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Summary

We investigate stability and convergence properties of forced Lur’e systems, that is, sys-
tems comprising a linear system in the forward path, a static nonlinearity in the feed-
back path and a forcing or input. In both the finite- and infinite-dimensional settings,
we develop various sufficient conditions for when such systems are input-to-state stable,
incrementally input-to-state stable, and exhibit the converging-input converging-state
property. We also study the effect that asymptotically almost periodic inputs have on
corresponding state and output trajectories of the aforementioned systems. Finally, we
note that we consider very general versions of forced Lur’e systems, and so we are able
to apply our results to a variety of applications. For instance, we deduce stability and
convergence properties of ‘four-block’ Lur’e systems, which are forced Lur’e systems
where the input and output spaces are split in two and only one part of the output is
utilised for feedback and is fed back into one part of the input. We also deduce stability
properties of sampled-data integral control systems.
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Notation

We denote the sets of real and complex numbers by R and C, respectively. Furthermore,
we denote the set of integers by Z and the set positive integers by N. We define
Zy = NU{0} and R} := [0,00). For a > 0, we define D, := {z € C: |z| < a} and
E,:={z € C:|z| > a}, and for o € R, we define C, := {s € C : Re(s) > a}. For
convenience, we label D := D; and E := E;. Furthermore, we set 0D := {z € C: |z| =
1} and clos(E) := {2z € C: |z| > 1}.

If 7 € Z4, then we define 7 :={0,1,...,7} and 7 := {7,7 + 1,...}. Furthermore, for
t € R, we define |t]| to be the greatest integer less than or equal to ¢, and [¢] to be
the smallest integer greater than or equal to t. We note that |t/2] + [¢/2] =t for all
tez,.

For two nonempty sets S1, 52, we denote the Minkowski sum of S7 and S9 by S; + Sa,
that is,

51+SQZ{81+82:81651,82652}.

For a normed vector space U, we denote the norm on U by | - ||[y. When U is finite-
dimensional, since all norms are equivalent, we will drop the subscript U notation and
will just write || - ||. Moreover, for a Hilbert space W, we denote the inner product on
W by (-, )w. If W = C" or R", then we shall simply write (-,-) and take the inner
product to be the standard complex or real inner product, respectively.

For £ € U and r > 0, we define

By(&,r)={CeU:|[(=¢|lu<r} and closBy(&,r)):={CeU:|(—¢|v<r},

and, when the context is clear, we shall drop the subscript U. Further, in the case that
U = C™*P or R™*P_if the context is clear, we shall write B¢ (&, ) := Bemxp(€,r) and

ER(& T) = BR’”XP(&-? T)'

For Banach spaces V', V; and Va, we denote by L£(Vi, V3) the space of bounded linear
operators mapping Vi — Va. We set L(V) := L(V, V). In addition to this, we denote
the spectrum of M € L(V') by o(T). In the finite-dimensional case, we say that a square
matrix M is Schur if its spectral radius is less than one, or, equivalently, if o(M) C D.
Additionally, we say that M is Hurwitz if every eigenvalue of M has negative real part.

We denote the adjoint of M € L(W) by M*, and, in the case that W = R", we shall
denote the transpose of M by M”T. If M € L(W) is self-adjoint, then we say that
M is positive semi-definite if (§, M&)w > 0 for all £ € W, and positive definite if
(&, M&)w > 0 for all € € W\{0}. In the former, we write that M > 0, and in the latter
we write that M > 0. Similarly, we say that M is negative semi-definite if —M > 0,



and negative definite if —M > 0. We write these properties as M < 0 and M < 0,
respectively.

For a given function v : T — U and 7 € T, where T = Ry, R, Z; or Z, we define
Av:T — U by (A;v)(t) =v(t+7) for all t € T. Depending on the sign of 7, we shall
call this function a left or right shift of v and may also say that A, is the left or right
shift operator (of magnitude 7). We set vt := Ajv for all v : Z — U, where Z = Z, or
Z. Moreover, for 7 € Z and u : Z — U, we define the truncation of v of magnitude
T by

u(s), ifser,

(Tru)(s) = {0, if s 1.

If a > 0, we define the Hardy space
HX(V):={H:E, — V :H is holomorphic and bounded},
endowed with the norm

IH|| zrge := sup [[H(z)]|v.

2€Eq

In the situation that a = 1, we set H>*(V) := H{°(V), and if, additionally, V = CP*"™,
then we may sometimes write Hp%,, := H{°(V).

For Z = 7, or 7, we denote the set of functions v : Z — U by U%. Moreover, for
p € [1,00), we let P(Z,U) denote the subspace of U%+ such that

Z lv(R)IE <

[vller := (Z lv(®) Iz > " :

Furthermore, for p > 0, we define the weighted ¢* space

endowed with the norm

1/2
6;2)(24—7 U) =4vE 62 Z+7 (Z H |2 2k> <,

1/2
[0llez := (ZH I? 2’“) :

We let (*°(Z,U) be the subspace of UZ such that supic [|[v(k)||y < oo, endowed with
the norm o]~ 1= supye; [o(R)]lo-

with norm

The preimage of a set W C U under a function f : U — U is denoted by f~1(W),
and in the situation where W = {{}, a singleton set, we shall abuse notation and write
716 = f71({€}). The cardinality of f~1(W) is denoted by # f~1(W).

Finally, we abbreviate the phrase “almost everywhere” to “a.e.”.




Chapter 1

Introduction

In this thesis, we investigate stability and convergence properties of forced Lur’e sys-
tems [81], with a focus on the discrete-time setting. Illustrated in Figure 1.1, Lur’e
systems comprise a linear system in the forward path and a static nonlinearity in the
feedback path. The study of these types of system constitutes absolute stability theory,

v—)z y

Figure 1.1: Lur’e system with linear part ¥, nonlinearity f, output y and input v

which seeks to conclude stability via the interplay of frequency-domain properties of
the linear component and sector properties of the nonlinearity. As early as the 1940s,
Lyapunov approaches have been used to infer global asymptotic stability of unforced
Lur’e systems (see, for example, [53, 66, 71]). Moreover, input/output methods, pio-
neered by Sandberg and Zames in the 1960s, have been utilised to deduce L? and L™
stability (see, such as, [31, 121]).

An interesting notion associated with general controlled nonlinear systems is that of
input-to-state stability (ISS). Originating in the paper [110], roughly, ISS guarantees a
natural boundedness property of the state, in terms of initial conditions and inputs. It
is a well-documented area of research, see for example [28, 61, 62], the survey papers
[27, 113] and the forthcoming references. In the context of forced Lur’e systems, much
work has been completed in determining the extent to which assumptions that guar-
antee absolute stability, can be extended to also ensure ISS [7, 58, 59, 107, 108, 109].
A well-known quality of ISS systems is the 0-converging-input converging-state prop-
erty which, roughly, means that when inputs converge to zero, so do corresponding
state trajectories. Recently, in the paper [15], a general notion of a converging-input
converging-state (CICS) property was defined, and sufficient conditions were presented
that guarantee that forced continuous-time Lur’e systems exhibit this property. We
note that ISS results from the paper [107] were applied to prove the main results.

A related concept to ISS is incremental ISS, which is concerned with bounding the
difference of two state trajectories in terms of the difference of initial conditions and
the difference of inputs. For background information regarding incremental stability
notions for general nonlinear systems, we refer the reader to [5], which constructs a



suite of Lyapunov methods for incremental ISS for finite-dimensional, continuous-time
nonlinear control systems. Related ideas, which have been explored in the contexts
of contraction methods and convergent systems, can be found in [2, 63, 99] and the
references therein.

Frequently in the literature (see, for example, [7, 15, 107, 108]), forced Lur’e systems
of the form
xt = Az + Bf(y) + Bv, y=Cu, (1.1)

or
v = Ar+ Bf(y) +v, y=Cu, (1.2)

or continuous-time analogues, where A, B and C' are appropriately sized matrices, v
is a forcing function, and f is a nonlinear function, have been considered in an ISS
or CICS framework. We call the variables  and y the state and output, respectively.
Of key interest to us in this thesis, is the investigation of stability and convergence
properties of a more general system, namely

v7 = Az + Bf(y +w) + Bov, y=Cz+ Df(y+w)+ Dev, (1.3)

where, in addition to the setup for the previous two systems, Be, D and D, are appropri-
ately sized matrices and w is a disturbance function. The system (1.3) has potentially
nonzero feedthrough (i.e. D need not be 0), forcing arising through external matrices
(Be and D,) and output disturbances (i.e. w). The inclusion of the function w in (1.3)
is to model errors. For example, errors naturally arise in practical applications from
the action of feeding back the output. As we shall see in this thesis, systems of the form
(1.3) encompass many other (even seemingly more general) systems. One such is the
‘four-block’ Lur’e system [40, 47], which is a forced Lur’e system where the input and
output spaces are split in two, and only one part of the output is utilised for feedback
purposes and is fed back into one part of the input. We comment that the investigation
of stability and convergence properties of the more general system given by (1.3), is an
entirely nontrivial extension of that of (1.1) and (1.2), as we shall prove.

In the forthcoming presentation, we shall be interested not only with finite-dimensional
Lur’e systems of the form (1.3), but also with infinite-dimensional ones. By this, we
mean that A, B, Be,C, D and D, are bounded linear operators, each mapping from a
Banach space to a Banach space, f is a nonlinear vector-valued function, and v and w
are also vector-valued.

A further theme of this thesis, is the extent to which almost periodic forcing leads to
almost periodic state and output trajectories of forced Lur’e systems. Almost periodic
functions are a generalisation of the notion of continuous periodic functions, and were
first conceived by Harold Bohr in the 1920s [16]. They are frequently used in the theory
of differential and difference equations (see, for example, [34, 52, 105, 128]), and much
work has been attributed to the theory. Indeed, several further generalisations of the
notion have been developed (see, for example, [14]). In this thesis, we shall concern
ourselves with providing sufficient conditions for when state and output trajectories of
forced Lur’e systems converge asymptotically to almost periodic functions, when under
forcing that converge asymptotically to almost periodic functions.

The layout of the thesis is as follows. In Part I we consider finite-dimensional forced
Lur’e systems. In particular, in Chapter 2, we extend the ISS results of [108] to sys-
tems of the form (1.3), and then utilise these to obtain discrete-time analogues of the
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Chapter 1. Introduction

CICS results of [15], but which holds for systems of the form (1.3). Moreover, we
also investigate stability and convergence properties of the output of (1.3), which is
a nontrivial exercise in the situation that D # 0. In [15], the continuous-time ver-
sion of (1.2) is considered, and in [108], the authors investigate (1.2). Neither paper
considers output stability or convergence, owing to the fact that without feedthrough,
these are immediately obtained from stability and convergence properties of the state,
respectively. In Chapter 3, we present sufficient conditions for when (1.3) exhibits a
semi-global version of incremental ISS, and determine hypotheses that guarantee that
asymptotically almost periodic inputs generate asymptotically almost periodic state
and output trajectories. The final chapter of Part I is Chapter 4, where we once again
investigate ISS and CICS of (1.3), but with different hypotheses to those presented in
Chapter 2. Indeed, we develop sufficient conditions that allow for potentially superlin-
ear nonlinearities, which differs from Chapter 2, where the nonlinearity is assumed to
satisfy a linear bound. We comment that the chapter is inspired by [7], where similar
assumptions are used to deduce ISS of the continuous-time version of (1.1).

Moving on to Part II, our attention here concerns infinite-dimensional forced Lur’e
systems. In Chapter 5, by imposing stronger assumptions than that given in Part I of
this thesis, we deduce exponential incremental ISS and convergence properties of the
infinite-dimensional version of (1.3). The final chapter of this thesis is Chapter 6, which
utilises the results of Chapter 5 to obtain stability of an infinite-dimensional sampled-
data integral control system. We delay giving a thorough background of integral control
and sampled-data integral control until Chapter 6, and so we refer the reader there for
a review of the relevant literature. What we will say here, however, is that in sampled-
data control, a continuous-time system is controlled by a discrete-time controller. One
may think of this discrete-time controller as a processor of a digital computer.

Finally, this thesis concludes with several appendices. Appendix A provides a proof for
the proposition that the existence of a certain function guarantees ISS of (1.3). More-
over, Appendix B presents a convergence result for a discrete-time control system with
an asymptotically stable equilibrium, and Appendix C gives a thorough presentation
of almost periodic functions over the time domains R,R;,Z and Z .

We close this introduction by stating that some of the results of this thesis have been
either accepted for publication or submitted for publication (see [38]-[42]).
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Finite-dimensional Lur’e systems






Chapter 2

Stability and convergence
properties of discrete-time Lur’e
systems

In this chapter, we concern ourselves with stability and convergence properties of a class
of discrete-time control systems illustrated by Figure 1.1. As mentioned in the intro-
duction, these systems are termed Lur’e systems and their study constitutes absolute
stability theory. In the interest of not repeating ourselves, we refer the reader to the
introduction for more details. Moreover, we also refer the reader there for background
and brief descriptions of ISS and the CICS property. What we shall recall here, is that
in the paper [15], a general notion of the CICS property was defined, and sufficient
conditions were presented that guarantee that forced continuous-time Lur’e systems,
of the form

i=Ax+ Bf(y) +v, x(0)=2° y=_Cuz, (2.1)

where A, B and C are appropriately sized matrices, f is a nonlinear function and v is
a forcing function, exhibit this property. Interestingly, ISS results from the paper [107]
were utilised to prove the main results.

Presently, we concern ourselves with discovering discrete-time analogues of the results
of [15], although in a more general setting. To illustrate what we mean by this, we are
interested in the discrete-time Lur’e system given by (1.3), where A, B, B., C, D and
D, are appropriately sized matrices, f is a nonlinear function, v is a forcing function
and w may be perceived to be an output disturbance. As discussed in the introduction,
this is a much more general system than (1.1) and (1.2), and so allows for a larger class
of potential applications. Moreover, as we shall see in this chapter, the investigation
of the stability and convergence properties of this system is a nontrivial generalistion
of that of (1.1) and (1.2). Now, as previously mentioned, the main results of [15]
utilise ISS results from [107]. With the intention of acting in a similar manner but for
the system (1.3), we shall require discrete-time ISS results for (1.3). The paper [108]
provides sufficient criteria for (1.2) being ISS, and [106] gives conditions that guarantee
ISS of systems of the form

et = Ax+ Bf(y)+ Bv, y=Cx+ Df(y)+ Dv.

Unfortunately these results cannot be applied to (1.3), and so the present chapter
thus involves forming generalised versions of the ISS results of [108], which are then



Chapter 2. Stability and convergence properties of discrete-time Lur’e systems

applicable to (1.3). Once we have obtained these results, we shall then apply them to
yield discrete-time versions (in the more general setting of (1.3)) of the main results of
[15].

In addition to the previous, we also investigate stability and convergence properties
related to the output, namely, input-to-state/output stability and the converging-input
converging-state/output property. The papers [108] and [15] do not consider these
notions, owing to that fact that, for systems without feedthrough, any stability and
convergence properties of the state apply immediately to the output. However, when
the feedthrough matrix is nonzero, these are nontrivial notions, as we shall see.

The chapter is organised as follows. We begin in Section 2.1 by presenting preliminary
definitions and results. Indeed, we give relevant theory concerning linear difference
equations and, in particular, discuss linear output feedback via a method commonly
referred to as “loopshifting” (see, for example, [44, pp.98-106]). We also use a version of
the bounded real lemma in order to obtain results regarding quadratic forms. Moving
on to Section 2.2, we prove the previously mentioned input-to-state/output stability
results for forced discrete-time Lur’e systems of the form (1.3). In Section 2.3, we
concern ourselves with convergence properties of these systems, and this section is the
aforementioned discrete-time extension of [15]. Finally, in Section 2.4, we highlight the
generality of our forced Lur’e system by applying the previous results to ‘four-block’
Lur’e systems.

2.1 Preliminaries

In this initial section, we begin by recalling notions of comparison functions and by
presenting relevant results. Following this, we collect theory of linear discrete-time
systems and then give key results involving quadratic forms that will underpin the
main results of the next section. Finally, we discuss the Lur’e system that is central to
our study.

2.1.1 Comparison functions

We start with the following definition.

Definition 2.1.1. We define
K:={a:Ry - Ry :a(0) =0, « strictly increasing and continuous},

and
Ko = {aEIC: lim a(s):oo}.

5—00
Furthermore, we define KL to be the set of functions ¢ : Ry x Zy — Ry such that:
for each fized t € Z, the function ¢¥(-,t) € K; and, for each fixred s € Ry, the function
(s, -) is non-increasing and lim;_,o ¥(s,t) = 0.

We comment that comparison functions will appear frequently in the forthcoming sta-
bility analysis.

We shall now present a series of properties of comparison functions. We begin with the
following two results, which we shall not prove since they are easy to do so.




2.1. Preliminaries

Lemma 2.1.2. The addition, multiplication, minimum, maximum or composition of
a finite number of functions in IC (respectively, Ko ) is also in IC (respectively, K ).
Furthermore, the inverse of a Ko function exists and is itself a Ky function.

Lemma 2.1.3. Let a € K. Then
a(s) + s2) < a2s1) + a(2s2) Vsi,s2 € Ry
The next two results each present an unboundedness property of certain Ko, functions.

Lemma 2.1.4. Lete > 0 and a € K. The following statements hold.
(i)
V(1+¢)s—+/s— 0 as s — oo.
(i)
a( (l—i—a)s) (1+e)s—a(yVs)s— oo ass— oo.

Proof. We begin by noting the following two trivial identities. The first is that
Va+b<a+Vb Ya,b>0, (2.2)
which is obtained by recalling that
(a—i—b)2 >a?4+ b Va,b>0.
The second identity is that

a2—b2
—b= b . 2.
a P Ya,b>0 (2.3)

By combining (2.2) and (2.3), we see that

VT - Vi =

ES ES €
VAT astvs - @FVaNs 24E

This tends towards oo as s — oo, hence giving statement (i). As for statement (ii),
since a € Ko, « is strictly increasing and so

a( (1+6)s)(1+5)s—a(\/§)32a( (1+5)s>(1+6)s—a( (1+5)s>s
:a( (1—1—5)3)53 Vs> 0.

Vs Vs> 0.

This again tends to co as s — 0o, whence completing the proof. ]

Lemma 2.1.5. Let o, 8 € Koy and define v € Koo by
~(s) := min{a(s),B(s)} Vs>0.

If, for some e > 0,

lim (a(1+€)s) ~a(s) =00 and lim (B(1+2)s) ~ B(s) =00, (24)
then
Tim (((1+2)s) —7(s)) = oo. (2.5)

10
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Proof. Assume that, for some € > 0, (2.4) holds. Define d(s) :=v((1 +¢)s) — y(s), for
all s > 0. Fix M > 0 and let s, > 0 and sg > 0 be such that

a((1+e)s)—a(s) = M and  B((1+¢e)s) — B(s) = M,

for all s greater than or equal to s, and sg, respectively. The existence of such constants
is guaranteed by (2.4). We claim that d(s) > M for all s > max{s,, ss}. To see this,
fix s > max{sa, sg} and consider the following four cases. The first two cases comprise
(1) v((1+¢e)s) = a((1 +¢€)s) and y(s) = a(s), and (i) y((1 +¢)s) = B((1 +¢€)s) and
~v(s) = B(s). Both of these cases trivially imply that d(s) > M. The next case is (iii)
(1 +¢)s) = a((1+¢)s) and v(s) = B(s). This implies that a((1+¢)s) < B((1+¢)s)
and ((s) < a(s). We therefore see that

d(s) = a((1+¢e)s) = B(s) = a((1+¢)s) —als) = M.

The final case: (iv) v((1 +¢€)s) = B((1 + €)s) and v(s) = «(s), is proven similarly
and thus is omitted. Since M was arbitrary, we have therefore shown that (2.5) holds,
completing the proof. O

The following is a useful relationship between two K functions.

Lemma 2.1.6. Let o, 8 € Ko and p > 0. Then there exists v € Koo such that

V(s +B(9))(s + B(5))* < afs) Vs €0, 4.

Proof. To begin with, if g = 0 then the result is trivial and so let us assume that p > 0.
For convenience, define v (s) := s + B(s) for all s > 0, and note that ¢ € K from
Lemma 2.1.2. We further define A := (¢)(1))? > 0 and

1

I s) 1= ya@s) Vs 20,

We then have, again from Lemma 2.1.2, that v € K, and also that

a@™l(s) _ _ayl(s))

T W) o€ Ov)

(s) <
This in turn implies that

(@()((s)* < als) Vs (0,4,
thus completing the proof. O

We conclude this discussion of comparison functions with the subsequent two lemmas.
They can be found in [108, Lemma 14] and [108, Proposition 19] respectively, but are
presented here for completeness.

Lemma 2.1.7. Let a € K. The following statements hold.

(i) There exists v € Koo such that

s1s2 < sja(s1) +7y(s2) Vsi,s2 > 0.

11
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(ii) For every e > 0,

a(si+s2) <a((l+e)s1) +a((l1+e )s2) Vesi,52 > 0.

(iii) Define & € Koo by a(s) := v/sa(y/s). For every € > 0, there exists n € Koo such
that
a(s1—s2) <a((l+e)s1) —n(s2) Vs >s9>0,

and n(s)/y/s — 00 as s — oo.

Lemma 2.1.8. Let o € Ko, and € > 0. Assume that
lim (a((1+¢)s) —a(s)) = o0
S$—00

and define n: Ry — R4 by

n(s) := oei[l(},foo) (a((I+¢e)(s+0))—alo)) Vs>0.

Then n € K and
a(sy —s2) <a((l+¢)s1) —n(s2) Vs >s9>0.

2.1.2 Linear systems theory and linear output feedback

Our attention now turns towards the theory of linear difference equations. Indeed, we
shall consider the following system:

zt = Az + Bu + Bev,
(2.6)

y=Czxz+ Du+ Degv,
where
(A, B, Be,C, D, D) € R™™ x R™™ x R" ¥ x RP*" x RP*™ x RP*?

u € (R™)%+ v € (R9)%+ and n,m,p,q € N. We shall call the variables z and y in (2.6)
the state and output, respectively, and we will label 4 and v as inputs or forcing.

In order to ease notation, we make the following conventions.
Definition 2.1.9. (i) We set

L := R™X™ x R™™ x R x RPX™ x RPX™ x RPX,

(ii) For (A, B, Be,C, D, D,) € L, we label

Y := (A, B, B.,C,D,D,).

The following remark gives some motivation of the study of (2.6).
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Remark 2.1.10. For a given ¥ € L, (2.6) encompasses seemingly more general sys-
tems. Indeed, the linear difference equation

xt = Az + Bu + v,
y = Cz + Du + va,

where v € (R")%+ and vy € (RP)%+, is a special case of (2.6) if we take B, := (I 0),
D, = (O I) and v 1= (1)1 vg)T. O
We now make a series of definitions associated with (2.6), beginning with the following.

Definition 2.1.11. Let ¥ € L. We denote by G the transfer function of ¥ (or of
(2.6)) from u to y, that is,

G(z)=C(:I - A)'B+ D,
for all z € C for which the right-hand side makes sense.

As seen in much of the literature (see, for example, [40, 47, 107, 108]), it is often conve-
nient to talk in terms of the behaviour of systems of the form (2.6), hence motivating
the following definition.

Definition 2.1.12. Let X € L. We define the behaviour of the linear system (2.6) as
B(%) = { (u,v,2,) € (R™)% x (RIE x (R™)H x (RP)E

(u,v,x,y) satisfies (2.6)} ,

and, when the context is clear, we shall suppress this to simply B™.
We also give the following terminology.

Definition 2.1.13. Let ¥ € L. We say that ¥ is: controllable if (A, B) is, observable
if (A, C) is, stabilisable if