lattice directions, remains
an interesting challenge for future research.

Finally, the other main achievement of this work is that the
new continuum approximation that we propose is capable of
qualitatively reproducing the spontaneous aggregation driven
by persistence and volume exclusion [24,35–39,51,52]. To our
knowledge, this is the first time that such behavior in the ABM
has been replicated at the macroscopic level. The non-intuitive
consequence is that, in the case of strong persistence, the
process of cell dispersion is initially slowed down by the
aggregation phenomenon, which constrains some of the cells

in the internal region around the initial condition. Once the
aggregates dissolve, the agents’ dispersion is effectively faster
than the normal diffusion. When such aggregation occurs, the
agreement between the models at the two scales is qualitative
rather than quantitative. More work might be done in order
to recover a better agreement. In particular, this might be
achieved by including a higher order of spatial correlations
in the continuous model as done by Markham et al. [53,54];
however, this remains an open question.
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APPENDIX A: OCCUPANCY MASTER EQUATIONS

In this section we report the occupancy master equations
for the ABM described in Sec. II in the main text for the three
types of non-trivial forms of agent interaction.

1. Type 0

The full set of occupancy master equations for agents
moving according to type 0 interactions are reported in the
main document [see system (3) in Sec. III of the main text].

2. Type 1

For type 1 agent interactions, which correspond to the case
in which the movement is aborted if, and only if, the target site
is occupied, the occupancy master equations read as follows:
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4
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)[
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3. Type 2

Here we report the complete set of occupancy master equations for agents moving according to type 2 interactions. In this
case agents move if, and only if, all the sites between the initial site and the target site are available. The equations are as follows:
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4. Type 3

Finally, we report the occupancy master equations for agents moving according to type 3 interactions, in which the agents
move to the furthest available site. These read
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1 − Ct

i+s,j

)
+

v∑

k=1

k−1∏

s=1

Ct
i−k,j

(
1 − Ct

i−s,j

)

+ (1 − ϕ)
v∑

k=2

k−1∏

s=1

Ct
i,j+k

(
1 − Ct

i,j+s

)
+ (1 + ϕ)

v∑

k=2

k−1∏

s=1

Ct
i,j−k

(
1 − Ct

i,j−s

)
]

+ τPr

4

[
Rt

i,j + Lt
i,j + Ut

i,j − 3Dt
i,j

]
+ O(τ 2). (A3)

APPENDIX B: COMPLETE DENSITY SYSTEMS

In this section we report the complete systems of PDEs for the four types of agent interaction.

1. Type 0

The full set of PDEs for the model with type 0 interactions is reported in the main text [see system (5) in Sec. III).

2. Type 1

For the type 1 form of interaction the system of diffusive PDEs for the four subpopulation reads as follows:

∂R

∂t
= v2µ[R∇2C + (1 − C)∇2R] − vν

∂

∂x
[R(1 − C)] + Pr

4
(C − 4R),

∂L

∂t
= v2µ[L∇2C + (1 − C)∇2L] + vν

∂

∂x
[L(1 − C)] + Pr

4
(C − 4L),

∂U

∂t
= v2µ[U∇2C + (1 − C)∇2U ] − vν

∂

∂y
[U (1 − C)] + Pr

4
(C − 4U ),

∂D

∂t
= v2µ[D∇2C + (1 − C)∇2D] + vν

∂

∂y
[D(1 − C)] + Pr

4
(C − 4D), (B1)

where µ and ν are defined as in Eqs. (6) and the boundary conditions are imposed as in Eqs. (21) of the main text.
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3. Type 2

For the type 2 interaction, the complete set of PDEs is

∂R

∂t
= v2µ[R∇((1 − C)v−1∇C) + (1 − C)∇((1 − C)v−1∇R)] − vν

∂

∂x
[R(1 − C)v] + Pr

4
(C − 4R),

∂L

∂t
= v2µ[L∇((1 − C)v−1∇C) + (1 − C)∇((1 − C)v−1∇L)] + vν

∂

∂x
[L(1 − C)v] + Pr

4
(C − 4L),

∂U

∂t
= v2µ[U∇((1 − C)v−1∇C) + (1 − C)∇((1 − C)v−1∇U )] − vν

∂

∂y
[U (1 − C)v] + Pr

4
(C − 4U ),

∂D

∂t
= v2µ[D∇((1 − C)v−1∇C) + (1 − C)∇((1 − C)v−1∇D)] + vν

∂

∂y
[D(1 − C)v] + Pr

4
(C − 4D), (B2)

where µ and ν are defined as in Eqs. (6) and the boundary conditions are imposed as in Eqs. (21) of the main text.

4. Type 3

Finally, we report the complete diffusive system of the model with type 3 interaction. This reads

∂R

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)(1 − C)∇R − k(k − 2)R∇C]

]

+ ν
∂

∂x

[
(1 − C)((1 − C)v − 1)

C
R

]
+ Pr

4
(C − 4R),

∂L

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)(1 − C)∇L − k(k − 2)L∇C]

]

− ν
∂

∂x

[
(1 − C)((1 − C)v − 1)

C
L

]
+ Pr

4
(C − 4L),

∂U

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)(1 − C)∇U − k(k − 2)U∇C]

]

+ ν
∂

∂y

[
(1 − C)((1 − C)v − 1)

C
U

]
+ Pr

4
(C − 4U ),

∂D

∂t
= µ∇

[
v∑

k=1

(1 − C)k−1[(2k − 1)(1 − C)∇D − k(k − 2)D∇C]

]

− ν
∂

∂y

[
(1 − C)((1 − C)v − 1)

C
D

]
+ Pr

4
(C − 4D), (B3)

where µ and ν are defined as in Eqs. (6) and the boundary conditions are imposed as in Eqs. (21) of the main text.
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3.2. Conclusions

This chapter reports my work on modelling cell persistence and its interplay with

excluding interactions. The most important outcome of the paper presented is the

derivation of an advection-di↵usion PDE model for excluding velocity-jump processes.

We highlighted some of the features of the microscopic model which are captured by the

macroscopic representation and some which are not. In particular, we found that the

PDE model is capable of qualitatively reproducing a spontaneous form of aggregation

seen in the ABM.

Like all existing models, those presented in this chapter have some limitations.

Some of these are highlighted and discussed in the paper, for example, the emergence

of regular spikes in the density profiles and the intrinsic anisotropy of the lattice.

Another, probably overlooked, aspect of our analysis is the scaling assumption on the

persistence parameter ', precisely ' ⇠ O(�). Despite the fact that this step limit

the applicability of the analysis, it represents a fundamental point for the entire paper

and a crucial assumption for the derivation of the advection-di↵usion PDE models

of Section III. More details on this type of scaling assumption in the context of bias

random walkers can be found in Simpson et al. [2009].

The results of this paper leave a set of unanswered questions about the possibility

of modelling and analysing the emergence of the macroscopic behaviours in exclud-

ing velocity-jump processes. For example, in a recent work Zhang et al. [2019] have

continued the study of the model presented in this paper by introducing global bias

and multiple species populations. In Zhang et al. [2019] reorientation and motility

events are coupled. Their work represents an important extension of our paper and

an advancement in the understanding of these modelling techniques. We will further

discuss the work of Zhang et al. [2019] in Section 4.2, in the context of emerging spatial

correlation and pair correlation functions.

An important aspect of using mathematical modelling to study cell behaviour,

such as directional persistence, is the choice of appropriate statistics to quantify the

relevance of the behaviour in an experimental scenario. Several spatial statistics have

been suggested to quantify directional persistence [Codling et al., 2008]; among these,

the most relevant are Mean Dispersal Distance (MDD), Mean Square Displacement

(MSD) and Tortuosity. The characteristic features of these statistics for non-interacting

velocity-jump processes have been extensively studied for the last few decades [Othmer

et al., 1988, Codling and Hill, 2005]. However, for models which account for particle

interactions, as for example volume exclusion, similar studies have started to appear

only in recent years and more work has to be done in this direction [Galanti et al.,

2013, Bertrand et al., 2018]. As part of the study presented in this chapter, therefore,

it would be interesting to investigate how the interplay between volume exclusion and

directional persistence can influence these statistics. Some progress in this direction
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has been made by Teomy and Metzler [2019b]. In this work the authors use a modified

version of our persistence model to study the MSD in one, and two, dimensions for

persistent excluding agents. Interestingly, the authors explore the behaviour of the

model even in an anti-persistent regime, i.e. when agents are more likely to change

their direction of motion at each step (corresponding to ⇢ < 0, in our model) [Teomy

and Metzler, 2019a].

Finally, an important question raised in this chapter surrounds the role and the

extent of the aggregation phenomenon observed in Section IV-C of the paper. In other

words, whether it is possible to quantify and to predict the emergence of this form of

aggregation from the parameters of the model. Motivated by this question, I focused

part my research on designing appropriate methods for identifying and quantifying

spatial correlation in multi-agent systems, which is the main topic of the next chapter.
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Chapter 4

Pair correlation functions for identifying spatial

correlation in discrete domains

This chapter is entirely dedicated to the problem of detecting and quantifying spatial

correlation in discrete domains. It comprises a paper published in Physical Review E

[Gavagnin et al., 2018] and the accompanying supplementary materials.

In a model of spatially interacting agents, the positions of the single individuals

are often not independent of each other. Depending on the type of interactions and

on the individual behaviour, the positions of the agents can be positively or negatively

correlated. Studying the intensity of these correlations is typically an informative

tool for the understanding of the model and for applications to experimental data.

The spontaneous form of aggregation which we observe in Chapter 3 (Section IV-C)

is a good example of a phenomenon which can be studied from the perspective of

spatial correlations. With this in mind, we investigated statistical methods capable

of quantifying the level of correlation in spatially discrete systems. In this paper, we

design a series of novel pairwise correlation functions (PCFs), designed for multi-agent

systems in discrete domains. Our functions improve previously existing PCFs and are

extended to di↵erent metrics and higher dimensions.

4.1. Outline of the article

Section I of the paper provides a brief overview of the importance of studying spatial

correlation and a summary of the relevant literature. In Section II of the paper we have

a closer look at existing PCFs for discrete domains and we discuss their limitations.

In Section III we introduce two new PCFs for square lattices accounting for di↵erent

distance metrics and boundary conditions. We test the new PCFs by using examples

of patterns taken from the biological scenarios and we present the results in Section IV.

Extensions to other types of lattice and more general discrete domains are discussed in

Sections V and VI, respectively. We conclude with a short discussion in Section VII.

The accompanying supplementary material contains some derivations, omitted in the

main text, and a summary of the normalisations of all the PCFs defined in the paper.
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Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of
multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative
and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for
off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the
study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive
definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve
upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of
the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular,
and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of
spatial correlation in irregular lattices for which recognizing correlation is less intuitive.

DOI: 10.1103/PhysRevE.97.062104

I. INTRODUCTION

A system of agents is considered in a state of spatial correla-
tion if, given any agent in the system, the likelihood that there
are other agents at a certain, close distance, is either increased
or decreased with respect to the situation in which the agents
are distributed uniformly at random. Spatial correlation is a
dominant feature of many biological and physical systems [1–
12]. For example, in cell biology, spatial correlation can be seen
in the form of patterns on animal fur or fish skin [1,3,13]. In
a clinical setting, cell aggregation is a characteristic feature of
melanoma and its identification is essential for early diagnosis
and effective therapy [14,15]. Resource competition in ecology
can lead to spatial correlation in the form of segregation, for
example, in ant nest displacement in a competitive environment
[16]. In epidemiology, spatial correlation can be observed
in the occurrence of disease across different geographical
regions [17].

The same spatial configuration can have different origins.
For example, spatial aggregation in cell biology can be caused
by a result of cell-to-cell adhesion [8], external signals, as in
chemotaxis [5,6], or even slime following [7]. Alternatively,
cells may form clusters during development due to a com-
bination of a high proliferation rate and a low movement
rate [9]. Given a system exhibiting spatial correlation, one
may hypothesize an underlying mechanism responsible for
these properties. These assumptions may form the basis of
a mathematical model that can be simulated for the purpose of
testing. Quantifying spatial correlation in both the simulation
and observed experimental data can be a way to connect these
studies and to validate or disprove such a theory. As a result, a
great number of statistical tools have been developed in the past

*e.gavagnin@bath.ac.uk
†These authors contributed equally to this work.
‡j.owen@bath.ac.uk

decade to analyze and measure spatial correlation [12,18–23].
Among the most popular are pair correlation functions (PCFs)
[11,12,20–22,24–28] and the fast Fourier transform (FFT)
[29,30]. In this paper we focus our attention on the study of
spatial correlation using PCFs.

Given a system of agents, a PCF determines whether
pairs of agents are more or less likely to be found with a
given separation than in the situation in which the agents
are positioned uniformly at random in the domain. A PCF is
considered effective if it fits two main criteria. First, the PCF
distance metric should be well-defined, but most importantly
be readily interpretable in the context of the system considered.
This criteria is essential so that in the case of correlation
(aggregation or segregation), the PCF can be used to obtain
more details about the spatial configuration. For example, if
the system exhibits aggregation, the PCF should be able to
provide a measure for the average size of the clusters and
their pairwise separation. Second, the PCF should be correctly
calibrated. The PCF should be able to distinguish between three
basic types of configurations: spatial randomness, aggregation,
and segregation. For this, the PCF should be normalized
correctly; i.e., the PCF should return the value unity at all
pairwise distances (no correlation) when applied to a uniformly
distributed set of agents. If the PCF is not normalized correctly,
a spatially random set of agents may be incorrectly identified
as a correlated system. This inconsistency makes PCF profiles
hard to interpret.

Depending on the type of investigation, the mathematical
framework can either be continuous (off-lattice) or discrete
(on-lattice). The corresponding PCF has to be defined in
accordance with the given framework. Despite the abundance
of PCFs defined for off-lattice domains [11,26–28], only a few
recent studies have defined a PCF for domains partitioned with
a lattice [12,20–22]. On-lattice PCFs often assume exclusion
properties, that is, that each lattice site in a domain can be
occupied by at most one agent at any given time. This is
consistent with typical on-lattice correlation studies, such as

2470-0045/2018/97(6)/062104(13) 062104-1 ©2018 American Physical Society
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those designed to quantify correlation in binary pixelated
images, or to determine spatial correlation in exclusion pro-
cesses simulated using a discrete domain.

Currently, there are two PCFs defined on-lattice. The first is
a naive approach consisting of applying the classic off-lattice
PCF to lattice-based systems. We refer to this from now on as
the annular PCF. In the annular PCF, given some small positive
δ, the number of agents at a distance m from a focal agent is
defined as the number of agents whose centres lie in the annulus
(m − δ,m], where distance is defined by the Euclidean metric.
A limitation of this method is that, while the normalization is
a good approximation for a continuous domain (see Sec. II for
more details), it is poor in the case of a discrete domain, thus the
PCF is not correctly calibrated. In more recent work, Binder
and Simpson [12,21] defined a PCF specifically designed for
a two-dimensional square on-lattice exclusion process, which
we will refer to as the rectilinear PCF (see Sec. II for more
details). While their approach correctly identifies the spatial
correlation in many examples, due to an anisotropic definition
of distance, spatial structures that are biased in either Cartesian
directions can remain unidentified by this PCF. To summarize,
to the best of our knowledge, a discrete isotropic PCF with
correct normalization does not currently exist in the literature.

In this paper, we extend the study of pairwise spatial
correlation for on-lattice exclusion processes which tackles
the flaws of previous PCFs. We define isotropic PCFs for
a square lattice on which distance is defined using two of
the most natural and intuitive metrics for a discrete domain:
the taxicab and uniform metric. We call these the square
taxicab PCF and square uniform PCF, respectively, after the
square lattice set up and metric type. We define them in
both the nonperiodic and periodic boundary cases. Using
synthetically generated data, we demonstrate that our PCF can
correctly distinguish between spatial randomness, aggregation,
and segregation. Furthermore, we show that it can also provide
quantitative information about the structure of the system, such
as approximate aggregate size or segregation distance both in
the short and long scales. Moreover, we investigate how the
choice of metric, uniform, or taxicab can affect this quantitative
information. We demonstrate that our PCFs represent a sig-
nificant improvement on previous on-lattice PCFs by showing
that, first, our method is correctly calibrated (unlike the annular
PCF) and, second, that it can identify anisotropic patterns of
the type that are routinely missed by the rectilinear PCF. As a
natural extension, we define PCFs for higher dimensions and
other types of tessellations (cubic, triangular, and hexagonal)
that have not been considered previously. We name these the
triangle PCF, the hexagon PCF, the cube taxicab PCF, and the
cube uniform PCF after the lattice set up and metric type.

Finally, we extend the concept of a PCF by introducing
the general PCF. This PCF can be defined using any metric
on any discrete domain type, with the caveat that it is more
computationally expensive. We give an example of how we
can use this PCF on a discrete irregular lattice (both tessellation
and domain shape), where we define adjacent sites to be at unit
distance from one another. We show how our PCF can identify
aggregation and segregation on an irregular domain using some
synthetic examples.

The paper is organized as follows. In Sec. II we discuss
the successes and limitations of previous on-lattice PCFs. In

Sec. III we introduce our square taxicab and square uniform
PCFs. We apply our square taxicab and square uniform PCFs to
some relevant examples and make comparisons with previous
on-lattice PCFs from the literature in Sec. IV. In Sec. V A we
define the triangle PCF, the hexagon PCF, the cube taxicab
PCF, and the cube uniform PCF. We extend our PCF to more
generic and possibly irregular lattices by defining the general
PCF in Sec. VI. For reference, in Sec. S.4 of the Supplemental
Material, we supply a table summarizing all the formulae for
the normalizations of our PCFs [31]. Finally, we conclude
in Sec. VII by summarising the relevance of our results and
discussing potential avenues for future work.

II. EXISTING ON-LATTICE PAIR CORRELATION
FUNCTIONS

In this section we provide a summary of the only two
existing PCFs defined for discrete domains: the annular PCF
and the rectilinear PCF. For each, we describe their strengths
and limitations.

First, consider a system of agents on a two-dimensional
square lattice of size Lx × Ly , with lattice step ", and with
the exclusion property that, at any given time, each lattice site
can be occupied by at most one agent. If N agents occupy the
domain, then the occupancy of the lattice can be represented
by a matrix M:

Mxy =
{

0 if lattice site (x,y ) is vacant,
1 if lattice site (x,y ) is occupied, (1)

where

N =
Lx∑

x=1

Ly∑

y =1

Mxy 6 LxLy . (2)

Let ψM be the set of all agent pairs in the lattice defined by
matrix M , i.e.,

ψM =
{
(a,b) ∈ L × L|a = (xa,y a),

b = (xb,y b), a ̸= b, Mxa,y a
= Mxb,y b

= 1
}
, (3)

where L = {1, . . . ,Lx} × {1, . . . ,Ly } is the set of all sites in
the lattice. With agents in configuration M , let us define the
subset of agent pairs separated by distance m according to some
(as yet unspecified) definition of distance, denoted by d , as

Cd (m) = {(a,b) ∈ ψM |∥a − b∥d = m}, for m ∈ Dd , (4)

where Dd is the set of possible distances under the metric d .
We define the total number of pairs of agents for each value of
distance m ∈ Dd as

cd (m) = |Cd (m)|. (5)

Similarly, we define the set of pairs of sites (regardless of their
occupancy) which are separated by distance m according to
the metric d as

Sd (m) = {(a,b) ∈ L × L
∣∣∥a − b∥d = m}, for m ∈ Dd , (6)

hence the total number of pairs of sites at distance m is
given by

sd (m) = |Sd (m)|. (7)
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FIG. 1. Example agent pairs in the sets CA(m) with m = 1,2,3
and bandwidth δ = 1. Concentric annuli, (m − δ,m], are superposed
on top of the square lattice and the sites whose centres fall into each
annulus are colored differently. Sites in yellow, red, and green (labeled
1, 2, and 3, respectively) are defined to be distance one, two, and three
from the blue site, respectively, labeled X.

To produce a PCF, we aim to normalize the index cd (m)
with the number of pairs we would expect at distance m if
the system had no spatial correlation. That is, we consider
the case in which the same number of agents are displaced
uniformly at random on the lattice and compute the expected
number of pairs at distance m. Let U be a random matrix such
that Uxy = 0 for all sites (x,y ) ∈ L, apart from N sites chosen
uniformly at random without replacement, for which Uxy = 1.
Then we define

C̄d (m) = {(a,b) ∈ ψU |∥a − b∥d = m}, for m ∈ Dd . (8)

Hence, for each value of m ∈ Dd , the PCF at distance m is
defined as

fd (m) := cd (m)
E[c̄d (m)]

, (9)

where c̄d (m) = |C̄d (m)| and E represents the expectation
operator.

A. The annular PCF

The annular PCF was originally designed for two-
dimensional off-lattice systems [19] but can be extended to
on-lattice systems with periodic boundary conditions (BC).
For the annular PCF, the set CA, where A denotes the annular
metric, is defined as follows:

CA(m) = {(a,b) ∈ ψM |
√

(xa − xb)2 + (y a − y b)2

∈ (m − δ,m]}, (10)

where m ∈ {δk | k ∈ N+} and δ is a small real number which
determines the bandwidth of the PCF. The schematics in Fig. 1
show a representation of some elements in the sets CA(1),
CA(2), and CA(3) with δ = 1.

The normalization factor is given by

E[c̄A(m)] ≈ N (N − 1)(2πmδ)
LxLy

, (11)

where 2πmδ approximates the area of the mth annulus (as-
suming small δ) from any given agent. The annular PCF, fA,
follows from definition Eq. (9).

The normalization in Eq. (11) is a good approximation
for a continuous domain with a small δ. However, when the
agents are positioned on a lattice, this approach is no longer
appropriate. The main issue is that the counts of agents in each
annulus vary in an unpredictable manner with the distance, m,
and the annular width, δ. For example, consider a square lattice
with spacing ". The only possible distances two agents can be
separated by are in the countable set

DA = {"
√

x2 + y 2 | (x,y ) ∈ N2\{0,0}}

= {",
√

2",2",
√

5", . . . }. (12)

Partitioning these distances into regularly spaced intervals, as
it is required by the Euclidean distance metric, we can see
that the number of agent pairs does not increase smoothly
with the distance, m. Depending on the value of δ it may
not even increase monotonically. However, the definition of
the normalization factor Eq. (11) suggests that the expected
number of pairs increases smoothly and monotonically with
both m and δ. This disparity means the on-lattice annular PCF
will not be properly normalized and will either be an over-
or under- approximation, making results hard to interpret (see
Fig. 7(b) as an example).

B. The Rectilinear PCF

In more recent work, Binder and Simpson [12,21] define the
Rectilinear PCF specifically for two-dimensional, on-lattice
exclusion processes with nonperiodic BC. Their definition is
easily extendible to periodic BC. They define two PCFs for the
two Cartesian directions. In each case the distance is defined
by the number of columns (or rows) separating two agents.

Thus, the set of pairs of agents separated by integer dis-
tance m ∈ N+ are defined in the x direction and y direction
respectively as

CRx
(m) = {(a,b) ∈ ψM ||xa − xb| = m}, (13a)

CM
Ry

(m) = {(a,b) ∈ ψM ||y a − y b| = m}, (13b)

where subscripts Rx,Ry refer to the metrics defined by the
Rectilinear PCFs. The schematics in Fig. 2 represent examples
of sites separated by distances m = 0, m = 1 and m = 2 for
metrics Rx and Ry .

The counts are then normalized by the expected number of
pairs of agents at distance m assuming N uniformly distributed
agents:

E
[
c̄Rx

(m)
]

= N − 1
LxLy − 1

N

LxLy

L2
y (Lx − m), (14a)

E
[
c̄Ry

(m)
]

= N − 1
LxLy − 1

N

LxLy

L2
x(Ly − m), (14b)

respectively. For details of the derivation of these factors, see
Ref. [12]. The final rectilinear PCF is defined as the arithmetic
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FIG. 2. Schematic of agent pairs using (a) the Rx metric, (b) the
Ry metric. Sites in yellow and red (labelled 1, 2 respectively) are
defined to be distance-one and -two neighbors, respectively, from the
blue site labeled X.

average of the two orthogonal PCFs, i.e.,

f M
R (m) = 1

2

[
fRx

(m) + fRy
(m)

]
,

where

f M
Rx

(m) = cRx

E
[
c̄Rx

(m)
] ,

f M
Ry

=
cRy

E
[
c̄Ry

(m)
] . (15)

The rectilinear PCF correctly identifies spatial correlation in
many examples and, unlike the annular PCF, is normalized
correctly. However, one major issue that the rectilinear PCF
suffers from is that, due to the inherent anisotropy of its
definition, spatial structures that are biased in either Cartesian
direction may be missed. For such patterns, the PCF given by
the Rx and Ry metrics are approximately constant functions of
distance, because the averaged row and column densities are
constant along the axes, despite the fact that clustering can still
be present. Examples of these spatial patterns include many
biologically and chemically relevant cases, such as diagonal
stripes and chessboard patterns [32,33] (see Fig. 8). We note
that when the pattern structure is biased in only one Cartesian
direction, the preaveraging rectilinear PCFs fRx

and fRy
will

identify further information about the direction of the spatial
pattern. Another limitation of the rectilinear PCF is that it
applies only to regular square lattices and a generalisation to
other forms of tessellations would be challenging.

III. THE SQUARE TAXICAB AND
SQUARE UNIFORM PCFS

In this section we define two discrete PCFs for a square
lattice: the square taxicab and square uniform PCF, using the
taxicab and uniform metric, respectively, under both periodic
and nonperiodic BC. Using the same notation as in Sec. II, we
define the subsets of agent pairs separated by distance m under
nonperiodic BC as

Cn
1 (m) = {(a,b) ∈ ψM |∥a − b∥1 = m}, m ∈ Dn

1 , (16a)

Cn
∞(m) = {(a,b) ∈ ψM |∥a − b∥∞ = m}, m ∈ Dn

∞, (16b)

FIG. 3. Schematic of agent pairs using (a) the taxicab metric (b)
the uniform metric. Sites in yellow and red, labeled with numbers 1
and 2, respectively, are defined to be distance-one and -two neighbors
from the site marked in blue (labeled with X).

for the taxicab and uniform metric, respectively. Here, Dn
1 =

Dn
∞ = {1,2,... min{Lx,Ly } − 1} and the superscript n refers

to the fact we are considering nonperiodic BC. Using the
definitions of the uniform and taxicab metrics, we can express
these sets as

Cn
1 (m) = {(a,b) ∈ ψM ||xa − xb| + |y a − y b| = m}, (17a)

Cn
∞(m) = {(a,b) ∈ ψM | max{|xa − xb|, |y a − y b|} = m}.

(17b)

Similarly, we define the subsets of agent pairs separated by
distance m under periodic BC as

C
p
1 (m) = {(a,b) ∈ ψM | min{|xa − xb|,Lx − |xa − xb|}

+ min{(|y a − y b|,Ly − |y a − y b|} = m},
m ∈ Dp

1 , (18a)

Cp
∞(m) = {(a,b) ∈ ψM | max{min{|xa − xb|,Lx − |xa − xb|},

+ min{(|y a − y b|,Ly − |y a − y b|}} = m},
m ∈ Dp

∞, (18b)

where Dp
1 = Dp

∞ = {1,2,... min {⌊Lx

2 ⌋,⌊Ly

2 ⌋}}. The corre-
sponding definitions of Sn

1 , Sn
∞, S

p
1 , and S

p
∞ can be obtained

similarly by using Eq. (6). Here the superscript p refers to the
fact we are considering periodic BC. Notice that we restrict the
largest m to be min {⌊Lx

2 ⌋,⌊Ly

2 ⌋} to simplify the computation of
the normalization factor (see Sec. III A). However, with some
work this restriction could be relaxed. The schematics in Fig. 3
represent examples of sites separated by distance m = 1 and
m = 2 using the taxicab (a) and uniform (b) metrics.

For the normalization factors, Binder and Simpson [12] use

E[c̄d (m)] =
(

N

LxLy

)(
N − 1

LxLy − 1

)
sd (m), (19)

where sd (m) is defined as in Eq. (7) and d refers to the metric
used. In other words, the expected number of pairs of agents at
distance m on a lattice with N uniformly distributed agents can
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be written as the probability that two different sites at distance
m are simultaneously occupied, multiplied by the total number
of pairs of sites at distance m in the domain.

To complete the definitions of our square lattice PCFs we
need to provide an expression for s1 and s∞. We address this
in the next two sections, distinguishing between the cases of
periodic and nonperiodic BC.

A. Normalization of the square taxicab and square uniform
PCF under periodic boundary conditions

As the derivation for the normalization is simple under
periodic BC and more complicated under nonperiodic BC, we
first consider the system with periodic BC and determine s

p
1 ,

s
p
∞, where p denotes periodic BC. Let us define the number

of sites separated by a distance m from any given reference
site on a lattice as t1(m), t∞(m) under the taxicab and uniform
metric, respectively. These read

t1(m) = 4m, (20a)

t∞(m) = 8m. (20b)

The proofs of Eqs. (20) are omitted, but they can be obtained
easily by induction on m. Examples for m = 1,2 can be seen in
Fig. 3. Notice that for m 6 min {⌊Lx

2 ⌋,⌊Ly

2 ⌋}, given any site on
the lattice, the number of sites at distance m from this reference
site in the case of periodic BC is exactly t(m). Consider the
lattice of size Lx × Ly with Lx,Ly > 2. If we multiply the total
number of lattice sites by t(m), we count each pair of sites sep-
arated by distance m exactly twice. Hence, we conclude that

s
p
d=1,∞(m) = t(m)LxLy

2
, (21)

using the taxicab and uniform metrics. Substituting values for
t1(m) and t∞(m) from Eqs. (20) we deduce that

s
p
1 (m) = 2mLxLy , (22a)

sp
∞(m) = 4mLxLy . (22b)

Therefore, by substituting Eqs. (22) into Eq. (19), the
normalization factors under periodic BC are

E
[
c̄
p
1 (m)

]
= 2mN (N − 1)

LxLy − 1
, (23a)

E
[
c̄p
∞(m)

]
= 4mN (N − 1)

LxLy − 1
. (23b)

B. Normalization of the square taxicab and square uniform
PCF under nonperiodic BC

In this section we derive expressions for sn
1 (m) and sn

∞(m),
wherendenotes nonperiodic BC. Notice that, for allm ∈ D, we
have that sp(m) > sn(m) since sp(m) includes pairs that cross
the domain boundary, whereas sn(m) does not. Therefore, to
find a formula for sn(m), it is enough to determine a formula
for the remainders defined by

r1(m) = s
p
1 (m) − sn

1 (m), (24a)

r∞(m) = sp
∞(m) − sn

∞(m). (24b)

The remainders count the number of pairs of sites that cross
a boundary under the periodic BC. For simplicity, throughout
this section, we will only derive the normalization for the
taxicab metric; however, the derivation for the uniform metric
is similar and can be found in Supplemental Material Sec. S.1
for reference [31]. Let us define the set of pairs of sites
separated by distance m ∈ Dn

1 that cross the x boundary
(horizontal axis) or y boundary (vertical axis), respectively, as

P x
1 (m) =

{
(a,b) ∈ S

p
1 (m)

∣∣|y a − y b| > Ly − |y a − y b|
}
,

(25a)

P
y
1 (m) =

{
(a,b) ∈ S

p
1 (m)

∣∣|xa − xb| > Lx − |xa − xb|
}
.

(25b)

Of these pairs, let us consider those pairs that are at distance
k ∈ {1,...m} rows or columns from each other, respectively. We
define these subsets as

P x
1 (m,k) =

{
(a,b) ∈ P x

1 (m)
∣∣Ly − |y a − y b| = k

}
, (26a)

P
y
1 (m,k) =

{
(a,b) ∈ P

y
1 (m)

∣∣Lx − |xa − xb| = k
}
. (26b)

Notice that P x
1 (m) =

⋃m
k=1 P x

1 (m,k) and P
y
1 (m) =⋃m

k=1 P
y
1 (m,k). Figures 4(a) and 4(b) give visualizations of

pairs of sites within P x
1 (m,m). Figure 4(c) gives examples of

distances between pairs of sites in P x
1 (m,k), for k = 1, . . . ,m.

By definition Eqs. (16a) and (18a) we have that

S
p
1 (m)\Sn

1 (m) = P x
1 (m) ∪ P

y
1 (m). (27)

Hence, by combining Eqs. (24a) and (7), we obtain

r1(m) =
∣∣P x

1 (m) ∪ P
y
1 (m)

∣∣

=
m∑

k=1

∣∣P x
1 (m,k)

∣∣+
m∑

k=1

∣∣P y
1 (m,k)

∣∣−
∣∣P x

1 (m)∩P
y
1 (m)

∣∣.

(28)

To conclude the computation we derive an expression for the
two sums in Eq. (28) and the corresponding equation for the
size of the intersection. By counting the contribution of each
type of pair (see Fig. 4 for a visualization), one can write down
the following expressions for the two sums in Eq. (28):

m∑

k=1

∣∣P x
1 (m,k)

∣∣ = 2[Lx + 2Lx + · · · + Lx(m − 1)] + Lxm,

(29a)
m∑

k=1

∣∣P y
1 (m,k)

∣∣ = 2[Ly + 2Ly + · · · + Ly (m − 1)] + Ly m .

(29b)

Hence,

m∑

k=1

∣∣P x
1 (m,k)

∣∣ +
m∑

k=1

∣∣P y
1 (m,k)

∣∣

= 2[Lx + 2Lx + · · · + Lx(m − 1)] + Lxm

+ 2[Ly + 2Ly + · · · + Ly (m − 1)] + Ly m
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FIG. 4. A visualization of the pairs of sites in P x
1 (m). Panels (a) and (b) show two different site pairs in P x

1 (m,m). For each of the Lx

columns, each site in the rows {Ly − m + 1,Ly − m + 2, . . . ,Ly } has a single corresponding site at distance m separated by m rows and 0
columns and reached by crossing the horizontal boundary. Therefore |P x

1 (m,m)| = mLx . Panel (c) shows all the different types of pairs in
P x

1 (m,k) for k = 1, . . . ,m with the corresponding value of |P x
1 (m,k)|.

= (Lx + Ly )

(

m + 2
m−1∑

i=1

i

)

= (Lx + Ly )
[
m + 2

(m − 1)m
2

]

= (Lx + Ly )m2. (30)

We now focus on deriving an expression for the size of inter-
section, |P x

1 (m) ∩ P
y
1 (m)|, in Eq. (28). The set P x

1 (m) ∩ P
y
1 (m)

consists of pairs of sites separated by distance m that cross both
the x and y boundaries simultaneously.

There are two regions of the domain where site pairs cross
two boundaries. These are any two consecutive corners of the
four corners of the domain. Examples of these regions and site
pairs within these regions are visualized in Fig. 5. In Fig. 6
we give an illustrative example in which we count the number
of these pairs for m = 5. All sites inside the boundaries of
the domain colored in orange, purple, green, and yellow are
distance m = 5 from other sites of the same color outside the
boundaries of the domain. Notice that the yellow site in the
corner at (Lx,Ly ) is distance five from a total of four sites,
reached by crossing the x and y boundaries, denoted by a
4 in the site. Similarly, the two green sites at (Lx − 1,Ly )
and (Lx,Ly − 1) are distance m from three sites, reached by
crossing the x and y boundary, denoted by a 3 in the two sites.
|P x

1 (5) ∩ P
y
1 (5)| is the sum of all the numbers in the colored

sites multiplied by two to account for the second corner region.
Extrapolating, for any value of m, the number of pairs of sites

FIG. 5. Examples of pairs of sites separated by distance m = 5
that cross both the x and y boundaries, i.e., pairs of sites in P x

1 (m) ∩
P

y
1 (m). The gray sites outside the domain correspond to the gray sites

inside the domain in the diametrically opposite corner. As illustrations
of site pairs at a distance m which cross both boundaries, the orange
site containing a white cross is distancem from the pink site containing
a white cross. Similarly, the yellow site containing a black cross is
distance m from the green site containing a black cross.
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FIG. 6. Examples of pairs in P x
1 (5) ∩ P

y
1 (5) on a zoomed-in

corner of a larger domain. Sites with a given pattern (not plain) are
distance m = 5 away from sites with the same pattern that can be
reached by crossing the x and y boundaries. The number in each given
site corresponds to the number of sites at distance m = 5, reached by
crossing the x and y boundaries.

that cross the two boundaries is exactly
∣∣P x

1 (m) ∩ P
y
1 (m)

∣∣ = 2[(m − 1) + 2(m − 2)

+ 3(m − 3) + · · · + m − 1]

= 2
m−1∑

i=1

(m − i)i = m3 − m

3
. (31)

By substituting Eqs. (31) and (30) into Eq. (28) we gain an
expression for the remainder r1(m). By rearranging Eq. (24a)
we determine sn

1 (m), which we then substitute into Eq. (19)
to obtain the exact expression for the normalization in the
nonperiodic case. This is given by

E
[
c̄n

1(m)
]

=
(

N

LxLy

)(
N − 1

LxLy − 1

)

[
2mLxLy − (Lx + Ly )m2 + m3 − m

3

]
. (32)

A similar approach can be used to obtain the normalization
factor for the uniform metric under nonperiodic BC:

E
[
c̄n
∞(m)

]
=

(
N

LxLy

)(
N − 1

LxLy − 1

)

[4mLxLy − 3(Lx + Ly )m2 + 2m3]. (33)

For more details on the derivation of Eq. (33), see Supplemental
Material Sec. S.1.

IV. RESULTS

In this section we use the square taxicab and square uniform
PCFs defined in Sec. III to analyze the spatial correlation
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FIG. 7. Examples of spatial structure analysis. In panels (a) and
(b) a case with no spatial correlation is considered. Panel (a) is an
example visualization of an occupancy matrix uniformly populated
with density 0.5. Occupied sites are colored in black and are white
otherwise. Panel (b) shows the four PCFs each averaged over 50
uniformly populated matrices. Panels (c) and (d) refer to a discrete
simulation of the agent-based model described in the text, at time
t = 10. Panel (c) is a visualization of the occupancy matrix and in
panel (d) our PCFs are compared with the Rectilinear PCF.

in some examples. We compare our results with previously
suggested on-lattice PCFs.

We start by computing the PCFs for a system without any
spatial correlation. We consider 50 independent occupancy
matrices, Ui , i = 1, . . . ,50, populated uniformly at random
with density 0.5 [see Fig. 7(a) for example]. For each re-
alisation, Ui , we compute the corresponding PCF, f

Ui

d , and
then we average the results over the 50 realisations which we
denote f̂d . If the normalization is correct, f̂d (m) should return
the value unity for every pair distance, m, meaning that no
spatial correlation is found. In Fig. 7(b) all four aforementioned
averaged PCFs are plotted: f̂A,f̂R,f̂1, and f̂∞. The results show
that both the averaged square uniform PCF, f̂1, and square
taxicab PCF, f̂∞, correctly predict that there is no spatial
correlation. The averaged rectilinear PCF, f̂R , also correctly
predicts no spatial correlation. However, the averaged annular
PCF, f̂A, has clear peaks, suggesting, incorrectly, the presence
of spatial correlation. Since the results are averaged over
multiple repeats, such a discrepancy can not be attributed to
stochasticity, but is due to incorrect normalization as explained
in Sec. II. Note that the annular PCF can still correctly identify
spatial correlation in many examples; however, the incorrect
normalization often makes the results hard to interpret. This
is because the annular PCF makes it difficult to distinguish
between genuine correlation and systematic error. For this
reason, for the rest of this section, we omit the results of the
annular PCF and continue to compare between our PCFs and
the rectilinear PCF using nonperiodic BC.

Next we consider examples of strong spatial correlation.
Figure 7(c) shows an example of aggregation driven by a
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proliferation mechanism. The occupancy matrix is obtained by
simulating an on-lattice agent-based model with periodic BC
as described in Binder and Simpson [12], which we summarize
as follows. The model is initialized with 16 agents, located at
coordinates given by {(x,y ) | x,y ∈ {20,40,60,80}} on a regu-
lar square lattice with Lx = 100, Ly = 100. Time is discretized
with a time step τ = 1 and the number of agents at time t is
denoted by n(t). At each time step the configuration at time
t + τ is obtained from the configuration at time t , by repeating
the following steps n(t) times. (1) An agent is chosen uniformly
at random from the n(t) agents present at the end of the
previous time-step; (2) one of its four von Neumann neighbors
is selected at random with equal probability; (3) if the selected
site is empty, then a new agent is placed in this site and n(t +
τ ) = n(t) + 1; otherwise, the configuration is left unchanged.

Figure 7(c) shows a single realisation after 10 time steps and
Fig. 7(d) shows the corresponding PCFs: fR , f1, and f∞. The
results indicate that all of the PCFs correctly identify aggre-
gation. However, the quantitative information about aggregate
sizes at different length scales provide by each PCF varies. For
example, we see that all PCFs in Fig. 7(d) exhibit three peaks; at
m = 1, m ≈ 20, and m ≈ 40. The different peaks and troughs
of the PCF profiles have different qualitative meanings related
to the correlation type. Due to the local approach of the square
taxicab PCF and square uniform PCF, the first peak at m = 1
is three times higher than the peaks at larger values of distance.
These differences in amplitude highlight the different peak
origins. Specifically, the first and highest peak distinguishes
the individual cluster aggregate and the later peaks indicate
correlation between different clusters. In contrast, all three
peaks in the rectilinear PCF are the same amplitude. Note that,
in the case of aggregation, the average diameter of the aggre-
gate corresponds to the first value of distance which achieves
the minimum of the PCF. The rectilinear, square uniform, and
square taxicab PCFs estimate the aggregate diameter to be 9,
9 and 11, respectively. Importantly, the PCFs capture the fact
that this diameter depends on the metric used. In particular
the distance between two sites measured using the uniform
metric is always less than or equal to the taxicab distance. This
phenomenon is seen more clearly in later examples.

We now consider a series of examples with spatial cor-
relation constructed artificially to compare and evaluate the
different PCFs. In Fig. 8 we compare our square uniform
and square taxicab PCF with the rectilinear PCF for three
different patterns with strong spatial correlation. All three
examples (Fig. 8(a), diagonal stripes; Fig. 8(c), chessboard
pattern; and Fig. 8(e), concentric circles) are chosen so that
the column- and row-averaged densities are constant and hence
the spatial structure is not recognised by the rectilinear PCF,
as shown in Figs. 8(b), 8(d), and 8(f). This is in contrast to
the approach of our PCFs (both square uniform and square
taxicab), which successfully recognize the spatial structure in
all three examples. In addition, these examples uncover other
interesting differences between the taxicab and the uniform
approaches. Consider the PCF for the case of diagonal stripes
and the chessboard pattern [Figs. 8(b) and 8(d)]. Here the
square uniform PCF quickly converges to unity (no spatial
correlation) for large distance m, while in both cases, the square
taxicab PCF still shows a strong oscillatory behavior for large
distance m, suggesting spatial correlation. To give an intuitive
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FIG. 8. Examples of pattern analysis. Panels (a), (c), and (e)
visualize three constructed spatial patterns. Panels (b), (d), and
(f) displays the corresponding square taxicab, square uniform and
rectilinear PCF using the occupancy matrices for (a), (c), and (e),
respectively.

explanation of this phenomenon, let us consider the shapes of
balls of size m centered at a given site a under the two metrics.
These balls are defined as Bm(a) = {b ∈ L | ∥a − b∥d 6 m}
with d = 1,∞, respectively (see Fig. 3). The ball correspond-
ing to the uniform metric [Fig. 3(b)] has a square shape with the
sides aligned with the directions of the axis. This implies that
when distance m becomes close to either Lx or Ly in size, the
ball corresponding to the uniform metric of distance m contains
most of the sites in the corresponding row or column at distance
m. For large m, therefore, the uniform metric begins to work in
a similar way to the Rectilinear PCF and thus fails to recognize
anisotropic patterns biased in the Cartesian directions. The ball
of the taxicab metric [see Fig. 3(a)], however, has a diamond
shape. Consequently, the long-distance correlations appear
clear even for patterns in which both the average column and
row densities are constant, as in Fig. 8.

The examples in Fig. 8 were constructed specifically to
underline the main differences between the three PCFs. Nev-
ertheless, similar patterns also arise in many biologically and
mathematically relevant applications [32–34]. We conclude
this section by comparing the three PCF approaches applied to
some real-world examples taken from the literature. In Fig. 9
we analyze three images representing examples of Turing
patterns. A corresponding occupancy matrix is obtained by
representing each pixel of the image as a value in a matrix
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FIG. 9. Spatial analysis of Turing patterns. Panels (a), (d), and (g) show original images representing the results of a reaction-diffusion
mechanism between two chemical substances, (a) is reprinted from Ref. [35], (d) from Ref. [32], and (g) from Ref. [36]. Panels (b), (e), and
(h) visualize the occupancy matrices corresponding to the original images (described in text). In panels (c), (f), and (i) we compare the square
taxicab, square uniform, and rectilinear PCFs for each of the examples.

which is 1 (i.e., occupied) if the three values of the RGB
colorization of the pixel are above a certain threshold (80) and 0
otherwise. In all cases the column and row densities are almost
constant, hence the spatial structure again remains largely un-
detected by the rectilinear PCF, while our square uniform and
square taxicab PCF correctly identify the patterns. As already
observed in the previous examples, we note that the estimated
diameter of the aggregate, wavelength, and amplitude of the
oscillations differ according to the metric used.

V. THE TRIANGLE, HEXAGON, AND CUBE PCFS

Despite the square lattice being the most popular set up for
spatially discrete models [13,37–40], in some situations other
types of tessellation, either regular or irregular, can be more
suitable [13,17,41].

In the following subsections we extend our definition of
the PCFs in Sec. III to more general types of tessellations.
We define the triangle, hexagon, cube uniform, and cube
taxicab PCFs under nonperiodic and periodic BC for tri-
angular, hexagonal, and cuboidal tessellations, respectively.
The following subsections represent qualitative discussions of
the different cases. We refer the reader to the Supplemental
Material Secs. S.2 and S.3 for the full details of the derivation
of the PCF formulas [31].

A. Triangle and hexagon PCF

First, we define triangularly and hexagonally tessellated
domains of size Lx × Ly . These comprise an array of Ly rows
of Lx regular triangles or hexagons, respectively. Examples
for which Lx = 6 and Ly = 3 for each of the two cases are
given in Figs. 10(a) and 10(b), respectively. Notice that, for a
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FIG. 10. Example domains for (a) triangular and (b) hexagonal
tessellations in which Lx = 6 and Ly = 3.

periodic BC to be meaningful in these domain definitions, Lx

must be even. Therefore, we enforce this as a condition in what
follows.

In the context of triangular and hexagonal tessellations we
focus our attention on the taxicab metric, both for simplicity
and as the most natural metric on this domain type. Using the
taxicab metric, the number of sites of distance m from any
given reference site is given by

ttri(m) = 3m, (34a)

thex(m) = 6m. (34b)

The proofs of Eqs. (34) are omitted, but they can be
obtained easily by induction on m. Examples for m = 1,2,3 are
visualized in Fig. 11. Using the same reasoning as in Sec. III
under periodic BC:

s
p
tri(m) = 3m

LxLy

2
, (35a)

s
p
hex(m) = 3mLxLy . (35b)

Substituting Eqs. (35) into Eq. (19) we obtain the normal-
izations for the triangle and hexagon PCF, respectively, under
periodic BCs, namely,

E
[
c̄
p
tri(m)

]
= 3mN (N − 1)

2(LxLy − 1)
, (36a)

E
[
c̄
p
hex(m)

]
= 3mN (N − 1)

LxLy − 1
. (36b)

FIG. 11. Schematic of agent pairs with the (a) triangular tes-
sellation and (b) hexagonal tessellation using the taxicab metric.
Sites in yellow, red, and green, labeled 1, 2, and 3, respectively, are
distance-one, -two, and -three neighbors from the blue site (labeled
with X), respectively.

FIG. 12. Schematic of agent pairs using (a) the taxicab metric and
(b) the uniform metric. Sites in yellow are defined to be distance-one
neighbors from the site marked in blue.

From these expressions one can obtain the formulas of ftri
and fhex under periodic BC by using the definition Eq. (9). The
normalizations in the case of nonperiodic BC are given in the
Supplemental Material Sec. S.2 [31].

B. Uniform cube and taxicab cube PCF

We define a three-dimensional Lx × Ly × Lz cuboidal
lattice with unit spacing. Using the taxicab and uniform metric,
respectively, the number of sites of distance m from any given
reference site is given by

tcube1 (m) = 2(2m2 + 1), (37a)

tcube∞ (m) = 2(12m2 + 1). (37b)

The proofs of Eqs. (37) are omitted, but they can be obtained
easily by induction on m. Examples of agent pairs for m = 1
are given in Figs. 12(a) and 12(b) for the taxicab and uniform
metrics, respectively. Using the same reasoning as in Sec. III,
under periodic BCs, the normalizations for taxicab and uniform
cube PCFs, respectively, are as follows:

s
p
cube1

(m) = (2m2 + 1)LxLy Lz, (38a)

s
p
cube∞

(m) = (12m2 + 1)LxLy Lz. (38b)

For simplicity we refer the reader to Sec. S.3 of the
Supplemental Material for the normalization factors for the
cases with nonperiodic BC [31].

VI. THE GENERAL PCF

In this section we provide a comprehensive method for
generating a PCF for any tessellation type, BC, and metric
but with the caveat of having a high computational cost.

This PCF is a valuable tool for irregular domain shapes and
partitions although it can be used for any tessellation of any
domain.

First, we consider a two-dimensional domain partitioned
into Z regions (or sites) with arbitrary shapes and sizes, each
labeled with a number from 1 to Z. Figure 13(a) shows an
example of an irregularly shaped domain partitioned in Z = 17
regions. Given the domain, we choose a suitable metric. For the
irregular lattice, which we consider in the following example,
we consider the taxicab metric. This means that we define the
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FIG. 13. An example of an irregular domain partition with its
corresponding connectivity graph under the taxicab metric. Panel
(a) shows A size 17 irregular lattice domain. Panel (b) shows
corresponding connectivity graph for the tessellation in (a) under
nonperiodic BC using the taxicab metric for distances.

distance, m, between two sites to be the minimum number of
sites visited when starting at one site and moving consecutively
through adjacent sites to the other. For example, in Fig. 13(a)
the sites 4 and 7 are at distance three. Similarly, adjacent sites
are defined to be at distance one.

Having chosen and defined a suitable metric, we may
now represent the connections between lattice sites as an
undirected connectivity graph G(V,E), where each vertex
represents a lattice site and each edge connects vertices whose
corresponding sites are distance-one neighbors. Using the
taxicab metric, edges connect vertices whose corresponding
sites are adjacent. Figure 13(b) shows an example of such an
association [applied to the irregular lattice in Fig. 13(a)] using
the taxicab metric.

The corresponding adjacency matrix of graph G is a Z × Z
matrix defined as follows:

AG
i,j =

{
1 for (i,j ) ∈ E,
0 for (i,j ) /∈ E.

(39)

We use properties of the adjacency matrix to determine the
number of sites at a given distance. In particular, we can
compute (AG)m whose entries (AG)mi,j are the number of walks
of length m from vertex i to vertex j . To compute the minimum
walk between two sites (and hence the distance between them)
we produce the distance matrix DG. This is a Z × Z matrix
defined as

DG
i,j =

{
min

{
m ∈ N+∣∣(AG)mi,j ̸= 0

}
for i ̸= j,

0 for i = j .
(40)

Notice that, each entry, DG
i,j , denotes the distance between the

vertices i and j on graph G and hence on the original lattice.
Given the distance matrix of the domain, DG, and the set

of the occupied sites M ⊆ V , the PCF of the system can be
computed as follow. The number of pairs of agents at distance
m for a general metric d is given by

cd (m) = 1
2

∣∣{(i,j ) ∈ M × M
∣∣DG

i,j = m
}∣∣. (41)

Similarly, we can express the number of pairs of sites at
distance m as

sd (m) = 1
2

∣∣{(i,j ) ∈ V × V
∣∣DG

i,j = m
}∣∣. (42)
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FIG. 14. Examples of spatial correlation analysis on an irregular
domain. Panels (a), (c), and (e) show three examples of irregular
lattices populated with density 0.4 with agents (gray sites). In panel
(a), agents are displaced uniformly at random (no spatial correlation).
In panel (c), agents are in a strong form of aggregation, while in panel
(e) agents are displaced in a segregate manner. Panels (b), (d), and (f)
are the corresponding general PCF evaluations for panels (a), (c), and
(e), respectively.

To compute the normalization factor, denote the total num-
ber of agents as N = |M|, and hence using the same argument
as in Sec. III we can write

E[c̄d (m)] =
(

N

Z

)(
N − 1
Z − 1

)
sd (m). (43)

The general PCF is then defined by combining Eqs. (42)
and (43) in Eq. (9). Notice that the computation of the
normalization for the general PCF can be computationally
expensive. This is because the computation of DG involves
calculating powers of matrices of size Z × Z, where Z is often
large. In particular, the cost of computing the normalization of
the general PCF is O(Z3mmax) in which mmax is the maximum
value m for which the PCF is computed. For this reason, the
general PCF is better reserved for cases in which the expression
for the normalization factor cannot be computed analytically,
unlike in Secs. III, V A, and V B, although it can, of course, be
used even if an analytical formula is available.

In Fig. 14 we apply the general PCF to three examples
of agent-based systems on an irregular lattice. In all three
examples, the irregular tessellation is the Voronoi partition
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based on a set of randomly distributed points. The randomized
points are obtained by starting with a square lattice, with lattice
size ", and perturbing the coordinates of each point (xi,y i) to
(xi + δx

i ,y + δ
y
i ) with each δx

i ,δ
y
i chosen uniformly at random

in the interval [−"
2 ,"

2 ].
In the first example, Fig. 14(a), N lattice sites selected

uniformly at random to be occupied (gray sites). By eye,
several larger clusters of occupied and unoccupied lattice sites
are evident, indicating that there may be spatial correlation.
Figure 14(b) shows the corresponding general PCF. The
values are close to unity, correctly identifying that there is,
indeed, no spatial correlation in the system. This highlights the
importance of accurate quantitative methods for determining
spatial correlation rather than a reliance on ad hoc judgements.

In the other two cases we test our PCF with examples of
strong spatial correlation. In Fig. 14(c) we consider a system in
an aggregated state. To generate such a configuration, we start
with an empty domain, and select an empty site uniformly
at random. We then place an agent in this site and all of
its neighboring sites (if they are not already occupied). We
repeat this process until we reach density 0.4. The process
leads to a strong form of aggregation which the general PCF,
in Fig. 14(d), correctly identifies. Finally, in Fig. 14(e) we
consider a system in a segregated state. To generate such a
configuration, we start with a fully populated domain, and
repeatedly select at random an occupied site. We remove all
agents occupying adjacent sites but leave the initially selected
site occupied. The process ends when density 0.4 is reached.
This mechanism generates a system which is unlikely to
have adjacent sites occupied and more likely to have agents
displaced at distance two. The corresponding PCF, shown in
Fig. 14(f), correctly captures both of these features: the PCF
has value 0.68 at pair distance one, which implies negative
correlation at the shortest distance, and value 1.1 at pair
distance two, highlighting the positive correlation at slightly
larger distances.

Note that, since the normalization in the general PCF can
give an exact value for the number of sites at certain pair dis-
tances, we used this method to check the normalization factors
for all of our previously proposed PCFs. In all cases the results
confirmed the analytical expressions given in Secs. III, V A,
and V B and in the Supplemental Material [31].

VII. CONCLUSIONS

In this paper we have developed a set of tools to study spatial
correlation on discrete domains. We derived two discrete

pair-correlation functions for an exclusion process on a square
lattice: the square uniform and square taxicab PCF. We applied
our PCFs to patterns observed in nature and to computational
simulations and showed that our PCF can not only distinguish
and quantify different types of correlation but also that it
improves upon previous on-lattice PCFs. For example, we
showed that our PCF was normalized correctly, unlike the
annular PCF, and was able to identify and quantify anisotropic
patterns such as the chessboard or the diagonal stripes that the
rectilinear PCF [12] missed. Furthermore, we highlighted how
different measures of distance, taxicab and uniform, can lead
to different quantifications of spatial correlation.

We extended the calculation of appropriate PCFs to deal
with exclusion processes on the other regular spatial tessella-
tions in two dimensions as well as the cubic lattice in three
dimensions. We derived the triangle PCF, hexagon PCF, cube
taxicab PCF, and cube uniform PCF. These are the first PCFs
defined specifically for these discrete lattice types. Finally, we
derived a comprehensive PCF for any kind of discrete domain,
BC, and metric, which we referred to as the general PCF. The
method can be computationally expensive, however, it allows
complete freedom in defining a suitable PCF for more complex
cases, including those for which recognizing spatial correlation
by eye becomes less intuitive.

All of our PCFs are designed for a single species of agents.
However, in many applications the agents are divided into
multiple species and it can be important to distinguish between
different types of spatial correlations: either within agents of
the same species (autocorrelation) or comparing the position
of agents of different species (cross-correlation). Dini et al.
[42] have recently investigated correlation in multiple species
by using the Rectilinear PCF. We believe a similar approach
to that of Dini et al. [42] can be applied to our isotropic
PCFs to quantify heterogenous correlations, yet it lies beyond
the scope of this paper and, as such, we will tackle it in a
future publication. The isotropic PCFs that we defined in this
paper will be important in further studies and applications.
In particular, our functions can improve previous studies (see
Ref. [43], for example) which have used PCF as an efficient
summary statistics to infer model parameters.
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4.2. Conclusions

In this chapter, I presented my work on measuring spatial correlation in discrete do-

mains. The aim of this paper is to improve the analysis of patterns in spatially discrete

contexts and allow the study of spatial phenomena for on-lattice models.

In the context of this thesis, the results of this paper are inspired by and applicable

to the investigation of the spontaneous aggregation phenomenon described in Section

IV-C of Chapter 3. A first step in this direction has been taken recently by Zhang et al.

[2019]. The authors adopted the Taxicab PCF, defined in this chapter to quantify the

spatial correlation for an excluding, persistent ABM similar to the one introduced in

Chapter 3 (see Figure 4-1). As the level of persistence increases, their findings confirm

the emergence of positive correlation at short pair distance, which corresponds to cells

aggregating. In their paper, Zhang et al. [2019] show that the Taxicab PCF can be used

to distinguish persistent agent behaviours and they suggest it could also be applied to

infer the level of persistence from experimentally derived data.

Figure 4-1: Comparison of the Taxicab PCF, f , of an excluding persistent ABM for increasing
level of persistence ' = 0.2, 0.4, 0.6, 0.8, 1. The ABM is initialised uniformly on a 100 ⇥ 100
square lattice with density 0.5. The plots refer the PCF at time t = 50 averaged over 1000
independent simulations of the ABM. Reproduced with permission from Zhang et al. [2019].

In another study by Johnston and Crampin [2019] the Taxicab PCF has been

adapted to discrete domains containing obstacles. This represents a natural, yet im-

portant, extension of our work, as it widens the applications of our discrete PCFs.

For example, the formation of ganglia (clusters of glial cells) between nerve strands is

highly constrained by the mesh-like structure of the nervous system. A spatial cor-

relation analysis of glial cells, therefore, should take into account the influence of the

underlying structured environment [Gabella, 1990, Rühl, 2005]. Johnston and Crampin

[2019] use a similar counting argument to those presented in this paper and modify the

normalisation factor of Eq. (32) to account for pairs of agents a↵ected by the presence

of the obstacles. The authors test their modified PCF with three obstacle patterns of

di↵erent sizes, both in absence of spatial correlation and in clustering scenarios.
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From a more general prospective, the PCFs designed in this chapter should be

considered a set of promising tools for all those scenarios in which the level of spatial

correlation has to be assessed. For instance, Cutright et al. [2020] have recently cited

our paper in the context of microgel packing arrangement. When studying collective cell

behaviour there are many situations in which spatial correlations naturally build-up.

Among all forms of cell behaviour driving spatial correlation, cell division represents a

central example and it will be the main object of study for the remaining part of this

thesis.

Although we do not make direct use of PCFs in the remainder of the thesis, the

applicability of the tools described in this chapter might lead to new avenues of research

which we will discuss in Section 7.1, as part of future work.
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Supplementary materials to accompany: “Pair correlation

functions for identifying spatial correlation in discrete domains”

Enrico Gavagnin, Jennifer P. Owen and Christian A. Yates

Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath, BA2 7AY, UK

This document contains the supplementary materials which accompany the paper of

Gavagnin et al. 2018. In Section S.1 a full derivation of the normalisation factor for the

Square Uniform PCF using non-periodic boundary conditions (BC) is provided. In Section

S.2 we report the expressions of the normalisations for the Triangle PCF and Hexagon PCF,

using non-periodic BC. Section S.3 contains the derivations of the normalisations for the

Cube Taxicab PCF and the Cube Uniform PCF under non-periodic BC. This supplementary

document concludes with a summary of the normalisation factors for all of our PCFs in

Section S.4. We refer the reader to the main text for the definitions of all of our PCFs.

S.1. DERIVATION OF THE NORMALISATION FACTOR OF THE SQUARE

UNIFORM PCF UNDER NON-PERIODIC BC

In this section we derive the normalisation factor for the Square Uniform PCF, defined

in Section III in the main text, under non-periodic BC. This corresponds to computing

E[c̄n
Œ(m)] of equation (9) of the main text. The approach that we use is similar to the one in

Section III B. In particular, by using the equation (19) of the main text and the expression

of sp
Œ(m) given by equation (22b) we only need to determine the expression of the reminder

defined as

rŒ(m) = sp
Œ(m) ≠ sn

Œ(m). (S.1)

We define the set of pairs of sites separated by distance m œ Dn
Œ that cross the x boundary

(horizontal axis) or y boundary (vertical axis), respectively, as

P x
Œ(m) =

Ó
(a, b) œ Sp

Œ(m)
--- |ya ≠ yb| > Ly ≠ |ya ≠ yb|

Ô
, (S.2a)

P y
Œ(m) =

Ó
(a, b) œ Sp

Œ(m)
--- |xa ≠ xb| > Lx ≠ |xa ≠ xb|

Ô
, (S.2b)
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where Sp
Œ(m) is defined as in equation (6) of the main text. Within these sets, P x

Œ and P y
Œ,

we select those separated by k œ {1, ...m} rows or columns, respectively. We define these

subsets as:

P x
Œ(m, k) =

Ó
(a, b) œ P x

Œ(m)
--- Ly ≠ |ya ≠ yb| = k

Ô
, (S.3a)

P y
Œ(m, k) =

Ó
(a, b) œ P y

Œ(m)
--- Lx ≠ |xa ≠ xb| = k

Ô
. (S.3b)

Fig. S 1 (a) and (b) show an example of pairs of sites within P x
Œ(m, m).

By following the same steps as in Section III B, we reduce to the expression for the

remainder given by

rŒ(m) = |P x
Œ(m) fi P y

Œ(m)|

=
mÿ

k=1
|P x

Œ(m, k)| +
mÿ

k=1
|P y

Œ(m, k)| ≠ |P x
Œ(m) fl P y

Œ(m)| . (S.4)

To conclude the computation we derive an expression for the two sums in equation (S.4) and

the corresponding equation for the size of the intersection. By counting the contribution

of each type of pair (see Fig. S 1 (c) for a visualisation), one can write down the following

expressions for the two sums in equation (S.21):

mÿ

k=1
|P x

Œ(m, k)| = 2(Lx + 2Lx + . . . Lx(m ≠ 1)) + m(2m + 1)Lx, (S.5a)

mÿ

k=1
|P y

Œ(m, k)| = 2(Ly + 2Ly + . . . Ly(m ≠ 1)) + m(2m + 1)Ly. (S.5b)

Hence

mÿ

k=1
|P x

Œ(m, k)| +
mÿ

k=1
|P y

Œ(m, k)| = 2(Lx + 2Lx+, . . . , Lx(m ≠ 1)) + m(2m + 1)Lx

+ 2(Ly + 2Ly+, . . . , Ly(m ≠ 1)) + m(2m + 1)Ly

= (Lx + Ly)
A

m(2m + 1) + 2
m≠1ÿ

i=1
i

B

= (Lx + Ly)
A

m(2m + 1) + 2(m ≠ 1)m
2

B

= 3(Lx + Ly)m2 . (S.6)
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(a) (b)

(c)

Fig. S 1. A visualisation of examples of the pairs of sites in P x
Œ(m). Panels (a) and (b) show di�erent

site pairs in P x
Œ(m, m). Panel (c) shows all the di�erent types of pairs in P x

Œ(m, k) for k = 1, . . . , m
with the corresponding value of |P x

Œ(m, k)|.For example, for each of the Lx columns, each site in
the rows {Ly ≠m+1, Ly ≠m+2, . . . , Ly} has 2m+1 corresponding sites at distance m separated by
m rows and reached by crossing the horizontal boundary. Therefore |P x

Œ(m, m)| = (2m + 1)mLx.

In order to calculate of the residue, rŒ(m), we need to compute the expression for the size

of intersection, |P x
Œ(m) fl P y

Œ(m)|, in equation (S.4). This counts the pairs of sites separated

by distance m by crossing both the x and y boundaries. Fig. S 2 shows an example of pairs

of sites within P x
Œ(4) fl P y

Œ(4). The number in each site corresponds to the number of sites

at distance m = 4, reached by crossing both the x and y boundaries. So |P x
Œ(4) fl P y

Œ(4)| is

the sum of all the numbers in the coloured sites multiplied by two to account for the second

corner region.

Extrapolating, for any value of m, the number of pairs of sites that cross the two bound-
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Fig. S 2. Examples of pairs in P x
Œ(4) fl P y

Œ(4) on a zoomed-in corner of a larger domain. Sites in
pink and yellow are distance m = 4 away from other sites in pink and yellow respectively. The
number in each site correspond to the number of sites at distance m = 4, reached by crossing the
x and y boundaries.

aries is exactly

|P x
Œ(m) fl P y

Œ(m)| = 2
mÿ

i=1

m+i≠1ÿ

j=i

j

=
mÿ

i=1
[(m + i)(m + i ≠ 1) ≠ i(i ≠ 1)]

=
mÿ

i=1
[m2 + 2mi ≠ m]

= m3 ≠ m2 + m2(m + 1)

= 2m3. (S.7)

By substituting equations (S.7) and (S.6) into equation (S.4) we obtain the expression for the

remainder rŒ(m). By rearranging equation (S.1) we determine sn
1 (m), which we then substi-

tute into equation (19) of the main text to obtain the exact expression for the normalisation

in the non-periodic case. This is given by

E
Ë
cU,n

Œ (m)
È

=
A

N

LxLy

BA
N ≠ 1

LxLy ≠ 1

BA

4mLxLy ≠ 3(Lx + Ly)m2 + 2m3
B

. (S.8)
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S.2. NORMALISATION FACTOR FOR THE NON-PERIODIC TRIANGLE PCF

AND HEXAGON PCF

Here we provide the expressions of the normalisation factors for the Triangle PCF and

the Hexagon PCF defined in Section V, under non-periodic BC.

In both cases, the normalisation can be computed by using equation (19) of the main

text. Hence, we only need to provide the expression of the terms sn
tri(m), for the Triangle

PCF, and sn
hex(m), for the Hexagon PCF. These correspond to the exact numbers of site

pairs at distance m, assuming non-periodic BC, in the two types of tessellations (see Section

V of the main text for more details on the definition of the tessellated domain). We omit

the derivations of the following expressions which can be obtained with similar steps to the

square lattice cases. All the following expressions have been confirmed for a wide range of

values of Lx, Ly and m by applying the General PCF (see Section VI of the main text).

Number of site pairs on a triangular tessellation with non-periodic BC

sn
tri(1) =3LxLy

2 ≠ Lx

2 ≠ Ly , (S.9a)

sn
tri(2) =3LxLy ≠ 2Lx ≠ 4Ly + 2 , (S.9b)

sn
tri(m) =3m

LxLy

2 ≠ Lxm2

2 (for m Ø 3)

+ Ly
Ë
2k6(k6 ≠ 2k3 + 1) + k3(m ≠ 6) ≠ m2 + m ≠ 2

È

+ 1
3(m ≠ 1)(m2 ≠ 2m + 6)

≠ 1
3(k7 + 1)(20k2

7 + 37k7 + 12)

≠ (m ≠ 7 ≠ 4k7)(k7 + 1)(m + k7 ≠ 2) ,

(S.9c)

where kj =
Í

m≠j
4

Î
.
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Number of site pairs on a hexagonal tessellation with non-periodic BC

sn
hex(m) = 3LxLy ≠ 1

4
1
7m2 + k

2
Lx ≠ 2m2Ly + 11m3

12 ≠ (2 ≠ 3k)m
12 , (S.10)

where k = m (mod 2).

S.3. DERIVATION OF THE NORMALISATION FACTOR OF THE CUBE TAXI-

CAB PCF AND CUBE UNIFORM PCF UNDER NON-PERIODIC BC

Consider a system of agents on a three-dimensional square lattice of size Lx ◊ Ly ◊ Lz,

with lattice step � and with the exclusion property that, at any given time, each lattice site

can be occupied by at most one agent. If N agents occupy the domain, then the occupancy

of the lattice can be represented by a matrix M :

Mxyz =

Y
__]

__[

0 if (x, y, z) is vacant,

1 if (x, y, z) is occupied.
(S.11)

where

N =
Lxÿ

x=1

Lyÿ

y=1

Lzÿ

z=1
Mxyz Æ LxLyLz. (S.12)

Let Â be the set of all agent pairs in the lattice i.e.

Â ={(a, b) œ L ◊ L | a = (xa, ya, za), b = (xb, yb, zb), a ”= b, Mxa,ya,za = Mxb,yb,zb
= 1},

(S.13)

where L = {1, . . . , Lx} ◊ {1, . . . , Ly} ◊ {1, . . . , Lz} is the set of all sites in the lattice.

In this Section we derive the normalisations for the Cube Taxicab PCF and the Cube

Uniform PCF under non-periodic BC. Using the same notation as in Section II of the main

text, we define the subsets of agent pairs separated by distance m under non-periodic BC
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as

Cn
1 (m) ={(a, b) œ Â

--- Îa ≠ bÎ1 = m}, m œ Dn
1 , (S.14a)

Cn
Œ(m) ={(a, b) œ Â

--- Îa ≠ bÎŒ = m}, m œ Dn
Œ, (S.14b)

for the taxicab and uniform metric respectively, where Dn
1 = Dn

Œ =
Ó
1, 2, ... max{Lx, Ly, Lz}≠

1
Ô
. Using the definitions of the uniform and taxicab metrics, we can express these sets as:

Cn
1 (m) ={(a, b) œ Â

--- |xa ≠ xb| + |ya ≠ yb| + |za ≠ zb| = m}, (S.15a)

Cn
Œ(m) ={(a, b) œ Â

--- max{|xa ≠ xb|, |ya ≠ yb|, |za ≠ zb|} = m}. (S.15b)

Similarly we define the subsets of agent pairs separated by distance m under periodic BC as

Cp
1 (m) =

;
(a, b) œ Â | min{|xa ≠ xb|, Lx ≠ |xa ≠ xb|}

+ min{|ya ≠ yb|, Ly ≠ |ya ≠ yb|}

+ min{|za ≠ zb|, Ly ≠ |ya ≠ yb|} = m
<

, m œ Dp
1,

(S.16a)

Cp
Œ(m) =

;
(a, b) œ Â | max

Ó
min{|xa ≠ xb|, Lx ≠ |xa ≠ xb|},

min{|ya ≠ yb|, Ly ≠ |ya ≠ yb|},

min{|za ≠ zb|, Lz ≠ |za ≠ zb|}
Ô

= m
<

, m œ Dp
Œ,

(S.16b)

where Dp
1 = Dp

Œ =
Ó
1, 2, ... min

ÓÍ
Lx
2

Î
,
Í

Ly

2

Î
,
Í

Lz
2

ÎÔÔ
. The schematics in Fig. 12 of the main

text represent examples of sites separated by distance m = 1 using the taxicab (a) and

uniform (b) metrics in three dimensions. The formulae for the number of pairs of sites

separated by distance m under periodic BC are given in Section V B of the main text. Here

we compute the numbers of pairs of sites separated by distance m under non-periodic BC,

i.e sn
1 (m) and sn

Œ(m), which we can then substitute into the equation (19) in the main text

to obtain the normalisation factors of the corresponding PCFs.

Similarly to the two-dimensional cases, we focus on computing an expression the remain-

der given by

rd(m) = sp
d(m) ≠ sn

d(m), (S.17)
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where d = 1, Œ. The expression of sn
d(m) will then follow by rearrangement.

Let us define the set of pairs of sites separated by distance m œ Dn
1 that cross the y-z

plane boundary (i.e. x = 0), x-z plane boundary (i.e. y = 0) and x-y plane boundary (i.e.
z = 0), respectively as

P yz
1 (m) =

Ó
(a, b) œ Sp

1(m)
--- |xa ≠ xb| > Lx ≠ |xa ≠ xb|

Ô
, (S.18a)

P xz
1 (m) =

Ó
(a, b) œ Sp

1(m)
--- |ya ≠ yb| > Ly ≠ |ya ≠ yb|

Ô
, (S.18b)

P xy
1 (m) =

Ó
(a, b) œ Sp

1(m)
--- |za ≠ zb| > Lz ≠ |za ≠ zb|

Ô
. (S.18c)

For P yz
1 (m), P xz

1 (m) and P xy
1 (m) let us consider those pairs of sites separated by k œ {1, ...m}

sites in the corresponding orthogonal direction, i.e. x≠, y≠ and z≠direction, respectively.

We define these subsets as:

P yz
1 (m, k) =

Ó
(a, b) œ P yz

1 (m)
--- Lx ≠ |xa ≠ xb| = k

Ô
, (S.19a)

P xz
1 (m, k) =

Ó
(a, b) œ P xz

1 (m)
--- Ly ≠ |ya ≠ yb| = k

Ô
(S.19b)

P xy
1 (m, k) =

Ó
(a, b) œ P xy

1 (m)
--- Lz ≠ |za ≠ zb| = k

Ô
. (S.19c)

Notice that we have P yz
d (m) = tm

k=1 P yz
d (m, k), P xz

d (m) = tm
k=1 P xz

d (m, k) and P xy
d (m) =

tm
k=1 P xy

d (m, k). Figs. S.3 (a)-(b) provide a visualisation of pairs of sites within P xy
1 (m, m).

In Fig. S.3 (c) we show the possible types of pairs of sites in P x
1 (m, k), for k = 1, . . . , m. By

definitions (S.14) and (S.16) we have that

Sp
d(m) \ Sn

d (m) = P yz
d (m) fi P xz

d (m) fi P xy
d (m) , (S.20)

where d = 1, Œ. Hence, we obtain

rd(m) =|P yz
d (m) fi P xz

d (m) fi P xy
d (m)|

=
mÿ

k=1
|P yz

d (m, k)| +
mÿ

k=1
|P xz

d (m, k)| +
mÿ

k=1
|P xy

d (m, k)|

≠ |P yz
d (m) fl P xy

d (m)| ≠ |P xz
d (m) fl P yz

d (m)| ≠ |P xz
d (m) fl P xy

d (m)|

+ |P yz
d (m) fl P xz

d (m) fl P xy
d (m)| ,

(S.21)
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for d = 1, Œ.

(a) (b)

(c)

Fig. S 3. A visualisation of the pairs of sites in P xz
1 (m). Panels (a) and (b) show two di�erent site

pairs in P xz
1 (m, m). Panel (c) shows all the di�erent types of pairs in P xz

1 (m, k) for k = 1, . . . , m
with the corresponding value of |P xz

1 (m, k)|. For example, each site in the top m horizontal planes,
i.e. {y = Ly ≠ m + 1, y = Ly ≠ m + 2, . . . , y = Ly}, has a single corresponding site at distance
m separated by m horizontal planes and 0 vertical planes, which is reached by crossing the x-z
boundary. Therefore |P xz

1 (m, m)| = mLxLy. The axis orientation is chosen to be consistent with
the two-dimensional case.

By counting the contribution of each type of pair (see Fig. S.3 (c) for a visualisation), one

can write down the following expressions for the first three sums in equation (S.21):

mÿ

k=1
|P ij

1 (m, k)| = LiLj

A

4 (m ≠ 1 + 2(m ≠ 2) + 3(m ≠ 3) + ... + m ≠ 1) + m

B

, (S.22a)

mÿ

k=1
|P ij

Œ(m, k)| = LiLj

A

8m (m ≠ 1 + (m ≠ 2) + (m ≠ 3) + ... + 1) + (2m + 1)2
B

, (S.22b)
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(a) (b)

(c)

Fig. S 4. A visualisation of the pairs of sites in P xz
Œ (m). Panels (a) and (b) show two di�erent site

pairs in P xz
Œ (m, m). Panel (c) shows all the di�erent types of pairs in P xz

Œ (m, k) for k = 1, . . . , m
with the corresponding value of |P xz

Œ (m, k)|. For example, each site in the top m horizontal
planes, i.e. {y = Ly ≠ m + 1, y = Ly ≠ m + 2, . . . , y = Ly}, has (2m + 1)2 sites at distance
m separated by m horizontal planes which are reached by crossing the x-z boundary. Therefore
|P xz

Œ (m, m)| = (2m + 1)2LxLz.

where ij = yz, xz, xy. Hence for the case of taxicab metric we have

mÿ

k=1
|P yz

1 (m, k)| +
mÿ

k=1
|P xz

1 (m, k)|+
mÿ

k=1
|P xy

1 (m, k)|

=
A

4
m≠1ÿ

i=1
i(m ≠ i)

B

(LxLy + LyLz + LzLx)

=2
3m(m ≠ 1)(m + 1)(LxLy + LyLz + LzLx)

=1
3(2m3 + m)(LxLy + LyLz + LzLx) ; (S.23)
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and similarly for the uniform metric:

mÿ

k=1
|P yz

Œ (m, k)| +
mÿ

k=1
|P xz

Œ (m, k)| +
mÿ

k=1
|P xy

Œ (m, k)|

=
A

(2m + 1)2 + 8m
m≠1ÿ

i=1
i

B

(LxLy + LyLz + LzLx)

=m(8m2 + 1)(LxLy + LyLz + LzLx) . (S.24)

We now focus on deriving an expression for the unknown expressions in (S.21), that is the

size of intersections, P xy
d (m) fl P yz

d (m), P xy
d fl P xz

d (m) and P xy
d fl P xz

d (m). These sets consist

of pairs of sites separated by distance m that cross at least two of the three y-z, x-z, x-y

boundaries. Examples of pairs of sites in P xz
1 (m) fl P yz

1 (m) are illustrated in Fig. S 5 (a) and

Fig. S 5 (b). We show that P xz
1 (m)fl P yz

1 (m) consists of all of the pairs of sites located in the

top left and right edges (right demonstrated only) which cross the x-z and y-z boundaries of

each of the Lz vertical planes making up the cube (see Fig. S 5 (b)). The sites that comprise

pairs in P xz
1 (m) fl P yz

1 (m) can both be in the same x-y plane or they can be in neighbouring

(up to m ≠ 2) planes away. The number of pairs in these sets can then be calculated by

addition, enumerating possible pairs as in Fig. 6 in the main text for taxicab case and Fig. S 2

for the uniform case respectively to give the following. For any s, t, u œ {x, y, z}, such that

(s, t) ”= (t, u)

|P st
1 (m) fl P tu

1 (m)| =2Lt

mÿ

i=1
i2(m ≠ i)

=1
6(m ≠ 1)m2(m + 1)Lt, (S.25)

|P st
Œ(m) fl P tu

Œ (m)| =2Lt

A

(2m + 1)m3 + 2
m≠1ÿ

i=1

m≠1ÿ

j=1
ij

B

=m2(5m2 + 1)Lt. (S.26)

Finally, we compute |P yz
d (m)flP xz

d (m)flP xy
d (m)|, the number of pairs of sites of distance

m that cross the y-z, x-z and x-y plane boundaries. Notice that if m < 3 no pairs can be

connected by crossing all three boundaries, which means that P yz
1 (m) fl P xz

1 (m) fl P xy
1 (m) is

the empty set. Fig. S 6 is an illustration of pairs of sites in P yz
1 (4) fl P xz

1 (4) fl P xy
1 (4). These

consist of the pairs of sites in four of the eight corners of the cube. In the case of the taxicab
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(a) (b)

Fig. S 5. Examples of pairs of sites separated by distance m = 3 that cross both the x-z and y-z
plane boundaries, i.e. pairs of sites in P xz

1 (3) fl P yz
1 (3). Green and yellow sites inside of the cube

domain are distance m = 3 from green and yellow sites outside of the domain respectively. Panel
(a) illustrates an example three-dimensional cube that can be split into Lz vertical planes, panel
(b) illustrates how the x-y plane z = 2 contributes sites that are distance m from other sites by
crossing both the x-z and y-z boundaries.

metric, the number of pairs of sites in P yz
1 (m) fl P xz

1 (m) fl P xy
1 (m) can be calculated by first

considering the site at the very corner of the cube (marked in green in Fig. S 6). There is

exactly Tr(1) = 1 site at the very corner of the cube where Tr(x) refers to the xth triangular

number. This site is distance m from Tr(m≠2) sites (yellow sites outside of the domain) by

crossing the y-z, x-z and x-y plane boundaries. Next we consider the nearest neighbouring

sites to the very corner of the cube. There are Tr(2) = 3 of these sites (marked in yellow).

Each of the these sites are distance m from Tr(m ≠ 3) sites by crossing the y-z, x-z and

x-y plane boundaries (marked in yellow outside of the domain). We continue this method

to count site pairs until we consider sites that separated by m ≠ 3 sites from the corner site

(green site in Fig. S 6). Hence we deduce that:

|P yz
1 (m) fl P xz

1 (m) fl P xy
1 (m)| =4

m≠2ÿ

i=1
Tr(i)Tr(m ≠ i ≠ 1)

=4
m≠2ÿ

i=1

i(i + 1)
2 · (m ≠ i ≠ 1)(m ≠ i)

2 ,

=m5

30 ≠ m3

6 + 2m

15 . (S.27)
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Fig. S 6. Examples of pairs of sites separated by distance m = 4 that cross the x-y, y-z and x-z
boundaries, i.e. pairs of sites in P xz

1 (4) fl P yz
1 (4) fl P xy

1 (4). Green and yellows sites inside of the
cube domain are distance m = 3 from green and yellow sites outside of the domain. The numbers
correspond to the number of distance m = 4 neighbours each site has which lie in P xz

1 (4)flP yz
1 (4)fl

P xy
1 (4).

With a similar argument, one can obtain the corresponding expression by using the

uniform metric which reads

|P yz
Œ (m) fl P xz

Œ (m) fl P xy
Œ (m)| =m3(3m2 + 1) . (S.28)

The formulae (S.27) and (S.28) complete the formulae needed for the computation of

the remainder of equation (S.21). This can be used together with Eqs. (38) in the main

text to rearrange equation (S.17). The resulting expressions for the numbers of pairs at

distance m under non-periodic BC in three dimensions, for the taxicab and uniform metrics,

respectively, read

sn
cube1(m) =(2m2 + 1)LxLyLz ≠ 1

3(2m3 + m)(LxLy + LyLz + LzLx)

+ m2(m2 ≠ 1)
6 (Lx + Ly + Lz) ≠ m5

30 + m3

6 ≠ 2m

15 ,
(S.29a)
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and

sn
cubeŒ(m) =(12m2 + 1)LxLyLz ≠ m(8m2 + 1)(LxLy + LyLz + LzLx)

+ m2(5m2 + 1)(Lx + Ly + Lz) ≠ m3(3m2 + 1) .
(S.29b)

The normalisations for the Cube Taxicab PCF and Cube Uniform PCF under non-periodic

BC are obtained by substituting expressions (S.29) into equation (19) in the main text.

S.4. SUMMARY OF NORMALISATION FACTORS

In this section we summarise all of the normalisation factors which have been computed in

the paper. For all cases considered, the normalisation, E[c̄d(m)], is obtained by equation (19)

in the main text. In Table I we report only the counts of pairs of sites separated by distance

m, sd(m), depending on the metric and the BC used.
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TABLE I. Summary of the number of sites pairs, sd(m), according to the metric and BC used.
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Chapter 5

The invasion speed of cell migration models with

realistic cell cycle time distributions

Within this chapter, we investigate the importance of incorporating realistic repre-

sentations of cell proliferation in models of cellular invasion. The chapter contains a

paper published in Journal of Theoretical Biology [Gavagnin et al., 2019] which con-

cerns the impact of realistic cell-cycle time distributions on the speed of an invading

cell population.

The majority of the literature connecting microscopic properties of cells with global

invasion speeds is based on the assumption that cells divide after an exponentially

distributed time. In this study, we analyse experimentally characterised behaviour of

mouse fibroblasts in order to show that this assumption does not capture real cell

division time distributions correctly. Using both stochastic and deterministic models

based on a multi-stage representation of the cell cycle, we derive a series of analytical

results which allow us to compute the invasion speed of a cell population with a general

cell-cycle time distribution. Our results show that for a general distribution, the average

cell-cycle time determines a lower bound for the speed; whereas there is not an upper

bound and the invasion can be arbitrary fast, depending on the higher moments of

the distribution. However, if we restrict the analysis to a class of biologically realistic

distributions, known as hypo-exponential, we find a substantially di↵erent scenario:

the average cell-cycle determines a bounded interval for the range of invasion speed

while the contribution of the higher moments is limited.

5.1. Outline of the article

In Section 1, we introduce our work and we place the paper in the context of the existing

literature. In Section 2, we follow a macroscopic approach based on an age-structured

model to connect general distributions of the cell-cycle time with the corresponding in-

vasion speeds. Section 3 is dedicated to the multi-stage modelling approach. We define

an agent-based model using this modelling technique and, by deriving a set of reaction-

di↵usion partial di↵erential equations for the average cell densities, we investigate the

speed of the invading wavefront. In Section 4 we briefly discuss our findings.
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a b s t r a c t 
Cell proliferation is typically incorporated into stochastic mathematical models of cell migration by as- 
suming that cell divisions occur after an exponentially distributed waiting time. Experimental observa- 
tions, however, show that this assumption is often far from the real cell cycle time distribution (CCTD). 
Recent studies have suggested an alternative approach to modelling cell proliferation based on a multi- 
stage representation of the CCTD. 
In this paper we investigate the connection between the CCTD and the speed of the collective invasion. 
We first state a result for a general CCTD, which allows the computation of the invasion speed using the 
Laplace transform of the CCTD. We use this to deduce the range of speeds for the general case. We then 
focus on the more realistic case of multi-stage models, using both a stochastic agent-based model and a 
set of reaction-diffusion equations for the cells’ average density. By studying the corresponding travelling 
wave solutions, we obtain an analytical expression for the speed of invasion for a general N -stage model 
with identical transition rates, in which case the resulting cell cycle times are Erlang distributed. We 
show that, for a general N -stage model, the Erlang distribution and the exponential distribution lead to 
the minimum and maximum invasion speed, respectively. This result allows us to determine the range of 
possible invasion speeds in terms of the average proliferation time for any multi-stage model. 

© 2018 Elsevier Ltd. All rights reserved. 
1. Introduction 

Cellular invasion is a process of fundamental importance in nu- 
merous morphogenetic and pathological mechanisms. Important 
examples of processes in which cell migration plays a crucial 
role include embryonic development ( Gilbert, 20 03; Keller, 20 05 ), 
wound healing ( Deng et al., 2006; Maini et al., 2004 ) and tumour 
invasion ( Hanahan and Weinberg, 20 0 0 ). 

Understanding how the properties of the individual cells con- 
tribute to the formation and the propagation of the invasion wave 
is of fundamental importance. In fact, this can reveal the micro- 
scale mechanisms that are responsible for a given phenomeno- 
logical aspect, and hence suggest effective therapeutic approaches 
to inhibit, or enhance, cell migration by interrupting the cell cy- 
cle ( Gray-Schopfer et al., 2007; Haass and Gabrielli, 2017; Sadeghi 
et al., 1998 ). 

Despite the large variety of actions and interactions which cells 
can undergo, there are at least two aspects of cells’ behaviour 

∗ Corresponding author. 
E-mail address: e.gavagnin@bath.ac.uk (E. Gavagnin). 

which are essential in order for the invasion to take place. These 
are cell motility and cell proliferation ( Mort et al., 2016; Simp- 
son et al., 2007 ). If one of these two aspects does not occur 
properly, the impact on the collective invasion is typically evi- 
dent and it can affect the success of the colonisation. For example, 
Mort et al. (2016) show, using a joint experimental and a modelling 
approach, that the failure of colonisation of the mouse embryo by 
melanoblasts in Kit mutants is probably driven by reduced prolif- 
eration. 

Extensive research has focused on the effect that cell motil- 
ity and proliferation behaviours have on the speed of the inva- 
sion, c . The common approach makes use of simple mathematical 
models which typically take the form of a stochastic agent-based 
model (ABM) ( Anderson and Chaplain, 1998; Deutsch and Dor- 
mann, 2007 ) or a deterministic partial differential equation (PDE) 
( Murray, 2007; Wise et al., 2008 ). By computing the invasion speed 
of the model, either analytically or numerically, it is possible to 
link the parameters which modulate the movement and prolifera- 
tion with the speed of invasion. 

Many studies have investigated this link in more general con- 
texts, beginning with the seminal work of Fisher (1937) and 

https://doi.org/10.1016/j.jtbi.2018.09.010 
0022-5193/© 2018 Elsevier Ltd. All rights reserved. 
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Fig. 1. Panels (a-c): Mouse NIH-3T3 fibroblasts with Fucci2a status migrating into open space ( Mort et al., 2014 ). The Fucci2a system incorporates genetically encoded probes 
that highlight in red the nuclei of cells in the G1 phase and in green those of cells in one of the other phases (S/G2/M). Panels (d-f): experimental distributions of the time 
length of the G1 phase (panel (d)), S/G2/M phases (panel (e)) and total CCTD (panel (f)). Both the G1 and S/G2/M distributions show a clear non-monotonicity, which 
indicates that are not exponentially distributed. To capture both these non-monotonicities using a MSM for the CCTD, a minimum of four stages is required, two for each of 
the two phases. 
Piscounov Kolmogorov and Petrovskii (1991) , and more recently 
more complex models of populations with multiple types or stages 
( Elliott and Cornell, 2012; Neubert and Caswell, 20 0 0 ). From these 
studies, it is well known that, when agents’ motility is modelled 
as diffusion with diffusion coefficient D and proliferation occurs at 
rates λ, the invasion speed is proportional to the square root of the 
product of the rates, i.e. c ∝ √ 

Dλ ( Fisher, 1937 ). 
It is important to notice the that majority of the literature on 

the speed of invasion of travelling waves is based on the assump- 
tion that proliferation events occur as independent Poisson pro- 
cesses ( Mort et al., 2016; Simpson et al., 2007 ). In the context of 
cell migration, this is equivalent to assuming that cells prolifer- 
ate after an exponentially distributed random time. However, ex- 
perimental observations show that the cell cycle time distribution 
(CCTD) is typically non-monotonic and differs substantially from an 
exponential distribution (see Fig. 1 (f) for an example) ( Chao et al., 
2018; Golubev, 2016; Yates et al., 2017 ). 

There is a vast literature regarding the appropriate representa- 
tion of the CCTD ( Csikász-Nagy et al., 2006; Gérard and Goldbeter, 
2009; Powathil et al., 2012 ). One class of representations, known 
as multi-stage models (MSMs), have gained particular attention in 
several recent studies ( Chao et al., 2018; Vittadello et al., 2018; 
Yates et al., 2017 ). The main idea of MSMs is to partition the cell 
cycle into N sequential stages. As time evolves, each cell can tran- 
sit from one stage, i , to the next one, i + 1 , after an exponentially 
distributed waiting time with parameter λi . When a cell is found 
at the last stage, N , it can proliferate with rate λN , which leads 
the cell to split into two daughter cells, both initialised at the first 

stage. The main motivation that makes MSMs mathematically ap- 
pealing is the Markov property of the exponentials which simpli- 
fies both the analytical investigation of the model and its computa- 
tional implementation. Moreover, MSMs lead to CCTDs that are hy- 
poexponential and hypoexponential distributions have been shown 
to provide an excellent agreement with experimental data ( Chao 
et al., 2018; Golubev, 2016; Yates et al., 2017 ). 

Despite the fact that there is some evidence to suggest that the 
cell cycle comprises a series of uncoupled exponentially distributed 
phases ( Chao et al., 2018 ), Yates et al. (2017) were at pains to point 
out that the stages in their MSM do not correspond to the phases 
in the cell cycle, but are tools which allowed them to fit the cor- 
rect cell cycle distribution. Similarly, here, we are reticent to link 
the N stages of our model to N realistic steps in biological cell cy- 
cles. Especially since, when fitting to experimental data, different 
choices of N can give almost equally good agreement to cell cycle 
distribution data. In particular, the stages of the MSMs should not 
be confused with the biological phases of the cell cycle which, in 
general, are not exponentially distributed (see Fig. 1 ) ( Chao et al., 
2018 ). 

Whilst previous studies have investigated MSMs extensively in 
the case of spatially uniform scenarios ( Yates et al., 2017; Billy 
et al., 2014 ), there is still little understanding about the effect 
which MSMs have on invading waves of cells. In particular, it is 
not clear how, and to what extent, a multi-stage representation of 
the CCTD can impact on the speed of invasion. 

The most recent progress on this was made by 
Vittadello et al. (2018) . In their work, the authors derive an 
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analytical expression for the invasion speed of a 2-stage MSM in 
terms of the two rates of stage transition, λ1 , λ2 , and the diffusion 
coefficient of cells, D : 
c = √ 

2 D [ −λ1 −λ2 + √ 
λ2 

1 + 6 λ1 λ2 + λ2 
2 ] . (1) 

The findings of Vittadello et al. (2018) provide useful insights in 
the qualitative effect of the MSMs. However a general expression 
for the invasion speed, as in Eq. (1) , but for biologically realistic 
MSMs, which typically have ten or more exponentially distributed 
stages ( Chao et al., 2018; Yates et al., 2017 ), is not feasible analyt- 
ically. Hence, there are important questions about the quantitative 
effect of MSMs on the invasion speed which remain unanswered. 
In particular, the range of variability in speed for a general N -stage 
MSM has yet to be studied. 

To investigate the effect of incorporating a general CCTD into 
the invasion models, we follow two distinct approaches. In the 
first part of the paper, we formulate a generalisation of the Fisher- 
KPP equation in which the cell population is structured by age. By 
studying the traveling wave solutions of the model, we derive an 
implicit equation for the speed of invasion in terms of the Laplace 
transform of the CCTD. We obtain an expression for the minimum 
wave speed under this model and show that for a general CCTD 
the invasion can be arbitrarly fast. 

In the second part of the paper, we focus our attention on 
MSMs. We study a spatially extended ABM which is designed 
to mimic cell invasion on a regular two-dimensional lattice. For 
each agent, we implement a general N -stage MSM to simulate 
the stochastic waiting time before the agent attempts to divide 
into two daughters. Through a mean-field closure approximation 
on the average agent density, we derive a system of N reaction- 
diffusion PDEs which represents a generalisation of the model of 
Vittadello et al. (2018) . By applying the front propagation method 
( Saarloos, 2003 ) to the system of PDEs, we reduce the computation 
of the invasion speed to an eigenvalue problem in terms of the 
rates of transition between consecutive stages, λi . We use this re- 
sult to study the case of identical transition rates, that corresponds 
to modelling the CCTD as Erlang. In this case we provide the exact 
analytical expression for the speed. Finally, we formulate a result 
for the maximum and minimum speed for a general N -stage MSM. 

The paper is organised as follows. In Section 2 we define the 
age-structured model and we derive the implicit equation for the 
invasion speed for general CCTD. In Section 3 we define two 
MSMs: a stochastic ABM and the corresponding mean-field approx- 
imation. In Section 3.1 we explain how to apply the front propaga- 
tion method and we state the eigenvalue problem. We present our 
results on Erlang distributed cell cycle times and the general hy- 
poexponential case in Section 3.2 . We conclude in Section 4 with 
a brief discussion of this work and future challenges. 
2. Age-Structured model 

The Fisher-KPP equation implicitly assumes Markov dynamics 
for the individual cells making up the population, implying a cell 
cycle time with an exponential distribution ( Fisher, 1937 ). One way 
to adapt the model to allow for an arbitrary cell cycle time distri- 
bution is through the addition of age-structure. Cells have an as- 
sociated age, denoted by a , which takes values in the positive real 
numbers and increases as time evolves. Cell motility is modelled 
as diffusion, with diffusivity D , and they proliferate with an age- 
dependent rate, h ( a ). 

We can write down a simple linear PDE for the density of cells 
with age a and spatial location x at time t, C ( a, x, t ), as follows 
∂ 
∂t C(a, x, t) = − ∂ 

∂a C(a, x, t) + D ∂ 2 ∂x 2 C(a, x, t) − h (a ) C(a, x, t) 
C(0 , x, t) = 2 ∫ ∞ 

0 h (s ) C(s, x, t) d s . (2) 

The function h ( s ) is the hazard rate, related to the probability den- 
sity function f ( s ) of the age at which cells divide (i.e. the CCTD) via 
h (s ) = f (s ) ∫ ∞ 

s f (a ) d a , f (s ) = h (s ) exp (−
∫ s 

0 h (a ) d a ) . (3) 
The boundary condition for C (0, x, t ) in Eq. (2) gives the density of 
newborn cells as twice the total rate of cell division. Note that we 
have neglected from our formulation in system (2) any non-linear 
terms arising from crowding effects, as these are not relevant to 
the speed of the front propagation. This model is a simple spatial 
adaptation of the McKendrick-Von Foerster equation for growing 
age-structured populations, and has been studied before ( Al-Omari 
and Gourley, 2002; Gabriel et al., 2012; Webb and Webb, 1985; 
Billy et al., 2014 ). 

As our first result, we show that the speed of propagation for 
the model (2) is determined by the Laplace transform of the CCTD, 
defined by 
L{ f } (s ) = ∫ ∞ 

0 e −sa f (a ) d a . (4) 
Theorem 1 If lim s →∞ L{ f } (s ) <  1 / 2 then the PDE (2) admits trav- 

elling wave solutions with propagation speed c >  2 √ 
Dλ, where λ >  0 

is the unique solution to 
L{ f } (λ) = 1 / 2 . (5) 
Proof. The system (2) is separable, hence we seek solutions of the 
form C(a, x, t) = v (a ) w (x − ct) , corresponding to a travelling wave 
with speed c and internal age structure given by v . Inserting into 
(2) and rearranging, we find 
c w ′ 

w + D w ′′ 
w = v ′ v + h . (6) 

The left-hand side here is a function only of x − ct, whilst the 
right-hand side is a function only of a . We thus determine that 
both are equal to a constant, say −λ. The w equation becomes 
λw + cw ′ + Dw ′′ = 0 , (7) 
which is well-known as the linearisation of the Fisher-KPP equa- 
tion, admitting travelling wave solutions for all c >  2 √ 

Dλ . The 
equation for v has solution 
v (a ) = v (0) exp (−aλ −

∫ a 
0 h (α) d α)

. (8) 
The boundary condition then gives us 
1 = 2 ∫ ∞ 

0 h (a ) exp (−aλ −
∫ a 

0 h (α) d α)
d a , (9) 

from which the definition of the hazard rate, Eq. (3) , gives the re- 
sult 1 = 2 L{ f } (λ) . Uniqueness of the solution (when one exists) 
follows from the monotonicity of the Laplace transform of a prob- 
ability density. �

We can use the previous result to investigate the range of 
speeds for an arbitrary CCTD with a given positive mean, µ̄ >  0 . By 
using Jensen’s inequality we have that for any positive supported f 
with mean µ̄
L{ f } (λ) ≤ e −λµ̄ = L{ δµ̄} (λ) , (10) 
where δµ̄ is the Dirac delta function concentrated at µ̄. From the 
monotonicity of the Laplace transform of a probability density, 
it follows that the minimum speed is obtained by using f = δµ̄, 
which gives 
c ≥ 2 √ 

D ln 2 
µ̄

(11) 
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We now use Theorem 1 to show that there is no upper bound 

for the speed of invasion of a general CCTD with a given mean. 
Consider the set of probability density functions defined as 
f ε (x ) = 1 

2 (δε ̄µ + δ(2 −ε) ̄µ)
, (12) 

where ε ≤ 1. It follows immediately that each member of this set 
of functions have mean µ̄ and Laplace transform given by: 
L{ f ε } (λ) = 1 

2 (e −λε ̄µ + e −λ(2 −ε) ̄µ)
. (13) 

By substituting the expression (13) into Eq. (5) and rearranging, we 
obtain the implicit equation for λ given by 
λε ̄µ = − ln (1 − e −2 λµ̄

)
. (14) 

The right-hand side of Eq. (14) is a strictly decreasing function of 
λ that converges to 0 as λ→ ∞ . Therefore, we can always choose 
ε small enough so that the solution of Eq. (14) is arbitrarily large. 

This demonstrates that, assuming that the CCTD is a general 
function with mean µ̄ and positive support, the range of possible 
invasion speeds is given by 
c ∈ 

[ 
2 √ 

D ln 2 
µ̄

, ∞ 
) 

. (15) 
The result in Theorem 1 is important because it establishes the 

connection between a general CCTD and the corresponding inva- 
sion speed. However, for some particular classes of distributions, 
solving Eq. (5) analytically can be challenging and the method of 
this Section does not provide any deeper insights. In particular, this 
is true for hypoexponential distributions, which are of special in- 
terest in the context of cell proliferation. In remaining part of the 
paper we further explore this class of distributions using a MSM of 
cell migration. 
3. Multi-Stage models 

In this section we introduce the two MSMs that we will use 
throughout the remainder of this paper. Firstly, we define a dis- 
crete ABM, in which the multi-stage representation of the CCTD is 
implemented as a stochastic feature of each cell at the microscale. 
Secondly, we introduce a system of deterministic PDEs describing 
the average cell density in a macroscopic manner. 

The ABM We consider a continuous-time ABM on a two- 
dimensional regular square lattice, with a given spacing denoted 
by &. Each cell is modelled as a single agent which moves and 
proliferates. Volume exclusion is incorporated by allowing at most 
one agent to occupy a given lattice site. 

Agents move according to a simple excluding random walk on 
the lattice. Each agent attempts a movement after an exponentially 
distributed waiting time with rate α. When this happens, a new 
position is chosen uniformly from one of the four nearest neigh- 
bouring sites and the movement takes place only if the selected 
site is empty. The event is aborted otherwise. 

We implement cell proliferation using a MSM. We divide the 
cell cycle into N sequential stages. Agents at one of the first N − 1 
stages, i = 1 , . . . , N − 1 , move to the next stage after an exponen- 
tially distributed waiting time of rate λi . Agents at the last stage, 
N , can attempt a proliferation event, after a further exponentially 
distributed waiting time of rate λN . In order to attempt a prolif- 
eration event, a target site is selected uniformly at random from 
one of the four nearest neighbouring sites. If such site is empty, a 
new first-stage agent is located on it, and the proliferating agent is 
returned to the first stage. If the target site is occupied, the prolif- 

eration event is aborted and the proliferating agent remains at the 
last stage 1 

We simulate the cell invasion by populating the first 10 
columns of the lattice with agents at stages that are chosen 
uniformly at random. We impose zero flux boundary conditions 
on the x -direction and periodic boundary conditions on the y - 
direction. Agents are displaced uniformly at random in the vertical 
direction, so we can reduce the dimensionality of the problem by 
considering the average column density ( Simpson et al., 2009 ). 

The PDE model Here we define the continuous model for the 
average column density which will be the object of the wavespeed 
analysis. 

We denote by S i ( x, t ) the density of i -stage agents in the column 
x at time t , averaged over multiple realisations of the ABM. Let C ( x, 
t ) be the total density of column x at time t , i.e. 
C(x, t) = N ∑ 

i =1 S i (x, t) . (16) 
By writing down the master equation of S i , for i = 1 , . . . , N and 

taking the limit as &→ 0, while keeping α&2 constant, one can 
derive a system of reaction-diffusion PDEs for the column densities 
of the different stages: 
⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 

∂S 1 
∂t = D ∂ ∂x [(1 −C) ∂S 1 

∂x + S 1 ∂C 
∂x ] + 2 λN (1 −C) S N −λ1 S 1 

∂S i 
∂t = D ∂ ∂x [(1 −C) ∂S i 

∂x + S i ∂C 
∂x ] + λi −1 S i −1 −λi S i 

for i = 2 , . . . , N − 1 
∂S N 
∂t = D ∂ ∂x [(1 −C) ∂S N 

∂x + S N ∂C 
∂x ] + λN−1 S N−1 −λN (1 −C) S N , 

(17) 
where D = lim &→ 0 α&2 

4 . Notice that other types of tessellations 
than the regular square lattice are common in the literature 
( Deutsch and Dormann, 2007; Simpson et al., 2018 ). However, the 
model formulation and the corresponding mathematical analysis in 
these cases do not change substantially. For example, a detailed 
derivation for the three-stage model on an hexagonal lattice can 
be found in Simpson et al. (2018) . Moreover, we should underline 
that the diffusivity of the cells in our model is independent of their 
stage which is not always true for real cells. We discuss this and 
other possible generalisations of our model in Section 4 . 

System (17) consists of a set of N reaction-diffusion PDEs with 
non-linearities in both the diffusion and the proliferation terms 
due to the effect of volume exclusion. Specifically, the term (1 −C) 
accounts for the reduction in rate due to volume exclusion. Notice 
that by summing all the equations in (17) , we obtain 
∂C 
∂t = D ∂ 2 C 

∂x 2 + λN (1 −C) S N . (18) 
In other words, although the diffusion terms in each of the Eq. 
(17) are non-linear, the motility at the population-level is simple 
diffusion ( Simpson et al., 2009 ). Conversely, due to the dependence 
of Eq. (18) on S N , it is not possible to obtain a closed PDE for the 
total agent density without further assumptions. 

We conclude this section by showing a comparison of the 
two models in Fig. 2 . In the example, we choose realistic 
values of motility rate, α, and proliferation rate, λ̄, as in 
Treloar et al. (2013) and Haass et al. (2014) , respectively. We 
consider an ABM with five stages with increasing rates (the 

1 Alternatively, we could choose to return the proliferating agent to the first stage 
every time an abortion occurs. This model has been studied in Yates et al. (2017) for 
homogeneously distributed agents. This modification does not substantially change 
our results. This is because our analysis of the speed of the wave front is based on 
low density regions, where abortion of events does not play an important role. For 
this reason, we decided to focus only on the stated version of the model. 
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stage-to-stage transition rates are chosen to facilitate the visual- 
isation of the different density profiles). In panels (a), (b) and 
(c) three successive snapshots are shown and the formation of 
the travelling wave appears clearly. As previously observed by 
Vittadello et al. (2018) , due to the presence of volume exclusion, 
the travelling wave solutions of the N subpopulations of cells are 
of two qualitatively different types. The density profile of the first 
N − 1 subpopulations have the form of moving pulses located at 
the front of the total wave with the amplitude which depends 
on the rate of the corresponding stage. The profile of the last 
stage subpopulation, instead, appears as a moving wavefront which 
dominates the density at the back of the total wave. 

The numerical solutions of the PDEs agree well with the aver- 
age behaviour of the ABM. Therefore, we focus our attention on 
the speed of the PDE model which we can investigate using an an- 
alytical approach (see Section 3.1 ). 

It is important to note that the quantitative validity of our re- 
sults on the PDE model will extend to the ABM only for the range 
of parameters which preserves the good agreement between the 
two models. In Fig. 3 we compare the total averaged column den- 
sity profiles of the ABM and PDE for different parameters. The heat 
map shows the histogram distance error (HDE) 2 between ABM and 
the PDE model for different rates of movement and proliferation. 
When the rate of proliferation is large compared to the motility 
rate, the mean-field approximation loses its accuracy. This is a well 
known phenomenon which is caused by the presence of strong 
spatial correlations between occupied sites, induced by the prolif- 
eration ( Middleton et al., 2014 ). Increasing the motility parameter 
tends to break up spatial correlations of neighbouring sites and, 
consequentially, to improve the accuracy of the mean-field approx- 
imation. 

The results of Figs. 2 and 3 confirm that for realistic choice 
of parameters ( α ≈ 4 and λ̄ ≈ 0 . 02 ( Haass et al., 2014; Treloar 
et al., 2013 )) the PDE model provides a good approximation of 
the ABM. This motivates us to focus our analysis on the contin- 
uum model. It is possible to derive more accurate descriptions in 
those cases where the agreement is lost using higher order mo- 
ment closure schemes (see for example Baker and Simpson (2010) ; 
Markham et al. (2013) ), but this is beyond the scope of this paper. 
3.1. Wavespeed analysis 

In this Section we apply the front propagation method of 
Saarloos (2003) to system (17) to study the speed of invasion of 
the PDE model. 

The system of Eq. (17) has two equilibria, an unstable empty 
state, S i ( x, t ) ≡ 0 for i = 1 , . . . , N, and a stable occupied state, S i ( x, 
t ) ≡ 0 for i = 1 , . . . , N − 1 and S N ( x, t ) ≡ 1. Firstly we linearise the 
system about the unstable steady state, giving 
{ 

∂S 1 
∂t = D ∂ 2 S 1 ∂x 2 + 2 λN S N −λ1 S 1 
∂S i 
∂t = D ∂ 2 S i ∂x 2 + λi −1 S i −1 −λi S i for i = 2 , . . . , N . (19) 

We substitute 
S i (x, t) ∝ exp ( −ιω(k ) t + ιkx ) , 
into Eq. (19) , where ι is the immaginary unit, ω( k ) is the disper- 
sion angular frequency of the Fourier modes and k is the spatial 
wavenumber. Upon simplification, we obtain 
{

−ιω ( k ) S 1 = −Dk 2 S 1 + 2 λN S N −λ1 S 1 
−ιω ( k ) S i = −Dk 2 S i + λi −1 S i −1 −λi S i for i = 2 , · · · , N. 
2 The HDE between two normalised histograms with values a i and b i at point i 

(i.e. ∑ 
a i = ∑ 

b i = 1 ) is defined as HDE = ∑ | a i − b i | / 2 ( Cao and Petzold, 2006 ). 

Fig. 2. Comparison between the average column density for the ABM (full lines) 
and the PDE model (dotted lines) with a five-stage MSM. The panels show three 
snapshots of the evolution of the two models at time 0 (a), 150 (b) and 300 (c). 
In all cases, the profiles for the five different subpopulations are shown in different 
gradations of orange and the total density is plotted in black. The ABM profiles 
are obtained by averaging over 20 identically prepared simulations on a 20 0 0 × 400 
lattice. The other parameters of the models are & = 20 , α = 4 , λ̄ = 0 . 0233 , λ1 = 
0 . 15 , λ2 = 0 . 19 , λ3 = 0 . 25 , λ4 = 0 . 37 and λ5 = 0 . 75 . 

Following the front propagation method ( Saarloos, 2003 ), the 
expression of the wave speed, c , is given by 
c = Im [ ω(k ∗) ] 

Im [ k ∗] , (20) 
where k ∗ = ιq, with q real, and such that 
d ω 
d k (k ∗) = Im [ ω(k ∗) ] 

Im [ k ∗] . (21) 
Notice that we can write down ιω( k ) in the form 
ιω(k ) = k 2 D −ρ , (22) 
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Fig. 3. Histogram distance error (HDE) between column density profiles of ABM 
and the mean-field model for different parameters of movement and proliferation. 
The colour of each square denotes the HDE between the total density of the PDE 
and the ABM (averaging over 10 0 0 simulations) as described in the legend. Dark 
squares represent small HDE which denotes good agreement between the two mod- 
els, whereas light squares represent large HDE which denote a loss of agreement. 
The models are simulated on a 20 0 0 × 400 domain with & = 20 and the HDE is 
computed at the time when half of the domain in the mean-field model is occupied. 
All the ABMs are simulated with N = 5 and with transition rates proportional to the 
one of Fig. 2 . The red mark denotes the realistic parameter choice corresponding to 
Fig. 2 . (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
where ρ is an eigenvalue of the matrix 

* = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−λ1 0 . . . 0 2 λN 
λ1 −λ2 0 . . . 0 
0 λ2 −λ3 . . . 0 
. . . . . . . . . . . . 
0 . . . λN−1 −λN 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (23) 

From expression (22) it follows that 
d ω 
d k (k ∗) = 2 qD , (24a) 
Im [ ω(k ∗) ] 

Im [ k ∗] = q 2 D + Re [ ρ] 
q . (24b) 

By substituting Eqs. (24) into (21) , we obtain q 2 = Re [ ρ] /D . Note 
that * is Metzler, and hence by Perron-Fobenius its rightmost 
eigenvalue is real. Hence, from (20) , the speed of the invasion is 
given by 
c = 2 √ 

Dρ , (25) 
where ρ is the maximum real eigenvalue of *, defined in terms of 
the characteristic polynomial of the matrix *, P *(x ) , as follows 
ρ(*) = max { x ∈ R | P *(x ) = 0 } . (26) 
This shows that the problem of finding the speed of invasion of the 
PDE model is equivalent to computing the maximum real eigen- 
value of the matrix *, ρ( *). 
3.2. Results 

The characteristic polynomial of the matrix * can be computed 
directly from the matrix and it reads 
P *(x ) = N ∏ 

i =1 ( λi + x ) − 2 N ∏ 
i =1 λi . (27) 

In general, an analytical formula of the roots of the polynomial 
function P *(x ) is not available. In this section we first consider the 
case of λi = λ for i = 1 , . . . , N for which the maximum eigenvalue 
ρ( *) can be computed analytically. This corresponds to a special 
case of the general hypoexponential distribution, known as the Er- 
lang distribution. We conclude by proving a theorem in which we 
state the range of speed variability for the general hypoexponential 
CCTD. 

The Erlang distribution Consider the case λi = λ for i = 
1 , . . . , N, which corresponds the Erlang CCTD. Under this assump- 
tion, we can write down the characteristic equation of the matrix 
*, using formula (27) , as 
( λ + x ) N = 2 λN . (28) 
The eigenvalues of * are then given by the solutions of 
Eq. (28) which are x j = λ(

ξ j N √ 
2 − 1 ) for j = 1 , . . . , N, where ξ = 

exp ( 2 πι/N ) is the primitive N -th root of unity. Hence, we obtain 
that 
ρ(*) = λ(

N √ 
2 − 1 ). (29) 

By substituting the expression (29) into Eq. (25) we obtain the for- 
mula for the speed of invasion for the model with Erlang distribu- 
tion 
c = 2 √ 

Dλ
(

N √ 
2 − 1 ). (30) 

Notice that for N = 1 , which corresponds to exponential CCTD, we 
recover the well known expression of the speed for the Fisher-KPP 
equation, 2 √ 

Dλ. 
The general case For the case of a general hypoexponential dis- 

tribution, there is no analytical formula for the expression of the 
maximum real eigenvalue of the matrix *. However, we find that 
the Erlang case and the exponential case, for which we do have 
the analytical formula of the speed, correspond to the lower and 
upper bound (respectively) for the speed of travelling waves with 
hypoexponential CCTD and a given total proliferation rate, λ̄. This 
result follows directly from the following theorem on the range of 
ρ( *). 

Theorem 2 Let ρ( *) be defined by Eq. (26) as the maximum real 
eigenvalue of the matrix *. Then 
λ̄N ( N √ 

2 − 1 ) ≤ ρ(*) <  λ̄ , (31) 
where λ̄ = (∑ N 

i =1 1 /λi )−1 
. 

A proof of Theorem 2 can be found in the appendix. It is imme- 
diate to interpret the result of the Theorem 2 in terms of invasion 
speeds. In particular, by using Eq. (25) , together with the two in- 
equalities (31) , we deduce that the speed of the invasion of the 
PDE model with diffusion coefficient D and a general N -stage rep- 
resentation of the CCTD with total growth rate given by λ̄, lies in 
the interval 
c ∈ [2 √ 

D ̄λN ( N √ 
2 − 1 ), 2 √ 

D ̄λ)
. (32) 

We can generalise this result even further by taking the limit 
as N → ∞ in the right-hand side of Eq. (32) . Hence we obtain a 
general interval which holds for any multi-stage representation, re- 
gardless of the number of stages, which reads 
c ∈ (2 √ 

D ̄λ ln 2 , 2 √ 
D ̄λ)

, (33) 
where we used N ( N √ 

2 − 1 ) = ln 2 + O (N −1 ). 
Notice that the lower bound of the interval (33) is equiva- 

lent to the lower bound for the general CCTD, obtained in (15) of 
Section 2 . This can be intuitively understood by observing that, as 
we let number of stages of an hypoexponential distribution go to 
infinity while keeping the total rate, λ̄, fixed, the variance of the 
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Fig. 4. Illustration of the range of invasion speeds for a given mean proliferation 
rate, λ̄, and fixed diffusion coefficient, D = 1 . The two coloured regions represent 
the range of speed for a general CCTD. The dark grey subregion highlights the range 
of speeds for hypoexponential CCTDs. The global minimum speed is obtained by us- 
ing the Dirac distribution (red line). The exponential CCTD (blue line) is the hypo- 
exponential distribution which leads to maximum speed. There is no upper bound 
for the general case. Two examples of Erlang CCTDs with two stages (yellow line) 
and four stages (green line) are also shown. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
distribution tends to zero. Consequently, the distribution converges 
to a Dirac function concentrated in the mean, µ̄ = λ̄−1 , which we 
have proved in Section 2 to be the distribution corresponding to 
the minimum invasion speed. In Fig. 4 we summarise our find- 
ings about the range of invasion speed for different CCTD through 
a graphical representation. 
4. Conclusion 

In this work we investigated the quantitative effect of imple- 
menting a realistic CCTD into models of cell invasion. Firstly, we 
derived a general result from a generalised version of the Fisher- 
KPP equation. Then we investigated the case of MSMs by imple- 
menting a simple ABM of cells undergoing undirected migration 
and proliferation by division, in which the time between succes- 
sive divisions is modelled using a multi-stage representation (i.e. 
the CCTD is hypoexponential). By studying a continuous version of 
the ABM, we connected the type of CCTD to the speed of the cor- 
responding invasion. 

The results indicate that, for a fixed mean division time, the 
minimum speed of invasion is obtained by the Dirac distribution, 
while there is no upper bound. In other words, the invasion can 
be, in general, infinitely fast. However, when we focus our atten- 
tion to the case of MSMs, which are known to represent well the 
experimental CCTD, our analysis shows that the speed can vary 
in a bounded interval (see Fig. 4 ). More precisely, we show that 
the maximum invasion speed is reached by adopting an exponen- 
tial CCTD, which leads to the classic the Fisher-KPP model. On the 
other hand, the minimum speed is obtained by partitioning the 
CCTD into multiple exponential stages with identical rates, which 
corresponds to the case of Erlang CCTD. Finally, by considering the 
limiting case of infinitely many stages, we find that the infimum 
value of the speed for the class of hypoexponential CCTD coincides 
with the global minimum for a general CCTD. 

The results indicate the invasion speed changes with the vari- 
ance of the CCTD, i.e. decreasing the variance in the proliferation 
time distribution leads to slower invasion. We found that the max- 
imum reduction in comparison to the classical formula for the 
Fisher-KPP model, is given by a multiplicative factor of √ 

ln 2 ≈
0 . 83 . Whilst interpreting this result in the context of experimen- 
tal data is beyond the aim of this work, we want to stress that 
for number of stages N ≫ 1, which is typically the case for experi- 
mentally observed distributions ( Chao et al., 2018; Golubev, 2016; 
Yates et al., 2017 ), the speed converges to the lower bound of Eq. 

(33) with order given by O (N −1 ). This suggests that, with the only 
information of the mean of the CCTD (equivalently, the total rate), 
including the factor √ 

ln 2 in the formula for the speed leads to a 
more accurate estimation than the classic expression of Fisher-KPP. 

In Section 3 we used a discrete ABM, but it is important to no- 
tice that alternative modelling approaches might lead to different 
results. Although discrete space ABMs are widespread in the liter- 
ature ( Cheeseman et al., 2014; Deutsch and Dormann, 2007; Mort 
et al., 2016; Simpson et al., 2018, 2007; Vittadello et al., 2018 ), 
a considerable number of studies focus on lattice-free ABMs in 
which cells’ positions are not constrained to a grid ( Dyson and 
Baker, 2014; Dyson et al., 2012; Grima, 2008; Matsiaka et al., 2017; 
Middleton et al., 2014 ). Another alternative approach, known as 
compartment-based model, consists in allowing multiple cells oc- 
cupying a single lattice site ( Cianci et al., 2017; Taylor et al., 2016; 
2015 ). In the context of our work, adopting alternative modelling 
regimes, such as lattice-free or compartment-based models, would 
lead to different nonlinear factors in system (17). Since the analysis 
of the wave speed is based on a linearisation of system (17), we 
believe that our results would still hold qualitatively. However, a 
rigorous comparison of these modelling approaches is beyond the 
scope of this paper. 

An important question that remains unanswered is the role of 
motility heterogeneity within the cell cycle. Experimental studies 
have found that the motility of a cell can depend on its cell cy- 
cle phase ( Vittadello et al., 2018 ). For example, during the mitotic 
phase, cells tend to reduce their movement ( Mort et al., 2016 ). In 
order to investigate this phenomenon in the light of the invasion 
speed, we could modify our model to allow different diffusion co- 
efficients, D i for i = 1 , . . . , N, for each stage in the system (17) . An- 
other aspect of the cell movement that can vary within the cell 
cycle is the directional persistence. Our models do not incorporate 
directional persistence of cells. However, it is possible to combine a 
MSM with existing models of directional persistence ( Codling et al., 
2008; Gavagnin and Yates, 2018 ). Unfortunately, the application of 
the front propagation method of Saarloos (2003) (see Section 3.1 ) 
to these models leads to difficulties and it may be necessary to 
study the problem using a different approach. We will investigate 
this in future research. 
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Appendix A. Proof of Theorem 2 
Proof. Let µi = 1 /λi for every i = 1 , . . . , N. By writing the char- 
acteristic equation P *(x ) = 0 in terms of the parameters µi and 
upon rearranging, we obtain 

N ∏ 
i =1 ( µi x + 1 ) = 2 . (A.1) 
We can write ρ(*) = ρ(µ1 , . . . , µN ) = ρ( µ) as 
ρ( µ) = max 

{ 
x ∈ R | N ∏ 

i =1 ( µi x + 1 ) = 2 
} 

, (A.2) 
for every µ ∈ { R >  0 } N . It is easy to observe that ρ( µ) is a positive 
continuous function and we can extend the definition (A.2) to µ ∈ 
{ R ≥0 } N \ { (0 , . . . , 0) } , by continuity. 
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Now fix λ̄ = (∑ N 

i =1 µi )−1 
; without loss of generality we can 

take ∑ N 
i =1 µi = 1 , whence (31) becomes N ( N √ 

2 − 1 ) ≤ ρ( µ) <  1 . 
The case of general λ̄ follows by multiplying by a rescaling fac- 
tor. Since ρ is a continuous function, we aim to find the stationary 
points of ρ( µ) in the N -dimensional simplex: 
U N = 

{ 
( µ1 , . . . , µN ) ∈ (0 , 1) N ∣∣∣ N ∑ 

i =1 µi = 1 
} 

. (A.3) 
We apply the Lagrange multipliers method. Hence we study the 
Lagrangian function given by 
L (µ1 , . . . , µN , σ ) = ρ( µ) + σ

( 
N ∑ 

i =1 µi − 1 
) 

. (A.4) 
Throughout we adopt the notation L j = ∂L 

∂µ j and ρ j = ∂ρ
∂µ j . By im- 

posing L j = 0 we obtain 
ρ j = −σ , (A.5) 
for all j = 1 , . . . , N. We can now differentiate Eq. (A.1) respect to 
µj , which gives us 
0 = N ∑ 

i =1 
∏ 
k ̸ = i ( 1 + µk ρ) (ρ δi, j + µi ρ j ) (A.6) 

where δi, j denotes the Kronecker delta. If we multiply and divide 
each term of the right-hand side of Eq. (A.6) by (1 + µi ρ) , we ob- 
tain 
0 = N ∑ 

i =1 
ρ δi, j + µi ρ j 

1 + µi ρ
= ρ

1 + µ j ρ + ρ j N ∑ 
i =1 

µi 
1 + µi ρ , (A.7) 

By combining Eqs. (A.5) and (A.7) we gain a condition on the co- 
ordinate µj of the stationary points, namely 

ρ
1 + µ j ρ = σ N ∑ 

i =1 
µi 

1 + µi ρ . (A.8) 
Notice that Eq. (A.8) holds for every j = 1 , . . . , N and the right hand 
side is independent of j , hence the only stationary point of ρ( µ) in 
the simplex U N is the given by the centre µ∗

N = ( 1 /N, . . . , 1 /N ) . 
To conclude we need study the value of ρ( µ) on the boundary 

of the simplex, defined as 
∂U N = 

{ 
( µ1 , . . . , µN ) ∈ [ 0 , 1 ] N ∣∣∣ N ∑ 

i =1 µi = 1 and min µi = 0 
} 

. 
(A.9) 

Let us consider the elements of ∂U N with exactly n non-zero co- 
ordinates, with n = 1 , . . . , N − 1 . Without loss of generality we can 
focus on the points of the form 
( µ1 , . . . , µn , 0 , . . . , 0 ) ∈ ∂U N , (A.10) 
where ( µ1 , . . . , µn ) ∈ U n . Notice that the ρ( µ) is well defined in 
such points by continuity, as observed before. By repeating the La- 
grange multiplier method in the sub-simplex U n , we find that the 
only stationary point of ρ( µ) of the form (A.10) is the one with 
µ1 = µ2 = · · · = µn , i.e.: 
µ∗

n = ( 1 /n, . . . , 1 /n ︸ ︷︷ ︸ 
n , 0 , . . . , 0) ∈ ∂U N . (A.11) 

This holds for every n = 1 , . . . , N − 1 , so we can write all the sta- 
tionary points of ρ( µ) in ∂U N upon permutation of the coordinates 
in the form (A.11) . 

All the stationary points µ∗
n , for n = 1 , . . . N, correspond to an 

Erlang distribution for which we can compute the expression of ρ
directly from the definition (A.2) as 
ρ( µ∗

n ) = n ( n √ 
2 − 1 ) , (A.12) 

for n = 1 , . . . , N. The right-hand side of Eq. (A.12) is a decreasing 
function of n . We deduce that the centre of the simplex, µ∗

N ∈ U N , 
corresponds to the global minimum, i.e. for all µ ∈ U N 
ρ( µ) ≥ ρ( µ∗

N ) = N ( N √ 
2 − 1 ). (A.13) 

Finally, µ∗
1 ∈ ∂U N and all the points obtained by permuting its co- 

ordinates, correspond to supremum points, i.e. for all µ ∈ U N 
ρ( µ) <  ρ( µ∗

1 ) = 1 . (A.14) 
�
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5.2. Conclusions

The aim of this paper is to investigate the impact of accounting for realistic and general

distributions of the cell-cycle time in models of cell invasion. By adopting a multiscale

approach, we elucidate the connection between the distribution of cell-cycle time and

the speed of invasion. One of the more significant findings to emerge from this study is

that when the cell-cycle time distribution is chosen from a class of biologically realistic

distributions, the asymptotic speed of the invasion lies in a tightly bounded interval.

The results of this observation suggest that the characteristics of the cell-cycle time

distribution might have a limited impact on the speed of the invasion.

Age-structured models, like those presented in this work, have received increasing

attention in recent years. The results of this work, therefore, need to be considered

in light of the current research on this topic. In the first year after its publication,

this paper has been cited several times in relatively di↵erent contexts. Bobadilla et al.

[2019], for example, employed an age-structured model to recapitulate the appearance

of two phases in the growth rate of a proliferating cell population. The authors model

the cell cycle as a resource-dependent threshold age, after which cells can proliferate

at constant rate. The model of Bobadilla et al. [2019] belongs to the same class as the

age-structured model studied in Section 2 of this paper. The authors cite our work as

an example of invasion speed analysis, however the focus of their study is substantially

di↵erent from ours, as they consider crowded scenarios in which the limited-resource

condition leads to a logistic dynamic.

One aspect of this chapter which has received particular attention is related with

possibility of extending the front propagation analysis to the case of phase-dependent

motility. The reason why such an extension would be particularly important is because

the current literature is unclear on whether cell movement is significantly a↵ected by

the cell-cycle phase or not, and recent experimental studies supporting both arguments

have been reported [Mort et al., 2016, Haass et al., 2014, Vittadello et al., 2018, 2019a].

It is essential, therefore, to understand the extent to which a phase-dependent motility

can a↵ect the speed of a cellular invasion. The multi-stage model presented in this

paper sets the basis of a new potential approach to answer this question. However

the derivation of the formula of (25) for the invasion speed does not hold for phase-

dependent di↵usivity and other methods have to be explored. More specifically, by

replacing the di↵usive coe�cient D in system (19) with Di, for i = 1, . . . , N , and
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following the steps of the paper, one can express ◆!(k) as the eigenvalue of the matrix

� =

2

666666666664

k2D1 � �1 0 . . . 0 2�N

�1 k2D2 � �2 0 . . . 0

0 �2 k2D3 � �3 . . . 0

...
. . .

. . .
...

0 . . . �N�1 k2DN � �N

3

777777777775

. (5.1)

Notice that when Di = D, for every i = 1 . . . , N , one recovers immediately equation

(22) of the paper since we can decompose � = k2D1+⇤, where 1 represents the identity

matrix. Unfortunately, for a general choice of Di the eigenstructure of � becomes very

complicated. Vittadello et al. [2018] have studied in details the case of N = 2 and

N = 3, for which they obtained analytical formulas of the invasion speed, but similar

formulas for larger values of N are currently unknown.

A possible way to gain some insights on the case of phase-dependent motility is by

focusing on particular combinations of the parameters Di. For example, one can turn

o↵ the di↵usivity of one, or multiple, stages by setting Dj = 0 for some j 2 {0, . . . , N},
while keeping uniform di↵usivity in the remaining stages. The combination of mobile

and immobile stages is likely to simplify the eigenstructure of the matrix � and it might

help making a first step toward the understanding of the more general case. In addition,

the idea of having di↵erent phases within the cell-cycle for motility and proliferation

events, is consistent with the highly-debated “go-or-grow” hypothesis [Hatzikirou et al.,

2012, Vittadello et al., 2019a].

Finally, the topic tightly connected with this chapter, despite not being explicitly

mentioned in paper, is the dynamical evolution of the cell-cycle phase distribution

within a growing cell population. Whilst this aspect of the model has not been investi-

gated in this paper, there is an evident connection between the cell-cycle time and the

phase distribution observed in the population. Understanding this connection is crucial

for a wide range of applications and it has been the object a series of recent studies

[Pirjol et al., 2017, Jafarpour et al., 2018, Jafarpour, 2019]. Of particular relevance is

the work of Jafarpour [2019] in which the author studies bacterial populations with

Gaussian distributed cell-cycles and a cell-size regulation mechanisms. In the follow-

ing chapter we continue to investigate the e↵ects of including multi-stage descriptions

of the cell cycle in models of growing cell populations. In particular, we present a

case of study in which accounting for realistic cell-cycle distributions has important

implications for the model and for the interpretation of the results.
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Chapter 6

Synchronised oscillations in growing cell popula-

tions are explained by demographic noise

This chapter contains a draft manuscript to be submitted for publication in Nature

Communications. The formulation of the project and part of the research of this

chapter were carried out while visiting the group of Professor Matthew J. Simpson at

the Queensland University of Technology in Brisbane, Australia. In this paper, we

apply the multi-stage modelling approach described in Chapter 5 to study the relation

between demographic noise and emerging oscillations in subpopulations of cells.

More precisely, we study a proliferation assay of melanoma cells to investigate the

origin of inherent oscillations in the subpopulation of cells in the first phase of the cell

cycle (G1). By deriving a series of deterministic and stochastic models based on a multi-

stage representation of the cell-cycle time distribution, we explore the hypothesis that

the observed fluctuations might be a transient phenomenon originated, and amplified,

by the finite-size e↵ect intrinsic in the population. We elucidate the transient and

asymptotic phases of our models and we derive an analytical formula to quantify the

e↵ect of stochasticity in the appearance of the oscillations. The results suggest that the

intrinsic demographic noise of the population is capable of explaining the oscillations

in the proportion of G1 cells.

6.1. Outline of the article

As the manuscript reported is a preprint, it is formatted to match the style of the rest

of the thesis. Section 6.2 contains the introduction of the manuscript with a short

overview of the literature to contextualise our study. In Section 6.3 we present the

results of our work and the comparison with the experimental data. In Section 6.4 we

comment on our findings and we discuss their implications from a broad perspective.

Section 6.5 represents the methods part of the manuscript where we report the details

of the mathematical models used and all the analytical derivations. Section 6.6 provides

a short conclusion to the chapter.
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Abstract

We investigate the origin of recently discovered sustained oscillations in growing cell pop-
ulations. Di�erential fluorescent staining during distinct phases of the cell cycle allows for
the experimental observation of previously hidden inherent synchronisation in growing cell
populations. We explore the hypothesis that the oscillations we observe are a long-lasting
transient phenomenon originated, and amplified, by finite-size e�ects of demographic noise.
We develop a mathematical theory of multi-stage cell growth and division which accurately
reproduces the synchronised oscillations observed in proliferation assays of melanoma cells.
By elucidating the transient and asymptotic phases of the dynamics, we derive an analytical
formula to quantify the e�ect of demographic noise in the appearance of the oscillations. Our
results give a simple and compelling explanation for the emergence of inherent synchroni-
sation in growing cell populations, and our methods provide a framework for analysing the
broader implications of this phenomenon.
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6.2. Introduction

Cell proliferation is crucial in a vast range of biological processes, from morphogenesis to

tumour growth [Gilbert, 2000, Evan and Vousden, 2001]. Understanding and predicting

the time evolution of a growing cell population is, therefore, of fundamental medical

interest [Mort et al., 2016, Haass and Gabrielli, 2017].

A standard modelling approach consists of assuming that cell divisions are indepen-

dent events with exponentially distributed waiting times. This gives rise to exponential

growth of an unstructured population of cells [Murray, 2007]. This approach has been

supported by classic experimental studies for large populations under favourable growth

conditions [Monod, 1949, Laird, 1965]. However, when smaller populations are consid-

ered - for example a single progenitor cell - a simple model of exponential growth is

incapable of explaining the experimental results and more sophisticated models are nec-

essary [Baker and Simpson, 2010, Yates et al., 2017, Jafarpour, 2019, Pirjol et al., 2017,

Lang et al., 2009, Kuritz et al., 2018]. Moreover, due to the technological advances of

the past decade, we are now able to access accurate data revealing the structure of

a dynamic cell population which is left completely unexplained by simple exponential

models [Chao et al., 2018, Vittadello et al., 2018, Simpson et al., 2018].

The typical experimental protocol to study a growing cell population is a prolifer-

ation assay. This is an in vitro experimental procedure which monitors the number of

cells over time, the number of cellular divisions or DNA synthesis [Riss et al., 2016]. In

a recent work [Vittadello et al., 2019b], we considered a proliferation assay of melanoma

cells labelled with FUCCI (Fluorescent Ubiquitous Cell Cycle Indicator [Sakaue-Sawano

et al., 2008] - see Figure 6-1) which allowed us to track the number of cells in particular

phases of the cell cycle over a timespan of 48h. We found that the number of cells in

the first phase of the cell-cycle, gap 1 (G1), shows evident and unexpected fluctuations

during the entire duration of the experiment. Understanding this phenomenon is cru-

cial, as it might have a significant impact on the e�ciency of cell-cycle-inhibiting drugs

[Beaumont et al., 2016, Haass and Gabrielli, 2017] and on the reproducibility of these

experiments. However, the biological mechanism causing these fluctuations and their

long term behaviour, are yet to be fully understood.

In this study, we employed a multi-stage (MS) mathematical model for cell prolif-

eration by representing the cell-cycle time (CCT) as a series of discrete stages. The

waiting time distribution between consecutive stages is exponential, meaning that the

CCT follows a more general class of distributions, known as hypo-exponential. This

family of distributions has been shown to provide good agreement with the experimen-

tal cell-cycle time distribution data [Yates et al., 2017, Gavagnin et al., 2019, Simpson

et al., 2018, Vittadello et al., 2018]. By deriving a deterministic representation of the

population dynamics under the MS approach we reproduced the cell-cycle fluctuations

observed in the experiments which suggests that MS models are a suitable framework

for investigating the phenomenon of cell-cycle synchronisation. However, since the
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parametrisation of the model was carried out individually for each experimental tra-

jectory, our previous study did not explain the origin of such oscillatory phenomena

nor their asymptotic behaviour.

Figure 6-1: Proliferation assay with melanoma C8161 cells labelled with FUCCI. Panels (a) to
(c) show three snapshots of a microscopy image time series. Panel (a) is taken at the beginning
of the recording, t = 24h, panel (b) is taken half-way through the recording, t = 48h, and at
panel (c) at the end of the recording, t = 72h (scale bar 100µm). The cells with red nuclei are in
the G1 (gap 1) phase of the cell cycle, the ones with yellow nuclei are in the eS (early-synthesis)
phase and those with green nuclei are in one of the remaining consecutive phases S (synthesis),
G2 (gap 2) or M (mitosis). Panel (d) shows the comparison between the distribution of the
duration of the G1 phase obtained by tracking 200 randomly chosen cells (red histogram) and
the Erlang distribution with the same mean and variance (black curve). Panel (e) shows the
comparison between the distribution of the full cell cycle time of the same tracked cells (blue
histogram) together with the corresponding Erlang distribution. See Section 6.5.4 for full details.

The fluctuations which appear in the MS model are a typical example of damping

oscillations about an equilibrium [Harrison and Topiwala, 1974]. In other words, if

the initial phase-distribution - the distribution of cells in each phase of the cell cy-

cle - is su�ciently far from its invariant distribution, the model enters a transient

phase characterised by oscillations of decaying amplitude, followed by an asymptotic

phase in which the invariant distribution is reached and the total population grows

exponentially. The presence of these two regimes, the transient-oscillatory regime and

asymptotic-exponential regime, is a common feature of many structured growing pop-

ulation [Jafarpour, 2019, Jafarpour et al., 2018, Pirjol et al., 2017, Baker and Röst,

2019]. Is not surprising, therefore, that these two phases play distinct but critically
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important roles in the dynamics of a growing cell populations.

It remains unclear, however, what causes the initial departure from the invariant

distribution in the experiments which might have triggered the oscillatory behaviour.

All the experiments were prepared following a standard procedure [Beaumont et al.,

2016] which is considered to produce a cell population in its invariant state. However,

since only a small proportion of the total population is recorded from the microscopy,

there is a natural form of finite-size departure from the theoretical invariant distribution

due to the relatively small size of the initial population.

In this paper, we explore the hypothesis that the oscillations reported by Vittadello

et al. [2019b] can be quantitatively explained by the e↵ects of the finite-size stochastic-

ities alone. We first analyse the MS model with a particular focus on characterising the

transient and asymptotic phases. By deriving a stochastic mesoscopic model, we study

the e↵ect of stochasticity in the system and obtain an analytical formula that can be

used to quantify the amplitude of the fluctuations due to finite-size e↵ects. Finally,

we parametrise the MS model by fitting the G1 and total cell-cycle time distributions,

obtained from single-cell tracking data, and compare our predictions with the time

series obtained by the experiments.

Our central finding is that the fluctuations in the subpopulation of G1 cells in the

proliferation assay are of the same magnitude of those induced by demographic noise

alone, which suggests finite-size e↵ects as the main origin of the synchronisation. In

particular, our study predicts that the observed oscillations are a transient phenomenon

for which we can predict the corresponding characteristic decay time.

6.3. Results

6.3.1 Multistage model recapitulates experimental observations

We adopt an agent-based model (ABM) for the growth and division of cells, following

[Yates et al., 2017, Gavagnin et al., 2019, Vittadello et al., 2018]. In this formulation

the cell-cycle is represented as a series of K stages through which a cell progresses

before it divides. We choose the waiting time to progress from one stage to the next

to be an exponential random variable with rate �, independent from all other events.

When a cell passes through the final stage, it divides into two new daughter cells, both

initialised at stage one. This is a highly simplified model of the cell cycle, however, it

is su�cient for the purposes of this study since (as we will show later) it gives a good

fit to experimentally observed distributions of cell cycle time, and is representative of

a broad class of biologically realistic unimodal distributions.

The K stages of our model are grouped into sections corresponding to the known

phases of the cell cycle. In particular, we say that a cell is in the G1 phase if it is

in one of the first ↵K stages, where ↵ is a constant to be determined by comparison

with data. Expressed as a sum of exponential random variables, the duration of both

the G1 and the entire cell cycle are Erlang distributed with parameters (K, �) and
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(↵K, �), respectively. Figure 6-1 (d) and (e) show the maximum likelihood fit of the

model simultaneously to both the duration of the G1 phase and the total cell-cycle time

for the melanoma cell line C8161. In this example we find parameters K = 92, ↵K =

33, � = 4.96h�1. The measured cell cycle time has an average of 18.5 hours with

standard deviation around 2 hours (see Section 6.5.4).

To keep track of the growth of a population of cells, we define the state vector

X(t) = (X1(t), X2(t), . . . , XK(t)), where Xk(t) denotes the number of cells in stage k

at time t. Our model is then represented as a series of chemical reactions, namely

G1 phase

X1
��! X2

��! · · · ��! X↵K
��! X↵K+1

��! · · · ��! XK

Cell cycle

��! 2X1 . (6.1)

We write N =
PK

k=1 Xk for the total number of cells, G =
P↵K

k=1 Xk for the number

of cells in G1 phase. As the population grows, the proportion of cells in each stage

will eventually converge to a fixed value Xi/N
t!1�! ui, for i = 1, . . . , N , known as the

invariant stage distribution. In Section 6.3.2 we prove this fact and derive an exact

expression for the limit u. On shorter time horizons, the behaviour of the system is

less easy to predict.

To assess the strength of oscillations, in what follows we develop a mathematical

theory for the behaviour of the proportion Q = G/N of G1-phase cells. The first part

of our analysis reveals long-lived damped oscillations in the expected value of Q in a

growing population, while the second shows how this e↵ect is initiated and sustained

by demographic noise.

Our experimental data are 30 image time series taken from proliferation assays of

C8161 melanoma cells expressing FUCCI, as previously reported in Vittadello et al.

[2019b] - see Figure (a), (b) and (c) 6-1 for three snapshots of the microscopy images.

Each time series refers refers to a 48h time window following an incubation of 24h. In

Figure 6-2 we present a comparison between an experimental time series (blue line)

and the envelope of two standard deviations, ⌦ (light grey region) obtained from the

MS model. Although the trajectory shows clear oscillations about the mean (about

three complete cycles form time 24h to time 72h), 97% of the data points lie inside

⌦. We repeat the comparison for all 30 time series from the experiments (reported in

Figure 6-8(a)). The plot shows that the envelope ⌦ provides a good approximation for

the amplitude of the fluctuations for most of the experimental trajectories.

6.3.2 Understanding the transient and asymptotic dynamics

In order to understand the interplay between the transient oscillatory dynamics and

asymptotic exponential growth, we begin by writing down the equations governing the

dynamics of the expected number of cells in each stage x̄ = E [X]. Here “expected”

should be interpreted to mean the average over many experiments with precisely the

same initial condition — we will later see that the variability of the initial condition is
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Figure 6-2: Comparison between experimental data and model prediction for the time evolution
of Q(t). One time series trajectory obtained from the experiments is plotted (blue line), together
with the envelope of two standard deviation (light grey region) predicted using the MS model.
The parameters of the MS models are obtain by fitting the distribution of the total cell-cycle
time and G1 duration (see Section 6.5.4): K = 92, ↵K = 33, � = 4.96h�1 and N0 = 155.

a strong contributor to the emergence of oscillations. From the model formulation we

directly obtain
dx̄

dt
= �Sx̄ , (6.2)

where � is the rate of progression through the model stages, and S is the corresponding

stoichiometry matrix. This matrix has non-zero entries Sk,k = �1, Sk,k+1 = 1 for

k = 1, . . . , K � 1 describing progression between stages, and SK,K = �1, S1,K = 2

describing cell division.

For the purpose of the analysis, we assume � = K throughout, so that the average

cell-cycle time is normalised to 1. It is an easy exercise to see that the characteristic

polynomial of the matrix S is given by P(y) = (y+1)K �2, from which the eigenvalues

of S are computed as �k = ⇠k 2
1
K � 1 for k = 1, . . . , K, where ⇠k = e2⇡ik/K is a K-th

root of unity. By solving a series of recursive equations, one can write down the left-

and right-eigenvectors associated with the k-th eigenvalue of S, which we denote uk

and vk, respectively. Specifically, we have

uk
j =

2�K

(1 + �k)j
, vkj =

1

K

(1 + �k)j

2�K
. (6.3)

We drop the index k whenever we refer to the eigenvalue with maximum real part and

the corresponding eigenvectors, i.e. � = �K = 2
1
K � 1, u = uK and v = vK .

Notice that from system (6.2) we can write x̄(t) = eKtS x̄0, where x̄0 denotes the

initial number of cells per stage. In order to study the matrix exponential eKtS , we

first notice that we can write down the (i, j) element in terms of the eigenvalues and
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eigenvectors of S as
⇥
eKtS⇤

i,j
=

KX

k=1

uk
i v

k
j e

K�kt . (6.4)

Notice that as t ! 1 the leading term of the righthand side in equations (6.4)

is uivjeK�t and, hence x̄(t) ⇠ ueK�t determines the long-time behaviour of system

(6.2). We can use this fact to study the limiting behaviour of Q: we write Q̄(t) =
P↵K

i=1[e
KStx̄0]i/

PK
i=1[e

KStx̄0]i and by looking at the first two leading order terms of

(6.4), we obtain limt!1 Q(t) =
P↵K

i=1 ui = 2(1�2�↵) = Q⇤. Notice that convergence to

Q⇤ occurs with an exponential decay rate given by the spectral gap of the stoichiometry

matrix, <[�K�1] � �K (see Figure 6-3).

We now focus on the transient behaviour of the system (6.2). We substitute the

expressions (6.3) into the formula (6.4) and, by exploiting a remarkable identity of

the Mittag–Le✏er function [Paris, 2002], we are able to transform the finite sum over

eigenvalues on the right-hand side of (6.4) into an infinite sum over the cycles of the

oscillatory solutions. Precisely, we write

⇥
eKtS⇤

i,j
=

1

K

KX

k=1

(1 + �k)
j�ieK�kt . (6.5)

=
+1X

n=0

1

2⇡i

I
2n(1 + z)�1�Kn�(i�j)eKztdz (6.6)

=
+1X

n=0

'n(t, i, j) , (6.7)

where 'n(t, i, j) =
(Kt)Kn+i�j

(Kn+i�j)! 2
ne�Kt.

We can now use the expression (6.7) to approximate eKtS for short times, by trun-

cating the sum over n to a finite index, n̄. For example, let us consider an initial popula-

tion of N0 cells perfectly synchronised at the beginning of the cell cycle, i.e. x̄0 = N0e1.

Then we define Gn̄ = N0
P↵K

k=1

Pn̄
n=0 '(n, i, 1) and Nn̄ = N0

PK
k=1

Pn̄
n=0 '(n, i, 1). In

Figure 6-3 we plot Qn̄ = Gn̄/Nn̄, for n̄ = 0, 1 and 3, together with Q obtained by

solving system (6.2) numerically. The plot illustrates how each term of the sum (6.7)

contributes one additional oscillation to the transient dynamics of the proportion of

G1-phase cells. We now have a complete picture of how oscillations propagate on av-

erage in the growing population. It remains for us to show how they are created and

sustained.

6.3.3 Finite-size e↵ects trigger and amplify oscillations

There are two sources of randomness that are relevant to our model cell population

growth: the choice of the initial state, and the timing of cell division events. In order

to take into account the stochasticity in the initial population of cells we mimic the

sampling procedure of the experiments. We assume that a sample of average size N0

cells is drawn from the flask at time t = 0. Since the cell culture in the flask has
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(a)

Figure 6-3: The transient oscillatory dynamics. The figure shows the plot of the ratio Q(t)
obtained numerically solving the deterministic system (6.2) (blue solid line) initialised with
X(0) = N0e1 and parameters K = 40, N0 = 100 and ↵ = 0.4. The dashed lines represent the
short-time approximation obtained by truncating expression (6.7) up to n̄ = 0 (yellow), n̄ = 1
(pink) and n̄ = 2 (green). The red solid line shows the exponential decay of the oscillations.

been maintained at a subconfluent cell density in fresh growth medium to prevent any

synchronisation due to G1-arrest [Beaumont et al., 2016], we consider the population

of the flask to have reached the invariant stage distribution u. The random sampling of

the number of cells in each stage is modelled by using K independent Poisson random

variables, Xi(0) ⇠ Po(uiN0), for i = 1, . . . , K, describing the number of cells sampled

for each stage.

Next, we aim to quantify the e↵ects of inherent stochasticity in the agent-based

model. Performing a finite-size expansion of the master equation associated with the

model [Morris and Rogers, 2014, Gardiner, 2009], we derive a system of stochastic

di↵erential equations for the density of cells relative to the initial population size. Let

x = X/N0, then for large but finite N0 we obtain the Langevin equation

dx

dt
= KS x +

r
K

N0
S ⌘(t) , (6.8)

where ⌘(t) is a K-dimensional white noise vector with correlator E[⌘i(t)⌘j(t0)] =

xi�ij�(t� t0). The first term on the right describes the average behaviour of the model,

and is the same as in equation (6.2). The second term captures the stochastic contri-

butions arising from the finiteness of the population.

To get more insight into the behaviour of this model, we first write down an

Ornstein-Uhlenbeck (OU) model which approximates the behaviour of the Langevin

equation (see Section 6.5.1). By studying the OU process, and in particular its corre-
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lation matrix (see Section 6.5.2), we calculate the envelope of two standard deviations

of Q, defined as

⌦(t) = [Q⇤ � 2�Q(t), Q⇤ + 2�Q(t)] , (6.9)

where �Q(t) denotes the standard deviation of Q(t). All the details of the derivation

are discussed in Section 6.5.

(a)

(b)

Figure 6-4: Finite-size e↵ects amplify the the oscillations of Q. The two panels show the
overlay of the three envelopes ⌦ (light grey region with solid line), ⌦̄ (medium grey region
with dashed line) and ⌦u (dark grey region with solid line) together with two trajectories of
Q(t) obtained by solving numerically (by using the Euler-Maruyama method with time step
�t = 10�3) the Langevin model (red line) and the deterministic system (6.2) (blue line) with
the same, random initial condition. The two panels show two independent realisations of the
stochastic models.

We denote with ⌦, and ⌦̄, the envelopes of the Langevin model and the system

(6.2), respectively, with initial random sampling. We denote with ⌦u the envelope of

the Langevin model with deterministic initial condition x0 = u. In the two panels of

Figure 6-4 we overlay ⌦, ⌦̄ and ⌦u, together with the numerical trajectories of Q, one
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(red) obtained by solving the Langevin equation (6.8) and one (blue) by solving system

(6.2), both initialised with the same random initial condition.

The results of Figure 6-4 show that in all three cases considered, accounting for the

finite-size stochasticity can lead to a persistent departure of Q from the equilibrium

value. In the two cases which account for the initial random sampling, ⌦ and ⌦̄, the

envelopes present an evident initial departure from the equilibrium which is sustained

for several cell-cycle times and halving after approximately four periods. The inherent

dynamical stochasticity of the Langevin model tends to amplify the departure from the

equilibrium as evident in ⌦. Interestingly, both these envelopes have slightly fluctuating

edges. On the contrary, the envelope initialised at the invariant distribution, ⌦u shows

an initial, fast expansion of the envelope, followed by a phase of slower decay. Notice

that ⌦u lies well inside ⌦ for all the time interval considered which suggests that

the e↵ects of the initial random sampling play a role for the entire duration of the

simulation. The numerical trajectories overlaid show good agreement with the these

findings. In particular, the solution of system (6.2) (blue line) lies well inside ⌦̄ while

the simulation of the Langevin equation (red line) shows a larger departure and it

remains almost entirely inside the envelope ⌦.

Notice that both trajectories considered in Figure 6-4(a) show clear oscillations

about the origin with similar phase. The Langevin solution leads to an amplification of

the amplitude of the oscillation appearing in system (6.2). Although this phenomenon

is common, due to the stochasticity of the Langevin model, in some cases the oscilla-

tions appear only in the Langevin model and not in the deterministic model as shown

in Figure 6-4(b).

In order to quantify the appearance of the oscillations, we look at the time auto-

correlation function of G(t), that we define as

A(t, t0) = ⇢
⇥
G(t), G(t0)

⇤
, (6.10)

where ⇢ denotes the correlation coe�cient, defined in equation (6.20) and can be com-

puted using the formula for the correlation matrix (see Section 6.5). Figure 6-5 shows

the evolution of the autocorrelation function, A(t, t0) as function of t0, for t = 0, 2 and 4,

respectively. In each panel we plot A(t, t0) calculated analytically, using the correlation

matrix, (black solid line) and the simulated value obtained by averaging 50 indepen-

dent trajectories of the Langevin model (red dashed line). All three panels show a good

agreement between the analytical formula and the simulated counterpart. Moreover,

the results confirm the presence of strong fluctuations on the time autocorrelation of

G with a period of exactly one cell cycle. As Q converges to the equilibrium, the am-

plitude of the oscillations decreases and the autocorrelation function A(t, t0) tends to

unity.
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Figure 6-5: The time-autocorrelation function. The three panels show the time-autocorrelation
function, A(t, t0) at time t = 0, 2 and 4, as indicated in the figure, obtained analytically (back
line) and by averaging over 50 independent simulations of the Langevin model (red dashed line).
The parameters of the model are the same as in Figure 6-2. Time is normalised with respect to
the average cell-cycle time.

6.4. Discussion

In this paper we studied the impact of demographic noise in a proliferation assay of

melanoma cells and the extent to which finite-size e↵ects can explain the synchronisa-

tion in the cell-cycle phase that we previously observed [Vittadello et al., 2019b]. We

adopted a MS approach to model the cell-cycle time distribution and the G1 dura-

tion and we derived both a deterministic and a stochastic representation for the time

evolution of Q. We found that the stochasticity in the initial sampling of cells leads

to a departure from the invariant distribution which triggers a transient oscillatory

phase. The presence of intrinsic stochasticity in the dynamics tends to amplify these

oscillations and delay their exponential decay.

We characterised the transient and asymptotic phases of the MS model by deriving

an analytical formula for the envelope of two standard deviations for the amplitude

of the oscillations. Finally, by comparing our results with the experimental data from

a proliferation assay of C8161 melanoma cells, we found that the amplitude of the

experimentally observed fluctuation lies inside the envelope predicted by the model.

Our findings suggest that finite-size stochasticity has a crucial role in the population

dynamics of the proliferation assay and it can provide an explanation for observed

synchronisation in the subpopulation of the cell cycle phases.

From an experimental point of view, our results bring attention to the importance

of the sample size when performing experiments which involve small populations. In

particular, any data interpretation should be carried with the role played by finite-size

stochasticity in mind. In this paper we develop a general protocol that, in principle,
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can be applied to other experiments in order to determine the extent of e↵ects due to

finiteness of the cell population.

From a theoretical point of view, our study provides a further understanding of

the relation between cell-cycle distribution and global population dynamics. Whilst

our analysis employed a MS mode, the results of our analysis are amenable to ex-

tension to more general type of cell-cycle distributions. In fact, for certain choices of

the model parameters, the Erlang distribution adopted in this paper is an excellent

approximation of a Gaussian distribution. In Section 6.5.5 we compute the relative

entropy (Kullback-Leibler divergence) between an Erlang and Gaussian distribution to

show that for increasing values of K, the two distributions converge. In principle, one

could use this fact to study the applicability of our findings to Gaussian cell-cycle time

and, hence, compare our results with other similar studies which rely on a Gaussian

approach [Jafarpour, 2019, Pirjol et al., 2017].

The mathematical framework that we designed in this paper represents a first step

towards understanding the fluctuating phenomenon observed in proliferating cell popu-

lations. In order to simplify the analysis, however, some biological details were omitted

in the model and they will be the object of future studies. For instance, in all the

models considered in this paper we do not take into account the spatial extent of the

system and individual cells were not associated with a physical location. Accounting

for cell motility and spatial correlations of mother-daughter cells is likely to play an

important role in the context of synchronising subpopulations [Baker and Simpson,

2010]. In particular, we should expect cell motility to break the spatial correlation of

cells leading to faster decay of the oscillations.

Another avenue of improvement of the models presented here is accounting for cell-

cell interactions, such as cell adhesion or contact inhibition. Obviously, this would lead

to a wide range of questions about the relation between these mechanisms and the

appearance, or sustenance, of the oscillations. Despite their great biological interest,

these questions are beyond the scope of this paper and we will investigate them in the

future.

6.5. Methods

6.5.1 The OU approximation

We can simplify the Langevin model given by equation (6.8) by replacing the depen-

dence on x in the correlator of ⌘(t) with E [x] = KueK�t. The resulting equation

consists of the high-dimensional non-autonomous Ornstein-Uhlenbeck (OU) process

dx̂

dt
= KSx̂ + K

s
eK�t

N0
S (t) , (6.11)

142



where  (t) is a K-dimensional white noise vector with correlator E[⌘i(t)⌘j(t0)] =

ui�ij�(t � t0). We test the behaviour of the two models, the OU process given by

equation (6.11), and the Langevin equation (6.8) in Figure 6-6. The results suggest

that the OU process is an accurate approximation of the Langevin equation, in partic-

ular the presence of the oscillations is evident in both the modelling regimes (Figure

6-6(a)). In Figure 6-6(b), we compare the distributions of Q(t) at times t = 1, 3 and 5

obtained by averaging over 1000 independent simulations, which show good agreement

between the two models.

0 1 2 3 4 5 6 7

time (CC)

0.4

0.44

0.5

Q

OU process
Langevin model

(a)

(b) (c)

Figure 6-6: Comparison of OU process and the Langevin equation model. Panel (a) shows two
evolutions of Q for the OU process (red) and the Langevin equation (blue). The two trajectories
are realised using Euler-Maruyama method with time step �t = 10�3 and the same randomly
generated numbers. The parameters are the same as Figure 6-2 and time is normalised with
reference to the average cell-cycle time. In panel (b) we plot the distribution of Q at three time
points (t = 1, t = 3 and t = 5). The two overlaid histograms represent the distributions of
1000 independent simulations of the OU process (red) and the Langevin Equation (blue). The
black line represent the distribution N(Q⇤, �Q(t)). All the parameters are the same as Figure
6-2. Panel (c) shows the asymptotic value of CVG and CVN for a range of parameters choices,
N0 and K. The red dot corresponds to the parameters inferred from the data in Section 6.5.4,
indicating that Q will be Gaussian distributed for biologically realistic parameter values.
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6.5.2 The correlation matrix

For a stochastic initial condition, x0, as described in Section 6.3.3, we can compute the

correlation matrix at time t = 0, as

C0 = E0 [xi(0)xj(0)] =

8
<

:
uiuj for i 6= j

u2
i +

ui
N0

for i = j
. (6.12)

We can rewrite this as C0 = uuT + 1
N0

M , where M = Diag(u).

We then focus on computing the correlation matrix C(t, t0) = E
⇥
x̂(t) x̂T (t0)

⇤
for

the OU process (6.11), as an approximation for the correlation matrix of the Langevin

model. By applying general results for OU processes (See Section 4.5 of [Gardiner,

2009]) we have:

C(t, t0) = eKtSC0e
Kt0ST

+
K

N0

Z min(t,t0)

0
eK(t�⌧)SS

⇣
MeK�⌧

⌘
ST eK(t0�⌧)ST

d⌧ . (6.13)

We can use expression (6.5) and the fact that eKtSuuT eKt0ST
= uuT eK(t+t0)�, to write

down the (i, j) element of (6.13) for t < t0 as

Ci,j(t, t
0) =uiuje

K(t+t0)� +
1

N0K2

KX

k,l,m=1

1

(1 + �k)i�m

1

(1 + �l)j�m

2�

(1 + �)m
eK(t�k+t0�l)

+
1

N0K

KX

k,l,m=1

�k

(1 + �k)i�m

�l

(1 + �l)j�m

2�

(1 + �)m

Z t

0
eK[(t�⌧)�k+(t0�⌧)�l+�⌧ ] .

(6.14)

Substituting the expressions (6.3) for uk and v
k, using the formula

KX

m=1

(1 + �k)m(1 + �l)m

(1 + �)m
=

(1 + �k)(1 + �l)

(1 + �k)(1 + �l) � (1 + �)
(6.15)

and upon rearranging terms, we obtain

Ci,j(t, t
0) =

4�2

(1 + �)i+j
eK(t+t0)� +

2�

N0K2

KX

k,l=1

(1 + �l)1�j

(1 + �k)i�1

1

(�k + �l � �)

"
eK(t�k+t0�l)

� �k�l

(1 + �k)(1 + �l) � (1 + �)
eK((t0�t)�l+t�)

#
.

(6.16)

6.5.3 The envelope of two standard deviations of Q

We recall the definition of the envelope of two standard deviations of Q(t) as ⌦(t) =

[Q⇤ � 2�Q(t), Q⇤ + 2�Q(t)], where �Q(t) denotes the standard deviation of Q(t). To

compute �Q we employ the OU approximation (see Section 6.5.1). From a fixed initial

condition, the solutions of (6.11) evolve as a Gaussian process with mean x̄(t)/N0. We
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can write G(t) ⇠ N (µG(t), �G(t)) and N(t) ⇠ N (µN (t), �N (t)) where

µG(t) = Q⇤e
K�t, �2

G(t) =
↵KX

i,j=1

Ci,j(t, t) � Q2
⇤e

2K�t, (6.17a)

µN (t) = eK�t, �2
N (t) =

KX

i,j=1

Ci,j(t, t) � e2K�t . (6.17b)

Notice that Q is defined as a ratio between two Gaussian distributions and, in

general, this does not imply that Q(t) is Gaussian. However, Hayya et al. [1975] showed

that the ratio of two Gaussian can be well approximated as a Gaussian, under certain

conditions on the coe�cient of variation (CV) of the numerator and denominator.

Precisely, provided that

CVN =
�N

µN
< 0.39 and CVG1 =

�G1

µG1
> 0.005 (6.18)

Hayya et al. [1975] demonstrate that Q is close to a Gaussian distribution. Moreover,

we can approximate the variance of Q by Taylor expanding to the second order which

leads to

�2
Q ⇡ �2

N
µ2
G

µ4
N

+
�2
G

µ2
N

� 2⇢µG
�N�G

µ3
N

=
1

µ2
N

⇥
�2
NQ2

⇤ + �2
G � 2�N�GQ⇤ ⇢ [G, N ]

⇤
, (6.19)

where ⇢ denotes the correlation coe�cient, defined as

⇢ [Y1, Y2] =
E [Y1Y2] � E [Y1]E [Y2]p

Var [Y1] Var [Y2]
. (6.20)

Notice that we can compute E [G(t)N(t)] in equation (6.20) in terms of the correlation

matrix C as

E [G(t)N(t)] =
KX

i=1

↵KX

j=1

Ci,j(t, t) .

We now need to check that the conditions (6.18) are satisfied for biologically relevant

parameter choices. By studying the expressions (6.16) and (6.17), we obtain that

CVN (0) = 1/
p

N0 and CVG(0) = 1/
p

Q⇤N0 which satisfy the conditions (6.18) for

↵ 2 [0, 1] and N0 2 [10, 104]. In order to check the validity of the conditions in the

long-term, we look at the leading terms of the expression (6.16). We find that

lim
t!+1

CVN (t) = lim
t!+1

CVG(t) =
1 + �

K�
p
2N0

. (6.21)

In Figure. 6-6(c) we evaluated this expression for any K 2 [1, 100] and N0 2 [20, 500].

Our findings show that the limit of CVG and CVN for t ! +1 lies in the interval

(0.01, 0.32) for the range of parameters considered which suggests that the conditions

(6.18) are satisfied for biologically relevant choices of the parameters. Notice that the
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plots in Figure 6-6(b) provide further confirmation of this by showing good agreement

between the distribution of Q and the Gaussian distribution N (Q⇤, �Q(t)).

6.5.4 Parameters inference

To infer the parameters of the MS model, we simultaneously fit the distribution of the

total cell-cycle time and of the G1 duration of 200 randomly selected cells.

Let HT and HG1 denote the histogram representations of the pdf of the total

cell-cycle time and the G1 duration, respectively, with a bin width of one hour. For

example, (HT )i denotes the proportion of cells with a cell-cycle time in the interval

[ih, (i + 1)h). We denote with HE(K,�) the histogram obtained by discretising an

Erlang distribution with parameters (K, �) with the same bin width, i.e. (HE(K,�))i =
�K

(K�1)!

R i+1
i xK�1e��xdx.

For a given combination of parameters, (K, �, ↵), one can consider the statistic

I(K, �, ↵) = kHT � HE(K,�)k1 + c kHG1 � HE(↵K,�)k1 , (6.22)

where c > 0 is a constant and k � k1 denotes the 1-norm. Notice that the constant c

can be interpreted as a weight to give more (c > 1) or less (c < 1) priority at the fitting

of the G1 distribution compared to the one of the total cell-cycle time distribution. For

simplicity we choose c = 1, which corresponds to equal levels of priority for the two

distribution fits.

To determine the parameter combination which provides the best simultaneous fit of

the two distribution, we evaluated the function I in the parameter range K 2 [10, 150]

� 2 [1, 10] and ↵ 2 [0, 1]. We find that the combination K⇤ = 92, �⇤ = 4.96 and

↵⇤ = 33/92 minimises the statistic I in the parameter region considered and, hence,

we select these parameters for the MS model.

To infer the average population size at the moment of the initial sampling, N0,

we first measure the average population size at the beginning of the recording, N24 =

381.1, averaged over the 30 experiments. Since the average population size grows

exponentially at rate �, we project back from time t = 24h and we obtain the average

sample size as N0 = N24 exp(�24�) ⇡ 155.

6.5.5 The Kullback Leibler divergence between Erlang and Gaussian

distribution

We compute the relative entropy (Kullback-Leibler divergence, DKL) between an Er-

lang and a Gaussian distribution as a measure of the distance between the two distri-

butions.

For two distributions, p(x) and q(x), the KL divergence is defined as:

D(p, q) =

Z 1

�1
p(x) log


p(x)

q(x)

�
dx . (6.23)
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We set p(x) to be the probability density function (pdf) of an Erlang(K, �) and q(x)

to be the pdf of a Gaussian with same mean and variance, i.e. N
⇣
K
� , K

�2

⌘
. We then

obtain

D(K, �) =D

✓
p (K, �) , q

✓
K

�
,
K

�2

◆◆

=
�K

(K � 1)!

Z 1

0
xK�1e��x log

"
�K�1

p
2⇡K

(K � 1)!
xK�1e

�2

2K

⇣
x�K

�

⌘2
��x

#
dx

= log

"
�K�1

p
2⇡K

(K � 1)!

#
�K

(K � 1)!

Z 1

0
xK�1e��xdx

+ (K � 1)
�K

(K � 1)!

Z 1

0
xK�1 log(x)e��xdx

+
�K

(K � 1)!

Z 1

0

"
��x +

�2

2K

✓
x � K

�

◆2
#

xK�1e��xdx .

(6.24)

Notice that the first integral of Equation (6.24) is exactly the pdf of an Erlang, which

simplifies to unity. The second and third integral in (6.24) require more work. By using

integration by parts and upon simplification, we get to the final expression

D(K, �) = log

"
�K�1

p
2⇡K

(K � 1)!

#
+ (K � 1) (HK�1 � log(�) � �) � K +

1

2
, (6.25)

where HK�1 =
PK�1

i=1
1
i is the (K � 1)-th harmonic number and � denotes the Euler-

Mascheroni constant.

Using the expression (6.25) it is possible to show that D(K, �) is a decreasing

function of K and D(K, �) ⇠ O(K�1) for K ! +1. This is not a surprise, since by

central limit theorem we know that the Erlang distribution converges to a Gaussian

with same mean and variance. Since the CV of an Erlang(K, �) is given by K� 1
2 , we

can rephrase by saying that the KL divergence scales proportionally to the square of

the CV of the Erlang distribution.

Figure 6-7 shows the plot of D(K, �) with � = K for di↵erent values of K. In

the overlaid panels the two distributions are compared for K = 5, 10, 20, 30 and 60.

The results highlight the good level of similarity between the Erlang and Gaussian

distributions for large K - small values of the CV. For example, for K > 25, i.e.

CV< 0.2, we have D(K, K) < 0.02 which corresponds to good agreement between the

two distributions.
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Figure 6-7: The Kullback Leibler (KL) divergence between an Erlang distribution and Gaus-
sian distribution. The black dotted line in the main panel shows the KL divergence between an
Erlang distribution of parameters (K, K) and a Gaussian distribution of parameters (1, 1/K)
as function of K. The four overlaid panels show the comparison of the two distributions, Erlang
(blue) and Gaussian (Red), for K = 5, 10, 30 and 60 (from left to right).
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Figure 6-8: Comparison 30 time series obtained from the data (blue lines), together with the
envelope of two standard deviations, ⌦ (light grey regions) predicted using the MS model. The
parameters of the MS models are obtain by fitting the distribution of the total cell-cycle time
and G1 duration (see Section 6.5.4): K = 92, ↵K = 33, � = 4.96h�1 and N0 = 155.
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6.6. Conclusions

In this chapter we studied the impact of stochasticity in a structured population of

melanoma cells. We employed a multi-stage model to represent the cell cycle and

by studying corresponding macroscopic and mesoscopic models we elucidated the role

of finite-size e↵ects in the emergence of stochastic fluctuations. The results of the

comparison with the experimental data show that the demographic noise intrinsic in

cell proliferation events is capable of recapitulating the fluctuations observed in the

experiments.

In the context of the thesis, the focus of this chapter is on how to interpret biologi-

cal observations which are naturally a↵ected by intrinsic noise due to the stochasticity

of cellular events. This study provides a good example of a model system in which

accounting for stochastic e↵ects at the microscopic level of a single cell plays a de-

cisive role in the analysis of the experimental observations and the interpretation of

macroscopic phenomena.
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Chapter 7

Final Conclusions and Outlook

The main object of my PhD has been the study of complex phenomena arising in cel-

lular populations. In this thesis I present a series of studies in which, by employing a

multiscale modelling approach, I investigate the e↵ect of certain microscopic properties

of cell behaviour on the total population dynamics.

In Chapter 2 we set the context of the thesis by providing a general introduc-

tion to the topic of multiscale modelling paying particular attention to the process of

cell migration. We reviewed the common mathematical framework which allows the

derivation of a deterministic, macroscopic PDEs from a stochastic ABM of cellular

behaviour. In Chapter 3 we presented our work on modelling the interaction of direc-

tional persistence and volume exclusion in a multiscale fashion. We derived di↵usive

macroscopic models from a set of ABMs which incorporate the tendency of cells to

persist in their direction for short periods of time together with exclusion properties

of increasing complexity. The results show good agreement between the two levels of

description, but they also highlight some peculiar behaviours of such models including

density spikes, anisotropy and a spontaneous form of aggregation. Inspired by these

results, in Chapter 4 we studied the problem of detecting the presence of aggregation

in a multi-agent system by quantifying the spatial pairwise correlation of the agents.

We analysed a list of PCFs accounting for di↵erent distance metrics and boundary

conditions which allow the measurement of pair-correlation in discrete domains such

as two- and three-dimensional lattices and other more general examples.

In the second part of the thesis, we shifted the main focus of the study to cell

proliferation. In Chapter 5 we investigated the role played by the cell-cycle time distri-

bution in the context of an invasion front. In particular, we elucidated to what extent

and in what way the distribution of the cell cycle can a↵ect the speed of a cellular

invasion. One the most important results of this study is provided by Theorem 2, in

which we determined analytically the range of speed for a class of biologically motivated

distributions known as hypo-exponentials. Our findings suggest that, for realistic dis-

tributions, the range of invasion speed is primarily determined by the average cell-cycle

time, whereas the higher moments of the distribution play a relatively small role and

their contribution is limited. Contrastingly, in Chapter 6 we presented a study in which

accounting for the cell-cycle time distribution is crucial and it can influence the analysis

of experimental observations. We showed that the stochasticity intrinsic in the process

of cell proliferation generates long-lasting damped oscillations in the proportion of cells

in the G1-phase of the cell cycle. By parametrising the model using experimentally

derived data from a proliferation assay of melanoma cells, we found that the oscillations
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triggered by the intrinsic demographic noise are quantitatively consistent with those

observed in the experiments. Our findings underline the importance of accounting for

a realistic representation of the stochasticity due to cell proliferation events. We also

described a mathematical protocol to quantify the emergence of noise-induced macro-

scopic phenomena in age-structured populations.

Overall, with this thesis I aim to improve the understanding of the connection

between single cell behaviour and global population dynamics. The research presented

in this thesis left several questions unanswered and raised more challenges for future

studies. In the following section I highlight some avenues of further investigation which

I consider of particular interest.

7.1. Future research

PCF as spatial summary statistics for directional persistence

One aspect of the research which is yet to be explored is whether the PFC defined in

Chapter 4 is a suitable summary statistic to measure directional persistence in crowded

environments. The typical approach to infer a set of parameters, ⇥, for a general

mathematical model M(⇥), consists of using a likelihood function which expresses the

probability of observed data, D, under a choice of parameters, ⇥. Nevertheless an an-

alytical formula for the likelihood function for complex models is often hard to obtain

or computationally prohibitive and alternative approaches are necessary. Approximate

Bayesian computation (ABC) is an alternative probabilistic approach for estimating

the posterior probability distribution that ⇥ are the model parameters which generate

the data D. Depending on the nature of the biological process, the dimensionality of

the data can make comparison between data sets extremely expensive or intractable.

A way to reduce the dimension of the data, is to utilise a summary statistic of the data,

S(D), and an appropriate measure of distance between outcomes of the summary statis-

tic, dS(D1, D2). Given a chosen summary statistic S(D), the corresponding distance

measure, dS , a prior distribution ⇡ and a threshold ✏, the ABC algorithm consists of

repeating the following steps n times :

1. sample a set of parameters ⇥̃ from the prior distribution ⇡;

2. generate the data D̃ using the model with parameters ⇥̃: D̃ ⇠ M(⇥̃);

3. compute the distance between the synthetic data and the experimental data ac-

cording to the summary statistic, ⇢ = dS(D̃, D);

4. accept the value of ⇥̃ if ⇢ < ✏.

For large values of n, the set of accepted values of the algorithm is a sample of param-

eter values distributed approximately according to the desired posterior distribution.

The choice of the summary statistic is not obvious, yet is crucial, since the e↵ectiveness
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of the algorithm to identify the model parameters depends on the chosen S [Ross et al.,

2017]. One way to test if a certain summary statistic S is e↵ective for estimating the

model parameters from real data, is to employ the ABC algorithm on synthetic data,

D̂ ⇠ M(⇥̂), generated for a chosen set of parameters ⇥̂. If the resulting posterior dis-

tribution is largely focused around the correct parameters, ⇥̂,the the summary statistic

is suitable.

Many spatial statistics have been suggested to measure directional persistence (see

Codling et al. [2008] for a thorough review), the most popular being the mean squared

displacement (MSD) [Okubo and Levin, 2013], the mean dispersal distance (MDD)

[Bovet and Benhamou, 1988, Byers, 2001] and the path tortuosity [Benhamou, 2004].

These statistics have complementary strengths and limitations, as discussed by Codling

et al. [2008]. However, since they all focus on single particle trajectories, their usage

is typically limited to situations in which particle interactions are rare and in which

excluding properties are often ignored [Codling and Hill, 2005].

PCFs have been shown to perform well as summary statistics in scenarios where

spatial correlation is important [Johnston et al., 2014]. In the context of directional

persistence, therefore, it is plausible that employing a PCF as summary statistic - or

combining it with one of other existing functions [Harrison and Baker, 2017]), might

improve the performance of an ABC algorithm in scenarios in which crowding plays an

important role. Chapter 3 and 4 provide all the fundamental elements to investigate

this hypothesis using a spatially discrete approach, which will be undertaken in future

work.

Phase-dependent persistence and invasion speed

Another interesting aspect which requires further work is the connection between direc-

tional persistence and the cell-cycle. Despite these two aspects of cell behaviour having

been extensively studied independently, it is only in recent years that there has been

an increasing interest in studying the connections between properties of cell movement

and cell-cycle phase [Vittadello et al., 2019a, Baker and Röst, 2019]. In particular, it

remains unclear whether the intensity of directional persistence can change during the

cell-cycle and what impact this phenomenon would have on an invading front.

In this thesis, we introduce two new modelling approaches to study persistence of

motion and the cell-cycle progression, in Chapter 3 and Chapter 5, respectively. By

considering an appropriate combination of the ABMs and of the corresponding deter-

ministic representations, it is possible to account for phase-dependent persistence and

to investigate the impact on the invasion speed. However, several challenges will arise

in the analysis of these models. In particular the presence of stage-dependent di↵usiv-

ities in the deterministic representation undermines most of the analytical wavespeed

analysis carried out in Chapter 5 and more sophisticated techniques need to be em-

ployed.
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The role of spatial dispersion in in structured growing populations

An important avenue of research regarding cell proliferation is related to the last pa-

per presented (Chapter 6). Throughout this study, the role of spatial e↵ects and

cell motility has been omitted completely for mathematical simplicity. In reality, cell

division naturally induces positive correlation at short-distances by displacing daugh-

ter cells at the same cell-cycle phase, close to each other. This local synchronisation

phenomenon, however, is counteracted by the e↵ect of cell migration which tends to

disperse synchronised cells through the domain. In other words, within this tradeo↵

between proliferation-induced correlation and motility-induced dispersion lies an im-

portant dynamic of the proliferation assay which should be taken into account when

studying fluctuating oscillatory events, like those presented in Chapter 6.

In fact, the study reported in Chapter 6 represents a first step for the understand-

ing of the emerging fluctuations. Clearly, the same mathematical framework could be

adapted to account for spatial extent and cell motility. For example, agents could be

allowed to perform a simple random walk on a two-dimensional lattice which would lead

to di↵usive terms in the macroscopic description of the same form as those presented in

Chapter 5. However, most of the correlation analysis carried out in Section 6.5 would

become considerably more complicated and probably intractable. A way to simplifying

the analysis, would be by considering a finite set of Langevin equations, as equation

(6.8), describing the dynamics of the cell-stage distribution in local regions of the do-

main. Cell motility can then be incorporated in the model as a series of reactions terms

between Langevin equations of adjacent regions. By performing a similar analysis, as

in Chapter 6, for each Langevin model one can study the emergence of local oscillations

as function of cell motility and of local density. An alternative approach consists of

systematically simulating the multi-stage ABM and employing a PCF, as in Chapter

4, to study the interplay of proliferation and dispersion in light of the emergence of

local phase synchronisation.

In summary, this thesis represents an exploration of multiscale phenomena aris-

ing from cell behaviours and their interaction. We designed and analysed a series of

microscopic and macroscopic models capturing some fundamental aspects of cell mi-

gration and cell proliferation. From a general perspective, the studies presented in this

thesis demonstrate the power of a multiscale modelling approach which, by exploiting

complementary strengths of di↵erent models allows a deeper understanding of complex

phenomena.
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