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Abstract

Hybrid lead halide perovskite photovoltaic devices have demonstrated rapid improve-

ments in performance over a decade of development. However, the materials have drawn

criticism for lack of stability. Site substitution at any of A, B or X-sites of the ABX3

perovskite structure has been shown to reduce these instabilities, although there is a

need to further understand the effect of these substitutions on fundamental material

behaviour. This thesis focuses on the effects of site substitution on the phase behaviour

and stability of perovskites in which the A-site is varied between cesium, methylammo-

nium (CH3NH+
3 , MA) and formamidinium (CH(NH2)+

2 , FA), and the X-site between

iodide and bromide.

The phase behaviour of Cs-FA and Cs-MA lead halide perovskites is investigated using

variable temperature neutron powder diffraction, complemented with X-ray diffraction

and photoluminescence spectroscopy. On cooling Cs0.1FA0.9PbI3 a slow, second or-

der cubic (Pm3̄m) to tetragonal (P4/mbm) transition is observed close to 290 K. An

additional orthorhombic (Pnma) phase forms below 180 K and transition to a dis-

ordered state is observed at the lower temperature of 125 K compared to that seen

in FAPbI3 (140 K). Cs0.1MA0.9PbI3 shows similar phase behaviour to MAPbI3, but

mixed Cs-FA-I-Br systems maintain a desirable pseudo-cubic structure through to low

temperatures.

Degradation pathways and kinetics of lead iodide formation in FA-MA lead iodide thin

films are investigated through X-ray diffraction. MA-rich compositions degrade to lead

iodide and iodide salts, whereas FA-rich films transition rapidly to the non-perovskite

δ-FAPbI3 phase. Kinetic analysis demonstrates that the rate of lead iodide formation

decays exponentially up to x = 0.6 in FAxMA1−xPbI3, with the δ-phase forming for

x ≥ 0.7.

Halide exchange in 2 mm2 perovskite crystals is investigated through photolumines-

cence, with MAPbBr3 crystals part-exchanged with iodide forming a preferred com-

position of MAPb(I0.87Br0.13)3. However, subsequent chemical analysis using X-ray

diffraction and energy-dispersive X-ray spectroscopy reveals Br-I exchange to be inef-

ficient, as iodide fails to diffuse into the bulk of the crystal. Mixed A-site perovskites

show a significantly reduced rate of halide exchange, with no exchange observed in

Cs-FA and Cs-MA lead iodide systems.

These results demonstrate the importance of understanding the effect of site substitu-

tion on structure-property relationships in perovskite materials for photovoltaics.
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Chapter 1

Introduction
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1.1 The Need for New Materials

Adopted by all United Nations member states, the 2030 Agenda for Sustainable De-

velopment is built on seventeen core Sustainable Development Goals aiming to reduce

inequality and poverty, improve access to education and combat climate change. Goal

seven - providing access to affordable, reliable and sustainable modern energy to all -

presents a significant challenge.1 A huge effort is needed in order to succeed in address-

ing this goal, so entwined with one of the most significant threats of our time, climate

change. The world needs to shift away from energy generation using fossil fuels to new

cleaner, possibly more local energy generation. Such a shift will require new systems,

new technology and crucially new materials.

It is not only the energy sector that benefits from research into new materials. Advances

in materials science have helped shrink computers to fit in our pockets, helped ensure

we can communicate near instantaneously with the other side of the world and extended

our reach into the solar system. Further understanding of the fundamental science of

new materials will help the world progress towards the more efficient, equal and smarter

society towards which the Sustainable Development Goals aim.

1.2 The Potential of Solar Energy

Harnessing the energy provided by the Sun would meet the world’s energy demand

many times over. Solar has the potential of providing up to 50,000 EJ (1018 Joules) a

year, more than capable of meeting the predicted annual global consumption for 2050

of 1000 EJ.2 Solar energy is so abundant that it would be possible to exceed global

demand through the installation of large solar photovoltaic (PV) farms at a small

number of key locations around the world, running to a conversion efficiency of as little

as 8%.3

However, realistically this solar energy remains difficult to capture, store and transport

long distances. Solar irradiation also varies significantly throughout the world, from 60

- 250 Wm−2 depending on latitude, resulting in the vast potential of this resource not

yet being realised. However, the solar industry has experienced rapid growth in recent

years, reflected in the astonishing fall in PV module prices, decreasing 69% between

2010 and 2016, making the cost of solar competitive with fossil fuels.4

Crystalline silicon (c-Si) currently dominates the PV industry, forming 95% of the
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Figure 1-1: Typical atomic structure of an ABX3 perovskite, represented here by
FAPbI3. Where A represents the central cation (in this case the organic CH(NH2)+

2

formamidinium (FA) ion) with carbon as black, nitrogen as blue and hydrogen as pink.
B represents the corner anions (lead, grey) and X the halide anions forming the corner
octahedra (iodide, purple). Structure drawn using the software VESTA8

market share, although there is increasing demand for new generations of devices.5

Modern materials can be used to fabricate thin film solar PV which achieve the same

power output as c-Si but use far less raw material. Thin films also offer the potential to

be integrated within other electronic devices, as well as the on the walls or windows of

buildings. But perhaps the most significant development in thin film solar technology

for the near future is the fabrication of tandem solar cells, which combine existing c-

Si technology with thin film materials in an effort to overcome thermodynamic limit

on power conversion efficiencies for single junction devices.6 Perovskites, the class of

material investigated in this thesis, have been increasingly investigated for use in these

record-breaking tandem devices.7

1.3 Perovskites in Photovoltaics

In 1839 Gustav Rose discovered a mineral in Western Russia which he named after the

Russian mineralogist Count Lev Perovski.9 Over a century later and C.K. Møller of

the Royal Veterinary and Agricultural College in Denmark determined the structure of

the class of materials we know as perovskites.10

The term perovskite commonly refers to any material with the same crystal structure

as the original calcium titanate (CaTiO3) discovered by Rose in the 19th century.

Although in recent years this definition has been applied rather loosely, the perovskites
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Figure 1-2: Number of papers published containing the key word ‘perovskite’ in the
title and/or abstract between 1980 and 2018. Inset displays number of papers with the
key words ‘methylammonium’ and/or ‘formamidinium lead iodide’ in the title between
2014 and 2018. Numbers taken from a simple search on Web of Science in March 2018.

investigated in this thesis are of the structure ABX3, where A is a small organic or

inorganic cation sitting in the centre of the void created by four corner B ions forming

octahedra with their six nearest X halide ions (see Figure 1-1).

The 20th century saw perovskites used as materials in fuel cells, catalysts, heating ele-

ments, lasers and capacitors, and, in 1978, D.Weber developed the first hybrid organic-

inorganic halide perovskites by inserting methylammonium (MA) cations (CH3NH+
3 )

at the A site.11 Jumping forward 30 years, T. Miyasaka and colleagues in Japan in-

serted this hybrid organic-inorganic lead halide perovskite into dye sensitised solar cells,

achieving efficiencies of 3.6%.12

Just three years later the groups of Grätzel in Switzerland, Park in South Korea and

Snaith in the UK fabricated promising solid state perovskite devices, demonstrating

the perovskite layer to be capable of both charge generation and transport.13,14 The

field of perovskites has since exploded, seeing an exponential growth in the number

of papers published year on year; Figure 1-2 gives an idea of the scale of the growth

in the perovskite research community. The result of this huge research effort is that

perovskite PV is currently outperforming established technologies such as cadmium

telluride thin films and, remarkably, is fast approaching silicon technology efficiencies,

which benefit from half a century of research and development.

20



Figure 1-3: The NREL PV device efficiency table.16

The National Renewable Energy Laboratory (NREL) tracks the highest efficiencies

achieved for all research PV devices. The annual chart is shown in figure 1-3, which

displays perovskite solar cell efficiencies as yellow/orange dots. Despite the first record

only appearing in 2013, perovskite device efficiencies are now competing with estab-

lished technologies such as CIGS (copper indium gallium selenide) and silicon cells.

The caveat is that many of these high efficiencies have been recorded on small lab scale

devices unsuitable for commercial use, although the community is currently turning

its head to the large scale manufacture of perovskite PV devices. Scaled up deposi-

tion methods compatible with industrial manufacture techniques, such as roll-to-roll

deposition and ink jet printing, are currently under development.15

Despite the promising progress of perovskite PV a few key issues remain, one being the

potential environmental impact of these materials, which seem to favour a core of toxic

lead (Pb) for the highest performing materials. However, the most contentious issue

surrounding perovskites is undoubtedly stability. Even though significant improvement

has been seen in recent years, perovskite device lifetimes remain very low, in part due to

the tendency for the perovskite structure to degrade. The most popular perovskite PV

material compositions are based on MAPbI3 (CH3NH3PbI3), FAPbI3 (CH(NH2)2PbI3)

and CsPbI3 which all exhibit stability issues. On exposure to oxygen and light the

archetypal MAPbI3 degrades into its constituents,17 while the popular FAPbI3 and

CsPbI3 both undergo transitions to a photo-inactive phase at room temperature.18,19

One key method to improve fundamental material stability is through site substitution
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at any one of the perovskite’s A, B or X sites.20 This thesis does not consider the

effect of changing the corner B ions, which are maintained as lead (Pb) throughout,

although swapping out the Pb for elements such as tin (Sn) in an effort to reduce

material toxicity is an active field of research.21 Throughout this work the effect of

varying the central A cation between cesium (Cs), formamidinium (FA) and MA and

the X halide ion between iodine (I) and bromine (Br) is considered.

Site substitution can lead to significant improvements in PV device efficiencies, life-

times and durability.20,22,23 However, in order to fully appreciate and so optimise

device design a detailed understanding of the complex structure-property relationships

exhibited by these intriguing materials on a more fundamental level is needed. This

forms the basis of the work presented in this thesis.

1.4 Scope of Work

The focus of this thesis surrounds hybrid halide perovskites with an ABX3 structure.

Throughout this work the cation occupying the central A-site is varied between for-

mamidinium (CH(NH2)+
2 , FA), methylammonium (CH3NH+

3 , MA) and cesium, with

compositions including iodide and bromide at the X-site also investigated. The B-site

is maintained as the lead anion throughout. This family of materials have captured

significant attention over the past decade due to the impressive development of per-

ovskite PV device efficiencies16 produced via low-cost deposition methods.24 However,

in the excitement of their success, an understanding of fundamental structure-property

relationships fell behind device development. If these perovskites are to be optimised

for use in commercial devices, a detailed understanding of material behaviour is needed.

As described previously, some of the best performing PV devices include site substituted

perovskite materials, where the A and X-sites are occupied by varying ratios of FA, MA

and Cs cations and halide anions.23 Despite the popularity of site substitution in PV

device research, its effect on the fundamental structural and spectroscopic properties

of perovskites was largely unknown. This motivated the overarching research question

addressed in this thesis: what effect does site substitution have on the structure and

spectroscopy of lead halide perovskites for photovoltaics.

To address this question the work aimed to characterise perovskite material in the

form of simple thin films, powder and single crystals, in order to focus on material

properties only and mitigate against any effects caused by the type of PV device archi-

tecture used.25–27 Because of the importance of material quality, significant effort was
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undertaken to optimise the crystallisation methods presented.

Detailed overviews of the phase behaviour of Cs-FA and Cs-MA lead iodide systems are

first presented between 300 K and 100 K using neutron powder diffraction (NPD), com-

plemented with X-ray diffraction (XRD) and variable temperature photoluminescence

(PL). The phase behaviour of mixed Cs-FA-I-Br and Cs-MA-I-Br perovskites investi-

gated by NPD is also investigated. Building on work conducted prior to this thesis,

trends in the stability of mixed FA-MA lead iodide perovskites are then presented

through XRD analysis of the crystallisation of decomposition products. Finally, the

possibility of halide exchange in lead iodide and lead bromide crystals is investigated

using PL, XRD and energy-dispersive X-ray spectroscopy (EDX).

The work presented in this thesis provides insight into the differences between the

behaviour of single cation single halide perovskites and complex site substituted ma-

terials. The structure-property investigations at the heart of this thesis contribute

towards the development of these materials for use in PV applications across a range

of environments.
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Chapter 2

Theoretical Background
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2.1 Introduction to Semiconductors

Semiconductors are materials with an electrical conductivity between that of insulators

and metals. The properties of crystalline semiconductors can be understood through

the band theory of solids, where the discrete energy levels of single atoms combine in

an ordered material to form continuous energy bands through which charge carriers

can travel.28 Band theory is discussed in greater detail in Section 2.3 of this chapter.

The crystallinity, which describes the long range order of atoms in the semiconductor,

describes how the individual atoms are packed together to form these energy bands,

therefore the structure and electronic properties of semiconductors are highly corre-

lated.29

The charge carriers in semiconductors are commonly released via energy provided by

light, an electric field or thermal energy and their behaviour is dictated by external

factors, such as temperature, pressure and an applied voltage. In photovoltaic materials

charge carriers are generated under illumination. Energy from a wave packet of light

(known as a photon) can promote a negative electron from the highest occupied band

(valence band) to the lowest unoccupied band (conduction band) across a region in

energy known as the bandgap and leaving behind an empty electron state, known as a

hole which carries a positive charge.29

Adding small quantities of impurities, or doping a semiconductor can cause substantial

changes in material behaviour, changing the intrinsic conductivity. In the familiar

case of silicon, doping with a material such as phosphorus adds donor levels below

the conduction band (CB) and is known as n-type doping, whereas, adding acceptor

levels just above the valence band (VB) using a material such as boron is referred to

as p-type doping. Semiconductor devices, including many solar cells, utilise the p-n

junction where a p and n type semiconductor are put in contact initiating the diffusion

of charge carriers.30

Knowledge of semiconducting properties can be traced back as far as the early 19th

century; however, it was only well into the 20th century that the full scale of applications

were realised with the invention of the transistor in the 1940s transforming our society.31

Exploiting the vast range of semiconducting behaviours has resulted in the extensive

use of semiconductors in electronic devices, for applications in devices as wide-ranging

as satellites and solar cells.32
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2.2 Introduction to Photovoltaics

A solar cell refers to any electronic device capable of converting incident sunlight into

electrical power. To do this, a solar device requires a photoabsorber material in which

light from the solar spectrum is able to cause an electronic transition from a ground to

an excited state. The energy from this transition is then collected via the separation

of charges (i.e. the creation of free negative and positive charge carriers) which are

transported to contacts. Negative carriers collect at the cathode, while positive carriers

collect at the anode. The exciting photon may cause the generation of free electron

and hole particles in the photoabsorber, in which case the generation and separation of

charge carriers occurs simultaneously. In other materials, a bound excited state known

as an exciton may be formed, where the binding energy (Eb) of the electron-hole pair

needs to be overcome in order to extract the charge carriers for use in a device. In

order to extract the maximum number of charge carriers possible for a given material,

a detailed understanding of the interaction of these photoabsorber materials with light

is required.33

Solar cells (referred to as PV devices and cells interchangeably in this thesis) are often

named after their semi-conducting photoabsorber layer, such as silicon, and can be

categorised into generations. First generation solar cells refer to common, commercially

available cells usually made out of c-Si. Second generation are generally associated with

thin film devices using materials such as amorphous silicon and cadmium telluride

(CdTe), while third generation refers to emerging PV materials such as perovskites.34

The bandgaps of several commonly used photoabsorber materials are shown on the

solar spectrum in Figure 2-1. In theory, the greater proportion of the Sun’s spectrum

the photoabsorber is able to utilise the better; however, in reality there exist optimum

material bandgaps depending on the design of the device.35,36

Devices can generally be classed as single junction or multi-junction, so called due to

the number of p-type and n-type semiconductor junctions present. Common to all PV

device designs, energy from incident light is transferred to exciting an electron leading

to the creation of an electron - hole pair. However, only a proportion of these charge

carriers can be collected at the contacts due to recombination. In recombination the

electron-hole pairs combine, relaxing from an excited state to their preferred equilib-

rium state, resulting in the loss of energy through either radiative or non-radiative

mechanisms,33 limiting solar cell performance.

In 1961 Shockley and Queisser published their Detailed Balance Limit theory on the
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Figure 2-1: The AM 1.5 solar spectrum reproduced from Brown and Wu.37 AM 1.5 is
the standard used when comparing solar cell performance, referring to sunlight hitting
the ground at an angle of 48◦ with a power density of 1 kWm−2. The values of common
semiconductor bandgaps are shown in relation to their position on the solar spectrum.

maximum achievable efficiency of a single p-n junction solar cell, based on unavoidable

recombination processes.36 For a single junction solar cell a theoretical limit of around

33% efficiency is achievable with an optimal bandgap in the region of 1.5 eV.35

Figure 2-2 shows simple schematics of common perovskite PV device architectures. The

perovskite thin film is often sandwiched between an electron transport material (ETM),

a hole transport material (HTM), a transparent conducting oxide (such as FTO) and

a rear contact (such as gold).23 Planar devices contain layers deposited sequentially,

whereas mesoscopic cells contain a mesoporous layer (such as TiO2) allowing the per-

ovskite layer to diffuse through, thereby improving charge carrier transfer. Numerous

other architectures containing different materials have been trialed by research groups

around the world23,38

A multi-junction device can overcome the Shockley-Queisser limit. Indeed multi-

junction devices are currently achieving the highest reported efficiencies, in some cases

up to 46%.16 In 1980 C. Henry calculated the maximum theoretical efficiencies achiev-

able using multiple bandgaps to be 50% and 56% for two and three bandgaps respec-

tively, a considerable improvement on a single junction device.35 Therefore, new PV

materials are often optimised for use in multi-junction device architectures. In per-

28



Figure 2-2: Schematics of some common perovskite PV device architectures.

ovskite PV tandem cells are becoming increasingly common, where a perovskite cell

forms the top cell of a two (or more) cell device (Figure 2-2). Currently at the forefront

of research are silicon-perovskite tandem cells, which achieved efficiencies of 28% in

2018.39
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2.3 Band Theory

As introduced at the beginning of this chapter in Section 2.1, the properties of semi-

conductors - such as those used in PV devices - can be understood through the band

theory of solids. In order to appreciate the workings of semiconductors, the physical

properties of metals (in which valence electrons travel freely) must first be consid-

ered. Charge carrier behaviour in metals can be described by the free electron model

derived from the Schrödinger equation which relates the wavefunction of an electron

(ψ), Hamiltonian operator (H) and energy eigenvalue (ε) through Hψ = εψ. The free

particle Schrödinger equation for an electron of wavector k and mass m is:29

− ~2

2m

δ2

δr2
ψk(r) = εkψk(r) (2.1)

where ~ is the Planck constant h divided by 2π. Assuming the electrons are confined

to a cube of length a and repeated with a period a, the wavefunctions that satisfy the

model are in the form of plane waves such that:

ψk(r) = eik·r. (2.2)

Substituting 2.2 into 2.1 gives the energy as:

εk =
~2k2

2m
. (2.3)

This model allows for continuously distributed electron energy values and is a good

description for metals (such as lithium and sodium), but it fails to account for the

interaction between charge carriers and the ions making up a crystal structure. To

account for this, the free electron model is developed into the nearly free electron

model, where the effect of the periodic potential of the ions making up the crystal is

accounted for. The solutions of the Schrödinger equation in a 3D periodic potential

are provided by the Bloch function:

ψk(r) = uk(r)eik·r (2.4)

where uk(r) has the periodicity of the lattice. Each Bloch function represents a one-

electron wavefunction, but can be grouped into wave packets representing electrons
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propagating through the crystal.

Accounting for the periodic potential of the crystal results in the formation of energy

bands separated by regions in energy where there are no wave-like solutions to the

Schrödinger equation. These energy gaps are referred to as bandgaps. The band struc-

tures of semiconducting materials are commonly plotted as energy vs wavector, such

as those shown in Figure 2-3, where the bandgap can be identified. The bandgap of

a semiconducting material occurs between the highest occupied band and the lowest

unoccupied band, known as the valence band (VB) and conduction band (CB) respec-

tively. These bandgaps are of values such that the transition of electrons between

bands can be promoted by the energy input of photons of visible or infra-red light. For

example, gallium arsenide (GaAs) - a popular PV material - has a bandgap of 1.52 eV,

implying a VB to CB transition can be promoted by infra-red light of wavelength 815

nm.23 As electrons are excited from the VB to the CB a vacant state is left behind

in the VB, referred to as a positively charged hole. Both electrons and holes can con-

tribute to electrical conductivity, and useful PV materials allow the extraction of both

types of charge carrier.

Bandgaps can be either direct or indirect, where the highest point of the VB and

lowest point of the CB align in k-space directly in the former and are offset in the

latter, as shown schematically in Figure 2-3(a). Transitions occurring across a direct

bandgap due to the absorption of light of frequency f produce an electron-hole pair

separated by an energy E = hf . However, transitions across an indirect bandgap must

fulfil the conservation of momentum due to the lowest point of the CB and highest

point of the VB being offset by a wavector k. Therefore, for an indirect absorption

process, additional energy in the form of a lattice vibration (or phonon) is required.

The phonon generated has a wavevector K such that k + K ≈ 0. The energy of

this phonon is significantly smaller than the bandgap energy Eg and is often generated

thermally. Ideally, photovoltaic materials have direct bandgaps, making the absorption

of light and subsequent generation of charge carriers as efficient as possible; this is one

property enabling PV materials such as perovskites to exhibit high PV efficiencies with

films only nanometres thick.24
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Figure 2-3: (a) Schematic E−k diagram for a direct and indirect bandgap (Eg) between
the valence (green) and conduction (red) bands. (b) Real example of an E−k diagram
for the band structure for the archetypal PV perovskite MAPbI3 reproduced from
Brivio et al.40 Here green represents the I 5p band and red the Pb 6p band.
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2.4 Interaction with Light

2.4.1 Absorption and Emission Spectroscopy

Absorption and emission spectroscopy are experimental tools which can provide a

plethora of information on the electronic band structure and charge carrier behaviour.

In the case of perovskites, optical spectroscopy can even be used as an indicator of

the crystallographic phase (or phases) present in a sample.41–43 It is also possible for

band structures and charge carrier behaviours to be modelled computationally using a

variety of methods, the most common being density functional theory (DFT), which

can be used to provide information regarding the ground state electronic structure of

a material.44 Although beyond the scope of this thesis, computational methods often

provide invaluable references for the interpretation of experimental data.

The energy (E) and wavelength (λ) of a photon in a vacuum are fundamentally linked

through the relationship:

E = hf =
hc

λ
(2.5)

where c the speed of light. This energy can be harnessed in absorption if the energy of

the incident photon is equal to or greater than that of the material bandgap. Electrons

are excited from the VB to the CB in semiconductors under illumination, forming

electron-hole pairs in the process. Luminescence then occurs when the electron-hole

pair recombine, releasing energy in the form of another photon. When luminescence is

triggered specifically by the absorption of light it is referred to as photoluminescence

(PL). The photon emitted as a result of PL will have a different energy to the photon

absorbed due to the number of pathways available in the relaxation of the electron to

its equilibrium state.45

The type of charge carrier formed via photoexcitation has important consequences for

PV device operation. If a bound electron and hole pair (an exciton) is formed, an

additional binding energy (Eb) must be overcome in order to separate the charges for

extraction.46 Significant effort was invested into the investigation of the photogenerated

species in MAPbI3 and similar compounds in order to determine whether the behaviour

excitonic or free-carrier in nature.46–50 Time resolved spectroscopic techniques have

suggested free charge carrier densities to dominate in hybrid halide perovskites, which

also exhibit high charge carrier mobilities and low recombination rates.46
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Figure 2-4: (a) Schematic of the recombination pathways discussed in this thesis with
electrons and holes represented as black and white dots respectively. (1) Non-radiative
transition (2) Radiative recombination (3)Auger recombination (4) trap assisted recom-
bination. (b) Example PL spectrum (black line) taken of the perovskite Cs0.1FA0.9PbI3

investigated in a later chapter, fitted with a Gaussian function (red dashed line).

The recombination pathways referred to in this thesis are non-radiative, radiative,

Auger and trap assisted. Non-radiative transitions occur when excited electrons relax

to the ground state and do not result in the production of a photon. The excess energy

is usually dissipated as phonons (lattice vibrations). Radiative recombination is the

direct recombination of an electron-hole pair resulting in the release of a photon. In

the three-body Auger process the excess energy from an electron-hole recombination is

transferred to another electron in the CB, prompting a transition to a higher energy

state. Trap assisted recombination involves the recombination of an electron-hole pair

via one or more trap states existing within the energy gap of the material. These trap

states are commonly caused by impurities or other material defects.45,46 Figure 2-4(a)

summarises these typical pathways.

The behaviour of these pathways affect the spectroscopic line shapes observed in an

experiment, which are generally characterised by either Lorentzian or Gaussian profiles.

Lorentzian functions take into account homogeneous (or natural) broadening mecha-

nisms, where the spectroscopic line width (or full width at half maximum, FWHM)

is determined by the lifetime of the excited state. However, in crystals composed of

multiple different ions, such as those investigated in this work, it is realistic to expect

inhomogeneous broadening described by the Gaussian function:
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G(ω) =
1√
πΓ

e−(ω−ω0)2/Γ2
(2.6)

where ω0 is the centre frequency and Γ is the linewidth.51 In Figure 2-4 an example

PL spectrum (black line) observed for a perovskite sample investigated in this thesis is

shown fitted with a single Gaussian function (red dashed line) in the program Origin.

Transient or time resolved photoluminescence (TRPL) can be used in addition to PL to

provide greater insight into the recombination pathways present in a material. This is

done by examining the luminescence decay which can be subsequently modelled using

an appropriate rate equation. For free-charge carriers the rate equation:

−dn
dt

= k1n+ k2n
2 + k3n

3 (2.7)

can be used. Here the time dependence of the free-charge carrier density n(t) is written

as a function of the rate constants for monomolecular recombination (k1), bimolecular

recombination (k2) and Auger recombination (k3).52 In the case of hybrid perovskites,

k1 is dominated by trap-assisted recombination and bimolecular recombination is pre-

dominately radiative.46 Together these rates form the total recombination rate of the

material (r(n)), defined as:

r(n) = k1 + k2n+ k3n
2. (2.8)

2.4.2 Hybrid Halide Perovskites

PL and absorption spectroscopies have been extensively used to investigate photophys-

ical properties of the hybrid halide perovskites. The behaviours inferred from these

measurements have varied widely depending on the type of material measured, for

example between polycrystalline thin films or single crystals.50,53–59

Shi et al. first reported a discrepancy between the absorption onset of thin films and

single crystals, reporting absorption edges 0.1 eV lower for the crystals. Samples of

MAPbBr3 were deemed to have higher optical bandgaps when deposited as a poly-

crystalline thin film. The differences were attributed to higher trap state densities and

increased disorder present in the thin films.60 These same observations were reported

by other groups, while subsequent investigations also suggested there to be no differ-

ence in the optical properties of single crystals and thin films.61–64 Wu et al. postulated
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the difference in reported behaviours to be due to the fact that both surface and bulk

properties can be present for single crystal measurements, but only surface properties

are measured in thin films, and the optical properties of the surface can differ from the

bulk.65

PL peak shape and position have been other key discrepancies in reported optical

measurements on perovskite single crystals, resulting in a range of values suggested for

defect densities.60,66,67 In an effort to rectify these findings, Wenger et al. measured

MAPbBr3 single crystal PL in front and back illumination configurations, where the

detector is placed on the same and opposite side as the excitation spot respectively. In

back excitation photo-emitted photons travel through a section of the crystal before

being detected, causing a red-shift in observed PL peak due to photon reabsorption.62

Therefore the relative positions of the excitation spot and detector can have a significant

influence on the PL observed.

Similar to PL, reports differ on the behaviours of charge-carrier mobilities and recombi-

nation mechanisms as measured through TRPL, leading to a debate on the importance

of material processing.68 It is clear that the method of synthesis does impact mate-

rial properties such as defect densities and charge carrier mobility, but the extent to

which these properties are a result of material processing or intrinsic to the perovskites

themselves is unknown.60,62,67,68

2.4.3 Variable Temperature PL Behaviour in Perovskites

Photoluminescence Shift

Shifting PL peak position indicates a shifting bandgap. The bandgap (Eg) of some

semiconductors are dependant on temperature (T ) in a manner often described by the

Varshni relationship:69

Eg =
E0 − αT 2

T + β
(2.9)

where E0 is the bandgap at 0 K and α and β are constants. This semi-empirical re-

lationship predicts the decrease in material bandgap with increasing temperature due

to the effects of lattice expansion.69 However, in the case of the soft hybrid halide

perovskites the temperature dependent behaviour of the electronic states is more com-

plex; dictated by phase transitions, octahedral tilting, lattice thermal expansion and

electron-phonon interactions.
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In contrast to the trend predicted by Equation 2.9 and the observed behaviour of many

semiconductors, hybrid halide perovskites tend to exhibit a blue shift in bandgap energy

with increasing temperature.70 This characteristic has been attributed to the coupling

between electronic and vibrational states within the lattice known as electron-phonon

(EP) coupling. The change in material bandgap (Eg) with temperature can also be

expressed through thermal expansion (TE) effects such that:

dEg
dT

=

[
δEg
δT

]
TE

+

[
δEg
δT

]
EP

(2.10)

with computational work suggesting that the EP term dominates. However, results

obtained as part of this work conducted in collaboration with Institute of Materials

Science of Barcelona (ICMAB), combining high pressure and variable temperature PL

experimental measurements, suggest the TE term has a greater contribution to change

in bandgap. The work (not presented in this thesis) was conducted using perovskite

crystals grown via the space-confined method described in Chapter 3 and demonstrated

thermal expansion effects account for 60% of the observed energy shift in MAPbI3.70

Photoluminescence Broadening

Phonon scattering dominates emission line broadening in hybrid halide perovskites,

leading to decreased full width at half maximum (FWHM) values in PL spectra at lower

temperatures. The temperature dependence of the FWHM (Γ(T )) can be expressed in

terms of the below:

Γ(T ) = Γo + ΓAC(T ) + ΓLO(T ) + Γimp(T ) (2.11)

where Γo is the temperature independent homogeneous broadening term, ΓAC and ΓLO

are the broadening terms as a result of acoustic (AC) and longitudinal optical (LO)

phonon scattering respectively and Γimp results from scattering due to ionised impuri-

ties. Work by Wright et al. on hybrid lead halide perovskites showed the contribution

from Γimp and ΓAC (known as the deformation potential) to be negligible, leading to

the temperature dependence of the FWHM being dominated by Γo and ΓLO, the latter

also known as Fröhlich scattering. This scattering can be expressed in terms of the

Bose-Einstein distribution function NLO(T ) as below:

Γ(T ) = Γo + ΓLO = Γo + γLONLO(T ) = Γo +
γLO

e
ELO
KBT − 1

(2.12)
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where γLO is the charge carrier – LO phonon coupling strength and ELO is the energy

for the LO phonon. Understanding these interactions is vital for electronic device

applications as electron-phonon interactions dictate charge carrier mobilities.58
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2.5 Crystal Structure

2.5.1 Crystallography

Crystals are materials in which atoms, ions or molecules are arranged in the lowest

energy configuration, causing long range order that can be described by translational

symmetry.71 The whole crystal can be defined by one repeating unit referred to as the

unit cell, which constructs the crystal lattice when translational symmetry operators

are applied in three dimensions (3D). The fundamental symmetry is categorised into

crystal systems defined by the lattice vectors a, b, c and their associated angles α, β, γ.

The crystal systems can be subdivided into different cell types according to the number

of lattice points they contain, for example primitive (P ) and body centred (I). Figure

2-5 shows the crystal systems most commonly associated with the materials discussed

in this thesis.

Integer values (ni) of the primitive lattice vectors (a, b and c) constructing these

systems are used to describe the lattice vector (rn) between lattice points such that:

rn = n1a + n2b + n3c. (2.13)

Unit cells are packed together forming 2D arrays of lattice points known as lattice

planes which can be indexed using Miller indices. There are three indices for a 3D

structure, h, k and l referring to the reciprocal of the fractional intercept of the lattice

plane along the a, b and c axes respectively.72 For example, the shaded face in Figure

2-5 represents the (001) plane in Miller notation. The geometric symmetry of the

lattice points within the cell, generated by the presence of symmetry elements such

as inversions or rotations, is described by one of the 32 unique point groups. Taking

into account translational, geometric and non-primitive lattice symmetries leads to

the 230 unique space groups, which together represent the total number of possible

arrangements of symmetry elements within a crystalline material.72

Defects, Disorder and Twinning

Real crystals are rarely perfect. Defects can occur which affect the long range order

and local environment of atoms in an array. Figure 2-6 summarises some potential de-

fects, including vacancies (atoms ‘missing’ from unit cells), the presence of interstitial

or substitutional impurities, dislocations (generated through stress causing a deforma-

tion in the crystal), stacking faults (caused by the disorder in crystal planes) and grain
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Figure 2-5: The four main crystal systems discussed in this thesis, presented in their
primitive form, with definitions of the lattice parameters a, b, c and their associated
angles α, β and γ. The shaded area in the cubic system represents the [001] Miller
plane.
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Figure 2-6: Schematic of potential defects which can occur in a crystal.

boundaries (a boundary separating areas of different crystalline orientation).71,73 De-

fects can lead to the formation of trap states in the electronic structure of a crystal,

causing the recombination of charge carriers.73

Disorder is often present within crystalline materials (especially perovskites) and can

cause problems determining the true structure of a material. In an ideal system the

contents of all unit cells are identical; however, instantaneously this is not the case,

as each atom vibrates causing small displacements measured as an atomic displace-

ment factors (ADPs), therefore the measured structure is time-averaged. Large ADPs

can be a sign of dynamic or static disorder and, in the some cases, these cannot be

differentiated, for example for randomly orientated or tumbling molecules.71

Twinning is a commonly observed effect caused by a crystal having two or more orien-

tations of the same structure growing together in a symmetrical manner. Twinning can

occur during crystal synthesis caused by the inter-growth of two or more single crys-

tals; the phenomenon can also occur through phase transitions.72 Some perovskites are

known to twin through phase transitions, causing a significant problem to structural

determination.74

2.5.2 Structure Determination

A crystal structure can be solved experimentally through the use of X-ray and neutron

diffraction. These techniques are used to assign a crystal system and space group to

an unknown structure, as well as determine the positional co-ordinates and thermal

motion of atoms.
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In the case of XRD, X-rays are scattered from the electrons associated with the elements

present in a unit cell, a process first observed by physicist Max von Laué while at the

University of Munich. 1 A path difference exists between the incident and scattered

X-rays resulting in constructive or destructive interference depending on the scattering

angle. The scattering power as a function of scattering angle is defined by the atomic

scattering factor (f) which differs depending on the atom type. At a scattering angle

of zero f is equivalent to the number of electrons present, its value then falls with

increasing scattering angle in a manner characteristic to that atom.72

X-rays scattered from each atom in the crystal combine to create the observed X-ray

diffraction pattern, where the intensities and geometry of the maxima are associated

with the atomic positions in the unit cell through a Fourier transform. The diffraction

pattern as a whole is a Fourier transform of the electron density (ρ). These fundamental

mathematical relationships underpin structure determination through diffraction.

The amplitude (|Fhkl|) and phase (Φhkl) of each diffracted X-ray from a Miller plane

(hkl) can be represented by a complex number known as the structure factor:71,72

Fhkl = |Fhkl|eiΦhkl (2.14)

where the intensity of the diffracted beams from a Miller plane (Ihkl) is directly pro-

portional to |Fhkl|2. The structure factor is crucial in determining the atomic positions

and electron density (ρ) at each (x, y, z) coordinate. The relevant transform for atomic

positions is:

Fhkl =
N∑
j=1

fje
2πi(hxj+kyj+lzj) (2.15)

where (hxj + kyj + lzj) are the fractional coordinates of the jth atom in a unit cell

containing N atoms. However, in a real crystal the scattering intensity is affected by

the thermal motion and occupation factor of atoms in the unit cell. To account for

these additional parameters, a correction factor must be applied to the structure factor

equation such that:

1The photoluminescence work presented in this thesis was undertaken in the very lab Laué first
observed X-ray diffraction.
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Fhkl =

N∑
j=1

fjnje
−8π2Uisosin

2θ/λ2e2πi(hxj+kyj+lzj) (2.16)

where nj is the occupation of the jth atom in a unit cell, θ is the scattering angle, λ is the

wavelength of radiation used and U is the isotropic mean square atomic displacement

(units Å2).72

The transformation for electron density (ρ) is:

ρxyz =
1

V

∑
hkl

|Fhkl|e−2πi(hx+ky+lz) (2.17)

where V is the volume of the unit cell. These transformations can be used to construct

an electron density map and X-ray diffraction pattern from a known structure, that is,

from a structure in which the positions and types of atoms present in a unit cell are

defined. However, an important issue to address is the fact that the phase (Φhkl) cannot

be directly measured; this is known as the phase problem and complicates structure

determination for an unknown material.

To overcome the phase problem Patterson synthesis or direct methods can be used.

In Patterson synthesis values of |Fhkl|2 are calculated from observed intensities and

the phases Φhkl are set to 0, whereas direct methods estimate approximate phases.

The family of solutions collectively known as direct methods essentially solve the phase

problem by assuming positive values of ρ at all points formed by distinct atoms modelled

as point-like objects. Alternatively, a known structure can be used as a reference. From

the known atom types and positions of the reference model, values for Fhkl and ρhkl

can be calculated and compared to measured values. The model can then be refined

to minimise the difference.72

Bragg Scattering

Bragg’s Law provides the geometrical conditions for constructive interference of scat-

tered X-rays and occurs because the wavelength of X-rays (typically 0.1 nm or 1 Å) are

of the same order as the spacing between lattice planes in the crystal. X-rays are scat-

tered elastically from the electrons associated with these planes in a manner analogous

to the reflection of electromagnetic waves on planar surfaces. Constructive interference

of waves reflected from planes of the same (hkl) value satisfy the Bragg condition:

43



Figure 2-7: Schematic of the diffraction of X-rays from crystal lattice (grey lines) used
to construct the Bragg condition.

nλ = 2dhklsin(θ) (2.18)

where n is an integer, λ is wavelength, dhkl is the spacing between the lattice planes and

θ is the angle between the incident X-ray beam and atomic plane, as shown in Figure

2-7. Therefore, the Bragg condition directly relates diffraction maxima to d-spacing,

from which lattice parameters of the unit cell can be extracted.75

Neutron Diffraction

Due to the de Broglie relation:75

λ =
h

mv
(2.19)

a particle of mass m and velocity v has an associated wavelength λ related via the

Planck constant h. The wave-particle duality implied by the de Broglie equation results

in neutrons being capable of undergoing Bragg reflection. Structure determination

through neutron diffraction is often used as a complementary method to XRD, as -

unlike X-rays which are scattered by electrons - neutrons are scattered by atomic nuclei.

The different process results in neutron diffraction being more sensitive to scattering

from lighter elements, such as hydrogen, and less sensitive to heavier elements, such

as lead. This is useful in the case of hybrid lead-halide perovskites, where XRD is

dominated by the heavy lead and halide anions, obscuring the behaviour of the central

organic cation.72,75

Figure 2-8 (a) shows the difference between the relative scattering factors for X-rays

and neutrons of some elements used in this work. The schematic clearly shows that
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Figure 2-8: (a) Relative scattering factors of H, D, C, N and Pb using X-rays and neu-
trons adapted from Weller and Young.75 (b) Variation of scattering f with scattering
angle θ for neutrons and X-rays, the neutron scattering factor is unaffected by the value
of θ, whereas the X-ray scattering factor weakens at higher angles.

while the scattering from lead dominates when using X-rays, the scattering is more

evenly distributed throughout the lighter and heavier atoms when using neutrons. An-

other key difference in neutron diffraction is the independence of scattering factor f

to the scattering angle θ, therefore extending the range of usable data to higher θ

(or lower d-spacing) allowing for a more accurate determination of atomic positions.75

However, diffraction using neutrons is generally less accessible than X-rays, as the prin-

ciple sources of neutrons are nuclear fission reactors or synchrotron spallation sources.

The spallation source at ISIS neutron and muon source in Oxfordshire was used in this

work.

2.5.3 General Perovskite Structural Properties

Perovskites are soft materials capable of undergoing structural phase transitions from

the ideal cubic system in space group Pm3m to a variety of lower symmetry phases.

These transitions can occur due to a change in temperature, pressure and composition,

although the fundamental ABX3 stoichiometry remains.11 For example, the A-site

cation in MAPbI3 can be partially substituted with FA to form FA0.5MA0.5PbI3 where

the effective A-site cation is now FA0.5MA+
0.5.

The formation of perovskites depends on three major factors: charge neutrality between

the cations and anions, the stability of the corner BX6 octahedra and the ratio of the

A, B and X ionic radii as defined by the Goldschmidt tolerance factor (t).76 The factor

t is defined as the ratio of the radii of the B-site cation (rB) and the X-site halide anion
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Figure 2-9: Tolerance (t) and octahedral (µ) factors plotted for the hybrid halide
perovskites investigated in this thesis.

(rX) by:

t =
(rA + rX)√
2(rB + rX)

(2.20)

with rA the ionic radius of the A-site cation. Each of these radii can be averaged to

produce effective radii (reff ) in mixed cation/halide systems; for example, in the case

of FA0.5MA0.5PbI3 the effective rA would be given by:

rA(eff) =
1

2
(rFA + rMA) (2.21)

where rFA + rMA are the radii of the FA and MA cations respectively. Tolerance

factor values where 0.87 ≤ t ≤ 1.06 are generally accepted to generate perovskite-like

structures; however, this is not a definitive rule.77–79 In general t values of 1 indicate

the ideal cubic structure, whereas a value of t < 0.8 indicates an A cation with an

effective radius too small to form the perovskite structure.

Additionally, the octahedral factor (µ) can be used to predict the stability of the BX6

octahedra, as defined by:

µ =
rB
rX
. (2.22)
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Figure 2-10: (a) Ideal cubic perovskite structure with central organic or inorganic
cation (green) surrounded by PbI6 octahedra (purple). (b) Octahedral tilting causing
a distortion lowering the symmetry.

Perovskite structures are generally stable with 0.44 ≤ µ ≤ 0.55.80 Calculating values

for t and µ are useful in predicting material properties, however the suggested limits

on the values of these factors cannot act as definitive predictions of material structure.

Figure 2-9 shows the values of t and µ for materials investigated in this work, as

calculated from published ionic radii.79,81,82 When calculating tolerance factors, care

was taken to include the effects of different metal-halide coordination as proposed

by Travis et al.79 In this revised system, the ionic radius of Pb2+ increases when

coordinated with I− compared to Br−.

In reality, due to the restrictions on the ideal Pm3m system, most perovskites are

distorted in one of three ways; (1) with a displaced B-cation, (2) a distorted BX6

octahedra and/or (3) the relative tilting of the BX6 octahedra.83 A schematic of

the latter is displayed in Figure 2-10 and is a characteristic commonly referred to

in this thesis. Octahedral tilting is often categorised in terms of Glazer notation which

describes the tilt of the BX6 units around each of the a[100], b[010] and c[001] axes.

The notation a∗b∗c∗ is used, where the superscript ∗ can be 0, + or - indicating no tilt,

in-phase or anti-phase tilting of successive octahedra respectively.

The tilting - often caused by changes in temperature, pressure or composition - produces

relatively small distortions which can lead to significant differences in the symmetry of

the material as well as changes in electronic and magnetic properties.84 Tilting lowers

the symmetry of the structure, contributing to a change in phase from the parent Pm3m

space group to an allowed subgroup. Howard and Stokes employed group-theoretical

analysis to determine 15 perovskite space groups formed through tilting, along with

the allowed structural phase transitions between them, shown in Figure 2-11.83
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Figure 2-11: Schematic reproduced from Howard and Stokes83 showing the allowed
phase transitions from the perovskite parent phase Pm3m and associated octahedral
tilts in Glazer notation.85

2.5.4 Nomenclature

Chapters 4 and 5 of this thesis concern the lowering of perovskite crystal symmetry

with the lowering of temperature, as introduced in the previous section (2.5.3). The

structure of the perovskite changes on cooling or heating, undergoing reversible phase

transitions. These phases are commonly labelled as α, β and γ.

For hybrid halide perovskites the α-phase, representing the highest temperature phase,

occupies the cubic space group Pm3m. On cooling this transitions to the β-phase which

- for the perovskites of interest in this thesis - is tetragonal. Further cooling may result

in formation of a third tetragonal or orthohombic phase labelled as γ74,86–88 .

An additional complication occurs for compounds which can exist in perovskite or

non-perovskite polymorphs, such as FAPbI3 and CsPbI3.74,88 The non-perovskite

polymorphs of these materials are labelled as the δ-phase and have a distinctive yel-

low colour. The non-perovskite δ-phase is characterised by the material no longer

having corner sharing lead-halide octahedra. These reversible phase transitions are

summarised in Figure 2-12.
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Figure 2-12: Schematic of the nomenclature used to describe perovskite structural
phases. The crystal systems associated with each phase are given for the family of
hybrid halide perovskites of interest in this thesis.

2.5.5 Hybrid Halide Perovskite Structures

While the properties detailed in Section 2.5.3 relate to all 3D perovskites, this thesis

concentrates on the hybrid halide family of materials; namely, 3D ABX3 perovskites

containing an organic and/or inorganic cation at the A site and a halide ion at the X

site.

MAPbI3

Methylammonium lead iodide (CH3NH3PbI3 shortened to MAPbI3) is arguably the

most widely studied material for perovskite PV, with the ability to form efficient de-

vices while remaining relatively easy to synthesise.16,89 However, at the outset of the

explosion in perovskite PV research, while there was a significant drive to form efficient

devices, the structure of MAPbI3 was less well known. In 2015 Weller et al. produced

a detailed report on the structure and cation orientation of MAPI3 between 100 - 352

K, summarised in Figure 2-13.86 Using neutron powder diffraction it was found that

MAPbI3 transitioned from an orthorhombic Pnma system to tetragonal I4/mcm at

165 K and to the cubic Pm3m system at 327 K.

The degree of tilting of the PbI6 corner octahedra varies significantly between phases,

with an average Pb-I-Pb angle of 154.5◦, 165.3◦ and 180◦ for the orthorhombic, tetrag-
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Figure 2-13: Phase transitions of MAPbI3 with unit cell structures as presented by
Weller et al.86 Probability ellipsoids directly relate to values of ADPs and give an
indication of the thermal motion of atoms. Lead is shown as yellow, iodine as purple,
carbon black, nitrogen blue and hydrogen as grey.
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Figure 2-14: Phase transitions of FAPbI3 as summarised in Weber et al.74 Below 325
K the α, β and δ phases are known to readily inter-convert in the presence of moisture
while the definitive structure of the γ-phase has not yet been fully determined. Iodine
is purple, lead grey, carbon brown and nitrogen blue.

onal and cubic phases respectively. This tilting affects the hydrogen bonding distances

between the NH3 group on the MA cation and the corner I ions, producing stronger

bonding in the orthorhombic than in the tetragonal phase.86 As a result, the MA cation

is fixed in the Pb-I cage of the orthorhombic structure. However, with increasing tem-

perature the cation gains thermal energy weakening the hydrogen bonds, resulting in

the cation becoming rotationally disordered in the ab plane in the tetragonal phase and

then freely rotating in the cubic phase.86,90,91 The high level of MA rotation in tetrag-

onal MAPbI3 may help account for the material’s excellent PV performance, although

this characteristic has also been linked to the hysteresis observed in devices.92

FAPbI3

Formamidinium lead iodide (CH(NH2)2PbI3 shortened to FAPbI3) is often preferred

over MAPbI3 due to its favourable bandgap and greater heat tolerance.87 However, due

to the larger size of the FA cation putting strain on the Pb-I bonds, FAPbI3 can exist

as a cubic black perovskite α-phase or a yellow hexagonal non-perovskite δ-phase at

room temperature.18 The tendency of the α and δ-phases to inter-convert has caused

some issues when investigating the temperature dependent behaviour of this material.

While the high and mid temperature phases are well understood, the low temperature

behaviour is less defined.42,87 Figure 2-14 summarises the known transitions in FAPbI3,

showing the high temperature Pm3m cubic phase which can convert to the hexagonal
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non-perovskite δ-phase in the presence of moisture or to the tetragonal β-phase upon

fast cooling in a dry environment. Previous work by Weller et al. found the FA cation

to have a rotational motion comparable to that of the MA in MAPbI3 in the high

temperature cubic phase.87

There exist conflicting reports in the literature over the low temperature phase, com-

monly referred to as γ-FAPbI3. Using powder X-ray diffraction (PXRD) Fabini et al.

solved the structure at 91 K in the same P4/mbm space group as the β-phase; whereas,

at the same temperature, Chen et al. found a supercell structure adopting the space

group P4bm, using neutron diffraction.42,93 Through the comparison of previous stud-

ies, as well as powder neutron diffraction experiments using hydrogenous and partially

deuterated FAPbI3, Weber et al. found there to be a high level of disorder throughout

the material below 140 K.74 The disorder was attributed to either the growth of a

super-cell similar to that found by Chen et al. or to the formation of domains of the β

and δ phases.74,93

CsPbI3

Similar to FAPbI3, cesium lead iodide (CsPbI3) also readily inter-converts between

a black perovskite phase and yellow PV-inactive non-perovskite δ-phase. While the

yellow orthorhombic phase is the most stable polymorph of CsPbI3, it is possible to

retain the black perovskite structure at room temperature through fast cooling in dry

conditions.88 Previously, this black phase was believed to be the cubic α-CsPbI3 form;

however, work by Sutton et al. showed that the PV active phase at room temperature is

in fact orthorhombic Pnam.18,88 Figure 2-15 summarises the known phases in CsPbI3.

MAPbBr3

The iodide based hybrid perovskites are arguably the most intensively researched ma-

terials in the community, although bromide based materials have also proven to be

highly capable PV materials.24 Methylammonium lead bromide (MAPbBr3) exhibits

greater air and moisture stability than its iodine based counterpart.94 Similarly to

MAPbI3, MAPbBr3 undergoes structural transitions between the cubic, tetragonal

and orthorhombic systems with changing temperature, though the space groups and

transition temperatures are subtly different. The MAPbBr3 phases are Pm3m above

235 K, P4/mmm between 148 K to 235 K and Pna21 below 148 K for the cubic,

tetragonal and orthorhombic systems respectively.94

The structural behaviour of each of these popular perovskites has an important impact

on the properties of the material crucial to PV performance, such as the electronic
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Figure 2-15: Phase transitions of CsPbI3 visualised using the CIF structures published
by Sutton et al. drawn in the software VESTA. The γ-phase can quickly convert to
the non-perovskite δ-phase in the presence of water.88

bandgap, charge carrier mobility and thermal stability. However, shortcomings in the

desirable PV properties of archetypal materials such as MAPbI3, FAPbI3, CsPbI3 and

MAPbBr3 can often be overcome through altering the perovskite structure, for example

through site substitution.23,95,96
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2.6 Site Substitution

2.6.1 Thermodynamics of Mixing

A solid solution can be made when two or more components mix. The behaviour

and limit of mixing is determined by the thermodynamics of the system and can be

displayed visually using phase diagrams. Phase diagrams are useful because they enable

the prediction of phases present at particular temperatures and concentrations. An

example diagram is shown in Figure 2-16 which shows a simple binary phase diagram

of compounds A and B.29 The green lines represent solid-to-solid transitions. It should

be noted that hybrid halide perovskites tend to decompose before the liquid phase is

achieved.97

Mixing can be understood by use of internal energy (U), enthalpy (H), entropy (S) and

Gibbs free energy (G). A change in internal energy is the sum of changes of potential

and kinetic energies:29

dU = CdT − PdV (2.23)

where C is the heat capacity, dT the change in temperature, P the pressure and dV

the change in volume. Change in enthalpy is given by:

dH = dU + PdV + V dP. (2.24)

Entropy is the measure of disorder caused by the arrangement of atoms or molecules

in a system as well as their thermal displacements. Change is entropy is defined as:

dS ≥ dq

T
(2.25)

where dq is the heat added to the system. These parameters are combined to define

the Gibbs free energy (G) which can be used to describe the equilibrium states of a

system. A change in G can be written as:

dG = dH − TdS − SdT. (2.26)

Changes in the free energy of a solid solution (∆Gmix) are subsequently defined as:
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Figure 2-16: Phase diagram of a two component system, A and B. α and β are re-
spectively A and B-rich phases. These labels do not directly refer to the labelling of
temperature induced structural variations in perovskites.

∆Gmix = ∆Hmix + T∆Smix. (2.27)

Considering a two component system made of A and B, the enthalpy and entropy of the

mixed system (∆Hmix and ∆Smix respectively) can be written in terms of interaction

energies and atomic fractions of the two components. A-A, B-B and A-B interaction

energies are written as wAA, wBB and wAB respectively, while xA and xB are the

fraction of A and B atoms in a system comprising of N atoms, each with a coordination

number z . Using these parameters the mixing terms are given by:98

∆Hmix =
NzxAxB

2
(2wAB − wAA − wBB) (2.28)

∆Smix = kBNA(−xAln(xA)− xBln(xB)) (2.29)

where NA is Avogadro’s number.98 Free energy curves of ∆Gmix against composition

are often plotted to determine the most stable state (or the lowest free energy) for a

particular pressure, temperature and composition. However, it is sometimes the case

that the system can reduce its free energy by separating into two different phases,

resulting in phase separation. If the mixture lies in an unstable region of the free

energy diagram then phase separation can happen spontaneously, known as spinodal

decomposition. This instability is common in mixed hybrid halide perovskites, and a
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significant challenge in improving material lifetime lies in achieving thermodynamically

stable perovskites through successful site substitution80,99 .

2.6.2 A and X-Site Substitution

The ABX3 structure of perovskites can be altered to fully or partially substitute ions at

any combination of the A, B or X sites. This compositional engineering allows for the

tuning of structural and physical properties enabling more stable PV devices capable

of achieving higher power conversion efficiencies.81 For example, Pellet et al. first com-

bined the MA and FA cations into mixed A-site perovskite devices; FA1−xMAxPbI3

demonstrated superior PV performance when compared to the single cation FAPbI3

and MAPbI3 devices.20 Subsequently, introducing Cs in a triple cation configuration

has been shown to produce more thermally stable PV solar cells with improved repro-

ducibility and greater resistance to device defects.81 Additional substitution at the X

halide site has been shown to further improve device stability, with Saliba et al. achiev-

ing a maximum power conversion efficiency of 21.1% and a consistent power output of

18% for 250 hours using the composition Cs0.1(MA0.17FA0.83)0.9Pb(I0.83Br0.17)3.81

Although not a focus in this work, significant research effort also exists in an attempt

to replace the lead in hybrid perovskites in order to create Pb-free devices, removing

the toxicity issue that surrounds perovskite PV.21,23,100,101 Klug et al. investigated the

effects of substituting the Pb with nine divalent metal alternatives (Co, Cu, Fe, Mg, Ni,

Sn, Sr and Zn), however the Pb based perovskites remain the best PV performers.21

Despite the effect of site substitution on PV performance being a key area of research

for the perovskite community, its effect on the fundamental structural behaviour of

these materials was relatively unknown and is subsequently the focus of attention in

this thesis.

FAxMA1−xPbI3

An investigation into the phase behaviour of FAxMA1−xPbI3 was conducted as part of

a Master of Research degree prior to the work presented in this thesis and subsequently

published.95

Powder samples of FAxMA1−xPbI3, made through the precipitation method, were mea-

sured by PXRD and variable temperature single crystal X-ray diffraction (SXRD) for

compositions of 0 ≤ x ≤ 1 (in intervals of 0.1). Nuclear Magnetic Resonance imaging

(NMR) was used to compare the observed and expected ratios of FA to MA, confirm-
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Figure 2-17: (Left) The reduced lattice parameter a and unit cell volume for
FA0.5MA0.5PbI3 obtained via variable temperature SXRD between 300 K - 150 K.
(Right) Variation in transition temperature between the 6.3 Å to 12.6 Å unit cell de-
pending on composition x in FAxMA1−xPbI3. Adapted from Weber et al.95

ing that uptake of the FA and MA ions mirrored the concentrations used in precursor

solutions, while the lattice parameters for FAxMA1−xPbI3 were observed to vary with

Vegard’s law:102

aAxB1−x = xaA + (1− x)aB (2.30)

where aA and aB represent the lattice parameters of FAPbI3 and MAPbI3 respectively.

The material remains in the tetragonal I4/mcm MAPbI3 structure for x ≤ 0.1; however,

beyond this the increasing presence of the FA cation forces the structure into the

cubic Pm3m phase. Variable temperature SXRD measurements also revealed a linear

decrease in the pseudo-cubic lattice parameter with decreasing temperature, although

below a composition dependent transition temperature the unit cell doubled from 6.3 Å

to 12.6 Å (see Figure 2-17). However, this doubled cubic cell, caused by increased

octahedral tilts, could also be described by an I-centered tetragonal cell.95

CsxFA1−xPbI3 and CsxMA1−xPbI3

Less extensive studies exist for the phase behaviour of CsxFA1−xPbI3 and CsxMA1−xPbI3

systems due the substitution limit of cesium within the perovskite structure.22 The

general consensus is that Cs incorporation is limited to x ≤ 0.2, beyond this phase sep-

aration occurs into the FA or MA perovskite and the undesirable δ-CsPbI3.103 However

the vast majority of investigations into mixed CsxFA1−xPbI3 and CsxMA1−xPbI3 sys-

tems are concerned with thin films within different PV devices. Therefore work was

needed to understand the detailed structure-property relationships of these materials
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without the influence of the vast range of PV device architectures, a motivation for a

significant proportion of work presented in this thesis.

MAPb(IyBr1−y)3

Exchanging the cation at the A-site can have important effects on perovskite properties

but site substitution at the X halide site often has a greater influence on the material.

For example, in varying the halide between I, Br and Cl, the perovskite colour, structure

and stability can be tuned while maintaining desirable PV properties.104 Tetragonal

MAPbI3 turns to the ideal cubic structure with 20% MAPbBr3 substitution, however

these mixed systems have shown a tendency to phase separate into I and Br-rich regions

due to the high mobility of the halide ions.105–107 This high level of mobility has other

implications, including the potential to create site substituted halide systems simply by

mixing MAPbI3 and MAPbBr3 in appropriate ratios.108 Halide exchange has already

been demonstrated in perovskite nanocrystals which motivated work for this thesis

investigating I/Br exchange in large single crystals.108
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2.7 Perovskite Stability

Despite device efficiencies challenging commercially available technology,16 stability

remains a critical issue for perovskite solar cells, with the best devices stable over

months, but with most degrading after only a few minutes of use.16,109 Optimising

both material and device design will be crucial in overcoming this significant barrier.

Aristidou et al. found that exposing the favoured hybrid perovskite MAPbI3 to light

and oxygen can lead to the degradation into lead iodide (PbI2), MA, I and H2O.17

On exposure to light a superoxide (O−2 ) species is formed through the absorption of

electrons generated by the light. This species can then react with the photoexcited

MAPbI3 (CH3NH3PbI∗3) through the reaction:17

4CH3NH3PbI∗3 + O−2 → 4PbI2 + 2I2 + 2H2O + 4CH3NH2. (2.31)

In the absence of a photoexcited species and superoxide the reaction of MAPbI3 with

oxygen is thermodynamically unfavorable, therefore degradation by oxygen is unlikely

to occur if the MAPbI3 is stored in the dark, although this is not useful for PV ap-

plications. Figure 2-18 shows the result of this decomposition into PbI2 and precursor

salts, explored in more detail in a later chapter.

MAPbI3 is also known to readily hydrolyse to MAPbI3·H2O in the presence of mois-

ture.110 Encapsulation provides one method to overcome this and prolong the life

of a perovskite device. However, calorimetric measurements by Nagabhushana et al.

revealed a positive enthalpy of formation in relation to decomposition to precursor ma-

terials PbI2 and MAI, implying MAPbI3 to be thermodynamically unstable.99 This

was also confirmed by Zhang et al. through density functional theory (DFT) calcu-

lations, showing that MAPbI3 was prone to degrade to PbI2 and MAI regardless of

atmospheric conditions.106

Nagabhushana et al. went on to suggest substitution at the A and X-sites had the

potential to reduce the apparent thermodynamic instability in MAPbI3.99 Indeed a

number of studies have shown improved device stabilities with the incorporation of

additional halide anions or organic cations.7,27,94,109,111,112 Binek et al. showed in-

corporation of only a small amount of MA (≤20%) stabilised FAPbI3, suppressing the

formation of the δ-phase at room temperature,111 while Zhang et al. found improved

film crystallinity and device performance on the addition of ≤10% FA to MAPbI3.112

Substituting small amounts of Cs into the MAPbI3 and FAPbI3 structures has also
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Figure 2-18: (a) Evolution of PXRD patterns for a thin film of MAPbI3 synthesised
for work presented in Chapter 6. The bottom trace was measured on the as-made
film while the top trace was measured 10 days later. The growing peak represents the
increasing presence of PbI2. (b) As-made black perovskite film yellowing after 10 days.

been shown to improve the thermal and moisture stability of the pure phases, while

still demonstrating good PV performance in devices.99,104,113

Substitution at the X-site of the perovskite has led to bandgap tuning covering the

entire visible spectrum and so enabled material optimisation depending on end use, for

example for use in single junction or tandem solar cells.7 Mixed cation mixed halide

compositions, such as Cs0.17FA0.83Pb(I0.83Br0.17)3, have shown increased stability when

used in PV devices, and MAPb(BryCl1−y)3 perovskites have been observed to maintain

a desirable cubic structure through to 120 K.94 It was suggested that the suppression of

phase transitions to lower symmetry structures with decreasing temperature is inhibited

by halide disorder, which affects the tilting of the PbX6 octahedra driving the phase

transitions.94 The effect of Br substitution in lead iodide perovskites is investigated

further in Chapters 4 and 5 using variable temperature neutron diffraction.

One concern of site substitution is that forming mixed halide perovskite compositions

introduce an additional instability due to photo-induced phase separation.114 Under

illumination mixed I-Br lead perovskites have been shown to preferentially separate into

I and Br rich regions, causing problems for PV devices due to charge carrier trapping

occurring in I rich regions.107 This phenomenon is investigated in large single crystals

in Chapter 7.

It is clear the mixed cation/anion perovskites demonstrate superior PV performance;

however, the fundamental behaviours and degradation mechanisms of these mixed-site

materials were not widely known, prompting the work undertaken in this thesis.
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Chapter 3

Material Synthesis and

Characterisation
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3.1 Perovskite Synthesis

Formamidinium iodide (FAI), methylammonium iodide (MAI), formamidinium bro-

mide (FABr) and methylammonium bromide (MABr) were purchased from GreatCell

Solar. Unless specified otherwise, all other reagents were purchased from Merck and

solvents were purchased from Alfa Aesar, with purities > 99%. Reactant quantities are

detailed in Appendix A, while specific synthetic details, relevant to each chapter, can

be found in Appendix B.

3.1.1 Mechanochemical

Mechanochemical synthesis offers an efficient and reproducible method of producing

large quantities of perovskite powder, avoiding the hazardous solvents and high tem-

peratures required by other synthetic routes.115 The method has previously proved

successful in the synthesis of metal-organic frameworks (MOFs) and perovskite-type

oxides, therefore the approach was extended to the hybrid halide perovskites fam-

ily.116,117

When mixed together perovskite precursors show a tendency to form the black per-

ovskite phase; for example, simply grinding methylammonium iodide (CH3NH3I, MAI)

and lead iodide (PbI2) manually using a pestle and mortar for 10 minutes produces

MAPbI3 of quality comparable to that produced through more commonly used meth-

ods discussed later in this chapter. Therefore the mechanochemical synthesis of mixed

cation mixed halide perovskites through manual grinding and automated ball milling

was investigated.

To produce 2 g of the material Cs0.1MA0.9Pb(I0.6Br0.4)3, 0.0906 g of CsI, 0.4988 g MAI,

0.6429 g PbI2 and 0.7677 g PbBr2 were manually ground in a pestle and mortar for

30 minutes. The same quantities of Cs, MAI, PbI2 and PbBr2 were loaded with small

stainless steel grinding balls into a 12 ml grinding jar and into a Retsch Planetary Ball

Mill PM100. The number of grinding balls, revolutions per minute (rpm) and time were

varied to optimise the quality of the resulting powder. All powders were subsequently

heated in an oven at 100◦C overnight as this significantly improved the quality of the

final material.

Despite the promise of a simple, reproducible and efficient method of producing complex

mixed cation mixed halide perovskites, it was decided to concentrate on the solvother-

mal, precipitation and inverse solubility methods described in Sections 3.1.2, 3.1.3 and
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Figure 3-1: Schematic of solvothermal synthesis using a stainless steel autoclave. The
perovskite precursor solution was sealed in the autoclave which was heated then slowly
cooled in an oven.

3.1.4 respectively. The decision to concentrate on alternative synthetic routes was made

largely due to material quality, which - because of grinding effects - proved difficult to

characterise through X-ray diffraction.

3.1.2 Solvothermal

The lead iodide perovskites methylammonium lead iodide (CH3NH3PbI3, MAPbI3),

formamidinium lead iodide (HC(NH2)2PbI3, FAPbI3) and the mixed organic cation

phases (FAxMA1−xPbI3, 0 ≤ x ≤ 1) were prepared using the method by Poglitsch and

Weber.118

1.5 wt% of hypophosphorous acid was used to reduce hydriodic acid (HI, 57 wt%) before

stoichiometric quantities of MAI, FAI and lead acetate trihydrate (Pb(CH3COO)2·3H2O,

abbreviated to Pb(OAc)2·3H2O) were added to make a 1 molar (1M) solution. The

quantities of the precursor materials needed are detailed in Appendix A. The solution

was then transferred to a Teflon cup, placed in a stainless steel autoclave and sealed, as

shown in Figure 3-1. The autoclave was heated in an oven at 100◦C for 12 hours allow-

ing the solid precursors to dissolve completely. The temperature was then gradually

lowered to 46◦C over 8 hours before the Teflon cup was removed from the autoclave

and the perovskite powder filtered. The resulting powder was oven dried at 100◦C

overnight.

FAxMA1−xPbI3 tended to phase separate into the black perovskite α-phase and yellow
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non-perovskite δ-phase when x ≥ 0.7. This could be remedied by heating the precursor

solution for a further 5 hours at 100◦C. However, due to potential decomposition of the

MAI and FAI precursor salts at high temperatures97 and quality of material produced

it was decided to focus on synthesis by precipitation for work on cesium and bromine

containing perovskites.

Solvothermal synthesis was utilised to obtain results presented in Chapter 6.

3.1.3 Precipitation

Based on the method of Poglitsch and Weber,118 precipitation from acid provided a

similar, yet substantially quicker route for the synthesis of perovskite powders than

the solvothermal method described in Section 3.1.2. In this case, the precursor salts

MAI, FAI and/or CsI were added to stoichiometric combinations of PbI2, PbBr2, HI

and hydrobromic acid (HBr, 48 wt%) depending on the desired final composition. 1.5

wt% of hypophosphorous acid was used to reduce HI prior to use. Material quantities

used to synthesise powders are detailed in Appendix A.

Stoichiometric quantities of precursor salts and lead halide powders were added, as

required, to reduced HI and HBr to form a 1 M solution in a 3-necked round bottom

flask fitted with a condenser and nitrogen gas inlet as shown in Figure 3-2. Solutions

were heated to 100◦C under nitrogen and stirring using a hot plate and oil bath. The

stirring was stopped and solutions were kept at 100◦C for 45 minutes before being cooled

to 46◦C over 1 hour allowing the precipitation of perovskite powder. The resulting

powder was filtered and oven dried at 100◦C overnight. The average yield for this

synthesis was 55%.

Precipitation from acid was used to obtain results presented in Chapters 4, 5 and 6.

3.1.4 Inverse Solubility

The counter-intuitive property of perovskites to crystallise out of solution at high tem-

perature was used extensively in this work. Inverse temperature crystallisation (referred

to as inverse solubility throughout this thesis) was first demonstrated by Saidaminov

et al. in 2015, who demonstrated a significant reduction in the solubility of MAPbX3

perovskites in the solvents γ-butyrolactone (GBL) and dimethylformamide (DMF) at

high temperatures.66 Exploiting the inverse solubility shown by the MAPbX3 materi-

als, Saidaminov and colleagues were able to grow good quality single crystals on the
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Figure 3-2: Schematic of precipitation of perovskite powder from acid using a three
necked round bottom flask flushed with nitrogen and immersed in an oil bath.
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Figure 3-3: Schematic of perovskite crystal growth via inverse solubility. Sealed glass
vials containing the precursor solution were placed in an oil bath, the temperature of
which was carefully controlled using a Stuart SCT1 controller attached to a hot plate.

millimeter scale in just three hours, significantly shorter than previous attempts grow-

ing large perovskite crystals which could take up to one month.119 The best quality

MAPbI3 crystals were achieved by dissolving precursors in GBL and heating to 110◦,

whereas use of DMF at 80◦ produced the best quality MAPbBr3 crystals.

The solubility of a 1 M solution of MAPbI3 in GBL was shown to increase up to 60◦C

but rapidly decrease beyond this, whereas the solubility of MAPbBr3 in DMF con-

tinuously decreased on increasing temperature.25 It was proposed that this unusual

behaviour is determined by the formation of complexes in the precursor solutions. In

the case of inverse solubility, an increase in temperature induces the dissociation of

precursor-solvent complexes formed at 60◦C for MAPbI3 in GBL and at room temper-

ature for MAPbBr3 in DMF. This dissociation results in unbound precursor particles

which, when supersaturation is reached, precipitate out of solution.66

In this work the method of Saidaminov et al. was developed to produce crystals of mixed

cation lead halide perovskites. The average yield of the inverse solubility method was

10%, significantly less than that achieved by precipitation and solvothermal methods.

Crystal growth via inverse solubility was used to obtain results presented in Chapters

4, 5, 7 and 7. Quantities used to synthesise perovskite crystals are detailed in Appendix

A.

FAxMA1−xPbI3 Crystal Growth

Stoichiometric quantities of MAI, FAI and PbI2 were dissolved at 60◦C in dry GBL.
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Concentrations of the precursor solutions were kept at 1 M with an exception for the FA

rich materials FAxMA1−xPbI3 (x ≥ 0.8) where concentrations were lowered to 0.9 M to

allow the FAI to fully dissolve. When the precursor salts and lead halide powders had

completely dissolved, the solutions were quickly filtered using Millex GS filters (pore

size 0.22 µm) and transferred to clean cylindrical glass vials. The solutions were then

immediately heated to 110◦C using an oil bath, the temperature of which was carefully

controlled and monitored using a Stuart SCT1 controller. Solutions were maintained

at 110◦C for three hours allowing crystallisation, the temperature was then raised to

120◦C for a final hour before the remaining solution was filtered and crystals were oven

dried at 100◦C overnight.

In general this method produced perovskite crystals ranging from 0.5 - 1 mm in diam-

eter, however crystallite size and quality could be improved by careful control of the

temperature ramp; for example, slowing the ramp to 10◦C hour−1 produced crystals

over 2 mm in diameter.

CsxFA1−xPbI3 and CsxMA1−xPbI3 Crystal Growth

Stoichiometric quantities of CsI, FAI, MAI and PbI2 were dissolved at 80◦C in dry

GBL and the solutions were then heated to 110◦C at a rate of 10◦C hour−1. The

temperature was increased to 110◦C for a further hour before the resulting crystals

were filtered from the remaining solution and oven dried at 100◦C overnight.

FAxMA1−xPbBr3 Crystal Growth

Stoichiometric quantities of FAI, MAI and PbBr2 were dissolved in dry DMF at room

temperature and immediately heated to 80◦C. The solution was left undisturbed for

three hours allowing crystallisation, the remaining solution was then filtered and re-

sulting crystals were oven dried at 100◦C overnight.

3.1.5 Space Confined Crystal Growth

The method of Saidaminov et al.66 was developed in conjunction with the space confined

method reported by Chen et al.120 in order to produce single crystals of controlled

dimensions specifically for high pressure measurements in a diamond anvil cell (DAC)

in collaboration with the Institute of Materials Science of Barcelona (ICMAB).

Glass substrates (25 mm x 75 mm) were cleaned sequentially with acetone and ethanol

in an ultrasonic bath for 10 minutes before being placed on a clean hotplate at 60◦C.

Stoichiometric precursor solutions of MAI, FAI, PbI2 were prepared 60◦C in dry GBL
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according to the quantities detailed in Appendix A. Once completely dissolved, 100 µL

of the precursor solution was transferred onto a glass substrate and a second substrate

(also kept at 60◦C) was placed on top of the first (Figure 3-4 (a)). The temperature of

the hot plate was increased to 110◦C at a rate of 10◦C hour−1, then maintained at 110◦C

for 24 hours allowing crystallisation by inverse solubility. The top glass substrate was

removed and the resulting crystals were oven dried at 100◦C overnight. The crystals

were carefully removed from the bottom substrate under an optical microscope.

The thickness of the crystal could be varied by applying an evenly distributed weight of

120 g on top of the substrates sandwiching the precursor solution. Final measurements

of the single crystals grown via the space confined method, and subsequently used in

the high pressure measurements at ICMAB, averaged dimensions of 2 mm x 30 µm as

calculated through parallax measurements from secondary electron (SE) images taken

with a scanning electron microscope (SEM).

In order to calculate crystal thickness a plan-view SE image of the desired crystal was

taken, before additional images were acquired with the SEM stage tilted at at 60◦ and

69◦ creating a parallax (α) of 9◦. Three easy to identify features were selected in both

images (60◦ and 69◦): an origin (O) and features on the base (A) and top (B) edges of

the crystal (as shown schematically in Figure 3-4 (b,c)). The program ImageJ121 was

used to obtain the co-ordinates of each position A and B (in the 60◦ image) and A′

and B′ (in the 69◦ image) with respect to the origin. The co-ordinates were converted

from pixels to µm using the scale bar, and the z co-ordinates of A and B (za and zb

respectively) were calculated by:122

za =
xa − xa′

2sin(α/2)
and zb =

xb − xb′
2sin(α/2)

. (3.1)

As the image was tilted about the y axis, ya/b = ya′/b′ , therefore the y co-ordinates

were not used in the calculation for za/b. The thickness (or depth) of the crystal (Z)

was then simply calculated by Z = zb − za.

Crystal growth via the space confined method was used to produce samples for work

in collaboration with the Institute of Materials Science of Barcelona (ICMAB). The

work is not presented in this thesis, but can be found in the publications listed at the

beginning of this thesis.
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Figure 3-4: (a) Schematic of space confined crystal growth. (b) Sample sitting on an
SEM stage capable of tilting around the y-axis. (c) Geometrical relationship between
a point A on the sample before (A) and after (A′) at an angle α known as the parallax,
enabling 3D measurements from 2D images. (d) SEM images of a MAPbI3 crystal
grown via the space confined method. The sample stage was tilted at 60◦ and 69◦

creating a parallax of 9◦ enabling crystal thickness to be determined.
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3.1.6 Drop Casting

Deuterated perovskite powder samples (Cs0.1FA0.9PbI3-D) were required for a neutron

diffraction experiment performed on the POLARIS instrument at the ISIS Neutron and

Muon source. Part deuterated FAI (CH(ND2)2I referred to as FAI-D) was provided by

Dr James Tellam of the ISIS Deuteration Facility.

Perovskite synthesis via inverse solubility was first investigated as, despite low yields,

this method produced good quality, impurity free material. CsI and PbI2 were oven

dried at 100◦C overnight, while the solvent GBL was dried over calcite (CaCO3) to

ensure the complete removal of water and so reduce the risk of H-D exchange during

synthesis. CsI, FAI-D and PbI2 were dissolved in the dried GBL according to the

inverse solubility method outlined in Section 3.1.4 and quantities detailed in Appendix

A. However, when the temperature of the precursor solutions were heated above 90◦C

a yellow precipitate crashed out of solution, subsequently preventing crystal growth.

The formation of complexes between the solvent molecules and precursor compounds

are crucial in the success of the inverse solubility method,66 therefore it was proposed

that presence of the deuterium in the FAI salt prevented the formation of complexes

favourable to the crystallisation of the perovskite compound at 110◦C.

After the failure of the inverse solubility method it was decided to focus on the drop

casting method, which had previously proved successful in the synthesis of deuterated

FAPbI3 (FAPbI3-D).74 To achieve 10 g of Cs0.1FA0.9PbI3-D 0.405 g of dried CsI, 2.412

g of FAI-D and 7.184 g of dried PbI2 were dissolved in 25.97 ml of dimethyl sulfoxide

(DMSO-d6, 99.9% atom % D) and drop cast onto a preheated glass dish at 150◦C on

a hot plate in a dry atmosphere. As the solvent evaporated a black solid formed which

was subsequently dried on the hotplate for a further 120 minutes. The sample was

sealed under nitrogen and stored below 5◦C to reduce H-D exchange.

Deuterated perovskite powder synthesised via the drop casting method was used to

obtain results presented in Chapter 4.

3.1.7 Thin Film Fabrication

Thin films of FAxMA1−xPbI3 were deposited onto clean glass substrates via spin coat-

ing. The glass substrates (25 mm x 25 mm) were cleaned sequentially using acetone and

ethanol in an ultrasonic bath for 10 minutes and then placed in a Bioforce Nanosciences

UV/Ozone Procleaner for 20 minutes.
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Figure 3-5: Process used to deposit thin films of FAxMA1−xPbI3 onto glass substrates.

MAI and FAI were measured such that the MAI:FAI ratio varied from 0 to 1 in incre-

ments of 0.1, before being dissolved with stoichiometric quantities of PbI2 in dimethyl-

formamide (DMF) to form 0.6 M precursor solutions. Solutions were stirred for 30

minutes to ensure all solid precursor dissolved, 100 µL of the resulting solutions were

then deposited onto the substrates in a dry box and spin coated at 4000 rpm for 30

seconds. The films were then transferred to a hot plate and annealed at 110◦C for

30 minutes. Material quantities used in the fabrication of thin films are detailed in

Appendix A.

Thin films deposited via spin coating were used to obtain results presented in Chapter

6.
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3.2 Sample Characterisation

The theory behind the characterisation methods used in this work is described below.

Brief summaries of the measurements performed are also given for each technique,

although additional experimental information specific to each chapter, can be found in

Appendix B.

3.2.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) uses a focused beam of electrons to produce de-

tailed images of small features. The human eye can distinguish between objects up to

a resolution of approximately 0.1 mm, while an optical microscope can reduce this to

approximately 2 x 10−4 mm.123 However, this resolution can be greatly improved by

the replacement of light with electrons. The first electron microscope was made in the

1930s, replacing the light source with an electron source, and the condenser lens with

an electromagnetic coil.123 The technique has improved to the point that images of

nanometer sized objects can be resolved.75

SEM images are achieved via elastic and inelastic interactions between the electron

beam and sample. In elastic scattering, incident electrons are deflected by the atomic

nucleus or outer shell electrons of the sample material, with electrons deflected through

an angle > 90◦ known as back scattered electrons (BSE). Incident electrons are inelas-

tically scattered through a variety of interactions with the sample material resulting in

the ionization of the sample and the subsequent emission of secondary electrons (SE)

of energies typically below 50 eV.123

Unlike optical imaging, SEM electrons do not reflect off the surface of the sample, but

instead penetrate into the material before undergoing scattering. The incident beam

of electrons therefore excites a region of the material, the depth of which is dependent

on the energy of the incident beam and the density of the sample.123

Summary of Measurements

SEM images were taken of mixed Cs/MA/FA lead iodide crystals, MAPbBr3 crystals

and mixed MA/FA lead iodide thin films using a Jeol JSM-6480LV SEM. Perovskite

crystals were prepared 24 hours before measuring, affixed to SEM stubs using carbon

tape and placed under vacuum allowing off-gassing of the tape.

Secondary and backscattered electron images using an accelerating voltage of 20 kV
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were taken of CsxFA1−xPbI3 (x = 0.1, 0.2), CsxMA1−xPbI3 (x = 0.1, 0.15) and

MAPbBr3 as presented in Chapters 4, 5 and 7 respectively. Secondary electron im-

ages were also taken of FAxMA1−xPbI3 (x = 0.3, 0.5, 0.6, 0.7) thin films, using an

accelerating voltage of 5 kV and presented in Chapter 6.

3.2.2 Energy Dispersive X-ray Spectroscopy

Energy dispersive X-ray spectroscopy (EDX) - also referred to as EDAX or EDS - is a

powerful technique enabling elemental composition analysis of a sample. The method

makes use of an inelastic scattering process whereby a high energy electron ejects a core

electron from an element in the sample. An outer electron subsequently transitions to

fill the vacant position left by the core electron, releasing energy in the form of an X-ray

characteristic to that transition. Analysis of these characteristic X-rays allow for the

identification of elements within a sample.

Castaing’s first approximation models a proportional relationship between characteris-

tic X-ray intensities and the mass fraction of elements present within a sample. How-

ever, there is some deviation from this linear approximation when compounds contain-

ing multiple different elements are examined. Some elements are more absorbing than

others resulting in lower X-ray intensities detected, while some may exhibit a strong

fluorescent effect leading to greater intensities. To account for these differences correc-

tions (referred to as matrix effects) are applied which take into account atomic number

(Z), fluorecence (F ) and absorption (A).124 An accuracy of ±2% for dominant ele-

ments can be achieved. One draw back to EDX analysis is the difficulty to distinguish

between elements with similar atomic numbers, due to the overlap of characteristic

X-ray peaks.75

Summary of Measurements

EDX measurements were carried out on CsxFA1−xPbI3 (x = 0.1, 0.2), CsxMA1−xPbI3

(x = 0.1, 0.15) and MAPbBr3 crystals, the results of which are discussed in Chapters

3, 4 and 7 respectively. All measurements were made with a Jeol JSM-6480LV SEM

equipped with an Oxford INCA X-Act SDD X-ray detector using an accelerating volt-

age of 20 kV. The programs INCA and AZtec by Oxford Instruments were used to

analyse chemical composition.
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3.2.3 Differential Scanning Calorimetry

In differential scanning calorimetry (DSC) a sample and reference are heated under the

same conditions, while the difference in heat flow required to increase (or decrease) the

temperature of the two is measured. An event is recorded when the sample undergoes

a phase change, such as during melting or crystallisation. The event is recorded as an

endotherm or exotherm depending on whether heat flow to the sample was increased

or decreased in order to maintain a steady temperature in relation to a reference.

Endothermic and exothermic reactions tend to be expressed as negative and positive

deviations from the baseline respectively.75

Summary of Measurements

DSC measurements were carried out on Cs0.1FA0.9PbI3 samples grown via inverse solu-

bility and precipitation using a TA Instruments DSC Q20. Samples were cycled between

225 K and 420 K at a rate of 2 Kmin−1. Data are presented in Chapter 4.

3.3 Structural Characterisation

3.3.1 Single Crystal X-ray Diffraction

As introduced in Chapter 2 Section 2.5.1, the diffraction of X-rays can be used to

determine the structure of a crystalline material. In single crystal X-ray diffraction

(SXRD) single crystals of sizes up to 0.5 mm are measured.75 It is essential good quality

crystals are used, creating well-defined diffraction spots without problems associated

with twinning or other defects; therefore short data sets are quickly collected before

experiments to asses crystal suitability.

To generate X-rays a tungsten filament is heated, releasing electrons which are accel-

erated by an applied voltage to a metal anode (either copper or molybdenum in this

work). The electrons interact with the target atoms by slowing and then changing

direction, generating X-rays of a broad range of energies known as Bremmsstrahlung

radiation. The interactions can also cause the ejection of electrons in the target, re-

sulting in the relaxation of outer electrons, which generate characteristic Kα and Kβ

X-ray radiation. A monochromotor is used to narrow the range of X-ray energies so

only a narrow band centered around the Kα radiation hits the sample.75

Samples are mounted onto a goniometer capable of rotating the crystal. If left in a
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Figure 3-6: (a) Conditions for Bragg’s law, two parallel X-rays scattered at an angle
θ from neighbouring lattice planes of spacing dhkl. (b) Schematic of SXRD pattern,
each spot recorded on the photographic plate represents diffraction by a single plane
indexed by the Miller indices (hkl). (c) Schematic of the cone of diffracted X-rays from
a polycrystalline powder sample and the resulting pattern recorded on the photographic
plate.
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single orientation only a small number of lattice planes satisfying the Bragg condition

(Figure 3-6 (a)) will be observed, therefore the goniometer rotates the sample to access

all required diffracting lattice planes and measure a complete pattern. A CCD records

the diffraction pattern as a series of spots with intensities and positions characteristic

to the material structure, a schematic of which is shown in Figure 3-6 (b).71 As detailed

in Chapter 2 the diffraction pattern is the Fourier transform of the crystal structure and

is solved due to the directly proportional relationship between the intensity of the spots

(Ihkl) and the structure factor amplitude (|Fhkl|2). The phase problem (also introduced

in Chapter 2) is addressed through using either Patterson synthesis or direct methods;

from these methods an electron density map is created allowing the time averaged

structure of the material to be determined.72

The quality of the structure determined from the diffraction pattern is assessed by the

residual (or R-factor):

R =

∑
hkl ||Fhkl|obs − |Fhkl|calc|∑

hkl |Fhkl|obs
(3.2)

where |Fhkl|calc are the structure factors as calculated from the suggested structure and

|Fhkl|obs are the measured structure factors. The residual should tend towards zero,

and can be minimised by refining parameters (such as atomic positions and thermal

parameters) in the structural model used to produce the |Fhkl|calc values.72

Summary of Measurements

SXRD data were collected on a RIGAKU SuperNova dual tube Eos S2 CCD diffrac-

tometer using MoKα radiation (λ= 0.7107 Å). Suitable single crystals of Cs0.1FA0.9PbI3

and Cs0.1MA0.9PbI3 synthesized via inverse solubility were selected and measured at

300 K using an exposure of 10 s/frame, before being cooled and measured at 175 K,

150 K and 120 K using an increased exposure of 20 s/frame. Structures were solved

using the programs Olex2,125 ShelXL126 and PLATON127 and results are discussed in

Chapters 4 and 5 for FA and MA containing perovskites respectively.

3.3.2 Powder X-ray Diffraction

As in SXRD, PXRD makes use of the diffraction of X-rays from planes in a crystalline

material satisfying the Bragg condition: nλ = 2dhklsin(θ), where n is an integer (re-

quired for the constructive interference of X-rays) and λ is the wavelength.128 However,
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Figure 3-7: (a) PXRD measured using Debye-Scherrer geometry in transmission mode
and (b) Bragg-Brentano geometry in reflection mode. The sample is shown in black.

in a powder sample crystallites are orientated in many different directions, therefore,

rather than the spots of SXRD, PXRD produces a cone of tightly packed spots, creating

a pattern of concentric rings at the detector (Figure 3-6 (c)).129 Powder diffractometers

are able to detect these rings and produce a pattern of reflection intensity against 2θ.75

Two different geometries were used to measure PXRD in this work, Bragg-Brentano

and Debye-Scherrer. In Debye-Scherrer geometry the beam is parallel to the fully illu-

minated sample, and the CCD detector is moved at a set radius collecting the diffraction

pattern over the desired values of 2θ. In Bragg-Brentano geometry a sample is inserted

such that the diffraction vector (the vector bisecting the incident and scattered beam) is

normal to the sample surface. Figure 3-7 shows a simple schematic of the two different

geometries used in this work.71,75

Summary of Measurements

PXRD data of all samples synthesised via solvothermal, precipitation, inverse solubil-

ity and drop casting methods were collected on a Bruker Advance D8 diffractometer

(Bragg-Brentano geometry) and/or a STOE STADI P (Debye-Scherrer geometry) us-

ing CuKα radiation (λ = 1.540 60 Å). Crystals synthesised via inverse solubilty were

ground using a pestle and mortar prior to measuring. Collection ranges and resolutions

were varied depending on the sample measured. Profile fitting methods - introduced

later in this chapter in Section 3.3.4 - were carried out using the program GSAS-II.130

the structural models used for individual samples are presented in Chapters 4, 5 and 7

for Cs0.1FA0.9PbI3, Cs0.1MA0.9PbI3 and MAPbBr3 respectively.
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Thin films of FAxMA1−xPbI3 (0 ≤ x ≤ 1) were deposited onto glass substrates which

were cut to squares 1 cm x 1 cm in size before being measured on a Bruker Advance

D8 diffractometer. Diffraction patterns were collected between 10 ≤ 2θ ≤ 50 with a

step size of 0.016◦ and were analysed using the EVA diffraction suite, results of which

are presented in Chapter 6.

3.3.3 Neutron Powder Diffraction

As introduced in Chapter 2 2.5.1, neutron diffraction is a complementary technique

to X-ray diffraction, capable of providing more information at higher scattering angles

with a greater sensitivity to lighter elements. However, neutrons are not as accessible

as X-rays, therefore experiments require access to national facilities. The NPD work

presented in this thesis was carried out at the ISIS Neutron and Muon Source at the

Rutherford Appleton Laboratories in Oxfordshire.

The ISIS facility is a spallation source, meaning neutrons are produced by bombarding

a heavy metal target with high energy protons. This process begins with a source of H−

ions being accelerated to 37% the speed of light by a linear accelerator. The ions are

then injected into a synchrotron 163 m in circumference, and continue to be accelerated

and focused into a high energy beam by powerful magnets. Alumina foil is used to strip

away the two electrons of the H− ions, leaving behind protons which are accelerated

further by strong electric fields. Once travelling at 84% the speed of light, magnets kick

out a packet of protons which collide with a tungsten target, knocking out neutrons

from the tungsten nuclei. This provides a pulse of neutrons of a range of velocities (v)

as determined by the de Broglie equation v = h/mλ, relating the neutron mass (m) and

wavelength (λ) to the Planck constant (h).75 Due to the range of neutron velocities

produced in a spallation source, the type of neutron diffraction is known as time of

flight (TOF). TOF diffraction relates the velocity (and so wavelength) of a neutron to

the time taken to reach a detector; for example, a neutron travelling at 4000 ms−1 has

a wavelength of 1 Å and takes 10 ms to reach a detector 40 m away from the spallation

source.131

The de Broglie relationship defining the wavelength of neutrons can be related to the

Bragg condition as below:

λ =
h

mv
=

ht

mL
= 2dsinθ (3.3)
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where t is the total time of flight for a neutron along a flight path of length L. Rear-

ranging the above equation produces:

t =
2mL

h
dsinθ (3.4)

relating d-spacing to t, a relationship used in Chapters 4 and 5 of this thesis to convert

neutron TOF data to the more accessible d-spacing format.

The instrument POLARIS was used to collect the NPD data presented in this thesis.

POLARIS utilises an intense flux of neutrons to quickly produce medium resolution

NPD data sets, allowing for short counting times and smaller sample quantities. For

the variable temperature data presented in this work a He cooled cryostat was fitted

to the instrument enabling measurements to be carried out between 300 K and 100 K.

The diffractometer has 434 ZnS and 3He scintillator detectors arranged into six banks

grouped together as Banks A, B, C and D. Banks A and C are positioned at a low

angle, while C is positioned to intercept backscattered neutrons. Bank D (also referred

to as Bank 4) is located 90◦ to the sample.132

Summary of Measurements

NPD was carried out on the POLARIS instrument at the ISIS Neutron and Muon

Source, Rutherford Appleton Laboratories. Approximately 6 g of each material were

loaded into 5 mm vanadium sample cans under argon and sealed using indium O-

rings. Powder diffraction patterns were measured as a function of temperature be-

tween 300 K and 100 K (detailed information on the temperature ramps and exposure

times used can be found in the chapters relevant to each material). Profile fitting

methods - discussed in Section 3.3.4 - were carried out using the program GSAS-

II. Samples of Cs0.1FA0.9PbI3-D synthesised via drop casting, and fully hydrogenous

Cs0.1FA0.9Pb(I0.6Br0.4)3, Cs0.1MA0.9PbI3 and Cs0.1MA0.9Pb(I0.6Br0.4)3 powders syn-

thesised from precipitation were measured. Results are discussed in Chapters 4 and 5

for FA and MA containing perovskites respectively.

3.3.4 Powder Diffraction Fitting Methods

Since the beginning of the 20th century the powder diffraction method has been used in

qualitative phase analysis of crystalline samples. However, the field was revolutionised

in the 1960s by the introduction of the Rietveld method, which enabled determination

of atomic structure from 2D powder diffraction patterns. Bragg reflection intensities
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Crystal System Expression for dhkl

Cubic 1
d2hkl

= h2+k2l2

a2

Tetragonal 1
d2hkl

= h2+k2

a2
+ l2

c2

Orthorhombic 1
d2hkl

= h2

a2
+ k2

b2
+ l2

c2

Hexagonal 1
d2hkl

= 4
3

(
h2+hk+k2

a2

)
+ l2

c2

Table 3.1: Expressions for dhkl for the crystal systems of interest in this thesis.

and positions provide information on material composition and atomic positions, and

are usually analysed via peak indexing before full profile refinements are attempted.133

Indexing

Miller indices (h, k, l) and d-spacings are related as defined by the geometry of the unit

cell present, therefore allowing the calculation of lattice parameters (a, b and/or c).

For example, the relationship between the Miller indices, dhkl and lattice parameter a

in cubic system can be defined as:

1

d2
hkl

=
h2 + k2 + l2

a2
(3.5)

which can be substituted into the Bragg equation and rewritten as:

sin2θ =
λ2

4a2
(h2 + k2 + l2). (3.6)

This relationship implies each peak in the diffraction pattern of a cubic material can

be assigned its associated Miller plane (h, k, l) in a procedure known as indexing. More

complex relationships exist for other crystal systems; however, the theory remains the

same.75 The expressions of dhkl for the crystal systems explored in this thesis are

listed in Table 3.1. Indexing a powder pattern results in the calculation of likely lattice

parameters and space group symmetries which can be used in subsequent structure

independent and full profile fitting.

Structure Independent Fitting
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In this work the Pawley method was the preferred technique used for structure inde-

pendent fitting, that is fitting without a structural model.134 The most likely space

group and lattice parameters are extracted from indexing a diffraction pattern, which

are used to produce a pattern of calculated intensities. The lattice parameters are then

refined along with the background, zero point, peak shape parameters and all reflec-

tion intensities in order to minimise the difference between the calculated and observed

intensities. The zero point is the point at which 2θ = 0◦ and can shift depending on

the alignment of the detector, while the peak shape parameters are also dependent on

the properties of the diffractometer.133

Rietveld Refinement

The Pawley method refines all diffraction peak intensities; however, a greater under-

standing of the structure can be achieved through full profile fitting, where the atoms

making up the unit cell are used to calculate intensities.133,135,136 Known as the Ri-

etveld method, the technique uses a predefined structural model producing a calculated

profile. The method works by minimising the Rietveld function Φ, given by:136

Φ =
N∑
i=1

wi(Y
obs
i − Y calc

i )2 (3.7)

where Y obs and Y calc are the observed and calculated intensities respectively and wi is

the weight assigned to the ith data point carried out over all data points N such that:

wi =
1

σ2(Y obs
i )

(3.8)

where σ2 is the variance of Y obs
i . The value of Y calc is calculated over all Bragg

reflections (s = (hkl)) over a phase p, contributing to each position i in the profile as

below:133

Y calc
i =

∑
p

(
Sp
∑
s(p)

(|F calcs,p |2φs,p,iCs,p,i)

)
+Bi (3.9)

where Sp is the scaling factor proportional to the amount of phase p present, |F calcs,p |2

are the calculated reflection intensities with a profile function φs,p,i. Cs,p,i is the total

correction factor and Bi is the background correction.
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The peak positions - representing single or overlapping (hkl) reflections - are determined

by the lattice and space-group present, as well as the properties of the diffractometer.

For example, in Bragg-Brentano geometry used in PXRD, sample displacement can

result in a shift of peak positions. The peak intensities are determined by the time

and space averaged crystal structure, for example site occupancy and atomic displace-

ment factors (also known as thermal parameters or ADPs). ADPs are important in

the refinement of perovskite structures, in which the dynamic behaviour of the PbX6

octahedra and central cation often define the physical properties of the material.86

Peak shape parameters, which help define the profile φs,p,i, are highly dependent on

diffractometer properties, as well as being related to the crystallite size133

The quality of the refinement is provided by the weighted R-factor (Rwp) and the

statistically expected R-factor (Rexp):
133

Rwp =
( Φ∑n

i=1wi(Y
obs
i )2

) 1
2

(3.10)

Rexp =
( (N − P )∑n

i=1wi(Y
obs
i )2

) 1
2

(3.11)

where P is the number of refined parameters. The ratio of the two - known as the

goodness-of-fit or χ2 - should tend towards one.

In this work, analysis of X-ray and neutron powder diffraction data was carried out

using the program GSAS-II developed by Toby and Dreele of Argonne National Labo-

ratory.130

3.4 Optical Characterisation

Perovskite crystals grown via inverse solubility were characterised using UV-Visible

absorption and photoluminescence spectroscopy; however, mounting the crystals for

measurements was, initially, challenging. For measurements presented in this thesis a

40 gml−1 solution of the polymer zeonex in toluene was used to securely attach crystals

to substrates. Glass or Si02 substrates were cut to size, then cleaned using isopropanol

and dried thoroughly using a nitrogen gun. One drop of zeonex/toluene solution was

deposited onto the substrate and left to partially dry for 30 seconds. Suitable crystals

were selected and carefully placed in the centre of the polymer solution which was then
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left to dry fully for 15 minutes. The samples showed no signed of degradation on contact

with the polymer/toluene solution, which was chosen due to its optical transparency

in the region of interest for the perovskites investigated.

3.4.1 UV-Visible Absorption

Ultraviolet-Visible spectroscopy (UV-Vis) is a standard technique used to investigate

the electronic structure of a material by analysis of its absorption spectra across the

UV and/or visible regions of the electromagnetic spectrum. Only one wavelength of a

white light source is passed through the instrument at any one time, the absorption or

reflectance of the sample is then measured compared to a reference.

The absorbance (A) of a sample is typically measured in transmission configuration,

where the transmission (T (λ)) is measured as a fraction of transmitted intensity through

the sample (I(λ)) to original intensity (I0(λ)). A is related to T (λ) through:137

A(λ) = log10(T (λ)) = log10

(
I(λ)

I0(λ)

)
. (3.12)

Transmission measurements are common in the analysis of thin films; however, solid-

state materials often present a problem when measuring A due to the short penetration

depth of UV and visible light. Measurement in transmission configuration is not pos-

sible for most solid-state samples, such as the perovskite powders and crystals investi-

gated in this work. Reflectance provides an alternative to transmission measurements,

where reflected, as opposed to transmitted, light is collected. Specular reflectance (light

scattered at the same angle as the incident light) and diffuse reflectance (light scat-

tered across all angles) are collected using a highly reflective integrating sphere and

measured as the reflectivity (R). The Kubelka-Munk function (F (R)) can then be

used to transform R into a form that more resembles absorbance through:75

F (R) =
(1−R)2

2R
. (3.13)

In this thesis UV-Vis spectroscopy is utilised to investigate the band gap positions of

materials. Electrons are promoted from the VB to the CB when the energy of the

excitation source is greater than the material band gap (Eg). Therefore, in a plot

of λ against absorbance (A) or reflectivity (R), a band gap would appear as a steep

change in gradient known as an absorption edge. The position of the band gap can
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Figure 3-8: Schematic of the layout used for steady state PL and TCSPC measurements
at the LMU, and (inset) a photo of the same system.

be determined through extrapolating from the absorption edge to the x-axis intercept,

known as a Tauc plot.75,137 The energy of the band gap (Eg) can then be inferred

through the relationship Eg = hc/λ.

Summary of Measurements

UV-Vis spectra were measured using a Perkin Elmer Lambda 750s spectrophotometer

fitted with a 60 mm integrating sphere. The spectrophotometer operated as a double

beam, double monochromator system with holographic grating monochromators. A

deuterium tungsten bulb, with a range from 190-3300 nm, provided the white light

source.

Perovskite crystals were mounted onto clean glass substrates using the polymer glue

zeonex. Reference spectra of glass and zeonex were subtracted from the final measure-

ments. Powder samples were mounted using a PTFE sample holder with a fused silica

window.

Samples of Cs0.1FA0.9PbI3 and Cs0.1MA0.9PbI3 were measured and the results pre-

sented in Chapters 4 and 5.

84



3.4.2 Steady State and Transient Photoluminescence

As introduced in Chapter 2 Section 2.4, photoluminescence (PL) is caused by the exci-

tation of an electron from the ground state to an excited state through the absorption

of a photon, the electron then relaxes to a lower level via a radiative transition. Steady

state PL data presented in this thesis were recorded at the Chair for Photonics and

Optoelectronics at the Ludwig-Maximillians University of Munich (LMU). The exci-

tation signal was provided by white light and UV pulsed laser sources. Filters were

connected to the pulsed sources, enabling the excitation wavelength to be tuned over

the near-infrared, visible and UV. PL spectra were collected using CCD detectors.

As the excitation wavelength of the pulsed laser source was varied, suitable optical fil-

ters were selected to prevent unwanted wavelengths reaching the sample or detector, in

the layout shown schematically in Figure 3-8. Edge pass filters could be used to isolate

the desired regions of the spectrum. Short pass filters were used to transmit shorter

wavelengths but prevent any additional longer wavelengths from hitting the sample.

Long pass filters, which transmit longer wavelengths but block shorter wavelengths,

were then used to ensure PL signal was collected without allowing any reflected laser

light through. Suitable dichroic mirrors, which exhibit different reflection and trans-

mission properties depending on wavelength, were also used to prevent stray laser light

reaching the detector.

As suggested in Figure 3-8, the detector type at the LMU could be switched to allow

transient PL measurements via time-correlated single photon counting (TCSPC). This

technique uses a short pulse to excite the sample, then measures the number of emitted

photons as a function of time. In TCSPC the PL decay is visualised as a histogram,

displaying the number of photons arriving at the detector within a particular time

interval after excitation, shown schematically in Figure 3-9. TCSPC enables the mea-

surement of fluorescence lifetimes, and the shape of decay can be modelled to deduce

charge carrier behaviour.138

All PL spectra were collected as a function of wavelength, but are presented as a

function of energy, therefore, the recorded intensity (I) is proportional to the number of

photons (N) collected in a wavelength interval (dλ). However, the equivalent intervals

in energy (dE) vary in size, implying a correction factor for intensity is needed when

converting spectra from a function of wavelength to a function of energy.139 This

correction is applied according to the equation below where the minus sign can be

ignored.
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Figure 3-9: (a) Schematic of the principle behind TCSPC, measuring the time be-
tween the excitation laser pulses and detection of fluorescence photons. (b) Histogram
recording the number of photons recorded at particular times after the laser pulse.

I(E) = I(λ)
dλ

dE
= I(λ)

d

dE
(
hc

E
) = −I(λ)

hc

E2
(3.14)

Optimising PL Signal

The 1 µm2 laser spot was aligned and focused onto perovskite samples using a repetition

rate of 77.9 MHz. A suitable integration time and entrance slit size were selected to

prevent saturation, while allowing for increased intensity at lower temperatures for

variable temperature measurements. As the temperature of the sample was decreased,

the position of the sample and the cryostat window would move very slightly. This

movement affected the alignment of the white light laser (WLL), therefore the position

and intensity of the PL signal was checked and (if necessary) adjusted every 50 K.

To improve reproducibility a background spectrum was taken, and to reduce noise PL

spectra were averaged over 10 measurements with an exposure time of 1 second each.

Summary of Measurements

Steady state and transient PL measurements were conducted on mixed cation lead

halide perovskites within the Chair for Photonics and Optoelectronics at the Ludwig-

Maximillians Unviversity of Munich (LMU). An NKT Photonics, SuperK Extreme,

EXR-20 white light laser (WLL) together with a SuperK Select acousto-optic tunable

filter (AOTF) and SuperK Extend-UV were used to provide and tune the excitation

signal and an Olympus SLCPLFL 40x/0.55 long distance objective and CCD were

used to collect the PL signal. Additional long pass, short pass and dichroic filters were

used to block any remaining laser light, ensuring only the PL signal was recorded.
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The detector was calibrated using a xenon lamp. Spectra measured at the LMU and

presented for this work were obtained using a repetition rate of 1.22 MHz .

Crystals of Cs0.1FA0.9PbI3 and Cs0.1MA0.9PbI3 grown via inverse solubility were mounted

onto silica substrates using the polymer zeonex and fixed in a CryoVac cryostat using

Apezion grease before the cryostat pressure was lowered to 10−6 mbar using a Turbo-

Drag pump. The temperature was varied from 290 K to 10 K via a vacuubrand type

ME 4 NT pump circulating liquid helium and nitrogen through a reservoir, cooling the

cryostat. Spectra obtained from the FA and MA containing perovskites are presented

in Chapters 4 and 5 respectively.

Samples of FAxMA1−xPbI3 (x = 0, 0.6) and MAPbBr3 were also mounted onto silica

substrates using the polymer zeonex and measured at room temperature without use

of a cryostat; the resulting spectra are discussed in Chapter 7.

87





Chapter 4

Cesium Formamidinium Lead

Halide Perovskites
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4.1 Introduction

The majority of work on perovskite photovoltaics has focused methylammonium lead

tri-iodide (CH3NH3PbI3 or MAPbI3), the material used in the first perovskite device.12

However, replacing the MA cation with the larger formamidinium (CH(NH2)+
2 or FA)

cation has a number of benefits; including increased thermal stability140 and a lower

bandgap of 1.48 eV, enabling absorption into the infra-red.141 To appreciate the com-

plex effects of site substitution on this family of perovskites, the behaviour of phase

pure FAPbI3 must first be considered in detail.

In 2014, Stoumpos et al. investigated the phase behaviour of FAPbI3 using X-ray

diffraction, identifying a high temperature α-phase, which can be cooled to form lower

symmetry β and γ-phases.18 However, there has been confusion surrounding the exact

form of these phases, with the original study incorrectly assigning the α-phase to the

trigonal P3m1 space group and subsequent investigations disagreeing on the behaviour

- or even existence - of the low temperature phases.18,42,93,120

The structure of α-FAPbI3 is now commonly accepted to be cubic, occupying the typical

perovskite Pm3̄m space group with lattice parameter a = 6.3620(8) Å. High resolution

neutron diffraction data was complemented by ab initio calculations performed by

Weller et al., suggesting the trigonal FA cations are rotationally active in the α-phase.

The presence of weak hydrogen bonds (H-bonds) between the NH2 groups and I anions

of the octahedra was also shown.87

Over two years from 2016, the variable temperature behaviour of FAPbI3 was investi-

gated by multiple groups, each with conflicting descriptions depending on the thermal

history of the samples used, as described in the points below.

• Fabini et al. employed high resolution X-ray diffraction to determine a tetragonal

P4/mbm β-phase below 285 K. The FAPbI3 sample was heated in situ to form

the α phase, before being cooled below 100 K. An additional transition at 140 K

was recorded and assigned to a re-emergent tetragonal phase, with the FA cation

modelled as a single pseudoatom.42

• Chen et al. combined neutron and X-ray diffraction studies to investigate hy-

drogenous and deuterated FAPbI3, heating a quenched sample from 77 K to 300

K. This study determined a tetragonal γ-phase to transition to a tetragonal β-

phase (P4/mbm) at 140 K. The low temperature γ-phase was investigated at 100

K and modelled to a 1 x 1 x 6 supercell expansion of the tetragonal β-phase,
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Figure 4-1: Photos of powder FAPbI3 samples, taken in the black α and yellow δ-
phases, with (inset) the relevant crystal structures visualised in the program VESTA
as reported in Weber et al.74

lattice parameters a = 8.8774(1) Å and c = 37.6724(14) Å.93

• Weber et al. did not observe any additional Bragg reflections due to an extended

supercell in NPD measurements on deuterated FAPbI3, but instead attributed

the < 140 K phase to be caused by a locally disordered γ-phase.74

Some of the confusion surrounding the low temperature phase of FAPbI3 can be at-

tributed to the complex behaviour of the FA cation. In a separate study, Fabini et

al. investigated the dynamics of FA through solid state NMR, concluding that the H-

bonds formed between the NH2 groups and I anions play a crucial role in determining

material structure.142 NMR measurements revealed the rotational motion of the cation

to reduce significantly below 100 K, limiting the kinetic energy available for the FA

cation to re-orientate, so preventing the preferred octahedral tilting pattern, resulting

in a frustrated inorganic framework.142

Variable temperature diffraction studies on FAPbI3 agree on the formation of the α-

phase above 285 K; however, this is only observed in quench cooled samples or materials

stored in an inert atmosphere.42,74,120 Unfortunately, use of FAPbI3 in PV devices in-

troduces the additional problem of the non-perovskite δ-phase, introduced in Chapter 2

Section 2.5.3. δ-FAPbI3 is the preferred polymorph at room temperature, crystallising

in the hexagonal P63mc space group with lattice parameters cell a = 8.6603(14) Å and

c = 7.9022(6) Å.18 Unlike α-FAPbI3 which is defined by corner sharing lead iodide

octahedra, δ-FAPbI3 consists of face sharing PbI6 octahedra linked in the [001] direc-

tion, with the FA cations occupying the space between PbI6 chains. Similar to FAPbI3,

CsPbI3 also exits as perovskite and non-perovskite polymorphs, forming the undesir-

able δ-phase at room temperature. Yellow δ-CsPbI3 occupies the orthorhombic space
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Figure 4-2: Goldschmidt tolerance (t) and octahedral (µ) factors for the FA contain-
ing perovskites discussed in this chapter.79,81,82 All samples lie within the suggested
acceptable tolerance range for a perovskite structure. Values for MAPbI3 and CsPbI3

are included for reference.

group Pnma, lattice parameters a = 10.462(5) Å, b = 4.799(5) Å and c = 17.765(5) Å.88

Conversion between the black α and yellow δ-phases in both compounds are fully re-

versible on heating above 300 K and 583 K for FAPbI3 and CsPbI3 respectively.74,88

The materials can become kinetically trapped in the α-phase if quench cooled in a

dry environment.74,88 Examples of trapped α and preferred δ-phase FAPbI3 powders,

synthesised as part of this work, are shown Figure 4-1 alongside the relevant crystal

structures.

Incorporating small amounts of Cs at the FA site of the FAPbI3 structure can inhibit the

formation of the hexagonal δ-FAPbI3 phase. This development has lead to significantly

improved device PV lifetimes, as well as enhanced thermal and moisture stabilities of

mixed Cs-FA cation thin films when compared to pure FAPbI3.104 Yi et al. attributed

the enhanced stability provided by the Cs cation to the improved crystallization of the

α-phase, as cation mixing in the α-phase is more energetically favorable than that in

the δ-phase for both CsPbI3 and FAPbI3.113

The degree of Cs substitution permitted, while maintaining the perovskite structure,

is indicated by the Goldschmidt tolerance (t) and octahedral (µ) factors (introduced

in Chapter 2 Section 2.5.3). The calculated values of t and µ for materials discussed
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in this chapter are shown in Figure 4-2, all of which fall within the accepted region

capable of forming the typical perovskite structure of corner sharing octahedra.79,80,143

However, there is confusion concerning the structures of the mixed Cs-FA lead iodide

perovskites, with contradictory information on whether the composition Cs0.1FA0.9PbI3

adopts a tetragonal or cubic structure at room temperature. Li et al. concluded Cs

doping to stabilise the cubic α-phase of FAPbI3,77 while Prathapani et al. subsequently

identified Cs0.17FA0.83PbI3 as cubic, occupying the Pm3̄m space group with lattice

parameter a = 6.313 Å.144 However, Prasanna et al. indexed Cs0.15FA0.85PbI3 to

the tetragonal space group P4/mbm, due to the presence of additional superlattice

peaks in synchrotron XRD patterns which were attributed to a tetragonal distortion of

the PbI6 framework.145 This tetragonal distortion was supported by ab initio studies

performed by Ghosh et al., who suggested substitution of FA with smaller Cs cations

causes anisotropic contraction of the unit cell, lowering the crystal symmetry.146

The confusion surrounding the room temperature structure of Cs-FA perovskites mo-

tivated the PXRD, SXRD and NPD work presented in this thesis, which also aimed

to address the poorly understood complex phase behavior of the mixed Cs/FA/I/Br

perovskites.144–147 At the time of this work, the Cs-FA perovskites had not been investi-

gated using neutron diffraction, which evades some of the common limitations of XRD.

Unlike XRD - in which the central organic cation is often modelled as a pseuodoatom142

- NPD allows determination of light atom positions, including distinguishing between

carbon and nitrogen, and is also less affected by twinning commonly observed in these

hybrid perovskites.87

The spectroscopic effects of Cs and Br incorporation into the FAPbI3 structure have

been widely studied in thin films.104,141,144,145,148 Structural changes induced by site

substitution of the smaller Cs cation and Br anion alter the overlap of outer Pb and

halide orbitals, directly affecting the electronic properties of the material, enabling

tuning of the bandgap.70,95,143,145 For example, the bandgap of FAPbIyBr3−y has

been shown to decrease from 2.23 eV to 1.48 eV on increasing y, changing colour from

orange to black.141 The ability to tune bandgap is important in the development of

tandem solar cells, in which separate single junction devices, capable of harvesting

different energies of the solar spectrum, are stacked together. Champion PV mate-

rial, Cs0.17FA0.83Pb(I0.83Br0.17)3, with a bandgap of 1.63 eV, has been employed in

perovskite-silicon tandem cells achieving efficiencies of 23.6%.7 In 2016, McMeekin et

al. demonstrated the potential of Cs0.17FA0.83Pb(I0.6Br0.4)3 to surpass 25% efficiency in

tandem architectures, serving as the motivation for the Cs/FA/I/Br composition inves-

tigated in this work.149 Tandem perovskite-silicon cells are currently being developed
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for commercial applications, highlighting the importance of fully understanding the

complex structural and optoelectronic properties of mixed cation-halide perovskites.6

The majority of studies on mixed cation-halide perovskites focus on compositional

phase behaviour, investigating how properties change depending on the level of Cs

or Br substitution, very few studies on the variable temperature phase behaviour of

these materials exist. Another important point regarding previous studies for mixed

Cs/FA/I/Br perovskites, is that measurements are almost exclusively performed on

thin films; however, phase behaviour and optical absorption properties of thin films

can vary significantly depending on the deposition method used.26,141 It is crucial that

the fundamental structural properties of these mixed Cs-FA cation materials is fully

understood in order to appreciate PV device operation across different environments.

These factors promoted the work discussed in this chapter, which examines the intrin-

sic phase behaviour of Cs0.1FA0.9PbI3 and Cs0.1FA0.9Pb(I0.6Br0.4)3 perovskites with

varying temperature.
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4.2 Phase Behaviour of Mixed Cesium Formamidinium

Lead Iodide Perovskites

4.2.1 Cesium Substitution Limit

Samples of CsxFA1−xPbI3 (0 ≤ x ≤ 0.2) were synthesised as single crystals through

the inverse solubility method, and as powder through the precipitation technique.66,118

The composition Cs0.1FA0.9PbI3 could be successfully synthesised as black powder and

single crystals. Cs incorporation into the material was supported by a measured con-

traction of the unit cell indexed in PXRD to 6.346 Å, compared with 6.362 Å measured

for pure cubic FAPbI3.87 Further investigation on single crystals using EDX determined

an average Cs weight percent of 2.42%, leading to the formation of the composition

Cs0.12FA0.88PbI3. These results suggest a substitution limit of 12% Cs into the FAPbI3

structure when synthesised through the inverse solubility method. Figure 4-3 shows

the EDX maps obtained on a Cs0.1FA0.9PbI3 crystal, displaying the distribution of Cs

(yellow), Pb (blue) and I (green) throughout the crystal.

A 12% Cs substitution limit is similar to that found in thin films of CsxMA1−xPbI3

and CsxFA1−xPbI3.22,96,149 Using solid state NMR, Kubicki et al. determined a 15%

limit of Cs incorporation into FAPbI3 powder, observing the appearance of additional

δ-CsPbI3 peaks for x ≥ 0.2. Cs0.15FA0.85PbI3 samples grown via inverse solubility

for this work showed some additional peaks in PXRD data attributed to very small

amounts of δ-CsPbI3; however, Cs0.2FA0.8PbI3 crystals clearly separated into black

α and yellow δ-phases (Figure 4-4). PV performance has been shown to reduce in

CsxMA1−xPbI3 devices where x > 0.15,77 a trait which can be explained by the Cs

substitution limit observed in powder perovskites by Kubicki et al.105 and for single

crystals in this work.

Figure 4-3: EDX maps of mixed Cs/FA lead iodide perovskite crystals grown via inverse
solubility showing distribution of Cs (yellow), Pb (blue) and I (green).
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Figure 4-4: (a) PXRD patterns for samples of CsxFA1−xPbI3 (x = 0.1, 0.15, 0.2), ad-
ditional peaks in the x = 0.15 and 0.2 patterns could be assigned to the non-perovskite
δ-phases of FAPbI3 and CsPbI3.(b) Backscattered SEM image of a Cs0.2FA0.8PbI3

crystal grown via inverse solubility, δ-phase needles can be clearly seen. (c) Images of
as-made CsxFA1−xPbI3 (x = 0.1, 0.2) synthesised via inverse solubility, yellow δ-phase
appears when x ≥ 0.2
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Figure 4-5: PXRD patterns of Cs0.1FA0.9PbI3 samples synthesised by precipitation and
inverse solubility. Crystals grown by inverse solubility and ground into powder would
fully convert to the δ-FAPbI3 and δ-CsPbI3 phases after 7 days. Powder samples
synthesised by precipitation would remain stable in air at 20% humidity over 28 days
(* identifies δ-phase impurities in the as-made sample).

On the other hand, Prasanna et al. reported 25% Cs incorporation into thin films.145

It is probable that the 12% Cs limit therefore refers to mixed Cs-FA lead iodide per-

ovskites grown via the inverse solubility method, as crystallisation is highly dependent

on the ability to form a supersaturated solution before 110◦C, the temperature at which

FAPbI3 crystallises.66

Inclusion of Cs increases resistance to the formation of the undesirable non-perovskite

δ-FAPbI3 and δ-CsPbI3 phases, as observed in previous studies.81,109,150 However,

over time, these perovskites still degrade into the δ-phases. Kubicki et al. found

CsxFA1−xPbI3 powders synthesised mechanochemically to be thermodynamically un-

stable, releasing δ-CsPbI3 over time.105 In contrast to the results of Kubicki et al., this

work finds powders synthesised by the precipitation method to be stable in air at 20%

humidity over 28 days. As seen in PXRD patterns presented in Figure 4-5, there was

no increase in peak intensity associated with δ-CsPbI3 impurities already present in the

as-made sample. On the other hand, phase pure α-Cs0.1FA0.9PbI3 crystals synthesised

by inverse solubility, and ground into powder using a pestle and mortar, converted into

the δ-phase over seven days (Figure 4-5). Conversely, Cs0.1FA0.9PbI3 crystals remained

in the black α-phase over one month. It is possible Cs loss is favoured in the smaller

crystallites produced by grinding crystals grown by inverse solubility,105 whereas the

high temperature process used in the precipitation method is capable of trapping Cs

in the structure.
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Figure 4-6: (a) Contour plot of neutron powder diffractograms on a Cs0.1FA0.9PbI3-
D sample stacked by temperature recorded on POLARIS at ISIS neutron and muon
source. (b) Sequential refinement of pseudo-tetragonal cell from 280 K to 110 K with
transition temperatures marked by grey lines. (c) Tetragonal model of the β-phase
used in the sequential refinement. The model failed to fit data above 280 K coinciding
with the gradual second order change to the α-phase.

4.2.2 Variable Temperature Neutron Powder Diffraction

The phase behavior of Cs0.1FA0.9PbI3-D was tracked using variable temperature NPD

on the POLARIS instrument at ISIS neutron and muon source. A powder sample of

Cs0.1FA0.9PbI3-D was cooled to 100 K and subsequently heated in situ at a rate of

0.2 Kmin−1 with data collected continuously and binned into 1 K ranges between 100

K and 300 K. Data from the 90◦ detector bank (Bank 4) were used due to the range

in d-spacing, resolution and count-rate matching the requirements of the experiment.

Patterns with d-spacing ranging between 1.5 Å - 3.69 Å are displayed as stacked plots

in Figure 4-6 (a).

98



A continuous shift in peak positions can be seen in Figure 4-6 (a), representing de-

creasing unit cell volume with decreasing temperature. Figure 4-6 (a) also shows the

emergence of additional peaks from 290 K to 180 K indicating decreasing symmetry.

The appearance of additional peaks represent the emergence of the tetragonal β-phase.

Formation of a tetragonal phase with distinct a and c lattice parameters occurs below

290 K. The intensity of the emergent peaks decreases below 180 K, corresponding to

the transformation to an orthorhombic γ-phase.

Trends in the shift and intensity of peaks were investigated using sequential refinement

in GSAS II.130 A pseudo-cubic model was first used from the refinement of NPD data at

300 K; however, it became apparent that a tetragonal model would better describe the

structural behaviour over the temperature range investigated. The β-phase tetragonal

model, based on that developed by Weber et al. for FAPbI3,74 and obtained from a long

collection at 200 K was used. The tetragonal space group P4/mbm was used, and the

part deuterated FA cation was modelled as a rigid CH-NHD molecule. This model was

refined against shorter NPD collections at higher temperatures, but failed to provide

a suitable fit above 280 K, corresponding with the slow second order transition to the

cubic α-phase. The model was subsequently refined again against the 280 K NPD

pattern, which was used as a starting point to the sequential refinement, resulting in

the trend in lattice parameters shown in Figure 4-6 (b).

The evolution (positions and halfwidth) of the dominant peak centered at 3.15 Å (Figure

4-7 (a)) was also analysed using sequential peak fitting in GSAS II. The shift in peak

position and FWHM correspond to the phase transition points suggested by the earlier

sequential refinement of a pseudo-tetragonal structure. Changes in gradient of the

peak shift (Figure 4-7(b)) are observed at 290 K, 180 K and 125 K corresponding with

the cubic/tetragonal/orthorhombic and low temperature phases respectively. Peak

broadening can be used as an indicator for peak splitting corresponding to changing

symmetry. Extracted values of the dominant peak FWHM as a function of temperature

(Figure 4-7 (c)) indicate clear broadening below 290 K which can be assigned to the

formation of distinct peaks indicative to the tetragonal structure. An abrupt change

in FWHM shift is observed at 180 K, attributed to a further structural transition from

the tetragonal β-phase to an orthorhombic γ-phase.

4.2.3 Cubic Phase

The structure of Cs0.1FA0.9PbI3 above 290 K was investigated via PXRD, SXRD and

NPD.
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Figure 4-7: (a) Contour plot of neutron powder diffractograms on a Cs0.1FA0.9PbI3-D
sample stacked by temperature recorded on POLARIS in the range of 3.1 Å - 3.4 Å. (b)
Resulting peak position of sequential peak fit on the dominant peak centered at 3.15 Å.
(c) FWHM as a function of temperature of the dominant peak. (a) and (c) are divided
into the cubic (red), tetragonal (orange), orthorhombic (green) and low temperature
(blue) phases.
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Figure 4-8: (a) Rietveld fit on NPD data collected on POLARIS at 300 K refined
to space group Pm3̄m with lattice parameter a = 6.345 62(24) Å, wR = 1.69%. The
difference between the observed and calculated values is shown in light blue and regions
marked in grey could be assigned to δ-phase impurities. (b) PXRD data indexed to a
cubic cell in Pm3̄m.
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Figure 4-9: PXRD patterns of Cs0.1FA0.9PbI3-H samples synthesized via inverse sol-
ubility (red), precipitation (blue) and Cs0.1FA0.9PbI3-D synthesized by drop casting
(black). The samples synthesized by the inverse solubility method were identified as
phase pure, whereas small quantities of δ-CsPbI3 and δ-FAPbI3 impurities (*) were
identified in the other powders.

Fully hydrogenated, phase pure Cs0.1FA0.9PbI3 samples synthesized by the inverse sol-

ubility method, and ground using a pestle and mortar, were investigated using PXRD.

PXRD patterns indexed best to the cubic Pm3̄m space group and revealed a shift in

the (100) peak in comparison to α-FAPbI3 due to an expected contraction of the lattice

on Cs incorporation.147 Figure 4-8 (b) shows the indexed PXRD pattern obtained at

298 K from a STOE STADI P diffractometer. PXRD was also used to check the qual-

ity of the part deuterated samples synthesised by the drop casting method for NPD

measurements. Impurity peaks were identified and indexed to small quantities (< 2%)

of δ-CsPbI3 and δ-FAPbI3 (Figure 4-9).

NPD data obtained from a 2-hour collection at 300 K on POLARIS was fully analyzed

using the GSAS II software. Lattice parameters from the indexed PXRD data were

used as a starting point for further refinement. Initially the structural description of

FAPbI3 at 298 K was used as a model,87 atomic positions were used as published

and only lattice and instrumental parameters were varied at first. The planar part-

deuterated FA cation was modelled to a rigid H-C-N-HD molecule, with initial isotropic

ADPs of 0.05 Å2 set. As performed by Weller et al. for FAPbI3, the C-H atoms were

assigned a site occupancy of 0.16, while the single N-HD group was modelled with an

occupancy of 0.0833, together describing the 12 orientations of the planar FA cation
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300K

Atom x y z Occupancy Uiso Symmetry

Pb1 0 0 0 1.000 0.0255(13) m3m
I1 0.5 0 0 1.000 0.0806(21) 4/mmm(x)
C1 0.5 0.50(12) 0.5 0.167 0.244(6) 4mm(y)
N1 0.70(11) 0.558(23) 0.5 0.083 = C1 Uiso m(z)
H1 0.5 0.7(4) 0.5 0.167 = C1 Uiso 4mm(y)
H2 0.75(5) 0.65(7) 0.5 0.083 = C1 Uiso m(z)
D1 0.7(4) 0.3(4) 0.5 0.083 = C1 Uiso m(z)

Table 4.1: Structural information for partially deuterated α-Cs0.1FA0.9PbI3-D from
POLARIS data at 300 K, space group Pm3̄m, lattice parameter a = 6.345 62(24) Å,
wR = 1.68%. The central cation was modelled as a CH – NHD rigid molecule.

within the cuboctahedral void.87 This initial refinement produced a good fit of the

data, with a wR of 1.92%. Subsequent refinement of the Pb and I ADPs produced a

slightly improved fit, with wR = 1.89%. The ADPs of the C, N, H and D making up

the rigid FA cation were constrained to be equal, and when refined the wR improved to

1.72% producing a value of 0.244(6) Å2. The high thermal parameter values indicate

significant rotational motion of the FA cation at 300 K. The position of the whole

cation was then refined, producing the cubic structural model detailed in Table 4.1,

with wR = 1.69%. The Rietveld fit (shown in Figure 4-8 (a)) converged to a lattice

parameter of 6.345 62(24) Å in the space group Pm3̄m.

Despite some earlier studies suggesting Cs0.1FA0.9PbI3 to adopt a tetragonal structure

in ambient conditions,145 we do not observe peak splitting in the PXRD and high

resolution NPD indicative to a tetragonal symmetry. However, the cubic to tetrago-

nal transition is very close to room temperature, with data from differential scanning

calorimetry (DSC) measurements further supporting this. Samples synthesised via in-

verse solubility and precipitation were cycled from 293 K - 225 K - 420 K four times

at 2 Kmin−1. A small transition of 0.01 Wg−1 was observed centered at 290 K cycling

down and 285 K cycling up in temperature corresponding to the phase transition from

cubic to tetragonal. A 5 K difference in transition temperature between the down and

up temperature cycles demonstrates the presence of a small amount of thermal hys-

teresis. Figure 4-10 shows a typical DSC trace for a sample of Cs0.1FA0.9PbI3 between

225 K and 310 K.

Single crystals of Cs0.1FA0.9PbI3 grown via inverse solubility also were selected to

obtain a structural model at 300 K using SXRD data. Two methods were used; firstly,

the established structure for α-FAPbI3 was used as a model, accounting for the low
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Figure 4-10: Baselined DSC measurement for Cs0.1FA0.9PbI3 samples synthesised via
inverse solubility, cycled once between 293 K – 225 K – 420 K at 2 Kmin−1. A very
small change in heat flow is centered at 290 K corresponding with the cubic-tetragonal
phase transition. (Inset) original data (blue) and baseline (red), the slope is an artifact
of the instrument.

scattering and tumbling of the FA cation by modelling the A—site as a single atom

with a large ADPs. Secondly, the structure was solved in the low symmetry space group

P1̄ before the validation software PLATON127 was used to determine a more suitable

space group. In both cases the best solution fit to Pm3̄m with lattice parameter a =

6.2780(3) Å.

Large anisotropic ADPs associated with iodide anions in the SXRD refinement suggest

a soft PbI6 framework. An attempt was made to model the observed spread of electron

density to locked octahedral tilts as predicted from ab initio methods by Gosh et

al.,147 however, any ordered tilting of the PbI6 octahedra could not be deduced. It was

therefore resolved that the time averaged structure of Cs0.1FA0.9PbI3 is cubic at 300

K, although the local structure may contain pseudo-tetragonal domains due to tilted

octahedra switching rapidly between preferred orientations.

4.2.4 Tetragonal Phase

Variable temperature NPD was used to investigate the tetragonal β-phase that was

found to exist between 290 K and 180 K; the transition to this phase is characterised

by the appearance of the tetragonal unit cell (211) reflection as seen centered at d =

3.37 Å in Figure 4-11. Rietveld fits were performed on NPD data based on the model

developed by Weber et al. for pure FAPbI3,74 with only the lattice and instrumental

parameters allowed to vary in the initial refinement.

The part-deuterated FA cation was modelled as a rigid H-C-N-HD molecule with an
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Figure 4-11: Rietveld fit on NPD data collected on POLARIS at 200 K refined to space
group P4/mbm, a = 8.9084(8) Å, c = 6.3224(8) Å, wR = 2.90%. Regions marked in
grey could be assigned to δ-phase impurities.

occupancy of 0.5 for the C atom and 0.25 for the N, H and D, representing the restricted

motion of the cation in the tetragonal phase.74 ADPs for the Pb and I were then refined,

producing lower values than those obtained in the cubic phase, suggesting reduced

motion of the PbI6 octahedra. The thermal parameters for C, N, H and D of the FA

cation were constrained to be equal, refining to give 0.190(9) Å2. The position of the

rigid cation was then refined to give the tetragonal structural model shown in Table

4.2, in the space group P4/mbm, lattice parameters a = 8.9084(8) Å, c = 6.3224(8) Å,

with wR = 2.90%. The tetragonal model fits the data well from 180 K to 280 K, above

this temperature refinements failed as the material gradually transitioned to the cubic

α-phase.

4.2.5 Orthorhombic Phase

Unlike pure FAPbI3, which exists as a tetragonal β-phase through to low tempera-

ture, an additional orthorhombic phase was observed in SXRD and NPD data for

Cs0.1FA0.9PbI3. SXRD data for a single crystal of Cs0.1FA0.9PbI3 was modeled in the

orthorhombic space group Pnma at 150 K where lattice parameters extracted were a

= 8.8192(12) Å, b = 12.5777(13) Å, c = 8.6274(13) Å. However, SXRD data obtained

at 175 K could be indexed to either Pnma or the tetragonal space group P4/mbm,

with reflections satisfying both solutions appearing due to proximity to a structural
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200K

Atom x y z Occupancy Uiso Site

Pb1 0 0 0 1.00 0.0057(22) 4/m(z)
I1 0 0 0.5 1.00 0.035(8) 4/m(z)
I2 0.7879(10) 0.28791 0 1.00 0.059(8) mm2(xy)
C1 0.5 0 0.49(5) 0.5 0.190(9) mm2
N1 0.57(17) 0.08(16) 0.42(3) 0.25 = C1 Uiso 1
H1 0.583(12) 0.91719 0.56(3) 0.25 = C1 Uiso m(xy)
H2 0.54(7) 0.10(8) 0.45(13) 0.25 = C1 Uiso 1
D1 0.60(20) 0.11(19) 0.48(9) 0.25 = C1 Uiso 1

Table 4.2: Structural information for partially deuterated β-Cs0.1FA0.9PbI3-D from
POLARIS data at 200 K, space group P4/mbm, lattice parameters a = 8.9084(8) Å, c
= 6.3224(8) Å, wR = 2.90%. The central cation was modelled as a CH – NHD rigid
molecule.

transition. As has been observed for FAPbI3, it seems that Cs0.1FA0.9PbI3 forms crys-

tallographic twins when cooled through phase transitions, leading to large residuals

and challenges identifying the absolute structure.74

4.2.6 Low Temperature Phase

SXRD data collected at 120 K converged to the space group Pnma with lattice pa-

rameters a = 8.8215(11) Å, b = 12.5815(13) Å, c = 8.6091(13) Å. However, unlike the

higher temperature data, additional weak reflections were observed at 120 K which

could be attributed to the formation of a disordered state. The emergence of disorder

at low temperature agrees with previous findings for FAPbI3 in the literature, in which

residual entropy causes the freezing of FA cation rotation and locking of PbI6 octahedra

is a glass-like state.93

4.2.7 Variable Temperature Photoluminescence

A single crystal of Cs0.1FA0.9PbI3 synthesised via the inverse solubility method was

mounted in a cryostat and illuminated with an excitation wavelength of 630 nm while

the temperature was varied from 290 K to 25 K. Stacked variable temperature PL

spectra are shown in Figure 4-12 (a), each spectrum was fitted with a single Gaussian

function subsequently used to analyse the peak PL positions and FWHM (Figure 4-

13(b,c)). It should be noted that spectra taken at 290 K and 275 K were fitted using

a second Gaussian term to account for photon recycling effects in the 1 mm thick
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crystal.62 These secondary peaks, due to the absorption and subsequent re-emission of

PL, were not included in the peak PL position and FWHM analysis.

Peak positions extracted from Gaussian fits of the PL were plotted as a function of

temperature revealing a red shift with decreasing temperature familiar to these family

of hybrid halide perovskites (Figure 4-12(b)).58,151 This shift has been attributed to

stabilisation of the valence band maximum due to a combination of thermal expansion

effects and electron-phonon interactions.70,151 Below 125 K a blue shift in peak position

is observed. Interestingly the blue shift at low temperatures corresponds with the

transition to the disordered state as revealed through XRD and NPD measurements

presented in this work. A change in PL shift at low temperature has been previously

linked to disorder in MAPbX3 hybrid halide perovskites, attributed to band filling

effects induced by a difference in bandgap between domains of ordered and disordered

cation orientations.151

The temperature dependence of the PL FWHM (Γ(T )) can be expressed in terms of

the below:58

Γ(T ) = Γ0 +
γ0

exp( ELO
KBT

)− 1
(4.1)

where T is temperature, KB is the Boltzmann constant, Γ0 is the temperature indepen-

dent homogeneous broadening term γLO is the charge carrier longitudinal-optical (LO)

phonon coupling strength and ELO is the energy for the LO phonon. The resulting

FWHM of the Gaussian fits the to steady state PL could be modelled to Equation 4.1

(blue dashed line in Figure 4-12 (c)) from which the extracted values for Γ0, γLO and

ELO were 29 ± 1 meV, 30 ± 4 meV and 13 ± 1 meV respectively. There is possi-

ble grouping of the FWHM data according to phase in Figure 4-12 (c); however, the

discontinuities are small and proved difficult to model separately.

Transient luminescence spectra for Cs0.1FA0.9PbI3 were measured at seven distinct

temperatures between 290 K and 50 K inclusive. The resulting spectra were modelled

according to the rate equation:46

−dn
dt

= k1n+ k2n
2 + k3n

3 (4.2)

where n is the photogenerated carrier density and ki is recombination rate. Each

term represents a charge carrier annihilation process following excitation, (1) being

monomolecular recombination, (2) bimolecular recombination and (3) three body Auger
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Figure 4-12: (a) Variable temperature steady state PL on a single crystal of
Cs0.1FA0.9PbI3. (b) Peak positions and (c) FWHM of the Gaussian fits of the PL
as a function of temperature. (d) PL decay measured at 290 K and 50 K. (e) Extracted
monomolecular recombination rate constants (k1) and (f) effective bimolecular rate
constant (Bk2) from fits to variable temperature PL decay. Points are coloured ac-
cording to the cubic α-phase (red), tetragonal β-phase (orange), orthorhombic γ-phase
(green) and disordered low temperature phase (blue).
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Figure 4-13: (a) Gaussian fit (red dashed line) of PL (black solid line) for a crystal of
Cs0.1FA0.9PbI3 taken at 50 K. (b) TRPL of Cs0.1FA0.9PbI3 (black) taken between 275
K and 50 K fitted according to equation 4.2 (red)

recombination. Previous studies have shown first and second order recombination

mechanisms to dominate in hybrid perovskites at moderate intensities, therefore Auger

recombination was neglected.46,68 The analytical solution of the differential equation

is then given by:

n(t) =
−k1e

ck1

k2eck1 − ek1t
(4.3)

where c is a constant.

The monomolecular term is predominately determined by first order Shockley-Reed

(trap state mediated) recombination in hybrid halide perovskites, therefore the value

of k1 is dictated by trap-assisted recombination.152 As displayed in Figure 4-12(e), in

general, k1 decreases with decreasing temperature; however, a significant increase is

seen between 290 – 275 K. This was potentially due to domains of cubic and tetragonal

phases appearing over the phase transition and acting as recombination sites. Below

the 125 K transition into the disordered structure the monomolecular recombination

rate increases, possibly due to disordered domains acting as recombination centers.46

Values of the bimolecular rate constant (k2) could not be determined as the charge

carrier density (n) was not directly measured. Assuming free carrier recombination,
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the experimentally measured PL decay (I(t)) was taken to be proportional to n(t)2

such that:

n(t)2 ∝ I(t). (4.4)

Therefore only a value called Bk2 can be extracted from the PL fitting, where B is a

proportionality constant as described by Milot et al.152 As B is unknown, only the value

of k1 can be directly determined. Effective bimolecular rate constants are determined

as Bk2 with units of V ns−1, where V is volume. The values determined for Bk2

(Figure 4-12 (f)) generally increase with decreasing temperature, until the transition to

the low temperature disordered phase around 125 K. The reversal in trends observed

for PL peak position, k1 and Bk2 below the 125 K transition clearly indicate the

disordered nature of the FA cations and PbI6 orientations at low temperature influence

the electronic structure of the material.

4.2.8 Absorption

The percentage reflectance (R) was collected and transformed using the Kubelka-

Munk model (Equation 3.13) to better represent the material absorption coefficient.75

There is an obvious and unexpected blue shift between the measured F (R) and PL

for Cs0.1FA0.9PbI3 in the combined plot shown in Figure 4-14 (a). The PL was ob-

tained using the TCSPC set up of the Photonics and Optoeletronics group at the LMU,

whereas the reflectance measurements were obtained at the University of Bath using

a UV-Vis spectrometer equipped with an integrating sphere. Both instruments were

correctly calibrated. Extrapolating from the edge of the F (R) function (red line in

Figure 4-14 (b)) provides an estimate of the material bandgap of 1.43 eV.

There is significant variation in the literature as to the position of the PL peak and

absorption edge for Cs-FA lead iodide perovskites. For example, Nazarenko et al.82

estimated a bang gap of 1.47 eV for Cs0.1FA0.9PbI3, whereas Syzgantseva et al.104

suggested the bandgap of Cs doped FAPbI3 to take a value between 1.49 eV and 1.50

eV. Prasanna et al.145 and Prathapani et al.144 found bandgaps greater than 1.50

eV for Cs-FA thin films. There has been some suggestion that synthesis method can

significantly affect the absorption properties measured for a material.18 Further work

is needed to probe the differences between the optical absorption properties of thin

films and crystalline perovskite samples.
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Figure 4-14: (a) PL and reflectance measurements for Cs0.1FA0.9PbI3. The reflectance
measurements have been transformed using the Kubelka-Munk (KM) function.(b) Ex-
trapolation of the absorption edge, estimate material bandgap to 1.43 eV. (c) SEM
images of the Cs0.1FA0.9PbI3 sample used for the temperature dependent PL measure-
ments, taken at magnifications of x 70 (left) and x 1500 (right). Needles attributed to
the δ-CsPbI3 and δ-FAPbI3 phases can be seen.

111



Differences in synthesis technique cannot explain the large blue shift observed between

the absorption onset and peak PL, taken of samples synthesised as part of the same

batch process. SEM was used to investigate the surface properties of Cs0.1FA0.9PbI3

crystals measured by variable temperature PL (Figure 4-14 (c)). The SEM images

revealed needles attributed to δ-phases of CsPbI3 and FAPbI3 present on the crystal

surface. From previous observations on CsxFA1−xPbI3 crystals investigated in this

work, it was known that the materials phase separated over the course of a couple of

weeks on exposure to atmosphere. Therefore, despite the bulk of the crystal remaining

in the α-phase, the surface separated into a region rich in the higher bandgap δ-phases.

Surface sensitive PL measurements would be directly affected by this, resulting in a

blue shift of measured peak PL.

4.2.9 Discussion

The results of the investigation into the phase behaviour of Cs0.1FA0.9PbI3 are sum-

marised in Figure 4-15. Cs and FA cation mixing is more energetically favourable in the

α-phase than δ-phase,113 leading to the preferred formation of cubic α-Cs0.1FA0.9PbI3

through synthesis by inverse solubility and precipitation from acid. Mixed Cs-FA crys-

tals and powders remained stable in air at 20% humidity over one month, before slowly

phase separating into yellow δ and black α-phase rich regions. This stability is much

improved on that of α-FAPbI3, which quickly transforms to δ-FAPbI3 on exposure to

the atmosphere.87 Lee et al. attributed the improved stability of CsxFA1−xPbI3 to

stronger interactions between the FA cations and I anions due to a contraction of the

unit cell.96

A consequence of the improved stability of the mixed Cs-FA lead iodide perovskite

is the desirable black α-phase becoming accessible in ambient conditions. Numerous

studies have shown the tetragonal (β) to cubic (α) transition in kinetically trapped

samples of α-FAPbI3 to occur at 285 K.42,74,93 However, this transition is rarely ob-

served as formation of the hexagonal δ-FAPbI3 phase is energetically favoured at room

temperature.87 The variable temperature NPD data presented in this chapter shows

the tetragonal (β) to cubic (α) transition temperature was not significantly affected

by the addition of 10% Cs into the FAPbI3 structure, being measured at 290 K for

Cs0.1FA0.9PbI3 in this work. As described earlier in this chapter, there has been con-

fusion whether Cs0.1FA0.9PbI3 adopts a cubic or tetragonal structure at room temper-

ature.144–146 Variable NPD data and DSC data of Cs0.1FA0.9PbI3 suggested a slow,

second order transformation from the cubic α-phase to a tetragonal β-phase centered
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Figure 4-15: Phase transitions of Cs0.1FA0.9PbI3 found in this work. Crystal structures
were drawn in the program VESTA from SXRD data.
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Figure 4-16: Schematic of the band filling effect, resulting in a blue shift of PL emission
with increasing charge carrier density.

close to 290 K. The proximity of the cubic-tetragonal transition to room temperature,

in addition to the dynamic nature of the PbI6 octahedra, have likely been important

factors in the discrepancies of the room temperature structure of Cs0.1FA0.9PbI3 in the

literature.144–147

Addition of the smaller Cs cation into the FAPbI3 structure results in a contraction

of the cuboctahedral voids formed by the corner sharing PbI6 octahedra, resulting

in geometric strain of the lead iodide framework, and leading to stronger hydrogen

bonding between the amine groups of the FA cation and iodide.146 These effects lead

to the suppressed motion of the FA cation, and locked tilting of the PbI6 octahedra

at lower temperatures,146,147 inducing the additional orthorhombic γ-phase seen in

variable temperature NPD and SXRD. The appearance of this extra orthorhombic

phase appears to lower the transition to a disordered state from 140 K observed in pure

FAPbI3, to 125 K seen in NPD and SXRD for Cs0.1FA0.9PbI3 in this work. Therefore,

in addition to increasing resistance to δ-phase formation, incorporating Cs into the

FAPbI3 structure has important effects resulting in the desirable cubic α-phase being

accessible at room temperature, the addition of an orthorhombic phase present below

180 K and lowering of the transition temperature to the disordered state below 125 K.

The phase transition at 125 K was further supported by variable temperature PL

and TRPL data, which showed a reversal in trend for peak PL position and effective

bimolecular recombination rates at this temperature. The PL peak position first red

shifts between 290 - 125 K, predominately due to thermal contraction effects which
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increases the overlap of outer Pb and I orbitals, so decreasing the bandgap.70 Below

125 K PL peak position blue shifts, coinciding with the disordered state suggested in

the NPD and SXRD measurements. Dar et al. investigated the effect of orientationally

disordered cations on the low temperature PL of MAPbX3 thin films, demonstrating a

small energy difference between domains of ordered and disordered cations.151 At low

temperatures charge transfer occurred between the ordered and disordered domains,

resulting in the accumulation of charges in the disordered state, leading to a band filling

effect, characterised by a blue shift in emission peak.151 A schematic of the band filling

effect is shown in Figure 4-16. A shift in the trend of effective bimolecular recombination

rates extracted from TRPL measurements also corresponded to the transition to the low

temperature disordered phase at 125 K. It is speculated that the presence of additional

disordered domains act as recombination centers, increasing recombination rates.46

The phase transitions and the Cs substitution limit determined for CsxFA1−xPbI3 in

this work are combined with those found for FAPbI3 and CsPbI3 to produce the phase

diagram in Figure 4-17. It is important to note that the phase diagram was constructed

using results from powder and crystal samples synthesised by the precipitation and

inverse solubility methods, representing the intrinsic behaviour of these mixed cation

systems.74,88 Thin films were not investigated, and may demonstrate differing phase

behaviour depending on deposition method.18
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Figure 4-17: Phase diagram schematic for CsxFA1−xPbI3 powders (synthesised by the
precipitation method) and single crystals (grown via inverse solubility). Space groups
and transition temperatures as found in this work (blue circles and *) from variable
temperature NPD data are compared with that found by Weber et al.74 (black triangles
and #) and Sutton et al.88 (∼).
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4.3 Site Substitution with Bromine in Cs-FA Lead Iodide

Perovskites

4.3.1 Variable Temperature Neutron Powder Diffraction

The phase behaviour of Cs0.1FA0.9Pb(I0.6Br0.4)3 synthesised by the precipitation method

was investigated using variable temperature NPD on the POLARIS instrument at ISIS

neutron and muon source. A hydrogenous powder sample of Cs0.1FA0.9Pb(I0.6Br0.4)3

was cooled to 105 K and heated to 300 K at a rate of 0.4 Kmin−1, data was continu-

ously binned into 1 K ranges. Patterns from Bank 4, ranging between 1.5 Å and 3.69 Å

are stacked according to temperature and displayed in Figure 4-18 (a).

A small continuous shift in peak position, indicating an expanding unit cell with in-

creasing temperature, was investigated further using sequential refinement in GSAS II.

A cubic model was used, adapted from that developed in the Cs0.1FA0.9PbI3 NPD work

presented earlier in this chapter. Extracted lattice parameters (a) are shown to decrease

with decreasing temperature in Figure 4-18 (b). A kink in the trend is observed at 230

K, corresponding with the emergence of additional weak reflections as seen in Figure

4-18 (a). The emergence of additional peaks indicate decreasing symmetry, therefore

a tetragonal β-phase was assigned below 230 K.74,100 NPD patterns in the region in-

dexed well to the space group P4/mbm, although the ratio of lattice parameters a to

c extracted from indexing remained close to one throughout, indicating the material

maintained a near cubic structure. This is similar to findings on MAPb(BryCl1−y)3

perovskites which maintain a cubic structure down to 120 K.94 It is probable that I-Br

disorder affects the tilting of the PbX6 octahedra which drives the cubic to tetragonal

transition94

The α to β-phase transition temperature and cubic nature of the crystal structure was

further supported by sequential peak fitting. The evolution of the position and FWHM

of the prominent (200) reflection centered around a d-spacing of 3.15 Å was tracked.

The extracted peak position and FWHM are shown as a function of temperature in

Figure 4-19. Similar to that seen in the trend for lattice parameter from sequential

refinement, a kink is observed in (200) peak position at 230 K. There is no obvious

trend in FWHM, although values are on average 0.01 Å higher in the β phase than

in the α phase. Peak broadening can be used as an indicator of peak splitting due

to reducing symmetry. The small increase in FWHM below 230 K hints at a subtle

change in crystal symmetry, likely due to transformation from a cubic α-phase to a

pseudo-cubic tetragonal β-phase.
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Figure 4-18: (a) Contour plot of stacked variable temperature NPD patterns on a
Cs0.1FA0.9Pb(I0.6Br0.4)3 sample synthesised by the precipitation method and recorded
on POLARIS Bank 4 at ISIS neutron and muon source. (b) Sequential refinement of
a pseudo-cubic cell from 290K to 205 K. Transition temperatures were identified by
kinks in the trend in lattice parameter a with temperature. (c) Cubic model used in
the sequential refinement.
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Figure 4-19: (a) Expanded contour plot from Figure 4-18 of Cs0.1FA0.9Pb(I0.6Br0.4)3

NPD patterns from POLARIS stacked with temperature in the range of 3.0 Å - 3.5 Å.
(b) Extracted peak positions and (c) FWHM of the prominent (200) reflection centered
around 3.15 Å from a sequential peak fit performed in GSAS II.

The growth of additional peaks attributed to the β-phase is gradual, first appearing

in NPD patterns around 275 K and reaching peak intensity by 230 K. This is similar

to the slow second order cubic to tetragonal transition observed between 275 K and

250 K in variable temperature XRD measurements on FAPbBr3.100 A further shift

at 120 K in the trend of lattice parameters extracted from sequential refinement of

the variable temperature NPD data suggests a further transition at low temperatures.

Schueller et al. suggested a tetragonal (P4/mbm) to orthorhombic (Pnma) transition

in FAPbBr3 around this temperature, although attempts to fit low temperature NPD

to a simple orthorhombic model failed.100 It is possible the low temperature phase of

Cs0.1FA0.9Pb(I0.6Br0.4)3 is complicated by the effects of orientational disorder of the

FA cations, as seen in Cs0.1FA0.9PbI3 and FAPbI3.74
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4.3.2 Cubic Phase

The structure of Cs0.1FA0.9Pb(I0.6Br0.4)3 around 290 K was investigated by PXRD and

NPD.

Room temperature PXRD patterns indexed best to the cubic Pm3̄m space group with

lattice parameter a = 6.344 Å. The indexed pattern is shown in Figure 4-20 (b), which

also identifies impurities attributed to δ-CsPbI3 (#) and δ-FAPbI3 (∗). The parameters

extracted from the indexed PXRD data were used as a starting point for profile fitting

of NPD data acquired at 290 K.

NPD data measured at 290 K was initially fitted using the structural model obtained

for cubic Cs0.1FA0.9PbI3 presented earlier in this chapter, adapted to account for the

addition of Br and a fully hydrogenous organic cation. The planar FA cation was

modelled to a rigid H-C-NH2 molecule, with ADPs of 0.244 Å2, equal to that found for

Cs0.1FA0.9PbI3. The occupancies of the cation were set so as to allow 12 orientations

of the FA cation within the cubo-octahedral void.87 A Br anion was added to the

halide site at (0.5, 0, 0), and the Br and I occupancies were initially set to 0.4 and

0.6 respectively to match the composition assumed from the stoichiometry used in

synthesis. Lattice parameters and instrumental parameters were allowed to vary. The

initial refinement converged to the space group Pm3̄m lattice parameter a = 6.3376 Å,

wR = 2.74%.

In further refinements the ADPs of the C, H and N were constrained to be equal, as

were the ADPs of I and Br, the position of the whole FA cation was then refined con-

verging to give a wR of 2.54%. The occupancy of the I and Br ions were set to equal

one, then allowed to vary, converging to 0.75 and 0.25 for the I and Br respectively

in the final model, suggesting a true composition of Cs0.1FA0.9Pb(I0.75Br0.25)3. The

290 K structural model is presented in Table 4.3, giving a lattice parameter of a =

6.337 99(26) Å in space group Pm3̄m, with wR = 2.53%. Bromide uptake was signifi-

cantly less than expected, potentially due to formation of a stabilised phase. Hoke et

al.153 demonstrated a preferred I:Br ratio of 8:2 in MAPb(IyBr1−y)3 systems, therefore

a similar composition may be energetically favourable for the FA containing mixed

halide systems.

The 0.112 Å2 ADPs of the rigid FA cation in the mixed halide system are smaller than

the 0.244 Å2 measured for Cs0.1FA0.9PbI3 in this work. However, the halide ADPs of

0.102 Å2 are significantly larger than the 0.0806 Å2 values for the I in Cs0.1FA0.9PbI3.

The reduced thermal motion of the FA cation is likely due to inclusion of the smaller
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Figure 4-20: (a) Rietveld fit on Cs0.1FA0.9Pb(I0.6Br0.4)3 NPD data collected on PO-
LARIS at 290 K refined to the space group Pm3̄m, lattice parameter a= 6.337 99(26) Å,
wR = 2.53%. (b) PXRD data indexed to the cubic space group Pm3̄m with δ-FAPbI3

and δ-CsPbI3 impurities identified by ∗ and # respectively.
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300K

Atom x y z Occupancy Uiso Symmetry

Pb1 0 0 0 1.000 0.0164(16) m3m
I1 0.5 0 0 0.75 0.102(3) 4/mmm(x)

Br1 0.5 0 0 0.25 = I1 Uiso 4/mmm(x)
C1 0.5 0.562(5) 0.5 0.167 0.112(6) 4mm(y)
N1 0.682(6) 0.453(20) 0.5 0.083 = C1 Uiso m(z)
H1 0.5 0.772(25) 0.5 0.167 = C1 Uiso 4mm(y)
H2 0.74(4) 0.61(8) 0.5 0.083 = C1 Uiso m(z)
H3 0.77(3) 0.37(6) 0.5 0.083 = C1 Uiso m(z)

Table 4.3: Refined model of Cs0.1FA0.9PbI3 from NPD data at 290 K in the cubic
Pm3̄m space group with a lattice parameter of 6.337 99(26) Å, wR = 2.53%.

Br anion reducing the unit cell size, and so contracting the cuboctahedral volume

occupied by the cation.141 The reduced volume may result in stronger FA-halide inter-

action, as suggested by theoretical calculations for Cs0.1FA0.9PbI3, therefore restricting

the cation dynamics.146 The increased thermal motion in the halide ions is likely due

to the mismatch between the I (220 pm) and Br (198 pm) radii.79,82,141 Inclusion of

the smaller Br anion induces strain in the lead-halide framework, potentially leading

to increased dynamic motion of the PbX6 octahedra, although further high resolution

variable temperature diffraction and theoretical studies would be beneficial to under-

stand this observation.
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4.4 Conclusions

The phase behaviour of CsxFA1−xPbI3 (0 ≤ x ≤ 0.2) and Cs0.1FA0.9Pb(I0.6Br0.4)3

perovskites were investigated primarily through variable temperature NPD and PXRD.

Single crystals of Cs0.1FA0.9PbI3 were also investigated by variable temperature PL and

TRPL.

PXRD data showed contraction of the unit cell of CsxFA1−xPbI3 when compared to

pure FAPbI3, indicating successful Cs incorporation for x < 0.15, and EDX measure-

ments suggested a preferred composition of Cs0.12FA0.88PbI3 in crystals synthesised by

inverse solubility.

From variable temperature NPD it was determined that inclusion of Cs results in

the desirable cubic α-phase of Cs0.1FA0.9PbI3 existing at room temperature. Despite

previous studies suggesting Cs0.1FA0.9PbI3 adopts a tetragonal structure at room tem-

perature, peak splitting indicative to this phase is not observed in high resolution NPD

data. However, the gradual second order cubic to tetragonal transition is deemed to

occur around 290 K, accounting for confusion in the literature. Moreover, an additional

orthorhombic phase was observed below 180 K and disorder attributed to residual en-

tropy of the FA cation orientation appeared below 125 K. Transition to this disordered

phase was suppressed in Cs0.1FA0.9PbI3 when compared to phase pure α-FAPbI3, due

to effects of Cs substitution on the dynamics of the FA cation and lead iodide frame-

work.

Variable temperature steady state PL on single crystals of Cs0.1FA0.9PbI3 comple-

mented results from the NPD data, suggesting transition to a low temperature state

below 125 K. Below 125 K effective bimolecular recombination rates extracted from

TRPL measurements increased with decreasing temperature, attributed to disordered

domains behaving as recombination centers.

Transformation from a cubic α to tetragonal β-phase was also shown through variable

temperature NPD on Cs0.1FA0.9Pb(I0.6Br0.4)3 synthesised by the precipitation method.

The cubic structural model obtained at 290 K showed reduced cation motion, associated

with the reduction in cuboctahedral volume due to substitution with the smaller Br

anion. Transformation to the β-phase at 225 K occurred via a gradual second order

transition characterised by the appearance of additional reflections in NPD patterns.

The β-phase was deemed to be pseudo-cubic due to the ratio of tetragonal lattice

parameters being close to one. Further work investigating the low temperature phase

for potential disorder, as well as work determining the complex dynamics of the lead-
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halide framework would be beneficial in understanding the superior PV performance

of these mixed perovskites.

The phase behaviour of Cs0.1FA0.9PbI3 and Cs0.1FA0.9Pb(I0.6Br0.4)3 were poorly under-

stood and previous XRD studies could not model organic cation behaviour. However,

this work has demonstrated the importance of modelling cation dynamics, providing

important insights into the intrinsic behavior of mixed cation perovskites commonly

used in photovoltaics.
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Chapter 5

Cesium Methylammonium Lead

Halide Perovskites
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5.1 Introduction

In 2009 methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) was the first hybrid

halide perovskite to be used in a PV device;12 since then, an explosion of research

interest has resulted in MA containing perovskite devices challenging silicon solar cell

efficiencies.16 Research groups around the world have developed more efficient and sta-

ble perovskite solar cells by improving device architectures, as well as adding additional

cations or halide anions to the A and/or X sites of the MAPbI3 ABX3 structure.22,81,154

Adding cesium (Cs) and/or bromine (Br) into the MAPbI3 template has been com-

monly employed as a method to enhance PV device stability and performance; however,

the effect of these substitutions on the structure and phase behaviour of the perovskites

has been less well studied. As introduced in Chapter 2 Section 2.5.3, the symmetry of

hybrid halide perovskites decreases with decreasing temperature through a number of

well known structural transitions. MAPbI3 exists in the cubic Pm3̄m space group at

high temperatures, transitioning to the tetragonal I4/mcm then orthorhombic Pnma

structures at 327 K and 165 K respectively.86 The central MA cation rotates freely in

the cubic phase, shows rotational disorder in the ab plane in the tetragonal phase and

is frozen in the orthorhombic phase, with only the end groups of the molecule rotating

around the C-N bond.103 Similar behaviour is observed in MAPbBr3 which transitions

from cubic (Pm3̄m) to tetragonal (P4/mmm) to orthorhombic (Pna21) at 235 K and

148 K respectively.94

The behaviour of the central organic cation plays a pivotal role in the phase transitions

of the material. The structure changes to optimise the hydrogen bonding between the

MA cation and surrounding iodide by varying the degree of tilting of the PbI6 octa-

hedra. This affects the tolerance factor (t) used to define distortion in the perovskite

structure.103 For reference, Figure 5-1 shows the values of t and octahedral factors

(µ) for compounds investigated in this chapter, as well as the phase pure FAPbI3 and

CsPbI3 perovskites.

Substituting with Cs at the A-site and/or Br at the X-site of MAPbI3 has been shown

to induce geometric strain into the perovskite framework, directly affecting the tilts of

the lead halide octahedra. Octahedral tilting determines the degree of electron orbital

overlap; therefore, as well as affecting the crystallographic structure, site substitution

also substantially affects the electronic and optical properties of the perovskite.103

The changes induced by site substitution are often favourable, for example, mixed

cation CsxMA1−xPbI3 compounds have demonstrated good PV performance alongside

a resistance to the decomposition to PbI2 and MAI enthalpically favoured in MAPbI3.99
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Figure 5-1: Calculated tolerance and octahedral factors for the MA containing per-
ovskites discussed in this chapter, including those of FAPbI3 and CsPbI3 for reference.

Some of the best performing perovskite PV devices substitute at both the A and X

site of the material, forming mixed compositions such as CsxMA1−xPb(I1−yBry)3.81

These complex materials have demonstrated superior stability and precise control of

the band gap depending on the chosen values of x and y.140,155,156 However, inves-

tigations into the effect of cation and halide substitution on the phase behaviour of

CsxMA1−xPb(I1−yBry)3 are absent. Similarly, there are few studies on the affect of Cs

in MAPbI3, with most research focused on CsxMA1−xPbBr3 compounds instead.103

Understanding the affects of site substitution on the optoelectronic and structural prop-

erties of hybrid halide perovskites is vital in the development of these materials for PV

applications. MAPbI3 has been studied extensively within various PV device architec-

tures, demonstrating high charge-carrier mobilities, low exciton binding energies and

the presence of free charge carriers at room temperature.46,68,86,157,158 However, it

has been shown that the local environment of the perovskite can significantly effect

observed material properties; for example, the grain size determined by the substrate

and deposition method used in thin film fabrication can affect charge-carrier mobilities

and even the position of phase transitions.26 Therefore, there exists some confusion

when comparing perovskite optoelectronic and structural properties, as it can be diffi-

cult to determine how the characteristics change depending on the local environment.

This prompted the work presented here, where the intrinsic properties of high perform-

ing perovskite compositions are investigated through a combination of diffraction and

spectroscopic methods.

127



5.2 Phase Behaviour of Cesium Methylammonium Lead

Iodide Perovskites

5.2.1 Cesium Substitution Limit

Samples of CsxMA1−xPbI3 (0 ≤ x ≤ 0.4) were synthesised as powder via the precip-

itation method and crystals via the inverse solubility method. In comparison to the

CsxFA1−xPbI3 compositions investigated in Chapter 4, a greater resistance to degra-

dation was observed in CsxMA1−xPbI3 (0 ≤ x ≤ 0.1) in ambient conditions, showing

negligible presence of the δ-phase or PbI2, which is a preferred degradation product of

MAPbI3.80 On top of this, significantly larger single crystals of Cs0.1MA0.9PbI3 could

be grown using the inverse solubility method compared to Cs0.1FA0.9PbI3. Crystal

dimensions of 2 mm2 (as shown in Figure 5-2 (a)) were commonly achieved.

As observed previously in thin films of CsxMA1−xPbI3,22 a substitution limit of Cs

into the MAPbI3 structure was seen in crystal and powder samples. Cs0.1MA0.9PbI3

could be routinely synthesised as the black perovskite phase, as supported by EDX

measurements (Figure 5-2 (b)) demonstrating Cs incorporation throughout a cleaved

crystal. EDX was used to measure Cs composition across three sites on the cleaved

crystal, averaging to 2.51 ± 0.13% suggesting a true composition around x = 0.12.

However, crystals of Cs0.15MA0.85PbI3 showed significant growth of δ-phase impurities,

as shown in Figure 5-2 (c). Impurity peaks could be assigned to δ-CsPbI3 using PXRD

and increased in intensity with an increasing value of x (Figure 5-3 (a)).

When attempting to grow crystals via the inverse solubility method, a yellow compound

precipitated out of solution at 80◦C for CsxMA1−xPbI3, x ≥ 0.15. The precipitate was

identified as δ-CsPbI3 using PXRD, and could be filtered from the solution at 80◦C.

Perovskite crystals would then grow from the remaining precursor solution by heating

to 110◦C. In Figure 5-3 (b) the PXRD pattern for Cs0.2MA0.8PbI3 grown this way is

compared to that of Cs0.1MA0.9PbI3, also grown via inverse solubility, but without the

filtering step at 80◦C. There is no observable shift between the peaks of the x = 0.1 and

0.2 samples, indicating similar Cs incorporation. This suggests excess Cs precipitated

out of solution before perovskite crystallisation, indicating a substitution limit and

preferred level of Cs incorporation into the MAPbI3 structure. From PXRD and EDX

measurements, the substitution limit of CsxMA1−xPbI3 powders and crystal samples

was deemed to be x < 0.15, with a preferred composition of x = 0.12.
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Figure 5-2: (a) Optical images of a Cs0.1MA0.9PbI3 crystal. (b) EDX measurements of
a cleaved Cs0.1MA0.9PbI3 crystal mapping Cs, Pb and I content. Calculated weight %
of Cs averaged over three sites was 2.51 ± 0.13 % compared to a calculated 2.11 %. (c)
Backscattered SEM image of a Cs0.15MA0.85PbI3 crystal showing significant growth of
δ-phase needles on the right surface of the crystal.

Figure 5-3: (a) PXRD patterns of CsxMA1−xPbI3, x = 0.1, 0.15, 0.3 and 0.4. Increasing
presence of δ-CsPbI3 can be tracked by the increasing intensity of the δ-phase peak
centered around 2θ = 26◦. (b) CsxMA1−xPbI3, x = 0.1 and 0.2 synthesised via inverse
solubility. A yellow precipitate identified as δ-CsPbI3 was filtered from the x = 0.2
precursor solution before perovskite crystals were grown, the resulting crystals were of
a similar composition to that of the x = 0.1 samples grown without filtering.

129



5.2.2 Variable Temperature Neutron Powder Diffraction

The phase behaviour of Cs0.1MA0.9PbI3 was investigated using variable temperature

NPD carried out on the POLARIS instrument at the ISIS neutron and muon source,

Rutherford Appleton Laboratories. Approximately 6 g of hydrogenous Cs0.1MA0.9PbI3

was cooled in situ to 140 K and measured overnight at this temperature, before two

three-hour collections were recorded at 240 K and 310 K. The sample was then cooled

to 135 K in situ at a rate of 2.5 Kmin−1 with data continuously binned into 5 K

ranges between 310 K and 135 K. Due to reduced beam power from the source at ISIS,

measurements between 310 K and 290 K were of poor quality, and therefore were not

included in the analysis presented later in this chapter.

Patterns from the Bank 4 detector (90◦ to the sample) on the POLARIS instrument

ranging from 1.5 Å to 3.69 Å are displayed in Figure 5-4 (a). A small continuous shift

in peak position observed between 290 K and 170 K represents decreasing unit cell

volume with decreasing temperature. An abrupt shift in peak position then occurs

at 165 K indicating a phase change, occurring at the same temperature as the well

known tetragonal to orthorhombic transition in MAPbI3.86 However, unlike MAPbI3,

a smearing across the phase transition is observed, with the intensity of peaks associated

with the > 165 K tetragonal phase reducing, as the peaks associated with the < 165

K orthorhombic phase grow in. The smeared shift centered at 165 K shown in Figure

5-4 implies a slow glass-like transition, as discussed later in this chapter.

The signal-to-noise ratio is relatively poor in the variable temperature NPD data due to

the fully hydrogenated sample, therefore the model used in the sequential refinement of

the variable temperature data was based on that determined by the long measurement

at 310 K. More details on the tetragonal model used in the refinement can be found in

Section 5.2.3. Using this model, the program GSAS II130 was used to perform a pseudo-

tetragonal sequential refinement on the variable temperature NPD data between 290

K and 135 K, the extracted lattice parameters are plotted as a function of temperature

in Figure 5-4 (b). The unit cell contracts along the a-axis as the temperature decreases

from 290 K to 165 K. After the phase transition at 165 K, there is an abrupt change in

the trend of the a and c lattice parameters, coinciding with an increase in the R-factor

of the refinement indicating, a poorer fit to the tetragonal model.
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Figure 5-4: (a) Variable temperature NPD data of Cs0.1MA0.9PbI3 recorded on Bank
4 of the POLARIS instrument at the ISIS neutron and muon source. (b) Pseudo-
tetragonal refinement of the variable temperature data showing variation of the a (blue)
and c (red) lattice parameters.
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Figure 5-5: Indexed PXRD data at 293 K of a Cs0.1MA0.9PbI3 sample synthesised by
inverse solubility and ground to powder using a pestle and mortar. The background
has been subtracted.

5.2.3 Tetragonal Phase

The tetragonal structure of single crystal and powder samples of Cs0.1MA0.9PbI3 be-

tween 310 K and 165 K was characterised using PXRD, NPD and SXRD.

Phase pure samples of Cs0.1MA0.9PbI3 synthesised by the inverse solubility method

and ground using a pestle and mortar were investigated using PXRD. PXRD patterns

indexed best to the tetragonal I4/mcm space group, with lattice parameters a = 8.857 Å

and c= 12.658 Å. The indexed pattern of Cs0.1MA0.9PbI3 collected at 293 K on a STOE

STADI P diffractometer is shown in Figure 5-5. Peak broadening due to grinding effects

made further refinement of the PXRD data unreliable.

A single crystal of Cs0.1MA0.9PbI3, synthesised by the inverse solubility method, was

selected for SXRD at 300 K. The structure was solved using the established tetragonal

phase of MAPbI3 as a model,86 and representing the tumbling and low scattering

of the organic MA cation as a single atom with large ADPs. The structure solved

to the tetragonal I4/mcm space group with lattice parameters a = 8.8728(5) Å, c =

12.6445(11) Å and a residual of 6.19%.

Hydrogenous powder samples of Cs0.1MA0.9PbI3 synthesised by the precipitation method

were measured using NPD from two three-hour collections at 310 K and 240 K. The
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Figure 5-6: (a) Profile fit of NPD data at 310 K and (b) 240 K. Blue crosses show the
observed intensities, the red line is the calculated profile and the light blue line is the
difference. (c) The tetragonal model viewed along the c-axis as solved at 240 K, lead
atoms are grey, iodine purple, carbon black, nitrogen blue and hydrogen pink.

structure of MAPbI3 was again used as a model, with atomic positions, lattice and

instrumental parameters allowed to vary. The resulting Rietveld fits converged to the

tetragonal space group I4/mcm, shown in Figure 5-6 (a) and (b) for 310 K and 240

K respectively. At 310 K the refined lattice parameters were a = 8.875 70(4) Å and c

= 12.6759(6) Å with wR = 1.08% and reduced χ2 = 2.26; while at 240 K the lattice

parameters converged to a = 8.8251(4) Å and c = 12.7022(6) Å with wR = 1.09% and

reduced χ2 = 2.29. Additional crystallographic information is detailed in Table 5.1 and

the tetragonal model solved at 310 K is shown in Figure 5-6 (c).

The value of a decreases while that of c increases with decreasing temperature, indi-

cating reduced symmetry at lower temperatures. This is reflected in the peak splitting

observed in the NPD patterns, which is more pronounced at lower temperatures, as
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310 K

Atom x y z Occ Uiso Site

Pb1 0.5 0.5 0.5 1.00 0.0041(11) 4/m(z)
I1 0.2105(4) 0.2895(4) 0.5 1.00 0.0411(21) mm2
I2 0.5 0.5 0.75 1.00 0.055(3) 422(z)
N1 0.4398(15) 0.0602 0.2734(21) 0.25 0.053(4) m(xy)
H1 -0.0461(23) 0.3577(15) 0.2967(13) 0.50 0.196(7) 1
C1 0.483(5) 0.017 0.2154(28) 0.25 0.106(4) m(xy)
H2 0.471(4) 0.029 0.3564(19) 0.50 0.192(7) m(xy)

240 K

Atom x y z Occ Uiso Site

Pb1 0.5 0.5 0.5 1.00 0.020(1) 4/m(z)
I1 0.20065(31) 0.29935 0.5 1.00 0.0191(16) mm2
I2 0.5 0.5 0.75 1.00 0.0337(25) 422(z)
N1 0.4340(11) 0.0660 0.2821(13) 0.25 0.020(3) m(xy)
H1 -0.0430(21) 0.3537(12) 0.2898(12) 0.50 0.207(7) 1
C1 0.4697(12) 0.0303 0.2238(15) 0.25 0.0238(28) m(xy)
H2 0.4591(21) 0.0409 0.3490(15) 0.50 0.167(6) m(xy)

Table 5.1: Refined models of Cs0.1MA0.9PbI3 using NPD in the tetragonal phase, space
group I4/mcm at 310 K (a = 8.875 70(4) Å and c = 12.6759(6) Å with wR = 1.08%
and χ2 = 2.26) and 240 K (a = 8.8251(4) Å, c = 12.7022(6) Å with wR = 1.09% and
χ2 = 2.29).

seen in Figures 5-6 (a) and (b). The increased symmetry observed at higher tempera-

tures indicates a trend towards a cubic perovskite phase, as observed in MAPbI3, which

transitions to cubic above 327 K.86

The MA cation (CH3NH+
3 ) is simplified in the tetragonal model used in the NPD

profile fit, representing just two H positions at either end of the C-N cation. Modelling

two H positions accounts for the likely free rotation of the H atoms around the C-

N bond as observed in previous diffraction studies on methylammonium lead halide

perovskites.18,86,159 Rotation of the C-N bond is addressed by assigning the C and N

positions an occupancy of 0.25, allowing the cation to occupy four different positions

within the cavity formed by the PbI6 octahedra, as seen in Figure 5-6 (c).

5.2.4 Orthorhombic Phase

The orthorhombic structure of single crystal and powder samples of Cs0.1MA0.9PbI3

was investigated by SXRD at 150 K and 120 K, and by NPD at 140 K.
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Figure 5-7: (a) Profile fit of NPD data at 140 K, blue crosses show the observed
intensities, the red line is the calculated profile and the light blue line is the difference.
(c) The orthorhombic model viewed along the b-axis as solved at 140 K, lead atoms are
grey, iodine purple, carbon black, nitrogen blue and hydrogen pink.

A powder sample of hydrogenous Cs0.1MA0.9PbI3, synthesised via the precipitation

method, was measured through an eight-hour NPD collection at 140 K. The published

orthorhombic structure for MAPbI3 at 100 K was used as an initial model, with atomic

positions, instrumental parameters and lattice parameters allowed to vary.86 Figure

5-7 (a) shows the Rietveld fit to the NPD data and Figure 5-7 (b) the model as viewed

along the b-axis, where Pb atoms are grey, iodine purple, carbon black, nitrogen blue

and hydrogen pink. The calculated profile converged to the space group Pnma, lattice

parameters a = 8.8605(5) Å, b = 12.6278(5) Å, c = 8.5944(4) Å with wR = 1.13% and

χ2 = 3.11. Atomic positions and thermal parameters are given in Table 5.2.

A single crystal of Cs0.1MA0.9PbI3, synthesised by the inverse solubility method, was

measured using SXRD at 150 K and 120 K. The tumbling and low scattering of the

organic MA cation was approximated by a single atom with a large ADPs. The best

solution at 150 K converged to the orthorhombic space group Pnma, lattice parameters

a = 8.759(2) Å, b = 12.596(2) Å, c = 8.689(2) Å and a residual of 18.0%. Twinning

through the tetragonal to orthorhombic phase transition caused the high residual. At

150 K the structure could also be solved in the tetragonal I4/mcm solution seen at

higher temperatures, indicating the probable presence of tetragonal domains due to

the proximity to the phase transition centered at 165 K.

SXRD measurements at 120 K again converged to the orthorhombic space group Pnma,

with lattice parameters a = 8.760(3) Å, b = 12.578(3) Å, c = 8.629(3) Å and a residual
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140 K

Atom x y z Occ Uiso Sym

Pb1 0.5 0 0 1.00 0.008(1) -1
I1 0.49884 0.25 -0.05290 1.00 0.009(1) m(y)
I2 0.1885(6) 0.0171(6) 0.1877(6) 1.00 0.0156(20) 1
N1 0.9323(13) 0.75 0.0352(11) 1.00 0.0364(31) m(y)
C1 0.9365(15) 0.25 0.0537(13) 1.00 0.0133(29) m(y)
H1 0.936(4) 0.25 0.185(4) 1.00 0.178(16) m(y)
H2 0.8974(27) 0.1747)16) 0.0371(25) 1.00 0.165(11) 1
H3 0.1454(17) 0.1915(11) 0.0072(18) 1.00 0.071(6) 1
H4 0.949(3) 0.75 0.138(4) 1.00 0.092(10) m(y)

Table 5.2: Refined model of Cs0.1MA0.9PbI3 in the orthorhombic phase, space group
Pnma at using NPD data at 140 K, a = 8.8605(5) Å, b = 12.6278(5) Å, c = 8.5944(4) Å
with wR = 1.13% and χ2 = 3.11.

of 18.41%. Unlike the measurement at 150 K, reflections attributed to the tetragonal

I4/mcm phase are absent, suggesting the absence of any tetragonal domains, although

the residual is still high due to twinning. The data suggest the formation of multiple

twins as the material undergoes a phase transition, in line with previous observations

for hybrid halide perovskites and hinting at at disorder in the orientations of the MA

cation and PbI6 octahedral tilts.74,103

5.2.5 Variable Temperature Photoluminescence

The variable temperature behaviour of Cs0.1MA0.9PbI3 was investigated by steady

state and transient PL, illuminating a crystal with an excitation wavelength of 630

nm, while reducing the temperature from 290 K to 25 K. Figure 5-8 (a) shows the

stacked PL spectra recorded as the temperature was varied. On top of the shift in

peak position, a dominant feature of these spectra is their asymmetric shape due to

dual PL peak emission. Previous studies on hybrid halide perovskites have suggested

this dual emission to be due to the presence domains of high (tetragonal) and low

(orthorhombic) temperature phases.47,160 As discussed earlier in this chapter, SXRD

measurements suggest domains of the tetragonal and orthorhombic phase form near

the transition at 165 K; however, this is unlikely to be the cause of the asymmetry

observed in the PL spectra. At temperatures greater or less than 10 K from the phase

transition, SXRD and variable temperature NPD measurements do not indicate the

presence of additional phases.

Due to the large size of the Cs0.1MA0.9PbI3 crystal investigated, photon re-absorption
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Figure 5-8: (a) Variable temperature steady state PL on a single crystal of
Cs0.1MA0.9PbI3. (b) PL peak positions extracted from Gaussian fitting of primary
PL peaks (dark blue) and secondary peaks (light blue) accounting for photon recycling
effects. (c) Example fit of PL spectra taken at 50 K, modelled with Gaussian functions
describing primary PL (red dashed line) and secondary photon-recycling (green dashed
line) contributions.
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effects were determined to be the likely cause of the dual emission observed in PL

spectra (Figure 5-8 (a)). Each spectrum was fitted with two Gaussian functions, one

representing the real PL, while the secondary function, at a lower energy, occurred due

to photon-recycling effects (absorption and then re-emission of PL photons). Figure

5-8 (b) shows the peak positions extracted from the primary (dark blue) and secondary

(light blue) Gaussian fits to the variable temperature PL. An example model of the

dual emission is shown in Figure 5-8 (c), where the measured spectrum at 50 K (black

solid line) is fitted with primary PL (red dashed line) and secondary photon-recycling

(green dashed line) contributions. It is important to note that dual PL emission in MA

containing halide perovskites has also been attributed to domains of orientational dis-

order of the MA cation, and while unlikely to fully describe the dual emission observed

in this work,151 the phenomenon is discussed in greater detail later in this chapter.

As shown in Figure 5-8 (b), the peak position of the primary fit to the PL spectra

(dark blue) red shifts from 290 K to 165 K, indicating a decreasing band gap with

decreasing temperature. An abrupt discontinuity in peak position occurs between 165

K and 170 K coinciding with the tetragonal to orthorhombic phase change. The peak

position then red shifts again until 100 K, when the trend changes and the PL blue

shifts coinciding with the observation of disorder in the SXRD measurements.

TRPL spectra were recorded for a Cs0.1MA0.9PbI3 crystal at 25 K, 50 K, 150 K, 200

K, 250 K and 290 K. Figure 5-8 (a) shows the normalised TRPL decay (blue lines),

the tails of which were fitted according to the rate equation:

−dn
dt

= k1n+ k2n
2 (5.1)

where n is the carrier density, and k1 and k2 are the recombination rates for monomolec-

ular and bimolecular recombination respectively.52 In hybrid perovskites monomolec-

ular recombination is dominated by trap assisted recombination. As, described previ-

ously in Chapter 4, the true value of k2 can not be calculated as the value of n was not

directly measured. However, an effective value of Bk2 could be measured, where B is

a proportionality constant.152 The extracted trap mediated (k1) and effective bimolec-

ular (Bk2) recombination rates are plotted as a function of temperature in Figure 5-8

(b).

The TRPL spectra were divided into fast (< 20 ns) and slow (≥ 20 ns) decay phases,

with only the slow phase modelled with Equation 5.1. This model has been shown to

be a poor explanation for the fast decay phase observed in MAPbI3,161 which is likely

138



Figure 5-9: (a) Normalised TRPL spectra on a Cs0.1MA0.9PbI3 crystal at various
temperatures. The tails of the PL decay are fitted using a bimolecular decay function
(red line). (b) The extracted trap state mediated (k1) and effective bimolecular (Bk2)
recombination rates as a function of temperature.

dominated by a charge carrier diffusion process.62 In a single crystal charge carriers

generated at the point of excitation can easily diffuse through the sample, significantly

reducing the charge carrier density at the point of excitation. This process dominates

in the initial fast decay phase, therefore modelling to Equation 5.1 does not give a true

representation of charge carrier behaviour below 20 ns.62

5.2.6 Absorption

UV-Vis spectroscopy was used to determine the absorption onset of Cs0.1MA0.9PbI3.

Reflectivity (R) was measured on powder perovskite samples using a spectrophotometer

fitted with an integrating sphere allowing collection of specular and diffuse reflectance.

Measured values of R were transformed to better resemble absorbance through the

Kubelka-Munk function (F (R), Equation 3.13).

The resulting normalised F (R) function is plotted alongside the normalised PL taken
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Figure 5-10: (a) PL (grey line) and reflectance transformed using the Kubelka-Munk
(KM) function (blue line) of Cs0.1MA0.9PbI3 samples. (b) Estimation of the material
band gap by extrapolating from the absorption edge, suggesting a value of 1.50 eV.
(c) SEM images of the Cs0.1MA0.9PbI3 crystal used in the variable temperature PL
measurements, taken at magnifications of x 45 (left) and x 300 (right). The growth of
needles attributed to δ-CsPbI3 can be seen on the crystal surface.

of the same compound at 25 K in Figure 5-10 (a). The band gap of the material can

be estimated by extrapolating the absorption onset of the F (R) function - as shown by

the red line in Figure 5-10 (b) - suggesting a band gap of 1.50 eV. This contrasts with

the peak PL position which was measured at energies greater than 1.55 eV in both the

tetragonal and orthorhombic phases. Overlap between the absorption onset and PL

peak is usually expected, often with the additional presence of a small Stokes shift, due

to thermal relaxation of the exited electron before relaxation to the ground state by

photo-emission.162

The apparent blue shift between peak PL energy and absorption onset was investi-

gated further using SEM. Figure 5-10 (c) shows SEM images of the crystal used in PL

measurements at magnifications of x 45 and x 300. The SEM images show significant

growth of needles attributed to the δ-CsPbI3 phase on the surface of the crystal. It is

known that α-CsPbI3 transforms to δ-CsPbI3 in the presence of moisture, therefore,

on exposure to the atmosphere, the surface of the Cs0.1MA0.9PbI3 crystal may have

separated into α and δ-phase rich regions.88 PL measurements are inherently surface
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sensitive and may have been affected by the presence of this, higher band gap, δ-phase

rich region at the surface. The reflectivity measurements of the powder Cs0.1MA0.9PbI3

would not have been as sensitive to a δ-phase rich surface, therefore resulting in record-

ing an absorption onset at a lower energy to the PL, more in-line with the true band

gap value for Cs0.1MA0.9PbI3.

5.2.7 Discussion

The phase behaviour of Cs0.1MA0.9PbI3 can be inferred by combining the results of

the variable temperature NPD, SXRD and PL, and is summarised in Figure 5-11. The

inclusion of Cs into the MAPbI3 structure does not have a significant effect on the

tetragonal-orthorhombic transition temperature compared to that observed in phase

pure MAPbI3.86 This result is similar to that found for Cs0.1MA0.9PbBr3 by Mozur et

al., which showed identical phase behaviour to MAPbBr3.103 The insignificant effect

of Cs on MAPbI3 phase transitions is unlike the behaviour presented in Chapter 4,

which concludes that the inclusion of Cs into FAPbI3 lowers the structural transition

temperature to a disordered phase and introduces an orthorhombic phase. As with

Cs0.1FA0.9PbI3, inclusion of Cs into MAPbI3 softens the lead iodide framework.147

However, due to the smaller radius and increased rotational motion of the MA cation

compared to FA, the affect on the octahedral tilting, and so material phase behaviour,

is less pronounced. Further ab initio calculations on the effect of Cs incorporation on

MA dynamics would be beneficial.

While variable temperature NPD data of Cs0.1MA0.9PbI3 did not suggest any change

in the tetragonal-orthorhombic transition temperature compared to MAPbI3, it is pro-

posed that inclusion of Cs did have an effect on the transition behaviour. Substitution

with 10% Cs causes geometric strain in the structure due to differences in the Cs and

MA cation radii, at 181 pm and 216 pm respectively.79,81 Inclusion of the smaller

Cs cation distorts the octahedral void it occupies, causing strain as the lead iodide

framework optimises coordination with both the small amount of Cs and dominant

organic MA cation. This strain has a small effect on the rotational motion of the MA

cation resulting a glass-like phase transition, explaining the smeared appearance of the

tetragonal to orthorhombic transition observed in the NPD data centered at 165 K.103

The phase behaviour of CsxMA1−xPbBr3 perovskites has been likened to a dynami-

cally disordered plastic crystal at high temperatures, transitioning to an orientational

glass at lower temperatures.44,103 In the context of perovskites, the term plastic crystal

refers to a crystal with local rotational disorder but long range translational order, a
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Figure 5-11: Schematic of the phase transitions in Cs0.1MA0.9PbI3 determined by vari-
able temperature NPD, SXRD and PL. Inclusion of Cs into the MAPbI3 does not
affect the tetragonal to orthorhombic transition temperature. Evidence of disorder in
the orientations of the MA cation and PbI6 octahedral tilts is observed below 100K.
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good description of the dynamics of the MA cation present in the tetragonal phase of

Cs0.1MA0.9PbI3.103

A further disordered low temperature phase is hinted at from a change in the shift

of the variable temperature PL measurements below 100 K. Dar et al. investigated

this disorder through observing the dual PL emission exhibited by MA containing lead

halide perovskites below 100 K.151 Classical molecular dynamic simulations showed the

MA cation to be kinetically trapped upon cooling, causing the formation of orientation-

ally disordered domains. Density functional theory (DFT) calculations on MAPbX3

material band gaps showed a difference in band gap between domains of ordered and

disordered cation orientations, due to differences in the local electronic environment.

SXRD presented in this chapter suggested the presence of disordered domains at low

temperature, therefore it is possible that the 45 meV difference in the dominant and

secondary PL peaks measured below 100K can be partly attributed to domain for-

mation. However, photon reabsorption was determined to be the main contributor to

secondary peak formation, as dual emission was also observed at high temperatures, in

line with previous reabsorption studies on large MAPbBr3 single crystals.62

Disorder of the MA cation can describe the difference in PL decay lifetimes observed

between the tetragonal and orthorhombic phases extracted from TRPL measurements.

Trap state mediated (k1) and effective bimolecular (Bk2) recombination rates increase

on transition to the orthorhombic phase. It is likely the formation of disordered domains

are able to act as recombination centres, therefore increasing PL recombination at low

temperatures.46

Above the low temperature disordered phase (> 100 K), variable temperature PL

showed a blue shift in peak position with increasing temperature, an unexpected be-

haviour in PV semiconductors.69 This shift was investigated further using MAPbI3

crystals, grown as part of this work, and published in collaboration with the Nanos-

tructured Materials for Optoelectronics and Energy Harvesting group at ICMAB.70

Thermal expansion was concluded to account for 60% of the total energy shift, with

40% due to electron-phonon interactions. Thermal expansion causes a decrease in over-

lap between the outer Pb 6s and I 5p orbitals, resulting in a downshift of the valence

band maxima in relation to the conduction band minima with increasing temperature.
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5.3 Site Substitution with Bromine in Cs-MA Lead Iodide

Perovskites

5.3.1 Mechanochemical Synthesis

In an attempt to simplify the synthesis of the perovskite Cs0.1MA0.9Pb(I0.6Br0.4)3,

the mechanochemical method was investigated. Stoichiometric quantities of precursors

PbI2, PbBr2, CsI, CsBr, MAI and MABr were ground together for 30 minutes using

a pestle and mortar. Grinding using a ball mill was also investigated, with precur-

sors added into a stainless steel container with grinding balls and placed in a Retsch

Planetary Ball Mill. The number of grinding balls, revolutions per minute (rpm) and

time in the ball mill were varied, with the best results using eight small grinding balls

at 500 rpm for 30 minutes. Resulting powders were then annealed at 100◦C in an

oven overnight and the powder quality compared to the precipitation method through

PXRD, as shown in Figure 5-12.

PXRD reflections for samples synthesised by grinding in a pestle and mortar could

be assigned to the precursor salts, PbI2, PbBr2, δ-CsPbI3 and small quantities of a

perovskite phase. The quantity of perovskite phase present could be improved by

grinding for a longer time, leading to investigation of synthesis using a ball mill. Fig-

ure 5-12 compares two powders of Cs0.1MA0.9Pb(I0.6Br0.4)3 synthesised by the ball

mill at 500 rpm for 30 minutes and 200 rpm for 60 minutes. The higher energy 500

rpm milling process resulted in broader PXRD reflections indicating poorer crystalline

quality. Karmakar et al.115 used solid-state NMR spectroscopy to characterise local

disorder in mixed halide perovskites synthesised through ball milling. The NMR data

pointed to disorder centered at the Pb sites due to a range of Pb-X bond distances and

angles.115 This disorder contributed to the observed broadening of PXRD reflections,

which decreased as the energy of the process was also decreased. However, Figure 5-12

shows the precipitation method to produce PXRD patterns with the sharpest peaks

and fewest impurities, and therefore the best quality perovskite powder. The precipita-

tion method was consequently used to produce the mixed halide samples investigated

by NPD.

5.3.2 Variable Temperature Neutron Powder Diffraction

The phase behaviour of hydrogenous Cs0.1MA0.9Pb(I0.6Br0.4)3 was investigated using

variable temperature NPD performed on the POLARIS instrument at the ISIS neutron

144



Figure 5-12: PXRD patterns for Cs0.1MA0.9Pb(I0.6Br0.4)3 samples synthesised
mechanochemically using a pestle and mortar and a ball mill, compared with pattern
achieved from the precipitation method.

and muon source. Approximately 6 g of hydrogenous Cs0.1MA0.9Pb(I0.6Br0.4)3 was

cooled in situ from 300 K to 105 K at a rate of 2 Kmin−1. The temperature was then

increased to 290 K at a rate of 0.35 Kmin−1 with data continuously binned into 3 K

ranges.

Figure 5-13 (a) shows the NPD patterns from Bank 4 on POLARIS ranging from 1.50 Å

to 3.69 Å. A small continuous shift to lower d-spacing can be seen from Figure 5-13

(a), in-line with a contracting unit cell with decreasing temperature. A lowering of

symmetry with decreasing temperature can also be inferred, as the separation between

the dominant split peaks, centered around 3.1 Å, increases from 290 K to 175 K. A shift

in peak position is observed at 175 K, indicating a phase transition, akin to that seen

in variable temperature NPD measurements on Cs0.1MA0.9PbI3. It is likely this is a

tetragonal to orthorhombic phase transition, similar to that observed in both MAPbI3

and MAPbBr3.86,93

The position of the probable tetragonal to orthorhombic phase transition at 175 K was

unexpected. Recent variable temperature X-ray diffraction studies on MAPb(I1−yBry)3

compounds suggested the tetragonal-orthorhombic phase transition temperature de-

crease with increasing Br content.163 This decrease in transition temperature was
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Figure 5-13: (a) Variable temperature NPD data of Cs0.1MA0.9Pb(I0.6Br0.4)3 recorded
on the POLARIS instrument at the ISIS neutron and muon source. (b)PXRD pattern
of Cs0.1MA0.9Pb(I0.6Br0.4)3 indexed to the tetragonal space group P4/mmm.
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determined to be due to Br substitution increasing disorder in the crystal structure,

enabling the rotational disorder of the MA cation associated with the tetragonal phase

to be present at lower temperatures. The study found a transition temperature of 130

K for MAPb(I0.8Br0.2)3, 45 K lower than that measured for Cs0.1MA0.9Pb(I0.6Br0.4)3

in this work.163 Crucially the mixed I/Br perovskite investigated here also contained

Cs. The inclusion of Cs may lead to further geometric frustration of the lead-halide

framework, restricting the rotational disorder of the organic cation, and so raising the

transition temperature.142 Further work investigating the low temperature structure

and local environment of this complex mixed cation-halide perovskite is needed to

understand this interesting phase behaviour.

Unfortunately, due to the poor signal-to-noise ratio due to the fully hydrogenated

sample, profile fitting of the NPD data was not possible; however, PXRD data acquired

at 293 K could be assigned to a tetragonal phase (Figure 5-13 (b). The PXRD pattern

indexed best to the space group P4/mmm, lattice parameters a = 8.838 Å c = 12.600 Å.

Changes in the preferred tetragonal space group is determined by the distortion of the

perovskite structure. Tolerance (t) and octahedral (µ) factors give an indication of

the distortion, with stable structures tending to have values of 0.8 ≤ t ≤ 1 and µ >

0.41.77 While the t values for Cs0.1MA0.9Pb(I0.6Br0.4)3 and Cs0.1MA0.9PbI3 are the

identical (both at 0.960) the value of µ is 0.012 greater for the mixed halide material.

The difference is due to the inclusion of the smaller Br− ion, and change in Pb2+ due

to coordination with different halides.79,82 A change in octahedral factor indicates a

change in the shape and tilting of the PbX6 corner octahedra, altering the symmetry

of the structure. The PXRD data shows substitution of 40% Br at the perovskite

X-site forces the structure to adopt the P4/mmm space group occupied by tetragonal

MAPbBr3, as opposed to the I4/mcm structure favoured by MAPbI3 at 293 K.86,93
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5.4 Conclusions

This chapter primarily investigated the phase behaviour of Cs0.1MA0.9PbI3 perovskites

through variable temperature NPD, PXRD and variable temperature PL. The substi-

tution limit of Cs in CsxMA1−xPbI3 was also investigated using PXRD and EDX, and

determined to be x < 0.15, with a preferred composition of x = 0.12.

Cs0.1MA0.9PbI3 was shown to undergo a tetragonal to orthorhombic phase transition

at 165 K, identical to the transition temperature of MAPbI3. However, unlike the

abrupt tetragonal-orthorhombic phase change seen in MAPbI3, a glass-like transition

was observed in variable temperature NPD measurements on Cs0.1MA0.9PbI3. Incor-

poration of Cs into the crystal structure was determined to cause geometric strain in

the lead iodide framework, subsequently affecting the dynamics of the MA cation. This

effect was enough to induce a glass-like phase change, but not capable of altering the

transition temperature when compared to MAPbI3. Further ab initio calculations on

the cation and lead-iodide framework dynamics would be beneficial in understanding

this behaviour.

A low temperature (< 100 K) phase was inferred through variable temperature PL

measurements, proposed to be due to disorder. It was suggested that disordered do-

mains, formed due to freezing of the MA cation, caused subtle differences in the local

electronic structure of Cs0.1MA0.9PbI3, reversing the shift in PL position with tem-

perature. However, photon reabsorption effects (present due to the size of the crystal

investigated) masked evidence of disordered domain formation.

The phase behaviour of Cs0.1MA0.9Pb(I0.6Br0.4)3 was also investigated using variable

temperature NPD. A tetragonal-orthorhombic phase transition was observed at 175

K, higher than expected for mixed I-Br perovskites. The high transition temperature

was suggested to be caused by the addition of Cs frustrating the lead-halide framework;

however, further work determining a full structural solution for these complex materials

is needed.

The work presented in this chapter contributes to the understanding of the intrinsic

properties of perovskite compounds commonly used in high performing PV devices.

The detailed phase behaviour of these mixed cation-halide materials was poorly under-

stood, but vital in the design of devices which operate over a wide range of tempera-

tures.
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Chapter 6

Formamidinium

Methylammonium Lead Halide

Perovskites
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6.1 Introduction

The physical properties of fully inorganic cesium metal halide perovskites have been

the subject of investigation for decades, although research into hybrid organic-inorganic

perovskites has since eclipsed that of their inorganic counterparts.15,24,154,164–166 A va-

riety of organic ions have been used, including large cations such as CH3(CH2)3NH+
3 ,

which enable the formation of layered materials sometimes referred to as 2D per-

ovskites.11,89,90,167 These 2D perovskites are formed of layers of 3D perovskite frame-

works joined together by organic spacer cations, and have also shown promise in in-

creasing the efficiency and stability of PV devices.168 However, this work focuses on

the use of smaller organic cations, capable of fitting inside the metal-halide perovskite

framework, forming traditional 3D ABX3 structures.

In 2014 Pellet et al. first combined the methylammonium (CH3NH+
3 , MA) and for-

mamidinium (CH(NH2)+
2 , FA) cations into mixed A-site perovskite PV devices. The

FAxMA1−xPbI3 cells demonstrated superior PV performance when compared to pure

MAPbI3 or FAPbI3 devices; for example, showing improved incident-photon-to-current

conversion efficiency. This was determined to be caused by improved diffusion lengths

because of enhanced charge carrier lifetimes in the mixed cation phase.20 Structural

studies were subsequently carried out on FAxMA1−xPb(I1−yBry)3 materials, showing

a linear dependence of lattice parameter and bandgap with cation and halide compo-

sition according to Vegard’s law.169,170 However, these studies did not determine the

true composition and crystal systems of these hybrid perovskites, which were deposited

as thin films in different device architectures. It is possible that cation incorporation is

strongly method dependent, implying the formation of varying perovskite compositions

in PV devices using the same initial precursor ratios.

The uncertainty over the up-take of cations into the perovskite structure prompted work

conducted as a Master of Research degree carried out prior to this thesis, where the

behaviour of bulk FA-MA lead iodide materials was investigated.95 NMR spectroscopy

compared the observed and expected ratios of MA to FA, confirming that uptake of

the MA and FA cations mirrored the concentrations used in precursor solutions. A

linear relationship in bandgap and lattice parameter according to Vegard’s law was

also observed, as shown in Figure 6-1. Structural information extracted from NPD,

SXRD and PXRD measurements agreed, showing the FAxMA1−xPbI3 perovskite to

transition from a tetragonal to cubic structure between x = 0.1 and 0.2, accounting for

the discrepancy in bandgap energy values observed for x ≤ 0.1.95
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Figure 6-1: Reproduced from from Weber et al.95 (a) cell parameters vs composition
for FAxMA1−xPbI3, black circles represent data taken from NPD, blue circles from
SXRD and red squares from PXRD. (b) UV-VIS spectra for FAxMA1−xPbI3 showing
decreasing bandgap with increasing FA content (increasing x) with inset showing band
gap values for each composition x.
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As discussed in Chapter 2 Section 2.7, site substitution at the A-site of the perovskite

structure improves material stability. The mixed FAxMA1−xPbI3 system has shown

resistance to the formation of decomposition products favoured in phase pure MAPbI3

and FAPbI3.99,111 Inclusion of 10% MA into the FAPbI3 structure has been shown

to stabilise the desirable cubic α-phase at room temperature, and 10% substitution

of FA into the MAPbI3 structure reduces degradation to precursor salts and lead io-

dide.95,99,111 At the time of this work, the improved material stability of these mixed

cation-halide perovskites was showcased in long lived perovskite PV devices, displaying

a stabilised 18% power output over 250 hours.81

Despite the popularity of mixed FA-MA lead halide materials in the PV community,

little was known about the structural phase behaviour and intrinsic stability of these

hybrid organic-inorganic perovskites. A detailed understanding of structural variations

with composition and temperature is vital in the understanding of device behaviour over

a range of environments. A full understanding of decomposition routes in these mixed

phases is also essential in ensuring the longevity of perovskite containing devices. These

important factors motivated the work presented in this chapter, which was the first

to systematically study degradation in FAxMA1−xPbI3 across the whole composition

range (0 ≤ x ≤ 1). The results are published under item 6 of the publication list

presented at the beginning of this thesis, with additional results and collaborative

work also presented in this chapter.
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6.2 Phase Behaviour of FA-MA Lead Iodide Perovskites

The complete phase behaviour of FAxMA1−xPbI3 (0 ≤ x ≤ 1) up to 350 K was in-

vestigated in collaboration with the Nanostructured Materials for Optoelectronics and

Energy Harvesting (NANOPTO) group at ICMAB. Crystals grown by the space con-

fined technique (described in Chapter 3 Section 3.1.5) were measured at ICMAB using

variable temperature PL and Raman spectroscopy. Extracted phase transition temper-

atures from these measurements were combined with those determined through XRD

as part of the work published prior to this PhD.95 The resulting phase diagram (Figure

6-2) was compiled by Adrián Francisco and Professor Alejandro R. Goñi.

The tetragonal phase exists at room temperature for FAxMA1−xPbI3 where x < 0.2.

The cubic phase is stabilised at room temperature with increasing FA content, al-

though the tetragonal phase emerges below 250 K across all compositions. One of

three tetragonal phases is present by 250 K, occupying the I4/mcm space group for

MA rich compounds (x < 0.3), the P4bm space group between x = 0.3 and 0.5, and

the P4/mbm space group for FA rich compositions (x > 0.5). The appearance of an

additional orthorhombic phase at low temperatures is suppressed for x ≥ 0.4. The

presence of the low temperature disordered phase below 140 K, present in FAPbI3 and

discussed in previous chapters, is not shown in the phase diagram.74
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Figure 6-2: Map of metastable phases for FAxMA1−xPbI3 (0 ≤ x ≤ 1). The schematic
was produced by Adrián Francisco and is included with the kind permission of the
NANOPTO group at ICMAB.
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Figure 6-3: PXRD patterns of the same FA0.5MA0.5PbI3 sample synthesised by pre-
cipitation, measured one year apart. The amorphous peak at low 2θ was due to the
sample holder.

6.3 Stability of FA-MA Lead Iodide Powder

A powder sample of FA0.5MA0.5PbI3 synthesised by the precipitation method in Jan-

uary 2016 was investigated during the course of this work. The as-made sample was

measured using PXRD, and then measured again exactly one year on from the date of

synthesis, as shown in Figure 6-3. Despite exposure to oxygen, light and an average

relative humidity of 57%, the patterns appeared near identical, suggesting negligible

structural degradation over one year. In contrast, one year old samples of pure MAPbI3

and FAPbI3, stored under the same conditions, were discoloured, suggesting degrada-

tion to MAI and PbI2 in MAPbI3 and the δ-phase of FAPbI3.17

The measurement of the stable one-year old FA0.5MA0.5PbI3 sample prompted an inves-

tigation into the structural integrity of mixed organic cation perovskite thin films. It is

known that powder materials are more resilient to degradation than thin films,17,171,172

therefore the following study was carried out over only ten days.
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6.4 Trends in Stability of FA-MA Lead Iodide Thin Films

6.4.1 Thin Film Degradation

Films of FAxMA1−xPbI3 (0 ≤ x ≤ 1, in increments of 0.1) were deposited onto clean

glass substrates by spin coating. PXRD patterns of films (0 ≤ x ≤ 0.8) were collected

immediately after deposition, and again after one, three, five, seven and ten days. Films

were stored in the dark, at room temperature and at a controlled relative humidity (<

30%), similar to conditions present in a manufacturing environment.

Figure 6-4 shows the patterns collected for films of FAxMA1−xPbI3 (0 ≤ x ≤ 0.5)

as synthesised (bottom trace) through to films aged for ten days (top trace). The

(100) perovskite reflection can be seen in all patterns, centered around 2θ = 14◦. An

additional peak, at 2θ = 12.7◦, emerged in patterns after aging, representing the (001)

reflection for PbI2. For 0 ≤ x ≤ 0.2 the intensity of the (001) PbI2 reflection grew

rapidly, becoming more intense than the (100) perovskite peak after ten days.

Figure 6-5 shows the patterns collected for films of FAxMA1−xPbI3 (0.6 ≤ x ≤ 0.8).

Thin films of x ≥ 0.9 converted to the hexagonal non-perovskite δ-FAPbI3 within

minutes of exposure to atmosphere, and were therefore not included in the kinetic

study presented later in this chapter. The evolution of PXRD patterns suggested

increasing inclusion of FA into the MAPbI3 structure suppressed PbI2 formation. At

x = 0.6, PbI2 growth could be blocked completely in pristine films. However, when

repeating measurements on multiple FA0.6MA0.4PbI3 samples, it was observed that

small amounts of PbI2 present in as-made films accelerated perovskite degradation.

For x ≥ 0.7 the δ-FAPbI3 peak at 2θ = 11.7◦ was immediately present, indicating

instability to δ-FAPbI3 formation beyond the stable x = 0.6 composition.

6.4.2 Kinetics of Lead Iodide Crystallisation

In order to gain a full understanding of the decomposition of mixed cation perovskites,

the kinetics of formation of degradation products was considered. The Johnson-Mehl-

Avrami-Kolmogorov (JMAK) approach was used. The model can be used to provide a

simplified description of nucleation and subsequent crystal growth on thin film surfaces.

The work was popularised by two papers published in 1939 and 1940 by Melvin Avrami,

resulting in the JMAK model often being referred to as Avrami kinetics.173–175

The JMAK equation (often called the Avrami equation) describes the fraction of trans-
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Figure 6-4: PXRD patterns of FAxMA1−xPbI3 (0 ≤ x ≤ 0.5). Patterns were measured
immediately after synthesis (bottom trace) and then through 1, 3, 5, 7 and 10 days
(top trace). Patterns show the emergence of the (001) peak of PbI2 at 12.7◦
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Figure 6-5: PXRD patterns of FAxMA1−xPbI3 (0.6 ≤ x ≤ 0.8). Patterns were mea-
sured immediately after synthesis (bottom trace) and then through 1, 3, 5, 7 and 10
days (top trace). Patterns show the emergence of the (001) peak of PbI2 at 12.7◦ and
the δ-FAPbI3 phase at 11.7◦

158



formed material (α) by:

α = 1− e−(kt)m (6.1)

where k is the rate constant, t is time and m is the Avrami exponent.174,175 The

value of m is dependent on the crystallisation mechanism. An m value of 2 implies

site saturation, where all nuclei of the transformed phase are present and grow from

the start of crystallisation; whereas a value of 3 implies continuous nucleation, where

new nuclei continuously appear and grow. However, the validity of this description has

been called into question, and was therefore not considered in the work presented in

this chapter.176,177

The kinetics of the decomposition to PbI2 in thin films of FAxMA1−xPbI3 (0 ≤ x ≤
0.6) were investigated. Films of x ≥ 0.7 were not included in the analysis due to the

significant growth of δ-FAPbI3. Figure 6-6 (a) shows an example of a FA0.2MA0.8PbI3

film degrading from black to yellow over ten days. This transformation was reflected

in PXRD patterns of FAxMA1−xPbI3 (x = 0, 0.4) highlighted in Figure 6-6 (b) which

clearly shows the evolution of the (001) PbI2 reflection over ten days, a degradation

route that was suppressed in films of FA0.6MA0.4PbI3.

Decomposition according to the following reaction was assumed:

MA1−xFAxPbI3 → (1− x)MAI + xFAI + PbI2. (6.2)

An attempt was made to measure the phase fraction (α) of PbI2 present through

Rietveld refinement of PXRD data for each film. However, due to the highly orientated

nature of the films, values for the phase fraction resulted in large errors. Therefore,

each PXRD pattern was normalised to the pattern obtained for the relevant phase

pure FAxMA1−xPbI3 system. The area (A) under the peak of the (001) reflection for

PbI2 was then used to approximate the phase fraction of PbI2 present through the

rearranged JMAK equation:

lnln

(
1

1−A

)
= mln(t) +mln(k) (6.3)

where k is the rate constant, t is the age of the film, m is the Avrami exponent and A

is the area under the (001) PbI2 reflection.
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Figure 6-6: (a) Photos of a FA0.2MA0.8PbI3 thin film as-made and aged ten days. (b)
PXRD patterns of FAxMA1−xPbI3 (x = 0, 0.4, 0.6) measured over ten days, enlarged to
show (100) perovskite peak and growth of PbI2 indicated by growth of *(001) reflection.
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Figure 6-7: (a) Example JMAK plot for FA0.5MA0.5PbI3, where A is the peak area
under the (001) refection for PbI2 measured in PXRD patterns taken over time t in
hours. (b) Rate constant equivalents for PbI2 growth in thin films, fitted with an
exponential decay.

Values for lnln(1/1−A) were plotted against ln(t) to determine if the formation of PbI2

over time was linear, indicative to JMAK kinetics. A linear dependence was observed

for 0 ≤ x ≤ 0.3 up to five days, after this time - due to the rapid decay of the thin

films - the large peak area of the (001) PbI2 reflection was not representative of the

phase fraction of PbI2 present. However, for x ≥ 0.4, a linear relationship between

lnln(1/1−A) and ln(t) was observed for the full duration of the study. JMAK kinetic

plots for all FAxMA1−xPbI3 (0 ≤ x ≤ 0.6) thin films can be found in Appendix D,

with an example for FA0.5MA0.5PbI3 shown in Figure 6-7 (a).

Each JMAK kinetic plot, representing formation of PbI2 in FAxMA1−xPbI3 thin films

over ten days, was fitted with a linear model. The gradient and y-intercept were

extracted from these models and subsequently used to calculate a rate constant (k) for

PbI2 formation, referred to here as the rate constant equivalent. The JMAK equation

requires knowledge of the exact PbI2 phase fraction present in order to provide a true

rate of crystallisation. In this work, the area under the (001) PbI2 reflection was

used as an approximation to the phase fraction; therefore, k was not an exact value,

but proportional to the true rate of PbI2 formation. The rate constant equivalent

was therefore used to illustrate the trend in the rate of PbI2 formation across the

FAxMA1−xPbI3 compositions.

Rate constant equivalents were plotted for FAxMA1−xPbI3 (0 ≤ x ≤ 0.6) and fitted

with an exponential decay function as shown in Figure 6-7 (b). The exponential decay

in the rate constant equivalent demonstrated a clear trend towards increased resistance
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Figure 6-8: JMAK plots for the growth of PbI2 in FA0.6MA0.4PbI3 thin films. The rate
of decomposition to PbI2 varied depending on the phase purity of as-made films.

to PbI2 formation in MA1−xFAxPbI3 as x approached 0.6.

6.4.3 Stability Issues in Champion Composition

The presence of even trace amounts of PbI2 in as-made films accelerated perovskite

decomposition. While phase pure FA0.6MA0.4PbI3 demonstrated negligible degradation

over the ten day study, repeated measurements on samples containing various quantities

of PbI2 in as-made films showed rapid degradation. This was investigated further

through the deposition of multiple FA0.6MA0.4PbI3 films with varying amounts of PbI2

measured in as-made samples. Films initially containing the greatest amount of PbI2

showed rapid degradation, in some cases with the (001) PbI2 reflection surpassing the

intensity of the (100) perovskite reflection after ten days. Kinetic diagrams for PbI2

formation in contaminated FA0.6MA0.4PbI3 films are shown in Figure 6-8. Synthesis

of pristine, phase pure perovskite thin films were vital during the deposition stage in

order to successfully suppress degradation.
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Figure 6-9: (a) FA0.6MA0.4PbI3 films stored in the dark and under sunlight. (b) A
stable FA0.6MA0.4PbI3 sample, showing degradation only after forty days.

In addition to phase purity, storage conditions also played a pivotal role in perovskite

decomposition rates. As observed in multiple studies, the perovskite thin films were

sensitive to sunlight.109,145,178,179 Films of the champion composition FA0.6MA0.4PbI3

were compared after five days stored in the dark and five days stored under sunlight

in the same dry conditions (< 30% relative humidity). The films were then measured

using PXRD, the results of which are shown in Figure 6-9(a). A small amount of

PbI2 was present in the film stored in the dark, characterised by the appearance of the

(001) PbI2 reflection, although a larger proportion was present in the film stored under

sunlight. The increase in PbI2 formation under sunlight showed cation substitution did

not significantly improve photo-stability.

One particularly stable film of FA0.6MA0.4PbI3 showed no significant degradation after

twenty days, with PXRD measurements indicating some degradation to PbI2 after forty

days (Figure 6-9 (b)). The range of perovskite stabilities shown in FA0.6MA0.4PbI3

highlight the sensitivity of hybrid lead iodide perovskites to impurities and defects

present in the thin film.

The use of both MA and FA cations were determined to improve the intrinsic stability

of the perovskite structure, leading to investigation of decomposition routes by ab-initio

methods.
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6.4.4 Decomposition Energies

Complementary to the kinetic study described above, ab-initio simulations were per-

formed by Jessica Dillon in collaboration with Professor Saiful Islam’s Energy Materials

Research Group at the University of Bath. The degradation energies (∆Edeg) corre-

sponding to enthalpies of formation were considered for two decomposition routes,

referred to as Reaction 1 and 2:

Reaction 1: FAxMA1−xPbI3 → xFAI + (1− x)MAI + PbI2

Reaction 2: FAxMA1−xPbI3 → x(δFAPbI3) + (1− x)(MAI + PbI2)
(6.4)

Starting conditions were varied between the cubic, high or low order structure of

FAPbI3, the tetragonal structure of MAPbI3 or a 64 formula unit disordered cell. MA

and FA were added to these initial structures in relevant ratios and the resulting ∆Edeg

are plotted against composition x in Figure 6-10. These simulations suggest decompo-

sition routes for mixed organic cation lead iodide perovskites to be less energetically

favourable than pure MAPbI3 and FAPbI3.

6.4.5 Emergence of δ-FAPbI3

As seen in Figure 6-5, PXRD patterns of FAxMA1−xPbI3 (≥ 0.7) taken over ten days

showed the evolution of a reflection at 2θ = 11.7◦, representing the presence of δ-

FAPbI3. The appearance of this dominant decomposition pathway made modelling

PbI2 growth unfeasible. However, the kinetics of δ-FAPbI3 growth could be investigated

for FA0.7MA0.3PbI3. In this case, the area under the δ-FAPbI3 peak (A) was used

to approximate phase fraction in the JMAK equation, and the resulting values of

lnln(1/1−A) were plotted against ln(t) in Figure 6-11. The linear relationship implied

δ-FAPbI3 formation also followed JMAK kinetics at x = 0.7. However, at higher values

of x decomposition occurred over minutes, and was therefore too fast to be considered

in this study. For all x ≥ 0.7, it was observed that the preferred direction of reaction 2

could be reversed though heating to 100◦C. After a few minutes the perovskite phase

re-formed, as observed in previous studies74,87
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Figure 6-10: Calculated degradation energies (∆Edeg) for decomposition Reactions 1
and 2. The shaded region indicates compositions of x > 0.7 which favour decomposition
to δ-FAPbI3.

Figure 6-11: JMAK plot for the growth of δ-FAPbI3 in FA0.7MA0.3PbI3 though mea-
suring the area under the reflection at 2θ = 11.7◦ (A) over time in hours (t).
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Figure 6-12: SEM images of FAxMA1−xPbI3 (x = 0.3, 0.5, 0.6, 0.7) thin films.

6.4.6 Thin Film Morphology

Figure 6-12 shows secondary electron images taken at a magnification of x 1000 of

FAxMA1−xPbI3 thin films of composition x = 0.3, 0.5, 0.6, 0.7. Average crystallite

size was measured using the program ImageJ,121 which revealed an increase from 3.5

µm to 6 µm between compositions of x = 0.6 and 0.7 respectively, coinciding with the

appearance of δ-FAPbI3. A small increase of 3 µm to 3.5 µm average crystallite size

was measured between x = 0.3 and 0.6. The small variation in crystallite size below

the appearance of δ-FAPbI3 was deemed not to significantly affect film degradation.

It is important to note film morphology has a considerable effect on the stability of thin

films and improved crystallisation of perovskites onto various substrates is an active

field of research.180,181 Film morphology is determined through a number of variables

such as deposition method and substrate type, as discussed later in this chapter.181 The

consideration of various deposition methods, use of a range of substrates, encapsulation

and/or device fabrication offers a plethora of potential avenues of investigation into

mixed cation stability, but lie beyond the scope of this investigation.
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6.5 Discussion

Nagabhushana et al. demonstrated MAPbI3 to be thermodynamically unstable, pref-

erentially degrading into MAI and PbI2.99 By analogy of the degradation process

shown in MAPbI3, this study assumed decomposition of the mixed FA-MA cation per-

ovskite, according to Reaction 1 (6.4) for x < 0.7. For compositions of x ≥ 0.7, PXRD

showed competition between the pathway forming PbI2 and that forming the hexagonal

δ-FAPbI3 phase through Reaction 2 (6.4).

Reaction 1 was favoured in MA rich compositions, with the addition of FA cations

slowing the rate of conversion from perovskite to PbI2. Reaction 2 was suppressed in

FA rich compositions by the addition of MA cations, as shown by the reduced intensity

of δ-FAPbI3 peaks in x = 0.7 thin films ages for ten days compared to films of x =

0.8. PXRD measurements showed formation of δ-FAPbI3 was completely suppressed

for x ≤ 0.6, indicating degradation to occur via reaction 1 only. The preferred degra-

dation pathways across the full composition range in FAxMA1−xPbI3 are summarised

schematically in Figure 6-13.

The kinetic study investigating PbI2 formation through reaction 1 in FAxMA1−xPbI3

(0 ≤ x ≤ 0.6) showed a clear reduction in degradation rate as x approached 0.6.

Particularly high rates of PbI2 formation were observed for x ≤ 0.2, corresponding

with the presence of the tetragonal MAPbI3-like structure at room temperature.95

The increase in resistance to degradation through reaction 1 was determined to be due

to the stabilisation of the perovskite structure, caused by stronger interactions between

the cations and iodide in the mixed phase.80,111

Increased stability of the mixed FA-MA cation perovskite phase was also shown in ab

initio simulations. All the mixed FAxMA1−xPbI3 (0.1 ≤ x ≤ 0.6) compositions showed

less favourable energetics for decomposition via reaction 1 than pure MAPbI3. When

the cubic α-FAPbI3 perovskite structure was considered, decomposition via reaction 1

and 2 was shown to be highly exothermic, suggesting a thermodynamically unstable

structure. These thermodynamic results agreed with the experimental study measuring

the kinetics of PbI2 formation and observations of fast transformation to the δ-phase

of FAPbI3 rich thin films.

The results of the thermodynamic and kinetic investigations were further supported by

the phase behaviour of FAxMA1−xPbI3 determined in collaboration with ICMAB. Com-

bined PL, and XRD measurements showed the cubic perovskite phase of FAxMA1−xPbI3

to be stabilised at room temperature for x ≥ 0.2. The stronger cation-iodide interaction

167



Figure 6-13: Schematic of the degradation routes in FAxMA1−xPbI3 (0 ≤ x ≤ 1) at
room temperature.80

present in these cubic phases increased material stability.

The theoretical optimum A-site cation size suggested by perovskite octahedral (µ) and

tolerance (t) factors also supported the increased stability shown in the mixed FA-MA

phases. Figure 6-14 shows the shift in tolerance factor achieved through site substi-

tution at the A-site, and also indicates the region in which the ideal cubic perovskite

structure forms. Outside of this region the effective size of the A-site cation is either too

low or too high to form the ideal cubic perovskite structure. For low t the lead-iodide

framework tilts due to the smaller cation size, forming a tetragonal structure; whereas

for high t, the larger cation forces the material to adopt the non-perovskite hexagonal

δ-FAPbI3 structure.

One avenue not investigated, but known to have a significant effect on perovskite

stability, was thin film deposition method.181 A simple procedure was chosen, in which

perovskite precursor solutions were deposited on glass substrates via the spin coating

method. This was sufficient for the work presented in this chapter, which aimed to

show trends in material stability rather than optimised film lifetimes. Small differences

in film morphology, determined by SEM, over the compositions of interest were deemed

not to have a significant impact on on decomposition kinetics. However, it is well-known
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Figure 6-14: Calculated tolerance (t) and octahedral factors (µ) for FAxMA1−xPbI3

(0 ≤ x ≤ 1). The shaded region area the compositional region stabilised in the cubic
perovskite structure at room temperature.

that improved deposition method, use of an oxide coated substrate and/or fabrication

of a full PV device can vastly improve observed perovskite lifetimes.180,181

Employing various deposition techniques such as spin coating,13 dip coating,182 ink-jet

printing183 or chemical vapour deposition184 all have effects on the perovskite crys-

talline quality which affects stability. Methods capable of producing large micrometer

sized crystallites generally produce more stable perovskite films.181 Encapsulation also

substantially increases the lifetime of perovskite devices. Bella et al. showed that by

simply coating a PV device in a hydrophobic polymer, the perovskite layer could be

protected against degradation over three months exposure to an Italian summer.185
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6.6 Conclusions

This chapter investigated the trends in stability of mixed FA-MA cation perovskites.

The work was the first to systematically study degradation across the whole compo-

sition range of 0 ≤ x ≤ 1 in FAxMA1−xPbI3. It was found that the mixed FA-MA

lead iodide perovskites showed resistance to decomposition pathways favoured by pure

MAPbI3 and FAPbI3.

Collaborative work with ICMAB revealed the phase behaviour of FAxMA1−xPbI3 (0

≤ x ≤ 1) up to 350 K. Compositions of x ≥ 0.2 stabilised in the ideal cubic Pm3̄m

structure at room temperature, although for x ≥ 0.7 the mixed cation perovskites

readily transformed to the hexagonal non-perovskite δ-FAPbI3.

Kinetic studies on thin films of FAxMA1−xPbI3 (0 ≤ x ≤ 1) used PXRD to investigate

the growth of PbI2 over a period of ten days. Thin films of x ≤ 0.2 showed fast

decomposition to PbI2 and precursor salts (MAI and FAI), although increasing FA

content slowed the rate of decomposition until x = 0.6, where negligible PbI2 formation

was recorded after ten days for pristine films. The quality of as-made films was found

to be vital in preventing degradation, with the presence of PbI2 impurities accelerating

the rate of decomposition.

The experimentally observed improved stability of mixed FA-MA lead iodide per-

ovskites was supported by ab initio studies of the decomposition reaction energies. De-

composition to PbI2 and δ-FAPbI3 was considered across all compositions of FAxMA1−xPbI3

(0 ≤ x ≤ 1). The energetics of decomposition to PbI2 and δ-FAPbI3 were found to be

less favourable in the mixed FA-MA cation phase when compared to pure MAPbI3 and

FAPbI3, therefore suppressing degradation.

The increased stability shown in mixed FA-MA lead iodide perovskites was determined

to be due to the stabilisation of the perovskite structure, caused by stronger interactions

between the central organic cations and iodide forming the PbI6 octahedra. The results

of this work provide important information on the stability of mixed FA-MA lead

iodide perovskites in moderately dry conditions, similar to those experienced during

the industrial manufacture of typical PV devices.
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Chapter 7

Exchange and Migration of

Halide Ions in Lead Perovskites
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7.1 Introduction

Compositional engineering of perovskites is a powerful tool in material design. As

demonstrated throughout this thesis, site substitution at any of the A, B or X sites

of the typical ABX3 perovskite system can result in significant changes in material

stability, structural properties and phase behaviour. These changes naturally ex-

tend to the photo-physical properties of perovskites, with the effects of site substi-

tution on perovskite luminescence studied extensively in thin films and nanocrys-

tals.20,95,101,103,156,170 A recent development has shown post-synthesis site substitution

to be possible through a technique known as halide exchange (also referred to as anion

or ion exchange).108 Use of this technique is particularly popular in nanocrystal re-

search, as it allows access to mixed halide compositions which are inaccessible through

typical synthetic methods.108,186 This unusual property has important implications for

devices, for example enabling the possibility of fabricating highly crystalline perovskite

heterojunctions through controlled halide exchange,187 motivating the work presented

in this chapter.

In 2015 Nedelcu et al. first reported the chemical alteration of colloidal perovskite

nanocrystals through halide exchange.108 After synthesis it was found that the halide

ratios in CsPbX3 (X = Cl, Br, I) could be tuned over the entire visible spectrum simply

through mixing pure nanocrystal samples in suitable ratios at 40◦C in dry octadecene

(ODE), Figure 7-1 shows the shift in PL achieved. Almost simultaneously Akkerman

et al. reported that compositional tuning in halide perovskites could be achieved by

the mixing of colloidal nanocrystals dispersed in toluene at room temperature.186 Both

observed fast ion exchange starting from CsPbBr3 into CsPbI3 or CsPbCl3, although

conversion directly between CsPbI3 and CsPbCl3 resulted in sample degradation due

to the size discrepancy between the I− and Cl− anions.

In situ PL measurements by Nedelcu et al. showed transition from phase pure CsPbBr3

to CsPbI3 to occur over just eighteen seconds, with XRD confirming full conversion.108

On the other hand, Akkerman et al. saw conversion timescales vary between seconds

and hours depending on the exchange solution used.186 It was found that the rate

of anion exchange in CsPbX3 nanocrystals could be increased by use of oleylammo-

nium halides (OLA-X), compared to an exchange solution containing the lead halide

precursor in toluene only.186 In the same year, Pellet et al. demonstrated fast halide

substitution in MAPbX3 (X = Cl, Br and I) thin films through dipping in a 0.05 M

precursor solution of MAX in anhydrous 2-propanol.43 However, exchange rates varied

between seconds and hours depending on film thickness.
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Figure 7-1: Reproduced from Nedelcu et al.108 (a) Transmission electron microscopy
(TEM) images of CsPbBr3 to CsPbI3 nanocrystals with insets showing emission under
a UV lamp. (b) PL spectra of CsPbBr3 nanocrystals shifting linearly on exchange with
varying ratios of CsPbI3 or CsPbCl3.

The vacancy diffusion mechanism of anion exchange is well known in CsPbX3 per-

ovskites,167 and has since been applied to MAPbX3 structures.43,188 The mechanism

involves halide anions diffusing into the structure and occupying vacancies associated

with Schottky-type defects.189 Using this model, Lai et al. combined confocal PL mea-

surements and molecular dynamics (MD) simulations to determine halide diffusivity on

the order of 10−12 cm2s−1 in CsPbX3 single crystal nanowires, significantly lower than

that reported in polycrystalline thin films, possibly due to reduced vacancy density.188

The vacancy diffusion mechanism is also crucial in the understanding of photo-induced

ion migration within mixed halide perovskite systems. Knowledge of ionic motion in

hybrid perovskites is essential in appreciating PV device operation, as the movement

of ions has an important role in the understanding of undesirable effects present in

perovskite PV, such as hysteresis in current-voltage scans.189 Previous theoretical

and experimental studies have shown that only the halide anions – as opposed to the

Pb2+ or central cation – are responsible for ionic conduction via a vacancy diffusion
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mechanism.189 Further to this, work by Yoon et al. demonstrate the complexation

constant between Pb2+ and Br− to be seven times larger than that between Pb2+ and

I−, indicating that the Br− halide to be the dominant binding species.190

In addition to ion exchange between solid solutions of colloidal nanocrystals, ions in

mixed halide perovskites have been observed to migrate under illumination.190 Ion

migration in mixed I-Br PV devices has been studied experimentally, showing as dis-

tinctive shifts in the absorption and emission spectra of thin films over time. Upon

illumination optical measurements reveal the formation of I and Br-rich regions, a pro-

cess which reverses if the film is stored in the dark.107,114 Yoon et al. postulated the

formation of I and Br-rich regions through the reaction:191

nMAPbBr3 + hν −→ (n− 2m)MAPbBrxI3−x

+mMAPbBrx−yI3−x+y +mMAPbBrx+yI3−x−y
(7.1)

where h is Planck’s constant and ν is the frequency of the excitation source. Using

cathodoluminescence imaging, Bischak et al. demonstrated the appearance of sub-

micrometre scale halide-enriched clusters along grain boundaries in mixed I-Br thin

films after five minutes illumination.107 It was proposed that the strain induced on

the lead halide framework from a single photoexcited charge was sufficient to overcome

chemical interactions within the soft perovskite structure, enabling halide migration

even at room temperature.

Understanding the dynamics of ion migration and formation of halide rich phases is

important for PV performance as the phenomena can lead to charge trapping in I-rich

regions. Excitation of an appropriate energy is capable of generating charge carriers in

both Br and I-rich regions of a mixed halide perovskite. However, these charge carriers

will migrate and preferentially recombine at the lower band gap I-rich phase, leading

to dominant emission in the red region. PL studies performed by Hoke et al. suggest

the stable I-rich cluster in these mixed I-Br compositions is MAPb(I0.8Br0.2)3.153

The vast majority of halide exchange and migration work has been performed using

perovskite nanocrystals and thin films.108,186–188,190,191 The increased popularity of

highly crystalline mixed halide perovskites in devices, as well as the potential to create

crystalline heterojunctions, prompted the work presented in this chapter. This investi-

gation is the first to consider the effects of halide exchange and migration in perovskites

grown by the popular inverse solubility method.
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7.2 Halide Exchange

To investigate the potential effects of halide exchange in large perovskite crystals,

samples of MAPbBr3, MAPbI3, FA0.6MA0.4PbI3, Cs0.1MA0.9PbI3 and Cs0.1FA0.9PbI3

were selected and immersed in 80 µL of halide rich solution. To form a 2 mM I or

Br-rich solution, PbX2 (X = I or Br) was dissolved in 200 ml toluene with 2 ml oleic

acid (OA) and 2 ml oleylamine (OLA). All crystals had dimensions close to 2 mm2.

The samples were then removed from the solution after four or ten days, dried and

mounted onto SiO2 substrates. The procedure is summarised in the schematic shown

in Figure 7-2 and sample labels used throughout this chapter are detailed in Table 7.1.

Unlike previous reports on ion exchange, the exchange process observed in these 2

mm2 scale crystals was slow. Nedelcu et al.108 demonstrated conversion from CsPbBr3

to CsPbI3 nanocrystals after just eighteen seconds; however, there was no immediate

colour change observed when MAPbBr3 and MAPbI3 crystals were first immersed in I

and Br-rich solutions. A slight colour change indicative of ion exchange was observed in

both MAPbBr3 immersed in the I-rich solution (MAPBr-I) and MAPbI3 immersed in

the Br-rich solution (MAPI-Br) after 24 hours. After four days, the crystals appeared

to fully convert to the characteristic orange and black of MAPbBr3 and MAPbI3 re-

spectively.

Mixed cation crystals of FA0.6MA0.4PbI3 (FAMAPI-Br), Cs0.1FA0.9PbI3 (CsFAPI-Br)

and Cs0.1MA0.9PbI3 (CsMAPI-Br) were also immersed in the Br-rich solution, but ex-

hibited a significantly slower exchange rate than the single cation phases. FAMAPI-Br

partially changed colour when immersed in the Br solution for ten days, but showed two

distinct PL peaks attributed to Br and I-rich phases. No colour change was observed

in CsFAPI-Br and CsMAPI-Br after ten days immersion and, after fourteen days in

solution, the crystals showed signs of degradation.

Figure 7-2: Schematic of the halide exchange procedure, using the investigation into
MAPbBr3 crystals immersed in an I-rich solution as an example.
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Label Original Sample Exchange Solution Used Time Immersed (days)

MAPBr-I MAPbBr3 I-rich 4
MAPI-Br MAPbI3 Br-rich 4

FAMAPI-Br FA0.6MA0.4PbI3 Br-rich 10
CsMAPI-Br Cs0.1MA0.9PbI3 Br-rich 14
CsFAPI-Br Cs0.1FA0.9PbI3 Br-rich 14

Table 7.1: Sample labels used throughout this chapter. Perovskite crystals were im-
mersed in 2 mM solutions PbX2 (X = I or Br) in toluene, with 2 ml OA and 2 ml
OLA.

7.2.1 Photoluminescence

Investigations into the effects of halide exchange were conducted using PL at the Chair

for Photonics and Optoelectronics, Ludwig Maximilian University of Munich (LMU).

MAPBr-I: MAPbBr3 exchanged with I

The PL of MAPBr-I was measured and compared to that of MAPbI3 and MAPbBr3, as

shown in Figure 7-3. Each spectrum was fitted with a single Gaussian function, giving

peak positions of 1.70 eV, 1.61 eV and 2.31 eV for MAPBr-I, MAPbI3 and MAPbBr3

respectively. The measured FWHM of 0.11 eV was larger for MAPBr-I, than the 0.09

eV measured for the MAPbBr3 crystal before immersion in the I-rich exchange solution.

The dominant composition could be estimated using the PL of MAPbBr3 and MAPbI3

as references, and assuming a linear blue shift in PL peak position as y increases in

MAPb(I1−yBry)3, a well known property of mixed cation perovskites.108,149,186 From

this, a value of 0.13 for y was inferred, suggesting a composition of MAPb(I0.87Br0.13)3.

MAPI-Br: MAPbI3 exchanged with Br

Figure 7-4 shows the PL measured for MAPI-Br compared to MAPI3 and MAPBr3

crystals. A peak position and FWHM of 1.68 eV and 0.12 eV were measured by fitting

the dominant MAPI-Br spectrum with a single Gaussian function. The composition

was estimated to be MAPb(I0.91Br0.09)3, similar to that found in MAPBr-I. Unlike

MAPBr-I, an additional peak (position 2.49 eV and FWHM 0.21 eV) was seen in the

MAPI-Br PL, attributed to a thin film of an orange Br-rich compound which formed

on the crystal surface. The film could be easily removed revealing a black perovskite

phase underneath, although the reduced PL intensity and high energy position of this

second peak suggested formation of a Br-rich phase on the crystal surface, which PXRD

measurements showed to be amorphous.
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Figure 7-3: (a) Photos of the 2 mm MAPbBr3 crystal before and after immersion in
an I exchange solution (b) PL of MAPbBr3, MAPbI3 and MAPBr-I.
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Figure 7-4: (a) Photos of the 2 mm MAPbI3 crystal before and after immersion in a
Br exchange solution (b) PL of MAPI-Br with MAPbBr3 and MAPbI3 for reference.
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Figure 7-5: (a) Photos of the 2 mm FA0.6MA0.4PbI3 crystal before and after immersion
in a Br exchange solution (b) PL of FAMAPI-Br with MAPbBr3 and FA0.6MA0.4PbI3

for reference.

FAMAPI-Br: FA0.6MA0.4PbI3 exchanged with Br

PL spectra of FAMAPI-Br, FA0.6MA0.4PbI3 and MAPbBr3 are shown in Figure 7-5.

The dominant peak positions and FWHM were measured to be 1.56 eV and 0.11 eV

for FA0.6MA0.4PbI3, and 1.69 eV and 0.14 eV for FAMAPI-Br. Similar to MAPI-Br,

a secondary peak was measured at higher energy in FAMAPI-Br, with a position of

2.19 eV and FWHM of 0.35 eV. However, an orange Br-rich film was not seen on the

FAMAPI-Br crystal surface. It was proposed that this second peak could be attributed

to a broad range of Br-rich perovskite phases forming domains near the crystal surface,

as the intensity of this secondary peak varied with excitation position. Interestingly, the

dominant peak PL position for FAMAPI-Br (1.69 eV) was similar to those measured

for MAPBr-I (1.70 eV) and MAPI-Br (1.68 eV), indicating a preferred ratio of the

mixed I-Br phase formed regardless of the initial composition.
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Figure 7-6: PL of MAPBr-I measured when first removed from the exchange solution
(black) and after fourteen days stored in air at < 30% humidity (red).

Phase Stability

There was no change in PL properties of MAPBr-I crystals after three days storage

in the dark at less than 30% humidity. This agrees with stability measurements made

by Akkerman et al. on halide exchanged CsPbX3 nanocrystals.186 However, after

fourteen days an additional PL peak, centered at 1.86 eV, formed (Figure 7-6). The

peak represents the appearance of a Br-rich phase. Phase separation into I and Br-rich

regions is a characteristic typically seen in mixed halide thin films.114

7.2.2 Chemical Analysis

Chemical analysis of samples through EDX and PXRD was conducted at the University

of Bath on return from the LMU.

Energy Dispersive X-ray Spectroscopy

EDX spectroscopy was used to obtain chemical maps showing the distribution of I and

Br in a cleaved crystal of MAPBr-I (Figure 7-7). Strikingly, the EDX maps reveal halide

exchange occurred at the crystal surface only, with very little I detected elsewhere in

the crystal, which maintained a near phase pure MAPbBr3 composition throughout.

This suggests halide exchange in perovskite single crystals is a slow and inefficient pro-
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Figure 7-7: (a) Backscattered SEM image of a cleaved MAPBr-I crystal and EDX maps
of (b) Br and (c) I distribution.

cess, affecting only the crystal surface before the exchange solution causes degradation.

Surface sensitive PL was capable of detecting mixed I-Br phases present on the crystal;

however, it is apparent this mixing did not extend through any significant volume of

the crystal.

Powder X-ray Diffraction

PXRD data were acquired for MAPbBr3 and MAPBr-I samples ground using a pestle

and mortar. Figure 7-8 shows the resulting patterns indexed to the same unit cell

in the cubic space group Pm3̄m, with lattice parameter a = 5.935 Å. Surprisingly,

there were no additional peaks or peak splitting observed due to the presence of iodide

in the sample. It is possible most of the volatile iodide escaped the structure during

grinding as discussed later in this chapter. These results are contrary to that seen

in literature for nanocrystals and thin films, which suggest fast and complete halide

exchange, resulting in transformation of the material structure.108
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Figure 7-8: PXRD patterns for MAPbBr3 (red) and MAPBr-I (grey) crystals ground
using a pestle and mortar, indexed to a cubic unit cell in the space group Pm3̄m, lattice
parameter a = 5.935 Å.
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7.3 Ion Migration

Under continuous illumination, using an excitation wavelength of 500 nm, the PL

position of MAPBr-I crystals red shifted. To map this shift, spectra were first obtained

every twelve seconds for ten minutes. The most significant shift was seen within the

first sixty seconds and was further measured by obtaining PL spectra every 1.5 seconds

for one minute using an exposure time of 800 ms, as shown in Figure 7-9 (a), which

also shows the increase in PL intensity with continued illumination. The PL position

could also be recovered after eight minutes of the sample being kept in the dark (Figure

7-9 (b)).

As shown in Figure 7-9 (b), the PL position recovered after a few minutes in the dark.

The PL of MAPBr-I was measured after five minutes continuous illumination (red

spectrum in Figure 7-9 (b)), before being allowed to recover in the dark at which point

PL was measured again after two minutes (green spectrum) and eight minutes (purple

spectrum) using an exposure time of one second. The PL peaks were approximated

with a single Gaussian function with an extracted position of 1.70 eV and FWHM of

0.11 eV after five minutes continuous illumination. The PL shifted to 1.74 eV and

broadened to a FWHM of 0.14 eV after eight minutes dark recovery. The majority of

PL recovery occurs in the first two minutes, with the position restored to the original

value after eight minutes. Because of this, all samples were allowed at least ten minutes

of dark recovery time before PL shift under continuous illumination was measured.

The series of spectra shown in Figure 7-9 (a) were fitted with single Gaussian functions,

and the resulting peak positions are plotted as a function of time in Figure 7-10. Using

this approach, a red shift of 0.044 eV from 1.755 eV to 1.711 eV was measured. This

could be fitted to the bi-exponential decay function in the program Origin defined as:

y = y0 +A1e
−k1t +A2e

−k2t (7.2)

where y0 and A1,2 are constants, t is time and k1 and k2 are the rates for the fast and

slow decay components respectively. Measured decay rates for the PL shift are k1 =

0.341 s−1 and k2 = 0.039 s−1.

An improved fit could be obtained using two Gaussian functions representing an I-rich

(lower energy) and Br-rich (higher energy) phase as shown in Figure 7-11 (a). The

separate I-rich (black) and Br-rich (red) peak positions and FWHM were plotted as

a function of time and modelled to the biexponential decay equation 7.2. The peak
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Figure 7-9: (a) PL of MAPBr-I evolving over one minute continuous illumination. (b)
The PL of MAPBr-I was measured after five minutes continuous illumination (red),
before the sample was measured after two minutes (green) and eight minutes (purple)
dark recovery.

associated with a Br-rich phase red shifted 0.07 eV (from 1.80 eV to 1.73 eV). A smaller

red shift was seen in the more dominant I-rich peak (from 1.73 eV to 1.70 eV). The

Br-rich phase decayed faster than the I-rich phase. Extracted decay rates for the PL

shift were k1 = 0.516 s−1 and k2 = 0.046 s−1 for the Br-rich phase, and k1 = 0.261 s−1

and k2 = 0.034 s−1 for the I-rich phase. A sharper decay was observed for the FWHM

in both phases, with extracted decay rates of k1 = 1.030 s−1 and k2 = 0.041 s−1 for

the Br-rich phase, and k1 = 0.558 s−1 and k2 = 0.036 s−1 for the I-rich phase.

Due to the well known linear shift in perovskite PL energy depending on cation and

halide ratios,95,108,186 it was possible to estimate the composition of these illuminated

samples. After continuous illumination the composition the MAPBr-I samples was

measured to be equivalent to MAPb(I0.87Br0.13)3. However, the initial PL position

suggested a composition of approximately MAPb(I0.8Br0.2)3, identical to the stable

I-Br suggested by Hoke et al .153
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Figure 7-10: Evolution of peak position of the PL of MAPBr-I over the first 60 seconds
of illumination at 500 nm fitted with single Gaussian functions, and modelled with a
biexponential function (red dashed line).

Figure 7-11: (a) Example PL spectrum of MAPBr-I sample (black solid line) fitted
with two Gaussian functions representing an I-rich (black dashed line) and Br-rich (red
dashed line). The evolution of the peak position and FWHM of the I-rich (b) and
Br-rich (c) phases are modelled to biexponential decays
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7.4 Discussion

Halide Exchange

The mechanism by which halide exchange occurs was proposed to be the well known

vacancy assisted diffusion mechanism.108,114,189 Figure 7-12 shows a schematic of the

process occurring for the MAPBr-I sample, in which a MAPbBr3 crystal was immersed

in an I-rich solution.

A significant result of the work presented in this chapter was the resistance to anion ex-

change shown in mixed cation lead halide perovskites. While crystals of MAPbBr3 and

MAPbI3 reacted with exchange solutions within four days, samples of FA0.6MA0.4PbI3

required ten days in solution to show any significant color change associated with

successful exchange. Cs0.1FA0.9PbI3 and Cs0.1MA0.9PbI3 degraded in solution before

any significant halide exchange was observed. The mixed cation compositions were

specifically targeted because of their improved material stability as demonstrated in

Chapters 4, 5 and 6. FA0.6MA0.4PbI3 and Cs0.1FA0.9PbI3 were also selected due to

their proximity to the ideal tolerance factor of one, as shown in Figure 7-13.80,95

The lack of exchange in Cs containing crystals and broad PL of FAMAPI-Br samples

indicate site substitution of the cation reduces the rate of halide exchange between

Br and I anions. It was proposed that the stabilised crystal structures of these mixed

cation perovskites result in stronger hydrogen bonding between the organic cations and

iodide in the PbI6 octahedra.87,95,146,147 The stronger interaction between the organic

cation and lead iodide framework requires a greater activation energy to initiate halide

exchange via the vacancy assisted diffusion mechanism. This has implications for photo-

induced ion migration, which occurs via the same mechanism, and has been attributed

to problems of phase segregation, charge trapping and hysteresis in PV devices.114

Further work determining the precise mechanism and reduced exchange kinetics in

these mixed cation systems would be beneficial to improve our understanding of the

effect of site substitution on vacancy assisted anion diffusion, which has important

consequences for hybrid perovskite device operation.189

Moving on to consider the single cation MAPbX3 crystals, it was clear that the Br to I

exchange was more efficient than the I to Br process. A single broad peak was observed

at 1.70 eV in PL measurements for MAPBr-I, whereas a second, low intensity peak was

seen at 2.49 eV for MAPI-Br associated with a Br-rich capping layer. This is unlike

observations on thin films, which show an increased rate of reaction when MAPbI3

films are exchanged in a Br-rich solution, as opposed to MAPbBr3 films in an I-rich
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Figure 7-12: Schematic of the proposed ion diffusion mechanism occurring in this work,
adapted from Yoon et al.114 Here a crystal of MAPBr3 is shown immersed in an I-rich
exchange solution.

Figure 7-13: Calculated octahedral factors (µ) and tolerance factors (t) for the materials
investigated in this chapter.
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solution.43 In the case of MAPbI3 films immersed in Br-rich solutions, XRD measure-

ments suggest full conversion from MAPbI3 to MAPbBr3 within five minutes, proposed

to be facilitated by favourable thermodynamics and limited by iodide diffusion.43 How-

ever, it has also been shown that I to Br exchange is unsuccessful when single crystals

of MAPbI3 grown by chemical vapor deposition were immersed in a Br-rich solution,

causing chemical etching of the MAPbI3 surface. For work presented in this chapter,

it is possible that the bromide reacted with the MAPbI3, forming a non-perovskite

complex on the crystal surface. The contrary behaviour observed between thin films

and single crystals highlight the importance of further studies into halide exchange

in crystalline perovskites. Increased halide diffusion path lengths and reduced defect

densities in high quality perovskite crystals have substantial effects on anion diffusion

which has been widely studied in thin film perovskite devices.108,186,188,189

At the time of this work, no study had investigated the stability of the mixed halide

phase formed through halide exchange beyond two days.186 Phase separation, similar

to that previously observed in MAPb(I1−yBry)3 thin films, was seen in MAPBr-I after

fourteen days. Crystals were stored in air, therefore oxidation of MAPbI3-rich regions

was possible. This degradation process involves oxygen diffusing into the crystal struc-

ture, forming a superoxide species on exposure to light which can deprotonate the MA

cation resulting in the formation of molecular iodine according to the reaction:171

4CH3NH3PbI3 + O2 −→ 4PbI2 + 2I2 + 2H2O + 4CH3NH2. (7.3)

The volatile molecular iodine was lost, resulting in an increased Br concentration in the

mixed halide perovskite. The phase instability demonstrated in this work has important

implications for single crystalline heterojunctions synthesised by anion exchange, which

would have to be protected from oxidation for use in potential devices.

Loss of iodine could also account for the fact that PXRD measurements on MAPBr-I

showed no additional peaks associated with an I-rich phase. The smaller crystallites

produced by grinding the sample allowed a shorter diffusion pathway for oxygen, en-

abling fast oxidation in I-rich regions. However, the apparent absence of an I-rich phase

could also be accounted for by the small volume fraction of the halide exchanged area,

as seen in EDX measurements.

I-rich areas were very small in relation to the whole MAPBr-I crystal, as shown in

EDX measurements, which demonstrated iodide to be present on the crystal surface

only. The colour change of orange to black of the MAPBr-I crystal indicated the initial
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depth of the anion exchanged region to be at least 100 - 500 nm, corresponding with

the absorption depth of visible light in MAPbI3.187 The slow halide diffusion may be a

result of the high complexation constant between Pb2+ and Br−, resulting in bromide

substitution with iodide being unfavourable.190 It is clear diffusion of iodide into the

MAPbBr3 structure is inefficient in large perovskite crystals, suggesting compositional

tuning post-synthesis in crystals or thick crystalline thin films is not effective.

Photo-induced Ion Migration

The mechanism responsible for the shift in PL observed with illumination was deter-

mined to be photo-induced ion migration facilitated by the vacancy assisted diffusion

mechanism, similar to that seen in halide exchange. Upon illumination, energy pro-

vided by the excitation source enables halide diffusion, forming I and Br-rich regions

in the case of MAPBr-I samples, as shown schematically in Figure 7-14.107 The ini-

tial broad PL of MAPBr-I could be fitted to two Gaussian functions representing an

I and Br-rich region, where the position and FWHM of both shifted according to a

biexponential decay. The biexponential nature of this shift suggested the presence of

an initial fast and subsequent slow diffusion process. The rate of change in the Br-rich

PL peak was faster than that observed in the I-rich peak, therefore it was proposed

than an initial fast diffusion of bromide anions occurred before a slower diffusion of io-

dide ions forming separate halide rich regions. However, these diffusion rates are likely

to be highly dependent on diffusion path lengths and defect densities determined by

method of synthesis. Alternative rate constants for I-Br photo-induced anion migra-

tion have been measured in mixed halide thin films, in which faster rate constants were

measured for iodide.190 It is clear the local environment of the anions has a greater

affect on photo-induced ion migration than properties intrinsic to the I-Br mixed halide

perovskites.

The PL from I-rich regions increased in intensity due to a cascade of photo-generated

charge carriers recombining preferentially in the lower bandgap region.153 This is due

to holes becoming trapped the I-rich regions, as the valance band of MAPbI3 rich

regions occupies the lowest energy state out of the MAPbBr3 and MAPb(I1−yBry)3

regions present in the sample, therefore leading to I-rich regions acting as recombination

centers.190
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Figure 7-14: Schematic of the reversible phase separation of MAPb(IxBr1−x)3, form-
ing I (black) and Br-rich (red) regions under continuous illumination, based on the
mechanism described by Bischak et al.107

7.5 Conclusions

Halide exchange and migration were investigated in perovskites grown by inverse sol-

ubility. MAPbBr3 crystals immersed in an I-rich exchange solution (referred to as

MAPBr-I samples) showed a distinctive colour change from orange to black over four

days. PL measurements confirmed transformation into a mixed halide phase resembling

MAPb(I0.87Br0.13)3, although EDX and PXRD measurements showed iodide exchange

did not occur throughout the bulk of the crystal. The mixed phase was only present

in the first few hundred nanometres of the crystal surface.

MAPBr-I samples also showed evidence of photo-induced ion migration through a red

shift in PL over one minute under continuous illumination. The shift could be modelled

as a biexponential process occurring over Br and I-rich regions, with the PL intensity

from the I-rich area increasing due to preferential recombination at a lower bandgap.

The biexponential nature of the shift in PL energy in I and Br-rich regions was spec-

ulated to be due to initial fast diffusion of bromide followed by diffusion of iodide;

however, conflicting measurements have been made using thin films. It was determined

that ion diffusion path lengths and defect densities - which are highly dependant on

crystal quality - have greater effects on ion migration than the intrinsic properties of

mixed I-Br perovskites.

MAPbI3 crystals immersed in a Br-rich solution (referred to as MAPI-Br samples)

showed evidence of a Br-rich capping layer forming over the crystal surface. This

limitation agreed with previous observations on crystals grown by chemical vapor de-

position, but disagreed with studies on thin films, which showed fast halide exchange
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between Br anions and MAPbI3 thin films.43,188 Illustrating further discrepancies be-

tween polycrystalline thin films and single crystals.

Notably, mixed cation perovskites demonstrated a resistance to halide exchange, with

FA0.6MA0.4PbI3 requiring ten days in solution to show any color change and mixed Cs-

FA and Cs-MA perovskites degrading before color change due to halide exchange was

observed. The increased resistance was proposed to be due to a reduced rate of exchange

caused by the stabilised crystal structures of these mixed cation perovskites increasing

the activation energy required to initiate halide exchange via the vacancy assisted

diffusion mechanism. This has important consequences in PV devices, as protection

against photo induced anion migration - which proceeds via the same vacancy diffusion

mechanism - has the potential to improve device stability. Further work is needed to

determine the precise effect of cation substitution on intrinsic halide diffusion in these

highly crystalline materials, providing further insights into long term device stability.

It was concluded that post-synthesis compositional tuning in large perovskite crystals

was ineffective due to the inefficiency of halide exchange, coupled with long term phase

segregation due to loss of iodide.
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Chapter 8

Conclusions
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There is a great need for new materials in the drive towards affordable and sustainable

energy generation for all. Chapter 1 outlined solar energy as part of the solution in

combating climate change, and introduced perovskites as a class of materials making

swift progress towards low-cost, high efficiency, thin film commercial photovoltaic (PV)

technology. Methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) and formami-

dinium lead iodide (CH(NH2)2PbI3 or FAPbI3) were presented as the archetypal hybrid

(organic-inorganic) PV perovskites with an ABX3 structure type. However, instabili-

ties in MAPbI3 and FAPbI3 have led to the use of site substitution at any of the A,

B or X-sites in an effort to improve PV device lifetimes. The effect of this site sub-

stitution on the fundamental behaviour of these hybrid halide perovskites was poorly

understood and, therefore, formed the primary motivation for the work presented in

this thesis.

Mixed A and/or X-site hybrid halide perovskites were synthesised as simple thin films

deposited on a substrate via spin coating, as powder by solvothermal and precipitation

techniques, and as crystals by the inverse solubility method. Known methods of per-

ovskite crystallisation were developed further to produce high quality single crystals

with tunable dimensions for use in spectroscopic and single crystal X-ray diffraction

measurements. Bulk material (powder and single crystal) was primarily investigated

throughout this work in order to focus on the intrinsic properties of the perovskites,

away from the (sometimes significant) influence of PV device architecture.

Variable temperature neutron powder diffraction (NPD), carried out on the POLARIS

instrument at the ISIS neutron and muon source, was employed to investigate the

phase behaviour of Cs0.1FA0.9PbI3, and Cs0.1FA0.9Pb(I0.6Br0.4)3 (Chapter 4), as well

as Cs0.1MA0.9PbI3 and Cs0.1MA0.9Pb(I0.6Br0.4)3 (Chapter 5). X-ray diffraction (pow-

der and single crystal) conducted at the University of Bath, and variable tempera-

ture photoluminescence (PL) conducted at the Ludwig Maximilian University of Mu-

nich (LMU), complemented NPD measurements on mixed cation lead iodide phases

Cs0.1FA0.9PbI3 and Cs0.1MA0.9PbI3.

The desirable cubic α-phase was found to be accessible at room temperature in mixed

Cs-FA perovskites, with the Cs stabilising the FAPbI3 structure and so resisting trans-

formation into the undesirable non-perovskite δ-phase usually seen at ambient condi-

tions in FAPbI3. Compared to pure FAPbI3, inclusion of Cs also induced the formation

of an orthorhombic phase in Cs0.1FA0.9PbI3 below 180 K and lowered the transition

to the disordered state to 125 K. The complex Cs0.1FA0.9Pb(I0.6Br0.4)3 composition

showed reduced cation motion associated with a reduction in cuboctahedral volume

due to inclusion of the smaller bromide anion. Variable temperature NPD revealed
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this mixed cation mixed halide material to maintain a pseudo-cubic structure through

to 105 K, an important and highly desirable property for PV devices operating over a

wide range of temperatures.

In contrast to the Cs-FA system, the addition of Cs into the MAPbI3 structure was

shown to have little effect on the phase transition temperatures. However, the nature of

the tetragonal to orthorhombic transition changed from an abrupt to a slower glass-like

transition due to additional strain present in the lead halide framework of the Cs-MA

system. Interestingly, the observed tetragonal to orthorhombic phase transition in

Cs0.1MA0.9Pb(I0.6Br0.4)3 was higher than expected for mixed I-Br perovskites, and

further work investigating the effect of Cs substitution on the dynamics of the mixed

I-Br framework - which drives these phase transitions - would be beneficial.

Building on previous work determining the phase behaviour of FA-MA lead iodide

systems, trends in the stability of FAxMA1−xPbI3 across the full composition range (0

≤ x ≤ 1) were presented in Chapter 6. Powder X-ray diffraction (PXRD) was employed

to investigate decomposition by determining the kinetics of lead iodide crystallisation in

the mixed FA-MA perovskites deposited as thin films. Inclusion of increasing amounts

of FA into the MAPbI3 structure was shown to increase resistance to decomposition,

the most stable composition being FA0.6MA0.4PbI3. However, greater quantities of

FA resulted in fast transition to the non-perovskite δ-FAPbI3 phase. The quality of

as-made films was found to be vital in preventing decomposition.

Finally, the effects of halide exchange in hybrid organic-inorganic lead iodide crys-

tals were investigated through PL, PXRD and energy-dispersive X-ray spectroscopy

(EDX). MAPbBr3 crystals were immersed in an I-rich solution, with PL suggesting a

preferred composition of MAPb(I0.87Br0.13)3 forming after four days immersion. How-

ever, subsequent PXRD and EDX measurements showed exchange to occur at the

crystal surface only, demonstrating post-synthesis compositional tuning to be unfeasi-

ble in large perovskite crystals, unlike their nanocrystal counterparts. Mixed FA-MA

cation perovskites showed increased resistance to halide exchange, with no exchange

observed in Cs-FA and Cs-MA lead iodide perovskites. Stabilised crystal structures

of the mixed cation materials was determined to reduce the rate of halide exchange

via the vacancy diffusion mechanism, an important result for PV devices combating

undesirable photo-induced ion migration, which proceeds via the same mechanism.

The novel results presented in this thesis highlight the importance of an in-depth un-

derstanding of site substitution in the popular hybrid halide perovskites. Successful PV

devices must demonstrate an ability to function across a large range of temperatures,
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as commercial solar cells are commonly subjected to significant temperature differences

due to the environments in which they are used. Site substituted perovskite devices

may generate impressive power conversion efficiencies in laboratories, but without an

understanding of these substitutions on fundamental material phase behaviour, PV

devices may fail. The structural phase behaviour of Cs and Br substituted organic lead

iodide perovskites, presented in Chapters 4 and 5, provide important information for

the practical performance of devices. As demonstrated in this work, phase transitions

can cause significant differences to material structural and optoelectronic properties,

affecting device operation, and should therefore be avoided over known operating tem-

peratures.

Resistance to decomposition and ion migration through site substitution (as presented

in Chapters 6 and 7) are also important in the long term development of perovskite

devices. Knowledge of an already thermodynamically stable composition and materi-

als able to resist photo-induced ion migration (a common problem in perovskite PV)

provide a foundation from which devices can be developed.

Perovskite materials are rapidly being developed for use in commercial solar cells,

with incorporation into silicon tandem devices being the likely first step. However,

many challenges remain in perovskite materials research which will dictate the direction

of future investigations. Reducing toxicity, by eliminating lead through substitution

with a suitable metal cation, remains a key challenge. Significant work has gone into

stabilising lead-tin perovskite alloys, although the efficiencies and lifetimes of these PV

devices are consistently lower than their lead counterparts. A better understanding of

charge-carrier dynamics in these alloys would be effective in optimising device design.

Leading on directly from work presented in this thesis, further investigations into the

lattice dynamics of mixed cation and halide perovskites would be beneficial. Greater

understanding of the behaviour of a mixed I-Br lead framework would add insight into

the nature of experimentally determined phase transitions.

If the material properties of these complex site-substituted perovskites can be op-

timised, then there exists great potential for the large scale manufacture of highly

efficient, thin film perovskite photovoltaic technologies.
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Appendix A

Reactant Quantities for

Perovskite Synthesis

The reactant quantities used in perovskite synthesis are detailed in this appendix. Brief

descriptions of the methods presented are:

• Solvothermal - precursors added to a stainless steel autoclave and heated in an

oven.

• Precipitation - precipitation from acid in a three-necked round bottom flask

flushed with nitrogen and heated using an oil bath.

• Inverse solubility - high temperature crystallisation in sealed glass vials heated

using an oil bath.

• Thin film - deposition of thin films onto glass substrates via spin coating.
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x MAI (mg) FAI (mg) Pb(OAc)2.3H2O (mg) HI, 1M (ml)

0 256 0 612 1.613
0.1 230 27.0 611 1.609
0.2 204 55.2 609 1.606
0.3 178 82.7 608 1.603
0.4 153 110 607 1.599
0.5 127 137 606 1.596
0.6 101 164 604 1.593
0.7 75.8 191 603 1.589
0.8 50.4 218 602 1.586
0.9 25.2 245 601 1.583
1 0 272 599 1.579

Table A.1: Synthesis of MA1−xFAxPbI3 via the solvothermal method.

x MAI (mg) FAI (mg) PbI2 (mg) HI (ml)

0 256 0 734 1.613
0.1 230 27.0 742 1.610
0.2 204 55.2 741 1.606
0.3 178 82.7 739 1.603
0.4 153 110 737 1.600
0.5 127 137 736 1.596
0.6 101 164 734 1.593
0.7 75.8 191 733 1.590
0.8 50.4 218 731 1.586
0.9 25.2 245 729 1.583
1 0 272 728 1.580

Table A.2: Synthesis of FAxMA1−xPbI3 via precipitation.

x CsI (mg) FAI (mg) PbI2 (mg) HI (ml)

0.1 40.5 241.2 718.4 1.558
0.15 60.3 226.2 713.5 1.548
0.2 79.9 211.5 708.7 1.537
0.3 118.2 182.6 699.2 1.517
1 360.4 0 639.6 1.387

Table A.3: Synthesis of CsxFA1−xPbI3 via precipitation.

x CsI (mg) MAI (mg) PbI2 (mg) HI (ml)

0.05 20.8 241.6 737.6 1.6
0.1 41.2 227.1 731.7 1.587
0.15 61.4 212.8 725.9 1.575
0.2 81.2 198.7 720.2 1.562
0.25 100.7 184.8 714.5 1.55

Table A.4: Synthesis of CsxMA1−xPbI3 via precipitation.
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CsI (mg) FAI (mg) PbI2 (mg) PbBr2 (mg) HI (ml) HBr (ml)

44.4 264.4 315.0 376.2 1.025 0.683

Table A.5: Synthesis of Cs0.1FA0.9Pb(I0.6Br0.4)3 via precipitation.

CsI (mg) MAI (mg) PbI2 (mg) PbBr2 (mg) HI (ml) HBr (ml)

45.3 249.4 321.5 383.9 1.046 0.697

Table A.6: Synthesis of Cs0.1MA0.9Pb(I0.6Br0.4)3 via precipitation.

CsI (mg) FAI (mg) MAI (mg) PbI2 (mg) PbBr2 (mg) HI (ml) HBr (ml)

42.2 208.6 39.5 557.7 151.9 1.299 0.325

Table A.7: Synthesis of Cs0.1(FA0.83MA0.17)Pb(I0.83Br0.17)3 via precipitation.

x MAI (mg) FAI (mg) PbI2 (mg) GBL (ml)

0 256.4 0 743.6 1.613
0.1 230.3 27.7 742 1.610
0.2 204.3 55.2 740.5 1.606
0.3 178.4 82.7 738.9 1.603
0.4 152.6 110 737.4 1.600
0.5 126.9 137.3 735.9 1.596
0.6 101.3 164.4 734.4 1.593
0.7 75.8 191.4 732.8 1.590
0.8 50.4 218.2 731.3 1.763
0.9 25.2 245 729.8 1.759
1 0 271.7 728.3 1.755

Table A.8: Synthesis of FAxMA1−xPbI3 via inverse solubility. 1M precursor solutions
were used for x ≤ 0.7 and 0.9M for x ≥ 0.8.

x CsI (mg) FAI (mg) PbI2 (mg) GBL (ml)

0.1 40.5 241.2 718.4 1.731
0.15 60.3 226.2 713.5 1.72
0.2 79.9 211.5 708.7 1.708
0.3 118.2 182.6 699.2 1.685

Table A.9: Synthesis of CsxFA1−xPbI3 via inverse solubility.

x CsI (mg) MAI (mg) PbI2 (mg) GBL (ml)

0.05 20.8 241.6 737.6 1.6
0.1 41.2 227.1 731.7 1.587
0.15 61.4 212.8 725.9 1.575
0.2 81.2 198.7 720.2 1.562
0.25 100.7 184.8 714.5 1.55

Table A.10: Synthesis of CsxMA1−xPbI3 via inverse solubility.
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x FABr (mg) MABr (mg) PbBr2 (mg) DMF (ml)

0 0 233.8 766.2 2.088
0.1 26 209.8 764.2 2.082

Table A.11: Synthesis of FAxMA1−xPbBr3 via inverse solubility.

x MAI (mg) FAI (mg) PbI2 (mg) DMF (ml)

0 256.4 0 743.6 2.688
0.1 230.3 27.7 742 2.683
0.2 204.3 55.2 740.5 2.677
0.3 178.4 82.7 738.9 2.672
0.4 152.6 110 737.4 2.666
0.5 126.9 137.3 735.9 2.660
0.6 101.3 164.4 734.4 2.655
0.7 75.8 191.4 732.8 2.649
0.8 50.4 218.2 731.3 2.644
0.9 25.2 245 729.8 2.639
1 0 271.7 728.3 2.633

Table A.12: FAxMA1−xPbI3 thin film fabrication.
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Appendix B

Additional Experimental Details

B.1 Chapter 4: Cesium Formamidinium Lead Halide Per-

ovskites

Cs0.1FA0.9PbI3 powder samples were synthesised by precipitation from acid according

to the method detailed in Chapter 3.

Cs0.1FA0.9PbI3 crystals were grown by inverse solubility according to the method de-

scribed in Chapter 3.

Cs0.1FA0.9Pb(I0.6Br0.4)3 powder samples were synthesised by precipitation from acid

according to the method detailed in Chapter 3.

FAI-D powder. Part-deuterated FAI was synthesised by Dr James Tellum at the ISIS

deuteration facility. Hydrogenous FAI was dissolved in a large excess of D2O under

an argon atmosphere and stirring for 60 minutes, the D2O was then evaporated and

the sample dried under vacuum. The extent of deuteration was determined by the

disappearance of the NH resonance in 1H NMR spectrum. Only partial deuteration of

the cation could be achieved resulting in the composition CH(ND2)2I.

Cs0.1FA0.9PbI3-D powder. With the aim of producing a multi-gram sample of part-

deuterated Cs0.1FA0.9PbI3, 0.405 g of dried CsI, 2.412 g of FAI-D and 7.184 g of dried

PbI2 were dissolved in 25.97 ml of dimethyl sulfoxide (DMSO-d6, from Merk 99.9%

atom % D) and drop cast onto a preheated glass dish at 150◦C on a hot plate in a

dry box. As the solvent evaporated a black solid formed which was subsequently dried

on the hotplate for a further 120 minutes. The sample was sealed under nitrogen and
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stored below 5◦C to reduce H-D exchange.

Powder X-ray diffraction (PXRD) data were collected on a Bruker Advance D8 diffrac-

tometer and a STOE STADI P (Debye-Scherrer geometry) using CuKα radiation (λ =

1.540 60 Å). Indexing and peak fitting were carried out in GSAS-II on Cs0.1FA0.9PbI3

samples synthesised via inverse solubility (ground using a pestle and mortar) and

Cs0.1FA0.9PbI3 and Cs0.1FA0.9Pb(I0.6Br0.4)3 samples made using the precipitation method.

Single crystal X-ray diffraction (SXRD) data were collected on a RIGAKU SuperNova

dual tube Eos S2 CCD diffractometer using Mo (λ = 0.7107 Å) radiation. Suitable

single crystals of Cs0.1FA0.9PbI3 synthesized via inverse solubility were selected and

measured at 300 K using an exposure of 10 s/frame, the sample was then cooled and

measured at 175 K, 150 K and 120 K using an increased exposure of 20 s/frame. The

data analysis was conducted by Dr Lauren Hatcher using the programs Olex2, ShelXL

and PLATON.

Neutron powder diffraction (NPD) was carried out on the POLARIS instrument at the

ISIS Neutron and Muon Source, Rutherford Appleton Laboratories. Approximately 6

g of Cs0.1FA0.9PbI3–D and hydrogenous Cs0.1FA0.9Pb(I0.6Br0.4)3-H were loaded sep-

arately into a 5 mm vanadium sample can under argon and sealed using an indium

O-ring. The Cs0.1FA0.9PbI3–D sample was cooled to 100 K in the instrument cry-

ofurnace and data were collected over 2 hours. The sample was subsequently heated

at 1 K/min to 175 K, where a second 2-hour collection was recorded, before being

cooled to 110 K at 1 K/min. Variable temperature diffraction data were recorded with

an exposure time of 5 mins at a ramp rate of 0.2 K/min. A final 2-hour collection

was measured at 300 K. The Cs0.1FA0.9Pb(I0.6Br0.4)3-H sample was cooled to 105 K

and subsequently heated to 300 K at 0.4K/min, with data collected continuously and

binned into 1 K ranges.

Energy-dispersive X-ray (EDX) spectroscopy was carried out using a Jeol JSM-6480LV

SEM equipped with an Oxford INCA X-Act SDD X-ray detector using an accelerating

voltage of 20kV.

Differential Scanning Calorimetry (DSC) measurements were carried out on Cs0.1FA0.9PbI3

samples grown via inverse solubility and precipitation using a TA Instruments DSC

Q20. Samples were cycled between 225 K and 420 K at a rate of 2 K/min.

UV-Visible Absorption (UV-Vis) spectroscopy was carried out using a Perking Elmer

Lambda 750s spectrophotometer fitted with a 60 mm integrating sphere. Powder sam-

ples of Cs0.1FA0.9PbI3 were loaded into a PTFE powder sample holder fitted with a
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fused silica window. Reflectivity was measured and transformed to resemble absorbance

using the Kubelka-Munk function.

Steady state and transient photoluminescence (PL) measurements were conducted us-

ing an in-house time-correlated single photon counter (TCSPC) set up at the Ludwig

Maximillian University of Munich, described in detail in Chapter 3. A suitable crystal

of Cs0.1FA0.9PbI3 grown by inverse solubility was selected and mounted onto a silica

substrate in a CryoVac cryostat. PL and TRPL measurements were then taken between

290 K and 25 K.

B.2 Chapter 5: Cesium Methylammonium Lead Halide

Perovskites

CsxMA1−xPbI3 and Cs0.1MA0.9Pb(I0.6Br0.4)3 powder samples were synthesised by pre-

cipitation from acid according to the method detailed in Chapter 3.

CsxMA1−xPbI3 crystals were grown by inverse solubility according to the method de-

scribed in Chapter 3.

Cs0.1MA0.9Pb(I0.6Br0.4)3 powder samples were synthesised by the mechanochemical

method described in Chapter 3.

Energy-dispersive X-ray (EDX) spectroscopy was carried out using a Jeol JSM-6480LV

SEM equipped with an Oxford INCA X-Act SDD X-ray detector. CsxMA1−xPbI3

crystals grown by inverse solubility were cleaved and mounted onto SEM stubs using

carbon tape. Samples were left in a vacuum overnight to allow off-gassing of the carbon

tape before measuring. An accelerating voltage of 20 keV was used and the chemical

composition was analysed at three separate sites on each crystal using the software

INCA and AZTEC, which were also used to produce a chemical map of the whole

sample showing the distribution of Cs, Pb and I.

Powder X-ray diffraction (PXRD) data were collected on a Bruker Advance D8 and a

STOE STADI P diffractometer using CuKα radiation (λ = 1.540 60 Å). Phase identifi-

cation and indexing were carried out in GSAS II on CsxMA1−xPbI3 samples synthesised

by inverse solubility (ground using a pestle and mortar) and precipitation, as well as

Cs0.1MA0.9Pb(I0.6Br0.4)3 powder made by precipitation.

Single crystal X-ray diffraction (SXRD) data were collected on a RIGAKU SuperNova

dual tube Eos S2 CCD diffractometer using Mo radiation ( λ = 0.7107 Å). A suitable
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crystal of Cs0.1MA0.9PbI3 grown by inverse solubilty was selected and measured at

300K using an exposure of 20 s/frame, then at 150 K and 120 K at 20 s/frame. Data

analysis was conducted by Dr Lauren Hatcher using the programs Olex2 and ShelXL.

Neutron powder diffraction (NPD) experiments were carried out by Prof. Paul Henry

and myself on the POLARIS instrument at the ISIS neutron and muon source, Ruther-

ford Appleton Laboratories. Approximately 6 g of hydrogenous Cs0.1MA0.9PbI3 and

Cs0.1MA0.9Pb(I0.6Br0.4)3 powder, synthesised by the precipitation method, were loaded

into 5 mm vanadium sample cans and sealed using an indium O-ring. The Cs0.1MA0.9PbI3

sample was cooled in situ to 140 K and measured overnight at this temperature, before

two three-hour collections were recorded at 240 K and 310 K. The sample was then

cooled to 135 K in situ at a rate of 2.5 Kmin−1 with data continuously binned into 5 K

ranges between 310 K and 135 K. Due to reduced beam power from the source at ISIS,

measurements between 310 K and 290 K were of poor quality, and therefore were not

included in the analysis presented later in this chapter. The Cs0.1MA0.9Pb(I0.6Br0.4)3

sample was cooled in situ from 300K to 105K at a rate of 2 Kmin−1, then the temper-

ature was increased to 290 K at a rate of 0.35 Kmin1 with data continuously binned

into 3 K ranges. Profile fitting and sequential refinements were carried out using the

program GSAS II.

UV-Visible Absorption (UV-Vis) spectroscopy was carried out using a Perkin Elmer

Lambda 750 s spectrophotometer fitted with a 60 mm integrating sphere. Powder

samples of Cs0.1MA0.9PbI3 synthesised by the inverse solubility method (ground by

pestle and mortar) were loaded into a PTFE powder sample holder fitted with a fused

silica window. Reflection measurements were recorded and background subtracted,

before being transformed to resemble absorbance using the Kubelka-Munk function.

Steady state and transient photoluminescence (PL) measurements were conducted using

the TCSPC set up at the Ludwig Maximillian University of Munich, described in detail

in Chapter 3. A suitable crystal of Cs0.1MA0.9PbI3 grown by inverse solubility was

selected and mounted on a silica substrate in a CryoVac cryostat. PL and TRPL

measurements were then taken between 290 K and 25 K.
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B.3 Chapter 6: Formamidinium Methylammonium Lead

Halide Perovskites

Precursor synthesis of methylammonum ioidide (MAI) was carried out for this work.

16.62 ml of HI (57 wt %) was reduced using 1.5 wt % H3PO2 and added slowly to 10.891

ml of aqueous CH3NH2 (40 wt %) under stirring in an ice bath for one hour. Rotary

evaporation was used to remove the H2O and the resulting MAI was recrystallised in

hot ethanol before being oven dried overnight.

Thin film deposition of FAxMA1−xPbI3 onto cleaned glass substrates was carried out

according to the method detailed in Chapter 3.

Powder X-ray diffraction (PXRD) data were collected on a Bruker Advance D8 diffrac-

tometer using Cu-Kα radiation (λ = 1.540 60 Å). The diffraction angle was scanned

from values of 2θ between 10◦ and 50◦ using a step size of 0.016◦. Patterns were

analysed using the EVA diffraction suite.

Scanning electron microscopy (SEM) images were taken of FAxMA1−xPbI3 thin films

(x = 0.3, 0.5, 0.6, 0.7) using a Jeol JSM-6480LV SEM. An accelerating voltage of 5 kV

was used to obtain secondary electron (SE) images of the films at a magnification of x

1000.

Ab-initio simulation was performed by Jessica Dillon in collaboration with Saiful Is-

lam’s Energy Materials Research Group at the University of Bath. The code VASP58

was used to investigate the energetics of FAxMA1−xPbI3. A pseudo-cubic cell of XXX

atoms was modelled, along with PAW pseudopotentials, a GGA+VdW (OptB86b)

exchange-correlation function, a plane wave cut off energy of 520 eV and k-point sam-

pling at the gamma point. Forces were converged to less than 0.01 eVÅ−1 for structure

relaxation.

B.4 Chapter 7: Exchange and Migration of Halide Ions

in Lead Perovskites

MAPbBr3, MAPbI3, FA0.6MA0.4PbI3, Cs0.1MA0.9PbI3 and FA0.1MA0.9PbI3 crystals

were grown by inverse solubility according to the method described in Chapter 3.

Halide exchange solutions were made by Dr He Huang at the Ludwig Maximilian

University of Munich by dissolving PbX2 (X = I or Br) in 200 ml toluene with 2 ml
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oleic acid (OA) and 2 ml oleylamine (OLA) to form a 2 mM I or Br-rich solution.

Steady state photoluminescence (PL) measurements were conducted using an in-house

time-correlated single photon counter (TCSPC) set up at the Ludwig Maximillian

University of Munich, described in detail in Chapter 3. Samples were mounted onto

silica substrates and fixed to the sample stage using Apezion grease.

Powder X-ray diffraction (PXRD) data were collected on a STOE STADI P using

CuKα radiation (λ = 1.540 60 Å). Indexing and peak fitting were carried out in GSAS-

II on MAPbBr3 and MAPBr-I samples ground using a pestle and mortar.

Energy-dispersive X-ray (EDX) spectroscopy was carried out using a Jeol JSM-6480LV

SEM equipped with an Oxford INCA X-Act SDD X-ray detector using an accelerating

voltage of 20 kV.
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Appendix C

Surface Roughness

Measurements

During the final stages of writing this thesis, atomic force microscopy (AFM) imaging

was performed on a MAPbI3 single crystal to be included with a publication in collab-

oration with ICMAB (item 3 in the publications list presented at the beginning of this

thesis).

Measurements were performed using a Digital Instruments Nanoscope IIIa scanning

probe microscope in tapping mode using a Nanoworld soft tapping AFM probe. A

MAPbI3 crystal grown by inverse solubility was selected and the surface roughness of

three areas (1 µm2, 2 µm2 and 5 µm2) were measured.

The roughness average (Ra) and root mean square roughness (Rq) for the three areas

are shown Table C.1. The 5 µm2 area image contained features (shown in optical image

in Figure C-2 (a)) typical of the crystals grown by the inverse solubilty method, and

significantly increase the surface roughness measured.

Area of Interest (µm2) Ra (nm) Rq (nm)

1 1.25 1.58
2 1.31 1.64
5 4.40 6.07

Table C.1: Roughness average (Ra) and root mean square roughness (Rq) for surface
of MAPbI3 crystal.
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Figure C-1: AFM images of MAPbI3 crystal surface of areas (a) 1 µm2, (b) 2 µm2 and
(c) 5 µm2. Features reaching 25 nm were typical throughout the surface, appearing in
clusters and significantly increasing the surface roughness measured.

Figure C-2: (a) Optical image of crystal surface measured in AFM (15 µm2 area), with
3D images of measurements taken of areas (b) 1 µm2, (c) 2 µm2 and (d) 5 µm2.
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Appendix D

JMAK Kinetic Plots

Kinetic plots based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, mod-

elling the growth of PbI2 in thin films of FAxMA1−xPbI3 (0 ≤ x ≤ 0.5) are presented

below. FA0.6MA0.4PbI3 was presented in the main text. In the plots below lnln(1/1−A)

is plotted against ln(t), where t is time in hours and A is the peak area under the (001)

PbI2 reflection recorded in X-ray diffraction measurements. The gradient and inter-

cept of the linear fits for these JMAK plots were extracted and subsequently used to

calculate approximate values for crystallisation rate constant.
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Figure D-1: JMAK plots for FAxMA1−xPbI3 (0 ≤ x ≤ 0.5), measuring area under the
(001) PbI2 reflection (A) over time in hours (t).
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Appendix E

Error Analysis for JMAK

Kinetics

The error bars plotted as part of relationship between rate constant of lead iodide

formation and value of x in MA1−xFAxPbI3 were calculated as follows. Peak areas of

the (001) reflection for PbI2 used to approximate the phase fraction of PbI2 in the thin

films were read with an error of ± 20%, the time of the measurement had an error of

± 2 hours. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation,

α = 1− exp(−(kt)m) (E.1)

where α is the phase fraction of product, k is the rate constant, t is the time and m is

the Avrami exponent, can be rearranged to give:

lnln

(
1

1−A

)
= mln(t) +mln(k). (E.2)

Here α is substituted for A, representing the peak area of the (001) PbI2 reflection.

Therefore the errors on lnln( 1
1−A) and ln(t) are, respectively:

αlnln( 1
1−A) =

αA

(1−A)ln
(

1
1−A

) (E.3)

αln(t) =
αt
t
. (E.4)
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Equation E.2 implies a linear relationship if lnln(1/1 − A) is plotted against ln(t),

where m is the gradient and y0 = mln(k) the intercept. These kinetic plots were made

using SigmaPlot and fitted using regression analysis. The gradient, intercept and their

standard errors were extracted using this fit. From the gradient (m) and intercept (y0)

a value of the rate constant k could be calculated through,

k = exp
(y0

m

)
. (E.5)

It is important to note this value of k is not absolute due to the approximating PbI0

phase fraction as peak area. The error on this value of k was calculated through:

αk =
(y0

m

)
exp

(y0

m

)√(αy0
y0

)2

+
(αm
m

)2
. (E.6)
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