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Abstract 

Activator Protein 1 (AP-1) is a basic leucine zipper (bZIP) transcription factor that is formed 

from the dimerisation of cJun and cFos proteins to form a coiled coil (CC). As AP-1 is 

implicated in the pathways of multiple cancers (such as breast cancer, cervical cancer, and 

colon cancer) this α-helical peptide-peptide interface represents an interesting target for the 

inhibition of AP-1 formation and transcriptional activity. Peptidomimetic sequences based 

on cFos are able to preferentially bind to cJun. Three methods were explored to develop 

and optimise the use of in silico screening methods in the design of cJun antagonists. Firstly, 

in cellulo screening techniques were modelled computationally and used to design a stable 

and specific cJun antagonist. Secondarily, this method was further expanded in cellulo with 

Protein-fragment Complementation Assay screening, with the aim of validating the peptide 

library generated. Both peptides derived from these techniques showed similarly high levels 

of stability with cJun and promoted instability in negative and off-target complexes. The in-

cellulo derived sequence showed additional co-compatability with a previously 

characterised cFos antagonist and allowed for specific targeting of both AP-1 components. 

Finally, a set of heptapeptide “cassettes” were synthesised and characterised in both a 

linear and cyclic form, using b-f lactam bridges. The variances in helicity seen in the 

lactamised forms highlighted differences in constraint tolerance. This data was coupled with 

computational screening data to modularly select a combination of cassettes predicted to 

bind to cJun. Full-length peptides selected computationally were shown to have decreased 

homodimeric and heterodimeric stability, whereas the combined in-silico/in-vitro selections 

showed high levels of stability and were able to successfully target cJun. This provides 

novel insights into the tolerance of constraints and the design of peptides for stability and 

helicity. Overall, the methods developed (and the peptides derived) represent a step forward 

in the design of specific peptide therapies capable of targeting AP-1. 
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CHAPTER 1 - INTRODUCTION 
The transcription factor (TF) Activator Protein 1 (AP-1) is a basic leucine zipper (bZIP) 

formed as a dimeric complex of proteins across the Jun, Fos, ATF and MAF families 

(Chinenov and Kerppola 2001; Eferl and Wagner 2003). Within the bZIP family of proteins, 

there exists a shared core architecture of a bZIP domain which is flanked N- or C-terminally 

by a transactivation (TA) domain (Seldeen et al. 2010).  

The bZIP domain itself is composed of 2 separate regions which serve different roles in the 

transcriptional function of the protein. As shown in Figure 1.1, there is a N-terminal basic 

sequence which mediates AP-1 recognition and binding to its consensus sequence 

(GTGACTCA) on DNA – known as the tumour promoting agent (12-O-tetradecanoylphorbol 

13-acetate or TPA) response element (TRE) (Angel and Karin 1991). At the C-terminus, the 

α-helical leucine zipper (LZ) region mediates the dimerisation of two bZIP proteins via the 

formation of a coiled coil structure.  

 

 

Figure 1.1 Structure of bZIP AP-1 bound to DNA (PDB: 1FOS). The binding of bZIPs to 
specific DNA sites is facilitated by the (often Arginine-rich) basic region at the N-terminus 
(blue). The Leucine Zipper region at the C-terminus (purple) mediates the dimerisation of 
the proteins via the formation of a strip of Leucine residues (red) at every 7th position 
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In a wider genomic context, the comparison of diversification has shown that the evolution 

of bZIPs originated from a single eukaryotic protein and the resulting evolution of bZIP family 

proteins incrementally increased in complexity, while retaining important roles within the 

regulation of cellular processes (Deppmann et al. 2006; Jindrich and Degnan 2016; Kani et 

al. 2017). Within humans, there exist 21 bZIP families and over 50 distinct members, with 

the potential for over 2000 distinct dimers to form and recognise binding sites (Seldeen et 

al. 2010; Reinke et al. 2013).  

The TRE is a consensus sequence found within transcriptional regulatory regions on DNA. 

It was first discovered in the promoters of metallothionein IIa (hMTIIa) and simian virus 40 

(SV40). These sites facilitate binding to specific structures on proteins. Within AP-1, the 

structure of the basic region allows the residues to make contacts that are base-specific 

within the major groove of DNA and the flexibility of the LZ region means that AP-1 does 

not exclusively bind to a specific orientation of the TRE (Glover and Harrison 1995).  

Depending on the constituent bZIP proteins, AP-1 can form in many different complexes. 

The Jun family of proteins (JunB, JunD, and cJun) are able to form transcriptionally active 

AP-1 via both homodimerisation and heterodimerisation with Fos family proteins (Darlyuk-

Saadon et al. 2012). Conversely, Fos family proteins (Fra1, Fra2, FosB, cFos) display far 

less flexibility and require heterodimerisation with Jun family proteins to form AP-1, with this 

heterodimer able to bind DNA tighter than the Jun homodimer (Ransone et al. 1993). Given 

the diversity of roles that they play physiologically, the structurally mediated selectivity and 

specificity of bZIP formation is of key importance across all families – including that of Jun 

and Fos (Ransone et al. 1993). Relative to simpler eukaryotes, the greater ability to form 

heterodimers and engage with distinct binding sites suggests that the multitude of possible 

complexes contributed to the further organismal complexity (Lamb and McKnight 1991; 

Reinke et al. 2013; Rodríguez-Martínez et al. 2017). 

1.1 Structure of the Leucine Zipper 

The leucine zipper is a short α-helical region of typically 30-40 residues that mediates 

binding between bZIP proteins via α-helical interactions (Crick 1953; O’Shea et al. 1991). 

The general structure of the LZ incorporates architecture based on a sequence of residues 

conforming to a seven residue pattern known as a heptad repeat. The heptad pattern, 

repeating for the length of the LZ is defined as (abcdefg)n, with each position populated by 

characteristically different residues. 

This sequence forms a coiled coil owing to its α-helical properties. This CC is a common 

structural motif and it exists in 3 – 5% of amino acids within proteins and typically consist of 

2 – 5 α-helices wrapped around one another in a parallel or anti-parallel manner (Mason 

and Arndt 2004). Canonically, an α-helix exhibits 3.6 residues per turn of the helix but within 
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the CC, this decreases this to 3.5 – allowing for a complete repeat of the heptad every 2 

turns. When discovered by Crick, this was geometrically described as a 20° incline between 

the axes of the helices, which then allows the CC itself to follow a gradual helix with a pitch 

angle of ~10° (Crick 1953). This gives rise to the formation of the supercoiling of the 

structure, seen as a shallow left-handed helical structure, with the presence of a “strip” of 

hydrophobic residues embedded in the core of the heptad for the entire length of the CC. 

Most of the interhelical interactions within the LZ structure – influencing stability and 

specificity- involve residues in positions a, d, e, and g (Alber 1992).  

The structural stability of the CC is achieved via “knobs into holes packing” (KIHP), in which 

the side-chains of residues of position a and d (“knobs”) pack into the spaces on the 

opposing helix (“holes”). Within position a, the knob is packed into a hole surrounded by the 

side chains of residues at position a, position g, and those of two position d. This is mirrored 

for the knob on position d, with its hole surrounded by side chains of positions d, e, and two 

of position a (Crick 1953; O’Shea et al. 1993; Glover and Harrison 1995). The “ridges into 

grooves” packing (RIGP) model is similar, with interfacial interactions between the two 

helices incorporating the reciprocal placement of side chains (Chothia et al. 1977; Chothia 

et al. 1981). Unlike KIHP, RIGP defines the environment for single residue side chain 

placement as a “groove” on the opposite helix defined by 2 residues, rather than the 4 

involved in the defining of the “hole” in KIHP (Efimov 1999).  

 

Figure 1.2 Helical wheel showing the relative positions of residues within the coiled 
coil. Residues at positions a and d form the buried hydrophobic interface, with 
potential electrostatic interactions (red) formed between residues at positions e and 
g.  
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As shown in Figure 1.2, positions a and d form the buried core region of the zipper, most 

frequently populated by hydrophobic residues, such as leucine, isoleucine, valine and 

alanine. Position d is typically observed to be a leucine residue and one reason suggested 

for this phenomenon is the primary role that the leucine repeat might play in the identification 

of bZIP proteins  (O’Shea et al. 1991). This leucine repeat at every 7th residue is the factor 

which contributes the most to the stabilisation of dimerisation between the LZs from d-d’ 

interactions, with the a-a’ interactions. The conservation of leucine at d is thought to suggest 

that the interfacial packing and CC stability would be lost if the residue were replaced with 

one smaller, larger, or unbranched (Hu et al. 1990; Hodges et al. 1990; Hu and Sauer 1992).  

Due to the precision of the KIHP geometry, it’s known that the residues within the sequence 

affect the oligomeric state; with the understanding that different combinations of side-chains 

influence how the helices wrap around one another (Woolfson and Alber 1995; Nautiyal et 

al. 1995). This sequence-to-structure understanding has shown that residues at these core 

positions are linked to the oligomeric states of the bZIPs, with isoleucine at a and leucine at 

d promoting parallel dimers. (Harbury et al. 1993) The selection of isoleucine at both a and 

d has been shown to promote a trimeric configuration, and tetramers promoted with an a/d 

selection of leucine and isoleucine respectively. 

Within bZIPs generally, the flexibility of a positions to accommodate polar residues allows 

the specificity, oligomeric state, and helical orientation to be controlled (Potapov et al. 2015). 

This location benefits from the ability to form intrahelical hydrophobic interactions with 

leucine residues at d and this is energetically favours β-branched amino acids valine and 

leucine (Acharya et al. 2006). The selection of charged or polar residues within the core is 

not uncommon within AP-1, with threonine and lysine present at the a position of cFos and 

asparagine at the same position on cJun. Structurally, the side chain of the basic residue 

lysine in cFos packs against its main chain as well as against those of side chains within 

positions a and g in cJun, conforming to the KIHP pattern (Glover and Harrison 1995). 

Similarly, the selection of asparagine in cJun is not uncommon in CCs. Although its 

presence within the core is destabilising, the trade-off is that it is thought that asparagine-

asparagine inter-helical interactions within CCs limits the oligomeric state to that of a dimer, 

with asparagine -> valine mutants exhibiting mixtures of dimeric and trimeric structures 

(O’Shea et al. 1991; Hartmann et al. 2009; Fletcher et al. 2017; Thomas et al. 2017). Within 

the cJun-cFos interaction, the asparagine within cJun is able to donate a hydrogen bond to 

the preceding glutamate within cFos due to the solvent exposed nature of asparagine’s side 

chain (Glover and Harrison 1995). Additionally, the presence of polar residues at a has been 

shown to specify the orientation and alignment of the CC. The interaction of neighbouring 

polar residues ensures that the CCs align correctly to ensure correct interaction between 

residues at positions g and e (Alber 1992). 
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In parallel dimeric CCs, the residues at the e and g positions form attractive of repulsive 

electrostatic gi-ei+1 interactions between the helices (O’Shea et al. 1991). Whereas the core 

interactions are thought to contribute primarily to stability, these interactions contribute to 

specificity in multiple forms – helix orientation, oligomeric state, and the formation of either 

heterodimers or homodimers (Graddis et al. 1993; Monera et al. 1993; Zeng and 

Zimmerman 1997). As aforementioned, it is thought that these g and e residues also play 

a role in the KIHP structure, with their generally long and charged side chains forming the 

solvent-exposed wall of the hole and the aliphatic regions packing against the knob within 

(Glover and Harrison 1995; Havranek and Harbury 2003). 

Residues at positions b, c, and f constitute the almost completely solvent-exposed 

backbone “outerface” of the CC. With limited data on the matter, the role that residues at 

these positions play is poorly understood (Baxter, Ullman, et al. 2017). Due to their position 

away from the binding interface, it is thought that these residues promote stability and 

solubility of the α-helix (O’Neil and DeGrado 1990; Kaplan et al. 2014). This contribution to 

helical propensity is reflected in in silico prediction models (Mason et al. 2006). Early 

characterisation of the CC highlighted the ability of e and g residues to form ionic 

interactions with residues at b and c, with additional studies suggesting potential intrahelical 

interactions between b-f and f-c  (O’Shea et al. 1991; Mason et al. 2006).  

1.2 Physiological Role of Activator Protein-1 

The main role of AP-1 TFs is to convert extracellular signals into intracellular expression 

changes of specific genes. The activity of the transcription factor is modulated by 

interactions with other transcriptional regulators and is linked to various signal pathways by 

kinases positioned upstream – with all mitogen-activated protein kinase cascades playing 

a role in this process (Rincon and Flaveil’ 1994; Jochum et al. 2001; Shaulian 2010).  

AP-1 TFs regulate cellular proliferation by regulating the expression of genes vital to the 

cell cycle (Garces de Los Fayos Alonso et al. 2018). This is observed in cJun’s regulation 

of the cell cycle to promote progression by stimulating cyclin D1 (as shown in Figure 1.3) 

while also inhibiting the p53 tumour suppressor (Oien et al. 2000). The latter results in the 

reduction of cyclin-dependent kinase inhibitor p21 and the progression of the cell cycle from 

G1 to S phase is promoted (Schreiber et al. 1999). This has a reciprocal connection with 

JunB, which is able to slow the progression of the G1 to S phase transition through 

repression of the cyclin D1 promoter and the transcriptional activation of p16INK4a (Latifa 

Bakiri, Dominique Lallemand et al. 2000; Passegué and Wagner 2000). cJun also exhibits 

tumour suppressive properties identified in studies of cJun deficient cells. These cells were 

found to suffer spontaneous DNA damage (and therefore early senescence) – implying that 

cJun potentially has a role in the DNA repair pathway (MacLaren et al. 2004).  
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Figure 1.3 cJun and JunB have roles within the cell cycle, notably 
at the G1-S transition via Cyclin D1 regulation. By inhibiting the 
tumour suppressor p53 and direct stimulating Cyclin D1, cJun 
promotes the transition. Conversely, direct repression of the Cyclin 
D1 and activation of p16INK4a slows this transition. 
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As shown in Figure 1.4, expression of cJun and its transcriptional activity is regulated 

primarily by MAPK pathways, with a prominent one being the cJun amino terminal kinase 

(JNK) pathway – which phosphorylates and modulates Jun proteins (Dérijard et al. 1994; 

Kyriakis et al. 1994). This pathway is activated by a number of external mediators such as 

tumour necrosis factor α (TNF-α), a cytokine which is critical in immune response, 

proliferation, differentiation, and apoptosis (Chen and Goeddel 2002; Ventura et al. 2003). 

Figure 1.4 AP-1 expression and activity is primarily regulated by multiple MAPK pathways, 
including the JNK pathway. These signalling pathways are activated by a number of 
external signalling mediators, including cytokines, stresses, hormones, and growth factors. 
The increase in constituent cFos and cJun promotes formation of AP-1. The hyperactivity 
of these signalling pathways can lead to the dysregulation of AP-1 and promote 
tumourigenesis through the dysregulation of its target genes (including the upregulation of 
constituent cJun). Figure adapted - (Eferl and Wagner 2003) 
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The cellular expression of cFos is transient, with expression occurring as part of the nuclear 

response to stimuli including neurotransmitter release, growth factors, and sensory 

stimulation (Curran and Morgan 1987; Caputto et al. 2014). With the cessation of the 

stimulus, the half-life of cFos is within the hour range, with degradation of the protein 

occurring almost exclusively via the proteasome (Basbous et al. 2008). Due to this rapid 

nuclear turnover, a method of translational targeting first described in the TF c-myc has 

been discussed – with a mechanism directing cFos mRNA to the perinuclear cytoplasm to 

facilitate efficient transport to the nucleus (Caput et al. 1986; Hesketh et al. 1994; Dalgleish 

et al. 2001). 

The physiological roles of AP-1 proteins have been probed via mouse model gene 

disruption studies, which have highlighted a wide variety of cellular pathways and tissues 

affected by their presence or lack thereof. In many cases, AP-1 proteins contribute to the 

viability of mice - the loss of JunD is linked to male sterility. and embryonic lethality is 

observed with the knockout of Fra1, JunB, or cJun (at 9.5, 10, and 10.5 weeks respectively). 

It is thought that the MAPK and AP-1 proteins are linked to the degradation of the 

extracellular matrix (ECM) in foetal membranes (Lappas et al. 2011). Their increased 

expression at supracervical sites is thought to play a role in increasing the susceptibility of 

foetal membrane rupture susceptibility through matrix metalloproteinase-9 (MMP-9) 

modulation (Sato and Seiki 1993; Chakraborti et al. 2003; Yonemoto et al. 2006; Sitras et 

al. 2008). Analysis of mice lacking cFos has shown that, while fertile, viable, and able to 

survive until adulthood, they are osteopetrotic due to a lack of osteoclasts (Wang et al. 

1995; Passegué and Wagner 2000; Hess 2004). The loss of FosB is linked to a range of 

neurobehavioral dysfunctions in postpartum mice, including changes in emotional 

behaviour and a decrease in both nurturing and infanticide behaviour (Kuroda et al. 2008). 

There is an element of overlap in the functions of AP-1 proteins, with various proteins able 

to partially cover the proteins that have been knocked out. Whereas Fra1 is able to rescue 

from the osteopetrotic phenotype associated with a loss of cFos, the latter is not able to 

rescue from the lethality associated with the loss of Fra1 (Schreiber et al. 2000). Despite 

the opposing roles within the cell cycle, a knock-in of JunB (and JunD) rescues embryonic 

lethality of a cJun knockout until birth (Passegué and Wagner 2000). 

1.2.1 Pathological Role of AP-1 

Due to the intricate and complex role of AP-1 within cellular and physiological events, 

deregulation of mechanisms involving the TF can have a multitude of pathological 

outcomes, including several cancers, organ damage, fibrosis, asthma, psoriasis, and other 

inflammatory conditions (Xanthoudakis et al. 1994; Chinenov and Kerppola 2001; Zenz et 

al. 2007; Trop-Steinberg and Azar 2017; Gungl et al. 2018; Sun et al. 2019). 
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In several studies, AP-1 proteins have been shown to play an important role in 

cardiovascular disease. JunD has been found to have a role in the regulation of heart growth 

and protection from cardiac apoptosis (Ricci et al. 2005). It is the only Jun family protein 

expressed highly within the mammalian heart and regulates AP-1 activity to protect against 

stress-induced hypertrophic growth in cardiomyocytes (Hilfiker-Kleiner et al. 2005). Both 

JunB and FosB are involved in the response to heart injury by the regulation of MMP-2, 

which influences ventricular performance (Alfonso-Jaume et al. 2006). Fra2 expression 

(predominantly in the lung) is one of the contributing factors in the development of 

pulmonary fibrosis by its regulation of fibrogenic mediators (Hardie et al. 2009; Ucero et al. 

2019). Fra1 is involved in the modulation of proinflammatory and profibrotic genes in order 

to protect tissue from injury, with Fra1 deficient mice displaying greater levels of fibrosis 

(Rajasekaran et al. 2012). 

Inflammatory diseases involve the dysregulation of the immune system and can result in 

overexpression of cytokines, enzymes, and immune cells involved in the inflammatory 

response. AP-1 (along with NFAT and STAT proteins) is considered to be a pro-

inflammatory TF that regulates the expression of tumour necrosis factor α and other 

cytokines (Uluçkan and Wagner 2016). These cytokines modulate the recruitment and 

activation of immune cells, with chronic inflammation linked to disorders such as asthma, 

inflammatory bowel disease, and psoriasis (Zenz et al. 2007; Trop-Steinberg and Azar 

2017) 

1.3 AP-1 as an Anti-Cancer Target 

Estimated to account for 20% of oncogenes, the deregulation of TF activity within signalling 

pathways characterises the majority of human cancers (Vaquerizas et al. 2009; Yeh et al. 

2013). Changes in cellular differentiation, apoptosis, and other processes are co-ordinated 

and regulated via TFs (Mukherjee et al. 2018). Both cJun and cFos were initially discovered 

as cellular counterparts to retroviral oncoproteins v-Jun and v-Fos found in avian sarcoma 

virus 17 (ASV17) and Finkel-Biskis-Jinks murine sarcoma virus (Maki et al. 1987; Watanabe 

et al. 2002). Other AP-1 family member proteins have also been shown to be oncoproteins 

(JunB, JunD, Fra1, Fra2, and FosB) 

The presence of AP-1 (and AP-1 proteins) in oncogenic pathways can be attributed to two 

main factors. Firstly, due to the previously described semi-redundant nature of the family, 

AP-1 proteins have overlapping and non-overlapping functions which highlights the 

importance of specificity and composition in the function of the TF. AP-1 has been described 

as a “double-edged sword” due its implication in cancer-related pathways as well as the 

observed ability of its proteins to display both tumour suppressant and pro-oncogenic 

behaviour depending on the physiological context (Eferl and Wagner 2003). The second 
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factor is that AP-1 sits at key intersecting points of signalling pathways for the transcriptional 

regulation of many genes – including potential oncogenes (p53 – as aforementioned – plays 

a crucial role in the cell cycle). 

AP-1 is implicated in the pathogenesis of cancers including breast cancer, skin cancer, 

colon cancer, hepatocellular carcinoma, cervical cancer, human oral squamous cell 

carcinoma (Milde-Langosch 2005; Apostolou et al. 2013; Eckert et al. 2013; Kappelmann 

et al. 2014; Chen et al. 2017; Tyagi et al. 2017). Within the dysregulated oncogenic 

signalling networks, AP-1 proteins have been found to contribute to the control of apoptosis, 

survivability and resistance to interventions (Zenz et al. 2007; Tyagi et al. 2017; Endo et al. 

2018). This is highlighted in the genes that they modulate. cJun upregulates genes linked 

with invasiveness, angiogenesis, and proliferation while downregulating genes stimulating 

apoptosis and (as with JunD) inhibiting proliferation. (Lamb et al. 1997; Park et al. 1999; 

Schreiber et al. 1999; Rebollo et al. 2000; Whitfield et al. 2001; Ivanov et al. 2001; Miao et 

al. 2017). Similarly, cFos upregulates genes involved in the methylation of DNA, the 

stimulation of apoptosis, angiogenesis and (as with Fra1) invasiveness (Hennigan et al. 

1994; Jooss and Müller 1995; Kasibhatla et al. 1998; Bakin and Curran 1999; Marconcini 

et al. 1999).  cJun (and JunB) also have potential tumour suppressing behaviour and can 

downregulate genes that inhibit apoptosis and proliferation. 

Within prostate cancer, the upregulation and increased activity of AP-1 proteins is 

associated with tumourigenesis, metastasis, angiogenesis and invasion (Leach et al. 2017; 

Udayappan and Casey 2017). Additionally, these proteins have been shown to confer 

resistance to castration-based interventions and its role in proliferation has been targeted 

through the use of finasteride (Babu et al. 2013; Wang et al. 2017). In epithelioid 

hemangioma (an aggressive vascular neoplasm found in soft tissue and bones) Fos 

mutations have been identified as potential drivers of local angiogenesis through the Notch 

signal pathway and the production of MMPs (Eferl and Wagner 2003). Truncation at the C-

terminus has been shown to encode a highly stable isoform of cFos (with a half-life in excess 

of 8 h) that is resistant to ubiquitin-independent degradation by the 20S proteasome due to 

the loss of a helical motif, allowing prolonged endotheliolial sprouting (Van IJzendoorn et 

al. 2017). 

1.3.1 Small Molecule AP-1 Antagonists 

Traditional therapies to target cancer make use of small molecules. These are low weight 

(≤500 Da) and have a small surface area for interaction. The druggability of many targets 

is largely based on the ability of the small molecule to form a complex by maximising contact 

on the surface area. In many cases, this is made possible by the presence of a hydrophobic 

pocket on the target macromolecule. This form of chemotherapy lacks specificity towards 
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cancer cells and can result in the regrowth of resistant tumour clones (Ellert-Miklaszewska 

et al. 2017). 

AP-1 proteins feature interaction surfaces with structure unsuited for conventional targeting 

(Darnell 2002). As such, small molecule inhibitors have shown limited success and the 

development of specific therapies has proven to be challenging (Che et al. 2006; Ye et al. 

2014; Papavassiliou and Papavassiliou 2016)  

The potential use of natural bioactive agents as AP-1 antagonists has been extensively 

studied (van Dam and Castellazzi 2001; Kappelmann et al. 2014; Ibrahim et al. 2018). The 

diversity and specificity of the AP-1 complexes has made identifying molecules able to 

target AP-1 interactions difficult, with many of these indirectly modulating the pathways 

controlling AP-1 activity (Tewari et al. 2018). Resveratrol, a flavonoid polyphenol, has been 

reported to negatively regulate AP-1 via the inhibition of the JNK-cJun/AP-1 signalling 

cascade. However, many of the natural agents studied modulate AP-1 activity via a 

multitude of highly disruptive mechanisms, including the suppression of MAPK signalling 

cascades and the prevention of DNA binding (Dedieu and Lefebvre 2006; Malorni et al. 

2016). 

Only one inhibitor for AP-1 has entered human clinical trials, with many of the compounds 

available lacking specificity and targeting other TFs. A small cyclic compound, T-5224 was 

investigated in Phase II human clinical trials as an inhibitor which displayed a degree of 

selectivity over other TFs but was not further studied (Uchihashi et al. 2011; Garces de Los 

Fayos Alonso et al. 2018).  

1.3.2 Peptide Antagonists 

In recent years, greater focus has been given to the development of synthetic peptides, with 

the aim of characterising the rules governing protein-protein interactions (Crooks et al. 

2016). This advancement towards the development of de novo sequences has a wide range 

of potential applications in self-assembling biomaterials, drug delivery, the formation of 

complex architecture, and other building blocks for assembling synthetic systems 

(Shlizerman et al. 2010; Gradišar et al. 2013; Yeates et al. 2016; Beesley and Woolfson 

2019; Majerle et al. 2019).  

Concurrently, peptides have begun to rise to the challenge of targeting proteins that were 

previously thought to be undruggable (Thansandote et al. 2015; Rastogi et al. 2019). Short 

peptides have shown high binding affinity to their targets as they are capable to interacting 

on the flat and extensive interfaces that mediate many protein-protein interactions. 

Historically, peptide-based therapeutics were discounted during drug design due to the 
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inherent limitations such as lack of specificity, susceptibility to enzymatic degradation, poor 

delivery, and inadequate transport through membranes (Vagner et al. 2008).  

It is thought that synthetic peptidomimetics could potentially represent a mid-point between 

small molecules and antibodies, with the bioavailability and permeability of the former and 

the specificity of the latter (Bruzzoni-Giovanelli et al. 2018; Farley et al. 2019). The flexibility 

of peptidomimetics in drug design is due to the diversity of natural (and non-natural) amino 

acids and chemical modifications possible to create more “drug-like” molecules (Tapeinou 

et al. 2015). These include alterations to the side-chain and backbone, including 

conjugation, truncation, and helix constraints (Crooks et al. 2011a; Baxter, Perry, et al. 

2017).  

The use of these constraints in the design of peptide mimetics has been explored to address 

the issues related to specificity, bioavailability, permeability, and degradation (Craik et al. 

2013; Hill et al. 2014; Thansandote et al. 2015; Hoang et al. 2015). This involves the 

cyclisation of two amino acids to promote the adoption of the α-helix by reducing the 

entropic cost associated (Rao et al. 2013). Common modalities include hydrocarbon 

“staples”, hydrogen bond surrogates (HBS), and lactam bridges (Taylor 2002; Patgiri et al. 

2008; Mason 2010; Aihara et al. 2015; Walensky and Bird 2015; Hoang et al. 2016; Rezaei 

Araghi et al. 2018).  

The use of HBS to replace backbone hydrogen bonds with covalent bonds offers stability 

with potentially less interference to the residues involved in protein-protein interaction 

(Chapman et al. 2004)  These techniques have been shown to be increasingly successful 

in disrupting the protein-protein interactions required to permit transcriptional activity 

(Staber et al. 2007; Cumaraswamy et al. 2014; Ball et al. 2016; Rezaei Araghi et al. 2018).  

1.4 Methods for Designing Stable and Specific AP-1 
Antagonists 

1.4.1 Ex silico 

The transcriptional function of AP-1 is dependent on the ability to form as a dimer – with the 

dimerisation controlled by the LZ domain. As such, many strategies for targeting AP-1 are 

linked to the rational design of peptide antagonists to target this region with engineered 

stability and specificity. 

This has been guided by structural data, allowing for further understanding into the 

structural basis of the protein-protein interactions. X-ray crystallography and Nuclear 

Magnetic Resonance (NMR) studies into LZ formation have highlighted key residues within 

interactions. The structural models of LZs such as GCN4 (O’Shea et al. 1991) and AP-1 

(Glover and Harrison 1995) provided specific insight into the protein-protein interactions of 
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LZs but it is not currently possible to solely rely on structural data as a form of screening for 

peptide antagonists.           

The Protein Fragment Complementation Assay (PCA) is an example of an in cellulo method 

for the identification of stable protein-protein interactions based on the ability to selectively 

reconstitute a functional third protein (Pelletier et al. 1998). The bait and the prey proteins 

are both covalenty fused to a fragment of a reporter protein. The low affinity of the two 

fragments for one another ensures that only the interaction of the bait and prey proteins 

leads to the re-formation of the reporter protein (Remy et al. 2002). This requires the 

reporter protein to be able to reconstitute itself without covalent bond formation between the 

fragments and function to produce a quantifiable output. Dihydrofolate Reductase (DHFR) 

is an enzyme necessary for cellular survival/growth in media lacking in complex nutrients. 

Its role as a reporter protein is possible due to the use of Trimethoprim (an inhibitor of 

DHFR) coupled with the transformation of bacteria with split murine DHFR fused to the prey 

and predator proteins (Pelletier et al. 1998; Michnick et al. 2000; Remy and Michnick 2015).  

This method of protein-protein interaction screening excludes false positives as only the 

bacteria that express interacting proteins (and form functional DHFR) can grow in the 

media. The advantage of this is that it does not require the activation of a downstream 

response. This is the case with a similar technique, Yeast 2 Hybrid (Y2H) screening (Young 

1998). Y2H relies on the protein-protein interaction effecting transcription of a downstream 

reporter gene and is therefore dependent on the restored function of the transcription factor 

(Joung et al. 2000). 

PCA can be extended through the incorporation of negative design (Mason, Müller, et al. 

2007). The competitive and negative design initiative (CANDI) introduces competitor 

sequences to the assay. Cells are unable to grow when a competitor is in complex with the 

library member of the target (due to the lack of a DHFR fragment). Due to this, each 

additional competitor sequence represents additional stringency with the potential formation 

of 2 additional off-target complexes. This contrasts highlights the difference between CANDI 

and techniques relying on library-target affinity, the latter of which able to result off-target 

complexes of increased stability (Grigoryan et al. 2009b). However, it has been shown that 

in some systems only marginal differences exist between the binding affinity of desired 

complexes and that of the off-target complexes (Mason et al. 2006; Mason, Müller, et al. 

2007).  

This use of bait and prey proteins is not unique to PCA or Y2H. Fluorescence resonance 

electron transfer (FRET) studies attach fluorophores to both proteins, where which one 

fluorophore’s emission wavelength and the other’s excitation wavelength are identical 

(Pollok and Heim 1999; Chen et al. 2007). The bait and prey proteins being in close 
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proximity to one another results in lower FRET efficiency and this is used as an indicator of 

binding affinity (Chen et al. 2007; Szalóki et al. 2015). 

PCA can also be combined with CIS display – a technique that uses components of bacterial 

transcription and translation machinery to fuse peptide library members onto specific 

regions of DNA (Odegrip et al. 2004; Mathonet et al. 2011). This method can be used to 

screen expansive libraries (1010 members) and can select for stringency with truncated and 

non-truncated versions of the same sequence serving as targets (Baxter, Ullman, et al. 

2017). Incorporating the successful members of CIS into PCA allows for screening at both 

the in vitro and in cellulo level. 

1.4.2 In silico 

With the increase in structural, stability, and affinity data, the range of computational design 

approaches targeting bZIPs has expanded. The characterisation of CCs from structure has 

been explored with computational approaches, with early applications elucidating the 

principles governing the oligomeric state of the CC (Woolfson and Alber 1995). This has led 

to identification and filtration of CC structures from RCSB Protein Data Bank (Berman et al. 

2000) by searching for packing and features indicative of KIHP (Walshaw and Woolfson 

2001), and the use of molecular dynamics to compute binding affinity (Zuo et al. 2012). 

Further understanding of the structural principles has recently led to the development of 

CCBuilder – a tool which allows for a structural model of novel CCs to be built from 

sequence data (Wood and Woolfson 2018). This structure-based approach to recognising 

CCs has informed the prediction of CC interactions from sequence. Unlike larger proteins 

with complex globular structures, the relative simplicity of the CC has allowed LZ sequence 

data to inform the design of antagonists.  

Initial work combined sequence data and experimental data to binarily predict the formation 

of a CC interaction (Singh and Kim 2001). This focused on the prediction of helical alignment 

and if a pairwise heterodimeric CC interaction was preferred (instead of two possible 

homodimeric interactions). This made use of a support vector machine (SVM) approach – 

a supervised learning model used to classify objects into groups depending on their 

characteristics (Burges 1998). These characteristics are converted into variables and which 

have weight vectors applied and optimised through training. These characteristics were 

developed from previous biophysical data, with the datasets used to train and validate the 

algorithm containing sequences known either to form CCs or not form CCs (Parry et al. 

1977; Parry 1982; O’Shea et al. 1991; Krylov et al. 1998a). It was found that 90% of incorrect 

partners were able to be eliminated from ~95% of the CC regions found in the dataset. 

SVM’s ability to recognise patterns has been utilised as the basis of many algorithms used 

in computational biology, including the characterisation of protein-DNA interactions in the 

identification of TF binding sites (Shameer et al. 2010; Hu et al. 2019). SVM has also been 
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utilised to develop the Base Optimised Weights (BOWs) system that uses weight vectors 

and the interhelical pairings of residues at certain positions to predict the formation of CCs 

for bZIP pairings (Fong et al. 2004). This model assumes that the partnering of CCs is 

governed by several interhelical interactions at specific positions within the heptad: ai-a’i, 

di-d’i, a i-d’ i, d i-a’ i,d i-e’ i, g i-a’ i+1, and g i-e’ i+1.  

Instead of weight vectors, the bZIP CC Prediction Algorithm (bCIPA) is driven by coupling 

energy data from double-mutant analysis studies in CCs (Krylov et al. 1998a; Acharya et 

al. 2006). Trained on thermal stability data of 57 dimers, bCIPA removes several of the 

interactions scored by the BOW model. Instead, it relies on the contributions of a-a’, d-d’, 

g i-e’ i+1, and e i-g’ i-1 interactions, as well as the contribution of each residue to overall helicity 

in order to predict the melting temperature (Tm) of the CC (Williams et al. 1987; Mason et 

al. 2006; Hagemann et al. 2008). Due to its training on natural CCs, bCIPA’s accuracy has 

been shown to decrease when applied to truncated CCs with fewer interactions contributing 

to scoring (Bromley et al. 2009). When applied to microarray analysis data from 592 bZIP 

interactions, bCIPA was able to correctly identify 92% of non-interactors and 92% of strong 

interactors (with BOW predictions reporting 89% and 83% respectively). The incorporation 

of negative design screening allowed for the discovery of motifs and intramolecular residue 

interactions that play a role in interaction specificity (Havranek and Harbury 2003). This has 

been explored further using the cluster expansion and linear programming-based analysis 

of specificity and stability (CLASSY) – a machine-learning based framework (Grigoryan et 

al. 2009b). Cluster expansion (CE) searches for low-energy configurations of sequences to 

determine the energies of CC formation (Zhou et al. 2005). This is combined with integer 

linear programming (ILP), which models the system as an optimisation problem to be 

solved. This has been used to optimise target affinity-based peptide designs into sequences 

that represent a trade-off between stability and specificity in targeting LZs. (Reinke et al. 

2010; Chen et al. 2011; Potapov et al. 2015).  

1.5 Thesis Aims 

Approaches to design and screen antagonists of AP-1 are numerous and diverse. This 

thesis aimed to identify and develop novel computational techniques for the design of 

peptide-based antagonists. Additionally, it aimed to develop novel synthetic peptide 

“building blocks” frameworks, incorporating in silico design and helix constraints.  

Chapter 3 explores the development of computational techniques used during this thesis, 

the rationale behind the design, and how the initial toolset allowed for modular expansion 

with additional scenarios for application. 

Chapter 4 explores the expansion of previous in silico screening techniques to mimic in 

cellulo methods. The screening of large libraries based on template LZs results in the 
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selection of an antagonist capable of maximising desired complex stability with concurrent 

minimisation of off-target complex stability.  

Chapter 5 explores the enhancement of this in silico screening through the addition of PCA. 

This allows for increased stringency of the screening, with a smaller library expressed on 

PCA than previous designs on the same template. This results in a successful AP-1 

antagonist that has co-compatibility with another antagonist and a system which is capable 

of binding both AP-1 proteins.  

Chapter 6 focuses on furthering our understanding of helical constraints in CCs and the use 

of modular design in the CC engineering. This study compares lactamised and non-

lactamised sequences designed in silico and in vitro to explore the effects of heptad stability 

in the tolerance of helical constraints and their effect on full-length sequences. The results 

highlight the ability to develop stable truncated CCs that are able to bind to cJun with varying 

affinity, dependent on the stability of the heptads incorporated into the full-length sequence. 

This represents an advancement into understanding the rules governing constant tolerance 

and the development of heptad libraries able to promote the formation of desired 

complexes. 
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CHAPTER 2 - MATERIALS AND METHODS 

2.1 Peptide Synthesis 

Rink amide ChemMatrix™ resin was obtained from PCAS Biomatrix, Inc. (St.-Jean-sur-

Richelieu, Canada); Fmoc L-amino acids and 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetra-

methyluronium hexafluorophosphate or benzotriazol-1-yl-ox-ytripyrrolidinophosphonium 

hexafluorophosphate were obtained from AGTC Bioproducts (Hessle, UK); all other 

reagents were of peptide synthesis grade and obtained from ThermoFisherScientific 

(Loughborough,UK). 

Peptides were synthesised on a 0.1-mmol scale on a PCAS ChemMatrix™ Rink amide resin 

using a Liberty Blue™ microwave peptide synthesiser (CEM; Matthews, NC) employing 

Fmoc solid-phase techniques with repeated steps of coupling, deprotection and washing (4 

× 5 ml dimethylformamide).  

Coupling was performed as follows: Fmoc amino acid (5 eq), 2-(1H-benzotriazole-1-yl)-

1,1,3,3 tetramethyluronium hexafluorophosphate or benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate(4.5 eq) and diisopropylethylamine (10 

eq) in dimethylformamide (5 ml) for 5 min with 35-W microwave irradiation at 90 °C.  

Deprotection was performed as follows: 20% piperidine in dimethylformamide for 5 min with 

30-W microwave irradiation at 80 °C. Following synthesis, we acetylated the peptide—

acetic anhydride (3 eq) and diisopropylethylamine (4.5 eq) in dimethylformamide(2.63 ml) 

for 20 min—and then cleaved it from the resin with concomitant removal of side-chain-

protecting groups by treatment with a cleavage mixture (10 ml) consisting of TFA (95%), 

triisopropylsilane (2.5%) and H2O (2.5%) for 4 h at room temperature. 

Suspended resin was removed by filtration, and the peptide was precipitated using three 

rounds of crashing in ice-cold diethyl ether, vortexing and centrifuging. The pellet was then 

dissolved in 1:1MeCN/H2O and freeze-dried. Purification was performed by reverse phase 

high process liquid chromatography (RP-HPLC) using a Phenomenex Jupiter Proteo (C18) 

reverse-phase column (4 μm, 90 Å, 10 mm inner diameter × 250 mm long). Eluents used 

were as follows: 0.1% TFA in H2O (a) and 0.1% TFA in ACN (b). 

Peptides were eluted by applying a linear gradient (at 3.5 ml/min) of 5–95% B over 40 – 70 

min. Fractions collected were examined by electrospray MS, and those found to contain 

exclusively the desired product were pooled and lyophilised. Analysis of the purified final 

product by RP-HPLC indicated a purity of >95%. 
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2.1.1: b-f Lactamisation 

The introduction of lactam bridges to the peptides was achieved using Fmoc-Lys(Mtt)-OH  

and Fmoc-Asp(OtBu)-OPfp from Merck (Darmstadt, Germany) in the sequence at position 

b and f, in lieu of Fmoc-Lys-OH and Fmoc –Asp(OtBu)-OH. Following aforementioned 

synthesis and acetylation steps, deprotection of the Asp(oPip) and Lys(Mtt) side chain 

protecting groups was achieved by repeated washing of the resin in dichloromethane, 

followed by repeated washes in dichloromenthane (2% TFA), dichloromethane, and finally 

dimethylformamide. Resin was incubated for 6-8 hours at 55°C in 2-(1H-benzotriazole-1-

yl)-1,1,3,3 tetramethyluronium hexafluorophosphate (1ml), diisopropylethylamine (1ml), 

and dimethylformamide (3ml). Resin was filtered and cleaved from the resin with 

concomitant removal of side-chain-protecting groups by treatment with a cleavage mixture 

(10 ml) consisting of TFA (95%), triisopropylsilane (2.5%) and H2O (2.5%) for 4 h at room 

temperature. Following this, resing was removed by filtration, and the peptide was 

precipitated using three rounds of crashing in ice-cold diethyl ether, vortexing and 

centrifuging as before, with freeze-drying and purification following. 

2.2 Circular Dichroism (CD) 

Circular Dichroism is an absorption spectroscopy technique that utilises the fact that chiral 

molecules - when exposed to left and right circularly polarised light - display differential 

absorbance due to enantiomeric properties. As biological molecules (such as nucleic acids 

and peptides) are made up of a single optical isomer, they display this in the presence of 

differently polarised light. As CD is measured as a function of wavelength, the differences 

that spectrometers are able to detect are due to the presence of chromophores within these 

molecules.  

Contributions to the profile of CD spectra differ depending on the part of the spectrum 

measured. Near-UV is considered to be between 250nm - 350nm and far-UV 190nm - 

250nm. When considering proteins, the former monitors chromophores such as disulphide 

bonds and aromatic side-chains (such as those in tyrosine and phenylalanine). The far-UV 

region of the spectrum monitors the chromophore found in the carbonyl peptide bond (C=O). 

As a result, this region is sensitive to changes within the protein with respect to its folding 

state.  

Peptides are made up of L-amino acids and the spectra produced when scanned through 

the range of 300 – 190 nm can be used to calculate their overall secondary structures, with 

distinctive profiles used to differentiate between the forms. 

When considering α-helices, the spectra displays minima at both 208nm and 222nm. This, 

when combined with constant experimental technique (total protein concentration, 
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temperature, buffer solution, etc) can be used to calculate the level of α-helicity displayed 

and the differences found between multiple peptides.    

Circular Dichroism experiments were conducted using an Applied Photophysics Chirascan 

machine (Leatherhead, UK). Samples contained 150 μM total protein (Pt) in filter-sterilised 

buffer (10mM Potassium Phosphate and 100mM KF at pH 7). 200ul samples were 

contained in a Hellma Analytics (Mullheim, Germany) 10mM path length CD cuvette. 

Raw CD units were converted to mean residue ellipticity (MRE) via the Equation 2: 

 

 
𝜃

10 × 𝑙 × [𝑃𝑡] × 𝑛𝑟
 Eq. 2 

 

Where θ = CD units, l = sample path length in cm (0.1), [Pt] = peptide concentration in M 

(0.00015), and nr = average number of amino acid residues in the peptides. 

All spectral data was converted to fractional helicity (fH) values according to Equation 3: 

 
𝒇𝑯 =  

Ɵ𝟐𝟐𝟐 − Ɵ𝒄

Ɵ𝟐𝟐𝟐∞ − Ɵ𝒄
 

Ɵ𝒄 =  𝟐𝟐𝟐𝟎 −  (𝟓𝟑 × 𝑻) 

Ɵ𝟐𝟐𝟐∞ = (−𝟒𝟒𝟎𝟎𝟎 + (𝟐𝟓𝟎 × 𝒌))   ×  (𝟏 −
𝒌

𝑵𝒓
 ) 

 

Eq. 3 

Where the wavelength-dependent constant k = 2.4 (at 222nm), Nr = number of residues, 

and T = temperature (°C) 

2.2.1 Scans 

CD Spectra were scanned between 300nm and 190nm in 1nm increments at 0.5 sec per 

increment. Measurements were taken at 20°C, 0°C, and at 20°C following thermal melting 

to demonstrate the reversibility of binding.  

2.2.2: Thermal Scans 

For thermal scans (see Chapter 5), spectra were scanned between 300nm and 190nm in 

1nm increments at 0.5 sec per increment. These scans were taken in triplicate at 10°C steps 
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from 20°C to 90°C. Following this, a final measurement was taken at 20°C. Each 

temperature point was held for 1 min to equilibrate the sample before scanning. 

2.2.3: Thermal Melts 

Thermal denaturation experiments were taken by monitoring the signal of the sample at 

222nm to observe any measurable change in the α-helicity of the peptide. The temperature 

range for these melts was 0°C – 90°C. These measurements were taken at 1°C increments, 

with 0.5 min for the samples to equilibrate. 

Melting profiles were converted to equilibrium denaturation curves fitted to a two-state 

model using Equation 4: 

∆G =  ∆H − (
𝑇𝐴

𝑇𝑚
) × (∆H +  R × 𝑇𝑚  × ln(P𝑡 )) + ∆𝐶𝑝 × (𝑇𝐴  − 𝑇𝑚  − 𝑇𝐴  × ln (

𝑇𝐴

𝑇𝑚
))  Eq. 4 

This is a modification of the Gibbs–Helmholtz equation, where ∆G is the change in Gibbs 

free energy, ∆H is the change in enthalpy, R is the ideal gas constant (8.314 J mol-1 K-1), TA 

is the reference temperature, Pt is the total peptide concentration, and ∆Cp is the change in 

heat capacity. Using this, it is possible to derive the melting temperature (Tm) as the point 

where the complex is 50% unfolded. 

2.3: Size Exclusion Chromatography (SEC) 

Size Exclusion Chromatography is a chromatography method that separates 

macromolecules based on their differing abilities to penetrate small pores present in the 

stationary phase. This allows separation by size, as size is the determinant for the efficiency 

by which macromolecules penetrate these pores.  

Regarding proteins, applications of SEC include the characterisation of conformation, 

aggregation, and oligomerisation of the macromolecules. 

Experiments were performed on a GE Healthcare ÄKTAexplorer using a Superdex Peptide 

10/300 GL column (Buckinghamshire, UK) at room temperature. 100 μl a 150 μM sample 

in filter-sterilised buffer (10mM Potassium Phosphate and 100mM KF at pH 7) was injected 

and eluted at a flow rate of 0.5 ml/min. Elution profiles were recorded via A280.    
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CHAPTER 3 - SOFTWARE DEVELOPMENT 
Programs developed in this thesis were written in Python Version 3.5.2. For early 

development, scripts were run as individual .py files. Scripts were later compiled into 

application files (.exe) via Pyinstaller Version 3.4. All were run on a personal machine 

running Windows 8.1 with 12GB RAM. 

 

Figure 3.1. The overarching workflow for the in silico methods used in this thesis. The 
underlying architecture of the bCIPA algorithm is initially utilised to create a library screening 
module, allowing for library member sequences to be coupled with a single target to 
calculate a predicted Tm. This is further expanded upon in isPCA and isCAN – synthetic 
analogues of PCA and CANDI – which incorporate comparative calculations with off-target 
states (with isCAN including competitor sequences). 
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3.1 Library Screen 

The library screening tool has been previously discussed (Crooks et al. 2011b; Lathbridge 

and Mason 2018) but, as shown in Figure 3.1, it is the most basic application of the bCIPA 

algorithm - which incorporates Helical Propensity (HP), Core (C) and Electrostatic 

interactions (ES) to provide a quantitative estimate of the interaction affinities in the form of 

a thermal melting temperature (Tm) as shown in Eqn.1:  

𝑇𝑚 = (𝑎 ×  𝐻𝑃) + (𝑏 ×  𝐶) + (𝑐 ×  𝐸𝑆) +  𝑑 

Within the library screening tool, the functions described below assigned scores to the 

peptide-peptide interactions based on this original bCIPA algorithm, including the coefficient 

values from least squares fit (Mason et al. 2006). The size of the coefficients (a = 81.3256, 

b = -10.5716, c = -4.7771 and d= -29.1320) acts as a modifier for the scale of the score – 

with the overall function for predicting the Tm defined as calculate_tm. The tool required 

an input from the user of the sequence that should be targeted but began previous to this 

by setting up the environment parameters for the software. 

offset_dict = { 

'a':0, 

'b':6, 

'c':5, 

'd':4, 

'e':3, 

'f':2, 

'g':1,} 

 

position = input("What is your heptad starting position (A-G)?: ") 

rolling_offset = offset_dict[position.lower()] 

 

The rolling_offset variable was set as the output from the position input string 

called into the offset_dict dictionary. This dictionary treated position a as the default 

starting point, with an assumption that any other starting position would represent 

elongation at the N-terminus into a previous heptad - hence the values increase from g - b.  

raw_ESinteractionoffsets = [0, 0, 0, 0,-5, 0,+5] 

raw_ESinteractionmodifiers = [0,0,0,0,1,0,1] 

raw_Coreinteractionoffsets = [ 0, 0, 0, 0, 0, 0, 0] 

raw_Coreinteractionmodifiers = [1, 0, 0, 1, 0, 0, 0] 

ESinteractionoffsets = (np.roll(raw_ESinteractionoffsets, 

rolling_offset)) 

ESinteractionmodifiers = (np.roll(raw_ESinteractionmodifiers, 

rolling_offset)) 

Coreinteractionoffsets = (np.roll(raw_Coreinteractionoffsets, 

rolling_offset)) 

Coreinteractionmodifiers = (np.roll(raw_Coreinteractionmodifiers, 

rolling_offset)) 

Eq.1 
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The importance of the rolling_offset variable was highlighted in the modifier and offset 

values. The modifiers lists were binary. 1 denotes a position where the calculated value 

was included in further scoring, where 0 signifies an excluded position. The offsets were 

used to describe the location for the pairwise calculation to lookup. The positions 

contributing to the electrostatic interaction (g and e) had their interaction profiles (g – e’+1) 

denoted as -5 and +5 within the raw_ESinteractionoffsets list on the fifth and seventh 

positions respectively. These positions in raw_ESinteractionmodifiers were the only 

ones with values of 1. The hydrophobic core positions (a and d) had their inter-helical a-a’ 

and d-d’ interactions described in the raw_Coreinteractionoffsets list as 0 values, 

with the corresponding raw_Coreinteractionmodifiers positions all set to 0. This 

excludes the first and fourth position (representing the core positions), which were set to 1. 

The role of np.roll was to shift the values in these 4 lists to reflect the starting position of 

the heptad defined in position and the resulting rolling_offset variable. As the 

command was called, np.roll shifted the values to the right, the offset_dict  storage 

syntax was necessary.  

With a starting position defined as g, the converted ESinteractionoffsets and 

ESinteractionmodifiers would – respectively – be: 

[+5,0,0,0,0,-5,0] 

[1,0,0,0,0,1,0] 

 

As described in Figure 3.2, the calculation of the predicted Tm value was defined in the 

function calculate_tm. This required the incorporation of three scores – two of which 

were dependent on nested dictionary lookups (CoreCalc and ESCalc). 
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Figure 3.2. Overall flow diagram for the basic bCIPA library screen module. The 
calculate_tm function incorporated a loop of 3 main functions for calculating the 

contributions of a/d hydrophobic interactions, e/g electrostatic interactions, overall helical 
propensity (CoreCalc, ESCalc, and HPCalc). These scores were then used in the final 

calculation (tm) for the prediction of the melting temperature of the interaction (Tm). This 

loop continued for the entire library, with the Tm and sequence data output as a .txt file 

after the final library member. 
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3.1.1 Core Contributions (CoreCalc) 

To calculate the contribution of the core residues, the software had a function (CoreCalc) 

to incorporate the Coreinteractionoffsets and Coreinteractionmodifiers 

values assigned previously. 

def CoreOffsets(peptideresidue): 

    return Coreinteractionoffsets[peptideresidue] 

 

def CoreInteractions(peptideresidue): 

    return Coreinteractionmodifiers[peptideresidue] 

 

def CoreCalc(peptide, target, core_table): 

    numPlaces = min(len(peptide), len(target)) 

    peptideDif = len(peptide) - len(target) 

    CoreScore = 0.0 

     

    for i in range(numPlaces): 

        residueA = peptide[i] 

        heptad_pos = i % len(Coreinteractionoffsets) 

        offset = CoreInteractions(heptad_pos) 

        core_contribution_pos = i % len(Coreinteractionoffsets) 

        

core_interaction_mod=CoreInteractions(core_contribution_pos) 

        

        residueB = target[i] 

         

        CoreScore += 

(core_table[residueA][residueB])*core_interaction_mod 

    return CoreScore 

 

A key part of this was the dictionary core_table, which contains 400 values defining the 

score assigned to a specific pairwise interaction from ΔΔΔΔG values calculated from the 

Vinson group thermodynamic scales (Acharya et al. 2006). These values were stored 

symmetrically, meaning that the lookup value for a Ile-Leu interaction was the same as that 

for a Leu-Ile interaction. 

To begin with, the value of CoreScore (which was the total sum of the contributions of 

positions a and g) was set to 0.0 before the loop. The sequence fed in as peptide was 

from the text file containing the peptide library. During the loop, this sequence was accessed 

character by character. To keep the core interactions in frame (and avoid a lookup without 

a corresponding index), the loop was kept within range(numPlaces), which was the 

length of the shortest peptide in the pair. Calling the CoreInteractions and 

CoreOffsets functions and defining the core_contribution_pos and 

core_interaction_mod variables, data was able to be fed into the final scoring 

calculation. CoreScore called  a lookup of the core_table dictionary values for the string 

variables residueA and residue. This, combined with the binary 

core_interaction_mod value calculated the score for this pairwise residue interaction, 
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which was added to the overall CoreScore defined pre-loop. At the end of the function, 

this integer was the output variable and represented the scoring for the core contributions 

for the entire peptide-peptide interaction.  

3.1.2 Electrostatic Contributions (ESCalc) 

As for the core contributions, the calculation of the electrostatic contributions the software 

had a function (ESCalc)  to utilise ESinteractionoffsets and 

ESinteractionmodifiers. 

def ESResidueInteractions(peptideresidue): 

    return ESinteractionoffsets[peptideresidue] 

 

def ElectrostaticInteractions(peptideresidue): 

    return ESinteractionmodifiers[peptideresidue] 

         

def ESCalc(peptide, target, es_table): 

    numPlaces = min(len(peptide), len(target)) 

    ESScore = 0.0 

  

 

As before, the library peptide sequence was matched against the target sequence and 

the modifier and offset functions were called indirectly. This, coupled with the initialised 

ESScore variable (the equivalent of CoreScore), follows the same rules as the main 

function for core contribution calculation (CoreCalc). However, there were a different set 

of parameters incorporated in the ESCalc function to simulate the interaction profile of the 

residues on the g and e positions.   

if (i + offset >= 0) and (i + offset < numPlaces):      

residueB = target[i+offset] 

ESScore+=(es_table[residueA][residueB])*(es_interaction_mod)  

else: 

     ESScore+= 0 

return ESScore 

 

This if statement found within the ESCalc function prevented out of frame errors during 

calculation of the ESScore. As the electrostatic positions are e and g, the offset value 

could be either -5 or +5. The first conditional (i + offset >= 0) prevented a residue at 

N-terminal e from looking back at a non-existent g (0 was the first character and i+offset 

with a non-existent g would have had a value less than 0). The second conditional (i + 

offset < numPlaces) prevented C-terminal g from attempting to pair with a non-existent 

e as it would index at a value greater than the length of the peptide sequence for interaction 

prediction (numPlaces). 
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As with core, the ESScore was updated with the value from the dictionary lookup – with the 

values contained within es_table scored from experimental ΔΔΔΔG data on the 

comparative contributions of residues at the electrostatic positions (Krylov et al. 1998b). 

This integer was stored and at the end of the function, it was returned. 

3.1.3 Helical Propensity Contributions (HPCalc) 

The contributions of each residue to overall helicity of the sequence were simpler within 

the calculations of the software. 

def HPCalc (peptide, hp_table): 

    numPlaces = len(peptide) 

    HPScore = 0.0 

 

    for i in range(numPlaces): 

        residue = peptide[i] 

        HPScore += hp_table[residue] 

 

    return HPScore/len(peptide) 

 

This function called  a simple dictionary (hp_table) containing helical propensity values 

for each of the 20 natural amino acids (Williams et al. 1987). As before, numPlaces and 

HPScore were defined. The loop statement, for each residue in the sequence, called  the 

value of the residue within the dictionary. This lookup value was then added to the HPScore 

and this value was returned as an average of the overall length of the peptide - allowing the 

helical contributions of sequences and interactions of different lengths to be comparative. 

This was the only function that was called twice, with the helical propensity of both the library 

member and the target sequence calculated independently and then combined to give the 

final HP value used in the overall Tm equation. 

3.2 In Silico PCA (isPCA)  

isPCA built on the original library screening framework by adding multiple simultaneous 

calculations (as opposed to a single loop of one calculation) to simulate the cellular 

environment in respect to the reformation of DHFR function. Importing the calculate_tm 

function incorporated the selection for the starting heptad position. 

target = input() 

library = input() 

libname = library 

library = GetLine(library) 

lib = [i for i in (library)] 

libsize = len(lib) 

 

As before, the input for target was a single string whereas library was an input referring 

to a text file containing strings on each line. Similarly, the latter variable was updated to 

move the list into memory using the GetLine function. The libname variable was 
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assigned here as the name of the text file called in order to use later when formatting the 

data output. The library sequences were then read into another list (lib) which was then 

counted and stored in libsize. 

best_PCA =[]  

bC_tm=[] 

bC_homo_tm = [] 

PCA_win = 0  

maxdeltalist=[] 

mindeltalist=[] 

hetero_list=[] 

 

linescompleted=0 

lastpercentage=0 

start_clock=time.time() 

basetime = start_clock 

 

Following that, the program set up a series of empty lists which were populated as the 

prediction calculations initiated. The sequences which successfully met the parameters 

within the program (and were “isPCA successful”) were stored in best_PCA, the 

heterospecific Tm values (against the target) were stored in bC_tm, and their homodimeric 

Tm of these sequences were stored in bC_homo_tm.  

 

for j, i in enumerate(lib): 

    library_homo = calculate_tm(i,i) 

    target_tm = calculate_tm(i,target) 

    hetero_list.append(target_tm)     

    better_than_homo = int(target_tm) - int(library_homo) 

    better_than_target_homo = int(target_tm) - int(target_homo)  

    deltalist = [better_than_homo,better_than_target_homo] 

 

    if better_than_homo >= 0 and better_than_target_homo >=0: 

        best_PCA.append(i) 

        bC_tm.append(target_tm)  

        bC_homo_tm.append(library_homo) 

        maxdeltalist.append(max(deltalist)) 

        mindeltalist.append(min(deltalist)) 

    linescompleted += 1 

    percentage_complete = int((linescompleted)/(libsize)*100) 

 

An enumerate call over the library sequences (i) stored in lib was the main section of 

the isPCA prediction. To begin, the homodimeric Tm of the library sequence (library-library 

or L-L) and the heterospecific Tm of the sequence with the target sequence (library-target or 

L-T) were calculated and stored in the library_homo and target_tm variables, with the 

latter then being appended to the list hetero_list defined earlier. At this point, the two 

homospecific and one heterospecific Tm values required for the concept of PCA had been 

established, allowing for the selection of successful and unsuccessful sequences. In the 

better_than_homo calculation, the predicted Tm of the L-L interaction was subtracted 
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from that of the L-T interaction, with both values called as integers. Similarly, the 

better_than_target_homo calculation subtracted the predicted Tm of the T-T 

interaction from the predicted Tm of the L-T interaction. These two values were then stored 

in deltalist. 

The following if statement sorts the successful peptides from the unsuccessful. This was 

because the former would need to have had “both better_than_” variables to be 

positive integers, showing that the L-T predicted Tm (desired complex) was higher than 

either of the homodimer complexes (off-targets). For the sequences that satisfy this 

statement, the sequence string was appended to best_PCA with the heterospecific and 

homodimeric predicted Tm values of the library members appended to bC_tm and 

bC_homo_tm. The homodimeric L-L and T-T values were sorted, with maxdeltalist 

appending the higher of the two integers and mindeltalist the lower of the two. 

filedate = time.strftime("%d%m%Y-%H%M%S")  

today = time.strftime("%b %d %Y")  

path = ("PCA Output/"+ (today)) 

 

if not os.path.exists(path): 

    os.makedirs(path) 

 

filename= ("PCA " + (project) +"_" +(filedate) + ".txt") 

PCA_file = open(os.path.join(path,filename),"w+") 

for num,peptide in enumerate(best_PCA): 

    

print("{},{},{},{},{}".format(peptide,(bC_tm[num]),(bC_homo_tm[num

]),(maxdeltalist[num]),(mindeltalist[num])), file=PCA_file) 

 

PCA_file.close() 

 

The isPCA data was output in a file created and opened by the filename and PCA_file 

variables. In filename, it called  the filedate variable, which stores the date and time of 

the run and was put into a folder whose path was set by incorporating the date of the run. 

If the path doesn’t exist, the command os.makerdirs(path) creates the sub-folder. The 

data for each sequence found in best_PCA were then stored into the output file. Using num 

as the index, each sequence was exported (peptide) with the sequence’s specific values 

found in bC_tm, bC_homo_tm, maxdeltalist and mindeltalist. The output file was 

then closed. 

print ("{} peptides retained and {} lost".format(PCAsize,PCAlost)) 

print ("\nPCA simulation was completed in %f seconds" % (time.time() 

- start_time”) 

 

36



Finally, the program printed the number of successful (PCAsize) and unsuccessful 

(PCAlost) sequences – along with the time data for the run. 

3.3 In Silico CANDI (isCAN) 

isCAN built on the framework set out in isPCA, with the addition of competitor sequences 

to provide additional off-targets in the form of library-competitor (L-C) and target-competitor 

(T-C) interactions. This can be described in an example AP-1 system with a targeted cJun 

sequence, screened against a Fos-based library (L) with natural Fos-family competitors (C). 

phys_peptides = [cJun,JunB,JunD,cFos,FosB,Fra1,Fra2] 

phys_names = ["cJun","JunB","JunD","cFos","FosB","Fra1","Fra2"] 

 

jun_peptides = [cJun,JunB,JunD] 

jun_names = ["cJun","JunB","JunD"] 

 

fos_peptides = [cFos,FosB,Fra1,Fra2] 

fos_names = ["cFos","FosB","Fra1","Fra2"] 

 

max_peptides = [Myc,Max,Mnt,Mad] 

max_names = ["Myc","Max","Mnt","Mad"] 

 

myc_peptides = [Myc, Mnt, Mad] 

myc_names = ["Myc", "Mnt", "Mad"] 

 

isCAN stores a list of commonly used peptides in the Jun, Fos, and Myc family for use as 

competitor sequences. These were stored in paired lists, with x_peptides being the 

sequences and x_names being the name strings – used for the output of the interactions 

during and after the final calculations.  

def choose_comp(competition_peptides): 

      if competition_peptides == "1": 

        phys_peptides = jun_peptides 

        phys_names = jun_names 

    elif competition_peptides == "2": 

        phys_peptides = fos_peptides 

        phys_names = fos_names 

    elif competition_peptides == "3": 

        phys_peptides = myc_peptides 

        phys_names = myc_names 

    elif competition_peptides == "4": 

        phys_peptides = max_peptides 

        phys_names = max_names 

    elif competition_peptides == "5": 

        phys_peptides = myc_peptides 

        phys_names = myc_names 

    else: 

        phys_peptides = 

[cJun[comp_offset::],JunB[comp_offset::],JunD[comp_offset::],cFos[

comp_offset::],FosB[comp_offset::],Fra1[comp_offset::],Fra2[comp_o

ffset::]] 

        phys_names = 

["cJun","JunB","JunD","cFos","FosB","Fra1","Fra2"] 
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    return (phys_peptides,phys_names) 

 

The user choice for competitor sequences was an integer input which called  a specific 

nested if/elseif statement. For an input of 1-5, the program chooses from the 

previously defined x_peptides and x_names lists, with all of the sequences used if the 

user does not state an input. These competitor strings were all modified by the 

comp_offset value to keep the positions aligned with the target and library 

sequences. As for isPCA, isCAN involved an enumerate call over the library of sequences, 

which then resulted in the L-T, T-T, and L-L predicted Tm values to be stored in the same 

output variables.  

def negative_binding(peptide,offtargets): 

    tm_list =[] 

    for off_target in offtargets: 

        tm = calculate_tm(peptide,off_target) 

        tm_list.append(tm) 

    off_target_max = max(tm_list) 

    off_target_min = min(tm_list) 

    negative_output =[off_target_max,off_target_min] 

    return negative_output 

 

In addition to this, the negative_binding function was called to predict the Tm values for 

a sequence when in complex with each of the sequences that were chosen to be competitor 

off-targets. This resulted in a negative_output list which contains the highest 

(off_target_max) and lowest (off_target_min) values to be fed into the main loop. 

for j, i in enumerate(lib): 

    library_homo = calculate_tm(i,i)     

    bind_the_comp = negative_binding(i,phys_peptides) 

    compbindmax = bind_the_comp[0]  

    compbindmin = bind_the_comp[1]  

    target_tm = calculate_tm(i,target)  

    hetero_list.append(target_tm)     

    better_than_homo = int(target_tm) - int(library_homo)  

    better_than_target_homo = int(target_tm) - int(target_homo)  

    better_than_off_target = int(target_tm) - int(off_target_max) 

    better_than_binding_off_target = int(target_tm)-

int(compbindmax) 

    deltalist= 

[better_than_homo,better_than_target_homo,better_than_off_target,b

etter_than_binding_off_target] 

         

    if better_than_homo >= int(set_delta): 

        if better_than_target_homo >= int(set_delta): 

            if better_than_off_target >= int(set_delta): 

                if better_than_binding_off_target >= 

int(set_delta): 

                    candi_win +=1 

                    best_CANDI.append(i) 

                    bC_tm.append(target_tm) 
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                    bC_homo_tm.append(library_homo) 

                    bC_negative_tm.append(compbindmax) 

                    maxdeltalist.append(max(deltalist)) 

                    mindeltalist.append(min(deltalist)) 

                else: 

                    fo_negative += 1 

               compbindlist.append 

                    (better_than_binding_off_target) 

print ("Peptide {} negatively bound to {} @ {}                  

degrees".format((j+1),list(phys_names[i] for i 

in ot_max_locations),(compbindmax))) 

            else: 

                fo_ot += 1 

        else: 

            fo_target_homo += 1 

    else: 

        fo_lib_homo += 1 

 

isCAN sequentially mimics the CANDI environment by incorporating calculations of off-

target interactions for comparison with the desired complex (L-T). A series of nested 

if/else loops are applied and the outcome is dependent on the values calculated. This 

series of nested if functions were the parameters by which the successful peptides were 

selected, with repeat references to the user defined Δ value (set_delta). As shown in 

Figure 3.3, each stage compares the predicted Tm values of the various off-target states to 

that of the desired L-T interaction (target_tm). Unlike isPCA, which only required the 

predicted L-T Tm be higher than that of T-T or L-L homodimer Tm values, the presence of a 

competitor sequence in isCAN adds two extra potential off-target states to be considered 

(L-C and T-C). The successful peptides are output in a formatted file, with sequence strings 

and Tm values. 
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Figure 3.3 The main loop for the isCAN calculation through the library with parameters set 
by user. The loop initially called  the calculate_tm function to predict the Tm value of 

both the library member homodimerically (i,i) and in complex with the target 

(i,target). This then loops through a series of true/false calculations which all call the 

values calculated by calculate_tm called for various interactions between the target(T), 

library member (L), and off target (C) and the Δ value set by the user. Δ refers the 
difference required between the Tm of the desired complex (L-T) and that of the individual 

off-target states (L-L, T-T, T-C, L-C). If, at any point, the calculated Δ value was lower 
than that of the defined Δ, a false state was ouput, the sequence was disregarded, and 

the loop re-initalises on the next library member. If all were true value, the sequence was 

considered “isCAN successful” and added to the output file. The loop continues until the 
final member of the library file had been through, at which point the data (including 

sequence and Tm integers) was output into a formatted .csv file.  

3.4 Heptad Cassette Predictor (HCAP) 

As HCAP was used on 7 residue sequences, a full length input sequence defined by the 

user and stored as target was length matched. 

def heptadsplitter(target): 

    n = 7 

    heptad=[target[i:i+n] for i in range(0, len(target), n)] 

    return heptad 
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Within the heptadsplitter function, target (a string variable) was segmented over 

the range of its individual sequence – len(target) – with every 7 characters being 

stored and returned in the heptad list. An example sequence target string of 35 

characters (RIARLEEKVKTLKAQNYELASTANMLREQVAQLKQ) would result in a heptad 

output of ['RIARLEE', 'KVKTLKA', 'QNYELAS', 'TANMLRE', 'QVAQLKQ']. 

def plug_cassettes(target,library): 

    tmlist = [] 

    for (pepnum,pephep) in enumerate(target): 

        lst=[] 

        for (libnum,libhep) in enumerate(library): 

            tm = calculate_tm(pephep,libhep) 

            print("seqs = {} (Target)\n {} (Library 

Cassette)".format(pephep,libhep)) 

            print("{},{}: {} ".format(pepnum+1,libhep,tm)) 

            lst.append(tm) 

        tmlist.append(lst) 

    return tmlist  

 

def homotm(library): 

    tmlist=[] 

    for j,i in enumerate(library): 

        tm = calculate_tm(i,i) 

        print ("{},{}".format(j+1,tm)) 

    return homotmlist 

 

The inputs for the plug_cassettes function were the lists already defined in target and 

in library. To begin, the empty list tmlist was called to be filled. Following that was a 

pair of nested enumeration loops, with the top-level loop of target. For every instance of 

a target cassette string (pephep), an empty list (lst) was called and a sub-loop occurs 

over library. For HCAP to function, it called the calculate_tm function from the 

underlying library screening program, with pephep and libhep (sequences within the 

library) used for pairwise screening. For each iteration through the sub-loop, an integer tm 

value was added to lst. After each instance of the sub-loop, lst was appended to tmlist 

– creating a list of lists. If library contained 20 sequences and target contained 5, the 

returned tmlist would be a single list containing 5 lists and in each of those sub-lists, 20 

Tm values would be contained. This was also done for the homodimeric cassettes, in which 

library was taken and each sequence was run against itself (calculate_tm(i,i)) – with 

the output (homotmlist) being a single list. 
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best_cassettes =[] 

for h,i in enumerate(tmlist): 

    cassette_counter = 0 

    for j, k in enumerate(i): 

        print("Heptad {} vs Cassette {}: {}".format(h+1,j+1,k)) 

    tmhigh = i.index(max(i)) 

    tmhigh = tmhigh + 1 

    best_cassettes.append(tmhigh) 

print ("The best cassette combination is {} 

.".format(best_cassettes)) 

 

 In order to make sense of the data contained in tmlist, a final nested enumerate was 

called on this list of lists. For every instance of i (which refers to the sub-lists in which the 

predicted tm values were contained), the Tm values (k) were listed and printed. Following 

that, tmhigh takes the index of the highest value in each sub-list and appends it to the 

empty list best_cassettes. This was then increased by +1 in order to give the true index 

of the cassette (python initiates indexes from 0). At the end of the main enumerate, the 

program printed the output of this heterodimeric prediction to output.txt. 

3.5 Library Comparison Tool 

Library comparison allowed us to search for identical sequences between two separate 

libraries. These libraries were entered as text file called via two user inputted variables, 

baselib and targetlib. 

baselib = input() 

targetlib = input() 

outputfile=open("{}-

{}.txt".format(baselib[:5],targetlib[:5]),"w+") 

print("Peptides present in {} from the {} target library 

\n".format(baselib,targetlib), file = outputfile) 

targetlib = [i for i in GetLine(targetlib)] 

targetsize = len(targetlib) 

counter=0 

 

with open(baselib,'rb',0) as file, \ 

     mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ) as s: 

    for num,peptide in enumerate(targetlib): 

        if s.find(bytes((peptide), 'utf-8')) != -1: 

            print("Found Target Peptide #{}".format(num+1)) 

            print("{}".format(peptide), file = outputfile) 

            counter +=1 

outputfile.close() 

attrition = ((counter/targetsize)*100) 

print ("Peptides found: {}".format(counter)) 

print ("This is {}% of the original target 

library".format(attrition)) 

 

The program set up the output conditions, with outputfile opening a text file which was 

named after the first five characters of the two input libraries. This file was appended with a 

string showing the two different libraries used in the run. The list variable targetlib was 
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called as a list and was populated with the individual sequences from the text file input 

previously stored in targetlib  ([i for i in GetLine(targetlib)]). Following 

this, baselib was accessed using mmap instead of the previously used GetLine function. 

This was because mmap supported files in memory-mapped objects – using the virtual 

memory of the operating system to access the data found in baselib rather than using 

separate calls to the system for each access, as well as the lack of necessity to copy the 

data between buffers. This was useful as baselib was more likely to be a larger file (>106), 

meaning that loading each sequence into memory was computationally inefficient when also 

loading targetlib as a second file for comparison. It allowed objects to constantly update 

and to be treated as mutable objects – with the ability to change and seek through sub-

strings. With the enumerate through each sequence of targetlib, the element 

(peptide) was compared to the sequences (s) found in baselib. If a matching sequence 

was found, the index was printed non-pythonically (num+1) and the sequence itself 

(peptide) was appended to outputfile, which was then closed. The attrition 

variable was used to calculate the overall overlap between the two libraries and this was 

printed (along with counter – the integer count of sequences compared) to screen. 

3.6 Quad Coil Interaction Prediction Algorithm 
(QCIPA) 

For Chapter A1, QCIPA was developed to provide a tool with which an increasing number 

of heterospecific coiled coils could be grouped within a set for self-assembly. This tool was 

based on the framework defined by the library screening tool – with additional functions 

added for its purpose within a small library with minimal diversity (28 amino acids with 

Ile/Asn at position a and Lys/Glu at positions e and g) experimentally characterised 

previously (Crooks et al. 2016). 

3.6.1 Anti-Parallel Coiled Coil Screening 

One of the key functions within the software was the ability to remove peptides that were 

predicted to form anti-parallel homodimeric coiled coils. With the user input that these anti-

parallel sequences should be removed, the following loop was called.  

for (listnum,target) in enumerate(interactome_list): 

            anti_parallel = str(reverse_word(str(peptide))) 

           

anti_homo=((ESCalc((peptide),(anti_parallel),es_table))) 

            if anti_homo == (ap_value): 

                any_anti+= 1.0 

                continue 

            else: 

                tm = calculate_tm(peptide,target) 

                if tm>=desired_tm: 

                    cc_list.append([peptide,target]) 
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The loop called  the ESCalc function to score the electrostatic contribution (anti_homo) 

of a homodimeric anti-parallel interaction. If the user wishes to remove anti-parallel 

sequences, the variable ap_value was defined as the integer -12, representing the score 

for 8 instances of a Lys-Glu interaction (EK/KE was scored at -1.5) over 4 heptads. If the 

user does not, the variable was valued at -9999 (a value which could never come out in 

calculation). If anti_homo was calculated to be -12, the further prediction of Tm was not 

completed and the sequence was disregarded. 

3.6.2 Progressive Coiled-Coil Set Expansion 

Prediction of pair heterospecificity was revised from previous doubling methods (Crooks et 

al. 2016) to allow for a wider sweep of potential libraries fulfilling the criteria for predicted 

successful heterospecific sets. The incorporation of successive levels of sequences from a 

pool of heterospecific coiled-coils allowed for the software to avoid uninformative and 

simplistic levels of repetitively combining two libraries (for pairs -> quads -> octos). 

pair_library = findpairs(cc_library) 

tri_library = add_cc(pair_library,cc_library) 

quad_library = add_cc(tri_library,cc_library) 

quint_library = add_cc(quad_library,cc_library) 

 

This series of additive functions resulted in expansion of the library until the parameters set 

by the user for stringency in the prediction of heterospecific pairs (such as maximum 

homodimeric Tm value) were no longer met. It was at this point that the final library was 

output as a text file with the other previous libraries which, at each step, were written to 

individual text files and purged from the software (to avoid iteratively larger and larger 

libraries from being held in memory). 
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ABSTRACT: Basic leucine zipper (bZIP) proteins reside at the end of cell-signaling
cascades and function to modulate transcription of specific gene targets. bZIPs are
recognized as important regulators of cellular processes such as cell growth, apoptosis,
and cell differentiation. One such validated transcriptional regulator, activator protein-
1, is typically comprised of heterodimers of Jun and Fos family members and is key in
the progression and development of a number of different diseases. The best
described component, cJun, is upregulated in a variety of diseases such as cancer,
osteoporosis, and psoriasis. Toward our goal of inhibiting bZIP proteins implicated in
disease pathways, we here describe the first use of a novel in silico peptide library
screening platform that facilitates the derivation of sequences exhibiting a high affinity
for cJun while disfavoring homodimer formation or formation of heterodimers with
other closely related Fos sequences. In particular, using Fos as a template, we have
computationally screened a peptide library of more than 60 million members and
ranked hypothetical on/off target complexes according to predicted stability. This
resulted in the identification of a sequence that bound cJun but displayed little homomeric stability or preference for cFos. The
computationally selected sequence maintains an interaction stability similar to that of a previous experimentally derived cJun
antagonist while providing much improved specificity. Our study provides new insight into the use of tandem in silico screening/
in vitro validation and the ability to create a peptide that is capable of satisfying conflicting design requirements.

Coiled coils (CCs) are present in 3−5% of all amino acid
structures and are highly versatile in the interactions they

drive. They are characterized by a repeat of seven amino acids,
the heptad repeat, with a preference for particular residue types
at each position.1 Despite the apparent straightforward link
from their primary sequence to quaternary structure, CCs are
highly specific in driving a wide variety of diverse protein−
protein interactions, making them highly relevant systems in
biotechnology and synthetic biology and as pharmacological
targets. Parallel dimeric CC structures found within bZIP
(basic leucine zipper) motifs are some of the simplest
examples; they are comprised of two left-handed supercoiled
α-helices that intertwine via a large interacting surface area.
Efforts to predict bZIP stability2−5 and, more recently,

specificity2,4,6−8 are ongoing. The ability to predict the stability
and specificity of peptides directly from the primary structure
is a long-standing goal and is particularly important given the
large number of human bZIPs. Current attempts to design
peptides that specifically inhibit target leucine zipper
interactions have taken a incremental library-based approach,
with each new attempt improving our understanding of the
factors that underpin the overall affinity. For example, in vitro
assays of the binding affinity of 53 human bZIPs1 showed there
to be multiple interaction profiles, with specificity both within
and between discrete bZIP families. This amounts to more
than 1400 potential interactions, and selectivity within this set
of bZIP interactions demonstrates how inherent sequence
elements govern the selectivity of CC interactions. We have

previously utilized an intracellular library screening approach
to derive specific antagonists of the oncogenic transcriptional
regulator, activator protein-1 (AP-1).
Transcription factors represent compelling if difficult drug

targets from conventional small molecule approaches. Their
modulation can ensure that erroneous signals can be blocked at
the transcriptional level, thus halting production of target genes
implicated in disease, irrespective of the upstream signal
imposed. Indeed, many oncogenic signal transduction cascades
are known to upregulate transcription-factor activity, leading to
gene expression changes that drive cell transformation9,10 and
place bZIP families at center stage as therapeutic targets in
cancer. Our previous efforts in this area have resulted in
antagonism of AP-1 components by designing Jun- or Fos-
based peptide libraries. This has been followed by their
expression and screening inside living cells for an interaction
with their target protein.3,11,12 In addition, we have
experimented with methodologies in which competing off-
target proteins are expressed in the assay during library
selection. Both our conventional intracellular protein-fragment
complementation assay (PCA) library screening approach3,11

and a target specificity-enhancing competitive and negative
design initiative (CANDI)13 have resulted in a many PPI

Received: July 23, 2018
Revised: September 25, 2018
Published: September 26, 2018

Article

pubs.acs.org/biochemistryCite This: Biochemistry 2018, 57, 6108−6118

© 2018 American Chemical Society

47



inhibitors14,15 and CC-forming peptides in which the target is
sequestered from binding to its natural partner. These assays
have a significant advantage over in vitro approaches in
enriching for target-specific sequences (relative to a broad
range of other proteins expressed within the cell) and
sequences that are structured, soluble, and nontoxic and resist
protease breakdown. Moreover, the significant amount of data
gained from these experiments, and our consequent improved
understanding of the system, has facilitated the development of
a series of tools that can work by predicting the affinities, and
consequently the specificities, of CCs based only on input of
the primary amino acid sequences.
The bZIP CC Prediction Algorithm (bCIPA)3,16 works by

analyzing the helical propensities of component helices,
together with the predicted contribution from electrostatic
interactions and core residue interactions, to estimate the
thermal denaturation temperature (Tm) of all hypothetical
dimeric species within a defined system. Driven by coupling
energies that describe ai−a′i hydrophobic interactions and gi−
e′i+1 electrostatic interactions as pairwise interactions measured
by previous double-mutant analysis studies in CCs,17,18 bCIPA
was derived to estimate the Tm of a given parallel dimeric CC
using only the primary sequence and was shown to correctly
predict 97% of all strong interactions and 95% of all non-
interacting pairs using an independent data set of human bZIP
proteins. As with previous prediction models, this approach
allows prediction in a pairwise manner.
From previous work conducted to benchmark the accuracy

of various prediction approaches using binding data from a
FRET assay of interacting bZIP proteins,19 bCIPA has an
accuracy similar to those of other purely data-driven models2,18

and had a better prediction accuracy for the 948 experimentally
derived binding values than models that were driven solely by
(or in combination with) CC structural prediction.20,21 Indeed,
using the bCIPA engine, we have recently screened very large
peptide interactomes to identify sets of ≤16 de novo-designed
peptides that when combined are capable of forming specific
CCs with their cognate partners.6,7

Building on these previous findings, here we describe our
efforts to take the approach much further by describing the
first utilization of an in silico approximation to the PCA and
CANDI-PCA approach, which we term in silico PCA (isPCA)
and in silico CANDI (isCAN). The first approach allows the
user (i) to define a target and (ii) to define every library
member as a potential homodimeric off-target (Figure 1). The
isCAN approach brings the additional capability of (iii)
entering user-defined sequences that can interact with either
the target or library member. Both isPCA and isCAN allow the
user to create and in silico screen a library that is much more
expansive than what can be accessed experimentally using
either the complementary intracellular PCA or CANDI-PCA
approach (i.e., ∼107 for isCAN vs ∼105 for PCA). The
software then selects sequences on the basis of the greatest
ΔTm between all nondesired states and the desired target
interaction, to give the highest predicted specificity. Here we
describe the first implementation of the isCAN approach and
provide an experimental validation of its use by computation-
ally screening more than 60 million peptides to identify
candidates that can bind to cJun specifically in the presence of
cFos.

■ MATERIALS AND METHODS
In silico CANDI-PCA (isCAN) computationally screens a user-
defined library against a given target. It identifies the highest
predicted affinity binder to have the greatest difference
between its target and off-target stability. This includes library
homodimers as well as user-defined off-targets. isCAN utilizes
the underlying bCIPA algorithm,2,3 which incorporates helical
propensity (HP), core (C), and electrostatic interactions (ES)
to provide a quantitative estimate of the interaction affinities in
the form of a thermal melting temperature (Tm) as follows:

= × + × + × +T a b c dHP C ESm (1)

The various functions within the algorithm assign scores to the
peptide−peptide interactions. The size of the coefficients (a =
81.3256, b = −10.5716, c = −4.7771, and d = −29.1320) acts
as a modifier for the scale of the score. For the calculation of
HP, the average α-helical propensities4 of both peptides are
calculated and totaled in eq 2:

= ∑ + ∑f l l(HP) HP ( ) HP ( )a b (2)

The nature of the frame alignment that bCIPA employs
ensures that, if the peptides are not of same length, the helical
propensity is calculated to the length of the shorter peptide (l).
For the calculation of the core interactions, only the residues
within the hydrophobic interior (i.e., a or d positions) are
considered such that the scoring mechanism is calculated
accordingly:

Figure 1. Overview of the CANDI protocol. Shown are the desired
and numerous undesired states that can form upon combination of
the library/target/competitor peptides. Complexes 1, 2 (negative),
and 5 (desired) are found within PCA, with the competitor complexes
(4 and 5) introduced in CANDI. Within isCAN, specificity is driven
by the desired Δ value as specified by the user. The library member is
successful only if it is able to form the desired complex with predicted
Tm values greater than the Δ as specified by the user.
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= ∑ ×f y(core) coreres (3)

The format of this function is such that the nonconsidered
residues are calculated but are disregarded (y = 0) . Only for
the a and d positions is the value of y set to 1 (otherwise set to
0), ensuring that the core value in the final Tm calculation
incorporates only these two heptad locations. As shown in eq
4, only positions e and g are considered in an gi−ei+1 parameter
when calculating the electrostatic parameters:

= ∑f (ES) ESres (4)

The program scans either peptide to calculate an electrostatic
score for gi−ei+1 and ei−gi−1. This ensures that, even in the case
of different length peptides, all of the potential electrostatic
interactions are taken into account in the final ES score
without unnecessarily incorporating a substituent score more
than once.
Although the bCIPA engine has been previously employed

to provide an in silico interactome prediction algorithm for the
derivation of heterospecific coiled coil sets,6,7 all previous
implementations of bCIPA have been restricted to estimating
the Tm for single pairs of peptides forming a CC. Considering
the ability that the algorithm displayed in accurately
distinguishing interacting from non-interacting CCs, the logical
next step was to expand its remit to mirror the semirational
design and screening approach used in an experimental setting.
isCAN simulates the CANDI extension of the PCA screening
technique and is a more advanced application of the bCIPA
algorithm. The CANDI application of PCA involves the
addition of competing peptides.13 If the target or the library
member favors complexes with the competitor peptide, cell
growth is either reduced or halted. Similarly, isCAN can
consider multiple off-targets in addition to the target. To
achieve this, in addition to built-in frame alignment and
prediction functions, isCAN has a number of unique built-in
check points. These make use of the individual predictions
relating to the library (L), target (T), and competitor (C)
peptides. Because of the optimization of core and electrostatic
residues found in designed libraries, many peptides members
are predicted to be more stable as homodimeric complexes
than as heterodimers with the target. isCAN is split into two
sections: the first set of calculations mirroring the PCA (isPCA
section) and the second introducing the competitor peptides
(isCAN). This stepwise calculation ensures that the processing
time is not wasted on library members that are predicted to
preferentially homodimerize or are unable to overcome the
target homodimer (and are therefore not “PCA-successful”). A
key concept in both is the predicted difference in Tm values
(Δ). It is the key determinant behind the separation of
successful and unsuccessful peptides in the library. User-
defined, this value underlies all of the check points that the
software considers. In particular, if Tm

L−T − Tm
L−L > Δ (i.e.,

the difference between the L−T desired heterodimer and the
library homodimer is greater than the previously established
desired Δ value), then the peptide is considered homodimeri-
cally successful and proceeds to the subsequent stages. Any
peptides that meet both this and the target homodimer Δ
(Tm

L−T − Tm
T−T > Δ) are considered “PCA-successful” (i.e.,

complying with the scenario found during a PCA). The PCA-
successful library members then have their desired state Tm
(Tm

L−T) compared with CANDI-specific competitive library
off-target Tm values (i.e., Tm

L−T − Tm
T−C > Δ, and Tm

L−T −
Tm

L−C > Δ) and the “CANDI-successful” library members are

next exported for further analysis. Because of the multiple ways
in which AP-1 may actively form, users can enter other Fos and
Jun family member sequences to impose target specificity upon
the screen. This addresses one of the key points of
computationally aided peptide design with large families of
peptides, avoiding interactions with other bZIPs that may be
transcriptionally active and beneficial.

Calculating Off-Targets. In any simulated CANDI
system, the interactions can be expressed as 2n + 3, where n
refers to the number of peptides introduced as competitive
molecules, with only one desired (L−T) interaction. As an
example, a cJun-targeting library would utilize four Fos family
members (cFos, FosB, Fra1, and Fra2) as competitors. As
previously mentioned, this would result in 10 off-targets for
each peptide. As such, this would be 10 Tm values that the
single desired L−T complex Tm must be able to overcome with
Δ > 0. To maximize the efficiency of the tool, the initial
calculations made by the prediction software are of the
heterospecific (L−T) complex. The output of this simple
screen is used to partition the library by the desired Tm,
irrespective of the ability to outcompete predicted off-target
complexes. These partitions are 106 in size and are used to
break down the computationally expensive isCAN calculations
into computationally less demanding processes; approximately
36000 calculations are processed in 1 min (with this value
increasing over time as increasing amounts of calculation data
are stored within the application).

Peptide Synthesis. Rink amide ChemMatrix resin was
obtained from PCAS Biomatrix, Inc. (Saint-Jean-sur-Richelieu,
QC). Fmoc L-amino acids and 2-(1H-benzotriazol-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate or benzotria-
zol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
were obtained from AGTC Bioproducts (Hessle, U.K.). All
other reagents were of peptide synthesis grade and obtained
from Thermo Fisher Scientific (Loughborough, U.K.).
Peptides were synthesized on a 0.1 mmol scale on a PCAS

ChemMatrix Rink amide resin using a Liberty Blue microwave
peptide synthesizer (CEM, Matthews, NC) employing Fmoc
solid-phase techniques22 with repeated steps of coupling,
deprotection, and washing (4 × 5 mL of dimethylformamide).
Coupling was performed as follows. Fmoc amino acid (5

equiv), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate or benzotriazol-1-yl-oxytripyrrolidino-
phosphonium hexafluorophosphate (4.5 equiv), and diisopro-
pylethylamine (10 equiv) in dimethylformamide (5 mL) were
subjected to 35 W microwave irradiation at 90 °C for 30 min.
Deprotection was performed as follows. Piperidine (20%) in

dimethylformamide was subjected to 30 W microwave
irradiation at 80 °C for 5 min. Following synthesis, we
acetylated the peptideacetic anhydride (3 equiv) and
diisopropylethylamine (4.5 equiv) in dimethylformamide
(2.63 mL) for 20 minand then cleaved it from the resin
with concomitant removal of side-chain-protecting groups by
treatment with a cleavage mixture (10 mL) consisting of TFA
(95%), triisopropylsilane (2.5%), and H2O (2.5%) for 4 h at
room temperature.
The suspended resin was removed by filtration, and the

peptide was precipitated using three rounds of crashing in ice-
cold diethyl ether, vortexing, and centrifuging. The pellet was
then dissolved in a 1:1 MeCN/H2O mixture and freeze-dried.
Purification was achieved via reverse-phase high-performance
liquid chromatography (RP-HPLC) using a Phenomenex
Jupiter Proteo (C18) reverse-phase column (4 μm, 90 Å, 10
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mm inner diameter × 250 mm length). The following eluents
were used: 0.1% TFA in H2O (a) and 0.1% TFA in ACN (b).
The peptide was eluted by applying a linear gradient (at 3.5

mL/min) of 5 to 95% B over 40 min. The fractions that were
collected were examined by electrospray MS, and those found
to contain exclusively the desired product were pooled and
lyophilized. Analysis of the purified final product by RP-HPLC
indicated a purity of >95%.
Circular dichrosim (CD) was performed using an Applied

Photophysics (Leatherhead, U.K.) Chirascan CD apparatus
using a 200 μL sample in a CD cell with a 1 mm path length.
Samples contained a 150 μM total peptide (Pt) concentration
at an equimolar concentration for heterodimeric solutions (i.e.,
75 μM per peptide) and suspended in 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7) for 30 min
prior to analysis. The CD spectra of the samples were scanned
between 300 and 190 nm in 1 nm steps, averaging 0.5 s at each
wavelength. Three scans at 20 °C were averaged to assess
helical levels and the CC structure. Raw data (ellipticities)
were collected and averaged, and data were converted to molar
residue ellipticities (MREs).

Thermal denaturation experiments were performed at 150
μM in a buffer of 10 mM potassium phosphate and 100 mM
potassium fluoride (pH 7). The instrument that was used was
an Applied Photophysics Chirascan circular dichroism device.
For all thermal denaturation experiments, a stepping gradient
was set from 0 to 90 °C in 1 °C increments (except for cFos-
containing complexes, for which the process stopped at 50
°C). Each temperature point was held for 0.5 min to
equilibrate the sample before scanning the ellipticity at 222
nm. Melting profiles were converted to equilibrium denatura-
tion curves fitted to a two-state model, derived via modification
of the Gibbs−Helmholtz equation to yield the melting
temperature (Tm).

23

Size-exclusion chromatography experiments were performed
at room temperature using a Superdex Peptide 10/300 GL
column (GE Healthcare Life Sciences) by injecting 100 μL of a
150 μM Pt sample in 10 mM potassium phosphate and 100
mM potassium fluoride (pH 7) at a flow rate of 0.5 mL/min.
Elution profiles were recorded via A280.

Figure 2. (A) Design of peptide inhibitor sequences. Peptide options are randomized around positions g and e (p) and position a (h). Compared
to previous designs, the FosUisCAN has had extensions added at N-terminal and C-terminal positions to add two extra residues for extra electrostatic
interactions. (B−D) The helical wheel diagrams, generated with DrawCoil 1.0,5 display the residues present on the coiled coil from the position of
the N-terminus to the C-terminus, looking down the axis of the α-helices. These diagrams illustrate the hydrophobic interface at the core position
(a/d) and the charged residues present at the flanking position (e/g). The repulsive residues found at the electrostatic positions in off-target
complexes (b and d) are selected. The helical wheel diagram of FosUisCAN−cJun (C) demonstrates how FosUisCAN has favorable electrostatic and
core interactions to drive coiled coil formation.
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■ RESULTS AND DISCUSSION
cFos-Based Library Generation. We previously utilized a

number of in vitro12,16 and in cellulo3,11 peptide library
screening approaches to derive sequences capable of binding
to the cJun target of AP-1. One of these efforts utilized a PCA
approach with a library of 62000 members to result in a 37-
residue cJun antagonist (FosW).3 Using FosW as a template
for further library design, this was followed by a truncated
variant, 4HFosW, that retained most of the interaction
affinity.11 More recently, we have taken this further by
rationally designing helix-constrained variants to permit
downsizing of the molecule while retaining binding affinity.24

As a mechanism for further increasing target selectively during
selection, we have also expressed off-target homologous
sequences during PCA selection. The CANDI-PCA approach
works by maximizing the difference in the free energy of
binding between the target and off-target complexes by
removing nonselective library members.13

Here we present a powerful new approach, based on the
bCIPA engine, to facilitate the in silico derivation of specific
peptide antagonists. As an example, we have derived a 39-
residue antagonist that is specific for the cJun target. The
sequence incorporates two additional residues over earlier
designs, one g one e residue located at the N-terminus and C-
terminus, respectively (Figure 2A). These permit four
additional electrostatic interactions and in doing so provide a
greater scope for stabilization/destabilization of target/off-
target complexes to enhance interaction specificity. Using this
extended cFos sequence as our design scaffold (Figure 2A), we
have implemented an in silico approximation of the PCA and
CANDI-PCA in cellulo screening systems to allow a rapid
prediction of peptide sequences that display high target
specificity. The tools described in this study are freely available
(see the Supporting Information).
During library generation, each position was inspected and

options were placed in the library sequence that corresponded
to core hydrophobic and electrostatic positions within the

heptad repeats (a, e, and g). This resulted in an in silico library
size of 60466176 peptides (a = ILVN, e = QEK, and g =
QEK), with N included at all a positions to give rise to
potential specificity driving N−N pairs with the a3 position on
the target helix and to mitigate against the formation of higher-
order oligomers.25−28 The predicted ΔTm parameter (defined
as the difference between the Tm of the desired dimer and the
closest nondesired dimer) was set to 20 °C during parameter
initialization, because this was found to be the lowest value that
resulted in a library that could be screened within a reasonable
time frame while retaining a large number of peptides
predicted to be successful, such that library diversity was
retained. We followed only members of the top 106 (partition
1) following these initial calculations, as this provided
computational efficiency [reducing the calculation time from
∼3 days to 5 h (see the Supporting Information)] while
selecting library members of the highest predicted target
affinity. This step reduced the expansivity of the search prior to
entry into the more stringent isCAN step, which additionally
considered members of the cFos family that naturally interact
with cJun (i.e., cFos, FosB, Fra1, and Fra2) as explicit off-
targets. As a competitive step in the initial isPCA, additional
consideration of potential library members as homodimers and
the stability of the cJun target as a homodimer were simulated
(Figure 1). During this step, many peptides formed predicted
homodimers or were not suitably more stable than the
predicted Tm of the homodimeric cJun target complex and
were consequently unable to overcome the stringent desired
ΔTm. Once the isPCA section was completed, the 60466176-
member library was reduced to 73124 peptides, a reduction to
0.12% of the original library. The predicted ΔTm values for the
PCA complexes drove this reduction, i.e., the difference
between library−cJun (L−T) and cJun−cJun (T−T) or
library−library (L−L) interactions. Each successful peptide
in the pool that satisfied the ΔTm parameter set was permitted
to proceed. These were described as sequences with predicted
Tm values for nondesired states (Tm

L−L and Tm
T−T) at least 20

Table 1. Top 10 Peptides Ranked by ΔTm Predictions Calculated by isCAN Screening, Representing the Top 0.01% of isCAN-
Successful Peptidesa

aFosUisCAN6 was selected for validation (* and named FosUISCAN) because of the presence of Glu residues at positions g and e (bold). These were
predicted to have maximal beneficial interactions with cJun and maximal repulsion with off-targets (i.e., in complex with cFos and as a homodimer).
Sequences additionally contain N-cap (AS) and C-cap (GAP) motifs not depicted here.
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°C lower than the predicted library-cJun Tm (Tm
L−T). These

“isPCA-successful” peptides were next entered into isCAN.
This final step introduced simulated competitors [in this case,
members of the Fos family that are known to form
transcriptionally active complexes with cJun (cFos, FosB,
Fra1, and Fra2)]. The isCAN step reduced the remaining
library size further to 71667 peptides. The isCAN step was
critical in removing 1457 members that were predicted to bind
to one of the Fos off-target competitor peptides (Tm

L−C).
These were again defined as those unable to overcome the
required ΔTm values among the library−cJun (Tm

L−T), target−
competitor (Tm

T−C), and library−competitor (Tm
L−C) com-

plexes. The average predicted ΔTm for all L−C complexes
(292496 interactions) was 11 °C.
Peptide Selection: FosUisCAN. From the reduced size

pool, peptides were finally ranked by the predicted ΔTm value
according to isCAN. This ensured that the peptide chosen for
further study (FosUisCAN) would exhibit both a high predicted
Tm

L−T and a large ΔTm (i.e., >20 °C) between this and the
most stable of off-targets. As shown in Table 1, the peptide
pool was reduced further to generate the top 10 sequences
ranked by ΔTm, which allowed for comparison of similarities
and key differences between sequences.
These peptides represented the top 0.01% of all peptides to

successfully emerge from isCAN. The final sequence,
FosUisCAN6 (termed FosUisCAN), was selected for validation
with the rationale that the high level of similarity between
those of the 10 sequences and corresponding Tm values and
ΔTm values from nearest stability off-targets. The selected
sequence was chosen on the basis of “charge blocks”, blocks of
basic or acidic side chains at e/g positions that contribute
favorably to the overall ΔTm

6,7 but for which the sequence
context of the otherwise energetically equivalent residue
contribution is not considered by the software (see also
below). Additionally, the minimal difference between predicted
Tm and ΔTm values within sequences listed in Table 1 meant
that the predictive power of the software should be able to be
validated without using the top peptide. As shown in Figure
2B−D, this potential inhibitor was not expected to form

interactions with off-targets and to be able to outcompete all
possible other complexes (satisfying the competitive and
negative design requirements of the experiment). As shown in
Figure 3, the predicted ΔTm between the closest off-target (in
this case, L−L) and the desired (L−T) complex is 50 °C. The
predicted Tm for the FosUisCAN−cJun interaction (91 °C) is far
greater than that of the closest undesired interactions (40 °C
for the cJun homodimer and 41 °C for the FosUisCAN
homodimer).

isCAN Prediction. The isCAN-selected sequence (Fo-
sUisCAN, QIDTLEA EIDQLED ENYALET EIANLEK EIE-
KLE) was predicted to be structurally optimized for max-
imizing and minimizing desired and nondesired interactions, as
shown using helical wheel diagrams (Figure 2B−D). For the
negative design in avoiding formation of the FosUisCAN
homodimer complex, the electrostatic interactions play a vital
role in destabilization. This peptide resulted in the
introduction of e/g charge blocks,6,7 which was previously
shown to be important in driving intramolecular repulsion
between neighboring electrostatic side chains. We previously
found that such charge patterns further assist in concomitantly
driving both favorable interactions between antagonist and
target and repulsions between potential antagonist homo-
dimers (see also below), resulting in favorable gains in the
measured ΔTm. The introduction of these sequence-specific
changes into antagonists otherwise considered energetically
equivalent by the bCIPA approach can provide important
contributions; they provide both intramolecular and inter-
molecular electrostatic contributions to stability that can
concomitantly stabilize the desired state while destabilizing
the homodimer. This is because neighboring residues with the
same charge act to enhance or diminish the predicted
energetics of intermolecular e/g interactions. This means
that for homodimers the intramolecular repulsions act to
enhance the intermolecular repulsions, making the complex
less stable than is predicted without considering e/g residue
sequence context. Concomitantly, for the desired heterodimer,
the intermolecular repulsions act to assist the intermolecular
attractions to a greater extent than predicted without e/g

Figure 3. Predicted Tm values of the isCAN-selected peptide. FosUisCAN is compared against previous Fos-based peptides targeting cJun using a
cFos competitor (and cFos, not duplicating values*). All interactions were predicted using the same isCAN protocol. The ΔTm values against the
highest off-target (predicted library member homodimerization for all but cFos). FosUisCAN is predicted to have a Tm of 91 °C with a ΔTm of 50
°C; both of these values are the highest predicted for Fos-based peptides targeting cJun.
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sequence context. The FosUisCAN electrostatic interactions
provide intermolecular charge blocks of four or five residues at
g/e positions, which serves to add additional destabilization to
the FosUisCAN homodimer while adding additional stability to
the target-bound heterodimeric complex. This is due to the
presence of a Glu residue at both g2 and e3, a combination not
found in any other peptide within the top 10 from which
FosUisCAN was selected. As shown in Table 1, many of those
specific g and e positions were populated by Lys residues. For
FosUisCAN, of the 10 possible electrostatic interactions between
the residues at positions e and g, 50% contain favorably
charged profiles (i.e., negatively charged in FosUisCAN

interacting with positively charged residues in cJun) and 50%
have non-optimal profiles (negatively charged vs neutral or
hydrophobic). For example, e2−g′1, g1−e′2, and g4−e′5 all
contain electrostatically favorable salt bridge interactions
between oppositely charged Glu and Lys. Similarly, e1−g′0
and g3−e′4 feature favorable Glu−Arg interactions. Non-
optimal profiles are a result of selection against residues native
to the e and g positions of cJun, where negatively charged Glu
is facing Ala, Gln, Thr, and Gln (e′3, g′2, g′3, and g′4). As

shown in Table 1, inclusion of Gln at position g0 for FosUisCAN

is found in three other peptides within the top 10. As this
position is facing a Glu at e′1 (or a Gln in all Fos family
members considered as off-targets), six of the peptides within
the top 10 favorably target this by selecting Lys. However, Lys
would form favorable interactions within the homodimeric
complex by forming a g0−e′1 Lys−Glu interaction (as in six
other peptides found within the top 10). This is important
because the cJun target peptide contains an Arg at position g′0,
meaning that the software has to decide on a g0 residue
selection driven by the optimal interaction with this Arg while
balancing potential off-target interactions and selecting the
option that will overall contribute to the greatest ΔTm. The
bCIPA algorithm scores an Arg−Glu interaction more
favorably (−2.0) than an Arg−Gln interaction (−1.5) or an
Arg−Lys interaction (−0.5). Therefore, it is more locally
beneficial to have the e1 position filled by Glu. Thus, to avoid
favorable interactions in the homodimeric complex, it is locally
favored to populate g0 with Gln rather than Lys/Glu. Although
there is a high level of sequence similarity within it, there are
no peptides within the top 10 that differ from FosUisCAN at a

Figure 4. CD spectra and thermal denaturation data. Shown are data for the selected inhibitor peptide with (A and C) cFos and (B and D) target
cJun. Spectra were measured at 20 °C at a total peptide concentration of 150 μM and presented as mean residue ellipticity (MRE). The minima at
208 and 222 nm are indicative of a helical structure, with the 222 nm/208 nm ratio of the inhibitor with the cJun target showing more structure
(222 nm/208 nm = 0.98) than the undesired complex with cFos (222 nm/208 nm = 0.56). This suggests that the inhibitor preferentially
heterodimerizes with cJun. Thermal denaturation profiles of homodimeric peptides and FosUisCAN with heterodimers (C and D) were taken using 1
°C increments and tracking the 222 nm signal at 150 μM. FosUisCAN shows an increase in the transition midpoint when in complex with cJun (D),
demonstrating a Tm of 57 °C compared to the off-target state with cFos (C) that was unable to provide a measured Tm. All experiments were
performed in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7). Where possible (D), data were fitted to the two-state model.
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single residue switch at g0 to give full Glu at all e/g positions.
What is observed instead is the introduction of Lys within
different heptads at different peptides. This is due to the
aforementioned non-optimal residues on native cJun (e′3, g′2,
g′3, and g′4) with Lys−Glu and Lys−Gln interactions being
scored favorably (both contribute −1.5).17,23 The Lys−Ala
interaction has no associated electrostatic contribution value,
and this is discussed below. This highlights part of the
conflicting design requirements that isCAN attempts to
address. At the core, cJun residues are optimized for
hydrophobic interaction, with the a′ position consisting of
Ile, Val, Asn, Ala, and Val. FosUisCAN takes advantage of this
core arrangement with Ile at position a (with a3 as Asn to
capitalize on the oligomer-limiting locus of the a3 N−N
interaction25). Across the top 10 peptides, the major difference
is a4, where 40% of the peptides are Ile and 50% Leu (with one
sequence selecting Asn) facing an Ala on a′4. Both Ile and Leu
contribute equally according to the algorithm (Ile−Ala/Leu−
Ala = −0.5).
The stability of formation of the complex with the

competitor molecule cFos is predicted to be low (Figure
2D), from both electrostatic and hydrophobic perspectives.
The cFos core is poorly optimized for hydrophobic interaction
(compared to transcriptionally functional cJun) because of the
presence of multiple polar and charged Thr/Lys residues.
Similarly, 60% of the cFos−FosUisCAN electrostatic interactions
are repulsive (Glu−Glu, +0.4 kcal/mol17). Moreover, the
presence of Leu at e′4 and g′0 positions does not allow for
further beneficial electrostatic interactions.
Circular Dichroism. An analysis of the global secondary

structure content of homodimeric and heterodimeric systems
was conducted at a total peptide concentration of 150 μM to
provide equimolar concentrations of each component helix for
all dimeric systems. CD spectra showed FosUisCAN to exist as a
15.4% weakly populated helical structure (Figure 4) with the
208 nm signal significantly exceeding that of 222 nm. Similarly,
cFos (Figure 4A) and cJun (Figure 4B) existed as 20.6 and

27.5% helical structures with 222 nm/208 nm ratios of 0.60
and 0.82, respectively.29

To analyze whether the selected peptide formed a complex
with the cFos competitor sequence, a secondary structural scan
of the FosUisCAN−cFos complex was taken with CD (Figure
4A). As for component helices, this spectrum demonstrated
the sample to lack both α-helical content (14.2%) and the
double minima (222 nm/208 nm ratio = 0.56), indicating that
the two component helices cannot associate to form a CC.
Interestingly, both monomers involved in this heteromeric
system displayed greater α-helical content when measured in
isolation.
In contrast, the secondary structure content of the

FosUisCAN−cJun complex (Figure 4B) exhibited a much
more intense signal with greater α-helical content (75.1%),
almost 4 times stronger than the signal of the constituent
peptides in isolation. In addition, the 222 nm/208 nm ratio
was 0.98, providing further evidence for a significant increase
in the helical stability of the sample. This demonstrates that the
incubation of cJun with FosUisCAN elicits a significant
conformational change in the sample and provides compelling
evidence for the formation of a CC.30,31

Thermal Denaturation Profiles. Having observed a
significant increase in the global secondary structure content
of the cJun−FosUisCAN sample, we next sought to quantify the
stability of the complex by performing thermal denaturation
experiments (Figure 4C,D and Table S2). In agreement with
the spectra, this pattern of increased stability between
undesired and desired complexes was also observed using
thermal melts taken in 1 °C increments. FosUisCAN in isolation
did not form a CC complex; rather, only the upper baseline
characteristic of the profile was observed (Figure 4C, black).
This is in agreement with spectral data and is indicative of a
weakly populated helix that does not self-associate. Further
evidence for this is provided by size-exclusion chromatography
(SEC), which demonstrates that the prominent species
populated is monomeric (Figure 5A, blue). When FosUisCAN
is incubated with cFos (Figure 4C, pink), the thermal

Figure 5. Size-exclusion chromatography experiments. Shown are SEC profiles for postmelt samples. (A) Peaks at approximately 19.3 and 21.3 min
representing a mixture of dimer and monomer, respectively, in the FosUisCAN−cFos mixture (dark blue). Component cFos and FosUisCAN
homodimer peaks show larger monomeric peaks than dimeric peaks. (B) The FosUisCAN−cJun mixture generated a broad peak at approximately
19.3 min with the constituent cJun homodimer generating a peak at approximately 19.5 min, both indicating a dimer. Arrows show previously
characterized monomer/dimer controls on 39-mer peptides.
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denaturation signal is similar to that of the component
peptides. In contrast, for homomeric cJun (Figure 4D, orange),
a clear transition midpoint is visible (27 °C). Similarly, SEC
experiments demonstrated cJun to exist as a dimer in solution
(Figure 5B, red). However, when cJun was incubated with the
FosUisCAN antagonist peptide, the intensity of the helical signal
increasesd significantly and led to an increased transition
midpoint of 30 °C (Figure 4D, red), demonstrating an increase
in thermal stability to 57 °C. This shift was further confirmed
by SEC, demonstrating that the entire sample was in a dimeric
state and that cJun had therefore paired with FosUisCAN
(Figure 5B, black). The inability of FosUisCAN to form a stable
homdimer in isolation is a considerable advantage, because it
removes the homodimeric complex as a potential off-target. It
is therefore able to form a stable CC only when combined with
cJun.
The difference between the experimental thermal stability

values and the values predicted by isCAN (Figure 3 vs Figure
6) is of interest. Via observation of the desired FosUisCAN−cJun

complex, there was a decrease of 34 °C between the predicted
and experimental values. This is similar for 4hFosW and
4hFosW-cJun,24 where the complex was measured to be 16−
17 °C higher than bCIPA predicted. However, there was an
observed decrease in the stability of the predicted extended
cJun−cJun interaction that, combined with the off-target
complexes, was not found to form a stable interaction. Overall,
this means that the ΔTm value has decreased from 50 °C when
predicted to 30 °C when measured. Although this is a
significant decrease, the measured value represents a larger
difference between the desired state stability and nearest off-
target stability than that for any previous inhibitor peptide we
have developed. Previous work exploring the further
biophysical characteristics of peptides with similar thermal
stability through isothermal calorimetry24 gives insight into the
importance of this difference. The FosW−cJun complex (Tm =

63 °C) displayed a Kd value of 39 nM, whereas the 20HC−
cJun complex (Tm = 33 °C) displayed a Kd of 15 μM. Since
this complex has a thermal stability similar to that of the
FosUisCAN−cJun interaction and the closest off-target, cJun−
cJun, we can estimate that the 30 °C ΔTm value denotes a
sizable shift in the Kd from the range of nanomolar (desired
state) to micromolar (off-target states).3,24

bCIPA Screening. The discrepancies between Tm values
predicted by isCAN and the measured values validated through
CD suggest that predictions are overestimating the stability of
some complexes, which are generally higher than those from
experimentally measured thermal melts. A simple reason for
this is the scope of the underlying bCIPA and how it was
developed. Using the interaction profiles of 45 peptides (and
tested on 592 interactions), it means that bCIPA has a wide
scope for predicting peptide interactions.3,16 However, there
are some instances in which the algorithm does not have the
required data to estimate a contribution to binding affinity. For
example, a Lys-Ala interaction is not estimated to make a
contribution. Compared to a known and quantified interaction,
it is an example of a non-optimal interaction. In comparison to
interactions that are known to be nonfavorable (and thus
positively scored), a value of 0 is considered more favorable,
although it represents a lack of data. This may explain some of
the discrepancies in predicted/actual Tm values observed, with
the incorporation of energetically nonfavorable interactions.
This is mitigated somewhat by the inclusion of the helical
propensity values that each residue contributes, meaning that if
the electrostatic contributions assumed within the algorithm
are incorrect, there are other parameters that the algorithm
uses to select residues.
From a software development perspective, the version used

within this work stores all of the library sequences within the
memory of the program as well as data generated by
interaction calculations. Further development is ongoing,
with the goal of minimizing the amount of data stored within
the active program at any one point. It is hoped that this will
limit the computational expense of this software and remove an
obstacle in scaling up for high-performance systems. This
would allow the isCAN approach to be used with larger
systems and increased numbers of off-target peptides. Other in
silico approaches with peptides have made use of other forms
of searching within a large data set (including genetic
algorithms32 and Monte Carlo methods33). These methods
of searching are typically coupled with molecular dynamics and
docking simulations. If applied to a pairwise search with the
appropriate methodology, this could represent a novel way to
further screen for suitable peptides. Moreover, as we have
previously demonstrated,6 bCIPA can be trained for specific
bZIP subsets to increase its accuracy in such systems. Where
knowledge of binding affinities is scarcer and more accuracy is
required, an approach in which exploratory experiments are
conducted and the data used to create the necessary bespoke
training/test sets could be employed. This could allow the
predictors within the algorithm to be adjusted accordingly for
the bZIP profile.

Limitations of the Pairwise Approach. It has been
suggested that the interaction of residues might not be limited
to the pairwise model that bCIPA uses.19 Experiments that
computationally derive additional scoring mechanisms from
reported interaction affinities found that “triplet scoring”, the
concept that the combinations of three residues among contact
positions a, d, e, and g, could play a role in the prediction of

Figure 6. Measured Tm values of the isCAN-selected peptide. A
comparison of measured FosUisCAN with previously designed peptides
FosW, FosWCANDI, and 4hFosW. The Tm of the cJun−FosUisCAN
complex was measured as 57 °C with a ΔTm of 30 °C from the cJun−
cJun homodimer Tm of 27 °C. An x indicates neither FosUISCAN nor
its mixture with cFos was found to form dimers, with the thermal
denaturation profile unable provide a measured Tm (Tm < 0 °C). A
plus sign indicates 4hFosW−cFos thermal denaturation data are
missing (4hFosW homodimer data previously unpublished).
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coiled coil interaction.19 Evidence that a combination of
pairwise and triplet predictors increase accuracy provides
further support for our “charge block” concept (blocks of same
charge electrostatic residues at e and/or g positions).6,7 The
charge block observations correlate to more nuanced, context-
specific stabilization due to g/e residues interacting with a/d
residues to modify the total interaction, and the underlying
algorithm could be improved to reflect this. As described
above, previous work on peptides of a particular profile6 has
shown that training the algorithm on similar sequences has
further optimized the weighting of the predictors to better
predict Tm values. Because our studies have focused on Fos/
Jun family bZIPs, a similar technique could be applied here.
However, the lower Tm from predicted to measured values is
consistent across the many FosUISCAN interactions studied in
this system. This suggests that, although non-optimal for our
elongated peptides, the software is still able to correctly predict
Tm relationships. In comparison with previous work in this
field, peptides generated solely through PCA and CANDI,3,13

this marks significant progress. As observed in Figure 6,
although there is <10 °C between the measured Tm values of
the cJun−4hFosW and cJun−FosUisCAN complexes, there is a
measured increase of 17 °C in the ΔTm, making FosUisCAN

much more specific than 4HFosW for cJun relative to Fos.
This value, indicative of the ability to design against negative
and competitive states, while maximizing the desired state
stability shows the real strength of the isCAN technique. Our
aim was to create a competitive antagonist for cJun that,
through high-throughput computational screening, would
address conflicting design requirements between desired and
undesired states. The increased ΔTm of FosUisCAN relative to
those of previous designs, coupled with a high thermal stability
with cJun, supports our initial hypothesis that in silico screening
of peptides to mimic and control the parameters of a PCA-
CANDI can result in peptides that can selectively inhibit cJun
without interacting with cFos or other off-target bZIPs. The
off-targets are then free to form transcriptionally active
components of AP-1. Future exploration into combining this
approach with an in cellulo PCA-CANDI would be the next
step in validating and potentially generating useful antagonists
for future peptide therapies targeting not only AP-1
dysregulation but also any complex bZIP-mediated pathway
in disease. This approach would provide a best-of-both
combination of utilizing very large libraries, screening via a
computational approach to enrich for predicted binders with
the desired attributes of high affinity and selectively, and then
finally experimentally screening the resulting reduced-size high-
quality library that is accessible to intracellular selection
systems.
In conclusion, our work provides a framework by which

bZIPs can be modeled within a CANDI environment with
accuracy to derive highly selective peptide sequences. Driving
the approach with a solely computational and data-driven
framework allows us to collect data about peptide−peptide
interactions and specificity both within and between bZIP
families. As more and more experimental data become readily
available, this approach will become increasingly valuable in
the design of specific peptides that can target key components
within increasingly complex bZIP interactomes.
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Supporting Information 

Computational Development 

All software was run using Python on a 64-bit x64-based processor Windows machine with 12 GB of RAM. 

Although no in-depth benchmarking was run due to time constraints, a library of 10
6
 peptides required 

approximately 6 hours to fully output a successful library using isCAN. This became computationally 

expensive due to incomplete code optimisation discussed in the main text. 

Stability Prediction 

The prediction using the bCIPA algorithm resulted in a stable FosUisCAN – cJun complex predicted with high 

levels of thermal stability (91°C) but with lower stability in the off-target homodimeric (41°C) and 

competitive (15°C) states. The Tm is predicted to overcome both of the transcriptionally active complexes of 

homodimeric cJun (40°C) and cJun-cFos (34°C). 

cJun cFos FosUisCAN 

cJun 40°C 34°C 91°C 

cFos -6°C 15°C 

FosUisCAN 41°C 

Table S1. Predicted melting temperatures (Tm) by isCAN screening, taking into account electrostatic 

interactions, hydrophobicity and helical propensity.  

Stability Measurements 

Experimental values determined through thermal stability studies showed that the FosUisCAN - cJun complex 

displayed a Tm of 57°C but with off-target homodimeric and competitive states that were unable to be 

determined through fit
1
. The measured stability of cFos consistent previous work using a similar length cFos

2
. 
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cJun cFos FosUisCAN 

cJun 27°C 26°C 57°C 

cFos N/A (< 0°C) N/A (< 0°C) 

FosUisCAN N/A (< 0°C) 

Table S2. Measured Tm values as validated using Circular Dichroism thermal denaturation analysis. The 222 

nm signal was continuously monitored from 0-90°C. (homodimeric FosUisCAN and in complex with cFos 

were unable to be determined through fit). cFos value obtained through a combination of methods as 

described in the supporting text. 

Peptide Sequences 

All synthesised and characterised peptides were amidated and acetylated and contained N- and C-capping 

motifs (underlined) for improved helix stability and solubility. Other Fos family peptides were considered for 

in silico calculations. 

cJun:  ASRIARLEEKVKTLKAQNYELASTANMLREQVAQLKGAP 

cFos:  ASLTDTLQAETDQLEDEKYALQTEIANLLKEKEKLEGAP 

FosU
isCAN

: ASQIDTLEAEIDQLEDENYALETEIANLEKEIEKLEGAP

FosB:      LTDRLQAETDQLEEEKYELESEIAELQKEKERLE 

Fra1:  LTDFLQAETDKLEDEKYGLQREIEELQKQKERLE 

Fra2:  LTEKLQAETEELEEEKYGLQKEIAELQKEKEKLE 

Software 

The software used in this study (Library Creation and isCAN) is now freely available for Windows at 

http://people.bath.ac.uk/jm2219/biology/downloads.htm  
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4.6 Concluding Remarks on Chapter 4 

This in-silico screening method has been effective in multiple ways, most notably in 

addressing the conflicting design requirements found in the development of peptide 

antagonists for AP-1. Particularly, the use of the Δ parameter to engineer instability within 

the off-target states – resulting in the inability of the homodimer and heterodimer with cFos 

complexes to form complexes that were able to form coiled-coils similar to the heterodimer 

with cJun. 

While this constitutes a success in creating a purely in-silico antagonist, there are a few 

limitations to consider. Primarily, the discrepancy between the Tm predictions and the 

experimental values require further interrogation. The success in addressing the conflicting 

design requirements observed (instability in the off-target complexes with stability in the 

desired complex) lacks insight without addressing the discrepancy.  This raises the question 

of whether the selected sequence was truly one of the most stable or if sequences outside 

of the top selected would have been better choices. 

Secondarily, it does not offer insight into whether or not this antagonist is able to function in 

more complex environments. To address both of these limitations, the first step would be 

the addition of a previously designed in-cellulo assay such as PCA. 

This would serve multiple purposes. Firstly, it would allow for further validation of the 

approach which, up until now, has relied on an in-silico to in-vitro pipeline. If a library 

sequence which is seen within the top in-silico peptides is then selected through PCA, it 

would justify the rationale of the in-silico technique. A potential addition of a sequence to 

target cFos would assess the effectiveness of the in-silico optimisation for a cJun target, 

allowing for hopeful steps into the area of co-compatible antagonists targeting both cJun 

and cFos.  

Additionally, the in-cellulo success would address the selection conundrum. Due to the 

method used for PCA, the degenerate library expressed would have enough diversity to 

scan a wide range of sequences – with higher confidence in the selected peptide’s stability 

(if corroborated with in-vitro thermal melt data). 
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ABSTRACT: Basic leucine-zipper (bZIP) proteins represent difficult, yet
compelling, oncogenic targets since numerous cell-signaling cascades converge
upon them, where they function to modulate the transcription of specific gene
targets. bZIPs are widely recognized as important regulators of cellular processes
that include cell proliferation, apoptosis, and differentiation. Once such validated
transcriptional regulator, activator protein-1, is typically composed of hetero-
dimers of Fos and Jun family members, with cFos−cJun being the best described.
It has been shown to be key in the progression and development of a number of
different diseases. As a proof-of-principle for our approach, we describe the first
use of a novel combined in silico/in cellulo peptide-library screening platform that
facilitates the derivation of a sequence that displays high selectivity for cJun
relative to cFos, while also avoiding homodimerization. In particular, >60 million
peptides were computationally screened and all potential on/off targets ranked
according to predicted stability, leading to a reduced size library that was further
refined by intracellular selection. The derived sequence is predicted to have limited cross-talk with a second previously derived
peptide antagonist that is selective for cFos in the presence of cJun. The study provides new insight into the use of multistate
screening with the ability to combine computational and intracellular approaches in evolving multiple cocompatible peptides
that are capable of satisfying conflicting design requirements.

Basic leucine-zipper (bZIP) transcription factors are a
diverse family of DNA-binding proteins, typically

consisting of a transactivation domain, a basic domain for
binding to specific recognition elements within gene promoter
regions, and a leucine-zipper (LZ) region that mediates bZIP
dimerization required for activity. The transcription factor
activator protein 1 (AP-1) can be composed of a wide range of
dimeric complexes containing proteins that have physiologi-
cally varied roles linked to the control of gene regulation which
impacts upon cellular proliferation and differentiation. Over-
expression of AP-1 leads to oncogenic effects, such as
dysregulation of the proliferation and differentiation of
cells,1−3 making it and other related transcription factors
compelling, if challenging, drug targets. Their dysregulation as
part of oncogenic signaling pathways highlights the importance
of specific targeting, while maintaining the ability to
successfully modulate their activity in cellular transforma-
tion.4−7 The dimerization of bZIPs is mediated by the LZ
domain, which contains a seven amino acid repeat (a heptad),
which displays property-specific positions to drive the requisite
interaction patterns.8 The coiled coil (CC) within bZIPs is
comprised of two right-handed parallel α-helices that interact
to form a left-handed supercoil structure, allowing key residues
to periodically align in forming a heptad repeat every two turns
of the helix. Despite the apparent simplicity of the CC, the
relationship between its primary structure and the specificity
found in its quaternary structure is not fully understood. Given
the diversity and breadth of human bZIPs, there has been a

focus on engineering highly selective peptide-protein inter-
actions.9−12 The creation of tools that can guide the user from
the primary sequence to quaternary structure, along with
quantitative information relating to interaction stability, is an
ongoing effort.9,10,12,13 The role of AP-1 in cancer has made it
a target of particular interest within therapeutic research, and
multiple methods of inhibition have been explored.14−16

Previous work has explored designing antagonists based on
Jun or Fos family peptides. A recent focus has been on the use
of in silico approaches to simulate in cellulo screening
techniques, with a view to predicting one peptide that satisfies
the design requirements.17 Here we take this a step further by
using the computational screens as a mechanism to reduce
large libraries (∼107−9) to smaller higher quality libraries
(∼105), which are then more readily accessible to intracellular
screening approaches and predicted to contain many members
with the desired properties, thus increasing the chances of
success. This approach has made extensive use of the bZIP
Coiled-Coil Prediction Algorithm (bCIPA)13,18 engine and
focuses on creating in silico tools that mimic both the protein-
fragment complementary assay (PCA)13 and competitive and
negative design initiative (CANDI)11 using bCIPA as an
underlying algorithm to generate in silico PCA (isPCA)19 and
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in silico CANDI (isCAN) equivalents.17 The use of CANDI as
a framework for competitor mimicry promotes not only
stability of a library-derived peptide in complex with its target
but also the specificity required to avoid defined off-target
states (i.e., more stable than predicted affinities of a target-
target, or library member-library member interactions, or user-
defined off-targetlibrary-member interactions). Here, we
describe a novel combination of both isPCA and isCAN from a
large library followed by intracellular PCA on the refined
library, with the aim of utilizing sequential screening capable of
fulfilling the design constraints imposed by the need for
specificity. In practice, this is 2-fold, the stability of the
antagonist−target complex must be improved while also
engineering a system in which the stability of the undesired
complexes is decreased, thereby maximizing the difference
between the multiple potential complexes. Additionally, we
explore the capacity of the derived antagonist to complement a
previously characterized antagonist that is selective for cFos in
the presence of cJun (JunWCANDI).

11 Importantly the design of
the library described is such that it has the potential to target
cJun while disfavoring binding to not only cFos but also
potential library member homodimers. Moreover, the
sequence and JunWCANDI preferentially target their cognate
binding partners over each other. Taken together, this raises
the possibility to intentionally avoid cross-talk between either
antagonist, library member-library member interactions (i.e., as
homodimers), or the targets to which they bind. A key goal,
therefore, is to offer bespoke cocompatible peptides with the
potential for synergy in applying two peptides to simulta-
neously target a cJun-cFos AP-1 heterodimer remains.
Here we present our first efforts in this area, where we seek

to address the following: (i) Does the combination of in silico
and in cellulo screening result in a peptide able to successfully
target cJun? (ii) Does the peptide chosen via a combined
isCAN → PCA approach have increased target-specificity
relative to previous in cellulo techniques? (iii) Can this peptide
retain specificity in the presence of JunWCANDI, an exemplar
cFos antagonist that the library has not been screened against?

■ MATERIALS AND METHODS
In Silico PCA/CANDI (isPCA/isCAN). The isPCA/isCAN

computational screening techniques have been described
elsewhere.17 Briefly, the approach mimics in cellulo PCA/
CANDI screening techniques and simulates a defined library
screened against a specific target sequence. Alongside the
desired interaction with the target, the software considers
homodimeric stability of both target and individual library
members and, in the case of isCAN, a wide number of user-
defined off-target stabilities. It identifies the predicted highest
affinity binder (the desired threshold is set by the user), which
also meets parameters for differences between predicted
desired heterodimer Tm and that of all other complexes (also
user-defined). Utilizing the underlying bCIPA algorithm, this
pairwise analysis incorporates helical propensity (HP), core
(C), and electrostatic interactions (ES) to provide quantita-
tively estimated values relating to the interaction affinities as
thermal melting data (Tm).

11,13,20,21

Library Design and Cloning. Library design and cloning
have been described elsewhere.22 Briefly, mega-primers were
synthesized including relevant semirandomized codons for
library residue options, and a fill-in reaction was performed,
resulting in 140 bp double-stranded oligonucleotides. These
were digested and cloned via NheI and AscI sites into a pQE16

derivative (Qiagen) containing a G/S linker tagged to fragment
1 (p230d; Fos library; ampicillin resistance) or fragment 2
(p300d; cJun; chloramphenicol resistance) of murine dihy-
drofolate reductase (mDHFR), respectively. All proteins were
under the control of a lac promoter, and expression was
induced with isopropyl β-D-1-thiogalactopyranoside (IPTG).
Library plasmids were transformed into BL21 cells (Stra-
tagene) containing target plasmid and pREP4 (Qiagen; for lac
repression; kanamycin resistance). To assess library quality,
pools were sequenced collectively as well as single clones, and
approximately equal distributions of varied amino acids were
found. Pooled colonies were collected to exceed the library size
5−10-fold, to provide >95% library coverage.

Selection of Winner Peptides. PCA has been described
in detail elsewhere.13,17,22 Briefly, target and library peptides
are tagged at the genetic level to N- or C-terminal halves of the
murine form of dihydrofolate reductase (mDHFR). Only two
interacting helices will bring the two halves of the enzyme into
close proximity, render the enzyme active, and result in colony
formation on selective M9 minimal medium plates with 1 μg/
mL trimethoprim to selectively inhibit bacterial DHFR.
Surviving colonies were pooled, grown, and serially diluted in
liquid cultures under selective conditions (M9 minimal
medium with 1 μg/mL trimethoprim). The fastest growth,
and hence the highest affinity interacting partners, was found
to dominate the pool after 2 passages. Library pools, as well as
colonies from taken from individual colonies isolated from
competition selection pools, were sequenced to verify the
arrival at one discrete sequence.

Peptide Synthesis and Purification. As described
previously,17,23 Rink amide ChemMatrix resin was obtained
from PCAS Biomatrix, Inc. (St.-Jean-sur-Richelieu, Canada);
Fmoc L-amino acids and benzotriazol-1-yl-ox-ytripyrrolidino-
phosphonium hexafluorophosphate (PyBOP) were obtained
from Merck; all other reagents were of peptide synthesis grade
and obtained from VWR. Peptides were synthesized on a 0.1
mmol scale on a PCAS ChemMatrix Rink amide resin using a
Liberty Blue microwave peptide synthesizer (CEM; Matthews,
NC) employing Fmoc solid-phase techniques24 with repeated
steps of coupling, deprotection, and washing (4 × 5 mL of
dimethylformamide). Coupling was performed as follows:
Fmoc amino acid (5 equiv), PyBOP (4.5 equiv), and
diisopropylethylamine (DIPEA) (10 equiv) in dimethylforma-
mide (5 mL) for 5 min with 35 W microwave irradiation at 90
°C. Deprotection was performed as follows: 20% piperidine in
dimethylformamide for 5 min with 30 W microwave irradiation
at 80 °C. Following synthesis, the peptide was acetylated using
acetic anhydride (3 equiv) and DIPEA (4.5 equiv) in
dimethylformamide (2.63 mL) for 20 min and then cleaved
from the resin with concomitant removal of side-chain-
protecting groups by treatment with a cleavage mixture (10
mL) consisting of TFA (95%), triisopropylsilane (2.5%), and
H2O (2.5%) for 4 h at room temperature.
The suspended resin was removed by filtration, and the

peptide was precipitated using three rounds of precipitation in
ice-cold diethyl ether, vortexing, and centrifuging. The pellet
was then dissolved in 1:1 MeCN/H2O and freeze-dried.
Purification was performed by RP-HPLC using a Phenomenex
Jupiter Proteo (C18) reverse-phase column (4 μm, 90 Å, 10
mm inner diameter ×250 mm long). Eluents used were as
follows: 0.1% TFA in H2O (a) and 0.1% TFA in ACN (b).
The peptide was eluted by applying a linear gradient (at 3.5

mL/min) of 5−95% B over 40 min. Fractions collected were
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examined by electrospray MS, and those found to contain the
desired product exclusively were pooled and lyophilized.
Analysis of the purified final product by RP-HPLC indicated
a purity of >95%.
Circular Dichroism (CD). Analysis was performed using an

Applied Photophysics (Leatherhead, U.K.) Chirascan CD
apparatus using a 200 μL sample in a CD cell with a 1 mm
path length. Samples contained a 150 μM total peptide (Pt)
concentration at an equimolar concentration for heterodimeric
solutions (i.e., 75 μM per peptide) and suspended in 10 mM
potassium phosphate and 100 mM potassium fluoride (pH 7)
for 30 min prior to analysis. The CD spectra of the samples
were scanned between 200 and 300 nm in 1 nm steps,
averaging 0.5 s at each wavelength. Three scans at 20 °C were
averaged to assess the overall helical content as well as the
coiled-coil structure. Raw data (ellipticities) were collected and
averaged, and data were converted to molar residue ellipticities
(MREs).
Thermal Denaturation. Analysis was performed using an

Applied Photophysics (Leatherhead, U.K.) Chirascan CD
apparatus, recording the ellipticities of homotypic or
heterotypic (1:1 stoichiometric mix) samples at a total peptide
concentration (Pt) of 150 μM in a buffer of 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7). For all
thermal denaturation experiments, a stepping gradient was set
from 0 to 90 °C in 1 °C increments. Each temperature point
was held for 30 s to equilibrate the sample to within 0.1 °C of
the target temperature before measuring ellipticity at 222 nm.
The resulting sigmoidal thermal denaturation profiles were fit
to a two-state model, derived via modification of the Gibbs−
Helmholtz equation to yield the melting Tm.

25

■ RESULTS AND DISCUSSION

In silico screening both without (isPCA) and with (isCAN) off-
targets has been combined with PCA to derive a 39-mer
peptide that is selective for cJun in the presence of cFos. From

thermal denaturation data coupled with dimer exchange
experiments within the systems of the individual antagonists,
the sequence is shown to be compatible with an existing
sequence that is selective for cFos in the presence of cJun (37-
mer JunWCANDI).

11 Here we describe our approach toward co-
compatible peptides that are capable of targeting specific
components within the heterodimeric AP-1 complex with
minimal cross-talk between partners and each other.

Library Creation and in Silico Screening. The in silico
library used for this work was previously generated17 to create
a highly expansive set that provided options capable of
balancing both library diversity and simulation feasibility. In
doing so, the ΔTm parameter (the difference between the Tm
of the desired complex and the closest nondesired complex)
was set to 20 °C during the initialization stage, leading to a
library of 60 466 176 peptides. Briefly, this library contained
semirandomized residues at the core and electrostatic
positions, with LIVN options at a positions and QEK options
at e and g positions. As previously described, the inclusion of
Asn at all a positions was in order to mitigate against the
formation of higher-order oligomeric states by driving the
formation of Asn-Asn pairs with the a3 position on the target
helix.26,27 The peptides were next subjected to both isPCA and
isCAN (Figure 1), resulting in libraries of 73 124 and 71 667
sequences, respectively. In order to create the library for PCA,
the top 25 sequences (ranked according to a predicted ΔTm of
at least 20 °C and the value of the desired complex Tm) from
isPCA and isCAN libraries were combined and used to define
the library for PCA. Both the isPCA and the isCAN library
contained sequences that represented 0.12% of the original
60 466 176 member library. Within this, the top 25 sequences
represent 0.03% of these secondary libraries. The combination
of the top 25 sequences from both resulted in 34 unique
sequences due to an overlap of 16 sequences present in both.
The library created from these 34 unique sequences resulted in
a small high quality and PCA-accessible library of 23 328

Figure 1. Overview of the combined in silico/in cellulo workflow. Left: A 60 466 176 member cFos-based library was generated and screened via
isPCA and isCAN, using parameters and templates taken from previous work.17 The top 25 sequences from both were used to create a library (34
unique sequences due to overlap). This 31 104 (23 328 without the addition of 1 His at a4) member library was expressed, and the winner
sequence (FosUPCA) was selected. Middle: Complexes that can be formed via the combination of library/target peptides (L/T). Negative and
desired complexes are found within PCA, in considering the undesired homodimeric complexes (i.e., LL/TT). Right: isCAN incorporates the
competitor complexes (i.e., the addition of LC/TC). Within isCAN, specificity is driven by the desired delta (Δ) value as specified by the user. The
library member is only successful if it is able to form the desired complex with predicted Tm values greater than the Δ. In this Fos-based system, the
competitor sequences included are from the FOS family (cFos, Fra1, Fra2, and FosB) for a total of 11 predictions for every library member
simulation (2n + 3 where n = number of competitors).

Biochemistry Article

65



sequences, which expanded further to 31 104 sequences with
the addition of His at one core position (Figure S2). The
inclusion of this residue was unavoidable when incorporating
Asn (AAC) at a4 with Ile (AUC) and Leu (CUC), requiring
the use of two ambiguous nucleotides (MWC), with M = A/C
and W = A/U (see Supporting Information)
PCA Selection. The stages of PCA demonstrate a

stabilization of the semirandomized library through each
passage, with the sequence identified from the final passage
termed FosUPCA (ASEIDTLEAELDQLEDQNYALKTE-
LANLEKEIEKLQGAP). The details of the sequence highlight
the result of the number of conflicting selection pressures
enforced by the binding and growth assay, with progression

tracked in Figure S1. Prediction of the melting temperature
(Tm) of FosUPCA with its desired and off-targets (Figures 2 and
3) highlighted the diversity of its origins. As with previous
work led by in silico design,17 the presence of a large difference
(ΔTm) between the desired complex (FosUPCA−cJun) and the
nondesired complexes was enforced (ΔTm = 26 °C).
This predicted value was lower relative to that of previous

work with this library due to the increased predicted Tm of
homodimeric FosUPCA−FosUPCA (Tm = 60 °C) relative to that
of the purely in silico derived FosUisCAN (Tm = 41 °C).
Although the FosUisCAN was one of the top 25 sequences used
as a basis for the library, it was not selected during PCA. The
contrasting selections of in silico vs in silico → in cellulo

Figure 2. Predicted Tm values of FosUPCA and related peptides. In comparison with Fos-based peptides targeting cJun with cFos as a competitor (*
and cFos not duplicating values). All interactions have been predicted using the same iSCAN protocol. The ΔTm values against the highest off-
target (predicted to be library member homodimerization for all but cFos). FosUPCA is predicted to have a Tm of 86 °C with a ΔTm of 26 °C. **
For both FosUisCAN and FosUPCA, all sequences have been extended to 39 residues with N-terminal g and C-terminal e positions filled.

Figure 3. Helical wheels of FosUPCA and JunWCANDI interactions. The helical wheel diagram displays the residues present on the coiled coil from
the position of the N-terminus to the C-terminus, looking down the axis of the α-helices. For both FosUPCA (a−c) and JunWCANDI (d−f), these
diagrams illustrate the hydrophobic interface at the core position (a/d) and the charged residues present at the flanking position (e/g). The helical
wheel of FosUPCA−cJun (c) demonstrates how FosUPCA contains residues that promote favorable electrostatic and core interactions to drive coiled-
coil formation. JunWCANDI in complex with cFos also shares this (f), with multiple attractive Glu-Arg and Glu-Lys electrostatic interactions.
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approaches are highlighted by the fact that the final selected
sequence, FosUPCA, is not observed in either of the top 25
sequences from isPCA or isCAN. Upon additional screening of
the library, however, FosUPCA was identified as being within
the top 20% of all library predicted members within the PCA
library (predicted ΔTm and desired complex Tm).
Circular Dichroism Spectroscopy. The global secondary

structures of FosUPCA in isolation and in complex with cJun
and cFos were analyzed to monitor for both helicity and
interaction (Figure 4a/b). CD spectra showed that at 20 °C,

FosUPCA in isolation displayed a low level of helical stability
(fH = ∼17%) and a 222 nm/208 nm ratio of 0.46. In
combination, this data describes a peptide lacking the
prerequisite α-helical profile required for the formation of a
homodimeric coiled coil. The inspection of the helical wheel
(Figure 3a) shows the presence of six repulsive Glu-Glu
interactions (60% of the possible total electrostatic inter-
actions). Similarly, cFos (Figure 4b) exhibited low levels of
helicity (fH = ∼23%) and a 222 nm/208 nm ratio of 0.61.
However, cJun displayed increased higher levels of helicity (fH
= ∼31%) and a 222 nm/208 nm ratio of 0.73 and is well-
documented to be capable of forming a coiled coil. The
secondary structure of the nondesired FosUPCA−cFos complex
was analyzed using CD (Figure 4B) to establish if it formed
from the component peptides. Although it presented with an
fH of ∼28%, the 222 nm/208 nm ratio of 0.81 also described a

structure tending toward an α-helix. Analysis of the target
complex of FosUPCA−cJun provided significant evidence for
the formation of a coiled coil. In particular, it displayed
increased α-helicity when compared to the homodimeric and
off-target heterodimeric complexes (fH = ∼40%) and four net
electrostatic attractions (Figure 4b).
Structural analysis of complexes containing JunWCANDI

(Figure 5a/b) showed that the homodimeric complex

presented with moderate levels of α-helicity (fH = ∼37%) as
well as a 222 nm/208 nm ratio of 0.81. In complex with cJun,
the α-helicity showed only a slight decrease, with the fH value
dropping to ∼32% and the 222 nm/208 nm ratio to 0.74.
When in complex with the cFos target, there is a marked
increase in the α-helicity measured (fH = ∼46%) and the 222
nm/208 nm ratio (0.97).
In context, these values describe a system in which

homodimeric and off-target interactions retain relatively high
levels of helical stability required to form the coiled-coil (with
α-helical levels exceeded only by that of the JunWCANDI-cFos
interaction). FosUPCA incubated with JunWCANDI exhibited
increased helicity compared to that of the component peptides
(fH = ∼52%) and a 222 nm/208 nm ratio of 0.89 (Figure 6b).

Figure 4. CD spectra and thermal denaturation data for FosUPCA with
cJun and cFos. Shown are data for FosUPCA (red) with cJun (A and C,
blue) and cFos (B and D, blue). Spectra were measured at 20 °C at a
total peptide concentration of 150 μM and presented as mean residue
ellipticity (MRE). The minima at 208 and 222 nm are indicative of a
helical structure when coupled with fractional helicity (fH), with the
222 nm/208 nm ratio of FosUPCA showing less structure (222 nm/
208 nm = 0.46 and fH = 17.0%) than cJun (222 nm/208 nm = 0.73,
fH = 30.5%) and cFos (222/208 = 0.61, fH = 22.9%). The FosUPCA−
cJun complex (A and C, purple) shows increased helicity (fH =
39.8%), but a similar helical structure (222 nm/208 nm = 0.78),
compared to the FosUPCA−cFos (B and D, purple) complex (222
nm/208 nm = 0.81, fH = 27.6%) Thermal denaturation profiles with
cJun (C) and cFos (D) were taken using 1 °C increments and
tracking the 222 nm signal at 150 μM. FosUPCA−cJun shows an
increase in the transition midpoint with a Tm of 52.0 °C compared to
FosUPCA in isolation and FosUPCA−cFos, both with Tm unable to be
fit. This suggests that FosUPCA would preferentially bind to cJun over
the potential off-target states. All experiments were performed in 10
mM potassium phosphate and 100 mM potassium fluoride (pH 7).
Where possible (C), data were fitted to a two-state denaturation
model.

Figure 5. CD spectra and thermal denaturation data for JunWCANDI
with cJun and cFos. Shown are data for JunWCANDI (red) with cJun
(A and C, black) and cFos (B and D, blue). Spectra were measured at
20 °C at a total peptide concentration of 150 μM and presented as
mean residue ellipticity (MRE). The minima at 208 and 222 nm are
indicative of a helical structure when coupled with fractional helicity
(fH), with the 222 nm/208 nm ratio of JunWCANDI showing stability
in isolation (222 nm/208 nm = 0.81 and fH = 37.2%) greater than
that of cJun (222 nm/208 nm = 0.73, fH = 30.5%).The JunWCANDI−
cJun complex (brown) shows helicity slightly greater than that of cJun
(fH = 32.4%), but a similar helical structure (222 nm/208 nm =
0.74). In comparison, the JunWCANDI−cFos complex (purple) showed
an increase in helicity, with a 222 nm/208 nm ratio of 0.97 and a fH
of 45.7%. Thermal denaturation profiles with cJun (C) and cFos (D)
were taken using 1 °C increments and tracking the 222 nm signal at
150 μM. JunWCANDI shows a stable complex with a Tm of 32.0 °C
compared to JunWCANDI−cJun, with a slightly lower Tm of 27 °C. In
complex with cFos, there is an increase in the transition midpoint with
a Tm of 51 °C. This suggests that, although JunWCANDI has stability in
isolation and with cJun, it would preferentially bind to cFos over the
potential off-target states. All experiments were performed in 10 mM
potassium phosphate and 100 mM potassium fluoride (pH 7). Where
possible (C), data were fitted to the two-state model.
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Dimer Exchange. Dimer exchange experiments were
performed for both the JunWCANDI and FosUPCA systems
(Figures 7 and 8) in the presence of cJun and cFos cognate

binding partners. Upon mixing the four component peptides,
the spectra generated demonstrate the global average (hashed
line), should no exchange of the component peptides take

Figure 6. Helical wheel and CD spectra and thermal denaturation data for FosUPCA and JunWCANDI. The helical wheel (A) shows the amino acid
arrangement for FosUPCA and JunWCANDI peptides. Spectra (B) were measured at 20 °C at a total peptide concentration of 150 μM and presented
as mean residue ellipticity (MRE). The minima at 208 and 222 nm are indicative of various levels of helical structure, with the 222 nm/208 nm
ratio of the FosUPCA0−JunWCANDI (purple) showing increased structure (222 nm/208 nm = 0.89) and helicity (fH = 51.9%). The lactamized form
shows increased structure (222 nm/208 nm = 0.74) compared to the homomeric state (222 nm/208 nm = 0.69). Thermal denaturation profiles of
FosUPCA−JunWCANDI (C), as well as the component peptides, were taken using 1 °C increments and tracking the 222 nm signal at 150 μM. The
heterodimer shows an increase in the transition midpoint, demonstrating a Tm of 40 °C compared to the only component able to have a Tm fitted
(JunWCANDI Tm = 32 °C). This suggests that the addition of JunWCANDI promotes stability and helicity to FosUPCA and that this complex is
preferred over both homomeric states. This is addressed in the helical wheel, which shows a series of intermolecular attractive electrostatic
interactions and repulsive intramolecular interactions. All experiments were performed in 10 mM potassium phosphate and 100 mM potassium
fluoride (pH 7). Where possible (D), data were fitted to the two-state model.

Figure 7. Dimer exchange with FosUPCA, cJun, and cFos. (A) Equimolar mixtures of cJun−cFos and FosUPCA−cJun were mixed, and the observed
signal resembled the average of the two constituent spectra, indicating no change has occurred. (B) Equimolar mixtures of cJun−cJun and
FosUPCA−cFos were mixed, and the observed spectra exceeded the average of the two constituent spectra, which indicated that dimer exchange
occurred to promote the system found in panel A. All experiments were performed at 150 μM at 20 °C in 10 mM potassium phosphate and 100
mM potassium fluoride (pH 7).
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place. No exchange was deemed to have occurred in systems
containing FosUPCA−cJun upon mixture with cJun−cFos
(Figure 7a) as well as JunWCANDI−cFos upon mixture with
cFos−cFos (Figure 8b). In contrast, spectra exhibiting signals
exceeding the average indicated that the expected dimer
exchange had indeed occurred. These changes in binding
partners were observed in systems containing off-target
peptides in complex with either FosUPCA (i.e., FosUPCA−
cFos combined with cJun−cJun; Figure 7b) or JunWCANDI
(i.e., JunWCANDI−cJun combined with cFos−cFos; Figure 8a).
These data provide evidence for the formation of hetero-
specific coiled coils with the cognate AP-1 component, in the
contact of alternative cJun or cFos options available. The data
also further validate the results of the in cellulo screening step
through PCA.
Thermal Denaturation Profiles. The increased global

secondary structure content for both antagonist−target
complexes required further stability validation through thermal
denaturation experiments (Figure 4c/d and Figure 5c/d).
Taken in 1 °C increments, the thermal melt data was generally
in agreement with the spectra. In isolation, FosUPCA did not
form a stable coiled coil, with only the characteristic upper
baseline observed (Figure 4c, red). Similarly, FosUPCA−cFos
showed a similar upper baseline only (Figure 4d, purple). For
both of these complexes, the combination of spectra and
thermal denaturation data demonstrates weakly populated
helices without the ability to associate. This scenario is
beneficial for this antagonist system, as it removes two off-
target states, in addition to the observation that FosUPCA
incubated with cJun displayed a two-state sigmoidal thermal
denaturation profile with a substantial right-hand shift (Tm =
52 °C). As shown from the spectra, JunWCANDI in isolation
(Figure 5c, red) formed a self-associating coiled coil with a Tm
of 32 °C (similar to described previously11). When incubated
with cJun (Figure 5c, purple), only limited interaction was
found to occur (Tm = 27 °C). Compared to thermal data with
cJun, this represented an increase of 4 °C from that previously
reported (JunWCANDI-cJun37 Tm = 23 °C). Incubated with cFos
(Figure 5d, blue), as expected, a right-hand shift was observed
(Tm = 51 °C), representing an increase of 7 °C from previous
work with truncated cJun37 (Tm = 44 °C). As observed in
Figure 3e/f, these differences in Tm result from the addition of
two pairs of g−e′+1 interactions from the mismatch in length.

Only in the off-target complex with cJun did this add an
attractive electrostatic interaction (Glu-Arg at e1−g′0), with the
presence of other residues contributing solely to increasing
helicity in the complex. JunWCANDI in complex with FosUPCA
showed a right-hand shift compared to the component
peptides (Figure 6c, purple). This increase in Tm to 40 °C,
coupled with the spectra data, is evidence for a stable coiled
coil. In context of the helical wheel (Figure 6a), this can be
explained in part due to the fact that a net 4 of the 8 complete
electrostatic interactions are attractive (Glu-Lys or Glu-Arg).
In the context of the other Tm values, this stability does not
affect the cocompatibility as it is lower than the desired target
complex Tm values.
A comparison of the predicted and experimental Tm values

(Figure 2 and Figure 9) shows notable differences, an
observation that has previously been discussed in the context
of bCIPA, isCAN, and this particular library.17,19

Primarily, the off-target FosUPCA−FosUPCA and FosUPCA−
cFos interactions were predicted to be relatively stable (60 and
26 °C, respectively), whereas this was not observed
experimentally. This highlights the role of the electrostatic
interactions, as an analysis of the sequence (Figure 3a/c)
shows that the homodimer has 60% of these as repulsive Glu-
Glu interactions. FosUPCA−cFos exhibits a similar profile, with
40% of these interactions as Glu-Glu. In addition, the presence
of Leu at g0 and e4 as residues incapable of forming electrostatic
interactions adds to this disruption, along with the presence of
two Thr and two Lys residues at the core. Although less
extreme, observation of the desired complex with cJun showed
that there was also a discrepancy between experimental and
predicted Tm values, with bCIPA predicting a Tm value of 86
°C and the experimental data displaying a Tm of 52 °C.
Although this was a decrease of 34 °C, the system itself was not
heavily altered. This is due to the fact that the ΔTm decreased
by 4 °C from a predicted 26 °C to an experimentally derived
22 °C. In comparison to previous work, this ΔTm value is
second only to that of FosUisCAN by 8 °C. However, of the two,
the FosUPCA predicted ΔTm value sits closer to that of the
experimental value (FosUisCAN ΔΔTm = −20 °C). In both
cases, the predicted ΔTm was driven by the difference in Tm
between the desired complex with cJun and the homodimeric
library member interaction. However, with the inability of
either homodimer to form a stable coiled coil, this ΔTm relied

Figure 8. Dimer exchange with JunWCANDI, cJun, and cFos. (A) Equimolar mixtures of cFos−cFos and JunWCANDI−cJun were mixed, and the
observed spectra exceeded that of the average, indicating change. (B) Equimolar mixtures of cJun−cFos and FosUPCA−cFos were mixed, and the
observed spectra resembled the average of the two constituent spectra, which indicated that no dimer exchange occurred.. All experiments were
performed at 150 μM at 20 °C in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7).
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on the difference between the desired complex and the Tm of
homodimeric cJun. The thermal stability of FosUPCA−cJun is
comparable to previous peptides for which extensive
biophysical data is available.11,13,22,28 In particular, the PCA
derived FosW−cJun exhibited a Tm value of 63 °C and a Kd
value of 39 nM, whereas 4hFosW−cJun exhibited a Tm of 49
°C and a Kd value of 480 nM. Since the latter exhibited thermal
stability within 3 °C of both FosUPCA−cJun and JunWCANDI−
cFos, it can be estimated that the interaction Kd for both of
these complexes is also within the nanomolar range.
Although the FosUPCA−JunWCANDI complex shows a high

level of stability (Tm = 40 °C), it is important to note that
JunWCANDI was incorporated as a prototypical peptide
sequence and neither peptide was explicitly screened (in silico
or in cellulo) with the other as an off-target. The secondary
structure and thermal data represent the formation of a stable
complex, although this does not affect the cocompatibility of
the two antagonists as an 11−12 °C difference exists between
it and the Tm values of both FosUPCA−cJun and JunWCANDI−
cFos. This can be credited to the fact that the increased
electrostatic interactions in FosUPCA and the stringency of the
multipart in silico screening of Fos-based peptides resulted in a
library that exhibited higher levels of specificity to cJun itself,
rather than all members of the Jun family.
FosUPCA Sequence Core Analysis. As shown in Figure 3,

residue selection at the a positions resulted in alternations
between Ile and Leu on a1, a2, and a5, with a1 selecting the

former and a2 and a5 selecting the latter. Through all stages of
PCA, the successful sequences (with the option of both Asn
and Ile) were selected for the Asn at this position, highlighting
the importance of the interfacial Asn-Asn interaction in
forming dimeric coiled coils and preventing higher-order
oligomeric states.26,27 Not conforming to the structure or size
of the otherwise ubiquitous residues found at this interface, His
is thought to be ill-suited to the environment of the
hydrophobic core at a4. Although not present in Jun/Fos
proteins, His is present in the bHLH-ZIP cMax, along with
Met, at sequential d positions without disrupting the
interaction required for transcriptional activity.29 When
entering PCA, this residue was replaced at P1 with Leu. One
potential reason could be its position within the coiled coil,
which unlike cMax, is not located in the proximity of the N-
terminus. As it occupies space directly between an Asn-Asn
interaction, as well as a position within the center of the helix,
the presence of the imidazole ring side chain could destabilize
the α-helix and prevent successful coiled-coil formation.

FosUPCA Sequence Electrostatic Analysis. As the
electrostatic positions introduce the most diversity in options,
it is interesting first to note the locations within the sequence
that were not semirandomized within the library. Importantly,
at positions g1, e2, g3, and e4, Glu was selected by both isPCA/
isCAN, indicating that this residue is sufficient at these
positions to satisfy all conflicting design requirements.
However, although this has been briefly discussed previously,17

Figure 9. A comparison of measured FosUPCA Tm data with previously designed peptides. The Tm of FosUPCA−cJun is 52 °C with a ΔTm of 22 °C.
xFosUISCAN and FosUPCA did not form a stable homodimer or cFos heterodimer able to be fitted to get Tm.

+4hFosW-cFos lacks melt data. **cJun
is an extended 39-mer sequence containing one extra g and one extra e position residue at the N-terminus and C-terminus, respectively, to add two
extra interhelical electrostatic interactions with FosUisCAN and FosUPCA.
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it is important to interrogate this in the context of the in cellulo
screening of a large library. At each position, Glu performs a
combinatory destabilization and stabilization role, depending
on the complex the peptide adopts. As shown in Figure 3a−c,
the selected residues at these positions may, in some cases,
appear counterintuitive. As residues at these positions interact
within the coiled coil, this results in four repulsive Glu-Glu
interactions in the homodimeric complex. When in complex
with cJun, the presence of Glu serves to stabilize the coiled
coil. g1−e′2, e2−g′1, and g3−e′4 interact beneficially in the form
of 2 Glu-Lys interactions and one Glu-Arg interaction,
respectively (e4−g′3 forms a Glu-Thr interaction). Since
isCAN additionally considers interactions with cFos, the
same destabilizing effect observed with the homodimer
complex is selected, with repulsive Glu-Glu interactions (and
a nonoptimal Glu-Leu interaction on g3−e′4. Previous work
discussed the role of intramolecular interactions in the
formation of the coiled coil.23 Briefly, the presence of “solid-
charge blocks”, a consecutive run of positively or negatively
charged residues at either e and/or g positions within the
heptad repeat, can result in intramolecular repulsion, thereby
strengthening the interactions between the helices at these
positions. Conversely, alternating ± charges at these positions
results in attractive intramolecular interactions, which serve to
lower the effect of attractive/repulsive electrostatic interactions
between helices. FosUPCA contains 60% Glu at electrostatic
positions (i.e., three small charge blocks), which may serve to
guide intermolecular repulsion (homomeric and in complex
with off-targets) and optimize the beneficial interactions when
in complex with cJun. Although it disrupts a pattern of Glu
residues at this in the heptad, g2 benefits from the selection of
Gln due to the presence of Ala at e′3. Within the context of the
FosUPCA−cJun heterodimer, g′0 and g′1 on cJun are Arg and
Lys, respectively, with intramolecular repulsion, therefore
potentially strengthening the intermolecular Arg-Glu and
Lys-Glu interactions with FosUPCA at positions e1 and e2.
Prediction vs Experimental. As discussed previously,

predictions using the bCIPA algorithm can vary in accuracy
using designed peptide sequences.17,19 Elongation of designed
sequences with the aim of maximizing potential interactions
highlights a potential limitation in current predictive
capabilities. Electrostatic charge blocks are also a sequence-
specific effect, which is currently not considered. bCIPA scores
each residue independently of others within a helix but scores
for the specific interaction between helices, with only the latter
taking advantage of the coupling data from the many natural
peptides used to train the model. Additionally, these sequences
are shorter than the sequences evaluated in this work,
providing another possible explanation for the discrepancy.
However, the ability to impose artificial limits through an
imposed Δparameter mitigates against this, replacing the subtle
differences in desired/undesired predictions with predictably
larger variations. This parameter functions as a necessary
safeguard for the additional layers of complexity employed.
Previous work exploring this30 has also highlighted limitations
of relying solely on coupling data.

■ CONCLUSIONS
In Silico Led In Cellulo Design. Of the 10 possible

interactions within the intended system (Figure 10), both
antagonists successfully bound their respective targets, while
avoiding their cFos/cJun off-target complexes. Although a
stable coiled coil, the FosUPCA−JunWCANDI complex is not

predicted to disrupt the cocompatibility of the system due to
the increased thermal stability of both of the peptides with
their targets.
With work into FosUisCAN and now FosUPCA, respectively,

exploring purely the data-driven and combinatory in silico/in
cellulo design, it has so far been shown that, aside from yielding
increased stability of target homodimer complexes, the
extension of the sequence length to add extra electrostatic
interactions adds increased specificity but not increased
stability in the heterodimeric peptide−target complex (Figure
7).17 Studies into the truncation of cJun antagonists have
described similar issues.19,22 In these experiments, engineering
stability has resulted in the antagonist peptide homodimers
having near equivalent or increased thermal stability when
compared to that of the desired heterodimeric complex with
cJun. Due to the simplicity of coiled-coil sequences and the
constraint imposed by the need to specifically target certain
bZIPs without disrupting the function of others, this raises the
question of whether there is a limit to the ability of certain
engineered peptides to be able to fulfill both the stability and
specificity design requirements. PCA-derived FosW exemplifies
this phenomenon, with a difference of 6 °C between the Tm of
its homodimeric complex and heterodimeric complex, in
addition to the 2 °C between the latter and the Tm of a
potential off-target target complex with cFos (Figure 7). As
FosW−cJun, an interaction that did not consider cJun during
design or selection, has a Tm that is only marginally higher than
that of FosUPCA−cJun, this highlights the advancement of in
silico techniques in addressing the conflicting design require-
ments imposed by the simplicity of the coiled-coil structure.
Though both FosW and FosUPCA were derived via PCA, there
was a significant difference in the size of the two libraries
generated in order to do so (with the 49 152 member FosW
library being 58% larger than that of the 31 104 member
isCAN/isPCA). Despite this, in the latter case, the library
derived a peptide that was more able to meet the criteria
required by antagonist peptides, that is the maximization of
stability balanced with the ability to specifically bind its target.
In the context of engineering peptides, this represents an
advancement in the process and validates the combined use of
combinatory in silico and in cellulo screening. To this end,
future exploration into improving this framework would
include an expansion of the library size as well as the

Figure 10. An overview of the FosUPCA + JunWCANDI system. Analysis
of Tm data shows that the desired interactions (green) are
preferentially formed over the off-targets (red) and the homodimers
(black). Though the antagonist−antagonist dimer has a relatively high
Tm (40 °C), this comparison highlights that the antagonist−target
interactions are the preferred states.
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generation of an additional library containing cJun-based
peptide sequences to target cFos.
As shown in Figure 11, the addition of that extra screening

step (5) into this framework would allow not only for the
isPCA/isCAN methods described here but also an additional
isCAN constraint in which the cFos-based and cJun-based
libraries are able to consider one another during the in silico
screening stage. Similarly, the in cellulo screening would expand
to incorporate a specific CANDI element, with both isPCA/
isCAN derived peptides utilized as a competitor peptide during
this process. This would allow for the library design and
subsequent directed evolution of a potentially synergistic
system, whereby two AP-1 inhibitors designed to target
different components within an oncogenic heterodimer could
function specifically with minimal cross-interactions.
In summary, this work provides a step forward in the use of a

more stringent in cellulo screening, preceded by an in silico
screening, to derive peptide antagonists for coiled-coil proteins
in general, using AP-1 as an exemplar. The ability to utilize a
combination of successful in silico and in cellulo screening
methods has been validated by sequential combined screen-
ings. Within the larger context, this represents progress in the
ability to derive specific peptides capable of targeting key
components within complex bZIP systems, while increasing
the experimental data required to progress the data-driven
design.
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5.5 Supporting Information 

 

 

 

Table 1. Overview of PCA passages. The options (red) were randomised at 11 positions and the 

residue selections for each stage shown in blue. At both a3 and e5, there were no changes in residue 

from the first passage (Asn and Gln, respectively). 

 

 

g0 a1 b1 c1 d1 e1 f1

P0 Q L D T L Q A

P1 E I D T L E A

P2 E I D T L E A

Options EKQ IL EKQ

g1 a2 b2 c2 d2 e2 f2

P0 E I D Q L E D

P1 E I D Q L E D

P2 E L D Q L E D

Options IL

g2 a3 b3 c3 d3 e3 f3

P0 K N Y A L K T

P1 K N Y A L Q T

P2 Q N Y A L K T

Options EKQ IN EKQ

g3 a4 b4 c4 d4 e4 f4

P0 E H A N L E K

P1 E L A N L E K

P2 E L A N L E K

Options ILN(H)

g4 a5 b5 c5 d5 e5

P0 Q I E K L Q

P1 Q L E K L Q

P2 E I E K L Q

Options EQ IL EKQ
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Figure S1. Fos Library Chromatogram. Sequence data from the second (and final) passage 

(P2) showed the selection results from 11 randomised positions in the sequence (highlighted in 

red). Glu residues were selected at g0, e1, and g4 whereas Lys was selected at e3 – with Gln 

residues on g2 and e5. Ile was chosen at a1
 and a5, Leu at a2 and a4, and Asn at a3. 
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Figure S2. Electrospray Mass Spectrometry data from purified cJun and cFos 

demonstrating correct +3 - +5 m/z of cJun (A) and cFos (B) 
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Figure S3. Electrospray Mass Spectrometry data from purified FosUPCA and JunWCANDI 

demonstrating correct +3 - +5 m/z of FosUPCA (A) and JunWCANDI (B) 
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5.6 Concluding Remarks on Chapter 5 

As discussed in Chapter 4, this addition of PCA further demonstrated the capability of in-

silico design of a cJun antagonist. A key element of this was the ability of the in-silico steps 

to add an extra layer of screening to the overall library development.  

Similar to the work within Chapter 4 (Lathbridge and Mason 2018), the minimisation of the 

library size within this study did not result in a less successful antagonist in comparison to 

previous sequences taken from larger in-cellulo libraries (Mason et al. 2006; Mason et al. 

2007). 

Though undeniably powerful, the work so far within this thesis has highlighted a limitation 

in the technique. As we move further into exploring elongated peptides, the accuracy of the 

underlying bCIPA is reduced - explaining the discrepancy between the predicted Tm values 

and the experimental values. This is due to the fact that the algorithm itself was trained on 

sequences that were not as long nor as optimised as those behind explored currently.  

The in silico screening works on the principle that the hydrophobic core and electrostatic 

predictor data is not affected by the local residues at other positions (while also assuming 

that the helical contributions of residues remain constant regardless of location within the 

helix). As has been shown, the selection of similarly charged residues to form a “solid 

charge block” has been a pattern within isCAN and the potential intra-helical effects on 

stability may contribute to the discrepancy seen within Tm data. 

Although this is the case, the work covered in the last 2 chapters has shown that the 

underlying methodology is sound and has allowed for the selection of sequences that favour 

the desired dimer state and disfavour the multiple off-target possibilities.  

In this way, it is likely that further training of the algorithm to include sequences developed 

since its inception would result in different weighting given to the predictors through altered 

coefficient values. 

Similarly to elongation, truncation of peptides has not been adequately explored in the 

context of bCIPA-based screening. As it is thought that the loss of both length and inter-

helical interactions would decrease the accuracy of the approach, further work would be 

possible to look at the effect of helix stabilisation – thereby removing one of the predictors 

from the bCIPA calculation. 
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CHAPTER 6 - COMBINING CONSTRAINED 

HEPTAPEPTIDE CASSETTES WITH 

COMPUTATIONAL DESIGN TO CREATE 

COILED-COIL TARGETING HELICAL 

PEPTIDES 

 

 

 

 

 

Reproduced with permission from: 

Lathbridge, A., and Mason, J. M. (2019) Combining Constrained Heptapeptide 

Cassettes with Computational Design To Create Coiled-Coil Targeting Helical 

Peptides. ACS Chemical Biology 14 (6), 1293-1304 
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Combining Constrained Heptapeptide Cassettes with
Computational Design To Create Coiled-Coil Targeting Helical
Peptides
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ABSTRACT: A total of 32 heptapeptides have been
synthesized and characterized to establish the effect of K →
D (i → i + 4) lactamization upon their ability to adopt a
helical conformation. Because most parallel and dimeric
coiled-coil sequences can be deconvoluted into gabcdef
repeats, we have introduced fixed solvent exposed b → f (K
→ D) constraints into this design scaffold. Interfacial “a”
hydrophobic (L/I/V/N) and “e/g” electrostatic (E/K) options (4 × 2 × 2 = 16 cassettes) were introduced as core drivers of
coiled-coil stability and specificity. All present as random coils when linear but adopt a helical conformation upon lactamization.
Helicity varied in magnitude from 34 to 68%, indicating different levels of constraint tolerance within the context of a sequence
required to be helical for function. Using the oncogenic transcription factor cJun as an exemplar, we next utilized our bCIPA
coiled-coil screening engine to select four cassettes of highest predicted affinity when paired with four gabcdef cassettes within
the full-length cJun target counterpart (164 = 65 536 combinations). This information was coupled with observed helicity for
each constrained cassette to select for the best balance of predicted affinity when linear and experimentally validated helicity
when constrained. As a control, the same approach was taken using cassettes of high predicted target affinity but with lower
experimentally validated helicity. The approach provides a novel platform of modular heptapeptide cassettes experimentally
validated and separated by helical content. Appropriate cassettes can be selected and conjugated to produce longer peptides, in
which constraints impart appropriate helicity such that a wide range of targets can be engaged with high affinity and selectivity.

I t is very difficult to establish if a given peptide sequence will
tolerate a helix-inducing constraint, meaning that their

introduction into peptide sequences toward the goal of
imparting helicity, and ultimately increased target affinity, is
largely a trial-and-error process.1 However, it has long been
known that peptides of less than 15 residues (1−4 helical
turns) are unable to independently form thermodynamically
stable α-helices in water.2 Longer helices form due to a
sequential development of intrastrand hydrogen bonds,
propagating from a N-terminal folding nucleus toward the C-
terminus.3 This process is interrupted within short synthetic
sequences as water molecules compete with the C=O:H−N
interactions of the peptide backbone, meaning that the
formation of the helix becomes energetically less favorable,
because the entropic cost associated with folding increases.4

Helical stabilization of shorter peptides is therefore an area of
intense interest, particularly in protein−protein interactions
where biological activity is mediated by helicity.5 Multiple
methods to modify peptides to increase their stability have
been explored, including hydrogen bond surrogates,6,7 triazole
linkers,8 hydrocarbon staples,4 double-click linkers,9,10 lactam
bridges,2,9−12 and other techniques based on macrocyclization
chemistries.9,10

Of all helix-inducing constraints currently available, lactam-
ization is a particularly powerful approach to increasing the

stability of short helical peptides. It is an example of side-chain
stapling, in which, for example, a peptide bond can be formed
between Lys and Asp residues. By coupling amine and
carboxylate containing side-chains at residues spaced four
residues apart (i → i + 4 configuration), the constraint is able
to function such as to complement that of the hydrogen bonds
found in native α-helices.4,5,9,13 Although successful lactamiza-
tion of small peptides has been observed,11,14−17 there is still a
lack of comparative data on tolerance with respect to longer
peptide sequences, and consequent designs that can be
implemented toward practical usage. Our group have adopted
a strategy of K → D lactamization, because this has been
shown to be the most potent inducer of α-helicity in short
peptide sequences relative to alternative approaches.2

Here we describe a technique that combines computational
design18−22 with single-heptad lactamization to form stable and
functional coiled-coil peptides. We are primarily focused on
the comparison of i → i + 4 (K → D) lactamization tolerance
within individual heptad cassettes corresponding to coiled-coil
sequences. This is toward a major goal of increasing helicity
conferred upon parental sequences, in which heptad repeats
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are contained, thus avoiding a trial-and-error search for
constraints that will be tolerated or that, more importantly,
will impart helicity. We are additionally interested in
combining the most promising lactamized heptads to form
longer peptides, in which they are tolerated. Previous studies of
helicity imposed by lactamization of pentapeptides have shown
that this has the potential to be used as a generalized
approach.12 We have previously demonstrated the bZIP Coiled
coil Interaction Prediction Algorithm (bCIPA) to be a valuable
tool in the design of peptides that can antagonize coiled-coil
interactions involved in the formation of basic leucine zippers
(bZIPs).18,21,22 Here we describe the combination of computa-
tional and experimental techniques toward investigating the
ability to generate helically constrained heptads. These are
then applied toward the larger goal of designing longer
constrained α-helices, in which the likelihood of achieving
increased helicity and more importantly, improved binding, is
increased. As a proof of concept, we explore the ability of
modular heptapeptide cassettes that are capable of interfering
with the native cJun coiled coil, relative to a counterpart that
despite computational selection, contains heptapeptide mod-
ules that are found to constrain poorly. Specifically, we seek to
address: (i) Does lactamization promote helicity in heptapep-
tide cassette sequences? (ii) Does the helicity imparted in any
given cassette vary according to the sequence? (iii) Are
cassettes are able to be conjugated into longer sequences while
retaining/improving helicity relative to linear counterparts?
(iv) Using an exemplar target, can such sequences be used to
promote increased target affinity relative to their linear
counterparts?

■ RESULTS AND DISCUSSION
There are a range of methodologies for constraining short
peptides into helical structures, but the most potent inducer of
helicity for short sequences has been shown to be K → D (i →
i + 4) lactamization.15,23 Lactamization has the added benefit
of introducing a very discrete change to the linear peptide
sequence; the constraint consists simply of a condensation
reaction between two naturally occurring side-chain sequences,
resulting in the formation of a peptide bond. Despite this, for a
given sequence, it can be very difficult to predict if a lactam
bridge will be tolerated, meaning that the process of their
introduction to impart increased helicity upon a peptide is trial
and error. Here we describe the first use of an approach that
seeks to synthesize and characterize modular cassettes with a
wide range of sequence-specific properties that are desired for
coiled-coil forming interactions, such that they can be sorted
into (i) those of experimentally validated high helicity and (ii)
those predicted to bind to an oncongenic coiled-coil target
sequence. The study provides the first set of modular cassettes
that can serve such a purpose, with a view to being able to
select the most appropriate balance of helicity and target
affinity, such that cassettes can be conjugated toward targeting
the cJun coiled-coil target.
Heptad Library Design.We have created a peptide library

consisting of seven residue sequences that correspond to one
heptad repeat of a coiled-coil motif (gabcdef; gaKALeD). In
this library, positions g and e, which are important in forming
electrostatic contacts within a coiled-coil sequence,24,25 were
semi-randomized to generate E/K options, with a view to
generating potential attractive and repulsive options with the
corresponding positions of the target. Similarly, the a position
corresponding to the core region within a coiled-coil sequence

was semi-randomized to generate L/I/V/N options. The c and
d positions were fixed as A and L, respectively, to impart
helicity and further core hydrophobicity that is characteristic of
the parallel dimeric coiled-coil motif.26 Each peptide was next
synthesized in both linear and lactamized form (b → f; K →
D), to probe for constraint tolerance and helical induction
(Figure 1). The options for each cassette therefore provided a

library of 16 constrained (g/a/e options; 2 × 4 × 2 = 16) and
16 linear heptapeptides with diverse electrostatic and hydro-
phobic characteristics. The options were provided to create a
series of modular peptides, generating the required electro-
static and hydrophobic contributions to binding with any
heptad counterpart within a defined target helix. In particular,
by confining electrostatic interactions between peptide and
target (i.e., gi − ei′+1) to the same gabcdef repeat, interactions
could be calculated completely independently during pre-
diction, and therefore, each cassette could be considered truly
modular. The final two solvent exposed positions (b and f; i →
i + 4 spacing) were chosen as the most appropriate positions to
constrain within each modular cassette while avoiding
potential interference with the binding interface.

Individual Cassette Helicity Measurements. Having
synthesized all 16 peptides as both linear and constrained
cassettes (see Figures S1−S4 for mass spectrometry data), we
next sought to establish the extent to which each adopted a
helical conformation upon introduction of the lactam
constraint (Figure 2). As expected, all 16 sequences adopted
a random coil confirmation in the absence of a lactam
constraint, with one characteristic minimum at ∼190 nm. In
contrast, all 16 cassettes adopted an α-helical conformation
upon introduction of the K → D constraint, with characteristic
minima at 208 and 222 nm. However, the extent to which each
of the 16 constrained cassettes adopted a helical conformation
varied widely, with values ranging from 34 to 68% helicity (eq
1). The helicity of peptides in both linear and constrained
format were next studied to establish the fractional helicity
(fH) gained in constrained form (Figure 3). In doing so, it was
found that no cassette in linear form exceeded 19% fH based
on the raw 222 nm signal (Figure S5 and Table 1), whereas
even the lowest lactamized peptide was 34% helical while
displaying a characteristic α-helical signature (Table 1 and
Figures 3 and S6). All cassettes exhibited helicity at 20 °C
when lactamized, with further thermal scans undertaken to
monitor the stability of the cassettes at 10 °C increments. At
the final scan of 90 °C, although loss of stability for all
lactamized cassettes was observed, all 16 presented an α-helical
signature with an average of 38% helicity, indicating that

Figure 1. Design of heptad cassette sequences. Peptide options are
semi-randomized around electrostatic positions g and e (x = Glu/Lys)
and core position a (y = Leu/Ile/Val/Asn). This illustrates the diverse
options available at the hydrophobic interface and the different charge
profiles available for electrostatic interactions. The lactam bridge
between b−f (K → D) is also shown.
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helicity is maintained at higher temperatures where no
structure would be expected for any linear counterpart.
Constrained peptides displayed characteristic 222/208 nm
minima, and consistent with lactamization, no cooperative
unfolding profile was observed. Moreover, after heating to 90
°C, each cassette returned to within 5% of the original signal
when incubated at 20 °C (Figure S6), indicating that any loss
of structure is fully reversible.
Predicting the Stability of Cassettes with Heptads

within cJun. To provide further evidence for the validity of
our approach, in parallel to measuring individual cassette
helicities, we used bCIPA to screen each of the 16 sequences
against individual gabcdef heptads within a cJun coiled-coil
target sequence. This was performed to provide a qualitative
ranking of the most appropriate cassette to take forward when
only considered as a linear heptad. bCIPA prediction is a useful
as a tool to gain understanding of the most appropriate core
and electrostatic options required for target stability as well as
for specificity of interaction, for instance, in avoiding
homodimerization over target interaction.20−22 Hence,
bCIPA aids in selecting which cassettes are most appropriate
for conjugation in targeting a coiled-coil sequence (i.e., which
are predicted to bind and adopt a conformation of high
helicity). These can then be taken forward for each given
heptad within a target sequence. Because bCIPA is trained and
validated on longer coiled-coil sequences, the values generated

are purely qualitative and are not treated as true Tm values. As
shown in Table 2, the bCIPA values generated have been
normalized to serve alongside helicity in predicting the most
appropriate balance of helicity and affinity for each heptad
within the target.

Combinational Design To Target cJun. Two four-
heptad peptides were created to target the coiled-coil region of
the oncogenic transcriptional regulator protein cJun. Using this
approach, cassettes were selected that when conjugated in
linear form were predicted to bind with high affinity to the
cJun target sequence (Figure 4). In particular, two peptides
were tested; one was predicted to contain cassettes that
constrain poorly and therefore impart poor helicity upon the
full-length peptide sequences (peptide 6−2−13−5; individual
cassette fH values = 36, 34, 47, and 41%, respectively, Table 2,
footnote c), and a second peptide, which was predicted to
contain cassettes that constrain well and impart high levels of
helicity upon the full-length peptide sequence (peptide 1−3−
16−7; individual cassette fH values = 45, 60, 55, and 68%,
respectively, Table 2, footnote b). Both peptides were selected
by using a combination of (i) normalized bCIPA values and
(ii) the fH of the lactamized cassettes (Table 2). Having
calculated fH for all 16 lactamized cassettes, each was next
individually screened against the first four heptads of cJun.
This permitted selection from 164 (65 536) possible unique
cassette arrangements to predict the most appropriate

Figure 2. CD spectra for cassettes 1−16. These are shown in both the linear (black) and lactamized (red) forms. Spectra were measured at 20 °C
at a total peptide concentration of 150 μM and presented as mean residue ellipticity (MRE). All experiments were performed in 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7). In all cases, the linear forms were characterized as having a random coil profilewith an
average 222/208 nm ratio of 0.24. The lactamized cassettes displayed more of a helical profilewith an average ratio of the signal at 222/208 nm
of 0.79.
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sequence for effective binding. Combining cassettes 1, 3, 16,
and 7 (Figure 4) led to the design of a constrained peptide
predicted to form both a stable α-helix (average cassette
helicity = 57%) but with the additional possibility of forming a
higher affinity coiled-coil with the target cJun, relative to the
linear counterpart (linear 1−3−16−7:cJun bCIPA predicted

Tm = 38 °C). As a control, cassettes were also conjugated,
which were similarly highly ranked according to the bCIPA
screening process. However, in contrast, these sequences were
experimentally validated to be of low isolated helicity (average
helicity = 39%, linear 6−2−13−5:cJun bCIPA predicted Tm =
41 °C). This resulted in a combination of cassettes 6, 2, 13,

Figure 3. Fractional helicity (fH) data for cassettes 1−16. (A) shows values calculated from the 222 nm value from circular dichroism scans at 20
°C. For each cassette, the cyclic (lactamized) form has increased helicity compared to the linear (black), with an average increase of 37.6%. The
ΔfH values (B) show that the largest increase in helicity was seen in cassette 16 (ΔfH = 50.6%), whereas the lowest increase in helicity was seen in
cassette 8 (ΔfH = 22.6%). Highlighted are the cassettes used in the full-length peptide (*) and those used in the control (+).

Table 1. Comparative Helicity of Cassettes 1−16a

aSequences for cassettes 1−16 are shown with linear and cyclic fH values (and the difference) as determined by circular dichroism at 20°C.
Cassettes with the highest (red) and lowest (blue) cyclic fH values are highlighted.
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and 5 (Figure 4). This permitted the comparison of two
sequences, both of which were predicted to engage with the
target as linear 28-mers (Figure 4). Computationally, both
peptides score very highly, with 6−2−13−5 computationally
ranked as #145 and 1−3−16−7 as #450both within the top
1% of the library of full-length peptides. Indeed, both

sequences contain the same net favorable electrostatic
contribution (see below) and comparable core contributions
as well as Asn residues at position a3 to promote asymmetric
side-chain−side-chain hydrogen bonding with the correspond-
ing Asn in the cJun partner strand.26,27 However, while 1−3−
16−7 was expected to lactamase well and translate into
improved binding, 6−2−13−5 was expected to lactamase
poorly leading to a lower gain of coiled-coil stability. During
the design process, eight unique cassettes were selected to
avoid duplication of any modules and to widen the potential
understanding of each cassette use in combination. Both
sequences, 1−3−16−7 (YEIKALED-ELKALED-KNKALKD-
EIKALKD) and 6−2−13−5 (YKVKALED-KIKALED-EN-
KALED-EVKALED), were synthesized with a Tyr at the N-
terminus for quantification by UV absorbance. Both sequences
terminate at the f-position of the fourth heptad (Figure 4) and
contained two lactam bridgesone at either termini. As
helicity is thought to propagate from the N-terminus to the C-
terminus,3 stabilization via heptads 1 and 4 was predicted to
promote overall helicity toward heptads 2 and 3 at the helix
interior. In contrast to previous work,18,21,22,28 the 29-mers
were not capped with helicity promoting residues (AS at N-
terminus and GAP at the C-terminus) to further probe the
effect of lactamization in directly promoting helicity.
Upon inspection of the helical wheels (Figure 4), a pattern

of electrostatically favorable and unfavorable interactions was
observed. As selected by bCIPA, as a potential homodimer
peptide 1−3−16−7 displayed six repulsive electrostatic
interactions (four Glu−Glu and two Lys−Lys) and only two
attractive interactions (two Glu−Lys). In the 6−2−13−5
control, four repulsive and four attractive interactions are
present. As potential heterodimers with cJun, both peptides
contain four favorable and one unfavorable interaction. As
discussed previously,22 cJun contains Gln and Ala at the g3 and
e3 positions. The a3−a3′ was chosen to generate an Asn−Asn

Table 2. Selection of Cassettes for Conjugationa

RIARLEE KVKTLKA QNYELAS TANMLRE

heptad 1 heptad 2 heptad 3 heptad 4

cassette
heterodimer Tm

(°C)
helicity
(%) cassette

heterodimer Tm
(°C)

helicity
(%) cassette

heterodimer Tm
(°C)

helicity
(%) cassette

heterodimer Tm
(°C)

helicity
(%)

2 31.1 34.4% 1 47.2 45.0% 1 12.5 45.0% 3 27.6 60.3%
6c 29.8 35.9% 3b 44.8 60.3% 7 10.7 67.5% 1 24.7 45.0%
4 28.7 35.3% 5 40.6 41.4% 3 10.2 60.3% 5c 23.4 41.4%
1b 25.8 45.0% 2c 33.4 34.4% 13c 8.7 46.7% 9 23.4 57.0%
5 24.5 41.4% 7 33.4 67.5% 9 8.4 57.0% 7b 20.5 67.5%
3 23.4 60.3% 4 31.0 35.3% 2 8.4 34.4% 11 19.2 62.2%
8 19.8 41.1% 9 31.0 57.0% 15 6.9 49.1% 4 16.2 35.3%
12 18.5 48.7% 13 27.5 46.7% 8 6.6 41.1% 13 15.5 46.7%
10 17.4 47.4% 11 26.9 62.2% 4 6.0 35.3% 2 13.3 34.4%
14 16.7 44.8% 6 26.9 35.9% 5 6.0 41.4% 10 12.0 47.4%
7 14.4 67.5% 8 19.7 41.1% 14 4.5 44.8% 6 12.0 35.9%
11 13.1 62.2% 10 17.3 47.4% 10 4.2 47.4% 15 11.3 49.1%
9 12.0 57.0% 14 13.7 44.8% 11 4.2 62.2% 8 9.1 41.1%
13 11.3 46.7% 15 13.7 49.1% 16b 2.7 55.1% 12 7.8 48.7%
16 5.4 55.1% 12 13.1 48.7% 6 1.8 35.9% 14 4.2 44.8%
15 0.0 49.1% 16 0.0 55.1% 12 0.0 48.7% 16 0.0 55.1%

aHeptads 1−4 of cJun (listed in top row) have been predicted against each of the cassettes, alongside the helicity of the lactamized forms from
circular dichroism. The bCIPA heterodimer values (cassette−cJun) have been normalized to account for all values <0. For heptad 3, the only
cassettes considered were 13−16 (since they contain Asn at the a position). Cassettes were chosen sequentially, and no cassette was selected
multiple times. In total, 164 cassette combinations were possible leading to 65 536 potential peptide sequences. bCassettes chosen for the full-length
alpha helix. cCassettes chosen for the full-length control peptide, chosen by the predicted Tm alone.

Figure 4. Design of lactamized sequences. Shown are 1−3−16−7 (A)
and control 6−2−13−5 (B). In both cases, cassettes were chosen
independently of one another. For 1−3−16−7, considering the
cassettes in isolation, there is a mixture of electrostatically repulsive
(cassette 1), favorable (cassette 3), and nonoptimal (cassette 16). For
heptad 3 (C), the Asn−Asn interaction has been selected for at the
core. For 6−2−13−5, there is a mixture of electrostatically favorable
(cassette 6), partially favorable (cassettes 2, 5), and nonoptimal
(cassette 13). For heptad 3 (C), the Asn−Asn interaction has been
selected for at the core. (C) Sequences for peptides 1−3−16−7 and
6−2−13−5. The addition of a Tyr at the N-terminus creates a 29
residue peptide that starts at the f position and ends at the f position.
Highlighted in green are the cassettes that have Lys/Asp lactamization
(1 and 7/6 and 5).
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interaction for both sequences because of the favorable effect
of this interaction on specificity and on the oligomeric state.
Structural Stability of Terminally Lactamized Pep-

tides. An analysis of the global secondary structure of the full-
length linear and lactamized peptides was conducted, both in
isolation and in complex with with cJun. CD spectra showed
that 1−3−16−7 displayed high levels of helicity in both linear
(65.3%) and lactamized (71.4%) forms (Figure 5a). At 20 °C,
the stability of the two are comparable (ΔfH = 6.1%), with the
lactamized version displaying an improved helical signature
(222/208 nm ratio = 1.01). In contrast, the linear 6−2−13−5
peptide displays comparatively low helicity (Figure 5b, fH =
18.2%), increasing upon lactamization to display an improved
overall α-helical signature (222/208 nm = 0.69) but with little
change in overall helicity (fH = 20.4%).
Global secondary structure and stability was next monitored

by incubating peptides with cJun. At 20 °C, the linear form of
1−3−16−7 (Figure 6a) showed a helical profile (222/208 nm
= 0.87) with a fractional helicity greater than the average (fH =
55.2%) of the component peptides (ΔfH = 8%). For the
lactamized version (Figure 6b), the profile remained highly
helical (222/208 nm = 0.90) with helicity (fH = 52.0%)
negligibly greater than the average of the two component
peptides (ΔfH = 1.75%). In both the linear and lactamized
forms of 6−2−13−5 (Figure 7a,b), levels of helicity were
lower. The linear form incubated with cJun displayed no
increase in signal (ΔfH = 0.1%) relative to the component

peptides. Similarly, the lactamized form showed a level of
helicity (fH = 25%) similar to that of the average.

Thermal Denaturation Profiles. Having observed varying
levels of helicity between all peptides, CD thermal denatura-
tion experiments were next performed to establish the extent to
which the stability of the complexes changed upon
introduction of the constraints. In these experiments, the 222
nm signal was monitored at 1 °C increments from 0 to 90 °C.
For linear 1−3−16−7 in isolation (Figure 5C), an interaction
was observed (Tm = 29.1 °C), which upon lactamization led to
an increase in thermal stability (Tm = 67.0 °C). Moreover, the
signal persisted even at high temperatures, implying that the
lactamized form retains residual thermal stability relative to the
linear form. When in complex with cJun (Figure 6C,D), the
linear peptide exhibited an increase in Tm (34 °C), with the
lactamized form displaying a marked increase in thermal
stability over the average of the component peptides,
demonstrating that the lactamized form of the peptide is
able to preferentially bind cJun. The ΔTm (1−3−16−
7LAC:cJun − 1−3−16−7LIN:cJun) was found to be 23 °C,
demonstrating that dual lactamization is tolerated and
translates into increase target affinity.
For 6−2−13−5, both peptides displayed lower levels of

stability (Figure 7C,D), with Tm values unable to be derived
from the thermal melt profiles. Consistent with CD spectra,
this implies a much lower level of thermal stability in isolation.
However, upon incubation with cJun, the linear form displays
higher levels of heterodimeric thermal stability (Tm = 18.9 °C),

Figure 5. CD spectra and thermal denaturation data for linear and lactamized peptides in isolation. Shown are data for 1−3−16−7 (A,C) and 6−
2−13−5 (B,D). Spectra were measured at 20 °C at a total peptide concentration of 150 μM and presented as mean residue ellipticity (MRE). The
minima at 208 and 222 nm are indicative of a helical structure, with the 222/208 nm ratio of the lactamized 1−3−16−7 showing more structure
(222/208 nm = 1.01) than the linear (222/208 nm = 0.89). The lactamized 6−2−13−5 shows increased helical structure (222/208 nm = 0.69)
compared to the linear (222/208 nm = 0.44) This suggests that the addition of lactam bridges improves the α-helicity in both peptides. Thermal
denaturation profiles of linear and lactamized 1−3−16−7 (C) and 6−2−13−5 (D) peptides were taken using 1 °C increments and tracking the
222 nm signal at 150 μM. Lactamized 1−3−16−7 shows an increase in the transition midpoint with a Tm of 67.0 °C compared to the linear Tm of
29.1 °C. Lactamized 6−2−13−5 demonstrates a change* in the transition midpoint when in complex with cJun compared to the linear*. All
experiments were performed in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7). Where possible (C), data were fitted to the
two-state model.
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which is increased upon lactamization (Tm = 29.2 °C). The
ΔTm (6−2−13−5LAC:cJun − 6−2−13−5LIN:cJun) was found
to be 10 °C. Overall this suggests that, as reflected in the lower
levels of helicity relative to 1−3−16−7LAC:cJun (fH = 25 vs
52%), the constraint is less well tolerated. Moreover, this
consequently translates into a lower overall improvement in
target affinity relative to the linear counterpart. Figure 8
highlights the relevance of these modular designs in the wider
scheme of engineered peptides that can tolerate constraints
and that lead to a demonstrable increase in target affinity for a
defined coiled-coil target. As previously discussed,22 there are
indirect parallels that can be drawn based on Tm. Previous
isothermal calorimetry work characterizing the biophysical
properties of peptides demonstrated a FosW−cJun interaction
KD value of 39 nM,29 which displayed a thermal stability
similar to that of the lactamized 1−3−16−7 (Tm = 63 °C).
Similarly, the 1−3−16−7LAC:cJun complex reported the same
helicity (fH = 52%) and a similar Tm and KD to that of cFos-24
(Tm = 58 °C; KD of 7.25 μM).30 The comparative values
provide a broad understanding of enhanced structural stability
displayed in lactamized complexes and demonstrate the
potential impact lactamization may have on biophysical
properties and the ability to predict such properties based
upon modular design and experimental validation.
Helix Nucleation. The folding of the α-helix is due in large

part to the stabilization conferred by sequential i → i + 4
hydrogen bonds. Moreover, α-helices display an overall dipole
moment with a pair of terminal microdipoles because of a lack

of intrahelical hydrogen bonds at the termini. In particular,
unsatisfied hydrogen bonding by the first four >N−H groups at
the N-terminus can lead to a partial positive charge (δ+).
Similarly the last four >CO groups at the C-terminus can
lead to a partial negative charge (δ−).31 Instead, these groups
are often capped by alternative hydrogen bond partners that
are provided by helix-capping motifs.32 It is therefore generally
accepted that charge−macrodipole interactions can play a
small role in enhancing the stability of a helixwith negatively
charged residues at the N-terminus and positively charged
residues at the C-terminus that can counter the effects of the
dipole. As highlighted in Figure 4, the designs of our full-length
α-helix could be optimized to counter the dipole. For peptide
1−3−16−7, Glu was introduced at the N-terminus and Lys at
the C-Terminus. However, the control peptide (6−2−13−5)
did not provide charge complementarity for the helix
macrodipole, containing a Lys at the N-terminus and Glu at
the C-terminus. The former peptide is more stable than the
latter (either as a homomer or in complex with cJun). Coupled
with constraints that are less well tolerated in individual
cassettes for the control sequence (average helicity of
component cassettes = 57% vs 38%), this suggests that charge
stabilization at both termini, even with addition of less well
tolerated constraints, could be another influencing factor.
Coupling the structural stability lactam bridges confer with
favorable terminal residues may therefore represent another
way to introduce additional target affinity into the peptide.

Figure 6. CD spectra and thermal denaturation data for linear and lactamized 1−3−16−7 with cJun. Shown are data for the 1−3−16−7 peptide in
the linear (A,C) and lactamized (B,D) forms in complex with cJun. Spectra were measured at 20 °C at a total peptide concentration of 150 μM and
presented as mean residue ellipticity (MRE). The minima at 208 and 222 nm are indicative of a helical structure, with the 222/208 nm ratio of the
linear peptide with cJun showing a similar structure (222/208 nm = 0.87) to the homomeric complex (222/208 nm = 0.89). The lactamized form
displays a decreased helical structure (222/208 nm = 0.90) compared to the homomeric state (222/208 nm = 1.01). Thermal denaturation profiles
of homomeric 1−3−16−7 and that in complex with cJun (C,D) were measured using 1 °C increments and tracking the 222 nm signal at 150 μM.
Linear 1−3−16−7 displays an increase in the transition midpoint when in complex with cJun (C), with a Tm of 34 °C compared to the homomer
(Tm = 29.1 °C). Lactamized 1−3−16−7 demonstrates a decrease in the transition midpoint, with a Tm value of 57.2 °C when in complex with cJun
compared to the homomer Tm of 67 °C (cJun Tm = 25.8 °C). All experiments were performed in 10 mM potassium phosphate and 100 mM
potassium fluoride (pH 7). Where possible (D), data were fitted to the two-state model.
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Sequence-Specific Helicities. As a result of the limited
randomization and size of the cassette library, there exists an
opportunity to further study the effects of the different
sequence combinations from the perspective of helical stability.
Despite focusing on peptides longer than 10 residues, the idea
of sequence-specific stability (in the context of positions g/e)
has been discussed previously.20 The presence of N-terminal
Glu and C-terminal Lys might have been expected to lead to
the highest helicity values with every different core options. As
is shown in Figure 9, there does appear to be a pattern within
the library. For each of the four core options, it would be
expected that the Glu/Lys selection (with a positively charged
C-terminus) would yield stability similar to that of the peptide
1−3−16−7. This is partially correct as, regardless of the core
arrangement, the E/K cassettes display the highest (Ile/Val) or
second highest (Leu/Asn) helicities. When observing the Ile/
Leu/Val library members, this electrostatic arrangement
resulted in cassettes with helicities 10−23% higher than the
next most stable. In the case of Asn, the helicity values are far
more similar, with a difference of 10% between the four. In this
case, the polarity of the core Asn appears likely to be
influencing the effect that these terminal charged residues
usually impart upon the macrodipole and therefore upon
helicity. When considering the inverse, the lowest helicity
cassettes are those with Lys at the N-terminus and Glu at the
C-terminus. This is logical when considering the arguments

proposed previously regarding the helix macrodipole within
the 29-mer.

Conclusion. We have demonstrated that modular gabcdef
heptad cassettes can be lactamized via side-chain to side-chain
K → D (i → i + 4) bridges as a mechanism to impart high
helicity upon otherwise unstructured sequences. We have
shown that although all of the sequences adopt helical
conformations, the fractional helicity observed varies in
magnitude from 34 to 68% across the 16 lactamized cassettes.
It was therefore possible to use the cassettes to create a library
that can be conjugated into four repeats (164 = 65 536 possible
combinations) toward creating coiled-coil antagonists. Fur-
thermore, we utilized the bCIPA library screening algorithm
(http://people.bath.ac.uk/jm2219/biology/iscan.zip) as a
means to select peptides that (i) best engage with a heptad
counterpart within a target helix and (ii) have a low tendency
to self-associate.
Conjugating individual cassettes of high measured helicity

(1, 3, 16, 7 = 45, 60, 55, 68% respectively) into a longer
sequence constrained by terminal lactams was shown to impart
further helicity (fH = 65% linear vs 71% lactamized), which
consequently translated into an increased Tm with the cJun
target (34 °C linear vs 57 °C lactamized). In contrast, a control
sequence in which component cassettes were known to
lactamized comparatively poorly (6, 2, 13, 5 = 36, 34, 47,
41%), was lactamized at the termini with only a negligible gain
in helicity observed (fH = 18% linear vs 20% lactamized),

Figure 7. CD spectra and thermal denaturation data for linear and lactamized 6−2−13−5 with cJun. Shown are data for the 6−2−13−5 peptide in
the linear (A,C) and lactamized (B,D) forms in complex with cJun. Spectra were measured at 20 °C at a total peptide concentration of 150 μM and
presented as mean residue ellipticity (MRE). The minima at 208 and 222 nm are indicative of various levels of helical structure, with the 222/208
nm ratio of the linear peptide with cJun showing increased structure (222/208 nm = 0.60) to the homomeric complex (222/208 nm = 0.44). The
lactamized form shows increased structure (222/208 nm = 0.74) compared to the homomeric state (222/208 nm = 0.69). This implies that the
addition of cJun increased the helicity of the lactamized and linear peptide. Thermal denaturation profiles of homomeric 6−2−13−5 and that in
complex with cJun (C,D) were taken using 1 °C increments and tracking the 222 nm signal at 150 μM. Linear 6−2−13−5 shows an increase in the
transition midpoint when in complex with cJun (C), demonstrating a Tm of 18.9 °C compared to the homomer*. Lactamized 6−2−13−5
demonstrates an increase in the transition midpoint, with a Tm value of 29 °C when in complex with cJun compared to the homomer*. All
experiments were performed in 10 mM potassium phosphate and 100 mM potassium fluoride (pH 7). Where possible (D), data were fitted to the
two-state model. *Denaturation profiles for homomeric 6−2−13−5 (linear and lactamized) were unable to be fit.
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which translated into only a modest gain in Tm with the cJun
target (19 °C linear vs 29 °C lactamized).
Because all cassettes exhibited increased helicity when

lactamized, this poses an interesting question regarding the
ability of certain sequences to adopt a more helical
conformation than others (Figures 3 and 9). Because the
possible permutations within the 16 peptides were limited,
there a limit to the information that can be drawn in terms of
electrostatic and core configuration that optimize the stability
of the cassettes. However, the placement of Glu at the N-
terminal g position appears to impart increased helicity over all

other options unless Asn resides at the core a position. The
placement of Lys at the C-terminal e position appears to be less
influential on its own but does complement the placement of
an N-terminal Glu at the g position. Placement of Lys at the g
position and Glu at the e position results in the lowest helical
values of all cassettes but is tempered slightly by the placement
of Asn at the a position. With more data, this presents an
opportunity to optimize computational techniques employed
for prediction. As previously shown,22 bCIPA is capable of
being trained on a specific subset of coiled-coil forming
sequences. With further experimental exploration of the

Figure 8. Comparison of the full-length peptides. The Tm of lactamized 1−3−16−7 was 67 °C as a homomer and 57.2 °C in complex with cJun. x
indicates an inability to determine a Tm from the melt profile and represents a low stability complex.

Figure 9. Analysis of individual cassette composition demonstrates stability to be sequence-specific. Across the library, a Lys/Glu combination at
positions g/e results in decreased helicity (e.g. cassettes 2/4/6). Conversely, the selection of Glu/Lys at these positions results in higher levels of
helicitywith a delta of 10−23% between cassettes 7/9/11 and the next most stable cassettes. Asn containing cassettes exhibited similar patterns,
although the differences between helicity values within the four cassettes was shown to be minimal (a delta of 10% within C13−16).
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cassette library, reflecting other cassette types observed within
natural coiled coils, it will be possible to extract more helical
predictors toward developing a more robust prediction
algorithm that can specifically consider lactamized peptides.
For instance, further interrogation of the system could involve
expanding the cassette library to include residues with larger
side-chains or side-chains which have been previously shown
to be nonoptimal at certain sequence positions in the design of
α-helical peptides. In this study, we have probed the ability of
given coiled-coil sequences to tolerate the introduction of K →
D lactam bridges between solvent exposed b and f residues.
Once established that lactams are tolerated, then the precise
level of helical induction can be calculated. However, the
assumption that molecules with increasingly higher helicity
might better form coiled coils is an oversimplification.29,30,33

Rather, there is likely a limit to the entropy value of
preorganizing a helical structure. Above a certain threshold
helicity, conformational entropy may serve to oppose coiled-
coil formation,34 perhaps reflecting the need for some residual
helix flexibility to enable the distortion necessary for
supercoiling.35,36

The properties of cassettes with high levels of stability in
comparison to others will allow further understanding of the
rules, by which b → f lactamization imparts helicity. As further
experimental data is acquired, computational techniques
employed in the selection of cassettes for specific functions
will be refined. These “off-the-shelf” sequences can be
combined with computational screening and applied to a
wide range of parallel dimeric coiled-coil dimerization domains
as a generalized method to ablate or even agonize the function
of many different PPIs in which coiled coils are found.

■ MATERIALS AND METHODS
bCIPA Peptide Library Screening. bCIPA screening was

performed as described previously.22 Briefly, individual sequences of
cassettes were calculated as homodimers and with the cJun target
sequence using software based on the bCIPA algorithm.28 Thermal
denaturation (Tm) values were normalized. Rink amide ChemMatrix
resin was obtained from PCAS Biomatrix, Inc. (St.-Jean-sur-Richelieu,
Canada); Fmoc L-amino acids and 2-(1H-benzotriazole-1-yl)-1,1,3,3-
tetra-methyluronium hexafluorophosphate (HBTU) or benzotriazol-
1-yl-ox-ytripyrrolidinophosphonium hexafluorophosphate (PyBOP)
were obtained from AGTC Bioproducts (Hessle, UK). All other
reagents were of peptide synthesis grade and obtained from Thermo
Fisher Scientific (Loughborough, UK). Peptides were synthesized on
a 0.1 mmol scale on a PCAS ChemMatrix Rink amide resin using a
Liberty Blue microwave peptide synthesizer (CEM; Matthews, NC)
employing Fmoc solid-phase techniques37 with repeated steps of
coupling, deprotection, and washing (4 × 5 mL dimethylformamide).
Coupling was performed as follows: Fmoc amino acid (5 equiv),
HBTU or PyBOP (4.5 equiv), and diisopropylethylamine (10 equiv)
in dimethylformamide (5 mL) for 5 min with 35 W microwave
irradiation at 90 °C. Deprotection was performed as follows: 20%
piperidine in dimethylformamide for 5 min with 30 W microwave
irradiation at 80 °C. Following synthesis, peptides were acetylated
using acetic anhydride (3 equiv) and diisopropylethylamine (4.5
equiv) in dimethylformamide (2.63 mL) for 20 min. Deprotection of
acid labile Asp(oPip) and Lys(Mtt) side-chain-protecting groups was
achieved by repeated washing of the resin in dichloromethane,
followed by repeated washes in dichloromenthane (2% TFA),
dichloromethane, and finally dimethylformamide. Resin was next
incubated for 7 h at 55 °C in 2-(1H-benzotriazole-1-yl)-1,1,3,3
tetramethyluronium hexafluorophosphate (1 mL), diisopropylethyl-
amine (1 mL), and dimethylformamide (3 mL). Resin was filtered
and cleaved from the resin with concomitant removal of side-chain-
protecting groups by treatment with a cleavage mixture (10 mL)

consisting of TFA (95%), triisopropylsilane (2.5%), and H2O (2.5%)
for 4 h at RT. Suspended resin was removed by filtration, and the
peptide was precipitated using three rounds of crashing in ice-cold
diethyl ether, vortexing, and centrifuging. The pellet was then
dissolved in 1:1MeCN/H2O and freeze-dried. Purification was
performed by RP-HPLC using a Phenomenex Jupiter Proteo (C18)
reverse-phase column (4 μm, 90 Å, 10 mm inner diameter × 250 mm
long). Eluents used were as follows: 0.1% TFA in H2O (a) and 0.1%
TFA in ACN (b). The peptide was eluted by applying a linear
gradient (at 3.5 mL/min) of 5−95% B over 50 min. Fractions
collected were examined by electrospray MS, and those found to
contain exclusively the desired product were pooled and lyophilized.
Analysis of the purified final product by RP-HPLC indicated a purity
of >95%.

Peptide Quantification. Peptide concentrations were deter-
mined in ddH20 or CD buffer (10 mM potassium phosphate and 100
mM potassium fluoride, pH 7) against the appropriate blank using the
280 nm absorbance maxima of the Tyr residue within each peptide
(1209 M−1 cm−1). Prior to each measurement, samples were
centrifuged at 13 000 rpm for 2 min to ensure that only soluble
peptide was quantified. During this step, no precipitate was observed,
indicating that all peptides displayed high levels of solubility.
Measurements were taken using a Varian Cary 50 Conc UV
Spectrophotometer using a 1 cm path length quartz cell.

Circular Dichroism. CD was carried out using an Applied
Photophysics Chirascan CD Apparatus (Leatherhead, UK) using a
200 μL sample in a CD cell with a 1 mm path length. Samples
contained 150 μM total peptide (Pt) concentration at equimolar
concentration for heterodimeric solutions (i.e., 75 μM per peptide)
and suspended in 10 mM potassium phosphate and 100 mM
potassium fluoride at pH 7 for 30 min prior to analysis. The CD
spectra of samples were scanned between 300 and 190 nm in 1 nm
steps, averaging 0.5 s at each wavelength. Three scans at 20 °C were
averaged to assess helical levels and CC structure. For thermal scans,
spectra were scanned as above in 10 °C steps from 20 to 90 °C. Each
temperature point was held for 1 min to equilibrate sample before
scanning. Raw data (ellipticities) were collected and averaged, and
data were converted to molar residue ellipticities (MRE).

All spectral data was converted to fractional helicity (fH) values
according to the equation
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where the wavelength-dependent constant k = 2.4 (at 222 nm), Nr =
number of residues, and T = temperature (°C).

Thermal Denaturation. Thermal denaturation experiments were
performed at 150 μM in a buffer of 10 mM potassium phosphate and
100 mM potassium fluoride at pH 7 using an Applied Photophysics
Chirascan Circular Dichroism Spectrometer. For all thermal
denaturation experiments involving longer peptides, a stepping
gradient was applied from 0 to 90 °C using 1 °C increments. Each
temperature point was held for 30 s to equilibrate the sample before
measuring ellipticity at 222 nm. Melting profiles were converted to
equilibrium denaturation curves and fitted using a two-state model,
derived via modification of the Gibbs−Helmholtz equation to yield
the melting temperature (Tm).

28

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acschem-
bio.9b00265.

ACS Chemical Biology Articles

90



Table S1. Electrospray mass spectrometry data of linear
and lactamized peptides; Table S2. Helical and thermal
stability of linear and lactamized peptides; Figure S1.
Electrospray mass spectrometry data from the purified
cassettes 1−4; Figure S2. Electrospray mass spectrom-
etry data from the purified cassettes 5−8; Figure S3.
Electrospray mass spectrometry data from the purified
cassettes 9−12; Figure S4. Electrospray mass spectrom-
etry data from the purified cassettes 13−16; Figure S5.
Thermal spectra for cassettes 1−16 in linear form;
Figure S6. Thermal spectra for cassettes 1−16 in
lactamized form; Figure S7. Electrospray mass spec-
trometry data from the purified full-length 1−3−16−7;
Figure S8. Electrospray mass spectrometry data from the
purified full-length 6−2−13−5 (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: j.mason@bath.ac.uk. (J.M.M.)
ORCID
Jody M. Mason: 0000-0002-4118-1958
Author Contributions
A.L. conducted experiments and synthesized, purified, and
characterized peptides and cJun. J.M.M. directed the research.
Both authors participated in experimental design, analysis of
the data, and writing of the paper.
Notes
The authors declare the following competing financial
interest(s): J.M.M. is an advisor to Sapience Therapeutics.
A.L. has no financial or commercial conflict to declare.

■ ACKNOWLEDGMENTS
J.M. and A.L thank the University of Bath for a Studentship.
J.M. is also grateful to Cancer Research UK (A11738 and
A26941) and to the BBSRC (BB/R017956/1) and EPSRC
(EP/M001873/1).

■ REFERENCES
(1) Walensky, L. D., and Bird, G. H. (2014) Hydrocarbon-Stapled
Peptides: Principles, Practice, and Progress. J. Med. Chem. 57, 6275−
6288.
(2) De Araujo, A. D., Hoang, H. N., Kok, W. M., Diness, F., Gupta,
P., Hill, T. A., Driver, R. W., Price, D. A., Liras, S., and Fairlie, D. P.
(2014) Comparative α-helicity of cyclic pentapeptides in water.
Angew. Chem., Int. Ed. 53, 6965−6969.
(3) Acharyya, A., Ge, Y., Wu, H., DeGrado, W. F., Voelz, V. A., and
Gai, F. (2019) Exposing the Nucleation Site in α-Helix Folding: A
Joint Experimental and Simulation Study. J. Phys. Chem. B 123, 1797.
(4) Verdine, G. L., and Hilinski, G. J. (2012) Stapled Peptides for
Intracellular Drug Targets. Methods Enzymol. 503, 3−33.
(5) Tan, Y. S., Lane, D. P., and Verma, C. S. (2016) Stapled peptide
design: principles and roles of computation. Drug Discovery Today 21,
1642−1653.
(6) Pal, S., and Prabhakaran, E. N. (2018) Hydrogen bond surrogate
stabilized water soluble 310-helix from a disordered pentapeptide
containing coded α-amino acids. Tetrahedron Lett. 59, 2515−2519.
(7) Patgiri, A., Jochim, A. L., and Arora, P. S. (2008) A Hydrogen
Bond Surrogate Approach for Stabilization of Short Peptide
Sequences in α-Helical Conformation. Acc. Chem. Res. 41, 1289−
1300.
(8) Estieu-Gionnet, K., and Guichard, G. (2011) Stabilized helical
peptides: overview of the technologies and therapeutic promises.
Expert Opin. Drug Discovery 6, 937−963.

(9) Lau, Y. H., De Andrade, P., Wu, Y., and Spring, D. R. (2015)
Peptide stapling techniques based on different macrocyclisation
chemistries. Chem. Soc. Rev. 44, 91−102.
(10) Pelay-Gimeno, M., Glas, A., Koch, O., and Grossmann, T. N.
(2015) Structure-Based Design of Inhibitors of Protein-Protein
Interactions: Mimicking Peptide Binding Epitopes. Angew. Chem.,
Int. Ed. 54, 8896−8927.
(11) Shepherd, N. E., Hoang, H. N., Abbenante, G., and Fairlie, D.
P. (2005) Single turn peptide alpha helices with exceptional stability
in water. J. Am. Chem. Soc. 127, 2974−2983.
(12) Shepherd, N. E., Abbenante, G., and Fairlie, D. P. (2004)
Consecutive cyclic pentapeptide modules form shortalpha-helices that
are very stable to water and denaturants. Angew. Chem., Int. Ed. 43,
2687−2690.
(13) Tala, S. R., Schnell, S. M., and Haskell-Luevano, C. (2015)
Microwave-assisted solid-phase synthesis of side-chain to side-chain
lactam-bridge cyclic peptides. Bioorg. Med. Chem. Lett. 25, 5708−
5711.
(14) Harrison, R. S., Shepherd, N. E., Hoang, H. N., Ruiz-Gomez,
G., Hill, T. A., Driver, R. W., Desai, V. S., Young, P. R., Abbenante, G.,
and Fairlie, D. P. (2010) Downsizing human, bacterial, and viral
proteins to short water-stable alpha helices that maintain biological
potency. Proc. Natl. Acad. Sci. U. S. A. 107, 11686−11691.
(15) Hoang, H. N., Driver, R. W., Beyer, R. L., Hill, T. A., de Araujo,
A. D., Plisson, F., Harrison, R. S., Goedecke, L., Shepherd, N. E., and
Fairlie, D. P. (2016) Helix Nucleation by the Smallest Known α-Helix
in Water. Angew. Chem., Int. Ed. 55, 8275−8279.
(16) Hoang, H. N., Song, K., Hill, T. A., Derksen, D. R., Edmonds,
D. J., Kok, W. M., Limberakis, C., Liras, S., Loria, P. M., Mascitti, V.,
Mathiowetz, A. M., Mitchell, J. M., Piotrowski, D. W., Price, D. A.,
Stanton, R. V., Suen, J. Y., Withka, J. M., Griffith, D. A., and Fairlie, D.
P. (2015) Short hydrophobic peptides with cyclic constraints are
potent glucagon-like peptide-1 receptor (GLP-1R) agonists. J. Med.
Chem. 58, 4080−4085.
(17) Seebach, D., and Fadel, A. (1985) N,O-Acetals from
Pivalaldehyde and Amino Acids for the?-Alkylation with Self-
Reproduction of the Center of Chirality. Enolates of 3-Benzoyl-2-
(tert-butyl)-1,3-oxazolidin-5-ones. Helv. Chim. Acta 68, 1243−1250.
(18) Mason, J. M., Schmitz, M. A., Muller, K. M., and Arndt, K. M.
(2006) Semirational design of Jun-Fos coiled coils with increased
affinity: Universal implications for leucine zipper prediction and
design. Proc. Natl. Acad. Sci. U. S. A. 103, 8989−8994.
(19) Hagemann, U. B., Mason, J. M., Müller, K. M., and Arndt, K.
M. (2008) Selectional and Mutational Scope of Peptides Sequestering
the Jun-Fos Coiled-Coil Domain. J. Mol. Biol. 381, 73−88.
(20) Crooks, R. O., Baxter, D., Panek, A. S., Lubben, A. T., and
Mason, J. M. (2016) Deriving Heterospecific Self-Assembling
Protein-Protein Interactions Using a Computational Interactome
Screen. J. Mol. Biol. 428, 385−398.
(21) Crooks, R. O., Lathbridge, A., Panek, A. S., and Mason, J. M.
(2017) Computational Prediction and Design for Creating Iteratively
Larger Heterospecific Coiled Coil Sets. Biochemistry 56, 1573−1584.
(22) Lathbridge, A., and Mason, J. M. (2018) Computational
Competitive and Negative Design to Derive a Specific c Jun
Antagonist. Biochemistry 57, 6108−6118.
(23) Hill, T. A., Shepherd, N. E., Diness, F., and Fairlie, D. P. (2014)
Constraining cyclic peptides to mimic protein structure motifs. Angew.
Chem., Int. Ed. 53, 13020−13041.
(24) Mason, J. M., Müller, K. M., and Arndt, K. M. (2007) Positive
aspects of negative design: Simultaneous selection of specificity and
interaction stability. Biochemistry 46, 4804−4814.
(25) Mason, J. M., Müller, K. M., and Arndt, K. M. (2006)
Considerations in the design and optimization of coiled coil
structures. Protein Engineering Protocols 352, 35−70.
(26) Mason, J. M., and Arndt, K. M. (2004) Coiled coil domains:
Stability, specificity, and biological implications. ChemBioChem 5,
170−176.
(27) Fletcher, J. M., Bartlett, G. J., Boyle, A. L., Danon, J. J., Rush, L.
E., Lupas, A. N., and Woolfson, D. N. (2017) N@ a and N@ d:

ACS Chemical Biology Articles

91



Oligomer and Partner Specification by Asparagine in Coiled-Coil
Interfaces. ACS Chem. Biol. 12, 528−538.
(28) Mason, J. M., Hagemann, U. B., and Arndt, K. M. (2007)
Improved stability of the Jun-Fos activator protein-1 coiled coil motif:
A stopped-flow circular dichroism kinetic analysis. J. Biol. Chem. 282,
23015−23024.
(29) Baxter, D., Perry, S. R., Hill, T. A., Kok, W. M., Zaccai, N. R.,
Brady, R. L., Fairlie, D. P., and Mason, J. M. (2017) Downsizing
Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind
Jun. ACS Chem. Biol. 12, 2051−2061.
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Supporting Information 

 

Table S1. Electrospray Mass Spectroscopy Data of Linear and Lactamised Peptides 

Peptide Sequence 
Expected Linear 
Mass  

Observed 
Linear Mass  

Expected 
Cyclic Mass 

Observed 
Cyclic 
Mass  

Mass Change 
Between 

Linear and 
Cyclic 

C1 YEIKALED 1021.50 1021.53 1003.50 1003.52 -18.01 

C2 YKIKALED 1020.55 1020.58 1002.55 1002.57 -18.01 

C3 YELKALED 1021.50 1021.53 1003.50 1003.53 -18.00 

C4 YKLKALED 1021.50 1020.58 1003.50 1002.57 -18.01 

C5 YEVKALED 1007.48 1007.51 989.48 989.51 -18.00 

C6 YKVKALED 1006.53 1006.56 988.53 988.56 -18.00 

C7 YEIKALKD 1020.55 1020.57 1002.55 1002.57 -18.00 

C8 YKIKALKD 1019.60 1019.62 1001.60 1001.62 -18.00 

C9 YELKALKD 1020.55 1020.58 1002.55 1002.57 -18.01 

C10 YKLKALKD 1019.60 1019.62 1001.60 1001.62 -18.01 

C11 YEVKALKD 1006.53 1006.57 988.53 988.55 -18.01 

C12 YKVKALKD 1005.59 1005.61 987.59 987.61 -18.01 

C13 YENKALED 1022.46 1022.48 1004.46 1004.48 -18.00 

C14 YKNKALED 1021.51 1021.53 1003.51 1003.52 -18.01 

C15 YENKALKD 1021.51 1021.53 1003.51 1003.53 -18.01 

C16 YKNKALKD 1020.56 1020.59 1002.56 1002.58 -18.01 

 

Mass spectrometry data for cassettes 1-16 showing the predicted mass, observed mass, and the difference between the linear 
and lactamised form of the cassettes. 
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Table S2. Helical and Thermal Stability of Linear and Lactamised Peptides 

 

Sequence Specificity - As part of developing the modular design aspect, we attempted to gain 

further understanding of the ability for cassettes to tolerate lactamisation and how our 

computational methods could gain from this. As shown in Figure S5, we were unable to find a 

clear relationship between the cassettes computationally predicted to be highly stable 

homomerically and the helicity values found experimentally. An example of this is cassette 16, 

which is predicted to have low stability but has high levels of lactamised fractional helicity. 

Contrasting this is cassette 4, which has a high level of predicted stability but a low level of 

measured helicity.  

 

As all of the cassettes exhibited an increase in helicity when lactamised, this poses an interesting 

question regarding the ability of certain residues to tolerate lactamisation over others. As shown 

in Figure 3b, there is a wide variety in the increase of helicity due to lactamisation. Though the 

possible permutations were limited, there is still very little that we can draw from in terms of 

electrostatic and core configuration to optimise the stability of the cassettes. 

This presents an opportunity for the optimisation of the computational techniques employed. 

As previously shown,1 bCIPA is capable of being trained on a specific subset of coiled coil forming 

sequences. With further experimental exploration of the cassette library, it would be possible 

to extract the predictors and develop a more specific prediction algorithm for this use. 

 

Terminal Lactamisation - One of the main questions when considering multiple lactamisations 

within a single peptide is that of tolerance. Although it is possible that the stability increase 

observed in the lactamised 29-mers is due to either the N-terminal or C-terminal cassette over 

the other, this is something that we are able to mitigate. As shown in Figures S1 and S2, all of 

the peptides exhibited a shift in mass of 36 Da, indicating that both lactam bridges successfully 

formed between Asp and Lys, resulting in the loss of H2O.  

 

A comparison of the full length peptide complexes – with their fractional helicty, 222 nm/208 nm ratio, and transition 
midpoint (Tm) values.  
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Although peptides truncated to below 29 residues have been explored previously2–7 with a focus 

on maintaining stability, it was decided against this. In keeping the modular cassette premise, a 

3 cassette repeat (22-mer) would have resulted in a linear cassette flanked by two lactamised 

heptads. As we were exploring the effects of terminal lactamisation, it was decided that a small 

region of linear residues would not show us enough about the effects of the experimental 

technique. For this reason, a full lactamisation of the peptide was not attempted, as multiple 

inter-helical lactamisation events would be extremely difficult to separate from one another 

(and attempts to lactamise during the synthesis proved unsuccessful) 

 

Computational Processing 

All of the software was run on Python on a 64-bit x64-based processor Windows machine with 

12 GB of RAM described previously1.  
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CHAPTER 7 - CONCLUSION 
 

7.1: In Silico Screening of Coiled Coils 

The overarching goal of this thesis was to understand and optimise the ability to address 

the conflicting design requirements posed by the AP-1 system: engineering the stabilisation 

of the single desired interaction with concurrent destabilisation of the multiple off-target 

interactions. 

The choice to use cFos as a template for antagonists has built on the previous work 

explored in this group. It represents a far better antagonist – target interaction, given the 

ability of cJun to dimerise AP-1. As highlighted, Fos-based antagonists also have the ability 

to maximise the effect of the Δ value used during the in silico screening – with both FosUisCAN 

and FosUPCA presenting with stable desired complexes and unstable off-target complexes. 

This highlights the effect of basing an antagonist on an unstable peptide; contrasting with 

previously characterised peptides JunW and JunWCANDI – both of which display stable 

homodimeric complexes. Due to the residues at the interfacial positions and those found 

within the hydrophobic interface, the ability of the Fos-based peptides to form a stable off-

target complex is limited (due to their optimisation for cJun). 

As it is understood, the evolution of in silico design and screening is influenced by the 

experimental data available. As discussed in Chapter 4 and Chapter A1, the flexibility of the 

base bCIPA algorithm allows for different predictors to be utilised within the in silico system 

when applied to experimental data from less diverse systems. The development of isPCA 

and isCAN has explored many novel areas in the design of computational frameworks for 

CC prediction. The use of the Δ parameter can be seen as similar to the stability/specificity 

trade-off found in CLASSY (whose features are discussed in Chapter 1), however the use 

of BOW in an analogous method would be extremely cumbersome (Fong et al. 2004; 

Grigoryan et al. 2009b). This is due to the inherent difficulty of using categorical data in 

complex combinations with desired specificity parameterised in Δ. In comparison to 

CLASSY, the advancement of these bCIPA-based frameworks represents combined 

novelty and simplicity. These tools have the capacity to screen large libraries without 

requiring simultaneous in vitro validation, meaning that the factors resulting in the success 

and failure of certain library members can be elucidated. As highlighted in Chapter 6, the 

expansion of isCAN into predicting two separate libraries to be screened against one 

another (as explained in Figure 6.11) 

This highlights the ability for this framework to be further tailored to specific coiled coil 

subsets for which further nuance is required while screening. Although this has been shown 
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to provide a greater level of accuracy, it does not (at this stage) elucidate any more about 

the rules governing the interaction of coiled coils – merely expanding properties already 

incorporated into the other predictors. 

The use of in cellulo PCA screening resulted in the selection of a peptide sequence not 

highly ranked within the in silico screen. In combination with the rest of this thesis, this has 

raised a separate and more fundamental question about the use of pairwise prediction. With 

bCIPA scoring each residue independent of others intra-helically (with inter-helical scoring 

at the interfaces), this takes advantage of the coupling data used to create it. However, this 

fails to take into account the local effects of the residues at each position. Work exploring 

this (Potapov et al. 2015) has highlighted the limitation of relying solely on coupling data. 

Although the findings promote the use of a model incorporating further parameters to 

encompass these effects, it found that the weighting of this model correlated with the binding 

data used to develop bCIPA (Krylov et al. 1998a) – not completely disregarding the ability 

of bCIPA as a data-driven prediction model.   

If for some cases, the predicted Tm from a single bCIPA pairwise screen does not accurately 

map to the experimental value, is there an inherent flaw in designing complex in silico 

methodologies based on the combination of a multitude of these predictions? As this thesis 

has argued, the ability to impose “artificial” limits through the Δ parameter mitigates this 

somewhat – by replacing the subtle differences of desired/undesired predictions with 

predictably larger variations. This does not indicate that this approach is ill-suited to CC 

screening – it exists as a necessary safeguard for the additional layers of complexity 

employed.  

This supports the view that – given an established template – it is possible to design a 

sequence in silico with comparable ability (in terms of affinity) to that of one derived from in 

cellulo screening techniques. While it does not represent a way by which in silico can be 

used solely for peptide design, it does present a step forward in the understanding of 

specificity as it relates to the conflicting design requirements. 

7.2: Truncation and Elongation 

The exploration of modular design in Chapter 5 highlighted the fallacy of relying solely on 

in silico prediction methods for short sequences while also highlighting the ability of the 

truncated but stabilised peptides to have high levels of engineered stability from data 

combining individual sequences. This allows for future exploration into the link between the 

helicity of individual heptads and that of full-length sequences. A benefit of utilising a smaller 

library is the limited diversity in randomised options and this lends itself to further research 

into sequence design as it relates to engineering tolerance of the lactam bridge.  
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As shown by the normalisation employed within the study, prediction on truncated seven 

residue cassettes results not in standard Tm values but basic quantitative data. As 

sequences of this length are not able to natively form α-helices (and coiled coils, by 

extension), this is not a flaw in the methodology and can attributed to discrepancy between 

the length of the heptad cassettes and that of the peptide sequences used to train bCIPA. 

Although this is the case, the prediction calculations themselves are not altered 

fundamentally – it is still the summation of helical propensity, core, and electrostatic scoring. 

However, values received from short sequences like this are nonetheless very powerful in 

providing rank order of predicted affinities. 

While our understanding of the effects of lactamisation is wide-ranging, current knowledge 

on the environment required for tolerating this is limited. As an application of the current 

work, it would be possible to create a limited comparative database of ‘cassettes’, with 

relative scoring. This would allow for further development of this approach as an example 

of data-driven design, with the experimental data refining the ability to design heptads of 

highest stability, highest tolerance of lactamisation, and the optimal combinations of 

heptads (linear and lactamised) to design a full-length sequence. Although cJun was utilised 

as an example heteromeric interaction, the aforementioned data-driven design approach 

would allow for design of potentially novel antagonists. As the library was not optimised for 

targeting cJun but still displayed heteromeric stability with a full-length sequence, it could 

be that is that residue selection (even with an expansive heptad library) using this modular 

approach would differ from previously designed sequences (combining residue-residue 

scoring with the optimisation of lactamisation). This means that, while tentative, the work 

described represents a step forward in the application of bCIPA to modular de novo peptide 

design 

The elongation of the sequences involved in Chapter 4 and 5 from 37-mers to 39-mers 

resulted in additional electrostatic interactions due to extra g and e position residues. From 

the observations of reciprocal and unbalanced extension (the latter present with non-

extended JunWCANDI), the respective addition of 4 and 2 extra interactions resulted in a 

greater difference between the Tm values of the desired and undesired complexes. This can 

be ascribed to the role of the electrostatic interactions, with elongation increasing the 

specificity of the CCs. The additional stability conferred to homomeric cJun was similarly 

driven by this. Further work in this area would involve the creation of dual cFos and cJun 

targeting libraries which consider each other as competitors to develop a pair of AP-1 

antagonists which are co-compatible. 

When using isPCA/isCAN to develop the antagonist peptides, the base template used was 

that of cFos – with randomisation at a, e, and g positions. Discounting the lack of 

modification of the d position from Leu, the heptad backbone (b,c,and f) was not included 

in the semi-rational design of the sequences – choosing to keep them as the residues found 
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in cFos. Our limited understanding of these positions is reflected within bCIPA – in which 

the residues at these b,c,and f positions contribute solely to the helical propensity 

calculation. As it is thought that these positions do not play a role in the inter-helical 

interaction, randomisation at these positions was not considered a priority due to the lack 

of data within the underlying bCIPA algorithm. 

7.3: Summary Conclusions 

The summary of the overall thesis conclusions are as follows: 

• Creating in silico homologues of PCA and CANDI as isPCA and isCAN allows for 

greater screening potential, allowing the user to create much larger in silico libraries 

than can be paired down into high predicted quality libraries that are accessible to 

in cellulo screening. The in silico library size is only limited by computational 

performance.  

• The use of the Δ parameter within these in silico techniques allows an increased 

level of stringency, resulting in the selection of highly specific peptides. 

• The extension of peptide sequences to incorporate an additional 4 electrostatic 

interactions increases both stability and the specificity of the peptide complex – 

allowing for flexibility to form repulsive interactions with off-targets and beneficial 

interactions for desired complexes. 

• The coupling of in silico and in cellulo screening techniques results in sequences 

that have similar stability to purely in cellulo screened peptides but with lower levels 

of stability with off-target complexes – with in silico methods acting as a pre-screen 

for the limited size PCA. 

• Using in vitro measurement of global secondary structure, it is possible to create a 

library of short 7-mer heptad linear/lactamised cassettes which can be combined to 

form four heptad peptides whose stability reflects the helicity of the individual 

cassettes. 

• Lactamisation of truncated peptides increased the stability relative to the linear 

forms, and resulted in peptides that were able to successfully bind to cJun with 

varying levels of stability reflecting the helicity of their individual cassettes. 

• Using a similar but numerous data-set, it is possible to introduce additional weighted 

predictors into bCIPA to develop a prediction model with increased accuracy 

(qCIPA). The main limitations of this approach is the availability of experimental data 

and amount of diversity within the set. 

• The use of in silico techniques to design and screen sequences de novo is not yet 

possible but this is predicted to become achievable with an increase of experimental 

data. 
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ABSTRACT: A major biochemical goal is the ability to mimic nature in engineering highly
specific protein−protein interactions (PPIs). We previously devised a computational
interactome screen to identify eight peptides that form four heterospecific dimers despite
32 potential off-targets. To expand the speed and utility of our approach and the PPI toolkit,
we have developed new software to derive much larger heterospecific sets (≥24 peptides)
while directing against antiparallel off-targets. It works by predicting Tm values for every dimer
on the basis of core, electrostatic, and helical propensity components. These guide interaction
specificity, allowing heterospecific coiled coil (CC) sets to be incrementally assembled.
Prediction accuracy is experimentally validated using circular dichroism and size exclusion
chromatography. Thermal denaturation data from a 22-CC training set were used to improve
software prediction accuracy and verified using a 136-CC test set consisting of eight predicted
heterospecific dimers and 128 off-targets. The resulting software, qCIPA, individually now
weighs core a-a′ (II/NN/NI) and electrostatic g-e′+1 (EE/EK/KK) components. The
expanded data set has resulted in emerging sequence context rules for otherwise energetically equivalent CCs; for example,
introducing intrahelical electrostatic charge blocks generated increased stability for designed CCs while concomitantly decreasing
the stability of off-target CCs. Coupled with increased prediction accuracy and speed, the approach can be applied to a wide
range of downstream chemical and synthetic biology applications, in addition more generally to impose specificity on structurally
unrelated PPIs.

Protein structures and their interactions form via complex
arrangements of cooperative interactions, making de novo

design of heterospecific protein−protein interactions (PPIs)
very difficult. There is a great shortage in the number PPI
components that are increasingly needed in biological
applications, where the specificity of interaction is important
and where large numbers of heterospecific peptide pairs would
be beneficial.1,2 For example, this unmet need in protein
science includes applications in peptide labeling (e.g.,
monitoring biochemical processes without the need for large
tags such as GFP), in delivery of drugs or toxins, in protein
purification and labeling applications as high-specificity affinity
tags, in creation of large nanostructures such as tetrahedral
cages or conductive nanowires, in biomaterials such as
reversible hydrogels that assemble or disassemble according
to pH or temperature change, and in disease modulation, and
many other uses as specific cognate pairs in the synthetic
biology toolkit.3−5 Specificity of protein−protein interaction
and recognition is also essential for normal physiology, with
protein interaction network imbalances associated with a wide
range of diseases. A major drawback in applying proteins and
peptides to such applications is the limited number of
exquisitely specific orthogonal PPI-forming peptides that are
available. This is because, despite considerable effort, sequence
to structure information relating to the protein folding problem
is largely unavailable.6 However, this is becoming possible for
systems such as coiled coils (CCs), where the rules translating
how primary sequence dictates quaternary structure are

becoming increasingly understood.7,8 The CC motif is an
interesting PPI model as it is a simplistic example of quaternary
structure and commonly found in a wide range of therapeuti-
cally relevant proteins. Utilizing CCs as a model to predict the
stability and specificity of protein dimerization directly from the
primary sequence is therefore an important and tractable goal.
This is because despite the apparent simplicity, CCs are highly
specific in the interactions that they drive. Using knowledge of
this type of protein fold, we have used de novo design to
generate the formation of specific CCs that can be applied in a
wide range of applications. Here we utilize newly created
software to allow a great expansion of the number of specific
CC-forming peptides and produce large customized sets of
peptides that vary according to the needs of the user. To meet
these goals, we have built and tested freely available
computational tools (see the Supporting Information) that
allow the user to derive large numbers of structurally similar
orthogonal pairs with the potential to create excellent
candidates for scaffold parts.
For the design of coiled coil pairs, although a good qualitative

understanding of sequences that form a parallel dimeric CC
exists, a quantitative understanding of how precise residue
placements within dictate both stability and specificity is still
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lacking. We use a combination of known free energies derived
via double-mutant analyses for electrostatic g-e′+1 interactions9
and predominantly hydrophobic a-a′ interactions10,11 and
combine these with general amino acid properties such as
helical propensity12 to predict the Tm of a parallel dimeric CC
given only the sequences of the constituent peptides.
Optimizing these parameters using our growing training set
of experimentally tested CCs has allowed us to refine our
software to make more accurate predictions that can then be
tested on a much larger data set derived using protein arrays.13

These new bioinformatics tools for CC prediction began with
the bZIP coiled coil interaction prediction algorithm
(bCIPA).14,15 bCIPA was derived to estimate the Tm of a
given parallel dimeric CC using only the primary sequence and
was shown to correctly predict 97% of all strong interactions
and 95% of all noninteracting pairs using an independent data
set of human bZIP proteins.13 This prediction was more
accurate than a previously published prediction program16 and
utilized very simple and easily adaptable scoring matrices.
Unlike related qualitative algorithms,13,16 bCIPA makes a
quantitative estimate by predicting a Tm value for an interaction
between two component polypeptide chains. The approach is
distinct from more recent work by the Keating group,1,17−19

which makes predictions via complex computational algorithms
using integer linear programming and cluster expansion to
generate peptide ligands for defined targets and/or off-targets.
Although this software does not consider antiparallel dimers,
the group has created bespoke software that does.20 Similarly,
the Woolfson group derived the CCBuilder software to study
CCs by generating backbones, building in side chains, and
providing atomistic models and a range of metrics on which to
test their designs.21 In contrast to their software, our software is

web-based and user-accessible and differs in that it searches
within large user-defined peptide sets to identify and provide
quantitative outputs in the form of a Tm to derive heterospecific
CC sets while directing against antiparallel CC alignments.
Building on our work in this area,22 we are constructing and

expanding a suite of software to meet the goal of identifying
very large sets of orthogonal pairs starting from large peptide
libraries (Figure 1). In turn, these results are being used to
further refine the accuracy of prediction while facilitating a new
biological understanding and an expansion in use by the wider
scientific community. These user-friendly tools complement
experimental work and will allow for the development of
designed CC motifs that are highly specific and have a wide
range of potential downstream applications mentioned above.
By experimentally testing in silico predictions, we demonstrate
effectiveness in providing new and expanded heterospecific sets
while concomitantly refining the software for the design and
creation of customized sets that vary in stability according to
the needs of the user.

■ MATERIALS AND METHODS
Design Rationale. The peptide library contained semi-

randomized residues at all four a, e, and g positions within the
heptad repeat of the 37mers.22 Options of Glu and Lys were
included at all e and g positions. Lys was used because its
performance is comparable to that of Arg in terms of helicity
and the formation of electrostatic interactions but is easier to
incorporate into synthetic peptides. Gln, used in previous
libraries and designs,14,23 has been omitted because it interacts
favorably with both acidic and basic residues and is not
therefore expected to confer significant specificity to pairings
and would therefore be expected to be selected out during the

Figure 1. Software for computationally guiding the derivation of specific coiled coils. First, “Generate Library” was used to create a complete list of
the peptide library (in this case, a 4096-member peptide library was reduced to 1536 members). Next, the “bCIPA Interactome Screen” was used to
predict the Tm of each potential CC within the 1180416-pairwise CC interactome. Next “Find Pairs” was used to identify sets of peptides that,
according to the criteria input by the user, are predicted to be heterospecific when combined. In this case, 510 such sets were identified. Next “Find
Quadruples” was used to combine pairs of CCs to identify groups of four CCs that are predicted to be heterospecific when combined. Here, 15171
sets were identified. Finally, “Find Octuples” combined sets of quadruples to identify 27501 sets of 16 peptides that are predicted to be heterospecific
when mixed. The 16-peptide set used in this study is shown, with additional capping sequences underlined. Shown on the right are the bCIPA-
predicted and measured thermal melting values for all 136 possible pairs within the selected 16-peptide interactome. All peptides are distinct from
those in our previous quadruple set.22 For a full description of the software, see the Supporting Information.
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screening. At d positions, Leu was maintained throughout as
these are known to assist in driving the formation of parallel
and dimeric CC species. At a positions, the residues were
semirandomized to Asn and Ile. These residues provide the
greatest specificity distinction between core position residues
based on double-mutant analyses,11 with Asn-Asn (−2.4 kcal/
mol) and Ile-Ile pairs (−9.2 kcal/mol) both significantly more
favorable than an Asn-Ile pair (−0.5 kcal/mol). These energetic
values are anticipated to give a specificity enhancement caused
by favorable alignment relative to misaligned residues. There-
fore, Asn-Asn pairing confers specificity because the hydrogen
bonding benefit outweighs the lack of stability and limits
oligomeric states to dimers.24,25 Asn-Asn and also Ile-Ile a-a′
pairs are predicted to stabilize the derived peptides as dimers
rather than higher-order oligomers or antiparallel CCs, where
Asn-Asn core pairings are also not found.26 This is because a-a′
and d-d′ contacts occur in parallel but not antiparallel CCs,
meaning that an interaction between equivalent Asn residues in
a homodimer will favor a parallel alignment.27 Furthermore, it
is anticipated that alignment of Asn residues in core positions
will stabilize a particular axial alignment and prevent alternative
axial alignments causing unexpected interaction patterns.
In Silico Library Screening. The in silico library was

created using “Generate Library Sequences” (see the
Supporting Information) to list each user-defined member of
the library in a sequential manner. This library was next
screened using the “bCIPA Interactome Screen” engine (see
the Supporting Information), which was developed to screen
interactomes of sequences using bCIPA14,15 and derive a heat
map for millions of hypothetical peptide pairs. A 4096-member
peptide interactome was reduced to 1536 members by
specifying that a minimum of two Asn and two Ile residues is
required at a positions to assist in imposing specificity. The
resulting 1180416 hypothetical pairwise interactions within it
were next screened using “Find Pairs” (see the Supporting
Information) to identify groups of four sequences that when
placed together would be predicted to form heterospecific
dimeric interactions, known as “pairs”. These pairs could then
be further screened within the same page (using “Find
Quadruples”) to identify groups of eight sequences that when
placed together in solution would again be predicted to form
four heterospecific dimeric interactions, known as quadruples.
Finally, quadruple sets were combined to identify sets of 16
peptides that can form eight heterospecific CCs (“Find
Octuples”).
Sequence Screening Protocol. Sequences that met the

conditions of the initial constraints described were retained for
the interactome screen. These were specificity against
homodimerization and the requirement of two Asn residues.
The latter has been used previously to create heterospecific
sets22,28 because it maximizes the potential for specificity in
desired pairs where core NI pairings are energetically much less
favored that NN or II pairings.11 Elimination of sequences that
do not fulfill these requirements at the outset reduces the
computational load, allowing even larger libraries to be
screened than in the presented example. Each new sequence
that satisfied these criteria was added to the array and screened
using the “bCIPA Interactome Screen” engine for interaction
affinity with every other sequence in the array. This occurred at
the time the sequence was added and prevents any repeated
calculations, so that each interaction is calculated only once
(i.e., not bidirectionally). The results of these calculations were
stored in the database, but only if the the affinity of those

interactions exceeded the minimal specified affinity of the
desired heterospecific pairs (in this case 70 °C). Thus, this
database was a list of pairs of sequences, which could
potentially form heterospecific pairings. Interactions in this
database, with a Tm greater than the minimum allowed in the
input, were paired with each other iteratively, with a
computational load-saving requirement that excluded pairs
from being screened against one another where those pairs
contained any of the same peptides (e.g., an interaction
between peptides 1 and 2 could not be paired with an
interaction between peptides 1 and 3, because peptide 1
appears in both interactions such that the pairs would not be
specific, as there is clear cross talk without needing to quantify
the interactions). Potential pairs that did not have any identical
sequences were paired iteratively, in a manner similar to
identifying the peptide pairs. However, instead of a simple
bCIPA calculation, a mini-interactome was created for each
potential pair and the Tm calculations of interactions contained
therein were checked against a user-specified maximal
undesired Tm. Any undesired interactions with a predicted Tm
of >20 °C meant that the group of sequences was rejected as a
specific pair. In cases in which sequences met these criteria,
they were retained as a pair of noninteracting CCs identified in
the interactome. Quadruples were next identified by comparing
sets of pairs to one another in a similar manner, as done
previously (by cross-checking identified noninteracting pairs).
However, in the case of quadruples, the increased stringency
meant that a higher maximum Tm for an undesired interaction
was used, in this case 30 °C, with a minimal ΔTm (desired
minus nondesired) of 40 °C.

Screening Parameters. To generate sets of 16 peptides
predicted to form eight heterospecific CCs, the maximal
acceptable predicted Tm for homodimers was set to 10 °C (this
value dictates the number of nonhomodimeric peptides
permitted to proceed into the main screen), the minimal Tm
for desired heterodimers to 70 °C, the maximal Tm for
undesired heterodimers to 20 °C, and the minimal ΔTm
(desired minus off-target) to 50 °C. Further increasing
stringency resulted in fewer initial peptides that progressed to
octuples or resulted in many lower-stringency sets [i.e., lower
ΔTm (desired minus off-target)] that therefore took signifi-
cantly longer to identify. These parameters resulted in the
software identifying 42 separate pairs of predicted non-
interacting CCs. The highest predicted Tm for desired CCs
was 73 °C, and the highest predicted Tm for undesired CCs was
18 °C. Having identified two heterospecific CCs, the program
combined pairs to identify 72 sets of four CCs (quadruples).
Next, a minimal ΔTm of 21 °C and a maximal undesired CC Tm
of 52 °C were specified within the software. This resulted in the
retention of 72 groups of noninteracting quadruples with a
lowest desired Tm of 73 °C and a highest undesired CC Tm of
28 °C. Finally, the same parameters were used to combine
quadruples in identifying eight CCs (octuples). This resulted in
36 groups of noninteracting quadruples of CCs, with a lowest
desired Tm of 73 °C and a highest undesired Tm of 52 °C.

Homodimer Removal. To preserve system resources and
to limit the interactome screen to useful search space,
sequences that were not expected to produce specific CCs
were removed. Search constraints for the interactome excluded
all sequences that were predicted to have a homodimeric Tm of
>10 °C at the earliest opportunity (as sequences are imported
into the script). Sequences retained at this stage were stored in
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a MySQL database, together with the Williams helicity score12

(to save recalculation).
Antiparallel CC Removal. We have enabled a new feature

that searches for and removes homodimers that generate full
electrostatic complementarity in the antiparallel orientation.
We previously noted that antiparallel dimers were not predicted
to form because Asn-Asn core pairings between a-a′ residues
that make the major energetic contribution to CC specificity in
the parallel orientation are unable to do so in the antiparallel
orientation.22 Rather, buried polar interactions in antiparallel
dimers take place between a-d′ residues and would therefore
not be considered possible in this system.29,30 This approach
has been used previously to direct against antiparallel dimer
formation for heterospecific sets.28 However, we previously
speculated that this was not enough to direct against potential
antiparallel orientations that result in fully complementary
electrostatics (i.e., e-e′ or g-g′).22 Directing against full
electrostatic complementarity in the antiparallel orientation
therefore provides an additional barrier to removing these
otherwise permissible antiparallel pairs. It also reduces the
search time of the algorithm by increasing the stringency in the
selection of the initial sequences that are processed into
interactions and consequently reduces the size of the search
required to find pairs and quadruples.
Peptide Synthesis. Rink amide ChemMatrix resin was

obtained from PCAS Biomatrix, Inc. (Saint-Jean-sur-Richelieu,
QC). Fmoc-L-amino acids and 2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HBTU) or benzo-
triazol-1-yl-oxytripyrrolidinophosphonium hexafluorophos-
phate (PyBOP) were obtained from AGTC Bioproducts
(Hessle, U.K.). All other reagents were of peptide synthesis
grade and obtained from Thermo Fisher Scientific (Lough-
borough, U.K.). Peptides were synthesized on a 0.1 mmol scale
on a PCAS ChemMatrix Rink amide resin using a Liberty Blue
microwave peptide synthesizer (CEM, Matthews, NC) employ-
ing Fmoc solid-phase techniques (for a review, see ref 31) with
repeated steps of coupling, deprotection, and washing (4 × 5

mL of dimethylformamide). Coupling was performed as
follows: Fmoc amino acid (5 equiv), HBTU OR PyBOP (4.5
equiv), and diisopropylethylamine (10 equiv) in dimethylfor-
mamide (5 mL) for 5 min with 35 W microwave irradiation at
90 °C. Deprotection was performed as follows: 20% piperidine
in dimethylformamide for 5 min with 30 W microwave
irradiation at 80 °C. Following synthesis, the peptide was
acetylated, with acetic anhydride (3 equiv) and diisopropyle-
thylamine (4.5 equiv) in dimethylformamide (2.63 mL) for 20
min, and then cleaved from the resin with concomitant removal
of side chain-protecting groups by treatment with a cleavage
mixture (10 mL) consisting of TFA (95%), triisopropylsilane
(2.5%), and H2O (2.5%) for 4 h at room temperature.
Suspended resin was removed by filtration, and the peptide was
precipitated using three rounds of crashing in ice-cold diethyl
ether, vortexing, and centrifuging. The pellet was then dissolved
in a 1:1 MeCN/H2O mixture and freeze-dried. Purification was
performed by reverse-phase high-performance liquid chroma-
tography (RP-HPLC) using a Phenomenex Jupiter Proteo
(C18) reverse-phase column (4 μm, 90 Å, 10 mm inner
diameter × 250 mm length). Eluents used were as follows: 0.1%
TFA in H2O (A) and 0.1% TFA in MeCN (B). The peptide
was eluted by applying a linear gradient (at 3 mL/min) of 5 to
70% B over 40 min. Fractions collected were examined by
electrospray mass spectrometry, and those found to contain
exclusively the desired product were pooled and lyophilized.
Analysis of the purified final product by RP-HPLC indicated a
purity of >95%.

Circular Dichroism (CD). CD was recorded using an
Applied Photophysics (Leatherhead, U.K.) Chirascan CD
apparatus using a 200 μL sample in a CD cell with a 1 mm
path length. Samples contained a 150 μM total peptide (Pt)
concentration at an equimolar concentration for heterodimeric
solutions (i.e., 75 μM per peptide) and suspended in 10 mM
potassium phosphate and 100 mM potassium fluoride (pH 7) 1
h prior to analysis. The buffer was chosen to be CD-compatible
while being close to physiological pH and salt conditions. The

Figure 2. Thermal stability of peptide pairs measured by using the temperature dependence of the CD signal at 222 nm. All 136 peptide pairs are
shown, with heterospecific pairs color-coded according to the key. The data demonstrate that with the exception of residues 15 and 16, all desired
peptides display Tm values that are higher than that of any measured off-target pair.
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CD spectra of samples were scanned between 300 and 190 nm
in 1 nm steps, averaging 0.5 s at each wavelength. Three scans
at 20 °C were averaged to assess helical levels and CC
structure.
Thermal Denaturation Experiments. Thermal denatura-

tions were performed at 150 μM Pt in 10 mM potassium
phosphate and 100 mM potassium fluoride (pH 7) using an
Applied Photophysics Chirascan CD instrument. The temper-
ature ramp was set to stepping mode using 1 °C increments
and paused for 30 s at each temperature before the ellipticity at
222 nm was measured. For all temperature denaturation
experiments, data collection was started at −8 °C, and at this
temperature, the peptide solutions remained aqueous. Data
collection continued to 95 °C. Data points for thermal
denaturation profiles represent the averaged signal after data
collection for 4 s. Melting profiles (Figure 2) were ≥95%
reversible with equilibrium denaturation curves fitted to a two-
state model, derived via modification of the Gibbs−Helmholtz
equation,14,32,33 to yield the melting temperature (Tm). Melting
profiles for heterodimers are clearly distinct from averages of
constituent homodimeric melts (Figures 2 and 3), indicating
that helices form heterodimeric complexes, with the coopera-
tive nature of the melting profiles suggesting an apparent two-
state process. Tm values were determined by least-squares fitting
of the denaturation assuming a two-state folding model that is
widely used for CCs33 and provided an excellent fit to our data.
Size Exclusion Chromatography. Size exclusion experi-

ments were performed at room temperature using a Superdex
Peptide 10/300 GL column (GE Healthcare Life Sciences) by
injecting 100 μL of a 50 or 10 μM (total peptide concentration)
sample in 10 mM potassium phosphate and 100 mM potassium

fluoride (pH 7) at a flow rate of 0.5 mL/min. Elution profiles
were recorded via A280.

■ RESULTS AND DISCUSSION
We previously generated a 1536-member computational library
of peptides that were 32 residues in length and successfully
screened it using a PHP-based algorithm to predict the
formation of four heterospecific parallel dimeric CCs.22 Here
we describe screening the resulting 1180416-CC interactome
[(1536 × 1537)/2] using a much faster and more expansive
Python-based algorithm that has allowed the identification of
many different sets of 16 peptides that when combined are
predicted to form eight heterospecific dimeric CCs. When the
number of desired heterospecific pairs is doubled from four to
eight, the number of off-targets is quadrupled from 32 [(8 × 9/
2) − 4] to 128 [(16 × 17/2) − 8], making this a particularly
challenging task (Figure 1). The algorithm is further improved
over the previous version in that it removes peptides predicted
to form antiparallel CCs. Dimerization is driven by Lys/Glu
options at every e and g position and Ile/Asn options at every a
position within the heptad repeat, creating the necessary
options to direct the formation of heterospecific CC sets.10,11,34

The d positions were fixed as Leu to further direct formation of
parallel and dimeric CCs,24,35 with remaining positions fixed as
Ala to promote α-helicity. Screening works by iteratively
identifying within a set of sequences which CCs are and are not
predicted to form using a set of temperature cutoffs input by
the user. The program assigns a predicted Tm for every
hypothetical CC within the interactome and creates an
associated heat map. Stringency of screening can be directed
by inputting the required Tm for desired pairs, as well as the Tm
cutoff for homodimeric and heterodimeric off-targets (see

Figure 3. Bar chart and heat maps displaying Tm values predicted by bCIPA and qCIPA as well as those experimentally measured. The values have
been grouped according to the core and electrostatic arrangements. These are desired pairs (2II 2NN core, all-attractive electrostatics), homodimeric
off-targets (2II 2NN core, all-repulsive electrostatics), intrapair off-targets (4NI core, four attractive and four repulsive electrostatics), interpair off-
target 1 (1II 1NN 2NI core, four attractive and four repulsive electrostatics), interpair off-target 2 (2II 2NN core, four attractive and four repulsive
electrostatics), interpair off-target 3 (4NI core, all-attractive electrostatics), and interpair off-target 4 (4NI core, all-repulsive electrostatics). qCIPA
was derived by using the 22 CCs from our previous work in this area22 as a training set. Instead of core and electrostatic weightings used by bCIPA,
qCIPA uses individual weightings for II/NN/IN (core) and EE/KK/EK (electrostatic) arrangements, which results in an improved fit to the training
set. See also Tables S1−S7 for a comprehensive list of core and electrostatic combinations that fall into one of the seven categories described above.
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Materials and Methods and the Supporting Information for
more details).
Combining Core and Electrostatic Arrangements To

Confer Stability and Specificity. The number of energetic
arrangements in the set of octuples (eight CC) is increased
from those previously observed (Table 1). Setting the desired
CC cutoff Tm as high as possible (70 °C) led the software to
arrive at fully complementary electrostatic arrangements and
fully optimal 2xII/2xNN core arrangements. For homodimeric
off-targets, the same core arrangements were observed as for
desired pairs, but with fully repulsive electrostatic (g-e′+1)
arrangements. For intrapair off-targets (i.e., within a designed
interactome of two CCs), the core consisted of a 4NI/IN (fully
mismatched) arrangement with four attractive (KE) and four
repulsive (EE/KK) electrostatic interactions. However, the
interpair off-target arrangements (interactions outside of
designed interactomes of two CCs) were expanded in the set
of octuples relative to our previously observed combinations.22

In the sets of quadruples (i.e., four CCs; peptides 1−8 or
peptides 9−16), we observe a 1II/1NN/2NI core arrangement
with the same four attractive (KE) and four repulsive (EE/KK)
electrostatic interactions. This was the most commonly
observed off-target configuration, accounting for 50% of all
off-targets. Via combination of quadruples to arrive at octuples,
three additional scenarios were observed (i.e., in CC
interactions between peptides from the set of 1−8 and those
from the set of 9−16). These additional off-target combinations
were (i) an optimized core (2NN 2II) with four attractive and
four repulsive electrostatic interactions, leading to a further
increase in the predicted stabilities of off-targets, (ii) a fully

mismatched 4NI core arrangement with an all-attractive
electrostatic arrangement, and (iii) a fully mismatched 4NI
core arrangement with an all-repulsive electrostatic arrange-
ment. The last two scenarios were predicted by bCIPA as being
either very stable (52 °C) or very unstable (−29/−21 °C),
which we believed to be over- or underestimated, respectively.
Therefore, a set of heterospecific octuples could be identified,
albeit with an overall stringency lower than for that for
quadruples because of the increased stability of off-targets
highlighted above (Table 1 and Figure 3). The data from an
exhaustive low-complexity set of options (i.e., all Asn/Ile core
options and all Glu/Lys electrostatic options) are therefore
sufficient to generate the required number of unique core and
electrostatic arrangements for the creation of such larger
heterospecific sets. Moreover, the large amount of data
generated in predicting and experimentally testing an octuple
heterospecific set has allowed creation of a more refined version
of software. Subsequently, this can be used to predict
heterospecific interactomes for this particular subset of CC.
This would strengthen prediction of affinity for individual pairs
and therefore allow the creation of both larger and more
accurate heterospecific sets.

Experimental Characterization of Coiled Coils. To
demonstrate that in silico-generated sequences are specific in
vitro, 16 peptides predicted to form eight heterospecific CCs
were synthesized and characterized. CD spectra and associated
thermal denaturation experiments were used to establish that all
samples displayed characteristic α-helical profiles and to
determine the Tm value for each CC within the 16-peptide
interactome, and therefore the relationship between predicted

Table 1. Energetic Arrangements Found in Quadruples Are Expanded in Sets of Octuplesa

quadruples octuples

core electrostatics core electrostatics
octuples with
arrangement

predicted Tm range
from bCIPA

predicted Tm
range from
qCIPA

measured Tm
range

desired pairs 2II, 2NN 8EK/KE 2II 2NN 8EK/KE 8 73 °C 62 °C 52−75 °C
ΔG = −23.2 ΔG = −9.6 ΔG = −23.2 ΔG = −9.6 ΔG = −32.8

homodimeric
off-targets

2II, 2NN 8KK/EE 2II 2NN 8KK/EE 16 −8 to 1 °C 17−30 °C −2 to 34 °C

ΔΔG = 0 ΔΔG = +7.2
to +12.8

ΔΔG = 0 ΔΔG = +7.2
to +12.8

ΔΔG = +7.2 to
+12.8

intrapair off-
targets

4 NI 4KE, 4EE/
KK

4NI 4KE, 4EE/
KK

16 9−18 °C 20−33 °C 3−51 °C

ΔΔG = +21.2 ΔΔG = +3.6
to +6.4

ΔΔG = +21.2 ΔΔG = +3.6
to +6.4

ΔΔG = +24.8 to
+27.6

interpair off-
targets

1II, 1NN, 2NI 4KE, 4EE/
KK

1II, 1NN, 2NI 4KE, 4EE/
KK

64 20−28 °C 28−41 °C −3 to 60 °C

ΔΔG = +10.6 ΔΔG = +3.6
to +6.4

ΔΔG = +10.6 ΔΔG = +3.6
to +6.4

ΔΔG = +14.2 to
+17

2II 2NN (new) 4KE, 4EE/
KK (new)

16 30−39 °C 36−39 °C 12−60 °C

ΔΔG = 0 ΔΔG = +3.6
to +6.4

ΔΔG = +3.6 to
+6.4

4NI (new) 8KE (new) 8 52 °C 46 °C 10−42 °C
ΔΔG = +21.2 ΔΔG = 0 ΔΔG = +21.2
4NI (new) 8KK/EE

(new)
8 −29 to −21 °C 1−14 °C 1−32 °C

ΔΔG = +21.2 ΔΔG = +7.2
to +12.8

ΔΔG = +28.4 to
+34

aThe doubling of the number of desired heterospecific coiled coil pairs leads to a loss of stringency and therefore specificity of interaction as the
number of off-targets is quadrupled. The three new interpair off-target combinations are 2II 2NN core with four attractive and four repulsive
electrostatic interactions and all-attractive and all-repulsive ES with 4NI core mismatches, resulting in bCIPA estimating the Tm to be 52 or −21/−29
°C, respectively. Shown are the contributions to folding from core and electrostatic interactions, as well as their sums. All free energies are shown in
kilocalories per mole and are based on free energy scores derived from a double-mutant analysis.
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and measured values (Figure 3). In these experiments, seven of
eight CCs predicted to be heterospecific were verified
experimentally, with predicted Tm values of 73 °C found to
be accurate within 5 °C, with the exception of that of CC 15−
16, which was 21 °C lower than expected. The 128 off-target
interactions had predicted Tm values of −8 to 52 °C, which
were measured to range from −3 to 60 °C, ensuring that the
1−2, 3−4, 5−6, 7−8, 9−10, 11−12, and 13−14 interactome
was heterospecific as designed, with all 98 off-targets disfavored.
As one can see, differences in molar ellipticity at premelt
temperatures reflect the fact that helicity is only one
determinant of CC stability; side-chain preferences at core
and electrostatic positions are other key determinants that
bCIPA uses when determining the Tm.
To further demonstrate correct peptide pairing, size

exclusion chromatography (SEC) was used (Table S8). As
shown previously,22 monomeric elution profiles are super-
imposable and occur at 20 min for all homomeric solutions,
indicating that all 16 peptides are monomeric at room
temperature and a total peptide concentration of 50 μM. In
contrast, at 50 μM, the profiles for all eight desired
heterodimers eluted at 19 min. In both cases, the elution
profiles were consistent with predicted monomer/dimer
patterns. In addition, a number of off-target samples were
run, demonstrating that those with a measured Tm of <50 °C
were monomeric at 50 μM whereas those with a Tm of >50 °C
ran as a dimer at a total peptide concentration of 50 μM.
However, at a concentration of 10 μM, all desired peptides (Tm
= 68−75 °C), with the exception of 15−16 (Tm = 52 °C), were
found to remain in complex as dimers. At the same
concentration, all nine off-target samples with a measured Tm
of >50 °C (i.e., Tm = 51−60 °C) were found to have shifted to
monomeric samples. As SEC controls, two peptides of similar
length that have been previously characterized and shown to
exist either in monomer form (20 min) or as a parallel dimeric
CC (19 min) were selected.14,22

Comparison of Predicted and Observed Data (bCIPA).
Throughout the process, Tm values for predicted and observed
pairs were compared to improve the accuracy of prediction.
Upon comparison of CCs selected together in pairs, where
interactomes consist of 10 potential CCs (e.g., peptide sets 1−
4, 5−8, 9−12, or 13−16), there was generally an excellent
correlation. This was the case in 22 previously characterized
CCs (overall r2 = 0.6;22 r2 = 0.69 for peptide set 1−4 within) as
well as when the fit was applied to newly derived peptides sets
1−4, 5−8, 9−12, and 13−16 within the 136 CCs. The strong
observed correlations (r2 = 0.70−0.82) relate to the fact that
desired pairs have very high Tm values (e.g., two CCs of
approximately 73 °C), and four homodimeric off-targets have
very low Tm values (four potential CCs of approximately 0 °C).
The four remaining members of each in silico-selected four-
peptide interactome display predicted Tm values in the range of
20−30 °C. Therefore, each resulting 10-CC interactome
contains a wide Tm range to which the subsequent fit is strong.
Fitting to the off-targets more generally (particularly interpair
off-targets) is more challenging because the predicted ΔTm is
very narrow (e.g., typically just 10 °C for the majority of
interpair off-targets). This means that similar variations in the
predicted temperatures yield much lower r2 values. However,
importantly, the predicted versus observed Tm values for each
type of interaction demonstrate that the general goal of
heterospecificity is achieved (Figure 3).

Issues with the Computational Approach. Despite
successfully demonstrating that PHP-based bCIPA software can
predict many hypothetical sets of octuples, we experienced
several issues that limited its further implementation. One was
speed; it was time-consuming for larger peptide sets and not
expansive enough to identify larger numbers of these sets by
relaxing the screening parameters. In addition, antiparallel
options were not removed. Finally, the accuracy of the bCIPA
prediction algorithm left room for improvement in these low-
sequence diversity peptides. These problems have been
addressed by moving away from PHP-based software to
Python-based architecture. Previously, results were uploaded
and processed on an external Web server, causing the program
to become slow as the number of peptides increased, limiting
the number that could be progressed within the search. Using a
Python-based system, outputs are now simply written as text
files and saved locally by the user, saving computational
resources in the process. For instance, increasing the permitted
homodimeric Tm by only a few degrees Celsius substantially
increases the size of the interactome to be searched. The
Python-based approach has allowed these larger data sets to be
processed in much less time. The initial check now removes
potential antiparallel homodimers by removing those that result
in an all-attractive electrostatic component. This additionally
prevents potential heterodimeric antiparallel CCs from entering
the interactome search. Removing potential parallel homo-
dimers and antiparallel homo- and heterodimers initially
restricts the number of peptides that enter the main
interactome search, further reducing the redundancy of the
system.

Refining bCIPA To Improve Tm Prediction for Specific
Residue Pairings (qCIPA). We have previously shown that
bCIPA can accurately predict the thermal stability of CC pairs
that are diverse in sequence14,15,14 and that it can be used to
generate in silico interactome predictions to guide the derivation
of heterospecific CC sets.22 The utility of bCIPA was
demonstrated using a small eight-peptide interactome to derive
four parallel dimeric CCs that were heterospecific when
combined, despite 32 off-target CCs that could potentially
associate. Using a completely new set of peptides, we expanded
this approach to a 16-peptide interactome. In doubling the
number of desired heterospecific CCs from 4 to 8, the number
of off-targets quadruple from 32 to 128, leading to a significant
increase in the complexity of the design process. In turn, as the
number of attractive and repulsive permutations becomes
exhausted, higher-stability off-targets must be included in the
interactome (see above), leading to a decrease in the stringency
of the system. Thus, predicting larger heterospecific sets is a
challenging task that requires a high accuracy of prediction
because any decrease in stringency will increase the likelihood
of identifying off-targets with stabilities similar to those of the
desired pairs. We have been largely successful in these aims and
have arrived at an interactome of 14 peptides that form seven
heterospecific CCs despite 98 potential CC off-targets. In
particular, CC 15−16 was found to display a lower Tm that is
close to those of some of the off-target interactions. The results
from this study further highlight the strengths and weaknesses
of bCIPA. We have used our previous interactome data set of
eight independent peptides as well the 16 newly predicted
peptides presented here to facilitate the creation of new
customized software, known as qCIPA. qCIPA predicts the Tm
with accuracy greater than that of bCIPA for the subset of CCs
we describe here that are closely related in sequence (Figure 3).
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qCIPA was devised using 22 previously characterized CCs as a
training set (r2 = 0.69). The resulting fit was then applied to the
136-CC test set resulting from the 16-peptide interactome
described here, with no sequence repetition between the two
sets. The resulting correlation coefficients therefore provide a
direct comparison with bCIPA (Table S9). On average, qCIPA
provides a 3 °C improvement in prediction using the 136-CC
test set. In reducing the test set interactome to its substituent
interactions, we find a 9 °C improvement in predicting the 16
homodimers, a 4 °C improvement in predicting the 16 intrapair
off-targets, and a 3 °C improvement in predicting the 96
interpair off-targets. This comes at a cost of a 3 °C deteoration
in predicting the heterospecific pair interactions (Figure 3).
Considering the end goal of creating heterospecific sets, in
which off-target interactions should be carefully avoided, this
overall increase in accuracy is a welcome step forward. qCIPA
works in a manner similar to that of bCIPA in that the Tm is
calculated as a function of core pairings (C), electrostatic
pairings (ES), and helical propensity (HP). For bCIPA

= × ∑ + + × +T a bC c dHP ESm (1)

where a = 81.33, b = −10.18, c = −4.78, and d = −29.13.15
bCIPA considers a wide range of residues at positions a, d, e,
and g (LINVRKT, LINVRKT, KRDEQNALT, and KRDEQ-
NALT, respectively). In contrast for qCIPA, the options at
these positions are limited to IN, L, EK, and EK. This allows
the six exact pairings at a-a′ and g-e′+1 to be explicitly described.
Therefore, in the equation used to determine Tm, the core and
electrostatic components are expanded so that each interaction
has its own coefficient. For qCIPA

= × ∑ + × + × + × + ×

+ × + × +

T a b c d e

f g h

HP II IN NN EE

EK KK
m

(2)

where a = 4.16, b = −1.75, c = 11.78, d = −5.24, e = −11.30, f =
−0.97, g = −76.22, and h = 30.18. As observed in Figure 3,
these changes result in an improved fit to the 22-CC training
set (i.e., the best fit that is used to derive values of a−h; overall
r2 = 0.69). Having obtained the values listed above, we then
obtained the consequent fits to the CC pairs in the 136-CC test
set (r2 values of 0.89, 0.69, and 0.84 for pairs 1−4, 5−8, and 9−
12, respectively, and 0.59 for set 13−16).
As the data set continues to grow, we predict that it will be

possible to take further parameters into account, such as
sequence specific context where the core and electrostatic
contributions are equivalent but their positioning within each
helix leads to increased or decreased stability above or below
what is otherwise predicted. We have seen this previously for
positive or negative residues at the helix termini that serve to
stabilize or destabilize the helix macrodipole leading to over- or
underestimated stability.22,36,37 At present, there are insufficient
data to build these predictions into our models, although
general patterns within the data are emerging (see below).
Comparing Old and New Approaches. To generate

octuples (including the set presented here), the PHP-based
bCIPA software was used to generate two heterospecific CCs
and consequently quadruples that were predicted to remain
heterospecific when all component peptides are combined. This
resulted in 72 unique sets of two CCs (setting the minimal
delta to 50 °C and maximal off-targets permitted to progress
into the interactome search to 20 °C) and 144 sets of
quadruples (setting the minimal delta to 40 °C and maximal
off-targets to 30 °C). By repeating these steps while removing

potential antiparallel pairs, we found the numbers decreased to
42 unique sets of two CCs and 72 unique sets of quadruples.
To continue using this approach, unique sets of quadruples
were screened against each other to identify unique sets of
octuples. However, this was time-consuming and led to only 36
hypothetical octuple sets.
Using the faster Python-based qCIPA software now

proposed, the algorithm created heterospecific sets by screening
one CC against another, one CC at a time [e.g., one CC→ two
→ three → four (quadruples) → five → six → seven → eight
(octuples)], until no further unique sets can be identified. For
example, the 1536 peptides scanned for heterospecific pairs
took 6 s using qCIPA in Python. In contrast, bCIPA
benchmarked at 42 s on the same machine when using PHP.
This has led to many more unique sets being identified because
the stringency in taking smaller increments is much lower and
therefore more peptides are permitted to progress at each step.
For example, using slightly less stringent parameters [the
maximal Tm for undesired heterodimers and ΔTm (desired
minus off-target) (see Table 2)], the 510 unique sets of pairs

created 15171 unique sets of quadruples. This 210-fold increase
in the number of unique sets created 27501 unique sets of
octuples, >760-fold more than previously identified. Coupled
with this iterative approach, relaxing the homodimer stringency
from the very start of the search procedure (Table 2) can be
continued. Although not tested experimentally, we have taken
this iterative process as far as 54 unique sets of predicted

Table 2. Numbers of Unique Sets Identified Using the
Previous PHP-Based Approach versus a Python-Based
Approacha

tuple

no. of sets in the
PHP system

(parameters used)

no. of sets in the
Python system

(parameters used)

no. of sets in the
Python system

(parameters used)

1 36 (70/10/20/50) 36 (70/10/52/21) 36 (66/14/50/23)
2 42 510 492
3 N/A 3708 3264
4 72 (70/10/52/21) 15171 11067
5 N/A 36204 18180
6 N/A 51450 11430
7 N/A 45456 0
8 36 27501 0
9 N/A 11904 0
10 N/A 3552 0
11 N/A 648 0
12 0 54 0

aBoth data sets implement the exclusion of predicted high-affinity
antiparallel dimers and specify a minimum and maximum of two Asn
residues to confer maximal core specificity upon selected sets. For
PHP, the approach of combining sets (e.g., 2 → 4 → 8) was necessary
to reduce the computing time required to generate results. In contrast,
Python adds one CC at a time, resulting in much larger numbers of
predicted heterospecific sets. By using the settings required at the
quadruple stage from the beginning (column 2 vs column 1), we found
that once again more CCs were permitted to progress through each
round to arrive at duodecuples, further demonstrating the benefit of
early redundancy in the system. Further increasing the stringency
(minimal ΔTm) resulted in no heterospecific sets beyond sextuples
(column 3). Column 2 took Python approximately 4 days to run on a
single personal computer. Shown in parentheses are the minimal
desired Tm, the minimal homodimer Tm, the minimal off-target Tm,
and the minimal ΔTm (from left to right, respectively), requested for
each round.
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duodecuples (12’s), where none could be identified using our
previous PHP approach.22 It is important to note that while
every set is unique, there are many instances of the same
peptide occurring within multiple sets. This apparent
redundancy in the search procedure is, however, necessary to
ensure that sequences are retained during each iteration and
that the highest possible number of heterospecific CC sets can
be identified going forward. Relaxing the stringency further will
increase this number until all core and electrostatic arrange-
ments have been saturated, while significantly increasing the
search time from several days (e.g., 4 days in the case described
above) to many weeks on a standard personal computer.
Sequence Specific Context. Core. If we ignore sequence

context, then many pairs appear to be energetically identical in
terms of core and electrostatic contributions (using helix
propensity12 and core10,11 and electrostatic9 scores calculated
by Vinson and co-workers). The absence of sequence context
calculations is reflected in the lack of diversity in predicted Tm
values. While we found it is currently difficult to build into a
qCIPA feature explicitly, we observe some general rules relating
to sequence context that can be taken into account in future
rounds of design. This could be achieved, for example, by
allowing the software to search libraries that conform to these
rules in the first instance, such that the sequence specific
peptides no longer need to be explicitly “searched for”. In
analyzing the data, by grouping sequences with identical
electrostatic arrangements, we are able to make some limited

interpretations regarding the effect of core arrangements. (1)
An NN II NN II arrangement appears to lead to a stability that
is greater than that of an II NN II NN arrangement. For
example O5−6 > O15−16 (ΔTm = 19), O13−14 > O7−8
(ΔTm = 7), O5−5 > O15−15 (ΔTm = 5), O14−14 > O8−8
(ΔTm = 22), O6−6 > O16−16 (ΔTm = 23), and O13−13 >
O7−7 (ΔTm = 22). (2) In contrast to this, inspection of the
data suggests that NN NN II II and II II NN NN are
energetically equivalent. For example, O9−10 ∼ O3−4 and
O1−2 ∼ O11−12. However, both of these arrangements are
predicted to stabilize desired states and off-targets by an equal
amount, meaning that there is no preferential core arrangement
in maximizing ΔTm values and therefore in achieving
heterospecific CCs.

Electrostatics. As there are many examples of alternative
electrostatic arrangements with identical core arrangements
(Tables S1−S7), we are able to make some general
observations. Upon normalization for identical cores, the
following findings become apparent. (1) For desired pairs
(Table S1), blocks with the same charge on residue e or g of
each peptide led to a stability increased versus that purely based
on the sum of the core and electrostatic components.9−11 For
example, O13−14 > O5−6 (ΔTm = 4) and O7−8 > O15−16
(ΔTm = 16), which together suggest that the electrostatic g-e′+1
KE KE KE EK arrangement is more stable than the EK EK KE
EK arrangement. Similarly, O1−2 > O9−10 (ΔTm = 3) and
O11−12 > O3−4 (ΔTm = 5), both suggesting that the KE EK

Figure 4. Effect of electrostatic charge blocks on the predicted Tm. For desired pairs, blocks of three or four consecutive same-charge residues at e or
g positions on each peptide led to increased stability versus that purely based on the sum of the core and electrostatic components. We speculate that
these “charge blocks” have two benefits. (i) They increase stability for these desired pairs by promoting intermolecular attraction (e.g., A vs B). (ii)
In a similar but opposite manner, charge blocks decrease the stability of off-target CCs by promoting intermolecular repulsion (e.g., C vs D). The net
effect is therefore that ΔTm(desired − off-targets) is increased when “charge blocks” are introduced (i.e., A-D > B-C).
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EK EK arrangement is more stable than the EK KE EK EK
arrangement. Taking this further, we found both O1−2 and
O9−10 are favored over Q1−2 (ΔTm = 9 and 6, respectively),
suggesting that the EK KE KE EK arrangement is less stable
than the KE EK EK EK or EK KE EK EK arrangement.
Collectively, this suggests that for desired pairs, intramolecular
repulsion between heptads strengthens intermolecular attrac-
tion and therefore increases CC stability. We speculate that
these intramolecular “charge blocks” at positions e and g within
component helices increase the stability for these desired pairs
by promoting intermolecular attraction. This may be due to the
fact that intramolecular repulsion between e-e+1 or g-g+1 residues
helps to strengthen intermolecular attraction between g-e′+1
pairs. (2) Similarly, for intrapair off-targets (Table S3), placing
opposing intermolecular charge repulsions next to each other
(i.e., E followed by K at consecutive e or g positions within the
same peptide) is more stabilizing than same polarity charge
repulsions [e.g., O5−7 or O13−15 > O2−4, O10−12, O1−3,
or O9−11 (ΔTm = 9−48); O2−3 or O9−12 > O6−7, O13−
16, O5−8, or O14−15 (ΔTm = 1−26)]. This suggests that for
off-targets, intramolecular attraction weakens intermolecular
repulsion and increases CC stability. Similarly, when there is
both intra- and intermolecular repulsion (i.e., ++ or −−), the
Tm is decreased. We speculate that alternating charges at e or g
positions promotes intramolecular attraction and leads to
decreased g-e′+1 intermolecular repulsion. These effects increase
the stability for these intrapair off-targets. This pattern is
observed throughout the off-target sets. Alternating intra-
molecular charges are therefore to be disfavored for both
desired states and off-targets when designing heterospecific sets
and function in an opposite but analogous way (Figure 4). (3)
For homodimeric off-targets (Table S2), negative intermolec-
ular charge repulsions toward the N-terminus (i.e., E-E g-e′+1
pairs) and positive charge repulsions (i.e., K-K g-e′+1 pairs) at
the C-terminus generally generated increased stability. Revers-
ing this pattern generally destabilizes the CCs. In general, it is
more stabilizing for the CC to have a negative N-terminus than
to have a positive C-terminus [Q1−1 > Q2−2 (ΔTm = 12),
O9−9 > O1−1 (ΔTm = 8), O3−3 > O11−11 (ΔTm = 9), O2−
2 > O10−10 (ΔTm = 5), and Q8−8 > Q7−7 (ΔTm = 16)].37

The effect of placing a positive repulsive pair at the C-terminus
is not clear. This pattern of negative charge at the N-terminus
and positive charge at the C-terminus adding stability generally
holds for interfamily off-targets (e.g., O12−14 vs O3−5 or O4−
6) and is most pronounced when the electrostatics are fully
repulsive (e.g., O5−15 vs O6−16).
On the basis of these findings, in the future solid blocks of

three or more E/K residues (i.e., at three consecutive e or g
positions) should be included in peptide library designs because
these blocks will assist in stabilizing desired pairs while
concomitantly destabilizing off-targets, leading to a favorable
increase in ΔTm (desired minus off-target) (Figure 4). In
addition, introducing E at the N-terminus and (less so) K at the
C-terminus will further aid stability. Alternating charge
repulsions on the same helix should be avoided because they
promote intrahelical electrostatics; this will have the effect of
both weakening intermolecular repulsion for off-targets while
also weakening the intermolecular electrostatic attractions in
the desired states. Although these observations present general
trends, it is difficult to predict the magnitude of the effects in
building sequence specific context into stability prediction
models. Nonetheless, creating libraries that conform to these
“charge block” rules in the first instance means they no longer

need to be explicitly searched for. Rather, by defining permitted
e and g charge block arrangements (i.e., EEEE/KKKK/KEEE/
EKKK/EEEK/KKKE) with the same core arrangement as
previously specified [i.e., (6 × 7/2) × 6 cores = 126-member
library], we are able to screen an interactome of 8001 potential
CCs. This resulted in the identification of 12 sets of decuples
(10 CCs) based on the same cutoff parameters that were used
in Table 2.
Improvements in the speed and flexibility of the software

mean that many new avenues of in silico screening are now
possible, with key patterns in the interaction profiles visible
from an observational level (Table 1). The added role of
sequence context is of interest as it can further improve the
prediction of heterospecific peptides by being added to an
increased energy gap between desired and nondesired CCs. To
further analyze and predict interaction stability based on these
patterns, a larger training set would be required.

■ CONCLUSION
We have increased the capacity of our predictive algorithm to
identify a set of 16 new peptides that can form eight
heterospecific CC pairs. Of these, seven have been demon-
strated to function as predicted. To the best of our knowledge,
this is the largest heterospecific set of designed peptides created
to date. In expanding the predicted heterospecific set from eight
peptides22 to 16, we have accomplished the following. (1) By
necessity, we have increased both the speed and the utility of
the algorithm. Although we have stopped at octuples, by
continuing with our Python-based approach, we have expanded
our predicted heterospecific CC setup to duodecuples (12
CCs) using the current library. (2) We have implemented the
removal of peptides predicted to form antiparallel CCs (i.e.,
those that can adopt fully complementary e-e′ or g-g′
electrostatic pairs by the algorithm). (3) We have robustly
demonstrated both the need for such software and its utility in
directing against the expanding number of lower-energy off-
targets, in this case from 32 to 128. The new Python-based
algorithm predicts that we can further expand the number of
peptides to at least 24. This would generate 12 heterospecific
CCs, with 288 CC off-targets, using the same two core (Ile/
Asn) and electrostatic (Glu/Lys) residue options. (4) We have
used our data set of >170 CCs to identify electrostatic “charge
blocks” (Figure 4). These aid the de novo design of specificity
by serving to increase the stability of desired pairs, while
concomitantly decreasing off-target stability. Designing charge
blocks in future CC-based systems will assist in ensuring that
designed peptide sets achieve their desired heterospecificity.
Incorporating these and other emerging sequence context-
based rules for otherwise energetically equivalent CCs into
prediction models will further ensure that off-targets are
disfavored while increasing the predicted stability of desired
pairs. (5) Lastly, we believe that the heterospecific peptide
sequences generated and the tools used to identify them will
also be of use to the synthetic biology community. As more
data become available, we will expand the size of both training
and test sets to further increase CC prediction accuracy. The
software and peptides derived from the study, as well as the
approach more widely, have the potential to be applied in a
variety of downstream applications that include hydrogels,
increased complexity nanocages, PPI inhibitors, and peptide
tags for uses as molecular probes.3−5

Our aim to derive a heterospecific interactome using 16
peptides was partially achieved; seven of the eight CCs are

Biochemistry Article

144



shown to be heterospecific. However, observations from the
expanded data set have given rise to a significant increase in the
accuracy of CC prediction. Incorporating emerging rules into
qCIPA selection to screen and select large heterospecific
peptide sets represents a significant advance toward designing
interactomes that are more likely to be exquisitely specific. In
the future, it may be possible to further improve the accuracy of
specificity prediction by taking into account additional coupling
energies or by accounting for the context dependence of
additional residue pair interactions.38,39 We believe that these
findings make important contributions to the question of how
primary sequence governs the stability and specificity of
quaternary structures and in the derivation of peptide building
blocks to modulate PPIs as well as tools for the synthetic
biology community.
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Supporting Information 

Software - The following tools are listed in the order that have been used to derive the 

heterospecific CCs listed in the manuscript.  

i) Generate Library Sequences

http://people.bath.ac.uk/jm2219/biology/create-library.htm generates a list of all given 

sequences within a peptide library. Data can be entered at the peptide (where a ‘?’ defines 

each position to be scrambled with specific options for each ‘?’ entered by the user) or DNA 

level (where libraries are built using degenerate codons (e.g. the codon WSG = options of 

S,T,W,R). 

ii) bCIPA Interactome Screen:

 http://people.bath.ac.uk/jm2219/biology/bcipa-interactome.htm screens all interactions 

between a defined set of sequences (generated from i) and outputs a predicted Tm value for 

each interaction. This includes an option to provide a colour-coded heat-map of the resulting 

interactome. In the case of our 1536 member library this represented 1,180,416 hypothetical 

PPIs within the interactome. 

iii) Find Pairs / Find Quadruples / Find Octuples:

http://people.bath.ac.uk/jm2219/biology/find-pairs.php works using the bCIPA Interactome 

Screen engine. It allows users to input a library of sequences and then screen the resulting 

interactome to identify two (i.e. four peptides - pairs), four (i.e eight peptides - quadruples), or 

even higher numbers of sets of leucine zippers that are specific within each other’s presence. 

Users can also input desired parameters for their specific pairs (maximum homodimer Tm, 

minimum desired Tm, maximum undesired Tm, minimum delta Tm) depending on their 

requirements. The software is incremental, meaning that options for ‘find quadruples’ will 

appear within the software once ‘find pairs’ has identified sequences that meet the given 

requirements. Throughout, the user is able to control stringency by inputting the necessary 

parameters. These include the desired ΔTm, maximum undesired Tm and maximum desired 

Tm. The output will then list all Tm values within the resultant eight-peptide interactome and 

generate a heatmap (Figure 2). Required parameters for screening the complete 1536 peptide 

interactome screen are listed in the methods section and are designed to keep homodimeric 

and off-target Tm values low, and desired Tm values high. Having screened all 1,180,416 

hypothetical interactions we were able to identify pairs, and later quadruples of coiled coils 

that met the specificity criteria. Once sequences were identified within Find pairs, the Find 
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quadruples options were available to identify sets of pairs that retained specificity when 

combined into quadruples. Finally, once sequences were identified within Find Quadruples, 

the Find Octuples options were available to identify sets of Quadruples that retained 

specificity when combined into Octuples. Again, the user is able to input a maximum 

tolerated off-target Tm value as well as a minimum difference in Tm between desired and non-

desired pairs. 

Setting Tm cut-off points. Having generated the peptide library, a second program (‘Find 

pairs’) searches within the imported interactome by integrating with bCIPA to predict of PPI 

Tm values and identify pairs of coiled coils (i.e. four peptides) that are expected to be specific 

within each other’s presence. Once identified, the program searches through pairs of coiled 

coils to identify four coiled coils (i.e. eight peptides - Quadruples). This is followed by 

combining Quadruples to identify Octuples – sets of 16 peptides predicted to form 8 

heterospecific coiled coils. The program therefore works iteratively by identifying which 

interactions between a set of sequences do and do not take place given a set of cut-off 

parameters input by the user. The program assigns a Tm to every hypothetical pair and creates 

an associated heatmap for the resulting interactome. The stringency for desired pairs can be 

changed according to required stability, as well as the Tm cut-off for off-target interactions 

(i.e. homodimers and heterodimers). Given these sets of customised constraints, first 

Quadruples and next Octuples can be identified. In our case the maximum acceptable 

predicted Tm for homodimers was set to 10 °C, the maximum Tm for desired heterodimers was 

set to 70 °C, the maximum Tm for undesired heterodimers was set as 20 °C, with the 

minimum ΔTm (desired – off-target) set as 50 °C. After enabling the antiparallel coiled coil 

removal feature, this resulted in 42 separate groups of predicted non-interacting pairs of 

coiled coils. The highest predicted Tm for the desired coiled coils was 73 °C and the highest 

predicted Tm for undesired coiled coils was 18 °C. The software additionally allows the user 

to specify other desired characteristics – in this case that two Asn residues and two Ile 

residues should be found within every peptide to direct specificity1-3. Having identified two 

coiled coils predicted to be of both high affinity and specificity, the program can be further 

instructed to identify four coiled coils (Quadruples). In this case, minimum ΔTm of 40 °C, and 

a maximum undesired coiled coil Tm of 30 °C was specified within the software. This resulted 

in retaining 72 groups of non-interacting Quadruples of coiled coils with the highest desired 

Tm of 73 °C and a lowest undesired coiled coil Tm of 28 °C.  Finally the parameters can be 

set to identify eight coiled coils (Octuples) using a minimum ΔTm	 of	 21	 °C,	 and	 a	

maximum	 undesired	 coiled	 coil	 Tm	 of	 52	 °C.	 This	 resulted	 in	 36	 groups	 of	 non-

interacting	Octuples	of	coiled	coils,	with	the	highest	desired	Tm	of	73	°C	and	a	Tm	of	52	°C	

for	the	lowest	undesired	coiled	coil.	
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Python-based Software. The PHP-based software for ‘Find X with Coils’ was used to 

increase the speed of the search and to allow the search to become more expansive when 

using either bCIPA or qCIPA to identify heterospecific sets of coiled coils. The software does 

not currently run via html but is freely available from j.mason@bath.ac.uk upon request.  

Peptides Used in Quadruple Training Set (see Crooks et al 2016	4): 
Quad01: ASENAALEAKNAALKYKIAALKAEIAALEGAP 

Quad02: ASKNAALKAENAALEYEIAALEAKIAALKGAP 

Quad03: ASEIAALEAEIAALEYENAALEAENAALEGAP 

Quad04: ASKIAALKAKIAALKYKNAALKAKNAALKGAP 

Quad05: ASKNAALKAEIAALEYKIAALKAENAALEGAP 

Quad06: ASENAALEAKIAALKYEIAALEAKNAALKGAP 

Quad07: ASKIAALKAKNAALKYENAALEAEIAALEGAP 

Quad08: ASEIAALEAENAALEYKNAALKAKIAALKGAP 

Peptides Used in Octuples Test Set: 

OctO1: ASKNAALKAENAALEYEIAALEAEIAALEGAP 

Oct02: ASENAALEAKNAALKYKIAALKAKIAALKGAP 

OctO3: ASEIAALEAKIAALKYENAALEAENAALEGAP 

OctO4: ASKIAALKAEIAALEYKNAALKAKNAALKGAP 

OctO5: ASENAALEAEIAALEYKNAALKAEIAALEGAP 

OctO6: ASKNAALKAKIAALKYENAALEAKIAALKGAP 

OctO7: ASKIAALKAKNAALKYKIAALKAENAALEGAP 

OctO8: ASEIAALEAENAALEYEIAALEAKNAALKGAP 

OctO9: ASENAALEAKNAALKYEIAALEAEIAALEGAP 

OctO10: ASKNAALKAENAALEYKIAALKAKIAALKGAP 

OctO11: ASKIAALKAEIAALEYENAALEAENAALEGAP 

OctO12: ASEIAALEAKIAALKYKNAALKAKNAALKGAP 

OctO13: ASKNAALKAKIAALKYKNAALKAEIAALEGAP 

OctO14: ASENAALEAEIAALEYENAALEAKIAALKGAP 

OctO15: ASEIAALEAENAALEYKIAALKAENAALEGAP 

OctO16: ASKIAALKAKNAALKYEIAALEAKNAALKGAP 
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1
2
 

O
1
3
-
1
3
 
 
2
1
 

O
7
-
7
 
 
 
 
-
1
 

1
0
 
± 
1
1
 

Q
4
-
4
 
 
 
 
2
1
 

2
1
 
± 
0
 

-
 
+
 
+
 
-
 

+
 
-
 
-
 
+
 

-
 
-
 
+
 
+
 

+
 
+
 
-
 
-
 

Q
1
-
1
 
 
 
 
3
2

3
2
 
± 
0
 

Q
2
-
2
 
 
 
 
2
0
 

2
0
 
± 
0
 

Q
8
-
8
 
 
 
 
2
7
 

2
7
 
± 
0
 

Q
7
-
7
 
 
 
 
1
1
 

1
1
 
± 
0
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T
ab

le
 S

3:
 S

ho
w

n 
ar

e 
al

l i
nt

ra
-p

ai
r o

ff
-ta

rg
et

s 
(in

cl
ud

in
g 

pa
ra

lle
l d

im
er

s 
fr

om
 C

ro
ok

s 
et

 a
l 2

01
64 ) f

or
 c

om
pa

ris
on

. T
he

se
 p

ai
rs

 c
on

ta
in

 4
N

I c
or

e 
m

is
m

at
ch

es
 

an
d 

4 
at

tra
ct

iv
e 

/ 
4 

re
pu

ls
iv

e 
el

ec
tro

st
at

ic
 a

rr
an

ge
m

en
ts

. 
N

o 
co

m
pa

ris
on

s 
ca

n 
be

 m
ad

e 
be

tw
ee

n 
th

e 
tw

o 
co

re
 t

yp
es

. 
A

 .
 s

ig
ni

fie
s 

ei
th

er
 a

n 
EK

 o
r 

K
E 

el
ec

tro
st

at
ic

 a
ttr

ac
tio

n.
 B

y 
co

m
pa

rin
g 

el
ec

tro
st

at
ic

s 
w

ith
 a

 n
or

m
al

is
ed

 c
or

e 
w

e 
ca

n 
se

e 
th

at
 w

he
n 

al
te

rn
at

iv
e 

po
la

rit
y 

el
ec

tro
st

at
ic

 c
ha

rg
e 

re
pu

ls
io

ns
 fl

an
k 

ea
ch

 
ot

he
r t

hi
s 

ag
ai

n 
le

ad
s 

to
 in

cr
ea

se
d 

st
ab

ili
ty

. S
im

ila
rly

 w
he

n 
sa

m
e 

po
la

rit
y 

ch
ar

ge
 re

pu
ls

io
ns

 fl
an

k 
ea

ch
ot

he
r (

i.e
. +

+ 
or

 --
) w

e 
ob

se
rv

e 
a 

de
cr

ea
se

 in
 s

ta
bi

lit
y.

 
A

s 
pr

ev
io

us
ly

, w
e 

sp
ec

ul
at

e 
th

at
 th

es
e 

pr
om

ot
e 

in
tra

-m
ol

ec
ul

ar
 a

ttr
ac

tio
n 

an
d 

ca
us

e 
de

cr
ea

se
d 

e-
g’+

1 
in

te
r-

m
ol

ec
ul

ar
 re

pu
ls

io
n.

 T
he

se
 e

ff
ec

ts
 in

cr
ea

se
 s

ta
bi

lit
y 

fo
r t

he
se

 in
tra

-p
ai

r o
ff

-ta
rg

et
s. 

 

Ty
pe
	o
f	E
S	

	R
ep
ul
si
on

	

Co
re
	T
yp
e	

Av
er
ag
e	
Tm

	
N
I
 
I
N
 
N
I
 
I
N

N
I
 
N
I
 
I
N
 
I
N

+
 
+
 
.
 
.
 

O
6
-
7
 
 
 
 
1
9
 

O
1
3
-
1
6
 
 
1
6
 

1
8
 
± 
2
 

.
 
+
 
+
 
.
 

Q
1
-
4
 
 
 
 
2
8
 

2
8
 
± 
0
 

.
 
.
 
+
 
+
 

O
2
-
4
 
 
 
 
2
1
 

O
1
0
-
1
2
 
 
2
6
 

2
4
 
± 
3
 

+
 
.
 
.
 
+
 

Q
2
-
4
 
 
 
 
3
1
 

3
1
 
± 
0
 

-
 
-
 
.
 
.
 

O
5
-
8
 
 
 
 
2
6
 

O
1
4
-
1
5
 
 
2
0
 

2
3
 
± 
3
 

.
 
-
 
-
 
.
 

Q
2
-
3
 
 
 
 
2
0
 

2
0
 
± 
0
 

.
 
.
 
-
 
-
 

O
1
-
3
 
 
 
 
 
3
 

O
9
-
1
1
 
 
 
 
5
 

4
 
± 
1
 

-
 
.
 
.
 
-
 

Q
1
-
3
 
 
 
 
1
1
 

1
1
 
± 
0
 

+
 
-
 
.
 
.
 

O
1
-
4
 
 
 
 
2
0
 

O
1
0
-
1
1
 
 
3
1
 

2
6
 
± 
6
 

-
 
+
 
.
 
.
 

O
2
-
3
 
 
 
 
2
7
 

O
9
-
1
2
 
 
 
4
2
 

3
5
 
± 
8
 

.
 
.
 
+
 
-
 

O
5
-
7
 
 
 
 
3
5
 

O
1
3
-
1
5
 
 
5
1
 

4
3
 
± 
8
 

.
 
.
 
-
 
+
 

O
6
-
8
 
 
 
 
4
8
 

O
1
4
-
1
6
 
 
3
4
 

4
1
 
± 
7
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T
ab

le
 S

4:
 S

ho
w

n 
ar

e 
al

l 
In

te
r-

Pa
ir 

of
f-

ta
rg

et
s 

ty
pe

 I
 (

in
cl

ud
in

g 
pa

ra
lle

l 
di

m
er

s 
fr

om
 C

ro
ok

s 
et

 a
l 

20
16

4 ) 
fo

r 
co

m
pa

ris
on

. 
Th

es
e 

co
nt

ai
n 

1I
I 

1N
N

 2
N

I 
co

re
 

ar
ra

ng
em

en
ts

 a
nd

 4
 a

ttr
ac

tiv
e 

/ 
4 

re
pu

ls
iv

e 
el

ec
tro

st
at

ic
 a

rr
an

ge
m

en
ts

. T
he

 m
os

t 
st

ab
le

 o
f 

th
es

e 
of

f-
ta

rg
et

s 
by

 s
om

e 
m

ar
gi

n 
ar

e 
th

os
e 

w
ith

 a
 +

..-
 c

on
fig

ur
at

io
n,

 
su

gg
es

tin
g 

th
at

 th
es

e 
he

lp
 to

 o
ff

se
t t

he
 h

el
ix

 m
ac

ro
di

po
le

. T
hi

s 
is

 p
ar

tic
ul

ar
ly

 s
ta

bi
lis

in
g 

w
he

n 
a 

ne
ga

tiv
e 

N
-te

rm
in

us
 o

r +
 C

-te
rm

in
us

 is
 fl

an
ke

d 
by

 a
ttr

ac
tiv

e 
(c

ha
rg

e 
ne

ut
ra

l) 
el

ec
tro

st
at

ic
 p

ai
rs

. A
no

th
er

 g
en

er
al

 o
bs

er
va

tio
n 

is
 th

at
 th

e 
N

N
 N

I I
N

 II
, N

I N
N

 II
 IN

 a
nd

 IN
 II

 N
N

 N
I c

or
e 

co
nf

ig
ur

at
io

ns
 a

re
 g

en
er

al
ly

 m
or

e 
st

ab
le

 th
an

 th
e 

II
 IN

 N
I N

N
 c

on
fig

ur
at

io
n.

  A
ga

in
 w

he
n 

sa
m

e 
po

la
rit

y 
ch

ar
ge

 re
pu

ls
io

ns
 fl

an
k 

ea
ch

ot
he

r a
t e

 o
r g

 p
os

iti
on

s 
(i.

e.
 +

+ 
or

 --
) w

e 
ob

se
rv

e 
a 

de
cr

ea
se

 in
 s

ta
bi

lit
y 

re
la

tiv
e 

to
 o

pp
os

in
g 

ch
ar

ge
s 

(+
- 

or
 -

+)
. 

A
s 

pr
ev

io
us

ly
, 

w
e 

sp
ec

ul
at

e 
th

at
 t

he
se

 p
ro

m
ot

e 
in

tra
-m

ol
ec

ul
ar

 a
ttr

ac
tio

n 
an

d 
ca

us
e 

de
cr

ea
se

d 
e-

g’+
1 

in
te

r-
m

ol
ec

ul
ar

 r
ep

ul
si

on
. 

Th
er

ef
or

e 
in

 a
 s

im
ila

r 
bu

t 
op

po
si

te
 m

an
ne

r 
to

 t
he

 d
es

ire
d 

di
m

er
s, 

an
y 

‘c
ha

rg
e 

bl
oc

ks
’ 

de
cr

ea
se

 t
he

 s
ta

bi
lit

y 
fo

r 
of

f-
ta

rg
et

s 
pa

irs
 b

y 
pr

om
ot

in
g 

in
te

r-
m

ol
ec

ul
ar

 
re

pu
ls

io
n.

 C
on

ve
rs

el
y,

 a
lte

rn
at

in
g 

th
e 

po
la

rit
y 

of
 th

e 
el

ec
tro

st
at

ic
 re

si
du

es
 a

t t
he

 e
 a

nd
 g

 p
os

iti
on

s 
le

ad
s 

an
d 

in
cr

ea
se

s 
in

 d
im

er
 s

ta
bi

lit
y 

be
ca

us
e 

it 
ca

us
es

 le
ss

 in
te

r-
m

ol
ec

ul
ar

 re
pu

ls
io

n 
an

d 
pr

om
ot

es
 in

tra
-m

ol
ec

ul
ar

 a
ttr

ac
tio

n.
  

Ty
pe
	o
f	E
S	

	R
ep
ul
si
on

	

Co
re
	T
yp
e	

Av
er
ag
e	
Tm

	
N
N
 
N
I
 
I
N
 
I
I
 

N
I
 
N
N
 
I
I
 
I
N
 

N
I
 
N
N
 
I
N
 
I
I
 

I
N
 
I
I
 
N
N
 
N
I
 

N
I
 
I
I
 
N
N
 
I
N
 

I
I
 
I
N
 
N
N
 
N
I
 

I
I
 
I
N
 
N
I
 
N
N
 

+
 
+
 
.
 
.
 

+
 
.
 
+
 
.
 

+
 
.
 
.
 
+
 

.
 
+
 
+
 
.
 

.
 
+
 
.
 
+
 

.
 
.
 
+
 
+
 

Q
4
-
7
 
 
 
 
1
6
 

1
6
 
± 
0
 

O
1
0
-
1
3
 
 
2
6
 

O
7
-
1
0
 
 
 
2
9
 

O
4
-
1
3
 
 
 
2
8
 

O
4
-
7
 
 
 
1
6
 

2
5
 
± 
3
 

O
6
-
1
0
 
 
 
2
7
 

O
1
0
-
1
6
 
 
2
8
 

O
4
-
6
 
 
 
 
3
8
 

O
4
-
1
6
 
 
 
1
5
 

2
7
 
± 
5
 

O
2
-
1
3
 
 
 
1
3
 

O
2
-
7
 
 
 
 
1
5
 

O
1
2
-
1
3
 
 
2
0
 

O
7
-
1
2
 
 
 
1
5
 

1
6
 
± 
1
 

O
2
-
6
 
 
 
 
3
0
 

O
2
-
1
6
 
 
 
1
8
 

O
6
-
1
2
 
 
 
3
0
 

O
1
2
-
1
6
 
 
2
1
 

2
5
 
± 
3
 

Q
4
-
8
 
 
 
 
3
3
 

3
3
 
± 
0
 

-
 
-
 
.
 
.
 

-
 
.
 
-
 
.
 

-
 
.
 
.
 
-
 

.
 
-
 
-
 
.
 

.
 
-
 
.
 
-
 

.
 
.
 
-
 
-
 

O
3
-
1
4
 
 
 
3
0
 

Q
3
-
8
 
 
 
 
2
0
 

2
5
 
± 
5
 

O
9
-
1
4
 
 
 
1
8
 

O
8
-
9
 
 
 
 
2
2
 

O
3
-
8
 
 
 
 
2
0
 

2
0
 
± 
2
 

O
5
-
9
 
 
 
 
1
1
 

O
9
-
1
5
 
 
 
2
0
 

O
3
-
5
 
 
 
 
3
0
 

O
3
-
1
5
 
 
 
 
6
 

1
7
 
± 
5
 

O
1
-
1
4
 
 
 
2
3
 

O
1
-
8
 
 
 
 
-
3
 

O
1
1
-
1
4
 
 
1
7
 

O
8
-
1
1
 
 
 
 
5
 

1
1
 
± 
6
 

O
1
-
5
 
 
 
 
2
1
 

O
1
-
1
5
 
 
 
 
8
 

O
5
-
1
1
 
 
 
1
5
 

O
1
1
-
1
5
 
 
 
1
3
 

1
4
 
± 
3
 

Q
3
-
7
 
 
 
 
1
8
 

1
8
 
± 
0
 

+
 
.
 
-
 
.
 

+
 
.
 
.
 
-
 

.
 
+
 
-
 
.
 

.
 
+
 
.
 
-
 

.
 
.
 
+
 
-
 

O
1
-
6
 
 
 
 
2
3

O
1
-
1
6
 
 
 
1
4
 

Q
2
-
7
 
 
 
 
1
9
 

O
1
1
-
1
3
 
 
2
6
 

O
6
-
1
1
 
 
 
2
3

O
1
1
-
1
6
 
 
 
4

2
1
 
± 
2
 

O
1
-
1
3
 
 
 
4
3
 

O
1
-
7
 
 
 
 
3
4
 

O
7
-
1
1
 
 
 
2
1
 

3
3
 
± 
6
 

O
6
-
9
 
 
 
 
4
0
 

O
9
-
1
6
 
 
 
1
8
 

O
3
-
6
 
 
 
 
3
3
 

O
3
-
1
6
 
 
 
2
1
 

2
8
 
± 
5
 

O
9
-
1
3
 
 
 
3
2
 

O
7
-
9
 
 
 
 
1
7
 

Q
1
-
7
 
 
 
 
2
6
 

O
3
-
7
 
 
 
 
1
8
 

2
3
 
± 
4
 

O
3
-
1
3
 
 
 
2
2
 

2
2
 
± 
0
 

-
 
.
 
+
 
.
 

-
 
.
 
.
 
+
 

.
 
-
 
+
 
.
 

.
 
-
 
.
 
+
 

O
2
-
5
 
 
 
 
3
0

O
2
-
1
5
 
 
 
4
2
 

Q
1
-
8
 
 
 
 
3
5

O
5
-
1
2
 
 
 
2
9

O
1
2
-
1
5
 
 
2
6

3
2
 
± 
3
 

O
2
-
1
4
 
 
 
5
4
 

O
2
-
8
 
 
 
 
5
1
 

O
1
2
-
1
4
 
 
5
1
 

O
8
-
1
2
 
 
 
4
8
 

5
1
 
± 
1
 

O
5
-
1
0
 
 
 
4
8
 

O
1
0
-
1
5
 
 
2
6
 

O
4
-
5
 
 
 
 
3
6
 

O
4
-
1
5
 
 
 
4
0
 

3
8
 
± 
5
 

O
1
0
-
1
4
 
 
3
1
 

O
8
-
1
0
 
 
 
2
9
 

Q
2
-
8
 
 
 
 
4
7
 

O
4
-
1
4
 
 
 
3
6
 

O
4
-
8
 
 
 
 
2
2
 

3
3
 
± 
5
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ab

le
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5:
 S

ho
w

n 
ar

e 
al

l 
In

te
r-

Pa
ir 

of
f-

ta
rg

et
s 

ty
pe

 I
I 

(in
cl

ud
in

g 
pa

ra
lle

l 
di

m
er

s 
fr

om
 C

ro
ok

s 
et

 a
l 

20
16

4 ) 
fo

r 
co

m
pa

ris
on

. 
Th

es
e 

co
nt

ai
n 

2I
I 

2N
N

 c
or

e 
ar

ra
ng

em
en

ts
 a

nd
  

4 
at

tra
ct

iv
e 

/ 
4 

re
pu

ls
iv

e 
el

ec
tro

st
at

ic
 a

rr
an

ge
m

en
ts

. 
O

nc
e 

ag
ai

n 
w

e 
ob

se
rv

e 
th

at
 a

 N
N

 I
I 

N
N

 I
I 

co
re

 a
rr

an
ge

m
en

t 
le

ad
s 

to
 i

nc
re

as
ed

 
st

ab
ili

ty
 o

ve
r I

I N
N

 II
 N

N
. N

o 
ot

he
r c

or
e 

ar
ra

ng
em

en
ts

 a
re

 c
le

ar
. A

ga
in

, w
he

n 
sa

m
e 

po
la

rit
y 

ch
ar

ge
 re

pu
ls

io
ns

 fl
an

k 
ea

ch
 o

th
er

 a
t e

 o
r g

 p
os

iti
on

s 
(i.

e.
 +

+ 
or

 -
-)

 w
e 

ob
se

rv
e 

a 
de

cr
ea

se
 in

 st
ab

ili
ty

 re
la

tiv
e 

to
 o

pp
os

in
g 

ch
ar

ge
s (

+-
 o

r -
+)

. 

Ty
pe
	o
f	E
S	

	R
ep
ul
si
on

	

Co
re
	T
yp
e	

Av
er
ag
e	
Tm

	
N
N
 
N
N
 
I
I
 
I
I

N
N
 
I
I
 
N
N
 
I
I

I
I
 
N
N
 
I
I
 
N
N
 

I
I
 
I
I
 
N
N
 
N
N

+
 
-
 
.
 
.
 

-
 
+
 
.
 
.
 

+
 
+
 
.
 
.
 

-
 
-
 
.
 
.
 

.
 
.
 
+
 
-
 

.
 
.
 
-
 
+
 

.
 
.
 
-
 
-
 

.
 
.
 
+
 
+
 

O
1
-
1
0
 
 
 
4
2
 

O
4
-
1
1
 
 
 
5
0
 

4
6
 
± 
4
 

O
2
-
9
 
 
 
 
5
6
 

O
3
-
1
2
 
 
 
6
0
 

5
8
 
± 
2
 

O
6
-
1
3
 
 
 
4
4
 

O
7
-
1
6
 
 
 
 
1
5
 

3
0
 
± 
1
5
 

O
5
-
1
4
 
 
 
4
6
 

O
8
-
1
5
 
 
 
 
2
8
 

3
7
 
± 
9
 

O
5
-
1
3
 
 
 
3
9
 

O
7
-
1
5
 
 
 
 
4
0
 

4
0
 
± 
1
 

O
6
-
1
4
 
 
 
5
5
 

O
8
-
1
6
 
 
 
 
2
8
 

4
2
 
± 
1
3
 

O
1
-
9
 
 
 
 
1
2
 

O
3
-
1
1
 
 
 
1
6
 

1
4
 
± 
2
 

O
2
-
1
0
 
 
 
4
6
 

O
4
-
1
2
 
 
 
3
6
 

4
1
 
± 
5
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 S

ho
w

n 
ar

e 
al

l 
In

te
r-

Pa
ir 

of
f-

ta
rg

et
s 

ty
pe

 I
II

 (
in

cl
ud

in
g 

pa
ra

lle
l 

di
m

er
s 

fr
om

 C
ro

ok
s 

et
 a

l 
20

16
4 ) 

fo
r 

co
m

pa
ris

on
. 

Th
es

e 
co

nt
ai

n 
4N

I 
co

re
 

ar
ra

na
ge

m
en

ts
 a

nd
 a

ll 
at

tra
ct

iv
e 

el
ec

tro
st

at
ic

 c
om

po
ne

nt
s)

. T
he

se
 h

av
e 

th
e 

sa
m

e 
el

ec
tro

st
at

ic
 a

rr
an

ge
m

en
ts

 a
s 

th
e 

de
si

re
d 

co
ile

d 
co

ils
 a

nd
 o

nc
e 

ag
ai

n 
w

e 
ob

se
rv

e 
th

at
 sa

m
e 

ch
ar

ge
 re

si
du

es
 a

t c
on

se
cu

tiv
e 

e 
or

 g
 p

os
iti

on
s r

es
ul

ts
 in

 in
cr

ea
se

d 
st

ab
ili

ty
.  

Ty
pe
	o
f	E
S	

	R
ep
ul
si
on

	

Co
re
	T
yp
e	

Av
er
ag
e	
Tm

	
I
N
 
N
I
 
I
N
 
N
I

N
I
 
N
I
 
I
N
 
I
N

I
N
 
I
N
 
N
I
 
N
I
 

N
I
 
I
N
 
N
I
 
I
N
 

E
K
 
E
K
 
E
K
 
E
K
 

E
K
 
E
K
 
E
K
 
K
E
 

O
8
-
1
3
 
 
 
 
4
2
 

4
2
 
± 
0
 

E
K
 
E
K
 
K
E
 
E
K
 

O
5
-
1
6
 
 
 
2
1
 

2
1
 
± 
0
 

E
K
 
K
E
 
E
K
 
E
K
 

O
3
-
1
0
 
 
 
1
0
 

1
0
 
± 
0
 

K
E
 
E
K
 
E
K
 
E
K
 

O
1
-
1
2
 
 
 
3
6
 

3
6
 
± 
0
 

K
E
 
K
E
 
K
E
 
E
K
 

O
7
-
1
4
 
 
 
 
5
6
 

5
6
 
± 
0
 

K
E
 
K
E
 
E
K
 
K
E
 

O
6
-
1
5
 
 
 
3
1
 

3
1
 
± 
0
 

K
E
 
E
K
 
K
E
 
K
E
 

O
4
-
9
 
 
 
 
2
8
 

2
8
 
± 
0
 

E
K
 
K
E
 
K
E
 
K
E
 

O
2
-
1
1
 
 
 
3
8
 

3
8
 
± 
0
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 S

ho
w
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ar

e 
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In

te
r-

Pa
ir 

of
f-

ta
rg

et
s 

ty
pe

 I
V

 (
in

cl
ud

in
g 

pa
ra

lle
l 

di
m

er
s 

fr
om

 C
ro

ok
s 

et
 a

l 
20

16
4 ) 

fo
r 

co
m

pa
ris

on
. 

Th
es

e 
co
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Table s8: Size exclusion chromatography experiments. Shown are elution times for 
interacting and non-interacting peptides. For heteromeric samples the difference in elution 
time is shown. For example, homomeric samples eluted at 20 minutes. In contrast, a peak at 
19 minutes indicated that component peptides have dimerised. This was found to be the case 
in intended samples 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, and 15-16 at 50 µM Pt. Previously 
characterised controls eluted at 20 min for a monomeric sample (a 32mer Fos sample) and 
18.5 min for a 37mer cJun-FosW heterodimer The table summarises elution times for all 
homomeric samples as well as all 8 intended dimeric samples and a range of off-target 
heteromeric samples. Data are shown at 50 µM and 10 µM Pt. Of the intended dimers only 
15-16 is no longer dimeric at 10 µM Pt. However, at this concentration all other off-target 
samples (including all off-target samples with a Tm > 50 °C) were found to be monomeric. 
These experiments provide strong evidence for heterospecificity of the other 7 designed 
coiled coils. 

Peptide	Mixture		(Tm)	 Elution	Time	50	uM	 Elution	Time	10	uM	
Individual	
Peptides	

1=1 (-2)	 19.91	 N/A	
2=2 (34)	 20.78	 N/A	
3=3	 	(13)	 20.09	 N/A	
4=4	 	(21)	 20.12	 N/A	
5=5	 	(17)	 20.06	 N/A	
6=6	 	(23)	 20.35	 N/A	
7=7	 	(-1)	 19.99	 N/A	
8=8	 	(2)	 19.97	 N/A	
9=9	 	(6)	 19.99	 N/A	
10=10	 										(29)	 20.18	 N/A	
11=11	 	(4)	 19.71	 N/A	
12=12	 	(15)	 20.26	 N/A	
13=13	 	(21)	 20.60	 N/A	
14=14	 	(24)	 20.12	 N/A	
15=15	 	(12)	 20.00	 N/A	
16=16	 											(0)	 20.18	 N/A	

Desired	 1=2	 	(72)	 -1.40	±	0.43					(18.95)	 -1.18	±	0.43					(19.17)	
3=4	 	(68)	 -1.08	±	0.02					(19.03)	 -1.00	±	0.02					(19.10)	
5=6	 	(71)	 -1.23	±	0.15					(18.98)	 -0.88	±	0.15					(19.33)	
7=8	 	(68)	 -1.11	±	0.01					(18.87)	 -0.76	±	0.01					(19.22)	
9=10	 	(69)	 -1.16	±	0.10					(18.93)	 -0.92	±	0.10					(19.17)	
11=12	 	(73)	 -1.00	±	0.28					(18.99)	 -0.94	±	0.28					(19.05)	
13=14	 	(75)	 -1.51	±	0.24					(18.85)	 -1.19	±	0.24					(19.17)	
15=16	 	(52)	 -1.08	±	0.10					(19.01)	 -0.04	±	0.10					(20.05)	

Off-Target	 1=7	 	(34)	 -0.07	±	0.04					(19.88)	 N/A	
1=12 (36)	 -0.20	±	0.18					(19.89)	 N/A	
2=5	 	(30)	 -0.08	±	0.36					(20.50)	 N/A	
2=8	 	(51)	 -0.52	±	0.41					(19.86)	 -0.21	±	0.41					(20.17)	
2=9	 							(56)	 -0.81	±	0.40					(19.58)	 -0.45	±	0.40					(19.93)	
2=10	 	(46)	 0.00	±	0.30						(20.48)	 N/A	
2=14	 	(54)	 -0.83	±	0.33					(19.62)	 -0.28	±	0.33					(20.17)	
4=10	 	(32)	 -0.03	±	0.03					(20.18)	 N/A	
12=14 (51)	 -0.52	±	0.07					(19.67)	 0.04	±	0.07					(23.23)	
3=12	 						(60)	 -0.21	±	0.09					(19.97)	 N/A	
4=11	 					(50)	 0.19	±	0.21					(20.10)	 N/A	
6=14	 						(55)	 -0.55	±	0.11					(19.67)	 -0.55	±	0.11					(19.69)	
7=14	 								(56)	 -1.10	±	0.07					(19.00)	 -0.13	±	0.07					(19.93)	
13=15	 	(51)	 -0.39	±	0.30					(19.91)	 N/A	
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