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Abstract

Activator Protein 1 (AP-1) is a basic leucine zipper (bZIP) transcription factor that is formed
from the dimerisation of cJun and cFos proteins to form a coiled coil (CC). As AP-1 is
implicated in the pathways of multiple cancers (such as breast cancer, cervical cancer, and
colon cancer) this a-helical peptide-peptide interface represents an interesting target for the
inhibition of AP-1 formation and transcriptional activity. Peptidomimetic sequences based
on cFos are able to preferentially bind to cJun. Three methods were explored to develop
and optimise the use of in silico screening methods in the design of cJun antagonists. Firstly,
in cellulo screening techniques were modelled computationally and used to design a stable
and specific cJun antagonist. Secondarily, this method was further expanded in cellulo with
Protein-fragment Complementation Assay screening, with the aim of validating the peptide
library generated. Both peptides derived from these techniques showed similarly high levels
of stability with cJun and promoted instability in negative and off-target complexes. The in-
cellulo derived sequence showed additional co-compatability with a previously
characterised cFos antagonist and allowed for specific targeting of both AP-1 components.
Finally, a set of heptapeptide “cassettes” were synthesised and characterised in both a
linear and cyclic form, using b-f lactam bridges. The variances in helicity seen in the
lactamised forms highlighted differences in constraint tolerance. This data was coupled with
computational screening data to modularly select a combination of cassettes predicted to
bind to cJun. Full-length peptides selected computationally were shown to have decreased
homodimeric and heterodimeric stability, whereas the combined in-silico/in-vitro selections
showed high levels of stability and were able to successfully target cJun. This provides
novel insights into the tolerance of constraints and the design of peptides for stability and
helicity. Overall, the methods developed (and the peptides derived) represent a step forward
in the design of specific peptide therapies capable of targeting AP-1.
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CHAPTER 1 - INTRODUCTION

The transcription factor (TF) Activator Protein 1 (AP-1) is a basic leucine zipper (bZIP)
formed as a dimeric complex of proteins across the Jun, Fos, ATF and MAF families
(Chinenov and Kerppola 2001; Eferl and Wagner 2003). Within the bZIP family of proteins,
there exists a shared core architecture of a bZIP domain which is flanked N- or C-terminally
by a transactivation (TA) domain (Seldeen et al. 2010).

The bZIP domain itself is composed of 2 separate regions which serve different roles in the
transcriptional function of the protein. As shown in Figure 1.1, there is a N-terminal basic
sequence which mediates AP-1 recognition and binding to its consensus sequence
(GTGACTCA) on DNA — known as the tumour promoting agent (12-O-tetradecanoylphorbol
13-acetate or TPA) response element (TRE) (Angel and Karin 1991). At the C-terminus, the
a-helical leucine zipper (LZ) region mediates the dimerisation of two bZIP proteins via the

formation of a coiled coil structure.

Leucine
Zipper

Basic
Region

Figure 1.1 Structure of bZIP AP-1 bound to DNA (PDB: 1FOS). The binding of bZIPs to
specific DNA sites is facilitated by the (often Arginine-rich) basic region at the N-terminus
(blue). The Leucine Zipper region at the C-terminus (purple) mediates the dimerisation of
the proteins via the formation of a strip of Leucine residues (red) at every 7" position



In a wider genomic context, the comparison of diversification has shown that the evolution
of bZIPs originated from a single eukaryotic protein and the resulting evolution of bZIP family
proteins incrementally increased in complexity, while retaining important roles within the
regulation of cellular processes (Deppmann et al. 2006; Jindrich and Degnhan 2016; Kani et
al. 2017). Within humans, there exist 21 bZIP families and over 50 distinct members, with
the potential for over 2000 distinct dimers to form and recognise binding sites (Seldeen et
al. 2010; Reinke et al. 2013).

The TRE is a consensus sequence found within transcriptional regulatory regions on DNA.
It was first discovered in the promoters of metallothionein lla (hMTIlla) and simian virus 40
(SV40). These sites facilitate binding to specific structures on proteins. Within AP-1, the
structure of the basic region allows the residues to make contacts that are base-specific
within the major groove of DNA and the flexibility of the LZ region means that AP-1 does
not exclusively bind to a specific orientation of the TRE (Glover and Harrison 1995).

Depending on the constituent bZIP proteins, AP-1 can form in many different complexes.
The Jun family of proteins (JunB, JunD, and cJun) are able to form transcriptionally active
AP-1 via both homodimerisation and heterodimerisation with Fos family proteins (Darlyuk-
Saadon et al. 2012). Conversely, Fos family proteins (Fral, Fra2, FosB, cFos) display far
less flexibility and require heterodimerisation with Jun family proteins to form AP-1, with this
heterodimer able to bind DNA tighter than the Jun homodimer (Ransone et al. 1993). Given
the diversity of roles that they play physiologically, the structurally mediated selectivity and
specificity of bZIP formation is of key importance across all families — including that of Jun
and Fos (Ransone et al. 1993). Relative to simpler eukaryotes, the greater ability to form
heterodimers and engage with distinct binding sites suggests that the multitude of possible
complexes contributed to the further organismal complexity (Lamb and McKnight 1991;
Reinke et al. 2013; Rodriguez-Martinez et al. 2017).

1.1 Structure of the Leucine Zipper

The leucine zipper is a short a-helical region of typically 30-40 residues that mediates
binding between bZIP proteins via a-helical interactions (Crick 1953; O’Shea et al. 1991).
The general structure of the LZ incorporates architecture based on a sequence of residues
conforming to a seven residue pattern known as a heptad repeat. The heptad pattern,
repeating for the length of the LZ is defined as (abcdefg),, with each position populated by

characteristically different residues.

This sequence forms a coiled coil owing to its a-helical properties. This CC is a common
structural motif and it exists in 3 — 5% of amino acids within proteins and typically consist of
2 — 5 a-helices wrapped around one another in a parallel or anti-parallel manner (Mason

and Arndt 2004). Canonically, an a-helix exhibits 3.6 residues per turn of the helix but within



the CC, this decreases this to 3.5 — allowing for a complete repeat of the heptad every 2
turns. When discovered by Crick, this was geometrically described as a 20° incline between
the axes of the helices, which then allows the CC itself to follow a gradual helix with a pitch
angle of ~10° (Crick 1953). This gives rise to the formation of the supercoiling of the
structure, seen as a shallow left-handed helical structure, with the presence of a “strip” of
hydrophobic residues embedded in the core of the heptad for the entire length of the CC.
Most of the interhelical interactions within the LZ structure — influencing stability and

specificity- involve residues in positions a, d, e, and g (Alber 1992).

The structural stability of the CC is achieved via “knobs into holes packing” (KIHP), in which
the side-chains of residues of position a and d (“knobs”) pack into the spaces on the
opposing helix (“holes”). Within position a, the knob is packed into a hole surrounded by the
side chains of residues at position a, position g, and those of two position d. This is mirrored
for the knob on position d, with its hole surrounded by side chains of positions d, e, and two
of position a (Crick 1953; O’Shea et al. 1993; Glover and Harrison 1995). The “ridges into
grooves” packing (RIGP) model is similar, with interfacial interactions between the two
helices incorporating the reciprocal placement of side chains (Chothia et al. 1977; Chothia
et al. 1981). Unlike KIHP, RIGP defines the environment for single residue side chain
placement as a “groove” on the opposite helix defined by 2 residues, rather than the 4
involved in the defining of the “hole” in KIHP (Efimov 1999).

/\
a

W
-

~_

Figure 1.2 Helical wheel showing the relative positions of residues within the coiled
coil. Residues at positions a and d form the buried hydrophobic interface, with
potential electrostatic interactions (red) formed between residues at positions e and

g.
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As shown in Figure 1.2, positions a and d form the buried core region of the zipper, most
frequently populated by hydrophobic residues, such as leucine, isoleucine, valine and
alanine. Position d is typically observed to be a leucine residue and one reason suggested
for this phenomenon is the primary role that the leucine repeat might play in the identification
of bZIP proteins (O’Shea et al. 1991). This leucine repeat at every 7™ residue is the factor
which contributes the most to the stabilisation of dimerisation between the LZs from d-d’
interactions, with the a-a’ interactions. The conservation of leucine at d is thought to suggest
that the interfacial packing and CC stability would be lost if the residue were replaced with

one smaller, larger, or unbranched (Hu et al. 1990; Hodges et al. 1990; Hu and Sauer 1992).

Due to the precision of the KIHP geometry, it's known that the residues within the sequence
affect the oligomeric state; with the understanding that different combinations of side-chains
influence how the helices wrap around one another (Woolfson and Alber 1995; Nautiyal et
al. 1995). This sequence-to-structure understanding has shown that residues at these core
positions are linked to the oligomeric states of the bZIPs, with isoleucine at a and leucine at
d promoting parallel dimers. (Harbury et al. 1993) The selection of isoleucine at both a and
d has been shown to promote a trimeric configuration, and tetramers promoted with an a/d

selection of leucine and isoleucine respectively.

Within bZIPs generally, the flexibility of a positions to accommodate polar residues allows
the specificity, oligomeric state, and helical orientation to be controlled (Potapov et al. 2015).
This location benefits from the ability to form intrahelical hydrophobic interactions with
leucine residues at d and this is energetically favours B-branched amino acids valine and
leucine (Acharya et al. 2006). The selection of charged or polar residues within the core is
not uncommon within AP-1, with threonine and lysine present at the a position of cFos and
asparagine at the same position on cJun. Structurally, the side chain of the basic residue
lysine in cFos packs against its main chain as well as against those of side chains within

positions a and g in cJun, conforming to the KIHP pattern (Glover and Harrison 1995).

Similarly, the selection of asparagine in cJun is not uncommon in CCs. Although its
presence within the core is destabilising, the trade-off is that it is thought that asparagine-
asparagine inter-helical interactions within CCs limits the oligomeric state to that of a dimer,
with asparagine -> valine mutants exhibiting mixtures of dimeric and trimeric structures
(O’Shea et al. 1991; Hartmann et al. 2009; Fletcher et al. 2017; Thomas et al. 2017). Within
the cJun-cFos interaction, the asparagine within cJun is able to donate a hydrogen bond to
the preceding glutamate within cFos due to the solvent exposed nature of asparagine’s side
chain (Glover and Harrison 1995). Additionally, the presence of polar residues at a has been
shown to specify the orientation and alignment of the CC. The interaction of neighbouring
polar residues ensures that the CCs align correctly to ensure correct interaction between

residues at positions g and e (Alber 1992).
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In parallel dimeric CCs, the residues at the e and g positions form attractive of repulsive
electrostatic g'-e'*! interactions between the helices (O’Shea et al. 1991). Whereas the core
interactions are thought to contribute primarily to stability, these interactions contribute to
specificity in multiple forms — helix orientation, oligomeric state, and the formation of either
heterodimers or homodimers (Graddis et al. 1993; Monera et al. 1993; Zeng and
Zimmerman 1997). As aforementioned, it is thought that these g and e residues also play
a role in the KIHP structure, with their generally long and charged side chains forming the
solvent-exposed wall of the hole and the aliphatic regions packing against the knob within
(Glover and Harrison 1995; Havranek and Harbury 2003).

Residues at positions b, ¢, and f constitute the almost completely solvent-exposed
backbone “outerface” of the CC. With limited data on the matter, the role that residues at
these positions play is poorly understood (Baxter, Ullman, et al. 2017). Due to their position
away from the binding interface, it is thought that these residues promote stability and
solubility of the a-helix (O’'Neil and DeGrado 1990; Kaplan et al. 2014). This contribution to
helical propensity is reflected in in silico prediction models (Mason et al. 2006). Early
characterisation of the CC highlighted the ability of e and g residues to form ionic
interactions with residues at b and ¢, with additional studies suggesting potential intrahelical
interactions between b-f and f-c (O’Shea et al. 1991; Mason et al. 2006).

1.2 Physiological Role of Activator Protein-1

The main role of AP-1 TFs is to convert extracellular signals into intracellular expression
changes of specific genes. The activity of the transcription factor is modulated by
interactions with other transcriptional regulators and is linked to various signal pathways by
kinases positioned upstream — with all mitogen-activated protein kinase cascades playing

a role in this process (Rincon and Flaveil’ 1994; Jochum et al. 2001; Shaulian 2010).

AP-1 TFs regulate cellular proliferation by regulating the expression of genes vital to the
cell cycle (Garces de Los Fayos Alonso et al. 2018). This is observed in cJun’s regulation
of the cell cycle to promote progression by stimulating cyclin D1 (as shown in Figure 1.3)
while also inhibiting the p53 tumour suppressor (Oien et al. 2000). The latter results in the
reduction of cyclin-dependent kinase inhibitor p21 and the progression of the cell cycle from
G1 to S phase is promoted (Schreiber et al. 1999). This has a reciprocal connection with
JunB, which is able to slow the progression of the G1 to S phase transition through
repression of the cyclin D1 promoter and the transcriptional activation of p16™*4? (Latifa
Bakiri, Dominique Lallemand et al. 2000; Passegué and Wagner 2000). cJun also exhibits
tumour suppressive properties identified in studies of cJun deficient cells. These cells were
found to suffer spontaneous DNA damage (and therefore early senescence) — implying that

cJun potentially has a role in the DNA repair pathway (MacLaren et al. 2004).

12
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Figure 1.3 cJun and JunB have roles within the cell cycle, notably
at the G1-S transition via Cyclin D1 regulation. By inhibiting the
tumour suppressor p53 and direct stimulating Cyclin D1, cJun
promotes the transition. Conversely, direct repression of the Cyclin
D1 and activation of p16™K42 slows this transition.
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Growth factors Cytokines
Phorbol ester Stress

Plasma membrane

MAPKK [MEK1] [MEK2] [MKK3] [MKK6] [MKK4] [MKK7]

N N L

ERK2 p38

JNK

MAPK

Transcription
factors

Figure 1.4 AP-1 expression and activity is primarily regulated by multiple MAPK pathways,
including the JNK pathway. These signalling pathways are activated by a number of
external signalling mediators, including cytokines, stresses, hormones, and growth factors.
The increase in constituent cFos and cJun promotes formation of AP-1. The hyperactivity
of these signalling pathways can lead to the dysregulation of AP-1 and promote
tumourigenesis through the dysregulation of its target genes (including the upregulation of
constituent cJun). Figure adapted - (Eferl and Wagner 2003)

As shown in Figure 1.4, expression of cJun and its transcriptional activity is regulated
primarily by MAPK pathways, with a prominent one being the cJun amino terminal kinase
(INK) pathway — which phosphorylates and modulates Jun proteins (Dérijard et al. 1994;
Kyriakis et al. 1994). This pathway is activated by a number of external mediators such as
tumour necrosis factor a (TNF-a), a cytokine which is critical in immune response,
proliferation, differentiation, and apoptosis (Chen and Goeddel 2002; Ventura et al. 2003).

14



The cellular expression of cFos is transient, with expression occurring as part of the nuclear
response to stimuli including neurotransmitter release, growth factors, and sensory
stimulation (Curran and Morgan 1987; Caputto et al. 2014). With the cessation of the
stimulus, the half-life of cFos is within the hour range, with degradation of the protein
occurring almost exclusively via the proteasome (Basbous et al. 2008). Due to this rapid
nuclear turnover, a method of translational targeting first described in the TF c-myc has
been discussed — with a mechanism directing cFos mRNA to the perinuclear cytoplasm to
facilitate efficient transport to the nucleus (Caput et al. 1986; Hesketh et al. 1994; Dalgleish
et al. 2001).

The physiological roles of AP-1 proteins have been probed via mouse model gene
disruption studies, which have highlighted a wide variety of cellular pathways and tissues
affected by their presence or lack thereof. In many cases, AP-1 proteins contribute to the
viability of mice - the loss of JunD is linked to male sterility. and embryonic lethality is
observed with the knockout of Fral, JunB, or cJun (at 9.5, 10, and 10.5 weeks respectively).
It is thought that the MAPK and AP-1 proteins are linked to the degradation of the
extracellular matrix (ECM) in foetal membranes (Lappas et al. 2011). Their increased
expression at supracervical sites is thought to play a role in increasing the susceptibility of
foetal membrane rupture susceptibility through matrix metalloproteinase-9 (MMP-9)
modulation (Sato and Seiki 1993; Chakraborti et al. 2003; Yonemoto et al. 2006; Sitras et
al. 2008). Analysis of mice lacking cFos has shown that, while fertile, viable, and able to
survive until adulthood, they are osteopetrotic due to a lack of osteoclasts (Wang et al.
1995; Passegué and Wagner 2000; Hess 2004). The loss of FosB is linked to a range of
neurobehavioral dysfunctions in postpartum mice, including changes in emotional
behaviour and a decrease in both nurturing and infanticide behaviour (Kuroda et al. 2008).
There is an element of overlap in the functions of AP-1 proteins, with various proteins able
to partially cover the proteins that have been knocked out. Whereas Fral is able to rescue
from the osteopetrotic phenotype associated with a loss of cFos, the latter is not able to
rescue from the lethality associated with the loss of Fral (Schreiber et al. 2000). Despite
the opposing roles within the cell cycle, a knock-in of JunB (and JunD) rescues embryonic

lethality of a cJun knockout until birth (Passegué and Wagner 2000).

1.2.1 Pathological Role of AP-1

Due to the intricate and complex role of AP-1 within cellular and physiological events,
deregulation of mechanisms involving the TF can have a multitude of pathological
outcomes, including several cancers, organ damage, fibrosis, asthma, psoriasis, and other
inflammatory conditions (Xanthoudakis et al. 1994; Chinenov and Kerppola 2001; Zenz et
al. 2007; Trop-Steinberg and Azar 2017; Gungl et al. 2018; Sun et al. 2019).
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In several studies, AP-1 proteins have been shown to play an important role in
cardiovascular disease. JunD has been found to have a role in the regulation of heart growth
and protection from cardiac apoptosis (Ricci et al. 2005). It is the only Jun family protein
expressed highly within the mammalian heart and regulates AP-1 activity to protect against
stress-induced hypertrophic growth in cardiomyocytes (Hilfiker-Kleiner et al. 2005). Both
JunB and FosB are involved in the response to heart injury by the regulation of MMP-2,
which influences ventricular performance (Alfonso-Jaume et al. 2006). Fra2 expression
(predominantly in the lung) is one of the contributing factors in the development of
pulmonary fibrosis by its regulation of fibrogenic mediators (Hardie et al. 2009; Ucero et al.
2019). Fral is involved in the modulation of proinflammatory and profibrotic genes in order
to protect tissue from injury, with Fral deficient mice displaying greater levels of fibrosis
(Rajasekaran et al. 2012).

Inflammatory diseases involve the dysregulation of the immune system and can result in
overexpression of cytokines, enzymes, and immune cells involved in the inflammatory
response. AP-1 (along with NFAT and STAT proteins) is considered to be a pro-
inflammatory TF that regulates the expression of tumour necrosis factor a and other
cytokines (Ulugkan and Wagner 2016). These cytokines modulate the recruitment and
activation of immune cells, with chronic inflammation linked to disorders such as asthma,
inflammatory bowel disease, and psoriasis (Zenz et al. 2007; Trop-Steinberg and Azar
2017)

1.3 AP-1 as an Anti-Cancer Target

Estimated to account for 20% of oncogenes, the deregulation of TF activity within signalling
pathways characterises the majority of human cancers (Vaquerizas et al. 2009; Yeh et al.
2013). Changes in cellular differentiation, apoptosis, and other processes are co-ordinated
and regulated via TFs (Mukherjee et al. 2018). Both cJun and cFos were initially discovered
as cellular counterparts to retroviral oncoproteins v-Jun and v-Fos found in avian sarcoma
virus 17 (ASV17) and Finkel-Biskis-Jinks murine sarcoma virus (Maki et al. 1987; Watanabe
et al. 2002). Other AP-1 family member proteins have also been shown to be oncoproteins
(JunB, JunD, Fral, Fra2, and FosB)

The presence of AP-1 (and AP-1 proteins) in oncogenic pathways can be attributed to two
main factors. Firstly, due to the previously described semi-redundant nature of the family,
AP-1 proteins have overlapping and non-overlapping functions which highlights the
importance of specificity and composition in the function of the TF. AP-1 has been described
as a “double-edged sword” due its implication in cancer-related pathways as well as the
observed ability of its proteins to display both tumour suppressant and pro-oncogenic

behaviour depending on the physiological context (Eferl and Wagner 2003). The second
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factor is that AP-1 sits at key intersecting points of signalling pathways for the transcriptional
regulation of many genes — including potential oncogenes (p53 — as aforementioned — plays

a crucial role in the cell cycle).

AP-1 is implicated in the pathogenesis of cancers including breast cancer, skin cancer,
colon cancer, hepatocellular carcinoma, cervical cancer, human oral squamous cell
carcinoma (Milde-Langosch 2005; Apostolou et al. 2013; Eckert et al. 2013; Kappelmann
et al. 2014; Chen et al. 2017; Tyagi et al. 2017). Within the dysregulated oncogenic
signalling networks, AP-1 proteins have been found to contribute to the control of apoptosis,
survivability and resistance to interventions (Zenz et al. 2007; Tyagi et al. 2017; Endo et al.
2018). This is highlighted in the genes that they modulate. cJun upregulates genes linked
with invasiveness, angiogenesis, and proliferation while downregulating genes stimulating
apoptosis and (as with JunD) inhibiting proliferation. (Lamb et al. 1997; Park et al. 1999;
Schreiber et al. 1999; Rebollo et al. 2000; Whitfield et al. 2001; Ivanov et al. 2001; Miao et
al. 2017). Similarly, cFos upregulates genes involved in the methylation of DNA, the
stimulation of apoptosis, angiogenesis and (as with Fral) invasiveness (Hennigan et al.
1994; Jooss and Miiller 1995; Kasibhatla et al. 1998; Bakin and Curran 1999; Marconcini
et al. 1999). cJun (and JunB) also have potential tumour suppressing behaviour and can
downregulate genes that inhibit apoptosis and proliferation.

Within prostate cancer, the upregulation and increased activity of AP-1 proteins is
associated with tumourigenesis, metastasis, angiogenesis and invasion (Leach et al. 2017,
Udayappan and Casey 2017). Additionally, these proteins have been shown to confer
resistance to castration-based interventions and its role in proliferation has been targeted
through the use of finasteride (Babu et al. 2013; Wang et al. 2017). In epithelioid
hemangioma (an aggressive vascular neoplasm found in soft tissue and bones) Fos
mutations have been identified as potential drivers of local angiogenesis through the Notch
signal pathway and the production of MMPs (Eferl and Wagner 2003). Truncation at the C-
terminus has been shown to encode a highly stable isoform of cFos (with a half-life in excess
of 8 h) that is resistant to ubiquitin-independent degradation by the 20S proteasome due to
the loss of a helical motif, allowing prolonged endotheliolial sprouting (Van 1Jzendoorn et
al. 2017).

1.3.1 Small Molecule AP-1 Antagonists

Traditional therapies to target cancer make use of small molecules. These are low weight
(<500 Da) and have a small surface area for interaction. The druggability of many targets
is largely based on the ability of the small molecule to form a complex by maximising contact
on the surface area. In many cases, this is made possible by the presence of a hydrophobic

pocket on the target macromolecule. This form of chemotherapy lacks specificity towards
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cancer cells and can result in the regrowth of resistant tumour clones (Ellert-Miklaszewska
et al. 2017).

AP-1 proteins feature interaction surfaces with structure unsuited for conventional targeting
(Darnell 2002). As such, small molecule inhibitors have shown limited success and the
development of specific therapies has proven to be challenging (Che et al. 2006; Ye et al.

2014; Papavassiliou and Papavassiliou 2016)

The potential use of natural bioactive agents as AP-1 antagonists has been extensively
studied (van Dam and Castellazzi 2001; Kappelmann et al. 2014; Ibrahim et al. 2018). The
diversity and specificity of the AP-1 complexes has made identifying molecules able to
target AP-1 interactions difficult, with many of these indirectly modulating the pathways
controlling AP-1 activity (Tewari et al. 2018). Resveratrol, a flavonoid polyphenol, has been
reported to negatively regulate AP-1 via the inhibition of the JNK-cJun/AP-1 signalling
cascade. However, many of the natural agents studied modulate AP-1 activity via a
multitude of highly disruptive mechanisms, including the suppression of MAPK signalling
cascades and the prevention of DNA binding (Dedieu and Lefebvre 2006; Malorni et al.
2016).

Only one inhibitor for AP-1 has entered human clinical trials, with many of the compounds
available lacking specificity and targeting other TFs. A small cyclic compound, T-5224 was
investigated in Phase Il human clinical trials as an inhibitor which displayed a degree of
selectivity over other TFs but was not further studied (Uchihashi et al. 2011; Garces de Los

Fayos Alonso et al. 2018).

1.3.2 Peptide Antagonists

In recent years, greater focus has been given to the development of synthetic peptides, with
the aim of characterising the rules governing protein-protein interactions (Crooks et al.
2016). This advancement towards the development of de novo sequences has a wide range
of potential applications in self-assembling biomaterials, drug delivery, the formation of
complex architecture, and other building blocks for assembling synthetic systems
(Shlizerman et al. 2010; GradiSar et al. 2013; Yeates et al. 2016; Beesley and Woolfson
2019; Majerle et al. 2019).

Concurrently, peptides have begun to rise to the challenge of targeting proteins that were
previously thought to be undruggable (Thansandote et al. 2015; Rastogi et al. 2019). Short
peptides have shown high binding affinity to their targets as they are capable to interacting
on the flat and extensive interfaces that mediate many protein-protein interactions.

Historically, peptide-based therapeutics were discounted during drug design due to the
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inherent limitations such as lack of specificity, susceptibility to enzymatic degradation, poor

delivery, and inadequate transport through membranes (Vagner et al. 2008).

It is thought that synthetic peptidomimetics could potentially represent a mid-point between
small molecules and antibodies, with the bioavailability and permeability of the former and
the specificity of the latter (Bruzzoni-Giovanelli et al. 2018; Farley et al. 2019). The flexibility
of peptidomimetics in drug design is due to the diversity of natural (and non-natural) amino
acids and chemical modifications possible to create more “drug-like” molecules (Tapeinou
et al. 2015). These include alterations to the side-chain and backbone, including
conjugation, truncation, and helix constraints (Crooks et al. 2011a; Baxter, Perry, et al.
2017).

The use of these constraints in the design of peptide mimetics has been explored to address
the issues related to specificity, bioavailability, permeability, and degradation (Craik et al.
2013; Hill et al. 2014; Thansandote et al. 2015; Hoang et al. 2015). This involves the
cyclisation of two amino acids to promote the adoption of the a-helix by reducing the
entropic cost associated (Rao et al. 2013). Common modalities include hydrocarbon
“staples”, hydrogen bond surrogates (HBS), and lactam bridges (Taylor 2002; Patgiri et al.
2008; Mason 2010; Aihara et al. 2015; Walensky and Bird 2015; Hoang et al. 2016; Rezaei
Araghi et al. 2018).

The use of HBS to replace backbone hydrogen bonds with covalent bonds offers stability
with potentially less interference to the residues involved in protein-protein interaction
(Chapman et al. 2004) These techniques have been shown to be increasingly successful
in disrupting the protein-protein interactions required to permit transcriptional activity
(Staber et al. 2007; Cumaraswamy et al. 2014, Ball et al. 2016; Rezaei Araghi et al. 2018).

1.4 Methods for Designing Stable and Specific AP-1
Antagonists

1.4.1 Ex silico

The transcriptional function of AP-1 is dependent on the ability to form as a dimer — with the
dimerisation controlled by the LZ domain. As such, many strategies for targeting AP-1 are
linked to the rational design of peptide antagonists to target this region with engineered
stability and specificity.

This has been guided by structural data, allowing for further understanding into the
structural basis of the protein-protein interactions. X-ray crystallography and Nuclear
Magnetic Resonance (NMR) studies into LZ formation have highlighted key residues within
interactions. The structural models of LZs such as GCN4 (O’Shea et al. 1991) and AP-1

(Glover and Harrison 1995) provided specific insight into the protein-protein interactions of
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LZs but it is not currently possible to solely rely on structural data as a form of screening for

peptide antagonists.

The Protein Fragment Complementation Assay (PCA) is an example of an in cellulo method
for the identification of stable protein-protein interactions based on the ability to selectively
reconstitute a functional third protein (Pelletier et al. 1998). The bait and the prey proteins
are both covalenty fused to a fragment of a reporter protein. The low affinity of the two
fragments for one another ensures that only the interaction of the bait and prey proteins
leads to the re-formation of the reporter protein (Remy et al. 2002). This requires the
reporter protein to be able to reconstitute itself without covalent bond formation between the
fragments and function to produce a quantifiable output. Dihydrofolate Reductase (DHFR)
is an enzyme necessary for cellular survival/growth in media lacking in complex nutrients.
Its role as a reporter protein is possible due to the use of Trimethoprim (an inhibitor of
DHFR) coupled with the transformation of bacteria with split murine DHFR fused to the prey
and predator proteins (Pelletier et al. 1998; Michnick et al. 2000; Remy and Michnick 2015).

This method of protein-protein interaction screening excludes false positives as only the
bacteria that express interacting proteins (and form functional DHFR) can grow in the
media. The advantage of this is that it does not require the activation of a downstream
response. This is the case with a similar technique, Yeast 2 Hybrid (Y2H) screening (Young
1998). Y2H relies on the protein-protein interaction effecting transcription of a downstream
reporter gene and is therefore dependent on the restored function of the transcription factor
(Joung et al. 2000).

PCA can be extended through the incorporation of negative design (Mason, Miiller, et al.
2007). The competitive and negative design initiative (CANDI) introduces competitor
sequences to the assay. Cells are unable to grow when a competitor is in complex with the
library member of the target (due to the lack of a DHFR fragment). Due to this, each
additional competitor sequence represents additional stringency with the potential formation
of 2 additional off-target complexes. This contrasts highlights the difference between CANDI
and techniques relying on library-target affinity, the latter of which able to result off-target
complexes of increased stability (Grigoryan et al. 2009b). However, it has been shown that
in some systems only marginal differences exist between the binding affinity of desired
complexes and that of the off-target complexes (Mason et al. 2006; Mason, Miller, et al.
2007).

This use of bait and prey proteins is not unique to PCA or Y2H. Fluorescence resonance
electron transfer (FRET) studies attach fluorophores to both proteins, where which one
fluorophore’s emission wavelength and the other’s excitation wavelength are identical

(Pollok and Heim 1999; Chen et al. 2007). The bait and prey proteins being in close
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proximity to one another results in lower FRET efficiency and this is used as an indicator of
binding affinity (Chen et al. 2007; Szaldki et al. 2015).

PCA can also be combined with CIS display — a technigue that uses components of bacterial
transcription and translation machinery to fuse peptide library members onto specific
regions of DNA (Odegrip et al. 2004; Mathonet et al. 2011). This method can be used to
screen expansive libraries (10° members) and can select for stringency with truncated and
non-truncated versions of the same sequence serving as targets (Baxter, Uliman, et al.
2017). Incorporating the successful members of CIS into PCA allows for screening at both

the in vitro and in cellulo level.

1.4.2 In silico

With the increase in structural, stability, and affinity data, the range of computational design
approaches targeting bZIPs has expanded. The characterisation of CCs from structure has
been explored with computational approaches, with early applications elucidating the
principles governing the oligomeric state of the CC (Woolfson and Alber 1995). This has led
to identification and filtration of CC structures from RCSB Protein Data Bank (Berman et al.
2000) by searching for packing and features indicative of KIHP (Walshaw and Woolfson
2001), and the use of molecular dynamics to compute binding affinity (Zuo et al. 2012).
Further understanding of the structural principles has recently led to the development of
CCBuilder — a tool which allows for a structural model of novel CCs to be built from
sequence data (Wood and Woolfson 2018). This structure-based approach to recognising
CCs has informed the prediction of CC interactions from sequence. Unlike larger proteins
with complex globular structures, the relative simplicity of the CC has allowed LZ sequence

data to inform the design of antagonists.

Initial work combined sequence data and experimental data to binarily predict the formation
of a CCinteraction (Singh and Kim 2001). This focused on the prediction of helical alignment
and if a pairwise heterodimeric CC interaction was preferred (instead of two possible
homodimeric interactions). This made use of a support vector machine (SVM) approach —
a supervised learning model used to classify objects into groups depending on their
characteristics (Burges 1998). These characteristics are converted into variables and which
have weight vectors applied and optimised through training. These characteristics were
developed from previous biophysical data, with the datasets used to train and validate the
algorithm containing sequences known either to form CCs or not form CCs (Parry et al.
1977; Parry 1982; O’'Shea et al. 1991; Krylov et al. 1998a). It was found that 90% of incorrect
partners were able to be eliminated from ~95% of the CC regions found in the dataset.
SVM’s ability to recognise patterns has been utilised as the basis of many algorithms used
in computational biology, including the characterisation of protein-DNA interactions in the
identification of TF binding sites (Shameer et al. 2010; Hu et al. 2019). SVM has also been
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utilised to develop the Base Optimised Weights (BOWSs) system that uses weight vectors
and the interhelical pairings of residues at certain positions to predict the formation of CCs
for bZIP pairings (Fong et al. 2004). This model assumes that the partnering of CCs is
governed by several interhelical interactions at specific positions within the heptad: a'-a”,

di—d’i, a‘—d’i, d ‘—a",d i_e:i’ g i_a:i+1, and g i_eli+1_

Instead of weight vectors, the bZIP CC Prediction Algorithm (bCIPA) is driven by coupling
energy data from double-mutant analysis studies in CCs (Krylov et al. 1998a; Acharya et
al. 2006). Trained on thermal stability data of 57 dimers, bCIPA removes several of the
interactions scored by the BOW model. Instead, it relies on the contributions of a-a’, d-d’,
g'-e’" and e'-g’"! interactions, as well as the contribution of each residue to overall helicity
in order to predict the melting temperature (Tm) of the CC (Williams et al. 1987; Mason et
al. 2006; Hagemann et al. 2008). Due to its training on natural CCs, bCIPA’s accuracy has
been shown to decrease when applied to truncated CCs with fewer interactions contributing
to scoring (Bromley et al. 2009). When applied to microarray analysis data from 592 bZIP
interactions, bCIPA was able to correctly identify 92% of non-interactors and 92% of strong
interactors (with BOW predictions reporting 89% and 83% respectively). The incorporation
of negative design screening allowed for the discovery of motifs and intramolecular residue
interactions that play a role in interaction specificity (Havranek and Harbury 2003). This has
been explored further using the cluster expansion and linear programming-based analysis
of specificity and stability (CLASSY) — a machine-learning based framework (Grigoryan et
al. 2009b). Cluster expansion (CE) searches for low-energy configurations of sequences to
determine the energies of CC formation (Zhou et al. 2005). This is combined with integer
linear programming (ILP), which models the system as an optimisation problem to be
solved. This has been used to optimise target affinity-based peptide designs into sequences
that represent a trade-off between stability and specificity in targeting LZs. (Reinke et al.
2010; Chen et al. 2011; Potapov et al. 2015).

1.5 Thesis Aims

Approaches to design and screen antagonists of AP-1 are numerous and diverse. This
thesis aimed to identify and develop novel computational techniques for the design of
peptide-based antagonists. Additionally, it aimed to develop novel synthetic peptide

“pbuilding blocks” frameworks, incorporating in silico design and helix constraints.

Chapter 3 explores the development of computational techniques used during this thesis,
the rationale behind the design, and how the initial toolset allowed for modular expansion

with additional scenarios for application.

Chapter 4 explores the expansion of previous in silico screening techniques to mimic in

cellulo methods. The screening of large libraries based on template LZs results in the
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selection of an antagonist capable of maximising desired complex stability with concurrent

minimisation of off-target complex stability.

Chapter 5 explores the enhancement of this in silico screening through the addition of PCA.
This allows for increased stringency of the screening, with a smaller library expressed on
PCA than previous designs on the same template. This results in a successful AP-1
antagonist that has co-compatibility with another antagonist and a system which is capable
of binding both AP-1 proteins.

Chapter 6 focuses on furthering our understanding of helical constraints in CCs and the use
of modular design in the CC engineering. This study compares lactamised and non-
lactamised sequences designed in silico and in vitro to explore the effects of heptad stability
in the tolerance of helical constraints and their effect on full-length sequences. The results
highlight the ability to develop stable truncated CCs that are able to bind to cJun with varying
affinity, dependent on the stability of the heptads incorporated into the full-length sequence.
This represents an advancement into understanding the rules governing constant tolerance
and the development of heptad libraries able to promote the formation of desired

complexes.
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CHAPTER 2 - MATERIALS AND METHODS
2.1 Peptide Synthesis

Rink amide ChemMatrix™ resin was obtained from PCAS Biomatrix, Inc. (St.-Jean-sur-
Richelieu, Canada); Fmoc L-amino acids and 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetra-
methyluronium hexafluorophosphate or benzotriazol-1-yl-ox-ytripyrrolidinophosphonium
hexafluorophosphate were obtained from AGTC Bioproducts (Hessle, UK); all other
reagents were of peptide synthesis grade and obtained from ThermoFisherScientific
(Loughborough,UK).

Peptides were synthesised on a 0.1-mmol scale on a PCAS ChemMatrix™ Rink amide resin
using a Liberty Blue™ microwave peptide synthesiser (CEM; Matthews, NC) employing
Fmoc solid-phase techniques with repeated steps of coupling, deprotection and washing (4

x 5 ml dimethylformamide).

Coupling was performed as follows: Fmoc amino acid (5 eq), 2-(1H-benzotriazole-1-yl)-
1,1,3,3 tetramethyluronium hexafluorophosphate or benzotriazol-1-yl-
oxytripyrrolidinophosphonium hexafluorophosphate(4.5 eq) and diisopropylethylamine (10
eq) in dimethylformamide (5 ml) for 5 min with 35-W microwave irradiation at 90 °C.

Deprotection was performed as follows: 20% piperidine in dimethylformamide for 5 min with
30-W microwave irradiation at 80 °C. Following synthesis, we acetylated the peptide—
acetic anhydride (3 eq) and diisopropylethylamine (4.5 eq) in dimethylformamide(2.63 ml)
for 20 min—and then cleaved it from the resin with concomitant removal of side-chain-
protecting groups by treatment with a cleavage mixture (10 ml) consisting of TFA (95%),
triisopropylsilane (2.5%) and H20 (2.5%) for 4 h at room temperature.

Suspended resin was removed by filtration, and the peptide was precipitated using three
rounds of crashing in ice-cold diethyl ether, vortexing and centrifuging. The pellet was then
dissolved in 1:1MeCN/H20 and freeze-dried. Purification was performed by reverse phase
high process liquid chromatography (RP-HPLC) using a Phenomenex Jupiter Proteo (C18)
reverse-phase column (4 ym, 90 A, 10 mm inner diameter x 250 mm long). Eluents used
were as follows: 0.1% TFA in H20 (a) and 0.1% TFA in ACN (b).

Peptides were eluted by applying a linear gradient (at 3.5 ml/min) of 5-95% B over 40 — 70
min. Fractions collected were examined by electrospray MS, and those found to contain
exclusively the desired product were pooled and lyophilised. Analysis of the purified final
product by RP-HPLC indicated a purity of >95%.
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2.1.1: b-f Lactamisation

The introduction of lactam bridges to the peptides was achieved using Fmoc-Lys(Mtt)-OH
and Fmoc-Asp(OtBu)-OPfp from Merck (Darmstadt, Germany) in the sequence at position
b and f, in lieu of Fmoc-Lys-OH and Fmoc —Asp(OtBu)-OH. Following aforementioned
synthesis and acetylation steps, deprotection of the Asp(oPip) and Lys(Mtt) side chain
protecting groups was achieved by repeated washing of the resin in dichloromethane,
followed by repeated washes in dichloromenthane (2% TFA), dichloromethane, and finally
dimethylformamide. Resin was incubated for 6-8 hours at 55°C in 2-(1H-benzotriazole-1-
y)-1,1,3,3 tetramethyluronium hexafluorophosphate (1ml), diisopropylethylamine (1ml),
and dimethylformamide (3ml). Resin was filtered and cleaved from the resin with
concomitant removal of side-chain-protecting groups by treatment with a cleavage mixture
(20 ml) consisting of TFA (95%), triisopropylsilane (2.5%) and H20 (2.5%) for 4 h at room
temperature. Following this, resing was removed by filtration, and the peptide was
precipitated using three rounds of crashing in ice-cold diethyl ether, vortexing and
centrifuging as before, with freeze-drying and purification following.

2.2 Circular Dichroism (CD)

Circular Dichroism is an absorption spectroscopy technique that utilises the fact that chiral
molecules - when exposed to left and right circularly polarised light - display differential
absorbance due to enantiomeric properties. As biological molecules (such as nucleic acids
and peptides) are made up of a single optical isomer, they display this in the presence of
differently polarised light. As CD is measured as a function of wavelength, the differences
that spectrometers are able to detect are due to the presence of chromophores within these

molecules.

Contributions to the profile of CD spectra differ depending on the part of the spectrum
measured. Near-UV is considered to be between 250nm - 350nm and far-UV 190nm -
250nm. When considering proteins, the former monitors chromophores such as disulphide
bonds and aromatic side-chains (such as those in tyrosine and phenylalanine). The far-Uv
region of the spectrum monitors the chromophore found in the carbonyl peptide bond (C=0).
As a result, this region is sensitive to changes within the protein with respect to its folding

state.

Peptides are made up of L-amino acids and the spectra produced when scanned through
the range of 300 — 190 nm can be used to calculate their overall secondary structures, with

distinctive profiles used to differentiate between the forms.

When considering a-helices, the spectra displays minima at both 208nm and 222nm. This,

when combined with constant experimental technique (total protein concentration,
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temperature, buffer solution, etc) can be used to calculate the level of a-helicity displayed

and the differences found between multiple peptides.

Circular Dichroism experiments were conducted using an Applied Photophysics Chirascan
machine (Leatherhead, UK). Samples contained 150 uM total protein (Pt) in filter-sterilised
buffer (10mM Potassium Phosphate and 100mM KF at pH 7). 200ul samples were

contained in a Hellma Analytics (Mullheim, Germany) 10mM path length CD cuvette.

Raw CD units were converted to mean residue ellipticity (MRE) via the Equation 2:

0
10 X I X [Pt] X nr

Eq. 2

Where 8 = CD units, | = sample path length in cm (0.1), [Pt] = peptide concentration in M

(0.00015), and nr = average number of amino acid residues in the peptides.

All spectral data was converted to fractional helicity (fH) values according to Equation 3:

S] -0
o= Oz2z = O
022200 — O¢

O, = 2220 — (53 x7T)
Eq. 3

k
622200 = (=44000 + (250 x k) x (1 —+--)

Where the wavelength-dependent constant k = 2.4 (at 222nm), Nr = number of residues,
and T = temperature (°C)

2.2.1 Scans

CD Spectra were scanned between 300nm and 190nm in 1nm increments at 0.5 sec per
increment. Measurements were taken at 20°C, 0°C, and at 20°C following thermal melting
to demonstrate the reversibility of binding.

2.2.2: Thermal Scans

For thermal scans (see Chapter 5), spectra were scanned between 300nm and 190nm in

1nm increments at 0.5 sec per increment. These scans were taken in triplicate at 10°C steps
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from 20°C to 90°C. Following this, a final measurement was taken at 20°C. Each

temperature point was held for 1 min to equilibrate the sample before scanning.

2.2.3: Thermal Melts

Thermal denaturation experiments were taken by monitoring the signal of the sample at
222nm to observe any measurable change in the a-helicity of the peptide. The temperature
range for these melts was 0°C — 90°C. These measurements were taken at 1°C increments,

with 0.5 min for the samples to equilibrate.

Melting profiles were converted to equilibrium denaturation curves fitted to a two-state
model using Equation 4:

AG = AH—(;—Z)X(AH + R X Ty XIn(P)) +AC, X (Ta = Ty — Ty xln(;—:l)) Eq. 4
This is a maodification of the Gibbs—Helmholtz equation, where AG is the change in Gibbs
free energy, AH is the change in enthalpy, R is the ideal gas constant (8.314 J mol* K1), Ta
is the reference temperature, Py is the total peptide concentration, and AC,;, is the change in

heat capacity. Using this, it is possible to derive the melting temperature (Tm) as the point

where the complex is 50% unfolded.

2.3: Size Exclusion Chromatography (SEC)

Size Exclusion Chromatography is a chromatography method that separates
macromolecules based on their differing abilities to penetrate small pores present in the
stationary phase. This allows separation by size, as size is the determinant for the efficiency

by which macromolecules penetrate these pores.

Regarding proteins, applications of SEC include the characterisation of conformation,

aggregation, and oligomerisation of the macromolecules.

Experiments were performed on a GE Healthcare AKTAexplorer using a Superdex Peptide
10/300 GL column (Buckinghamshire, UK) at room temperature. 100 yl a 150 yM sample
in filter-sterilised buffer (10mM Potassium Phosphate and 100mM KF at pH 7) was injected

and eluted at a flow rate of 0.5 ml/min. Elution profiles were recorded via Azso.
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CHAPTER 3 - SOFTWARE DEVELOPMENT

Programs developed in this thesis were written in Python Version 3.5.2. For early
development, scripts were run as individual .py files. Scripts were later compiled into
application files (.exe) via Pyinstaller Version 3.4. All were run on a personal machine
running Windows 8.1 with 12GB RAM.

bCIPA algorithm

Library Screen

iISPCA iISCAN

Competitor sequences

Figure 3.1. The overarching workflow for the in silico methods used in this thesis. The
underlying architecture of the bCIPA algorithm is initially utilised to create a library screening
module, allowing for library member sequences to be coupled with a single target to
calculate a predicted Tm. This is further expanded upon in iSPCA and isCAN — synthetic
analogues of PCA and CANDI — which incorporate comparative calculations with off-target
states (with iSCAN including competitor sequences).
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3.1 Library Screen

The library screening tool has been previously discussed (Crooks et al. 2011b; Lathbridge
and Mason 2018) but, as shown in Figure 3.1, it is the most basic application of the bCIPA
algorithm - which incorporates Helical Propensity (HP), Core (C) and Electrostatic
interactions (ES) to provide a quantitative estimate of the interaction affinities in the form of

a thermal melting temperature (Tm) as shown in Eqn.1:
Eq.1

T,=(ax HP)+ (b X C)+(c X ES) + d

Within the library screening tool, the functions described below assigned scores to the
peptide-peptide interactions based on this original bCIPA algorithm, including the coefficient
values from least squares fit (Mason et al. 2006). The size of the coefficients (a = 81.3256,
b =-10.5716, c = -4.7771 and d= -29.1320) acts as a modifier for the scale of the score —
with the overall function for predicting the Tr, defined as calculate tm. The tool required
an input from the user of the sequence that should be targeted but began previous to this

by setting up the environment parameters for the software.

offset dict = {
'a':0,

'b':
'CV:
'd':
'eV:
'f':
'g':

14

14

~

~

RN WS oo
~

~
—

position = input ("What is your heptad starting position (A-G)?: ")
rolling offset = offset dict[position.lower ()]

The rolling offset variable was set as the output from the position input string
called into the offset dict dictionary. This dictionary treated position a as the default
starting point, with an assumption that any other starting position would represent

elongation at the N-terminus into a previous heptad - hence the values increase from g - b.

raw _ESinteractionoffsets = [0, O, 0, 0,-5, 0,+5]
raw _ESinteractionmodifiers = [0,0,0,0,1,0,1]
0, 0, 0]

raw_Coreinteractionoffsets = [ 0, 0, 0, O,
raw Coreinteractionmodifiers =

ESinteractionoffsets = (np.roll(raw ESinteractionoffsets,

rolling offset))

ESinteractionmodifiers = (np.roll(raw ESinteractionmodifiers,
rolling offset))

Coreinteractionoffsets = (np.roll(raw Coreinteractionoffsets,
rolling offset))

Coreinteractionmodifiers = (np.roll(raw Coreinteractionmodifiers,

rolling offset))
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The importance of the rol1ling offset variable was highlighted in the modifier and offset
values. The modifiers lists were binary. 1 denotes a position where the calculated value
was included in further scoring, where 0 signifies an excluded position. The offsets were
used to describe the location for the pairwise calculation to lookup. The positions
contributing to the electrostatic interaction (g and e) had their interaction profiles (g — e’*%)
denoted as -5 and +5 within the raw ESinteractionoffsets liston the fifth and seventh
positions respectively. These positions in raw ESinteractionmodifiers were the only
ones with values of 1. The hydrophobic core positions (a and d) had their inter-helical a-a’
and d-d’ interactions described in the raw Coreinteractionoffsets listas 0 values,
with the corresponding raw Coreinteractionmodifiers positions all set to 0. This

excludes the first and fourth position (representing the core positions), which were set to 1.

The role of np. roll was to shift the values in these 4 lists to reflect the starting position of
the heptad defined in position and the resulting rolling offset variable. As the
command was called, np.roll shifted the values to the right, the offset dict storage

syntax was necessary.

With a starting position defined as g, the converted ESinteractionoffsets and

ESinteractionmodifiers would — respectively — be:

[+5r Or Or Or 01_51 O]
(1,0,0,0,0,1,0]

As described in Figure 3.2, the calculation of the predicted T, value was defined in the

function calculate tm. This required the incorporation of three scores — two of which

were dependent on nested dictionary lookups (CoreCalc and ESCalc).
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Figure 3.2. Overall flow diagram for the basic bCIPA library screen module. The
calculate tm function incorporated a loop of 3 main functions for calculating the
contributions of a/d hydrophobic interactions, e/g electrostatic interactions, overall helical
propensity (CoreCalc, ESCalc, and HPCalc). These scores were then used in the final
calculation (tm) for the prediction of the melting temperature of the interaction (Tm). This
loop continued for the entire library, with the T, and sequence data output as a . txt file
after the final library member.
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3.1.1 Core Contributions (CoreCalc)

To calculate the contribution of the core residues, the software had a function (CoreCalc)
to incorporate the Coreinteractionoffsets and Coreinteractionmodifiers

values assigned previously.

def CoreOffsets (peptideresidue) :
return Coreinteractionoffsets[peptideresidue]

def Corelnteractions (peptideresidue) :
return Coreinteractionmodifiers[peptideresidue]

def CoreCalc(peptide, target, core table):
numPlaces = min (len (peptide), len(target))
peptideDif = len (peptide) - len(target)
CoreScore = 0.0

for i in range (numPlaces) :
residueA = peptidel[i]

Q

heptad pos = 1 % len(Coreinteractionoffsets)
offset = Corelnteractions (heptad pos)

o)

core contribution pos = 1 % len(Coreinteractionoffsets)
core interaction mod=CorelInteractions (core contribution pos)
residueB = target[i]

CoreScore +=
(core_table[residueA] [residueB]) *core interaction mod
return CoreScore

A key part of this was the dictionary core table, which contains 400 values defining the
score assigned to a specific pairwise interaction from AAAAG values calculated from the
Vinson group thermodynamic scales (Acharya et al. 2006). These values were stored
symmetrically, meaning that the lookup value for a lle-Leu interaction was the same as that

for a Leu-lle interaction.

To begin with, the value of CoreScore (which was the total sum of the contributions of
positions a and g) was set to 0.0 before the loop. The sequence fed in as peptide was
from the text file containing the peptide library. During the loop, this sequence was accessed
character by character. To keep the core interactions in frame (and avoid a lookup without
a corresponding index), the loop was kept within range (numPlaces), which was the
length of the shortest peptide in the pair. Calling the CorelInteractions and
CoreOffsets functions and defining the core contribution pos and
core interaction mod Vvariables, data was able to be fed into the final scoring
calculation. CoreScore called alookup of the core table dictionary values for the string
variables residueA and residue. This, combined with the binary

core interaction mod value calculated the score for this pairwise residue interaction,
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which was added to the overall Corescore defined pre-loop. At the end of the function,
this integer was the output variable and represented the scoring for the core contributions

for the entire peptide-peptide interaction.

3.1.2 Electrostatic Contributions (ESCalc)

As for the core contributions, the calculation of the electrostatic contributions the software
had a function (ESCalc) to utiise ESinteractionoffsets and

ESinteractionmodifiers.

def ESResiduelnteractions (peptideresidue) :
return ESinteractionoffsets[peptideresidue]

def ElectrostaticInteractions (peptideresidue):
return ESinteractionmodifiers[peptideresidue]

def ESCalc (peptide, target, es table):
numPlaces = min (len (peptide), len(target))
ESScore = 0.0

As before, the library peptide sequence was matched against the target sequence and
the modifier and of fset functions were called indirectly. This, coupled with the initialised
ESScore variable (the equivalent of CoreScore), follows the same rules as the main
function for core contribution calculation (CoreCalc). However, there were a different set
of parameters incorporated in the ESCalc function to simulate the interaction profile of the

residues on the g and e positions.

if (i + offset >= 0) and (i + offset < numPlaces):

residueB = target[itoffset]

ESScore+=(es table[residueA] [residueB]) * (es interaction mod)
else:

ESScore+= 0
return ESScore

This if statement found within the ESCalc function prevented out of frame errors during
calculation of the ESScore. As the electrostatic positions are e and g, the of fset value
could be either -5 or +5. The first conditional (i + offset >= 0) prevented a residue at
N-terminal e from looking back at a non-existent g (O was the first character and i +offset
with a non-existent g would have had a value less than 0). The second conditional (i +
offset < numPlaces) prevented C-terminal g from attempting to pair with a non-existent
e as it would index at a value greater than the length of the peptide sequence for interaction

prediction (numPlaces).
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As with core, the ESScore was updated with the value from the dictionary lookup — with the
values contained within es table scored from experimental AAAAG data on the
comparative contributions of residues at the electrostatic positions (Krylov et al. 1998b).

This integer was stored and at the end of the function, it was returned.

3.1.3 Helical Propensity Contributions (HPCalc)
The contributions of each residue to overall helicity of the sequence were simpler within
the calculations of the software.

def HPCalc (peptide, hp table):
numPlaces = len (peptide)
HPScore = 0.0

for i in range (numPlaces):
residue = peptide[i]
HPScore += hp table[residue]

return HPScore/len (peptide)

This function called a simple dictionary (hp table) containing helical propensity values
for each of the 20 natural amino acids (Williams et al. 1987). As before, numPlaces and
HPScore were defined. The loop statement, for each residue in the sequence, called the
value of the residue within the dictionary. This lookup value was then added to the HPScore
and this value was returned as an average of the overall length of the peptide - allowing the
helical contributions of sequences and interactions of different lengths to be comparative.
This was the only function that was called twice, with the helical propensity of both the library
member and the target sequence calculated independently and then combined to give the

final HP value used in the overall T, equation.

3.2 In Silico PCA (isPCA)

iSPCA built on the original library screening framework by adding multiple simultaneous
calculations (as opposed to a single loop of one calculation) to simulate the cellular
environment in respect to the reformation of DHFR function. Importing the calculate tm

function incorporated the selection for the starting heptad position.

target = input ()
library = input()

libname = library

library = GetlLine (library)
lib = [1i for i in (library)]
libsize = len(lib)

As before, the input for target was a single string whereas 1ibrary was an input referring
to a text file containing strings on each line. Similarly, the latter variable was updated to

move the list into memory using the GetLine function. The libname variable was
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assigned here as the name of the text file called in order to use later when formatting the
data output. The library sequences were then read into another list (1ib) which was then

counted and stored in 1ibsize.

best PCA =[]

bC tm=[]

bC homo tm = []
PCA win = 0
maxdeltalist=[]
mindeltalist=[]
hetero list=[]

linescompleted=0
lastpercentage=0
start clock=time.time ()
basetime = start clock

Following that, the program set up a series of empty lists which were populated as the
prediction calculations initiated. The sequences which successfully met the parameters
within the program (and were “isPCA successful’) were stored in best PCA, the
heterospecific Tr values (against the target) were stored in bC_tm, and their homodimeric

Tm of these sequences were stored in bC_homo_tm.

for j, 1 in enumerate (lib):

library homo = calculate tm(i, 1)

target tm = calculate tm(i,target)

hetero list.append(target tm)

better than homo = int(target tm) - int(library homo)
better than target homo = int(target tm) - int(target homo)
deltalist = [better than homo,better than target homo]

if better than homo >= 0 and better than target homo >=0:
best PCA.append (i)
bC tm.append(target tm)
bC homo tm.append(library homo)
maxdeltalist.append (max (deltalist))
mindeltalist.append(min (deltalist))

linescompleted += 1

percentage complete = int((linescompleted)/ (libsize)*100)

An enumerate call over the library sequences (i) stored in 1ib was the main section of
the isPCA prediction. To begin, the homodimeric Tr, of the library sequence (library-library
or L-L) and the heterospecific Tm of the sequence with the target sequence (library-target or
L-T) were calculated and stored inthe 1ibrary homo and target tm variables, with the
latter then being appended to the list hetero 1list defined earlier. At this point, the two
homospecific and one heterospecific T values required for the concept of PCA had been
established, allowing for the selection of successful and unsuccessful sequences. In the

better than homo calculation, the predicted Tr of the L-L interaction was subtracted
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from that of the L-T interaction, with both values called as integers. Similarly, the
better than target homo calculation subtracted the predicted Tm of the T-T
interaction from the predicted T, of the L-T interaction. These two values were then stored
indeltalist.

The following if statement sorts the successful peptides from the unsuccessful. This was

because the former would need to have had “both better than ” variables to be
positive integers, showing that the L-T predicted T (desired complex) was higher than
either of the homodimer complexes (off-targets). For the sequences that satisfy this
statement, the sequence string was appended to best PCA with the heterospecific and
homodimeric predicted Tn values of the library members appended to bC tm and
bC homo_tm. The homodimeric L-L and T-T values were sorted, with maxdeltalist

appending the higher of the two integers and mindeltalist the lower of the two.

filedate = time.strftime ("%d%m%$Y-%$SHEM%S")
today = time.strftime ("%$b %d %$Y")
path = ("PCA Output/"+ (today))

if not os.path.exists (path):
os.makedirs (path)

filename= ("PCA " + (project) +" " +(filedate) + ".txt")
PCA file = open(os.path.join(path, filename),b "w+")
for num,peptide in enumerate (best PCA):

print ("{}, {},{},{},{}".format (peptide, (bC tm[num]), (bC homo tm[num
1), (maxdeltalist[num]), (mindeltalist[num])), file=PCA file)

PCA file.close()

The isPCA data was output in a file created and opened by the filename and PCA file
variables. In filename, it called the filedate variable, which stores the date and time of
the run and was put into a folder whose path was set by incorporating the date of the run.
If the path doesn’t exist, the command os .makerdirs (path) creates the sub-folder. The
data for each sequence found in best PCA were then stored into the output file. Using num
as the index, each sequence was exported (peptide) with the sequence’s specific values
found in bC_tm, bC homo tm, maxdeltalist andmindeltalist. The output file was

then closed.

print ("{} peptides retained and {} lost".format (PCAsize,PCAlost))

print ("\nPCA simulation was completed in %f seconds" % (time.time ()
- start time”)
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Finally, the program printed the number of successful (PCAsize) and unsuccessful

(pcAlost) sequences — along with the time data for the run.

3.3 In Silico CANDI (isCAN)

iSCAN built on the framework set out in isSPCA, with the addition of competitor sequences
to provide additional off-targets in the form of library-competitor (L-C) and target-competitor
(T-C) interactions. This can be described in an example AP-1 system with a targeted cJun
sequence, screened against a Fos-based library (L) with natural Fos-family competitors (C).

phys peptides = [cJun,JunB, JunD, cFos,FosB,Fral,Fra2]
phys names = ["cJun","JunB","JunD", "cFos", "FosB","Fral","Fra2"]

[cJun, JunB, JunD]

jun peptides

jun names = ["cJun","JunB","JunD"]

fos peptides = [cFos,FosB,Fral,FraZ2]

fos names = ["cFos","FosB","Fral", "Fra2"]
max peptides = [Myc,Max,Mnt,Mad]

max names = ["Myc", "Max","Mnt", "Mad"]

myc peptides = [Myc, Mnt, Mad]

myc names = ["Myc", "Mnt", "Mad"]

iISCAN stores a list of commonly used peptides in the Jun, Fos, and Myc family for use as
competitor sequences. These were stored in paired lists, with x peptides being the
sequences and x_names being the name strings — used for the output of the interactions

during and after the final calculations.

def choose comp (competition peptides):
if competition peptides == "1":
phys peptides = jun peptides

phys names = jun names

elif competition peptides == "2":
phys peptides = fos peptides
phys names = fos names

elif competition peptides == "3":

phys peptides = myc peptides
phys names = myc names

elif competition peptides == "4":
phys peptides = max peptides
phys names = max names

elif competition peptides == "5":
phys peptides = myc peptides
phys names = myc names

else:
phys peptides =
[cJun[comp offset::],JunB[comp offset::],JunD[comp offset::],cFos]|
comp offset::],FosB[comp offset::],Fral[comp offset::],FraZ[comp o

ffset::]]

phys names =
["CJun", "JunB", "JunD", "CFOS", "FOSB", "Fral", "Fra2"]
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return (phys peptides,phys names)

The user choice for competitor sequences was an integer input which called a specific
nested if/elseif statement. For an input of 1-5, the program chooses from the
previously defined x peptides and x names lists, with all of the sequences used if the
user does not state an input. These competitor strings were all modified by the
comp offset value to keep the positions aligned with the target and library
sequences. As for isPCA, isCAN involved an enumerate call over the library of sequences,
which then resulted in the L-T, T-T, and L-L predicted T, values to be stored in the same

output variables.

def negative binding(peptide,offtargets):
tm list =[]
for off target in offtargets:
tm = calculate tm(peptide,off target)
tm list.append (tm)

off target max = max(tm list)
off target min = min(tm list)
negative output =[off target max,off target min]

return negative output

In addition to this, the negative binding function was called to predict the Tr values for
a sequence when in complex with each of the sequences that were chosen to be competitor
off-targets. This resulted in a negative output list which contains the highest

(off target max) andlowest (off target min) values to be fed into the main loop.

for j, i1 in enumerate(lib):
library homo = calculate tm(i, 1)
bind the comp = negative binding(i,phys peptides)
compbindmax bind the comp[0]
compbindmin bind the comp[1]
target tm = calculate tm(i, target)
hetero list.append(target tm)

better than homo = int(target tm) - int (library homo)
better than target homo = int (target tm) - int(target homo)
better than off target = int(target tm) - int(off target max)

better than binding off target = int(target tm)-
int (compbindmax)

deltalist=
[better than homo,better than target homo,better than off target,b
etter than binding off target]

if better than homo >= int(set delta):
if better than target homo >= int(set delta):
if better than off target >= int(set delta):
if better than binding off target >=
int (set delta):
candi win +=1
best CANDI.append (i)
bC tm.append(target tm)
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bC homo tm.append(library homo)
bC negative tm.append (compbindmax)
maxdeltalist.append(max (deltalist))
mindeltalist.append(min (deltalist))
else:
fo negative +=1
compbindlist.append
(better than binding off target)
print ("Peptide {} negatively bound to {} @ {}
degrees".format ((j+1),list (phys names[i] for i
in ot max locations), (compbindmax)))
else:
fo ot +=1
else:
fo _target homo += 1
else:
fo lib _homo += 1

iISCAN sequentially mimics the CANDI environment by incorporating calculations of off-
target interactions for comparison with the desired complex (L-T). A series of nested
if/else loops are applied and the outcome is dependent on the values calculated. This
series of nested if functions were the parameters by which the successful peptides were
selected, with repeat references to the user defined A value (set delta). As shown in
Figure 3.3, each stage compares the predicted T values of the various off-target states to
that of the desired L-T interaction (target tm). Unlike iSPCA, which only required the
predicted L-T Trm be higher than that of T-T or L-L homodimer T, values, the presence of a
competitor sequence in iSCAN adds two extra potential off-target states to be considered
(L-C and T-C). The successful peptides are output in a formatted file, with sequence strings

and T, values.
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calculate_tm (i,i) |
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calculate_tm (i target) [~

Sequence is isCAN
successiul

True

Data Output

Figure 3.3 The main loop for the isCAN calculation through the library with parameters set
by user. The loop initially called the calculate tm function to predict the Ty value of
both the library member homodimerically (i, i) and in complex with the target
(i, target). This then loops through a series of true/false calculations which all call the
values calculated by calculate tm called for various interactions between the target(T),
library member (L), and off target (C) and the A value set by the user. A refers the
difference required between the Ty, of the desired complex (L-T) and that of the individual
off-target states (L-L, T-T, T-C, L-C). If, at any point, the calculated A value was lower
than that of the defined A, a false state was ouput, the sequence was disregarded, and
the loop re-initalises on the next library member. If all were true value, the sequence was
considered “isCAN successful’” and added to the output file. The loop continues until the
final member of the library file had been through, at which point the data (including
sequence and Ty, integers) was output into a formatted . csv file.

3.4 Heptad Cassette Predictor (HCAP)

As HCAP was used on 7 residue sequences, a full length input sequence defined by the

user and stored as target was length matched.

def heptadsplitter (target):
n="7
heptad=[target[i:i+n] for i in range (0, len(target), n)]
return heptad
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Within the heptadsplitter function, target (a string variable) was segmented over
the range of its individual sequence — 1len (target) — with every 7 characters being
stored and returned in the heptad list. An example sequence target string of 35
characters (RIARLEEKVKTLKAQNYELASTANMLREQVAQLKQ) would result in a heptad

output of ['RIARLEE', 'KVKTLKA', 'QNYELAS', 'TANMLRE', 'QVAQLKQ'].

def plug cassettes(target,library):
tmlist = []
for (pepnum,pephep) in enumerate (target) :
lst=[]
for (libnum, libhep) in enumerate(library) :
tm = calculate tm(pephep,libhep)
print ("segs = {} (Target) \n {} (Library
Cassette)".format (pephep, 1ibhep))
print ("{},{}: {} ".format (pepnum+l, libhep, tm))
lst.append (tm)
tmlist.append(lst)
return tmlist

def homotm(library) :

tmlist=1[]
for j,1 in enumerate (library) :
tm = calculate tm(i, 1)

print ("{},{}".format (j+1,tm))
return homotmlist

The inputs for the plug cassettes function were the lists already defined in target and
in library. To begin, the empty list tm1ist was called to be filled. Following that was a
pair of nested enumeration loops, with the top-level loop of target. For every instance of
a target cassette string (pephep), an empty list (1st) was called and a sub-loop occurs
over library. For HCAP to function, it called the calculate tm function from the
underlying library screening program, with pephep and 1ibhep (sequences within the
library) used for pairwise screening. For each iteration through the sub-loop, an integer tm
value was added to 1st. After each instance of the sub-loop, 1st was appended to tmlist
— creating a list of lists. If 1ibrary contained 20 sequences and target contained 5, the
returned tmlist would be a single list containing 5 lists and in each of those sub-lists, 20
Tm values would be contained. This was also done for the homodimeric cassettes, in which
library was taken and each sequence was run against itself (calculate tm (i, i))—with

the output (homotmlist) being a single list.
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best cassettes =[]
for h,i in enumerate (tmlist) :
cassette counter = 0
for j, k in enumerate(i):
print ("Heptad {} vs Cassette {}: {}".format (h+1,j+1,k))
tmhigh = i.index (max(i))
tmhigh = tmhigh + 1
best cassettes.append(tmhigh)
print ("The best cassette combination is {}
.".format (best cassettes))

In order to make sense of the data contained in tmlist, a final nested enumerate was
called on this list of lists. For every instance of i (which refers to the sub-lists in which the
predicted tm values were contained), the T, values (k) were listed and printed. Following
that, tmhigh takes the index of the highest value in each sub-list and appends it to the
empty listbest cassettes. This was then increased by +1 in order to give the true index
of the cassette (python initiates indexes from 0). At the end of the main enumerate, the

program printed the output of this heterodimeric prediction to output. txt.

3.5 Library Comparison Tool

Library comparison allowed us to search for identical sequences between two separate
libraries. These libraries were entered as text file called via two user inputted variables,

baselib and targetlib

baselib = input ()

targetlib = input ()

outputfile=open ("{}-

{}.txt".format (baselib[:5], targetlib[:5]), "w+")

print ("Peptides present in {} from the {} target library
\n".format (baselib, targetlib), file = outputfile)

targetlib = [i for i in GetLine (targetlib) ]

targetsize = len(targetlib)

counter=0

with open (baselib, 'rb',0) as file, \
mmap.mmap (file.fileno(), 0, access=mmap.ACCESS READ) as s:
for num,peptide in enumerate(targetlib):
if s.find(bytes ((peptide), 'utf-8')) != -1:
print ("Found Target Peptide #{}".format (num+1l))
print ("{}".format (peptide), file = outputfile)
counter +=1
outputfile.close()

attrition = ((counter/targetsize)*100)
print ("Peptides found: {}".format (counter))
print ("This is {1% of the original target

library".format (attrition))

The program set up the output conditions, with outputfile opening a text file which was
named after the first five characters of the two input libraries. This file was appended with a

string showing the two different libraries used in the run. The list variable targetlib was
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called as a list and was populated with the individual sequences from the text file input
previously stored in targetlib ([1i for 1 in GetLine (targetlib) ]). Following
this, baselib was accessed using mmap instead of the previously used GetLine function.
This was because mmap supported files in memory-mapped objects — using the virtual
memory of the operating system to access the data found in baselib rather than using
separate calls to the system for each access, as well as the lack of necessity to copy the
data between buffers. This was useful as baselib was more likely to be a larger file (>10°),
meaning that loading each sequence into memory was computationally inefficient when also
loading targetlib as a second file for comparison. It allowed objects to constantly update
and to be treated as mutable objects — with the ability to change and seek through sub-
strings. With the enumerate through each sequence of targetlib, the element
(peptide) was compared to the sequences (s) found in baselib. If a matching sequence
was found, the index was printed non-pythonically (num+1) and the sequence itself
(peptide) was appended to outputfile, which was then closed. The attrition
variable was used to calculate the overall overlap between the two libraries and this was

printed (along with counter — the integer count of sequences compared) to screen.

3.6 Quad Coil Interaction Prediction Algorithm
(QCIPA)

For Chapter Al, QCIPA was developed to provide a tool with which an increasing number
of heterospecific coiled coils could be grouped within a set for self-assembly. This tool was
based on the framework defined by the library screening tool — with additional functions
added for its purpose within a small library with minimal diversity (28 amino acids with
lle/Asn at position a and Lys/Glu at positions e and g) experimentally characterised

previously (Crooks et al. 2016).

3.6.1 Anti-Parallel Coiled Coil Screening

One of the key functions within the software was the ability to remove peptides that were
predicted to form anti-parallel homodimeric coiled coils. With the user input that these anti-

parallel sequences should be removed, the following loop was called.

for (listnum,target) in enumerate (interactome list):
anti parallel = str(reverse word(str (peptide)))

anti homo=((ESCalc ((peptide), (anti parallel),es table)))

if anti homo == (ap_value):
any anti+= 1.0
continue

else:

tm = calculate tm(peptide, target)
if tm>=desired tm:
cc_list.append([peptide, target])
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The loop called the ESCalc function to score the electrostatic contribution (anti homo)
of a homodimeric anti-parallel interaction. If the user wishes to remove anti-parallel
sequences, the variable ap _value was defined as the integer -12, representing the score
for 8 instances of a Lys-Glu interaction (EK/KE was scored at -1.5) over 4 heptads. If the
user does not, the variable was valued at -9999 (a value which could never come out in
calculation). If anti homo was calculated to be -12, the further prediction of T, was not

completed and the sequence was disregarded.

3.6.2 Progressive Coiled-Coil Set Expansion

Prediction of pair heterospecificity was revised from previous doubling methods (Crooks et
al. 2016) to allow for a wider sweep of potential libraries fulfilling the criteria for predicted
successful heterospecific sets. The incorporation of successive levels of sequences from a
pool of heterospecific coiled-coils allowed for the software to avoid uninformative and
simplistic levels of repetitively combining two libraries (for pairs -> quads -> octos).

pair library = findpairs(cc_library)

tri library = add cc(pair library,cc library)
quad library = add cc(tri library,cc library)
quint library = add cc(quad library,cc library)

This series of additive functions resulted in expansion of the library until the parameters set
by the user for stringency in the prediction of heterospecific pairs (such as maximum
homodimeric T value) were no longer met. It was at this point that the final library was
output as a text file with the other previous libraries which, at each step, were written to
individual text files and purged from the software (to avoid iteratively larger and larger

libraries from being held in memory).
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ABSTRACT: Basic leucine zipper (bZIP) proteins reside at the end of cell-signaling
cascades and function to modulate transcription of specific gene targets. bZIPs are
recognized as important regulators of cellular processes such as cell growth, apoptosis,
and cell differentiation. One such validated transcriptional regulator, activator protein-
1, is typically comprised of heterodimers of Jun and Fos family members and is key in
the progression and development of a number of different diseases. The best
described component, cJun, is upregulated in a variety of diseases such as cancer,
osteoporosis, and psoriasis. Toward our goal of inhibiting bZIP proteins implicated in
disease pathways, we here describe the first use of a novel in silico peptide library
screening platform that facilitates the derivation of sequences exhibiting a high affinity
for cJun while disfavoring homodimer formation or formation of heterodimers with
other closely related Fos sequences. In particular, using Fos as a template, we have
computationally screened a peptide library of more than 60 million members and
ranked hypothetical on/off target complexes according to predicted stability. This

isCAN

isPCA

resulted in the identification of a sequence that bound cJun but displayed little homomeric stability or preference for cFos. The
computationally selected sequence maintains an interaction stability similar to that of a previous experimentally derived cJun
antagonist while providing much improved specificity. Our study provides new insight into the use of tandem in silico screening/

in vitro validation and the ability to create a peptide that is capable of satisfying conflicting design requirements.

C oiled coils (CCs) are present in 3—5% of all amino acid
structures and are highly versatile in the interactions they
drive. They are characterized by a repeat of seven amino acids,
the heptad repeat, with a preference for particular residue types
at each position." Despite the apparent straightforward link
from their primary sequence to quaternary structure, CCs are
highly specific in driving a wide variety of diverse protein—
protein interactions, making them highly relevant systems in
biotechnology and synthetic biology and as pharmacological
targets. Parallel dimeric CC structures found within bZIP
(basic leucine zipper) motifs are some of the simplest
examples; they are comprised of two left-handed supercoiled
a-helices that intertwine via a large interacting surface area.
Efforts to predict bZIP stabilityz_5 and, more recently,
specificity” ™" are ongoing. The ability to predict the stability
and specificity of peptides directly from the primary structure
is a long-standing goal and is particularly important given the
large number of human bZIPs. Current attempts to design
peptides that specifically inhibit target leucine zipper
interactions have taken a incremental library-based approach,
with each new attempt improving our understanding of the
factors that underpin the overall affinity. For example, in vitro
assays of the binding affinity of 53 human bZIPs' showed there
to be multiple interaction profiles, with specificity both within
and between discrete bZIP families. This amounts to more
than 1400 potential interactions, and selectivity within this set
of bZIP interactions demonstrates how inherent sequence
elements govern the selectivity of CC interactions. We have

-4 ACS Publications  © 2018 American Chemical Society

previously utilized an intracellular library screening approach
to derive specific antagonists of the oncogenic transcriptional
regulator, activator protein-1 (AP-1).

Transcription factors represent compelling if difficult drug
targets from conventional small molecule approaches. Their
modulation can ensure that erroneous signals can be blocked at
the transcriptional level, thus halting production of target genes
implicated in disease, irrespective of the upstream signal
imposed. Indeed, many oncogenic signal transduction cascades
are known to upregulate transcription-factor activity, leading to
gene expression changes that drive cell transformation”'® and
place bZIP families at center stage as therapeutic targets in
cancer. Our previous efforts in this area have resulted in
antagonism of AP-1 components by designing Jun- or Fos-
based peptide libraries. This has been followed by their
expression and screening inside living cells for an interaction
with their target protein.”'"'” In addition, we have
experimented with methodologies in which competing off-
target proteins are expressed in the assay during library
selection. Both our conventional intracellular protein-fragment
complementation assay (PCA) library screening approach™"’
and a target specificity-enhancing competitive and negative
design initiative (CANDI)"® have resulted in a many PPI

Received: July 23, 2018
Revised:  September 25, 2018
Published: September 26, 2018

47



Biochemistry

inhibitors'*'® and CC-forming peptides in which the target is

sequestered from binding to its natural partner. These assays
have a significant advantage over in vitro approaches in
enriching for target-specific sequences (relative to a broad
range of other proteins expressed within the cell) and
sequences that are structured, soluble, and nontoxic and resist
protease breakdown. Moreover, the significant amount of data
gained from these experiments, and our consequent improved
understanding of the system, has facilitated the development of
a series of tools that can work by predicting the affinities, and
consequently the specificities, of CCs based only on input of
the primary amino acid sequences.

The bZIP CC Prediction Algorithm (bCIPA)*'® works by
analyzing the helical propensities of component helices,
together with the predicted contribution from electrostatic
interactions and core residue interactions, to estimate the
thermal denaturation temperature (T,) of all hypothetical
dimeric species within a defined system. Driven by coupling
energies that describe a,—a’; hydrophobic interactions and g—
e’;,1 electrostatic interactions as pairwise interactions measured
by previous double-mutant analysis studies in CCs,'”'® bCIPA
was derived to estimate the T, of a given parallel dimeric CC
using only the primary sequence and was shown to correctly
predict 97% of all strong interactions and 95% of all non-
interacting pairs using an independent data set of human bZIP
proteins. As with previous prediction models, this approach
allows prediction in a pairwise manner.

From previous work conducted to benchmark the accuracy
of various prediction approaches using binding data from a
FRET assay of interacting bZIP proteins,'” bCIPA has an
accuracy similar to those of other purely data-driven models™"®
and had a better prediction accuracy for the 948 experimentally
derived binding values than models that were driven solely by
(or in combination with) CC structural prediction.””*" Indeed,
using the bCIPA engine, we have recently screened very large
peptide interactomes to identify sets of <16 de novo-designed
peptides that when combined are capable of forming specific
CCs with their cognate partners.””

Building on these previous findings, here we describe our
efforts to take the approach much further by describing the
first utilization of an in silico approximation to the PCA and
CANDI-PCA approach, which we term in silico PCA (isPCA)
and in silico CANDI (isCAN). The first approach allows the
user (i) to define a target and (ii) to define every library
member as a potential homodimeric off-target (Figure 1). The
isCAN approach brings the additional capability of (iii)
entering user-defined sequences that can interact with either
the target or library member. Both isPCA and isCAN allow the
user to create and in silico screen a library that is much more
expansive than what can be accessed experimentally using
either the complementary intracellular PCA or CANDI-PCA
approach (ie, ~10’ for isSCAN vs ~10° for PCA). The
software then selects sequences on the basis of the greatest
AT,, between all nondesired states and the desired target
interaction, to give the highest predicted specificity. Here we
describe the first implementation of the isCAN approach and
provide an experimental validation of its use by computation-
ally screening more than 60 million peptides to identify
candidates that can bind to cJun specifically in the presence of
cFos.

Library:Library Target:Target
Negative Competitive

T LT TC< A

T LT <A o
m m L T c

Library:Competitor TmLT-TmL > A Target:Competitor
T T M>A
m m
T T LA
m m
LTT TC
T,-T F>A
Library:Target

Desired

Figure 1. Overview of the CANDI protocol. Shown are the desired
and numerous undesired states that can form upon combination of
the library/target/competitor peptides. Complexes 1, 2 (negative),
and § (desired) are found within PCA, with the competitor complexes
(4 and ) introduced in CANDI. Within isCAN, specificity is driven
by the desired A value as specified by the user. The library member is
successful only if it is able to form the desired complex with predicted
T,, values greater than the A as specified by the user.

B MATERIALS AND METHODS

In silico CANDI-PCA (isCAN) computationally screens a user-
defined library against a given target. It identifies the highest
predicted affinity binder to have the greatest difference
between its target and off-target stability. This includes library
homodimers as well as user-defined off-targets. isCAN utilizes
the underlying bCIPA algorithm,” which incorporates helical
propensity (HP), core (C), and electrostatic interactions (ES)
to provide a quantitative estimate of the interaction affinities in
the form of a thermal melting temperature (T,,) as follows:

T,=aXHP+bXC+cXES+d (1)

The various functions within the algorithm assign scores to the
peptide—peptide interactions. The size of the coefficients (a =
81.3256, b = —10.5716, ¢ = —4.7771, and d = —29.1320) acts
as a modifier for the scale of the score. For the calculation of
HP, the average a-helical propensities’ of both peptides are
calculated and totaled in eq 2:

f(HP) = > HP,(I) + X HR,(I) )

The nature of the frame alignment that bCIPA employs
ensures that, if the peptides are not of same length, the helical
propensity is calculated to the length of the shorter peptide (I).
For the calculation of the core interactions, only the residues
within the hydrophobic interior (i.e., a or d positions) are
considered such that the scoring mechanism is calculated
accordingly:

48



Biochemistry

f(core) = Y core,,, X y (3)

The format of this function is such that the nonconsidered
residues are calculated but are disregarded (y = 0) . Only for
the a and d positions is the value of y set to 1 (otherwise set to
0), ensuring that the core value in the final T,, calculation
incorporates only these two heptad locations. As shown in eq
4, only positions e and g are considered in an g,—e;,; parameter
when calculating the electrostatic parameters:

f(ES) = 2 ES, (4)

The program scans either peptide to calculate an electrostatic
score for g;—e;,; and e;—g;_,. This ensures that, even in the case
of different length peptides, all of the potential electrostatic
interactions are taken into account in the final ES score
without unnecessarily incorporating a substituent score more
than once.

Although the bCIPA engine has been previously employed
to provide an in silico interactome prediction alégorithm for the
derivation of heterospecific coiled coil sets,”” all previous
implementations of bCIPA have been restricted to estimating
the T, for single pairs of peptides forming a CC. Considering
the ability that the algorithm displayed in accurately
distinguishing interacting from non-interacting CCs, the logical
next step was to expand its remit to mirror the semirational
design and screening approach used in an experimental setting.
isCAN simulates the CANDI extension of the PCA screening
technique and is a more advanced application of the bCIPA
algorithm. The CANDI application of PCA involves the
addition of competing peptides.'” If the target or the library
member favors complexes with the competitor peptide, cell
growth is either reduced or halted. Similarly, isSCAN can
consider multiple off-targets in addition to the target. To
achieve this, in addition to built-in frame alignment and
prediction functions, iSCAN has a number of unique built-in
check points. These make use of the individual predictions
relating to the library (L), target (T), and competitor (C)
peptides. Because of the optimization of core and electrostatic
residues found in designed libraries, many peptides members
are predicted to be more stable as homodimeric complexes
than as heterodimers with the target. isCAN is split into two
sections: the first set of calculations mirroring the PCA (isPCA
section) and the second introducing the competitor peptides
(isCAN). This stepwise calculation ensures that the processing
time is not wasted on library members that are predicted to
preferentially homodimerize or are unable to overcome the
target homodimer (and are therefore not “PCA-successful”). A
key concept in both is the predicted difference in T, values
(A). It is the key determinant behind the separation of
successful and unsuccessful peptides in the library. User-
defined, this value underlies all of the check points that the
software considers. In particular, if T,""" — T,* ™ > A (ie,
the difference between the L—T desired heterodimer and the
library homodimer is greater than the previously established
desired A value), then the peptide is considered homodimeri-
cally successful and proceeds to the subsequent stages. Any
peptides that meet both this and the target homodimer A
(.7 — T, > A) are considered “PCA-successful” (i.e.,
complying with the scenario found during a PCA). The PCA-
successful library members then have their desired state T,
(T,,"") compared with CANDI-specific competitive library
off-target T,, values (ie, T, 7 — T,," ¢ > A, and T," T —
T," > A) and the “CANDI-successful” library members are

next exported for further analysis. Because of the multiple ways
in which AP-1 may actively form, users can enter other Fos and
Jun family member sequences to impose target specificity upon
the screen. This addresses one of the key points of
computationally aided peptide design with large families of
peptides, avoiding interactions with other bZIPs that may be
transcriptionally active and beneficial.

Calculating Off-Targets. In any simulated CANDI
system, the interactions can be expressed as 2n + 3, where n
refers to the number of peptides introduced as competitive
molecules, with only one desired (L—T) interaction. As an
example, a cJun-targeting library would utilize four Fos family
members (cFos, FosB, Fral, and Fra2) as competitors. As
previously mentioned, this would result in 10 off-targets for
each peptide. As such, this would be 10 T,, values that the
single desired L—T complex T, must be able to overcome with
A > 0. To maximize the efliciency of the tool, the initial
calculations made by the prediction software are of the
heterospecific (L—T) complex. The output of this simple
screen is used to partition the library by the desired T,
irrespective of the ability to outcompete predicted off-target
complexes. These partitions are 10° in size and are used to
break down the computationally expensive isSCAN calculations
into computationally less demanding processes; approximately
36000 calculations are processed in 1 min (with this value
increasing over time as increasing amounts of calculation data
are stored within the application).

Peptide Synthesis. Rink amide ChemMatrix resin was
obtained from PCAS Biomatrix, Inc. (Saint-Jean-sur-Richelieu,
QC). Fmoc vr-amino acids and 2-(1H-benzotriazol-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate or benzotria-
zol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
were obtained from AGTC Bioproducts (Hessle, UK.). All
other reagents were of peptide synthesis grade and obtained
from Thermo Fisher Scientific (Loughborough, UK.).

Peptides were synthesized on a 0.1 mmol scale on a PCAS
ChemMatrix Rink amide resin using a Liberty Blue microwave
peptide synthesizer (CEM, Matthews, NC) employing Fmoc
solid-phase techniques”” with repeated steps of coupling,
deprotection, and washing (4 X 5 mL of dimethylformamide).

Coupling was performed as follows. Fmoc amino acid (S
equiv), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate or benzotriazol-1-yl-oxytripyrrolidino-
phosphonium hexafluorophosphate (4.5 equiv), and diisopro-
pylethylamine (10 equiv) in dimethylformamide (S mL) were
subjected to 35 W microwave irradiation at 90 °C for 30 min.

Deprotection was performed as follows. Piperidine (20%) in
dimethylformamide was subjected to 30 W microwave
irradiation at 80 °C for 5 min. Following synthesis, we
acetylated the peptide—acetic anhydride (3 equiv) and
diisopropylethylamine (4.5 equiv) in dimethylformamide
(2.63 mL) for 20 min—and then cleaved it from the resin
with concomitant removal of side-chain-protecting groups by
treatment with a cleavage mixture (10 mL) consisting of TFA
(95%), triisopropylsilane (2.5%), and H,O (2.5%) for 4 h at
room temperature.

The suspended resin was removed by filtration, and the
peptide was precipitated using three rounds of crashing in ice-
cold diethyl ether, vortexing, and centrifuging. The pellet was
then dissolved in a 1:1 MeCN/H,O mixture and freeze-dried.
Purification was achieved via reverse-phase high-performance
liquid chromatography (RP-HPLC) using a Phenomenex
Jupiter Proteo (C18) reverse-phase column (4 ym, 90 A, 10
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A

g abcdefg abcdefg abcdefg abcdefg
cFos: L TDTLQAE TDQLEDE KYALQTE IANLLKE
FosW: LDELQAE IEQLEER NYALRKE IEDLQKQ

FOSWeaupr ¢ LDELQAE IEQLEDQ NYALQKE VEDLRKE
4hFosW: LDELQRE IEQLEEL NYALQKE IEDLQKQ
cJun: R IARLEEK VKTLKAQ NYELAST ANMLREQ
Lib: p hDTLpAp hDQLpDp hYALpTp hANLpKp
FoSU; ay: Q IDTLEAE IDQLEDE NYALETE IANLEKE

abcde
KEKLE
LEKL
LEKL

VAQLK
hEKLp
IEKLE

Figure 2. (A) Design of peptide inhibitor sequences. Peptide options are randomized around positions g and e (p) and position a (h). Compared
to previous designs, the FosUjcx has had extensions added at N-terminal and C-terminal positions to add two extra residues for extra electrostatic
interactions. (B—D) The helical wheel diagrams, generated with DrawCoil 1.0, display the residues present on the coiled coil from the position of
the N-terminus to the C-terminus, looking down the axis of the a-helices. These diagrams illustrate the hydrophobic interface at the core position
(a/d) and the charged residues present at the flanking position (e/g). The repulsive residues found at the electrostatic positions in off-target
complexes (b and d) are selected. The helical wheel diagram of FosUjcay—cJun (C) demonstrates how FosUjcay has favorable electrostatic and

core interactions to drive coiled coil formation.

mm inner diameter X 250 mm length). The following eluents
were used: 0.1% TFA in H,O (a) and 0.1% TFA in ACN (b).

The peptide was eluted by applying a linear gradient (at 3.5
mL/min) of S to 95% B over 40 min. The fractions that were
collected were examined by electrospray MS, and those found
to contain exclusively the desired product were pooled and
lyophilized. Analysis of the purified final product by RP-HPLC
indicated a purity of >95%.

Circular dichrosim (CD) was performed using an Applied
Photophysics (Leatherhead, UXK.) Chirascan CD apparatus
using a 200 uL sample in a CD cell with a 1 mm path length.
Samples contained a 150 M total peptide (Pt) concentration
at an equimolar concentration for heterodimeric solutions (i.e.,
75 uM per peptide) and suspended in 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7) for 30 min
prior to analysis. The CD spectra of the samples were scanned
between 300 and 190 nm in 1 nm steps, averaging 0.5 s at each
wavelength. Three scans at 20 °C were averaged to assess
helical levels and the CC structure. Raw data (ellipticities)
were collected and averaged, and data were converted to molar
residue ellipticities (MREs).

Thermal denaturation experiments were performed at 150
UM in a buffer of 10 mM potassium phosphate and 100 mM
potassium fluoride (pH 7). The instrument that was used was
an Applied Photophysics Chirascan circular dichroism device.
For all thermal denaturation experiments, a stepping gradient
was set from 0 to 90 °C in 1 °C increments (except for cFos-
containing complexes, for which the process stopped at S0
°C). Each temperature point was held for 0.5 min to
equilibrate the sample before scanning the ellipticity at 222
nm. Melting profiles were converted to equilibrium denatura-
tion curves fitted to a two-state model, derived via modification
of the Gibbs—Helmholtz equation to yield the melting
temperature (T,,).*>

Size-exclusion chromatography experiments were performed
at room temperature using a Superdex Peptide 10/300 GL
column (GE Healthcare Life Sciences) by injecting 100 uL of a
150 M Pt sample in 10 mM potassium phosphate and 100
mM potassium fluoride (pH 7) at a flow rate of 0.5 mL/min.

Elution profiles were recorded via Ajg.

50



Biochemistry

Table 1. Top 10 Peptides Ranked by AT, Predictions Calculated by isCAN Screening, Representing the Top 0.01% of isCAN-

Successful Peptides”

iscan #  |Peptide ;;brrgz:;y E‘ﬁ?ﬁ?i ATw
lp hDTLpAp hDQLpDp hYALpTp hANLpKp hEKLp T (°C) [Tm (°C)
1 Q IDTLEAE IDQLEDK NYALKTE LANLEKE IEKLE 92.5 39.3 52.0
2 K IDTLEAE IDQLEDK NYALKTE IANLEKE IEKLE 94.2 42.7 51.5
3 Q IDTLEAE IDQLEDK NYALKTE IANLEKE IEKLE 91.9 38.1 51.0
4 K IDTLEAE IDQLEDK NYALKTE LANLEKE IEKLE 94.8 43.9 50.9
5 K IDTLQAE IDQLEDK NYALKTE IANLEKE IEKLE 91.1 41.2 49.8
6* Q IDTLEAE IDQLEDE NYALETE IANLEKE IEKLE 91.3 41.6 49.7
7 K IDTLQAE IDQLEDK NYALKTE LANLEKE IEKLE 91.8 42.4 49.3
8 Q IDTLEAE IDQLEDE NYALETE LANLEKE IEKLE 91.9 42.8 49.1
9 K IDTLEAE IDQLEDK NYALKTE NANLEKE IEKLE 88.2 30.6 48.0
10 K IDTLKAE IDQLEDK NYALKTE LANLEKE IEKLQ 88.4 35.9 48.0

“FosUjcanb was selected for validation (* and named FosUjgcay) because of the presence of Glu residues at positions g and e (bold). These were
predicted to have maximal beneficial interactions with cJun and maximal repulsion with off-targets (i.e., in complex with cFos and as a homodimer).
Sequences additionally contain N-cap (AS) and C-cap (GAP) motifs not depicted here.

B RESULTS AND DISCUSSION

cFos-Based Library Generation. We previously utilized a
number of in vitro'”'® and in cellulo®' peptide library
screening approaches to derive sequences capable of binding
to the cJun target of AP-1. One of these efforts utilized a PCA
approach with a library of 62000 members to result in a 37-
residue cJun antagonist (FosW).> Using FosW as a template
for further library design, this was followed by a truncated
variant, 4HFosW, that retained most of the interaction
affinity.'' More recently, we have taken this further by
rationally designing helix-constrained variants to permit
downsizing of the molecule while retaining binding affinity.”*
As a mechanism for further increasing target selectively during
selection, we have also expressed off-target homologous
sequences during PCA selection. The CANDI-PCA approach
works by maximizing the difference in the free energy of
binding between the target and off-target complexes by
removing nonselective library members."”

Here we present a powerful new approach, based on the
bCIPA engine, to facilitate the in silico derivation of specific
peptide antagonists. As an example, we have derived a 39-
residue antagonist that is specific for the cJun target. The
sequence incorporates two additional residues over earlier
designs, one g one e residue located at the N-terminus and C-
terminus, respectively (Figure 2A). These permit four
additional electrostatic interactions and in doing so provide a
greater scope for stabilization/destabilization of target/off-
target complexes to enhance interaction specificity. Using this
extended cFos sequence as our design scaffold (Figure 2A), we
have implemented an in silico approximation of the PCA and
CANDI-PCA in cellulo screening systems to allow a rapid
prediction of peptide sequences that display high target
specificity. The tools described in this study are freely available
(see the Supporting Information).

During library generation, each position was inspected and
options were placed in the library sequence that corresponded
to core hydrophobic and electrostatic positions within the

heptad repeats (a, e, and g). This resulted in an in silico library
size of 60466176 peptides (a = ILVN, e = QEK, and g =
QEK), with N included at all a positions to give rise to
potential specificity driving N—N pairs with the a3 position on
the target helix and to mitigate against the formation of higher-
order oligomers.”>~*" The predicted AT,, parameter (defined
as the difference between the T, of the desired dimer and the
closest nondesired dimer) was set to 20 °C during parameter
initialization, because this was found to be the lowest value that
resulted in a library that could be screened within a reasonable
time frame while retaining a large number of peptides
predicted to be successful, such that library diversity was
retained. We followed only members of the top 10° (partition
1) following these initial calculations, as this provided
computational efficiency [reducing the calculation time from
~3 days to S h (see the Supporting Information)] while
selecting library members of the highest predicted target
affinity. This step reduced the expansivity of the search prior to
entry into the more stringent isCAN step, which additionally
considered members of the cFos family that naturally interact
with cJun (i.e., cFos, FosB, Fral, and Fra2) as explicit off-
targets. As a competitive step in the initial isPCA, additional
consideration of potential library members as homodimers and
the stability of the cJun target as a homodimer were simulated
(Figure 1). During this step, many peptides formed predicted
homodimers or were not suitably more stable than the
predicted T,, of the homodimeric cJun target complex and
were consequently unable to overcome the stringent desired
AT,,. Once the isPCA section was completed, the 60466176-
member library was reduced to 73124 peptides, a reduction to
0.12% of the original library. The predicted AT, values for the
PCA complexes drove this reduction, ie., the difference
between library—cJun (L—T) and cJun—cJun (T-T) or
library—library (L—L) interactions. Each successful peptide
in the pool that satisfied the AT, parameter set was permitted
to proceed. These were described as sequences with predicted
T,, values for nondesired states (T,,* " and T,,T"7) at least 20
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Figure 3. Predicted T, values of the isCAN-selected peptide. FosUjcay is compared against previous Fos-based peptides targeting cJun using a
cFos competitor (and cFos, not duplicating values*). All interactions were predicted using the same isCAN protocol. The AT, values against the
highest off-target (predicted library member homodimerization for all but cFos). FosUcay is predicted to have a T, of 91 °C with a AT,, of S0
°C; both of these values are the highest predicted for Fos-based peptides targeting cJun.

°C lower than the predicted library-cJun T,, (T,,""). These
“isPCA-successful” peptides were next entered into isCAN.
This final step introduced simulated competitors [in this case,
members of the Fos family that are known to form
transcriptionally active complexes with cJun (cFos, FosB,
Fral, and Fra2)]. The isCAN step reduced the remaining
library size further to 71667 peptides. The isCAN step was
critical in removing 1457 members that were predicted to bind
to one of the Fos off-target competitor peptides (T,,"°).
These were again defined as those unable to overcome the
required AT, values among the library—cJun (T, 7), target—
competitor (T.,T=°), and library—competitor (T2 ) com-
plexes. The average predicted AT, for all L—C complexes
(292496 interactions) was 11 °C.

Peptide Selection: FosU;can. From the reduced size
pool, peptides were finally ranked by the predicted AT, value
according to iSCAN. This ensured that the peptide chosen for
further study (FosUjcayn) would exhibit both a high predicted
T," " and a large AT,, (i.e, >20 °C) between this and the
most stable of off-targets. As shown in Table 1, the peptide
pool was reduced further to generate the top 10 sequences
ranked by AT,, which allowed for comparison of similarities
and key differences between sequences.

These peptides represented the top 0.01% of all peptides to
successfully emerge from isSCAN. The final sequence,
FosU,can6 (termed FosUcay), Was selected for validation
with the rationale that the high level of similarity between
those of the 10 sequences and corresponding T, values and
AT,, values from nearest stability off-targets. The selected
sequence was chosen on the basis of “charge blocks”, blocks of
basic or acidic side chains at e/g positions that contribute
favorably to the overall AT,*” but for which the sequence
context of the otherwise energetically equivalent residue
contribution is not considered by the software (see also
below). Additionally, the minimal difference between predicted
T, and AT, values within sequences listed in Table 1 meant
that the predictive power of the software should be able to be
validated without using the top peptide. As shown in Figure
2B—D, this potential inhibitor was not expected to form

interactions with off-targets and to be able to outcompete all
possible other complexes (satisfying the competitive and
negative design requirements of the experiment). As shown in
Figure 3, the predicted AT,, between the closest off-target (in
this case, L—L) and the desired (L—T) complex is S0 °C. The
predicted T, for the FosU,c,y—cJun interaction (91 °C) is far
greater than that of the closest undesired interactions (40 °C
for the cJun homodimer and 41 °C for the FosU,can
homodimer).

iSCAN Prediction. The isCAN-selected sequence (Fo-
sUcany QIDTLEA EIDQLED ENYALET EIANLEK EIE-
KLE) was predicted to be structurally optimized for max-
imizing and minimizing desired and nondesired interactions, as
shown using helical wheel diagrams (Figure 2B—D). For the
negative design in avoiding formation of the FosUjcay
homodimer complex, the electrostatic interactions play a vital
role in destabilization. This peé};tide resulted in the
introduction of e/g charge blocks,”” which was previously
shown to be important in driving intramolecular repulsion
between neighboring electrostatic side chains. We previously
found that such charge patterns further assist in concomitantly
driving both favorable interactions between antagonist and
target and repulsions between potential antagonist homo-
dimers (see also below), resulting in favorable gains in the
measured AT,. The introduction of these sequence-specific
changes into antagonists otherwise considered energetically
equivalent by the bCIPA approach can provide important
contributions; they provide both intramolecular and inter-
molecular electrostatic contributions to stability that can
concomitantly stabilize the desired state while destabilizing
the homodimer. This is because neighboring residues with the
same charge act to enhance or diminish the predicted
energetics of intermolecular e/g interactions. This means
that for homodimers the intramolecular repulsions act to
enhance the intermolecular repulsions, making the complex
less stable than is predicted without considering e/g residue
sequence context. Concomitantly, for the desired heterodimer,
the intermolecular repulsions act to assist the intermolecular
attractions to a greater extent than predicted without e/g
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Figure 4. CD spectra and thermal denaturation data. Shown are data for the selected inhibitor peptide with (A and C) cFos and (B and D) target
cJun. Spectra were measured at 20 °C at a total peptide concentration of 150 #M and presented as mean residue ellipticity (MRE). The minima at
208 and 222 nm are indicative of a helical structure, with the 222 nm/208 nm ratio of the inhibitor with the cJun target showing more structure
(222 nm/208 nm = 0.98) than the undesired complex with cFos (222 nm/208 nm = 0.56). This suggests that the inhibitor preferentially
heterodimerizes with cJun. Thermal denaturation profiles of homodimeric peptides and FosU,,cy with heterodimers (C and D) were taken using 1
°C increments and tracking the 222 nm signal at 150 yM. FosUj,cay shows an increase in the transition midpoint when in complex with cJun (D),
demonstrating a T,, of 57 °C compared to the off-target state with cFos (C) that was unable to provide a measured T, All experiments were
performed in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7). Where possible (D), data were fitted to the two-state model.

sequence context. The FosUjcay electrostatic interactions
provide intermolecular charge blocks of four or five residues at
g/e positions, which serves to add additional destabilization to
the FosUjcay homodimer while adding additional stability to
the target-bound heterodimeric complex. This is due to the
presence of a Glu residue at both g* and e?, a combination not
found in any other peptide within the top 10 from which
FosUjcan was selected. As shown in Table 1, many of those
specific g and e positions were populated by Lys residues. For
FosUj,can, of the 10 possible electrostatic interactions between
the residues at positions e and g, 50% contain favorably
charged profiles (i.e., negatively charged in FosUjcay
interacting with positively charged residues in cJun) and 50%
have non-optimal profiles (negatively charged vs neutral or
hydrophobic). For example, e’—g'!, g'—e’?, and g'—e’® all
contain electrostatically favorable salt bridge interactions
between oppositely charged Glu and Lys. Similarly, e'—g’
and g’—e’* feature favorable Glu—Arg interactions. Non-
optimal profiles are a result of selection against residues native
to the e and g positions of cJun, where negatively charged Glu
is facing Ala, Gln, Thr, and Gln (e”, g% g, and g'*). As

shown in Table 1, inclusion of Gln at position g° for FosUjcay
is found in three other peptides within the top 10. As this
position is facing a Glu at e’' (or a Gln in all Fos family
members considered as off-targets), six of the peptides within
the top 10 favorably target this by selecting Lys. However, Lys
would form favorable interactions within the homodimeric
complex by forming a g’—e’' Lys—Glu interaction (as in six
other peptides found within the top 10). This is important
because the cJun target peptide contains an Arg at position g’°,
meaning that the software has to decide on a g° residue
selection driven by the optimal interaction with this Arg while
balancing potential off-target interactions and selecting the
option that will overall contribute to the greatest AT,,. The
bCIPA algorithm scores an Arg—Glu interaction more
favorably (—2.0) than an Arg—Gln interaction (—1.5) or an
Arg—Lys interaction (—0.5). Therefore, it is more locally
beneficial to have the e' position filled by Glu. Thus, to avoid
favorable interactions in the homodimeric complex, it is locally
favored to populate g’ with Gln rather than Lys/Glu. Although
there is a high level of sequence similarity within it, there are
no peptides within the top 10 that differ from FosU,c,y at a
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Figure S. Size-exclusion chromatography experiments. Shown are SEC profiles for postmelt samples. (A) Peaks at approximately 19.3 and 21.3 min
representing a mixture of dimer and monomer, respectively, in the FosU,cay—cFos mixture (dark blue). Component cFos and FosUjcan
homodimer peaks show larger monomeric peaks than dimeric peaks. (B) The FosU,c,y—cJun mixture generated a broad peak at approximately
19.3 min with the constituent cJun homodimer generating a peak at approximately 19.5 min, both indicating a dimer. Arrows show previously

characterized monomer/dimer controls on 39-mer peptides.

single residue switch at g° to give full Glu at all e/g positions.
What is observed instead is the introduction of Lys within
different heptads at different peptides. This is due to the
aforementioned non-optimal residues on native cJun (e’?, g%,
g”, and g'*) with Lys—Glu and Lys—Gln interactions being
scored favorably (both contribute —1.5)."”** The Lys—Ala
interaction has no associated electrostatic contribution value,
and this is discussed below. This highlights part of the
conflicting design requirements that iSCAN attempts to
address. At the core, cJun residues are optimized for
hydrophobic interaction, with the a’ position consisting of
Ile, Val, Asn, Ala, and Val. FosUcay takes advantage of this
core arrangement with Ile at position a (with a® as Asn to
capitalize on the oligomer-limiting locus of the a’> N—-N
interaction””). Across the top 10 peptides, the major difference
is a*, where 40% of the peptides are Ile and 50% Leu (with one
sequence selecting Asn) facing an Ala on a’*. Both Ile and Leu
contribute equally according to the algorithm (Ile—Ala/Leu—
Ala = -0.5).

The stability of formation of the complex with the
competitor molecule cFos is predicted to be low (Figure
2D), from both electrostatic and hydrophobic perspectives.
The cFos core is poorly optimized for hydrophobic interaction
(compared to transcriptionally functional cJun) because of the
presence of multiple polar and charged Thr/Lys residues.
Similarly, 60% of the cFos—FosUj,cay electrostatic interactions
are repulsive (Glu—Glu, +0.4 kcal/mol'”). Moreover, the
presence of Leu at e’* and g'° positions does not allow for
further beneficial electrostatic interactions.

Circular Dichroism. An analysis of the global secondary
structure content of homodimeric and heterodimeric systems
was conducted at a total peptide concentration of 150 uM to
provide equimolar concentrations of each component helix for
all dimeric systems. CD spectra showed FosUj,cay to exist as a
15.4% weakly populated helical structure (Figure 4) with the
208 nm signal significantly exceeding that of 222 nm. Similarly,
cFos (Figure 4A) and cJun (Figure 4B) existed as 20.6 and

27.5% helical structures with 222 nm/208 nm ratios of 0.60
and 0.82, respectively.”

To analyze whether the selected peptide formed a complex
with the cFos competitor sequence, a secondary structural scan
of the FosU;cay—cFos complex was taken with CD (Figure
4A). As for component helices, this spectrum demonstrated
the sample to lack both a-helical content (14.2%) and the
double minima (222 nm/208 nm ratio = 0.56), indicating that
the two component helices cannot associate to form a CC.
Interestingly, both monomers involved in this heteromeric
system displayed greater a-helical content when measured in
isolation.

In contrast, the secondary structure content of the
FosU,can—cJun complex (Figure 4B) exhibited a much
more intense signal with greater a-helical content (75.1%),
almost 4 times stronger than the signal of the constituent
peptides in isolation. In addition, the 222 nm/208 nm ratio
was 0.98, providing further evidence for a significant increase
in the helical stability of the sample. This demonstrates that the
incubation of cJun with FosUjcay elicits a significant
conformational change in the sample and provides compelling
evidence for the formation of a CC.*>*'

Thermal Denaturation Profiles. Having observed a
significant increase in the global secondary structure content
of the cJun—FosUj,,y sample, we next sought to quantify the
stability of the complex by performing thermal denaturation
experiments (Figure 4C,D and Table S2). In agreement with
the spectra, this pattern of increased stability between
undesired and desired complexes was also observed using
thermal melts taken in 1 °C increments. FosU, 4y in isolation
did not form a CC complex; rather, only the upper baseline
characteristic of the profile was observed (Figure 4C, black).
This is in agreement with spectral data and is indicative of a
weakly populated helix that does not self-associate. Further
evidence for this is provided by size-exclusion chromatography
(SEC), which demonstrates that the prominent species
populated is monomeric (Figure SA, blue). When FosUjc,y
is incubated with cFos (Figure 4C, pink), the thermal
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denaturation signal is similar to that of the component
peptides. In contrast, for homomeric cJun (Figure 4D, orange),
a clear transition midpoint is visible (27 °C). Similarly, SEC
experiments demonstrated cJun to exist as a dimer in solution
(Figure SB, red). However, when cJun was incubated with the
FosUj,cay antagonist peptide, the intensity of the helical signal
increasesd significantly and led to an increased transition
midpoint of 30 °C (Figure 4D, red), demonstrating an increase
in thermal stability to 57 °C. This shift was further confirmed
by SEC, demonstrating that the entire sample was in a dimeric
state and that cJun had therefore paired with FosUjcan
(Figure SB, black). The inability of FosU,,cy to form a stable
homdimer in isolation is a considerable advantage, because it
removes the homodimeric complex as a potential off-target. It
is therefore able to form a stable CC only when combined with
cJun.

The difference between the experimental thermal stability
values and the values predicted by isCAN (Figure 3 vs Figure
6) is of interest. Via observation of the desired FosU;,can—cJun

. Il r<ptide - Jun
- cJun-cJun

[ Peptide - Peptide
80 [ Peptide - cFos
I cJun - cFos

Experimental T_ (°C)

cFos FoswW Fosw,
Peptide

4hFosW  FosU.

CANDI isCAN

Figure 6. Measured T, values of the isCAN-selected peptide. A
comparison of measured FosUj,cay with previously designed peptides
FosW, FosWcanpy and 4hFosW. The T, of the cJun—FosUcan
complex was measured as 57 °C with a AT, of 30 °C from the cJun—
cJun homodimer T, of 27 °C. An x indicates neither FosUgcay nor
its mixture with cFos was found to form dimers, with the thermal
denaturation profile unable provide a measured T,, (T, < 0 °C). A
plus sign indicates 4hFosW—cFos thermal denaturation data are
missing (4hFosW homodimer data previously unpublished).

complex, there was a decrease of 34 °C between the predicted
and experimental values. This is similar for 4hFosW and
4hFosW-cJun,** where the complex was measured to be 16—
17 °C higher than bCIPA predicted. However, there was an
observed decrease in the stability of the predicted extended
cJun—cJun interaction that, combined with the off-target
complexes, was not found to form a stable interaction. Overall,
this means that the AT, value has decreased from 50 °C when
predicted to 30 °C when measured. Although this is a
significant decrease, the measured value represents a larger
difference between the desired state stability and nearest off-
target stability than that for any previous inhibitor peptide we
have developed. Previous work exploring the further
biophysical characteristics of peptides with similar thermal
stability through isothermal calorimetry”* gives insight into the
importance of this difference. The FosW—cJun complex (T, =

63 °C) displayed a Ky value of 39 nM, whereas the 20HC—
cJun complex (T,, = 33 °C) displayed a Ky of 15 uM. Since
this complex has a thermal stability similar to that of the
FosUjcan—cJun interaction and the closest off-target, cJun—
cJun, we can estimate that the 30 °C AT, value denotes a
sizable shift in the Ky from the range of nanomolar (desired
state) to micromolar (off-target states).”**

bCIPA Screening. The discrepancies between T,, values
predicted by isCAN and the measured values validated through
CD suggest that predictions are overestimating the stability of
some complexes, which are generally higher than those from
experimentally measured thermal melts. A simple reason for
this is the scope of the underlying bCIPA and how it was
developed. Using the interaction profiles of 45 peptides (and
tested on 597 interactions), it means that bCIPA has a wide
scope for predicting peptide interactions.”'® However, there
are some instances in which the algorithm does not have the
required data to estimate a contribution to binding affinity. For
example, a Lys-Ala interaction is not estimated to make a
contribution. Compared to a known and quantified interaction,
it is an example of a non-optimal interaction. In comparison to
interactions that are known to be nonfavorable (and thus
positively scored), a value of 0 is considered more favorable,
although it represents a lack of data. This may explain some of
the discrepancies in predicted/actual T, values observed, with
the incorporation of energetically nonfavorable interactions.
This is mitigated somewhat by the inclusion of the helical
propensity values that each residue contributes, meaning that if
the electrostatic contributions assumed within the algorithm
are incorrect, there are other parameters that the algorithm
uses to select residues.

From a software development perspective, the version used
within this work stores all of the library sequences within the
memory of the program as well as data generated by
interaction calculations. Further development is ongoing,
with the goal of minimizing the amount of data stored within
the active program at any one point. It is hoped that this will
limit the computational expense of this software and remove an
obstacle in scaling up for high-performance systems. This
would allow the isCAN approach to be used with larger
systems and increased numbers of off-target peptides. Other in
silico approaches with peptides have made use of other forms
of searching within a large data set (including genetic
algorithms32 and Monte Carlo methods®®). These methods
of searching are typically coupled with molecular dynamics and
docking simulations. If applied to a pairwise search with the
appropriate methodology, this could represent a novel way to
further screen for suitable peptides. Moreover, as we have
previously demonstrated,” bCIPA can be trained for specific
bZIP subsets to increase its accuracy in such systems. Where
knowledge of binding affinities is scarcer and more accuracy is
required, an approach in which exploratory experiments are
conducted and the data used to create the necessary bespoke
training/test sets could be employed. This could allow the
predictors within the algorithm to be adjusted accordingly for
the bZIP profile.

Limitations of the Pairwise Approach. It has been
suggested that the interaction of residues might not be limited
to the pairwise model that bCIPA uses.'” Experiments that
computationally derive additional scoring mechanisms from
reported interaction affinities found that “triplet scoring”, the
concept that the combinations of three residues among contact
positions a, d, e, and g, could play a role in the prediction of
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coiled coil interaction.'” Evidence that a combination of
pairwise and triplet predictors increase accuracy provides
further support for our “charge block” concept (blocks of same
charge electrostatic residues at e and/or g positions).”” The
charge block observations correlate to more nuanced, context-
specific stabilization due to g/e residues interacting with a/d
residues to modify the total interaction, and the underlying
algorithm could be improved to reflect this. As described
above, previous work on peptides of a particular profile® has
shown that training the algorithm on similar sequences has
further optimized the weighting of the predictors to better
predict T, values. Because our studies have focused on Fos/
Jun family bZIPs, a similar technique could be applied here.
However, the lower T,, from predicted to measured values is
consistent across the many FosUgcay interactions studied in
this system. This suggests that, although non-optimal for our
elongated peptides, the software is still able to correctly predict
T,, relationships. In comparison with previous work in this
field, peptides generated solely through PCA and CANDL,>"?
this marks significant progress. As observed in Figure 6,
although there is <10 °C between the measured T, values of
the cJun—4hFosW and cJun—FosUjc,y complexes, there is a
measured increase of 17 °C in the AT, making FosUcay
much more specific than 4HFosW for cJun relative to Fos.
This value, indicative of the ability to design against negative
and competitive states, while maximizing the desired state
stability shows the real strength of the isSCAN technique. Our
aim was to create a competitive antagonist for cJun that,
through high-throughput computational screening, would
address conflicting design requirements between desired and
undesired states. The increased AT, of FosU,y relative to
those of previous designs, coupled with a high thermal stability
with cJun, supports our initial hypothesis that in silico screening
of peptides to mimic and control the parameters of a PCA-
CANDI can result in peptides that can selectively inhibit cJun
without interacting with cFos or other off-target bZIPs. The
off-targets are then free to form transcriptionally active
components of AP-1. Future exploration into combining this
approach with an in cellulo PCA-CANDI would be the next
step in validating and potentially generating useful antagonists
for future peptide therapies targeting not only AP-1
dysregulation but also any complex bZIP-mediated pathway
in disease. This approach would provide a best-of-both
combination of utilizing very large libraries, screening via a
computational approach to enrich for predicted binders with
the desired attributes of high affinity and selectively, and then
finally experimentally screening the resulting reduced-size high-
quality library that is accessible to intracellular selection
systems.

In conclusion, our work provides a framework by which
bZIPs can be modeled within a CANDI environment with
accuracy to derive highly selective peptide sequences. Driving
the approach with a solely computational and data-driven
framework allows us to collect data about peptide—peptide
interactions and specificity both within and between bZIP
families. As more and more experimental data become readily
available, this approach will become increasingly valuable in
the design of specific peptides that can target key components
within increasingly complex bZIP interactomes.
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Supporting Information

Computational Development

All software was run using Python on a 64-bit x64-based processor Windows machine with 12 GB of RAM.
Although no in-depth benchmarking was run due to time constraints, a library of 10° peptides required
approximately 6 hours to fully output a successful library using isCAN. This became computationally

expensive due to incomplete code optimisation discussed in the main text.

Stability Prediction

The prediction using the bCIPA algorithm resulted in a stable FosU;,cay — cJun complex predicted with high
levels of thermal stability (91°C) but with lower stability in the off-target homodimeric (41°C) and
competitive (15°C) states. The T,, is predicted to overcome both of the transcriptionally active complexes of

homodimeric cJun (40°C) and cJun-cFos (34°C).

cJun cFos FosU;scan
clun 40°C 34°C 91°C
cFos -6°C 15°C
FosUican 41°C

Table S1. Predicted melting temperatures (T,,) by isCAN screening, taking into account electrostatic

interactions, hydrophobicity and helical propensity.

Stability Measurements

Experimental values determined through thermal stability studies showed that the FosUiscan - cJun complex
displayed a T, of 57°C but with off-target homodimeric and competitive states that were unable to be

determined through fit*. The measured stability of cFos consistent previous work using a similar length cFos.
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cJun cFos FosUiscan
cJun 27°C 26°C 57°C
cFos N/A (< 0°C) N/A (< 0°C)
FosUiscan N/A (< 0°C)

Table S2. Measured T,, values as validated using Circular Dichroism thermal denaturation analysis. The 222
nm signal was continuously monitored from 0-90°C. (homodimeric FosU;cay and in complex with cFos
were unable to be determined through fit). cFos value obtained through a combination of methods as

described in the supporting text.

Peptide Sequences

All synthesised and characterised peptides were amidated and acetylated and contained N- and C-capping
motifs (underlined) for improved helix stability and solubility. Other Fos family peptides were considered for

in silico calculations.

cJdun: ASRIARLEEKVKTLKAQNYELASTANMLREQVAQLKGAP
cFos: ASLTDTLOQAETDQLEDEKYALQTEIANLLKEKEKLEGAP
FosU@wN: ASQIDTLEAEIDQLEDENYALETEIANLEKEIEKLEGAP
FosB: LTDRLOAETDQLEEEKYELESEIAELOQKEKERLE
Fral: LTDFLOAETDKLEDEKYGLQREIEELQKOKERLE
Fra2: LTEKLOAETEELEEEKYGLOQKEIAELOQKEKEKLE
Software

The software used in this study (Library Creation and isCAN) is now freely available for Windows at

http://people.bath.ac.uk/im2219/biology/downloads.htm
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4.6 Concluding Remarks on Chapter 4

This in-silico screening method has been effective in multiple ways, most notably in
addressing the conflicting design requirements found in the development of peptide
antagonists for AP-1. Particularly, the use of the A parameter to engineer instability within
the off-target states — resulting in the inability of the homodimer and heterodimer with cFos
complexes to form complexes that were able to form coiled-coils similar to the heterodimer

with cJun.

While this constitutes a success in creating a purely in-silico antagonist, there are a few
limitations to consider. Primarily, the discrepancy between the T, predictions and the
experimental values require further interrogation. The success in addressing the conflicting
design requirements observed (instability in the off-target complexes with stability in the
desired complex) lacks insight without addressing the discrepancy. This raises the question
of whether the selected sequence was truly one of the most stable or if sequences outside
of the top selected would have been better choices.

Secondarily, it does not offer insight into whether or not this antagonist is able to function in
more complex environments. To address both of these limitations, the first step would be

the addition of a previously designed in-cellulo assay such as PCA.

This would serve multiple purposes. Firstly, it would allow for further validation of the
approach which, up until now, has relied on an in-silico to in-vitro pipeline. If a library
sequence which is seen within the top in-silico peptides is then selected through PCA, it
would justify the rationale of the in-silico technique. A potential addition of a sequence to
target cFos would assess the effectiveness of the in-silico optimisation for a cJun target,
allowing for hopeful steps into the area of co-compatible antagonists targeting both cJun

and cFos.

Additionally, the in-cellulo success would address the selection conundrum. Due to the
method used for PCA, the degenerate library expressed would have enough diversity to
scan a wide range of sequences — with higher confidence in the selected peptide’s stability

(if corroborated with in-vitro thermal melt data).
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CHAPTER 5 - COUPLING
COMPUTATIONAL AND INTRACELLULAR
SCREENING AND SELECTION TOWARDS

CO-COMPATIBLE CJUN AND CFOS
ANTAGONISTS

Reproduced with permission from:

Lathbridge, A., Michalowska, A. S., and Mason, J. M. (2019) Coupling
Computational and Intracellular Screening and Selection Towards Co-compatible

cJun and cFos Antagonists. Biochemistry

Copyright 2019 American Chemical Society.
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ABSTRACT: Basic leucine-zipper (bZIP) proteins represent difficult, yet
compelling, oncogenic targets since numerous cell-signaling cascades converge
upon them, where they function to modulate the transcription of specific gene
targets. bZIPs are widely recognized as important regulators of cellular processes
that include cell proliferation, apoptosis, and differentiation. Once such validated
transcriptional regulator, activator protein-1, is typically composed of hetero-
dimers of Fos and Jun family members, with cFos—cJun being the best described.
It has been shown to be key in the progression and development of a number of
different diseases. As a proof-of-principle for our approach, we describe the first
use of a novel combined in silico/in cellulo peptide-library screening platform that
facilitates the derivation of a sequence that displays high selectivity for cJun
relative to cFos, while also avoiding homodimerization. In particular, >60 million
peptides were computationally screened and all potential on/off targets ranked
according to predicted stability, leading to a reduced size library that was further
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refined by intracellular selection. The derived sequence is predicted to have limited cross-talk with a second previously derived
peptide antagonist that is selective for cFos in the presence of cJun. The study provides new insight into the use of multistate
screening with the ability to combine computational and intracellular approaches in evolving multiple cocompatible peptides

that are capable of satisfying conflicting design requirements.

asic leucine-zipper (bZIP) transcription factors are a

diverse family of DNA-binding proteins, typically
consisting of a transactivation domain, a basic domain for
binding to specific recognition elements within gene promoter
regions, and a leucine-zipper (LZ) region that mediates bZIP
dimerization required for activity. The transcription factor
activator protein 1 (AP-1) can be composed of a wide range of
dimeric complexes containing proteins that have physiologi-
cally varied roles linked to the control of gene regulation which
impacts upon cellular proliferation and differentiation. Over-
expression of AP-1 leads to oncogenic effects, such as
dysregulation of the proliferation and differentiation of
cells, * making it and other related transcription factors
compelling, if challenging, drug targets. Their dysregulation as
part of oncogenic signaling pathways highlights the importance
of specific targeting, while maintaining the ability to
successfully modulate their activity in cellular transforma-
tion.*”” The dimerization of bZIPs is mediated by the LZ
domain, which contains a seven amino acid repeat (a heptad),
which displays property-specific positions to drive the requisite
interaction patterns.” The coiled coil (CC) within bZIPs is
comprised of two right-handed parallel a-helices that interact
to form a left-handed supercoil structure, allowing key residues
to periodically align in forming a heptad repeat every two turns
of the helix. Despite the apparent simplicity of the CC, the
relationship between its primary structure and the specificity
found in its quaternary structure is not fully understood. Given
the diversity and breadth of human bZIPs, there has been a

WACS Publications

focus on engineering highly selective peptide-protein inter-
actions.””"” The creation of tools that can guide the user from
the primary sequence to quaternary structure, along with
quantitative information relating to interaction stability, is an
ongoing effort.”'”'>'* The role of AP-1 in cancer has made it
a target of particular interest within therapeutic research, and
multiple methods of inhibition have been explored.'*™'°
Previous work has explored designing antagonists based on
Jun or Fos family peptides. A recent focus has been on the use
of in silico approaches to simulate in cellulo screening
techniques, with a view to predicting one peptide that satisfies
the design requirements.'” Here we take this a step further by
using the computational screens as a mechanism to reduce
large libraries (~10""") to smaller higher quality libraries
(~10%), which are then more readily accessible to intracellular
screening approaches and predicted to contain many members
with the desired properties, thus increasing the chances of
success. This approach has made extensive use of the bZIP
Coiled-Coil Prediction Algorithm (bCIPA)'*'® engine and
focuses on creating in silico tools that mimic both the protein-
fragment complementary assay (PCA)'® and competitive and
negative design initiative (CANDI)"! using bCIPA as an
underlying algorithm to generate in silico PCA (isPCA)"” and
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in silico CANDI (isCAN) equivalents.'” The use of CANDI as
a framework for competitor mimicry promotes not only
stability of a library-derived peptide in complex with its target
but also the specificity required to avoid defined off-target
states (i.e., more stable than predicted affinities of a target-
target, or library member-library member interactions, or user-
defined off-target—Ilibrary-member interactions). Here, we
describe a novel combination of both isPCA and isCAN from a
large library followed by intracellular PCA on the refined
library, with the aim of utilizing sequential screening capable of
fulfilling the design constraints imposed by the need for
specificity. In practice, this is 2-fold, the stability of the
antagonist—target complex must be improved while also
engineering a system in which the stability of the undesired
complexes is decreased, thereby maximizing the difference
between the multiple potential complexes. Additionally, we
explore the capacity of the derived antagonist to complement a
previously characterized antagonist that is selective for cFos in
the presence of cJun (JunWaypy).'" Importantly the design of
the library described is such that it has the potential to target
cJun while disfavoring binding to not only cFos but also
potential library member homodimers. Moreover, the
sequence and JunWcanp; preferentially target their cognate
binding partners over each other. Taken together, this raises
the possibility to intentionally avoid cross-talk between either
antagonist, library member-library member interactions (i.e., as
homodimers), or the targets to which they bind. A key goal,
therefore, is to offer bespoke cocompatible peptides with the
potential for synergy in applying two peptides to simulta-
neously target a cJun-cFos AP-1 heterodimer remains.

Here we present our first efforts in this area, where we seek
to address the following: (i) Does the combination of in silico
and in cellulo screening result in a peptide able to successfully
target cJun? (ii) Does the peptide chosen via a combined
isCAN — PCA approach have increased target-specificity
relative to previous in cellulo techniques? (iii) Can this peptide
retain specificity in the presence of JunWcanpp an exemplar
cFos antagonist that the library has not been screened against?

B MATERIALS AND METHODS

In Silico PCA/CANDI (isPCA/isCAN). The isPCA/isCAN
computational screening techniques have been described
elsewhere.'” Briefly, the approach mimics in cellulo PCA/
CANDI screening techniques and simulates a defined library
screened against a specific target sequence. Alongside the
desired interaction with the target, the software considers
homodimeric stability of both target and individual library
members and, in the case of isCAN, a wide number of user-
defined off-target stabilities. It identifies the predicted highest
affinity binder (the desired threshold is set by the user), which
also meets parameters for differences between predicted
desired heterodimer T, and that of all other complexes (also
user-defined). Utilizing the underlying bCIPA algorithm, this
pairwise analysis incorporates helical propensity (HP), core
(C), and electrostatic interactions (ES) to provide quantita-
tively estimated values relating to the interaction affinities as
thermal melting data (T,).t 1202

Library Design and Cloning. Library design and cloning
have been described elsewhere.”” Briefly, mega-primers were
synthesized including relevant semirandomized codons for
library residue options, and a fill-in reaction was performed,
resulting in 140 bp double-stranded oligonucleotides. These
were digested and cloned via Nhel and AscI sites into a pQE16

derivative (Qiagen) containing a G/S linker tagged to fragment
1 (p230d; Fos library; ampicillin resistance) or fragment 2
(p300d; cJun; chloramphenicol resistance) of murine dihy-
drofolate reductase (mDHFR), respectively. All proteins were
under the control of a lac promoter, and expression was
induced with isopropyl f-p-1-thiogalactopyranoside (IPTG).
Library plasmids were transformed into BL21 cells (Stra-
tagene) containing target plasmid and pREP4 (Qiagen; for lac
repression; kanamycin resistance). To assess library quality,
pools were sequenced collectively as well as single clones, and
approximately equal distributions of varied amino acids were
found. Pooled colonies were collected to exceed the library size
5—10-fold, to provide >95% library coverage.

Selection of Winner Peptides. PCA has been described
in detail elsewhere.'”'”** Briefly, target and library peptides
are tagged at the genetic level to N- or C-terminal halves of the
murine form of dihydrofolate reductase (mDHFR). Only two
interacting helices will bring the two halves of the enzyme into
close proximity, render the enzyme active, and result in colony
formation on selective M9 minimal medium plates with 1 ug/
mL trimethoprim to selectively inhibit bacterial DHFR.
Surviving colonies were pooled, grown, and serially diluted in
liquid cultures under selective conditions (M9 minimal
medium with 1 pg/mL trimethoprim). The fastest growth,
and hence the highest affinity interacting partners, was found
to dominate the pool after 2 passages. Library pools, as well as
colonies from taken from individual colonies isolated from
competition selection pools, were sequenced to verify the
arrival at one discrete sequence.

Peptide Synthesis and Purification. As described
previously,'”** Rink amide ChemMatrix resin was obtained
from PCAS Biomatrix, Inc. (St.-Jean-sur-Richelieu, Canada);
Fmoc L-amino acids and benzotriazol-1-yl-ox-ytripyrrolidino-
phosphonium hexafluorophosphate (PyBOP) were obtained
from Merck; all other reagents were of peptide synthesis grade
and obtained from VWR. Peptides were synthesized on a 0.1
mmol scale on a PCAS ChemMatrix Rink amide resin using a
Liberty Blue microwave peptide synthesizer (CEM; Matthews,
NC) employing Fmoc solid-phase techniques”* with repeated
steps of coupling, deprotection, and washing (4 X S mL of
dimethylformamide). Coupling was performed as follows:
Fmoc amino acid (S equiv), PyBOP (4.5 equiv), and
diisopropylethylamine (DIPEA) (10 equiv) in dimethylforma-
mide (S mL) for 5 min with 35 W microwave irradiation at 90
°C. Deprotection was performed as follows: 20% piperidine in
dimethylformamide for S min with 30 W microwave irradiation
at 80 °C. Following synthesis, the peptide was acetylated using
acetic anhydride (3 equiv) and DIPEA (4.5 equiv) in
dimethylformamide (2.63 mL) for 20 min and then cleaved
from the resin with concomitant removal of side-chain-
protecting groups by treatment with a cleavage mixture (10
mL) consisting of TFA (95%), triisopropylsilane (2.5%), and
H,0 (2.5%) for 4 h at room temperature.

The suspended resin was removed by filtration, and the
peptide was precipitated using three rounds of precipitation in
ice-cold diethyl ether, vortexing, and centrifuging. The pellet
was then dissolved in 1:1 MeCN/H,O and freeze-dried.
Purification was performed by RP-HPLC using a Phenomenex
Jupiter Proteo (C18) reverse-phase column (4 ym, 90 A, 10
mm inner diameter X250 mm long). Eluents used were as
follows: 0.1% TFA in H,O (a) and 0.1% TFA in ACN (b).

The peptide was eluted by applying a linear gradient (at 3.5
mL/min) of 5—95% B over 40 min. Fractions collected were
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Figure 1. Overview of the combined in silico/in cellulo workflow. Left: A 60466 176 member cFos-based library was generated and screened via
isPCA and isCAN, using parameters and templates taken from previous work.'” The top 25 sequences from both were used to create a library (34
unique sequences due to overlap). This 31 104 (23 328 without the addition of 1 His at a*) member library was expressed, and the winner
sequence (FosUpc,) was selected. Middle: Complexes that can be formed via the combination of library/target peptides (L/T). Negative and
desired complexes are found within PCA, in considering the undesired homodimeric complexes (i.e., LL/TT). Right: isCAN incorporates the
competitor complexes (i.e., the addition of LC/TC). Within isCAN, specificity is driven by the desired delta (A) value as specified by the user. The
library member is only successful if it is able to form the desired complex with predicted T, values greater than the A. In this Fos-based system, the
competitor sequences included are from the FOS family (cFos, Fral, Fra2, and FosB) for a total of 11 predictions for every library member

simulation (21 + 3 where n = number of competitors).

examined by electrospray MS, and those found to contain the
desired product exclusively were pooled and lyophilized.
Analysis of the purified final product by RP-HPLC indicated
a purity of >95%.

Circular Dichroism (CD). Analysis was performed using an
Applied Photophysics (Leatherhead, U.K.) Chirascan CD
apparatus using a 200 uL sample in a CD cell with a 1 mm
path length. Samples contained a 150 M total peptide (Pt)
concentration at an equimolar concentration for heterodimeric
solutions (i.e., 75 #M per peptide) and suspended in 10 mM
potassium phosphate and 100 mM potassium fluoride (pH 7)
for 30 min prior to analysis. The CD spectra of the samples
were scanned between 200 and 300 nm in 1 nm steps,
averaging 0.5 s at each wavelength. Three scans at 20 °C were
averaged to assess the overall helical content as well as the
coiled-coil structure. Raw data (ellipticities) were collected and
averaged, and data were converted to molar residue ellipticities
(MREs).

Thermal Denaturation. Analysis was performed using an
Applied Photophysics (Leatherhead, U.K.) Chirascan CD
apparatus, recording the ellipticities of homotypic or
heterotypic (1:1 stoichiometric mix) samples at a total peptide
concentration (Pt) of 150 uM in a buffer of 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7). For all
thermal denaturation experiments, a stepping gradient was set
from 0 to 90 °C in 1 °C increments. Each temperature point
was held for 30 s to equilibrate the sample to within 0.1 °C of
the target temperature before measuring ellipticity at 222 nm.
The resulting sigmoidal thermal denaturation profiles were fit
to a two-state model, derived via modification of the Gibbs—
Helmholtz equation to yield the melting T,,.”’

B RESULTS AND DISCUSSION

In silico screening both without (isPCA) and with (isCAN) off-
targets has been combined with PCA to derive a 39-mer
peptide that is selective for cJun in the presence of cFos. From

thermal denaturation data coupled with dimer exchange
experiments within the systems of the individual antagonists,
the sequence is shown to be compatible with an existing
sequence that is selective for cFos in the presence of cJun (37-
mer JunWeanpr). - Here we describe our approach toward co-
compatible peptides that are capable of targeting specific
components within the heterodimeric AP-1 complex with
minimal cross-talk between partners and each other.

Library Creation and in Silico Screening. The in silico
library used for this work was previously generated'” to create
a highly expansive set that provided options capable of
balancing both library diversity and simulation feasibility. In
doing so, the AT,, parameter (the difference between the T,
of the desired complex and the closest nondesired complex)
was set to 20 °C during the initialization stage, leading to a
library of 60466 176 peptides. Briefly, this library contained
semirandomized residues at the core and electrostatic
positions, with LIVN options at a positions and QEK options
at e and g positions. As previously described, the inclusion of
Asn at all a positions was in order to mitigate against the
formation of higher-order oligomeric states by driving the
formation of Asn-Asn pairs with the a; position on the target
helix.”**” The peptides were next subjected to both isPCA and
isCAN (Figure 1), resulting in libraries of 73 124 and 71 667
sequences, respectively. In order to create the library for PCA,
the top 25 sequences (ranked according to a predicted AT, of
at least 20 °C and the value of the desired complex T,,) from
isPCA and isCAN libraries were combined and used to define
the library for PCA. Both the isPCA and the isCAN library
contained sequences that represented 0.12% of the original
60 466 176 member library. Within this, the top 25 sequences
represent 0.03% of these secondary libraries. The combination
of the top 25 sequences from both resulted in 34 unique
sequences due to an overlap of 16 sequences present in both.
The library created from these 34 unique sequences resulted in
a small high quality and PCA-accessible library of 23328

65



Biochemistry

m

Predicted T_(°C)

FosW FoswW

CANDI

Peptide

4hFosW FosU.

I Peptide - cJun

B cJun - Jun

I Peptide - Peptide
AT, =50°C - Peptide - cFos

- cJun - cFos

T T, = 26°C

isCAN FOSUPCA

Figure 2. Predicted T, values of FosUpc, and related peptides. In comparison with Fos-based peptides targeting cJun with cFos as a competitor (*
and cFos not duplicating values). All interactions have been predicted using the same iSCAN protocol. The AT,, values against the highest off-
target (predicted to be library member homodimerization for all but cFos). FosUp, is predicted to have a T,, of 86 °C with a AT, of 26 °C. **
For both FosUjcany and FosUpc,, all sequences have been extended to 39 residues with N-terminal g and C-terminal e positions filled.

Figure 3. Helical wheels of FosUpc, and JunWyp; interactions. The helical wheel diagram displays the residues present on the coiled coil from
the position of the N-terminus to the C-terminus, looking down the axis of the a-helices. For both FosUpc, (a—c) and JunWeayp; (d—f), these
diagrams illustrate the hydrophobic interface at the core position (a/d) and the charged residues present at the flanking position (e/g). The helical
wheel of FosUpcy—cJun (c) demonstrates how FosUpc, contains residues that promote favorable electrostatic and core interactions to drive coiled-
coil formation. JunW,yp; in complex with cFos also shares this (f), with multiple attractive Glu-Arg and Glu-Lys electrostatic interactions.

sequences, which expanded further to 31 104 sequences with
the addition of His at one core position (Figure S2). The
inclusion of this residue was unavoidable when incorporating
Asn (AAC) at a* with Ile (AUC) and Leu (CUC), requiring
the use of two ambiguous nucleotides (MWC), with M = A/C
and W = A/U (see Supporting Information)

PCA Selection. The stages of PCA demonstrate a
stabilization of the semirandomized library through each
passage, with the sequence identified from the final passage
termed FosUpcsy (ASEIDTLEAELDQLEDQNYALKTE-
LANLEKEIEKLQGAP). The details of the sequence highlight
the result of the number of conflicting selection pressures
enforced by the binding and growth assay, with progression

tracked in Figure S1. Prediction of the melting temperature
(T,,) of FosUpc, with its desired and off-targets (Figures 2 and
3) highlighted the diversity of its origins. As with previous
work led by in silico design,'” the presence of a large difference
(AT,) between the desired complex (FosUpc,—cJun) and the
nondesired complexes was enforced (AT, = 26 °C).

This predicted value was lower relative to that of previous
work with this library due to the increased predicted T, of
homodimeric FosUpcs—FosUpcs (T, = 60 °C) relative to that
of the purely in silico derived FosU,cuy (T, = 41 °C).
Although the FosUj,cay was one of the top 25 sequences used
as a basis for the library, it was not selected during PCA. The
contrasting selections of in silico vs in silico — in cellulo
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approaches are highlighted by the fact that the final selected
sequence, FosUpc,, is not observed in either of the top 25
sequences from isSPCA or isCAN. Upon additional screening of
the library, however, FosUpc, was identified as being within
the top 20% of all library predicted members within the PCA
library (predicted AT,, and desired complex T,,).

Circular Dichroism Spectroscopy. The global secondary
structures of FosUpc, in isolation and in complex with cJun
and cFos were analyzed to monitor for both helicity and
interaction (Figure 4a/b). CD spectra showed that at 20 °C,
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Figure 4. CD spectra and thermal denaturation data for FosUpc, with
cJun and cFos. Shown are data for FosUpc, (red) with cJun (A and C,
blue) and cFos (B and D, blue). Spectra were measured at 20 °C at a
total peptide concentration of 150 uM and presented as mean residue
ellipticity (MRE). The minima at 208 and 222 nm are indicative of a
helical structure when coupled with fractional helicity (fH), with the
222 nm/208 nm ratio of FosUpc, showing less structure (222 nm/
208 nm = 0.46 and fH = 17.0%) than cJun (222 nm/208 nm = 0.73,
fH = 30.5%) and cFos (222/208 = 0.61, fH = 22.9%). The FosUpcs—
cJun complex (A and C, purple) shows increased helicity (fH =
39.8%), but a similar helical structure (222 nm/208 nm = 0.78),
compared to the FosUpcy—cFos (B and D, purple) complex (222
nm/208 nm = 0.81, fH = 27.6%) Thermal denaturation profiles with
cJun (C) and cFos (D) were taken using 1 °C increments and
tracking the 222 nm signal at 150 yM. FosUpcy—cJun shows an
increase in the transition midpoint with a T, of 52.0 °C compared to
FosUpc, in isolation and FosUpc,—cFos, both with T,, unable to be
fit. This suggests that FosUpc, would preferentially bind to cJun over
the potential off-target states. All experiments were performed in 10
mM potassium phosphate and 100 mM potassium fluoride (pH 7).
Where possible (C), data were fitted to a two-state denaturation
model.

FosUpc, in isolation displayed a low level of helical stability
(fH = ~17%) and a 222 nm/208 nm ratio of 0.46. In
combination, this data describes a peptide lacking the
prerequisite a-helical profile required for the formation of a
homodimeric coiled coil. The inspection of the helical wheel
(Figure 3a) shows the presence of six repulsive Glu-Glu
interactions (60% of the possible total electrostatic inter-
actions). Similarly, cFos (Figure 4b) exhibited low levels of
helicity (fH = ~23%) and a 222 nm/208 nm ratio of 0.61.
However, cJun displayed increased higher levels of helicity (fH
= ~31%) and a 222 nm/208 nm ratio of 0.73 and is well-
documented to be capable of forming a coiled coil. The
secondary structure of the nondesired FosUpcy—cFos complex
was analyzed using CD (Figure 4B) to establish if it formed
from the component peptides. Although it presented with an
fH of ~28%, the 222 nm/208 nm ratio of 0.81 also described a

structure tending toward an a-helix. Analysis of the target
complex of FosUpcy—cJun provided significant evidence for
the formation of a coiled coil. In particular, it displayed
increased a-helicity when compared to the homodimeric and
off-target heterodimeric complexes (fH = ~40%) and four net
electrostatic attractions (Figure 4b).

Structural analysis of complexes containing JunWcanp;
(Figure Sa/b) showed that the homodimeric complex
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Figure S. CD spectra and thermal denaturation data for JunWeaypy
with cJun and cFos. Shown are data for JunWganp; (red) with cJun
(A and C, black) and cFos (B and D, blue). Spectra were measured at
20 °C at a total peptide concentration of 150 M and presented as
mean residue ellipticity (MRE). The minima at 208 and 222 nm are
indicative of a helical structure when coupled with fractional helicity
(fH), with the 222 nm/208 nm ratio of JunW¢,yp; showing stability
in isolation (222 nm/208 nm = 0.81 and fH = 37.2%) greater than
that of cJun (222 nm/208 nm = 0.73, fH = 30.5%).The JunWcanpi—
cJun complex (brown) shows helicity slightly greater than that of cJun
(fH = 32.4%), but a similar helical structure (222 nm/208 nm =
0.74). In comparison, the JunW¢anp—cFos complex (purple) showed
an increase in helicity, with a 222 nm/208 nm ratio of 0.97 and a fH
of 45.7%. Thermal denaturation profiles with cJun (C) and cFos (D)
were taken using 1 °C increments and tracking the 222 nm signal at
150 uM. JunWeayp; shows a stable complex with a T, of 32.0 °C
compared to JunWcanpr—cJun, with a slightly lower T, of 27 °C. In
complex with cFos, there is an increase in the transition midpoint with
a T, of 51 °C. This suggests that, although JunW¢,np; has stability in
isolation and with cJun, it would preferentially bind to cFos over the
potential off-target states. All experiments were performed in 10 mM
potassium phosphate and 100 mM potassium fluoride (pH 7). Where
possible (C), data were fitted to the two-state model.

presented with moderate levels of a-helicity (fH = ~37%) as
well as a 222 nm/208 nm ratio of 0.81. In complex with cJun,
the a-helicity showed only a slight decrease, with the fH value
dropping to ~32% and the 222 nm/208 nm ratio to 0.74.
When in complex with the cFos target, there is a marked
increase in the a-helicity measured (fH = ~46%) and the 222
nm/208 nm ratio (0.97).

In context, these values describe a system in which
homodimeric and off-target interactions retain relatively high
levels of helical stability required to form the coiled-coil (with
a-helical levels exceeded only by that of the JunWaypi-cFos
interaction). FosUpc, incubated with JunWc,yp; exhibited
increased helicity compared to that of the component peptides
(fH = ~52%) and a 222 nm/208 nm ratio of 0.89 (Figure 6b).
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Figure 6. Helical wheel and CD spectra and thermal denaturation data for FosUpc, and JunWeanp;. The helical wheel (A) shows the amino acid
arrangement for FosUpc, and JunWe,np; peptides. Spectra (B) were measured at 20 °C at a total peptide concentration of 150 #M and presented
as mean residue ellipticity (MRE). The minima at 208 and 222 nm are indicative of various levels of helical structure, with the 222 nm/208 nm
ratio of the FosUpc,0—JunW,np; (purple) showing increased structure (222 nm/208 nm = 0.89) and helicity (fH = 51.9%). The lactamized form
shows increased structure (222 nm/208 nm = 0.74) compared to the homomeric state (222 nm/208 nm = 0.69). Thermal denaturation profiles of
FosUpca—JunWeanp; (C), as well as the component peptides, were taken using 1 °C increments and tracking the 222 nm signal at 150 M. The
heterodimer shows an increase in the transition midpoint, demonstrating a T, of 40 °C compared to the only component able to have a T, fitted
(JunWeanpr T = 32 °C). This suggests that the addition of JunWg,yp; promotes stability and helicity to FosUpc, and that this complex is
preferred over both homomeric states. This is addressed in the helical wheel, which shows a series of intermolecular attractive electrostatic
interactions and repulsive intramolecular interactions. All experiments were performed in 10 mM potassium phosphate and 100 mM potassium
fluoride (pH 7). Where possible (D), data were fitted to the two-state model.
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Figure 7. Dimer exchange with FosUpc,, cJun, and cFos. (A) Equimolar mixtures of cJun—cFos and FosUpc,—cJun were mixed, and the observed
signal resembled the average of the two constituent spectra, indicating no change has occurred. (B) Equimolar mixtures of cJun—cJun and
FosUpcay—cFos were mixed, and the observed spectra exceeded the average of the two constituent spectra, which indicated that dimer exchange
occurred to promote the system found in panel A. All experiments were performed at 150 M at 20 °C in 10 mM potassium phosphate and 100
mM potassium fluoride (pH 7).

Dimer Exchange. Dimer exchange experiments were binding partners. Upon mixing the four component peptides,
performed for both the JunWgayp and FosUpc, systems the spectra generated demonstrate the global average (hashed
(Figures 7 and 8) in the presence of cJun and cFos cognate line), should no exchange of the component peptides take
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Figure 8. Dimer exchange with JunWe,ypy, cJun, and cFos. (A) Equimolar mixtures of cFos—cFos and JunW,yp—cJun were mixed, and the
observed spectra exceeded that of the average, indicating change. (B) Equimolar mixtures of cJun—cFos and FosUpc,—cFos were mixed, and the
observed spectra resembled the average of the two constituent spectra, which indicated that no dimer exchange occurred.. All experiments were
performed at 150 M at 20 °C in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7).

place. No exchange was deemed to have occurred in systems
containing FosUpcy—cJun upon mixture with cJun—cFos
(Figure 7a) as well as JunW¢aypi—cFos upon mixture with
cFos—cFos (Figure 8b). In contrast, spectra exhibiting signals
exceeding the average indicated that the expected dimer
exchange had indeed occurred. These changes in binding
partners were observed in systems containing off-target
peptides in complex with either FosUpc, (ie, FosUpcy—
cFos combined with cJun—cJun; Figure 7b) or JunWcanpr
(i.e,, JunWeanpr—cJun combined with cFos—cFos; Figure 8a).
These data provide evidence for the formation of hetero-
specific coiled coils with the cognate AP-1 component, in the
contact of alternative cJun or cFos options available. The data
also further validate the results of the in cellulo screening step
through PCA.

Thermal Denaturation Profiles. The increased global
secondary structure content for both antagonist—target
complexes required further stability validation through thermal
denaturation experiments (Figure 4c/d and Figure Sc/d).
Taken in 1 °C increments, the thermal melt data was generally
in agreement with the spectra. In isolation, FosUpc, did not
form a stable coiled coil, with only the characteristic upper
baseline observed (Figure 4c, red). Similarly, FosUpc,—cFos
showed a similar upper baseline only (Figure 4d, purple). For
both of these complexes, the combination of spectra and
thermal denaturation data demonstrates weakly populated
helices without the ability to associate. This scenario is
beneficial for this antagonist system, as it removes two off-
target states, in addition to the observation that FosUpc,
incubated with cJun displayed a two-state sigmoidal thermal
denaturation profile with a substantial right-hand shift (T, =
52 °C). As shown from the spectra, JunWc,yp; in isolation
(Figure Sc, red) formed a self-associating coiled coil with a T},
of 32 °C (similar to described previously'"). When incubated
with cJun (Figure Sc, purple), only limited interaction was
found to occur (T, = 27 °C). Compared to thermal data with
cJun, this represented an increase of 4 °C from that previously
reported (JunWanpr-cJuny, T, = 23 °C). Incubated with cFos
(Figure Sd, blue), as expected, a right-hand shift was observed
(T, = S1 °C), representing an increase of 7 °C from previous
work with truncated cJuny, (T,, = 44 °C). As observed in
Figure 3e/f, these differences in T, result from the addition of
two pairs of g—e'*! interactions from the mismatch in length.

Only in the off-target complex with cJun did this add an
attractive electrostatic interaction (Glu-Arg at e'—g’?), with the
presence of other residues contributing solely to increasing
helicity in the complex. JunWcnpp in complex with FosUpcy
showed a right-hand shift compared to the component
peptides (Figure 6c, purple). This increase in T,, to 40 °C,
coupled with the spectra data, is evidence for a stable coiled
coil. In context of the helical wheel (Figure 6a), this can be
explained in part due to the fact that a net 4 of the 8 complete
electrostatic interactions are attractive (Glu-Lys or Glu-Arg).
In the context of the other T, values, this stability does not
affect the cocompatibility as it is lower than the desired target
complex T, values.

A comparison of the predicted and experimental T, values
(Figure 2 and Figure 9) shows notable differences, an
observation that has previously been discussed in the context
of bCIPA, isCAN, and this particular library.'”"?

Primarily, the off-target FosUpcy—FosUpcy and FosUpcy—
cFos interactions were predicted to be relatively stable (60 and
26 °C, respectively), whereas this was not observed
experimentally. This highlights the role of the electrostatic
interactions, as an analysis of the sequence (Figure 3a/c)
shows that the homodimer has 60% of these as repulsive Glu-
Glu interactions. FosUpc,—cFos exhibits a similar profile, with
40% of these interactions as Glu-Glu. In addition, the presence
of Leu at g° and e* as residues incapable of forming electrostatic
interactions adds to this disruption, along with the presence of
two Thr and two Lys residues at the core. Although less
extreme, observation of the desired complex with cJun showed
that there was also a discrepancy between experimental and
predicted T, values, with bCIPA predicting a T, value of 86
°C and the experimental data displaying a T, of 52 °C.
Although this was a decrease of 34 °C, the system itself was not
heavily altered. This is due to the fact that the AT,, decreased
by 4 °C from a predicted 26 °C to an experimentally derived
22 °C. In comparison to previous work, this AT, value is
second only to that of FosU,,can by 8 °C. However, of the two,
the FosUpc, predicted AT, value sits closer to that of the
experimental value (FosU,cay AAT, = —20 °C). In both
cases, the predicted AT, was driven by the difference in T,
between the desired complex with cJun and the homodimeric
library member interaction. However, with the inability of
either homodimer to form a stable coiled coil, this AT, relied
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extra interhelical electrostatic interactions with FosUcay and FosUpc,.

on the difference between the desired complex and the T, of
homodimeric cJun. The thermal stability of FosUpc,—cJun is
comparable to previous peptides for which extensive
biophysical data is available.""'***** In particular, the PCA
derived FosW—cJun exhibited a T, value of 63 °C and a Ky
value of 39 nM, whereas 4hFosW—cJun exhibited a T, of 49
°C and a K value of 480 nM. Since the latter exhibited thermal
stability within 3 °C of both FosUpca—cJun and JunWcanpi—
cFos, it can be estimated that the interaction K4 for both of
these complexes is also within the nanomolar range.

Although the FosUpcy—JunWcanp; complex shows a high
level of stability (T,, = 40 °C), it is important to note that
JunWeanpr was incorporated as a prototypical peptide
sequence and neither peptide was explicitly screened (in silico
or in cellulo) with the other as an off-target. The secondary
structure and thermal data represent the formation of a stable
complex, although this does not affect the cocompatibility of
the two antagonists as an 11—12 °C difference exists between
it and the T, values of both FosUpcy—cJun and JunWeanpi—
cFos. This can be credited to the fact that the increased
electrostatic interactions in FosUpc, and the stringency of the
multipart in silico screening of Fos-based peptides resulted in a
library that exhibited higher levels of specificity to cJun itself,
rather than all members of the Jun family.

FosUpca Sequence Core Analysis. As shown in Figure 3,
residue selection at the a positions resulted in alternations
between Ile and Leu on a', a%, and a°, with a' selecting the

former and a® and a’ selecting the latter. Through all stages of
PCA, the successful sequences (with the option of both Asn
and Ile) were selected for the Asn at this position, highlighting
the importance of the interfacial Asn-Asn interaction in
forming dimeric coiled coils and preventing higher-order
oligomeric states.””>” Not conforming to the structure or size
of the otherwise ubiquitous residues found at this interface, His
is thought to be ill-suited to the environment of the
hydrophobic core at a’. Although not present in Jun/Fos
proteins, His is present in the bHLH-ZIP cMax, along with
Met, at sequential d positions without disrupting the
interaction required for transcriptional activity.”” When
entering PCA, this residue was replaced at P1 with Leu. One
potential reason could be its position within the coiled coil,
which unlike cMax, is not located in the proximity of the N-
terminus. As it occupies space directly between an Asn-Asn
interaction, as well as a position within the center of the helix,
the presence of the imidazole ring side chain could destabilize
the a-helix and prevent successful coiled-coil formation.
FosUpc, Sequence Electrostatic Analysis. As the
electrostatic positions introduce the most diversity in options,
it is interesting first to note the locations within the sequence
that were not semirandomized within the library. Importantly,
at positions gl, &, g”', and ¢, Glu was selected by both isPCA/
isCAN, indicating that this residue is sufficient at these
positions to satisfy all conflicting design requirements.
However, although this has been briefly discussed previously,'”
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it is important to interrogate this in the context of the in cellulo
screening of a large library. At each position, Glu performs a
combinatory destabilization and stabilization role, depending
on the complex the peptide adopts. As shown in Figure 3a—c,
the selected residues at these positions may, in some cases,
appear counterintuitive. As residues at these positions interact
within the coiled coil, this results in four repulsive Glu-Glu
interactions in the homodimeric complex. When in complex
with cJun, the presence of Glu serves to stabilize the coiled
coil. gl—e’z, ez—g’l, and g3—6’4 interact beneficially in the form
of 2 Glu-Lys interactions and one Glu-Arg interaction,
respectively (e*—g’® forms a Glu-Thr interaction). Since
isCAN additionally considers interactions with cFos, the
same destabilizing effect observed with the homodimer
complex is selected, with repulsive Glu-Glu interactions (and
a nonoptimal Glu-Leu interaction on g’—¢'*. Previous work
discussed the role of intramolecular interactions in the
formation of the coiled coil.*® Briefly, the presence of “solid-
charge blocks”, a consecutive run of positively or negatively
charged residues at either e and/or g positions within the
heptad repeat, can result in intramolecular repulsion, thereby
strengthening the interactions between the helices at these
positions. Conversely, alternating + charges at these positions
results in attractive intramolecular interactions, which serve to
lower the effect of attractive/repulsive electrostatic interactions
between helices. FosUpc, contains 60% Glu at electrostatic
positions (i.e., three small charge blocks), which may serve to
guide intermolecular repulsion (homomeric and in complex
with off-targets) and optimize the beneficial interactions when
in complex with cJun. Although it disrupts a pattern of Glu
residues at this in the heptad, g* benefits from the selection of
Gln due to the presence of Ala at ¢’*. Within the context of the
FosUpca—cJun heterodimer, ¢’° and g’' on cJun are Arg and
Lys, respectively, with intramolecular repulsion, therefore
potentially strengthening the intermolecular Arg-Glu and
Lys-Glu interactions with FosUpc, at positions ¢’ and é*.

Prediction vs Experimental. As discussed previously,
predictions using the bCIPA algorithm can vary in accuracy
using designed peptide sequences.'”'” Elongation of designed
sequences with the aim of maximizing potential interactions
highlights a potential limitation in current predictive
capabilities. Electrostatic charge blocks are also a sequence-
specific effect, which is currently not considered. bCIPA scores
each residue independently of others within a helix but scores
for the specific interaction between helices, with only the latter
taking advantage of the coupling data from the many natural
peptides used to train the model. Additionally, these sequences
are shorter than the sequences evaluated in this work,
providing another possible explanation for the discrepancy.
However, the ability to impose artificial limits through an
imposed Aparameter mitigates against this, replacing the subtle
differences in desired/undesired predictions with predictably
larger variations. This parameter functions as a necessary
safeguard for the additional layers of complexity employed.
Previous work exploring this* has also highlighted limitations
of relying solely on coupling data.

B CONCLUSIONS

In Silico Led In Cellulo Design. Of the 10 possible
interactions within the intended system (Figure 10), both
antagonists successfully bound their respective targets, while
avoiding their cFos/cJun off-target complexes. Although a
stable coiled coil, the FosUpcy—JunWe,npr complex is not

32°C N/A°C-
QIS
JunWCANDI FosUPCA
51°C 52°C
N/A
27°C

cJu@

cFos
27°C
N/A 30°C

Figure 10. An overview of the FosUpc, + JunWeaynp; System. Analysis
of T, data shows that the desired interactions (green) are
preferentially formed over the off-targets (red) and the homodimers
(black). Though the antagonist—antagonist dimer has a relatively high
T, (40 °C), this comparison highlights that the antagonist—target
interactions are the preferred states.

predicted to disrupt the cocompatibility of the system due to
the increased thermal stability of both of the peptides with
their targets.

With work into FosUjcay and now FosUpe,, respectively,
exploring purely the data-driven and combinatory in silico/in
cellulo design, it has so far been shown that, aside from yielding
increased stability of target homodimer complexes, the
extension of the sequence length to add extra electrostatic
interactions adds increased specificity but not increased
stability in the heterodimeric peptide—target complex (Figure
7)."” Studies into the truncation of cJun antagonists have
described similar issues.'”*” In these experiments, engineering
stability has resulted in the antagonist peptide homodimers
having near equivalent or increased thermal stability when
compared to that of the desired heterodimeric complex with
cJun. Due to the simplicity of coiled-coil sequences and the
constraint imposed by the need to specifically target certain
bZIPs without disrupting the function of others, this raises the
question of whether there is a limit to the ability of certain
engineered peptides to be able to fulfill both the stability and
specificity design requirements. PCA-derived FosW exemplifies
this phenomenon, with a difference of 6 °C between the T, of
its homodimeric complex and heterodimeric complex, in
addition to the 2 °C between the latter and the T, of a
potential off-target target complex with cFos (Figure 7). As
FosW—cJun, an interaction that did not consider cJun during
design or selection, has a T, that is only marginally higher than
that of FosUpca—cJun, this highlights the advancement of in
silico techniques in addressing the conflicting design require-
ments imposed by the simplicity of the coiled-coil structure.
Though both FosW and FosUpc, were derived via PCA, there
was a significant difference in the size of the two libraries
generated in order to do so (with the 49 152 member FosW
library being 58% larger than that of the 31 104 member
isCAN/isPCA). Despite this, in the latter case, the library
derived a peptide that was more able to meet the criteria
required by antagonist peptides, that is the maximization of
stability balanced with the ability to specifically bind its target.
In the context of engineering peptides, this represents an
advancement in the process and validates the combined use of
combinatory in silico and in cellulo screening. To this end,
future exploration into improving this framework would
include an expansion of the library size as well as the
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incorporated as an additional competitor to the screening of library B and vice versa (5). This ensures that the libraries are capable of specificity
relative to other designed peptides as driven by the A value (highlighted in red).

generation of an additional library containing cJun-based
peptide sequences to target cFos.

As shown in Figure 11, the addition of that extra screening
step (S) into this framework would allow not only for the
isPCA/isCAN methods described here but also an additional
isCAN constraint in which the cFos-based and cJun-based
libraries are able to consider one another during the in silico
screening stage. Similarly, the in cellulo screening would expand
to incorporate a specific CANDI element, with both isPCA/
isCAN derived peptides utilized as a competitor peptide during
this process. This would allow for the library design and
subsequent directed evolution