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Abstract

In this thesis, spatial multilevel models are developed within a causal framework for

the attribution of long-term changes in environmental studies to large-scale drivers of

interest. In particular, these methods are applied to river flows in this thesis. Two

common themes are apparent throughout the thesis. The first involves the accurate

detection of long-term changes in river flows in Great Britain. The development of

spatial multilevel methods for the accurate detection of trends is a major focus of the

thesis. We firstly focus on the detection of countrywide trends in which the correlation

between stations is modelled through a Gaussian process. Using a multilevel approach

allows for the pooling of gauging station data to accurately estimate trends in peak

river flows that may not be possible using traditional at-site analyses. This approach

resulted in a first detection of trends in peak river flows at a countrywide level in Great

Britain. We then switch in focus towards the analysis of a single river network, ex-

ploiting this network structure in order to understand how flows in a given region will

evolve. This method considers the river gauging station measurements on the network

as a graph, which is comprised of nodes (the river gauging stations themselves) and

edges between nodes (the direction of flow between each station). The network struc-

ture of this river is encoded using a first-order conditional autoregressive (CAR) model.

This method allows for the use of fast inference methods through the construction of

a sparse precision matrix, and also respects the physical structure of the network.

The second theme focuses on the development of a causal framework for the attribution

of long-term, large-scale changes in environmental studies to some climate drivers of

interest. We first perform a preliminary attempt at attribution, where a clear associa-

tion is seen between the East Atlantic (EA) index and peak river flows, even when a

multivariate approach is used to account for temporal confounding. We then provide a

more rigorous approach towards the attribution of long-term, large-scale drivers of en-

vironmental change. A systematic checklist is developed to provide a thorough causal

assessment of drivers of environmental changes, demonstrating through this checklist

that changes in peak river flows can be attributed to the EA index.
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Chapter 1

Introduction

Climate-driven changes in river flow regimes worldwide can have considerable impacts

on society. There are expectations that changes in climate will result in an increase

in flood risk, fluctuations in water availability and a reduction in water quality. Un-

derstanding the patterns underlying these changes is vital for ensuring adequate flood

defences and water resource management plans are in place for the future.

There are growing concerns that climate change may result in an increased risk of

flooding, for example, with several large flood events hitting the UK in recent years.

The resulting destruction caused by these floods led to the question of whether current

flood defences were fit for purpose. The Environment Agency stated that a complete

overhaul of the UK’s flood defence infrastructure was needed, as the UK was moving

from a period of “known extremes” of weather to one of “unknown extremes” (Climate

Home News, 2015). Cologna et al. (2017) urged a change in coverage of major flooding

incidents towards being prepared for an overall increase in flood risk due to climate

change, instead of portraying them as once in a lifetime events. There are also fears

regarding the impact of climate change on the availability of water resources in the

UK in the future. While climate-driven increases in winter precipitation should result

in an improvement in the reliability of water resources in northern England, it is also

expected that there will be a reduction in summer precipitation leading to increased

vulnerability to drought (Fowler and Wilby, 2010).

The current perception is that there has been an increase in the frequency and severity

of flooding in recent years (Taylor et al., 2014), yet conflicting claims in the literature

mean that no clear conclusions can be drawn. Climate change projections suggest an

increase in rainfall in northern Europe, with a possible associated flood risk, over time
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(Bates, 2009). However, this has not yet been verified by the observed river flow data,

from which no compelling evidence of increasing trends has been inferred (Hannaford,

2015). Trend tests on river flow data, which are obtained from modelling each indi-

vidual gauging station separately, often lead to unclear signals. These tests are not

very powerful in a statistical sense, and may not be able to fully differentiate between

confounders. The relatively short data records of annual maximum flows in the UK

mean it is difficult to provide compelling statistical evidence of any long term trends.

In this thesis, we aim to reconcile the differences in results between climate model

projections and observational river flow data. Through modelling of trends in annual

maximum flow data, we will provide compelling evidence that flooding is likely to in-

crease, and obtain an understanding of the factors, such as climate change, driving

this increase. We will also demonstrate that this increase is paralleled with an increase

in daily mean flows, with an expectation that this will impact future water resources

management.

1.1 Data availability and limitations

The primary source of river flow data in the United Kingdom is the National River

Flow Archive (National River Flow Archive (NRFA)) (Dixon, 2010; Dixon et al., 2013),

which has data from a dense river monitoring network of approximately 1400 gauging

stations. Through the NRFA, it is possible to access gauged daily mean flow data and

annual maxima, both of which are derived from 15 minute recordings of the flow. Daily

flow data are available for the majority of these gauging stations, and approximately

1000 stations also have annual maximum flow data (i.e. annual maximum flow or

peaks over threshold data). Annual maximum flow data are used for flood frequency

estimation and will be used in this thesis to investigate trend in extreme river flows.

Interrogating the annual maximum flow data will help to determine whether changes in

flooding are consistent with climate change projections. Daily data are useful for water

resource management assessment, and will be used in this thesis to assess changes in

overall long-term means in a single river network.

While this would suggest that the UK has a rich source of observational data for

trend estimation, many records only started after the 1970s, and those stations with

longer records are often compromised due to changes in gauging practice (Hannaford,

2015). Data quality is also a concern, particularly in the monitoring of extreme flows,

meaning that it may be difficult to obtain accurate estimates of long-term trends in such
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flows (Dixon et al., 2013). Moreover, there may be interference due to anthropogenic

influences, which can result in the detection of trends unrelated to climate activity.

This was overcome in part, however, by the development of a reference network of

“benchmark catchments”, a series of near-natural river gauging stations with good

quality data and relatively unimpacted by anthropogenic changes (Bradford and Marsh,

2003). The latest version of this is the UK Benchmark Network V2 (UKBN2), which

consists of 146 benchmark catchments as a representative reference network (Harrigan

et al., 2017).

1.2 Statistical challenges

In an at-site analysis, as each individual hypothesis test is insufficiently powered to

detect trends, we may not be able to correctly quantify changes in environmental risks

such as flooding. One issue lies in the length of individual gauging station records.

Prosdocimi et al. (2014) observed that a station-by-station approach to annual maxi-

mum river flow analysis may require a sample size of hundreds of years, while reliable

records of river flow are typically much shorter than this. Renard et al. (2008) noted

at-site studies which were limited in their statistical power to detect any changes, sug-

gesting instead that a regional analysis could increase this power. In addition, as noted

by Prosdocimi et al. (2014), current models largely assume stationarity of the river

flow process, which in practice means assuming the probability of an extreme event

is constant. This can result in a failure to accurately estimate flood risk, which can

be extremely costly to the government and the public alike. Additionally, consistently

underestimating any trends in annual maximum river flows may mean that the UK’s

flood infrastructure is not fit for purpose for future extreme events.

Current methods for detection of changes in river flow data do not take into account

the spatial nature of rivers. These approaches often involve modelling each station

separately, meaning the result at each station is based entirely on data available at the

station itself. Monitoring stations are often geographically close to each other (some-

times gauging the same river) and exposed to similar weather and climate, meaning that

these stations may display similar trends. Information from nearby stations, which may

help to enhance the signal at the station in question, is not used in such approaches.

However, once it is assumed that the trend is similar across all stations, it is possi-

ble instead to model all stations together in a mixed effect model. We do so using a

Bayesian multilevel framework, by modelling the spatial relationships between gauging

stations through a spatial random effect.
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A further issue with many current river flow analyses is the sole focus on the detec-

tion of time trends, instead of a joint approach of trend detection and attribution of

trends to a variable of interest. Merz et al. (2012) noted the need for a switch in focus

towards a more holistic approach, which would incorporate change detection into the

more challenging problem of attribution. Understanding how river flows are changing

is beneficial when it comes to choosing effective interventions, and ensuring adequate

water resources and flood defences are in place in the long term. However, the causal

nature of relationships between variables in a long-term, large-scale environmental set-

ting such as this are not well understood. The issues of separating anthropogenic

change from natural variability, the inability to randomise exposures and the presence

of many confounding variables mean that typical causal tools cannot always be directly

applied to environmental problems. For example, while commonly-used tools such as

propensity score matching allow for the construction of counterfactual outcomes in epi-

demiological observational studies, these are not always fit for the purpose of assessing

for causality in environmental studies. In such situations, it can be difficult to have

well-defined counterfactual outcomes. One could use geographical characteristics in

spatial studies to construct such counterfactual outcomes, however in many environ-

mental studies, such as river flow studies, such characteristics do not provide much, if

any, explanatory power. Additionally, it can be difficult to consider all possible sources

of confounding with additional unknown variables.

In recent years, there have been a number of studies aiming to attribute changes in the

frequency of flooding to some driver of interest (see, for example, Hannaford and Marsh

(2008); Lins and Slack (2005); Villarini et al. (2011)). Merz et al. (2012) provided a

review of the state of the art of such attribution studies in flooding, dividing them

into categories of “soft” and “hard” attribution. “Soft” attribution studies make

use of hypotheses and references to past literature to corroborate any statements of

attribution to some cause of change. On the other hand, “hard” attribution consists

of the following criteria

1. Evidence of changes must be consistent with the proposed cause.

2. Evidence of changes must be inconsistent with any alternative causes proposed.

3. Some confidence level must be provided for the attribution statement.

Merz et al. (2012) had noted that no such attribution studies had satisfied the require-

ments of hard attribution. Fulfilling these criteria is challenging in this context, as

natural variability and confounding play a large part in these studies. To see the true
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causal nature of climate drivers on flooding, it is necessary to develop approaches which

both rigorously test for associations between variables, but also overcome the issues of

confounding and natural variability in these studies.

1.3 Key contributions and themes of the thesis

The goal of this thesis is the development of spatial multilevel methods for detecting

and attributing long-term changes in environmental observational studies to large-scale

drivers of interest. This will bridge the gap between current climate change projections

(for example Bates (2009)) and observational data, from which evidence of increasing

trends has not yet been produced.

This goal can be split into two common themes. The first involves the accurate detec-

tion of long-term changes in environmental observational studies, with a focus on river

flows in Great Britain. In particular, the development of spatial multilevel methods

for the accurate detection of trends is the main focus of Chapters 2 and 4. In Chapter

2, the focus is on the detection of countrywide trends in annual maximum river flow

data, where the spatial correlation between stations is modelled through a Gaussian

process. Using a multilevel approach allows for the pooling of gauging station data

to accurately detect trends in annual maximum river flows that may not be possible

using traditional at-site approaches. In this approach, we focus on a set of near-natural

“benchmark” gauging stations in order to detect those trends solely driven by natural

climate variability. In Chapter 4, there is a switch towards the analysis of a single river

network, exploiting this network structure in order to understand long-term trends in

flows for a single river. There is also a change in focus towards daily mean flows, which

are of interest for water resource management. This method considers the river gauging

station measurements on the network as a graph, which is comprised of nodes (the river

gauging stations themselves) and edges between nodes (the directed river stretches be-

tween each station). The network structure of this river is encoded using a first-order

conditional autoregressive (CAR) model. CAR models are primarily used for assessing

disease incidences in areal data, and have not often been applied in an environmental

setting such as this. The proposed method allows for the use of fast inference methods

through the construction of a sparse precision matrix, and also respects the physical

structure of the network.

In this thesis, methods are also developed for the accurate attribution of such trends to

a large-scale driver of interest, in this case climate indices such as the North Atlantic
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Oscillation and East Atlantic index. This attribution is the main focus of Chapters 2

and 3. We focus on such indices instead of precipitation (which one might expect to

impact flooding in a more direct way than climate indices), as the indices are impacted

by climate change in a more direct manner and thus represent a proxy for climate

change (Guimarães Nobre et al., 2017). They can be modelled in a more simple man-

ner in comparison with precipitation, which exhibits more complex behaviour of low

variation but with intermittent peaks. Additionally, Sharma et al. (2018) highlight

the lack of evidence for claims that an increase in precipitation will result in increased

flooding. Indeed, Sharma et al. (2018) note that, in some cases, there are reductions

in flooding magnitudes with increasing precipitation. Finally, the focus of this thesis is

the exploration and attribution of the long-term, large-scale drivers of flooding, rather

than short-term, local-scale drivers such as precipitation. The attribution method de-

veloped are illustrated throughout using the example of river flows in the UK, and take

into account concerns over confounding with non-anthropogenic changes.

A more holistic approach to trend analysis is proposed in Chapter 2, incorporating de-

tection of such trends and the “soft” attribution of these trends to large-scale climate

drivers. However, further evidence is required to demonstrate a true causal relation-

ship. In environmental observational studies such as the one seen in Chapter 2, where

natural variability is a major factor, it is not trivial to apply standard methods to

ensure that Merz et al. (2012)’s criteria are met in full. In Chapter 3, we propose a

more rigorous approach to attribution of changes in these studies, developing a sys-

tematic checklist for assessing causality in environmental observational studies. This

approach both fulfils and goes beyond the scope of Merz et al. (2012)’s “hard” attribu-

tion criteria. Changes in annual maximum river flows in Great Britain are observed to

be consistent with changes in the East Atlantic index, and inconsistent with potential

alternative causes discussed within the case study. A credible interval is provided for

the estimate of the effect of the climate index upon flows. Beyond these requirements,

the method also considers the interpretability of the model to the end-user, controls

for unmeasured confounding and frames the problem in the context of causal diagrams

which are revisited throughout the analysis to ensure diligence in considering possibil-

ities. As a result, we obtain evidence that changes in annual maximum river flows in

Great Britain can, in part, be attributed to the East Atlantic climate index.
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1.4 Statistical methods

A wide variety of general statistical tools are used throughout this thesis in order to

tackle the challenges posed by environmental observational studies. In this section, we

summarise those methods common to the three main chapters of the thesis, and the

novelty of their application to the field. We present the use of multilevel models as a

useful framework for incorporating the spatial structure of river flow data. Multilevel

models are used to estimate trends in river flows across multiple river gauging stations

in Great Britain in a single model, instead of an at-site analysis. Potential spatial

structures are discussed for representing the spatial correlation between river gauging

stations, both on a countrywide and single river basis. The method of Bayesian infer-

ence on parameters is briefly summarised, including potential implementation methods

such as the integrated nested Laplace approximation (INLA) approach. Generalised

additive models are discussed for removing the seasonal effect from time series data of

daily mean river flows. Finally, we briefly discuss causal methods for the attribution

of trends in environmental observational studies such as these, however, such methods

which are used on a single-chapter basis will be thoroughly discussed in the context of

the particular chapter.

Note that throughout, the log of the river flows is taken and normality of the resulting

data assumed, both in the annual maximum flows investigated in Chapters 2 and 3,

and in the daily mean flows in Chapter 4. Taking the logarithm and assuming normal-

ity of this data has been found to be fit UK river flow data well (Prosdocimi et al.,

2014; Vogel et al., 2011). One could fit generalised extreme value (GEV) or peaks

over threshold (peaks over threshold) models to investigate high flows, however GEV

models are complex to fit due to difficulties computing the maximum likelihood asso-

ciated with the skewness (Coles, 2001), an issue that would be compounded using a

more complex spatial multilevel model. Annual POT data are not as widely available

as annual maxima flow data. Vogel et al. (2011) notes that using a log-normal pdf

when combined with a log-linear trend model produces a simple yet appropriate model

of flood frequency. As we are interested in understanding and attributing changes in

annual maximum flows due to climate change on a UK-wide basis, it is beneficial to

use this simpler approach for understanding changes in flows both in terms of model

complexity and interpretation. These log-transformed flows will be used in the methods

that follow.
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1.4.1 Multilevel models

The common problem of detecting and attributing trends across multiple river gauging

stations in Great Britain may be considered as a multilevel model, i.e. one that can

vary at more than one level. Formally, a multilevel model is a regression model where

model parameters have their own probability models (Gelman and Hill (2006)). This

second-level model itself has parameters, known as hyperparameters, which are also

estimated from the observed data. Thus, the multilevel model has varying coefficients

and a model for these coefficients. They are particularly useful when the data for ob-

servational units are organised at multiple levels, and allow for one to take into account

that there is variation between groups, while assuming that within-group observations

are similar. Starting from a simple linear model where we have measurements from

one source only,

Yi = β0 + β1Xi + εi,

where Y is the outcome (for example, river flow data), X the exposure (a climate index),

and ε represents the variation in the outcome that cannot be explained by the linear

relationship with the exposure. To extend the model beyond a single measurement

source, we need to allow for variation amongst different groups (river gauging stations

throughout the thesis). To do this, we can allow the intercept in the model above to

vary from group to group:

Yij = β0j + β1Xij + εij , εij ∼ N (0, σ2
ε ).

where Yij is the ith measurement on the jth group, and we now have β0j which represents

this group variation. This is the first-level model which accounts for the variation in

the individual measurements on a single group. We can write β0j as

β0j = β0 + u0j , u0j ∼ N (0, σ2
u).

This is the second-level model which accounts for the variation from one group to

another. We can also allow the slopes of groups to vary. Incorporating a random slope

within a model allows the explanatory variable to have a differing effect for each group.

This enables us to determine whether a trend is consistent across groups or not. In a

Bayesian setting, one can check this by inspection of the posterior of the variance of

the random slope. By adding a random term β1j to the coefficient of Xij so that it can
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vary for each group, the model then becomes

Yij = β0j + β1Xij + β1jXij + εij ,

This model framework can take into account group-level predictors, for example region-

based covariates. It can also incorporate interaction terms in the same way as for a

single level model (Goldstein et al., 2014), and may also include smooth terms (Pedersen

et al., 2019). Multilevel modelling allows one to more easily account for the variation

between groups through the inclusion of random effects. Traditional multiple regression

techniques treat the subjects under analysis as independent observations, rather than

clustered or grouped, meaning that the standard errors of regression coefficients may

be underestimated. When we consider multilevel models within a Bayesian framework

and set priors to our parameters, this becomes a Bayesian hierarchical model. Bayesian

models will be discussed further in Section 1.4.3.

1.4.2 Spatial random effects

To accurately capture the structure of river flow data, one random effect that we wish

to incorporate in a multilevel model is a spatial random effect. This will allow us to

model all stations together in a single model and capture the spatial correlation be-

tween stations. At first, we are interested in modelling a spatial effect at a countrywide

level, where the spatial domain of river gauging station locations is not continuous. In

such cases, as seen in Chapter 2, we propose a simple distance-based random effect,

making use of spatial correlation functions implemented in the model through a Gaus-

sian process. In Chapter 4, where the focus is across a single river network, we instead

take advantage of the inherent graph structure of the gauging network, and implement

the spatial random effect through a conditional autoregressive (CAR) model.

1.4.2.1 Spatial correlation structures and Gaussian processes

Spatial correlation structures are designed to model dependence in data, which is in-

dexed by continuous two-dimensional position vectors, such as geostatistical data as

presented in this thesis. The spatial correlation structures considered here are continu-

ous functions of distance between these position vectors, and so may be generalised to

any finite number of position dimensions - thus, they may be used with time series data
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(see Pinheiro and Bates (2000)) such as river flow data as seen throughout this thesis.

In Chapter 2, we propose the use of a simple exponential correlation structure with

distance based on this Euclidean distance between river stations. Euclidean distances

are chosen over stream distances in this case, as Ver Hoef et al. (2006) notes that stream

distances can give rise to invalid covariance matrices. This will be further discussed

in Chapter 4, along with potential alternative approaches, however for simplicity the

Euclidean distance will initially be used in Chapter 2. The purely spatial correlation

function depends on the monitoring locations through the Euclidean spatial distance

only. Thus, we must assume that the spatial process is stationary and isotropic. Such a

correlation structure can be included as a spatial random effect by modelling it through

a Gaussian process.

A Gaussian process (GP) f(x) is a collection of random variables, any finite number

of which have a joint Gaussian distribution. A Gaussian process is completely specified

by its mean function µ(x) and its covariance Σ. For n ∈ N and x1, ..., xn:

(f(x1), ..., f(xn))T ∼ N ((µ(x1), ..., µ(xn))T ,Σ)

A benefit of using Gaussian processes is that they can be completely defined by their

second-order statistics (Bishop, 2006). This means that, if we assume a Gaussian

process has mean zero, defining the covariance function will completely define the

process’ behaviour. Diggle et al. (1994) note that, while Gaussian processes are often

used as models for spatial data such as the river flow data seen in this thesis, such models

may lack physical justification. However, they are a convenient choice of empirical

model which may capture a wide range of spatial behaviour, depending on how their

correlation structure is specified. If the data of interest are not spatially dependent,

then one can assume a diagonal covariance for the Gaussian process. However, if the

data are spatially structured, as is the case in river monitoring networks, there is a need

to include some terms for the spatial correlation. An example of such a covariance

function is one with exponential correlation structure, in which nearby stations are

highly dependent and far away stations are modelled to be less dependent:

Σij = η2 exp

(
−dij
ρ

)
,

where dij is the Euclidean distance between river stations. Here, the hyper-parameter

ρ is the characteristic length-scale (or range) of the process. In practice, this represents

how proximal two stations i and j must be in order to significantly influence one

another, while η is the marginal standard deviation which controls the magnitude of
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the range. In a Bayesian setting, priors can then be set on these parameters when

specifying the statistical model used. Incorporating the spatial effect in this way in

Chapter 2 will capture the spatial variability within the model when all stations are

modelled together.

1.4.2.2 CAR models

Another means of modelling spatial structure between monitoring locations presented

in this thesis involves defining neighbourhoods across the locations of interest. Two

areas may be considered neighbours if they share a common boundary. This is also

applicable to the example of representing the spatial effect of river gauging stations,

which are immediately connected through a directed river stretch, as seen in Chapter 4.

One can consider the structure of this network as a graph, where the nodes are the river

gauging stations and the edges are these directed river stretches. Making use of this

graph structure, autocorrelation is then modelled via a Gaussian distribution which

has zero mean and a precision matrix Q (the inverse of the covariance matrix Σ) which

will model correlation between neighbours. We assume that the latent effects are a

Gaussian Markov Random Field (GMRF), i.e. a Gaussian random field which satisfies

p(xi|{xj : j 6= i}) = p(xi|{xj : j ∈ Ni}), where Ni are neighbours of locations si. this

is to say that the distribution of xi given all other nodes/stations is only influenced

by the neighbouring nodes and not by the other nodes in network. Then the precision

matrix Q will be such that elements Qij = 0 if i and j are not neighbours. Thus, Q is

often a very sparse matrix, as there will only be entries in the matrix when i and j are

neighbours. A benefit of this sparsity is that it will give rise to faster inference. This

is particularly useful when dealing with large-scale data, such as the daily mean flow

data over a long time period, as seen in Chapter 4.

One such structure for the spatial dependence is the conditional autoregressive (CAR)

model as described in Besag et al. (1991), which averages over direct neighbours. CAR

models display the spatial Markov property, i.e. they are spatially memoryless. For

example, in the case of a river monitoring network, flows at a given station are influ-

enced only by flows from direct neighbouring gauging stations, and not by neighbours

of neighbours. Further details of CAR models and their use in representing the spatial

random effect in a single river network will be discussed in Chapter 4.
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1.4.3 Bayesian models

To make use of the inherent structure of spatial and spatio-temporal data for river

flows, it is helpful to write models in a hierarchical manner. A hierarchical model is a

particular type of multilevel model where parameters are nested within one another. We

propose the use of a Bayesian hierarchical model as a flexible framework for statistical

modelling, allowing us to perform inference to quantify levels in the models such as the

underlying latent process (Gelman et al., 2013). Bayesian hierarchical models provide

a flexible framework for the modelling of spatial data such as river flow data. While

Bayesian methods have been used in river flow trend estimation on a very small scale

(see Renard et al. (2006)), such models have not yet been used in the estimation of

trends in a relatively large network of river gauging stations as seen in this thesis. We

will make use of these Bayesian multilevel models throughout.

In general, the Bayesian approach allows us to make inference about model parameters

through analysis of the posterior distribution via Bayes’ rule. As we wish to use all

individual river gauging stations to make inferences about the entire population of

stations, we make use of the hierarchical form of Bayes rule as follows

p(α, θ|y)︸ ︷︷ ︸
posterior

∝ p(y|θ, α)︸ ︷︷ ︸
data

p(θ|α)︸ ︷︷ ︸
process

p(α)︸︷︷︸
prior

. (1.4.1)

Again, y represents the variable under study (river flow data in this thesis), α repre-

sent the population-level parameters and θ the individual-level model parameters. The

prior, p(α), represents the uncertainty in a (hyper) parameter prior to the data being

observed. The data level, p(y|θ, α) represents the likelihood for the observed river

flow data, while p(θ|α) is the model for the parameters θ which define the latent data

generating process. The product of these three quantities is proportional to the pos-

terior density, p(α, θ|y). This quantity is the distribution of the parameters θ having

observed the data y.

The exact form of this posterior distribution can rarely be computed analytically and

thus must be derived via numerical methods. Often, a traditional Markov Chain Monte

Carlo (Markov Chain Monte Carlo (MCMC)) method (Metropolis et al., 1953; Smith

and Roberts, 1993) is employed to derive samples from the target posterior distribu-

tion. In most practical applications (including those presented in this thesis) a large

number of parameters need to be estimated. As a consequence, generating predictions

may be computationally difficult. This is due to the need to manipulate large matrices.

We will discuss the use of a Hamiltonian Monte Carlo approach via Stan for inference
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in Chapter 2, which will speed up inference compared to typical MCMC approaches

in high dimensional settings. Stan is a general-purpose C++ program which can be

used to derive samples from Bayesian models to obtain posterior simulations given a

user-defined model and data (Carpenter et al., 2016). Stan uses a modified Markov

chain Monte Carlo approach, known as Hamiltonian Monte Carlo (HMC), for sam-

pling from these models. This approach was first developed as hybrid Monte Carlo

in 1987 by Duane et al. (1987) to deal with difficult computations in lattice quantum

chromodynamics. The usefulness of this approach in Bayesian problems was noted by

Betancourt (2017); Neal (2012). The key difference between Hamiltonian Monte Carlo

and the Metropolis Hastings algorithm typically used in MCMC schemes is that HMC

reduces correlation between successive sampled states by using a Hamiltonian evolution

between states, and additionally by targeting states with a higher acceptance criteria

than the observed probability distribution. It adopts physical system dynamics rather

than a probability distribution to propose future states in the Markov chain, allowing

the chain to explore the target distribution much more efficiently. Further details on

the Hamiltonian Monte Carlo scheme can be seen in Betancourt (2017) and are sum-

marised in Appendix B.

We make use of an alternative to MCMC when the problem increases in complexity,

such as in Chapter 4. This approach is briefly described in the section below.

1.4.4 Alternative solutions for Bayesian inference — approximation

While fitting models in Stan allows for user-defined model specifications and pro-

vides a flexible framework for modelling, it suffers from the typical efficiency prob-

lems of MCMC-based inference. As models grow in complexity, for example when

large datasets such as the one in Chapter 4 are analysed, it is advantageous to move

to a more efficient approximation-based approach. We employ the integrated nested

Laplace approximation (INLA) technique proposed in Rue et al. (2009), which per-

forms Bayesian inference based upon making a series of Laplace approximations and

numerical integrations. This technique is a computationally attractive alternative to

MCMC, as it does not require full MCMC sampling to be performed. The drawback

of using an approximation method is that it is only easily applicable for a particular

class of models (known as latent Gaussian models), and is not a general-purpose tool.

However, the model discussed in Chapter 4 can be cast as one such model, and thus

it is possible to make use of this efficient technique. In Chapter 4, the size of the

data is much larger than in Chapter 2 (as daily mean flow data are used instead of
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annual maxima). Using the INLA method instead of sampling-based approaches have

a number of computational benefits to large-scale data such as this, which we briefly

summarise here.

INLA provides a faster alternative to MCMC for a general class of models known as

Latent Gaussian Models (LGM). LGMs are hierarchical models which include unob-

served normally distributed random variables. LGMs have three levels; a likelihood

model of observational data y, a latent Gaussian field z and hyperparameters θ. It is

possible to reframe many typical models (such as time series and spatial models as we

have) as LGMs. We can formulate these models as follows:

y = β0 + xTβ +
∑
k

fk(ck),

where y represents the observational river flow data, β0 is the intercept, β the regres-

sion coefficients of a linear predictor x, such as time or climate indices, and fk(·) are

non-linear smooth functions of other covariates. If we gather all model parameters in

the linear predictor in a latent field z = {β0, β, fk(·)}, then a latent Gaussian model is

obtained by setting Gaussian priors with zero mean and precision matrix Q(θ) to all

elements of z. The observations y are assumed to be conditionally independent given

the latent field z and parameters θ, where θ is the vector of parameters describing the

precision structure. The conditional independence assumptions are necessary for mod-

elling through the INLA approach as discussed in Chapter 4, as approximate inference

via INLA assumes that the latent field z is Gaussian, and fulfils the conditional inde-

pendence property that any two latent effects zi and zj are conditionally independent

given the remaining latent effects z−ij . Note that, while the assumption of Gaussianity

is not necessarily appropriate for the raw daily mean river flow data, taking the loga-

rithm and assuming normality of this data has been found to be appropriate (Bowers

et al., 2012; Prosdocimi et al., 2014) for such data.

The posterior distribution of this model is then given by

p(θ, z|y) = p(θ)p(z|θ)
T∏
t=1

p(yt|z,θ) (1.4.2)

To preserve the underlying conditional independence structure of a GMRF (as defined

in Section 1.4.2.2), the parameterisation must be constrained. This is difficult to achieve

using a covariance matrix Σ, as typically this will be dense, i.e. have very few null
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entries. Instead, we use the precision matrix Q = Σ−1. It can be shown that

zi ⊥ zj |z−ij ⇐⇒ Qij = 0.

It follows that, under conditional independence assumptions, Q will tend to be sparse,

leading to faster inference and an ability to perform calculations on larger problems.

Letting the dimension of a sparse precision Q for a typical two-dimensional model be

n × n, any calculations such as doing inference or computing normalising constants

requires computations of order O(n3/2) compared to storage costs of O(n2) and com-

putation costs of O(n3) for the corresponding dense Σ (Bakka et al., 2018). In Chapter

4, exploiting the network structure of a single river allows for the construction of a

sparse precision matrix, meaning that inference can be performed on a large number

of observations of daily mean data across the network for a 40 year period (a total

of 155,398 observations) in a very short period of time (minutes). This would not be

possible to achieve using standard MCMC methods, where the sparsity structure of

precision matrices is not exploited.

Further details on the INLA approach to approximation can be seen in Rue et al. (2009)

and are summarised in Appendix B. This approach to Bayesian inference is a much

more efficient computational technique than MCMC methods due to the favourable

computational properties of GMRFs and sparse precision matrices, and hence is ideal

for use on large-scale problems as seen in Chapter 4.

1.4.5 Generalised additive models

A generalised additive model (GAM) is a generalized linear model in which the linear

predictor depends linearly on unknown smooth functions of some predictor variables

(Hastie and Tibshirani, 2017). In general, this has the form:

g(µi) = β0 + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (1.4.3)

where xi represents covariates, µi ≡ E(Yi) and Yi is a member of some exponential

family. The smooth term f is the sum of some number of basis functions,

f(x1) =
k∑
j=1

bj(x1)βj
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GAMs allows for a flexible, relatively simple specification of a model with non-linear

smooth functions. One can investigate whether any covariates have non-linear relation-

ships with the response, in order to see whether an approach using GAMs is necessary.

Additionally, GAMs allow for the modelling of seasonal effects using a cyclical smooth

term, as will be demonstrated in Chapter 4. In this case, basis functions used are sim-

ilar to those above, however the end points of the spline are constrained to be equal,

which is necessary for modelling a cyclical variable such as days, months or years.

In R, models will be implemented using the mgcv package (Wood, 2017), with smooth

functions specified through the s() function. Such smooth functions are specified as

s(x,bs="cc",k=""), where x is the covariate of interest, bs represents the choice of

basis, which is in Chapter 4 given by a cyclic cubic regression spline. For a normal

cubic regression spline, mgcv estimates a coefficient for each basis function, and the

resulting spline is a weighted sum of basis functions whose weights are the estimated

coefficients. However this gives rise to a large discontinuity in the value that the spline

takes at the end. If the covariate represents the day of year, as in Chapter 4, this is not

ideal. Instead, we use the cyclic cubic spline, which has a further constraint that there

may not be a discontinuity at the end point. Finally, k represents the basis dimension

size, which must be specified by the user. The value k-1 sets the upper limit on the

degrees of freedom allowed, as one degree is taken up by the identifiability constraint

on the smooth (Wood, 2017). This value should be chosen to be large enough so that

the truth is represented well and so one does not oversmooth, but small enough so that

computations are efficient (Wood, 2017). This use of GAMs for removing seasonality

from time series data will be demonstrated in Chapter 4.

1.4.6 Causal approaches

In this thesis, we propose a systematic causal checklist for attribution in these studies,

making use of relevant ideas in prior causal approaches and incorporating both data

and non-data assumptions into our method. By taking inspiration from methods such

as the Bradford Hill criteria (Hill, 1965), causal directed acyclic graphs (DAGs) (Green-

land et al., 1999), the method of multiple working hypotheses (Chamberlin, 1890) and

weighting of evidence methods (Suter et al., 2017), along with proposing a number of

additional steps, it is instead possible to develop a systematic approach for the attribu-

tion of long-term, large-scale changes in environmental processes. These methods are

discussed in detail in Chapter 3 and thus will not be further discussed here.
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1.5 Thesis structure

The structure of this thesis is as follows:

• In Chapter 2, we present a multilevel Bayesian model for the detection and an

initial attribution of trends in annual maximum river flows in Great Britain.

• In Chapter 3, we propose a systematic checklist for the causal assessment of envi-

ronmental observational studies. The checklist is illustrated through the example

of annual maximum river flows in Great Britain.

• In Chapter 4, we investigate a directional approach to detecting long-term trends

in daily mean flows in a single river network. This is illustrated by the example

of the river Eden network, which has been hit with a large number of flooding

events in the past couple of decades.

• In Chapter 5, we provide a summary of the results and contributions of the thesis,

as presented in Chapters 2-4. Conclusions and potential future opportunities in

the areas of attribution and network-based methods for river flow time series are

discussed. Finally, the key impacts of this thesis are summarised.
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Chapter 2

Attribution of long-term changes

in peak river flows in Great

Britain

This chapter is reproduced from the authors’ accepted manuscript of an article pub-

lished as the version of record in Hydrological Sciences Journal (Brady et al., 2019).

Related work on attributing long-term changes in peak river flows for the island of

Ireland can be seen in Brady et al. (2018).

In this chapter, we demonstrate how the use of a Bayesian multilevel approach allows

for the detection of trends in annual maximum river flows which would be missed in

an at-site approach due to poorly powered statistical tests. The use of a Bayesian ap-

proach here provides a more intuitive inference over the frequentist approach of p-values

(O’Hagan, 2004). The p-value does not inform us of how likely the null hypothesis given

the data, while the Bayesian approach provides a statement on the probability that the

hypothesis is true given provided evidence. Spatial correlation between stations is in-

corporated using a Gaussian process, with covariance specified using an exponential

correlation structure. Time trends in annual maximum flows are estimated on a coun-

trywide scale, with the aim of bridging the gap between current climate projections of

increased flooding and observational data, from which no concrete evidence of trends

have been found. In addition, a preliminary approach to attributing such trends to

a large-scale cause (climate indices) is investigated. Limitations to this approach are

discussed at the end of this chapter.

The major contribution of this chapter is the use of Bayesian spatial multilevel meth-
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ods to accurately assess trends in peak river flows in Great Britain. This is a novel

application of such methods, as typically trend analyses for river flow studies occur on

an at-site basis. It is demonstrated in this chapter that assuming an overall country-

wide trend with some spatial variability (with relationships between stations modelled

through a Gaussian process) leads to a better ability to detect any signal present in

the data. This chapter also provides some evidence towards attributing such changes

in peak river flows to a climate index of interest. The switch towards a combined

detection and attribution approach in this paper differs from past approaches, which

tend to put a large emphasis on detection only.
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Abstract

We investigate the evidence for changes in the magnitude of peak river flows in Great

Britain. We focus on a set of 117 near-natural “benchmark” catchments to detect

trends not driven by land use and other human impacts, and aim to attribute trends in

peak river flows to some climate indices such as the North Atlantic Oscillation (NAO)

and the Eastern Atlantic (EA) Index. We propose modelling all stations together

in a Bayesian multilevel framework to be better able to detect any signal which is

present in the data by pooling information across several stations. This approach leads

to the detection of a clear countrywide time trend, which is consistent with climate

change projections (Bates, 2009). Additionally, in a univariate approach, both the

EA and NAO indices appear to have a considerable association with peak river flows.

When a multivariate approach is taken to unmask the collinearity between climate

indices and time, the association between NAO and peak flows disappears, while the

association with EA remains clear. This demonstrates the usefulness of a multivariate

and multilevel approach when it comes to accurately attributing trends in peak river

flows.
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2.1 Introduction

The 2013-14 winter floods saw the destruction of a railway line, thousands of homes

without electricity and costs in excess of £100 million (Chatterton et al., 2016). A fur-

ther series of heavy rainfall events hit Great Britain in the 2015-16 winter, with Storm

Desmond breaking the UK 24-hour rainfall record and Christmas floods resulting in

the highest water levels of every river in Lancashire (Barker et al., 2016). Insurance

payouts for that flood period were estimated to be around £1.3 billion. As a conse-

quence, there is a fear and widespread suspicion that there has been an increase in

the frequency and severity of flooding in Great Britain. Climate change projections

suggest an increase in rainfall (Bates, 2009) over the coming decades, with the belief

that this may contribute to an increase in peak river flows.

Much research has been devoted to the identification of trends in river flow records,

yet current methods do not appear to be fit for purpose. These have mostly involved

performing some tests at each gauging station separately — see for example Hannaford

and Marsh (2006); Mediero et al. (2014); Villarini et al. (2009). However, these at-

site tests using the relatively short observed river flow data records do not display

compelling evidence of increasing trends. Such an approach tends to involve fitting a

model for some yearly summary value (e.g. annual maximum flow, annual number of

events, etc) at each individual station, and evidence for monotonic trends is often de-

rived using specific statistical tests, for example the Mann-Kendall test (Kendall, 1948;

Mann, 1945). These tests are not very powerful in a statistical sense (that is, there is a

non-negligible probability of not detecting a trend) — Prosdocimi et al. (2014) noted

that a sample size of hundreds of years may be needed when using a station-by-station

approach, while reliable records of river flow are typically much shorter than a hundred

years. As a consequence, we may not be detecting some trends in the annual maximum

flow, as each individual hypothesis test is not sufficiently powerful to detect them —

meaning we may be unable to correctly quantify changes in flood risk. Additionally,

as this approach involves modelling each station separately, the result at each station

is based solely on the data available at the station itself. Many gauging stations are

geographically close and are exposed to similar weather conditions, yet this approach

does not use information from nearby stations, which should enhance the signal at the

station in question, and improve the ability to detect trends provided this trend is the

same across all stations.

Another key issue with current models (as noted by Merz et al. (2012)) is the focus on

the detection of time trends, rather than the attribution of these trends to meaningful
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flood-generating processes. Gaining a clearer understanding of how these flows change

over time is certainly of interest, however time itself cannot explain any of the variabil-

ity in peak river flows, instead it is a surrogate for variables which vary with flows in

the same way as time. Thus, this focus on detection does not give us any insight into

the drivers of change in peak river flows. Gaining an understanding of these drivers

of change may help to better inform future flood defences, thus we instead propose to

investigate some potential candidates for attribution of changes in these flows alongside

an analysis of these time trends.

Merz et al. (2012) give a (non-exhaustive) list of the several studies which have in-

vestigated trends in peak river flows and associated flood risk over the past twenty

years, typically with a focus on detection of changes, i.e. on the analysis of time se-

ries data, and attribution has largely followed as “an appendix” of a hypothesis test

for significance of such changes. The authors noted the need for a switch in focus

towards a more holistic approach, which would incorporate change detection into the

more challenging problem of attribution. The authors discuss attribution in the context

of “soft” and “hard” attribution. Here, “soft” attribution refers to studies which use

hypotheses and references to previous studies to back up any attributions to drivers of

change. On the other hand, “hard” attribution studies must provide evidence that de-

tected changes are both consistent with the proposed driver of change and inconsistent

with potential alternative drivers. Additionally, Merz et al. (2012) require that such

“hard” attribution studies provide some confidence level in the attribution statement.

The approach proposed in this paper will fulfil the criteria of “soft” attribution and the

majority of the “hard” attribution requirements. A small number of studies have inves-

tigated whether climate indices can describe the observed variability in the frequency

of flooding in river networks (see (Lins and Slack, 2005; Mallakpour and Villarini, 2015;

Villarini et al., 2011) amongst others). Tootle et al. (2005) considered a network of

1009 “unimpaired” catchments in the United States with data from 1948-1988. By

applying a non-parametric rank-sum test to test for significance, they demonstrated

that a number of climate indices influence stream flow variability in the US. Hodgkins

et al. (2017) investigated trends in floods for a set of over 1200 catchments across North

America and Europe over time periods from 1961 to 2010 and 1931 to 2010, noting a

much larger link between these occurrences and the Atlantic Multidecadal Oscillation

(AMO) when compared to long-term time trends. However, these investigations tend

to be on an at-site basis, leading to small sample sizes and low power of hypothesis

tests. Additionally, Mallakpour and Villarini (2016) noted that the choice of optimal

large-scale drivers of climate is particularly challenging so care must be taken when

identifying appropriate climate indices.

43



There is a need for a new approach to the modelling of trends in peak river flow, in

order to overcome these issues and improve the ability of tests to detect signals. Instead

of focusing solely on detection of time trends, we instead propose focusing on the com-

bined approach of the detection and attribution of trends. We relate trends detected in

peak river flows to large-scale climate indices (which are proxies for climate variability)

such as the North Atlantic Oscillation or the East Atlantic Index. Additionally, it is

often difficult to separate out anthropogenic changes from natural climate variability,

making it difficult to accurately attribute any such trends. To avoid the presence of

additional potential confounding variables such as urbanisation levels, we focus on a set

of near-natural “benchmark” catchments as defined by Harrigan et al. (2017) so that

those predominantly climate-driven trends can be detected. In order to improve the

statistical power of our approach compared with at-site testing, we propose modelling

all stations together in a multi-level model framework. Specifically, Bayesian multilevel

models are employed, which have widely been used for the modelling of spatial and

spatio-temporal environmental data (Diggle et al., 2010; Pirani et al., 2014; Renard

et al., 2006). Such models provide a framework which allows the pooling of informa-

tion between stations, improving the possibility of detecting of signals which may be

missed in an at-site approach. A Bayesian approach also allows for a clear uncertainty

statement for attribution. Finally, the necessity for a multivariate approach to mod-

elling trends in peak river flows is demonstrated, in order to accurately separate out

the net effect of individual covariates. This combined multilevel multivariate approach

will help to give a clearer picture of the drivers of peak river flows in Great Britain.

In section 2.2, multilevel models are introduced in the context of the attribution of

such trends. A framework is developed for modelling of spatial dependence in these

peak river flows. In section 2.3, the annual maximum river flow data series, climate

indices and the reference network of near-natural catchments used in the model are

presented. In section 2.4, this model is implemented for various climate indices to peak

river flows in Great Britain and findings in both a univariate and multivariate setting

are presented. The work is summarised, and future possibilities discussed in section

2.5.

2.2 Methods

In this section, an extension to linear models used to ascertain trends in peak river flows

is proposed. Multilevel mixed effect models are introduced, in order to incorporate all

stations together into one Bayesian modelling framework. Bayesian multilevel mixed
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effect models allow for all stations to be modelled together in a unique model which

pools the information across stations, which may help to better detect signals that

cannot be found using an at-site analysis. The addition of a spatial structure to these

models is also introduced, in order to account for similarities between stations which

have some proximity to each other.

2.2.1 Spatial dependence

Many river gauging stations in Great Britain are geographically close to each other,

and one might expect the peak river flows of these nearby stations to follow a similar

pattern. Spatial correlation structures are designed to model dependence in data, such

as times series obtained at fixed gauging stations. The work of Kjeldsen and Jones

(2010) on spatial correlation in British annual maximum river flow data suggests that

one can expect data from nearby gauging stations to be correlated with each other.

This correlation structure is exploited in the approach discussed here, by including a

spatial random effect to account for this similarity between nearby stations in the mul-

tilevel models proposed in Section 2.2. This is a correlation-based approach which can

be used generally in any spatial setting, particularly for scenarios where measurement

locations are fixed and the spatial domain is not continuous (such as river gauging

station data). This pooling of information should help enhance any signal, helping us

to obtain evidence of any trends in river flows that would have been too weak to detect

otherwise.

Diggle et al. (1994) noted that the most common form of empirical behaviour for sta-

tionary correlation structure is that the correlation between sites i and j decreases as

the distance between them increases. This shape of correlation appears to be valid for

British rivers as shown in Kjeldsen and Jones (2010). Thus, we seek models whose

theoretical correlation structure behaves in this way. We propose the use of an expo-

nential correlation structure which satisfies this requirement; this simple structure is

often used in environmental studies (see for example, Reich et al. (2011)). This purely

spatial correlation function depends on the locations through the Euclidean spatial dis-

tance dij only, so that for gauging stations i and j, the covariance matrix is described

as:

Σij = η2 exp

(
−dij
ρ

)
.

The parameter ρ describes the range over which sites i and j influence each other

i.e. how close two points must be to influence each other significantly, while η is the

marginal standard deviation controlling the magnitude of this range. Note that, as in
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Kjeldsen and Jones (2010), the distance between two stations is taken to be the distance

between the centroid of the catchments upstream of each station rather than the dis-

tance between the stations themselves. It has been observed that correlation between

sampling errors can at least partially be described as a function of the geographical

distance between river catchments (Kjeldsen and Jones, 2009; Stedinger et al., 1993).

2.2.2 Multilevel models

Given that a sample size of hundreds of years may be needed to construct powerful tests

for trends when using an at-site approach, we propose extending the approach of Pros-

docimi et al. (2014) by modelling all stations together within a multilevel framework.

This has the benefits of improving the power of any models used by incorporating all

data together within one model, making use of the natural structure of the spatial data

provided. Including all stations in a model together with a spatial random effect may

help to obtain evidence of any trends in river flows that would have been too weak to

detect otherwise.

In particular, a Bayesian perspective to multilevel models (see section 2.2.3) is adopted,

thus considering the model parameters as random variables with their own probability

models (Gelman and Hill, 2006). These probability models themselves have parame-

ters (known as hyper-parameters) which are also estimated from the observed data.

Looking first to the original at-site model which states that the log of the standardised

annual maximum flows, denoted Y, are affected by covariates X in the following way

Yt = β0 +Xtβ1 + εt

for a given matrix of covariates X which vary across years t, with regression coefficients

β1, error term εt ∼ N(0, σ2), where σ2 represents the variation in flows after controlling

for covariates X, and intercept β0. . Here β0 and β1 represent the intercept and slope,

which do not vary in time. Note that the log of the standardised annual maximum flows

is used, i.e. flows divided by the median of the annual maximum series (QMED). The

log of the annual maximum flow data is assumed to be normally distributed. Using a

log normal distribution has been found to fit UK annual maximum flow data reasonably

well (Prosdocimi et al., 2014). Using the median is considered to be more robust to

outliers than the mean (Robson and Reed, 1999). A simple version of this model in

which the water year is the only explanatory variable, i.e. Xt = [Water Year]t (i.e.

the value for the explanatory variable at time t), was used by Vogel et al. (2011) and

Prosdocimi et al. (2014).
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At-site investigations often fail to identify trends (Prosdocimi et al., 2014). It is difficult

for authorities to make decisions regarding flood defences based upon this approach,

which can prove unreliable. Instead, all stations are modelled together to better detect

any signals, assuming that the peak flows are affected by some countrywide trend.

A multilevel approach is used to allow for different station-specific effects which are

expressed as random effects. The peak flows can then be modelled as

Yit = β0 + Xtβ1 + ri + εit

for a gauging station i at time t. We assume that r ∼ N(0, σ2
i ) and the remaining error is

now εit ∼ N(0, σ2), where σ2
i represents the variation in flows due to differences between

gauging stations after controlling for the covariates X. Now β0 and β1 represent the

overall countrywide intercept and slope respectively. The assumption of a countrywide

trend is a strong assumption, but necessary to ensure that even with little data, it

should be possible to detect trends. To balance this assumption to some extent, station-

specific effects are included to allow for some variability between stations.

Nearby stations can be expected to be impacted in a similar way by external variables,

thus a spatial correlation structure s is included within the multilevel model. For

station i at time t, this can be expressed as:

Yit = β0 + Xtβ1 + ri + si + εit, (2.2.1)

where X is the matrix of explanatory variables we are investigating, ri is a random

effect to allow for variation between stations with r ∼ N(0, σ2
i ), si is a spatial random

effect distributed as a multivariate normal (s ∼ MVN(0,Σ)) to allow for correlation

between nearby stations and εit ∼ N(0, σ2) represents the error term. The exponential

correlation structure discussed in Section 2.2.1 is used here. A further modification of

the model in equation (2.2.1) could include station-specific properties such as catch-

ment size or altitude for each station i as explanatory variables. However, through

some investigations it was found that such modifications do not improve the model

performance in terms of explanatory power and are therefore not discussed further.

2.2.3 Bayesian inference

When a model such as the one shown in equation (2.2.1) is considered within a Bayesian

framework and prior distributions are set on model parameters (i.e. before any data

is observed), this becomes a Bayesian hierarchical model (Gelman et al., 2013). Using
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such an analysis can allow for the incorporation of further data, by pooling information

across gauging stations in one model. It also allows us to incorporate prior knowledge

about parameters before observing the data, and provides a straightforward framework

to assess the uncertainty in the estimation of parameters and functions of the param-

eters. It can provide a more intuitive and meaningful inference over the frequentist

approach of p-values, through the inclusion of prior information about model parame-

ters (O’Hagan, 2004). Additionally, as discussed in detail in Section 2.4.1, a Bayesian

analysis avoids the issue of the multiple testing problem (Gelman et al., 2012). This

approach allows us to make inference about model parameters through analysis of the

posterior distribution via Bayes’ rule:

p(θ| y)︸ ︷︷ ︸
posterior

∝ p(y| θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

(2.2.2)

for parameters θ = {β, r, s, σ2} and observations y = log(Flow). The prior represents

uncertainty about a parameter(s) before the data is observed, while the likelihood

is the conditional density of the data given the parameters. The product of this is

proportional to the posterior density, which describes the uncertainty about the un-

known parameter(s) having observed the data. This posterior density is the output of

a Bayesian inference. This quantity is of interest and in particular one often looks at

the 95% credible interval, i.e. given the data observed, this is the interval in which the

parameter is contained with 95% probability. Bayesian hierarchical models provide a

flexible framework for statistical modelling of spatial data such as this, allowing one

to perform inference to quantify levels in the models such as the underlying latent

process. For further information on Bayesian methods in trend estimation, see Renard

et al. (2006).

As we wish to use all individual gauging stations to make inferences about the entire

population, the hierarchical form of (2.2.2) will be used as follows:

p(α, θ| y)︸ ︷︷ ︸
posterior

∝ p(y| θ, α)︸ ︷︷ ︸
data

p(θ|α)︸ ︷︷ ︸
process

p(α)︸︷︷︸
prior

for population-level parameters αi, individual-level parameters θi = (ri, si) and obser-

vations of flow data yi. For the proposed model (Equation 2.2.1), the data level is

modelled via a Gaussian likelihood where the log of the annual maximum flow obser-

vations is taken:

p(y|β, r, s, σ2) =
n∏
i=1

N(yi|xTi β + ri + si, σ
2
ε )
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The process level (i.e. the physical drivers of peak river flows) is determined by the pri-

ors over β, r and the Gaussian process s given α, which corresponds to the parameters

for the exponential covariance structure for the spatial random effect. Priors are then

specified on those parameters α = (ρ, η2) which will be estimated. Standard procedure

is followed for prior specification of regression coefficient parameters βi, which are given

independent Gaussian priors

βi ∼ N(µβ,Σβ),

where µβ is a q-dimensional mean vector, and Σβ is a q × q-dimensional covariance

matrix. We suggest a mean of 0, and a relatively large precision in this case. The

variance σ2 is given a half-Cauchy prior with scale 2.5 as suggested by Gelman et al.

(2008)

σ2 ∼ Cauchy(0, 2.5 ∗ b),

where b is the standard deviation of the residuals of a linear regression of covariates

X against flows. The covariance parameters ρ and η2 are given weakly informative

half-normal priors following the recommendations of Gelman et al. (2017),

ρ ∼ half-normal(0, σρ), η2 ∼ half-normal(0, ση2),

where half-normal means that values are constrained to lie above zero. In most cases,

the posterior is not mathematically easily tractable except in the cases of small numbers

of dimensions. However, samples from this distribution may be generated using Markov

Chain Monte Carlo (MCMC) methods (Smith and Roberts, 1993). Models proposed

here are implemented through Stan (see Section 2.4), a general purpose tool which

makes use of Monte Carlo techniques to carry out Bayesian inference (Carpenter et al.,

2016). Stan is a C++ program which draws samples from Bayesian models to obtain

posterior simulations given a user-defined model and data (Carpenter et al., 2016).

This approach uses a modified Markov chain Monte Carlo approach for sampling from

these models (see Appendix B). Diagnostics are carried out during modelling to check

for convergence of the modelling procedure and to ensure the effective sample size is

sufficient. The potential scale reduction factor, R̂, provides an estimate of convergence,

which can be interpreted as the factor by which the variance of an estimate can be

reduced with longer chains. We seek values close to 1 (and at most R̂ < 1.1), which

will happen as the number of simulations approaches infinity. If samples obtained by

the sampler are independent, then the effective sample size Neff is equal to the actual

sample size. On the other hand, if the correlation between samples decreases so slowly

that the sum in the denominator diverges, the effective sample size is zero (Ripley,
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2009). Markov chains tend to explore the parameter space very slowly, leading to low

effective sample size numbers, and parameters may not be accurately estimated.

2.3 Peak river flow data for Great Britain

2.3.1 Benchmark catchments and peak river flow data

It has been noted (Hannaford and Marsh, 2006, 2008) that there can be considerable

difficulties in accurately attributing climate-driven trends to peak river flows in Great

Britain, largely due to the impact of humans and changes in hydrometric performance

in gauging stations over time. This has led to a focus on developing a series of ded-

icated networks of natural catchments, in order to study trends over time. In the

UK, an initial benchmark network (UK Benchmark Network V1 (UKBN1)) consist-

ing of 122 catchments was developed by Bradford and Marsh (2003). This aimed to

use catchments which had long records of good hydrometric quality, relatively near-

natural and representative of UK hydrology. Such natural gauged catchments tend to

be small and rural, located predominantly in Wales, Scotland and the south west of

England. An updated version of the benchmark network, obtained as a compromise

between geographical coverage and a lack of external interference on river flows, was

therefore developed for the detection and attribution of climate trends. This known

as the UK Benchmark Network V2 (UKBN2) (Harrigan et al., 2017) and consists of

146 benchmark catchments as a representative reference network. Annual maximums

of instantaneous annual maximum flow data for the V2 benchmark catchments will be

used to investigate the effect of non-anthropogenic (i.e. non-human driven) changes on

annual maximum river flows in Great Britain.

This analysis focuses on annual maximum river flow data from Great Britain across the

series of reference benchmark catchments introduced by Harrigan et al. (2017). This

data set contains the largest observed instantaneous annual maximum flows in each

water year (which runs from October to September), measured in m3/s. After remov-

ing stations for Northern Ireland in order to include a spatial effect, and including all

stations for which there are available observations, in total, there are 5475 observations

from 117 benchmark gauging stations in Great Britain, ranging from 1851-2015 —

these station locations can be seen in Figure 2-1. The average record length of stations

within this network is 46 years, with a minimum of 21 and maximum of 86 years. There

is an average of 1.4% of records missing, with only 5 stations having records of 10–30%
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missing. The average catchment size of the network is 210km2, with a minimum size

of 3.07km2 and a maximum of 1500km2. A total of 92% of stations may be considered

to be “essentially rural” under the FEH An index of urban and suburban land cover in

a given period expressed as a fraction (URBEXT) criteria (i.e. with less than 2.5% of

the catchment area covered by urban landmass, see the Flood Estimation Handbook

(Robson and Reed, 1999)). Only two stations exceed 10% urbanisation; both of these

stations are in areas with spatial gaps in the network, and are included in UKBN2 as

a compromise to ensure full spatial coverage. Plots of some of the FEH catchment de-

scriptors can be seen in Figure 2-1. These plots show the catchment area, the baseflow

index (BFIHOST) and average annual rainfall for each catchment.

Figure 2-1: Plots of FEH catchment descriptors for each gauging station – the baseflow
index (BFIHOST, left), log of the catchment area (middle) and average annual rainfall
(right).

The data for the UKBN2 catchments, annual maximum series, benchmark catchments,

peaks over threshold, and catchment descriptors can be obtained from the UK Na-

tional River Flow Archive (NRFA) (Dixon, 2010), which is the primary UK source of

hydrometric data.

2.3.2 Climate indices

Climate is defined as the average state of the atmosphere over long time periods,

thus changes in climate are considerably slower than the weather. A climate index is

defined as some calculated value that describes the state of the climate system, and any

changes, including weather, occurring in the system (Integrated Climate Data Center,
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2011). These indices are impacted by climate change in a more direct manner than

precipitation (Guimarães Nobre et al., 2017), so they are proxies for climate which is

changing (but are also variable to begin with). Moreover, these indices are constant

across the whole country for a given time. In section 2.4, we investigate whether

changes in annual maximum river flow can be attributed to some of these indices.

Note that the values used are the average of the monthly values for December, January

and February in a given year. The two key climates indices used in this study are

the North Atlantic Oscillation and the East Atlantic index. These indices have been

indicated in previous studies as potential drivers of variability in peak flow records (see

for example Guimarães Nobre et al. (2017)), and are introduced briefly below.

2.3.2.1 North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is a mode of natural climate variability, which

impacts the weather and climate of the North Atlantic region and surrounding conti-

nents, particularly Europe (National Climatic Data Center, 2017). Usually, the North

Atlantic surface pressure is relatively high in the subtropics at latitudes 20◦N to 40◦N

(“the Azores High”), and lower further north at latitudes 50-70◦N (known as the “Ice-

landic Low”). This state extends through higher levels in the atmosphere, and affects

the north-south pressure difference, which determines the strength of the westerly winds

directed from North America towards Europe. The NAO describes these fluctuations

in north-south pressure differences.

When the NAO index is well above normal, the chances of above average seasonal

temperatures in northern Europe increase. Precipitation patterns are more localised,

with an increased chance of higher rainfall in northwest Europe and lower rainfall in

southern Europe associated with a higher than usual NAO. When the NAO index is

well below normal, the opposite tends to occur. The fluctuations in the NAO occur

on a wide range of time-scales. There are day-to-day changes associated with weather

systems, and slower changes associated with seasonal and longer term variability in

other climate system components such as ocean temperature. Previous studies have

shown that the NAO has been related to the variability in floods (Hannaford, 2015;

Hannaford and Marsh, 2006; Kingston et al., 2006), while Macdonald and Sangster

(2017) found statistically significant relationships between the British flood index and

the North Atlantic Oscillation Index with historical data records. This provides strong

motivation for inclusion as a possible driver of changes in peak river flows in Great

Britain.
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A correlation plot between NAO and time can be seen in Figure 2-2, which suggests a

correlation of 0.49 between the two. This indicates towards possible confounding issues

in the analysis, i.e. the inability to separate the effect of time from that of the NAO

index. A confounding variable is one which influences both the dependent variable

(the log of the standardised annual maximum flows in this analysis) and the inde-

pendent variables, leading to spurious associations (see for example Faraway (2014)).

Confounding will need to be taken into account in the analysis.

2.3.2.2 East Atlantic Index

The East Atlantic (EA) index (National Climatic Data Center, 2017) is a mode of

low-frequency variability over the North Atlantic, similar in structure to the North At-

lantic Oscillation (NAO) index. It consists of a north-south dipole of anomaly centres

spanning the North Atlantic from east to west. Positive phases of the EAindex are asso-

ciated with above-average surface temperatures in Europe in all months, above average

precipitation over northern Europe and Scandinavia, and below average precipitation

across southern Europe. The EAindex exhibits strong multi-decal variability across

records from 1950-2004. Guimarães Nobre et al. (2017) noted that positive (negative)

phases of both the NAO and EA are associated with more (less) frequent and intense

seasonal extreme rainfall over large areas of Europe. A correlation plot between EA

and time can be seen in Figure 2-2. Again, there appears to be a positive correlation

(r = 0.53) between EA and Water Year, indicating a possible confounding between the

two variables.
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Figure 2-2: Correlation plots for water year with NAO (left) and EA (right) where R
is the correlation coefficient between variables, and the red line represents a linear fit.

2.4 Results

Models investigating the relationship between the log of the standardised annual max-

imum flows and time, NAO and EA are fitted in this section. We look to fit models of

the form in Equation 2.2.1, changing the covariates Xt in each case (where the subscript

t indicates that the covariate is indexed by time).

1. Model A: Xt = [Water Year]t (Figure 2-4)

2. Model B: Xt = [EA]t (Figure 2-5)

3. Model C: Xt = [NAO]t (Figure 2-5)

4. Model D: Xt = [Water Year, EA]t (Figure 2-6)

5. Model E: Xt = [Water Year, NAO]t (Figure 2-7)

6. Model F: Xt = [Water Year, EA, NAO]t (Figure 2-8)

These models are implemented in Stan (Carpenter et al., 2016). In terms of diagnostics,

all values for the R̂ for models run fall between 0.999 and 1.001. For a model run with

4 chains, each of 1000 iterations (and a burn-in period of 500 iterations), the Neff is at

least 1500 for each parameter in the model, which is more than sufficient. Diagnostic

plots are included as an appendix.
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2.4.1 At-site approach for comparison

At first, models are fitted using the at-site approach described in Prosdocimi et al.

(2014) for comparison. A linear model is fitted to observations at each individual sta-

tion, then the p-value is extracted to determine whether there is a significant trend.

The null hypothesis is that there is no significant trend (for time, EA or NAO) in the

annual maximum flow data. If the p-value is less than 0.05, this null hypothesis is

rejected and the conclusion is that a significant difference does exist.

First, time is considered as the explanatory variable, and the annual maximum river

flow as the response. A map showing stations for which the null hypothesis of no trend

is rejected can be seen in Figure 2-3. This map shows negative and positive trends in

red and blue respectively, with significant trends denoted by a circle and non-significant

trends by a cross. A total of 30 out of 117 stations exhibit significant trends (seen par-

Figure 2-3: Significance of time and climate index trends for river flows in Great Britain.

ticularly in the north-west of England) - this represents of 25% of all stations. However,

if all stations were independent, 5% of these stations could show a trend by chance.

This large proportion of false positives produced when running multiple hypothesis

tests is known as a multiple testing problem. Often, false discovery rate (FDR) con-

trolling approaches are used to limit the number of these false positives. However, the

need for using such methods to overcome this problem can disappear almost entirely

when using a Bayesian multilevel approach. Gelman et al. (2012) proposes such an ap-

proach in scenarios when multiple comparisons occur. The authors note that classical

inference techniques only use information from a particular site to get effect estimates

at that site (thus ignoring key information from other sites), and tend to keep point
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estimates fixed. Multiple comparisons are adjusted for by increasing interval width.

On the other hand, the authors point towards multilevel models, which employ partial

pooling of information, ensuring that each site’s estimate will get pulled towards the

overall estimate. This has the consequence of making multilevel model estimates more

conservative, as is appropriate as the resulting intervals are more likely to include zero,

and are more likely to be valid. Thus, the use of Bayesian multilevel models in the

sections that follow ensures that there is no need to be concerned about the multiple

testing problem unlike for the at-site case.

We repeat the at-site approach with NAO as the explanatory variable instead of time.

In this case, very few stations seem to have a significant NAO trend - only 12 out of

117 stations (10%) - however, these are clustered in a similar manner to those stations

with a time trend, further suggesting that confounding may be an issue with these two

variables. Finally, for the EA index, a total of 32 stations display significant trends,

accounting for only 27% of all stations in the dataset. Given the proximity of signifi-

cant and non-significant gauging stations it seems this approach may not be fit for the

purpose of detecting long-term trends in peak river flows. In comparison, the approach

discussed in Section 2.2 and implemented below demonstrates a clear ability to detect

trends on a countrywide level.

2.4.2 Univariate models

Posterior distribution plots for the fixed effect parameters of models A, B and C can be

seen in Figures 2-4 and 2-5. These plots show the posterior density of the parameter

of interest conditional on the data observed, along with a credible interval representing

the uncertainty about the given parameter. Here, what one is interested in is where

the large proportion of the density lies – the size of the y axis itself is not of interest.

The median of this distribution is indicated by the thick vertical line on each plot, and

the 95% credible interval (i.e. given the data and the model, there is a 95% chance the

true values of the parameters lie in that interval) is represented by the shaded region of

the plots. On the x-axis is the range of values that the posterior distribution can take.

This represents the change in the log of the annual maximum flows given the covariate

modelled.
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2.4.2.1 Time trends in peak flow data

Firstly, a model investigating the relationship between peak river flows and time is

fitted. A clear time trend is observed in Figure 2-4 upon inspection of the posterior

distribution. This plot shows the range of the 95% most credible values that the

regression coefficient for water year can take based on the given data. Using this

posterior distribution plot, it can be seen that the fixed effect of water year is highly

likely to be greater than 0.6 because the median value (indicated by the thick vertical

line) and most of the mass of the distribution lies to the right of this value. As this

is on a log scale, this corresponds to time adding at least 6% to peak flows each year

suggesting that peak flows have been increasing considerably over time. This is of

particular interest as it demonstrates the enhanced ability of the multilevel approach

to detect signals that have previously been missed using an at-site approach.

However, time itself cannot cause changes in peak river flows. Instead it is acting as a

proxy for some other unknown variables which vary with peak river flows in the same

way as time, for example global warming. In itself, it does not provide information on

potential causes of changes in peak river flows, and thus is not the only area of interest

when it comes to the attribution of such changes. Instead, we focus on relating these

changes to large-scale climate indices, which themselves represent changes in climate.

Figure 2-4: The fixed effect posterior for Model A. This shows the posterior density
of the fixed effect of water year conditional on the data observed, with a 95% credible
interval representing uncertainty about this parameter (shaded region). The median
is indicated by the thick vertical line. The x-axis shows the range of values that the
density can take.
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2.4.2.2 The relationship between climate indices and peak river flows

We now focus on the attribution of changes in peak river flows to climate indices. In

Model B, the effect of the Eastern Atlantic (EA) index alone is investigated. From

looking at the posterior plot shown in Figure 2-5, this appears to have a strong as-

sociation with peak river flows. The posterior density of the regression parameter is

clearly centred away from zero as over half of its mass lies above 0.10, and does not

contain zero in its credible interval. This corresponds to a 10% increase in the median

peak river flows when going from a null EA value to a positive anomaly of size 1. This

suggests that the EA index has some positive association with peak river flows in Great

Britain.

Figure 2-5: The fixed effect posteriors for Models B (left) and C (right).

When fitting Model C (see Figure 2-5), it can be seen that the NAO seems to have some

association with peak river flows. The posterior distribution also has slight overlaps

with zero, although it does not contain zero in its 95% credible interval. One might

expect the NAO to have some association with these annual maximum flows, roughly

a 2% increase in the median when going from a null NAO value to a positive anomaly

of size 1.

2.4.3 A multivariate approach

In Section 2.4.2 we showed that both time and climate indices are related to peak

river flows in Great Britain. It is clear from the plots in Figure 2-2, however, that the
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climate indices are both correlated with time, suggesting the possibility of confounding

between these variables. There is a need to separate out the net effect of these indices

when time has been taken into account. It is necessary to use a multivariate approach

to accurately determine the scale of the association between these indices and peak

river flows after time has been taken into account.

It is not unreasonable to believe that the effect of time may be preventing us from

seeing the true effect of climate indices such as EA and NAO on the peak annual river

flows or that, vice-versa, the detected effect of time is actually the result of the effect

of climate indices which happen to also change in time. Note that there may be other

unobserved variables that change with time, that also drive change, as time itself cannot

drive change — it is however a good proxy for these variables. We will demonstrate

that this effect is masking the true extent of the associations between climate indices

by utilising a multivariate approach.

To overcome this potential confounding effect of time, the peak river flows are modelled

as a function of both time and climate indices together. Modelling more than one

covariate at a time is key to identifying collinearity between variables and will provide

a clearer picture of what is driving peak river flows in Great Britain. We noted that

time trends have primarily been the focus in past approaches, but isolating the effect

of climate indices to attribute these trends has largely been overlooked thus far (Merz

et al., 2012). Combinations of time and these climate indices are now considered to

observe whether those associations seen in Models B and C remain when time has been

included in the model.

Model D investigates the link between both time and EA, and the log-transformed peak

river flows. Even with time taken into account, EA is clearly associated with peak river

flows. This can be seen in the plot on the right of Figure 2-6 — the posterior distribution

still lies away from zero, with a median value of approximately 0.09. This plot represents

the effect of the change in EA for a fixed point in time. We see that, even when time

has been taken into account, EA still shows a 9% increase in the median peak flows

when going from neutral to positive EA. This is crucial as it suggests that there is a

clear association between the East Atlantic index and the annual maximum river flows

in Great Britain. Note also that the size of the association of time is reduced when EA

is added to the model. This again suggests the presence of confounding between these

variables. On the other hand, the plot for Model E (Figure 2-7) suggests that the NAO

no longer has any relation to the annual maximum flows when the time effect is taken

into account — it can be seen that the posterior now has considerable overlap with zero,

in contrast with Figure 2-5, and in fact the value becomes negative, suggesting there is
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Figure 2-6: The fixed effect posteriors for Model D - Water Year (left) and EA (right).

some collinearity between NAO and Water Year. This lack of a clear association may

also suggest that the NAO is not a key driver of change. However, we do not rule out

this possibility, as if the NAO changes linearly with time in a very close manner it is

possible that it is still a driver of peak flows in Great Britain. Finally, modelling the

Figure 2-7: The fixed effect posteriors for Model E - Water Year (left) and NAO (right).

combined effect of time, EA and NAO on peak river flows (Figure 2-8) shows the same

results – both time and EA appear to have an association with peak flows, while NAO

again seems to have little to no association. These results, in particular the change

in apparent relationship between NAO and peak river flows when accounting for time,

suggest that it is necessary to use a multivariate approach to accurately estimate the
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size of associations between climate indices and peak river flows in Great Britain.

Figure 2-8: Fixed effect posteriors for Model F - Water Year (left), NAO (middle) and
EA (right).
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2.4.4 Spatial trends

We investigate whether any of these explanatory variables have some regional trends,

in order to see whether there is any unexplained variance remaining that displays a

spatial pattern. We plot the spatial random effect (adding the i.i.d. station effect ri to

the station-level spatial effect si) to check for regional behaviour: ideally, we would see

positive and negative values randomly scattered across the country. As an example, we

show the residual effects for model D (Figure 2-9): the residuals for the other models

do not differ significantly. The scale of these effects can be considered approximately

Figure 2-9: The mean of the posterior spatial random effect for Model D.

as percentage differences as we have taken the log of the annual maximum flows in the

model. This means that an effect of 0.05 corresponds to a 5% difference in the median

peak annual flow. There appears to be some difference in the size of the spatial random

effect in the east and south-east of England compared with the rest of the country.

This may be due to the fact that catchments in this region have high BFIHOST (soil

permeability) values (see Figure 2-1), and were included in the reference network as

compromise catchments to ensure full spatial coverage. However, adding this variable to

the model did not make the spatial residual structure disappear. Further investigation

suggests that the size of the EA index association is at its highest in this part of Great

Britain.
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2.5 Discussion and conclusions

In this paper we have presented a study investigating the dependence of extreme river

flows upon climate indices for benchmark catchments of Great Britain. We have demon-

strated that it is possible to use multilevel models to detect a countrywide trend at

sites with short records by pooling information from nearby catchments, and that by

using these more complex models, clear associations between these trends and some

climate indices of interest are found. The use of near-natural “benchmark” catchments

in our approach ensured that any signal found in the data cannot be related to anthro-

pogenic changes other than climate. A clear countrywide time trend was detected, in

contrast with the scattered signal seen in the at-site analysis (see Section 2.4.1). This

demonstrates the value of a pooled approach for future analyses of trends, to get a

more accurate picture. Note that this approach relies on the assumption of constant

countrywide effects of the climate indices and on the linearity of these effects. These

assumptions nevertheless do not appear to be too stringent for a first investigation and

have been verified by checking the model residuals. The use of non-parametric regres-

sion models, as done for example in Villarini et al. (2009), to describe the relationship

between peak flow and the explanatory variable might be a viable option to relax the

strong linearity assumption.

We also investigated the effect of climate indices on peak river flows in our approach,

and noted a clear signal for both the EA index in the univariate case, with an increase

of 10% in the median when going from a neutral to positive EA value. The signal was

still strong even when time was added to the model, suggesting that the EA index may

have an impact on peak river flows even when confounding is accounted for. This strong

association is a key step towards the accurate attribution of trends in peak river flows

motivated by Merz et al. (2012). In particular, it fulfils the “soft” attribution criteria,

along with two of the three criteria for “hard” attribution - detected changes in peak

river flows appear to be consistent with the East Atlantic index, and an uncertainty

interval has been provided with the Bayesian approach. It remains to check whether

detected changes are inconsistent with potential drivers other than NAO, which was

also investigated in this paper. However, this is not yet evidence of a causal link be-

tween the two, and given that it is impossible to control the value of climate indices,

ensuring a full attribution is not trivial. It would be of interest to explore a causal

framework for this model, to ensure that this association between the EA index and

peak flows is indeed a causal relationship.

There can be concerns over the use of non-stationary models in hydrological studies (see
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for example Koutsoyiannis and Montanari (2015)), specifically that the model structure

in these cases can lead to an additional form of uncertainty when making predictions.

However, if one can attribute changes in flows to the EA index, then predictions of how

flows will change with this index in the future can be made. Additionally, aside from

prediction, a key contribution of this paper is the method itself, which demonstrates

the value of using a multilevel and multivariate approach to give a clearer insight into

the countrywide drivers of peak river flows. To gain a full understanding of how these

flows will change in the future, however, the approach should not only be based upon

time series data, but requires additional information. Some element of this can be

captured within prior information provided in a Bayesian analysis such as this, but

additional non-data assumptions must be made in order to infer causal relationships,

as suggested by Merz et al. (2014). The authors note the importance of statistical

methods in hydrological studies, but that they must be complemented with investiga-

tions of causal relationships and key drivers of changes within this system. We believe

that such an approach would be of benefit when exploring a causal framework for the

method discussed in this paper.

Finally, in the naive univariate approach, there appeared to be a clear link between

NAO and peak river flows in Great Britain, with an increase of 2% in the median of

peak flows when going from neutral to positive NAO. However, including time in the

model to address possible confounding between variables leads to this association going

to zero or even becoming slightly negative, suggesting collinearity between variables.

This demonstrates the necessity of a multivariate approach for accurately quantify-

ing the strength of association between climate indices and peak flows. A combined

multilevel, multivariate approach towards attribution helps to provide a clearer insight

into changes in peak river flows in Great Britain, and the strength of the relationship

between these flows and climate indices.

2.6 Chapter conclusions

As Brady et al. (2019) has shown, it is of benefit to use a Bayesian multilevel framework

when it comes to the accurate detection and attribution of trends in peak river flows in

Great Britain. By increasing the sample size available to the model in comparison with

at-site methods typically used, it was possible to detect clear countrywide time trends

that had been missed with the at-site approach. This result reconciles previous discrep-

ancies between climate change projections of increased flooding and observational data,

where no clear trends had previously been found. Note that, while it was found that
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the assumption of a linear relationship between annual maximum river flows and both

climate indices appeared reasonable, it may be of interest to further explore non-linear

relationships between these variables to rule out any different potential structure. This

linearity assumption is explored further in Chapter 3.

This paper explored a model which varied in space, but not in time. This was not

seen as necessary, as using annual maximum flows means there is little to no temporal

correlation. However, a space-time interaction term could be included to capture any

residual spatio-temporal variation that may not be accounted for by the spatial random

effect. This would be a simple extension of the model that may produce more reliable

model estimates.

The approach in this chapter satisfied Merz’s “soft” attribution criteria (Merz et al.,

2012), along with two of the three “hard” attribution criteria. However, it was noted

that further evidence must be provided for a causal link between climate indices such

as the East Atlantic index and peak river flows in Great Britain. In environmental

observational studies, where natural variability is a major factor, it is not trivial to

apply standard methods to ensure that Merz’s criteria are met in full. In Chapter 3,

we propose a systematic checklist for assessing causality in environmental observational

studies such as these, which fulfils and goes beyond the scope of these criteria.

As the set of locations at which rivers are measured is fixed (and the spatial domain is

not continuous), we encoded a distance-based spatial effect through a Gaussian process.

However, this does not exploit the network structure of an individual river network nor

account for the fact that Euclidean distance may not be the most appropriate measure

for describing river distance. Additionally, it is also of interest to look at a more re-

gional level of modelling for local flood defence planning. The use of Bayesian methods

described in this chapter may be useful for exploring long-term trends at a regional

level, which again may be missed out in an at-site approach. In the setting of a single

river, the spatial structure may be encoded through a conditional autoregressive (CAR)

model, where one makes use of the graph structure by dividing the area into regions

and defining neighbours to this region. The use of such structures gives rise to faster

inference techniques, and will be discussed in Chapter 4.
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Chapter 3

A systematic checklist for causal

assessment of environmental

observational studies

This chapter consists of a prepared and revised manuscript. In Chapter 2, we demon-

strated a preliminary approach towards attributing long-term changes in peak river

flows to a large-scale driver of interest. However, this approach was not a formal at-

tribution, as it only demonstrated associations between climate indices and peak river

flows in Great Britain. Further, it also did not satisfy all of the required criteria as

set out by Merz et al. (2012) for “hard” attribution. In particular, while it was shown

that detected changes in peak river flows were associated with the East Atlantic index

with a provided uncertainty interval, it must be demonstrated that detected changes

are consistent with further potential drivers than NAO . In this chapter, not only is

it shown how this criterion can be fulfilled, but a thorough systematic checklist for

assessing causality in environmental observational studies such as these is proposed,

which goes further beyond the scope of Merz’s attribution criteria.

The major contribution of this chapter is the development of a general checklist which

can be used for the causal assessment of long-term, large-scale environmental studies.
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Abstract

Natural environmental systems are highly variable, and this can have significant im-

pact on safety, wealth and well-being. To make accurate predictions and informed

decisions under different conditions, it is vital to understand and accurately attribute

the mechanisms driving long-term, large-scale environmental change. However, many

standard methods for establishing causality are usually either not appropriate or easily

applicable to environmental observational studies. We review potential approaches for

assessing evidence of a causal relationship in such problems, including instrumental

variable methods, causal diagrams, methods of multiple working hypotheses, and the

Bradford Hill criteria. We assess the fitness for purpose of these methods for this type of

study and select a number of criteria appropriate to these problems. We also propose

further steps to be taken within the analysis to address environment-specific issues,

incorporating them into a framework which assesses for causal relationships through

an audit of strength of evidence for a broad class of problems. We demonstrate this

method through a case study of peak river flows in Great Britain.
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3.1 Introduction

Understanding the causal mechanisms driving long-term, large-scale environmental

problems such as air pollution, flooding, a rise in sea surface temperature, and tree

defoliation is vital for choosing effective interventions and ensuring adequate defences

are in place in the long-term. Norris et al. (2011) notes the challenges in determining

causal relationships in such natural systems, given the presence of confounding, natu-

ral variability, and an inability to replicate studies. In addition, data records are often

limited in size and scope, or suffer from further complexities which can be avoided in

the gold-standard randomised control trial. For example, it is not usually possible to

apply exposures randomly to observational units in an environmental setting (Norton

and Suter, 2014). Randomisation of exposures removes confounding by other causes of

outcome, and thus enables identification of the effect of exposures. In environmental

observational studies, many variables may covary, often making it near-impossible to

identify the causal role any of these will have upon the response. These variables can

be one of several causes, a product of the cause, a precursor to the cause or in fact have

no causal role whatsoever (and just happen to covary with the true cause in space or

in time, not actually causing a change in the outcome). The same exposure in different

sites in environmental observational data may not lead to the same or similar response

— this is due to population heterogeneity. Though the exposure level appears to be

the same, the activities that can impact specific ecosystems can be highly variable and

modify its effect, thus an exposure’s effect may differ considerably in practice, par-

ticularly given differing geographical characteristics. Such variables which impact the

size of the exposure’s effect, known in causal inference as modifiers, are not affected

themselves by either the exposure or the outcome, but are associated with a different

effect of the exposure on the outcome (Höfler, 2005).

Temporal confounding is a common difficulty encountered in observational environ-

mental studies. It is possible that the apparent effect of time may be preventing us

from seeing the true effect of the variables of interest on a given outcome. Time it-

self does not cause changes in an outcome, but acts as a surrogate for other unknown

variables which vary with the exposure in the same way as time. It is a catch-all for

complex processes such as global warming, which has been increasing monotonically in

recent decades. Auffhammer and Vincent (2012) noted that unobserved effects of time

may confound identification of climate changes, and that controlling for such effects

appropriately allows for the true effect of an exposure to be seen. When time was not

accounted for in their model considering the effect of weather-driven crop yields on
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emigration, the effect of these yields was significant. However, with time included in

the approach, no significant effect could be seen. This exemplifies that it is crucial to

account for time when assessing causal relationships in environmental problems. Spa-

tial confounding is another common issue in an environmental setting; Augustin et al.

(2007) noted that a common problem of spatial survey data (in that case, forest sur-

vey data) is that there is often confounding between the spatial effect and covariates,

particularly those covariates which are spatially correlated.

It is clear that environmental problems cannot always be assessed for causal relation-

ships using standard causal tools — instead these tools should be adapted for this

application. Though there are techniques such as propensity score matching which

allow for the construction of counterfactual outcomes in observational studies, these

are not always fit for the purpose of assessing for causality in environmental studies.

In such situations, it can be difficult to have well-defined counterfactual outcomes.

Instead, Cartwright (1989) suggested through the “No causes in, no causes out” prin-

ciple that there must be some additional non-data assumptions made when it comes

to a thorough understanding of causes. Pearl (2001) notes that “behind every causal

conclusion there must lie some causal assumption that is not testable in observational

studies”. Additionally, Greenland et al. (1999) points out a common flaw of typical

statistical models is that they are unable to capture all assumptions necessary for an

accurate analysis. Pearce and Lawlor (2016) further highlight this point, noting that,

while it is rarely acknowledged in practice, the process of attribution to a particular

cause in epidemiology usually involves the consideration of a wide variety of evidence.

We believe that it is necessary to include non-data assumptions when assessing for

a causal relationship in observational environmental studies, as this will add further

weight to the strength of evidence provided from the data. We will discuss potential

approaches that may be of benefit for assessing the strength of evidence for a causal

relationship in environmental problems. We propose a systematic causal checklist for

these studies, making use of relevant ideas in these approaches and incorporating both

data and non-data assumptions into our method. We require that not only must the

strength of association between the exposure and response be clear, but that the model

is as free from sources of confounding as possible, is interpretable to decision-making

bodies and explains as much variability as possible.

This approach will be of benefit to studies investigating long-term, large-scale environ-

mental change problems such as causes of drought, the impact of climate change on sea

surface temperatures, river flows, air pollution, water quality and forest tree defoliation

amongst several others, where causality has rarely been explicitly discussed. We believe
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that this will provide a contribution to a field that could develop in a similar way to

epidemiology, where approaches to causality are constantly evolving and up for debate

— see, for example, the special issue on causality in epidemiology (Davey-Smith and

Ebrahim, 2016).

First, a selection of potential approaches to establishing evidence of a causal relation-

ship in environmental statistics are discussed. These include the Bradford Hill criteria,

causal diagrams, instrumental variable methods and an approach based on multiple

working hypotheses. In the following section, a causal checklist for the assessment

of environmental observational studies is proposed. We then illustrate our proposed

checklist by means of a case study assessing the causal relationship between climate

indices and peak river flows in Great Britain using the criteria proposed. Finally, these

findings are summarised and the applicability of this systematic checklist to the wider

field of environmental statistics is discussed.

3.2 A review of selected potential causal approaches

In a large majority of observational environmental studies, it is not possible to under-

take a controlled experiment to estimate the effect of an exposure. Randomisation is

infeasible in these studies, and thus methods from the gold-standard randomised con-

trol trial are not applicable. Instead, other approaches must be considered in order to

gain an understanding of causal mechanisms driving environmental change. Here we

discuss some methods used across econometrics, epidemiology and ecology which may

be of benefit to environmental problems. Note that this is not an exhaustive review,

but a set of methods that may have merit in an environmental setting and which help

to form a basis for the checklist presented in the next section. While not all of these are

causal methods in themselves, they comprise a selection of useful tools and approaches

that may be beneficial to the causal analysis of environmental problems.

3.2.1 Instrumental variable methods

Instrumental variables (IVs, (Reiersøl, 1945)) allow for the controlling of confounding

variables and measurement error in observational studies. They allow for the possibility

of making causal inferences with observational data. They can adjust for both observed

and unobserved confounding effects, thus providing a natural experiment. The instru-

mental variables approach is to find some variable that influences which exposure is
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received, but that is independent of unmeasured confounders. These variables should

only indirectly affect the outcome through the exposure. This variable can then be

used to extract variation in exposure that is not subject to unmeasured confounders.

This confounder-free variation will subsequently be used to estimate the causal effect

of exposure.

Instrumental variable methods have been used to assess the impact of climate change,

for example through station-level rainfall and temperature on agriculture as seen in

Di Falco et al. (2012), which uses village-specific characteristics as instrumental vari-

ables. This is a useful approach, but cannot always be used effectively. The choice

of instrumental variable is difficult in environmental observational problems. exposure

randomisation here is not controlled by the experimenter, but rather induced by natu-

ral variability. The search for a suitable instrument may be difficult or even impossible

depending on the problem at hand. As a consequence, this approach is difficult to

apply directly to environmental observational studies, however the idea of controlling

for an unmeasured variable will be used within our approach through a “partialling

out” approach to regression.

3.2.2 Causal diagrams

A causal diagram, as described by Greenland et al. (1999), enables the visualisation

of causal relationships between variables in a causal model. Greenland et al. (1999)

notes that causal diagrams provide a useful aid to assessing causal relationships between

variables. The authors discussed how these methods were formalised and could be used

in an epidemiological setting, to complement the models used for analysis. In addition,

one must start with a set of assumptions in order to make any inductions of causal

relationships. Constructing this set of assumptions and the corresponding diagram will

form the initial part of assessment within our approach in the next section.

Causal diagrams typically consist of a set of variables (called nodes) defined as being

within the scope of the model being represented. A line or arrow connecting two

variables is called an edge. When there are directed edges representing causal relations

between variables and no cycles connecting the other edges, it becomes a directed

acyclic graph (DAG). A variable A is said to be an ancestor (cause) of another variable

B if there exists a directed path of arrows leading from A to B, and B is considered a

descendant of A.

In observational studies, one variable is defined as the primary exposure, and another

as the primary outcome. Expert knowledge then defines the directed edges from which
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the status of other variables can be determined — these variables could be confounders,

mediators or colliders, amongst others. The presence of any of these may impact any

unadjusted association between the exposure and the outcome. Care must be taken to

correctly identify variables, as including them within a regression analysis will change

estimates of effects, either correctly or incorrectly. There are other variables such

as modifiers and instrumental variables, but these will not be considered within the

examples that follow.

1. Confounder: A confounder is a variable that is an ancestor of both the exposure

and the outcome (along a path which doesn’t include the exposure). For example,

A is a confounder of the effect of B on C in the DAG to the left of Figure 3-1.

2. Mediator: A variable is known as a mediator when it is a descendant of the

exposure and an ancestor of the outcome. One can choose to control for the

mediator or not depending on the objective. A is a mediator in the DAG in the

centre of Figure 3-1.

3. Collider: A variable is known as a collider when it is causally influenced by two

or more variables — one that is (or is associated with) the exposure, and one that

is (or is associated with) the outcome. Variables influencing this collider may not

necessarily be associated. It is not appropriate to control for colliders as this can

induce an association between variables B and C. A is a collider in the DAG to

the right of Figure 3-1.

A

B C

A

B C

A

B C

Figure 3-1: Examples of a DAG where variable A is a confounder (left), a mediator
(centre) and a collider (right).

These causal diagrams are of benefit for environmental observational studies, when

often there is clear confounding (for example between time and the exposure of inter-

est, where time is a proxy representing other unknown variables which change with

the exposure in the same way), along with mediating effects and presence of collider

variables. In addition, there is often unmeasured confounding which may have some

potential causal effect upon variables in this system. This approach can help to identify

whether potential unmeasured variables are confounders, colliders or mediators, and

how best to account for these within the modelling approach. Causal diagrams will be
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used to formalise causal dependencies within an environmental observational setting,

and help to determine which variables to adjust for or otherwise within the checklist

introduced in the next section.

3.2.3 Method of multiple working hypotheses

The method of multiple working hypotheses (MMWH) was proposed in Chamberlin

(1890). It is a method which involves the development of several hypotheses that might

explain a phenomenon being observed, while recognising that more than one hypothesis

may be simultaneously valid (thus also increasing the likelihood of discovering inter-

actions between hypotheses). In essence, this method amounts to being rigorous and

diligent when it comes to considering alternatives to a proposed cause of change in

outcome.

Harrigan et al. (2013) demonstrated the use of this approach in hydrological studies,

suggesting that it may be appropriate for wider use in environmental problems. The au-

thors note that working with multiple simultaneous hypotheses in mind provides a more

systematic approach to attribution to those which consider single causes of change in

outcome only, and which may result in confirmation bias. Using this approach, the au-

thors formulated several possible hypotheses for a set of detected changepoints. These

were based upon several potential causes of change both in isolation and as combina-

tions. Additionally, one such working hypothesis involved the acceptance that there

may be unknown or unmeasured factors which could be contributing to or counter-

acting change. These were all assessed against past literature and expert knowledge

before testing. Hypotheses were compared against criteria such as consistency prior to

carrying out hypothesis tests. The authors noted that the application of this method

can result in valuable insights, allowing for a systematic approach to considering mul-

tiple causes of climate change.

The method of multiple working hypotheses allows for the development of new hy-

potheses and highlighting weaknesses in current understanding, while allowing for the

possibility of unknown causes. This approach was also used by Clark et al. (2011),

where the authors noted that hypothesis testing in catchment-scale hydrology required

the isolation and linking of several model hypotheses. They noted the practical con-

cerns, namely trade-offs between model flexibility, complexity, comprehensiveness, and

computational cost, which must be taken into account should one use this approach.

The method’s key features of diligence and rigour when considering alternative causes

will be incorporated within the proposed checklist for assessing causal relationships in
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an environmental observational setting.

Elliott and Brook (2007) provide an updated perspective of this method, noting that

the intentions behind the approach can often be misinterpreted and incorrectly used in

practice. The authors note that the true aim of Chamberlin’s method was to avoid be-

coming attached to any single governing hypothesis, and to avoid arriving at premature

explanations of observed phenomena. In addition, they discuss how one can consider

hypotheses in parallel or in series as appropriate to the situation at hand. Each hy-

pothesis is considered in turn in the case study for the checklist that follows, however

this can easily be adapted to consider hypotheses in parallel should it be appropriate.

Finally, Elliott and Brook (2007) discuss how various modelling and model selection

techniques fit with the MMWH approach. For example, in contrast with the p-value,

the authors note that Bayesian methods have the benefit of removing a reliance upon

falsification of competing hypotheses, and allow for the incorporation of uncertainty

in modelling and prior knowledge. While the checklist does not prescribe a particular

choice of modelling, a Bayesian approach is utilised in the case study to illustrate this

checklist.

3.2.4 Bradford Hill Criteria

The Bradford Hill criteria are a set of 9 principles developed in 1965 by Sir Austin

Bradford Hill (Hill, 1965). They are most often used when attempting to establish

epidemiological evidence of a causal relationship between some posited cause and an

observed effect. They consist of the following (as paraphrased from the original):

1. Strength (effect size): While a small association does not imply that there is

no causal effect, the larger an association is the more likely that it is causal.

2. Consistency (reproducibility): If results are found to be consistent across

different observers, locations or samples, this strengthens the likelihood of an

effect.

3. Specificity: If there is a very specific population at a specific site and disease

without another likely explanation, then causation is said to be likely. The more

specific the association, the greater the probability of a causal relationship.

4. Temporality: The cause must precede the effect.

5. Biological gradient: Greater exposure to a variable should, in general, result in
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a greater incidence of the effect. In some cases, the presence of this variable alone

may lead to the effect. In other cases, an inverse relationship may be observed.

6. Plausibility: There should be some theoretical basis for proposing an association

between cause and effect.

7. Coherence: The proposed association should be compatible with existing knowl-

edge, i.e. claims must be evaluated within the context of the current state of

knowledge.

8. Experiment: Sometimes it may be possible to appeal to experimental evidence.

9. Analogy: The effect of similar factors may be considered.

Hill noted that while alone, none of these criteria provide indisputable evidence in

favour of, or against, a cause and effect hypothesis, rather they instead help one to

address if the exposure of interest provides the most likely way of explaining any evi-

dence present, or if there is “any other answer equally, or more, likely than cause and

effect?” (Hill, 1965). Thygesen et al. (2005) argued that these criteria should not be

seen as rules, but weighted differently on a per-scenario basis, an approach we will

make use of in the proposed checklist. Fedak et al. (2015) noted that these criteria

were not meant as a set of rules, but as a flexible framework to “guide epidemiologic

investigations and aid in causal inference”. Additionally, they also noted that how each

criterion is applied, interpreted and weighted must be measured against the types of

data available in the given situation. It is the spirit of this approach that we believe

must be maintained when assessing environmental observational studies for cause and

effect. These criteria are all useful for a variety of problems, but some are more likely

to be important (and evidence may be found) than others for environmental problems.

We believe that a systematic approach which assesses the strength of evidence in favour

of, or against, a causal relationship between two variables is the most appropriate for

such environmental problems. The Bradford Hill criteria in their current form are

not entirely applicable to environmental observational studies, however those relevant

criteria will be taken into consideration within the causal checklist introduced in the

next section to weigh up this strength of evidence for a broad class of environmental

problems.
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3.2.5 Additional approaches in ecology — the weight of evidence

framework

One key component of the proposed approach is the ability to systematically consider

and rule out causes with diligence and rigour. Such a systematic framework has been

proposed for ecological data by Norton and Suter (2014), which involves a number of

steps. The causal pathway is broken in segments for analysis and alternative hypotheses

are compared. The effects of individual variables are isolated, then multiple variables

are modelled together. This is then supplemented with further evidence, and one must

finally consider how to combine this evidence to draw appropriate conclusions.

As discussed in Suter et al. (2017), the U.S. Environmental Protection Agency devel-

oped a general framework for ecological studies. In this framework, firstly the evi-

dence for a particular hypothesis is assembled. This evidence is weighted according to

three properties — relevance, strength and reliability. Relevance can include biological,

physical/chemical, and environmental relevance, the latter of which looks for “corre-

spondence between test conditions and conditions at the assessed site” (Suter et al.,

2017). Though these are specific to ecological studies, similar comparisons between

mathematical/statistical model output and observational study data will be explored

in the checklist proposed later. Strength suggests that a stronger signal should be given

more weight than a weaker signal as it shows a higher degree of association (often using

correlation coefficients) between a potential cause and the outcome of interest. This is

similar to the strength criterion of Bradford Hill, and one which we include as an item

of the causal checklist later. Finally, reliability comprises a number of properties that

make the evidence more compelling, such as standardisation of methods, specificity,

corroboration across multiple studies, minimised confounding and consilience (i.e. co-

herence with scientific theory). A number of these factors are considered within the

checklist for environmental studies.

The weight of the body of evidence as a whole is then determined based upon the

weights of these parts (using a scoring table, see Suter et al. (2017)) and interpreted

to see whether any of the hypotheses is supported by the weight of evidence. Consid-

ering the evidence across a number of key criteria and ruling out causes in turn as a

consequence is a vital component of the proposed method.

Finally, this approach further suggests sensible consideration of the quality of the data

and the information used to choose the model. This is common to all analyses, rather

than specific to causal analyses, and is assumed to be undertaken alongside the pro-

posed checklist.
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3.2.6 Potential alternative approaches which did not influence the

systematic checklist

Below we briefly outline some approaches which are often used within a variety of

observational studies, and justify why we do not consider them further within the

systematic checklist proposed.

One such method is the Granger causality test, a statistical hypothesis test which

determines whether one time series is useful in forecasting another (Granger, 1969).

Granger argued that causality in economics could be tested for by measuring the ability

to predict the future values of a time series by the use of prior values of another time

series. Granger defined the causality relationship based on two principles — that the

cause happens prior to its effect, and that the cause has unique information about the

future values of its effect. One time series X at time t is said to Granger-cause another

time series Y at time t+ 1 if, with I(t) being all available knowledge up until time t:

P[Y (t+ 1) ∈ A | I(t)] 6= P[Y (t+ 1) ∈ A | I−X(t)],

where A is an arbitrary non-empty set, I−X(t) denotes all information up to time t,

excluding X. That is, Xt contains some information about Yt+1 that is not part of the

rest of the set I(t). This is usually tested with regressions to determine how informa-

tive the lagged values of X are about Y . Granger causality, despite its name, relates

to linear prediction rather than true causation. It only captures whether a variable

X precedes another variable Y , and if X can help to predict Y (Diebold, 2001). In

addition, the Granger-causality tests are designed to handle pairs of variables, and may

produce misleading results when the true relationship involves three or more variables.

This lack of reliability when it comes to the multivariate case further ensures that it is

unsuitable for environmental problems, where we may be trying to assess many com-

binations of covariates.

Structural equation models (SEM) are a collection of mathematical techniques, such

as factor analysis, regression and path analysis, which evaluate complex hypotheses,

often causal in nature, against data (Bollen, 1989; Grace, 2008). These techniques have

become more popular in ecological studies in recent years (for example Belkhiri and

Narany (2015); Grace (2008); Riseng et al. (2011)). There are two key model compo-

nents to structural equation models — the structural model, which encodes potential

causal relationships between variables, and the measurement model, which shows the

relationships between latent variables and those variables believed to indicate them.

There can be “free” pathways, i.e. those which hypothesise causal relationships to be
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tested and “fixed” pathways where the relationship between variables is already known.

A particular advantage of this method is that any latent variable can be a dependent

variable in one defined set of relationships, while it can be an independent variable in

another (Belkhiri and Narany, 2015). SEM is a confirmatory model technique — the

proposed model is evaluated to confirm whether the data supports the proposed struc-

ture or not. This structure may be rejected if it does not match the data structure. A

potential disadvantage of this method is interpretability (Jeon, 2015) — as a variety

of techniques underpin this method and may be used in a single model, results can

often be misinterpreted due to a poor understanding of the techniques. However, the

predominant reason for not considering the SEM approach is that it is designed for a

more complex causal DAG than the one considered in this approach, i.e. one which

does not fit into the linear modelling framework.

In environmental studies, we are also interested in assessing the causal effect of expo-

sures as a function of variables that may impact this exposure. These variables may

vary with time. Structural nested models were proposed in Robins (1986) to model and

estimate the joint effect of a (time) sequence of exposures. One may wish to estimate

the joint effect of this sequence of exposures in the presence of some confounding vari-

able C, which has 3 characteristics (Vansteelandt et al., 2014); that it is independently

associated with outcome Y , either as it is a direct cause of the outcome, or it shares

the same unmeasured cause, that it predicts subsequent exposure levels A1, and it is

affected by earlier exposure A0. When one is interested in estimating the joint effect

of a sequence of exposures, standard approaches such as regressing Y on A0 and A1,

or a function of both, may not be appropriate, regardless of whether conditions on

the confounder are adjusted for or not. If a time-varying confounder is affected by

the prior exposure, then standard approaches to control for confounding may not be

appropriate, as the covariate can act as both a confounder and a mediator of the effect

of the exposure on the outcome (Williamson and Ravani, 2017).

Instead of using a regression-based approach such as structural nested models (that is, a

model for the outcome conditional on the covariates), one could use an approach involv-

ing marginal structural models (a model for the counterfactual outcomes). Marginal

structural models are a class of causal models for the estimation of the causal effect of

a time-dependent exposure in the presence of time-dependent covariates that may be

both confounders and mediators (Robins et al., 2000). This paper notes that param-

eters may be consistently estimated using a special class of estimators, known as the

inverse probability of treatment weighted estimators. The marginal structural model

is for the counterfactual outcomes, not the observed outcomes, and the expectation is
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marginalized over the entire population (not conditional on the covariates). However, it

is not always practical to build counterfactual outcomes for use in environmental obser-

vational studies. Krieger and Davey-Smith (2016) note that a pillar of such approaches

is that the ability to quantify causal effects relies on the ability to pose counterfactuals

involving exposures that could be randomised, though this has been refuted for epidemi-

ological studies (Daniel et al., 2016). The potential outcomes approach is particularly

useful when one wishes to consider the treatment assignment mechanism, which is use-

ful in such studies where one can impact this mechanism. This is generally not possible

however in environmental studies, where natural variability plays a large role. Ran-

domisation in environmental observation studies is induced by this natural variability,

and the studies cannot be easily manipulated to construct counterfactuals. In a spatial

setting, in theory one could make use of location characteristics to construct counter-

factuals, however in many cases (for example, in peak river flows, see later discussion)

these characteristics do not provide much, if any, explanatory power. It is also not

necessarily simple in this framework to consider potential associations with additional

variables and hence confounding. On the other hand, the use of a graphical approach

such as DAGs helps to visualise the overall causal structure, including such potential

confounders and additional complex relationships between variables, that might not

be considered in the potential outcomes approach. As a consequence, we believe it is

of most benefit to frame the problem in terms of DAGs instead of the potential out-

comes approach in the method presented, where we propose a systematic workflow for

assessing causal relationships in environmental studies.

3.3 Causal assessment of environmental observational stud-

ies

There are considerable challenges in determining causal relationships in natural sys-

tems, given the presence of confounding, interference issues, natural variability, an

inability to replicate studies and data records of limited length. In this section, we

propose a checklist for assessing causal relationships in environmental studies, which

takes into account these issues by providing a means for incorporating both data and

non-data assumptions into the overall assessment. We demonstrate the necessity for

these non-data assumptions as motivated by Pearl (2001), as they add further weight

to the strength of evidence provided from the data. These assumptions must be clearly

stated and backed up (for example, using expert opinion). We provide a framework for

assessing these relationships within a practical checklist that is applicable to a broad
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class of environmental problems. This is framed in the context of causal DAGs for

simplicity of interpretation and the ease of visualising complex relationships between

variables in the system. Within this approach, we incorporate those Bradford Hill

criteria (within items 1, 4 and 5) that we believe are appropriate for environmental

problems and justify these choices. In addition, we propose a number of additional

checks (items 0, 2, 3, 6 and 7) that are necessary for accurately establishing causality

in these problems.

3.3.1 A systematic checklist for assessing strength of evidence

0. Write down a set of potential causal diagrams. The directed acyclic graph

(DAG) approach is chosen as a suitable framework for this class of problems, as

it provides a useful framework for visualising and interpreting the often complex

relationship between the exposure and outcome in the presence of confounding

variables. The use of DAGs will be of benefit when it comes to considering addi-

tional variables which may influence the environmental system at hand.

All variables which will be used in the analysis should be set out from the begin-

ning, where possible. It is assumed that there is sensible consideration regarding

the quality of the data and the information behind the choice of model as seen in

the weight of evidence method seen earlier, as the DAG will only be useful if the

variables used are reliably measured. A set of suitable causal diagrams, which can

be assessed using available data, must be written down for the data generating

process from the outset in order to be clear on the mechanism being proposed.

Some idea of the direction of the relationship (positive or negative) should be in-

formed from past results or physical models — if the effect found is inconsistent

upon analysing the data, this may suggest the possibility of confounding vari-

ables to be considered. The causal diagram should be kept in mind throughout

the process of conducting a statistical analysis for these environmental studies,

which often assess the impact of a large-scale cause of change upon some outcome

over some (long-term) period of time. An example of this is the three-variable

diagram seen in Figure 3-2, where E represents the large-scale exposure, O the

outcome and T time which usually acts as a confounder. In practice, as E is

usually a time-varying exposure, the DAG will have separate nodes for E at each

time point, but we represent it here as a three-node diagram for simplicity. Note

also that this diagram may represent a more complex causal chain, however the

most immediate cause is the one of interest in this approach. One cause will be
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examined at a time, while other possible causes will be treated as confounders.

It is important to note that time itself is not the cause of any change, but rep-

resents other unknown variables which vary in the same way (i.e. which lead to

the same observed change in response). In other studies, time can be replaced

by another confounder, for example, space. It is vital to consider whether the

T

E O

Figure 3-2: A potential DAG for large-scale environmental studies, where E is the
(time-varying) exposure, O the outcome and T time.

proposed direction of the edges exist in practice. If it can be shown that if there

is an edge from T to E and from T to O (for example, by inspection of time series

plots for these variables), then an association between E and O should exist when

one controls for T, assuming all of the explanatory power is not captured by T.

Controlling for time will be discussed in item 3 of this checklist. Controlling for

space will be explored in the discussion.

1. Is this mechanism plausible and backed up by expert opinion? This

is an adaptation of the Bradford Hill criterion of plausibility. There must be

good reason to consider that a variable may have an effect on the outcome under

consideration, and this association should be compatible with physics and exist-

ing knowledge. This should be backed up by a thorough review of the relevant

literature.

2. Have best efforts been made to ensure the approach is interpretable to

the end-user? There is a need to balance model complexity with model inter-

pretability. Many environmental models inform decision-making processes and

must be transparent for this purpose. Simpler models are, in general, preferred,

where simple means that the model is both parsimonious and interpretable.

Checks must be carried out to ensure that one has chosen an appropriate model

for assessing causal relationships by trying many combinations of variables be-

lieved to have an effect on the outcome of interest, but also that this model can

be sensibly interpreted by decision-making bodies. In addition, model outputs

should be intepretable to the end user.

3. Has known (time-varying) confounding been accounted for? In envi-
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ronmental problems, natural systems are usually slow moving across time with

some fast moving variations on top of those (for example climate and weather,

sea levels and tide), and variables driving changes in an outcome tend to be

highly correlated with time. In addition, the monitoring length for the outcome

may not happen on the same time scale as the changes in the exposure variable.

For example, climate indices tend to show seasonal and decadal behaviour, while

peak river flows are an annual measurement built from 15-minute measurements.

It is necessary to account for potential confounding between time and exposure

variables in a manner appropriate for the problem at hand. Time itself does

not cause a change in an outcome of interest, but can be used as a catch-all in

environmental studies, when often these processes are not necessarily known (or

are a combination of processes) but are long-term and slowly varying. In itself,

time does not provide information on potential causes of changes in an outcome

of interest but can help control for unknown variables which do. A “partialling

out” approach to removing the effect of time from the exposure and the out-

come will be used in the case study. The result of this is that the estimate now

represents the true relationship between the exposure and outcome, without the

presence of confounders represented by time. Care must be taken with such an

approach. Regressing out time is meant to be a catch-all for which time is a

proxy (e.g. climate change). It is a good, if not perfect, catch-all for a number of

unknown variables in environmental studies, such as global warming. Including

time instead will mask anything collinear with time, while excluding time will

stop us from seeing the true effect of the variable of interest. There is a trade-off

between wanting to unmask the effect of a variable that is unrelated to time, but

the risk is that we may be removing some portion of this that can be attributed

to climate change.

There are potential causal variables which are collinear with time, and without

regressing time out, they will not be distinguishable from time. They may be

causal, but we cannot reliably detect them in these situations. For those vari-

ables that do vary from time, we will be able to draw causal conclusions.

Spatial confounding is also of concern in these problems. Augustin et al. (2009)

noted that ignoring either spatial or temporal correlations in tree defoliation data

can lead to biased estimates in modelling. Spatial confounding will be explored

in further detail in the discussion.

4. Is there clear evidence of association between exposure and outcome?

This is inspired by the Bradford Hill criterion on strength of evidence. Strong

83



associations are more likely to be causal, though weak associations in practice are

common and cannot rule out a causal relationship by themselves. A clear signal

between the exposure and outcomes is sought, after known confounding has been

controlled for. However, caution should be taken when making inferences about

small area effects — weakness of evidence should not be taken as non-causality.

In practice, the strength of the effect can be observed with uncertainty expressed

in a frequentist setting through a confidence interval, or in a Bayesian setting by

inspection of the posterior distribution. A clear statement on the size and sign

of the effect and the associated uncertainty is required. If the sign of the effect

does not match with intuition or physical models, the possibility of confounding

variables will need to be considered.

5. Do the model results match with physical model outputs? If the results

are consistent with experiments or large-scale mathematical/physical simulations,

then there is a higher chance of a causal relationship, as noted in the Bradford Hill

criteria and the weight of evidence approach seen in Suter et al. (2017). It is not

always practical to run lab-based experiments under more controlled conditions,

so climate or physical model outputs can be taken as the proxy for experiment in

these problems. The sign of the effect from the previous item should be consistent

with these results.

6. Has the approach been diligent in considering alternative causes? Thor-

ough checks must be carried out to ensure that there is no likely alternative ex-

planation for the observed data, and that there has been a rigorous search to

ensure the approach has considered the impact of unmeasured confounders. This

is partly an adaptation of the multiple working hypotheses approach as proposed

by Chamberlin (1890), and the minimisation of confounding as discussed in Suter

et al. (2017). In practice, this means that every effort must be made to consider

all potential scenarios which may cause some change in outcome — though noting

that it is impossible to consider every possible scenario. For example, in assess-

ing changes in river flows, one might want to consider river management or other

human factors. Artificial scenarios should be constructed to ensure that there

is nothing critical remaining that resembles some structure present in the data.

This can include a residual analysis, which checks whether any structure remain-

ing can be seen in the residuals, or even multiple structures. One can also explore

including covariates, which impact the outcome only (i.e. they do not impact the

effect like a covariate would), in order to further reduce model variability. This

is of benefit to environmental studies, where explanatory power is often poor. It
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is important to identify whether the variable is a confounder, mediator or covari-

ate, and decide whether to include them in the model as appropriate. Additional

variables should be considered in collaboration with an expert in the field.

7. Revisit the original causal diagram — is this still a sensible mechanism?

One must return to the causal diagram in item 0 to consider potential scenarios

for further unmeasured hypothetical variables not considered in item 6.

Take for example the specific case of time as a confounding variable and suppose

we introduce a fourth variable Q into the system, which we have not measured

but may have some possible causal effect on the other variables. We consider two

possibilities; that Q is (almost) collinear with T or that Q is (almost) orthogonal

to T. A mixture of the two is possible but the individual components can be

treated separately. There may be many unmeasured variables, but these can be

similarly decomposed and reassembled.

When Q is collinear with time, as time itself cannot be a cause, then Q takes the

place of T in the DAG in item 0, but causal directions are not necessarily the

same. In this scenario, four possibilities exist:

• Q is a confounder. The DAG is the same as that in item 0. Thus, if a directed

edge exists from Q to E, and from Q to O, then once Q is controlled for, a

directed edge (and thus a causal relationship) exists from the exposure to

the outcome.

• Q is a mediator. In this case, one can control for Q depending on their

objective. Either way, the exposure causes the outcome, either directly or

indirectly.

• Q is a collider. One should not control for Q as this will induce an association

between the exposure and the outcome. As Q is not measured in practice,

this is not an issue. Note that this relationship still has a directed edge

between the exposure and outcome without Q.

• Q is a mediator but in reverse, i.e. the outcome variable might cause the

mediator in this case. However, in this case, we assume the outcome cannot

cause the exposure (for example, flooding cannot cause a change in the North

Atlantic Oscillation climate index), so this is not possible.

These possibilities can be seen in Figure 3-3. Note that no matter the DAG,

when Q is collinear with T, the same conclusion is reached — we do not need

to know Q explicitly to control for it or otherwise. As a consequence, once Q is

appropriately controlled for, we can conclude that there is a causal relationship
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between the exposure and outcome.

The other option is that Q is orthogonal to T. One possible DAG can be seen

in Figure 3-3. Here Q enters as a confounder. T does not cause Q as they are

Q

E O

(a)

Q

E O

(b)

Q

E O

(c)

Q

E O

(d)

T

E O

Q

(e)

Figure 3-3: Examples of a DAG where (a) Q is a confounder, (b) Q is a mediator, (c)
Q is a collider, (d) Q is a reverse mediator, or (e) Q is orthogonal to T.

orthogonal. Q can potentially confound the causal effect of E on O, whether

we adjust for T or not. However, for Q to exist, a variable must be found that

has components orthogonal to time and has causal effects on both the exposure

and the outcome. Possibilities for Q should be considered and ruled out on a

case-by-case basis to finally conclude on whether the exposure of interest can

be considered a cause of the outcome or not. There are other four-node DAGs

which are possible, but if Q is a mediator or collider rather than a confounder,
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we do not need to control for them in a causal analysis such as this (as discussed

previously).

3.4 Case study: attribution of trends in peak river flows

in Great Britain

In this section, we present a qualitative case for a causal relationship between climate

indices and the annual maximum of peak river flows in Great Britain, following the

causal workflow proposed earlier. In this case study, we consider the East Atlantic

(EA) or North Atlantic Oscillation (NAO) index as a potential cause of the process of

interest, and annual maximum river flows at a large number of river gauging stations

as the outcome.

3.4.1 Data and model used

The North Atlantic Oscillation (NAO) index is a mode of natural climate variability,

representing surface pressure anomalies in the North Atlantic region and surround-

ing continents, particularly Europe (National Climatic Data Center, 2017). Positive

phases of the NAO are associated with above average temperatures and precipitation

across northern Europe. The East Atlantic (EA) index (National Climatic Data Cen-

ter, 2017) is a mode of low-frequency variability over the North Atlantic, consisting

of a north-south dipole of anomaly centres spanning the North Atlantic from east to

west. It is similar in structure to the North Atlantic Oscillation (NAO) index. Posi-

tive phases of the EA index are associated with above-average surface temperatures in

Europe and above average precipitation over northern Europe. Climate data was ob-

tained from the National Oceanic and Atmospheric Administration website (National

Climatic Data Center, 2017).

These indices are impacted by climate change in a more direct manner than precipi-

tation (which we might consider as a more obvious influence of peak river flows), so

they are proxies for climate which is changing but are also quite variable to begin with

(Guimarães Nobre et al., 2017). Additionally, they can be modelled more accurately

than precipitation, a complex process which mostly exhibits low variation but with

intermittent peaks. There is also a lack of evidence for the widespread claims that in-

creased precipitation leads to an increase in flooding, as noted by Sharma et al. (2018),

who point out that in some cases there are even reduced flooding magnitudes with
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increased precipitation. Further, it is of interest to explore the large-scale, longer term

drivers of flooding, not the shorter term and local scale choice of precipitation. River

flows themselves also exhibit complex behaviour, however the annual maximum values

are themselves relatively simple to model by taking the log and assuming these values

are normally distributed. This has been found to be a reasonable assumption for UK

annual maximum flow data (Prosdocimi et al., 2014) and is further discussed in Ap-

pendix A. We investigate whether changes in peak river flow can be attributed to some

of these indices. A key problem when assessing for causal relationships in this setting

is that values for climate indices are constant across all river gauging stations in Great

Britain for a given year, i.e. the exposures vary only in time. As each station receives

the same exposure in one year and this exposure is not manipulable, the counterfactual

outcomes framework is not easily applicable. Matching river gauging stations based

upon catchment characteristics is a potential approach, however it will be shown later

that these characteristics do not provide much explanatory power. As a consequence,

such counterfactual-based methods for causality are not considered in this setting.

We focus on annual maximum river flow data from Great Britain across the series of

reference benchmark catchments introduced by Harrigan et al. (2017). The catchments

were chosen as they have relatively long records of good hydrometric quality, are rep-

resentative of Great Britain’s hydrology and are relatively near-natural. The benefit of

using this reference network is that catchments were chosen specifically to overcome the

difficulties in accurately attributing climate-driven trends. They ensure that any signal

found in the data cannot be related to any other anthropogenic changes, thus partially

controlling for unmeasured confounding. This data set contains the largest observed

instantaneous peak flows in each water year (which runs from October to September),

measured in m3/s. In total, there are 5475 observations from 117 benchmark gaug-

ing stations in the UK, with an average record length of 46 years. This data can be

obtained from the UK National River Flow Archive (NRFA) (Dixon, 2010), which is

the primary UK source of hydrometric data. The NRFA gathers and quality controls

such hydrometric data from all UK gauging stations. Records for EA and NAO are

available only from 1950, thus we only use records with these values available.

The DAG proposed (as per item 0 of the checklist) can be seen in Figure 3-4. The

model used is the Bayesian multilevel model approach for attributing peak river flows

as presented in Brady et al. (2019). This assumes that a country-wide trend is present

in the flow data and employs a multilevel approach to allow different station-specific

effects which are expressed as random effects ri. Nearby stations can be expected to

be impacted in a similar way by external climatological variables, thus we include a
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spatial correlation structure s within the multilevel model. For station i at time t, we

have:

log(Flow)it = α+Xtβ + ri + si + εit, (3.4.1)

where X is a matrix of explanatory variables, εit ∼ N(0, σ2
i ) is the measurement error,

ri is a random effect to allow for variation between stations with r ∼ N(0, τ0) and si

is a spatial random effect (s ∼ MVN(0,Σ)) to allow for correlation between nearby

stations (where Σ is taken to be of an exponential correlation structure).

3.4.2 Write down a set of potential causal diagrams.

We propose the simple causal diagram in Figure 3-4, where C represents a large-scale

climate index (EA or NAO, where we will treat each cause in turn as noted previously),

F the outcome (peak flows or flooding) and T time (which acts as a surrogate for other

unknown variables, such as global warming or ocean temperature). We know that

neither C nor F can cause T, and that F cannot cause C. Thus, the only potential DAG

for this choice of variables is the one shown in Figure 3-4. In this case C and F represent

the climate index values and annual maximum flows in a given year respectively. In

practice, the DAG will have separate nodes for C and F at each time point, but we

represent it as a three-node diagram for simplicity.

T

C F

Figure 3-4: A DAG for attribution of changes in peak river flows where C represents a
climate index, F is flooding/peak river flows and T time.

3.4.3 Is this mechanism plausible and backed up by expert opinion?

Firstly, motivation must be provided for considering climate indices as exposure vari-

ables. Reasoning must be provided for their inclusion, which is compatible with existing

theory and for which evidence can be found in the existing literature. In this section,

we consider the evidence in the literature linking these indices to peak river flows in

Great Britain.

Previous studies have shown that the NAO explains much of the variability in river
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runoff, motivating its selection for use in our approach (Hannaford, 2015; Hannaford

and Marsh, 2006; Kingston et al., 2006). Guimarães Nobre et al. (2017) noted that

positive (negative) phases of both the NAO and EA are associated with more (less)

frequent and intense seasonal extreme rainfall over large areas of Europe. We might

expect an increase in precipitation to result in increased flooding. In the UK, there

have been limited studies investigating the impact of climate indices on precipitation

and flooding. Huntingford et al. (2014) proposed a number of potential drivers for the

record precipitation that caused flooding in southern England in the winter of 2013/14

including NAO, while Van Oldenborgh et al. (2015) noted that the strongest relation-

ship with precipitation in southern England was with NAO (though this had only a

small correlation of 0.23).

3.4.4 Have best efforts been made to ensure the approach is inter-

pretable to the end-user?

Models attributing trends in peak river flows should be transparent as these models

can inform long-term flood defence strategies. We seek a simple relationship between

flows and some key large-scale covariates that explains a suitable proportion of the

variability in the high flow data and is still interpretable to these stakeholders, instead

of a “perfect” and detailed model such as a rainfall runoff model which is complex

both in model structure and computational power. Trenberth (1999) notes that highly

variable rates of rain and spatial variability not only make estimating mean precipita-

tion difficult, but also near impossible to predict how flows will change as the climate

itself changes. As we hope to quantify the impact of climate change, we instead make

use of climate indices, which are impacted by climate change in a more direct manner

than precipitation (Guimarães Nobre et al., 2017), so they can be used as proxies for

climate which is changing. Mahlstein et al. (2015) note that using climate indices may

be more appropriate than simple climate means, as they are generally closer related to

climate and potential impacts — and thus of more benefit to users. The use of these

indices ensure that we obtain a more direct quantification of environmental impacts

(Della-Marta et al., 2009).

Model outputs should also be intepretable to the end user. In this case, this requires

a statement regarding how the size of the change in peak river flows varies with the

climate index being investigated. Brady et al. (2018) and Brady et al. (2019) noted a

clear positive association between EA and peak river flows in Ireland and Great Britain.

This suggested that there should be a 10% increase in the median peak river flows when
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going from a null EA value to a positive anomaly of size 1.

3.4.5 Has known (time-varying) confounding been accounted for, and

is there clear evidence of association?

These two parts of the checklist are considered together, by accounting for confounding

within the model and estimating the relationship to peak river flows after this has

happened. The chosen exposures (i.e. the climate indices) are confounded with time

(as can be seen in Figure 3-5), which itself represents the effect of some unknown

covariates. The effect of these unmeasured confounders may be masking the true effect

of climate indices on the peak annual river flows. It is of interest to know if positive

or negative anomalies of these indices have a different impact upon peak flows, and,

whether it would be possible to observe any such differences given the variable is likely

to be confounded with time in the observation period available in the analysis. We

demonstrate how controlling for time-varying confounders by regressing time out of

the model impacts the size of the association between climate indices and peak annual

river flows in Great Britain.

We first seek a relationship between peak river flows yit (for location i and time t),

and time (as a proxy for unknown confounders) and climate indices of the form (for

example, for EA):

yit = f(Water Yeart) + g(EAt) + εi

where EA is also changing with time. f(·) and g(·) represent some smooth functions

of time and EA respectively. Here we require that EA varies in a way that is not a

simple smooth function of time. However, if the variables represented by time can vary

rapidly, one may not easily be distinguished from the other. If the effect is somewhat

smooth, it should be possible to separate out the effects of the climate index from the

confounder(s). In order to proceed, it is necessary to assume that the effect of time

is smooth — otherwise there may be some unknown covariate that varies with these

climate indices in the same way. In practice, it also does not seem unreasonable to

assume that the effect of time (as a proxy for unknown variables) is smooth. Time

itself does not change anything alone, but is a proxy for other changes. These changes

of interest are long-term and slowly varying. Such processes can be expected to be

roughly monotone or at most include a hockey stick type change point (Mann et al.,

1998), so assuming a linear relationship should be appropriate. Time series plots of

the data can be examined to identify any possible trends. A time series plot of NAO

can be seen in Figure 3-5, showing that there appears to be some slowly varying time
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trend, and that NAO has shifted direction towards positive values. A time series plot

for EA can also be seen in Figure 3-5. The linear trend over time is not so clear here,

though there does seem to be an overall slight upward trend.

In order to control for this confounding in the model, we aim to find some parametric

relationship between climate indices and time. Such relationships can be investigated

using a generalised additive model (GAM). Using the approach of Wood (2012), p-

values of the fixed effect smooth terms can be calculated to test whether these smooth

terms differ significantly from 0. These smooths (along with their associated confidence

intervals) can be seen as blue lines in Figure 3-5, while the linear regression line can be

seen in red. Note that for EA, the relationship is essentially linear, and these two lines

overlap entirely. For the NAO, these two do not overlap, though both fall within the

confidence interval,. Following the approach of Wood (2012), is clear that these smooth

R = 0.49 , p = 2.5e−05
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Figure 3-5: Time series plots for water year with NAO (left) and EA (right) with linear
regression line in red & smooth line in blue, correlation coefficients R above and with
a p-value for a significance test on the correlation being null.

terms are not significantly different from zero, with a p-value of 0.127 for the smooth

term for NAO and 0.607 for EA. This suggests that a linear relationship between time

and each of the covariates can be assumed. To remove this time-varying component,

the effect of time will be regressed out both from the exposure (EA or NAO) and the

response (the log of the annual maximum flows). What remains will represent the

relationship between climate indices and peak river flows, once time is removed from
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the equation.

3.4.5.1 Regressing out the effect of time — EA

First, a multi-level model for the log of standardised peak flows against EA is fitted,

following the approach of Equation 3.4.1. The output of fitting a Bayesian model as per

the approach in Brady et al. (2019) seen in the results that follow is a posterior density,

which describes the uncertainty about the unknown parameter(s) having observed the

data. This posterior density is shown in all results along with a credible interval

representing the uncertainty about the fixed effect parameter of interest. The size of

the y axis itself is not of interest, what is relevant is where the large proportion of the

density lies. The median of this density is indicated by the thick vertical line on each

plot, and the 95% credible interval (i.e. given the data and the model, there is a 95%

chance that the true values of the parameters lie in that interval) is represented by the

shaded region of the plots.

The posterior plot shown on the left in Figure 3-6 suggests that the magnitude of the

fixed effect of EA seems to be considerable — the posterior does not contain zero in

its 95% credible interval, and most of the mass lies above 0.09, suggesting (as we are

working on the log scale) a change of 9% in the median peak annual flows going from

a null value to a positive anomaly of size 1.

It is of interest to see if this effect size of EA is changed at all when the effect of time

is removed. Under the assumption of the smooth time effect, it should be possible to

“regress out” the effects of time. In this case, time is regressed out of the exposure

(EA) in a simple linear model

EAt = α+ βWater Yeart.

The residuals from this fit are then extracted and stored as EA∗i . This is known as

a “partialling out” approach as described in Wooldridge (2015), which removes the

time-varying portion of the EA effect. The residuals EA∗i represent the part of EA

that is uncorrelated with time. The effect of time is also regressed out of the response

(the log of peak annual flows) in the same way. Finally, the residuals of both of these

models are taken, and one is regressed against the other through a Bayesian model as

follows:

y∗it = α∗ + β∗EA∗t + ε, (3.4.2)
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where y∗i refers to the time-regressed out version of the flows, and EA∗i the time-

regressed out version of EA. The β∗ measures the relationship between peak river flows

y and EA once the time component has been removed from both. The posterior density

for the parameter β∗ can be seen on the right in Figure 3-6. It appears that EA has a

Figure 3-6: The fixed effect posteriors for EA before time is regressed out as in Equation
3.4.1 (β, left) and after time is regressed out as in Equation 3.4.2 (β∗, right). The area
under the curve represents the posterior density of the fixed effect of EA conditional
on the data observed, with a the shaded region showing the 95% credible interval
representing uncertainty about this parameter. The median is indicated by the thick
vertical line. The x-axis shows the range of values that the density can take.

clear and positive association with the log of the peak annual flows in Great Britain,

even with the time-varying component regressed out. The size of the effect is reasonably

large and positive. Looking at the posterior distribution plot shown in Figure 3-6, the

relationship is clearly centred away from zero as over half of the mass lies above 0.08,

and does not contain zero in its credible interval. This corresponds to an 8% increase

in the median peak river flows when going from a null EA value to a positive anomaly

of size 1 in any given year. Thus, it appears that the EA is a driver of changes in peak

river flows in Great Britain, even when time has been taken into account.
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3.4.5.2 Regressing out the effect of time - NAO

The same process is repeated for NAO, using the multilevel model of the log of the

annual maximum flows against NAO as seen in Equation 3.4.1. Looking at the plot

on the left of Figure 3-7, NAO appears to have some association with peak annual

flows. The time-varying portion of the NAO and of the log of the standardised annual

maximum flow is then removed. The multilevel model in Equation 3.4.2 is then run, in

order to assess the fixed effect of NAO on annual maximum flows once time is removed.

It appears that the fixed effect of NAO has disappeared or even become slightly negative

when the time effect is regressed out. A plot of the fixed effect posterior for the β∗

parameter in the time-regressed model can be seen on the right in Figure 3-7. This

Figure 3-7: The fixed effect posterior for NAO before time is regressed out (β, left)
and after time is regressed out (β∗, right). Again, the area under the curve represents
the posterior density of the fixed effect of EA conditional on the data observed, with
a the shaded region showing the 95% credible interval representing uncertainty about
this parameter. The median is indicated by the thick vertical line. The x-axis shows
the range of values that the density can take.

suggests that NAO may have little association with the annual maximum flows when

the time effect has been removed. The posterior now has considerable overlap with zero

in contrast with the left plot of Figure 3-7. The value has become negative, suggesting

there is some collinearity between NAO and time. As a consequence, is not possible to
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show that there is a causal effect of NAO upon annual maximum flows. It may suggest

that the NAO may not be a key cause of change in peak river flows across Great Britain

once time is taken into account, but there is also a possibility that the effect of NAO

is masked by the effect of some unknown variable represented by time.

3.4.6 Do the model results match with physical model outputs?

In this case study, “experiment” refers both to mathematical climate models which

can reproduce large-scale atmospheric patterns and hydrological model outputs. These

mathematical models are a proxy for experiments where such an experiment is im-

practical. Global climate models simulate global and regional climate systems. Their

outputs are downscaled to regional level, which then become inputs for hydrological

models (Chiew et al., 2010). If model results are consistent with these physical model

outputs, then there is a higher chance of a causal relationship.

Climate change projections suggest an increase in precipitation (Bates, 2009), with an

expectation that this will lead to an increase in flows in the UK. Climate change is ex-

pected to further change UK catchment hydrological responses in the future (Dawson

et al., 2016; Watts et al., 2015). Observed changes in climate in recent years have been

linked with changing precipitation patterns, which in turn can be linked to changing

patterns of the EA and NAO . It is expected that there will be an increase in the

magnitude of floods under these climate change projections (Fowler and Wilby, 2010).

Results from the Bayesian multilevel model discussed previously noted a positive rela-

tionship between peak river flows and both time and EA (which is a mode of climate

variability, and thus expected to change in line with climate change projections), sug-

gesting consistency with these physical model outputs.

3.4.7 Has the approach been diligent in considering alternative causes?

In this case study, this item involves consideration of further possible scenarios that

might either cause flooding, or further explain some of the variability missed in the

climate index model — these can be confounding variables, mediators or covariates.

Note that while the variables considered in the following section were selected as the

most likely to contribute to the variability peak river flows in Great Britain, there may

be many further options which are not considered.
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3.4.7.1 Additional known variables — catchment descriptors

Additional hypotheses must also be considered in order to discover whether any impor-

tant variables have been left out — these may be confounders, mediators or covariates,

and it is vital to treat these carefully and only include such variables within the model

where appropriate.

A number of catchment properties are known to have an impact on river flows, and an

additional analysis is carried out to investigate whether catchments of different types

are found to be impacted differently. Within the NRFA dataset, a number of catch-

ments descriptors are given to describe properties of the catchment; we focus on the

variables which Kjeldsen et al. (2008) found to be associated to median flow, as these

are often found to be key elements in explaining river flow variability. In particular,

these are the catchment drainage area in km2, the catchment average annual rainfall

in the standard period (1961-1990) in millimetres (SAAR) and the base flow index (i.e.

a measure of catchment permeability and responsiveness) derived from the catchment

soil types (BFIHOST). Transformations for each of these are recommended in Kjeld-

sen et al. (2008) — the square of BFIHOST, 1000/SAAR and the natural log of area.

Similar transformations of these descriptors are included as additional covariates in the

time-regressed model of peak river flows against EA as in Equation 3.4.1. Catchment

rainfall may be a mediator, as bigger catchments can respond differently to catchment

rainfall levels. We would not include a mediator in the model, however a covariate

which notably improves the explained variability would be worth including. The other

variables, which only impact the outcome, can be considered as covariates, and could

be included in the model should they increase explanatory power.

We look first at the relationship between flows and catchment drainage area using the

time-regressed model, i.e. the model given by

y∗it = log(Flow)∗it = α∗ + β∗EA∗t + γAreai + ri + si + εit (3.4.3)

The posterior distribution for this can be seen in Figure 3-8. This credible interval

has slight overlap with zero, and does not appear to explain much of the variability

in the model. We repeat this process for the catchment’s baseflow index, taking the

square of these values, and replacing area with BFIHOST in model 3.4.3. The posterior

distribution for the fixed effect of BFIHOST on peak river flows can be seen in Figure

3-8. Here, the credible interval again has overlap with zero, and in fact appears to

be slightly negative. It does not seem to explain much of the variability in the model

through the fixed effect.
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Figure 3-8: The fixed effect for log(Area), BFIHOST2 and log(SAAR) (left, middle
and right) when modelled with EA (time regressed out). Again, the area under the
curve represents the posterior density of the fixed effect of EA conditional on the data
observed, with a the shaded region showing the 95% credible interval representing
uncertainty about this parameter. The median is indicated by the thick vertical line.
The x-axis shows the range of values that the density can take.

We also investigate whether the catchment average annual rainfall has any relationship

with peak river flows. The posterior distribution for this can be seen in Figure 3-8. Note

that the fixed effect of this covariate is highly likely to be greater than 0.05 because

the median value (indicated by the thick vertical line) and most of the mass of the

distribution lies to the right of this value. Thus, the catchment average annual rainfall

appears to have some relationship with peak river flows in Great Britain, i.e. wetter

catchments tend to experience larger peak flow values, and could be included in a model

for peak river flows. However, as it is likely to be a mediator, it is not appropriate to

include the catchment rainfall in this situation. These results are all comparable to the

coefficients for these variables estimated in Kjeldsen et al. (2008). Note, however, that

the inclusion of these additional covariates does not impact upon the estimates of the

magnitude and direction of the EA index’s effect upon peak river flows. This is due to

the fact that they are covariates as opposed to confounders, however it can be useful

to include them in a model to further explain the variability in the outcome.

3.4.7.2 Residual analysis

Another common way to check for unexplained variability and potential unmeasured

confounding is to look at the residuals of a regression — i.e. to inspect what is left
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over after explaining the variation in the dependent variable using independent vari-

able(s). The aim of this is to see whether an additional predictor could be constructed

that resembles the structure of these residuals, and whether there are any other model

assumption violations (such as heteroscedasticity). The plot on the left of Figure 3-9

shows the posterior yearly average residuals against time, for the model of peak river

flows against EA with time regressed out. These residuals appear to vary randomly
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Figure 3-9: A time series plot of model posterior mean annual residuals with standard
error (left) and a time series plot of number of sunspots per year (right)

.

around the mean, in particular from the 1970s onwards, where data records are available

for the majority of sites and thus the residuals are much less variable. This appears

to be a smooth curve, which can be checked using the method of Marra and Wood

(2012) discussed in in the case study. This results in a p-value for the smooth term of

0.271. It is again clear that the smooth terms are not significant, suggesting a linear

relationship can be assumed.

It is possible, however, that a predictor whose behaviour resembles that of the residuals

once time is regressed out could be constructed. A climate index other than NAO or

EA is one possible option, given the apparent multi-decadal behaviour of the residu-

als. However, this approach aims to quantify the impact of climate variability upon

peak river flows. Having this predictor be an additional climate index, by definition

a proxy for climate which is changing, would add further to the strength of evidence
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that climate change is indeed causing changes to these flows. As an illustration, one

alternative predictor that might resemble this structure is the number of sunspots per

year. Macdonald and Sangster (2017) noted strong correlations between flood-rich

phases and solar magnetic activity. It is possible that solar activity impacts rainfall

and thus we use it to showcase the exploration of further alternatives. Such potential

confounders should, in practice, be identified with an expert, however we explore this

possibility here to highlight the approach used. A plot of a time series of numbers of

annual sunspots may be seen on the right of Figure 3-9. This is not entirely dissimilar

in structure to the residual plot to the left of Figure 3-9 and expert opinion should be

sought to verify this further. However, this is likely to be unrelated to anthropogenic

climate change (i.e. it cannot be impacted by humans) and regressing the number

of sunspots against the model mean annual residuals does not result in a significant

effect, thus this potential confounder does not require further consideration within our

model. It seems unlikely that other predictors could be constructed that both display

the behaviour seen in the residual plot and would interfere with the ability to detect

the true impact of climate change upon peak river flows in Great Britain. This will be

further discussed in the context of the causal diagram later in this section.

3.4.8 Revisit the original causal diagram — is this still a sensible

mechanism?

We follow item 7 of the systematic checklist and discuss further possibilities for Q as a

potential unmeasured confounding variable in the case of attributing changes in peak

river flows to climate indices. One such possibility is global warming as seen in Figure

T

C F

G

Figure 3-10: A causal diagram for peak river flows in Great Britain including unmea-
sured variable G (representing global warming) which is orthogonal to T.

3-10. This will cause changes in climate indices and perhaps peak river flows; however

it is increasing with time (see Pachauri et al. (2014)) and occurs at an earlier point

in the causal diagram — i.e. the effect of global warming on flooding is mediated
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by climate indices. Regressing time out of the model ensures that any confounder

such as this which is collinear with time is accounted for. Another possibility for a

confounder is changes in land use. This can lead to changes in peak river flows but is

unlikely to cause changes in climate index values. Additionally, the use of benchmark

catchments in this case study controls for land use changes, and thus this possibility

can be ruled out. Ocean temperatures may have some causal effect on climate indices

and potentially also on changes in peak river flows. This is a potential candidate for an

unknown confounder, but it is again increasing with time (Pachauri et al., 2014) and

thus can be accounted for in the same way as global warming. Rainfall is a mediator,

so it is not necessary to control for this covariate.

Other than these examples, it is difficult to identify further potential candidates which

may have a confounding effect upon this system, suggesting that the original causal

diagram is appropriate for the problem at hand and that it is possible to say that EA

has some causal effect upon increasing peak river flows in Great Britain.

3.4.9 Summary of case study

This case study demonstrates the use of the systematic checklist proposed to attribute

long-term changes in peak river flows in Great Britain to some large-scale driver of in-

terest. This approach started with a causal diagram between large-scale climate indices

(EA and NAO) and peak flows, with time as a proxy for unmeasured confounding. The

choice of climate indices as a plausible, coherent and interpretable choice for potential

causal variables was justified. The case study demonstrated the usefulness of regressing

time out of the model in order to gain a better understanding of the residual effects of

climate indices on peak river flows once time has been taken into account.

In particular, before time is regressed out of the model, the NAO index appears to

have some small impact upon peak river flows. However, once time has been taken into

account, this association disappears completely. The collinearity between NAO and

time means that it is not possible to show that there is a causal link between NAO and

peak flows — it may be causal, however we cannot arrive at this conclusion due to its

collinearity with time. On the other hand, the EA has a clear association with peak

flows both before and after time has been regressed out of the model, suggesting it has

a causal impact upon peak flows. This is clear to observe as the EA varies with time.

The case study also exemplifies the complexity of finding potential additional candidate

confounding variables and that it is likely that the EA has a causal relationship with

peak river flows in Great Britain.
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3.5 Discussion

There are many difficulties when assessing for causal relationships in environmental

studies including confounding, limited data records and natural variability. Most stan-

dard methods for establishing causality are not easily applicable. There is often no

control with which to compare exposed units, meaning that typical counterfactual-

based methods for causality cannot be directly applied. In addition, there is a need to

consider non-data assumptions which help to build up the strength of evidence for a

particular relationship — the data alone is not sufficient for such studies. This is best

summarised by Cartwright (1989)’s “No causes in, no causes out” approach, which in

its essence states that it is impossible to learn anything of a causal structure using only

statistical correlations. Instead, additional knowledge must be incorporated in order

to make causal statements.

We have proposed a systematic method for assessing causality in environmental ob-

servational studies, which incorporates both data and non-data assumptions. This ap-

proach provides guidelines on how to conduct a thorough analysis to ensure all possible

avenues are explored through a methodical checklist, which brings together multiple

workflows by bridging the gap from climate scientists to the relevant authorities. The

method helps to improve accuracy and interpretability for decision-making bodies, as

well as being thorough in ruling out additional causes and controlling for confounding

where possible. We also claim that it is necessary to sense check the proposed models

with causal diagrams throughout the process, in order to consider as wide a range of

possibilities as is feasible.

We applied this method to a case study of peak river flows in Great Britain, where the

aim was to attribute changes in these flows to climate change (represented by the East

Atlantic and North Atlantic Oscillation indices). A thorough review was carried out,

which addressed each item within the checklist. The result from this approach sug-

gests that changes in these flows can, in part, be attributed to the East Atlantic index

and hence climate change. The case study, through assessing the impact of the NAO

index upon peak river flows, also demonstrated the need to account for time-varying

confounding and hence gain a further insight into the true associations between the

exposure and the outcome of interest.

Though the case study focused specifically on peak river flows in Great Britain, this

approach is applicable to the attribution of changes in such flows in any location.

Another spatial correlation structure may be appropriate or indeed the climate index

governing such changes may differ from that considered here, however the core model
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in Equation 3.4.1 and checklist for ruling out additional possibilities would hold in any

location. As discussed in Chapter 1, Merz et al. (2012) divides attribution studies

in flood trend studies into “soft” and “hard” attribution. “Soft” attribution uses hy-

potheses and references to previous studies to back up attributions to causes of change.

“Hard” attribution requires evidence that detected changes are both consistent with

the proposed cause of change and inconsistent with potential alternative causes, and

further that some confidence level in the attribution statement is provided. The au-

thors of Merz et al. (2012) note that, by that particular point in time, no such studies

had fulfilled the requirements of hard attribution. In contrast, this systematic checklist

both fulfils these three requirements and goes beyond their scope. Changes in peak

river flows in Great Britain are consistent with changes in the East Atlantic index, and

inconsistent with potential alternative causes discussed within the case study. A cred-

ible interval is provided for the estimate of the effect of the climate index upon flows.

Beyond these three requirements, the method also considers the interpretability of the

model to the end-user, controls for unmeasured confounding and frames the problem

in the context of causal diagrams which are revisited throughout the analysis to ensure

diligence in considering possibilities.

The approach used in the case study on river flows can also be directly applied to

many other environmental observational studies, such as for example the assessment

of the impacts of climate change on water quality. Xia et al. (2015) discusses the im-

portance of improving methods in order to separate the effects of climate change from

confounders such as land use changes and pollution. Land use changes will vary in

time and can be controlled for in a similar approach to the “partialling out” method

used in the case study, and following the checklist discussed would ensure that any

relationship uncovered in the analysis can be deemed to be causal. One example where

the approach does not apply, however, is in the case of feedback loop environmental

problems, which cannot be summarised by a DAG (Pearce and Lawlor, 2016).

The river flow case study presented primarily focused on time-varying confounding,

however spatial confounding can also be an issue in environmental observational stud-

ies. Typically, models for spatial observational data will include both a fixed effect

for the covariate(s) of interest along with random effects representing the spatial cor-

relation in the data. The aim of adding these spatially correlated random effects is

to reduce bias in variable estimates resulting from unobserved covariates. However,

if these variables are also spatially correlated (as well as the response), then the in-

troduction of such spatial effects may result in the confounding of the covariate effect

(Reich et al., 2006; Thaden and Kneib, 2018) demonstrated that the effect of spatial
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confounding may be so strong that a coefficient that is significant using a non-spatial

model may become non-significant with the inclusion of a spatial random effect.

Such a scenario arises, for example, when estimating the impact of site-specific charac-

teristics on tree defoliation, as noted by Augustin et al. (2007). This confounding, which

makes it impossible to distinguish between spatial effects modelled through location

co-ordinates and site-specific effects (such as soil type and local weather conditions),

means that there has been a focus on prediction of trends in defoliation rather than

establishing a causal relationship between the exposure and the response (Augustin

et al., 2009). This spatial confounding has primarily been investigated in the discrete

case, i.e. areal spatial data, where the main approach involves the constraining of

spatial random effects to be orthogonal to the fixed effects (Hodges and Reich, 2010),

while Hanks et al. (2015) discussed the application of this approach to the continuous

case, noting that while there are computational benefits to this method, care must be

taken as it assumes that all variation in the same direction as the fixed effects can be

attributed to them. Thaden and Kneib (2018) propose the use of structural equation

modelling methods to separate the direct effect of a covariate from the indirect effect

which arises from correlations with other variables. The authors suggest a different in-

terpretation of the role of space, allowing space to have an effect on both the exposure

and the response simultaneously, while the other approaches discussed allow for infor-

mation within the response only. This method provides reliable estimates, even when

it is unclear which variables are impacted by unknown spatially varying variables, and

thus may be incorporated within a checklist for environmental observational studies

where it is anticipated that spatial confounding may occur.

3.6 Conclusions

The accurate attribution of the mechanisms driving long-term, large-scale changes

in environmental problems is crucial for informing future interventions, yet standard

methods for establishing causality are often not directly applicable to such studies.

In this paper, we provided a selected review of potential approaches for assessing the

evidence for causal relationship in these studies. Such methods as causal diagrams,

the Bradford Hill criteria, methods of multiple working hypotheses, and the weight of

evidence approach as seen in Suter et al. (2017) were assessed for suitability to envi-

ronmental problems. We proposed a systematic checklist for the causal assessment of

these issues, incorporating a number of these methods, while also including additional

steps to address environment-specific issues. This framework can be used to assess
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for causal relationships in a broad class of environmental problems by laying out the

strength of evidence according to this checklist. This method was illustrated through

a case study of peak river flows in Great Britain, in which a strong effect of the East

Atlantic (EA) index on high flows was identified.

3.7 Chapter conclusions

The checklist proposed in this chapter provides a simple, usable tool that provides a

conclusion to the attribution analysis conducted in Chapter 2. In particular, the “hard”

attribution criteria set out by Merz et al. (2012) has been satisfied, and it is possible

to state that changes in peak river flows in Great Britain can, in part, be attributed to

the East Atlantic index and hence to climate change. Another important contribution

of this chapter is the general applicability of this causal approach to environmental

observational studies, for which standard causal methods are often not appropriate.

However, it is clear from this case study that collinearity, particularly with time, is an

issue that is not easily overcome in environmental observational studies such as this.

As a consequence, it is not always possible to attribute changes in some outcome to a

variable of interest. For example, it was not possible to attribute changes in peak river

flows in Great Britain to the North Atlantic Oscillation index due to its collinearity

with time — it is possible that there is a causal relationship, but using these methods

it is not possible to conclude this. The difficulty in establishing causality is discussed

again in Chapter 4, when a more regional assessment of trends in river flows is carried

out.
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Chapter 4

Assessing trends on a single river

network

4.1 Introduction

Water-related natural hazards can have tremendous impacts on the well-being of com-

munities; water levels severely below average can bring periods of drought and water

scarcity, while those severely above average can be connected to floods. These types

of hazards are typically spatial and temporal in nature. In the case of rivers, in which

flows tend to move only downstream (tidal systems being an exception), the measure-

ments for a single river with multiple stations form a network. Learning how river

flows evolve throughout a network in space and in time is beneficial when it comes to

accurately estimating the availability of water in the network and the probability at

each location of exceeding some threshold for flooding.

The key contribution of this chapter is the development of spatial methods for trend

detection on a single river network across a 40 year period, by exploiting the inher-

ent network structure of such rivers. As noted in Chapter 2, at-site methods are often

poorly powered and unable to detect trends when a trend is present. The use of a coun-

trywide trend assumption ensured a better ability to detect trends present in the data.

However, this assumption of a countrywide trend might be too strong, although it was

necessary for any trend to be detected with the limited available data. The assumption

was balanced in part using station-specific effects, which allowed for some variability

between stations. In this chapter, we instead propose a river-wide assumption, which is
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a more relaxed assumption. There is a switch to focus on a single river network, result-

ing in a more accurate estimate of trends present in the data. The structure of a river

monitoring network of stations is encoded using a first-order conditional autoregressive

(CAR) model. CAR models, while often seen in assessing disease incidences in areal

data, have not often been applied in an environmental setting such as this. We believe

that this contribution is beneficial for accurately encoding spatial relationships between

gauging stations in a network. A benefit of this approach is the ability to learn about

the regional behaviour of river flows, and leads to reduced variability when compared

to an at-site approach. It may also allow for the prediction of intermediate flows along

a network, which would not be possible with at-site methods. The full record of the

flow data is used (i.e. daily mean flows), not just the annual maximum, in comparison

with Chapter 2. The use of daily mean flows, while also giving information surrounding

water availability in the network, ensures there is a larger amount of data entering the

model — this is a benefit as we are better able to detect trends, however as we are

using daily mean flows we might expect to see smaller trends. The amount of data may

also lead to computational issues. Another potential drawback is that the focus is on

an entire river basin rather than a single river, leading to a trade-off between accuracy

and generality of the estimation.

The structure of this chapter is as follows. We provide a brief review of previous

approaches to incorporating river flow structure and direction into the estimation of

trends in flows. We then investigate a new approach to modelling trends in daily mean

flows on a river station network which exploits the network structure of rivers. This is

then used to model the spatial covariance between stations, making use of conditional

independence and directed graphs to map out these relationships through a sparse

precision (inverse covariance) matrix. This spatial structure will be included within a

model to estimate trends in daily mean flows across the river network. It is shown that

the addition of this spatial structure reduces the variability in trend estimates when

compared to a simpler (i.i.d.) model.

We also discuss in brief potential alternative methods which incorporate the network

structure in the mean, allowing for the attribution of trends detected to some local

drivers of interest. The difficulty of accurately representing the physics of the river

network within a simple statistical model is discussed. The methods discussed is show-

cased using the network of station in the river Eden catchments in the northwest of

England, which has experienced a series of devastating floods in the last 20 years.

108



4.2 Proposed approaches for modelling flows on a river

network

In this chapter, we introduce novel approaches for explaining the flows at each given lo-

cation in a network, both of which exploit the network structure of rivers. One method,

investigated in detail this chapter, exploits the network structure to model the spatial

covariance (precision) between stations, making use of conditional independence and

directed graphs to map out these relationships. Modelling the spatial covariance be-

tween stations given the directional nature of river flows has previously been developed

by Ver Hoef et al. (2006). The novel approach presented in this chapter instead makes

use of conditional independence relationships between stations to represent the net-

work structure. In this way, we obtain a sparse precision matrix, giving rise to fast

inference for a large number of observations. The aim of this approach is to accurately

detect long-term trends in daily mean flows in a single river network. In particular the

methods proposed in Section 4.7 and implemented in Section 4.8 exploit the network

structure of a single river. The approach makes use of direct connections between river

gauging stations to model flows at stations as a function of their nearest neighbours.

This is illustrated by the river Eden network in north England. The method will be

compared to modelling the stations as independent from each other, in order to demon-

strate the benefit of utilising the spatial structure of the network. A further approach

to utilising the network structure, by modelling the structure in the mean, will be dis-

cussed in brief later in this chapter.

Before these approaches are explored in detail, we first investigate prior approaches to

modelling the spatial structure between monitoring stations and how these might be

of benefit to the method devised in Section 4.7.

4.3 A review of past approaches

Spatial patterns in a river gauging network will depend both upon distance between

gauging station locations along the network, but also the direction of the river flow.

As a consequence, as noted by Gallacher (2016), it may not be appropriate to use a

purely Euclidean distance in this setting. Instead, O’Donnell et al. (2014) discussed

the possibility of using a different approach to spatial distance, noting that models for

spatial river flow data may need to be constructed in a different way to using stan-

dard distances. Instead of using the Euclidean distance between sites, it was proposed
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one can instead use the stream distance — see Ver Hoef et al. (2006), which defines

this quantity as “the shortest distance between two locations, where distance is only

computed along the stream network”. Curriero (2006) demonstrated that substituting

this stream distance in place of Euclidean distance does not produce a valid spatial

covariance model, except for when an exponential covariance structure is used. For ex-

ample, Gardner et al. (2003) made use of stream distances with a spherical covariance

function, without ensuring that this leads to a valid covariance matrix. Using these

stream distances to determine a covariance matrix can give rise to negative eigenvalues.

This means the matrix is no longer positive definite and thus cannot be considered to

be a covariance matrix any longer.

Instead, Ver Hoef et al. (2006) made use of moving average constructs to define a

broad class of valid spatial covariance models which use stream distance. These meth-

ods, based on a moving average approach, incorporated stream distances, river flow

and appropriate weights at confluence points in the network. It had been shown by

Barry and Ver Hoef (1996) that a large class of autocovariances may be developed

by producing random variables as the integration of a moving average function over a

white noise process. In order to have a stationary process, the function must have finite

volume. The moving-average construction allowed for a valid autocovariance function.

These moving average functions allowed Ver Hoef et al. (2006) to build valid stream

models which account for directional flow, specifically in that these where moving aver-

age functions will only be positive upstream from a monitoring station. At a confluence

point, the moving average function will continue upstream but will split according to

some defined spatial weights that have been assigned. The weights may be determined

according to flow volume, catchment area or some other appropriate descriptor. These

models, known as Tail-up models, assign a correlation of zero to pairs of locations

which are not connected. This approach was formalised by Cressie et al. (2006) by

defining the process according to some stochastic integral with respect to a Brownian

motion. Such a model only allows for spatial dependence between two points which are

upstream of each other. While such models will not be directly applied in this thesis,

the idea of only allowing for those stations directly upstream to influence values taken

at a monitoring station of interest will be used in the approach discussed in section 4.9.

Monestiez et al. (2005) used conditional probabilities to define spatial dependence in

a river flow network using directed trees. This defined two types of tree models - one

based upon graph theory, characterising topological relationships between parts of the

river, and one consisting of segments of the river (some set of points with a metric

which are linked together to construct the topology of the first kind of tree). However,
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Cressie et al. (2006) noted that as such approaches are not based on covariances, they

are not as easily adapted for use in kriging as tail-up methods. In the approach pro-

posed, we make use of conditional relationships to define spatial dependence between

river gauging stations in this chapter, however, in order to respect river flow direction,

we cannot construct a valid covariance matrix. Instead, we use these conditional rela-

tionships to produce a valid sparse precision matrix leading to a fast inference approach

which respects the structure of the network.

O’Donnell et al. (2014) proposed an alternative approach of adapting kernel methods

for stream distance and penalized splines for a finite discrete approximation to river

networks. These were then used to estimate spatial trends instead of a covariance func-

tion. The authors noted that, while covariance functions provide a simple framework

for statistical modelling of spatial data, in cases where trends may be non-parametric

in nature (as can often be the case in environmental studies) it may be more appropri-

ate to instead directly model these trends using some form of flexible regression. This

method would then incorporate some form of spatial error. Such methods were gener-

ally described in the additive modelling framework by Wood (2006). O’Donnell et al.

(2014) proposed the use of a set of basis functions φj(x), j = 1, ..., p as components in

a regression model. These would represent the estimate in the form f̂(x) =
∑
j
βjφj(x).

Using basis functions means that estimates can be expressed in proper functional form

through specification of the coefficients βj .

A penalised approach which was useful for controlling the smoothness of the estimate

was proposed by O’Donnell et al. (2014). The smoothness of the β at adjacent stream

locations j and k was measured by (βj−βk)2, once no confluence point existed between

the two. Where such a confluence point existed, then this measure of smoothness must

reflect the relative levels of flow in the contributing streams, which were denoted fa

and fb. At the confluence point c, it was expected that fc = fa+fb. Then, smoothness

was achieved at the confluence point c using the penalty

λ{ω2
a(βa − βc)2 + ω2

b (βb − βc)2},

where the ωi represent weights which can be determined by the relevant flows of in-

putting streams. Here λ controls smoothness through the weight that is attached to

the penalty. A P-spline model was then formulated, which did not directly depend on

measures of stream distance or spatial location, but through a mixing process. The

first-order penalty used in O’Donnell et al. (2014) described this mixing by imposing

smoothness within segments of a stream, but also across confluences. For the latter

of these, a conditional independence assumption was made that, given immediately
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upstream catchments, flows at a station of interest are independent of all those further

upstream. A conditional independence assumption will be used in the approach pro-

posed in this chapter.

The method proposed in O’Donnell et al. (2014) allowed for the borrowing of strength

from nearby locations (the benefits of which are discussed for annul maximum flows in

Chapter 2), while preserving the directionality and structure of a river flow network.

While the approach proposed in this chapter differs in its implementation by instead

making use of conditional independence relationships between stations, the same mo-

tivation of borrowing strength from nearby location (thus improving statistical power)

and respecting the river network structure is followed throughout this chapter.

4.3.1 Summary

As discussed above, a number of methods have been used to model river flows on a single

network, incorporating both distance and river flow direction. The tail-up method

proposed by Ver Hoef et al. (2006) overcame the issues of stream distances giving rise to

invalid covariance matrices. This was achieved by utilising moving average constructs to

define a broad class of valid spatial covariance models which use stream distance. These

methods respect the direction of flows by specifying that moving average functions will

only be positive upstream from a monitoring station. The approach of Monestiez et al.

(2005) made use of conditional relationships o define spatial dependence in a river flow

network using directed trees. Finally, O’Donnell et al. (2014) adapted kernel methods

for stream distance and penalized splines for a finite discrete approximation to river

networks, thus preserving the structure of a river network while borrowing strength

from nearby locations.

Aspects of all of these methods will be incorporated within the approach proposed

in this chapter. Conditional independence relationships between stations will be used

to produce a sparse precision matrix which encode the network structure, while a

multilevel modelling approach is used to pool data from multiple sites together, allowing

for the borrowing of information across monitoring stations.

4.4 Data

The method proposed in Section 4.7 will be exemplified using daily mean river flow

data across a series of river gauging stations spanning the river Eden. These catchments
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are located in the north-west of England. This data set contains the daily mean flows

in each day of the water year (which runs from October to September), measured in

m3/s. In total, there are 247,807 observations from 18 gauging stations on the river

Eden network, ranging from 1951-2017 — these station locations can be seen in Figure

4-1 and some basic information for each station on the River Eden can be seen in

Table 4.1. This includes active years, length of river flow records, catchment area

and SAAR, the catchment’s average annual rainfall in the standard period (1961-1990)

in millimetres. The average record length of stations within this network is 40.77

Station ID Year opened Year closed Record length Area (km2) SAAR (mm)

76001 1951 - 66 32.34 2438

76002 1966 1998 32 1374.85 1272

76003 1960 - 57 406.99 1768

76004 1962 - 55 156.10 1828

76005 1970 - 57 618.21 1142

76007 1967 - 60 2276.00 1182

76008 1967 - 60 333.42 1073

76009 1968 2000 32 147.2 NA

76010 1969 2014 45 157.58 940

76011 1967 - 60 1.63 1096

76014 1971 - 56 66.82 1492

76015 1970 - 57 149.36 2149

76017 2004 - 13 1371.70 1273

76019 1999 - 18 63.09 983

76020 2006 - 11 NA NA

76806 2000 - 17 223.03 1270

76809 1997 - 20 249.70 1211

76811 1999 - 18 33.97 1428

Table 4.1: A summary of record lengths and catchment descriptors at each station

years, with a minimum of 11 and maximum of 66 years. There is an average of 2% of

records missing across the network. The average size of catchments within the network

is 578km2, with a minimum size of 1.63km2 and a maximum of 2276km2. All data

related to rivers and river flows can be obtained from the UK National River Flow

Archive (NRFA) (Dixon, 2010), which is the primary UK source of hydrometric data.
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Figure 4-1: Gauging station locations for the River Eden catchments in the UK, from
National River Flow Archive (2017).

4.5 Exploratory analysis and data standardisations

Because of the different sizes of catchment area drained at each location, river discharge

measurements at the different stations tend to have different means and variances, po-

tentially along with differing skewness and distribution. To make these measurements

more comparable across time periods, transformations are applied. As we wish to

model all stations together, if stations exhibit considerably different behaviour to the

others, they may be excluded from the analysis or treated differently.

4.5.1 Data standardisations

In order for measurements on any given day across any given year to be comparable in

the network model, the data requires some transformation and removal of seasonality.

This will be achieved by taking the log of the flows, then adjusting for seasonality
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through fitting a generalised additive model (GAM — see Section 1.4.5) with the day

of year as a smooth function. Using a log normal distribution has been found to fit UK

flow data reasonably well (Prosdocimi et al., 2014), while adjusting for seasonality will

ensure that longer-term trends are more clearly detected.

We start with removing the seasonality of the log-adjusted flows obtained by fitting a

GAM with a day of year (DOY) smooth. We then adjust the predicted values using

the fitted value at that station at the start of the water year (October 1st). That is,

for station i at time t, the log and seasonal adjusted flow will be

log Yit = X1it −X2it +X3it + εi, εi ∼ N (0, σ2). (4.5.1)

where Yit is the adjusted daily mean flow, X1it is the original river flow, X2it the

predicted flow and X3it the river flow on October 1st (i.e. the first day of the water

year) at station i and time t. The predicted flow in Equation 4.5.1 is calculated from

the GAM described in the following paragraphs.

The log of the daily mean flows is taken, and a generalised additive model is fitted for

each station for this quantity against a smooth function of the day of year and a linear

term for water year as follows

log(Ȳi) = α+ f(Z1i) + βZ2i + εi, εi ∼ N (0, σ2) (4.5.2)

where Ȳ is the original daily mean river flow, Z1 represents the day of year, f(·)
represents a smooth function of the day of year and Z2 the water year. A cyclic cubic

spline is used as the basis function, which is necessary for the seasonal term as there

should be no discontinuity between September and October (as discussed in Section

1.4.5). The addition of the linear water year term ensures that values across years are

also comparable.

This GAM is fitted, with the choice of k (the basis dimension size) chosen following

the discussion in Section 1.4.5. There are 365 separate values for day of year, so one

can choose higher than the default of k = 10, however no more than k = 12 was

seen as necessary to observe the structure of the smooth and this choice cut down on

computational time compared to a larger k. The fitted smooth terms for the seasonal

(day of year) component, i.e. f(Z1), are extracted for each station. The adjusted flow

according to Equation 4.5.1 is then calculated using these seasonal component values

as predicted flows. Plots for the individual station-level smooths can be seen in Figures

4-2 and 4-3, where the line in each case shows the fitted smooth effect, while the shaded

region displays the confidence interval. These all follow a similar structure with peaks
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in winter months, with peaks roughly around the 100 day mark (December/January)

in the water year. However, there appears to be some variation at different timepoints

in the year — it can be seen that stations 76001 and 76017 displays somewhat differing

behaviour to the remaining stations, which may need to be taken into account when it

comes to the selection of data for analysis. These differences may be down to the level

of smoothing (which differs slightly in each case, note that the smoothness parameter

could be fixed to ensure the level of smoothness is consistent across stations.) versus

variation, however further investigation may be required. We will look at station 76001

as a particular case study of candidate stations for removal from the analysis.
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Figure 4-2: A plot of the daily smooth function (with uncertainty) for stations 76001-
76010. The line represents the fitted smooth effect, while the shaded region represents
the confidence interval.
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Figure 4-3: A plot of the daily smooth function (with uncertainty) for stations 76011-
76811. The line represents the fitted smooth effect, while the shaded region represents
the confidence interval.
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4.5.2 Functional boxplots

One simple way to identify potential stations that behave differently is to plot all the

time series curves for each station through a functional boxplot (Sun and Genton, 2011).

A functional boxplot involves ordering of functional data from the centre outwards,

and consequently can provide a measure of the “outlyingness” of a particular gauging

station’s time series.

One such example of a functional boxplot can be seen in Figure 4-4, where each curve

represents one year (2003) of data from each of the gauging stations on the network.

Here, the red curves represent potential outlier candidates, the black curve represents

the median curve, blue curves are the “envelopes” while magenta represents the 50%

central region. In this case, the median curve is for station 76007, which is the most

downstream station in the network. Despite this plot showing a number of potential

outlier candidates, for the most part these curves all display a similar shape. The one

counterexample for this is for station 76001, which we will investigate in more detail.

Figure 4-4: A functional boxplot for station-level data in 2003. Red curves represent
potential outlier candidates, the black curve represents the median curve, blue curves
are the “envelopes” (the border of the 50% central region), and magenta represents the
50% central region.
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4.5.3 Station 76001

Station 76001, which gauges the Haweswater Beck at Burnbanks, is one of the most

upstream gauging stations in the river Eden network. It is a very wet catchment, just

500m downstream of the Haweswater reservoir (National River Flow Archive, 2017).

In dry years, all flood flows are absorbed by the reservoir. The resulting flow pattern

observed at station 76001 reflects the heavy abstraction caused by this, meaning the

natural flow pattern of this station may not always be observed. The fact it is affected

by a reservoir is in itself a good justification for excluding this station from the analysis

as it is expected that this will result in differing behaviour of the flow measurements.

Additionally, as noted in Chapters 2 and 3, human-altered flow is not informative of

natural changes which are what we are interested in.

It was observed in Section 4.5.2 that the shape of the data from station 76001 appears to

be an outlier when compared to the remaining stations; this is not surprising due to the

abstraction caused by the reservoir noted above. it is clear that station 76001 does not

display similar behaviour to the remaining stations from the boxplot in Figure 4-4 and

the daily smooths in Figure 4-2. As a consequence, this station will not be considered

within the analysis that follows. Further criteria for the selection of candidate stations

are discussed in the following section.

4.6 Criteria for selection of stations for analysis

A long period of records across all stations is needed to accurately estimate temporal

trends within the network, with the aim to estimate trends over a 40 year period from

1978–2017. However, this is not possible given the dropout and addition of stations

throughout the time period of the network. As a consequence, criteria are proposed for

the selection of stations to ensure that each station in the analysis has a long record.

This is a trade-off — ideally, we would want to use as much data as possible to get

more precise estimates of trends in the network, however for the detection of long-term

trends we need those stations with longer records.

Only stations meeting the following criteria are included in the study:

1. Station data must begin by 1978, in order to ensure a sufficient record length

(40 years) for the station. This rules out stations 76017, 76019, 76020, 76806,

76809 and 76811.
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2. Stations with a full year of data missing during this period will be dropped from

the analysis. This rules out station 76001, which is missing data for 10 separate

years across this period. In addition, this station was observed to exhibit unusual

behaviour compared to the remaining stations, and was deemed inappropriate for

inclusion for that reason also. 76014 has complete missingness of the 1978 and

1979 water years, and will not be included in the analysis.

3. Stations with more than two months of data missing for a given year will have

that year dropped entirely from the analysis. Station 76003 has 153 days missing

in water year 1979 and 92 days in water year 1980, and as a consequence these

two years are removed from the analysis. 76009 has 117 days missing from water

year 1997, so this year will be removed from the analysis. Station 76011 has 253

days missing from water year 1972 and 76 missing from water year 1984.

This leaves stations 76002, 76003, 76004, 76005, 76007, 76008, 76009, 76010, 76011 and

76015 available for the analysis which follows.

This subset of the data consists of 155,398 observations from 10 river gauging stations

for the time period 1978–2017, with flow records missing from 1298 entries, a total of

0.83% of records.

4.6.1 At-site trend analysis using GAMs

We now wish to obtain a preliminary estimate of the yearly effect at a station-by-station

basis, having transformed and deseasonalised the data. We investigate a simple at-site

approach using GAMs and mgcv first (Wood, 2017). Using this method will allow us

to see whether it is reasonable to assume that flows from different gauging stations

behave similarly, i.e. if the assumption of a network-wide trend is acceptable within

our proposed approach.

A simple generalised additive model (GAM) of the adjusted flows against water year

is fitted using mgcv to determine whether any evidence can be seen of a common trend

across stations, and if the relationship can be reasonably approximated by a linear

term.

Yit = αi + fi(Xit) + εi, εi ∼ N (0, σ2
ε )

where f(·) represents a smooth function of time, Y are the adjusted flows discussed in

Section 4.5.1, i represents the gauging station location and X an explanatory variable

measured at time t, in this application X is taken to be the year of record/time. The
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values of α and f are estimated separately for each station. Figure 4-5 shows the

Figure 4-5: A plot of station-by-station time trends in daily flows using mgcv

relationship between water year and the adjusted log of daily flows on a station-level

basis. This plot suggests that, on the whole, the stations in the river Eden network

follow a similar time trend, meaning that it is reasonable to assume a network-wide

trend. As a consequence, instead of using an at-site approach, the hierarchical and

spatial structure of the data may be better exploited by using a network-based approach

to model the spatial relationships between stations. Modelling all stations together

should also allow for the better detection of trends that might be missed in an at-site

approach (see Chapter 2, for example). We discuss such methods in the following

section.

4.7 Modelling the covariance (precision) between stations

In this section, we propose incorporating the inherent spatial structure of the network

within a model, in order to more accurately estimate trends of the network as a whole.

This will be achieved by encoding the conditional independence relationships between

stations (only those that are connected to each other on an undirected graph) through

a sparse precision matrix, and modelling this spatial structure using a first-order CAR
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model. Such models have not previously been applied to environmental observational

studies such as this. The use of CAR models to represent the spatial relationships

between these river stations is a novel approach in the area, which will allow for a good

representation of changes in measuring networks, such as river flows.

4.7.1 Conditional independence and directed acyclic graphs

We propose that the river gauging stations on a single river can be considered as a

network, which is comprised of nodes (the river gauging stations themselves) and edges

between nodes (the stretches of river between each station). We will demonstrate how

conditional independence between nodes can be inferred upon inspection of the graph

structure. It is important to note that a node’s parents separate it from further an-

cestors. These conditional independences are related to the graph itself, and graph

separation. In this section, we discuss the relationship between conditional indepen-

dence and graph separation, illustrating this relationship via three simple examples.

Further detail on these examples can be seen, for example, in Koller and Friedman

(2009); Murphy (2012); Pearl (2009).

4.7.1.1 Indirect connections

In Figure 4-6, the lack of an edge between nodes A and C can be interpreted to be

conditional independence. This can be inferred from the graph structure (and, in

practice, by considering how a river flows):

P (A,B,C) = P (A)P (B|A)P (C|B),

which suggests that

P (C|A,B) =
P (A,B,C)

P (A,B)
=
P (A)P (B|A)P (C|B)

P (A)P (B|A)
= P (C|B).

This example is one of the most basic conditional independencies. Here, B is the parent

of C, while A is a non-parent ancestor of C and thus is conditionally independent of C

given B (i.e. a Markov chain). In terms of graph separation, one can clearly observe

that B separates A and C.
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BA C

Figure 4-6: An example of an indirect connection between nodes.

4.7.1.2 Common cause

In Figure 4-7, the lack of an edge between nodes A and C can again be interpreted

to be conditional independence. This can be inferred from the graph structure, which

suggests that

P (A|C,B) =
P (A,B,C)

P (B,C)
=
P (B)P (A|B)P (C|B)

P (B)P (C|B)
= P (A|B).

Again, graph separation clearly demonstrates independence here. If B is unknown,

however, then A and C may appear to be dependent (a hidden variable scenario).

Note however that this type of structure rarely occurs in river networks.

B

A C

Figure 4-7: An example of a node which is a common “cause” for two others.

4.7.1.3 V-structure

Finally, in Figure 4-8, the lack of an edge between nodes A and C cannot be interpreted

to be conditional independence, but instead marginal independence. Here, once one

knows the value of B, then A and C may depend on one another. In the case of

river networks, this means that tributaries that combine together are not necessarily

conditionally independent of one another.
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A

B C

Figure 4-8: An example of a v-structure of nodes.

4.7.2 Network spatial structure for 1978–2017 period

River flows across the 10 stations in the river network for the period 1978-2017 are

included in the analysis. We begin by re-ordering the network into a directed acyclic

graph (DAG) where one can more clearly see the parent, child and ancestor nodes,

and consequently identify the conditional independence between nodes. The network

diagram for this time period can be seen in Figure 4-9.

Figure 4-9: A graph (right) of the stream network structure in the 1978–2017 time
period.

Now, for station Xi = 7600i, the factorisation theorem allows us to represent the
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probability of P (X2, X3, X4, X5, X7, X8, X9, X10, X11, X15) as

P (X2, X3, X4, X5, X7, X8, X9, X10, X11, X15) = P (X4)P (X5)P (X9)P (X10)P (X11)

· P (X15)P (X3|X4, X15)P (X2|X3, X5)

· P (X8|X11)P (X7|X2, X8, X9, X10)

We then proceed by “moralising” the DAG. A moral graph is used here to find the

equivalent undirected form of a DAG. The moral graph may be formed by adding

edges between the parents joining the parents of common children, and subsequently

making all edges in this graph undirected — this is equivalent to saying that a moral

graph is an undirected graph in which every node of the original DAG is now connected

to its Markov blanket (a set of nodes composed of the node’s parents, its children, and

its children’s other parents). The moralised graph version of the previous figure may

be seen in Figure 4-10. This moralised version of the graph allows one to construct a

Figure 4-10: A moralised version of the DAG as seen in Figure 4-9.

precision matrix of a Gaussian Markov random field (GMRF), where entries are zero

if Xi and Xj are conditionally independent of each other and only non-zero otherwise.

The use of a precision matrix over the covariance is useful, as Rue and Held (2005)

demonstrated that a number of common models with complex and dense covariance

structures have sparse precision matrices. Such sparse matrices are computationally
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efficient given they are mostly comprised of zeroes which are not stored in a computer.

This sparsity structure arises from the conditional independence structure of the net-

work. Here, conditional dependence can be seen by identifying cliques (i.e. a subset

of nodes of the undirected graph such that every two distinct nodes in the clique are

adjacent) in the graph. Then, the general structure for the precision matrix Q will be

as follows (where subscript i represents node 7600i and jk represents node 760jk):

Qij =



q22 q23 0 q25 q27 q28 q29 q210 0 0

q32 q33 q34 q35 0 0 0 0 0 q315

0 q43 q44 0 0 0 0 0 0 q415

q52 q53 0 q55 0 0 0 0 0 0

q72 0 0 0 q77 q78 q79 q710 0 0

q82 0 0 0 q87 q88 q89 q810 q811 0

q92 0 0 0 q97 q98 q99 q910 0 0

q102 0 0 0 q107 q108 q109 q1010 0 0

0 0 0 0 0 q118 0 q1111 0 0

0 q153 q154 0 0 0 0 0 0 q1515


This forms a sparse precision matrix. We make use of this sparse matrix for fast

inference, through the specification of a first-order CAR model to represent this spatial

structure of the network. A simple alternative to using this CAR structure would be

to use a general covariance matrix which would not enforce the network structure, or

to have an i.i.d. model. These approaches will be compared with the CAR model

in section 4.8, to see how including a spatial structure can improve the variability of

model estimates and lead to faster inference when compared to a dense matrix.

4.7.3 CAR models

Conditional autoregressive (CAR) models are frequently used to represent spatial ran-

dom effects for areal spatial data (Banerjee et al., 2014). Here, the river gauging data

provided is point-level, however stream gauging stations are each directly connected

to the nearest neighbouring gauging station through the river stretches, so the CAR

specification remains appropriate. If there is a random quantity φ = (φ1, φ2, ..., φn)′ at

n locations representing the spatial effect, the CAR model may be expressed via full

127



conditional distributions:

φi|φj , j 6= i ∼ N

α n∑
j=1

bijφj , τ
−1
i

 ,

where τi is a spatially varying precision parameter, and bii = 0. Then, the joint

distribution of φ is a multivariate normal with mean 0 and variance Q−1, where Q is

the precision matrix discussed in the previous section, i.e. φ ∼ N
(
0, Q−1

)
. Q can be

decomposed into Dτ (I − αB) so that we can write

φ ∼ N
(
0, [Dτ (I − αB)]−1

)
.

Here Dτ = τD, D = diag(mi) a diagonal matrix where mi is the number of neighbours

for a given location i, I the identity, α a parameter which controls spatial dependence

(0 ≤ α ≤ 1, where 0 implies spatial dependence and α = 1 results in an intrinsic

CAR specification), B = D−1W the scaled adjacency and W the adjacency matrix

(wii = 0, wij = 1 if i is a neighbour of j and 0 otherwise). Then the CAR model

specification reduces to (see Banerjee et al. (2014) for further details):

φ ∼ N
(
0, [τ(D − αW )]−1

)
. (4.7.1)

Here, τ(D − αW ) is the precision matrix. The precision parameter τ and spatial de-

pendence parameter α will be estimated during inference. This representation is useful

as it is entirely specified through the precision matrix. This is easily obtained from the

graph of the network by calculating the matrix W of adjacent nodes (river stations) in

the network.

Given the adjusted river flow data y1, y2, ..., yn at n locations, and under the assump-

tion that we expect that neighbouring locations will have correlated flow levels with

likelihood (for location i at time t):

yit ∼ N
(
α+Xitβ + φi + u0i + εit, σ

2
)
,

where X is the matrix of covariates (in this case, the water year), β is a vector of

coefficients, φ represents the spatial random effect and u0i ∼ N(0, σ2
u) represents the

random intercept to allow differences in scale between locations, εit ∼ N(0, σ2
ε ) repre-

sents the remaining error, where σ2
ε represents the variation in daily mean flows after

controlling for covariates X and intercept α. If a proper CAR prior is specified for φ,

then φ is distributed according to Equation 4.7.1. The complete Bayesian specification
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will include priors for the remaining parameters α, τ and β such that the posterior

distribution is

P (φ, β, α, τ |y) ∝ P (y|β, φ)P (φ|α, τ)P (α)P (β)P (τ) .

When constructing the adjacency matrix in practice, nodes can be defined to be “neigh-

bours” if they are connected in the moralised graph in Figure 4-10. Then, D is the

diagonal matrix whose entries consist of the number of these neighbours, and W is

given by

W =



0 1 0 1 1 1 1 1 0 0

1 0 1 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 0 0

1 0 0 0 1 0 1 1 1 0

1 0 0 0 1 1 0 1 0 0

1 0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 0



4.7.4 R-INLA implementation of CAR model

The Integrated Nested Laplace Approximation (INLA) is an approximate Bayesian

method which performs numerical calculations of posterior densities using a series of

Laplace approximations of latent Gaussian models (Rue et al., 2009). If a model can

be formulated as a latent Gaussian process, it can be implemented in INLA. R-INLA

provides an interface to allow INLA to be performed in R (Rue et al., 2012). By using

these approximations instead of performing MCMC, INLA allows for faster inference

(as detailed in Chapter 1 and Appendix B) and thus is computationally attractive for

larger datasets such as this. In addition, R-INLA has a number of inbuilt models for

different specifications of CAR models.

Before we proceed with implementing CAR models for the spatial effect using R-INLA,

we must first introduce the concept of a Gaussian Markov random field, and the prop-

erties of the various models used to fit this CAR model.
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4.7.4.1 Graphs and GMRFs

As discussed in section 4.7.2, we use a (undirected) graph G = (V, E) to represent the

conditional independence properties between nodes, where

• V represent the vertices, 1, 2, ..., n

• E represents the edges, {i, j}

with no edge between i and j if xi ⊥ xj |x−ij and an edge i and j if xi 6⊥ xj |x−ij . The

resulting graph represents the sparsity structure of the precision matrix Q.

A random vector x = (x1, ..., xn)T is called a Gaussian Markov random field with

respect to the graph G = (V = {1, ..., n}, E) with mean µ and precision matrix Q > 0

if and only if its density has the form

x ∼ N (µ,Q−1)

and Qij 6= 0 ⇐⇒ {i, j} ∈ E ∀i 6= j.

In summary, if xi ⊥ xj |x−ij for a set of {i, j}, then we need to constrain the parame-

terisation of the GMRF. This is difficult to achieve with the covariance matrix but easy

with the precision matrix (as seen in Chapter 1), and use of the GMRF results in a

much faster inference. An alternative to specifying a GMRF by its mean and precision

matrix is to specify it implicitly through the full conditionals, leading to the first-order

CAR model discussed in the previous section.

4.7.4.2 Besag model

The simplest form of the CAR model for spatial correlation is the intrinsic model pro-

posed in Besag et al. (1991). This is referred to as the Besag or ICAR (intrinsic con-

ditional autoregressive) model, which assumes spatial dependence among neighbouring

geographical regions. This model states that

yi = α+XT
i β + φi, (4.7.2)

where

xi − xj ∼ N(0, σ2)
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if i and j are neighbours. Besag et al. (1991) introduced the use of a first-order intrinsic

GMRF (Rue and Held, 2005) to model the spatial effect φ. If we define G as the

conditional independence graph (obtained from the adjacency matrix), with ∂i the set

of neighbours to a node/location i and n∂i the number of neighbours. The conditional

distribution for φi is given by

φi|φ−i, τφ ∼ N

 1

n∂i

∑
j∈∂i

φj,
1

n∂iτφ

 . (4.7.3)

Here τφ is the precision parameter for the spatial random effect.

For a Besag model with an intercept in the model, there must be some constraint

(
∑

i xi = 0) preventing the Besag term φ from taking on the effect of the intercept.

One issue with the Besag model is that it only accounts for similarities between regions,

but doesn’t account for the fact that each region may vary slightly. This means that

it is necessary to add an i.i.d. random effect per region (station in this case). This

is equivalent to the BYM model discussed next, which will be the primary model

investigated in Section 4.8.

4.7.4.3 BYM model

The Besag model only models within-region over-dispersion as spatially correlated

noise, and so this approach will tend to overstate spatial dependence. As a result,

the estimate of the random effects will be too spatially smoothed. Instead, we propose

using the Besag, York and Mollie model (Besag et al., 1991), which is based on a con-

ditional autoregressive (CAR) model for spatial random effects. As noted, in such a

model, spatial dependence is expressed conditionally, requiring that the random effect

in a given area depends only on some neighbouring values. The BYM model is a model

where the random effect associated with any given area is the sum of two components

φi+θi. φi represents a spatially structured random effect which is assigned an improper

CAR prior, while θi represents i.i.d zero-mean unstructured random effects (a random

intercept).

In the BYM model we define the adjusted log flows as

yi = α+ xTi β + φi + θi (4.7.4)

where α is the overall intercept, β measures the effect of covariates xi (which may be

location-specific), θ is a zero-mean Gaussian with precision matrix τvI representing
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some unstructured random effect which accounts for regional variability, and again φ

is a spatial component which specifies that nearby regions/locations are similar. The

conditional distribution of this spatially structured effect φ is given as in Equation

4.7.3.

A key part of the BYM model is the specification of the neighbourhood structure,

which is typically based upon adjacency relationships (Rodrigues and Assunção, 2012).

In this case, it will be given based on the adjacency matrix W defined in section

4.7.3. An issue with this is that the neighbourhood structure determines the degree

of spatial smoothing (Duncan et al., 2017), and may over-smooth the response when

a typical adjacency structure is used. It may be more practical to have an adaptive

neighbourhood structure, particularly if we observe that the spatial structure evolves

over time. Adapting the network structure will be discussed in the conclusions.

Another problem with the BYM model lies in its choice of priors. The unstructured

component θ cannot be seen independently from the spatially structured component

φ. θ is partially included within φ in the case of no spatial dependence, leading to

an identifiability issue (Eberly and Carlin, 2000). Thus, as noted by Simpson et al.

(2017), care should be taken to ensure that priors for τθ and τφ are dependent. Penalised

complexity priors may be used in this case. These are discussed in section 4.7.4.4.

There is also a scaling issue with this method — it is important that hyperpriors used

in one application will have the same interpretation when used in another (Sørbye and

Rue, 2014). A modification of this, as noted by Riebler et al. (2016), states that the

structured effect b, where b = φ+ θ must be scaled such that

σ2
GV (b) =

1

τb

so that the precision τb represents the deviance from a constant level, and is independent

of the underlying graph provided. Here GV represents the generalized variance, which

is calculated by taking the geometric mean of the marginal variance. Then, Simpson

et al. (2017) propose the use of a scaled structured component u∗, with Q∗ the scaled

precision matrix, as scaled according to the above. According to Riebler et al. (2016),

this gives rise to a modified b,

b =
1
√
τb

(√
1− ψθ +

√
ψφ∗

)
.,
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for some mixing parameter ψ ∈ [0, 1]. When ψ = 1, the model reduces to the Besag,

while when ψ = 1 it reduces to pure overdispersion. This has covariance matrix

Var(b|τb, ψ) = τ−1
b

(
(1− ψ)I + ψQ−1∗

)
.

This representation leads to the scaling of b as a result, and the prior on τb will

always have the same interpretation across graphs. The hyperparameters will also be

identifiable under this representation. This representation of the BYM model can be

implemented in R-INLA through the bym2 choice of model.

4.7.4.4 Choice of priors & the penalised complexity (PC) prior

By inspection of R-INLA inputs, we observe that the default prior on the fixed effect

is a normal with zero mean and a precision (1/variance) of 0.001, which is often not

particularly informative. R-INLA places a gamma prior on the precisions by default.

In particular, for the unstructured effect precision τv in the BYM model, a minimally

informative prior is specified on log τν , i.e. log τν ∼ log Gamma(1, 0.0005). Another

weakly informative prior is set on the log of the spatially structured effect (τu), i.e.

log τu ∼ log Gamma(1, 0.00052). Whether this is sufficient or not depends on how

much prior information is available to incorporate into the data.

R-INLA allows for the specification of different priors however. One possibility is to

make use of the penalised complexity (PC) prior as seen in Simpson et al. (2017). This

proposes a widely applicable method for the specification of priors on parameters which

may be difficult or impossible to elicit from expert information. The approach makes

use of the inherent nested structure for many model components. It defines the model

component to be a flexible extension of a simple base model. It ensures that simpler

models are given more importance, by defining a proper prior to put a penalty any com-

plexity induced by deviating from this base model. Such priors are then formulated

after inputting a user-defined scaling parameter for that model component. Depending

on how the user tunes a single scaling parameter, this PC prior may be vague, weakly

or strongly informative.

As pointed out in Simpson et al. (2017), the procedure is invariant to reparameteri-

sation, since the prior is defined on the distance d, which is then transformed to the

corresponding prior for ξ. This means the prior may be constructed without taking

the specific parameterisation into account. The use of PC priors will be investigated

in section 4.8.3.
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4.7.5 Model selection

We can compare the models via the Deviance Information Criterion (DIC), which is

a hierarchical modeling generalization of the Akaike information criterion (AIC) and

Bayesian information criterion (BIC). We define the deviance as

D(θ) = −2 log(p(y|θ)) + C ,

where y, are the data, θ, are the unknown parameters of the model and p(y|θ) is the

likelihood function. C is a constant that cancels out. The DIC is calculated as or

equivalently as

DIC = D(θ̄) + 2pD.

where

pD = D̄ −D(θ̄),

where θ̄ is the expectation of θ.

The comparison of DIC values between models is common method to test effects of

a model. Complex models incur a penalty for the number of parameters, so under

DIC these models might not be preferred. The model with the smaller DIC is usually

seen as the better fit for the data. We use this to compare the goodness-of-fit of

the models implemented in Section 4.8. The DIC requires approximate normality,

but INLA overcomes this via the evaluation of the posterior mode of θ instead of the

posterior mean. Note that, as the effective number of parameters is expected to be

similar, we do not expect the DIC to vary greatly. As a result, we choose the more

complex BYM model over the Besag model, as the Besag model only accounts for

similarities between regions, but doesn’t account for the fact that each region may vary

slightly.

4.8 Results

In this section, we verify that the conditional independence assumption used in the

first-order CAR model is an appropriate choice. Results of the BYM model shown in

Equation 4.7.4 are presented, to see if there is a clear time trend to be found in the River

Eden network using this representation. This is compared at first to the simple i.i.d.

case, where no spatial structure is included in the data, to assess whether including a

spatial component to the model provides any noticeable difference in the estimation.
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We also provide a comparison to a dense precision matrix, in order to demonstrate

the speed-up in computation provided by exploiting the network structure of the river.

The spatial residual structure is examined and discussed.

4.8.1 Verifying the CAR assumption

The key modelling assumption made in the first-order CAR model in this setting is

that river flows measured at a given station only depends on its upstream station and

is independent of other stations given the direct upstream station. This is because the

first-order CAR model obeys the spatial version of the Markov property. This first

order assumption is somewhat restrictive, and its use in this approach requires justi-

fication. We can illustrate the validity of this assumption by checking the conditional

independence relationship holds for some stations within the network.

4.8.1.1 Example 1: Stations 76002, 76003 and 76004

Station 76002 should be conditionally independent of station 76004 given station 76003

— see Figure 4-9. To check this, one can regress flows at 76002 against the flows at

76003 only, and the flows at 76002 against the flows at both 76003 and 76004 together.

Including 76003 as a predictor alone should provide as much information as including

both 76003 and 76004 — this is because all the information in flows from 76004 should

be contained in the flows from 76003.

Using a linear regression between flows at 76003 and flows at 76002 results in an R2 of

0.848, suggesting that the majority of the variability in flows at 76002 are explained by

flows at 76003. We then also estimate the relationship of flows from both 76003 and

76004 on flows at 76002. If the conditional independence assumption holds perfectly,

this will not provide any additional information. The fixed effect of flows from both

stations appear to be significant, however the R2 value increases only slightly to 0.8519,

suggesting that the added station does not appear to improve the explanatory power

of the model.

4.8.1.2 Example 2: Stations 76007, 76008 and 76011

We repeat this analysis for another set of stations on the network. Here, station 76007

should be conditionally independent of station 76011 given station 76008. Again, we
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regress flows at 76007 against the flows at 76008 only, and the flows at 76007 against

the flows at both 76008 and 76011 together.

The relationship between flows at 76008 and flows at 76007 again appears to be sig-

nificant, with an R2 value of 0.6649. We then also estimate the fixed effect of flows

from both 76008 and 76011 on flows at 76007. Again, if the conditional independence

assumption holds perfectly, this will not provide any additional information. The asso-

ciation between flows at both 76008 and 76011 with 76007 appear to be significant, but

the R2 value again only increases very slightly to 0.6656, suggesting that the addition

of further information again does not contribute further in terms of explanatory power.

This suggests that while the first-order CAR model may not be a perfect assumption

(as station flows further upstream appear to be significant), it seems that the flows

are reasonably well explained by the flows at the most immediately upstream station.

As a consequence, and as the most simple of these spatial structures, we will explore

the first-order CAR model in this chapter. Relaxing of this assumption to a second-

order could be of interest when considering networks of differing resolutions, and will

be discussed briefly in future work.

4.8.2 Posterior population-wide effects for the river Eden network

All models in this section were run over the common period of 1978–2017.

4.8.2.1 Base case: trends estimated using the i.i.d. model

We wish to demonstrate the usefulness of including a spatial structure for the estimation

of trends in daily mean flows on a river network. For comparison, we start by fitting a

model of the form

yit = α+ xTitβ + θi + εi (4.8.1)

where α is the overall intercept, β measures the effect of covariates zi (which may

be location-specific), θ ∼ N(0, σθ) is an i.i.d. (non-spatial) effect which accounts for

between-station variability and ε ∼ N(0, σε) the residual error. This is the simplest

multilevel model that one could fit ignoring the spatial variability between stations.

The resulting plot of the posterior fixed effect of time can be seen in Figure 4-11. From

inspection of this plot, the fixed effect of time is highly likely to be greater than 0.001,

because the median value and most of the mass of the distribution lies to the right

of this value. As this is on a log scale, this corresponds to time adding at least 0.1%
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Figure 4-11: The fixed effect of time on daily mean flows on the river Eden network
using an i.i.d. model. Dashed lines correspond to the 2.5 and 97.5 percentiles of the
posterior distribution.

to the daily mean flows each year (or a 1% increase in the median every 10 years),

suggesting that daily mean flows are clearly increasing over time. The model DIC here

is 288790.82.

A plot of the posterior standard deviations for the hyperparameters can be seen in

Figure 4-12. The standard deviations correspond to the precisions on the fixed effect

and the i.i.d. station random effect. As can be seen in Figure 4-11, the use of an

i.i.d. effect only leads to a reasonably high level of variability in the estimate of the

posterior standard deviations for both the Gaussian observation and i.i.d. station-

specific effects. We will demonstrate next that the use of a spatial effect which respects

the river network structure will provide an improvement in the variability of these

estimates.
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Figure 4-12: A plot of the posterior standard deviations for the Gaussian observations
σε (left) and the station i.i.d. effect σθ (right).

4.8.2.2 Trends estimated using a CAR model as a spatial random effect

The BYM model seen in Equation 4.7.4 and given by

yi = α+ xTi β + φi + θi (4.8.2)

is now used to incorporate a spatial effect (through a first-order CAR model) when

estimating time trends present in the river Eden network.

Using a default prior in R-INLA, with a model fitted as in Equation 4.7.4, the posterior

fixed effect of time on daily mean flows can be seen in Figure 4-13. This posterior fixed

effect estimate is consistent with that seen in Figure 4-11 (i.e. a clear time trend is ob-

served again). This is not surprising; however, we might expect to see some difference

in the posterior standard deviations of the hyperparameters.

A plot of the posterior standard deviations for the hyperparameters can be seen in

Figure 4-14. These are achieved using default priors as discussed previously. Now, the

standard deviations correspond to the precisions on the fixed effect, the i.i.d. compo-

nent of the BYM model, θi and the spatial random slope effect φi. The addition of a

structured spatial effect along with the i.i.d. effect leads to a reduction in the variability

in the estimates of the hyperparameters. This model, along with the enhanced ability

to detect a trend compared to standard methods (see discussion of at-site approaches
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Figure 4-13: The fixed effect of time on daily mean flows on the river Eden network
using a BYM model.

in Chapter 2), allows for a better explanation of the variability in the data compared

to the i.i.d. approach and thus a more precise inference.

Note that it is clear that these default priors result in skewed posterior standard devia-

tions for each of these quantities — while this is not a problem as one would expect to

see such skew, it is apparent that these distributions appear to display some bimodal-

ity. As a consequence, the use of PC priors will instead be investigated. Note here

that the model DIC is 288791.01, which is very similar to what was observed for the

i.i.d. case, suggesting that the BYM model is more appropriate for the data at hand.

We have observed here that the increase in daily mean river flow is consistent with the

predicted increase in rainfall totals from climate projections (Bates, 2009). More work

is necessary to disentangle components of this increase in flows, but it appears that

more precipitation will correspond broadly to more river discharge.
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Figure 4-14: A plot of the posterior standard deviations for the Gaussian observations
σε (left), the station i.i.d. effect σθ (centre) and the station spatial effect σφ (right)
using default priors.

4.8.3 PC priors

Ideally, the PC prior is best used when one has prior knowledge of the underlying

problem. Instead, we use the standard deviation of the response (the adjusted daily

mean flows) to help set the scale of this prior. These priors are specified and the model

run again in R-INLA. The results of this can be seen in Figure 4-15. This leads to the

Figure 4-15: A plot of the posterior standard deviations for the Gaussian observations
σε (left), the station i.i.d. effect σθ (centre) and the station spatial effect σφ (right)
using PC priors.

removal of the previously observed bimodality for both the posterior standard deviation

of the Gaussian observations and the station i.i.d. effect, and the results appear to be

more appropriate.
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4.8.4 Model efficiency — comparison to full precision matrix

Suppose instead that we did not want to make use of the sparse precision matrix, but

wanted to specify a general covariance. In this case, we will have a dense precision

matrix, where every node in the network is connected to every other node. The re-

sulting fixed effect estimates will be similar; however it is expected that the speed of

calculations will be slower.

As the precision matrix is only 10× 10, calculation times are small. However, we still

note a considerable speed-up in calculation times. We obtain a model run time of 252

seconds using the sparse precision matrix method proposed in this chapter. On the

other hand, using the dense precision matrix here takes 466 seconds — almost twice as

slow as the CAR model approach. This will increase very quickly with any increases

in number of river gauging stations, due to the O(n2) order of storage and O(n3) of

computations required when using the dense matrix compared to O(n3/2) of a sparse

precision matrix (Bakka et al., 2018). This suggests that not only does the CAR model

approach discussed in this chapter lead to improved estimates through inclusion of a

spatial effect, but also improved efficiency of computations when the network struc-

ture can be encoded in this way. The choice of a CAR model is advantageous both in

respecting the river network structure and efficiency.

4.8.5 Posterior spatial structure from R-INLA models

First, we observe the mean of the adjusted log daily flows by station. This can be seen

to the left of Figure 4-16. On inspection, it may be reasonable to think that there is

Figure 4-16: A plot of the mean adjusted flow by station (left), the catchment area
(centre) and the average annualised rainfall (right).
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not necessarily a clear spatial structure in the data, given that nearby stations do not

necessarily have similar sized flows. This is due to the size of the catchment area (see

the plot to the centre of Figure 4-16) and the river structure — smaller catchments

such as 76011 will display smaller flows, and thus it would not be clear from this

that, for example, stations 76008 and 76011 are related. However, we know from the

river structure in Figure 4-9 that station 76011 drains into 76008 and consequently

there must be some relationship between the two. As a result, use of the conditional

independence-based models appear reasonable.

The posterior spatial effect φ + θ using the BYM model from Equation 4.7.4 can be

seen in Figure 4-17. It can be seen that there has been some smoothing due to the

first-order CAR model, in that, as anticipated, this results in a spatial structure in

which neighbours on the graph are more closely related than those which are not

considered neighbours. Again, station 76011 appears to be an outlier compared to the

other stations, however it is the smallest station by catchment area and the furthest

away from the majority of the remaining gauging stations by distance, so this appears

reasonable in practice.

Figure 4-17: The spatial random effect φ+ θ from fitting a CAR(1) model to the river
Eden network
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4.9 Attribution on a river network: possible avenues

We consider two potential approaches for the attribution of changes in a specific river

flow network. One involves directly applying the causal checklist developed in Chapter

3. In this way, we can identify which large-scale variables are influencing daily mean

river flows on the network in a long-term pattern. Alternatively, if we wish to under-

stand how daily mean flows will evolve in the future, we can consider modelling the river

network structure through the mean, by incorporating variables which represent the

physical and directional nature of flows. This should help us to gain an understanding

of what processes have a considerable influence on daily mean flows on a network.

4.9.1 Applying the causal checklist developed in Chapter 3

Given the parallels of the method discussed in this chapter to that of Chapter 2, it would

be possible to use the causal checklist developed in Chapter 3 for the attribution of these

time trends found in the river Eden network to some cause of interest. Attribution at a

local level such as this is of interest as it may be beneficial when informing future flood

defences in the area. One potential driver of flows in the north west of England could be

the NAO index. This was found to not have a countrywide influence in Chapters 2 and

3, however it is associated with higher rainfall in the north west of England (O’Hare

et al., 2014) and is potentially a local driver of changes in flows. Further potential local

drivers of change include water management and land use management, which could be

investigated using the checklist devised in Chapter 3. However, at such a local level, it

is even more vital that such investigations are conducted in conjunction with an expert

on the terrain of the area, and thus these drivers will not be investigated further in this

chapter.

4.9.2 Modelling the network structure through the mean

While the covariance-based approach presented in this chapter is of benefit for estimat-

ing trends in daily mean flows and the attribution of trends at a regional level could be

achieved by applying the checklist in Chapter 3, modelling the relationships between

stations through the mean is more useful for understanding how river flows behave.

It allows one to make predictions about future flows and thus is beneficial for water

resources management. Additionally, O’Donnell et al. (2014) noted that it is often of
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benefit to directly model trends in environmental observational studies through the

mean, as this provides a more flexible means for modelling non-parametric trends. Ide-

ally, one would simply model these relationships through the mean, selecting a number

of appropriate explanatory variables for inclusion.

In order to be useful to practitioners, the model should respect the physical structure of

a network (through the inclusion of direction and/or appropriate covariates), it should

be interpretable by hydrologists and government agencies and explain a reasonable

proportion of the variability in these flows. Many methods will be able to fulfil one or

two of these three criteria with relative ease, however in order to be of benefit for the

future management of water resources, we believe that is it necessary to fulfil all three

of these criteria. By including appropriate covariates such as rainfall that are believed

to influence flows, we represent the rainfall runoff process within the model. The phys-

ical structure of the network can be incorporated through modelling flows at a given

station as a function of flows from stations directly upstream. Finally, an estimate of

the remaining water entering the system can be modelled to be able to better represent

this unknown quantity in future models.

The ultimate end goal of this approach is to obtain a more accurate estimation and

attribution of flows in a given river network. However, some initial analysis shows

that this is not so easily achieved. While upstream station flows and rainfall certainly

appear to contribute towards flows at a station of interest when modelled separately,

there is clear confounding when the two are modelled together. In addition, based on

a preliminary analysis rainfall is not always a good predictor for daily mean flows, at

least in a linear form — though considerably lagged versions of rainfall may prove to

be a better predictor. While it is often expected that an increase in precipitation will

result in an increase in flows, it is not so straightforward a relationship. Sharma et al.

(2018) note the lack of evidence between increasing precipitation and floods, noting

that there are even examples of reduced flooding magnitudes with increased precipi-

tation. This perception of a direct relationship between the two assumes invariance

of catchment conditions and that stream flows are generated solely from precipitation,

which is not the case. Understanding the nature of this relationship between rainfall

and daily mean flows is critical to this method, and is still under investigation (Blöschl

et al., 2019).

Further issues with this method lie in accurately expressing the remaining water vol-

ume entering and exiting the system. Sometimes there is a greater volume of flow

in stations directly upstream than the station of interest itself, suggesting some loss

of flow to the external environment. There are also small streams which may not be
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mapped or have a measurement which flow into a gauging station, increasing the flow

volume. Obtaining an understanding of the process underlying this loss and gain of

flow would require incorporating more physics into the system, which is not a simple

procedure. It may be possible to have a hybrid statistical-PDE approach, as has been

used in blood flow modelling (Azzimonti et al., 2015). This would involve using a PDE

governing the flow behaviour as a prior to a statistical model such as the one described

here. However, this will add considerable complexity to the method and may not be

suitable for the purpose outlined here.

4.10 Chapter conclusions

In this chapter, we developed precision-based methods which encode conditional inde-

pendence relationships between stations on a single river network. These conditional

independent relationships are encoded through a sparse precision matrix resulting in

fast inference methods. We have demonstrated that such methods lead to a reduc-

tion of the variability in posterior standard deviations for the station random effects

compared to an i.i.d. structure. We also demonstrated the utility of PC priors for

parameters which are difficult to elicit from expert information.

The use of a first-order CAR model for representing spatial relationships between these

river stations is a novel approach which proved useful for assessing long-term trends in

daily mean river flows on a single river network. The use of Bayesian methods in such

a scenario have previously been proposed for annual maximum river flows in Great

Britain (see Chapter 2 and Brady et al. (2019)) and Ireland (see Brady et al. (2018)).

The benefit of using the CAR model on a network, however, is that using the sparse

GMRF representation allows for fast inference using the INLA approach. Using a CAR

structure is not possible on the countrywide data seen in Chapter 2, as the entire river

network for Great Britain is not connected. However, in the case of a single river, it

helps to encode relationships between neighbouring stations and speeds up inference

compared to the use of the GP in a countrywide approach through the use of a sparse

precision matrix. We demonstrated that inference using a dense precision matrix is

almost twice as slow as this approach. It may be possible to combine the approaches

seen in this chapter and Chapter 2, to have a countrywide approach which also respects

the structure of individual river networks throughout. However, it was demonstrated

in section 4.8.1 that a first-order CAR model may not be sufficient to fully explain

flows at a particular station. It may be necessary to extend this to a second order CAR

model, to ensure flows from stations further away are included within the approach.
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A drawback of this is that it will result in a less sparse precision matrix, leading to

slower computation times. On a small scale such as the one used in this study, however,

it is not expected that this will dramatically increase computation time. The upper

limit would be the full precision matrix, which was shown to take twice as long as the

first-order CAR model.

It may also be possible to have a time-varying precision matrix, which encodes the spa-

tial relationships between stations (which may drop in or out, thus changing the spatial

structure of the network) at time t, however for the sake of simplicity and in order to

assess trends across a longer time period in this chapter, we focused on one precision

matrix only. This extension would be of interest for future developments of this work.

It would also be of interest to explore the performance of the precision-based method

developed in this chapter with the approaches of Ver Hoef et al. (2006) or O’Donnell

et al. (2014), to see whether this approach will lead to a more accurate estimation

of trends on a river network. Alternatively, a simulation study could be developed to

demonstrate that the benefits of the CAR approach, as demonstrated on the river Eden

network, scale to larger networks or can be applied to alternative applications.

This chapter has provided discussion on both Euclidean distances and stream distances

for river networks. While the approach of Ver Hoef et al. (2006) develops a set of co-

variance functions in order to be able to incorporate stream distances, these distances

between stations are not readily available from the NRFA. One must obtain the shape-

file of a given river, then calculate the length between points on this river. If this were

feasible, it may instead be possible to use the stream distance within this method.

Alternatively, one could combine Euclidean and stream distance to benefit from the

advantages of both. The stream distance represents the shortest distance between two

river gauging stations along a stream network (Ver Hoef et al., 2006), and hence may

be more appropriate for a true spatial representation of the network. The Euclidean

distance can be easily extended (and appropriately weighted) to include catchment de-

scriptors such as area and BFIHOST, thus providing a hydrological similarity measure.

Combining both could further improve methods to accurately detect trends on a single

river network.

While this method was useful for detecting trends on a network level, it only tells us

whether changes have been occurring on the network. It is also of interest to learn

how these changes are arising and what factors are driving this change. We noted in

Section 4.9 how attribution at a local level might be explored. The various components

that might contribute towards daily mean flows in stations on a network were briefly

discussed, with the aim of obtaining a better understanding of how and why these flows
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are changing over time. However, it was noted that constructing a statistical model

that was both simple and respected the physical behaviour of river flows does not easily

lead to sensible results for attribution of changes in these flows. Further exploration of

these methods is needed for accurate attribution of changes in flows in the network.
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Chapter 5

Conclusions and further work

The overall aim of this thesis was to develop spatial multilevel models for the detection

and attribution of long-term changes in environmental studies to large-scale drivers

of interest. Two common themes were explored throughout the thesis. The first of

these was the use of spatial methods for the accurate detection of long-term changes

in environmental observational studies, focusing on river flows in Great Britain. Typ-

ical at-site methods used in such studies are often poorly powered, meaning trends

present in the data may be missed. The approaches presented here aim to overcome

this problem, both at a countrywide and river-network basis. The second theme was

the attribution of long-term, large-scale changes in environmental studies to some cli-

mate drivers of interest.

There are three major contributions of this thesis. The first of these is the first country-

wide detection of long-term trends in annual maximum river flows in Great Britain, as

seen in Chapter 2 and in Brady et al. (2019). This was achieved by using Bayesian spa-

tial multilevel methods, which had not been previously applied in this setting. A major

consequence of this result is that it successfully bridges the gap in estimated trends

between climate change projections and observational river flow data. The second key

contribution is the first attribution of these trends to large-scale climate drivers. In

particular, a preliminary attempt at attribution was seen in Chapter 2, with a clear as-

sociation seen between the East Atlantic (EA) index and annual maximum river flows.

Chapter 3 focused on developing a systematic checklist for a rigorous causal assessment

of drivers of environmental changes, demonstrating through this checklist that changes

in annual maximum river flows can be attributed to the EA index. Finally, methods

that utilised the spatial structure of the data under study were used to enhance the
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ability to detect trends in river flows. This involved modelling the spatial structure

through a Gaussian process in Chapter 2, when a countrywide approach is taken to

estimating trends in annual maximum river flows. Such an approach can be used more

generally in spatiotemporal modelling when the set of locations is fixed, and the spatial

domain is not continuous. On the other hand, Chapter 4 looks at a single river network.

The spatial structure of this network is considered as a graph and encoded through a

first-order conditional autoregressive (CAR) model. This is a beneficial approach, as

it respects the physical structure of the network and gives rise to a sparse precision

matrix, leading to fast inference on the network. While this method was again applied

to river flows, the approach could be applied to any application where there is a direc-

tional spatial structure. The results, benefits and limitations of the approaches used in

each chapter are summarised in the following sections.

5.1 A first detection and “soft” attribution of country-

wide trends in annual maximum river flows in Great

Britain

In Chapter 2, we presented a study investigating the use of Bayesian multilevel, multi-

variate methods both for the detection of time trends in annual maximum river flows,

and the attribution of such flows upon climate indices for a reference network of river

gauging stations in Great Britain. At first, a typical at-site approach was investigated,

to assess the ability of such methods to detect trends in annual maximum river flows

should any exist. While it is expected that flooding events are increasing with time

in Great Britain, just 25% of these gauging stations exhibited significant time trends.

However, if measurements at all stations are independent from each other, 5% of sta-

tions could show a trend by chance due to multiple testing. This issue, along with the

poor statistical power of such methods, led to a change in approach towards the use of

Bayesian spatial multilevel models. The use of these models allowed for the pooling of

information across river gauging stations. The spatial nature of relationships between

these stations was modelled through the inclusion of a Gaussian process representing

the spatial random effect. By increasing the sample size available to the model in this

way, it was possible to detect clear countrywide time trends that had been missed with

the at-site approach.

The use of a multilevel approach resulted in a first countrywide detection of a clear

time trend in annual maximum flows in the country, in contrast with the scattered
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signal observed in the at-site analysis. It was observed that the fixed effect of time on

annual maximum river flows was highly likely to be greater than 0.6. As the method

involved taking the log of the annual maximum flows, this corresponds to time adding

at least 6% to annual maximum flows each year, which suggests that annual maximum

flows have been increasing considerably over time. This in turn suggests that changes

in flows match climate change projections (Bates, 2009), which predicts an increase in

flooding.

Time itself does not cause such changes in annual maximum river flows, however. It

represents a proxy for other unknown quantities, which themselves vary with annual

maximum river flows in the same way as time. Time itself will not provide any useful

information on potential drivers of changes in these flows, and thus detection should

not be the sole focus of trend analyses in such studies. Instead, a switch in focus to-

wards the combined detection and attribution of these changes to large-scale climate

indices was proposed in Chapter 2. These climate indices themselves represent changes

in climate. The effect of the East Atlantic (EA) and North Atlantic Oscillation (NAO)

indices on annual maximum river flows was explored in Chapter 2, and a clear sig-

nal was obtained for the EA index in the univariate case, with an increase of 10%

in the median when going from a neutral to positive EA value. This signal was still

clear and positive when time was accounted for, suggesting that the EA index may

have an impact on annual maximum river flows even when temporal confounding is

accounted for. On the other hand, in the naive univariate approach, there appeared

to be a clear link between NAO and annual maximum river flows, with an increase

of 2% in the median of annual maximum flows when going from neutral to positive

NAO. However, when time was included as a variable in the model (to address possible

confounding between variables) resulted in this association overlapping with zero and

becoming slightly, suggesting collinearity between this climate index and time. The

difference observed going from the univariate to the multivariate setting demonstrated

the necessity of a multivariate approach for accurately quantifying the true nature of

associations between climate indices and annual maximum flows. A combined mul-

tilevel, multivariate approach towards attribution was deemed necessary to provide a

clearer insight into changes in annual maximum river flows in Great Britain, and the

strength of the relationship between these flows and climate indices.

This strong association between climate indices and annual maximum river flows was

a crucial first step towards the accurate attribution of trends in annual maximum river

flows motivated by Merz et al. (2012). In particular, the approach in Chapter 2 ful-

filled Merz et al. (2012)’s “soft” attribution criteria, along with two of the three “hard”
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attribution criteria. It was observed that detected changes in annual maximum river

flows appear to be consistent with the East Atlantic index, and an uncertainty interval

over the estimates was provided. However, the approach in essence only demonstrates

clear associations between climate indices and annual maximum river flows, once time

has been taken into account. Further evidence was deemed necessary to demonstrate a

causal link between these climate indices and annual maximum river flows in Great

Britain. For example, it remains to check whether detected changes are inconsis-

tent with potential alternative drivers other than NAO, which was also investigated

in Chapter 2. In Chapter 3, we proposed a systematic checklist for assessing causality

in environmental observational studies such as these, which fulfils and goes beyond the

scope of these criteria. The results of this approach are discussed in the next section.

It should be noted that the method presented in Chapter 2 relies on the assumption of

a countrywide trend of both time and climate indices, and that the effects of climate

indices are linear. These assumptions do not appear to be too strong for a preliminary

approach, however. The use of non-parametric regression models, as seen in Villarini

et al. (2009), to describe the relationship between annual maximum flow and the ex-

planatory variable may be useful in relaxing the strong linearity assumption.

In conclusion, in Chapter 2 it was demonstrated that one can use multilevel models

to detect countrywide trend at monitoring stations with short records by pooling in-

formation from nearby catchments, and that by using these more complex, yet still

interpretable models, clear associations between these trends and some climate indices

of interest are found. It was necessary to use a multivariate approach to uncover the

effect of confounding between climate indices and time. By including time as a variable

within the model for annual maximum river flows and a climate index of interest, we

were able to observe the true relationship between such indices and flows. Addition-

ally, the use of near-natural “benchmark” catchments in our approach ensured that

any signal found in the data cannot be related to anthropogenic changes other than

climate. The results from this approach could be beneficial to environmental monitor-

ing agencies in understanding how floods may be changing in the future and be better

prepared for this period of unknown extremes.
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5.2 Causal methods for environmental observational stud-

ies

In Chapter 3, we presented a systematic checklist for the causal assessment of environ-

mental observational studies. The challenges of assessing causal relationships in envi-

ronmental observational studies were discussed, including the problems of confounding,

limited data records and natural variability. Many standard causal methods are not

easily applicable to such studies as a result. The need to consider non-data assump-

tions which help to build up the strength of evidence for a particular relationship was

highlighted, and it was deemed necessary to incorporate additional expert knowledge

in order to make causal statements about observational environmental studies.

Chapter 3 provided a review of a variety of causal tools from differing fields that were

of potential benefit to environmental observational studies such as the case study of

annual maximum river flows. Inspiration was taken from methods such as the Bradford

Hill criteria, causal directed acyclic graphs (DAGs), the method of multiple working

hypotheses and weighting of evidence methods, in order to propose a systematic ap-

proach for the attribution of long-term, large-scale changes in environmental processes.

Using such methods, along with proposing a number of additional steps (incorporating

both data and non-data assumptions), it was possible to develop a framework which as-

sesses variables for a causal link with some outcome of interest, while ruling out further

alternative causes. The Bradford Hill criteria was beneficial in framing the problem in

terms of key causal questions, DAGs provided a means of visualising the overall causal

structure (including potential confounding variables), while the method of multiple

working hypotheses helped to rule out potential alternative hypotheses. Further steps

such as accounting for sources of confounding and interpretability of model results to

the end user were proposed as necessary for ensuring that the method was of use for

decision-making bodies.

The approach proposed in Chapter 3 provided guidelines on how to conduct a thor-

ough analysis to ensure all possible avenues are explored through a methodical checklist,

which brings together multiple workflows by bridging the gap from climate scientists

to the relevant authorities. The method helps to improve accuracy and interpretability

for decision-making bodies, as well as being thorough in ruling out additional causes

and controlling for confounding where possible. We also claim that it is necessary to

sense check the proposed models with causal diagrams throughout the process, in order

to consider as wide a range of possibilities as is feasible.
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We applied this method to a case study of annual maximum river flows in Great Britain,

where the aim was to attribute changes in these flows to climate change (represented

by the East Atlantic and North Atlantic Oscillation indices). A thorough review was

carried out, which addressed each item within the checklist. The result from this ap-

proach suggests that changes in these flows can, in part, be attributed to the East

Atlantic index and hence climate change. The case study, through assessing the im-

pact of the NAO index upon annual maximum river flows, also demonstrated the need

to account for time-varying confounding and hence gain a further insight into the true

associations between the exposure and the outcome of interest. This approach provided

a thorough attribution of changes in annual maximum river flows in Great Britain to

the EA index. In contrast to the approach seen in Chapter 2, this systematic checklist

fulfils the three requirements set out by Merz et al. (2012) for “hard” attribution and

goes beyond the scope of these requirements. It was observed that changes in annual

maximum flows are consistent with changes in the EA index, and inconsistent with

several potential alternative causes. In addition, a statement of uncertainty is provided

through a credible interval on estimates. Further to these requirements, the checklist

also ensured that results are interpretable to decision making bodies, that the method

controlled for additional unmeasured confounding, and that the problem was framed in

the context of causal diagrams, which are revisited throughout the analysis, to ensure

diligence in considering potential alternative causes.

Though the case study focused specifically on annual maximum river flows in Great

Britain, this approach is applicable to the attribution of changes in annual maximum

flows anywhere. While the spatial correlation structure or climate variable under in-

vestigation may differ from the case study presented in Chapter 3, the overall approach

and checklist for ruling out additional possibilities would hold in any location. The

checklist can also be directly applied to many other environmental observational stud-

ies investigating the causal link between long-term, large-scale exposures and some

outcome of interest. For example, this could easily be used in estimating the impact of

climate change on water quality. However, the checklist would not apply in the case of

feedback loop environmental problems, which cannot be summarised by a DAG (Pearce

and Lawlor, 2016). Alternative approaches to the DAG must be considered to frame

the problem in such a setting.

In summary, the checklist developed in Chapter 3 provides a simple, usable tool that

provides an extension to the preliminary attribution analysis conducted in Chapter 2.

The “hard” attribution criteria set out by Merz et al. (2012) has been satisfied, and

it is possible to state that changes in annual maximum river flows in Great Britain
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can, in part at least, be attributed to the East Atlantic index and hence to climate

change. Another important contribution of this chapter is the general applicability of

this causal approach to environmental observational studies, for which standard causal

methods are often not appropriate.

5.3 Precision-based methods for modelling trends on a

river network

In order to inform local flood defence management, is also of interest to look at a

more regional level of modelling. The use of Bayesian methods described in Chapter

2 may also be useful for exploring long-term trends at a regional level, which again

may be missed out in an at-site approach. However, adaptations are required. As the

spatial domain of river gauging stations is not continuous on a countrywide level, the

distance-based spatial effect was modelled in this approach through a Gaussian process.

However, in the setting of a single river, the spatial structure may instead be encoded

by exploiting the inherent graph structure of a single river network.

Chapter 4 focused on the detection of such changes in daily mean flows on a single

river, by exploiting the inherent graph structure of this single river network. Prior

approaches to respecting the directional structure of rivers were discussed, however

these primarily made use of covariance-based methods. In this setting, one could use the

Gaussian process approach seen in Chapter 2, however the covariance matrix encoding

the spatial relationships between stations is dense, and using the Euclidean distance in

this setting may not be appropriate Ver Hoef et al. (2006). Instead, we proposed the

use of precision-based methods which encode conditional independence relationships

between stations on a single river network. These conditional independent relationships

are encoded through a sparse precision matrix resulting in faster inference methods than

would be obtained with a dense covariance structure. We have demonstrated that such

methods lead to an improvement of the variability in estimates of trends in these flows

compared to an independent covariance structure. We also demonstrated the utility of

PC priors for parameters which are difficult to elicit from expert information.

Modelling spatial relationships between river gauging stations on a network through

a CAR model is a novel approach which proved beneficial for accurately assessing

long-term trends in daily mean river flows on a single river network. As noted, the

use of Bayesian methods in such a scenario have previously been proposed for annual

maximum river flows in Great Britain (see Chapter 2 and Brady et al. (2019)). However,
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the major advantage of using the CAR model on a network is that exploiting the sparse

GMRF representation allows for faster inference than a dense matrix. It was not

possible to use a CAR structure was not possible on the countrywide annual maximum

river data seen in Chapter 2, as the entire river network for Great Britain is not

connected. However, in the case of a single river, it helps to encode relationships

between neighbouring gauging stations and speeds up inference compared to the use of

the Gaussian process in a countrywide approach through the use of a sparse precision

matrix. It was seen that, even for a small number of river gauging stations (10) and

the corresponding 10 × 10 precision matrix, inference using a full precision matrix is

approximately twice as slow as using the sparse precision approach from Chapter 4. It

may be possible to combine the approaches seen in this chapter and Chapter 2, to have

a countrywide approach which also respects the structure of individual river networks

throughout and benefits from computational speed-up at a regional level.

5.4 Future work

There are a number of possible future avenues for this work that may be worth ex-

ploring. These are discussed in this section, and are grouped by future attribution

approaches and network-based methods.

5.4.1 Additional attribution methods

The systematic checklist presented in Chapter 3 primarily discussed temporal con-

founding in attribution studies, but spatial confounding is another common issue in

environmental observational studies, for example when estimating impact of climate

change on tree defoliation (Augustin et al., 2007). Models for spatial observational

data will typically include both a fixed effect for the covariate(s) of interest along

with random effects representing the spatial correlation in the data, as is the case

throughout this thesis. Adding these spatial random effects aims to reduce bias from

unmeasured covariates. However, if the response and these covariates are also spatially

correlated, including a spatial random effect may lead to confounding of the covariate

effect (Thaden and Kneib, 2018). The impact of this spatial confounding may be such

that, as seen in the case of temporal confounding in Chapter 2, a coefficient which is

significant with no spatial random effect can become non-significant if a spatial random

effect is included (Reich et al., 2006). This confounding ensures it is near-impossible
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to distinguish between spatial effects modelled through location co-ordinates and site-

specific effects. This spatial confounding has primarily been investigated in the case

of areal spatial data, where the main approach involves constraining of spatial random

effects to be orthogonal to the fixed effects (Hodges and Reich, 2010). A similar ap-

proach was discussed by (Hanks et al., 2015) for the case of continuous spatial data,

however the method assumes that all variation in the same direction as the fixed effects

can be attributed to these effects. Thaden and Kneib (2018) suggest using structural

equation modelling in order to separate the direct effect of a covariate from the indirect

effect which arises from correlations with other variables. This method allows space to

have an effect on both the exposure and the response simultaneously, compared to with

prior methods allowing for space to have an effect on the response only. The method

proposed in Chapter 3 could be extended through an item accounting for spatial con-

founding with this method, and used for environmental observational studies where it

is anticipated that spatial confounding may occur.

It was also clear from the case study in Chapter 3 that collinearity, in particular with

time, is not easily overcome in environmental observational studies in which potential

drivers are affected by climate change. As a consequence, it may not always be feasible

to attribute changes in some outcome to a variable of interest using the systematic

checklist proposed in Chapter 3. It was not possible to attribute changes in annual

maximum river flows in Great Britain to the North Atlantic Oscillation index due to

its collinearity with time — it is possible that there is a causal relationship, but us-

ing these methods it is not possible to conclude this. Further work is necessary to

accurately uncover the true causal nature of relationships in the presence of collinear

variables.

Chapter 4 provided a means of detecting long-term changes in daily mean flows on a

single river network, however it did not provide any insight into the underlying causes

of such changes. Attribution at a local level was discussed in Section 4.9, but care

must be taken at such a fine spatial scale to consult with regional experts on potential

drivers of change. This in turn may help to inform future water management practices

at a regional level. Additionally, the various components that might contribute to-

wards daily mean flows in stations on a network were noted in Chapter 4. Preliminary

models were fitted in order to understand how and why these flows are changing over

time. Variables investigated included upstream station flows, rainfall and remaining

water entering the system. However, it was found that constructing a simple statis-

tical model which respected the physical behaviour of river flows does not easily lead

to sensible results for attribution of changes in these flows. Clear confounding was
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observed between these variables, due to their highly collinear nature. Additionally,

the relationship between rainfall and river flows is complex in nature. It is anticipated

that increasing precipitation results in an increase in river flows, however Sharma et al.

(2018) discuss the lack of evidence between increasing precipitation and floods, noting

that there are even examples of reduced flooding magnitudes with increased precipita-

tion. It is not possible to sensibly include rainfall in this approach without a thorough

understanding of the true nature of this relationship between precipitation and daily

mean flows, and further investigation must be carried out to accurately incorporate

precipitation in future statistical models (Blöschl et al., 2019).

It was also noted in Chapter 4 that it is difficult to accurately express the remaining

water volume entering and exiting the system. There is often loss of flows to the exter-

nal environment, and small ungauged streams may exist which flow into a river gauging

station, leading to an increase in river flow volume. Accurately representing these phys-

ical processes is complex to achieve, and may require the use of hybrid statistical-PDE

approaches, as has been used in blood flow modelling (Azzimonti et al., 2015). This

would require the inclusion of a PDE governing the flow behaviour as a prior to a

statistical model. It is important to note however that this will further increase the

complexity of any model, meaning it may no longer be interpretable to decision-making

bodies, and thus not of use for future water management practices. Care must be taken

to achieve a fine balance between model simplicity and explanatory power, in order for

any such method to be of practical use.

5.4.2 Network-based methods

It was demonstrated in Chapter 4, that the use of a first-order CAR model may not

always be enough to entirely explain flows on the river network. Instead, one could

extend this to a second order CAR model, to ensure flows from stations further away

are included within the approach. While using a second-order model may help to better

explain flows on the monitoring network, a disadvantage is that it will result in a less

sparse precision matrix, leading to slower computation times. However, as this is on

a small scale, it is not expected that this will dramatically increase computation time

for problems of the size of that presented in Chapter 4. The upper limit would be the

full precision matrix, which was shown to take twice as long as the first-order CAR

model. However, for a larger monitoring network, the trade-off between explanatory

power and sparsity of the precision matrix will become more important and require

careful thought.
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It would also be of interest to compare the spatial structure of two differing time pe-

riods, to see whether the relationship between river gauging stations in the network

has evolved over time. It may be possible to have a time-varying precision matrix,

which encodes the spatial relationships between stations (which may drop in or out,

thus changing the spatial structure of the network) at time t, however for the sake of

simplicity and in order to assess trends across a longer time period in Chapter 4, the

precision matrix was only spatial in nature. Knight et al. (2016) introduced a set of

flexible models for network time series such as these known as the network autoregres-

sive (integrated) moving average (NARIMA) processes. It was noted that such models

could be used when the structure of the graph is evolving over time. Using this ap-

proach would provide an interesting extension to the work presented in Chapter 4.

In Chapter 4, the use of an unweighted CAR model was discussed, however the adja-

cency matrix describing the conditional relationships between river stations could be

weighted according to the distance between sites, so that closer locations might have

a greater influence over flows at a given river station. In this case, the entries of the

adjacency matrix W may be constructed as follows:

wij =

ωij if an edge exists between nodes xi and xj

0 if no edge exists between nodes xi and xj

where ωij is the weight based upon the distance between nodes xi and xj . However,

as noted in Chapter 4 and by Ver Hoef et al. (2006), the Euclidean distance may not

be an appropriate choice for the network, so it is proposed that the stream distance

be used. Stream distance between stations is not readily available from the NRFA. It

would be necessary to obtain the shapefile of a given river, then calculate the length

between points on this river. Should this be feasible, this would be a simple extension

to the method which weights the spatial relationships between stations (as computed

in Chapter 4) by stream distance.

5.5 Summary

A number of methods have been discussed and developed in this thesis which are of

benefit to various research communities and authorities. The use of Bayesian methods

for the more accurate detection of changes in river flows at a countrywide and local

level are beneficial to environmental authorities. We have demonstrated that there is

clear evidence of increasing trends of annual maximum river flows in Great Britain,
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verifying climate change projections as seen in Bates (2009). As a consequence, care

must be taken to ensure that appropriate flood defence systems are put in place to

withstand future flooding events.

Through the use of a reference network of river gauging stations to avoid the interference

of anthropogenic changes, we were also able to demonstrate clear associations between

the East Atlantic index and annual maximum river flows. The causal checklist discussed

in this thesis showed that this appears to be a causal link, suggesting that changes in the

EA index are contributing towards this increase in annual maximum river flows in Great

Britain. As this index is impacted by climate change, it is apparent that climate change

is driving these changes in flooding events in Great Britain. The development of this

causal checklist for the attribution of drivers of change in environmental observational

studies is a useful tool for researchers in a number of areas in which climate change is

the primary focus, such as air pollution, sea surface temperature and flooding.

While the evidence for change in flood risk at a national scale is of interest for large-

scale planning, this might not translate directly into local changes in river flow. A

different approach, which better exploits the known structure of the river measuring

network, can then be employed for the study or regional changes. These changes in

river flow patterns can also be seen at the regional level, where evidence of an increase

in daily mean flows on the river Eden network over time was seen. Understanding these

changes in the daily mean is important for water companies and future water resources

management in general. In order to make this a more useful tool, steps should be

taken to model the seasonal variation. It has been demonstrated for northern England

(Fowler et al., 2003) that, while it is expected that increased winter rainfall will result

in improved water resource reliability, there will also be an increased vulnerability to

drought due to decreased summer rainfall. Modelling these daily trends across Great

Britain with a renewed focus on seasonal changes will help to understand future risks

to water resources at a countrywide level.
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Appendix A

Additional exploratory analysis

and model diagnostics for

Chapter 2

We present some additional exploratory data analysis and model diagnostics that were

not included in the published version of Chapter 2.

A.1 Exploratory data analysis

A histogram and density plot of annual maximum flow data for the UKBN2 benchmark

catchments in Great Britain, as presented in Chapter 2, can be seen in Figure A-1. This

is very skewed in nature, as can be seen further by examining the QQplot in Figure

A-2.
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(a) A histogram of annual maximum flow data
(b) A density plot of annual maximum flow
data

Figure A-1: Distribution of annual maximum flow data for the UKBN2 benchmark
catchments

Figure A-2: A qqplot for the annual maximum flow data
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We try some transformations as taking the log of the annual maximum flows and

assuming normality has been seen to be appropriate (Prosdocimi et al., 2014). First,

the data is standardised by dividing the annual maximum flows by the median of the

annual maximum series (QMED), then the log is taken. The histogram and density

plots of this may be seen in Figure A-3. This is much improved. There is still some

(a) A histogram of the log of the standardised
annual maximum flow data

(b) A density plot of the log of the standard-
ised annual maximum flow data

Figure A-3: Distribution of the log of the standardised annual maximum flow data for
the UKBN2 benchmark catchments

skewness in the data (see Figure A-4), however it appears somewhat more reasonable

to approximate this density by a normal distribution. The skewness is due to behaviour

of some individual stations (generally those with smaller flows), however it can be seen

by examining some stations that the log-normal fits the data well. For example, a

qqplot for the log of the standardised annual maximum flow data for station 42010 can

be seen in Figure A-5. This is seen to fit the data very well.
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Figure A-4: A qqplot for the log of the standardised annual maximum flow data

Figure A-5: A qqplot for the log of the standardised annual maximum flow data at
station 42010
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A semivariogram for the log of the standardised annual maximum flow data can be

seen in Figure A-6, which demonstrates that the choice of an exponential correlation

is reasonable. Note that there is a very steep dropoff, which suggests that it may be

possible to set the correlation to zero after a chosen distance to speed up modelling,

by using a more sparse correlation matrix.
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Figure A-6: A variogram for the log of the standardised annual maximum flow data
with distance in metres.

A.2 Model diagnostics

We can look at some diagnostics such as the traceplot for the β parameters from Model

A (Figure A-7). The chains appear to be approximately stationary. We can also look at

the traceplot for the random effect parameters, η2 (Figure A-8a) and ρ (Figure A-8b).

These also appear to be satisfactory.
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Figure A-7: A traceplot for the βi

(a) A traceplot for parameter η2 (b) A traceplot for parameter ρ

Figure A-8: Traceplots for the random effect parameters
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Appendix B

Technical details for Stan and

INLA

Here we present further details of the underlying methods behind Stan (used in Chap-

ters 2 and 3) and INLA (used in Chapter 4).

B.1 Stan

Stan is a C++ based probabilistic programming language for statistical inference. It

may be used to derive samples from Bayesian models to obtain posterior simulations

given a user-defined model and data (Carpenter et al., 2016). It makes use of a mod-

ified Markov chain Monte Carlo (MCMC) approach, known as Hamiltonian Monte

Carlo (HMC), for sampling from these models. This method uses the derivatives of the

density function being sampled to generate efficient transitions spanning the posterior

density (Betancourt and Girolami, 2015). The usefulness of this approach in Bayesian

problems was noted by Betancourt (2017); Neal (2012). The difference between HMC

and typical MCMC schemes such as Metropolis Hastings is that HMC reduces cor-

relation between successive sampled states by using a Hamiltonian evolution between

states, and additionally by targeting states with a higher acceptance criteria than the

observed probability distribution. It adopts physical system dynamics by developing a

Hamiltonian function H(x, p), instead of a probability distribution to propose future

states in the Markov chain. This allows the chain to explore the target distribution

much more efficiently. Hamiltonian dynamics describe an object’s motion in terms of
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its location x and momentum p. For more details on Hamiltonian systems, see Landau

et al. (1976).

We use the Hamiltonian dynamics as a proposal function for a Markov Chain in order

to explore the target density p(x) more efficiently than using a proposal probabil-

ity distribution. Starting at some initial state (x0,p0), we can simulate Hamiltonian

dynamics for a short time using the Leap Frog method, described by:

pi(t+ δ/2) = pi(t)− (δ/2)
∂U

∂xi(t)

xi(t+ δ) = xi(t) + δ
∂K

∂pi(t+ δ/2)

pi(t+ δ) = pi(t+ δ/2)(δ/2)
∂U

∂xi(t+ δ)

We then use the current state of the position and momentum variables at the end of the

simulation as our proposed states variables x∗ and p∗. The proposed state is accepted

or rejected via an analogous rule to the Metropolis acceptance criterion. That is, if

the probability of the proposed state after Hamiltonian dynamics is greater than that

before, i.e. if:

p(x∗,p∗) ∝ exp(−U(x∗),K(p∗) > p(x0,p0) ∝ exp(−U(x(t− 1),K(p(t− 1)) (B.1.1)

then the proposed state is accepted, otherwise, the proposed state is accepted ran-

domly. If the state is rejected, the next state of the Markov chain is set as the

state at t − 1. For a given set of initial conditions, Hamiltonian dynamics will fol-

low contours of constant energy in phase space. Therefore we must randomly per-

turb the dynamics so as to explore all of the target density. This is done by simply

drawing a random momentum from the corresponding canonical distribution p(p) be-

fore running the dynamics prior to each sampling iteration. Combining these steps,

we define the HMC algorithm for drawing M samples from a target distribution:
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Algorithm 1: Hamiltonian Monte Carlo

1. Set t = 0.

2. Generate an initial position state x(0) ∼ π(0).

3. Repeat until t = M .

4. Set t = t+ 1.

5. Sample a new initial momentum variable from the momentum canonical

distribution p0 ∼ p(p).

6. Set x0 = xt−1.

7. Run Leap Frog algorithm starting at (x0,p0) for L steps and stepsize δ to

obtain proposed states x∗ and p∗.

8. Calculate the Metropolis acceptance probability:

α = min(1, exp(U(x∗) + U(x0)−K(p∗) +K(p0)).

9. Draw a random number u from Unif(0, 1).

10. if u ≤ α then

accept the proposed state position x∗ and set the next state in the Markov chain;

else

set x(t) == x(t−1);

end
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B.2 INLA

The Integrated Nested Laplace Approximation (INLA) is an approximate Bayesian

method performs numerical calculations of posterior densities using a series of Laplace

approximations of hierarchical latent Gaussian models. We summarise the details of

the INLA method following the approach of Rue et al. (2009).

Given the model

log(yi) = α+

nf∑
j=1

f (j)(uj) +

nβ∑
k=1

βkzki + εi (B.2.1)

with latent effects x = {log(yi), α, βk, ...}, where fk may be used to model non-linear

effects, spatial dependencies, etc., and x a GMRF as defined in Chapter 1. Then, the

posterior distribution of model latent effects may be written as:

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi, xi, θ)

∝ π(θ)|Q(θ)|−1/2 exp

(
1

2
xTQ(θ)x

)
+
∑
i∈I

log(π(yi|xi, θ)

The aim of the INLA approach is to find the marginal posterior densities for each of

the latent variables xi as well as for the hyperparameters θ given the observed data y,

π(xi|y) =

∫
π(xi|θ, y)π(θ|y) dθ

π(θj |y) =

∫
π(θ|y) dθ−j .

To estimate these marginals, we need either π(θ|y), or a good approximation to it:

π̂(θ|y) ∝ π(x, θ, y)

πG(x|θ, y)
,

where πG(x|θ, y) is the Gaussian approximation to the full conditional of x. This was

used to compute the marginal of xi numerically (Rue et al., 2009):

π̂(xi|y) =
∑
k

π̂(xi|θk, y)π̂(θk|y)∆k,

where the ∆k are weights associated with the ensemble of values θ. For the first term,

we need a good approximation. A Gaussian may be sufficient but this is not always
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the case. Rue et al. (2009) introduced a Laplace approximation:

ˆπLA(xi|θ, y) ∝ π(x, θ, y)

πGG(x−i|xi, θ, y)

where ˆπLA denotes the Laplace approximation, about the mode. Finally, Rue et al.

(2009) developed a simplified version of this approximation to improve this, using a

series approximation of the Laplace approximation about xi.

This approach to Bayesian inference is a much more efficient computational technique

than Markov Chain Monte Carlo (MCMC) methods and hence is ideal for use on large

scale problems. If we can formulate a model as a latent Gaussian model (as introduced

in Chapter 1), we can implement it using INLA.

We can implement such models in R via R-INLA (Rue et al., 2012). R-INLA provides

a user interface similar to that of (generalised) linear models in R, and is available from

http://www.r-inla.org. The interface can handle a multitude of different models

including ones that have fixed effects, non-linear terms or random effects. Thsi flexible

interface allows for the specification of different priors and model fitting options using

a formula() argument. The model is fitted with a call to function inla(), which

will return results from the fitted model, which include the marginal distributions

of the latent process and model parameters, as well as summary statistics. R-INLA

can produce other quantities up on specification to the call to INLA (Blangiardo and

Cameletti, 2015). For more details, see Blangiardo and Cameletti (2015); Rue et al.

(2012).
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