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Summary 
 

The multi-step process of converting information stored in DNA to functional 

molecules is inherently error-prone. As we move towards an era of precision medicine, 

understanding why such errors occur is essential both for accurate diagnosis and 

therapeutic design. However, also interesting is how genomes have evolved to prevent 

or mitigate the deleterious consequences of such errors. In this thesis, I use stop codons 

as an exemplar, as their presence/absence in sequence outside of translation 

termination may be indicative of function. I ask two broader questions: first, are vital 

components that ensure accurate splicing, exonic splice enhancers (ESEs), constrained 

by often residing in coding sequence? If so, do these constraints apply to other 

sequences? I show stop codons are depleted in ESEs and this depletion is most 

parsimonious with functioning in CDS. Consequently, stop codons in long intergenic 

noncoding RNAs (lincRNAs) are also unexpectedly depleted, attributable to the 

presence of ESEs. This depletion appears to result in a susceptibility to nonsense 

mutational errors, resulting in nonsense-associated altered splicing (NAS). I find »6% 

of genome-wide nonsense mutations in healthy individuals result in exon skipping, but 

such an effect is probably stronger when disease-associated. Given ESE use in the 

human genome, I turned my attention to bacterial genomes to ask a second question: 

are stop codons employed as a direct error-proofing mechanism? I find bacterial 

genomes appear select for out of frame stop codons to terminate frameshifts based on 

their probability of frameshifting, and not downstream costs. Interestingly, I also show 

that in bacterial genes, a stop codon appears to be selected for immediately following 

the start codon, hypothesising that this helps the ribosome correctly initiate translation 

initiation. Stop codons are therefore implicated genome-wide in both preventing errors 

and making genes more susceptible to errors.
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Dual coding information driving genome evolution 

 

On completion of the first whole genome sequence (Sanger et al. 1977), two genes of 

the bacteriophage φX174 were found to be encoded by the same stretch of DNA in 

two different reading frames. Thus, even though only one primary DNA sequence 

exists, this provided the first evidence that genomes can encode overlapping, or dual 

coding, layers of information. Although initially thought to characterise compacted 

viral genomes (Weisbeek et al. 1977; Barrell et al. 1978; Yen and Webster 1981; 

Belshaw et al. 2007; Chirico et al. 2010; Pavesi et al. 2018), open reading frame (ORF) 

overlaps are now known not to be unique to viruses (see Dan et al. 2002; Rogozin et 

al. 2002; Johnson and Chisholm 2004; Veeramachaneni et al. 2004; Makalowska et al. 

2005; Steigele and Nieselt 2005; David et al. 2006; Sabath et al. 2008; Huvet and 

Stumpf 2014; Rosikiewicz et al. 2018) with estimates suggesting »20-40% of genes in 

human and mouse overlap another gene on the opposite strand (Chen et al. 2004; 

Zhang et al. 2006). The presence of overlapping ORFs therefore provided the first 

suggestion that the selective constraints acting on genes can extend beyond the need 

to preserve the primary peptide sequence and that genomes are not linear strings of 

genetic information. 

 

It is now known that other forms of dual coding information, many facilitating gene 

expression, are ubiquitous among all genomes. For example, synonymous codon usage 

is thought to be under selection to facilitate fast and accurate translation (Ikemura 

1985; Dix and Thompson 1989; Akashi 1994; Drummond et al. 2006; Stoletzki and 

Eyre-Walker 2007; Behura and Severson 2011; Gingold and Pilpel 2011; Doherty and 

McInerney 2013; Ma et al. 2014; Brandis and Hughes 2016; Frumkin et al. 2018; 

LaBella et al. 2019). Similarly, there is strong selection to maintain specific mRNA 

secondary structures (Carlini et al. 2001; Chamary and Hurst 2005b; Meyer and 

Miklos 2005; Kudla et al. 2006; Shabalina et al. 2006; Gu et al. 2010b; Tuller et al. 

2010; Smith et al. 2013; Tuller and Zur 2015; Jacobson and Clark 2016; Gebert et al. 

2019), each with the potential to have substantial effects on gene expression. The need 

to appropriately position nucleosomes is thought to be responsible for greater 

conservation of nucleosome-free “linker” sequence both at synonymous and 

nonsynonymous sites (Warnecke et al. 2008; Warnecke et al. 2009) and sequences 
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more generally (Cohanim and Haran 2009; Dai et al. 2011; Prendergast and Semple 

2011; Quintales et al. 2015), in turn mediating transcription start site (TSS) choice 

(Dreos et al. 2016). There is also considerable support for the selection of functional 

microRNA (miRNA) target sites and surrounding sequence constraining the CDS in 

order to maintain efficient binding sites (Hurst 2006; Forman et al. 2008; Guo et al. 

2008; Fang and Rajewsky 2011; Gu et al. 2012; Hausser et al. 2013; Liu et al. 2015), 

highlighted by the contribution of synonymous and non-synonymous single nucleotide 

polymorphisms (SNPs) in miRNAs to human disease (Wang et al. 2015). 

 

This ever-growing body of evidence is therefore slowly unpicking the intricate nature 

of how information is incorporated and selected for within sequences. Indeed, the 

ability to incorporate additional information is thought to have been a driver for the 

structure of the genetic code itself (Freeland and Hurst 1998; Itzkovitz and Alon 2007; 

Itzkovitz et al. 2010). Cases where the dual coding information overlaps with the CDS 

are perhaps the most intriguing, as this suggests proteins may be constrained by 

selection pressures other than one ensuring the correct peptide sequence. As we move 

into an era of precision and personalised medicine, understanding the exact nature of 

how selection operates on genes, which may not be obvious due to dual coding 

information, becomes particularly pertinent for therapies to be effective. 

 

In this regard, understanding the role that genomic errors play in the evolution of 

genomes, regarding both the selection of dual coding information to prevent errors and 

as sources of genetic novelty, is important and motivates this thesis. For the remainder 

of the introduction, I will introduce and provide a snapshot of the current literature 

concerning error-related dual coding constraints and then dive deeper into how 

selection for stop codons, in terms of errors specifically, constrains genes. I will then 

provide a summary of the work I have conducted, detailing how stop codons constrain 

both coding and noncoding sequence and are implicated in disease. 

 

Error-proofing the genome 

 

The multi-step procedure by which DNA is decoded and processed lends itself highly 

susceptible to errors (Drummond and Wilke 2009; Warnecke and Hurst 2011). The 
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initiation of gene expression, for example, might occur at the wrong time or at rates 

too high or low for proper functioning. Once initiation of expression has occurred, the 

gene might be mistranscribed or misspliced. If a coding gene, a translation error may 

occur or, if noncoding, the transcript may be accidentally translated. Gene products 

may misfold, not fold at all, interact promiscuously with other molecules or not be 

correctly degraded. Both proteins and non-coding RNAs be mislocated within the cell. 

Consequently, the deleterious consequences of errors are diverse. Misfolded proteins 

are frequently toxic and aggregate or interact inappropriately (Stefani and Dobson 

2003) and are often implicated in neurodegenerative diseases (see Chiti and Dobson 

2017; Sweeney et al. 2017). Aberrant proteins resulting from mistranslation events 

may also themselves be toxic, but also incur process costs due to unproductive 

ribosome use and clean up that may be rate-limiting for gene expression (Stoebel et al. 

2008; Shachrai et al. 2010; Shah et al. 2013). Inaccuracies in splicing, whether 

attributable to mutations or not, are also often implicated in disease (Lopez-Bigas et 

al. 2005; Baralle et al. 2009; Lim et al. 2011b; Sterne-Weiler et al. 2011; Wu and Hurst 

2016; Soemedi et al. 2017). 

 

Such is the scope for errors to occur, preventing or mitigating the effects at each stage 

of expression is potentially important for ensuring cellular fitness. From an 

evolutionary perspective, although understanding why these errors occur is important, 

perhaps the more interesting question is how genomes have evolved to cope with them 

(Drummond and Wilke 2009; Warnecke and Hurst 2011). One hypothesis is that is 

selection is weak and leads to a “bloated” genome (as a result of small chance 

insertions) and thus prone to errors. As a consequence, error-proofing selection should 

be strong (e.g. see Wu and Hurst (2015)). Current evidence argues that such error-

related selection pressures are indeed amongst the strongest drivers of genome 

evolution (Drummond and Wilke 2009; Warnecke and Hurst 2011). For example, the 

spatial ordering and orientation of genes (genome architecture) in prokaryotes and 

eukaryotes is highly non-random (Tamames 2001; Hurst et al. 2004; Li et al. 2006; 

Semon and Duret 2006; Warnecke and Hurst 2011). Such ordering is parsimoniously 

explained as a result of selection to limit the effects of highly deleterious fluctuations 

in the expression of noise-sensitive essential genes (eukaryotes) (Batada and Hurst 

2007) due to intrinsically random “bursts” of expression (Raser and O'Shea 2005; 

Chubb et al. 2006; Raj et al. 2006) or organisation of genes into operons containing 
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genes that form part of the same pathway or protein complex to be expressed 

simultaneously (bacteria) (Wolf et al. 2001; de Daruvar et al. 2002; Rocha 2008; 

Saenz-Lahoya et al. 2019) or boost expression (Lim et al. 2011a). Large-scale 

chromosomal duplications and deletions have also been shown to increase robustness 

to translational errors (Kalapis et al. 2015), although this strategy also incurs 

considerable fitness costs. 

 

However, a significant burden experienced during gene expression likely occurs at the 

transcript level on a case-by-case basis. Thus, individual sequences are under selection 

to limit the rate at which errors occur (error prevention) or reduced the impact of and 

increase robustness to them when they do occur (error mitigation) (Warnecke and 

Hurst 2011). Although proteins that interact with the transcript can operate with high 

accuracy (e.g. the spliceosome (Fox-Walsh and Hertel 2009) or ribosome codon 

verification (Ieong et al. 2016)), the ability for sequences to be dual coding lends itself 

ideal for incorporating additional regulatory error-proofing signals. 

 

Perhaps the most often cited example of error-related dual coding is codon usage bias 

aiding translational accuracy. Translational errors resulting from the incorporation of 

the wrong transfer RNA (tRNA) typically occur at codons corresponding to rarer 

tRNAs (Baranov et al. 2004; Kramer and Farabaugh 2007; Laine et al. 2008; Kramer 

et al. 2010; Shah and Gilchrist 2010). Consequently, codon usage tends to 

overrepresent the codons, particularly in highly expressed genes, that more accurately 

match tRNA abundances (Ikemura 1985; Eyre-Walker 1996; Duret 2000; Rocha 2004; 

Plotkin and Kudla 2010; LaBella et al. 2019), with optimal codons often associated 

with conserved amino acid sites (Stoletzki and Eyre-Walker 2007; Drummond and 

Wilke 2008; Zhou et al. 2009). The inherent redundancy of codon usage in the genetic 

code also permits selection for codons robust to large-effect mistranslation errors 

(Archetti 2004, 2006). Furthermore, robustness against mistranslation induced 

misfolding or unfolding of proteins is also thought to be a dominant selective force 

acting on sequences and codon usage (Drummond and Wilke 2008; Zhou et al. 2009; 

Yang et al. 2010) with selection driving the use of translationally optimal codons at 

structurally sensitive sites (Zhou et al. 2009; Warnecke and Hurst 2010). 
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However, sequence-specific constraints also reflect selection to maintain functional 

regulatory binding information allowing effector molecules to act with higher fidelity 

and efficiency. For example, the binding of particular miRNAs to the CDS negatively 

regulates expression (Krek et al. 2005; Xie et al. 2005; Filipowicz et al. 2008; Bartel 

2009; Reczko et al. 2012; Marin et al. 2013) and could be viewed as selection for 

regulating gene expression. Such functional miRNA target sites in the coding regions 

appear to be under purifying selection (Hurst 2006; Forman et al. 2008; Guo et al. 

2008; Fang and Rajewsky 2011; Gu et al. 2012; Hausser et al. 2013; Liu et al. 2015). 

Similarly, it has been argued transcription factor (TF) binding sites (Stergachis et al. 

2013; Birnbaum et al. 2014; Reyna-Llorens et al. 2018) in CDS are under selection, 

although whether such selection does really exist given similar levels of conservation 

between TF-bound and TF-depleted codons is debatable (Xing and He 2015; Agoglia 

and Fraser 2016). 

 

More recently, splice-related dual coding constraints have received a larger focus of 

attention, as ensuring accurate splicing is vital given the number of genes that undergo 

splicing (»97% in human Grzybowska (2012)) and as splice disruption-related errors 

are often associated with disease (Faustino and Cooper 2003; Baralle and Baralle 

2005; Wang and Cooper 2007; Anna and Monika 2018). Exon-intron boundary 

discrimination was previously thought to be defined by conserved nucleotide usage at 

the splice sites as the splice acceptor AG and splice donor GT dinucleotides, along 

with the branch sites, define the majority of exon-intron boundaries (Burset et al. 2000; 

Black 2003). Yet, by themselves, these motifs are often not sufficient in ensuring 

accurate splicing (Lim and Burge 2001). Instead, exons frequently contain important 

dual coding regulatory elements in the form of short cis-acting RNA motifs either 

promoting (exonic splice enhancers, (ESEs)) (Blencowe 2000; Fairbrother et al. 

2004b; Zhang and Chasin 2004; Goren et al. 2006; Ke et al. 2011; Caceres and Hurst 

2013; Lee and Rio 2015) or inhibiting (exonic splice silencers, (ESSs)) (Wang et al. 

2004; Zhang and Chasin 2004; Wang et al. 2006; Lee and Rio 2015) the inclusion of 

exons in the mature transcript, especially if the splice site in question is considered 

“weak” (Fairbrother et al. 2002; Caceres and Hurst 2013). 

 
The constraints these motifs, ESEs in particular, impose on the CDS and sequences 

more generally underline the necessity of error-free splicing and champion the 
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hypothesis that many synonymous sites are not neutrally evolving (Chamary et al. 

2006). ESEs are, for example, enriched in exons identified by exon definition 

(Fairbrother et al. 2004a; Zhang and Chasin 2004), whereas ESSs are more variable 

and define alternative splice sites (Wang et al. 2006). ESEs have been shown to be 

under strong purifying selection (Fairbrother et al. 2004a; Carlini and Genut 2006; 

Parmley et al. 2006; Parmley and Hurst 2007; Ke et al. 2008; Sterne-Weiler et al. 2011; 

Savisaar and Hurst 2016) constraining both amino acid and synonymous site choice 

(Willie and Majewski 2004; Chamary and Hurst 2005a; Carlini and Genut 2006; 

Parmley et al. 2006; Caceres and Hurst 2013). Nowhere is this constraint more evident, 

even in noncoding sequences (Schuler et al. 2014; Haerty and Ponting 2015), than 

towards the ends of exons where ESE density is typically highest (Fairbrother et al. 

2002; Fairbrother et al. 2004a; Fairbrother et al. 2004b). Furthermore, exons flanked 

by longer introns tend to be those hardest to consistently splice accurately (Bell et al. 

1998; Fox-Walsh et al. 2005), contrasting with the more tightly regulated splicing of 

short introns (Pickrell et al. 2010). Consequently, ESE density in humans is frequently 

greater when the flanking intron is large (Caceres and Hurst 2013; Wu and Hurst 

2015), thought to be a result of selection for stronger splice site reinforcement as the 

probability of encoding potential decoy splice sites, and therefore splice-related errors, 

is increased (Wu and Hurst 2015). This necessity for accurate splice definition has 

resulted in a strong selection pressure to preserve ESE motifs that significantly 

constrains »15-20% of fourfold-degenerate sites (Savisaar and Hurst 2018). Further, 

such is the need to ensure accurate splicing and thus the strength of selection on ESEs 

that the proportion of exonic sequence devoted to splicing is as strong a predictor of 

the rate of human protein evolution (Parmley et al. 2007). 

 

Whilst the above cases highlight prominent examples of selection to maintain dual 

coding regulatory information, selective pressures to avoid particular motifs may be 

equally as important. In CDSs, the distribution of conservation P-values (that is, the 

enrichment over expected in dinucleotide matched control motifs) of RNA-binding 

motifs (RBPs) more generally (including, but not restricted to ESEs) is bimodal 

(Savisaar and Hurst 2017). This, most probably, is a result of the location binding-

specifics (CDS or non-CDS) of each RBP, such that the depletion of classes of RBP 

motifs that do not function in the CDS is likely due to purifying selection to avoid 
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inappropriate binding. Similarly, bacterial CDSs are depleted of motifs that resemble 

the Shine-Dalgarno (SD) sequence, likely reflecting selection to prevent inappropriate 

ribosome binding or stalling within the CDS (Li et al. 2012; Diwan and Agashe 2016; 

Yang et al. 2016). The CDSs of Saccharomyces cerevisiae, Escherichia coli and 

Caenorhabditis elegans are also depleted in mononucleotide repeats (Ackermann and 

Chao 2006; Gu et al. 2010a) prone to transcriptional slippage (Wagner et al. 1990). 

 

The above examples demonstrate dual coding information is crucial to error-proofing 

genomes and under selection. How then, can we further elucidate this phenomenon? 

One might argue that searching for constraints and patterns within genes such as those 

above without a clear direction would be like searching for a needle in a haystack. Yet, 

stop codons are also dual coding, having previously been shown to have error-related 

roles. Thus, any patterns of stop codon selection beyond the end of CDSs may provide 

opportunities to identify cases of error-proofing selection as they should be operating 

for reasons other than the expected termination of translation. 

 

Error-related stop codon selection 

 

The primary role of stop codons is well understood (see Nakamura and Ito 1998; 

Bertram et al. 2001; Dever and Green 2012). Specific release factors recognise a stop 

codon (TAA, TAG, TGA) entering the ribosome but, although all three stop codons 

are employed across the domains of life, the release factors that recognise each stop 

codon vary. Eukaryotes, for example, employ a single class I release factor (RF), 

eRF1, to identify all three stop codons (Frolova et al. 1999; Frolova et al. 2000; Song 

et al. 2000; Schmeing and Ramakrishnan 2009; Kryuchkova et al. 2013; Beissel et al. 

2019) with a second class II release factor, eRF3, stimulating eRF1 activity in the 

presence of GTP (Zhouravleva et al. 1995; Salas-Marco and Bedwell 2004; Alkalaeva 

et al. 2006). Prokaryotes instead employ three RFs - RF1 recognising TAA and TAG, 

RF2 recognising TAA and TGA and RF3 facilitating RF1/RF2 dissociation (Scolnick 

et al. 1968; Freistroffer et al. 1997). These translation termination systems are well 

conserved, except for the occasional stop codon reassignments in, for example, the 

mitochondria of several eukaryotes (Barrell et al. 1979; Campbell et al. 2013; Ivanova 

et al. 2014), bacteria (Inamine et al. 1990; Tate et al. 1999; Campbell et al. 2013) and 
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ciliates (Lozupone et al. 2001; Sánchez-Silva et al. 2003). Surprisingly, some ciliates 

lack dedicated stop codons altogether (Swart et al. 2016). 

 

Although the majority of translation events are terminated as expected, ribosomal 

readthrough errors of stop codons occur with regularity. For example, experimental 

estimates range from an error in one in 10-2 translation events to one in 10-5 in bacteria 

(Sambrook et al. 1967; Roth 1970; Strigini and Brickman 1973; Bossi 1983; Cridge et 

al. 2018; Li and Zhang 2019)) and are thus at orders of magnitude higher than 

estimated mutation rates (mutation rate estimates range from of 10-9 per base per year 

in mammals (Kumar and Subramanian 2002), 10-4 to 10-10 per base per generation in 

the yeast S. cerevisiae (Lang and Murray 2008; Zhu et al. 2014) and 10-10 per base per 

generation in the bacteria E. coli (Drake 1991; Garibyan et al. 2003; Lee et al. 2012; 

Jee et al. 2016)). As selection against mutations is a significant driver of genome 

evolution, it is logical to assume selection also acts to minimise errors associated with 

stop codons themselves. Indeed, stop codons in bacteria are not selectively equivalent 

(Povolotskaya et al. 2012) with selection for TAA (Belinky et al. 2018) particularly in 

highly expressed genes (Korkmaz et al. 2014; Trotta 2016; Wei et al. 2016). A 

localised nucleotide preference for +4U (+1 being the first base of the stop codon) also 

appears to improve termination efficiency (Brown et al. 1990; Poole et al. 1998; Wei 

and Xia 2017).  

 

However, while selection acts on the stop codons themselves to minimise canonical 

termination errors, other examples are dual coding signals. For example, evidence 

from S. cerevisiae (Liang et al. 2005), Arabidopsis thaliana (Kochetov et al. 2011) and 

two ciliate species (Adachi and Cavalcanti 2009) suggests additional stop codons are 

selected for in 3’ untranslated regions (UTRs). These stop codons are thought to act as 

“backstop” stop codons, providing a second chance to terminate translation after 

readthrough or mutation to the canonical stop codon. However, a lack of selection in 

prokaryotes (Major et al. 2002; Ho and Hurst 2019) leaves it unclear to what extent 

backstop codons are under selection more generally. Such sweeping generalisations 

also assume readthrough has a particularly detrimental fitness cost. Similarly stop 

codons in any reading frame in 5’ UTRs immediately upstream of canonical start 

codons are thought to terminate translation events where the ribosome has yet to reach 

the recognised start codon (Seligmann 2007). Such codons thereby increase translation 
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efficiency and robustness to incorrectly initiation translation events. Hidden off-frame 

stop codons within the CDS are also thought to be selected for in the event the 

ribosome ends up translating an incorrect reading frame following a frameshift, termed 

the “ambush hypothesis” (Seligmann and Pollock 2004; Singh and Pardasani 2009; 

Tse et al. 2010). However, more recent evidence suggests this may be attributable to 

GC biases (Morgens et al. 2013). 

 

The above examples mitigate the effects of potentially deleterious translation events. 

Yet, further cases are subtler and more intricate. Premature termination codons 

(PTCs), in-frame stop codons located before the canonical stop codon, may arise from 

heritable germline nonsense mutations or be created by errors in transcription or 

splicing. During the pioneer round of translation, components of the nonsense-

mediated decay (NMD) pathway recognises PTCs in eukaryotes and target the 

offending transcript for degradation (Maquat and Carmichael 2001), catching and 

preventing the synthesis of potentially toxic truncated peptides. Thus, stop codons 

provides a signal to highlight mistranscribed or misspliced transcripts. Curiously, 

Paramecium tetraurelia is depleted in introns with length divisible by three (3n) when 

compared with 3n + 1 and 3n + 2 introns (18.7%, 42.3% and 39.0% of the total 

respectively) (Jaillon et al. 2008). However, unlike 3n + 1 and 3n + 2 introns that 

would likely introduce a PTC in the downstream exons by a frameshift, a 3n intron 

would retain the ORF during the translation of the intron-containing mature transcript. 

Not only are 3n introns avoided, but there also appears to be selection to avoid 3n 

introns with no stops or, put differently, selection appears to favour introns if retained 

would be detected by NMD or induce a frameshift. Evidence from A. thaliana, Homo. 

sapiens, C. elegans, Drosophila melanogaster, Schizosaccharomyces pombe (Jaillon 

et al. 2008) and Yarrowia lipolytica (Mekouar et al. 2010) all demonstrate a significant 

deficit of 3n introns lacking in-frame stop codons, suggesting a strongly conserved 

selective pressure concerning stop codons to prevent translation of intron-retained 

transcripts. 

 

The effectiveness of NMD in catching erroneous transcripts, however, is highly 

organism-specific. In mammalian transcripts, PTCs located further than »50-55 bases 

upstream of exon junction complexes (EJCs) are typically detected via the more 
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efficient intron-dependent pathway (reviewed in Chang et al. (2007); Isken and 

Maquat (2007); Brogna and Wen (2009); Lykke-Andersen and Jensen (2015); 

Kurosaki et al. (2019)). However, in mammals single-exon genes appear to be 

insensitive to NMD (Maquat and Li 2001; Brocke et al. 2002) and the last exons of 

genes only employ the less-efficient intron-independent pathway (Buhler et al. 2006; 

Matsuda et al. 2007; Metze et al. 2013). How do single-exon human genes 

compensate? The answer is transcriptional robustness – single-exon genes have »8% 

decrease in the use of codons in close one-step proximity to a stop codon (Cusack et 

al. 2011). This robustness also applies to last-exons (»7%) and histone genes invisible 

to NMD (32%). Thus, rather than selection for stop codons, selection to avoid stop 

codons in instances when they cannot be caught also shapes the evolution of genomes.  

 

The above examples demonstrate how stop codons can provide ideal markers in the 

vast quantity of genetic information to establish patterns of selection. Searching for 

constraints related to stop codons may therefore help answer questions about how 

error-proofing shapes genome evolution. Given ESEs also impart strong selective 

constraints, they too might provide further insight. In this thesis, I therefore ask two 

broad questions. The first examines the interplay between ESEs and stop codons. As 

ESEs are key components in preventing deleterious splicing but also function in CDS, 

is their composition constrained by the need for CDSs to avoid stop codons in at least 

one reading frame? If so, are there consequences? Second, can I find evidence within 

genomes for stop codon selection consistent with being error-proofing mechanisms? 

 

Unexpected depletions of stop codons in lincRNA sequences as a result of SR 

proteins binding both coding and noncoding sequence 

 

In eukaryotes, and particularly humans, the role ESEs play in ensuring splicing 

accuracy is well documented (Blencowe 2000; Fairbrother et al. 2004b; Zhang and 

Chasin 2004; Goren et al. 2006; Ke et al. 2011; Caceres and Hurst 2013; Lee and Rio 

2015). Such is this requirement, sequences containing ESEs are subject to strong 

purifying selection (Fairbrother et al. 2004a; Carlini and Genut 2006; Parmley et al. 

2006; Parmley and Hurst 2007; Ke et al. 2008; Sterne-Weiler et al. 2011; Savisaar and 

Hurst 2016, 2018). When we consider sequence evolution in the context of such 
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motifs, we typically focus on the constraints imposed by the RNA-binding protein 

(RBP) to ensure appropriate binding - in the case of ESEs, serine/arginine-rich (SR) 

proteins. This is particularly noteworthy in light of the work by Savisaar and Hurst 

(2017) who demonstrate that sequences are selectively constrained by the need to both 

maintain desired binding but to restrict binding of the unwanted RBPs. Yet, this 

perspective only portrays a part of the picture. Two components are involved in RBP 

binding: the binding motif in the target sequence and the RNA-recognition motif in 

the RBP protein itself. Thus, while selection may act on the target sequence to preserve 

the binding site, there may exist selective constraints on RBPs to preferentially bind 

motifs characteristic of the sequence to which they are required to bind. ESEs, for 

example, are dual coding motifs and thus have to able to correctly function within CDS 

to define the amino acid sequences and therefore subject to protein-coding constraints. 

The composition of ESE motifs is therefore likely to be an amalgamation of multiple 

competing selective constraints.  

 

This raises an interesting question. Are ESEs constrained by the requirement to also 

function within CDS? For example, one could expect that SR proteins have evolved 

to recognise motifs depleted in stop codons as the sequences in which they reside, by 

definition, cannot contain stop codons in at least one of the three reading frames 

(although in principle can also apply to other motifs of CDS-binding proteins). I 

therefore hypothesise that, as a consequence of being dual coding, ESEs may be 

depleted in stop codons. This reasonably assumes that as ESEs can function in any 

reading frame, stop codons should be avoided in all reading frames of ESEs. 

 

I start by asking whether the set of INT3 ESEs (Caceres and Hurst 2013) is depleted 

in stop codons when compared with all other remaining hexamers. I find this to be the 

case (» 43% depletion). This depletion is supported by a significant reduction in stop 

codon density (SCD) in the real ESE motifs when compared with sets of dinucleotide-

matched pseudo motifs. I find depletion not a result of nucleotide biases, but consistent 

with their exonic (and CDS) location. I therefore conclude the depletion in ESEs 

appears to be stop codon specific, but not ESE specific, likely as a result of being dual 

coding and subject to the protein-coding constraint. I was intrigued as to whether this 

constraint has more extensive consequences. Noncoding intron-containing transcripts 
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are spliced like their protein-coding counterparts (reviewed in Will and Luhrmann 

2011; De Conti et al. 2013; Quinn and Chang 2016), with a key selective constraint of 

long intergenic noncoding RNA (lincRNA) sequences is to preserve ESEs (Schuler et 

al. 2014; Haerty and Ponting 2015). Are noncoding sequences, as a result of containing 

ESEs, also depleted in stop codons? If so, is this due to ESEs? Without the context of 

the stop codon depletion in ESEs, this hypothesis might seem counterintuitive, as with 

no protein-coding constraint there should be no reason for stop codons in lincRNA to 

be avoided. 

 

As predicted, I find a significant depletion of stop codons in multi-exon lincRNA 

sequences with this depletion specific to exonic and not intronic regions of lincRNAs. 

This depletion is reduced in single-exon genes where selection to include splice-related 

ESEs should be weaker. Importantly, I find that stop codon density is lowest in the 

exonic regions where ESE density is highest and that the lincRNA sequence not 

predicted to be ESE is significantly increased in stop codons. The selective constraint 

imposed upon ESEs as a result of having to function within CDS therefore appears to 

transfer an unexpected constraint on lincRNA sequences, which I have termed 

“transfer selection”. I find this has interesting implications for sequence annotation, 

notably that almost 10% of lincRNA sequences exceed the typically used 300 bp ORF 

threshold used for identifying noncoding transcripts for reasons beyond chance. 

 

This work therefore provides an important case study in how dual coding motifs are 

constrained beyond their role to facilitate binding and how RBPs evolve their binding 

preferences to the sequences they bind. It also provides an example of a novel mode 

of selection, one I have termed transfer selection, by which one class of genes are 

indirectly constrained by the constraints imposed on another class of genes. The 

depletion of stop codons in noncoding sequence may also be significant when 

considering of the evolution of de novo genes that recently has gained attention as a 

source of genetic novelty (Tautz and Domazet-Loso 2011; McLysaght and Guerzoni 

2015; McLysaght and Hurst 2016). 

 

Stop codons as a source of splice and variant classification errors 
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The depletion of stop codons in ESEs found in Chapter 2 may, however, have 

important practical implications. As stop codons are found infrequently in ESEs, a 

mutation creating a stop codon in an ESE is likely to break the binding utility of the 

motif. Thus, as a result of ESEs being dual coding and the density of ESEs required in 

sequences to ensure accurate splicing, sequences may be susceptible to mutations 

creating stop codons and disruption of splicing. However, what if a mutation occurs 

that creates a stop codon occurs in frame? 

 

Typically, nonsense mutations would be classified as having deleterious effects due to 

protein truncation or NMD of the offending transcript (Maquat 2005; Brogna and Wen 

2009). Indeed, such PTCs are the cause of a variety of diseases (see Linde and Kerem 

2008 for an overview). Yet, if a nonsense mutation also happens to disrupt an ESE, 

the deleterious effect may instead be splice-related. In the literature, this phenomenon 

is known as nonsense-associated alternative splicing (NAS) (Gibson et al. 1993; Dietz 

and Kendzior 1994; Hull et al. 1994; Endo et al. 1995; Messiaen et al. 1997; Shiga et 

al. 1997; Valentine and Heflich 1997; Hoffmeyer et al. 1998; Mazoyer et al. 1998; 

Melis et al. 1998; Valentine 1998; Gersappe and Pintel 1999; Ars et al. 2000; Wimmer 

et al. 2000; Di Blasi et al. 2001; Caputi et al. 2002; Li et al. 2002; Wang et al. 2002a; 

Wang et al. 2002b; Pagani et al. 2003; Pasmooij et al. 2004; Vuoristo et al. 2004; 

Zatkova et al. 2004; Mendive et al. 2005; Stasia et al. 2005; Disset et al. 2006; Aznarez 

et al. 2007; Laimer et al. 2008; Chemin et al. 2010; Littink et al. 2010; Lenassi et al. 

2014; Peterlongo et al. 2015; Barny et al. 2018; Meldau et al. 2018). 

 

Many of the published examples above describe single-gene cases of NAS. However, 

given ESEs are employed genome-wide, it is unlikely NAS is restricted to particular 

genes. Furthermore, given the evolutionary importance placed on accurate splicing, 

NAS may be a common source of pathogenicity. To date, there is no study 

investigating the genome-wide frequency of NAS. In the context of the work in 

Chapter 2, in which the rarity of stop codons in ESEs is evidenced, such a survey is 

overdue.  

 

This model that is implicit above is dependent on the disruption of splice motifs. In 

the literature, however, there are two competing models to describe the mechanism of 

NAS: a splice-motif disruption model (Shiga et al. 1997; Valentine 1998; Liu et al. 
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2001; Caputi et al. 2002; Pagani et al. 2003; Zatkova et al. 2004; Aznarez et al. 2007; 

Peterlongo et al. 2015) and a nuclear scanning model (Dietz and Kendzior 1994; 

Gersappe and Pintel 1999; Mendell and Dietz 2001; Li et al. 2002; Wang et al. 2002a; 

Wang et al. 2002b; Shi et al. 2015). If NAS is a genome-wide phenomenon, 

contributed to by the depletion of stop codons in ESEs as hypothesised, evidence 

would need to be in favour the first of these hypotheses. 

 

Chapter 3 therefore presents the work of a collaborative project predominantly with 

Rosina Savisaar. We conducted the first genome-wide NAS investigation in humans 

employing polymorphism and transcriptomic data from 462 individuals from the 1000 

Genomes Project (Lappalainen et al. 2013; The 1000 Genomes Project Consortium 

2015). We ask whether we can discriminate between the two competing models, not 

only to provide evidence either supporting or against our splice disruption hypothesis 

but to help consolidate the field. In addition to the draft manuscript that I have prepared 

and presented here, Rosina presented a preliminary version as part of her thesis 

(Savisaar 2018). 

 

We find that premature termination codons (PTCs) are significantly associated with 

exon skipping, but in the opposite direction to that expected (i.e. increased skipping in 

the genes of non-PTC-containing individuals). I find that this is likely a statistical 

artefact of many differences in the levels of exon inclusion between the PTC-

containing (PTC-/+) and non-PTC-containing (PTC-/-) individuals (DPSI) being very 

small. However, when plotting the distributions of the differences according to 

whether the presence of the PTC causes an increase or decrease of exon skipping 

separately, the majority of large effect cases and those likely to be biologically 

meaningful are consistent with NAS. After controlling for the nucleotide composition 

of mutations that generate PTCs, we also find a significant increase in exon skipping. 

This skipping is not a result of NMD continually degrading PTC-containing 

transcripts. By only considering PTCs for which there is both a relative (percentage 

spliced in, PSI) and absolute (reads per million skipped, RPMskip) increase in exon 

skipping when associated with a PTC is greater than 5%, we find 30/541 (5.55%) of 

PTCs affect splicing. Comparisons with mutations that create out of frame stop codons 

suggest that not only is the effect reading frame independent, but that stop codon 
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creating mutations out of frame also frequently disrupt splicing. This result is therefore 

most parsimonious with the disruption of splice motifs and lends evidence against the 

nuclear scanning model for which the effect would be reading frame dependent. I have 

collaborated with Christine Mordstein and Grzegorz Kudla from the University of 

Edinburgh to provide experimental validation of our top NAS candidate. 

 

This work therefore provides a practical application and consequence of the 

evolutionary question addressed in Chapter 2. An important caveat with this work, 

however, is that it was performed on a population of healthy individuals in which PTCs 

are unlikely to segregate at high levels as if the PTCs were particularly pathogenic the 

individuals would be unlikely to survive. Perhaps of greater interest is whether 

pathogenic nonsense mutations also disrupt splicing. Being able to quantify how often 

nonsense mutations disrupt splicing, and thus how frequently such mutations may be 

misclassified as classical nonsense mutations, is of clinical importance. I have 

therefore conducted an analysis using data from a curated source of pathological 

mutations (ClinVar, Landrum et al. (2018)) to provide an estimate of how frequently 

pathogenic NAS may occur. I estimate that in the region of up to »33% of pathogenic 

nonsense mutations could affect splicing. Moreover, using the neural network 

algorithm MMsplice (Cheng et al. 2019), »80% of these pathogenic nonsense 

mutations are predicted to have a negative effect on how frequently an exon is 

included. While purely computational, taken together with the experimental validation 

of our computational findings, at the very least these results demonstrate more in-depth 

analyses must be undertaken to ensure accurate mutation classification. 

 

A refined dual-strategy mode of selection for out of frame stop codons in 

bacteria to correct for translation errors 

 

The work in Chapter 2 and Chapter 3 suggests that selection on genes to optimise 

appropriate and accurate splicing minimises the number of stop codons found in any 

frame of multi-exon sequences, although this has the unfortunate consequence that 

mutations that create stop codons do disrupt splicing at a non-negligible rate. These 

results therefore argue against the conventional understanding of the ambush 

hypothesis (Seligmann and Pollock 2004) - that genes should be optimised for 
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incorporating out of frame stop codons to minimise translational frameshift costs. 

Upon reflection, this is not surprising given the fitness advantage of ensuring accurate 

splicing of every transcript is almost certain to outweigh the fitness cost associated 

with catching ribosomal frameshifts.  

 

The avoidance of stop codons in human sequences, however, does not necessarily 

provide evidence against the ambush hypothesis, but instead suggests it may take a 

more refined form and be relatively organism-specific. The ambush hypothesis was 

derived from studies of bacteria that lack more complex processes such as splicing. In 

such genomes, the ability to select for out of frame stop codons (OSCs) may provide 

a significant fitness advantage, particularly given translational frameshift errors are 

estimated to occur once at every 3.3 ´ 10-5 codons (Parker 1989; Farabaugh and Bjork 

1999). The complexities of different genomes may therefore dictate the strategy by 

which the most accurate gene expression can be achieved and consequently, whether 

or not stop codons are selected for. If so, it may help explain why Singh and Pardasani 

(2009) find very few positive correlations between genome codon usage and the 

codons’ contribution to OSCs in the genomes of vertebrates, primates, rodents or other 

mammals in either the nuclear or mitochondrial genes but found results consistent with 

Seligmann and Pollock (2004) in bacteria. 

 

Thus, to address the second question as to whether I can find evidence of stop codon 

selection, the best genomes to use may be bacterial genomes. However, upon 

reviewing the literature, there appeared no concise and confirmatory evidence in 

bacteria either way as to the extent of selection for OSCs. For example, several studies 

claim codon usage biases are consistent with OSC selection (Seligmann and Pollock 

2004; Singh and Pardasani 2009), but their supporting evidence is weak (only 37% 

and 7% of genomes demonstrate such biases in the studies respectively). Critically, a 

fundamental limitation of these studies is that they do not interrogate the actual 

frequencies of OSCs, especially given the relationship between the ability of a codon 

to form an OSC and its genome-wide usage can be explained almost entirely by GC 

content (Morgens et al. 2013). The current state of the literature therefore appears to 

be somewhat confusing and contradictory. Furthermore, an important limitation I raise 

is whether the previous studies appropriately model bacterial sequence constraints. For 
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example, as OSCs are dual coding they must ensure correct protein-coding 

functionality, yet the Markov models employed do not preserve amino acid content. Is 

there then, a real effect where OSCs are selected for in bacteria, or are the results in 

the current literature reflective of the models used and the biases they impose? I 

therefore sought to provide clarity on whether bacterial genomes do select for OSCs 

(Chapter 4) as a result of not having to specify splice regulatory information, by taking 

advantage of a larger number of bacterial genomes. 

 

I proposed and tested three alternative simulation models, each of which has its 

limitations, but maintaining more properties of the real sequences. Each model returns 

largely similar results – that there are genomes with OSC excesses, but OSC excess is 

often significantly negatively correlated with GC content. Many genomes also 

frequently demonstrate depletions of OSCs. Furthermore, excesses of TAA and TGA 

are often more limited to the AT-rich genomes and reduced when compared with sense 

codons of similar nucleotide composition. This somewhat contradicts previous 

thinking, where one might expect stronger selection in GC-rich genomes where the 

occurrence of an OSC by chance is reduced. A further test negating any biases due to 

simulation design uses repeats of two isoleucine (ATA, ATC and ATT codons) and 

two valine (GTA, GTC, GTG and GTT codons) codons. I hypothesise that, if there is 

selection for OSCs, the synonymous site of the first codon should be under selection 

to use a nucleotide that encodes a +1 OSC. I find limited evidence consistent with this, 

but results may be biased by localised mutation biases. 

 

These results therefore appear to only add to the confusion of previous work. One 

curiosity, however, remains. Why is it the AT-rich genomes, in which OSCs would be 

more likely to occur by chance, are those with the apparent selection for OSCs? The 

ambush hypothesis, arguing for stronger selection in GC-rich genomes because off-

frame translation would continue for longer in GC-rich genomes by chance, only 

considers the processivity costs of such errors. However, to consider the cost dynamics 

of a frameshift error, one must consider not only the processivity costs after 

committing an error but also how likely it is that the frameshift error occurs. I adopted 

the “process cost of accidental frameshift” model from Warnecke et al. (2010) that 

incorporates information about the genome tRNA repertoire to calculate the possibility 

of frameshifting, on the basis that the tRNA repertoire is important in determining 
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translational accuracy (Baranov et al. 2004; Shah and Gilchrist 2010; Warnecke et al. 

2010) and that enrichment of the tRNA repertoire is correlated with reduced frameshift 

susceptibility (Warnecke et al. 2010). I find that not only are sequences in AT-rich 

genomes more susceptible to frameshifting, but that this susceptibility is significantly 

positively correlated with the extent of OSC excess. Thus, the excess and apparent 

selection of OSCs in AT-rich genomes may be explained by an increased propensity 

to frameshift, rather than an increased cost post frameshift as classically assumed. This 

means that, unexpectedly, the evolution of bacterial CDSs to combat frameshift errors 

appears to reflect one of two largely GC-dependent strategies – either reduce the 

likelihood of frameshifting (GC-rich genomes) or, select for the dual coding, error 

mitigation OSCs.  

 

Stop codon selection to prevent ribosomal false starts 

 

The questions addressed in the preceding chapters consider stop codons and errors at 

a genome-wide scale but also while considering genes as a whole, i.e. the analyses 

have searched all regions of genes, exons or CDS. The work in Chapter 4 demonstrates 

that at the genome-wide scale, we can detect signals of OSC selection but only in AT-

rich bacteria. However, it is unlikely that strong signals of selection would arise 

through such analyses as any signal may be diluted by noisy signals elsewhere. An 

alternative approach is to consider a more localised approach and search regions of 

genes that would most benefit from preventing or mitigating errors. For example, the 

presence of U directly after the CDS stop codon in bacteria provides an immediate 

signal in the noncoding sequence to improve termination efficiency (Brown et al. 

1990; Poole et al. 1998; Wei and Xia 2017) and is entirely site-specific. The work in 

Chapter 5 therefore adopts this more localised approach and asks whether there is any 

evidence of site-specific selection for OSCs. 

 

Previous work suggests ribosomes do not always initiate correctly at the start codon 

(Seligmann 2007). A logical position for an OSC is therefore immediately following 

the start codon as if translation initiation begins on an incorrect reading frame it would 

be immediately terminated. The first indication of potential selection is that in the 

CDSs of bacteria from 646 bacterial species, each sampled from a unique genus, the 
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fourth CDS reside (i.e. following the start codon, typically ATGN, and the first 

nucleotide of the second CDS codon) is more often than expected an adenine (A) 

nucleotide. In the most extreme case in the Polaribacter sp., 63.26% of CDSs have A 

at the fourth site. Even in the most GC-rich genome (Streptobacillus sp., GC = 0.113), 

for which using A at the fourth site would be most difficult, 35.00% of sequences have 

fourth site A. Almost all genomes (640/646 = 99.07%) have an excess of A at this site 

compared with what is expected - astonishing given that under the simplest null model, 

only 25% of fourth sites should be an A. A simple explanation is a bias due to an 

oversampling of GC-rich genomes. However, when I compare the ratio of fourth site 

A use to genome A-codon use for each genome, I find ratios are significantly 

negatively correlated with GC3 content arguing against this hypothesis. 

 

I therefore consider several alternative hypotheses. Neither a preference of amino acids 

that have A-starting codons (Stenstrom et al. 2001; Bivona et al. 2010; Shemesh et al. 

2010) nor simply selection for the destabilisation of mRNA secondary structure (Qing 

et al. 2003; Kudla et al. 2009; Gu et al. 2010b; Bentele et al. 2013; Goodman et al. 

2013) are consistent with such a strong fourth site A bias. Yet, as start codons are 

almost exclusively of the form NTG, I hypothesised that the fourth site A might indeed 

provide a mechanism by which frameshifts can be immediately corrected, as the 

sequence would read NTGA and encode an OSC in the +1 reading frame immediately 

following the start codon. As stated above, this hypothesis makes biological sense. I 

show that in the subset of bacterial genomes for which TGA instead encodes 

tryptophan, enrichment at the fourth site is only at levels consistent with reducing RNA 

stability and indicating the A is likely to function to create a stop codon. Consistent 

with a regulatory role, fourth site A usage is reduced in sequences with a SD translation 

initiation regulatory signal known to increase initiation efficiency (Shine and Dalgarno 

1974; Di Giacco et al. 2008). I further speculate more specifically as to how the OSC 

might improve translation initiation. I conclude that two models, immediately 

terminating translation after initiation or as a regulatory “stop and adjust” mechanism 

where the ribosome is assisting in locating the correct initiation codon, are most 

parsimonious.  
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Abstract 

 

While the constraints on a gene’s sequence are often assumed to reflect the functioning 

of that gene, here we propose transfer selection, a constraint operating on one class of 

genes transferred to another, mediated by shared binding factors. We show that such 

transfer can explain an otherwise paradoxical depletion of stop codons in long 

intergenic noncoding RNAs (lincRNAs). Serine/arginine-rich (SR) proteins direct the 

splicing machinery by binding exonic splice enhancers (ESEs) in immature mRNA. 

As coding exons cannot contain stop codons in one reading frame, stop codons should 

be rare within ESEs. We confirm that the stop codon density (SCD) in ESE motifs is 

low, even accounting for nucleotide biases. Given that SR proteins binding ESEs also 

facilitate lincRNA splicing, a low SCD could transfer to lincRNAs. As predicted, 

multi-exon lincRNA exons are depleted in stop codons, a result not explained by open 

reading frame (ORF) contamination. Consistent with transfer selection, stop codon 

depletion in lincRNAs is most acute in exonic regions with the highest ESE density, 

disappears when ESEs are masked, is consistent with stop codon usage skews in ESEs 

and is diminished in both single-exon lincRNAs and introns. Owing to low SCD, the 

maximum lengths of pseudo-ORFs (pORFs) frequently exceed null expectations. This 

has implications for ORF annotation and the evolution of de novo protein-coding genes 

from lincRNAs. We conclude that not all constraints operating on genes need be 

explained by the functioning of the gene but may instead be transferred owing to 

shared binding factors. 
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Introduction 

 

When considering the evolution of a gene or protein we assume, often implicitly, that 

sequence constraints within that gene are important in terms of the functioning of its 

RNA/protein products. For example, when we observe constraint on a protein domain 

within any given protein, we trivially assume it to be a result of the domain being 

important for the function of that protein. The same logic extends beyond protein 

motifs to RNA level features such as microRNA pairing sites. The assumption that 

features of genes or proteins exist to enable the functioning of that gene or protein 

appears so self-evidently correct that it is difficult to comprehend that there may be 

selectively constrained features of genes that do not reflect the functioning of the gene 

in question, except for overlapping genes. In this paper, we suggest that compositional 

patterns observed in some genes may instead be explained by a transfer of a selective 

constraint from one class of gene to another. We present an exemplar theoretical 

instance and show that it makes correct predictions of otherwise paradoxical sequence 

features.  

 

Our exemplar considers the stop codon density (SCD) in long intergenic noncoding 

RNAs (lincRNAs). We define codon density as the number of nucleotide positions 

constituted by the codon in question in any frame of a given sequence, divided by the 

total number of nucleotides in the sequence. For example, in the sequence 

AGATAGGGGA, the GGA codon (AGATAGGGGA) has a density of 0.3. By 

counting each nucleotide within the queried sequence only once, the density is bound 

by the limits zero and one (for example, the density of the codon GGG in the same 

sequence AGATAGGGGA is 0.4). We can extend our density calculation to codon 

sets, by considering groupings of more than one codon whose density we calculate 

together as per single codon cases. For example, the di-codon set [GAT, GGG] defines 

7/10 positions (AGATAGGGGA) and has a density of 0.7. Thus, we define SCD as 

the positions comprised of the tri-codon set [TAA, TAG, TGA]. The sequence 

GGTGATAACA, for example, has SCD equal to 0.6. 

 

Unlike coding sequence (CDS) that is constrained to one in-frame stop codon per 

sequence, lincRNAs have no comparable constraint. The SCD in lincRNAs should 



 48 

therefore be predictable from underlying nucleotide content. However, we argue that 

a particular mode of selection, which might be termed transfer selection, would result 

in lower stop codon usage than expected. Our argument is simple. Exonic splice 

enhancers (ESEs), typically short hexameric motifs occurring towards exon ends 

(within »70 bp of the splice site) (Berget 1995; Fairbrother et al. 2002; Fairbrother et 

al. 2004a; Carlini and Genut 2006; Parmley et al. 2006; Parmley et al. 2007; Woolfe 

et al. 2010; Caceres and Hurst 2013) act as binding sites in the immature mRNA for 

serine/arginine-rich (SR) proteins to help direct the splice machinery. As ESEs overlap 

CDS, they cannot introduce an in-frame stop codon. Consequently, it seems highly 

likely that ESEs functioning in CDS are under selection to contain no or few stop 

codons. If SR proteins bind the same or similar ESEs in multi-exon coding and 

noncoding transcripts, the need to employ ESEs in lincRNAs should mean a depletion 

of stop codons in CDS ESEs transfers to lincRNA ESEs, despite stop codons in 

lincRNA having no translational function. In short, the binding preferences of SR 

proteins in CDS may transfer a necessary constraint operating on CDS to an 

unnecessary and otherwise paradoxical sequence constraint operating in noncoding 

sequences.  

 

Many of the assumptions of our model are robust. First, lincRNA transcripts 

containing introns are processed similarly to protein-coding pre-mRNA transcripts 

(reviewed in Will and Luhrmann 2011; De Conti et al. 2013). Although SR protein 

binding is reported to be »30% less efficient in lincRNA than in protein-coding exons, 

evidence suggests the same SR proteins bind both gene classes as the binding of SR 

proteins SRSF2, SRSF5, and SRSF6 in lincRNA all improve splicing efficiency 

(Krchnakova et al. 2019). Second, ESEs are under purifying selection in both CDS 

and lincRNA, indicative of functionality. In CDS, this is illustrated by decreased rates 

of evolution at both synonymous (Fairbrother et al. 2002; Carlini and Genut 2006; 

Chamary et al. 2006; Parmley et al. 2006; Parmley and Hurst 2007; Sterne-Weiler et 

al. 2011; Caceres and Hurst 2013; Savisaar and Hurst 2018) and nonsynonymous sites 

(Parmley et al. 2006; Parmley et al. 2007) and the relative lack of single nucleotide 

polymorphisms (SNPs) (Majewski and Ott 2002; Fairbrother et al. 2004a; Carlini and 

Genut 2006; Caceres and Hurst 2013) within ESEs. This selection is not modest and, 

indeed, the proportion of exonic sequence devoted to governing splicing, 
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predominantly moderated by selection for ESEs, predicts the rate of human protein 

evolution as well as the amount a gene is expressed, the phylogenetically universal 

best predictor (Parmley et al. 2007). Similarly, purifying selection on ESEs is thought 

to explain most lincRNA constraint (Schuler et al. 2014; Haerty and Ponting 2015).  

 

To test this model of transfer selection, we start by asking whether the SCD in ESE 

motifs is unusually low. We find this to be the case, even when controlling for the 

nucleotide composition of ESEs. We then ask whether, in contrast to a priori 

expectation, lincRNA sequences are also relatively depleted in stop codons and, if so, 

whether ESEs are the cause. We show that lincRNAs do contain fewer stop codons 

than expected given their nucleotide content. We provide several lines of evidence to 

support the hypothesis that this is due to the presence of ESEs and not open reading 

frame (ORF) sequence contamination. 

 

Selective avoidance of stop codons could, at first sight, be misinterpreted as evidence 

that any given lincRNA is an unrecognized coding gene. As the low density of stop 

codons in lincRNAs ensures that the longest possible ORF is longer than expected 

under null models, our finding has ramifications for transcript annotation. We show 

that the typically used threshold of minimal ORF size (300 bp) causes a high (»10%) 

false-positive rate if used in isolation. While the dearth of stop codons could confuse 

annotation, it might also have consequences for de novo gene origination via erroneous 

translation of noncoding RNA as accidental peptides can be longer than expected. 

 

 

Results 

 

If our model of transfer selection has validity, results must be consistent with several 

predictions. First, for any motif that functions within CDS, the protein-coding 

constraint requires it to contain no stop codons in one of the three reading frames. 

Thus, stop codons should be relatively rare in ESE motifs that have to reside in CDS. 

The same need not be true of motifs that function exclusively in introns or non-coding 

exons. Second, any rarity should be specific to the set of stop codons and not 

peculiarities resulting from motif set choice or motif functionality. Third, stop codons 
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should also be depleted in lincRNA sequences after accounting for their nucleotide 

content, this depletion being attributable to ESEs. We test each of these predictions. 

 

ESEs are depleted in stop codons  

 

To address the first prediction, we first consider the SCD in the “gold-standard” (low 

false-positive) INT3 ESE motif set (N = 84 hexamers), for which each motif was 

identified in at least three of four high-throughput ESE datasets (Caceres and Hurst 

2013) (see Materials and Methods for an overview of how each ESE set was derived). 

The raw INT3 SCD is 0.054, lower than the SCD of 0.094 for the 4,012 possible 

hexamers not found in the INT3 set. This low SCD in the INT3 set is significantly 

lower than SCDs of 10,000 iterations of 84 hexamers randomly sampled from the pool 

of all possible 4,096 hexamers (P » 0.034, one-tailed empirical P-value). Thus, to a 

first approximation, stop codons appear depleted in the true ESE motifs.  

 

ESEs are significantly depleted in stop codons after controlling for nucleotide 

content  

 

The above result is prima facie evidence that ESE motifs are unusual in having a low 

SCD. However, it could also be owing to underlying nucleotide biases within the set 

of ESEs. If so, ESEs should also be depleted of codons of similar nucleotide content 

to the stop codons. To address whether the low SCD of ESEs reflects an avoidance 

specific to the stop codons, we have to control for both the nucleotide content of the 

stop codons and nucleotide content of the ESE motifs. 

 

To control for the nucleotide content of the stop codons, we compiled codon sets that 

are compositionally-matched to the stop codon set (see Figure 1A, 1B, 1C, Materials 

and Methods). We start by considering the 2,879 GC-matched tri-codon sets (i.e. with 

GC content = 0.222, the same as the stop codon set). To test whether the stop codons 

specifically are under-employed in ESEs, we also have to control for ESE nucleotide 

content. We therefore generated 10,000 dinucleotide matched pseudo-ESE motif sets 

(N = 84 pseudo-motifs per iteration matching the number of INT3 motifs). For any 

given codon set, we can then calculate a fold-enrichment (FE) score (see Materials and 
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Methods) that gives the relative enrichment of a given codon set in the true ESEs while 

accounting for underlying ESE nucleotide content. FE > 0 implies enrichment, FE < 0 

implies depletion and FE » 0 reflects null.  

 

 
Figure 1: Overview of how the tri-codon sets were derived. (A) Every codon was considered 

(N = 64). (B) Every possible permutation of three codons was generated, ensuring each 

permutation contained three unique codons, leaving N = 64 ´ 63 ´ 62 = 249,984 sets. For each 

grouping of three unique codons, there exists 3! = 6 possible permutations of the three codons. 

Codon sets with the same three codons, just in a different order, were considered to be the 

same codon set, and so duplicates were removed leaving N = 249,984 / 6 = 41,664 codon sets. 

(C) The codon sets from (B) were then grouped. The first set contains codon sets with identical 
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net GC content to the stop codons (GC = 0.222, N = 2,879). A second contained codon sets 

with identical net purine content as the stop codons (purine = 0.667, N = 6,856). Finally, a set 

comprising the intersection of both GC- and purine-matched sets was generated (N = 473). 

The example codon set [AAA, AAC, ACT] has both equal GC and purine content to the stop 

codons and is highlighted by the *. 

 

 

If stop codons are depleted in the true set of ESEs, because they are stop codons, their 

FE should be lower than the FE of the GC-matched control codon sets. Conversely, if 

stop codons are depleted in ESEs because of the nucleotide content of stop codons and 

ESEs, their FE should be no lower than the FE of the GC-matched control codon sets. 

We find 2,018/2,879 = 70.09% of the GC-matched codon sets have a higher FE than 

for the stop codon set (P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability 

of success = 0.5, Figure 2A), consistent with a depletion due to being stop codons. 

 

A particular curiosity of the ESE motifs (and of INT3 ESEs more specifically) is that 

they are purine-rich (mean number of purine nucleotides in an INT3 motif = 4.702/6, 

minimum = 2/6, maximum = 6/6) (Xu et al. 1993; Dirksen et al. 1994; Tanaka et al. 

1994; Gersappe and Pintel 1999; Fairbrother et al. 2002; Caceres and Hurst 2013). As 

stop codons are also purine-rich (6/9 nucleotides in the stop codons are purines), the 

INT3 motifs should be more conducive to including stop codons. Thus, distorted 

purine content within both ESEs and stop codons is unlikely to explain why stop 

codons are, in absolute terms, under-employed in ESE motifs. Nonetheless, we can 

ask whether after controlling for purine content the stop codons are specifically under-

employed as our transfer selection model predicts. 

 

To examine this, we identified the 6,856 tri-codon sets that exactly match the purine 

content of the stop codon set (Figure 1C). The majority of these purine-matched sets 

(5,497/6,856 = 80.18%) have a higher FE than for the stop codon set (P < 2.2 ´ 10-16, 

one-tailed exact binomial test, null probability of success = 0.5). This implies the stop 

codon depletion in ESEs is specific to stop codons and not explained by purine content. 

Neither this result nor that for GC-matched sets above can be explained by allowing 
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stop codons to exist in the matched codon sets or by the inability for stop codons to 

overlap one another (Supplementary Text 1). 

 

We can also control for both parameters simultaneously by considering tri-codon sets 

that have both GC- and purine content exactly matching the stop codon set (N = 413, 

Figure 1C) (e.g. the set [AAA, AAC, ACT]). We find that significantly more of these 

GC-purine-matched codon sets have greater FE than the stop codon set (317/413 = 

67.02%, P = 5.484 ´ 10-14, one-tailed exact binomial test, null probability of success 

= 0.5, Figure 2B). In sum, we conclude that the depletion of stop codons in ESEs is 

relatively specific to the stop codons themselves, rather than being owing to the 

peculiarities in nucleotide content of ESEs and stop codons. 
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Figure 2: Comparisons of fold-enrichment (FE) scores of the stop codon set. (A) Histogram 

showing the FE scores of codon sets containing three unique codons with identical GC content 

to the stop codon set (GC = 0.222) in INT3 ESEs. The stop codon set highlighted by the 

vertical line. When controlling for the dinucleotide-content of ESEs, the FE of the stop codon 

set is highly depleted compared with GC-matched codon sets and falls towards the lower tail 

of the distribution of FE scores. (B) Boxplots of FE scores for tri-codon sets with GC content 

equal to that of the set of stop codons, grouped by purine content. Not only is the FE of the 

stop codon set (dotted horizontal line) reduced when compared with GC-matched codon sets, 

it is significantly reduced (P = 5.484 ´ 10-14, one-tailed exact binomial test) when compared 

with sets also containing identical purine content (purine content grouping 0.6-0.7, N = 473). 

 

The stop codon depletion is a general property of ESE motifs defined within 

coding sequence 

 

Another possibility that may explain the above depletion is a peculiarity of the motifs 

contained in INT3 set. To address this and ask whether the stop codon depletion 

applies to ESEs more generally, we calculated the FE score for the stop codon set in 

several ESE collections derived from analyses of coding exons. As expected, stop 

codons are significantly depleted in all ESE sets (Table 1, Figure 3A; note, the INT3 

is not fully independent of the RESCUE-ESE, ESR and Ke400 sets). This result also 

confirms the INT3 set is representative of ESE sets more generally. Stop codons in the 

Ke400 set (Ke et al. 2011), unexpectedly enriched in exon cores and under positive 

selection (Caceres and Hurst 2013; Savisaar and Hurst 2018), are also significantly 

depleted (P » 0.001, one-tailed empirical P-value) consistent with depletions due to 

functioning within coding regions. These results also argue against the depletion in the 

INT3 set being a result of motif ascertainment biases resulting from the methods used 

to identify any particular set of ESEs (see section “Motif sets” in the Materials and 

Methods for an overview of how each set was derived). 

 

To avoid covariance with CDS parameters (such as codon usage), the PESE set (Zhang 

and Chasin 2004) was derived from comparisons of constitutively spliced noncoding 

exons, unspliced pseudoexons and 5’ untranslated regions (UTRs) of intronless genes. 

Motifs in this set are therefore not subject to protein-coding constraints and should 

provide an exception to the rule. For this set, the SCD (0.084) is higher (P = 0.001, 



 55 

one-tailed one-sample t-test) and FE (-0.122) negative but higher (P = 0.008, one-

tailed one-sample t-test) than for other ESE sets (Table 1). This result is in the direction 

we expect and consistent with our model. That the FE is not zero is likely a result of 

ESEs in this set also featuring in the ESE sets derived from CDS exons (Caceres and 

Hurst 2013), suggesting that some of these ESEs are likely functional in CDS and 

subject to protein-coding constraint.  

 

 
Figure 3: Histograms of the stop codon densities (SCDs) in 10,000 sets of dinucleotide-

matched null pseudo-motif sets. The SCD in the real motifs of each set is shown by the vertical 

line. (A) Each exonic splice enhancer (ESE) motif set demonstrates a significant stop codon 

depletion. (B) SCDs in the motifs of intronic splice enhancers (ISEs), intronic splice silencer 

(ISSs) and CDS-binding RNA-binding proteins (RBPs). These depletions accord with their 

locations - intronic motifs not avoiding stop codons, CDS exonic motifs avoiding stop codons. 

 

The stop codon depletion is a general property of motifs that function in coding 

sequence 

 

These results could, however, also be explained if there is a general avoidance of stop 

codons in all splice-related or RNA binding protein (RBP) motifs whether they bind 
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CDS or not. By contrast, our hypothesis predicts that motifs that do not function in 

CDS should not have a significant depletion. To ask whether the constraint is specific 

to motifs that do function in CDS, we consider FE for CDS-binding RBPs more 

generally and motifs associated with intronic binding.  

 

The general set of RBP motifs thought to be CDS-binding (Savisaar and Hurst 2017) 

(compiled from RBPDB (Cook et al. 2011), RBPmap (Paz et al. 2014), SFmap (Paz et 

al. 2010) and CISBP-RNA (Ray et al. 2013)) demonstrates a similar significant stop 

codon depletion (P » 9.999 ´ 10-5, one-tailed empirical P-value). For the non-CDS 

motifs, both intronic splice enhancers (ISEs) (P » 0.417, one-tailed empirical P-value) 

and intronic splice silencers (ISSs) (P » 0.307, one-tailed empirical P-value) have no 

avoidance of stop codons (Figure 3B). These results therefore argue that the depletion 

of stop codons in motifs functioning in exonic sequence is not ESE specific, splice-

specific nor a result of being an RBP-binding motif, but rather a peculiarity associated 

with being located in exonic CDS. Further, we find no evidence that stop codon 

containing ESE motifs are avoided in protein-coding sequences and cannot be 

discounted as being suboptimal (Supplementary Texts 2-5). 

 

Multi-exon lincRNA sequences are significantly depleted in stop codons  

 

Does the lack of stop codons within ESEs transfer to and constrain lincRNA sequences 

as we propose? To test this, we employed the set of lincRNA sequences identified by 

Cabili et al. (2011). In this set, potential protein-coding transcripts were removed (see 

Materials and Methods for details) and so this set should contain a minimised number 

of lincRNAs with potential protein-coding ORFs that would contaminate our results. 

After our filtering, we employ 1,919 multi-exon lincRNAs (53 from multi-gene 

families, 1,866 from singleton families, see Materials and Methods). 

 

To eliminate the possible effects of nucleotide bias of the lincRNA sequences, we ask 

whether mature lincRNA transcripts are depleted for stop codons given the underlying 

nucleotide content of each sequence. We shuffled the nucleotides within every 

lincRNA and calculated the SCD for that iteration of 1,919 shuffled “pseudo-

lincRNAs”. After repeating this for 1,000 iterations to generate a null distribution, we 
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find no simulated iteration with overall SCD as low or lower than the SCD in the real 

1,919 lincRNA sequences (true SCD = 0.130, FE = -0.162, P » 9.99 ´ 10-4, one-tailed 

empirical P-value, Table 2). As the absence of a potential ORF was used to classify 

RNA species as lincRNA (rather than mRNA), this is a potentially conservative 

estimate. 

 

To confirm that this low SCD in lincRNAs is specific to the stop codons and not the 

GC content of the stop codons, we consider densities of GC-matched tri-codon sets 

within the real and simulated sets of lincRNA sequences (converting codon set SCD 

values to FE values). The FE of the stop codon set is significantly lower than the FE 

of the majority of GC matched control tri-codon sets both when stop codons are 

permitted in the GC-matched codon sets (codon sets with FE > stop codon set FE = 

2,315/2,879 = 80.41%, P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability 

of success = 0.5, Table 2) and when they are excluded (codon sets with FE > stop 

codon set FE = 1,771/2,121 = 83.50%, P < 2.2 ´ 10-16, one-tailed exact binomial test, 

null probability of success = 0.5). We conclude that the low SCD in lincRNA cannot 

be explained by the low GC content of the stop codons. 

 

We find this stop codon depletion is also robust to pairwise analysis (i.e. each gene 

versus randomisations of that same gene) (Table 3), with 79.62% (1,528/1,919) of 

sequences having FE less than zero (P » 0, one-tailed exact binomial test, null 

probability of success = 0.5). Of these, 493/1,919 have a significant depletion (P = 

1.23 ´ 10-200 , one-tailed exact binomial test, null probability of success = 0.05). 

Results are not affected by the choice of sequences from paralogous families 

(Supplementary Text 6). Results are also quantitively similar using a second 

independent set of sequences (GENCODE RNA Capture Long Seq (CLS) annotated 

sequences, Lagarde et al. (2017)) (Supplementary Text 7, Table 3). This trend is 

unlikely to result from hidden ORF contamination as the sequences 5’ of the most 5’ 

ATG, and therefore lacking protein-coding potential, also have reduced SCD 

(Supplementary Text 8). 

 

Is this depletion specific to exonic lincRNA sequence as predicted by our transfer 

selection model? We compared the SCD in exons and introns of lincRNA sequences 
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in a pairwise manner. This test is potentially conservative as some “intronic” sequence 

may well be hidden exon derived from unannotated alternative splice forms. However, 

we find that in 68.79% (1,320/1,919) of genes the SCD of the exons is less than the 

SCD of the introns (P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability of 

success = 0.5, Table 2). Thus, the depletion appears to be more specific to exonic 

sequences, consistent with our model. 

 

Exons of multi-exon lincRNAs demonstrate significantly reduced stop codon 

densities when compared with single-exon lincRNA exons 

 

The above results are all consistent with our model of transfer selection. If we are to 

attribute this depletion to the presence of ESEs, the magnitude of the depletion in exons 

of single-exon lincRNAs should not be as great as that for multi-exon lincRNAs, 

assuming single-exon genes do not need to contain ESEs to bind splicing factors. As 

the filtered Cabili et al. (2011) dataset contained only 12 single-exon sequences in 

total, we performed this analysis on the GENCODE lincRNA sequences (Lagarde et 

al. 2017). 

 

As expected, the SCDs of single-exon sequence exons (N = 877 exons) are 

significantly higher than the SCDs of the exons of multi-exon sequences (N = 1,417 

exons, N = 456 sequences) (median single-exon SCD = 0.139, median multi-exon 

SCD = 0.122, P = 8.878 ´ 10-14, Wilcoxon rank sum test). However, given the 

compositional difference between single-exon and multi-exon transcripts (median 

single-exon GC = 0.456, median multi-exon GC = 0.477, P = 4.938 ´ 10-12, Wilcoxon 

rank sum test), it is important to control for the compositional differences of the exons 

for each class. We therefore calculated FE scores of single-exon sequence exons and 

multi-exon sequence exons by simulating each exon sequence individually. Consistent 

with the above result and our expectations, FE scores for single-exon lincRNA are 

negative but significantly higher than for multi-exon lincRNA (median single-exon FE 

= -0.148, median multi-exon FE = -0.167, P = 0.027, one-tailed Wilcoxon rank sum 

test). That the single-exon genes also have a negative FE is not unexpected, as they are 

likely to be frequently bound by RNA-binding proteins that also bind in CDS and 

contain ESEs that have splice-independent roles (Savisaar and Hurst 2016). In accord 
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with the reduced SCD in single-exon lincRNAs, we also find a lower ESE density 

(median single-exon sequence exon ESE density = 0.127, median multi-exon sequence 

ESE density = 0.155, P < 2.2 ´ 10-16, one-tailed Wilcoxon rank sum test). Confirming 

that the FE metric controls for GC differences, the slope on the line of FE predicted 

by GC is not significantly different from zero (P = 0.334). 

 

All else being equal, 5’ UTRs of protein-coding genes should have a lower SCD in 

multi-exon transcripts than in single-exon ones, not least because the first intron is 

often close to the ATG and hence to the UTR. We find that there is a lower SCD in 5’ 

UTRs of single-exon protein-coding genes than in multi-exon protein-coding genes, 

although this is not robust to nucleotide control (see Supplementary Text 9). For 

reasons unknown, the 5’ UTRs of single-exon protein-coding genes have higher ESE 

densities than for those of multi-exon genes (see Supplementary Text 9), which both 

runs counter to a priori expectations and conflates the above test. 

 

Stop codon density is lowest in regions where ESE density is highest 

 

While the above is consistent with reduced SCD in lincRNAs (compared with a 

nucleotide controlled null) as we predict, can we attribute this to ESEs and hence argue 

that the depletion is a result of CDS-imposed constraints on ESEs? If so, we expect 

SCD to be lowest in the regions in which ESEs typically reside. Despite selection on 

ESEs in protein-coding genes being most pronounced at exon ends (Berget 1995; 

Fairbrother et al. 2002; Fairbrother et al. 2004a; Carlini and Genut 2006; Parmley et 

al. 2006; Parmley et al. 2007; Caceres and Hurst 2013), in lincRNA the proportion of 

sequence within 70 bp of an exon junction is not significantly correlated with 

evolutionary rate (Schuler et al. 2014), probably because in lincRNA ESEs function at 

the 5’ end more profoundly than at the 3’ end (Krchnakova et al. 2019). The depletion 

of stop codons and enrichment of ESEs should therefore be strongest at the 5’ end of 

lincRNA exons. 

 

For each lincRNA gene, we divided each exon longer than 207 nucleotides into the 5’ 

flank (nucleotides 3-69), the equivalent 3’ flank and exon core (67 nucleotides centred 

about the exon midpoint), such that each region from each exon contained 67 
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nucleotides. We then calculated both ESE density and SCD for each region within 

each exon. As predicted, ESEs are enriched in 5’ flanking regions, while SCDs in this 

region are closer to zero than either the core or 3’ regions (Figure 4). In accord with 

the notion that 3’ ends are not such key SR protein interaction domains, ESE densities 

in 3’ flanks are lower than in 5’ flanks and have higher SCDs. Similarly, exon cores 

have lower ESE densities and higher SCDs than 5’ flanks. 

 

SCDs in the various regions differ significantly from null expectation (c2 = 160.822, 

P = 1.20 ´ 10-35, chi-squared test), with the 5’ region observed/expected frequency 

(O/E) lowest of all regions (5’ flank O/E = 0.917, core O/E = 0.960, 3’ flank O/E = 

1.1253). Further, when simulating each region separately, the stop codon FE for the 5’ 

flank (-0.185) is more negative than both the core (-0.142) and 3’ flank (-0.121) (all 

FE scores with empirical P-values < 0.05). This broad-scale data is therefore consistent 

the lowest SCD being in the region where ESEs are most frequent. 

 

 
Figure 4: Densities of ESEs and stop codons in separate regions of lincRNA exon sequences 

longer than 207 nucleotides. 5’ flanks contain nucleotides 3-69 and 3’ flanks the corresponding 

nucleotides at the other exon terminus. Core regions are the 67 nucleotides centred about the 
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exon midpoint. In the 5’ flank region with higher ESE density, the stop codon density is 

reduced. In both the core and 3’ flank where ESE density is much reduced, stop codon density 

is increased. These trends are consistent with the presence of ESEs reducing stop codon 

density. 

 

Reduced stop codon densities in lincRNA sequences are attributable to the 

presence of predicted ESE motifs 

 

Can we attribute the depleted SCD in lincRNAs to ESEs directly? We compiled a 

consensus set of motifs from the non-redundant union of all ESE motif sets (2582 

motifs, 468 hexamers and 2,060 octamers), excluding the Ke400 set as motifs in this 

set demonstrate positive selection and enrichment in exon cores over flanks (Caceres 

and Hurst 2013; Savisaar and Hurst 2018) despite splice mutations being enriched at 

exon ends (Woolfe et al. 2010). By excluding any sequence that matches a motif within 

the consensus set after predicting hits to all motifs to recover overlapping motifs, the 

influence of ESEs on SCD is eliminated. If ESEs are driving the depletion, the 

remaining (unmatched) sequence should have SCD similar to that predicted by its 

underlying nucleotide content.  

 

We predicted hits to the consensus ESE motifs in each lincRNA and retained only the 

unmatched sequence. After randomly shuffling the remaining nucleotides we observe 

that the real non-ESE sequence has a higher SCD than null (FE = 0.159, P » 9.99 ´ 

10-4, one-tailed empirical P-value, Supplementary Table 1) indicating the overall 

depletion of stop codons is owing to ESE motifs. This result further argues against the 

net depletion of stop codons in lincRNAs being an artefact of hidden protein-coding 

ORFs, as such a model predicts stop codon depletion both within and outside of ESEs. 

Why the remaining sequence is enriched in stop codons is unknown, but could be the 

result of selection on the remaining non-ESE sequence to “appear” less like ESE to 

SR proteins to prevent inappropriate binding (e.g. see Savisaar and Hurst (2017)) 

(Supplementary Text 10). We also find that the depletion of stop codons is not a result 

of lincRNA sequences avoiding the use of those ESE motifs that contain stop codons 

(Supplementary Texts 11-12). 
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Skewed stop codon usage in ESEs reflects skewed stop codon usage in lincRNA 

 

Above we have treated the stop codons as a single set. However, in all ESE sets 

(including INT3 and the consensus set), TGA is more abundant than TAA or TAG 

(Table 4). This provides us with a further test of our transfer selection model. If the 

stop codon avoidance in lincRNAs is owing to ESEs avoiding stop codons, the 

avoidance of TAA and TAG in ESEs should be reflected in the usage of each stop 

codon within lincRNAs. 

 

Using the Cabili et al. (2011) set of lincRNAs, we find the stop codons in lincRNA are 

not used at similar frequencies, with TGA the most abundant (TAA density = 0.043, 

TAG density = 0.027, TGA density = 0.060). When compared with null randomised 

shuffled lincRNA sequences, both TAA and TAG are significantly depleted (TAA: FE 

= -0.292, P » 0.001; TAG: FE = -0.439, P » 0.001, one-tailed empirical P-values) while 

TGA is significantly enriched (FE = 0.247, P » 0.001, one-tailed empirical P-value). 

Thus, the stop codons most avoided in ESEs are those most avoided in lincRNA. 

 

To attribute this directly to the presence of ESE motifs, we also ask whether the 

significant depletion of TAA and TAG occurs when ESEs are not present. If the TAA 

and TAG depletions remain in non-ESE sequence, this would argue for depletion due 

to reasons other than ESEs. As before we considered the lincRNA sequence that 

remains after the removal of sequence matching motifs in the consensus ESE set. After 

removal, both TAA and TAG are now found significantly more frequently than 

expected (FE = 0.590, P » 0.001 and FE = 0.117, P » 0.001 respectively, one-tailed 

empirical P-values) while TGA is depleted (FE = -0.164, P » 0.001, one-tailed 

empirical P-value). We conclude that the depletion of both TAA and TAG in ESEs 

appears to force lincRNA sequences to also under-employ these two stop codons, 

consistent with our model.  

 

The majority of lincRNAs contain permissible pseudo-ORFs longer than 

expected by chance 
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Taken together the above results are consistent with our model, transfer selection 

forcing a low density of stop codons in lincRNAs. Might this impact gene annotation? 

To distinguish noncoding RNA from protein-coding sequence, computational 

annotation approaches often consider the lengths of potential ORFs (Frith et al. 2006a; 

Clamp et al. 2007; Dinger et al. 2008). To reduce the likelihood of falsely categorising 

noncoding RNAs, putative noncoding RNAs are considered as those lacking ORFs 

longer than 300 bp as the majority (>95%) of annotated eukaryotic proteins are thought 

to be longer than 100 amino acids (Frith et al. 2006a; Clamp et al. 2007; Dinger et al. 

2008). 

 

Our results above, however, have implications for any potential lincRNA pseudo-

“ORF” (pORF) lengths. If the net depletion of stop codons constrains lincRNA 

sequences as we suggest, lengths of potentially tolerated lincRNA pORFs should be 

longer than expected. Indeed, Niazi and Valadkhan (2012) show a non-negligible 

proportion of “functional” long noncoding RNAs (lncRNAs), although not intergenic, 

have an “ORF” length greater than 300 nucleotides (e.g., the Xist gene encodes a 

functional »15 kb transcript in mouse (Prasanth and Spector 2007) with a potential 

592 nucleotide ORF (Brockdorff et al. 1992)). 

 

To address the likely extent to which true noncoding lincRNAs present long pORFs 

by chance, we generated 1,000 sets of simulated lincRNA sequences by shuffling the 

full multi-exon lincRNA transcripts. For each real and simulant sequence, we 

determined the length of the longest pORF, assuming pORFs start ATG and terminate 

with a stop codon in the same reading frame. Seven real sequences had no complete 

pORF in any frame and were excluded. We calculated the Z score for each sequence, 

with a positive Z indicating an increased maximum pORF length compared with null 

sequences.  

 

We find robust evidence that pORFs are commonly longer than expected, with 62.33% 

(1,227/1,912) having Z > 0 (P < 2.2 ´ 10-16, one-tailed exact binomial test, null 

probability of success = 0.5, median longest pORF length: real = 159, simulants = 129; 

maximum longest pORF length: real = 2,202, simulants = 450). Further, more 

sequences than expected by chance also have a significantly positive Z (13.13% = 
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251/1,912, P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability of success = 

0.05). Only one sequence had a significantly shorter pORF than expected (P » 1, one-

tailed exact binomial test, null probability of success = 0.05). These differences in 

pORF length are greatest when AT-content is highest i.e. when stop codons are more 

likely to occur by chance (r = -0.083, P = 3.00 ´ 10-4, Spearman’s rank correlation 

between sequence GC content and sequence pORF length, Figure 5A). Thus, it would 

appear that not only are permissible pORFs longer than expected, but there exists 

greater deviation from expected pORF lengths (measured in standard deviation units) 

when stop codons should be more frequent. 

 

Almost 10% of sequences would be misannotated if categorised on open reading 

frame length alone 

 

Do longer than expected pORFs have implications for lincRNA sequence 

identification? While the 300 bp ORF lower limit is applied to reduce false-positive 

rates (Frith et al. 2006a; Clamp et al. 2007; Dinger et al. 2008), sequences are also 

annotated based upon their level of sequence conservation as noncoding RNAs 

demonstrate conservation but below that of protein-coding genes. However, a 

conservation approach is a priori poor at identifying young ORFs. Given pORF 

lengths are increased owing to stop codon avoidance, we ask what a safe length 

threshold might be.  
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Figure 5: Analyses of potential ORFs in lincRNA sequences. (A) Z scores for the longest 

permissible ORF lengths when compared with randomly shuffled simulated sequences are 

negatively correlated with GC content (r = -0.082, P = 2.976 ´ 10-4, Spearman’s rank 

correlation). Moreover, data points demonstrating significant deviations (blue diamond) from 

expected ORF are all positive, except one. One sequence with Z = 32.519 has been removed 

from the figure for visual purposes. (B) The excess proportion of sequences with maximum 

ORF lengths longer than expected decreases with increasing ORF length thresholds. A 

threshold of 368 bp is required such that there is less than a 5% excess (dotted line). Results 

for thresholds within the region highlighted in red demonstrate areas of ORF lengths that could 

be ambiguous if used as the sole determinant of coding capability, extending beyond 

thresholds that are up to and including the commonly used 300 bp threshold (grey). 

 

We find 11.57% (222/1,919) of the total sequences meet or exceed the 300 bp 

threshold in our data (taking the median length for sequences grouped into gene 

families). However, is this number biologically relevant? For example, random 

sequences of equal length to lincRNA sequences may also contain pORFs longer than 

300 bp. To test this, we concatenated all exons from all sequences, randomly shuffled 

the concatenation and extracted randomised sequences with lengths matching the real 

mature transcript sequences, thereby generating 1,000 randomised null sets of 

sequences with equal overall transcript length and nucleotide content. For each 

iteration of randomised sequences, we then calculated the number of sequences with a 

pORF exceeding 300 bp. We find the number of real lincRNA sequences exceeding 

the threshold (222) is almost significantly greater for the null sets (mean number 
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exceeding = 44.434, standard deviation = 171.770, P » 0.051, one-tailed empirical P-

value). Further, no randomised set had a pORF longer than the longest pORF seen in 

the true lincRNAs (P » 9.99 ´ 10-4, one-tailed empirical P-value, maximum true = 

2202, maximum simulant = 594). Using the mean number of simulant sequences 

exceeding the 300 bp threshold as the expected number to exceed the threshold, this 

suggests !!!"##.#%#
&,(&(

	» 9.25% of real sequences could be misclassified based upon ORF 

length alone beyond that expected by chance. 

 

The above results suggest that owing to transfer selection, achieving a 5% false-

positive rate requires a threshold longer than 300 bp. How long might this cut-off be? 

Using 10 nucleotide threshold intervals between 200 to 600, we calculated percentage 

excesses over null as above and fitted a local regression model. This model predicts a 

threshold of 368 bp is required so that only 5% of sequences exceed the threshold 

(Figure 5B). However, while a longer threshold reduces the false-positive rate, we note 

that there likely exists an abundance of functional protein-coding genes that encode 

short proteins (Oyama et al. 2004; Frith et al. 2006b; Andrews and Rothnagel 2014; 

Slavoff et al. 2014). Thus, a longer threshold will also increase the false-negative rate. 

Given this, bioinformatic approaches should be coupled with experimental validation 

(Kashi et al. 2016) whenever possible. 

 

 

Discussion 
 

Whilst much is known about the selective pressures acting on coding sequences, those 

in noncoding sequences are less well understood. Human lincRNA are under weaker 

purifying selection than protein-coding genes (Marques and Ponting 2009; Cabili et 

al. 2011; Haerty and Ponting 2013) and contain fewer conserved regions (Pang et al. 

2006). However, ESE motifs that are under strong purifying selection in protein-

coding genes (Parmley and Hurst 2007; Parmley et al. 2007; Warnecke et al. 2008; 

Smithers et al. 2015; Savisaar and Hurst 2018) are also under purifying selection in 

lincRNA sequences, suggesting splicing of multi-exonic lincRNA transcripts is also 

important for function (Schuler et al. 2014; Haerty and Ponting 2015). With both 

coding and noncoding sequence thought to undergo the same splicing process by the 
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same splice machinery (Will and Luhrmann 2011; De Conti et al. 2013; Krchnakova 

et al. 2019), we hypothesised that the same constraints should apply to both types of 

sequence. 

 

Here we have provided evidence consistent with a depletion of stop codons found in 

ESE motifs that, allowing for nucleotide content, is specific to the stop codons. That 

both ESEs and stop codons are purine-rich makes the depletion of stop codons 

particularly noteworthy (indeed the high purine content may be a defining feature of 

ESEs to discriminate exon ends from other sequences, see Supplementary Text 13). 

The evidence that we have presented suggests that this stop codon depletion of ESEs 

that function in CDS transfers to lincRNA sequences. As a consequence, and contrary 

to null expectations, lincRNAs too are significantly depleted in stop codons. Multiple 

lines of evidence, including a significant increase in stop codons found after removing 

ESEs from lincRNA sequences, suggests that ESEs are the origin of this depletion (or 

at least a major contributor). Thus, constraints imposed on motif composition in 

protein-coding sequences can transfer to noncoding sequence. 

 

One could argue that the most obvious alternative explanation for the depletion of stop 

codons in lincRNA is the contamination of the dataset with true, but unrecognised, 

protein-coding sequences. However, several pieces of evidence argue against this. 

First, if a lack of ORF is used to classify RNA species as lincRNA, rather than mRNA, 

we expect an enrichment of stop codons in lincRNA. Our tests comparing SCDs are 

thus conservative. Second, we observe similar depletions from two independent 

datasets, in which both take measures to exclude sequences demonstrating evidence of 

protein-coding potential. That there is also a depletion of stop codons in exon regions 

with the highest ESE density, yet no depletion in exonic sequence after the removal of 

ESEs (and indeed an enrichment), suggests lincRNA sequences are not depauperate in 

stop codons in their entirety but biased by the presence of ESEs. Furthermore, the 

sequence upstream of the first ATG is stop codon depleted, despite no influence of any 

ORF on densities (Supplementary Text 8).  

 

We also question whether ORF contamination could explain the magnitude of the 

observed reduction in SCD. Any contamination by real hidden protein-coding ORFs 

would also have to be substantial, particularly given the pairwise analysis of SCDs 
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against randomisations of each gene indicates that 79.62% of sequences have a stop 

codon depletion. Given the filters on the original sequences, it seems unlikely that true 

ORFs, common enough to provide such contamination, would have gone 

unrecognised.  

 

In principle, lincRNA sequences may be depleted in stop codons if they overlap 

unannotated protein-coding genes on the same strand. Unless there is a rich source of 

unannotated overlapping ORFs this is not parsimonious to explain the commonality of 

stop codon depletion. Moreover, in neither the hidden ORF nor the unannotated 

overlapping ORF model is the specificity of stop codon depletion to ESEs and exon 

5’ ends (where ESEs are most abundant) explained. That the stop codons depleted in 

lincRNA (TAA and TAG) accord with the stop codons depleted in ESEs also supports 

transfer selection above ORF contamination. In sum, transfer selection therefore 

provides the most parsimonious explanation of our observations. 

 

We have also assumed that as SR proteins must bind coding exons there is a constraint 

transferred to noncoding exons. Might there be a transfer in the opposite direction? If 

we consider CDS alone, a theoretical set of motifs with most utility (most likely to hit 

exons exclusively) would be one that avoids stop codons entirely. Over evolutionary 

time, selection might therefore be expected to eliminate ESEs with stop codons as 

potential binding motifs. Yet stop codon containing motifs persist. However, RBPs 

and binding motifs are thought to coevolve which has been exploited to predict RBP 

binding domains (Yang et al. 2018). If these stop codon containing motifs can be more 

easily employed in noncoding sequence whilst also providing the adequate binding 

capability, then they might still provide enough splicing functionality to be selected 

for. Given only a minority of transcribed sequence is protein-coding (The Encode 

Project Consortium 2012), the relative frequency of noncoding RNA splicing may 

render such motifs selectable. In turn, they may also then be useful motifs in protein-

coding sequence where splice specificity is less important, but the nucleotide 

composition of the sequence allows their usage. Thus, if motifs that include stop 

codons are of utility and can be frequently used within lincRNA, it may be that RBPs 

and stop codon containing motifs coevolve such that they persist as functioning motifs. 

A suggestion of this is found in our result that the ESEs that feature stop codons are if 

anything overused on a per motif basis in CDS (Supplementary Text 2). 
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Stop codon depletions and the origin of de novo genes 

 

The stop codon depletion in lincRNA and ESEs more generally might modulate the 

evolution of new genes. The origin of new genes receives much attention (overviews 

in Long et al. 2003; Kaessmann 2010; Tautz and Domazet-Loso 2011; McLysaght and 

Hurst 2016). While duplication and rearrangement (Ohno 1970; Jacob 1977; Zhang 

2003; Ciccarelli et al. 2005; Innan and Kondrashov 2010; Magadum et al. 2013; Van 

Oss and Carvunis 2019) are known to be important processes that adapt and reuse 

functional sequence, the creation of de novo protein-coding genes from previously 

non-functional or noncoding sequences is increasingly being recognised as a source of 

novelty (Tautz and Domazet-Loso 2011; McLysaght and Guerzoni 2015; McLysaght 

and Hurst 2016). 

 

Two important steps are required to give rise to and allow fixation of functional 

proteins from noncoding sequence: acquisition of uninterrupted ORFs and regulatory 

transcriptional signals. The order of these events is not clear nor necessarily uniform, 

with two models proposed each arguing for the respective events occurring first 

(McLysaght and Guerzoni 2015; Schlotterer 2015). In the “RNA-first” scenario, the 

abundance of long noncoding RNAs that are transcribed and, possibly accidentally, 

associated with ribosomes (Wilson and Masel 2011; Ruiz-Orera et al. 2015) makes it 

possible that many unintended peptides are actively translated, thereby becoming 

proto-genes. In an “ORF-first” scenario, if an ORF is already present within the 

sequence mutations in cis regions could induce expression of the ORF (Kaessmann 

2010; Zhao et al. 2014). 

 

LincRNAs containing longer than expected ORFs owing to stop codon depletion are 

relevant to the RNA-first model. What is unknown is how the length of the pORF of a 

protogene relates to the probability of evolving from proto to functional protein-coding 

gene. If longer sequences are more likely to find immediate utility, rather than be toxic 

(Boyer et al. 2004; Levine et al. 2006), then this should exaggerate any putative 

tendency for de novo genes to originate in GC-rich sequence. Although ORF lengths 

in AT-rich regions have a greater deviation from expected (Figure 5A), the raw ORF 

lengths are longer in GC rich domains (correlations between GC raw ORF lengths are 
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significantly positive, r = 0.219, P < 2.2 ́  10-16, Spearman’s rank correlation). Further, 

GC-rich regions are more transcriptionally active (Lercher et al. 2003) with 

transcription factor binding sites being GC-rich (Wang et al. 2012a), and therefore 

more likely to give rise to lincRNA expression.  

 

Stop codon avoidance is seen for other RNA-binding protein motifs  

 

While above we have considered ESEs and show that they contain few stop codons, 

in principle, these are only one exemplar of CDS exonic motifs subject to stop codon 

depletion and hence subject to transfer selection. An expectation of stop codon 

depletion should then not be limited to ESEs but should also apply to other RBP 

binding motifs that function within coding regions. We indeed find a broader set of 

such motifs (compiled by Savisaar and Hurst (2017)) has a significant depletion of 

stop codons (P » 9.999 ´ 10-5, one-tailed empirical P-value, Table 1, Figure 3). We 

caution that only conservative conclusions should be drawn from this result as the 

quality of motifs used in the set is thought to vary (Savisaar and Hurst 2017). 

Nonetheless, we suggest that any peculiarities of sequence content necessitated by 

binding within CDS could have multiple transfer modes. It remains to be seen to what 

extent the compositional properties of lincRNAs are a consequence of carryover of 

binding preferences of RBPs shared with CDSs.  

 

It is also the case that transfer selection should not be considered restricted to RBPs 

but may apply in other contexts and not limited to stop codons. Here we consider the 

comparison between coding and noncoding sequence, yet in theory similar logic could 

be applied to anything that interacts with two different sequence types. For example, 

there may be proteins that interact within different regions at the DNA level and 

transfer constraints between them. 

 

 

Materials and Methods 
 

General 
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Analyses were conducted using custom Python 3.6.4 scripts (available at 

https://github.com/la466/lincrna_stops_repo) using standard, readily available Python 

libraries. R version 3.5.1 (R Core Team 2018) was used for statistical testing and 

plotting of figures. BEDTools version 2.27.1 (Quinlan and Hall 2010) was used for 

operations performed on sequence coordinate data. For motif simulations, 10,000 

iterations were run. For all other simulations, 1,000 iterations were run unless 

specified. 

 

Retrieval and filtering of lincRNA sequences 

LincRNA sequence coordinates were downloaded from the Supplementary Data Set 2 

“TraitTable” sheet of Cabili et al. (2011). Sequences identified by Cabili et al. (2011) 

were done so via four key steps: 1) transcriptome reconstruction from RNA-seq data 

using two transcript assemblers (Cufflinks and Scripture); 2) compilation of all 

noncoding and unclassified transcripts previously annotated; 3) determination of 

unique isoforms from each transcript locus by integrating RNA-seq reconstructions 

with all annotation resources (Cuffcompare) and 4) processing of transcripts to identify 

those reliably expressed, large, multi-exonic, noncoding, and intergenic. Of these, the 

lowly expressed transcripts were removed using a learned read coverage threshold. 

Noncoding transcripts were filtered from novel potential protein-coding transcripts by 

removing those with evolutionary constraint to preserve amino acid content in any of 

the three reading frames (those with a positive phylogenetic codon substitution 

frequency (PhyloCSF) metric (Lin et al. 2011)) and by excluding transcripts matching 

a protein-coding domain present in the Pfam database (Finn et al. 2010). 

 

From the Supplementary Data, only entries with the “ConservativeSet” flag set to 1 

were retained, to leave 4,662 data points. These sequences are those with no evidence 

of protein-coding potential and that can be reconstructed in at least two different 

tissues or reconstructed by two assemblers in the same tissue. As such, transcripts with 

insufficient coverage should also have been removed. This sequence set should 

therefore contain a minimised number of potential protein-coding transcripts. 

Sequences containing non-canonical nucleotides and those containing only one exon 

were removed, leaving 4,646 multi-exon sequence data points.  
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To limit the effects of retaining genes with similar composition from our results, genes 

were clustered into paralogous families. The sequences were BLASTed all against all 

(Nucleotide-nucleotide BLAST 2.4.0+ (Camacho et al. 2009)). Starting with a 

randomly selected sequence, all sequences that had a significant hit were grouped as 

part of the same family and considered a single data point for the analyses. After 

grouping into paralogous families, 1,919 data points remained. For analyses, either the 

median value for sequences that are members of the same family was taken, or one 

member selected at random to represent the family. Where one member was selected 

at random, the analysis was repeated multiple times to avoid biases resulting from the 

random family member chosen. 

 

Intergenic GENCODE lncRNA sequences reannotated by RNA Capture Long Seq 

(CLS) from heart, testes, liver, brain, human K562 and human HeLa cells were also 

used (Lagarde et al. 2017). Sequences IDs corresponding strictly and exclusively to 

lncRNA were obtained from Supplementary Dataset 1 of Lagarde et al. (2017) 

(although annotated as lncRNA, these sequences are intergenic and therefore 

appropriate). A processed bed file containing only entries for full-length transcripts 

whose 5’ end is supported by FANTOM5 CAGE transcription start site (TSS) data and 

3’ is polyadenylated (cage+polyASupported) was downloaded from the GEO database 

accession GSE93848 (last accessed May 24, 2019). Only entries corresponding to the 

exclusive lncRNA IDs were retained. From these, the full-length multi-exonic 

transcripts containing only canonical nucleotides were built, retaining only those 

longer than 200 nucleotides to leave 11,083 transcript sequences. These were then 

subject to clustering into paralogous families as before, leaving 456 multi-exon data 

points for analyses. No sequences were identical to sequences from Cabili et al. (2011). 

The exons of single-exon lincRNAs were also extracted (N = 2,972) and clustered into 

paralogous families, leaving 877 single-exon data points. 

 

Retrieval and filtering of protein-coding sequences 

Protein-coding sequences were retrieved using similar protocols to Savisaar and Hurst 

(2016). To extract genome features, both the genome sequence and genome features 

were downloaded from the Ensembl database (Zerbino et al. (2018), Release 94, 

ftp://ftp.ensembl.org/pub/release-94/, last accessed October 25, 2018). The genome 

features were queried and only those labelled as “CDS” and “protein-coding” were 
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retained. From these features, the full CDS was constructed leaving 98,382 CDSs in 

the dataset. This dataset was filtered to remove CDSs that contained noncanonical 

bases, were not of a length divisible by three, did not start with ATG, did not end with 

a stop codon or contained in-frame stop codons. If more than one transcript per gene 

was present, the longest was retained; if two with the same length per gene were 

present, the first to be queried was retained. 

 

The genome sequence and features for the Macaca mulatta genome were also obtained 

from the Ensembl database (Zerbino et al. (2018), Release 94, 

ftp://ftp.ensembl.org/pub/release-94/, last accessed November 05, 2018). Orthologs 

for all human genes remaining after the filtering steps described above were obtained 

via an Ensembl Biomart query using the Pybiomart Python package 

(https://github.com/jrderuiter/pybiomart). The orthologous CDSs of M. mulatta that 

corresponded to the remaining filtered human genes were extracted in the same 

process as for human CDSs and filtered according to the previous criteria. Both the 

human and macaque CDSs were translated to protein sequences and aligned using 

MUSCLE v3.8.31 (Edgar 2004) via the Biopython wrapper. Once aligned, the 

sequences were converted back to the corresponding DNA sequences. The dS and dN 

/dS scores of the human/macaque alignments were calculated using PAML codeml 

(Yang 2007) using the Bio.Pyhlo module (Talevich et al. 2012) from the Biopython 

wrapper, with the settings seqtype = 1, runmode = 0, model = 0, Nsites = [] and an 

arbitrary tree. Only CDSs that produced a dS score of less than 0.2 or a dN /dS score of 

less than 0.5 were retained to minimise the risk of pseudogene contamination (Savisaar 

and Hurst 2016). After this filtering, 13,187 multi-exon sequences remained.  

 

Sequences were then grouped as before into paralogous families. 1,036 single-exon 

sequences were also extracted and grouped into paralogous families. 5’ UTR 

sequences of both multi- and single-exon sequences were obtained by constructing the 

full-length mature transcript and querying for the index for where the CDS starts. The 

5’ UTR was defined as all nucleotides up to this index point. Introns of the sequences 

were extracted from the genome sequence using the coordinates from the relevant exon 

entries. 

 

Motif sets 
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The INT3 motif was downloaded from the supplement of Caceres and Hurst (2013). 

Other ESE motif sets except Ke400 were obtained as described in Caceres and Hurst 

(2013) and Savisaar and Hurst (2018). ISEs were obtained from the supplement of 

Wang et al. (2012b). ISS motifs were obtained from the supplement of Wang et al. 

(2012c). RBP motifs were obtained from the supplement of Savisaar and Hurst (2017). 

For RBP motifs, those that had significant enrichment P-values were considered CDS-

binding and those with significant depletion P-values were considered non-CDS-

binding. We provide a brief overview of each ESE motif set below: 

 

RESCUE: Motifs were derived computationally (Fairbrother et al. 2002; Fairbrother 

et al. 2004b), on the assumption that ESEs should be enriched in constitutively spliced 

exons and avoided in flanking introns and be more frequently when splice sites are 

weak. Internal exons and flanking introns were queried. Results were experimentally 

validated and compared with prior data. 

 

Ke400: A systematic experimental analysis (Ke et al. 2011) where all 4,096 hexamers 

were substituted at five positions in two internal exons in mini-gene constructs. These 

constructs were transfected to human cells with the splice promoting ability of each 

motif reported. The top 400 most potent splice modifying hexamers were retained for 

the Ke400 dataset. 

 

ESR: Motifs were derived computationally (Goren et al. 2006), searching human-

mouse orthologous exons with the same lengths, shorter than 250 nucleotides and with 

classical GT-AG splice sites. Two expected metrics were used to query di-codon 

frequencies, assuming the two codons appear independently. The first, expected 

conservation rate (ECR), multiplied the probability of codon 1 to be conserved 

between human and mouse, the probability of codon 2 to be conserved between human 

and mouse and the number of times the di-codon appeared conserved between human 

and mouse. For each di-codon, this reflects the expected frequency of observing a 

conserved human-mouse di-codon. The second, expected observation rate (EOR), 

multiplied the number of times the pair of amino acids encoded by the di-codon was 

detected in the data. These numbers were compared with the real frequency of 

conserved and occurred di-codons. Only di-codons that were statistically significantly 

overrepresented and highly conserved at synonymous sites were considered. 
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PESE: Computationally derived motifs (Zhang and Chasin 2004) comparing 

frequencies of octamers overrepresented in constitutively spliced noncoding exons 

versus unspliced pseudoexons and 5’ UTRs of intronless genes, assuming ESEs are 

not frequently in pseudoexons and UTRs are devoid of ESE activity. Experimental 

confirmation of many ESEs subsequently provided (Zhang et al. 2005).  

 

INT3: The motifs that appear in at least three of the RESCUE-ESE, Ke400, ESR and 

PESE datasets (Caceres and Hurst 2013). Considered a “gold standard” set and 

designed to have a low false-positive rate.  

 

Generating compositionally-matched codon sets 

 

All permutations of three unique codons were generated (N = 64 ́  63 ́  62 = 249,984), 

including stop codons (Figure 1A). However, 3! = 6 permutations of the same three 

codons exist (for example, the set [ATC, GAC, TCA] is equivalent to [GAC, TCA, 

ATC]) and so redundant sets were removed, leaving N = 249,984 / 6 = 41,664 codon 

sets (Figure 1B). To control for the net GC content of stop codons (Figure 1C), we 

filtered the remaining codon sets to retain only those with identical net GC content as 

the stop codon set, GC content of a codon set being defined as the sum of the number 

of G and C residues of the three codons divided by 9 (the number of nucleotides). For 

example, the tri-codon set [AGT, AAT, GAT] has GC content of 0.222, the same as 

the stop codon set. There are 2,879 tri-codon sets with net G and C content identical 

to the stop codon set.  

 

A purine-matched subset (N = 6,856) was also derived by taking all sets with identical 

purine content as the set of stop codons (net purine content = 0.667). Note the size of 

the GC- and purine-matched codon sets differs as a result of the GC content (0.222) 

being more extreme than the purine content (0.666), with the smallest groupings of 

codon sets being those with the most extreme content, following binomial principles.  

 

The intersection of these two groupings of tri-codon sets contained those tri-codon sets 

with both equal GC- and purine content to the stop codons (N = 473). We performed 
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further restrictions to generate sets with identical GC content but that contained no 

stop codons (N = 2,121) and with identical GC content but in which no codon could 

overlap with any others from the same set (N = 131). 

 

Generating dinucleotide-matched motif sets 

Sequences within a motif set (e.g. INT3) were scanned for every dinucleotide in both 

reading frames (e.g. the motif GAAGTA contains the dinucleotides GA, AG, TA, AA, 

GT). The frequencies for each dinucleotide were totalled for all motifs in the dataset. 

Then, for each simulation iteration, for each real motif (typically six nucleotides) a 

pseudo-motif of the same length was generated by randomly sampling dinucleotides 

with probabilities defined by the true dinucleotide frequencies calculated (i.e. for a real 

motif of length six, three dinucleotides were randomly sampled). If a motif was not of 

even length, a random nucleotide was sampled using the distribution of nucleotides in 

the true motif set and appended pseudo-motif. If the new pseudo-motif had already 

been generated in that iteration, it was removed and the process restarted. Each 

simulation iteration therefore contained an identical number of pseudo-motifs as the 

number in the true set. 

 

Density calculations 

We calculated density as outlined in the introduction. If a query motif overlapped 

another, overlapping nucleotides were only counted once. For example, for the query 

motif set [CCT, GGG] in the sequence TGATAGGGGA we only consider the 4 

nucleotides that match the query motifs. 

 

While we refer to this metric as “codon density” or “motif density”, this term can be 

slightly misleading as we count the number of nucleotides matching the motif/codon, 

not the number of matching motifs/codons per se. This density metric, however, does 

enable us to control for varying query motif or queried sequence lengths. The metric 

therefore describes how much of a particular sequence is comprised by the query 

motifs (a codon, ESE etc) and therefore has a minimum of zero (the sequence contains 

no nucleotides matching the query motifs) and maximum of one (all nucleotides in the 

sequences match one or more of the query motifs).  

 

Calculating fold-enrichment scores 
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We employ a FE metric in several cases to describe the deviations of true measures of 

abundance from that expected given underlying nucleotide distributions. Null 

expectations were obtained via iterated simulations. We provide an example below of 

calculating codon set density in ESE hexamers, but the same method is applied to 

calculating SCD in full-length lincRNA sequences, SCD in individual exons and 

pORF lengths in the lincRNA sequences. 

 

To calculate the FE of any given codon set in the INT3 ESEs, we first calculated the 

raw density of the codon set (as detailed above) within the true INT3 ESE hexamers. 

Second, having generated randomised sets of pseudo-ESE motifs (as detailed above; 

for other calculations, these are sets of randomised shuffled sequences), we calculated 

the density of the codon set in each iteration of the randomised pseudo-ESE motif sets. 

This provided us with a density score for the codon set in the real ESE motifs and 

distribution of density scores from the simulated motifs. FE was then calculated using 

the formula 𝐹𝐸 = 	)"*
*

, where O = observed density of the codon set motifs in true 

motifs and E = mean density of the codon set motifs in the simulant motifs. 

 

FE as a metric has the benefit that FE < 0 implies a relative depletion given underlying 

nucleotide content, FE > 0 a relative enrichment and FE » 0 as expected given 

underlying nucleotide content. 

 

Calculating Z scores 

Z scores for pORF lengths were calculated similarly to FE scores. First, the longest 

pORF in any frame in the true sequence was calculated. Then the longest pORF was 

calculated for each randomisation of the lincRNA sequences. The Z score for each 

sequence was then defined as the real longest pORF length minus the mean of the 

group of simulated longest pORFs, divided by the standard deviation of the simulated 

longest pORFs, taking the median Z score for sequences that are members of a 

paralogous family. 

 

Predicting hits to motifs in sequences 

Regular expressions were used to predict hits to motifs in sequences using the standard 

built-in Python package. For each sequence, the indices for the hits to each motif were 
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stored. Any subsequent hits to a motif were appended to this list. For each sequence, 

the list of indices was then filtered such that each index could only appear once. In this 

way, if two motifs overlapped, we would only consider the nucleotides that matched 

both only once in our calculations.  

 

Removal of sequence matching ESEs 

To interrogate sequence that featured no ESEs given a particular ESE set, hits were 

first predicted to the ESEs for each query sequence. The index of each nucleotide hit 

that overlapped an ESE for each sequence was stored, and only once all motifs had 

been queried were these indices further considered. In this way, all overlapping motifs 

were identified. For each sequence, the positions corresponding to indices that were 

not stored were calculated and the corresponding sequence parts extracted. Sequence 

parts interrupted by a predicted ESE were treated as separate sequence parts. This 

prevents unexpected motifs being generated by concatenating the remaining sequence. 

For example, querying the sequence ACTACTTTTTAGA for the motif TTT would 

have resulted in two unmatched parts, ACTAC and AGA. Analyses were then 

performed on these remaining sequences individually. 

 

Identifying potential open reading frames 

Potential ORFs were identified by scanning each sequence for every ATG in every 

frame. For each ATG, downstream codons in the matching frame were then queried in 

order until a stop codon was identified. The nucleotide distance to the stop codon was 

stored and once all ATG’s had been queried, the longest ORF was retained. Seven of 

the lincRNA sequences contained no potential ORF and so were excluded from the 

analysis.  

 

Calculating empirical P-values 

Empirical P-values were calculated using outputs from the simulations using the 

formula 𝑃	 ≈ 	+,&
-,&

 where m = the total number of simulants scoring less than or equal 

to the real value and n = the total number of simulants. If the direction of the one-tailed 

test was in the opposite direction, m = the total number of simulants scoring greater 

than or equal to the real value. 
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Tables 
 
Table 1: Stop codon densities (SCD) and fold-enrichment (FE) scores calculated from 

dinucleotide-matched controls for various RNA-binding protein motif sets. The PESE motif 

set marked * was derived from analysis of constitutively spliced noncoding exons, unspliced 

pseudoexons and 5’ untranslated regions of intronless genes. The motif sets marked § indicate 

those not located within coding sequence. 

Motif set

  

Number of 

motifs 

Proportion 

containing 

stop codons 

SCD FE P-value a 

INT3 ESE 84 0.107 0.054 -0.459 0.020 

RESCUE 

ESE 

238 0.126 0.065 -0.404 9.999 ´ 10-5 

Ke400 ESE 400 0.063 0.033 -0.391 0.001 

ESR ESE 285 0.109 0.054 -0.479 9.999 ´ 10-5 

PESE ESE* 2,069 0.222 0.084 -0.122 5.000 ´ 10-4 

ISE§ 110 0.436 0.150 -0.034 0.417 



 80 

 
a One-tailed empirical P-value asking whether the real set of motifs have significantly 

less stop codons than simulated motif sets. 

  

ISS§ 103 0.427 0.146 -0.068 0.307 

RBP motifs 

(CDS) 

232 0.103 0.046 -0.450 9.999 ´ 10-5 
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Table 2: A summary of various tests of sequence composition for sequences in the two 

lincRNA data sets.  

 Sequence set 
 Cabili et al. (2011) Lagarde et al. 

(2017) 
Number of sequences 1,919 456 
SCD 0.130 0.128 
FE a -0.162  

P » 9.99 ´ 10-4 
-0.169 
P » 9.99 ´ 10-4 

Number of GC-matched codon sets 
with FE > stop codon set FE b 

2,315/2,879 (80.41%) 
P < 2.2 ´ 10-16 

2,300/2,879 
(79.89%) 
P < 2.2 ´ 10-16 

Number of GC-matched codon sets 
excluding stop codons with FE > 
stop codon set FE b 

1,771/2,121 (83.50%) 
P < 2.2 ´ 10-16 

1,751/2,121 
(82.56%) 
P < 2.2 ´ 10-16 

Number of sequences with exonic 
SCD < intronic SCD b 

1,320/1,919 (68.79%) 
P < 2.2 ´ 10-16 

325/456 (71.27%) 
P < 2.2 ´ 10-16 

Median single-exon sequence exon 
SCD 

n/a 0.139 c 

Median multi-exon sequence exon 
SCD 

n/a 0.122 c 

Median single-exon sequence exon 
FE 

n/a -0.148 d 

Median multi-exon sequence exon 
FE 

n/a -0.162 d 

 
a One-tailed empirical P-value 
b One-tailed binomial P-value, null probability of success = 0.5 
c P = 8.878 ´ 10-14, Wilcoxon rank sum test between the SCD of each gene’s exons 

and introns 
d P = 8.878 ´ 10-14, Wilcoxon rank sum test between the FE scores of each gene’s 

exons and introns 
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Table 3: A summary of individual sequence fold-enrichment (FE) scores after comparisons 

with randomised simulations of the same gene. 

 Sequence set 

 Cabili et al. (2011) Lagarde et al. (2017) 

Sequences with FE < 0 a 1,528 (79.62%) 
P » 0 

416 (91.23%) 
P » 0 

Sequences with FE < 0, 

empirical P < 0.05 b 

493 (25.69%) 

P = 1.23 ´ 10-200 

206 (45.18%) 

P = 2.33 ´ 10-139 

 
a One-tailed binomial P-value, null probability of success = 0.5 
b One-tailed binomial P-value, null probability of success = 0.05 

 

 
Table 4: Density of each the three stop codons in each of the ESE motif sets. 

 

 

  

 Codon density in motif set 
Motif set TAA TAG TGA 
INT3 0 0 0.054 
ESR 0.005 0.011 0.039 
Ke400 0 0 0.033 
PESE 0.005 0.007 0.071 
RESCUE 0 0 0.065 
Combined 0.005 0.007 0.068 
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Supplement to Chapter 2 
 

 

The Supplementary Tables for Chapter 2 can be found on the attached CD. 
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Supplementary Texts 
 

The Supplementary Texts and Supplementary Text Figures presented below can also 

be found accompanying the published paper at the link described in the introduction 

to Chapter 2. These have been reformatted for this thesis. 

 

 

 

 

Supplementary Text 1 

 

The presence of stop codons within the tri-codon codon sets nor the inability for 

the stop codons to overlap can explain the stop codon depletion in the INT3 ESE 

motifs when compared with compositionally matched codon sets 

 

We find that when controlling for both GC content and purine content, the stop codon 

set is depleted in the INT3 ESE motifs. However, are these results due to a subset of 

GC-matched codon sets also containing stop codons? 

 

To eliminate this potential bias, we performed the same analysis as in the main text 

using tri-codon sets containing no stop codons and compared them with the stop codon 

set. N = 2,121 sets have identical GC content and contained none of the three stop 

codons. We find a similar result as before – 1,578/2,121 (74.40%) have higher FE than 

the stop codon set (P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability of 

success = 0.5). When matching by purine-content, the removal of codon sets 

containing stop codons left N = 5,587 purine-matched codon sets. Again, 4,457/5,587 

(81.56%) have higher FE than the stop codon set, a significant number (P < 2.2 ´ 10-

16, one-tailed exact binomial test, null probability of success = 0.5). The high 

proportion of codon sets with a greater FE than for the stop codon set is therefore not 

a consequence of some stop codon sets containing stop codons. 

 

It is also the case that no stop codon can overlap with another stop codon. If any given 

motif contains a stop codon, there is therefore less chance it will contain another stop 
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codon. For example, in the motif GTAAAA, no second stop codon can exist without 

destroying the motif. Yet, if the query codon set is [AAA], as AAA can overlap (e.g. 

GTAAAA) it is more likely to have a higher density. We therefore restricted the codon 

sets again, but only considered codon sets where no codon could overlap another (for 

example the sets [AAA, CCC, TAT] and [TTA, TTC, TTG]). For GC-matched codon 

sets with no overlapping codons (N = 131), 91/131 (69.47%) have greater FE than the 

stop codons (P = 4.898 ´ 10-6, one-tailed exact binomial test, null probability of 

success = 0.5). For the purine-matched non-overlapping sets (N = 712), 565/712 

(79.35%) have a greater FE than for the stop codon set, again a significant number (P 

< 2.2 ´ 10-16, one-tailed exact binomial test, null probability of success = 0.5). 

 

That some stop codons appear in the tri-codon sets and that stop codons are unable to 

overlap with themselves do not therefore explain their depletion in ESEs. 
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Supplementary Text 2 

 

Stop codon containing ESEs are per motif more frequent in exonic sequence than 

ESEs that contain no stop codons, although differences can be attributed to 

differences in dinucleotide content 

 

One possibility that might explain why stop codons are depleted in ESEs is that the 

motifs containing stop codons are for some reason poorer functioning ESEs in any 

context. Evidence in Drosophila sp. and C. elegans suggests individual SR proteins 

have functional differences (Ring and Lis 1994; Hoffman and Lis 2000; Kawano et al. 

2000; Longman et al. 2000; Kim et al. 2003) and by association, the motifs they bind 

may therefore be used at different frequencies. If so, there could be a selective pressure 

against using stop codon containing motifs. This may have a direct consequence in 

that they are used less frequently, but also an indirect consequence in that they are then 

less likely to be identified using computational approaches. In this scenario, there 

would be no reason to suppose any CDS-imposed constraint is transferred.  

 

To address this, we ask whether ESEs that contain stop codons are suboptimal and 

hence underused given their relative frequency within the set of ESEs. If stop codon 

containing motif frequencies deviate from neutral expectations, it could indicate that 

selective pressures are acting against the usage of such motifs. We focus analyses on 

the “gold-standard” INT3 set of motifs of highly constrained core motifs likely to be 

true functional binding motifs. 

 

If functional differences are leading to depletion, it is expected that the stop codon 

containing motifs are used less frequently per motif in exonic sequences. Hits to the 

INT3 motifs were predicted in human protein-coding coding exons, picking one 

transcript sequence per paralogous family at random (N = 6,045 family data points). 

The density of stop codon containing ESEs is much reduced (0.026) when compared 

with the density of the remaining ESEs (0.169). However, two factors could explain 

this difference. First, only 9/84 of INT3 motifs contain a stop codon. Second, stop 

codon containing ESEs cannot be incorporated into one of the three reading frames. 

This raw difference therefore has little meaning and these two factors must be 

controlled for. 
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To control for the reading frame effect, hits to the stop codon containing motifs were 

predicted separately in each reading frame and the number of predicted hits scaled by 

the number of motifs that can function in that frame. This scaling is not uniform (i.e. 

TGAAGA, TGAAGC, TGAAGG, TGAGAA cannot function in the +0 frame, 

AATGAC, AGTGAC, GATGAA in the +1 frame or CTGAAG, GTGAAG in the +2 

frame; frames denote motif start position relative to the ORF). In the +0 frame, only 

5/9 motifs contribute to hits and we are therefore in effect only sampling 5/9 of 

potential hits that a motif not containing a stop codon could contribute. The raw hit 

count was therefore multiplied by 9/5 (and similarly 9/6, 9/7 for the +1, +2 frames). 

 

Second, to control for the number of motifs per class (stop codon containing motifs or 

motifs not containing stop codons), the frame-normalised total hits in each class were 

divided by the number motifs in each class (N = 9 for stop codon containing and N = 

75 for motifs that contain no stop codons). This provided the total hits per frame per 

motif for both classes of motif. This total was further normalised to give the number 

of hits per 1,000 bp of protein-coding exonic sequence to give a normalised per motif 

per 1,000 bp hits (NMH) for all coding exons. An NMH = 2 for stop codon containing 

motifs, for example, means that on average there exist two hits to each stop codon 

containing motif per 1,000 bp of lincRNA sequence. 

 

We find the stop codon containing INT3 ESE NMH = 0.928 is significantly greater 

than that for 1,000 sets of dinucleotide-matched and stop-codon matched (that is, the 

same number of motifs contain a stop codon for each iteration) pseudo-ESE motifs 

(median simulant NMH = 0.647, P » 0.009, one-tailed empirical P-value). Whilst 

motifs that do not contain stop codons are also found significantly more frequently 

than dinucleotide matched pseudo-motifs (NMH = 0.596, median simulant NMH = 

0.465, P » 9.99 ´ 10-4, one-tailed empirical P-value), the difference between the two 

NMH values for the real INT3 ESE motifs argues that, if anything, stop codon 

containing motifs are more frequent and not avoided. 

 

Despite this greater per motif use of the stop codon containing motifs, this could be 

explained if the stop codon containing motifs better match the nucleotide composition 
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of protein-coding exons. Is the difference therefore greater than expected? We 

calculated the ratio between NMH value of stop codon containing motifs to that of 

motifs that contain no stop codons (0.928/0.596 » 1.559) and asked whether this is 

greater than expected by chance. To define chance, we considered the 1,000 sets of 

simulated pseudo-ESEs and calculated the same ratio. The ratio for real ESEs is not 

significantly greater than the equivalent ratio for the null pseudo-ESE motif sets 

(median simulant NMH ratio = 1.399, P » 0.257, one-tailed empirical P-value). 

 

Thus, although stop codon containing ESEs are per motif more frequent, this result 

suggests the increased usage between the two classes if not significantly greater than 

expected. Repeating the analysis for a total of 10 runs to control for paralogous family 

member choice, per motif stop codon containing ESE enrichment remains 

significantly greater than controls (median P » 0.009, one-tailed empirical P-value) 

but not significantly greater than per motif usage of the remaining ESEs (median P » 

0.257, one-tailed empirical P-value, Supplementary Table 2) and results are therefore 

not biased to sequences interrogated. 

 

If stop codon containing ESEs were of lesser quality and under weaker selection or 

selected against, there should be a depletion of the stop codon containing motifs 

relative to motifs not containing stop codons. We find no evidence this is the case and 

no conclusive evidence to argue the depletion of stop codons is a result of avoiding 

employing stop motifs as a consequence of being less functional.  
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Supplementary Text 3 

 

The density of high quality, low false-positive stop codon containing ESE motifs 

increases as flanking intron size increases 

 

Results suggest the relative usage of stop codon containing motifs per motif is not 

significantly greater than for motifs of similar dinucleotide content. However, the per 

motif frequency may not be the most informative measure if the quantity of splice 

information incorporated is important for ensuring accurate splicing. For example, by 

having more contributing motifs, the combined quantity of splice information encoded 

by ESEs not containing stop codons may be important. Thus, total ESE frequency (or 

density) rather than per motif frequency could be more informative. 

 

ESE density is known to be positively correlated with intron size in protein-coding 

genes (Dewey et al. 2006; Caceres and Hurst 2013; Wu and Hurst 2015), thought to 

be a result of reinforcement selection increasing the quantity of splice information to 

distract SR proteins away from possible cryptic splice sites (Wu and Hurst 2015). Any 

differences how stop codon containing motifs and the remaining motifs are employed 

as the flanking intron size increases may therefore provide further insight. 

 

We first check whether ESE density in general increases as flanking intron size 

increases in our protein-coding exon dataset after grouping paralogous family 

members (Dewey et al. 2006; Caceres and Hurst 2013; Wu and Hurst 2015). We find 

this to be the case (r = 0.198, P = 1.04 ´ 10-24, Spearman’s rank correlation, 

Supplementary Texts Figure 1A). As ESEs typically reside in exon flanks in protein-

coding genes and therefore more likely to be splice related, we limited sequences to 

only the 5’ and 3’ flanks (nucleotides 2-69 from exon boundary) of sequences greater 

than 207 nucleotides in length (to restrict sequences to those with both 5’/3’ flanks and 

core regions). By doing this, we also control for the quantity of sequence in which the 

ESEs can reside, and thus ESE density directly reflects how many ESEs are 

incorporated. Again, in the exon flanks, we find significant positive correlations with 

intron length (r = 0.136, P = 2.79 ´ 10-12, Spearman’s rank correlation). Results are 

not subject to biases as a result of picking one member at random from each paralogous 
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family grouping as we find a similar significant positive correlation when using all 

sequences (r = 0.158, P = 2.05 ´ 10-61, Spearman’s rank correlation). 

 

If stop codon containing ESEs are less functional and avoided, it would be expected 

that they are used less frequently as flanking intron size increases. We asked whether 

the usage of stop codon containing ESEs and ESEs containing no stop codons differs 

as intron size increases. ESEs were grouped into stop codon containing motifs and 

others and densities calculated for the two classes. To control for the number of motifs 

in each class and the reading frame restrictions on the stop codon containing ESEs, we 

only compare the correlations between densities and intron size for each the two ESE 

motif classes rather than directly comparing densities themselves. We find correlations 

are significantly positive for both stop codon containing (r = 0.139, P = 1.07 ´ 10-12, 

Spearman’s rank correlation) and the remaining ESEs (r = 0.190, P = 2.17 ´ 10-23, 

Spearman’s rank correlation) (Supplementary Texts Figure 1B), suggesting the usage 

of both classes of ESE increases as greater quantities of splice information are 

required. 

 

Is the density of stop codon containing motifs significantly positively correlated when 

restricted only to exon flanks? Again, correlations of both stop codon containing (r = 

0.078, P = 4.586 ´ 10-5, Spearman’s rank correlation) and remaining ESEs (r = 0.132, 

P = 1.04 ´ 10-11, Spearman’s rank correlation) with intron length are significantly 

positive. Interestingly, the density of stop codon containing motifs does increase 

significantly slower than for the remaining ESEs (Z = 5.176, P = 2.26 ´ 10-7, two-

tailed Z-tests of equivalency in exon flanks) meaning it could be the case that the ESEs 

not containing stop codons are more specialist (they have, for example, greater binding 

affinities), or stop codon containing ESEs have additional constraints (which could be 

the case due to reading frame requirements). Importantly, evidence suggests stop 

codon containing ESEs are not avoided as splicing becomes more difficult. 
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Supplementary Texts Figure 1: The log10 median lengths for introns versus the density of 

INT3 ESE motifs for the flanking 2-69 nucleotides of (A) all ESEs combined and (B) ESEs 

grouped as stop codon containing and the remaining ESEs. In all cases, correlations between 

flanking intron size and densities are significantly positively correlated (P < 0.01, Spearman’s 

rank correlations). 
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Supplementary Text 4 

 

Stop codon containing ESE motifs can overlap with fewer motifs than the 

remaining ESEs, but not less than dinucleotide matched controls  

 

The result in Supplementary Text 3 suggests that while stop codon containing motifs 

are not avoided as splicing becomes more difficult, motifs not containing stop codons 

are increasingly used over those containing stop codons. Are there constraints at the 

sequence level such that ESEs containing no stop codons are used more frequently? If 

it is the case, stop codon containing motifs may still increase within increasing 

flanking intron size because they provide splice function, but usage may be restricted. 

In such a case, it could again help to explain the stop codon depletion beyond protein-

coding constraints predicted under our transfer selection model. 

 

We note that we observe an increase in ESE density for both stop codon containing 

motifs and others even when for exon flank sequences the size of the sequence scanned 

is controlled. In this scenario, for ESE density to increase there is an increased 

probability that motifs will have to overlap to include the splice information. We 

calculated the number of overlapping motifs and non-overlapping motifs in each exon 

(both classes of motifs combined), overlapping defined as at least one nucleotide 

shared between two or more motifs. We find a weak yet significant correlation 

between both the raw number of overlapping motifs (r = 0.065, P = 8.127 ´ 10-4, 

Spearman’s rank correlation) and the proportion of overlapping motifs within a 

sequence (r = 0.077, P = 1.069 ´ 10-4, Spearman’s rank correlation) as flanking intron 

size increases, suggesting more overlapping does occur as more splice information is 

required.  

 

However, to overlap in protein-coding sequence the motifs in addition to functioning 

as RBP-binding sites must, at a minimum, also encode the correct amino acids 

(although other constraints e.g. RNA secondary structures are likely to be imposed). 

In protein-coding sequence, this is more difficult if a motif contains a stop codon. For 

example, suppose there exists the sequence NNA|AGA|TTA|AGA. A T ® G mutation 

creates two ESE motifs GATGAA and TGAAGA but also creates a premature stop 
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codon. However, a T ® C mutation does not alter amino acid content nor generate an 

in-frame stop codon, whilst also creating ESE motifs AAGATC and TCAAGA that 

could serve as potential functional SR protein binding sites. If there exists a selection 

pressure to maximise splice information, the only useful motifs would be those 

containing no stop codon (the probability the mutation reaches fixation would then be 

determined by whether the new binding motifs provide sufficient functional benefit). 

At the sequence level, stop codon containing ESEs may therefore be less preferable at 

higher ESE densities not because they are poorer functioning motifs (e.g. reduced 

ability to ensure accurate splicing), but because they are more difficult to include.  

 

To establish whether this can explain the depletion of stop codons in ESEs, we must 

first ask whether stop codon containing motifs themselves are inherently more difficult 

to overlap – that is, are stop codon containing motifs less likely to be used because 

their dinucleotide content prevents them from overlapping with other motifs as 

frequently. 

 

For each INT3 motif, we calculated the number of other motifs (including the focal 

motif) that overlap the focal motif by at least two nucleotides. For example, the two 

motifs ATGTAA and GTAATA share a four-nucleotide overlap. The mean number 

of motifs a stop codon containing motif can overlap with (28.667) is fewer than for the 

motifs containing no stop codons (36.800). Is this attributable to the dinucleotide 

content of the motifs? Calculating the mean number of overlaps for the 1,000 sets of 

dinucleotide- and number of stop codon-matched null motif sets (stop codon-matched 

such that an equal number of pseudo ESE motifs per iteration contain stop codons), 

the real stop codon containing motifs do not overlap with significantly fewer motifs 

when compared with the controls (P » 0.732, one-tailed empirical P-value). A fold-

enrichment overlap score (FEO) of 0.083 (calculated as per FE using the real stop 

codon containing mean overlap and simulant ESE mean overlap) confirms the 

insignificant difference. 

 

Motifs containing no stop codons, however, can overlap with a significantly greater 

number of motifs than expected (FEO = 0.333, P » 9.99 ´ 10-4, one-tailed empirical 

P-value). Moreover, this difference between the number of overlaps between the stop 
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codon containing and remaining ESEs is also greater than expected (P » 0.031, one-

tailed empirical P-value). Using the RESCUE set of ESEs, the number of motifs a 

motif can overlap with is significantly greater than expected for both stop codon 

containing (75.833, P » 0.003, one-tailed empirical P-value) and the remaining motifs 

(77.390, P » 9.99 ´ 10-4, one-tailed empirical P-value), with this difference not 

significantly greater than the control motifs (P » 0.148, one-tailed empirical P-value), 

suggesting the ability to overlap is not subject to motif set bias. 

 

Taken together, rather than the dinucleotide content of stop codon containing motifs 

making it more difficult to overlap, motifs containing no stop codons can consistently 

overlap more frequently with other motifs. Thus, the relative increase in usage of ESEs 

containing no stop codons with intron size is unlikely to be a result of difficulties 

including a stop codon containing motif where two are required to overlap.  
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Supplementary Text 5 

 

A greater frequency of ESE motifs containing stop codons when required to 

overlap another ESE motif from that expected argues against a stop codon 

depletion in the ESEs due to an inability to be combined with other motifs 

 

The result in Supplementary Text 4 raises an interesting question. Could the 

composition of real ESE motif set be due to an enrichment of motifs containing no 

stop codons that are more readily able to overlap and as a consequence depleted for 

stop codon containing motifs, independent of any protein-coding constraints? If so, we 

expect stop codon containing motifs to be used less frequently when overlapping 

another motif in exonic sequences. 

 

We therefore predicted hits to all motifs within protein-coding exons and for each 

motif asked whether it overlapped another. For both overlapping motifs and non-

overlapping motifs, we then asked what proportion contained stop codons. In this way, 

we can establish whether stop codon containing motifs are used less frequently when 

involved in an overlap, controlling for the fact these motifs are fewer in number. For 

the INT3 set, we find the opposite to be true – a slightly higher proportion of motifs 

contain a stop codon if overlapping another motif (0.106) than if not overlapping 

(0.098). Although small, this is a highly significant increase (c2 = 49.863, P = 1.649 ´ 

10-12, chi-square test of raw frequencies using non-overlap frequency as the expected 

frequency). A similar significant increase is observed for the RESCUE set (overlap 

stop proportion: 0.143, non-overlap stop proportion: 0.119, c2 = 1041.418, P = 1.649 

´ 10-12, chi-square test).  

 

Thus, although stop codon containing motifs are intrinsically more difficult to overlap 

(see Supplementary Text 4), we instead find a significant increase in usage from that 

expected if a stop codon containing motif overlaps another motif. This argues against 

the hypothesis that stop codon containing motifs are harder to include in overlapping 

motifs in the real sequences. The depletion of stop codons in ESEs is unlikely to result 

from stop codon containing motifs being of less utility in forming part of a larger 

binding motif. This result would also suggest that much of the increase in ESE density 
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as intron size increases is likely due to singular motifs. Together, these results argue 

against stop codon containing ESEs being of poorer function. 
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Supplementary Text 6 

 

The depletion of stop codons in lincRNA sequences is not a result of biases due to 

the sequences chosen paralogous family groupings 

 

To dismiss the possibility that the depletion of stop codons in lincRNA is due to biases 

as a result of the random paralogous family member chosen, we ran the analyses 

shuffling the Cabili et al. (2011) lincRNA sequences 10 times in total. The depletion 

of stop codons remains significant in all cases (median P » 9.99 ´ 10-4; median real 

SCD = 0.130, median of median simulated SCDs = 0.155, median FE = -0.162, 

Supplementary Table 3). The same control applied to the pairwise test in the main text 

also holds (median all depletions P » 0, median significant depletions P » 7.09 ´ 10-

201, Supplementary Table 4). The depletion also exists if all sequences are considered 

and not grouped by family (P » 9.99 ´ 10-4, one-tailed empirical P-value, N = 4,646, 

SCD = 0.135, median simulated SCD = 0.158, FE = -0.149, Supplementary Table 5). 

We can therefore eliminate biases due to the individual sequences used as the reason 

for the depletion of stop codons seen in lincRNAs. 
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Supplementary Text 7 

 

The depletion of stop codons in lincRNA sequences is robust in the second set of 

independently derived lincRNA sequences 

 

To verify the depletion of stop codons in lincRNA sequences by eliminating biases 

due to the total set of lincRNA sequences chosen, we repeated the analysis using a 

more recently derived set of GENCODE sequences reannotated by RNA Capture Long 

Seq (CLS) (Lagarde et al. 2017). CLS enables manual-quality full-length annotations 

at high throughput levels and enables a quality assessment of protein-coding potential 

(Lagarde et al. 2017). A minority of these sequences had protein-coding potential, but 

none had peptide-based evidence of translation. This set therefore provides a second 

“clean” dataset with minimal protein-coding contamination.  

 

Results are qualitatively similar to those when using the Cabili et al. (2011) sequences. 

In the dataset as a whole, stop codons are depleted when compared with shuffled 

versions (FE = -0.169, P » 9.99 ´ 10-4, one-tailed empirical P-value, Supplementary 

Table 6). Similarly, 91.23% (416/456) of the sequences have a stop codon depletion 

when compared with randomisations for the same gene, again a significant excess 

above null (P » 0, one-tailed exact binomial test, null probability of success = 0.5, 

Supplementary Table 7). Of these, 206/456 (45.18%) have a significant depletion (P 

= 2.33 ´ 10-139, one-tailed exact binomial test, null probability of success = 0.05). 

These results, as per the Cabili et al. (2011) set of sequences, are not biased by 

sequence chosen (Supplementary Tables 6-7). Further, the SCD in exons is less than 

in introns of the same gene for 325/456 (71.27%) genes (P = 2.33 ´ 10-139, one-tailed 

exact binomial test, null probability of success = 0.5). 
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Supplementary Text 8 

 

The stop codon depletion in lincRNAs is not owing to hidden ORF contamination 

 

Could the apparent lack of stop codons in lincRNAs be biased by a subset of sequences 

being under strong selection to avoid stop codons, as these sequences contain true but 

unrecognised ORFs? 

 

The initial quality control of the lincRNA datasets argues against this. However, we 

also consider only the sequence upstream of the first annotated ATG (in any frame) in 

lincRNAs which should be devoid of protein-coding potential (although we cannot 

eliminate cases where transcription start sites are 5’ to the annotated sequence). Again, 

we find a depletion of stop codons compared with the randomly shuffled nulls of these 

upstream sequences, robust to differing lengths of sequence before the ATG (median 

P » 9.99 ´ 10-4, one-tailed empirical P-value, median real densities = 0.089, median 

simulant densities = 0.114, Supplementary Table 8). The stop codon depletion in 

lincRNA is therefore not parsimoniously explained as simple annotation artefact. 
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Supplementary Text 9 

 

The stop codon density in multi-exon 5’ untranslated sequences is significantly 

greater than in single-exon sequences, but not after controlling for nucleotide 

composition 

 

Under our model, it could be expected that the 5’ untranslated regions (UTRs) should 

behave similarly to lincRNA sequences as these should have no underlying coding 

potential. Also, the first intron is often close to the ATG and hence to the UTR. 

Therefore, we hypothesise that those UTR sequences for multi-exon sequences should 

have significantly lower SCD than those for single-exon sequences. Considering only 

5’UTRs of length greater than 50 nucleotides and after picking one sequence per 

paralogous family, this is what we find (P = 2.218 ´ 10-5, Wilcoxon rank sum test, 

median single-exon 5’ UTR SCD = 0.074, median multi-exon 5’ UTR SCD = 0.066).  

 

However, when comparing the FE scores after generating null sequences by randomly 

shuffling the nucleotides of the UTR sequences, we find no significant difference 

between FE scores of the real lincRNA and the simulants (P = 0.203, Wilcoxon rank 

sum test). Thus, it appears that the 5’ UTR sequences of multi-exon sequences are less 

conducive to incorporating stop codons than expected. Surprisingly, if anything it is 

the UTRs of single-exon sequences that are more deviated from the null (median 

single-exon 5’ UTR FE = -0.150, median multi-exon 5’ UTR FE = -0.141). 

 

At first sight, this appears to contradict our hypothesis. However, upon closer 

inspection, it is the single-exon UTRs with significantly higher ESE density (P = 3.667 

´ 10-9, Wilcoxon rank sum test, median single-exon 5’ ESE density = 0.113, median 

multi-exon 5’ ESE density = 0.092). Consistent with our model, it is therefore the 

sequences with greater ESE density that have greater negative deviations from 

expected in SCD. Why the 5’ UTR sequences of single-exon sequences contain more 

ESEs than those of spliced sequences is unanswered but could be due to the additional 

functional roles of ESEs beyond splicing (Savisaar and Hurst 2016). 
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Supplementary Text 10 

 

Enrichment of stop codons in non-ESE lincRNA sequence may prevent 

inappropriate SR-protein binding  

 

Is the enrichment of stop codons in lincRNA sequence that is not predicted to be ESE 

genuine? If not, and a consequence of the remaining sequence being conducive to 

generating stop codons, the SCD of the remaining sequence should be similar to a 

sequence in which motifs with similar dinucleotide content have been removed. 

However, if it is, the remaining sequence should have a greater SCD after removal of 

dinucleotide-matched controls. In this test, the dinucleotide-matched control motifs 

must also be matched in stop codon frequency otherwise the simulated remaining 

sequence may retain greater/fewer stop codons as there are more/fewer motifs with 

stop codons to potentially remove. After removal of motifs from the combined ESE 

set, the remaining sequence has a higher SCD than after removing sequence matching 

the dinucleotide- and stop codon-number matched control motifs (FE = 0.116, P » 

0.003, one-tailed empirical P-value). This result is not affected by the randomly 

paralogous family member sequences chosen (Supplementary Table 9). This result is 

therefore consistent with a genuine increase in stop codons in lincRNA outside of ESE 

motifs. 

 

Why then might the remaining sequence be enriched for stop codons? One explanation 

could be that there exists a selective pressure to include more stop codons in non-ESE 

sequence at exon cores or 3’ flanks such that incorrect SR protein binding is less likely 

as the remaining sequence “appears” less like ESE. If such a selection pressure exists, 

the difference in SCD between ESE hits and the remaining sequence should be greater 

than similar comparisons when predicting hits to control motifs. This is what we find. 

The SCD in ESE hits is 0.087 and the remaining sequence 0.113. The ratio of SCD of 

ESEs to non-ESEs is 0.087/0.113 » 0.770, significantly smaller than the equivalent 

ratio for the control motifs (median control motif proportion = 0.908, P » 9.99 ´ 10-4, 

one-tailed empirical P-value), indicating that there is indeed a larger difference in SCD 

in real sequence than expected. Whilst indicative, this result is also compatible with 

selection to incorporate stop codons that become premature termination codons 
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(PTCs), thereby making the transcript subject to nonsense-mediated decay (NMD) if 

erroneously recruited to the translation machinery (Niazi and Valadkhan 2012). We 

make no further inferences as to reasons for the increased SCD, but simply suggest 

there may be several regulatory mechanisms that would benefit from such selection. 
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Supplementary Text 11 

 

The stop codon depletion is not a result of lincRNA sequences avoiding the use of 

stop codon containing ESEs 

 

Our results suggest that despite the lack of translational constraint, stop codons are 

found less frequently than expected in lincRNA. While this is consistent with our 

transfer selection model, it could also be explained if, for some unknown reason and 

unlike protein-coding sequences, stop codon containing ESEs are less functional or 

avoided in lincRNAs. If this is the case, then stop codon containing motifs should be 

found less frequently per motif than the other ESE motifs and should be under-

employed compared with sets of nucleotide composition-matched controls. 

 

To address this, we calculated the raw number of hits within the lincRNA sequences 

to both stop codon containing ESE motifs and the remaining ESE motifs from the 

INT3 data set as per protein-coding sequences in Supplementary Text 2. From this, we 

calculated the normalised number of hits per motif per 1,000 bp (NMH) in lincRNA 

exons. With no reading frame constraints in lincRNA, the first part of the 

normalisation divided the total raw hits in each class by the total number of motifs 

contributing to each class (N = 9 stop codon containing ESE motifs, N = 75 other ESE 

motifs), to give the number of hits per ESE in each class. This value was further 

normalised to give the number of hits per 1,000 bp of exonic sequence.  

 

We find that the stop codon containing INT3 ESEs have more hits within lincRNAs 

(NMH = 0.464) than for dinucleotide-matched simulant sets of pseudo-ESE motifs 

(see Supplementary Table 10), although not significantly so (median simulant NMH 

= 0.409 hits per stop codon containing motif, P » 0.113, one-tailed empirical P-value). 

We therefore conclude that the stop codon containing ESE motifs are not avoided 

when compared to null expectations. The NMH for the real INT3 motifs not containing 

a stop codon is also greater than for the pseudo-ESE motifs that do not contain stop 

codons (NMH = 0.489), but again not significantly so (median simulant NMH = 0.450 

hits per motif for motifs not containing stop codons, P » 0.055, one-tailed empirical 

P-value).  
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While these results indicate no avoidance of stop codon containing ESE motifs in 

lincRNA, they are together surprising as we expect ESE motifs to be enriched in 

lincRNA compared to nucleotide-matched controls. When both the stop codon 

containing motifs and those containing no stop codons are combined, we do find the 

real ESE motifs are found more frequently than the simulant motifs in lincRNA (P » 

0.039, one-tailed empirical P-value).  

 

While neither of the sub-groups (those hexamers with a stop codon and those without) 

is significantly enriched in isolation, the data suggests a possible greater enrichment 

of the motifs that do not contain stop codons (these motifs are borderline significantly 

enriched). Might this indicate possible preferential usage of the motifs that do not 

contain a stop codon? To address we take the ratio between the hits per motif seen in 

the two groups (NMH for stop codon containing motifs = 0.464, for motifs without a 

stop codon = 0.489, ratio = 0.949) and ask whether this is lower than expected by 

chance.  

 

To define chance, we consider sets of simulated ESEs in which the dinucleotide 

content of the real set is maintained but ensuring the total number of stop codons within 

the set of simulated ESEs equals that in the real ESEs. For each simulant set of ESEs 

we again split the motifs into two groups, those with stop codons and those without. 

For each class of pseudo-ESE, we determine the hits per motif in lincRNA and the 

ratio of average hits per motif within each group (those with a stop codon to those 

without). By repeating multiple times, we can then define the null distribution of 

values of the above ratio controlling for dinucleotide content of ESEs. From this, we 

determine that the observed ratio is not significantly lower than expected by chance, 

even employing a one-tailed test (P » 0.656 one-tailed empirical P-value, median 

simulant ratio = 0.905). 

 

We conclude that there is no evidence stop codon containing ESEs are underemployed, 

given both the commonality of such ESEs and the dinucleotide content of ESEs. 

Results are not subject to biases due to the random sequences chosen (Supplementary 

Table 10). Furthermore, this is also not a result of the ESEs used. Using the RESCUE 
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ESE dataset containing more motifs (Supplementary Table 11), we find both hits to 

stop codon containing motifs (NMH = 0.444, median simulant NMH = 0.388, P » 

0.004, one-tailed empirical P-value) and hits to those motifs not containing stop 

codons (NMH = 0.413, median simulant NMH = 0.376, P » 0.003, one-tailed empirical 

P-value) are significantly greater than matched pseudo motifs, while the ratio between 

the NMH values is not significantly greater than expected (ratio = 1.076, median 

simulant ratio = 1.030, P » 0.747, one-tailed empirical P-value). This suggests that 

both the ESE motifs containing stop codons and those not containing stop codons are 

enriched in lincRNAs and that neither class is significantly more or less enriched than 

the other. The depletion of stop codons in lincRNA is unlikely to be a result of 

underuse of specific ESEs or avoidance of stop codon containing ESEs in lincRNA. 
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Supplementary Text 12 

 

Stop codon containing ESEs are not avoided in lincRNA as intron size increases 

 

Are stop codon containing ESEs functional in lincRNA sequences? As with protein-

coding sequences (see Supplementary Text 3), one indication of their functionality 

would be an increased density as flanking intron size increases. Correlations between 

ESE density and intron size have previously been documented by Schuler et al. (2014) 

using the RESCUE set of motifs (Fairbrother et al. 2004). We find a similar trend for 

both full sequences (r = 0.190, P = 4.37 ´ 10-17, Spearman’s rank correlation) and 

when restricted to exon flanks (r = 0.010, P = 7.26 ́  10-5, Spearman’s rank correlation) 

for our dataset (N = 1,919 lincRNA sequences).  

 

Does the use of stop codon containing ESEs increase with intron size? As with protein-

coding sequences, we again find a significant positive correlation in full sequences (r 

= 0.126, P = 4.37 ´ 10-17, Spearman’s rank correlation) and flanking regions (r = 

0.049, P = 0.049, Spearman’s rank correlation, Supplementary Texts Figure 2), 

arguing that the motifs are indeed employed and functional. Although the signal is 

much weaker when restricted to flanks, only the density of motifs rather than exon 

location appears important in lincRNA (Schuler et al. 2014). Thus, with both the 

flanking regions and full sequences both displaying significantly positive trends, these 

results argue that stop motifs are likely functional. As per protein-coding genes, the 

density of ESEs containing no stop codons is also significantly positively correlated 

within flanking intron size (all sequence: r = 0.180, P = 1.94 ́  10-15; flanks: r = 0.087, 

P = 4.28 ´ 10-4 Spearman’s rank correlations). 

 

With evidence arguing the enrichment of ESEs near exon ends is indicative of 

functionality in CDS (Fairbrother et al. 2004; Carlini and Genut 2006; Parmley et al. 

2006; Parmley et al. 2007; Ke et al. 2011; Sterne-Weiler et al. 2011; Caceres and Hurst 

2013; Ramalho et al. 2013; Savisaar and Hurst 2018) and lincRNAs (Schuler et al. 

2014; Haerty and Ponting 2015), this is consistent with stop codon containing ESEs 



 112 

likely being functional and therefore the interpretation of low SCD is the need to 

preserve ESEs, in which stop codons are depleted. 

 

 
Supplementary Texts Figure 2: The log10 median lengths for introns versus the density of 

INT3 ESE motifs for the whole exon when (A) all ESEs are combined and (B) ESEs are 

grouped as stop codon containing and those containing no stop codons. In all cases, 

correlations between flanking intron size and densities are significantly positively correlated 

(Spearman’s rank correlations). Correlations of densities in whole exons rather than exon 

flanks are shown as ESE location is not considered as such an important predictor of 

evolutionary rate in lincRNA (Schuler et al. 2014). 
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Supplementary Text 13 

 

The high purine content of ESEs is consistent with a model in which ESEs are 

highly non-intronic, making the depletion of purine-rich stop codons particularly 

noteworthy 

 

That both ESEs (Xu et al. 1993; Dirksen et al. 1994; Tanaka et al. 1994; Gersappe and 

Pintel 1999; Fairbrother et al. 2002; Caceres and Hurst 2013) and stop codons are 

purine-rich makes the depletion of stop codons in ESEs more noteworthy. With 

skewed nucleotide usage at exon ends in both protein-coding and lincRNA sequences, 

is the high purine content of ESEs in itself a defining feature of ESEs? The presence 

of uracil residues within polypurine sequences has been shown to reduce splicing 

ability (Tanaka et al. 1994). Thus, purine-richness may simply be a requirement of SR 

protein binding - the binding sites of the SR protein SF2/ASF, for example, are 80% 

purine (Graveley 2000).  

  

As vertebrate genes are characterised by short exons dispersed between longer introns 

(Zhang 1998; Sakharkar et al. 2005), the more distinguished a motif is within its 

surrounding pre-mRNA transcript sequence, the less erroneous binding to intronic 

sequence should occur. An alternative, but not necessarily mutually exclusive model, 

is therefore one in which the purine content helps to distinguish ESEs. This model 

makes several basic predictions. First, exonic sequences should differ in purine content 

to introns. In other words, if purine content helps to define ESEs as exonic, in the first 

instance one would expect that exons themselves have increased purine content when 

compared with intronic sequence. Second, random intronic motifs should have 

reduced purine content compared with the real motifs, minimising the chance of 

inappropriate SR protein binding to introns. 

 

We therefore calculated the purine content for coding exons and their corresponding 

introns, with genes considered as part of the same paralogous family as a single data 

point (N = 5,620). As expected, the purine content for exons (median purine content = 

0.523) is significantly greater than that of introns (median purine content = 0.490) (P 

< 2.2 ´ 10-16, paired Wilcoxon signed-rank test). In general, exons are more purine-
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rich than introns (Supplementary Texts Figure 3). This differentiation suggests that by 

being purine-rich, ESEs can be seen as non-intronic sequence. However, this increased 

exonic purine content may simply be a consequence of the ESEs situated within the 

exons. After removing all possible motifs using the combined ESE set exonic purine 

content remains significantly greater (P < 2.2 ´ 10-16, paired Wilcoxon signed-rank 

test, median exon purine content = 0.456, median intron purine content = 0.438), 

suggesting even without ESEs exons are different in terms of purine content. 

 

Are then, ESEs also differentiated further from exons because of their purine content? 

Using the terminal 50 nucleotides of exon sequences, Caceres and Hurst (2013) find 

ESEs to have significantly higher purine content. This result holds in our dataset when 

employing exons longer than 100 nucleotides (N = 5,032 data points) (P < 2.2 ´ 10-16, 

paired Wilcoxon signed-rank test). However, this differentiation should not be limited 

simply to exon ends - a difference in purine content should extend throughout the 

whole exon as ESEs need to differentiate from surrounding exonic sequence. Using 

the INT3 set of ESEs, we find that the purine content of sequence that overlaps an ESE 

is significantly greater than that of non-ESE exonic sequence (P < 2.2 ´ 10-16, paired 

Wilcoxon signed-rank test). Thus, whilst the purine content of exons tends to be 

greater than that of introns, ESEs are further differentiated from the surrounding 

sequence. This result is therefore consistent with the ESE purine content defining ESEs 

as not only non-intronic, but highly non-intronic and may therefore act as a marker to 

differentiate key binding sites. 
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Supplementary Texts Figure 3: The purine content of both exon and introns, with the purine 

content of INT3 ESEs shown by the horizontal line. Exons in general tend to have higher 

purine than introns. The purine content of ESEs differentiates them from both surrounding 

exonic and intronic sequence. 

 

This purine-richness should therefore make ESEs all the rarer within the intronic 

sequence, possibly such that ESEs are not frequently found within introns to prevent 

inappropriate binding. This argument is logical – ESEs, as motifs functioning within 

exons, should be less abundant in intronic sequence. However, it has been documented 

that ESEs may have functional roles in introns; increases in ESE density have been 

documented in introns with weak donor sites, suggesting ESEs that help to splice weak 

donor sites may exist in introns rather than exons (Wu et al. 2005), whilst ESEs in 

introns have also been shown to have repressor abilities (Kanopka et al. 1996; McNally 

and McNally 1998). Does then, the purine content of ESEs differentiate them from 

random intronic motifs for the probability of an SR protein inappropriately binding 

within an intron to be reduced? 

 

We generated 1,000 sets of random hexamers from intronic sequence, picking one 

gene at random from those considered as part of a paralogous family. We then asked 
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whether the purine content of these random motifs differed significantly from the real 

ESE motifs. We find this is to be the case (P » 9.99 ´ 10-4, one-tailed empirical P-

value) – no set of hexamers has purine content close to that of ESEs (Supplementary 

Texts Figure 4A). Thus, hexamers with the nucleotide content found within ESEs are 

highly unlikely to be frequently found within introns, making them ideal candidates to 

ensure the SR proteins correctly locate and bind exclusively exonic sequence in 

proximity to splice sites. 

 

Given the above result, it is interesting to ask whether there is a particular bias of A/G 

nucleotides within ESEs that discriminates them from intronic hexamers. We therefore 

calculated the proportions of each nucleotide in ESEs and the random hexamers 

derived from intronic sequence. We find a striking difference in both A and G content 

when compared with these motif sets (Supplementary Texts Figure 4B), finding no 

sets of random intronic hexamers with either A or G content greater than that of the 

real ESEs (P » 9.99 ´ 10-4, one-tailed empirical P-values). Thus, it is the combination 

of both A and G nucleotides found less frequently within introns that differentiates 

ESEs from intronic sequence. 

 

By having high purine content, ESEs therefore differ significantly from both intronic 

and exonic sequence, making it less likely SR proteins will bind off-target motifs. 

Purine content may then act to differentiate such motifs. Despite this, ESEs may have 

functional repressive roles if present in introns (Kanopka et al. 1996) and may 

complicate this issue. However, this model still predicts that the purine content would 

help differentiate such motifs from surrounding intronic sequence and therefore still 

preventing inappropriate binding. We make no further attempts to address this issue, 

but simply conclude that the purine content is consistent with helping ESEs look 

different from the surrounding sequence. 
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Supplementary Texts Figure 4: (A) The purine content of INT3 ESEs (vertical red line) is 

significantly greater than the purine content of random sets of intronic hexamers of equal 

number. (B) Both the A and G content of ESEs is greater than that of the random intronic 

hexamer sets. We find no set with both A and G content higher than that of the real INT3 ESE 

set. 
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Chapter 3: 

 

Rarity of stop codons in exonic motifs cause nonsense 

mutations to disrupt splicing in disease and non-disease 

genes 
 

 

 

 

This chapter contains a reformatted version of the draft manuscript from a 

collaboration primarily between Rosina Savisaar and myself. The manuscript was 

previously submitted to Genome Biology and I am due to submit a version of this 

revised manuscript for an invited second round of peer-review imminently. 

 

Rosina Savisaar and myself reviewed the nonsense-associated altered splicing 

literature, determined the splice-quantification analysis specifics, implemented the 

pipeline and analysed the data. I implemented and analysed the disease-associated 

data. I have also collaborated with Christine Mordstein, Bethan Young and Grzegorz 

Kudla at the MRC Institute of Genetics and Molecular Medicine, University of 

Edinburgh, who performed the experimental analysis. Rosina Savisaar presented a 

preliminary account of these results in her thesis. Since then, I have reanalysed the 

data, updated results and performed new analyses in order to produce the manuscript 

here.  

 

This chapter contains analysis of publicly available data. The data and custom scripts 

are freely available at locations cited within the paper.  
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Abstract 
 

Background 

It is often assumed that transcripts containing premature termination/stop codons 

(PTCs) are degraded by nonsense-mediated decay (NMD) or produce truncated 

proteins. Nonsense-associated altered splicing (NAS), shown in a few genes and 

mechanistically unresolved, is however, a further possibility. Here we provide a 

genome-wide estimate for NAS prevalence in non-disease-associated and disease-

associated contexts and test predictions discriminating between two NAS mechanistic 

models, motif disruption and scanning. 

 

Results 

Using 1000 Genomes project data with associated RNA-seq data, we identify genome-

wide associations between PTCs and exon skipping, with 30 prime candidates, 

conservatively estimating that »6% of nonsense mutations disrupt splicing in non-

disease-associated contexts. We experimentally validate our top NAS candidate. 

Disease-associated nonsense mutations are in silico predicted to commonly disrupt 

splicing and are enriched at exon ends (where the density of splicing information is 

highest). From such enrichment, we estimate »33% of disease-associated nonsense 

mutations may affect splicing. That disease-associated nonsense mutations 

disproportionately hit exonic splice enhancer (ESE) motifs and that out of frame stop 

codons also disrupt splicing, supports the motif-disruption NAS model.  

 

Conclusions 

Genome-wide NAS is rare in non-disease-associated contexts but likely common in 

disease-associated ones. NAS mostly likely occurs owing to splice motif disruption. 

Indeed, the results accord with a model in which, given that within ESEs stop codons 

are heavily depleted, mutations to nonsense occurring in ESEs are especially likely to 

disrupt splicing. The realization that NAS may underpin many instances of nonsense-

mediated pathogenesis has implications for genetics-based therapeutics. 
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Background 
 

A fundamental component of genetic-based medicine is correctly understanding the 

molecular mechanisms that underpin genetic diseases (e.g. see (Price et al. 2015; 

Ginsburg and Phillips 2018; Jackson et al. 2018)). Here we consider how nonsense 

mutations generating premature termination codons (PTCs) - in-frame stop codons in 

the mature transcript – might elicit their deleterious effects. PTCs are often implicated 

in disease (Holbrook et al. 2004b; Mort et al. 2008), with approximately 11.5% of all 

described mutations causing human inherited diseases being the result of nonsense 

mutations (Mort et al. 2008). 

 

PTC pathogenicity is often ascribed to one of two well-described mechanisms. First, 

a PTC results in the synthesis of a truncated protein with potentially problematic loss 

of function or gain of toxicity (Holbrook et al. 2004a; Drummond and Wilke 2008; 

Karam et al. 2008; Chung et al. 2018). Alternatively, eukaryotes also possess 

nonsense-mediated decay (NMD) (Maquat 2005; Brogna and Wen 2009), a system 

that recognises and targets for degradation (during translation) some PTC-containing 

transcripts (possibly owing to such toxicity). Such PTCs targeted by NMD may be 

mutational in origin or result from transcriptional errors. The importance of NMD in 

dealing with PTC-containing transcripts is highlighted by an evolved robustness in 

cases where NMD cannot function. For example, the use of particular codons 

minimises PTCs resulting from mistranscription events in intronless transcripts, in the 

last exon or less than 50 nucleotides from the last EJC (Cusack et al. 2011) as these 

are all largely hidden from NMD (Maquat and Li 2001; Brocke et al. 2002) and hence 

cannot be degraded.  

 

There is, however, at least one further possibility, nonsense-associated altered splicing 

(NAS). PTCs have been observed to alter splicing patterns where the PTC-containing 

exons have been spliced out. The PTC in question is hence not subject to NMD and 

instead unexpected splice isoforms are produced (Gibson et al. 1993; Dietz and 

Kendzior 1994; Hull et al. 1994; Endo et al. 1995; Messiaen et al. 1997; Shiga et al. 

1997; Valentine and Heflich 1997; Hoffmeyer et al. 1998; Mazoyer et al. 1998; Melis 

et al. 1998; Valentine 1998; Gersappe and Pintel 1999; Ars et al. 2000; Wimmer et al. 
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2000; Di Blasi et al. 2001; Caputi et al. 2002; Li et al. 2002; Wang et al. 2002a; Wang 

et al. 2002c; Pagani et al. 2003; Pasmooij et al. 2004; Vuoristo et al. 2004; Zatkova et 

al. 2004; Mendive et al. 2005; Stasia et al. 2005; Disset et al. 2006; Aznarez et al. 

2007; Chang et al. 2007; Laimer et al. 2008; Sperling and Sperling 2008; Chemin et 

al. 2010; Littink et al. 2010; Lenassi et al. 2014; Peterlongo et al. 2015; Barny et al. 

2018; Meldau et al. 2018). Skipping of exons has been associated with pathogenicity 

(Shiga et al. 1997; Lorson et al. 1999; Moseley et al. 2002; Helderman-van den Enden 

et al. 2010; Xu et al. 2014), most likely due to the deletion of important peptide or 

structural information and so NAS is likely to be a source of pathogenicity. Exons 

skipped as a result of NAS also have the added potential consequence of introducing 

downstream PTCs if the exon is not of length three. This can result in the truncation 

of the exon-skipped proteins or targeting the resultant transcript for NMD. 

 

To date, despite NAS being a potential source of pathogenicity, no genome-wide study 

of the prevalence of NAS has been performed in either a healthy or pathogenic context. 

Instead, to date studies reporting the effects of NAS are performed on a case by case 

basis (see previous references for examples). Here we aim to provide the first such 

genome-wide estimates. We consider both the non-disease-associated context (via 

1000 Genomes data (The 1000 Genomes Project Consortium 2015)) and the disease-

associated context (via ClinVar data (Landrum et al. 2018)). We expect the two to 

provide different estimates. As splice disruption is expected to be highly damaging, 

we expect that the frequency of nonsense mutations resulting in NAS to be higher in 

disease-associated contexts than in non-disease-associated contexts (i.e. nonsense 

mutations circulating in the human population) as splice disruption can be highly 

deleterious (Lopez-Bigas et al. 2005; Baralle et al. 2009; Lim et al. 2011; Sterne-

Weiler et al. 2011; Wu and Hurst 2016).  

 

The mechanism of NAS also remains unsolved. Two models have been proposed 

(reviewed in Cartegni et al. 2002; Maquat 2002). The first “motif disruption” model 

suggests that a nonsense mutation could disrupt important regulatory splice motifs 

such as exonic splice enhancers (ESEs). ESEs are especially abundant at exons ends 

(the terminal »70bp) and function by binding serine-arginine rich (SR) proteins that in 

turn direct the splicing machinery to the splice junction and facilitate the assembly of 
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the spliceosome (Blencowe 2000). ESEs and their disruption could then result in 

incorrect splicing of the transcript (Shiga et al. 1997; Valentine 1998; Liu et al. 2001; 

Caputi et al. 2002; Pagani et al. 2003; Zatkova et al. 2004; Aznarez et al. 2007; 

Peterlongo et al. 2015). Alternative motif centred mechanisms are imaginable, such as 

the mutation creating an exonic splicing silencer (ESS), cis-regulatory elements that 

inhibit the use of adjacent splice sites (Wang et al. 2004).  

 

The motif disruption model has recently been rendered especially parsimonious by the 

observation that, as a consequence of overlapping with coding sequence (CDS), exonic 

splice motifs, including ESEs, have an especially low density of stop codons 

(Abrahams and Hurst in press), despite purine enrichment of both ESEs and stop 

codons. Given the overall rarity of the trinucleotides TAA, TAG and TGA in ESEs, 

any mutation creating a stop codon in an ESE may therefore inhibit the binding ability 

of the motif with potential implications for splicing of that exon. Furthermore, given 

the prevalence and selective pressures imposed upon and by ESEs (Savisaar and Hurst 

2017, 2018) (the proportion of exonic sequence governing splicing moderated ESE 

selection is as strong a predictor of human protein evolution as the amount a gene is 

expressed (Parmley et al. 2007)), it would be a priori expected that NAS is likely to 

occur at a non-negligible level genome-wide. Furthermore, at least some of the time, 

this disruption would be expected to be associated with motif disruption.  

 

The second “nuclear scanning” model (Dietz and Kendzior 1994; Gersappe and Pintel 

1999; Mendell and Dietz 2001; Li et al. 2002; Wang et al. 2002a; Wang et al. 2002c; 

Shi et al. 2015) instead requires the detection of the PTC via a translation-like scanning 

mechanism. In this model, if a PTC is detected, information is fed back to modulate 

alternative splicing of transcripts that are subsequently transcribed from the same locus 

and upregulate the synthesis of transcripts skipping the PTC-containing exon. A 

defined start codon and by implication reading frame are prerequisites (Shi et al. 2015). 

Whether the disruption to the ORF is recognised in the cytoplasm or nucleus is unclear 

(Mendell et al. 2002; Wang et al. 2002c; Chang et al. 2007), with some splice variants 

also suppressed in a process decoupled from NMD (Pan et al. 2006). In the case of 

nonsense mutations in exon 51 of the FBN1 gene, all of the three nonsense variants 

disrupt splicing which, in turn, is restored by introducing upstream frameshifts of the 

nonsense variant (Dietz and Kendzior 1994). Such a scanning mechanism is not likely 
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to operate directly on the mutated transcript itself, but by instead passing information 

to the site of transcription whereby splicing can be modified for subsequent transcripts.  

 

The two models make different predictions about out of frame stop codon mutations. 

The scanning mechanism predicts only in-frame stops in CDS elicit a response, while 

the motif disruption model predicts that the mutations generating the trinucleotides 

TAA, TGA or TGA in any frame in CDS could have an effect if they disrupt splicing 

motifs. We therefore test whether out of frame stop codons also initiate splice 

disruption.  

 

We begin by asking whether it is possible to detect genome-wide associations between 

PTCs and exon skipping. Exploiting the publicly available polymorphism data from 

the 1000 Genomes Project (The 1000 Genomes Project Consortium 2015) and 

associated publicly available RNA-seq data from the Geuvadis project (Lappalainen 

et al. 2013), we identify a set of 30 prime candidate PTCs associated with large 

increases in exon skipping consistent with NAS. Accordingly, we estimate that 

approximately 6% of polymorphic nonsense mutations have a non-negligible effect on 

splicing. We provide experimental data for our computationally derived top NAS 

candidate using a minigene construct. Evidence is consistent with NAS as the source 

of exon skipping. Given we also find an unexpected splice variant with partial intron 

retention, we argue that the most parsimonious model is one evoking the disruption of 

regulatory motifs. Similarly, we find that out of frame stop codons have similar effects 

to in-frame stop codons, an effect not predicted by the nuclear scanning model. 

 

That both in silico and experiment data are consistent with the motif disruption model 

enables us to estimate the prevalence of disease-associated nonsense mutations 

associated with disrupted splicing. Specifically, we ask whether known disease-

associated PTCs (irrespective of molecular function) are more prevalent towards the 

flanks of exons. Exon flanks (»70 bp) are regions rich in splice controlling elements 

such that known splice disrupting mutations are reported to be especially abundant at 

exon ends (Woolfe et al. 2010). We find that disease-associated PTCs do preferentially 

locate in exon flanks. From the degree of enrichment, we estimate that »33% of 

disease-associated nonsense mutations might affect splicing. In addition, disease-
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associated PTCs disrupt ESEs significantly more frequently than expected by chance. 

This enrichment in ESEs further supports the motif disruption model for NAS and 

underpins the role of splice disruption in pathogenicity. Taken together, the results 

accord with a model in which, given that stop codons are heavily depleted in ESEs, 

nonsense mutations in ESEs are especially likely to disrupt splicing. This insight has 

potential medical implications as it highlights the importance of accurately classifying 

mutations when trying to ensure the effectiveness of genetic and drug therapeutic 

strategies. 

 

 

 

Results 
 

PTCs associated with increased exon skipping have a »107-fold stronger effect 

than those associated with increased exon inclusion 

 

To obtain an estimate for the rate of genome-wide PTC-associated exon skipping, we 

employed DNA polymorphism data obtained from the 1000 Genomes project (The 

1000 Genomes Project Consortium 2015) and associated RNA-seq data for 462 

individuals from the Geuvadis RNA-sequencing project (Lappalainen et al. 2013) for 

matching individuals. This dataset was chosen for two reasons. First, it contains data 

from enough individuals to uncover any potential associations. Second, and perhaps 

more importantly, it is readily publicly available. 

 

A high-quality set of internal coding exons was assembled. Of these exons, we retained 

541 PTC-containing exons in which we could quantify splicing (see Methods). For 

each exon, the median percentage spliced in (PSI) was calculated (see Methods) for 

each of the three genotypes - homozygous non-PTC (PTC-/-), heterozygous PTC 

(PTC-/+) and homozygous PTC (PTC+/+). Our analyses focus on comparisons 

between PTC-/- and PTC-/+ variants as only 24/541 (4.37%) exons had an individual 

with a PTC +/+ variant (and of which only 14 have a change in PSI from the PTC-/- 

variant). 
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We first asked whether there are detectable differences in exon inclusion for the same 

exon whether containing or not containing a PTC. If PTCs are responsible for exon 

skipping, we expect the median PSI for PTC-/+ variants to be significantly lower for 

than for PTC-/- variants. We do find a significant difference between two genotypes 

(P = 3.294 ´ 10-4, paired Wilcoxon signed-rank test), although unexpectedly it is the 

PTC-/- variants that are significantly reduced (P = 1.647 ´ 10-4, one-tailed paired 

Wilcoxon signed-rank test). If anything, this result argues against an increase in exon 

skipping associated with PTCs.  

 

Why might the PTC-/+ variants have significantly higher PSI? We introduce the term 

DPSI (PSIPTC-/+ - PSIPTC-/-) that describes the PSI difference between genotypes for 

each exon. If there is less exon inclusion when the PTC is present, DPSI is negative. 

We find that almost half of exons exhibit no difference in PSI between genotypes 

(DPSI = 0, N = 239, 44.18%). In many cases, the presence of a PTC appears to have 

no effect on exon inclusion. Of the remaining exons where DPSI is not equal to zero 

(N = 302), only 68 have DPSI < 0 (12.57%) with reduced exon inclusion for the PTC 

variant. For the majority of cases (N = 234), the PTC containing variant therefore 

actually has greater exon inclusion and may explain the previous result. This 

contradicts a hypothesis of exon skipping being a common consequence of nonsense 

mutations. 

 

However, upon closer inspection both the median (-9.023) and standard deviation 

(19.926) DPSI scores for exons with DPSI < 0 are further from zero than DPSI > 0 

exons (median = 0.084, standard deviation = 2.442 respectively) (Figure 6A). The 

median absolute effect on exon inclusion is »107-fold greater when the PTC increases 

exon skipping than when it is associated with inclusion. Using the absolute DPSI 

values for the two groupings DPSI > 0 and DPSI < 0, we find the absolute DPSI < 0 

scores are significantly greater than the absolute DPSI > 0 scores (P < 2.2 ´ 10-16, one-

tailed Wilcoxon rank sum test). That the initial test demonstrates that the opposite 

effect appears to be an side effect of the statistical test wherein many variants with 

small and likely negligible effects mask the less frequent, but larger and more 

disruptive differences in the direction consistent with NAS (see Supplementary Figure 

1A, Supplementary Figures). When considering absolute quantitative effect of PTCs 
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on exon inclusion, those variants associated with increased skipping and consistent 

with NAS have a significantly greater impact than those increasing exon inclusion. 

 

PTCs are associated with significant increases in exon skipping after controlling 

for the nucleotide composition of mutations that generate PTCs 

 

While PTCs appear to have large effects consistent with NAS, it is also the case that 

the relative proportions of the different mutation classes generating PTCs (e.g. A®T, 

C®T) are significantly different than for mutations creating synonymous and 

nonsynonymous variants in the same set of exons (N = 1,458 non-nonsense mutations, 

c2 = 481.192, P = 5.680 ´ 10-104, chi-squared test, Supplementary Spreadsheet 1, 

Supplementary Spreadsheets). This is robust to excluding N®C mutations (N = 216) 

that cannot generate a PTC (c2 = 329.757, P = 2.480 ´ 10-72, chi-squared test, 

Supplementary Spreadsheet 1, Supplementary Spreadsheets). The strength of the 

effect in the previous result may not be a result of the PTC per se, but more general of 

nucleotides involved in the mutations that generate PTCs. 

 

To account for any such nucleotide biases, we asked whether the PTCs are associated 

with increased exon skipping beyond that expected given their nucleotide 

composition. To do this, for each PTC we simulated 100 pseudo-PTCs (pPTCs) by 

replacing each real PTC with a randomly sampled missense mutation matched by 

ancestral allele, variant allele and variant allele frequency (e.g. if the total PTC count 

on both alleles was 6/300, the matched mutation allele frequency was » 0.2). To 

quantify any difference, we calculated a Z score for each PTC, defined as the DPSI for 

the true PTC minus the mean of pseudo-DPSIs (DpPSI), divided by the standard 

deviation of DpPSI. Thus, if real PTCs have a more negative effect on PSI than the 

matched pPTCs as a result of being a PTC and not the nucleotides involved, Z scores 

will be negative. Indeed, we find 308/541 (56.93%) PTCs with a Z score less than 

zero, a significant proportion (P = 7.213´ 10-4, one-tailed exact binomial test, Figure 

1B). Results are more consistent with increased skipping of the PTC variant when the 

distance of the pPTC to the exon boundary is also controlled (by sampling a matched 

mutation from within the 10 bp window around true nonsense variant location) 

(342/541 exons with Z < 0, P = 4.125 ´ 10-10, one-tailed exact binomial test). PTCs 
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therefore have a significantly stronger tendency to promote exon skipping than 

expected given their nucleotide composition. 

 

 
Figure 6: Differences in relative exon skipping levels.  

(A) The differences in PSI scores between PTC-/+ and PTC-/- variants (DPSI) for exons with 

non-zero differences in PSI between the two genotypes. DPSI scores corresponding to exons 

for which the PTC is associated with increased exon inclusion (DPSI > 0) are typically small. 

DPSI scores for variants associated with increased exon skipping (DPSI < 0) and consistent 

with NAS are typically have a much larger effect. (B) Z scores comparing the DPSI score for 

each PTC with DPSI scores for 100 missense mutations matched by ancestral allele, variant 

allele, allele frequency and distance to exon boundary. The distribution of Z scores is skewed 

to the left of zero, indicating that the variants increase exon skipping more than expected when 

compared with the matched simulants. 

  

The first result associating PTCs with increased exon inclusion is therefore highly 

misleading. In many cases, the effect of a PTC on exon inclusion is small and unlikely 

to be biologically significant. However, for cases with more substantial variations in 

DPSI, they are consistent with the PTC presence increasing exon skipping, with these 

much more likely to be biologically meaningful, and not a result of nucleotide biases 

that may promote greater skipping. Taken together, these results indicate there does 
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exist a direct association between the presence of a PTC and significant increases in 

relative levels of exon skipping beyond that expected, consistent with NAS. 

 

NMD cannot account for many cases of increased exon skipping associated with 

a PTC 

 

Despite the above results, it remains that NMD could explain these differences. By 

definition, the PSI metric is dependent on the number of reads for the full-length 

isoform. Yet, if full-length transcripts containing a PTC are removed at a particular 

rate by NMD, the relative proportion of reads demonstrating exon inclusion (PSI) 

would decrease despite no increase in the absolute number of skipped reads (see 

Supplementary Spreadsheet 2, Supplementary Spreadsheets for an example). Thus, 

although we might observe a relative change in the rate of exon skipping between 

variants, there might be no absolute change in the number of exons skipped. 

 

It is therefore vital to eliminate any PSI variations we observe that are also consistent 

with NMD. To do this, we used absolute read counts supporting exon skipping or 

inclusion, normalised to the number of total reads per million to control for differing 

read depths between samples. We introduce the metrics reads per million included 

(RPMinclude) and reads per million skipped (RPMskip) that define read counts 

supporting exon inclusion or skipping, respectively. Accordingly, DRPMincl 

(RPMincludePTC-/+ - RPMincludePTC-/-) and DRPMskip (RPMskipPTC-/+ - RPMskipPTC-

/-) then describe the differences between PTC-/+ and PTC-/- variants for RPMinclude 

and RPMskip, respectively. 
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Figure 7: Differences in absolute exon skipping levels. 

 (A) Raw read counts per million reads supporting exon inclusion (RPMinclude) for non-PTC 

and PTC variants. 50 outlier data points are removed for visualisation purposes. (B) 

Differences in the raw read counts supporting exon skipping between variants (DRPMskip) 

are consistent with those in the direction consistent with NAS having a larger and biologically 

relevant effect. The median negative DRPMskip is -4.794 ´ 10-4 arguing that when the PTC is 

associated with reduced exon skipping, the effect is almost negligible. One data point for 

DRPMskip < 0 at y = -0.759 and two outlier data points at for DRPMskip > 0 at y = 1.242, y 

= 4.778 are omitted for visualisation purposes.  

 

We first asked whether we could detect NMD. If so, the raw number of reads 

supporting inclusion, RPMinclude, should be significantly higher in PTC-/- than for 

PTC-/+ variants, i.e. DRPMincl < 0 as full-length transcripts containing a PTC are 

subject to NMD at some rate. Our results suggest this is the case (P < 2.2 ´ 10-16, one-

tailed paired Wilcoxon signed-rank test, Figure 7A), with the median RPMinclude for 

PTC-/+ variants (0.328) almost one third less than the median RPMinclude for PTC-

/- variants (0.502). Thus, NMD is detectable in our samples. 

 

We next asked whether the raw reads provide evidence consistent with NAS. If PTCs 

are associated with exon skipping, then RPMskip should be greater for PTC-/+ than 
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for PTC-/- variants. However, as with PSI, PTC-/- variants have significantly higher 

RPMskip values (P = 4.829 ´ 10-5, one-tailed paired Wilcoxon signed-rank test). As 

per PSI, many cases have DRPMskip = 0 (N = 239). Further, relatively few exons have 

DRPMskip scores greater than 0 (N = 64 with increased skipping for the PTC-/+ 

variant) (Supplementary Figure 1B, Supplementary Figures). However, for the 

positive DRPMskip scores both the median (0.045) and standard deviation (0.627) 

suggest a distribution further from zero than those in the opposite direction (median = 

4.667 ´ 10-4, deviation = 0.050) (Figure 7B). Again, as per PSI, absolute DRPMskip 

values in the direction consistent with NAS are significantly greater than absolute 

values of those in the opposite direction (P < 2.2 ´ 10-16, one-tailed Wilcoxon rank 

sum test). The likely meaningful associations are therefore consistent with NAS.  

 

Is the number of PTCs with raw read counts supporting greater skipping for the PTC 

variant also higher than expected given the nucleotide composition of PTC mutations? 

We reanalysed the set of 100 matched missense simulants and asked how many PTCs 

differ in DRPMskip when compared with simulant pseudo-DRPMskip (DpRPMskip) 

values. A significant number, 339/541 (62.66%), have positive Z scores (P = 0.004, 

one-tailed exact binomial test; note here a positive Z score indicates increases in 

RPMskip over the simulants). This result is robust to missense mutations being 

matched by their distance to the exon boundary (381/557, P < 2.2 ´ 10-16, one-tailed 

exact binomial test). 

 

These results are therefore consistent with an association between the PTC and an 

increase in the absolute read count supporting exon skipping beyond that attributable 

to NMD. While we cannot discount the contribution of NMD entirely, these results 

argue against an overall systematic involvement of NMD increasing skipping and 

therefore is unlikely to fully explain the associations observed between the PTCs and 

exon skipping. 

 

6% of nonsense mutations result in non-negligible levels of exon skipping 

consistent with NAS 
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The above results provide, to the best of our knowledge, the first evidence of genome-

wide associations between PTCs and exon skipping. However, as alluded to, in most 

cases the effect is minimal (median absolute DPSI » 0.001% for all exons with DPSI 

not equal to zero). In many cases, it is therefore likely that skipping of the exon has 

little phenotypic consequence. For example, for this median effect only 1 of 100,000 

transcripts will have an altered splicing pattern. However, for those cases where the 

effect is substantial and by assumption biologically meaningful, we find both the 

relative increase in exon-skipped isoforms and absolute change in the numbers of 

isoforms with a skipped exon are significantly higher for those variants consistent with 

NAS. 

 

Thus, to provide a more reliable estimate quantifying the genome-wide extent of NAS 

in this population, we consider only the large-effect cases where differences in exon 

skipping are likely to be phenotypically important. Using ±5% as our DPSI thresholds 

(see Supplementary Text 1 for justification of the 5% threshold), we find 50/541 

(9.24%) exons have DPSI exceeding these thresholds (either positively or negatively). 

Of these, 44/50 (88.00%) exons have DPSI < 0, many with a difference that far exceeds 

5% (Figure 8A). The direction of this enrichment is highly significant (P = 1.662 ´ 10-

8, one-tailed exact binomial test). Thus, a significant majority of PTCs that result in a 

substantial effect on exon inclusion are consistent with increased exon skipping.  

 

 
Figure 8: Individual large effect cases for both PSI and RPMskip. 
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Large differences between PTC-/- and PTC-/+ genotypes for (A) PSI and (B) RPMskip. 

Variants with changes between genotypes consistent with NAS are in blue, those in the 

opposite direction in red. For both PSI and RPMskip, the number of large effect variants in 

the direction consistent with NAS is significantly greater than by expected by chance. 

 

Is this trend similar for RPMskip, and thus attributable to NAS and not NMD? To 

match the number of large-effect PSI cases (50), we set the RPMskip threshold to 

0.026. Of these, we find 43/50 (86.00%) have DRPMskip > 0 with increased exon 

skipping for the PTC-/+ variant (Figure 8B). Again, this proportion is significantly 

higher than expected by chance (P = 1.049 ́  10-7, one-tailed exact binomial test). Thus, 

large-effect cases for which exon skipping cannot be attributed solely to NMD are 

consistent with NAS. 

 

However, although the RPMskip metric helps us to understand the contribution of 

NMD and NAS to exon skipping, PTC-/- and PTC-/+ variants may have genetic 

differences beyond the presence of a PTC. For example, differing rates of transcript 

initiation may lead to differing levels of mRNA being produced for the two genotypes. 

In this scenario, DRPMskip may vary because the expression of the PTC-/- isoform is 

higher and not due to increased exon skipping, downregulation or degradation of the 

PTC-/+ transcript. PSI does not suffer from this issue because it is normalised to the 

total number of reads analysed. Thus, although we do not expect such differences to 

lead to higher expression of the PTC-/+ genotype consistently, it is important to not 

base inferences solely on RPMskip. 

 

Thus, with caveats to both PSI and RPMskip metrics, the most robust evidence for 

candidate exons being valid NAS targets with meaningful phenotypic consequences 

in this dataset are those overlapping both large-effect DPSI and large-effect DRPMskip 

groups. 30 exons appear in both groupings in directions consistent with NAS (Table 

1). To ask whether this overlap is significant, we performed 10,000 simulations 

picking 44 and 43 exons from the full set of PTC-containing exons (44 and 43 

correspond to the number of exons with large effect sizes for PSI and RPMskip in the 

correct direction respectively). We find no simulation iteration has an overlap as large 
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as the real overlap (P » 9.999 ´ 10-5, one-tailed empirical P-value, maximum simulant 

overlap = 10).  

 

These PTCs and associated exons are therefore prime candidates for cases in which a 

single nucleotide polymorphism (SNP) generating a PTC causes potentially 

detrimental exon skipping via NAS. Although we acknowledge that NAS may occur 

more regularly at lower frequencies, NAS does appear to be a genome-wide 

phenomenon. We estimate that »6% (30/541) of annotated nonsense mutations are 

likely to have their effect via NAS. 

 

Large-effect PTCs are predicted to have larger increases in exon skipping when 

compared with the other PTCs 

 

We also predicted changes in PSI for each PTC using MMSplice (Cheng et al. 2019), 

a neural network model that outperforms other splicing variant scoring models (HAL 

(Rosenberg et al. 2015), SPANR (Xiong et al. 2015) and the baseline predictor model 

MaxEntScan (Yeo and Burge 2004)). MMsplice reports the effect of a variant on PSI 

on the logistic scale (DlogitY), with DlogitY < 0 indicating a predicted increase in 

exon skipping associated with the variant. We find 25/30 (83.33%) of our large-effect 

candidates are predicted to increase skipping in this model, significantly more than 

expected by chance (P = 3.249 ´ 10-4, two-tailed exact binomial test). Further, these 

differences in predicted skipping are significantly greater than for the remaining 511 

variants (median large-effect PTC DlogitY = -0.185, median other PTC DlogitY = -

0.140, P = 0.242, one-tailed Wilcoxon rank sum test). 

 

Experimental validation of the gene with the largest DRPMskip, ACP1, confirms 

exon skipping consistent with NAS 

 

Having computationally identified potential NAS candidates, we sought to validate 

our results experimentally. A minigene construct for the prime candidate exon from 

the ACP1 gene with the greatest DRPMskip (ENST00000272065.5, Table 1) was 

constructed and expressed as described in the Methods (Figure 9A). In HeLa cells, we 

find a significant difference in PSI between the wildtype (wt) and PTC-containing 



 137 

constructs (P = 2.226 ́  10-5, two sample t-test, Figure 9A and B), with skipping almost 

exclusively restricted to the PTC-containing construct. Consistent with skipping 

resulting from NAS and not NMD, this difference in PSI remains after knockdown of 

the core NMD factor Upf1 (P = 2.783 ´ 10-8, two sample t-Test, Figure 9A and B). 

That there is a small but significant difference between the PTC variants both with and 

without NMD (P = 0.002, two sample t-Test) suggests a minor proportion of the exon 

skipping between the wt and PTC variants can be attributed to NMD for cells in which 

NMD functions.  

 

We also asked whether RPMskip levels also significantly differ as expected were NAS 

is the underlying cause. We find an increase in RPMskip with inclusion of the PTC (P 

= 1.804 ´ 10-4, two sample t-Test, Figure 9C) and again when NMD is knocked down 

(P = 2.741 ´ 10-4, two sample t-Test, Figure 9C), suggesting that the presence of the 

PTC results in an increase in the absolute number of reads supporting skipping 

regardless of NMD. Consistent with this notion, RPMskip for PTC variants does not 

significantly differ between cells where NMD is both present and knocked down (P = 

0.302, two sample t-test, Figure 4C). We infer that NMD cannot explain the exon 

skipping associated with the PTC. 

 

To confirm that NMD was depleted and results not subject to any unexpected NMD, 

levels of Upf1 mRNA were quantified. We find that in cells with the wt and PTC-

containing constructs Upf1 mRNA levels are significantly lower in the Upf1 

knockdowns (P < 0.001, two sample t-Tests, Figure 9D). Further, confirming that the 

NMD depletion and depleted Upf1 mRNA levels correlate with protein depletion, wt 

mRNA levels of the T-cell receptor (TCR) reporter gene (a well-established NMD 

reporter gene) are significantly depleted in the Upf1 knockdown when compared with 

no knockdown (P < 0.05), but levels are significantly increased and stabilised when 

the PTC is present in Upf1 knockdown cells when compared with no knockdown. We 

conclude that the NMD knockdown was effective. 

 

Interestingly, there exists an unexpected third band for the PTC mutants (Figure 9A, 

black triangle). Given that its size is greater than the size of the correctly spliced 

variants, this appears to be a splice variant in which the focal exon is included but with 
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partial intron retention. As the PTC variants appear to produce two splice variants (one 

expected and one additional) that the wt variants do not, the PTC seems to be 

disrupting splicing signals. While we cannot discount subsequent downregulation of 

these isoforms, to have partial intron retention in this scenario there must first have 

been a disruption to splicing. The most parsimonious explanation is that the PTC 

disrupts a splice motif and elicits aberrant splicing. We also note that experimental PSI 

and RPMskip levels are broadly consistent with our computational PSI calculations 

for the 1000 Genomes samples. We find similar patterns in a set of Hek293T cells 

(Supplementary Figure 2) thus demonstrating PTC-associated exon skipping 

independent of cell type. 

 

 
Figure 9: Experimental validation of the top NAS candidate located in the ACP1 gene. 

(A) Gel electrophoresis of the ACP1 variants in cells with both the non-targeting siRNA pool 

control (NTC) and cells with Upf1 knockdown (siUpf1) in HeLa cells. (B) PSI levels for wt 

and PTC-containing variants. (C) Relative levels of raw reads supporting exon skipping, 

normalised to the average number of reads supporting skipping exon skipping in the wt NTC 
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cells. (D) Relative Upf1 mRNA levels are consistent with inhibition of NMD for both wt and 

PTC-containing variants. 

 

PTC-associated exon skipping is reading frame independent, supporting the 

splice motif disruption model whilst providing further evidence against NMD as 

the source of differential exon inclusion  

 

The above results indicate that associations between PTCs and exon skipping are 

detectable at the genome-wide level and can be reproduced experimentally. Notably, 

the experimental result also provides evidence consistent with the PTC disrupting the 

regular splicing pattern, lending support to the motif disruption model. Can our 

computational data provide further evidence for or against either of the competing 

mechanistic NAS models?  

 

Importantly, the distinction between the two mechanisms provides us with a method 

to test the models. The motif disruption model predicts exon skipping is due to the 

disruption of important splice control motifs, regardless of the reading frame and that 

NAS is simply a consequence of a particular mutation that happens to generate an in-

frame stop. This mechanism should also apply to mutations that create stop codons out 

of frame, whereas the scanning model is reading frame-dependent. However, the 

scanning mechanism requires knowledge of the start codon and reading frame. Thus, 

to distinguish between these models, we analysed PTCs that are out of frame by one 

nucleotide (mutations creating out of frame stops, shiftPTCs) and asked if there were 

similar associations. 

 

We performed similar analyses to those above. We find the absolute differences in 

shiftPTC PSI scores between the variants (DshiftPSI) significantly greater for those 

with differences consistent with NAS (P < 2.2 ´ 10-16, one-tailed Wilcoxon rank sum 

test, median DshiftPSI > 0 = 0.051, median DshiftPSI < 0 = -1.101). Further, we find 

the same is true for RPMskip for the shiftPTCs (DshiftRPMskip) (P < 2.2 ´ 10-16, one-

tailed Wilcoxon rank sum test, median (DshiftRPMskip > 0 = 0.012, median 

(DshiftRPMskip < 0 = -3.518 ´ 10-4). 
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Focusing on exons with large differences in exon skipping as a result of shiftPTCs, we 

set the threshold for absolute DshiftPSI to 5% to match the original analysis. 116/2,949 

exons meet this criterion, with a significantly greater number showing decreased PSI 

in the shiftPTC-/+ than for the shiftPTC-/- variants (94/116, P = 4.328 ´ 10-12, one-

tailed exact binomial test, see Supplementary Figure 3A, Supplementary Figures). 

Further, 93/116 (80.17%) cases have DshiftRPMskip > 0 consistent with NAS (using 

the threshold of 0.0375 to match the 116 PSI variants), also a significant number (P = 

1.799 ´ 10-11, one-tailed exact binomial test, see Supplementary Figure 3B, 

Supplementary Figures). 55/116 (1.87% of total shiftPTCs) of these shifted PTCs have 

greater than 5% difference for both PSI and RPMskip. The number of large-effect 

cases is significantly lower than for those in-frame (c2 = 26.056, P = 3.316 ´ 10-7, chi-

squared test), however, simulations picking 94 and 93 cases at random suggest the 55 

large-effect cases with both PSI and RPMskip in the direction consistent with NAS is 

more than expected by chance (P » 9.999 ´ 10-5, one-tailed empirical P-value). 

 

As observations suggest large-effect cases also associate stop codons with increased 

exon skipping, the association between the in-frame PTCs and exon skipping is 

unlikely to be a result of a reading frame-dependant mechanism. These results 

strengthen the case for the splice motif disruption model. In this context, the mutations 

disrupting splicing appear to be nonsense mutations that happen to be in-frame, rather 

than mutations that exert their effects via other pathways.  

 

Importantly, as out of frame PTCs would not be subjected to NMD, the above result 

provides further evidence that NMD cannot explain the differences in exon inclusion 

we observe between genotypes. 

 

Five large-effect PTCs have documented associations with disease 

 

That we can identify genome-wide associations between PTCs and potentially disease-

associated transcripts is noteworthy. However, the nature of the 1000 Genomes dataset 

means PTCs are segregating in a healthy population with the circulating frequency of 

nonsense mutations low, as any with large detrimental phenotypic consequences 

would likely result in the individual not surviving. Thus, while the 1000 Genomes 
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dataset is of utility in the context of this study to establish an initial base level of the 

genome-wide occurrence of NAS and to further elucidate the mechanism, it is limited 

due to the relative lack of nonsense mutations. More informative are likely to be those 

PTCs occurring in non-healthy individuals. Thus, we examine NAS indirectly but in a 

disease-related context. 

 

Are there associations between disease and our large-effect PTCs identified or the 

genes in which they reside? Several examples of casual relationships with the genes in 

which the mutations reside are found in the literature. For example, the transcript with 

the largest PSI difference, ENST00000409520, is encoded by the TRABD2A gene 

associated with negative regulation of the Wnt signalling pathway, itself heavily 

implicated in cancers (Polakis 2000; Taipale and Beachy 2001; Reya and Clevers 

2005; Klaus and Birchmeier 2008; Polakis 2012; Zhang et al. 2012; Zhan et al. 2016). 

Further, mutations in the NDUFV2 gene producing the transcript ENST00000400033 

have been associated with Parkinson’s (Hattori et al. 1998) and Leigh syndrome 

(Cameron et al. 2015). Mutations in our prime candidate ACP1 (ENST00000272065) 

have been associated with diabetes (Gloria-Bottini et al. 1996; Stanford et al. 2017). 

 

We also find associations between the PTC mutations themselves and disease. Five 

large-effect cases overlap with disease-associated mutations in the ClinVar database 

(Landrum et al. 2018) archiving relationships between medically important variants 

and phenotypes (rs62624965, rs202001274, rs148458820, rs200355697, and 

rs74103423 (Table 1 bold, Table 2)). 

 

Pathogenic nonsense mutations are enriched at exon ends and hit ESEs more 

frequently than expected 

 

As our evidence is consistent with NAS likely to be a result of disrupting important 

regulatory splice motifs, we ask whether known disease-associated nonsense 

mutations are frequently located and enriched towards exons ends where ESEs 

typically reside (Graveley et al. 1998; Fairbrother et al. 2004; Carlini and Genut 2006; 

Parmley et al. 2006; Parmley and Hurst 2007; Caceres and Hurst 2013)?  
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Using the annotated disease-associated mutations from the ClinVar dataset, we 

established a set of 7,429 nonsense mutations that were not identified in the 1000 

Genomes dataset and labelled exclusively either “pathogenic” (N = 6,354) or “likely 

pathogenic” (N = 1,075). Of the pathogenic mutations, 68.49% (4,352/6,354) are 

located in the exon-flank nucleotides where ESEs are typically located (nucleotides 3-

69), despite the flanking regions only accounting for 55.66% (422,017/758,223) of 

total coding nucleotides. This frequency is significantly more than expected when 

comparing locations of SNPs in the splice site nucleotides (nucleotides 1-2), flanking 

nucleotides (nucleotides 3-69) and exon cores (remaining nucleotides) that result in 

nonsense codons (c2 = 578.140, P = 2.870 ´ 10-126, chi-squared test, Supplementary 

Spreadsheet 3, Supplementary Spreadsheets), indicating that pathogenic nonsense 

mutations typically reside in regions critical for splice regulation. This is also true of 

the likely-pathogenic mutations (787/1,075 (73.21%) occur in the 111,002/264,391 

(41.98%) flanking nucleotides, c2 = 539.590, P = 6.750 ´ 10-118, chi-squared test, 

Supplementary Spreadsheet 3, Supplementary Spreadsheets). These results are robust 

to removing “short” exons (those with a length shorter than 138 nucleotides, so the 

remaining exons include both splice sites, exon flanks and an exon core region), as 

short exons could be defined as all “exon flank” (Supplementary Spreadsheet 3, 

Supplementary Spreadsheets). A similar skew towards exon ends has been seen for 

missense mutations (Wu and Hurst 2016), while the opposite is observed for SNPs that 

disrupt ESEs circulating in the population (Fairbrother et al. 2004; Carlini and Genut 

2006; Caceres and Hurst 2013), consistent with selection against mutations that disrupt 

splicing. 

 

Although suggestive, this exon flank bias may be a result of a nucleotide-related 

mutational bias towards exon ends (Chamary and Hurst 2005). To control for this, we 

performed 10,000 simulations in which every real nonsense mutation was replaced 

with a randomly chosen nucleotide from the same exon that matched the reference 

allele of the nonsense mutation, ensuring that each matched nucleotide is not also a 

disease-associated SNP. For each randomised set of simulated mutations, we then 

asked where in exons they were located. The real number of pathogenic nonsense 

mutations in exon flanks is significantly higher when compared with the number 

expected from the simulations (Z = 2.217, P » 0.013, one-tailed empirical P-value, 
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Supplementary Figure 4). However, the effect is less pronounced and non-significant 

for the likely-pathogenic variants (Z = 0.756, P » 0.238, one-tailed empirical P-value). 

As expected, for the 1000 Genomes PTC mutations we find a significant depletion of 

mutations in exon flanks (Z = -2.039, P » 0.019, one-tailed empirical P-value). Thus, 

nonsense mutations that occur in the exon flanks, and are therefore more prone to 

disrupt splicing, are typically pathogenic. 

 

Despite this biased distribution, pathogenic nonsense mutations may not disrupt 

splicing. However, if pathogenic nonsense mutations hit ESEs more frequently than 

expected, this could implicate NAS as a prevalent cause of disease. We asked how 

often each pathogenic nonsense mutation hit one of the “gold-standard” INT3 ESEs 

(Caceres and Hurst 2013), expecting ESEs in the 3-69 exon flanking regions to be hit 

more frequently than by the reference allele-matched simulants. We find this to be the 

case (Z = 9.555, P » 9.99 ´ 10-5, one-tailed empirical P-value, Figure 10). Likely-

pathogenic mutations also hit ESEs within the exon flanks more frequently than 

expected (Z = 5.877, P » 9.99 ´ 10-5, one-tailed empirical P-value) although the effect 

is weaker than for pathogenic variants.  
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Figure 10: Frequencies of ESE nucleotides hit by PTCs in respective exon regions. 

Z scores comparing how frequently pathogenic and likely pathogenic variants from the 

ClinVar data set and variants in the 1000 Genomes dataset hit ESE motifs when compared 

with 10,000 randomly sampled nucleotides matching the reference-allele of the nonsense 

mutation SNP variant. Pathogenic and likely-pathogenic variants hit ESEs significantly more 

frequently than expected (P » 9.99 ́  10-5 in both cases), although the enrichment over expected 

is stronger for pathogenic variants. Consistent with the non-exceptionality of the 1000 

Genomes variants, these do not hit ESEs more frequently than expected in any region when 

compared with the randomly sampled variants. 

 

However, given that the simulated mutations occur less frequently in the 3-69 

nucleotide region (see above), for each pathogenic nonsense mutation in the 3-69 

nucleotide exon region we randomly picked a nucleotide-matched pseudo-nonsense 

mutation (not generating a PTC in the ClinVar dataset) also from within the 3-69 

nucleotide region. Again, the real nonsense disease-associated mutations hit ESEs 

more frequently than expected (Z = 1.920, P » 0.030, one-tailed empirical P-value). 
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These results indicate that disease-associated nonsense mutations are distributed non-

randomly in exons and hit ESEs more frequently than expected after control for 

mutational frequency (between exons and across the same exon), underlying 

nucleotide content of the 3-69 nucleotide region and relative expression (simulations 

are within the same exon). Thus, the indications are that disease-associated nonsense 

mutations are likely to be heavily involved in splice disruption. 

 

We find no significant difference (c2 = 0.243, P = 0.621, chi-squared test) in the 

number of exons of length 3n hit by pathogenic nonsense variants (1,440/3,572 = 

40.31%) than for other variants (1,565/3,826 = 40.90%). This result suggests that 

exons not of length 3n (those that would not allow partial rescue of the transcript if 

skipped) are not more prone to nonsense mutations. Interestingly, exons affected by 

pathogenic nonsense mutations are longer than those exons affected exclusively by 

pathogenic synonymous and nonsynonymous variants (P < 2.2 ´ 10-16, Wilcoxon rank 

sum test). Consistent with this, these exons have a significantly greater number of 

codons per 100 bp of exon sequence that are one nucleotide away from a stop codon 

(median pathogenic nonsense exon one away rate = 10.853, median pathogenic non-

nonsense one away rate = 10.120, P < 2.2 ´ 10-16, Wilcoxon rank sum test). Further, 

exons containing pathogenic nonsense variants also have a significantly greater ESE 

density (number of nucleotides contributing to an ESE per bp of sequence) than for 

the non-nonsense variants (median pathogenic nonsense exon ESE density = 0.171, 

median pathogenic non-nonsense exon ESE density = 0.159, P = 2.716 ´ 10-8, 

Wilcoxon rank sum test). Together, these results suggest that pathogenic nonsense 

mutations occur more frequently in exons that are more prone to nonsense mutations 

both in terms of nucleotide content and ESE frequency. Thus, pathogenic nonsense 

mutations are likely to disrupt splicing frequently. 

 

33% of pathogenic nonsense mutations may have their effect via splicing 

 

Can we estimate the proportion of pathogenic nonsense mutations that may affect 

splicing (similar to (Wu and Hurst 2016))? We assume exonic core pathogenic 

nonsense mutations (beyond both the 5’ and 3’ terminal 69 nucleotides) not to have an 

effect on splicing. Their rate provides us with a background non-splicing rate (although 
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is likely conservative as splice-affecting mutations also occur in exon cores (Woolfe 

et al. 2010)). Any excess of pathogenic nonsense mutations above this core level we 

then assume to be splice-related. This test also controls for the rate at which NMD 

degrades transcripts containing nonsense mutations. 

 

Taking the coding exons in which pathogenic nonsense mutations occur (N = 3,572), 

we define the exon core as any nucleotide beyond the terminal exon 69 nucleotides. 

We observe 1,804 nonsense mutations in the 321,918 nucleotides of exon cores at a 

rate of 0.0056 mutations per nucleotide. Thus, assuming exon flanks behave like exon 

cores we expect »2,365 nonsense mutations in the 422,017 exon flank nucleotides. 

Instead, we observe 4,447, an excess of 2,082 (32.77%) of mutations (see 

Supplementary Spreadsheet 4, Supplementary Spreadsheets). This suggests that in 

regions with an increased density of splice information, pathogenic nonsense 

mutations occur much more frequently than expected. Interestingly, the effect of likely 

pathogenic mutations appears stronger with an excess of 58.49% of nonsense 

mutations in exon flanks (see Supplementary Spreadsheet 4, Supplementary 

Spreadsheets). 

 

Despite the excess, even if pathogenic PTCs are located in regions typically associated 

with splicing, it is unclear as to whether their association with disease is splice related. 

We find that a striking 5,258/6,354 (82.75%) of variants had a negative effect on the 

computationally predicted PSI, a significantly greater number than expected simply 

by chance (P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability of success 

= 0.5). This effect is slightly more pronounced in exon flanks (3,722/4,447 (83.70%), 

P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability of success = 0.5) but 

not significantly so (c2 = 1.603, P = 0.206, chi-squared test), suggestive that 

pathogenic nonsense mutations in exon cores also frequently disrupt splicing. This is, 

however, confounded by the fact that “short” (those less than 138 bp) exons are all 

exon flank. When restricting the analysis to only those exons longer than 138 bp, 

although pathogenic nonsense mutations reduce PSI more than expected in both the 

exon flanks (1,938/2,327 (83.28%), P < 2.2 ´ 10-16, one-tailed exact binomial test, null 

probability of success = 0.5) and exon cores (1,454/1,804 (80.59%), P < 2.2 ´ 10-16, 

one-tailed exact binomial test, null probability of success = 0.5), the difference in the 
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relative number of mutations decreasing PSI between the two regions is significant (c2 

= 4.805, P = 0.028, chi-squared test). Thus, our previous estimate of the number of 

pathogenic nonsense mutations disrupting splicing based on the core rate is likely 

conservative. We find a similar number of likely-pathogenic mutations decrease PSI 

(906/1,075 (84.28%), P < 2.2 ´ 10-16, one-tailed exact binomial test, null probability 

of success = 0.5). 

 

Taken together with the excess in ESE flanking regions, it is reasonable to assume that 

splice disruption and exon skipping attributable to PTCs is likely to be a relatively 

frequent source of pathogenicity. That a conservative estimate suggests nearly one-

third of PTCs may affect splicing further highlights the baseline 6% estimation of 

NAS, we have observed in a healthy population likely underestimates the significance 

and implications of NAS in disease.  

 

 

Discussion 
 

Often it is assumed that the pathological consequences of nonsense mutations are due 

to either the downregulation of mutated isoforms via NMD or to truncation of the 

regular protein. However, key regulatory splice motifs, ESEs, despite being purine-

rich, contain few stop codons (Abrahams and Hurst in press) and are therefore 

particularly sensitive to mutations creating stop codons disrupting their binding with 

SR proteins. It could therefore be the case that nonsense mutations exert their 

detrimental effects by via disruption of splicing at the processing level via NAS. Given 

the use of and strength of selection on ESEs throughout the genome and that NAS has 

only been studied in single-/few-gene studies, we have performed a genome-wide 

study to examine the prevalence of NAS. 

 

Using publicly available RNA-seq data from the Geuvadis RNA-sequencing project 

(Lappalainen et al. 2013) and DNA polymorphism data from the 1000 Genomes 

database (The 1000 Genomes Project Consortium 2015), we find significant genome-

wide associations between nonsense mutations and exon skipping after accounting for 

the nucleotide content of the nonsense mutations. In many cases, however, the 
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biological effects of such increased skipping are likely to be negligible. For instances 

in which levels of exon inclusion do differ, the effects are significantly greater when 

in the direction consistent with NAS. Focusing on cases where the effects on exon 

inclusion are large enough that the consequences are unlikely to be negligible, we find 

that the proportion of cases where exon skipping is increased with the PTC variant is 

highly significant. Similarly, we find a significant association between an increase in 

the absolute number of reads supporting exon skipping and PTCs after controlling for 

nucleotide content. This suggests that degradation effect of NMD cannot explain the 

association between PTCs and increased exon skipping. Although not a widespread 

phenomenon, we established a set of 30 strong candidate large-effect cases for which 

both the relative (PSI) and the absolute rate (RPMskip) of exon skipping is are 

substantially increased in the PTC variant and that are likely strong candidates for 

NAS. We confirmed experimentally that our computational NAS top candidate has 

quantifiable levels of exon skipping that cannot be explained by NMD. We estimate 

that »6% of annotated nonsense mutations may have significant implications at the 

mRNA processing level by disrupting splicing. 

 

Despite five of our prime candidate PTC mutations being associated with disease, 

many of the genome-wide effects on exon skipping that we detect tend to be extremely 

small. Due to the nature of the 1000 Genomes dataset, the circulating frequency of 

nonsense mutations is likely low as PTCs with large phenotypic consequences would 

not be tolerated (and hence unlikely to be seen as segregating polymorphisms). As 

expected, when asking whether nonsense mutations from the 1000 Genomes data are 

enriched in the exon flanks based upon nucleotide content alone, we witness a 

significant depletion. However, for nonsense mutations in the ClinVar dataset, we see 

a significant excess (see Supplementary Figure 4, Supplementary Figures). This is 

consistent with purifying selection acting especially strongly on mutations at exons 

ends (within 69bp of the junction) and argues against a null of differential mutation 

rates across the exon. Given the reduced rate in 1000 Genomes, likely owing to 

purifying selection, our 6% estimate is likely conservative and the rate of NAS for 

disease causing PTCs may be significantly greater. Considering disease-associated 

nonsense mutations, our results suggest that at least »33% might have an effect on 

splicing. Although the primary aim of this study was to provide a baseline estimate for 
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NAS based on our observation of ESE composition, our analyses would no doubt 

benefit from further study using RNA-seq data from both healthy and diseased tissue 

from the same individual. 

 

Evidence is most parsimonious with PTCs causing exon skipping via splice motif 

disruption 

 

One of the aims of this study was to distinguish between the two mechanistic models 

proposed in the literature to explain NAS. Given that we find similar results when 

comparing the rates of exon skipping when considering out of frame with in-frame 

stop codons, results are most parsimonious with the splice motif disruption model. For 

a nuclear scanning mechanism, knowledge of the CDS reading frame post splicing is 

required to verify the integrity of the transcript and no increase in skipping for out of 

frame PTCs should be observed. This is contrary to our findings. The fact that we only 

observe a significant effect in a minority of exons provides further evidence against a 

nuclear scanning mechanism, as effects could be expected to have a more systematic 

effect like NMD. That the experimental results demonstrate two different splice 

isoforms when expressed in HeLa cells, one of which is indicative of partial intron 

retention, further indicates PTC disruption of splice motifs as this effect is not 

predicted by the nuclear scanning model. 

 

Further, we find that many disease-associated nonsense mutations are located in 

regions towards exon ends in which ESEs reside more often than expected, whilst 

hitting ESEs more frequently than expected by chance within these regions. If the 

effect was a result of a reading-frame dependant mechanism, there should be no 

location bias beyond that expected by the underlying nucleotide content. Thus, we can 

largely discount the nuclear scanning mechanism with our data being more 

parsimonious with exon skipping via the disruption of ESEs. The RPMskip data, 

analysis of out of frame stop codons and experimental data examining skipping in the 

absence of NMD, all argue against NMD as the cause of the effects that we see. 

 

It is, however, interesting to note that without looking at the absolute DPSI values or 

correcting for nucleotide composition, we did not observe PTCs to associate with 
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lower PSI. This is surprising given that such an association would be expected purely 

because of NMD downregulation of the full-length isoform, even if no NAS is 

occurring. One explanation could be that NMD is very weak in our samples. However, 

the large and highly significant decrease in RPMinclude in PTC-/+ samples argues 

against this scenario. Alternatively, it is possible that the mutations either create ESEs 

or disrupt ESSs leading to a slight increase in exon inclusion. A more likely 

explanation is that, at least for the exons being considered, splicing is very precise and, 

in most cases, no detectable exon skipping is observed. Indeed, the median PSI overall 

for PTC-/- samples is »99.994% and median DPSI »0. 

 

NAS is unlikely to be an evolutionarily conserved error-proofing mechanism to 

rescue PTC-containing transcripts 

 

NMD is commonly thought of as an evolved mechanism to protect against “unwanted” 

transcripts by recognizing that they contain premature stop codons. However, NMD 

might itself be the source of problems by reducing the dosage. Could NAS be an 

evolved quality control mechanism to prevent NMD operating on a particular subclass 

of genes? 

 

In many cases, the phenotypic consequences of splicing out an exon containing what 

would be a PTC should be less harmful than either degradation of the transcript or 

truncation of the protein, particularly if exon skipping maintains reading frame 

integrity. In this scenario, there could conceivably be a selective evolutionary pressure 

to preserve ESEs whose nucleotide content allows the formation of a PTC upon a 

single mutation to protect transcripts that frequently contain nonsense mutations from 

complete degradation effects of NMD. For example, nonsense mutations in the 

dystrophin-encoding DMD gene result in loss of functional protein (Aartsma-Rus et 

al. 2016) resulting in Duchenne muscular dystrophy (DMD). However, in Becker 

muscular dystrophy (BMD), which has a less severe phenotype (Shiga et al. 1997; 

Carsana et al. 2005; Helderman-van den Enden et al. 2010; Flanigan et al. 2011; 

Anthony et al. 2014; Bello et al. 2016; Moore et al. 2017), the PTC results in NAS 

encoding a shortened transcript but retaining the reading frame, restoring partial 

protein functionality. Similarly, the ability to express functional, yet shortened 
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isoforms, such as CEP290 exon-skipped isoforms, is correlated with disease severity 

(Melis et al. 1998; Di Blasi et al. 2001; Pasmooij et al. 2004; Littink et al. 2010).  

 

However, we find no evidence to suggest PTCs associated with NAS occur in exons 

of length 3n more frequently than expected, or suggestions that the exons in which the 

PTCs occur are particularly exceptional (see Supplementary Text 2, Supplementary 

Texts). Given the relative rates of large-effect NAS, and that much of the variation in 

splicing associated with other PTCs is very small and likely a reflection of stochastic 

variation in exon inclusion, it seems unlikely that NAS is a genome-wide error-

proofing mechanism under selection to rescue transcripts from NMD. Further, fitness 

benefits associated with the small variations in exon skipping PTCs are unlikely to be 

selectable. If PTC-containing transcripts derived from inherited mutations are 

particularly costly to fitness, the PTC-containing allele would likely be eliminated via 

purifying selection (although in rare and very specific cases variants are advantageous 

(North et al. 1999; Yang et al. 2003; Hawn et al. 2005)). Thus, NAS is unlikely to be 

an evolutionarily conserved adaptive mechanism but rather occurs as a consequence 

of ESE-binding proteins having to recognise a set of motifs that, due to being located 

within exons, by definition have a depletion of stop codons. 

 

It could also be questioned why our prime candidates are not seen to hit ESEs more 

frequently. Several reasons may provide some explanation. First, even if the PTC hits 

a motif that resembles an ESE, it is hard to know without further analyses whether that 

motif functions as a splice enhancer in that context, given that many ESE hits are likely 

to be false positives (Savisaar and Hurst 2018). Alternatively, it is possible that other 

motifs also function as splice enhancers but are not included in our set of motifs. From 

a motif analysis alone, it is hard to draw further conclusions.  

 

The importance of accurate classification of nonsense mutations and their roles 

in therapeutics 

 

Our results demonstrate the importance of understanding the broader implications for 

the classification of mutations. Even our conservative estimate suggests that the 

pathogenic effects of a significant proportion of nonsense mutations could be 
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misunderstood. This data provides further evidence to suggest mutations in general, 

but SNPs in particular, should be routinely analysed at the mRNA level prior to 

classification as mutations with seemingly no functional significance can be 

deleterious (Fackenthal et al. 2002; Pfarr et al. 2005). This is particularly applicable to 

synonymous mutations, whose pathogenic significance might otherwise be overlooked 

- such mutations may disrupt ESEs or even create cryptic splice sites that result in a 

diseased phenotype (Rice et al. 2013; Sheikh et al. 2013; Austin et al. 2017) despite 

having no direct effect on the peptide sequence. 

 

The consequences of correct classification of nonsense mutations might be best 

contextualised when considering therapeutic approaches to disease. A variety of 

therapies targeting nonsense mutations have been shown to restore protein function 

(Keeling et al. 2014; Dabrowski et al. 2018), however, these therapies are only 

effective if the PTC is present in the mature transcript. For example, a variety of 

diseases including Mucopolysaccharidosis type VI (MPS VI) (Bartolomeo et al. 2013), 

Usher syndrome (Goldmann et al. 2011; Goldmann et al. 2012) and DMD (Yukihara 

et al. 2011; Finkel et al. 2013) are treated using strategies involving PTC124. This is 

thought to suppress translation termination at PTCs but not natural stop codons (Welch 

et al. 2007) and is therefore only effective if substantial levels of mRNA are available 

containing the PTC. However, if the PTC disrupts splicing and leads to exon skipping 

the therapy is unlikely to be effective. Furthermore, for cases where a PTC resulting 

in exon skipping and not of length 3n, such a therapeutic might suppress any 

downstream out of frame stop codons and allow the synthesis of unknown proteins 

which may have further detrimental consequences. 

 

Our results demonstrate the first genome-wide association between nonsense 

mutations and exon skipping. The ability to predict at which sites we would expect 

such mutations, or mutations in general, to disrupt splicing would be of great future 

utility for disease prediction, diagnosis and treatment.  

 

 

Methods 
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Data sources 

All analyses were performed using the reference genome sequence and annotations for 

GRCh37, Ensembl release 87 (Zerbino et al. 2018) (http://ftp.ensembl.org/; last 

accessed 25 January 2018). Polymorphism data was retrieved from the EBI 1000 

Genomes FTP site (The 1000 Genomes Project Consortium 2015) 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/, last accessed 24 January 2018). BAM files 

containing RNA-seq data for individuals from the 1000 Genomes project were 

retrieved from the EBI FTP site (Lappalainen et al. 2013) (http://ftp.ebi.ac.uk/, last 

accessed 8 February 2018). Only samples present in both datasets were retained. 

Protein family data was downloaded from Ensembl Biomart (Kinsella et al. 2011) 

(http://grch37.ensembl.org/biomart, last accessed 12 February 2018). ClinVar data 

containing information regarding disease associated mutations was downloaded from 

the NCBI FTP site (Landrum et al. 2018) (ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/, last 

accessed 11 May 2018). INT3 ESE motifs were retrieved from the supplementary data 

to Caceres and Hurst (2013). 

 

General Methods 

Custom Python 3.6.4 scripts were used for all data handling and are available at 

http://github.com/rosinaSav/NAS_code, including the use of standard Python 

modules. Data plotting and statistical analyses were performed using R v3.2.1 (R Core 

Team 2017). BEDTools v2.27.1 was used for operations on genome coordinates 

(Quinlan and Hall 2010). SAMTools v1.7 was used for BAM file manipulation (Li et 

al. 2009). VCFtools v0.1.15 (Danecek et al. 2011) and tabix v0.2.5 (Li 2011) were 

used to perform operations on SNP data. 

 

Compilation of protein-coding coding exon set 

The main open reading frame (ORF) for protein-coding genes was extracted from the 

genome annotations. Sequences were filtered to include only those that had canonical 

start and stop codons, only contained canonical nucleotides, were of a length that is a 

multiple of three and did not include premature stop codons. Only the transcript 

isoform with the longest ORF was retained for each of the genes. In order to preserve 

data independence, only a single gene was retained from each Ensembl protein family. 

Finally, the internal fully coding exons that did not overlap other annotated exons were 

extracted. This filtered set of exons were used for all analyses. 
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SNP filtering 

SNPs for individuals were intersected with the set of coding exons to obtain all SNPs 

within the samples. From these, their relative positions within the exon and CDS were 

calculated. The mutation status of each SNP was manually determined using this 

positional data using the reference and variant alleles, with only SNPs that could be 

verified as PTCs retained. Note that if multiple PTCs were identified in any given 

exon, only one PTC was kept, leaving 1,180 PTCs. 

 

Quantification of splice isoforms 

Reads from the Geuvadis BAM files were subject to quality filtering as per 

(Lappalainen et al. 2013). Reads were filtered to uniquely mapped reads with a base 

mapping quality scale between 251 and 255 or 175 and 181 inclusive. Further, only 

reads with no more than 6 mismatches were included. These reads were then mapped 

to the exon-exon junctions that flank the exons in our dataset. 

 

For each exon and each individual, we counted the number of reads that support 

inclusion by counting those that overlapped the focal exon and either of the two 

flanking exons as defined by Ensembl annotations. Similarly, we counted reads 

supporting skipping by counting the number of reads that map to the junction between 

the two flanking exons of the focal gene. The number of reads supporting exon 

skipping were multiplied by two as these reads can only map to a single exon-exon 

junction whereas reads that support exon inclusion can overlap either of two exon-

exon junctions. 

 

Read counts were then used to calculate several metrics for each exon in each sample: 

PSI, RPMinclude and RPMskip. PSI is defined as the number of reads containing the 

exon, divided by the number of reads containing the exon plus the number of reads 

where the exon is skipped. RPMinclude is defined as the number of reads containing 

the exon divided by the total number of reads in the sample. RPMskip is defined as 

the number of reads without the exon divided by the total number of reads in the 

sample. 
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For RPMinclude and RPMskip, the total number of reads after quality filtering of the 

BAM files is required to account for read quality between samples and differences in 

sequencing depth. However, it is computationally impractical to quality filter complete 

BAM files. Therefore, we first determined the total read count. We then filtered the 

BAM file to only contain reads overlapping our exon-exon junctions. We performed 

the quality filtering on these exon-exon junction reads and sampled the read count. 

The proportional decrease between the non-quality filtered exon-exon junction reads 

and quality filtered exon-exon junction reads was then used to scale the initial read 

count to estimate the number of total reads after quality filtering. We find no 

significant difference (P = 0.188, paired Wilcoxon signed-rank test) between the 

proportion of reads retained after filtering the full BAM file and after filtering after 

intersection with exon-exon junctions, arguing that applying the proportional decrease 

for exon-exon junctions to the full read count is unbiased and appropriate (see 

Supplementary Figure 5, Supplementary Figures). 

 

Detecting splicing of exons 

Having identified a set of PTC-containing exons and calculated the metrics, we filtered 

our list of 1,180 PTC-containing exons to exclude those for which none of the 

individuals in which we could quantify splicing contained the PTC. The number of 

individuals with quantifiable splicing from the exon with the maximum number of 

individuals with quantifiable splicing was retained. We then excluded PTC-containing 

exons in which the number of individuals with quantifiable splicing was less than half 

of the maximum. Finally, to remove exons that might be alternatively spliced only 

exons included in all transcript isoforms from the same locus were retained. This left 

N = 541 PTC-containing exons. 

 

Missense mutation simulations 

We performed 100 simulations in which each of the real PTCs was randomly matched 

to a missense mutation. For each PTC, the missense mutation was sampled in order to 

match the PTCs ancestral allele identify, variant allele identity and variant allele 

frequency (within a threshold of 0.05). The same analyses were then performed on the 

sets of pPTCs. To further control for distance to exon boundary, a window of five 

nucleotides to either side of the relative position of the PTC was defined, with any 

appropriate pPTCs selected. If none were available, this window was increased by one 
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nucleotide until a suitable simulant was identified or 10 window expansions had 

occurred, whichever was the former. 

 

Minigene constructs 

A minigene construct for ACP1 (ENST00000272065) was ordered from GeneArt as a 

double-stranded DNA string subcloned into the Gateway-entry vector pENTR221. The 

minigene consisted of the 5’ flanking exon, 5’ flanking intron, focal exon, 3’ flanking 

intron and 3’ flanking exon (see Supplementary Spreadsheet 5, Supplementary 

Spreadsheets for sequence information). Two versions were designed: one in which 

the wild-type sequence of the focal exon is preserved (wt) and one containing the PTC-

causing mutation (mut). To allow these genes to be translated, a start codon (ATG) 

was added at the 5’ end of all sequences. The 3’ flanking exon is the final exon and 

therefore already contains a stop codon (TGA). All minigenes were subcloned into 

pCM3, a Gateway-compatible CMV-driven mammalian expression vector (described 

in (Mordstein et al. 2019)), using Gateway LR Clonase II enzyme mix (Thermo Fisher) 

according to manufacturer’s instructions. pCM3 additionally also drives the 

constitutive expression of mKate2 from an independent expression cassette which 

allows to correct for technical variability in transfection efficiency. The control NMD 

reporter constructs of human TCR-β have been previously described (Wang et al. 

2002b). 

 

Plasmid and siRNA transfections 

HeLa and Hek293T cells were maintained in DMEM (Gibco) supplemented with 10% 

fetal calf serum (FCS) at 37°C, 5%CO2. NMD knockdown experiments were 

performed by two rounds of consecutive transfections with siRNA targeting Upf1 

(sihUPF1-I: GAGAAUCGCCUACUUCACU (+UU) and sihUPF1-II: 

GAUGCAGUUCCGCUCCAUU (+UU), Dharmacon, mixed in equimolar ratio). As 

a negative control, cells were transfected with a non-targeting control siRNA (ON-

TARGETplus Non-targeting Control Pool, Dharmacon). In brief, cells were grown to 

40% confluency in 12-well plates before transfecting with 1.25ul of 20uM siRNA 

stocks using 5ul Dharmafect1 transfection reagent (Dharmacon). After 48hrs, the 

siRNA transfection was repeated using Lipofectamine2000 transfection reagent 

instead (Thermo Fisher) and with the addition of 100ng of pCM3 plasmid carrying the 

minigenes. Cells were grown for a further 48hrs before harvesting. 
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RNA extraction and RT-PCR analysis 

RNA from transfected cells was extracted using the Qiagen RNAeasy kit according to 

manufacturer’s instructions, including the on-column DNase digest step. cDNA 

synthesis was performed using SuperScript III Reverse Transcriptase (Thermo Fisher) 

with 1ug of RNA and using 500ng anchored oligo(dT)20 primers (Thermo Fisher). 

cDNA was further treated with 5U RNAse H (NEB) before diluting with 30ul 

nuclease-free water. 2ul of each cDNA dilution were used as template in PCR 

reactions using either AccuPrime Pfx DNA polymerase (Life Technologies; ACP1 and 

mKate2 for HeLa samples) or Taq DNA polymerase (Life Technologies; ACP1 and 

mKate2 for Hek293T samples) following manufacturer’s recommendations and 

0.3uM of gene-specific primers (for primer sequences see Supplementary Spreadsheet 

6, Supplementary Spreadsheets), ensuring amplification is within the exponential 

range. For quantitative Real-time PCR measurements of Upf1 and TCR expression, 

samples were analysed in triplicate reactions on a Roche LightCycler480 using Roche 

LightCycler480 SYBR Green I Master Mix. Relative expression levels were 

determined using the Comparative Ct method (Livak and Schmittgen 2001) and 

normalised against GAPDH levels. ACP1 and mKate2 PCR products were resolved on 

1.5% agarose in TBE gels stained with Ethidiumbromide and imaged on a Syngene 

U:Genius 3 gel imager. Bands were quantified via densitometry with background 

subtraction using Image Studio Lite (v5.2). The resulting signals from ACP1 bands 

were further normalised to the signal of mKate2 bands from the same respective cDNA 

to account for technical variability in transfection efficiency. PSI was calculated as 

before, using the normalised signal of full-length transcript divided by the normalised 

signal of full-length transcript plus the normalised signal of transcript with skipped 

exon. 

 

Out of frame PTCs analysis 

For the out of frame PTC analysis, when determining the SNP type (synonymous, 

missense, nonsense) we shifted the reading frame forwards by one nucleotide. As a 

result, if the three nucleotides starting from the second position of a codon encoded a 

stop codon, we called this a PTC. For the last codon of the ORF, the reading frame 

was instead shifted backwards one nucleotide. We then repeated the pipeline with 

shifted PTCs. 
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ClinVar analyses 

Disease-associated mutations were downloaded from the ClinVar database 

(https://www.ncbi.nlm.nih.gov/clinvar/, last accessed May 11 2018; (Landrum et al. 

2016)) and intersected with the filtered exon set to leave only SNPs that occurred in 

our coding exons (N = 156,730). We then verified the status of the disease-associated 

mutations, retaining only those labelled “pathogenic” or “likely-pathogenic”. The 

mutation status of each SNP was then verified. N = 13,959 synonymous and 

nonsynonymous variants were retained for ensuring these variants were not used in 

the reference allele-matched simulations and for determining the exons in which they 

reside for exon comparisons. Nonsense mutations were intersected with the 1000 

Genomes dataset and only the N = 7,429 non-overlapping variants retained. 

 

Splice variant prediction 

PTC variants were analysed using MMsplice (Cheng et al. 2019), a neural network 

model trained on large-scale genomics datasets to predict the effects of variants on 

exon skipping, splice site choice, splicing efficiency and pathogenicity. Variants were 

compiled into a single VCF file with effects predicted using the model default 

parameters (exon_cut_l = 0, exon_cut_r = 0, acceptor_intron_cut = 6, 

donor_intron_cut = 6, acceptor_intron_len = 50, acceptor_exon_len = 3, 

donor_exon_len = 5, donor_intron_len = 13, split_seq = False). Changes in exon 

inclusion are reported as mmsplice_dlogitPsi values, with negative values indicating a 

predicted increase in exon skipping (lower PSI) and positive values indicating a 

predicted decrease in exon skipping (greater PSI) due to the variant. 

 

Expression analysis 

We used FANTOM5 data (The Fantom Consortium et al. 2014) to estimate expression 

parameters independently of the Geuvadis RNA-seq data that was used to analyse 

splice isoforms. We retrieved the phase 1 and 2 combined normalized .osc file from 

the FANTOM5 website (http://fantom.gsc.riken.jp/5/datafiles; last accessed 11 

February 2016). We only retained samples where the name contained the string adult, 

pool1. All brain tissues except for the full brain sample and the retinal sample were 

removed to avoid redundancy. For each gene included in our analysis, we defined a 

region of 1001 base pairs centred on the start coordinate of the Ensembl transcript 
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annotation as the promoter and associated all peaks that overlapped that promoter to 

that peak. If several peaks were associated to a single transcript, we summed the tags 

per million (TPM) within each sample across the peaks. A gene was considered to be 

expressed in a given tissue if TPM > 5. 
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Tables 

Table 5: 30 prime NAS candidates  

 PSI RPMskip  
Exon ID -/+ -/- D -/+ -/- D DlogitY 
ENST00000272065.5 39.19 99.76 -60.57 4.784 0.007 4.777 -0.520 
ENST00000325083.24 29.26 55.84 -26.59 2.631 1.389 1.242 -0.266 
ENST00000271324.6 88.69 98.20 -9.51 1.195 0.391 0.804 -0.166 
ENST00000400033.8 16.67 95.62 -78.96 0.681 0.022 0.659 -0.963 
ENST00000216027.4 59.09 93.71 -34.62 0.483 0.100 0.383 -0.432 
ENST00000359028.47 64.29 99.83 -35.55 0.366 0.001 0.364 -0.465 
ENST00000367409.18 69.08 75.82 -6.74 0.538 0.239 0.299 0.005 
ENST00000267430.22 48.63 99.24 -50.61 0.162 0.004 0.158 0.560 
ENST00000288050.18 76.81 88.17 -11.36 0.234 0.078 0.156 -0.163 
ENST00000456763.12 75.76 97.33 -21.57 0.111 0.011 0.100 -0.029 
ENST00000255409.8 57.89 93.08 -35.18 0.111 0.018 0.093 -0.144 
ENST00000272252.4 89.09 99.88 -10.79 0.079 0.001 0.078 -4.478 
ENST00000222800.4 68.00 93.15 -25.15 0.110 0.032 0.078 -0.090 
ENST00000382977.11 33.33 100.00 -66.67 0.073 0.000 0.073 -0.804 
ENST00000389175.23 20.00 64.30 -44.30 0.113 0.052 0.061 -0.151 
ENST00000265316.3 83.78 97.45 -13.67 0.079 0.018 0.061 0.053 
ENST00000355774.3 89.19 99.93 -10.75 0.054 0.000 0.054 -0.379 
ENST00000398141.8 10.95 19.95 -9.00 0.699 0.648 0.052 -0.640 
ENST00000357115.15 90.70 99.74 -9.04 0.053 0.003 0.051 -0.570 
ENST00000487270.3 92.59 99.68 -7.08 0.052 0.002 0.050 -0.251 
ENST00000216294.2 92.31 99.55 -7.24 0.054 0.003 0.050 -0.150 
ENST00000338382.7 91.30 99.77 -8.47 0.053 0.003 0.050 -0.559 
ENST00000331493.9 9.58 21.35 -11.77 0.149 0.099 0.050 -0.203 
ENST00000328867.14 69.23 89.54 -20.31 0.055 0.014 0.041 -1.237 
ENST00000376811.6 89.58 99.50 -9.91 0.041 0.003 0.037 -0.092 
ENST00000535273.7 83.78 94.41 -10.62 0.081 0.045 0.036 0.116 
ENST00000370132.6 85.45 98.61 -13.16 0.041 0.008 0.033 -0.221 
ENST00000542534.16 50.00 100.00 -50.00 0.027 0.000 0.027 -0.167 
ENST00000354366.10 81.82 99.98 -18.16 0.027 0.000 0.027 -0.153 
ENST00000238561.9 82.35 95.81 -13.45 0.041 0.015 0.026 0.018 

 

The 30 prime NAS candidates are those supporting an association between the PTC 

and exon increased relative exon skipping (DPSI < -5) and absolute exon skipping 

(DRPMskip > 0.026), sorted by decreasing DRPMskip. Exon ID is defined as 

“ensembl_transcript_id.exon_number” where the exon number is incremented in the 
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direction of transcription. DlogitY scores are those predicted by MMSplice. PTCs that 

also appear in the ClinVar dataset are shown in bold. 
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Table 6: Further information regarding the five prime NAS candidates overlapping 

ClinVar variants.  

PTC ID Exon ID Mutation Information 
rs62624965 ENST00000367409.18 T > G • ASPM gene. 

• Benign mutation 
(Landrum et al. 2018). 

• ASPM produces two 
isoforms, one with exon 18 
skipped, in both human 
and mouse and therefore 
may encode two proteins 
with different functions 
(Kouprina et al. 2005), 
thus skipping of exon 18 
may not be as detrimental. 

rs202001274 ENST00000456763.12 C > T • MAPKBP1 gene. 
• Associated with 

Nephronophthisis 20 
(Macia et al. 2017). 

• Homozygous PTC 
Individual produced full-
length and exon-skipped 
isoforms. 

• Thought to affect binding 
of serine-arginine rich 
(SR) protein SF2/ASF 
binding leading to exon 
skipped isoforms. 

rs148458820 ENST00000265316.3 G > A • ABCB6 gene. 
• Mitochondrial porphyrin 

transporter essential for 
heme biosynthesis. 

• Associated with Langereis 
blood group (Helias et al. 
2012). 

• May have implications in 
blood transfusions and 
drug therapies (Boswell-
Casteel et al. 2017). 

• ABCB6 also thought to 
contribute to anticancer 
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drug resistance (Kelter et 
al. 2007). 

rs200355697 ENST00000487270.3 C > T • RAD51B gene. 
• Encodes a DNA repair 

protein. 
• Uncertain significance for 

hereditary cancer-
predisposing syndrome. 

• RAD51B splice mutations 
leading to exon skipping 
have been associated with 
cancer (Golmard et al. 
2013). 

rs74103423 ENST00000370132.6 G > T • Dihydrolipoamide 
branched chain 
transacylase E2 gene. 

• Associated with maple 
syrup urine disease 
(MSUD) (Fisher et al. 
1993). 
Truncated and exon 
skipped isoforms found. 

 

Exon ID is defined as “ensembl_transcript_id.exon_number” where the exon number 

is incremented in the direction of transcription. 
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Supplement to Chapter 3 
 

 

The Supplementary Spreadsheets for Chapter 3 can be found on the attached CD. 
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Supplementary Texts 
 

Supplementary Text 1: Defining the large-effect threshold 

 

We find many differences in PSI (DPSI) small, with differences in the overall degree 

to which a particular exon is skipped unlikely to have any phenotypically meaningful 

impact. In order to filter cases where there is likely to be an effect, we need to apply a 

lower bound DPSI threshold for which cases with differences above the threshold are 

considered to be meaningful in terms of exon skipping. A 5% difference threshold was 

chosen. Note, the result of large effect cases being consistent with increased exon 

skipping if the PTC is present (by one-tailed exact Binomial test) is robust to threshold 

choice until reaching a lower-limit threshold of » 0.7% (Supplementary Figure 6). 

Further, the significance of the result at 5% lies close to the threshold with strongest 

significance and minimal P-values (5.5% - 6.2%). 

 

Thus, despite the threshold being arbitrarily defined, a significant P-value in the 

direction consistent with NAS is not simply an artefact of limiting results to a high 

threshold generating a significant result. Second, this threshold eliminates smaller-

effect cases that when included contribute to a significant result in the direction 

consistent with NAS. By setting the threshold at 5% as a lower bound, we also the 

include all cases where the effect is strongest at slightly higher thresholds (5.5% - 

6.2%) which would be excluded if set even 1.5% higher. Therefore, although user-

defined, the 5% threshold is therefore appropriate for identifying cases whereby the 

effects of the PTC on exon skipping are likely to have important effects. 
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Supplementary Text 2: NAS is not an adaptive mechanism to save transcripts 

from NMD, whilst exons susceptible to NAS appear to be unremarkable 

 

If exon skipping is an adaptive mechanism to save transcripts from NMD, we might 

expect the large effect exons to be more frequently of length three the exons for the 

other PTCs. We find this not to be the case when sampling 30 random exons from the 

non-large-effect PTCs 10,000 times (P » 0.186, one-tailed empirical P-value). Equally, 

if adaptive, we might expect the large effect cases to occur in shorter exons so if 

skipped it would have a smaller impact on the resulting protein, but we find no 

significant difference when comparing the median length with median length in the 

simulation exon sets (P » 0.662, one-tailed empirical P-value). 

 

Additional examples of possible exceptionalism all suggest these exons have no 

particular defining characteristic. For example, one would expect ESEs to be more 

frequently disrupted by the set of PTCs in the large effect cases than those with little 

difference between PTC-/- and PTC-/+ variants. Using the INT3 ESE set (Caceres and 

Hurst 2013), we find 6/30 PTCs hit a motif that resembles an ESE, however this 

number of hits is not significantly more than expected when taking 10,000 random sets 

of 30 of the remaining PTCs and asking how many have an equal or greater number 

of ESE hits than the real hits (P » 0.299, one-tailed empirical P-value). This result, 

however, is dependent on ESEs being functional in these exons. An alternative 

approach is to look where in exons the PTCs are located. Are those in the prime set 

found more frequently in the ESE hotspot region? 23/30 are in the 3-69bp region, 

although this is not significantly different to the number found in the region when 

comparing with 10,000 randomly chosen sets of 30 of the remaining PTCs (P » 0.425, 

one-tailed empirical P-value). Neither do we find a bias for PTCs located at a particular 

end of the exon (15 and 15 at the 5’ and 3’ ends respectively), again not significantly 

different to 10,000 simulants (P » 0.703, one-tailed empirical P-value). 

 

Thus, it appears that the exons in which we observe large increases in exon skipping 

when associated with the PTC are not exceptional. However, as a proportion of 

mutations are tolerated in genes that are either lowly expressed or are of less 

importance, it could be the case that these mutations simply occur in exons of lowly 
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expressed genes or those in which there is little phenotypic consequence. Indeed, the 

genes that contain PTCs tend to be more tissue specific than the genes containing 

pPTCs (see Supplementary Spreadsheet 7, Supplementary Spreadsheets). 
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Supplementary Figures 

 
 

 
 

Supplementary Figure 1: Ordered rank scores for DPSI and DRPMskip, with rankings shown 

in blue consistent with NAS and those shown in red in the opposite direction. 

(A) Ordered ranks of ascending absolute DPSI scores for the N = 302 exons with DPSI not 

equal to zero. Exons with increased exon skipping consistent with NAS are distributed towards 

the higher ordered ranks. However, due to the relatively few data points (N = 68) the absolute 
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sum of ordered ranks (17,442) for DPSI < 0 scores is less than that for the larger group (N = 

239) of DPSI > 0 scores (28,331), (B) Ordered ranks of ascending absolute DRPMskip scores 

for the N = 310 exons where DRPMskip is not equal to zero. Exons with DRPMskip consistent 

with NAS also rank high, but again the sum of absolute ranks for positive DRPMskip scores 

(16,704) is less than the sum of absolute ranks for negative DRPMskip scores (29,049). 
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Supplementary Figure 2: Experimental expression of ACP1 minigene constructs in 

Hek293T cells. 

 
(A) Gel electrophoresis of the ACP1 variants in cells with both the non-targeting siRNA pool 

control (NTC) and cells with Upf1 knockdown (siUpf1) in Hek293T cells. (B) PSI levels for 

wt and PTC-containing variants. 
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Supplementary Figure 3: Changes in PSI for large effect variants (>5%) for PTCs found off 

frame by one nucleotide. 

 (A) 94/116 of the large effect off-frame cases demonstrate a decrease in PSI for the PTC 

containing isoform, a significant number (P = 4.328 ´ 10-12, one-tailed exact Binomial test), 

(B) 93/116 of the shifted variants an increase in RPMskip associated with the shiftPTC, again 

a significant number (P = 1.799 ´ 10-11, one-tailed exact Binomial test). 56/120 large effect 

shifted PTCs have both PSI and RPMskip in the direction consistent with NAS, arguing 

against a reading frame dependant mechanism of skipping. 
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Supplementary Figure 4: Z scores for the number of nonsense mutations located in 

each exon region for the 1000 Genomes and ClinVar datasets when compared with 

randomly sampled nucleotide-matched simulants. 

 
Z scores for the number of nonsense mutations located in each of the exonic regions when 

compared with 10,000 reference-allele nucleotide matched simulants for the pathogenic and 

likely-pathogenic ClinVar and the 1000 Genomes variants. The dotted line represents Z = 

±1.96 where P » 0.05. Only the pathogenic variants are significantly enriched in the exon flank 

regions consistent with splice disruption being a consistent source of disease. The significantly 

negative 1000 Genomes Z (-2.039) is also consistent with these mutations segregating in a 

healthy population. 
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Supplementary Figure 5: Proportion of reads retained after BAM filtering for both 

full samples and samples filtered to retain only exon junction reads. 

 

The proportion of reads retained following quality filtering of the BAM files for 5 

randomly sampled files. All files retain similar levels of reads after each filtering with 

differences not significant (P = 0.188, paired Wilcoxon signed-rank test), suggesting 

the approach used to approximate the number of reads retained following filtering of 

the intersect file can be appropriately applied to estimate the number of reads retained 

after filtering of the whole file. 
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Supplementary Figure 6: Determining the large-effect DPSI threshold 

 

P values for one-tailed exact binomial tests asking whether the number of PTCs for 

showing DPSI above increasing DPSI threshold in the direction consistent with NAS 

is significant. Thresholds above »0.7% demonstrate this effect. 
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Chapter 4: 

 

Refining the Ambush Hypothesis: Evidence That GC- and 

AT-Rich Bacteria Employ Different Frameshift Defence 

Strategies 
 

 

 

 

Liam Abrahams and Laurence D. Hurst 

Genome Biology and Evolution (2018) 10(4):1153-1173 

 

 

This chapter contains analysis of publicly available data. The data and custom scripts 

are freely available at the locations cited within the paper. The paper is open access 

and I have permission as the author to include the article in full in this thesis 

(https://academic.oup.com/journals/pages/access_purchase/rights_and_permissions/p

ublication_rights). 
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Abstract

Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis”
proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence
was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide
content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return
to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation
approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order.
Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot
encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, theþ1 frame and for TGA/TAA but not TAG.
With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc
model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA)
and are mostlyþ1 (or"2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus,
we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts:
preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our
refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.

Key words: out-of-frame stop codon, dual coding, sequence evolution, ambush hypothesis, frameshift.

Introduction

DNA sequences have the ability to carry multiple overlapping
layers of noncoding, yet critical “dual-coding” information.
Examples are widespread (Itzkovitz et al. 2010; Lin et al. 2011;
Shabalina et al. 2013; Pancsa and Tompa 2016) often pre-
venting or mitigating the cellular costs of transcriptional or
translational errors (Drummond and Wilke 2009; Warnecke
and Hurst 2011). The highly diverse nature of errors means
signatures of dual-coding error control mechanisms are also
varied. For instance, codon and amino acid usage is biased
toward exon ends as purifying selection acts at synonymous
and nonsynonymous sites of exonic splice enhancers (ESEs;
Parmley et al. 2006,2007; Wu and Hurst 2015) to minimize
mis-splicing rates (Blencowe 2000; Fairbrother et al. 2004;
Wu et al. 2005; Caceres and Hurst 2013). Similarly, codon
usage biases are thought to minimize translational missense

errors (Drummond and Wilke 2008; Zhou et al. 2009;
Serohijos et al. 2012), while synonymous and nonsynony-
mous site evolution in nucleosome linker sequences governs
correct nucleosome positioning (Warnecke et al. 2008).
Furthermore, synonymous codon selection surrounding mi-
cro-RNA (miRNA) binding sites ensures efficient miRNA bind-
ing (Gu et al. 2012).

Alternatively, avoiding particular sequences or motifs may
be of equal importance. Selection acts to prevent mutations
that cause inappropriate binding of RNA-binding proteins’
binding within coding sequences (CDSs; Savisaar and Hurst
2017), to avoid intra-CDS Shine-Dalgarno (SD) motifs (Shine
and Dalgarno 1974) that limit synthesis rates and promote
incorrect folding inducing undesired frameshifting (Betney
et al. 2010; Li et al. 2012; Diwan and Agashe 2016), or to
avoid mononucleotide repeats or sequences prone to

! The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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ribosomal slippage (Ackermann and Chao 2006; Gurvich
et al. 2005; Gu et al. 2010a).

Beyond their principle termination function, stop codons
are repeatedly implicated in error control. In-frame stop
codons located in introns are under selection (He et al.
1993; Jaillon et al. 2008; Farlow et al. 2010; Mekouar et al.
2010) to allow nonsense-mediated decay (NMD) to selectively
degrade incorrectly spliced transcripts. In CDS regions where
NMD is unable to operate, codons in close nucleotide space
proximity to a stop codon are selectively avoided as a robust-
ness to mistranscription errors (Cusack, et al. 2011). Stop
codons found 5’ to recognized translation initiation sites in-
crease protein activity, suggesting unwanted or incorrect
translation initiations prior to the recognized start codon are
terminated. (Seligmann 2007).

Despite selection to mitigate translational errors, the trade-
off between optimal decoding accuracy and translational
speed (Wohlgemuth et al. 2010) permits ribosomal frame-
shifts errors, synthesizing peptides never intended.
Robustness to such errors is thought to drive selection on
transport RNA (tRNA) repertoires in genomes where frame-
shifts may be more costly (Warnecke et al. 2010) and may
direct ribosome evolution (Atkins and Bjork 2009). Further,
the ability to correct frameshift errors is thought to explain
why three stop codons exist (Itzkovitz and Alon 2007). Out-of-
frame stop codons (OSCs) prematurely terminate frame-
shifted translation events, minimizing process and cytotoxic
costs associated with synthesizing an incorrect peptide from
the incorrect reading frame (cellular resources, unproductive
ribosomal demand, and toxic aggregation; Gingold and Pilpel
2011).

Recently, we identified a strong site-specific signature of
selection for one OSC (Abrahams and Hurst 2017), finding a
significant excess of A at CDSs fourth sites in nearly all bac-
terial genomes. Translation initiation on an ATG (and more
generally, NTG) that becomesþ1 out of frame thus encoun-
ters TGA, providing the potential ability for immediate ribo-
some correction. The “ambush hypothesis” (Seligmann and
Pollock 2004), however, proposes that OSCs should be selec-
tively favored throughout the gene body to reduce genome-
wide frameshift costs. Several studies examine usage of
codons that could, but don’t necessarily, constitute an OSC
and claim codon usage biases are consistent with such OSC
selection (Seligmann and Pollock 2004; Singh and Pardasani
2009). However, with few genomes demonstrating biases
(38.00%/6.23% of total genomes, 36.96%/7.07% of bacte-
rial genomes for the two studies respectively), evidence is
underwhelming. Moreover, these codon usage biases might
be explained almost entirely by GC content (Morgens et al.
2013)—GC3 and GC1 content are the strongest determi-
nants of OSC frequency in theþ1 andþ2 frames, respectively
(Wong et al. 2008). Importantly, this method does not exam-
ine actual OSC frequencies. Thus, initial evidence supporting
the ambush hypothesis is weak, speculative, and not robust to

compositional controls to account for the high AT-content of
stop codons.

An alternative approach compares real sequences with a
distribution of null sequences simulating real CDSs, for which
compositional biases can be controlled. Using Markov chain
models, a remarkable 99.1% and 93.3% of prokaryotic
genomes exhibit OSC excesses using second-order and
fifth-order models that control for GC content and dinucleo-
tide or pentanucleotide frequencies (Tse, et al. 2010), al-
though numbers are reduced slightly for Morgens, et al.
(2013) (83% and 85% respectively). Critically, these models
directly interrogate OSC densities, although they do not pre-
serve amino acid or codon usages.

While results from these models are consistent with OSCs
exerting a near-universal selection pressure constraining CDS
evolution, it is important to consider the wider biological con-
text of these excesses. If the ambush hypothesis correctly
predicts selection, prima facie it has been argued that selec-
tion to incorporate OSCs should be stronger in GC-rich
genomes, as codon usage biases restrict chance dicodons
yielding OSCs (note stop codons are AT-rich) (Tse et al.
2010; Morgens et al. 2013). Significant positive correlations
between genome GC content and extent of excess suggests
this is the case (Tse et al. 2010; Morgens et al. 2013). Yet,
these excesses are attributable predominantly to TGA and not
TAA or TAG (Morgens et al. 2013). Furthermore, out-of-
frame sense TGN codons have similar, if not greater, number
of genomes with excess and positive correlations with GC
content (Morgens et al. 2013). These issues raise several po-
tential caveats that may also apply to previous studies. First,
when considered together, any excess may, for reasons un-
known, only reflect TGA excesses, highlighting the need to
consider each stop codon separately. Second, any excesses of
OSCs might be an artifact of selection for codons with similar
nucleotide composition and not selection directly for OSCs
themselves, with OSC frequencies not exceeding expectations
given underlying nucleotide composition.

Thecurrent statusof theambushhypothesis could therefore
be considered as confused and uncertain with contradictory
(i.e., some supportive and some unsupportive) evidence.
Although the Markov models by Tse et al. (2010) and
Morgens et al. (2013) improve on initial methods, are the
results limited by the model design? As reported earlier, it is
essential that GC content is controlled. Equally, as protein cod-
ingsequencesarebeingsimulated, the requirement for specific
amino acids in specific orders might need to be retained. While
the Markov models do provide some compositional bias con-
trol (GC content, higher order biases, e.g., dinucleotide fre-
quencies), the stepwise addition of nucleotides does not
preserve codon or amino acid identities, amino acid sequence
ordering likely essential for protein function, nor small muta-
tional or motif biases. Thus, the flexibility allowed by Markov
models may not appropriately reflect real biological coding
constraints that underpin OSC frequencies.
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In this study, we therefore return to this issue concerning
OSC selection. We first confirm previous results using Markov
models (in part to ascertain whether our data set can mimic
prior results). We then propose and test a series of simulation
models that attempt to control for these compositional biases
to varying degrees. While it is easy to criticize the Markov
models, we acknowledge that our models also do not control
completely for all competing selection pressures and biases.

In addition to the above mentioned problems, there is also
the issue in quantifying deviation from null. We suppose a Z-
score metric (deviation in standard deviation units) enables a
more biologically valuable metric, as this enables us to quantify
and compare excesses between models while accounting for
genome variability. Asþ1 and"2 andþ2 and"1 frameshifts
incurequal costs (except for immediatelyat thestartcodon), for
simulation models we consider onlyþ1 andþ2 frameshifts.

We find a complex pattern of results that provides neither a
clear rejectionnoracceptanceof theambushhypothesis. In this
context, we motivate a post hoc refined version of the hypoth-
esis, which broadly proposes that GC- and AT-rich genomes
handle the problems associated with frameshifts differently,
thatþ1 frameshifts are the dominant form of accidental slip-
page, and that frameshifts are predominantly resolved via a
release factor (RF) 2/RF3 mechanism (which does not apply to
TAG). In silico evidence supports the first tenet of the refined
model, but we highlight several features that still defy clear
explanation.

Materials and Methods

General Methods

All analyses were performed using custom Python 3.6 scripts
with standard NumPy 1.8.0, SciPy 0.13, and Biopython 1.66
(Cock et al. 2009) libraries. Statistical analyses and data
visualizations were performed using R 3.3.3 (R Core Team
2015). Scripts can be found at (https://github.com/la466/oscs).

Genome Downloads and Filtering

Whole-genome sequences for 3,860 bacterial genomes were
downloaded from the European Molecular Biology
Laboratory (EBML) database (http://www.ebi.ac.uk/Tools/
dbfetch/emblfetch?db¼embl, last accessed January 19,
2017). Genomes were filtered to include only one genome
per genus larger than 500,000 base pairs (the remaining
genomes were not considered in the analysis) in order to
minimize any biases attributable to phylogenetic non-
independence, leaving 694 genomes. Of these genomes,
690 use National Centre for Biotechnology Information
(NCBI) translation tables 11 and 4 use NCBI translation table 4.

Coding Sequence Filtering

Each coding sequence was subjected to filtering in order to
ensure the integrity of the sequences analyzed. Sequences

were limited to those that contained a multiple of three
nucleotides, contained only A, C, G, or T nucleotides, con-
tained no in-frame stop codons, and had a correctly defined
stop codon according to the NCBI translation table, TAA,
TAG, or TGA for table 11 genomes or TAA or TAG for table
4 genomes.

General Modeling

All simulations were repeated 200 times for each bacterial
genome. Increasing the number of simulations had minimal
impact on OSC density variance (see supplementary fig. 1,
Supplementary Material online, for an example of the varia-
tion in Escherichia coli OSC densities in the codon shuffle
model). We define codon excesses using the standard Z score
to compare how the real OSC densities differ beyond those
expected by simulation between genomes while accounting
for genome coding properties. P values were calculated by
extrapolating directly from genome Z scores and corrected for
multiple comparisons using the Benjamini-Hochberg False
Discovery Rate (FDR) correction method, with one P value
reported per genome. Where we report N/694 genomes
with significant excesses, these are N different genomes
with both genome Z> 0 and P< 0.05. OSC densities were
calculated per 100 codons.

Markov Models

For each genome, we built Markov models similar to Tse et al.
(2010) and Morgens et al. (2013). For each CDS in the
genome, start and stop codons were discounted. For
second-order models, the first two nucleotides of the remain-
ing sequence and their position in the codon were defined.
The third nucleotide, given the previous two nucleotides and
their codon positions, was then sampled. After each sample,
the two seed nucleotides and codon positions were shifted
one nucleotide and resampled until all nucleotides in all CDSs
had been accounted for. For fifth-order models, samples were
based on the previous five nucleotides. Each real CDS was
simulated using the start codon and two or five seed nucleo-
tides using the transition probabilities previously calculated
until the simulated sequence was of the same length as the
real CDS minus the stop codon, which was then appended.

Codon Shuffle Model

For each CDS within the genome, the start and stop codons
were removed. The codons of the CDS were isolated and
randomly shuffled before being concatenated to form the
simulated sequence.

Synonymous Site Model

For each genome, nucleotide frequencies at synonymous sites
of codons within each coding block were calculated and
normalized within coding blocks. In contrast to the
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synonymous codon model, only synonyms within the same
coding block were allowed to vary, and thus it is only the
synonymous site that this model is questioning (e.g., serine
AGC and AGT and TCA, TCC, TCG, and TCT are considered
separately). Each codon in the real CDS had genome, amino
acid, and coding block specific probabilities during simulation.
For each CDS, each codon was in turn simulated using these
coding probabilities.

Synonymous Codon Model

For each genome, codon frequencies were calculated and
normalized as the probability of encoding an amino acid.
Codons from multiple coding blocks that encode the same
amino acid were considered together. For each CDS, each
codon was in turn simulated using these probabilities. This
test therefore asks whether CDSs using preferentially uses
synonymous codons that generate OSCs.

Comparison between Table 11 and Table 4 Genomes

A local regression model (loess) for the specific codon and
reading frame was fit between GC content and OSC density
per 100 codons that included all table 11 and table 4
genomes in order to account for variation in GC content be-
tween the genomes. Residuals from this model for table 11
and table 4 genomes were then compared using Kruskal–
Wallis tests. To increase the sample size, genomes of 89
additional table 4 genomes discarded during the original phy-
logenetic filter (irrespective of genome size) were considered
for further comparison of OSC densities (see supplementary
table 1, Supplementary Material online, for breakdown).
These genomes were subjected to CDS filtering as before.
We also restricted this table 4 genome data set by ranking
Mycoplasma genomes by Z scores ofþ1 TGA for simulations
using the synonymous site simulation and including only the
nine genomes with highest Z score (matching the number of
Spiroplasma, the next most common genus). Thus, this restric-
tion should include only Mycoplasma genomes with the
weakest negative TGA selection.

Calculating Frameshift Costs and Probabilities

Information regarding tRNA isoacceptor copy number and
diversity was downloaded from the tRNADB-CE (Abe 2011;
last accessed October 30, 2017). Of our 694 genomes, tRNA
copy number and diversity information was available for 281
genomes. As in Warnecke et al. (2010), only genomes in
which each codon could be decoded by the tRNA repertoire
were considered, resulting in a final set of 231 genomes.

The “genomic cost of processing model” (Warnecke et al.
2010, equation 1) was used to calculated the cost of acciden-
tal frameshifting. This model is nested to allow the calculation
of the probability of individual codons frameshifting using
equation 2 (Warnecke et al. 2010). We inherit the assumption

that tRNA copy numbers are reasonable proxies for cellular
tRNA concentrations (Dong et al. 1996; Kanaya et al. 1999;
Cognat et al. 2008). Further, anticodon–codon matching
strategies were derived using the Supplementary Methods
from Warnecke et al. (2010) originally proposed by
Grosjean et al. (2010).

Codon Adaptation Index Calculations

Bacterial codon use is nonrandom. Highly expressed genes
often prefer to use codons that are decoded by the most
abundant tRNA (Rocha 2004). The Codon Adaptation Index
(CAI) (Sharp and Li 1987) quantifies codon bias with high CAI
values correlating with high expression in several organisms
including E coli (dos Reis et al. 2003). CAI is therefore used as
a gene expression proxy.

For each genome, a reference set of 20 genes from rplA/
1—rplF/6, rplI/9—rplU/21 and rpsB/2—rpsU/21 were identi-
fied as highly expressed. The first 30 nucleotides were re-
moved from the CDS (the 5’ CDS is biased to facilitate
ribosome binding), and the first half of the CDS in this highly
expressed set was used to calculate CAI indices using CodonW
v1.4.4 (https://sourceforge.net/projects/codonw/; last accessed
March 22, 2016) with the arguments “-coa_cu -coa_num
100%” to include all sequences in calculating indices. CAI
values for the first half (minus the first 30 nucleotides) of the
remaining CDS in the genome were calculated with the “-
all_indices” argument using the generated fop_file, cai_file,
and cbi_file. OSC densities were subsequently calculated using
the second half of the CDS to prevent resampling of the same
sequence for two measures for which codon usage is being
measured and maximizing the independence of the data.

Results

Markov Models Replicate Prior OSC Excesses

To establish that our set of genomes is comparable with prior
efforts, we first simulated sequences using Markov models in
order to replicate prior results. Results demonstrate similar dis-
tributions of excesses to Morgens et al. (2013) (supplementary
result 1, Supplementary Material online). The conclusions of
priorresultsarerepeatable,notconsistentwithambushhypoth-
esis predictions and that our sample of genomes are able to
mimic prior efforts. Further discrepancies are therefore unlikely
to be owing to the employment of a different set of genomes.

Genomes with Significant OSC Excesses Are
Predominantly AT-Rich in a Model in Which Real Codon
Combinations Are Shuffled

It is potentially important that the amino acid content of the
protein coding sequences is maintained during simulations.
Assuming selection on nonsynonymous sites is stronger than
on synonymous sites (Hurst 2009), the principle determinant
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of any codon is likely the amino acid it encodes. However, not
all sense codons can yield an OSC; in order to generate an
OSC, two conducive codons must combine in the correct or-
der. A proportion of OSCs will be incorporated irrespective of
OSC selection, given some chance dicodon pairs always yield
an OSC. For example, any A-starting codon following a me-
thionine codon generates Aþ1 TGA. Can the OSC frequency
be explained by random (no selection for OSCs) dicodon pair-
ings? To test this hypothesis, we randomized codon order
within each CDS to disrupt codon combinations that generate
OSCs. This simulation controls for GC content exactly while
preserving exact amino and codon identities and interactions
between codon second and third sites. Amino acid order is
not constrained.

We find that 124/694 (17.88%) of genomes have a signif-
icant excess of OSCs after randomization (P< 0.05, false dis-
covery rate [FDR] correction), much reduced when compared
with the Markov models both here and in the previous studies
(Tse et al. 2010; Morgens et al. 2013). When each reading
frame is considered independently, 367/694 (52.88%,
P< 0.05, FDR correction) genomes have significant excesses

in theþ1 frame but many fewer, 101/694 (14.55%,
P< 0.05, FDR correction) genomes, have significant excess
in theþ2 frame.

While this evidence is suggestive of OSC selection in theþ1
frame in some genomes, several unexpected features are no-
table. First, correlations between GC content and OSC excesses
are significantly negative (Table 1). As post-frameshift runs are
longer in GC-rich genomes, the opposite correlation might
have been a more obvious prediction (and previously employed
as a prediction by Tse et al. 2010 and Morgens et al. 2013).
Second, we observe many genomes with significant negative
excesses of OSCs (fig. 1), suggesting selection for OSCs is not
ubiquitous and often avoided. Furthermore, positive excesses
are predominantly limited to theþ1 reading frame (fig. 1).
Whether this reflects a possible preponderance and susceptibil-
ity toþ1 frameshift events is unknown.

Excesses of OSCs are also not uniformly distributed be-
tween the three stop codons. Only TGA has excesses in
over 50% of genomes for any reading frame. This is also
perhaps unexpected as TGA is thought to be the weakest
of the stop codons (Povolotskaya et al. 2012; Korkmaz

Table 1

The Number of Genomes with Significant Out-of-Frame Excesses in Alternative Reading Frames When Coding Sequences Have Been Simulated by Shuffling
the Codons within the Coding Sequence. Spearman’s rank correlations between genome GC content and OSC excess, defined by the standard Z score, are
also shown.

Codon Reading Frame # With Excess % With Excess q P

All stops Both 124 17.88 "0.178 2.328 # 10"6

All stops þ1 367 52.88 "0.295 2.664 # 10"15

All stops þ2 101 14.55 "0.144 1.489 # 10"4

TAA Both 98 14.12 "0.427 <2.2 # 10"16

TAC Both 168 24.21 "0.113 0.003

TAG Both 118 17.00 "0.352 <2.2 # 10"16

TAT Both 186 26.80 "0.343 <2.2 # 10"16

TGA Both 353 50.86 "0.091 0.017

TGC Both 599 86.31 0.498 <2.2 # 10"16

TGG Both 281 40.49 "0.431 <2.2 # 10"16

TGT Both 165 23.78 "0.308 1.436 # 10"16

TAA þ1 296 42.65 "0.417 <2.2 # 10"16

TAC þ1 361 52.02 0.572 <2.2 # 10"16

TAG þ1 190 27.38 "0.385 <2.2 # 10"16

TAT þ1 391 56.34 0.408 <2.2 # 10"16

TGA þ1 370 53.31 0.036 0.348

TGC þ1 575 82.85 0.465 <2.2 # 10"16

TGG þ1 256 36.89 "0.406 <2.2 # 10"16

TGT þ1 52 7.49 "0.063 0.099

TAA þ2 80 11.53 "0.231 8.587 # 10"10

TAC þ2 148 21.33 "0.404 <2.2 # 10"16

TAG þ2 44 6.34 "0.178 2.336 # 10"6

TAT þ2 176 25.36 "0.471 <2.2 # 10"16

TGA þ2 344 49.57 "0.169 7.508 # 10"6

TGC þ2 531 76.51 0.233 5.600 # 10"10

TGG þ2 299 43.08 "0.206 4.950 # 10"8

TGT þ2 362 52.16 "0.352 <2.2 # 10"16
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et al. 2014; Wei et al. 2016). TAA and TAG are often pre-
ferred and TGA avoided in highly expressed genes (Wei et al.
2016) while replacing TGA abolishes termination readthrough

(Meng et al. 1995), implicating TGA as the least efficient ter-
minator. A TGA preference was also observed by Morgens
et al. (2013).

FIG. 1.—Correlations between GC content and out-of-frame stop codon excess (Z>0), when all stop codons are considered together, are significantly

negative in each reading frame for coding sequences simulated by random codon shuffling within the CDS. Violin plots emphasize that excesses are biased

toward AT-rich genomes.
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Genomes with significant excesses tend to be AT-rich, al-
though significant TGA excesses do extend to some extremely
GC-rich genomes, particularly in theþ1 frame (fig. 2,
Supplementary fig. 2, Supplementary Material online).
Intriguingly, excesses of TAA and TAG are more highly re-
stricted to AT-rich genomes, despite the identical GC content
of TAG and TGA.

The observations of an excess of OSCs in some
genomes in itself need not be evidence for selection for
OSCs. Under the ambush hypothesis, we might also ex-
pect stronger selection for OSCs when compared with
sense codons of similar nucleotide composition
(Morgens et al. 2013). However, both TAC and TAT
have a greater number of genomes with excesses when
compared with TAA or TAG in both reading frames and
excesses have significant positive correlations with GC
content (Table 1). Excesses ofþ1 TGC have the strongest
correlation and occur in the greatest percentage of
genomes when compared with other TGN codons. By
contrast, the number of genomes with excesses is greater
for TGA than for either TGG or TGT in theþ1 frame al-
though only TGG in theþ2 frame. Thus, as suggested by
Morgens et al. (2013), OSC excesses may simply reflect

complex compositional requirements resulting in an over-
representation of out-of-frame TAN or TGN codons as
opposed to selection for OSCs themselves.

OSC Excesses Are Also Seen in a Null Model Where
Synonymous Sites Are Randomized

The above mentioned model provided some evidence for an
excess of OSCs, especially in AT-rich genomes, although this
evidence is by no means unambiguous. There are, however,
limitations with the form of the null model used above.
Disruptive changes to amino acid sequences would funda-
mentally alter protein function and not be permitted during
sequence evolution. Such disruption would also break up
larger motifs. Similar to the Markov models, this model can-
not account for site-specific amino acid selection. Indeed,
changes to sensitive amino acids can induce conformational
changes in protein structure, altering protein stability or
robustness to mutational errors (Yutani et al. 1977,
Hormoz 2013) and are therefore essential to protein function.
Moreover, amino acids that may carry site-specific functional
information, for example, the second amino acid that is under

FIG. 2.—Correlations between GC content and genome excess of out-of-frame stop codons (Z>0) are significantly negative (P<0.01, Spearman’s rank

correlation) for all stop codons, in both reading frames, except forþ1 TGA (P¼0.348) for the codon shuffle model. Excesses of TAA and TAG are heavily

biased toward AT-rich genomes.

Refining the Ambush Hypothesis GBE

Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018 1159

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/4/1153/4958399 by guest on 24 N

ovem
ber 2019



 193 

strong selection to promote methionine cleavage (Liao et al.
2004; Frottin et al. 2006; Ouidir, et al. 2015), are not retained.

A possibly more realistic scenario might be strong selection
for synonymous mutations that generate OSCs. To consider
this,wesimulatedsynonymousnucleotide frequencies inaccor-
dancewithgenomecodonusage frequenciespreservingamino
acid identities, amino acid order, and net genome codon
usage frequencies. For these simulations, we permitted synon-
ymous codon changes from strictly within the same codon
block, i.e., codons fromthe2-foldand4-foldblocksof the three
6-folddegenerateaminoacidswerenot interchanged.Asimilar
but less stringent codon simulation model where this codon
block restriction is relaxed (i.e., allowing the interchange of all
members within 6-fold degenerate blocks) yields similar results
(supplementary result 2, Supplementary Material online).

With higher level constraints controlled, if OSCs en-
force a strong enough selection pressure, we expect a
bias toward nucleotides generating OSCs if the following
codon permits. For example, if the amino acid sequence
dictates isoleucine-glutamic acid, we expect a bias toward
ATA isoleucine codons to encode aþ1 TAG. OSCs arising

from 1-fold degenerates are not considered as synony-
mous site selection has no effect.

Perhaps significantly, much like the previous model, the
number of genomes with significant excesses is low and
predominantly in theþ1 frame (272/694, 39.19%,
P< 0.05, FDR correction) (table 2). The lack of excesses
in theþ2 frame is particularly surprising for this model,
given T is strictly required at the synonymous site for
OSCs. When all OSCs are considered together, excesses
in each reading frame are significantly negatively corre-
lated with GC content (table 2) and heavily biased toward
AT-rich genomes (fig. 3).

This lack of significant excess extends to the individual
OSCs. When both frames are considered together, TGA
again demonstrates the greatest deviations from null
sequences (288/694, 41.50%, P< 0.05, FDR
correction). Excesses of TAA are lower (118/694,
17.00%, P < 0.05, FDR correction) and TAG lower still
(101/694, 14.55%, P< 0.05, FDR correction). All OSC
excesses are limited predominantly to AT-rich genomes
(supplementary fig. 3, Supplementary Material online).

Table 2

The Number of Genomes with Significant Out-of-Frame Excesses for Different Codons When Coding Sequences Have Been Simulated by Randomizing
Synonymous Sites within Coding Blocks. Spearman’s rank correlations between genome GC content and OSC excess, defined by the standard Z score, are
also shown

Codon Reading Frame # With Excess % With Excess q P

All stops Both 87 12.54 "0.444 <2.2 # 10"16

All stops þ1 272 39.19 "0.443 <2.2 # 10"16

All stops þ2 103 14.84 "0.260 4.046 # 10"12

TAA Both 118 17.00 "0.508 <2.2 # 10"16

TAC Both 145 20.89 "0.067 0.077

TAG Both 101 14.55 "0.282 4.371 # 10"14

TAT Both 194 27.95 "0.382 <2.2 # 10"16

TGA Both 288 41.50 "0.326 < 2.2 # 10"16

TGC Both 636 91.64 0.589 <2.2 # 10"16

TGG Both 265 38.18 "0.404 <2.2 # 10"16

TGT Both 252 36.31 "0.403 <2.2 # 10"16

TAA þ1 298 42.94 "0.444 <2.2 # 10"16

TAC þ1 330 47.55 0.595 <2.2 # 10"16

TAG þ1 155 22.33 "0.334 <2.2 # 10"16

TAT þ1 439 63.26 0.403 <2.2 # 10"16

TGA þ1 256 36.89 "0.135 3.729 # 10"4

TGC þ1 599 86.31 0.625 <2.2 # 10"16

TGG þ1 271 39.05 "0.365 <2.2 # 10"16

TGT þ1 98 14.12 "0.218 7.287 # 10"9

TAA þ2 93 13.40 "0.321 <2.2 # 10"16

TAC þ2 146 21.04 "0.389 <2.2 # 10"16

TAG þ2 42 6.05 "0.140 2.270 # 10"4

TAT þ2 185 26.66 "0.500 <2.2 # 10"16

TGA þ2 365 52.59 "0.261 3.777 # 10"12

TGC þ2 557 80.26 0.178 2.523 # 10"6

TGG þ2 271 39.05 "0.214 1.386 # 10"8

TGT þ2 384 55.33 "0.409 <2.2 # 10"16
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Again, excesses appear more acute in theþ1 frame. Unlike
the previous model,þ1 TAA is now the stop with the greatest
number of genomes with excesses (298/694, 42.94%,

P< 0.05, FDR correction) and greater thanþ1 TGA (256/
694, 36.88%, P< 0.05, FDR correction). Theseþ1 TAA
excesses are highly restricted to the AT-rich genome and

FIG. 3.—Correlations between GC content and out-of-frame stop codon excess (Z>0), when all stop codons are considered together, are significantly

negative (P<0.01, Spearman’s rank correlation) in each alternative reading frame for coding sequences where synonymous sites are randomized. Violin

plots again emphasize a bias towards significant excesses in the AT-rich genomes.
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more generally have a significant negative correlation with
GC content (q¼"0.444, P< 2.2# 10"16, Spearman’s rank
correlation) (fig. 4, supplementary fig. 3, Supplementary
Material online). In contrast, the number of genomes with
significant excesses ofþ1 TAG (155/694, 22.33%, P< 0.05,
FDR correction),þ2 TAA (93/694, 13.40%, P< 0.05, FDR cor-
rection), andþ2 TAG (42/694, 6.05%, P< 0.05, FDR correc-
tion) are remarkably low. Thus, þ1 seems to be the dominant
signal, and signals for the most part are not associated with
TAG.

It is again unclear whether the excesses reflect stop
codon functionality. When compared with off-frame
sense codons, both TAA and TAG have fewer genomes
with significant excesses than either TAC or TAT.
Excesses of TGC (þ1: 599/694, 86.31%;þ2: 557/694,
80.26%, P< 0.05, FDR correction) are the greatest of
any TGN codon in either reading frame. Excesses ofþ1
TGG (271/694, 39.04%, P< 0.05, FDR correction)
andþ2 TGT (384/694, 55.33%, P< 0.05, FDR correc-
tion) are also greater than TGA in the respective
frames.

þ1 TAA Demonstrates Evidence of OSC Selection at
Synonymous Sites for Amino Acid Repeats Whose Codons
Present the Opportunity to Encode an OSC

Results of the above simulation, which is arguably the most
realistic determination of the null model, are suggestive but
come with caveats, given the excess of OSCs. However, this
null model also has limitations. First, we have to make pre-
sumptions about the realism of synonymous site selection. For
example, if there are subtle location-specific codon usage
biases or context-dependent mutational biases, these are
likely to overcome any selection for OSCs. The model does
not respect differential codon usage biases throughout the
CDS nor motif or domain-specific codon usage biases, for
example, the bias toward A to disrupt messenger RNA
(mRNA) stability at 5’ ends (Gu et al. 2010 b; Kudla
et al. 2009; Bentele et al. 2013). Furthermore, in assuming
each synonymous site is under selection for OSCs, this
model assumes selection pressures are of equal strength
at all synonymous sites, which is unlikely to be the case.

Given the these issues, we propose a further test that
might better control for amino acid order, codon usage

FIG. 4.—Correlations between GC content and genome excess of out-of-frame stop codons (Z>0) are significantly negative (P<0.01, Spearman’s rank

correlation) for all stop codons in both alternative reading frames for the synonymous site randomisation model. Excesses of TAA and TAG are heavily biased

toward AT-rich genomes, with few genomes exhibiting excesses in theþ2 frame.
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biases, and highly regionalized effects, but one that has a
more limited sample size. We can ask whether the synony-
mous codons used in localized sequence contexts encode
OSCs when given the opportunity. We isolated any repeat
of two isoleucine (codons ATA, ATC, ATT) or valine (codon
GTA, GTC, GTG, GTT) amino acids, followed by amino acids
whose codon starts with either C or T. In this way, we isolate
sequences inwhich thefirst codonalwayshas theopportunity
to yield an OSC, followed by a second codon, encoding an
identical amino acid that strictly cannot. Any regionalized
biases are thus minimized while ensuring the amino acid re-
quirement and hence direction of codon usage bias remains
identical. IfOSC selectionconstrains codonchoice,wepredict
a stronger bias toward A-ending synonyms for the first codon
of the repeat than the second. For example, A use in the se-
quence 5’-ATH jATH jYNN-3’ should be greater at site3 than
6 to encodeþ1 TAA. ATG has no synonyms, and there-
foreþ1 TGA cannot be examined. We perform paired tests
between usage within each genome to control for intrage-
nome localized mutationalbiasesbut also tonegateeffects of
intergenome compositional biases. We cannot control the
mutational bias (or motif selection) owing to interactions

between sites 3 and 4 and sites 6 and 7, but otherwise all
other context features are preserved.

Again, the signals are ambiguous. We find no signifi-
cant difference between the use of A at sites 3 and 6
forþ1 TAA encoding sequences (P¼ 0.215, paired
Wilcoxon signed rank test). If synonymous sites are being
selected for to preserve OSCs, we expect site 3 to be more
resistant to mutational pressures than site 6. Thus, as GC3
content increases, we expect relatively little change in A3
but a reduction in A6 giving a positive correlation be-
tween A3: A6 and GC content. This is not the case—
correlations are significantly negative for possibleþ1
TAA encoding sequences (q¼#0.097, P¼ 0.012,
Spearman’s rank correlation) (fig. 5).

This negative correlation might imply that the uncontrolled
mutation bias difference (A3: A4 versus A6: A7, difference) is
not to be overlooked. However, for this test, GC3 content is
not consistent and allows comparisons between ATA and
ATC. When GC3 content is controlled by only considering
codons using A/T at their synonymous site, A3 use is signifi-
cantly greater than A6 use (P< 2.2$ 10#16, paired Wilcoxon
rank-sum test, mean proportion of sequences with A: site

FIG. 5.—Log ratios between the A use at synonymous sites of amino acids whose codons when repeated can generate an OSC. Correlations are

significantly negative in each case (P<0.05, Spearman’s rank correlations), suggesting A use at the third site decreases compared with the sixth, as GC

mutational biases make encoding OSCs more difficult. When codons are restricted to only A/T ending synonyms,þ1 TAA demonstrates a significant positive

correlation with GC content (q¼0.160, P¼4.827$10#5, Spearman’s rank correlation).
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3¼ 0.278; site 6¼ 0.208). Individually, 475/694 (68.44%)
genomes have greater A3 use. Furthermore, the correlation
between GC3 and A3/A6 correlations is now significantly pos-
itive (q¼ 0.160, P¼ 4.827" 10#5, Spearman’s rank correla-
tion). Thus, synonymous codon usage is consistent withþ1
TAA selection after GC control.

We apply the same test to valine repeats that have the
potential to encodeþ1 TAG. Unlikeþ1 TAA-encoding
sequences, we find A3 use significantly reduced when all va-
line codons are considered (P< 2.2" 10#16, paired Wilcoxon
signed rank test, mean proportion of sequences with A: site
3¼ 0.137; site 6¼ 0.156) and when only GTA and GTT are
considered (P¼ 6.129" 10#5, paired Wilcoxon signed rank
test, mean proportion of sequences with A: site 3¼ 0.313;
site 6¼ 0.329). Correlations are significantly negative be-
tween GC3 content and A3: A6 usage in both cases (All
codons: q¼#0.585, P< 2.2" 10#16, Spearman’s rank cor-
relation; GTA/GTT: q¼#0.143, P¼ 1.77" 10#4, Spearman’s
rank correlation).

Thus, it appears synonymous codon usage is consistent
with OSC selection in the specific case ofþ1 TAA, although
motif effects and subtle mutational biases are hard to elimi-
nate as explanations. Employing similar tests for T use for
allþ2 OSC encoding sequences provides no evidence consis-
tent with OSC selection, nor does a general hypothesis that
considers all stop codons and frames together (supplementary
result 3, Supplementary Material online).

þ1 TGA Densities Are Significantly Reduced in Genomes
Where TGA Does Not Function as a Stop Codon, However
Bothþ1 TAA andþ1 TAG Densities Are Also Reduced

Although our models present excesses of OSCs in some
instances, can we attribute them to stop codon function?
The excess of off-frame sense codons suggests that simply
looking for an excess of OSCs may be naive. An alternative
approach is to consider the subset of prokaryotes
(Entomoplasmatales and Mycoplasmatales) in which TGA is
recoded to tryptophan, eliminating stop functionality (Bove
1993). If excesses are due to termination functionality, any
off-frame TGA selection should be weaker in these genomes.
Further, if terminating frameshift events is of such cellular
importance, this recoding should result in compensatory
increases of TAA and TAG due to the impaired termination
ability. We refer to recoded genomes as “table 4” genomes
and those using the standard genetic code as “table 11”
genomes using National Centre for Biotechnology
Information (NCBI) naming convention. Indeed, there would
appear to be weakerþ1 TGA selection (supplementary fig. 4,
Supplementary Material online) with most table 4 genomes
demonstrating negative excesses in our simulations. It is, how-
ever, important to compare actual OSC frequencies between
genomes using alternative translation tables. Any differences
attributable to GC mutational biases (i.e., AT-rich table 4

genomes are likely to have increased OSC densities by chance)
are minimized by performing loess regressions and comparing
residuals between the two genetic codes.

The OSC densities of stop codons combined are signifi-
cantly reduced for table 4 genomes whenþ1 andþ2 frames
are considered together (P¼ 5.572" 10#4, Kruskal–Wallis
rank sum test of residuals; table 4 mean residual
(MR)¼#5.487, table 11 MR¼ 0.046). Results are similar
when reading frames are considered separately (þ1:
P¼ 5.624" 10#4, Kruskal-Wallis rank sum test of residuals,
table 4 MR¼#2.617, table 11 MR¼ 0.029;þ2:
P¼ 8.406" 10#4, Kruskal–Wallis rank sum test of residuals,
table 4 MR¼#2.870, table 11 MR¼ 0.017). This is not en-
tirely unexpected—even if TAA and TAG are somewhat in-
creased there may not be full compensation for the loss of
TGA.

Are these reduced OSC densities attributable to loss of
TGA stop functionality? Contrary to expectation, off-frame
TGA densities are significantly increased in theþ2 frame
(P¼ 0.002, Kruskal–Wallis rank sum test of residuals; table
4 MR¼ 1.113, table 11 MR¼#0.011) supporting the
excesses in simulation models (supplementary fig. 4,
Supplementary Material online). Despite reduced mean
residuals,þ1 TGA densities are not significantly reduced
(P¼ 0.125, Kruskal–Wallis rank sum test of residuals; table
4 MR¼#0.233, table 11 MR¼#0.001). However, given
negative excesses from simulation models (supplementary
fig. 4, Supplementary Material online) and these reduced
residuals, the lack of table 4 genomes may be limiting. To
provide a richer data set, we therefore incorporated all table
4 genomes from our initial data set prior to phylogenetic fil-
tering, increasing the table 4 sample to 93 genomes. We ac-
cept that this introduces a degree of nonindependence and
bias by including many Mycoplasmas (see supplementary ta-
ble 1, Supplementary Material online, for breakdown of
genomes).

With this increased data set, combined OSC densities in
table 4 genomes remain significantly reduced whenþ1
andþ2 frames are considered together (P< 2.2" 10#16,
Kruskal–Wallis rank sum test of residuals; table 4
MR¼#2.509, table 11 MR¼ 0.363), in theþ1 frame
(P< 2.2" 10#16, Kruskal–Wallis rank sum test of residuals,
table 4 MR¼#1.171, table 11 MR¼ 0.176) and theþ2
frame (P< 2.2" 10#16, Kruskal–Wallis rank sum test of resid-
uals, table 4 MR¼#1.337, table 11 MR¼ 0.187) (fig. 6).
Specifically, althoughþ2 TGA use remains significantly in-
creased (P¼ 1.57" 10#9, Kruskal–Wallis rank sum test of
residuals; table 4 MR¼ 0.328, table 11 MR¼#0.055),þ1
TGA densities are significantly reduced (P¼ 2.091" 10#7,
Kruskal–Wallis rank sum test of residuals; table 4
MR¼#0.174, table 11 MR¼ 0.023). Thus, consistent with
previous results, any selection for OSCs is likely to be operat-
ing predominantly in theþ1 frame andþ1 TGA use appears
to be reduced in table 4 genomes.
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Without considering the context of this reduced excess, it is
difficult to determine whether this is related to lost termina-
tion function. Are TAA and TAG densities increased to com-
pensate? Results indicate this is not the case. Bothþ1 TAA

(P¼ 3.107# 10$6, Kruskal–Wallis rank sum test of residuals;
table 4 MR¼$0.149, table 11 MR¼ 0.028) andþ1 TAG
(P¼ 4.355# 10$8, Kruskal-Wallis rank sum test of residuals;
table 4 MR¼$0.284, table 11 MR¼ 0.048) densities are

FIG. 6.—OSC densities are reduced in table 4 genomes when compared with table 11 genomes in each alternative reading frame. Violin plots of the

loess regression residuals highlight the reduced residuals for OSC densities in table 4 genomes.
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significantly reduced in table 4 genomes (fig. 7). When
restricting table 4 genomes to include only 9 Mycoplasma
genomes (matching the total for the next most common ge-
nus Spiroplasma to reduced bias, see Methods) in which se-
lection against TGA should be weakest, we obtain similar
results (supplementary table 2, Supplementary Material
online).

Given densities of other OSCs are not increased, we ask
whether off-frame TAN and TGN densities are more generally
reduced. Bothþ1 TAC (P¼ 1.14# 10$12, Kruskal-Wallis rank
sum test of residuals; table 4 MR¼$0.170, table 11
MR¼ 0.020) andþ1 TAT (P¼ 1.582# 10$13, Kruskal–
Wallis rank sum test of residuals; table 4 MR¼$0.277, table
11 MR¼ 0.038) densities are also significantly reduced in ta-
ble 4 genomes. Results are similar using the restricted
Mycoplasma data set (supplementary table 2,
Supplementary Material online). Thus, reduced TAA and
TAG densities may not be termination-function related but
rather a consequence of weakened selection for alternative
constraints that affects all off-frame TAN codons.
Alternatively, table 4 genomes may not exploit OSCs as a
frameshift termination mechanism to the same degree, given
termination capacity is reduced. These reduced densities dis-
miss the notion of increased compensatory selection.

For TGN codons, while there is no significant difference
betweenþ1 TGC densities (P¼ 0.101, Kruskal–Wallis rank
sum test of residuals) orþ1 TGT densities (P¼ 0.290,
Kruskal–Wallis rank sum test of residuals),þ1 TGG densities
are significantly reduced (P¼ 0.003, Kruskal–Wallis rank sum
test of residuals; table 4 MR¼$0.137, table 11 MR¼ 0.015).
Forþ1 TGC andþTGT, results using the restricted
Mycoplasma data set are similar (supplementary table 2,
Supplementary Material online) althoughþ1 TGG densities
are not significantly different (P¼ 0.257, Kruskal-Wallis rank
sum test of residuals). Unlike TAN codons, it would be difficult
to conclude that reduced TGA densities are attributable to
reduced TGN densities but rather toward possible reduced
TGR densities or reduced exploitation of OSCs in general.
Differences betweenþ1 TGG results when only
Mycoplasma genomes with reduced negative TGA selection
are included and when all are included could suggest that
asþ1 TGG densities are increasingly affected by the selection
againstþ1 TGA (for codons encodingþ1 TGA, G is the nu-
cleotide most likely under selection, which also exists at the
second position of þ1 TGG). Ifþ1 TGA has been selected
against for sufficiently long, it is possible thatþ1 TGA andþ1
TGG reach an equilibrium, whereby densities of both are re-
duced despite only TGA function being lost.

A Refined Version of the Ambush Hypothesis

One might reasonably suggest that the above evidence only
adds to the uncertainty of data related to the ambush hypoth-
esis and highlights the sensitivity of the tests to small

assumptions about how to test against a null. What is clear
is that the ambush hypothesis cannot unambiguously explain
OSC usage in all bacterial genomes. However, the data are
such that we also cannot easily dismiss the hypothesis that no
genome selects for OSCs. Importantly, there is a considerable
overlap in the number of genomes with significantþ1
excesses for both the codon shuffle model and synonymous
site randomization model (þ1 TAA: 90.60%,þ1 TAG:
76.84%,þ1: TGA: 67.84%, percentages of genomes in the
model with most excesses that also have significant excesses
in the model with fewer excesses), suggesting the signals we
observe for both models are genuine. Prima facie these results
appear to contradict the ambush hypothesis, as frameshift
tracts should on average be shorter in AT-rich genomes
(Warnecke et al. 2010; fig. 2). Thus, if there were to be a
refined version of the hypothesis, it would need to explain
why AT-rich genomes appear to be more associated with an
excess. There is a possible (post hoc) refined version of the
hypothesis that we suggest is worth considering and that
makes some testable predictions.

AT-Rich Genomes Have Higher Frameshift Rates,
Consistent with the Refined Model

We (and others) (Tse et al. 2010 and Morgens et al. 2013)
have assumed that the ambush hypothesis predicts greater
excess from null in GC-rich genomes, as post-frameshift tract
lengths in these genomes will be longer. However, this is only
half of the equation. The other critical component is the rate
at which frameshifts occur. If the rate of frameshifting is
higher in AT-rich genomes, selection for OSCs could be
higher, refining our model to predict absolutely higher rates,
per base pair, in AT-rich genomes. We can test whether AT-
rich genomes have higher rates of frameshifting in silico.

Previous evidence suggests that the composition of the
tRNA repertoire is important in determining translational accu-
racy (Baranov et al. 2004; Shah and Gilchrist 2010; Warnecke,
et al. 2010), with frameshift-susceptible codons decoded by
rarer tRNAs (Curran and Yarus 1989; Sipley and Goldman
1993; Lain!e, et al. 2008) and potentially struggling to meet
stringent proofreading demands (Ieong et al. 2016).
Enriching the tRNA repertoire correlates with reduced
frameshift susceptibility (Warnecke et al. 2010). The sus-
ceptibility and cost of frameshifting, associated with tRNA
abundance and diversity, may therefore be important in
determining OSC frequency. The “process cost of acciden-
tal frameshift” model (Warnecke et al. 2010) incorporates
tRNA information to calculate the susceptibility and cost of
frameshifting.

We find the distribution of correlations between median
CDS frameshift cost and OSC density approximately even
around 0 (supplementary fig. 5A, Supplementary Material
online). However, genomes where these correlations are pos-
itive are typically AT-rich (q¼$0.353, P< 1.618# 10$8,
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Spearman’s rank correlation). Thus, despite the on average
reduced pre- and post-frameshift tract lengths (Warnecke
et al. 2010; fig. 2), frameshifting cost appears to correlate
with OSC density.

Are these increased OSC densities compensating for in-
creased costs due to an increased propensity to frameshift?
This appears to be the case, as AT-rich genomes seem more
susceptible to frameshifting (q¼"0.660, P< 2.2# 10"16,

FIG. 7.—OSC densities for table 4 genomes are reduced for each of the stop codons in theþ1 frame. Violin plots of the loess regression residuals

confirm the reduced densities of each OSC.
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Spearman’s rank correlation) (fig. 8A). Deviations from null (Z
scores) are positively correlated with the susceptibility to fra-
meshifting (codon shuffle: estimate: 0.150, P< 2.2! 10"16;
synonymous site simulation: estimate: 0.176,
P< 2.2! 10"16, Spearman’s partial correlations) (fig. 8B)
and not a result of GC-content biases that may increase
both frameshift susceptibility and OSC excess. This suggests
that our explanation for the connection between AT-richness
and OSC excess as a signal of selection in the refined model
may have some virtue. In short, in genomes where frameshift-
ing rates are high, tract lengths are typically short and OSCs in
excess. Where tract lengths are long, an alternative general
strategy to reduce frameshifting rates is the better strategy.

We note that a significant problem faced with this type of
analysis is that we must make generalizations in order to
compare between genomes. For instance, Warnecke et al.
(2010) outline that codon–anticodon interactions are invari-
ably generalizations, as tRNA decoding capacity cannot be
predicted from sequence information alone. Furthermore,
the effects of modifications to anticodon residues and
tRNAs on decoding capacity (Cochella and Green 2005;
Daviter, et al. 2006; Grosjean, et al. 2010) are likely to be
genome specific. Thus, although results establish a relation-
ship between signatures of OSC selection and frameshift
probability, more in-depth conclusions regarding the extent
to which OSCs are under selection should be considered in
the knowledge of these limitations.

A Refined Model Still Leaves Observations Unexplained

Given the above result, we suggest that the refined model
may have some validity. However, although it is to a large
degree a post hoc model, it fails to explain everything. Two
results post the most obvious problems. First, why do we see
so many biases of sense codons with similar nucleotide com-
position out of frame? Second, why is there a dearth of all off-
frame stop codons in the table 4 genomes that do not employ
TGA?

Regarding the second of these, had we observed an excess
ofþ1 TAA but not TAG, this would have been consistent with
the refined model, but we do not. However, the refined
model makes no pretense to suppose all genomes cope
with frameshifts by use of OSCs. By virtue of using a different
code, table 4 genomes can be automatically considered to be
somewhat exceptional. Indeed, selection pressures experi-
enced by these organisms associated with their particular eco-
logical niches (Bove 1993) may also be unusual. Another
possibility is the weakened purifying selection attributable to
smaller effective populations (Ne) of table 4 genomes.
However, if a universal GC to AT mutation bias exists (Lind
and Andersson 2008; Hershberg and Petrov 2010), GC con-
tent should act as a reasonable proxy for low Ne (many AT-rich
bacterial genomes likely have low Ne). Thus, although reduced

Ne may contribute, it is unlikely to explain the overall trends
we observe.

Interestingly, we notice both TGA and TGG have similar
numbers of genomes with off-frame excesses in our simula-
tion models. Coupled with the results of table 4 genomes, this
suggests excesses of TGA may not be related to termination
function. In the refined model, increased densities ofþ2 TGA
in the table 4 genomes support this notion, suggesting that
some excesses are not associated with stop functionality but
either reflect chance or missing layers of complexity not
accounted for in our simulations. There may, for example,
be constraints on protein-level motifs, or at the DNA or
RNA level, coupled to localized selection for optimal codon
usage that distorts out-of-frame usage as an incidental side

FIG. 8.—(a) The median probability of frameshifting decreases with

increasing GC3 content. (b) Genomes with excesses of OSCs for the syn-

onymous site model tend to have higherþ1 frameshift probabilities, sug-

gesting the frequency of OSCs and susceptibility of frameshifting are

linked.
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consequence. For this reason, we remain skeptical that the
ambush hypothesis, even in its refined form, commands any
strong support at present. This being said, the fact some sense
codons are enriched out of frame does not itself demonstrate
that stop codon enrichment out of frame is not owing to stop
functionality, but rather there might be an alternative un-
known explanation. Thus, while both of these unexplained
features are not obviously consistent with the refined model,
neither are they lethal to it.

Discussion

The notion that OSC selection should constrain sequence evo-
lution to compensate for frameshift errors is logical. More
recently, Morgens et al. (2013) demonstrated the initial result
on which the ambush hypothesis was founded (Seligmann
and Pollock 2004) is not robust to compositional control.
Furthermore, this initial evidence only weakens after multiple
correction testing (supplementary result 4, Supplementary
Material online). However, an alternative approach using sim-
ulated sequences from Markov models identifies many
genomes with an excess of OSCs (Tse et al. 2010; Morgens
et al. 2013). An underlying issue with these models is their
inability to strictly maintain amino acid frequencies, amino
acid order, and codon usage frequencies. Under real evolu-
tionary constraints, such flexibility is unlikely to be permitted
and not realistic. Thus, the motivation of this paper was to
establish the extent, if any, to which OSCs drive sequence
evolution in a more realistic simulation framework and
when microscale position effects are controlled.

We proposed and tested a series of simulation approaches,
none of which control for all possible biases, but with each
reaching similar conclusions (see supplementary table 2,
Supplementary Material online, for summaries), the numbers
of genomes with significant excesses are modest, often under
50%; genomes with an excess of OSCs tend to be AT-rich;
and not all stop codons nor reading frames are equally af-
fected. A post hoc model makes sense of these observations,
but the predictions of this model regarding different handling
of TGA and TAA compared with TAG and the preponderance
ofþ1 frameshifts remain to be tested.

An important consequence of the refined model is that
naively assuming GC-rich genomes bear greater frameshift
costs does not account for more complex frameshift dynam-
ics. Citing a positive correlation between GC content and any
excess of OSCs as evidence consistent with OSC selection as in
previous studies (Tse et al. 2010; Morgens et al. 2013), even if
further analyses are not consistent with selection, is likely to
be too simplistic. To more comprehensively quantify the cost
of both frameshift errors and errors in general, it is important
to consider complex relationships between error frequency
and the selective constraints imposed to mitigate any costs.

The structure of the refined model more broadly considers
frameshift control in a framework, whereby two distinct

strategies have evolved and have different usage in different
genomes. In one case, frameshifts are, on average, very dam-
aging due to long frameshift tract lengths (GC-rich genomes).
In this instance, a general reduced frameshifting rate is selec-
tively advantageous which in turn reduces the selective pres-
sure to incorporate any given OSC (although downstream of
particularly frameshift-prone sites might be an exception). At
the limit, if the frameshift rate could be reduced to zero, there
would be no requirement for or selection for OSCs.
Conversely, in other genomes (AT-rich), the average frame-
shift has little cost as tract lengths are naturally short. Here,
selection cannot act to generally reduce frameshift rates, as
there is likely be little return on investment of such a reduction
for a given cost. However, even in these genomes, there will
remain sites where by chance, tract lengths are long. In these
sites, there could then be selection—given the high frame-
shifting rates—for OSCs. Thus, in this two-mode framework,
we might expect more OSC excesses in AT-rich genomes and
not as usually asserted in GC-rich genomes, although strate-
gies are likely to be highly genome specific (as evidenced by
negative excesses in many genomes).

One interesting notion arising from this framework is the
coevolution of frameshift rates and OSCs. Whether proposed
frameshift rate increases are due to weakened purifying se-
lection in genomes with reduced Ne (assuming GC-rich
genomes have larger effective population sizes), or whether
the nucleotide content of AT-rich genomes naturally encoding
greater numbers of OSCs means frameshifts are less costly,
the ability to prevent frameshifting itself appears to be relaxed
in AT-rich genomes. Parenthetically, error frequency may be
the principal determinant of the strength of selection for
OSCs in these genomes with this framework providing an-
other possible example, whereby selection may be stronger in
response to increased error rates when populations are small
(Wu and Hurst 2015). In genomes where this frameshift error
rate is reduced, or alternative pressures exert stronger selec-
tion on the CDS, the ability to maintain OSCs within CDSs
may be significantly reduced and not a viable frameshift con-
trol strategy leading to significant depletions of OSCs. Indeed,
other selective pressures, such as those imposed by environ-
mental constraints (the ability to incorporate new DNA via off-
frame recombination in metabolically versatile bacteria, or
prevent recombination in more stable symbionts may be im-
perative to genetic adaptation; Wong et al. 2008), may also
be important in determining the degree of OSC selection.

We also question why genomes tend to use TGA and TAA
as OSCs. While TGA is the weakest of the stops (and prone to
read-through) (Meng et al. 1995; Wei et al. 2016), TGA and
TAA are unique in the specificity of release factors (RFs)
decoding the stop codons: RF2 decodes both TAA and TGA
(Kisselev 2002). RF2 in combination with RF3 is implicated in
post peptidyl transfer quality control, ensuring more efficient
termination at tRNA/mRNA mismatch complexes and pro-
posed to participate in ribosome rescue (Zaher and Green
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2009; Vivanco-Dom!ınguez et al. 2012; Petropoulos et al.
2014). Specific capabilities of RF2 may therefore make TAA
and TGA more suitable to frameshift termination, rather than
the efficiency of termination of the stop codons themselves
and predicts that captured frameshifts are more likely proc-
essed by the RF2/RF3 complex. In addition, minimal TAG
excesses may possibly reflect avoidance of complementary
GATC DNA motifs found frequently in nonrandom clusters
on the bacterial chromosome (Touzain, et al. 2011).

One consistency is the bias toward excesses seen forþ1
but not for theþ2 frame. Here we can only conjecture that
frameshifting, by accident, occurs predominantly in theþ1
slippage mode. We can speculate that as translation occurs
in the 5’ to 3’ direction, the molecular mechanics required to
halt and reverse the direction of translation to the first nucle-
otide of a"1 frameshift, already held in the P-site, are likely to
be more complex and require greater energy than for a ribo-
some to skip to theþ1 frame in the same direction. Thus,
accidentalþ1 frameshifts may be more frequent and require
greater OSC control, although this is only speculation without
comprehensive frameshift rate data and would no doubt ben-
efit from molecular frameshift data. This should be experi-
mentally testable. Our refined model is therefore one in
which the genomes, stop codons, and reading frames are
important factors in OSC selection.

Problems Defining the Null

One of the lessons of the analysis presented here is that the
meaning of a deviation from null is hard to interpret, not least
because the results are dependent upon the definition of the
null. Aside from the issue of which model is the most appro-
priate, we have looked for deviations at the genome level and
not at the gene level. As OSC selection is likely to be sequence
and context specific, it is also worth considering whether in-
vestigating OSC selection at the genome level is the most
appropriate. For instance, Bertrand et al. (2015) have demon-
strated no evidence consistent with OSC selection in the poly-
ketide synthase (PKS) gene in fungi. Furthermore, sequences
with differing levels of frameshifting are commonplace in cod-
ing regions of E. coli (Gurvich et al. 2003). As the information-
carrying capacity of CDSs is limited, competing selection pres-
sures providing more beneficial and selectable fitness advan-
tages will be favored. Any selection for OSCs is likely to be one
of several competing pressures, with OSC selection therefore
potentially undetectable at whole genome scales.

Equally, a more appropriate approach may be to consider
the single gene level, as selection may be stronger and more
detectable in subsets of genes and avoided in others. For ex-
ample, one might, at first sight, expect stronger selection in
highly expressed genes. This hypothesis, however, has the
caveat that highly expressed genes are likely to be composed
of codons less susceptible to frameshifting (i.e., matching
common tRNAs) and therefore not require OSC selection.

The latter case, at least forþ1 frameshifts for which this
framework is most applicable, seems appropriate (supple-
mentary fig. 6, Supplementary Material online).
Alternatively, for genes overly susceptible to frameshifting,
such as those incorporating mononucleotide repeats
(Coenye and Vandamme 2005), OSCs provide an attractive
strategy which tRNA selection is unable to regulate. Extending
research to determine whether OSCs have important evolu-
tionary implications at a single gene scale would help to in-
form us whether OSCs have useful applications in, for
example, transgene design.

We also highlight two further limitations of our approach.
First, an assumption of our models is that OSCs are indeed
selected for. However, it is also known that organisms in all
kingdoms utilize frameshifting to increase coding capacity to
translate multiple proteins from the same CDS, for example
the gag-pol protein (Jacks et al. 1988; Dulude et al. 2002) or
in autoregulatory feedback systems (Baranov et al. 2002;
Betney et al. 2010) via programmed frameshifting
(Farabaugh 1996; Dinman 2012; Ketteler 2012). In such
instances, the null expectation should not be selection for
OSCs but rather strong avoidance selection. Even with the
knowledge of well-annotated programmed frameshifts, it
would be difficult to define how a null sequence with no
selection should be composed. Our analyses cannot account
for such programmed frameshifting without first removing
CDSs where these frameshifts occur. The highly site-, con-
text-, and CDS-specific nature of programmed frameshifts
are, however, unlikely to greatly influence our conclusions.

Second, we assume that regardless of sequence context an
OSC can function as a stop codon. Put differently, our null
deviations are defined with respect to OSC number rather
than OSC efficiency. There are, however, likely to be many
alternative factors influencing the efficiency of terminations
both for regular stop codons and for OSCs. For example, we
assume that upon entering the ribosome A-site, an OSC func-
tions as regular stop codon and has the same ability to recruit
release factors. The nucleotide context surrounding stop
codons, particularly the nucleotide following the stop codon,
is also an important determinant of termination efficiency and
read through (Poole et al. 1995; Tate et al. 1996; Mottagui-
Tabar and Isaksson 1997; Namy et al. 2001; Cridge et al.
2006; Wei and Xia 2017). An initial analysis of the nucleotide
3’ of OSCs indicates no such bias (supplementary fig. 7,
Supplementary Material online). In E. coli, the cooperation
of chemical properties to the penultimate two amino acids
in the nascent peptide to form secondary structures can also
determine termination efficiencies (Mottagui-Tabar et al.
1994; Björnsson et al. 1996). Any analyses that can further
establish the extent to which the sequence context surround-
ing stop codons has on termination efficiency and the impli-
cations for OSCs may provide useful.

In summary, we propose that for the ambush hypothesis to
be considered as having any validity, care is required in

Abrahams and Hurst GBE

1170 Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/4/1153/4958399 by guest on 24 N

ovem
ber 2019



 204 

defining null expectations and that a more appropriate frame-
work is one that considers not all genomes, not all stops, and
not all alternative frames as equally relevant. Our modified
framework holds promise, given its ability to predict higher
frameshifting rates in genomes with high OSC excess but
comes with unexplained features and caveats.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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translation initiation dictates codon usage at gene start. Mol Syst Biol.
9:675.

Bertrand RL, Abdel-Hameed M, Sorensen JL. 2015. Limitations of the ‘am-
bush hypothesis’ at the single-gene scale: what codon biases are to
blame? Mol Genet Genomics. 290(2):493–504.

Betney R, de Silva E, Krishnan J, Stansfield I. 2010. Autoregulatory systems
controlling translation factor expression: thermostat-like control of
translational accuracy. RNA 16(4):655–663.

Björnsson A, Mottagui-Tabar S, Isaksson LA. 1996. Structure of the C-
terminal end of the nascent peptide influences translation termination.
EMBO J. 15(7):1696–1704.

Blencowe BJ. 2000. Exonic splicing enhancers: mechanism of action, di-
versity and role in human genetic diseases. Trends Biochem Sci.
25(3):106–110.

Bove JM. 1993. Molecular features of mollicutes. Clin Infect Dis. 17(Suppl
1):S10–S31.

Caceres EF, Hurst LD. 2013. The evolution, impact and properties of exonic
splice enhancers. Genome Biol. 14(12):R143.

Cochella L, Green R. 2005. An active role for tRNA in decoding beyond
codon: anticodon pairing. Science 308(5725):1178–1180.

Cock PJA, et al. 2009. Biopython: freely available Python tools for com-
putational molecular biology and bioinformatics. Bioinformatics
25(11):1422–1423.

Coenye T, Vandamme P. 2005. Characterization of mononucleotide
repeats in sequenced prokaryotic genomes. DNA Res. 12(4):221–233.

Cognat V, et al. 2008. On the evolution and expression of
Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes.
Genetics 179(1):113–123.

Cridge AG, et al. 2006. Comparison of characteristics and function of
translation termination signals between and within prokaryotic and
eukaryotic organisms. Nucleic Acids Res. 34(7):1959–1973.

Curran JF, Yarus M. 1989. Rates of aminoacyl-tRNA selection at 29 sense
codons in vivo. J Mol Biol. 209(1):65–77.

Cusack BP, Arndt PF, Duret L, Crollius HR. 2011. Preventing dangerous
nonsense: selection for robustness to transcriptional error in human
genes. PLoS Genet. 7(10):e1002276.

Daviter T, Gromadski KB, Rodnina MV. 2006. The ribosome’s re-
sponse to codon-anticodon mismatches. Biochimie
88(8):1001–1011.

Dinman JD. 2012. Mechanisms and implications of programmed transla-
tional frameshifting. Wiley Interdiscip Rev RNA. 3(5):661–673.

Diwan GD, Agashe D. 2016. The frequency of internal Shine-Dalgarno-like
motifs in prokaryotes. Genome Biol Evol. 8(6):1722–1733.

Dong H, Nilsson L, Kurland CG. 1996. Co-variation of tRNA abundance
and codon usage in Escherichia coli at different growth rates. J Mol
Biol. 260(5):649–663.

dos Reis M, Wernisch L, Savva R. 2003. Unexpected correlations between
gene expression and codon usage bias from microarray data for the
whole Escherichia coli K-12 genome. Nucleic Acids Res.
31(23):6976–6985.

Drummond DA, Wilke CO. 2009. The evolutionary consequences of erro-
neous protein synthesis. Nat Rev Genet. 10(10):715–724.

Drummond DA, Wilke CO. 2008. Mistranslation-induced protein misfold-
ing as a dominant constraint on coding-sequence evolution. Cell
134(2):341–352.

Dulude D, Baril M, Brakier-Gingras L. 2002. Characterization of the frame-
shift stimulatory signal controlling a programmed-1 ribosomal frame-
shift in the human immunodeficiency virus type 1. Nucleic Acids Res.
30(23):5094–5102.

Fairbrother WG, Holste D, Burge CB, Sharp PA. 2004. Single nucleotide
polymorphism–based validation of exonic splicing enhancers. PLoS
Biol. 2(9):e268.

Farabaugh PJ. 1996. Programmed translational frameshifting. Annu Rev
Genet. 30:507–528.

Farlow A, Meduri E, Dolezal M, Hua L, Schlötterer C. 2010. Nonsense-
mediated decay enables intron gain in drosophila. PLoS Genet.
6(1):e1000819.

Frottin F, et al. 2006. The Proteomics of N-terminal Methionine Cleavage.
Mol Cell Proteomics. 5:2336–2349.

Gingold H, Pilpel Y. 2011. Determinants of translation efficiency and ac-
curacy. Mol Syst Biol. 7:481.

Grosjean H, de Crecy-Lagard V, Marck C. 2010. Deciphering synonymous
codons in the three domains of life: co-evolution with specific tRNA
modification enzymes. FEBS Lett. 584(2):252–264.

Gu T, Tan S, Gou X, Araki H, Tian D. 2010. Avoidance of long mononu-
cleotide repeats in codon pair usage. Genetics 186(3):1077–1084.

Gu W, Wang X, Zhai C, Xie X, Zhou T. 2012. Selection on synonymous
sites for increased accessibility around miRNA binding sites in plants.
Mol Biol Evol. 29(10):3037–3044.

Gu W, Zhou T, Wilke CO. 2010. A Universal trend of reduced mRNA
stability near the translation-initiation site in prokaryotes and eukar-
yotes. PLoS Comput Biol. 6(2):e1000664.

Gurvich OL, Baranov PV, Gesteland RF, Atkins JF. 2005. Expression levels
influence ribosomal frameshifting at the tandem rare arginine codons
AGG_AGG and AGA_AGA in Escherichia coli. J Bacteriol.
187(12):4023–4032.

Gurvich OL, et al. 2003. Sequences that direct significant levels of frame-
shifting are frequent in coding regions of Escherichia coli. EMBO J.
22(21):5941–5950.

Refining the Ambush Hypothesis GBE

Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018 1171

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/4/1153/4958399 by guest on 24 N

ovem
ber 2019



 205 

He F, Peltz SW, Donahue JL, Rosbash M, Jacobson A. 1993. Stabilization
and ribosome association of unspliced pre-mRNAs in a yeast upf1-
mutant. Proc Natl Acad Sci USA. 90(15):7034–7038.

Hershberg R, Petrov DA. 2010. Evidence that mutation is universally biased
towards AT in bacteria. PLoS Genet. 6(9):e1001115.

Hormoz S. 2013. Amino acid composition of proteins reduces deleterious
impact of mutations. Sci Rep. 3:2919.

Hurst LD. 2009. Genetics and the understanding of selection. Nat Rev
Genet. 10(2):83–93.

Ieong KW, Uzun U, Selmer M, Ehrenberg M. 2016. Two proofreading
steps amplify the accuracy of genetic code translation. Proc Natl
Acad Sci USA. 113(48):13744–13749.

Itzkovitz S, Alon U. 2007. The genetic code is nearly optimal for allowing
additional information within protein-coding sequences. Genome Res.
17(4):405–412.

Itzkovitz S, Hodis E, Segal E. 2010. Overlapping codes within protein-
coding sequences. Genome Res. 20(11):1582–1589.

Jacks T, et al. 1988. Characterization of ribosomal frameshifting in HIV-1
gag-pol expression. Nature 331(6153):280–283.

Jaillon O, et al. 2008. Translational control of intron splicing in eukaryotes.
Nature 451(7176):359–362.

Kanaya S, Yamada Y, Kudo Y, Ikemura T. 1999. Studies of codon usage
and tRNA genes of 18 unicellular organisms and quantification of
Bacillus subtilis tRNAs: gene expression level and species-specific diver-
sity of codon usage based on multivariate analysis. Gene
238(1):143–155.

Ketteler R. 2012. On programmed ribosomal frameshifting: the alternative
proteomes. Front. Genet. 3:242.

Kisselev L. 2002. Polypeptide release factors in prokaryotes and eukar-
yotes: same Function, Different Structure. Structure 10(1):8–9.

Korkmaz G, Holm M, Wiens T, Sanyal S. 2014. Comprehensive analysis of
stop codon usage in bacteria and its correlation with release factor
abundance. J Biol Chem. 289(44):30334–30342.

Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence
determinants of gene expression in Escherichia coli. Science
324(5924):255–258.

Lain!e S, Thouard A, Komar AA, Rossignol J-M. 2008. Ribosome can re-
sume the translation in both þ1 or "1 frames after encountering an
AGA cluster in Escherichia coli. Gene 412(1–2):95–101.

Li G-W, Oh E, Weissman JS. 2012. The anti-Shine-Dalgarno sequence
drives translational pausing and codon choice in bacteria. Nature
484(7395):538–541.

Liao Y-D, Jeng J-C, Wang C-F, Wang S-C, Chang S-T. 2004. Removal of N-
terminal methionine from recombinant proteins by engineered E. coli
methionine aminopeptidase. Protein Sci. 13:1802–1810.

Lin MF, et al. 2011. Locating protein-coding sequences under selection for
additional, overlapping functions in 29 mammalian genomes.
Genome Res. 21(11):1916–1928.

Lind PA, Andersson DI. 2008. Whole-genome mutational biases in bacte-
ria. Proc Natl Acad Sci USA. 105(46):17878–17883.

Mekouar M, et al. 2010. Detection and analysis of alternative splicing in
Yarrowia lipolytica reveal structural constraints facilitating nonsense-
mediated decay of intron-retaining transcripts. Genome Biol.
11(6):R65.

Meng SY, Hui JO, Haniu M, Tsai LB. 1995. Analysis of translational termi-
nation of recombinant human methionyl-neurotrophin 3 in
Escherichia coli. Biochem Biophys Res Commun. 211(1):40–48.

Morgens DW, Chang CH, Cavalcanti ARO. 2013. Ambushing the ambush
hypothesis: predicting and evaluating off-frame codon frequencies in
prokaryotic genomes. BMC Genomics 14(1):418.

Mottagui-Tabar S, Björnsson A, Isaksson LA. 1994. The second to last
amino acid in the nascent peptide as a codon context determinant.
EMBO J. 13(1):249–257.

Mottagui-Tabar S, Isaksson LA. 1997. Only the last amino acids in the
nascent peptide influence translation termination in Escherichia coli
genes. FEBS Lett. 414(1):165–170.

Namy O, Hatin I, Rousset J-P. 2001. Impact of the six nucleotides down-
stream of the stop codon on translation termination. EMBO Rep.
2(9):787–793.

Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J. 2015.
Characterization of N-terminal protein modifications in
Pseudomonas aeruginosa PA14. J Proteomics. 114:214–225.

Pancsa R, Tompa P. 2016. Coding Regions of Intrinsic Disorder
Accommodate Parallel Functions. Trends Biochem Sci.
41(11):898–906.

Parmley JL, Chamary JV, Hurst LD. 2006. Evidence for purifying selection
against synonymous mutations in mammalian exonic splicing
enhancers. Mol Biol Evol. 23(2):301–309.

Parmley JL, Urrutia AO, Potrzebowski L, Kaessmann H, Hurst LD. 2007.
Splicing and the evolution of proteins in mammals. PLoS Biol. 5(2):e14.

Petropoulos AD, McDonald ME, Green R, Zaher HS. 2014. Distinct roles for
release factor 1 and release factor 2 in translational quality control. J
Biol Chem. 289(25):17589–17596.

Poole ES, Brown CM, Tate WP. 1995. The identity of the base following
the stop codon determines the efficiency of in vivo translational ter-
mination in Escherichia coli. EMBO J. 14(1):151–158.

Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK. 2012. Stop codons in
bacteria are not selectively equivalent. Biol Direct. 7(1):30.

R Core Team. 2015. R: A language and environment for statistical com-
puting. Version 4.3.2. Vienna, Austria: R Foundation for Statistical
Computing.

Rocha EPC. 2004. Codon usage bias from tRNA’s point of view: redun-
dancy, specialization, and efficient decoding for translation optimiza-
tion. Genome Res. 14(11):2279–2286.

Savisaar R, Hurst LD. 2017. Both maintenance and avoidance of RNA-
binding protein interactions constrain coding sequence evolution.
Mol Biol Evol. 34(5):1110.

Seligmann H. 2007. Cost minimization of ribosomal frameshifts. J Theor
Biol. 249(1):162–167.

Seligmann H, Pollock DD. 2004. The ambush hypothesis: hidden stop
codons prevent off-frame gene reading. DNA Cell Biol.
23(10):701–705.

Serohijos AWR, Rimas Z, Shakhnovich EI. 2012. Protein biophysics explains
why highly abundant proteins evolve slowly. Cell Rep. 2(2):249–256.

Shabalina SA, Spiridonov NA, Kashina A. 2013. Sounds of silence: synon-
ymous nucleotides as a key to biological regulation and complexity.
Nucleic Acids Res. 41(4):2073–2094.

Shah P, Gilchrist MA. 2010. Effect of correlated tRNA abundances on
translation errors and evolution of codon usage bias. PLoS Genet.
6(9):e1001128.

Sharp PM, Li WH. 1987. The codon adaptation index—a measure of di-
rectional synonymous codon usage bias, and its potential applications.
Nucleic Acids Res. 15(3):1281–1295.

Shine J, Dalgarno L. 1974. The 3’-terminal sequence of Escherichia coli 16S
ribosomal RNA: complementarity to nonsense triplets and ribosome
binding sites. Proc Natl Acad Sci USA. 71(4):1342–1346.

Singh TR, Pardasani KR. 2009. Ambush hypothesis revisited: evidences for
phylogenetic trends. Comput Biol Chem. 33(3):239–244.

Sipley J, Goldman E. 1993. Increased ribosomal accuracy increases a pro-
grammed translational frameshift in Escherichia coli. Proc Natl Acad Sci
USA. 90(6):2315–2319.

Tate WP, et al. 1996. The translational stop signal: codon with a context,
or extended factor recognition element? Biochimie 78(11–
12):945–952.

Touzain F, Petit M-A, Schbath S, Karoui ME. 2011. DNA motifs that sculpt
the bacterial chromosome. Nat Rev Microbiol. 9(1):15–26.

Abrahams and Hurst GBE

1172 Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/4/1153/4958399 by guest on 24 N

ovem
ber 2019



 206 

 
 

Tse H, Cai JJ, Tsoi H-W, Lam EP, Yuen K-Y. 2010. Natural selection retains
overrepresented out-of-frame stop codons against frameshift peptides
in prokaryotes. BMC Genomics 11(1):491–413.

Vivanco-Dom!ınguez S, et al. 2012. Protein synthesis factors (RF1, RF2, RF3,
RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribo-
somes at sense codons. J Mol Biol. 417(5):425–439.

Warnecke T, Batada NN, Hurst LD. 2008. The impact of the nucleosome
code on protein-coding sequence evolution in yeast. PLoS Genet.
4(11):e1000250.

Warnecke T, Huang Y, Przytycka TM, Hurst LD. 2010. Unique cost dynam-
ics elucidate the role of frame-shifting errors in promoting translational
robustness. Genome Biol Evol. 2(0):636–645.

Warnecke T, Hurst LD. 2011. Error prevention and mitigation as forces in
the evolution of genes and genomes. Nat Rev Genet. 12(12):875–881.

Wei Y, Wang J, Xia X. 2016. Coevolution between stop codon usage and
release factors in bacterial species. Mol Biol Evol. 33(9):2357–2367.

Wei Y, Xia X. 2017. The role of þ4U as an extended translation termina-
tion signal in bacteria. Genetics 205(2):539–549.

Wohlgemuth I, Pohl C, Rodnina MV. 2010. Optimization of speed and
accuracy of decoding in translation. EMBO J. 29(21):3701–3709.

Wong T-Y, et al. 2008. Role of premature stop codons in bacterial evolu-
tion. J Bacteriol. 190(20):6718–6725.

Wu X, Hurst LD. 2015. Why selection might be stronger when populations
are small: intron size and density predict within and between-species
usage of exonic splice associated cis-motifs. Mol Biol Evol.
32(7):1847–1861.

Wu Y, Zhang Y, Zhang J. 2005. Distribution of exonic splicing enhancer
elements in human genes. Genomics 86(3):329–336.

Yutani K, Ogasahara K, Sugino Y, Matsushiro A. 1977. Effect of a single
amino acid substitution on stability of conformation of a protein.
Nature 267(5608):274–275.

Zaher HS, Green R. 2009. Quality control by the ribosome following pep-
tide bond formation. Nature 457(7226):161.

Zhou T, Weems M, Wilke CO. 2009. Translationally optimal codons asso-
ciate with structurally sensitive sites in proteins. Mol Biol Evol.
26(7):1571–1580.

Associate editor: Mary O’Connell

Refining the Ambush Hypothesis GBE

Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018 1173

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/4/1153/4958399 by guest on 24 N

ovem
ber 2019



 207 

Supplement to Chapter 4 
 

 

Supplementary Results 
 

The Supplementary Results, Supplementary Figures and Supplementary Tables 

presented below can also be found accompanying the published paper. These have 

been reformatted for this thesis. 

 

 

 

 

Supplementary Result 1 

 

Markov modelling demonstrates significant positive correlations between OSC 

excesses and GC content consistent with previous studies 

 

We performed Markov modelling similar to that performed by Tse et al. (2010) and 

Morgens et al. (2013) in order to ascertain whether we could replicate previous 

excesses with our dataset. Tse et al. (2010) report 99.1% of genomes with OSC 

excesses under the second-order model and 93.3% under the fifth-order model. 

Morgens et al. (2013) report excesses in 83% of genomes analysed for both models. 

Our simulations report similar distributions of results, however using the Z metric we 

find no genomes with significant excess. We find OSC excesses in 677/694 (97.55%) 

genomes under second-order models and 689/694 (99.28%) under fifth-order models 

(Supplementary Result 1 Table 1). 

 

When reading frames are considered individually, we find 661/694 (95.24%) and 

683/694 (98.41%) genomes with significant excesses in the +1 frame using the second-

order and fifth-order models respectively. In the +2 frame, 621/694 (89.48%) and 

591/694 (85.16%) genomes exhibit significant excesses. Correlations between GC 

content and OSC excess are significant and positive for each model in each reading 

frame (second-order - both: r = 0.529, P < 2.2 × 10-16; +1: r = 0.450, P < 2.2 × 10-16; 
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+2: r = 0.443, P < 2.2 × 10-16; fifth-order – both: r = 0.581, P < 2.2 × 10-16; +1: r = 

0.279, P = 8.667 × 10-14; +2: r = 0.687, P < 2.2 × 10-16; Spearman’s rank correlations) 

(Supplementary Result 1 Figure 1) and are consistent with OSC selection as predicted 

by the ambush hypothesis and previously discussed (Tse et al. 2010; Morgens et al. 

2013). 
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Supplementary Result 1 Figure 1: Correlations between GC content and OSC excesses 

(standard Z score) after CDS simulation using second-order three-periodic Markov models. 

Each reading frame, including when both are considered together, demonstrates significant 

positive correlations (P < 0.05, Supplementary Result 1 Table 1) with GC content, for both 

Markov models. 

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

23MM

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

53MM

Both

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

+1

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

-0.5

0.0

0.5

1.0

1.5

0.3 0.4 0.5 0.6 0.7
GC

Z

+2



 210 

 

 

Do the sense codons demonstrate significant excesses greater than for OSCs, with 

significant positive correlations with GC content, as identified by Morgens et al. 

(2013)?  

 

Under the second-order model, +1 TAT (624/694, 89.91%) has a greater number of 

genomes with excess than +1 TAG (503/694, 72.48%) with a positive correlation 

between +1 TAA excesses and GC content (r = 0.596, P < 2.2 × 10-16, Spearman’s 

rank correlation), not displayed by either +1 TAA or +1 TAG. For the TGN codons, 

+1 TGA has the most genomes with excesses (513/694, 73.92%), although the 

correlation with GC content (r = 0.629, P < 2.2 × 10-16, Spearman’s rank correlation) 

is weaker than both +1 TGC (r = 0.736, P < 2.2 × 10-16, Spearman’s rank correlation) 

and +1 TGG (r = 0.728, P < 2.2 × 10-16, Spearman’s rank correlation). In the +2 frame, 

TAT (490/694, 70.61%) and TAC (298/694, 42.92%) have more excesses than TAG 

(284/694, 40.92%). The correlation between GC content and excesses is not significant 

for +2 TAA (P = 0.07, Spearman’s rank correlation), whilst both +2 TAC (r = 0.573, 

P < 2.2 × 10-16, Spearman’s rank correlation) and +2 TAT (r = 0.381, P < 2.2 × 10-16, 

Spearman’s rank correlation) have stronger significant positive correlations that +2 

TAG (r = 0.313, P < 2.2 × 10-16, Spearman’s rank correlation). +2 TGA has the 

greatest number of excesses (666/694, 95.97%) compared with +2 TGC (570/694, 

82.13%), +2 TGG (545/694, 78.53%) and +2 TGT (24/694, 3.46%). 

 

Under the fifth-order model we find similar trends. +1 TAA (662/694, 95.38%) has 

greater number of genomes with excesses than other TAN codons, although the 

correlation with GC content is significantly negative (r = -0.355, P < 2.2 × 10-16, 

Spearman’s rank correlation) unlike the remaining TAN codons. +1 TAG has the 

fewest excesses of TAN codons (527/694, 75.94%). For +1 TGA codons, +1 TGA has 

the most excesses (603/694, 86.89%) and strongest positive correlation (r = 0.733, P 

< 2.2 × 10-16, Spearman’s rank correlation). For +2 TAN codons, TAA again has more 

excesses (682/694, 98.27%) with +2 TAT (664/694, 95.68%) having more than +2 

TAG (657/694, 94.67%). +2 TGA also has greater excesses than any other +2 TGN 

codon (207/694, 38.90%). 
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Our results report distributions of excesses to Morgens et al. (2013) with stop codons 

often with fewer genomes with excesses and less strongly positively correlated 

(negatively correlated) with GC content than for sense codons, advocating our choice 

of genomes. However, results should be interpreted with caution. For example, when 

both frames are considered together, TAC has significant positive correlations between 

GC content and OSC excesses and 97.12% and 96.54% of genomes with excesses for 

second-order and fifth-order models respectively. TAA, despite significant negative 

correlations (second-order model: r = -0.254, P = 1.305 × 10-11, Spearman’s rank 

correlation; fifth-order model: r = -0.355, P < 2.2 × 10-16, Spearman’s rank correlation) 

has excesses in 98.99% and 98.85% genomes. Results would therefore indicate 

stronger selection for TAA given the much-increased number of genomes with 

excesses. Thus, whilst it is important to consider other observation, the first 

consideration must be whether OSC frequencies deviate from the null frequencies. 

 
Supplementary Result 1 Table 1: Summary of the Markov model simulation genome 

excesses for OSCs when considered together and individually for each reading. Sense codons 

are provided for comparison. 

Model 2nd order Markov model 5th order Markov model 

Codon Reading frame # with 

excess 

% with 

excess 

# with 

excess 

% with excess 

All stops Both 677 97.55 689 99.28 

All stops +1 661 95.24 683 98.41 

All stops +2 621 97.55 591 85.16 

TAA Both 687 98.99 686 98.85 

TAC Both 674 97.12 670 96.54 

TAG Both 665 95.82 606 97.32 

TAT Both 684 98.56 644 92.80 

TGA Both 309 44.52 400 57.64 

TGC Both 327 47.12 203 29.25 

TGG Both 333 47.98 57 8.21 

TGT Both 321 46.25 10 1.44 

TAA +1 678 97.69 662 95.39 

TAC +1 652 93.95 627 90.35 
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TAG +1 503 72.48 527 75.94 

TAT +1 624 89.91 609 87.75 

TGA +1 513 73.92 603 86.89 

TGC +1 444 63.98 252 36.31 

TGG +1 452 65.12 69 9.94 

TGT +1 11 1.59 23 3.31 

TAA +2 527 75.94 682 98.27 

TAC +2 298 42.92 647 93.23 

TAG +2 284 40.92 657 94.67 

TAT +2 490 70.61 664 95.68 

TGA +2 666 95.97 270 38.90 

TGC +2 570 82.13 181 26.08 

TGG +2 545 78.53 113 16.28 

TGT +2 24 3.46 243 35.01 
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Supplementary Result 2 

 

Genomes exhibit minimal OSC excesses when given the flexibility in codon choice 

between multiple coding blocks permits a choice between synonymous codons 

that can and can’t encode an OSC 

 

We consider a third simulation model, similar to our model which randomises 

synonymous sites. If we further permit changes between coding blocks, we can ask 

whether selection favours codons that encode OSCs if given the choice between 

codons that do and do not. For example, suppose the peptide sequence necessitates a 

valine followed by serine. If OSCs exert a strong enough selection pressure, we would 

expect preferential use of GTA or GTG valine codons followed by AGC or AGT serine 

codons as opposed to GTC or GTT and the T-starting serine codons to encode a +1 

OSC. To consider selection to this effect, we randomised the use of synonymous 

codons throughout the genome, accounting for genome specific codon usage 

frequencies, controlling amino acid sequences and GC content whilst disrupting site-

specific synonymous codon choice. OSCs generated from one-fold degenerate codons 

are not considered as randomisation has no effect on the identity of these codons. 

 

Similar to the other models, evidence is not consistent with OSC selection. Only 

84/694 (12.10%) genomes have significant excesses of OSCs (P < 0.05, FDR 

correction). This result is however, strongly influenced by the reduced excess in the 

+2 frame; only 107/694 (15.42%) genomes demonstrate significant excesses (P < 0.05, 

FDR correction) compared with 262/694 (37.75%) in the +1 frame (P < 0.05, FDR 

correction). Correlations between GC content and excesses are significantly negative 

for each reading frame (Supplementary Result 2 Table 1). The evidence to suggest 

CDSs favour codons that generate an OSC is weak and limited predominantly to the 

+1 frame, with significant excesses highly restricted to the AT-rich genomes 

(Supplementary Result 2 Figure 1). 

 
Supplementary Result 2 Table 1: The number of genomes with significant out-of-frame 

excesses for different codons in the various reading frames when synonymous codons have 
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been randomised. Spearman’s rank correlations between GC content and OSC excess, defined 

by the standard Z score are also shown. 

Codon Reading frame # with excess % with 

excess 
r P 

All stops Both 84 12.10 -0.444 < 2.2 × 10-16 

All stops +1 262 37.75 -0.458 < 2.2 × 10-16 

All stops +2 107 15.42 -0.234 4.781 × 10-10 

TAA Both 116 16.71 -0.513 < 2.2 × 10-16 

TAC Both 160 23.05 -0.051 0.176 

TAG Both 90 12.97 -0.273 3.407 × 10-13 

TAT Both 194 27.95 -0.364 < 2.2 × 10-16 

TGA Both 281 40.49 -0.336 < 2.2 × 10-16 

TGC Both 629 90.63 0.595 < 2.2 × 10-16 

TGG Both 264 38.04 -0.416 < 2.2 × 10-16 

TGT Both 252 36.31 -0.345 < 2.2 × 10-16 

TAA +1 296 42.65 -0.437 < 2.2 × 10-16 

TAC +1 366 52.74 0.581 < 2.2 × 10-16 

TAG +1 157 22.62 -0.322 < 2.2 × 10-16 

TAT +1 432 62.25 0.404 < 2.2 × 10-16 

TGA +1 252 36.31 -0.169 7.942 × 10-6 

TGC +1 596 85.88 0.623 < 2.2 × 10-16 

TGG +1 269 38.76 -0.383 < 2.2 × 10-16 

TGT +1 105 15.13 -0.131 5.497 × 10-4 

TAA +2 95 13.69 -0.308 1.496 × 10-16 

TAC +2 146 21.04 -0.379 < 2.2 × 10-16 

TAG +2 43 6.20 -0.151 6.600 × 10-5 

TAT +2 183 26.37 -0.491 < 2.2 × 10-16 

TGA +2 361 52.02 -0.249 3.367 × 10-11 

TGC +2 557 80.26 0.185 9.933 × 10-7 

TGG +2 265 38.18 -0.209 3.156 × 10-8 

TGT +2 381 54.90 -0.391 < 2.2 × 10-16 

 

Individually TGA demonstrates the greatest excesses when considered in both reading 

frames (Supplementary Result 2 Table 1). Few genomes have an excess of TAG in 
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any frame. Each OSC, in each reading frame, demonstrates significant negative 

correlations with GC content (Supplementary Result 2 Figure 2, Supplementary Result 

2 Figure 3). The number of genomes with significant excesses in the +1 frame is 

greatest for TAA (296/694, 42.65%, P < 0.05, FDR correction). In comparison, TAA 

use in the +2 frame is extremely reduced (95/694, 13.69%, P < 0.05, FDR correction), 

with +2 TGA having the highest number of genomes with excesses (361/694, 52.02%, 

P < 0.05, FDR correction). 

 

For off-frame sense codons, TGC has an extremely high number of genomes with 

significant positive excesses in each frame (both: 629/694, 90.63%; +1: 596/694, 

85.88%; +2: 557: 80.26%, P < 0.05, FDR correction) and is greater than TGA in each 

reading frame. Both TAC and TAT have greater excesses than TAA or TAG in any 

reading frame and show significant positive correlations with GC content in the +1 

frame. Neither TAA nor TAG demonstrates significant positive correlations in any 

reading frame. 

 

Given the flexibility of the model to allow for synonymous codon interchange within 

coding blocks for arginine and serine, we would have expected greater excesses of 

TAA and TGA in the +1 frame, or TAG in the +2 frame, given the ability of real 

coding sequences to encode an OSC simply by using the A-starting synonyms. This is 

not the case. For +2 TAG in particular, where the second codon in the encoding 

dicodon can only be either an AGR arginine or AGY serine codon, we find extremely 

low number of genomes with significant excesses (43/694, 6.20%). 

 

As with other models, we have to recognise several limitations to this model. Selection 

pressures on the CDS resulting in local synonymous codon biases, for example to 

reduce 5’ mRNA stability (Qing et al. 2003; Kudla et al. 2009; Gu et al. 2010; Bentele 

et al. 2013; Goodman et al. 2013) are likely to be stronger than for including an OSC. 

Selection for synonymous codons that encode OSCs is likely to be limited to sequence 

sites without additional requirements. This model also assumes sequences permit 

flexibility between synonyms from two coding blocks, which is unlikely to occur given 

a codon change of this type requires mutations at two positions of the codon. However, 

evidence from this model is not consistent with predictions for OSC selection. 
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Supplementary Result 2 Figure 1: Correlations between OSC excesses (Z) and GC content, 

when all genome stop codons are considered together, are significantly negative for each 

reading frame for a model in which synonymous codons are randomly simulated. Violin plots 

emphasise that genomes with significant excesses are typically AT-rich. 
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Supplementary Result 2 Figure 2: Correlations between genomes excesses (Z) and GC 

content are significantly negative for all stop codons in each reading frame when coding 

sequences are simulated by randomising synonymous codons and permitting changes between 

codon blocks. 
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Supplementary Result 2 Figure 3: Violin plots for OSC excesses in the each of the reading 

frames for the synonymous codon model. GC content of genomes with significant positive 

excesses are similar to those found in the codon shuffle model. Unlike the codon shuffle 

model, the GC content of genomes with significant positive excesses of TGA are more biased 

towards the AT-rich genomes, with only a subset of GC-rich genomes have excesses in the +1 

frame. 
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Supplementary Result 3 

 

We can ask similar questions concerning localised synonymous site selection for OSCs 

using the sequences of amino acids repeats that provide the opportunity to encode +2 

OSC, using asparagine for TAA (AAT, AAC), serine for TAG (AGT, AGC) and 

aspartic acid TGA (GAT, GAC). In these cases, site 3 T usages should be increased, 

although we are unable to control for GC3 content. However, T is used significantly 

less at site 3 in all cases (+2 TAA: P < 2.2 × 10-16; +2 TAG: P < 2.2 × 10-16; +2 TGA: 

P < 5.911 × 10-9, paired Wilcoxon rank sum tests). Moreover, correlations between 

GC3 content and log T3:T6 ratios are significantly negative in each case (+2 TAA: r 

= -0.642, P < 2.2 × 10-16; +2 TAG: r = -0.636, P < 2.2 × 10-16; +2 TGA: r = -0.513, P 

< 2.2 × 10-16, Spearman’s rank correlations). 

 

We can test an overall hypothesis that synonymous codon usage is biased towards 

codons that generate OSCs if the following codon will allow by considering one-tailed 

tests all +1 and +2 contexts. This hypothesis is not supported (P » 1, Fisher’s method 

combining one-tailed paired Wilcoxon rank sum tests). Thus, after minimising the 

potential effects that localised contexts may have had on our models, our evidence 

provides little support for any consistent genome wide OSC selection pressure, 

restricted to +1 TAA contexts.  
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Supplementary Result 4 

 

Significant positive correlations between codon contribution to hidden stops are 

limited to AT-rich genomes following multiple correction testing and predicted 

by genome GC content 

 

Although it is has been shown that the method Seligmann and Pollock (2004) use for 

detecting OSC excesses is not appropriate (Morgens et al. 2013), we replicated the 

analysis with our genome sample. Positive correlations were identified in 341/694 

(49.13%) genomes of which 201 (28.96%) are significant, although we also find 141 

(20.32%) significant negative correlations. However, Seligmann and Pollock (2004) 

make no mention of correction for multiple comparisons. When we perform such 

correction, we find only 121 (17.44%, FDR correction) genomes maintain significant 

positive correlations (Supplementary Result 4 Figure 1). Thus, the original evidence 

underpinning the ambush hypothesis is limited and weakened further after such 

control. Results therefore suggest that not only is the evidence for selection for OSCs 

determining codon usage weak (positive correlation in less than half of genomes) and 

inappropriate, but the strength of results are further weakened by further statistical 

analyses. 
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Supplementary Result 4 Figure 1: Significant positive Spearman’s rank correlations 

between genome codon usage and codon contribution to OSCs are highly restricted to AT-rich 

genomes after correction for multiple comparisons. 
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Supplementary Figures 
 

 
Supplementary Figure 2: Mean OSC densities for E. coli in the codon shuffle model. Mean 

densities vary little beyond 100 repeats. 
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Supplementary Figure 2: Violin plots for OSC excesses in the each of the reading frames for 

the codon shuffle model. Genomes with significant positive excesses are typically AT-rich, 

particularly for TAG in all reading frames. Interestingly, the GC content of genomes with 

significant excesses of TGA are more similar to those without significant excess, suggesting 

that selection to incorporate off-frame TGA can overcome the restrictions of reduced AT-rich 

codons that make up OSCs in GC-rich genomes. 
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Supplementary Figure 3: Violin plots for OSC excesses in the each of the reading frames for 

the synonymous site model. GC content of genomes with significant positive excesses are 

extremely similar to those found for the codon shuffle model. Significant positive excesses are 

skewed towards the AT-rich genomes. 

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+1 TAA

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+1 TAG

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+1 TGA

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+2 TAA

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+2 TAG

0.3

0.4

0.5

0.6

0.7

Z > 0 Z < 0

Z score (p < 0.05)

G
C

+2 TGA



 225 

 
Supplementary Figure 4: Off-frame TGA densities of table 4 genomes for each simulation 

model. Table 4 genomes appear to have less +1 TGA than expected in the +1 frame. 
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Supplementary Figure 5: A) Correlation between genome GC3 content and the genome 

correlation between the median cost of frameshifting and OSC density for each CDS. 

Genomes with a positive correlation between OSC density and frameshift costs are typically 

AT-rich, B) Genomes with excesses of OSCs for the codon shuffle model tend to have higher 

+1 frameshifts probabilities.  
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Supplementary Figure 6: OSC densities in the +1 frame for genes with higher CAI (as a 

proxy for gene expression) are lower than for genes with lower CAI. These differences are 

significantly different (P = 1.214 × 10-9, Kruskal-Wallis rank sum test of loess regression 

residuals). This supports the hypothesis that highly expressed genes are less susceptible to 

frameshifting and therefore requiring less OSCs. 

  

2.5

5.0

7.5

10.0

12.5

0.2 0.3 0.4 0.5 0.6 0.7
GC

O
SC

 d
en

si
ty

 p
er

 1
00

 c
od

on
s

high
low



 228 

 
Supplementary Figure 7: Log ratios comparing nucleotide use after a +1 OSC to nucleotide 

use in second codon position reveals no nucleotide bias. 
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Supplementary Tables 
 
Supplementary Table 1: A summary of the extended set of table 4 genomes  

Genus Count Percentage 

Mycoplasma 76 81.72 

Spiroplasma 9 9.68 

Ureaplasma 4 4.30 

Mesoplasma 2 2.15 

Candidatus Mycoplasma 2 2.15 

 

  



 230 

Supplementary Table 2: P-values for the Kruskal-Wallis rank sum test of residuals from a 

loess regression comparing codon densities in genomes using translation table 4 and table 11 

when Mycoplasma genomes have been restricted. Mean residuals (MR) for the two translation 

tables are also shown. 

Codon(s) Kruskal-Wallis 

P-value 

Table 4 MR Table 11 MR 

Both frames, 

combined OSCs 

< 2.2 × 10-16 -4.083 0.197 

+1, combined OSCs < 2.2 × 10-16 -1.704 0.091 

+2, combined OSCs 3.972 × 10-16 -2.379 0.107 

+1 TAA 2.848 × 10-4 -0.271 0.017 

+1 TAC 1.786 × 10-6 -0.192 0.008 

+1 TAG 5.839 × 10-7 -0.440 0.033 

+1 TAT 4.073 × 10-9 -0.316 0.013 

+1 TGA 0.032 -0.133 0.003 

+1 TGC 0.249 -0.097 0.001 

+1 TGG 0.257 -0.125 -0.002 

+1 TGT 0.196 -0.049 -0.001 

+2 TGA 7.77 × 10-5 0.493 -0.030 
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Supplementary Table 2: Summary of expectations and results for each model. 

Model Expectations Results 
Codon 
randomisation 
within CDS 

• Significant excess of 
OSCs when compared 
with the null (OSCs 
present due to chance 
dicodons) 

• Positive correlations 
between genome OSC 
excesses and GC content 

• Greater positive 
deviations from the null 
for OSCs when compared 
with sense codons 

• OSC excesses biased 
towards more efficient 
stop codons 

• Number of genomes with 
significant excesses: max = 
53.31% (+1 TGA), min = 
6.34% (+2 TAG) 

• Significant excesses 
predominantly in the +1 
frame 

• All OSCs with significant 
negative correlations with GC 
except +1 TGA (r = 0.036, P 
= 0.348) 

• Strong AT-bias for genomes 
with significant excesses, for 
each OSC 

• Greater excesses of TAC, 
TAT, TGC (+1, +2) and TGT 
(+2) 

• Excesses rank TGA > TAA > 
TAG (+1, +2) 

Synonymous 
site 
randomisation 
within coding 
blocks 

• Significant excesses of 
OSCs when compared 
with null (synonymous 
sites are not under 
selection to encode OSCs) 

• Positive correlations 
between genome OSC 
excesses and GC content 

• Greater positive 
deviations from the null 
for OSCs when compared 
with sense codons 

• OSC excesses biased 
towards more efficient 
stop codons 

• Number of genomes with 
significant excesses: max = 
52.59% (+2 TGA), min = 
6.05% (+2 TAG) 

• Significant excesses 
predominately in the +1 frame 

• All OSCs with significant 
negative correlations with GC 

• Strong AT-bias for genomes 
with significant excesses, for 
each OSC 

• Greater excesses of TAC, 
TAT, TGC +1, +2), TGG (+1) 
and TGT (+2) 

• Excesses rank TAA > TGA > 
TAG (+1), TGA > TAA > 
TAG (+2) 

Synonymous 
codon 

• Significant excesses of 
OSCs when compared 

• Number of genomes with 
significant excesses: max = 
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randomisation 
permitting 
interchange 
between 
codon blocks 

with null (synonymous 
codon use is not 
determined by the ability 
to encode an OSC) 

• Positive correlations 
between genome OSC 
excesses and GC content 

• Greater positive 
deviations from the null 
for OSCs when compared 
with sense codons 

• OSC excesses biased 
towards more efficient 
stop codons 

52.02% (+2 TGA), min = 
6.20% (+2 TAG) 

• Significant excesses 
predominantly in the +1 
frame (Supplementary Result 
2) 

• All OSCs with significant 
negative correlations with GC 

• Strong AT-bias for genomes 
with significant excesses, for 
each OSC 

• Greater excesses of TAC, 
TAT, TGC (+1, +2), TGG 
(+1), TGT (+2) 

• Excesses rank TAA > TGA > 
TAG (+1), TGA > TAA > 
TAG (+2) 

 
OSC encoding 
amino acid 
repeats 

• Significant increase in use 
of synonyms that encode 
OSCs for the first codon 
when compared with the 
second (which strictly 
cannot encode an OSC)  

• Positive correlations 
between GC content and 
the site 3:site 6 ratio of 
use of the OSC 
facilitating nucleotide  

• Only in the case of +1 TAA 
(isoleucine repeat) and only 
when synonymous site 
restricted to A/T 

• Only +1 TAA with a 
significant positive 
correlation after restriction to 
only A/T at synonymous sites 
 

Table 4 
genome 
comparison 

• Reduced off-frame TGA 
densities in table 4 
genomes 

• Possible increased 
compensatory TAA and 
TAG off-frame densities 
in table 4 genomes 
 

• Reduced +1 TGA, TAA and 
TAG densities in table 4 
genomes 

• Reduced densities of all +1 
TAN codons in table 4 
genomes 

• Reduced densities of +1 TGR 
codons in table 4 genomes 

• Increased +2 TAA, TAG and 
TGA densities in table 4 
genomes 
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Abstract

Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA
levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS
fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting
codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when
compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part,
A-enrichment likely reduces 50 mRNA stability, promoting translation initiation. However T/U, which may also reduce
stability, is avoided. Further,þ1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth
residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence impli-
cated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-
enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more
error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction
model is consistent with the notion that many genomic features are error-mitigation factors and provides the first
evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have
evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.

Key words: frameshift, error mitigation, dual coding, fourth site, translation initiation.

Introduction
A simplistic model of protein-coding gene evolution assumes
that amino acid composition is a reflection of selection
optimizing the biochemical function of the encoded protein.
Consistent with such a model, domains or individual posi-
tions critical to protein function are under strong purifying
selection (Guo et al. 2004; Furlong and Yang 2008; Gray and
Kumar 2011; McFerrin and Stone 2011). Such is the strength
of selection on particular amino acids that methods predict-
ing protein domain function from amino acid content are of
great utility (Al-Shahib et al. 2007; Sankararaman et al. 2009).

We are becoming increasingly aware of selection pressures
beyond those specifying the amino acid sequence acting on
coding sequence (CDS) composition. For example, eukaryotic
exonic splice enhancers (ESEs) are purine-rich binding-site
motifs found at exon ends assisting recruitment of the splic-
ing machinery by regulatory proteins (Blencowe 2000;
Graveley 2000; Cartegni et al. 2002; Zhou and Fu 2013).
Consequently, codon and amino acid content toward exon
ends is biased (Willie and Majewski 2004; Chamary and Hurst
2005a; Parmley and Hurst 2007; Caceres and Hurst 2013) with
nonsynonymous and synonymous mutations in ESEs under
purifying selection (Fairbrother et al. 2004; Xing and Lee 2005;
Carlini and Genut 2006; Parmley et al. 2006; Wu and
Hurst 2015). More generally, RNA binding proteins of
all flavors impose purifying selection on CDSs

(Savisaar and Hurst 2017). There are claims that the CDS is
under selection to bind transcription factors (Stergachis et al.
2013), although these are contested (Xing and He 2015;
Agoglia and Fraser 2016). Selection might be for avoidance
of, rather than selection for, certain motifs, such as intra-CDS
Shine–Dalgarno (SD)-like sequences (Diwan and Agashe 2016;
Yang et al. 2016), or motifs for RNA binding proteins that bind
to introns are avoided within CDSs (Savisaar and Hurst 2017).

A common fingerprint of additional CDS functionality is
biased codon usage. Aside from selection for ESEs, codon
choice is thought to be affected by, for example, translational
selection (Behura and Severson 2011; Doherty and McInerney
2013; Ma et al. 2014), the positioning of nucleosomes
(Warnecke et al. 2008; Cohanim and Haran 2009;
Prendergast and Semple 2011) and cotranslational protein
folding (Zhang et al. 2009; Yu et al. 2015; Buhr et al. 2016).
Both RNA and protein structural effects may influence the
selection for differential nucleotide content (Chamary and
Hurst 2005b; Meyer and Mikl!os 2005; Shabalina et al. 2006;
Gu et al. 2010; Smith et al. 2013; Babbitt et al. 2014).
Additionally, intra-CDS microRNA (miRNA) pairing can
also impose purifying selection on synonymous mutations
in miRNA target sites but, given the span of such binding
sites, it is likely they affect nonsynonymous mutations too
(Hurst 2006; Forman et al. 2008; Guo et al. 2008; Liu et al.
2015).
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The great majority of the above additional levels of informa-
tion have been identified via hypothesis led approaches (e.g., if
ESEs impose selective constraints, we should see ESE-associated
synonymous sites conserved at exon ends). An alternative ap-
proach is to explore unusual codon or amino acid patterns as
strong signals might act as excellent guides to features that are
a priori important for the operation of cells. Here we highlight
one such feature: in bacteria, there is a common bias at CDS
fourth sites (i.e., immediately after the initiating codon) for
amino acids whose codons start with adenine (A). The preva-
lence of A-starting second codons and positive influence on
expression has previously been described (Looman et al. 1987;
Stenstrom et al. 2001; Zalucki et al. 2007; Zamora-Romo et al.
2007), although these studies were only conducted in
Escherichia coli. A large-scale multi-genome analysis by Tang
et al. (2010) identified a preference for A in the first position
and C in the second position of the second codon, but provided
no context as to why the fourth site A bias may occur.

We begin by establishing how common bacterial fourth site
A use is, asking whether it is simply explained by genome
GCcontent influencingcodonusage.Weestablishthatthetrend
remains highly significant after such control in the great majority
of bacterial genomes. In some cases, the bias is extraordinarily
extreme (over 60% fourth site A usage in some genomes). We
provide evidence that the fourth site is unusual, even compared
with closer nucleotide neighbors. Consistent with strong selec-
tion on highly expressed genes, A usage is elevated in the most
highly expressed genes (although the effect is not dramatic).

Having established that fourth site A enrichment is a com-
mon and potentially nontrivial feature, we propose and test a
number of alternative hypotheses. We start by dismissing
some possibilities and then consider three viable models: se-
lection at the protein level requires an A-starting codon; RNA
level selection minimizes 50 mRNA domain secondary struc-
tures; or that fourth site A acts as an immediate trap forþ1
frameshifted ribosomes (ATGA becomes TGA on aþ1
frameshift). We find that RNA structural selection contributes
some of the bias (enrichment is still observed in genomes that
don’t use TGA as a stop, but only to the level of enrichment
seen downstream), however the frameshift correction model
makes for a parsimonious explanation. To the best of our
knowledge, this frameshift hypothesis is novel and extends
the current understanding of the role of out of frame stop
codons, providing the first evidence for site-specific selection
of stop codons out of frame. This preference for A at the
fourth site may, in addition, have become canalized and so
feature as part of the start codon recognition mechanism. It is
also possible that usage of TGA as a stop codon may also have
been related to the evolution of NTG as a start codon.

Results

Fourth Site A Enrichment Is Common, Sometimes
Extreme and Exceptional
Controls for Nucleotide Content Confirm a Common and
Sometimes Extreme Enrichment of A at CDS Fourth Sites
Analysis of bacterial genomes CDSs indicates that in most
genomes there is enrichment of fourth site A content (fig. 1).

The most extreme is Polaribacter sp. in which 63.26% of CDSs
have A at the fourth site. To control for genomic GC effects,
we performed a ratio test (see Materials and Methods) com-
paring the nucleotide usage in the first position of the second
codon with nucleotide usage at the first position for all
codons in genome. Ratios equal to 1 signify A-starting second
codons are used proportionately to A-starting codons within
the genome. We find a remarkable 640/646 genomes
(99.07%) have an A4 ratio significantly >1 (P< 0.01,
Pearson’s cumulative test statistic [v2], Bonferroni correc-
tion). In comparison, 31/646 (4.80%), 3/646 (0.46%), and
55/646 (8.51%) and genomes have C4, G4, and T4 ratios >1,
respectively, confirming fourth site enrichment is specific to A
and not attributable to GC biases. This exceptionalism of the
fourth site is further illustrated by the striking reduction in
fourth site GC variation (supplementary fig. S1,
Supplementary Material online).

Fourth Site A Is Conserved
Genomes with high “silent” GC content (GC3) tend to more
readily employ the amino acids with GC rich nonsynonymous
sites (Warnecke et al. 2010). This shift in amino acid content
we term GC “pressure.” If the usage of A at fourth sites is
functionally relevant we would expect its usage to be more
resilient to GC pressure than for A-starting codons within the
genome. Comparing genomic GC3 with both the proportion
of A-starting second codons and all A-starting codons (fig. 2),
we observe that the regression coefficient for all A-starting
codons ("0.245) is significantly more negative than for A-
starting second codons ("0.160) (P¼ 7.056$ 10"19,
Z¼ 8.874, two-tailed Z-test of equivalency) and thus A at
the fourth site is more resilient to genomic GC pressures.

Further evidence of functionality arises from analysis of the
conservation of fourth site A between E. coli and Shigella
flexneri. E. coli and Shigella spp. are closely related (Pupo
et al. 2000; Zuo et al. 2013), demonstrating high nucleotide
similarity between species (Goris et al. 2007). Shigella spp.
undergo accelerated gene loss when compared with E. coli,
in part explained by weakened purifying selection associated
with reduced effective population size (Ne) (Hershberg et al.
2007; Balbi et al. 2009). Thus, if there is selection at the fourth
site, by focusing on E. coli residues we can ask whether fourth
site A is particularly resilient to substitution to an alternative
nucleotide under weaker purifying selection by comparing
with a lower Ne comparator for which purifying selection,
as a result of reduced Ne, will be less effective in purging
deleterious substitutions. If the fourth site is under particu-
larly strong selection, we expect substitutions at the fourth
site to be reduced when compared with other sites. We find
the proportion of CDSs differing from A at the fourth site in S.
flexneri is lower than for other nucleotides (fig. 3). This result
assumes the E. coli state to be more reflective of the ancestral
state, particularly as the low Ne genome is expected to have a
higher rate of change. Although other first codon positions
demonstrate a relative reduction away from an A-genotype
when compared with other nucleotides, loss of A in the
fourth position is significantly reduced compared with
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downstream positions (P< 0.001, one-sample T-test). This
lack of change specific to the fourth site A genotype is indic-
ative of purifying selection at the fourth site.

More Highly Expressed Genes Have Higher Fourth Site A
Content
Selectively relevant features are often more pronounced in
highly expressed genes (Urrutia and Hurst 2003; Doherty and
McInerney 2013). To assay expression level, we consider the
Codon Adaptation Index as a surrogate. For genomes in
which suitable annotations were available, we compared
the mean CAI for genes with and without fourth site A
(N.B. this paired test controls for residual effects such as
intergenome GC variation). We find a significantly higher
CAI for genes with fourth site A (P¼ 1.042" 10#12,
N¼ 232, paired Wilcoxon rank-sum test), although the
mean CAI value for CDSs with fourth site A (0.586 6 0.088,
N¼ 232) is only slightly greater (0.582 6 0.088, N¼ 232) than
for those without. Performing the test in the opposite direc-
tion, we find a significant increase (P¼ 0.034, Wilcoxon rank-
sum test) in the proportion of CDSs with fourth site A in the
highly expressed genes (0.457 6 0.07, N¼ 232) compared
with those less expressed (0.454 6 0.082, N¼ 232).

The above result is most pronounced in high GC genomes.
Genomes with extreme GC compositions demonstrate a re-
duced range of mean CAI values (supplementary fig. S2,
Supplementary Material online) (Botzman and Margalit
(2011) with codon usage in many CDSs similar to that for
the ribosomal proteins. Repeating the same analyses for just
30 genomes with 20%$GC3% 90% (supplementary fig. S2,
red, Supplementary Material online) (reducing the mean CAI
range to 0.576–0.743) we find mean CAI values for CDSs with
fourth site A significantly higher (P¼ 1.486" 10#6, paired
T-test, N¼ 30) but again the difference in mean CAI in
CDSs using A (mean CAI¼ 0.661 6 0.034, N¼ 30) and
non-A (mean CAI¼ 0.650 6 0.036, N¼ 30) is small. For
the GC-rich genomes, we find a significant difference in
mean CAI (P¼ 4.451" 10#10, paired T-test, N¼ 18) for
CDSs using fourth site A (mean CAI¼ 0.581 6 0.089,
N¼ 18) when compared with those that do not A (mean
CAI¼ 0.581 6 0.089, N¼ 18). However, for AT-rich genomes
mean CAI values are not significantly different between those
using fourth site A and those not (P¼ 0.243, paired T-test,
N¼ 12). These results suggest that fourth site A is more com-
monly utilized in highly expressed genes, albeit to a small
degree, and even maintained under extreme GC restrictions.
However, when conditions are inherently conducive to

FIG. 1. Kernel density plots showing the proportion of coding sequences with each nucleotide (A, C, G, T) at coding sequence sites 4, 5, 6, and 7 (site
1 is defined as the first nucleotide of the start codon). Site 4 demonstrates a clear preference for A which is not observed at the other sites.
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incorporating an A-starting second codon, we expect A-start-
ing second codons to be used regardless of alternative selec-
tion pressures and therefore any enrichment signal is harder
to detect.

Three Models to Explain Selection for Fourth Site A
Content
Our results thus far all support the exceptionalism of the
fourth site. Why might this be? The 50 CDS is known to
have distinct selection pressures to those acting on the re-
mainder of the CDS. Although 50 ends are enriched with
nonoptimal codons (Tuller, Carmi et al. 2010; Pechmann
and Frydman 2013; Tuller and Zur 2015), Bentele et al.
(2013) have demonstrated that in bacteria selection favors
codons that reduce mRNA folding around the translation
start, regardless of whether these codons are frequent or
rare. Notably, when a nonoptimal codon is GC-rich, they
find preferences for optimal AT-rich codons. Thus, the trend
is not explained by selection for nonoptimality (also con-
cluded by Eyre-Walker and Bulmer 1993) but AT-content
and therefore we do not consider this a selection pressure.
An alternative explanation could be the presence of over-
lapping genes: a CDS employing the TGA stop codon over-
lapping a downstream CDS by four nucleotides will result in
an A nucleotide in the fourth position of the subsequent CDS.
However, after removing 165,357/2,173,531 (7.61%) CDSs
with these four site overlaps, 635/646 (98.30%) genomes
achieve an A4 ratio >1 (P< 0.01, Pearson’s cumulative test
statistic (v2), Bonferroni correction) and therefore overlaps
cannot account for the fourth site enrichment. Are there
alternative explanations? We propose three possible models,
which we proceed to test.

The Amino Acid Preference Model
Certain amino acids (lysine, serine) have been shown to be
favored immediately following the start codon in both pro-
karyotes and eukaryotes (Shemesh et al. 2010) and evidence
suggests that these amino acids may provide important func-
tional roles (Stenstrom et al. 2001). Furthermore, Tats et al.
(2006) and Bivona et al. (2010) note particular amino acids
(alanine, cysteine, proline, serine, threonine, and lysine) may
be used more frequently in the second position in highly
expressed genes. These observations may be attributed to
involvement of the second amino acid in posttranslational
modifications. N-terminal methionine excision (NME) only
occurs when the second amino acid is glycine, alanine, serine,
threonine, cysteine, proline, or valine—amino acids with small
side chains (Liao et al. 2004; Frottin et al. 2006; Ouidir et al.
2015). The second amino acid is implicated in the N-end rule
pathway (overview in Tasaki et al. 2012), targeting proteins for
degradation (Bachmair et al. 1986; Tobias et al. 1991) with the
main determinants the amino acids not involved in NME
(Varshavsky 2011). Signaling proteins requiring the inclusion
of specific concentrations of hydrophobic amino acids (Ng
et al. 1996) may also contribute to amino acid bias. A variety
of protein-level selection pressures may therefore be acting
upon the second amino acid.

FIG. 2. The proportion of coding sequences with fourth site A is
maintained above the proportion of A-starting codons as GC content
increases. The regression coefficient for all A-starting codons is sig-
nificantly greater than for A-starting second codons
(P¼ 7.056" 10#19, Z¼ 8.874, two-tailed Z-test of equivalency), sug-
gesting enrichment of A at the fourth site becomes stronger with
increasing GC content.

FIG. 3. The proportion of Shigella flexneri orthologs with a substitu-
tion of each nucleotide at the first position of codons from Escherichia
coli. The proportion of sequences with a substitution from A at site 4
is displayed with the dotted line. Position 1 of the first codon
demonstrates minimal variation away from an A-genotype confirm-
ing the preference for an ATG start codons. Substitutions from an
A-genotype are reduced across the sites when compared with other
nucleotides. The proportion of coding sequences with a change from
A in codon 2 is significantly lower than neighboring codons
(P< 0.001, one-sample T-test), suggesting fourth site A is under
strong selection.
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If enrichment reflects protein-level selection on the second
amino acid, we expect no difference in the use of A/non-A
starting six fold degenerate amino acids as it is simply the
amino acid, not the underlying nucleotide, that is important.
We also expect other non-A starting amino acids to be
favored given post-translational modification requirements.

The RNA Stability Model
Reducing secondary RNA structures in 50 mRNA domains
enhances the ability of the mRNA to interact efficiently
with ribosomes and promotes translation efficiency (de
Smit and van Duin 1990; Tuller, Waldman et al. 2010;
Scharff et al. 2011). There indeed exists a relationship between
50 mRNA folding strength and protein expression levels in
prokaryotes and eukaryotes (Kudla et al. 2009; Li, Zheng,
Ryvkin et al. 2012; Li, Zheng, Vandivier et al. 2012; Bentele
et al. 2013; Goodman et al. 2013; Shah et al. 2013; Vandivier
et al. 2013). Minimising the presence of these secondary
structures, for example hairpin loops, by adopting
destabilizing AT-rich 50 domains (Qing et al. 2003; Kudla
et al. 2009; Gu et al. 2010; Bentele et al. 2013; Goodman
et al. 2013) could therefore promote more efficient transla-
tion by facilitating mRNA-ribosome interactions. Several
studies have experimentally identified second codon AT pref-
erence promoting faster translation initiation (Zalucki et al.
2007) and correlating positively with expression levels
(Stenstrom et al. 2001).

If reducing RNA stability can explain the fourth site A
enrichment, we would expect enrichment at the fourth site
to not be unique, but representative of neighboring codons in
the 50 mRNA binding domain. For instance, we would expect
no significant difference between the fourth, seventh and
tenth sites or between synonymous sites in these codons.
Furthermore, if there is uniquely selection for increased AT-
content to destabilize the RNA, we also expect to see a
localized T enrichment.

The Frameshift Correction Model
Consider a CDS that starts NTGA, with A at the fourth site.
Following a þ 1 frameshift, this sequence becomes the TGA
stop codon, immediately terminating or realigning translation
and preventing the ribosome continuing on a þ 1 reading
frame (overview in fig. 4). We define this as the frameshift
correction model, providing a novel and site-specific case of
out of frame stop codons more generally.

This model presumes a þ 1 frameshift is deleterious.
Whilst viruses (Su et al. 2005; Melian et al. 2014), prokaryotes
(Tsuchihashi and Kornberg 1990; Gupta et al. 2013) and
eukaryotes (Wills et al. 2006; Belew et al. 2014) (reviewed in
Caliskan et al. 2015) do employ frameshifting to encode mul-
tiple proteins from one mRNA strand (e.g., the gag-pol gene;
Jacks et al. 1988), many ribosomal frameshifts are errors.
Ribosomes leaving the correct reading frame and synthesizing
proteins that were never “intended” are likely to incur cellular
costs (Warnecke et al. 2010). For example, reduced ribosomal
capability can be rate limiting for growth (Shachrai et al.
2010), whilst important cellular resources (tRNAs, amino

acids) are misinvested. Furthermore, incorrectly folded mis-
translated proteins may have an adverse effect on cellular
interactions or form toxic aggregates (Tank and True 2009).
The possible evolutionary advantage of capturing these fra-
meshifts is conjectured to be reflected by an overrepresenta-
tion of out of frame stop codons, termed the “ambush
hypothesis” (Seligmann and Pollock 2004; Singh and
Pardasani 2009; Tse et al. 2010), although the frequency
with which codons that form out of frame stops are used is
largely predictable from the underlying GC pressure
(Morgens et al. 2013). Alternatively, selection to reduce costs
in genomes where frameshifting is most deleterious (notably
GC rich ones) can explain the richer tRNA repertoire found in
such genomes (Warnecke et al. 2010).

Thisþ1 frameshift correction mechanism requires a NTG
start codon. Prokaryotes are known to use a variety of non-
ATG start codons with varying efficiencies (O’Donnell and
Janssen 2001; Panicker et al. 2015), however 99.84% of CDSs
within genomes in this study use a NTG start codon (sup-
plementary table S1, Supplementary Material online), with
ATG, GTG, and TTG the most highly represented (80.97%,
13.02%, and 5.72%, respectively). If this frameshift correction
model can help to explain observed fourth site A enrichment,
we can expect weaker enrichment in genomes that do not
use TGA as a stop codon. Furthermore, the distance to the
nextþ1 stop codon may be greater as initial frameshifts are
captured immediately.

Testing the Models
The Amino Acid Preference Model Cannot Explain A-Starting
Amino Acid Biases in the Second Peptide Position
A-Starting Codons Are Preferred Even If There Are
Synonymous Alternatives. The structure of the genetic
code provisions us with a natural test. Six-fold degenerates
serine, leucine, and arginine are encoded by synonymous
codons in two codon blocks, in which the first position nu-
cleotide varies. A-starting codons for serine (SA) and arginine
(RA) account for one third of the total codons available. Thus,
if there is an amino acid level selection we expect to see
mostly T-starting serine (ST) and C-starting arginine (RC).

FIG. 4. A schematic representation of the frameshift correction
model. Both CDSs encode methionine followed by serine and have
identical GC content. However, following aþ1 frameshift sequence A
encodes a cysteine followed by a leucine, whereas translation of se-
quence B is immediately terminated by the presence of an out of
frame TGA stop codon.
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Serine is especially informative. Assuming selection is primar-
ily for the amino acid content of serine, we expect to see no
difference between enrichment of both coding blocks as both
maintain AT content destabilizing the 50 mRNA domain.
Whilst both SA and ST are more frequent in the second position
than expected given genome amino acid usage (P< 0.001,
Pearson’s cumulative test statistic [v2]), the mean deviation
within genomes from the expected number of CDSs utilizing
serine as the second amino acid is greater for A-starting (mean
observed—expected¼ 170.186) than T-starting serine (mean
observed—expected¼ 70.774). In an unbiased genome, we
would expect, all else being equal, the ratio of SA:ST to be 1:2.
For all amino acids in the genome, we find the mean SA:mean
ST ratio equal to 1:1.762 (N¼ 646), however for the second
amino acid this ratio is 1:0.821, again indicating a strong A-
starting second amino acid bias. Using genome serine use as our
null, we find a significant increase of A-starting serine at the
second site (P< 0.001, Pearson’s cumulative test statistic [v2]).
Furthermore, A-starting serine enrichment ratios (mean
ratio¼ 3.429 6 1.839, N¼ 646) are significantly greater
(P< 2.2" 10#16, paired Wilcoxon rank-sum test) than for
T-starting serine (mean ratio¼ 1.535 6 0.526, N¼ 646). It is
apparent that there is a distinct overrepresentation of A-starting
serine in the second site, indicating selection specific to the
A-nucleotide.

A comparable analysis for A/C-starting arginine amino
acids is slightly less discriminatory as C-starting arginine
does not maintain the AT-content. Given genome amino
acid usage, we find A-starting arginine overrepresented in
the second position (P< 0.001, Pearson’s cumulative test sta-
tistic [v2]; mean observed – expected¼ 49.107) with C-start-
ing arginine underrepresented (P< 0.001, Pearson’s
cumulative test statistic [v2]; mean observed – expect-
ed¼#26.319). A ratio of 1:4.390 for genome mean
RA:mean RC (N¼ 646) use demonstrates greater dependence
on C-starting arginine within CDSs, however a second amino
acid ratio of 1:1.565 highlights the greater dependence on A-
starting arginine at the second site. With genome arginine use
as the null, we find a significant increase of A-starting arginine
at the second site (P< 0.001, Pearson’s cumulative test sta-
tistic [v2]). A-starting arginine (mean ratio¼ 3.492 6 2.338,
N¼ 646) enrichment ratios are significantly greater
(P< 2.2" 10#16, paired Wilcoxon rank-sum test) than for
C-starting arginine (mean ratio¼ 0.892 6 0.384, N¼ 646).

Evidently, A-starting synonyms of both serine and argi-
nine are favored at the second position indicating selection
is stronger for the A nucleotide in the first codon position
and that selection is not at, or strongest at, the protein
level.

No Individual Amino Acids Are Uniquely Preferred in the
Second Peptide Position. We also consider whether enrich-
ment reflects selection for specific A-starting amino acids in
the second position, which could be expected were we
witnessing selection at the peptide level. Conversely, if
selection were at the nucleotide level we expect multiple
amino acids with A-starting codons to be over-represented
so long as they facilitate posttranslational modifications.

To determine second position amino acid preferences,
we calculated average of difference (AOD) scores
(see Tang et al. 2010). AOD scores distinguish whether there
is a preference and enrichment of particular amino acids in the
second position when compared with the whole transcrip-
tome. In a similar manner to Tang et al. (2010), genomes
were categorized into three equal groupings of low GC content
(GC$ 44.19%), medium GC content (44.19%<GC$ 60.91%)
and high GC content (60.91%<GC) to limit genomic GC
effects. Each amino acid encoded for by A-starting codons is
preferred at the second position regardless of genome GC
content, except for methionine and isoleucine (fig. 5).
Avoidance of methionine–methionine cannot be attributed
to general avoidance of methionine pairs as they are found
more frequently than expected given genome methionine us-
age (P< 0.001, Pearson’s cumulative test statistic [v2]).
However, as methionine in the second position doesn’t facili-
tate NME, the avoidance may be related to the cleaving mech-
anism. Conversely, genome methionine-isoleucine pairs are less
frequent than expected (P< 0.001, Pearson’s cumulative test
statistic [v2]) and therefore a general avoidance of methionine-
isoleucine pairs may provide some explanation for second site
avoidance.

Bonissone et al. (2013) propose that the primary role of NME
is to expose serine and alanine rather than other NME sub-
strates, possibly explaining why T-starting serine is the only non
A-starting amino acid universally preferred across GC groupings.
Regarding posttranslational modifications this makes sense—for
CDSs with non-A starting second amino acids we still expect to
see an amino acid capable of participating in NME. As we pre-
viously describe, both serine blocks are preferred, although A-
starting serine amino acids are favored. The ability to facilitate
NME may explain weak proline and alanine preferences and the
preference for threonine and serine(T) in GC-rich genomes
where A-starting codon usage is limited.

If selection is primarily for amino acid functionality, non-A
starting amino acids involved in modifications should be pre-
ferred. This is not the case. Primary N-end rule pathway resi-
dues (leucine, phenylalanine, tyrosine, and tryptophan)
recognized directly by the bacterial N-recognin ClpS (Dougan
et al. 2012) are avoided. For secondary residues (methionine,
lysine, and arginine) signaling for the attachment of a primary
residue by leucyl/phenylalanyl-tRNA-protein transferase (LFTR)
(Dougan et al. 2012), methionine is avoided with only A-start-
ing amino acids preferred (avoidance of C-starting arginine).
Conversely, if selection is at the protein level A-starting amino
acids not involved in cleavage should be avoided. This is also
not seen; A-starting asparagine is preferred but does not feature
in either posttranslational modification pathway. More gener-
ally, the use of A-starting amino acids not involved in either
pathway (lysine, asparagine, arginine) further suggests selection
is operating on underlying nucleotide content.

50 RNA Structure Requirements Cannot Fully Account for
Fourth Site A Enrichment
The amino acid analysis suggests that selection is not for
amino acids themselves but for A-starting codons (provided
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protein function is not overly compromised). If the selective
constraint is to reduce 50 mRNA stability, we also expect a
degree of T enrichment within this domain. This prediction
comes with the caveat that G:U noncanonical pairing is pos-
sible and could act to increase RNA stability (Varani and
McClain 2000). T4 ratios are significantly reduced compared

with A4 ratios for each genome (P< 2.2! 10"16, paired
Wilcoxon rank-sum test. Indeed the mean T4 ratio is 0.796
6 0.156 (N¼ 646) whereas the mean A4 ratio is 1.873 6
0.375 (N¼ 646), indicating that the effect is relatively A
specific.

If selection is acting to increase A content, we expect little
difference between A enrichment of the second codon and
contiguous codons at both synonymous and nonsynony-
mous sites. GC variability at synonymous sites is more ex-
treme than at other positions (Muto and Osawa 1987),
allowing the possibility of regulation of local GC content in-
dependently of amino acid requirements (Babbitt et al. 2014).
We therefore predict that if there is selection for A-rich
codons in the 50 domain, GC content at synonymous sites
should be more independent of genome GC content than
codons downstream. Results indicate this is the case (supple-
mentary fig. S3, Supplementary Material online).

This resilience to GC pressure in the 50 mRNA domain is
suggestive of alternative selection pressures acting to deter-
mine synonymous site composition. If selection is being
driven by RNA stability requirements, we might expect to
observe selection on A content at all synonymous sites im-
mediately 30 of the start codon, but with little difference to
synonymous sites of immediate codon neighbors. The mean
A6 ratio (1.954 6 0.802, N¼ 646) confirms A-enrichment.
Comparisons between A6 ratios with A9 and A12 ratios (in
codons 4 and 5) show weakly significant A content variation
at these synonymous sites (P¼ 0.041, KruskalWallis rank-sum
test), however pairwise comparisons between A ratios indi-
cate the second codon is not significantly different in terms of
synonymous A enrichment (A6–A9: P¼ 0.973, A6–A12:
P¼ 0.057, A9–A12: P¼ 0.096, pairwise Tukey–Kramer tests).
Extending the analysis to the fifth codon, we find synonymous
site A enrichment significantly decreases (P< 0.01, Kruskal–
Wallis rank-sum test; A6–A15: P¼ 1.2! 10"8, A9–A15:
P¼ 4.2! 10"8, A12–A15: P¼ 0.001, pairwise Tukey–Kramer
tests), consistent with stronger selection toward 50 ends.
Enrichment is therefore considered comparable for codons
two, three, and four.

But is there a unique enrichment specific to the fourth site?
If selection on the fourth site is solely for RNA stability, we
expect similar A-ratios between the nonsynonymous sites of
these neighboring codons, as with synonymous sites. In con-
trast, we find that A4 is elevated (fig. 6). There are significant
differences between the A-ratios at the nonsynonymous sites
(sites 4, 7, and 10) (P< 2.2! 10"16, log-transformed A-ratios,
Kruskal–Wallis rank-sum test), with pairwise comparisons
suggesting enrichment at each site is significantly different
(P< 2.2! 10"16, pairwise Tukey–Kramer tests). We find
the mean A4 enrichment (1.873 6 0.375, N¼ 646) greater
than A7 (1.488 6 0.129, N¼ 646) and A10 (1.344 6 0.105,
N¼ 646).

These results highlight that despite AT requirements in the
initial 50 mRNA domain, the fourth site exhibits significant
enrichment not observed at other nonsynonymous sites, a
trend not seen for synonymous sites. We therefore cannot
attribute the increased fourth site A content solely to RNA
stability selection.

FIG. 5. Average of difference (AOD) scores for each amino acid, dem-
onstrating enrichment or avoidance of each amino acid in the second
peptide position when compared with amino acid use within the
transcriptome. Genomes are grouped by GC content into three equal
sizes grouping in order to minimize GC biases on amino acid choice
(lysine for example, encoded by AAA and AAG, is expected to be used
more frequently in GC-poor genomes). Amino acids encoded by two
coding blocks are defined using the first nucleotide in the codon, for
example, A-starting serine is denoted Sa. A preference for A-starting
amino acids except methionine and isoleucine, regardless of genome
GC content, is observed.
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The Frameshift Correction Model Is a Parsimonious
Explanation
The Frameshift Correction Model Predicts Weaker
Enrichment at the Fourth Site in Genomes Not Using the
TGA Stop Codon. The use of a NTG start codon dictates
that under the frameshift model, the stop codon must be
the TGA stop codon. If the frameshift model can best explain
the enrichment observed, we would expect enrichment at
synonymous sites in genomes not using TGA to only occur at
levels similar to those in codons 3 and 4 due to 50 RNA
stability constraints.

Five of the 651 genomes within this study (S. mirum, M.
gallisepticum, M. florum, U. parvum, and the Synthetic con-
struct designed and chemically synthesized from M. genita-
lium; Gibson et al. 2008) use this alternative genetic code
(NCBI translation table 4). A4 ratios demonstrate an enrich-
ment of A (1.277, 1.443, 1.548, 1.362, and 1.099, respectively),
but, importantly, are significantly lower than the A4 ratios for
genomes using the standard genetic code (P< 0.01, Wilcoxon
rank-sum test). After removing the Synthetic construct from
the analysis, the difference remains significant (P¼ 0.004,
Wilcoxon rank-sum test). Furthermore, the A4, A7, and A10

ratios for these genomes exhibit no significant difference be-
tween them (P¼ 0.368, Kruskal–Wallis rank-sum test). A4

ratios are also not significantly different to the A7 ratios of
the third codon (P¼ 0.053, Welch two sample T-test) or A10

ratios for the fourth codon (P¼ 0.835, Welch two sample T-
test) in genomes using the standard genetic code.

Might the lower A4 ratio of genomes not using TGA reflect
their high AT content more generally? In order to control for
GC content, we performed a loess regression between total
genomic GC content and A4 enrichment ratios and

compared the residuals for the two different translation
tables. In this case, we find no significant difference between
the enrichment ratios (P¼ 0.234, Kruskal–Wallis rank sum
test). We note however, that the mean residual for the trans-
lation table 4 genomes ("0.103) is lower than for the
genomes using the standard genetic code ("0.001) although
not significant. This is however limited by the small sample
size for table 4 genomes (5 genomes). If we include all table 4
genomes from the original data set (N¼ 94), although we
introduce some phylogenetic nonindependence, we find the
difference highly significant (P< 0.001, Kruskal–Wallis rank
sum test) (supplementary fig. S4, Supplementary Material
online). The mean residual for table 4 genomes is again neg-
ative and lower ("0.070) than for those using the standard
genetic code (0.006). Supplementary figure S4A,
Supplementary Material online, suggests that table 4
genomes may fall into two categories: those that have greatly
reduced enrichment and those that are similar to genomes
using the standard genetic code. This may result from phy-
logenetic nonindependence introduced when increasing the
data set with the majority of genomes being Mycoplasmas
(75/94; 79.79%). However Supplementary figure S4C,
Supplementary Material online, suggests Mycoplasma resid-
uals are varied. As these genomes are AT-rich, is it highly likely
these genomes would utilize A-starting second codons re-
gardless of fourth site selection, therefore the fact that there
is reduced use in 57/94 (60.64%) genomes is suggestive of a
difference in these table 4 genomes. Thus, these observations
accord with a model in which the absence of TGA as a stop
codon relaxes selection for especially high A4 content. The
remaining A excess seen can be accounted for in terms of
selection for decreased 50 mRNA stability (as also observed for
A7 and A10). Assuming high AT content reflects weaker se-
lection against a GC to AT mutation bias, the above results
also suggest that the lower A4 ratios in table 4 genomes can-
not be owing to weakened purifying selection (assuming AT
content is a proxy for Ne).

The Distance to the Next 1 Frameshift Stop Codon Is Greater
for Genes with Fourth Site A. The excess of A at site four is
consistent with preventing the ribosome initiating on the
wrong reading frame. If the ribosome begins translation on
an incorrect reading frame and is abruptly terminated, there
is less demand for another localþ1 stop codon (assuming
selection for ambush codons). We therefore expect that the
distance to the nextþ1 stop codon in genes with fourth site
A is greater than those without. As the three standard stop
codons are AT-rich (TAA, TAG, and TGA), we find a strong
positive correlation between GC content and the mean nu-
cleotide distance to the nextþ1 stop codon (q¼ 0.966,
P< 2.2$ 10"16, Spearman’s rank correlation) (supplemen-
tary fig. S5, Supplementary Material online). We therefore
make within-genome comparisons as we can expect GC con-
tent to equally influence distances in CDSs with and without
fourth site A.

The mean distance to aþ1 stop codon is significantly
greater in genes with fourth site A (P< 2.2$ 10"16, paired
Wilcoxon rank-sum test) but not for genomes not using the

FIG. 6. Comparisons between A enrichment ratios for synonymous
and nonsynonymous sites in codons 2–4. Enrichment ratios compare
the use of A at each site with at comparable positions for all codons in
the transcriptome (i.e., site 4 is compared with the first positions of all
codons, site 5 is compared with the second positions of all codons and
site 6 is compared with the third positions of all codons). Unlike
synonymous sites in neighboring codons that display similar A enrich-
ment ratio distributions, we observer greater variation in A enrichment
ratios for the fourth site in comparison with the more tightly controlled
ratios for sites 7 and 10. Enrichment ratios at the fourth site are signifi-
cantly increased when compared with sites 7 and 10.
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standard genetic code (P¼ 0.461, paired T-test). The pres-
ence of an immediate frameshift correction mechanism
therefore appears to influence location of further down-
stream out of frame stop codons. The mean of mean genome
distances shifts from 68.583 6 37.091 (N¼ 646) nucleotides
for genes without fourth site A to 72.533 6 42.376 (N¼ 646)
nucleotides in the presence of fourth site A with distances
varying greatly between genomes. We observe increased dis-
tances to the secondþ1 stop codon from a mean of 141.334
6 73.537 (N¼ 646) nucleotides without fourth site A to
144.718 6 78.656 (N¼ 646) nucleotides (P< 2.2# 10$16,
paired Wilcoxon rank-sum test) and the thirdþ1 stop codon
from 212.226 6 105.601 (N¼ 646) nucleotides without
fourth site A to 215.238 6 110.525 (N¼ 646) nucleotides
(P¼ 1.571# 10$13, paired Wilcoxon rank-sum test). In effect,
the incorporation of an immediateþ1 stop codon appears to
subtly shift the sequence of frameshift capture codons down-
stream. Although these distances are highly variable (the
effects of GC content varying between genomes), by compar-
ing samples from within each genome we limit the effects of
this variability. The preservation of A4 under increased GC
pressure (fig. 2) is consistent with stronger selection in GC
rich genomes for A4 preservation given the greater distance to
the nextþ1 stop is likely to incur a greater cost.

Discussion

A4 Content as Another Residue for Error Correction?
We have identified a series of variables that go some way to
explaining the enrichment of A at fourth sites. For CDSs with
upstream SD sequences, we find reduced fourth site A use
(supplementary result 1, Supplementary Material online),
consistent with the notion that SD sequences reduce the
error rate at translation initiation when compared with genes
lacking ribosome recruitment and initiation signals (Di Giacco
et al. 2008). The presence of leader genes synthesizing non-
functional peptides also go some way to explaining why
sequences may lack fourth site A (supplementary result 2,
Supplementary Material online). A multivariate model using
genome A-starting codon use, 50 A enrichment, leader gene
use and the translation table explains over 50% of the varia-
tion in genome fourth site A use (supplementary result 3,
Supplementary Material online). Given the validity of the
frameshift model, we note that such a model might go
some way to explain why start codons are in fact of the
form NTG. We speculate that in early evolution there may
have been coevolution of stop codon usage (we assume TGA
to be ancestral) and choice of NTG codons as initiators prior
to further dual-coding signals evolving in order to provide
more stringent initiation pathways. If so, this provides, to the
best of our knowledge, the first explanation as to why start
codons are typically NTG and methionine.

The validity of the frameshift model is especially notewor-
thy given many dual coding signals relate to the control of
errors (reviewed in Drummond and Wilke [2009] and
Warnecke and Hurst [2011]). For example, splice control
by ESEs may be considered as a control of missplicing
errors (Dewey et al. 2006; Caceres and Hurst 2013;

Wu and Hurst 2015) as ESEs are most abundant near
longer introns where splicing error is most common.
Selection to avoid amino acid misincorporation
(Archetti 2004, 2006; Drummond et al. 2005; Stoletzki
and Eyre-Walker 2007; Gilchrist et al. 2009) or codons in
close mutational proximity to stop codons where non-
sense mediated decay (NMD) cannot detect transcrip-
tional errors (Cusack et al. 2011) may constrain codon
choice. The presence of stop codons within introns
appears to be NMD-mediated mechanism to catch splice
errors (He et al. 1993; Jaillon et al. 2008; Farlow et al. 2010;
Mekouar et al. 2010). This suggests a general theme cou-
pling dual coding with error mitigation.

Is A4 Enrichment Involved in Translation Initiation?
The notion that CDSs might incorporateþ1 stop codons
favored by selection is not new. Indeed, it has been proposed
that the genetic code evolved such that it has the ability to
encode frameshift traps (Itzkovitz and Alon 2007). The am-
bush hypothesis (Seligmann and Pollock 2004) proposes that
there is an excess of out of frame stops and that coding
sequences frequently use and are under selection for codons
that have the potential to form out of stop codons
(Seligmann and Pollock 2004; Singh and Pardasani 2009; Tse
et al. 2010). However, the biases toward codons contributing
to out of frame stops seems largely predictable from the
underlying GC pressure (Morgens et al. 2013) with the am-
bush hypothesis not strictly observed at the gene level
(Bertrand et al. 2015). The observation that the usage of A
at the fourth site is significantly increased in genomes employ-
ing the TGA stop is perhaps the first evidence that selection
does favor, at least at one specific site, out of frame stop
codons.

Why might the fourth site be unusual and warrant a
frameshift trap? We suggest that this might relate to the
process of translation initiation itself. The results are consis-
tent with a frameshift correction model, however the dynam-
ics in which the ribosome may find itself incorrectly position
on the reading frame, and the context in which an out of
frame stop codon can regulate these errors, is somewhat less
clear. We consider three models to this effect. First, theþ1
stop codon may abort translation immediately if the ribo-
some slips following initiation, preventing the synthesis of a
faulty protein and allowing ultrarapid recycling of ribosomes
which are often rate-limiting (Shah et al. 2013; Subramaniam
et al. 2014) (translation termination). Alternatively, the stop
codon might provide a regulatory signal to increase the fidel-
ity of the ribosome locating the correct initiation site (frame-
shift “stop and adjust”). It is reasonable to suppose that a
slightly misaligned ribosome could read TGA as stop, blocking
translation, realigning the ribosome on the correct start site
whilst still in the presence of initiation factors. Finally, theþ1
TGA may prevent read-through following the translation of
an upstream gene (read-through termination), although
there may well be many alternative sites for an out of frame
stop to determine the fate of frameshifted translation.

We find evidence against the last of these models (see
supplementary result 4, Supplementary Material online).
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Regarding the “stop and adjust” model, this may be con-
figured more generally in a context of start site recognition
mechanisms. This model would concur with our observa-
tions that fourth site A content is associated with an ab-
sence of SD sequences or leader genes, both of which are
implicated in start codon recognition. Yamamoto et al.
(2016) propose that bacterial 70 S ribosomes have the abil-
ity to scan the mRNA and the presence of a SD sequence
provides an important signal for selection of the correct
start codon by allowing the fMet-tRNA to fix the ribosome
at the canonical start codon. In its absence, the ribosome is
not fixed and can continue to scan the mRNA. Our results
in supplementary results 1 and 2, Supplementary Material
online, are consistent with fourth site regulation of initia-
tion by assistance in identifying and positioning the ribo-
some correctly at the start codon when lacking SD
sequences and are suggestive of a direct involvement of
the fourth site in the dynamics of translation initiation and
start codon selection.

The identity of the start codon has also been shown to
determine translation efficiency (O’Donnell and Janssen 2001;
Osterman et al. 2013; Panicker et al. 2015; Hecht et al. 2017).
We proposed two hypotheses that may implicate the start
codon with fourth site A usage, either contributing to mRNA-
ribosome stability for the more efficient start codons, or pre-
venting the ribosomes from dissociating from weaker start
codons. We find the A enrichment at the fourth site strongest
for GTG, followed by ATG and TGT (supplementary result 5,
Supplementary Material online) suggesting that the weakest
binding initiator has weakest enrichment. Both Panicker et al.
(2015) and Osterman et al. (2013) report GTG is the more
efficient initiator. The increased enrichment at the more ef-
ficient start codons again implicates the fourth site in increas-
ing initiation efficiency, although the evidence is not
definitive. Interestingly, stop codons in 50 leading regions al-
low termination of translation events that initiate before the
ribosome reaches the correct start codon, increasing protein
synthesis efficiency (Seligmann 2007). It is possible that the
fourth site acts as a final checkpoint against these events,
allowing recalibration or reinitiation of the ribosome at the
correct initiation site. Such events may occur as increases in
the number of alternative start codons in the 50 region has a
measurable increase on protein activity (Seligmann 2007).
The evolution of 50 stop codons to complement the use of
these upstream start codons can provide stringent regulation
of the ribosome initiation from the correct initiation site,
where fourth site A can provide site-specific definition of
the correct site.

Our results implicate involvement fourth site A in
translation initiation and are consistent with in ensuring
correct start codon selection. Assuming TGA to be an
ancestral stop codon, the reduced enrichment for
genomes not using the TGA stop suggest this control is
functionally related to the presence of the stop codon.
Upon losing the TGA stop, selection to maintain this en-
richment was reduced and enrichment weakened to lev-
els required for RNA stability.

A4 Enrichment Observed in Archaea but Not in
Eukaryotes Is Suggestive of Interactions Specific to the
Prokaryotic Ribosome
One curiosity concerning fourth site usage is that different
patterns are observed in nuclear eukaryotic genes. We find
that A4 enrichment ratios are significantly enriched >1
among archaea genomes (73/77, 94.81%), however we find
no evidence for fourth site enrichment specific to A within
eukaryotes (supplementary result 6, Supplementary Material
online). As methionine removal is largely the same in the two
taxa, a peptide-based argument seems unable to explain our
observations. Furthermore, many human and plant genes
tend instead to have GC rich terminal ends (Niimura et al.
2003). One notable distinction between the two is the ribo-
some. If frameshifting or start site recognition mechanisms
differ between the 16S rRNA and 18S rRNA then we might
expect differences between the taxa, even though TGA is a
stop in almost all taxa. Notably the fourth site A enrichment
observed in archaea, in which initiation resembles that of
bacteria and utilizes 16S rRNA, provides a suggestion that
the fourth site is a dual coding mechanism functionally linked
with the prokaryotic ribosome and initiation mechanics.
Given that leaderless mRNAs can be translated between
domains (Grill et al. 2000), current leaderless mRNAs may
have evolved from ancestral mRNA in which mRNA recog-
nition and initiation the common ancestor occurred via a
ribosome-initiation tRNA complex (Moll et al. 2002).

The strength of A bias in both bacteria and archaea, but
lacking from eukaryotes, suggests the increased initiation
complexity in eukaryotes (Asano 2014) may have allowed
relaxed selection on ancestral fourth site A, given there are
stringent alternative mechanisms for locating the correct start
codon. The recruitment of ribosomes to eukaryotic mRNA
and subsequent start codon identification requires a combi-
nation of eukaryotic initiation factors (eIFs) (Jackson et al.
2010; Shatsky et al. 2014) and further binding proteins,
when only three initiation factors are found in bacteria
(Laursen et al. 2005). Some bacterial leaderless genes do not
require the presence of ribosomal proteins S1 or S2 (Moll et al.
2002), which are required for the 30 S ribosome pathway, or
even the presence of initiation factors (Udagawa et al. 2004).
Interactions between initiation factors forming multifactor
complexes (MFC) provide stringent ATG recognition
(reviewed in Asano 2014). eIF1A, a universally conserved eu-
karyotic homolog of bacterial eIF1 has evolved both N- and C-
terminal domains stimulating recruitment of methionyl ini-
tiator tRNA to ATG but preventing and discriminating
against non-ATG initiation (Pestova and Kolupaeva 2002;
Fekete et al. 2005; Nanda et al. 2009; Saini et al. 2010). In
addition, selection for nucleotides in the Kozak sequence
(Kozak 1986, 1997), which acts to increase the efficiency of
eukaryotic translation initiation, may be stronger than that
on the fourth site A that would provide a similar regulation
signal. Interestingly, A is the second most prevalent nucleo-
tide at site 4 in Kozak sequences for eight eukaryotic organ-
isms (Grzegorski et al. 2014) which may reflect ancestral
selection on the fourth site for A that has now weakened
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due to selection for nucleotides in the Kozak sequence, but
still greater than for other nucleotides. The fidelity afforded to
eukaryotic start codon recognition through the combination
of initiation factors and initiation signals may explain the
differences in enrichment between the domains at the fourth
site.

Unresolved Issues
Although A enrichment is significantly greater at the fourth
site compared with seventh and tenth sites of neighboring
codons, both synonymous and nonsynonymous sites in the 50

domain demonstrate an A enrichment. What is unclear
about any RNA stability model is why A, and not T, is pre-
ferred. Localized T enrichment should provide a similar
destabilizing effect as that of A, but T is consistently under-
represented in comparison with A in the first three codons.
One possibility is the preference for A over T might reflect
avoidance of G:U noncanonical base pairs that allow weak
base pairing (Varani and McClain 2000) and could introduce
unwanted mRNA stability. Results from archaea (supplemen-
tary result 6, Supplementary Material online) suggest that
selection for A/T content in the 50 domain reducing RNA
stability is not limited to bacteria, but is infrequent in eukar-
yotes. Why are eukaryotes different in 50 stability
requirements?

Eukaryote analyses also raise further unresolved issues.
Although A enrichment cannot be accounted for solely in
terms of selection on the peptide in bacteria, the preference
for particular non-A starting amino acids (alanine, proline,
and T-starting serine) that facilitate methionine cleavage,
and the avoidance of A starting methionine and isoleucine
that do not, indicate a selection pressure for amino acids
promoting cleavage. However, preferences for A-starting
amino acids that promote cleavage (threonine, A-starting
serine) are heightened. With evidence for methionine amino-
peptidase activity and second amino acid specificity in eukar-
yotes (Giglione et al. 2000; Chen et al. 2002; Xiao et al. 2010), if
selection was primarily for facilitative amino acids we should
also observe an A enrichment in eukaryotes, yet this is not
apparent. We do not know why this is.

The regulation of translation involves interactions with
RNA binding proteins (RBPs) that influence ribosome binding
and translation initiation (Babitzke et al. 2009; Van Assche
et al. 2015). These interactions directly modulate ribosome
binding, alter the mRNA secondary structures or act as a
chaperone for the interactions of other RNA effectors. The
most likely hypotheses implicating the fourth site in ribosome
blocking interactions is one in which the fourth site acts as
part of a binding site to which the RBPs bind, blocking initi-
ation, or one in in which the fourth site is enriched to avoid
these interactions. For example, the global regulator CsrA
binds optimally to the sequence 50-RUACARGGAUGU-30

(Dubey et al. 2005; Schubert et al. 2007). The B. subtilis trp
RNA binding attenuation protein (TRAP) binds with the ycbK
putative efflux protein at NAG motifs across the initiation
region, one of which may be GAG from sites 3 to 6, directly
blocking the 30 S ribosome binding (Yakhnin et al. 2006). In a
similar manner, the bacteriophage T4 regA binds near the

start codons and interactions with the fourth site when bind-
ing to the to the consensus sequence 50-
AAAAUUGUUAUGUAA-30 (Winter et al. 1987; Brown
et al. 1997). Enrichment of fourth site A may reflect selection
for avoidance of this interaction. For CsrA, the fourth site is
the outermost nucleotide in the consensus sequence and we
expect binding of this site to be less important and under
weaker selection than binding with the 50 UTR (Dubey et al.
2003; Edwards et al. 2011) and GGA core motif (Schubert
et al. 2007). Binding of both TRAP and regA are likely to be
organism specific. Whilst we cannot definitively discount se-
lection against interactions with RBPs, it is unlikely to explain
the near-universal enrichment we observe and are not inves-
tigated further within the scope of this work.

Future Prospects: Experimental Tests
Our observations provide an avenue for experimental testing.
Adopting approaches similar to Napolitano et al. (2016) who
mutated A-starting arginine codons to the CGT synonym
would be especially valuable. Their preliminary data supports
the exceptionalism of the fourth site. Notably 12 of 13 recal-
citrant mutations, including 1 of 2 at the second codon, were
in mRNA terminal domains highlighting the importance not
only of the terminal domains, but the second codon in par-
ticular. Further targeted efforts to resolve the mechanistic
basis for this would be valuable. A comparative analysis in
both genomes that do and don’t employ TGA as a stop
would be especially valuable.

Materials and Methods

General
R version 3.2.3 (R Core Team 2015) was used for data plotting
and statistical analyses. All further scripting was conducted
using custom scripts in Python 2.7.10 and Python 3.6.1
(https://www.python.org/) with the Biopython 1.66 package
(Cock et al. 2009) and Tcl (http://www.tcl.tk/). Scripts can be
found at https://github.com/la466/fourth_site.git. For statisti-
cal analyses, N denotes the number of genomes used and
means are given with one standard deviation.

Genome Downloads
Genome sequences of 3,731 bacterial genomes were down-
loaded from the European Molecular Biology Laboratory
(EBML) database (http://www.ebi.ac.uk/Tools/dbfetch/embl
fetch? db¼embl, last accessed 12th January 2016). Genomes
were filtered to include one genome per genus to control for
phylogenetic nonindependence (additional genomes of that
genus were discounted) larger than 500,000 base pairs leaving
651 genomes. Of these, 646 used translation table 11 and 5
translation table 4. CDS from 205 archaea genomes were
downloaded from EMBL (accessed 27th October 2016) and
subject to filtering leaving sequences from 77 genomes.
Eukaryotic CDSs were downloaded from the Ensembl data-
base (Yates et al. 2016) (ftp://ftp.ensembl.org/pub/release-86/
fasta/, last accessed 31st October 2016). The analysis was
based on CDSs from the following assemblies (Ensembl re-
lease 86 unless stated): H. sapiens (GRCh38.p7), S. cerevisiae
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(R64-1-1), D. melanogaster (BDGP6), M. musculus
(GRCm38.p4), M. mulatta (Mmul_8.0.1), O. cuniculus
(OryCun2.0), B. taurus (UMD3.1), G. gallus (Gallus_gallus-
5.0), C. elegans (WBcel235), and A. thaliana (TAIR10, release
33). 186 protist genomes were downloaded from the Ensembl
database (Kersey et al. 2016) (ftp://ftp.ensemblgenomes.org/
pub/protists/release-36, last accessed 22nd June 2017).

CDS Filtering
Every CDS within a genome was filtered, limiting the analysis
to genes with a multiple of three nucleotides, containing only
canonical A, C, T, or G nucleotides, without internal stop
codons and those with a stop codon defined by the relevant
translation table, either translation table 11 (TAA, TAG, and
TGA) or translation table 4 (TAA and TAG) where TGA in-
stead encodes tryptophan. For CDSs passing these filtering
criteria, start codon frequencies were calculated. As the
frameshift model assumes a NTG start codon, for subsequent
analyses only CDSs starting with a NTG start codon (N¼ any
nucleotide) were considered. In practice, non-NTG start
codons are too rare for meaningful analysis. For eukaryotes,
only ATG starts were allowed.

Calculation of Enrichment Ratios
To account for nucleotide bias within the genome, A enrich-
ment ratios were calculated for each genome using

An ¼
fA nð Þ
FA xð Þ

; (1)

where An¼A ratio at position n, fAðnÞ¼ proportion of CDSs
with A at site n and FAðxÞ¼ proportion of total codons with
A in position x, where x corresponds to the intracodon po-
sition of n (i.e., if n¼ 4, x¼ 1, so we are considering all first
codon sites in all CDSs in a genome). n can take any value
from 1 to the length of the longest gene, although we con-
sider events exclusively at 50 ends. The same protocol was
followed to calculate other nucleotide enrichment ratios and
amino acid enrichment ratios.

Nucleotide Conservation
The variation in nucleotide content in each codon provides a
representation of possible exceptionalism and conservation
of particular positions. Methods for exploring GC content
variation were as in Tang et al. (2010). For each codon posi-
tion in codons 2–30, the proportion of each nucleotide usage
was calculated across all CDSs in each genome. For each ge-
nome, the GC proportion for each position was then calcu-
lated across all CDSs. Finally, the variance in GC content at
each position between genomes provided an overall GC
variance.

Nucleotide Variability between Related Species
A local BLAST database was generated from filtered E. coli
O157 CDSs using BLAST v2.4.0 (ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/blastþ/LATEST/). CDSs from S. flexneri
were queried against the local database. If there was more

than one match, the ortholog with the lowest expected value
(E) and percentage match was chosen.

For each orthologous CDS pair, the nucleotide in the first
position in each of the first 11 codons of the E. coli sequence
was noted and losses from this nucleotide in S. flexneri ortho-
logs counted. The proportion of sites changing from each
nucleotide in each codon was calculated from the total
counts. Comparisons between these species do not assume
any evolutionary relationship but simply compares ortholog
differences. These variations are conservative as orthologs
with the most conserved sequences are chosen. We employ
E. coli as the focal species and S. flexneri as the indicator of the
effects of weakened purifying selection, as the strength of
selection due to effective population size is considered to
be smaller (Hershberg et al. 2007). Thus, we can ask whether
a fourth site A in E. coli is more resilient to change. If so, this
would indicate stronger purifying selection on the fourth site.

Codon Adaptation Index Analysis
Bacterial codon use is often highly nonrandom. Translational
selection biases codons toward those rapidly translated
tRNAs and with high availability (Ketteler 2012). Highly
expressed genes, for which translational errors may prove
more costly, typically use a restricted set of preferred codons
corresponding to the tRNA repertoire (Rocha 2004) with
codon bias strongest in these genes (Higgs and Ran 2008).
The Codon Adaptation Index (CAI) (Sharp and Li 1987) is one
method of quantifying codon bias. High expression correlates
with a high CAI value in several organisms including E. coli
(dos Reis et al. 2003), and therefore the CAI value is used as a
proxy measure for gene expression.

For each genome, a reference set of CDSs for which codon
usage was expected to be high was selected to represent the
highly expressed genes to include 20 ribosomal genes from
rplA/1 to rplF/6, rplI/9 to rplU/21, and rpsB/2 to rpsU/21. Only
genomes with annotations for 20 of these genes were con-
sidered. CAI indices for each gene in this reference set were
calculated using CodonW v1.4.4 (https://sourceforge.net/proj
ects/codonw/) using the “-coa_cu -coa_num 100%” param-
eters to include all reference CDSs. CAI values for the remain-
ing genes within the genome were calculated using the
“-all_indices” parameter, including the fop_file, cai_file, and
cbi_file. For E. coli O157, CAI values were also calculated using
the default indices provided by CodonW and correlated with
those calculated from our reference set (q¼ 0.987, P< 0.01,
Spearman’s rank correlation) to ensure the reference set ac-
curately represented the highly expressed genes.

Identification of Shine–Dalgarno Sequences
Potential Shine–Dalgarno (SD) sequences were identified us-
ing methods described in Starmer et al. (2006). For each ge-
nome, the 16 S rRNA genes were located and the 30 tail
isolated from the gene sequence. Tails were scanned for the
50-GAT-30 motif located closest to the 30 end of the rRNA tail.
If multiple tails were present, the most frequent was selected.
Only tails between 8 and 15 nucleotides were considered.

For each CDS within the genome, the change in free energy
DG% was calculated using the free_scan script from the
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free2bind v1.0.1 package (https://sourceforge.net/projects/
free2bind/) (Starmer et al. 2006). DG! describes the change
in free energy required to bring the mRNA strand together
with the identified 16S rRNA tail; DG! scores less than zero
describe a likely interaction. For each CDSs, a 60-nucleotide
window centered on the start codon, with A of the ATG
representing nucleotide 30, was extracted and DG! was cal-
culated by aligning the 16S rRNA tail at each position in this
window. The position with minimal DG! was considered the
optimal binding site.

A CDS was considered to have a SD sequence providing
the optimal binding site had DG! "#3.4535 kcal/mol, de-
rived from the average of free_scan calculations for core
motifs 50-GGAG-30 (#3.60793 kcal/mol), 50-GAGG-30

(#3.60793 kcal/mol) and 50-AGGA-30 (#3.144505 kcal/mol)
(Ma et al. 2002). Strong binding was defined as
DG! "#8.4 kcal/mol obtained from binding of the sequence
50-GGAGGT-30. Relative gene distances were calculated as the
distance of the 50 A in the rRNA sequence flanking the core
SD motif relative to the first nucleotide in the start codon,
defined as 0. Distances less than one indicate a SD sequence
upstream of the start codon.

Average of Difference Calculations
Preferences or avoidances of each amino acid in the second
position was calculated using the average of difference (AOD)
score (Tang et al. 2010). AOD scores calculate the difference
between the frequencies of an amino acid in the second po-
sition compared with the average frequencies compared with
all positions in the CDS, using the formula

AODx ¼
P

nðf xð Þ # FxÞ
n

; (2)

where AODx¼ average of difference score for amino acid x,
f xð Þ¼ frequency of amino acid x in the second peptide po-
sition, Fx¼ average frequency of amino acid x across all
amino acids and n¼ number of CDSs. Genomes were further
categorized equally into low (GC" 44.19%), medium
(44.19%<GC" 60.91%) and high (GC< 60.91%) GC to ac-
count for underlying biases.

Distances to Out-of-Frame Stop Codons
For each CDS, removing the first nucleotide from the se-
quence provided theþ1 frameshift sequence. For each codon
from codon 2 within the shifted sequence was queried for a
suitable stop codon. The position of the first nucleotide of the
stop codon in the sequence was defined as the distance to the
next stop codon. The same protocol was applied for second
and third stop codons.

Identification of Leader Genes
Leader genes were identified as open reading frames (ORFs) 50

to the structural CDS using similar methods to Lyubetsky
et al. (2014) and Korolev et al. (2016). A CDS was considered
providing it was longer than 200 nucleotides, shorter than
10,000 nucleotides and had met previous filtering criteria. For
each qualifying CDS, the upstream intergenic region was
extracted if >100 nucleotides and <1,400 nucleotides.

Within the intergenic region, all potential ORFs were iden-
tified providing they had a regular start codon, were a mul-
tiple of three nucleotides, without internal stop codons, had a
stop codon defined by the relevant translation table and were
longer than six codons. If more than one ORF was identified,
the longest ORF was chosen. The algorithm was trained on
the E. coli O157 genome to identify leader genes as found by
Korolev et al. (2016) and subsequently applied to all genomes.

Multivariate Analysis
A multivariate analysis was conducted using 134 genomes
with all available data points. These included: the proportion
of CDSs with fourth site A, A content at sites 6, 7, 9, 10, and 12,
the proportion of CDSs with a leader gene the proportion of
A-starting codons and the genome translation table. Further
analysis was conducted on all genomes (N¼ 651) and at the
gene level (N¼ 2164911).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Supplement to Chapter 5 
 

 

Supplementary Results 
 
The Supplementary Results presented below can also be found accompanying the 

published paper. These have been reformatted for this thesis. Further Supplementary 

Figures and Supplementary Tables can be found accompanying the published paper 

online and on the attached CD. 

 

 
 

 

Supplementary Result 1 

 

Sequences lacking upstream Shine-Dalgarno sequences have significantly greater 

fourth site A content 

 

The differences in the translation initiation mechanisms between bacteria and 

eukaryotes suggest distinct pathways have evolved in the translation initiation process. 

Bacteria, eukaryotes and archaea, whose features resemble those found both in bacteria 

and eukaryotes, have the ability to translate genes both with and without additional 

initiation leaders signals in the 5’ untranslated region (Tolstrup et al. 2000; Moll et al. 

2002; Benelli et al. 2003; Ring et al. 2007; Akulich et al. 2016). Leaderless mRNAs 

are universally translatable (Grill et al. 2000) between bacteria, archaea and eukaryotes 

suggesting a common conserved mechanism of initiating leaderless genes. Leaderless 

initiation is likely the ancestral mechanism (Londei 2005; Zheng et al. 2011) and in 

bacteria occurs via strong, more stable interactions with intact 70S ribosomes (Moll et 

al. 2002; O'Donnell and Janssen 2002; Moll et al. 2004; Zuo et al. 2013) rather than 

the 30S subunit and is not dependant on ribosomal proteins or initiation factors (Moll 

et al. 2004; Udagawa et al. 2004). Thus, if leaderless genes reflect the ancestral state, 

why have leader signals evolved? 
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It is known that features of prokaryotic mRNA 5’ untranslated regions (UTR) 

contribute to the ability and efficiency of translation (Teilhet et al. 1998; Hayashi et 

al. 2017). The conserved Shine-Dalgarno (SD) sequence, 5’-GGAGGT-3’ sequence is 

complementary to the 16S rRNA antiSD sequence (Shine and Dalgarno 1974) and 

typically located 5-10 nucleotides upstream of the start codon (Chen et al. 1994) is 

found in bacteria and archaea but not eukaryotes. Full or partial complementarity of 

these sequences facilitate binding of the 16S rRNA to the mRNA, correctly positioning 

the 30S rRNA subunit at the correct start codon (Nakagawa et al. 2010). The SD 

sequence is found preferentially in highly expressed genes (Ma et al. 2002) with 

mutations in either the SD motif (Velazquez et al. 1991) or anti-SD motif (Jacob et al. 

1987) reduce protein synthesis levels in E. coli, suggesting SD binding provides a 

precise and critical translation initiation signal. Furthermore in the absence of SD 

sequences, following initiation the first decoding step at the ribosomal A-site is highly 

error-prone resulting in significant incorporation of noncognate amino acids (Di 

Giacco et al. 2008). When SD sequences are present, there is no evidence of this 

misincorporation, suggesting SD sequences play a key role in translation initiation 

accuracy. In the 70S ribosomal scanning model proposed by Yamamoto et al. (2016), 

the absence of a SD sequence significantly weakened initiation. They conclude that 

the SD sequence provides a strong landing signal allowing the fMet-tRNA to fix the 

70S ribosome at the cognate AUG. In the absence of a SD sequence the ribosome can 

continue to scan the mRNA. It is therefore feasible that leaders have evolved to 

increase initiation accuracy and that other initiation errors may be more frequent in 

genes lacking an SD. Could the fourth site be acting as an error control mechanism for 

genes without SD sequences that are likely to be more error prone in selection the 

correct start codon? If so, we expect a greater use of A in those without a SD sequence.  

 

Potential SD sequences were calculated for 399 genomes with suitable 16S rRNA tails. 

Peaks in the proportion of SD sequences upstream of the start codon (Supplementary 

Result 1 Figure 1) are consistent with previous work locating SD sequences (Starmer 

et al. 2006). The proportion of genome CDSs with SD sequences varies considerably 

(95.57% in G. kaustophilus to 4.87% in A. pleuropneumoniae) and we find no 

correlation between GC3 content and the proportion of genes with a SD sequence (P 

= 0.155, Spearman’s rank correlation).  
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Supplementary Result 1 Figure 1: The location of the strongest binding (ΔG°) 

between the mRNA and 16S rRNA tail identifies that Shine-Dalgarno (SD) sequences 

are located 5’ of the start codon. Coding sequence position 0 is defined as the first 

nucleotide of the NTG start codon.  

 

 

We find the distributions of the proportions of A content are extremely similar between 

CDSs with and without an SD sequence (Supplementary Result 1 Figure 2). The 

proportion of CDS’s with fourth site A significantly differs between CDSs with and 

without a SD (P = 0.002, paired Wilcoxon rank-sum test), with the fourth site A 

proportion marginally greater in genes lacking an SD sequence (mean proportion of 

CDS with fourth site A: with SD: 0.451 ± 0.061; without SD: 0.455 ± 0.065, N = 399). 

Consistent with fourth site A being associated with a lack of SD we find a significant 

increase in a genome’s proportion of genes with fourth site A for genes with a weak 

SD-antiSD interaction compared with strong SD-antiSD interactions (P = 0.013, 

paired Wilcoxon rank-sum test). As the distance of the SD sequence from the start 

codon is important (Chen et al. 1994), we may expect this distance to affect A content 

however we find no difference genome fourth site A usage between CDSs with a SD 
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sequence close to the start codon (defined as nearer the start codon than the mean SD 

distance) to those with a SD sequence further away (P = 0.638, paired Wilcoxon rank-

sum test).  

Supplementary Result 1 Figure 2: Distributions of the proportions of genes with +4A 

in the presence of Shine-Dalgarno (SD) sequences (ΔG° ≤ -3.4535 kcal/mol) are 

similar to those with no SD sequence (ΔG° > -3.4535 kcal/mol). The median 

proportion of genes with +4A of non-SD genes is slightly greater than SD-led genes. 

The proportion for genes with a strong SD sequence and high complementarity 

between the 5’ mRNA UTR and anti-SD sequence, is more variable (ΔG° ≤ -8.4 

kcal/mol) than those with a weak SD (-8.4 < ΔG° ≤ -3.4535 kcal/mol) and has a lower 

median proportion. These results support the model in which A at the fourth site is 

facilitating translation initiation accuracy in the absence of SD sequences. 
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Supplementary Result 2 

 

The presence of a leader gene reduces the fourth site A prevalence 

 

If fourth site A enrichment assists in reducing initiation errors and increases 5’ RNA 

stability, as the data seem to suggest, why then don’t all genes use fourth site A? 

Naturally part of the explanation must be mutation-selection equilibrium, which will 

predict a dynamic equilibrium between mutations removing A and selection favouring 

A. The lack of a SD sequence also weakly predicts increased A usage. Is there an 

alternative explanation? Here we demonstrate that the presence of leader genes, as 

opposed to genes with an addition leader signal in Supplementary Result 1, appears to 

explain some instances of non-fourth site A.  

 

Bacteria use a variety of premature termination signals to control gene expression. 

Genes regulated in this way contain termination signals located in non-protein coding 

leader genes 5’ of the structural mRNA, with up to 10% of operons regulated by a 

transcription attenuation mechanism (Henkin and Yanofsky 2002) with attenuation 

signals varying between species and the expressed structural gene. Of particular 

interest in this study are 5’ leader peptides translated prior to CDS translation to situate 

the ribosome within the vicinity of the CDS (Naville and Gautheret 2010). The 

influence a leader gene may have on a structural CDS fourth site A content is however 

unknown. High resolution 70S ribosome imaging in the elongation phase indicates 

approximately 30 nucleotides of the mRNA transcript are encompassed by the 

ribosome from positions -18 to +12 relative to the current translation site (Demeshkina 

et al. 2010). If the distance between the leader gene stop codon and the start codon of 

a structural CDS is short, is it possible the ribosome simultaneously accommodates 

both the leader gene and structural CDS, guiding the ribosome to the translation 

initiation site and facilitating the re-initiation of translation (Korolev et al. 2016). 

Leader genes could be described as a ‘signpost’, helping the ribosome track to the 

correct start codon and reducing initiation errors. 

 

Potential leader genes were identified as described in the Methods. The specific 

function of the leader gene was not considered, merely the presence upstream of the 

CDS. The proportion of CDSs with potential leader genes varies across genomes, from 
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8.08% in H. thermophilus to 76.48% in T. erythraeum and is significantly but weakly 

correlated with GC content (ρ = -0.089, P = 0.023, Spearman’s rank correlation). We 

find a peak in the frequency of leader genes 10-13 nucleotides upstream from the CDS 

(Supplementary Result 2 Figure 1) and a reduced peak 3-5 nucleotides upstream from 

the CDS. Leader genes at these peaks could accommodate the downstream CDS within 

the ribosome during translation. GC-rich genomes typically have longer CDSs (Xia et 

al. 2003) and so these short distances could be attributed to genomes having poor GC 

content. However, we find a significant negative correlation between GC content and 

mean distance from leader gene to the CDS (ρ = -0.422, P < 2.2 × 10-16, Spearman 

rank correlation).  

 

 
Supplementary Result 2 Figure 1: The number of leader genes at each nucleotide 

distance to the downstream coding sequence start codon for all genomes. Two peaks 

of distances are observed at 3-5 and 10-13 nucleotides from the coding sequences. 

 

 

Does the presence of a leader gene influence fourth site A content? Comparing the 

proportion of fourth site A in genes with a leader gene and those without in each 

genome, we find a significant reduction for those with a preceding leader gene (P < 

2.2 × 10-16, paired Wilcoxon rank-sum test; mean A proportion for CDSs with a leader 
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= 0.436 ± 0.080 (N = 646), mean A proportion for CDSs without leader = 0.480 ± 

0.062 (N = 646)). However, we find little variation in the proportion of genes with 

fourth site A as the distance from the CDS increases (Supplementary Result 2 Figure 

2), with A content not correlated with the nucleotide distance of the leader gene from 

the CDS (ρ = 0.113, P = 0.263, Spearman’s rank correlation). It would seem the 

presence of a leader gene does influence the A content of the fourth site, but is 

unaffected by the distance of the leader gene from the CDS. 

 

Supplementary Result 2 Figure 2: The proportion of coding sequences with fourth 

site A in relation to the nucleotide distance of the leader gene from the coding 

sequence. There is no clear evidence that the distance of the coding sequence from the 

leader gene has an influence the incorporation of A at the fourth site. 
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Supplementary Result 3 

 

Multivariate analysis 

 

We have considered each model separately and discussed the implications for fourth 

site A content. May this trend be a combination of selection pressures that determine 

the ultimate composition of the fourth site? We performed a multivariate analysis 

predicting the proportions of CDSs with fourth site A. As we have measures for two 

weak predictors (SD and CAI) for a small subset of all genomes, we eliminate these 

variables. Models using these predictors do not significantly fit the data. Our resulting 

model (N = 651) explains 54.73% of the variation (adjusted R-squared: 0.5473) with 

overall significant fit (F-statistic: 197.5 on 4 and 646 df, P < 2.2 × 10-16), with 5’ A 

richness (P < 2 × 10-16), proportion of leader genes (P = 5.45 × 10-11) and proportion 

of A-starting codons (P = 5.80 × 10-8) significant predictors. The genome translation 

table, determining whether a TGA stop is used, is a nearly significant predictor (P = 

0.053).  

 

We also consider a gene level model in which use of A at the fourth site is a binary 

variable. Under this model, the genome use of A-starting codons (P < 2.2 × 10-16), local 

5’ A richness (P < 6.35 × 10-9) and whether nor not the gene has a leader (P < 2.2 × 

10-16) are significant predictors. We also find a significant interaction term between 

the leader gene and 5’ A richness (P < 2.2 × 10-16). Again, the influence of the 

translation table is nearly significant (P = 0.055). 
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Supplementary Result 4 

 

CDS fourth site A acting to prevent a ribosomal start codon readthrough  

 

Mapping has shown that 60-70% of genes in prokaryotes are transcribed as part of an 

operon (Sorek and Cossart 2010). If the ribosome were to continue to scan the mRNA 

downstream of a gene, translating multiple sequences from an operon as part of 

polycistronic transcript, could the presence of an immediate +1 stop codon prevent 

readthrough of the start codon? The idea of ribosome scanning is not new (Adhin and 

van Duin 1990; Osterman et al. 2013). Furthermore, correct initiation is predominantly 

(Haimov et al. 2015) accomplished via a ribosomal scanning mechanism in eukaryotes 

(Kozak 1978; Agarwal and Bafna 1998; Hinnebusch 2014). Under a bacterial scanning 

model, Yamamoto et al. (2016) suggest the 70S ribosome does not dissociate 

following previous CDS translation termination but continues the surrounding 

sequence for a SD sequence. 

 

If the fourth site prevents readthrough as the ribosome translocates the mRNA between 

CDSs, we would expect greater A-content in the CDSs with an upstream protein-

coding CDS on the same strand. Do we find the number of CDSs with +4A and an 

upstream CDS on the same strand greater than expected by chance, given the total 

CDSs with +4A and an upstream CDS? Excluding overlapping genes (ensuring inter-

CDS regions allowing scanning, we observe no significant effect of the strand of the 

upstream CDS on fourth site A content (P ≈ 1, Pearson's cumulative test statistic (χ2)). 

This analysis however accounts for genes located on different operons or at distances 

in which ribosome scanning is unlikely to occur (mean distance between CDS = 

1872.64 nucleotides). Restricting the inter-CDS region to 10, 20, 30, 40, 50, 100, 150 

or 200 nucleotides did not influence A content (P ≈ 1, Pearson's cumulative test 

statistic (χ2)). Fourth site A content is therefore unlikely to be under selection to 

provide a translocating ribosome assistance in locating the start codon. 
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Supplementary Result 5 

 

CDSs with less efficient initiation codon TTG demonstrate weakest fourth site A 

enrichment 

 

CDSs with different start codons are translated with different efficiencies (O'Donnell 

and Janssen 2001; Osterman et al. 2013; Panicker et al. 2015; Hecht et al. 2017). In 

vitro ribosome binding strength, as estimated from toeprint assays in E. coli assays, 

revealed 30S subunits bound most efficiently to leadered mRNA containing an ATG, 

followed by GTG and TTG (O'Donnell and Janssen 2001). We hypothesise two ways 

in which the start codon identity may determine fourth site A usage. First, the fourth 

site may be used more frequently for weaker binding start codons to prevent the 

ribosome dissociating with the correct initiation site prematurely. Alternatively, the 

fourth site A may be contributing towards the additional strength of binding for ATG 

start codons by providing an additional interaction between the ribosome and mRNA. 

 

We find CDSs starting GTG (mean A4 ratio = 2.607 ± 0.688, N = 646) and ATG (mean 

A4 ratio = 1.887 ± 0.367, N = 646) demonstrate greater enrichment than TTG (mean 

A4 ratio = 1.274 ± 0.319, N = 646), suggesting the weaker start codons are not 

compensated for with greater A content. This is suggestive that fourth site A is not 

assisting the particularly weak start codons. Panicker et al. (2015) and Osterman et al. 

(2013) report that in some cases, GTG is a more efficient initiator of translation. The 

role of fourth site A may be reflected in this increased initiation efficiency, although 

the evidence is not definitive and the ribosome may attempt to use an alternative start 

codon. The reduced A content in TTG might reflect lower expression and hence lower 

associated error cost due to an initiation error, as opposed to increasing the efficiency 

and accuracy of ATG and GTG. The mean CAI varies significantly dependant on the 

start codon (P < 0.001, Kruskal-Wallis rank sum test). Further, CDSs starting TTG 

have significantly lower CAI than those starting ATG (P < 0.001, pairwise Tukey-

Kramer test) but not GTG (P = 0.371, pairwise Tukey-Kramer test). Thus, the reduced 

expression of TTG, in particular when compared with GTG, is unlikely to explain the 

differences in A use.  
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Supplementary Result 6 

 

Fourth site A functionality is specific to prokaryotes 

 

Drawing comparisons with other species may provide further insights into the fourth 

site functionality. For example, is enrichment specific to bacteria or prokaryotes more 

generally? Do we observe fourth site A enrichment in eukaryotes?  

 

Supplementary Result 6.1 - Fourth site enrichment in archaea is comparable to 

bacteria 

 

Archaea are an interesting domain to investigate evolutionary links between 

prokaryotes and eukaryotes. Features of archaeal translation initiation resemble those 

found both in bacteria and eukaryotes. Initiation factors, for example, have close 

homologues with eukaryote initiation factors (Kyrpides and Woese 1998). Conversely, 

mRNA structure and mRNA-ribosome recognition via SD interactions with 16S rRNA 

anitSD motifs resembles initiation consistent with eubacteria (Condo et al. 1999; 

Tolstrup et al. 2000; Slupska et al. 2001; Sartorius-Neef and Pfeifer 2004). Archaeal 

genomes also possess a major proportion of CDSs that lack 5′ UTR sequences entirely 

(Condo et al. 1999; Chang et al. 2006). The ability to translate leaderless mRNA’s, 

absent of SD sequences, and those with a SD sequence suggest that two distinct 

translational mechanisms exist in archaea (Tolstrup et al. 2000; Benelli et al. 2003; 

Ring et al. 2007). The unique archaeal initiation dynamics can therefore provide 

insights into fourth site functionality. If the fourth site is important in translation 

initiation, in particular with ribosome-mRNA interactions, we predict an A enrichment 

similar to that observed in eubacteria. 

 

Replicating previous analyses, we observe significant enrichment of A at the fourth 

site in 73/77 genomes (94.81%) (P < 0.01, Pearson's cumulative test statistic (χ2), 

Bonferroni correction). Enrichment in the 5’ domain is suggestive of selection for 

determining RNA stability; synonymous sites each exhibit enrichment (mean A6 = 

1.533 ± 0.684, mean A9 = 1.425 ± 0.458, mean A12 = 1.513 ± 0.540, N = 77) yet are 

not significantly different (P = 0.587, Kruskal-Wallis rank-sum test; A6 - A9: P = 0.780, 
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A6 - A12: P = 0.940, A9 - A12: P = 0.570, pairwise Tukey-Kramer tests). However, as 

with eubacteria, nonsynonymous sites do exhibit localised A enrichment (mean A4 = 

1.566 ± 0.405, mean A7 = 1.187 ± 0.088, mean A10 = 1.181 ± 0.106, N = 77) with the 

fourth site is significantly enriched beyond neighbouring codons (P < 2.2 × 10-16, 

Kruskal-Wallis rank-sum test; A4 – A7: P = 1.10 × 10-13, A4 – A10: P = 3.40 × 10-14, A7 

- A10: P = 0.980, pairwise Tukey-Kramer tests). These results suggest archaea are 

under similar selection pressures at the fourth site. 

 

Supplementary Result 6.2 - Weak A enrichment in S. cerevisiae may reduce RNA 

stability but is not observed in the second codon 

 

Does this enrichment extend to eukaryotes? Of interest is S. cerevisiae, in which 5’ 

RNA stability is also known to effect expression (Shah et al. 2013). We therefore also 

expect an A enrichment in the 5’ domain for S. cerevisiae CDSs. Both nonsynonymous 

A7 (1.014) and A10 (1.018) ratios and synonymous A9 (1.073) and A12 (1.170) ratios 

provide evidence of weak selection, yet we do not observe an A enrichment in the 

second codon (A4 = 0.951, A6 = 0.966). Interestingly, we find a weak T enrichment (T4 

= 1.183, T6 = 1.110), which may provide the RNA destabilising effect. Notably, we 

find no evidence of selection specific to fourth site A. 

 

Supplementary Result 6.3 - Eukaryotic species exhibit no fourth site enrichment 

specific to A 

 

Is there any evidence of selection consistent with RNA stability or fourth site 

enrichment in other eukaryotes? We find variable enrichment profiles for codons 2-4 

of various eukaryotes (Supplementary Result 6 Figure 1, Supplementary Result Figure 

2). C. elegans, D. melanogaster and A. thaliana each exhibit T enrichment at the 

seventh and tenth sites, whilst D. melanogaster and A. thaliana exhibit an A/T 

preference in both first and synonymous sites of codons 3 and 4. A reduction in mRNA 

folding increasing the accessibility of the RNA in the CDS termini in each of these 

species has previously been documented (Li et al. 2012a; Li et al. 2012b; Vandivier et 

al. 2013) which these results seemingly confirm. A strong G/C bias at each position in 

the 5’ domain of other eukaryotes would suggest that RNA stability selection is not 
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universal. In each eukaryotic species except C. elegans, we observe an enrichment of 

G in the fourth site. The Kozak sequence, for which fourth site G is an important 

nucleotide of the canonical GCCRCCAUGG (Kozak 1986, 1997) motif in eukaryotic 

ribosome binding may explain this enrichment. We also observe T enrichment at the 

fourth site in C. elegans and D. melanogaster that has previously been described in 

invertebrates and fungi (Nakagawa et al. 2008). Whilst C. elegans exhibits an 

enrichment of A at the fourth site, this is almost identical to T enrichment (A4 = 1.093, 

T4 = 1.090). 

 

This change in enrichment profiles may however reflect the weakened purifying 

selection in eukaryotes not being able to maintain fourth site A. We consider the 

enrichment in protist genomes, for which effective population sizes are larger and 

therefore likely to be under stronger purifying selection. As with the previous selected 

eukaryotes, we find no evidence for specific fourth site A enrichment (Supplementary 

Result 6 Figure 2). The Paramecium genome, considered to have a large effective 

population size (Snoke et al. 2006), has an A4 ratio of 1.204. However, 637/646 

(98.61%) of bacterial and 68/77 (88.31%) of archaea genomes have a greater A4 ratio 

greater than this value. Fourth site ratios for both bacteria (P < 2.2 × 10-16, Wilcoxon 

rank sum test) and archaea (P = 1.786 × 10-11, Wilcoxon rank sum test) are 

significantly greater in both cases. The maximum enrichment ratio for the protists is 

1.449 for P. tricornutum, lower than 586/646 (90.71%) bacterial genomes. Thus, the 

reduced enrichment is consistent across the eukaryotic domain and unlikely to be due 

to weakened purifying selection not being able to maintain this enrichment. 
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Supplementary Result 6 Figure 1: Enrichment ratios in eukaryotes provide no 

evidence of selection for increased A content specific to coding sequence fourth sites. 

S. cerevisiae, C. elegans, D. melanogaster and A. thaliana demonstrate bases towards 
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A/T in both synonymous and nonsynonymous sites. A general G/C bias is observed in 

vertebrate CDS, with the fourth site under strong selection for G content. 

 

 
 

Supplementary Result 6 Figure 2: Enrichment ratios in the selected eukaryotes and 

protists demonstrate no bias specific to A at the fourth site that is observed for both 

bacteria and archaea. Eukaryotes demonstrate a clear enrichment of G at the fourth 

site, likely to reflect selection for nucleotides within the Kozak sequence. 
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Chapter 6: 

 

Discussion 
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That gene expression is a complex multi-step process means errors can and do happen 

at each step of the expression pathway. Consequently, although selection on the gene 

sequence encoding the correct amino acids is a strong and necessary constraint, it is 

becoming increasingly acknowledged that a significant proportion of the selective 

constraint is devoted to the control and mitigation of errors (Drummond and Wilke 

2009; Warnecke and Hurst 2011). Often selection for error control overlaps CDS. Can 

we identify genomic patterns that are involved in the mitigation of errors? Are these 

patterns themselves a cause of the errors? 

 

In this thesis, I have considered several approaches to these questions using stop 

codons as an exemplar. Stop codons are ideal sequence motifs to understand error-

related because their canonical function is well-understood, and so any recurring 

presence or absence of stop codons not at the end of the CDS could be suggestive of 

function. As work demonstrating splicing is a key genome constraint (Parmley et al. 

2007; Savisaar and Hurst 2018), I first show that the regulatory splicing signals 

themselves are constrained by protein-coding requirements. In itself, this is a logical 

insight, but one that has not previously been considered. However, the implications of 

such a constraint are wider-reaching. First, that noncoding sequences are depleted in 

stop codons is a priori unexpected. However, as lincRNA sequences also are thought 

to be processed and employ the same regulatory ESEs to ensure accurate splicing as 

protein-coding transcripts (reviewed in Will and Luhrmann 2011; De Conti et al. 2013; 

Krchnakova et al. 2019), the depletion, specific to the portions of genes thought to 

match ESE, makes sense. This work therefore highlights a novel pattern of sequence 

evolution – that the pattern observed in a gene may not relate directly to the functioning 

of that gene. 

 

Although itself an interesting result, this depletion of stop codons in ESEs due to the 

protein-coding constraints has a second consequence. In Chapter 3, I consider how 

nonsense mutations can be associated with exon skipping, hypothesising that ESE 

motifs are vulnerable to stop codon-creating mutations (in any frame). While 

mutations disrupting splicing is nothing new (Baralle and Baralle 2005; Parmley et al. 

2006; Hurst and Batada 2017; Anna and Monika 2018), the effects of mutations 

creating nonsense codons (PTCs) are less well understood. We find a non-negligible 

proportion of nonsense mutations do appear to exert their effects via splicing. 
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Importantly, both the computational and experimental work is consistent with exon 

skipping being the result of the disruption of splice motifs and not a “scanning” 

feedback mechanism. That such errors occur but would not typically be considered 

splice-disrupting variants argues for experimental validation of the effects of nonsense 

mutations to be sure of their true effects. 

 

Several other questions arose during this work. First, are the exons that are skipped 

exceptional in any way? I find no evidence to support this notion. If NAS was an 

adaptive mechanism to save transcripts from NMD, these exons should be more 

frequently of length three and thus having minimised downstream reading frame 

effects, or be shorter exons than expected, but this is not the case. The genes disrupted 

by the PTCs do tend to be more tissue-specific, suggesting that disruption of these, on 

the whole, has less of a phenotypic consequence. This leads to the second question - 

how do we interpret the level of genome-wide NAS? One could argue that 6% is 

relatively low, although this is far from a negligible proportion. However, this estimate 

was calculated from “healthy” individuals and is therefore a conservative baseline 

frequency. I therefore made use of the publicly available ClinVar dataset cataloguing 

pathogenic mutations, finding that when disease-related PTCs occur they are 

distributed as expected if many of them are disrupting splicing. Unlike the 1000 

Genomes PTCs, I find »33% of pathogenic nonsense mutations may affect splicing 

and that they disproportionately hit ESE motifs. Thus, that stop codons are found 

infrequently in ESEs is not only of evolutionary importance but is also likely clinically 

and therapeutically relevant.  

 

The regularity with which ESEs appear throughout the genome (at least in humans) 

and their strong impact on sequence evolution (Parmley and Hurst 2007; Caceres and 

Hurst 2013; Savisaar and Hurst 2017b) means it is unlikely that out of frame stop 

codons themselves can function as common error-proofing signals in protein-coding 

sequences that require splicing. I therefore focused my attention on genomes where 

the effects of splicing and ESE-related constraints are not applicable. Much has been 

made of OSCs and the ambush hypothesis in the literature (Seligmann and Pollock 

2004; Singh and Pardasani 2009; Morgens et al. 2013; Bertrand et al. 2015) although 

no work has demonstrated conclusive evidence supporting their utility, particularly in 
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an evolutionary context. However, although each of these studies has its limitations, 

my primary concern was why the simulation models (Morgens et al. 2013) did not 

preserve the protein-coding sequence and whether this could explain the results. That 

codon usage bias is most pronounced in highly expressed genes (Ikemura 1981) and 

codon usage is predictive of rates of gene expression (Sharp and Li 1987; Sharp et al. 

2005; Brandis and Hughes 2016) suggests any selection for OSCs is likely to occur at 

synonymous sites. In my models, I find results remain inconclusive. However, this 

result only considers the cost of an error after occurring. When I consider the rate at 

which errors might occur, we find the data is then consistent with two strategies: first, 

prevent frameshift errors occurring or second, if they occur, select for OSCs to catch 

them. 

 

Yet, several questions remain. Why do the bacterial genomes favour TAA and TGA 

as OSCs and not TAG? Nucleotide biases no doubt contribute, but TAG and TGA are 

identical in nucleotide content and so TAG should be favoured as it is less error-prone 

(Meng et al. 1995; Korkmaz et al. 2014; Wei et al. 2016). One model, in which TAG 

is selectively less favourable (although the reason why is not understood) may explain 

this trend (Povolotskaya et al. 2012). Why, in addition, do we find that OSC excesses 

are predominantly in the +1 reading frame? I conjecture that this involves translational 

dynamics – that a +1 frameshift is more likely to occur than a +2 frameshift that 

requires more substantial remodelling of the mRNA in the ribosome, or a -1 frameshift 

which is in the opposite direction to a translating ribosome, however this is purely 

hypothetical. I therefore conclude that although this dual-strategy model can shed light 

on the OSC selection and solving the problem of frameshifts, there remains unsolved 

questions to be addressed. 

 

The work in Chapter 4 suggests that the ability to identify specific error-proofing 

mechanisms more generally may be better served by identifying processes that would 

most benefit from increased fidelity. Chapter 5 considers the process of translation 

initiation. Several factors suggest initiation may be error-prone. First, protein activity 

(as a proxy of gene expression) in E. coli increases relative to the number of stop 

codons in any frame in the 5' UTR (Seligmann 2007), suggesting that ribosomes 

employ stop codons to initiate at the correct codon. Second, the ability of ribosomes 

to correctly bind the mRNA is affected by RNA secondary structures (Kudla et al. 
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2009; Gu et al. 2010). Thus, being able to first bind and then locate the CDS start 

codon is difficult. I therefore hypothesised that, similar to Seligmann (2007), stop 

codons may be located 3’ to the start codon. The work in Chapter 5 suggests a strong 

A enrichment (in 99% of bacterial genomes) immediately following the start codon is 

most parsimoniously explained in terms of the creation of a +1 stop codon. If so this 

would reinforce the notion that translation initiation is error-prone and that selection 

acts to reinforce the process. 

 

Understanding the costs of errors 

 

A fundamental assumption of the work in this thesis is that when errors occur, they 

have negative net fitness costs whether this is to the cell or organism as a whole. 

Consistent with this, many of the examples cited in Chapter 1 describing dual coding 

mechanisms under selection, including those involving stop codons, are motivated by 

hypotheses that assume that selection acts to minimise any costs of errors. However, 

the work in Chapter 4 highlighted that the cumulative “cost” of an error needs to be 

considered - that is the frequency of the error, the direct negative effects and secondary 

effects of compensatory selection. 

 

It is therefore interesting to consider the broader evolutionary context of errors and 

error-proofing. At first sight, the optimal strategy for any genome would be to prevent 

the error from occurring altogether, for example by increasing ESE density towards 

exon ends to reduce the chance of a splicing error when there might be competing 

signals (Wu and Hurst 2015) or by selecting against potentially disruptive motifs (Li 

et al. 2012; Diwan and Agashe 2016; Yang et al. 2016). However, if an error prone 

site is under particularly strong purifying selection, the increased accuracy brought 

about by such selection might itself have negative and detrimental consequences. A 

widely cited case is the selection for increased translation accuracy where ribosome 

accuracy can be increased (reducing the probability of misincorporation) (Ruusala et 

al. 1984) but compromises translational speed (Wohlgemuth et al. 2010; Wohlgemuth 

et al. 2011; Ieong et al. 2016). Equally, not selecting for a most optimal sequence for 

translation may apply more generally to other processes, including splicing (Warnecke 

and Hurst 2007). Indeed, Melamud and Moult (2009) suggest that splicing is 

intrinsically noisy and that most alternative splice forms are toxic. However, the 
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system’s equilibrium state is one where enough of the required product is formed but 

selection cannot act to reduce the unwanted splicing to zero as it is too costly. Thus, 

what first might seem like the optimal strategy may be less optimal when considering 

other factors. 

 

A different mode of selection may explain why stop codon containing ESE motifs 

persist if they do not have the most optimal sequence for inclusion in protein-coding 

sequence. As suggested, this could be explained by their prevalence and functioning 

in noncoding sequence that defines a greater proportion of the spliced genome. 

However, they are per motif more frequent in protein-coding sequence. Thus, although 

these motifs contain stop codons, they may bind SR proteins that provide specific and 

as yet unknown splice functionality and the inability to be included in any frame 

compromised for binding utility. Even if a stop codon containing motif is included one 

nucleotide further from the splice junction than it would be if in frame, it may still be 

able to recruit the SR proteins and thus spliceosome close enough to the splice 

junction. Whether such a subtle change in the distance of an ESE to the splice junction 

has a significant effect is as yet unknown. Equally, could the pattern of OSCs be 

influenced by selection to promote/avoid RBP binding in bacteria (much like Savisaar 

and Hurst (2017a))? For example, one could imagine a scenario where OSCs are 

avoided in the CDS because the motifs RBPs bind are also depleted similarly to ESEs, 

although as ribosomal RBPs are thought to make up a larger proportion of bacterial 

RBPs this is less likely (Holmqvist and Vogel 2018). 

 

The questions addressed in this work also assume that errors incur a net negative 

fitness cost. However, while not commonplace, errors may instead have beneficial 

consequences. For example, the effects of nonsense mutations in the DMD gene 

resulting in loss of functional protein (Aartsma-Rus et al. 2016) and in Duchenne 

muscular dystrophy (DMD) are somewhat alleviated in Becker muscular dystrophy 

(BMD) (Shiga et al. 1997; Carsana et al. 2005; Helderman-van den Enden et al. 2010; 

Flanigan et al. 2011; Anthony et al. 2014; Bello et al. 2016; Moore et al. 2017) due to 

a different error, exon skipping, although we find evidence that this is not a widespread 

phenomenon. Equally, the OSCs we suggest are under selection in Chapter 3 and 

Chapter 4 may instead be selected against for genes that undergo programmed 

ribosomal frameshifting (Farabaugh 1996; Dinman 2006, 2012; Ketteler 2012). If 
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translational “errors” occur at rates that are not detrimental to the cell and allow for 

the synthesis of functional protein products, such errors may instead be tolerated and 

selected for (e.g. selection for sequence motifs and RNA secondary structures inducing 

frameshifting in HIV Gag-Pol (Namy et al. 2006)). Gene duplications and 

rearrangements, changes in gene expression and regulation or the translation of 

noncoding genes are also sources of errors that could lead to genetic novelty and 

determine evolutionary fate of de novo genes (McLysaght and Guerzoni 2015; 

Schlotterer 2015; McLysaght and Hurst 2016; Stewart and Rogers 2019). Thus, it is 

important to consider that the absence of selection against particular errors may not 

indicate that errors do not occur, but rather that the cost of an error may be somewhat 

alleviated by other unintended positive effects or increased costs associated with 

preventing the error altogether. 

 

Chapter 4 also highlights a wider methodological concern with the work carried out in 

Chapter 2 and Chapter 3, namely the “averaging” of selection effects across genes and 

genomes. For example, when searching for OSC selection, I have looked across all 

positions in all genes. Not only does this assume that all genes are subject to such 

selection, but that all positions in a gene are under selection for such a signal. The 

analyses are therefore sensitive to localised nucleotide compositional biases that could 

either underestimate the strength of any selection (e.g. few sites have very strong 

selection for an OSC, but is masked by many sites with no OSC resulting from other 

selective pressures) or increase the incidence of false-positive hits (e.g. many OSCs 

occur more frequently than expected, but for reasons other than frameshift errors). This 

applies more generally to the ESE analyses, where it is assumed that all motifs are 

functional which need not be the case (as, for example, some motifs will have splice-

independent roles or be avoided altogether (Savisaar and Hurst 2016, 2017a)). 

Although I have attempted to control for such issues by performing nucleotide-

/dinucleotide-matched controls or using intra-gene comparisons, I acknowledge the 

limitations with such methods. The work in Chapter 5 looking at one specific location 

overcomes this issue. Encouragingly, the results of the applied work in Chapter 3 

suggest the more exploratory analyses I have performed are well informed and can be 

experimentally validated. Furthermore, a recent study suggests OSCs are more 

frequently downstream of frameshift-prone codons in a variety of genes (Seligmann 
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2019). Thus, searching for site- and context-specific selection such as that in Chapter 

5, but averaged across many genes, does have utility. 

 

Outlook and future perspective 

 

The majority of the analyses in this thesis have been performed computationally, with 

the exception of the verification of the PTC-associated exon skipping top hit of ACP1. 

Although this one example provides evidence that the computational methods can be 

robust, it is evident that much of the work could be improved with the support of 

experimental methods to provide a molecular basis behind the results. For example, 

the work in Chapter 2 could be supported by experimental evidence using minigene 

constructs in which the ESE motif is varied between a stop codon containing motif 

and one not containing a stop (e.g. GATGGA and GATGAA) and either using RNA-

seq to determine exon inclusion or using CLIP-seq (Stork and Zheng 2016) to 

determine the binding efficiencies. If the stop codon motifs are not less efficient at 

binding SR proteins or encouraging exon inclusion, this would support the hypothesis 

that the depletion is simply a result of being located in CDS. Work in Chapter 3 could 

have been improved by also including a similar variant into ACP1 to show that the 

effect is not necessarily specific to the PTC, but more generally a disruption of the 

splice motif. Experimental work that could show a discrepancy between the frameshift 

rate in AT-rich and GC-rich bacteria would be of utility, for example by engineering 

genes to express green fluorescent protein (GFP) (Chalfie et al. 1994) if frameshifted.  

 

Perhaps the most interesting analysis that I would like to have performed is one 

comparing the rates of PTC-associated exon skipping in healthy/non-healthy tissues. 

It is well documented that the regulation of accurate splicing plays a critical role in 

pathogenicity particularly in cancers (Srebrow and Kornblihtt 2006; David and 

Manley 2010), with selection acting against particularly disruptive synonymous 

mutations (Hurst and Batada 2017). Thus, by comparing tissues in this way, a PTC 

mutation in a diseased tissue can be compared not only with rates of exon skipping 

without the PTC in the diseased tissue but the comparable rates of exon skipping in 

the healthy tissue. I have tried to employ several datasets to do this including data from 

the Personal Genome Project UK (PGP-UK) (Consortium 2018; Chervova et al. 2019) 

and the Texas Cancer Research Biobank (Becnel et al. 2016), however, the relative 
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lack of information makes any analysis redundant. Using data from database such as 

Genotype-Tissue Expression (GTEx) (Consortium 2013) or the Cancer Genomes 

Atlas (TCGA) (reviewed in Tomczak et al. (2015)) would be of great utility, however 

access to these datasets is restricted and by no means guaranteed after application, nor 

would the results be replicable for other researchers. Thus, the best estimate of disease-

associated NAS that I can provide to date is that provided. 

 

Beyond the academic, it is also important to acknowledge the broader context of the 

work in this thesis. The main aim of the research group is to improve the understanding 

of transgenes and improve therapeutics. Thus, being able to translate how genomes 

have evolved to prevent errors and how selection operates on synonymous sites can 

inform the diagnosis of disease and improve the design of the transgenes themselves. 

Taking the work in this thesis example, if you are designing a transgene that requires 

splicing, knowing that a stop codon containing ESE is prone to stop codon creating 

mutations is valuable. Equally, the knowledge that some stop codon mutations are 

splice disrupting, rather than acting as early canonical stop codons, can inform 

treatments regimes that involve PTC-skipping therapies (Keeling et al. 2014; 

Dabrowski et al. 2018). Equally, knowledge of whether the expression of one gene 

affects its neighbours (Ghanbarian and Hurst 2015) and how genes insulate themselves 

from the effects of expression of other genes can help inform us as to where to target 

transgene insertion. Despite the ongoing work, many error-proofing mechanisms are 

likely to be unknown and not elucidated. For example, how many phosphorylation or 

dephosphorylation events happen off-target or at the wrong time? How are such events 

prevented? How often are RNAs or proteins incorrectly located and what error traps 

might there be in such circumstances? How do genes evolve to compensate/depend on 

duplicates of the original gene (Diss et al. 2017)? Have specific motifs evolved to 

ensure accurate alternative splicing? If there are tissue-specific splice enhancers (Badr 

et al. 2016), are there motifs that are required more generally? A broader knowledge 

of such mechanisms would no doubt of great utility as we move towards an era of 

personalised and precision medicine. 
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