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Abstract 

Global warming is a major concern in the current world owing to its contribution to natural 

disasters. CO2 is one of the main greenhouse gases causing global warming and its 

anthropogenic release in the environment mainly comes from the use of fossil fuels as a source 

of energy. Due to the increase in both the world’s population and living standards, the amount 

of energy consumed throughout the last 50 years has almost doubled, resulting in an associated 

increase of CO2 emissions in the environment. This increase in CO2 emissions is against the 

recommendation recently reported in the 2018 intergovernmental panel on climate change 

report, in which it was suggested that CO2 emissions should fall by about 45 % of 2010 levels 

by 2030 and achieve ‘net zero’ emissions by 2050. A feasible approach to fulfil this 

requirement is to change the current energy portfolio to a more sustainable one. Although 

several renewable sources of energy such as wind and solar are currently becoming a part of 

the energy mix, they suffer from intermittent cycles in which the energy production and 

demand are not decoupled. In this regard, photoelectrochemical (PEC) water splitting, where 

solar energy is used on photoelectrodes to split water to form H2 and O2, could be a viable 

complement to current renewable sources of energy and most importantly, an alternative to 

fossil fuels based sources of energy. H2 is considered to be the energy vector that could 

contribute to a fully sustainable society.  

In this PhD thesis, Chapter 1 describes the evolution of the energy consumed and sources of 

energy used over the last 50 years and sets the scene of the necessity to use solar fuels, in 

particular H2, as an alternative to fossil fuels. A list of current methods of solar H2 production 

is reviewed highlighting the benefits of the PEC technology. In Chapter 2, the fundamentals 

of PEC technology including requirements, processes and mechanisms involved in the PEC 

technology are reviewed along with the state-of-the-art of the main materials currently 

employed with their advantages and limitations. Chapter 3 illustrates an overview of the 

aerosol-assisted chemical vapor deposition (AACVD) method, a highly versatile method for 

the synthesis of nanostructured thin films, that is widely used in the experimental part of this 

thesis. Finally, Chapters 4, 5 and 6 cover the experimental work performed in this thesis. In 

particular, in Chapter 4 a facile approach for the synthesis of Mo-doped TiO2 photoanodes 

prepared by spray pyrolysis from a polyoxotitanium oxo/alkoxy cluster is presented. This 

chapter investigates the role of molybdenum in the TiO2 lattice structure and its contribution 

to the enhanced PEC performance. Chapter 5 illustrates the advantages of using AACVD and 

a different titanium oxo/alkoxy cluster for the synthesis of highly nanostructured TiO2 

photoanodes with preferential facets exposed. Characterization techniques such as TEM, 

XRD, linear sweep voltammetry and time-resolved microwave conductivity measurements 

reveal the preferential exposure of the anatase {0 1 0} facet, the excellent photocurrent 



 

 

 

vii 

performance and the main recombination pathways of the photogenerated charges. 

Furthermore, it is also shown and discussed how the metastable anatase TiO2 phase is 

maintained up to 1000 °C after annealing in air offering an alternative application in the smart 

tile ceramic industry. In Chapter 6, Zn-doped Fe2TiO5 photoanodes prepared by AACVD are 

studied for the first time. Through the use of characterization techniques such as linear sweep 

voltammetry, impedance spectroscopy and ultraviolet photoelectron spectroscopy 

measurements it is revealed that the improved PEC performance over pristine Fe2TiO5 

photoanodes originates primarily from improved charge separation and injection efficiencies 

along with an increase in carrier concentration and better charge transfer kinetics.  

Finally, the last chapter of this thesis summarizes the main conclusions of this work and gives 

a general overview of future research pathways in the field of PEC water splitting.  
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Chapter 1. Introduction  

1.1 World energy consumption 

One of the main challenges of the 21st century is to be able to supply enough energy to the 

world’s population to at least accomplish the minimum living standards requirements. The 

amount of energy consumed by the world has increased significantly throughout the last 50 

years, not only because of the population increase but also due to the current living standards 

in which energy sources have become essential. For instance, in Europe, the amount of energy 

consumed has almost doubled in the last 53 years (Fig. 1-1), being of ca. 1060 Mtoe (Millions 

tones oil equivalent) in 1965 and reaching up to ca. 2051 Mtoe in 2018.  

 

Fig. 1-1 Total primary energy consumed in Europe from 1965 to 2018. Primary energy comprises fossil fuels (such 

as oil, gas and natural gas) and renewable sources of energy. Data extracted from the BP 2019 Statistical Review 

of World Energy.1  

This pronounced increase in the energy consumption has become detrimental for both world’s 

population and environment, mainly because the vast majority of this energy consumed comes 

from fossil fuels sources of energy, such as oil, natural gas and coal. Fig. 1-2 shows the 

evolution of energy consumption by fuel type in Europe from 1965 until 2018. In the 1960’s 

the majority of energy consumed came from oil followed by coal and gas, until the late 1990’s, 

where gas consumption overtook coal. Most importantly, it was not until the 2000’s, when 

Europe started to consume energy from renewable sources (solar, wind, geothermal and 

biomass). In 2017, the energy mix of Europe was made up of 14 % of renewable energies.2  
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Fig. 1-2 Energy consumed by fuel in Europe from 1965 to 2018. Data extracted from the BP 2019 Statistical 

Review of World Energy.1 

When comparing the energy consumed by fuel type in 1965 and 2018 (Fig. 1-3), the relative 

amount of fossil fuels consumed has been reduced from ca. 93% to 74%, even though the 

overall consumption throughout the years has increased, as shown in Fig. 1-2. The relative 

decrease in fossil fuels is mainly due to the increase in nuclear (8%) and renewable energies 

(15.5%).  

 

Fig. 1-3  Distribution of energy consumed by fuel in (a) 1965 and (b) 2018. The total primary energy consumption 

in 1965 and 2018 was of 1058.5 and 2050.7 Mtoe, respectively. Data extracted from the BP 2019 Statistical Review 

of World Energy.1 

The main concern associated with the use of fossil fuels and coal is the unavoidable release of 

greenhouse gas emissions, in particular CO2, which has a harmful impact on global warming 

and thus climate change. The burning of fossil fuels is the main source of CO2 emissions 

released in the environment. Although a slight decrease in CO2 emissions has been achieved 

since the early 2000’s, this decrease is not enough to mitigate the effects of climate change 

(Fig. 1-4). In fact, in 2018 global energy-related CO2 emissions grew by 1.7 %, being the 

highest rate of growth since 2013, and 70 % higher than the average increase since 2010.3 This 
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sudden rise in CO2 emissions was mainly driven by the higher energy consumption resulting 

from both a robust economy and extreme weather conditions in some parts of the world that 

required a higher energy demand for heating and cooling systems.3 The 2018 

intergovernmental panel on climate change report highlighted the urgent need of reducing 

these emissions in order to reduce the global temperature rise to 1.5 C in the upcoming future. 

Ideally, these emissions should fall by about 45 % of the 2010 levels by 2030 and achieve ‘net 

zero’ emissions by 2050.4 The European Union has already established and set a climate action 

plan to facilitate meeting these targets. For instance, by 2020 it is expected a 20 % cut in 

greenhouse gas emissions of the 1990 levels, a 20 % of the energy mix must be of renewable 

energies and a 20 % improvement in energy efficiency must be achieved. All the above should 

be reached through the implementation of several policy measures and actions, such as an 

emission trading system and a major investment in low carbon technologies, including 

renewable energy and both carbon capture and storage technologies. Along the same lines, the 

European Union also aims to reach a climate-neutral Europe by 2050. This long term strategic 

vision aims to meet this target by investing more into new technologies and aligning actions 

in key areas such as industrial policy, finance and research.5  

 

Fig. 1-4 CO2 emissions measured in Million tons of CO2 from 1965 to 2018. Data extracted from the BP 2019 

Statistical Review of World Energy.1  

Briefly, failing on fulfilling this could result in a global sea level rise, extreme temperatures 

in many regions, detrimental impacts on ecosystems and biodiversity including species loss 

and extinction, rise in ocean temperature, increase of ocean acidity due to high CO2 levels and 

decrease of oxygen levels, risks on population health, food security, water supply and human 

security. Therefore, actions to move towards ‘a zero emission’ society must be taken and 

implemented, especially in sectors such as land (agriculture), energy, construction of more 

energy efficient buildings, transport and cities.4  
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1.2 Solar fuels 

Solar fuels are a great alternative to conventional fuels derived from fossil sources. These fuels 

are produced by capturing the solar energy reaching the Earth’s surface and storing the energy 

in the chemical bonds of a material, or ‘fuel’ so that it can be used when needed.6 Currently, 

the two most important solar fuels are hydrogen (H2) and carbon-based fuels such as methane 

or carbon monoxide. Both fuels are of important interest for industry; for instance H2 can be 

used either as a transport fuel or feedstock, whereas carbon-based fuels, are key feedstocks 

for the industrial production of fertilizers, pharmaceuticals, plastics and synthetic liquid fuels.6 

The use of solar fuels, in particular H2, can help to change the energy portfolio of the society 

towards a more sustainable one and overcome some of the limitations and challenges that exist 

even with renewable energy sources. For instance, as the contribution of solar and wind energy 

increases in the total energy mix, there is an increasing need of solving the issue of decoupling 

the energy demand and production due to intermittent cycles and the challenging transport 

associated with these sources of energy. In this regard, solar fuels, such as H2, offer feasible 

solutions to those limitations. Firstly, solar energy can be easily stored in the chemical bonds 

in the form of fuel and used when needed. Secondly, solar fuels could be transported from the 

place where they were produced to where they are actually needed by means of air, sea or 

road. Fig. 1-5 shows a schematic model showing the concept of solar H2 in a daily basis in 

which both storage and transportation of solar energy are used in an industry environment for 

either electricity generation or transport of vehicles.  

Among the different solar fuels, H2 seems to be one of the most attractive and promising fuels 

and for many it has been considered the only energy vector that can be used in a fully 

sustainable energy system, since it can be easily produced from water, giving H2 and O2 as the 

only by-products, as shown below:7,8  

 2𝐻2𝑂 ⇄ 2𝐻2 + 𝑂2 ∆𝐺 = 237 𝐾𝐽 𝑚𝑜𝑙
−1 1-1 
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Fig. 1-5 Schematic model showing the implementation of solar H2 as an energy carrier. (a) At day light conditions, 

solar H2 is produced and can be either stored, used as a transport fuel or to produce electricity. (b) At night or 

cloudy periods, only stored solar H2 is used for transport and electricity generation. Adapted from ref.6 

 

1.3 Current methods of hydrogen production from renewable energies 

Nowadays, steam methane reforming (SMR) accounts for 80-85 % of the world’s total 

hydrogen production, followed by coal gasification and water electrolysis (at much less extent 

(4 %)).9 As is well known, during a SMR process not only H2 is produced but also CO2, one 

of the main greenhouse gases with greatest impact to global warming. Therefore, more 

sustainable and environmentally friendly approaches are needed for the mass production of 

sustainable H2.  

In the section that follows, it will be discussed different alternatives in which sustainable H2 

can be produced from renewable energies. The main relevant features of each method will be 

reviewed in detail, including advantages and drawbacks of each method. The different 
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methods have been classified in four main categories and each category corresponds to the 

different ways of which the renewable energy is collected, as summarized in Fig. 1-6.10  

 

Fig. 1-6 Schematic diagram showing the main pathways of H2 production from sustainable sources of energy. The 

production of H2 has been divided in four main categories based on the different approaches from which the 

renewable energy has been collected.  

Concentration is the first category described in Fig. 1-6. In this method, solar energy is 

concentrated to generate heat, which is then used to produce H2 from water through a 

thermoconversion process known as solar-thermal water splitting (STWS). Briefly, STWS can 

occur in either a single-step or two-step process. In a single-step process, concentrated solar 

energy is collected using a distribution of mirrors. This solar energy is then directed to a 

reactor containing water which is heated to high temperatures (> 2200 C) to drive the 

endothermic water splitting reaction and produce H2 and O2. Alternatively, in a two step-

process a metal oxide is heated at high temperatures under low O2 partial pressure (PO2) to 

undergo reduction and produce O2. The reduced metal oxide is then exposed to steam, which 

reduces to H2 while re-oxidising back the metal oxide.11 Although this technology seems 

feasible for H2 production, with an estimated cost of $ 3-17 per kg H2 depending on the method 

used, there are some issues such as severe stability and radiative energy losses associated with 

the use of such high temperatures.10  

Transformation is another category from which hydrogen can be produced. In this approach, 

renewable energy such as solar, wind power, geothermal and tidal are used to produce 
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electricity that is eventually transformed for H2 production. The most well-known method in 

this category is the ‘electrolysis of water’.  Currently, electrolysis accounts for 4 % of total 

global H2 production. The estimated cost of produced H2 using this approach ranges between 

$ 2.91 to 10.21 per kg H2, depending on production scale and electrolyzer used.10 

Alternatively, H2 can also be produced via natural photosynthesis routes, where organisms 

such as algae, plants and trees capture solar light to store it in chemical compounds and 

produce fuels such as H2, also known as bio-H2.10 The production of this bio-H2 by methods 

such as dark and photo-fermentation, microbial electrolysis cells or algal photoheterotrophic 

biodegradation require mostly the use of industrial and agricultural waste instead of water. 

These methods of bio-H2 production are highly appealing nowadays due to their contribution 

to accomplish a circular economy model, in which waste streams are used to produce H2 as an 

energy carrier.12 Nevertheless, in spite of being very attractive for the mass production of H2, 

they are still far away from practical applications, mainly due to low yields, scalability issues 

and lack of knowledge in genetic systems. A techno-economic analysis estimated a cost of $ 

10 per kg H2 at a 2 % overall efficiency. However, if efficiencies reach 9 %, it is estimated a 

cost of $ 3.60 per kg H2.12  

Finally, the last category is artificial photosynthesis, which mainly encompasses 

photoelectrochemical (PEC) water splitting and photocatalytic water splitting using particle 

suspensions. These two technologies, still under development are only existing in lab scale 

configurations, although technical and economic analysis have demonstrated their feasibility 

in large scale applications.13 These technologies rely on a semiconductor, in which after light 

irradiation an electron-hole pair is generated, which reacts with water to form H2 and O2. Both 

technologies, in particular PEC water splitting will be discussed in detail in the following 

chapter, being the primary scope of this thesis.  

Overall, PEC water splitting is an appealing and promising technology over other methods of 

sustainable hydrogen production due to the ability to produce H2 and O2 at two different 

electrodes, facilitating the separation of both gases once produced. Furthermore, reaction takes 

place at room temperature, the stream of H2 produced is of high purity, a key requirement to 

be used in a fuel cell, and a PEC cell can be constructed from purely inorganic materials which 

tend to be more stable and robust than organic or biologically based systems.10,14 Furthermore, 

PEC water splitting is based on solar energy, the largest source of renewable energy. 

Combining both solar energy and PEC water splitting the CO2 reduction targets could be meet.  

However, PEC water splitting is still limited by the material performance. If materials meeting 

the PEC targets are found, PEC technology could become a key approach for the production 

of large scale solar H2 with a cost of $ 2-4 per kg H2.13  
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Chapter 2. Photoelectrochemical water splitting 

In this chapter, an overview of the key fundamental parameters regarding the PEC water 

splitting process are described. The chapter begins by describing the basics of semiconductors, 

the main existing configurations for water splitting applications, followed by requirements, 

processes and mechanisms involved in PEC water splitting. A brief summary of the foremost 

figures of merit and the main PEC setups is also discussed. Finally, an outline of the main 

materials including nanostructured materials and titanium oxo/alkoxy clusters is presented.   

2.1 Semiconductor properties 

Semiconductors are the main materials involved in water splitting applications. They are a 

type of materials in which their valence band (VB) and conduction band (CB) are separated by 

an energy band gap. The difference in energy between the CB and VB defines the band gap 

energy of the material (Eg=ECB-EVB), as shown in Fig. 2-1a.15,16  Depending on the nature of 

the electronic properties of the semiconductor, two different types of optical band gap 

transition exist: direct and indirect transitions. A direct transition refers to an optical transition 

in which the highest point in the VB is located at the same k-vector as the lowest point of the 

CB (Fig. 2-1b). In this situation, a change in energy occurs but the crystal momentum is 

preserved. Alternatively, an indirect band gap transition refers to those systems in which there 

is both a change in energy and crystal momentum (Fig. 2-1c). These transitions require 

absorption or emission of a phonon (i.e lattice vibration) and are less likely to occur.14 

 

Fig. 2-1 (a) Simplified band diagram of a semiconductor. (b) Direct band gap transition. (c) Indirect band gap 

transition. This transition requires assistance of a phonon (h𝝎). Adapted from ref.14 

Each of the different energy levels is occupied by a certain number of electrons. At absolute 

0 temperature (T=0 K), the lowest energy levels are all filled up with electrons up to a 
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maximum energy, the Fermi level (EF). Above the Fermi level, all energy states are empty. At 

higher temperatures, the distribution and occupancy probability of the electrons within the 

different energy levels is defined by the Fermi-Dirac function f(E), shown in equation 2-1:15,16 

 
𝑓(𝐸) =

1

1 + exp (
𝐸 − 𝐸𝐹
𝐾𝐵𝑇

)
 

2-1 

where f(E) defines the probability that a particle will have energy E, T is the temperature and 

KB the Boltzmann constant.  

Semiconductor materials are classified in two main categories: un-doped and doped 

semiconductors, from which the EF will vary. For instance, for an un-doped semiconductor, 

also known as intrinsic semiconductor, upon light irradiation with an energy equal to or greater 

than the band gap energy (Eg), electrons (e-) are excited to the conduction band (CB) leaving 

holes (h+) in the valence band (VB). Under these conditions, the concentration of e-  and h+ are 

equal in the semiconductor placing the EF at the mid-gap position between the VB and CB 

(Fig. 2-2, first diagram). Conversely, for doped semiconductors additional energy levels are 

added in their electronic configuration giving rise to two main types of semiconductors: n-

type and p-type. An n-type semiconductor contains a donor atom that gives additional electrons 

(D→ D+ + e-
CB) in the lattice causing an upward shift of EF (Fig. 2-2, second diagram). A p-

type semiconductor contains an acceptor atom that can produce holes, shifting down the EF ( 

A→ A- + h+
VB, Fig. 2-2, third diagram). In some semiconductors, such as metal oxides the 

intrinsic defects present in the structure define the electronic character of the material. For 

instance, the oxygen vacancies present in TiO2 and ZnO define their n-type conductivity.17,18 

For such semiconductors, at room temperature, the number of free electrons and holes depend 

largely on the doping level rather than the thermal excitation of electrons and holes across the 

band gap. This implies that the position of the EF level also relies on the concentration of 

donors and acceptors. Fig. 2-2 shows a schematic band diagram for an intrinsic, n-type and p-

type semiconductor.15,16 

 

Fig. 2-2 Band diagram of an intrinsic, p-type and n-type semiconductor having the same band gap. Adapted from 

ref.15 
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2.2 Overview of photocatalytic water splitting 

Photocatalytic water splitting can be carried out using two different approaches: 

(i) photocatalytic methods where typically a powder photocatalyst is dispersed in aqueous 

solution and (ii) photoelectrochemical methods (PEC) where photocatalysts are mounted in 

electrodes and an external bias is often applied to trigger the redox reactions. Depending on 

the number of electrodes used, the PEC cell set-up can exist in two different configurations: 

A two-electrode system (Fig. 2-3, right), consisting of a working electrode which contains the 

photocatalyst of interest and a counter electrode, usually platinum, or a three-electrode system 

(Fig. 2-3, left), in which a reference electrode is coupled to the system along with the other 

two electrodes. 

 

Fig. 2-3 Schematic diagram of a 3-electrode system PEC cell (left) and 2-electrode PEC system (right).  

Powdered or particulate photocatalyst systems are based on heterogeneous photocatalysis, a 

process in which two active phases, solid (photocatalyst) and liquid (aqueous solution) are 

present. The main feature of these systems is their simplicity, since water splitting and thus 

hydrogen production occurs by irradiating a photo-reactor where powder photocatalysts have 

been previously dispersed in an aqueous solution. Nevertheless, several inherent problems are 

associated with this approach such as possible pH change during the process, especially when 

a scavenger is used, and difficulty in controlling light absorbance by suspended particles along 

with separating the photocatalyst from the water and the co-generation of H2 and O2.19,20 Other 

relevant issues are the parasitic reactions, such as the reduction of O2 by the photocatalyst to 

form superoxide (O2
-). Alternatively, PEC methods have the potential to avoid these 

limitations, although other challenges such as poor material stability or efficiency are still 

encountered. Technical and economic large-scale studies performed in both configurations 

indicated that although particulate systems may offer a lower cost per kg H2, safety concerns 

involved in the process, such as co-generation of H2 and O2 might limit its large-scale 

application.13 Instead, PEC systems would be easier to scale up with fewer safety concerns. In 
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fact, it is estimated that if the PEC efficiency and material stability of devices improve, the 

cost per kg H2 would decrease significantly, to $ 2-4 per kg H2.  In line with this, the US 

department of energy (DoE) targets a cost of $ 5.70 per kg H2 by 2020 with an ultimate target 

of $ 2.10 per kg H2 using PEC technology.21 A recent life cycle assessment study on a 

hypothetical large-scale PEC H2 production facility with an energy output equivalent to 1 GW 

continuous annual average, estimated an energy payback time of 8.1 years, an energy return 

on energy invested (EROEI) of 1.7 and a life-cycle primary energy balance over the projected 

service life of the facility of +500 PJ.22 As in previous studies, it was concluded that the main 

limitations encountered are the low efficiencies and lifetime of the current PEC devices. 

Both methods rely on the photocatalytic principle that takes place when a semiconductor is 

irradiated with an energy equivalent to or greater than its band gap. Under these conditions, 

electrons (e-) in the valence band (VB) are excited into the conduction band (CB), leaving holes 

(h+) in the VB. These photogenerated e- and h+ undergo redox reactions giving rise to a wide 

range of applications where the photocatalytic principle can be employed such as 

photodegradation of organic pollutants in waste water and overall water splitting.23,24  

In order to achieve overall water splitting the VB and CB of the semiconductor must have 

appropriate potentials. The CB must have a more negative potential than the reduction 

potential of H+ to H2 (0 VNHE at pH=0) whereas the VB must have a more positive potential 

than the oxidation potential of H2O to O2 (1.23 VNHE at pH=0). Typical band positions of 

different metal oxides are shown in Fig. 2-4.25,26 

 

Fig. 2-4 Band edge positions with respect to the vacuum level and the NHE for a range of semiconductors at pH=0. 

(a) Oxides, phosphates and nitrides and (b) chalcogenides and silicon. Reproduced from ref.26 with permission 

from The Royal Society of Chemistry.  

The overall water splitting mechanism, regardless of the configuration used, occurs in three 

main steps: (1) Under light irradiation with an energy equal to or greater than the band gap of 

the semiconductor, photocarriers (e- and h+) are generated, as previously stated. (2) These 
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photocarriers separate and migrate to the surface of the photocatalyst avoiding recombination. 

For particulate approaches, both e- and h+ migrate to the surface (Fig. 2-5), whereas in a PEC 

approach, either the e-  or h+ migrate to the surface-electrolyte interface of the photoelectrode 

while the other carrier migrates to the external circuit of the cell to reach the counter electrode 

(Fig. 2-3). (3) Finally, adsorbed species on the surface of the photocatalyst/photoelectrode are 

reduced/oxidized to form H2 and O2, respectively.27 

 

Fig. 2-5 Process involved in a photocatalytic overall water splitting on a semiconductor particle. Reprinted with 

permission from ref.23 Copyright (2007) American Chemical Society. 

In the following sections, a more detailed explanation and characteristics of PEC water 

splitting will be discussed, being the primary scope of this thesis.  

2.3 Fundamentals of photoelectrochemical water splitting 

PEC water splitting was first discovered in 1972 by A. Fujishima and K. Honda using TiO2 as 

a photoanode connected to a platinum electrode.28 Since then, great scientific efforts have been 

devoted to understand the mechanism of this technology as well as to find suitable materials 

to enable the design of an efficient and stable water splitting device. For instance, over 5,000 

scientific research articles have been published throughout these years including a wide range 

of materials studied (metal oxides, chalcogenides, phosphates…) In the following sections, 

fundamentals of PEC water splitting including space charges and band bending in 

semiconductors, key parameters of a PEC device under dark and light conditions, along with 

figures of merit, different PEC configurations and materials will be discussed to give a general 

overview of the current state of the art of the PEC technology.  

2.3.1 Space charges and band bending in the semiconductor-electrolyte interface  

When a semiconductor is immersed in an electrolyte solution, a flow of electric current across 

the semiconductor-electrolyte interface occurs until the Fermi energy of the electrons in the 

semiconductor (EF) is equal to the redox potential of the electrolyte (Eredox), meaning that 

electronic equilibrium has been reached. At this point, there is an uneven distribution of 

charges at the semiconductor-electrolyte region which differs from the bulk material. This 

region is known as the space-charge layer, at the semiconductor side, and electrolytic double 
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layer at the electrolyte side, the latter consisting of the Helmholtz layer and the diffuse Gouy-

Chapman layer (Fig. 2-6).25 The Helmholtz layer is the closest region to the semiconductor 

interface, comprising physically adsorbed ions and some of the ions in solution. On the other 

hand, the diffuse Gouy-Chapman layer comprises mainly the ions present in the electrolyte, 

which are surrounded by a solvation cloud of water molecules.  

 

Fig. 2-6 Schematic diagram of the space-charge layer and electrolytic double layer at the semiconductor-electrolyte 

interface. Adapted from ref.14 

Achieving the electronic equilibrium in the semiconductor-electrolyte interface requires, in 

most cases, a change in the CB and VB of the semiconductor, known as band bending. The 

nature of this band bending strictly depends on the position of the Fermi level in the 

semiconductor. Taking this into account four different situations may arise:14,25 

Flat-Band potential (Ufb): When there is no excess of charges on the semiconductor side of 

the junction, an electric field is not generated, therefore the space-charge layer does not exist 

and band bending does not occur. This is known as the flat-band potential (Fig. 2-7a).  

Accumulation layer: If an excess of positive (or negative) charges is adsorbed at the surface 

of an n-type (or p-type) semiconductor, a downward (or upward) bending of the CB and VB of 

the semiconductor occurs towards the interface due to the formation of an accumulation layer 

made of free majority carriers that compensate the charge (Fig. 2-7b). 

Depletion layer: If an excess of positive (or negative) charges is transferred from the surface 

of an n-type (or p-type) semiconductor to the electrolyte, an upward (or downward) bending 

of the CB and VB of the semiconductor occurs towards the interface due to a diminishment of 

charges at the interface (Fig. 2-7c). 

Inversion layer: If the number of adsorbed positive (or negative) charges is above the intrinsic 

level of the n-type (or p-type) semiconductor, the semiconductor behaves as a p-type (or n-
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type) at the surface and n-type (or p-type) at the bulk, enhancing the downward (or upward) 

band bending of the CB and VB of the semiconductor (Fig. 2-7d).  

 

Fig. 2-7 Schematic diagram showing the electronic energy levels of a n-type semiconductor in contact with an 

electrolyte, where electrons are the mobile phase carrier. (a) flat band potential, (b) accumulation layer, (c) 

depletion layer and (d) inversion layer. The same situation applies for p-type semiconductors. However, band 

bending occurs towards the other direction and charges are the opposite. Adapted from ref.25 Copyright 2001 

Springer Nature. 

In addition to all the possible situations regarding the space charges and band bending of 

semiconductors in contact with an electrolyte, one has to consider the effect that an applied 

bias and pH has on the band edges of a semiconductor.14,29   

Typically, if the band edges of the semiconductor do not match the challenging required 

potentials to undertake the water reduction or oxidation reactions, an external voltage between 

the photoelectrode and counter electrode can be applied to compensate this potential 

deficiency. Under these circumstances, the charge distribution of the space charge region is 

modified, which in turn amends the band bending of the semiconductor. For instance, for an 

n-type semiconductor, a positive bias increases the depletion layer, facilitating an upward band 

bending of the semiconductor electronic bands, whereas a negative bias can bring the band 

bending to zero. The band edges of the semiconductor are also affected by the pH. 

Nevertheless, the reduction and oxidation potential of water also depend on the pH in the same 

way as the semiconductor-band positions. Therefore, simply changing the pH of the solution 

does not help meet the redox potential for the water splitting reactions.14,30 

The oxidation and reduction potential of water as a function of pH changes according to the 

Nernst equation: 
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where equation 2-2 and equation 2-3 correspond to the reduction and oxidation of water, 

respectively.  

This pH dependence implies that for an alkaline electrolyte (pH=14) the water redox reactions 

and potentials are as follows: 

 4𝐻2𝑂 + 4𝑒
− ⇄ 2𝐻2 + 4𝑂𝐻

−  𝐸𝑟𝑒𝑑
0 = −0.828  𝑉𝑁𝐻𝐸 2-4 

 2𝐻2𝑂 + 𝑂2 ⇄ 4𝑂𝐻
− + 4ℎ+  𝐸𝑟𝑒𝑑

0 = +0.401  𝑉𝑁𝐻𝐸 2-5 

whereas in acidic electrolytes (pH=0), the water redox reactions and corresponding potentials 

are:  

 4𝐻+   + 4𝑒− ⇄ 2𝐻2  𝐸𝑟𝑒𝑑
0 = +0.000 𝑉 𝑣𝑠. 𝑁𝐻𝐸  2-6 

 4𝐻+ + 𝑂2 ⇄ 2𝐻2𝑂 + 4ℎ
+ 𝐸𝑟𝑒𝑑

0 = +1.229 𝑉 𝑣𝑠. 𝑁𝐻𝐸 2-7 

 

2.3.2 PEC systems under illumination 

In the previous section (Section 2.3.1) the main aspects affecting the electronic properties of 

the semiconductor involved in a PEC device have been reviewed. However, no attention has 

been given to the behavior of such semiconductors under illumination conditions (i.e non-

equilibrium conditions). When a semiconductor electrode is illuminated with an energy equal 

to or greater than the Eg of the material, e- are excited from the VB of the semiconductor to the 

CB, creating a h+ in the VB as previously mentioned in Section 2.2. At this point, the system 

is no longer in equilibrium, especially at the space-charge region, and instead of having a 

single Fermi Energy level near the semiconductor-electrolyte interface quasi-Fermi levels 

both for e- and h+ appear. These quasi-Fermi levels are a measure of the concentration of 

electrons and holes near the interface and define the free energy of the photocarriers. In 

addition to that, under illumination conditions the band bending is reduced and Fermi level 

moves slightly upward or downward for an n-type or p-type semiconductor, respectively.14,16 

All the processes taking place under dark and light conditions are summarized in Fig. 2-8. The 

left-hand side diagram of Fig. 2-8 shows a typical n-type semiconductor material under dark 

conditions. At this point, the system is in equilibrium, however, after light irradiation, 
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photogenerated e- and h+ are formed bringing the device to a non-equilibrium condition (Fig. 

2-8, right).  

 

Fig. 2-8 Band diagram for a PEC cell based on an n-type semiconductor material under dark conditions (left) and 

illumination conditions (right) showing the main absorption regions. Adapted from ref.14 

Under light conditions, three distinguished regions must be considered in the semiconductor 

material, where different processes take place: Region I (Fig. 2-8, right (I)) is the region where 

most of the light is absorbed by the semiconductor, charge separation occurs and photocarriers 

(e- and h+) are separated by a field called drift current. The efficiency of photocarriers 

generation and collection depends on the width of the space charge region, the penetration 

depth of the light incident on the surface of the photoelectrode and the minority carrier 

diffusion length. Ideally, the vast majority of these photocarriers migrate to the bulk of the 

semiconductor, whereas a small minority is driven to the surface. However, if ‘surface-states’ 

also known as defects are present on the surface of the semiconductor, electron-hole 

recombination can occur within the space-charge layer, avoiding the migration of carriers to 

either the semiconductor-electrolyte interface or back contact. In region II (Fig. 2-8, right (II)), 

light absorption also takes place, photocarriers are transported by diffusion and holes migrate 

to region I before recombining. Finally, in region III (Fig. 2-8, right (III)), mainly absorption 

and photocarriers recombination take place. However, this will strongly depend on the average 

diffusion length of each carrier (e- or h+) and their probability to migrate either to the back 

contact or to the space-charge region of the semiconductor.14,15,31     

When a PEC system is immersed in an electrolyte solution, current vs. voltage curves provide 

a useful picture of their activity. Under dark conditions, the current generated under applied 

bias originates from the flowing of majority carriers along the PEC device. Alternatively, 

under illumination conditions, the photocurrent observed originates mainly from the minority 

carriers. Therefore, depending on the nature of the semiconductor, either n or p-type, the 

photocurrent derives either from holes or electrons, respectively, affecting the 

photoelectrochemical reaction at the interface of the photoelectrode. For instance, when an n-

type semiconductor is used, photooxidation of water takes place, whereas in the case of a p-

type, the photoreduction of water occurs. Fig. 2-9 shows a schematic representation of typical 
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current-potential curves (J-V) recorded under dark and light conditions for both n and p-type 

semiconductors.15 The maximum photocurrent performance achieved will depend on the 

efficiency of the processes described in Fig. 2-8: photoabsorption, carrier separation and 

transport.    

 

Fig. 2-9 Schematic current-voltage (J-V) characteristics for an n-type (upper) and p-type semiconductor (lower), 

both in the dark and light conditions. VCB, VVB and VFB refer to conduction band, valence band and flat band 

potential. Reproduced from ref.15 

2.3.3 Energy and quantum efficiencies in PEC devices 

To advance in the PEC field there is a necessity to establish well-defined benchmark metrics 

of assessment, so that performances and efficiencies of PEC materials can be easily reported 

and compared with materials made and tested in labs across the globe. In general, the main 

measures of efficiency can be classified in two categories: (a) benchmark and (b) diagnostic 

efficiencies. Benchmark efficiencies encompass those mathematical expressions that are 

suitable for mainstream reporting of the water splitting capability of a device, whereas 

diagnostic efficiencies refer to those measurements used to understand and characterize 

materials performances.32,33 

The foremost benchmark efficiency is the solar-to-hydrogen conversion efficiency (STH), 

which defines the overall efficiency of a PEC device when exposed only to solar light 

irradiation (AM 1.5G) with no applied bias. The STH efficiency is expressed as shown in 

equation 2-8: 
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𝑆𝑇𝐻 =  [

𝑟𝐻2(𝑚𝑚𝑜𝑙 𝐻2 𝑠
−1) × (237,000 𝐽 𝑚𝑜𝑙−1)

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑚𝑊 𝑐𝑚
−2)  ×  𝐴𝑟𝑒𝑎 (𝑐𝑚2)

]
𝐴𝑀 1.5 𝐺

 2-8 

where 237,000 J mol-1 is the change in Gibbs free energy per mole (G at 25 C), rH2 is the 

rate of hydrogen production (mmol s-1) measured by means of an analytical technique (i.e. gas 

chromatography), Ptotal is the incident light intensity (typically 100 mW cm-2) and Area is the 

illuminated area of the photoelectrode (cm2).  

Alternatively, STH efficiency can also be calculated by taking into account the relation that 

power is the product of voltage, current and the Faradaic efficiency (F), as shown in equation 

2-9: 

 
𝑆𝑇𝐻 =  [

|𝑗𝑠𝑐( 𝑚𝐴 𝑐𝑚
−2)|  ×  (1.23  (𝑉𝑅𝐻𝐸))  × 

𝐹

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑚𝑊 𝑐𝑚
−2)

]
𝐴𝑀 1.5 𝐺

 2-9 

where jSC (mA cm-2) is the short-circuit photocurrent density and 1.23 VRHE (E at 25 C) 

refers to the thermodynamic water splitting potential.  

It must be noted that both equations are only valid in the absence of a scavenger, if the 

stochiometric ratio of H2 and O2 is confirmed and if reaction is of Faradaic unity.  

A longer list of metrics is found under the ‘diagnostic efficiencies’ category. One of the first 

metrics included in the list is the applied bias photon-to-current efficiency (ABPE). Unlike 

STH, ABPE refers to the efficiency of a PEC device in which an external bias is applied to 

the system, therefore a true solar-to-hydrogen efficiency is not measured since an additional 

energy input (other than the sun irradiation) is supplied to the PEC device. The ABPE 

expression is described below (equation 2-10):  

 
𝐴𝐵𝑃𝐸 =  [

|𝑗𝑝ℎ( 𝑚𝐴 𝑐𝑚
−2)|  × (1.23 − |𝑉𝑏| (𝑉))  × 

𝐹

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑚𝑊 𝑐𝑚
−2)

]
𝐴𝑀 1.5 𝐺

 2-10 

where jph is the photocurrent obtained at an applied bias Vb.  

To account for an ABPE efficiency of the overall PEC device, the measurement must be 

performed in a 2-electrode system configuration (working and counter electrode). Performing 

the measurement in a 3-electrode configuration (working, counter and reference) results in an 

interface measurement instead, excluding the second half of the cell.  

The most easily accessible figure of merit in diagnostic efficiencies is the incident photon-to-

current efficiency (IPCE). Briefly, IPCE describes the photocurrent collected per incident 

photon flux as a function of illumination wavelength. Integration of the IPCE curve over AM 

1.5G solar spectrum at zero bias conditions (2- electrode, short-circuit) results in an estimate 
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of the STH efficiency of the device. Alternatively, if IPCE is measured under applied bias, 

integration of the curve over AM 1.5G results in an estimation of the total photocurrent 

obtained at that specific potential.  

IPCE is one of the most powerful figures of merit for material diagnostics because it takes into 

account three fundamental efficiencies involved in a PEC process: the amount of e- and h+ 

pairs generated per incident photon flux (e-/h+), charge transport to the solid liquid-interface 

(transport) and efficiency of interfacial charge transfer (interface). In this regard, IPCE can be 

described as follows (equation 2-11): 

 
IPCE (λ) =

|j (mA cm−2)|  × 1239.8 (V ×  nm) 

Pmono (mW cm
−2) ×  λ (nm)

    2-11 

where jph is the photocurrent measured at a wavelength , 1239.8 is the result of multiplying 

h (Planck constant) and c (speed of light) and Pmono is the monochromatic incident irradiation 

power.  

Absorbed photon-to-current Efficiency (APCE) also known as internal quantum efficiency 

(IQE) measures the efficiency of a device based only on the amount of absorbed photons. 

Unlike in STH or IPCE, in APCE optical losses such as reflection or transmission of photons 

are subtracted. Therefore, APCE can be expressed as (equation 2-12): 

 
APCE =

IPCE (λ)

𝐴 (λ)
=  

IPCE (λ)

𝐴 −  𝑅 −  𝑇
   2-12 

where A, R and T are the optical absorption, reflection and transmission of the film. 

2.3.4 PEC cell configurations 

PEC water splitting devices mainly consist of at least three different components: anode (or 

photoanode), cathode (or photocathode) and electrolyte along with a reference electrode (if 

necessary).  Different PEC setups can exist depending on the photoelectrode configuration, 

grouped by Jiang et al. in six types, reprinted in Fig. 2-10.33  
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Fig. 2-10 PEC water splitting devices configurations: (a) type I, single light absorber. (b) type II, heterojunction 

photoelectrode. (c) type III, wired PEC tandem cell. (d) type IV, wireless PEC tandem cell. (e) type V, PV-PEC 

tandem cell. (f) type VI, PV-electrolyzer cell. Reproduced from ref.33 Published by The Royal Society of 

Chemistry.   

The simplest PEC cell configuration, denoted as type I, is shown in Fig. 2-10a. In this 

configuration only one semiconductor is mounted on the photoelectrode, which can be used 

either as a photoanode or photocathode in the water splitting reaction along with a metal 

counter electrode. In this configuration, an external bias is often applied to trigger the 

separation of photogenerated electron and hole pairs throughout the cell to undergo the water 

splitting reaction.  

Heterojunction or type II PEC devices (Fig. 2-10b) refer to those systems in which two 

semiconductors are mounted in one photoelectrode to form a heterojunction. An example of 

heterojunction is between and n-type and p-type semiconductor. In this configuration, a space-

charge layer is formed at the interface of both semiconductors inducing photocarrier diffusion 
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amongst them. Depending on the band alignment between the n-type and p-type 

semiconductor, photocarriers will diffuse differently. For instance, in the example shown in 

Fig. 2-10b electrons from the CB of the p-type material are transferred to the CB of the n-type 

semiconductor, whereas holes migrate from the VB of the n-type to the VB of the p-type. 

Overall, this system offers improved charge separation, longer charge carrier lifetimes, higher 

reaction rates and enhanced light absorption over simplest PEC configurations when 

satisfactory band alignment conditions are met.34 Other types of heterojunctions will be further 

discussed in Section 2.3.6.1. 

Tandem devices (type III and type IV) as the ones depicted in Fig. 2-10c-d consist of two 

semiconductors connected in series in which one acts as a photoanode and the other as a 

photocathode, for the oxidation and reduction of water, respectively. These systems can exist 

in either a wired configuration (Fig. 2-10c, type III), in which a conductive metal wire is used 

to connect both photoelectrodes or in a wireless setup (Fig. 2-10d, type IV), in which a 

transparent conductive substrate is used as an ohmic contact. The only key requirement of a 

tandem device is to ensure complementary light absorption by both materials. Briefly, when 

light is irradiated, the photons transmitted through the first material should be absorbed by the 

second material. To accomplish that the CB minimum of the photoanode must be more 

negative than the VB maximum of the photocathode.33 Advantages of this tandem 

configuration include higher photovoltages to drive unbiased water splitting reactions and a 

wider selection of materials used.  

A type V configuration includes devices consisting of a combination of a photovoltaic (PV) 

cell with a PEC device (Fig. 2-10e). In such configurations, the additional bias required for 

the water splitting reaction is supplied by the PV cell, so that a larger selection of 

semiconductor materials can be used. Furthermore, a transparent oxide layer (ohmic contact) 

is required between the PV and PEC cell for the recombination of electrons and holes coming 

from the photoelectrode and PV cell, respectively (for PV- n-type configuration).  

Finally, a type VI configuration encompasses those devices in which a PV cell is combined 

with an electrolyzer. In these systems, the power is supplied by the PV cell and the electrolyzer 

performs the water splitting reaction. Although a PEC device is not technically employed in 

this configuration it can still be counted as a type of PEC system because the water splitting 

reaction is driven by solar light (Fig. 2-10f).  

2.3.5 Photoelectrode materials in PEC devices  

Forty-seven years later since the discovery of PEC water splitting some promising material 

candidates, such as Fe2O3 or BiVO4 have been developed as potential materials for PEC 

devices. However, significant research efforts are still need it to find the adequate material for 
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the design of an efficient and stable PEC device utilizing visible light. This is mainly due to 

the difficulty of finding semiconductor materials able to fulfil the minimum requirements that 

need to be accomplished in order to bring these devices into large scale applications:14,26,35 

i) Stability in the dark and under illumination in an aqueous electrolyte 

A large amount of non-oxide semiconductors either dissolve or form a thin oxide layer at the 

surface of the electrode when in contact with the electrolyte limiting the charge transfer 

process across the semiconductor-electrolyte interface. Metal oxides are usually more stable 

in these conditions, but they can suffer from photocorrosion, in which photogenerated holes 

oxidize the material itself rather than the water. Some examples of metal oxides undergoing 

photocorrosion include Cu2O, ZnO, PbO and FeTiO3. However, many others such as TiO2, 

Fe2O3, WO3 are widely stable in solution and resistant to hole oxidation.36  

ii) The band gap (Eg) should fall in the visible range of the spectrum to allow 

maximum absorption of the solar spectrum 

It has been suggested that the optimal band gap of the semiconductor should fall within 1.9 

and 3.1 eV, which corresponds to an absorption of 650 nm to 400 nm, respectively. This band 

gap range takes into account the energy required to split water (1.23 VNHE) along with some 

thermodynamic losses and overpotentials ascribed to interfacial kinetics.14,37 The theoretical 

maximum solar-to-hydrogen efficiency (STH) is determined by the band gap of the material. 

The lower the band gap, the higher STH efficiency due to larger absorption of the solar 

spectra.26 Fig. 2-11 shows the maximum STH and theoretical photocurrent density values as 

a function of the material band gap. In Section 2.3.6, band gap engineering approaches to 

enhance visible light absorption will be discussed.  

 
 

Fig. 2-11 Dependence of the theoretical maximum solar-to-hydrogen (STH) efficiency and the photocurrent density 

of photoelectrodes on the band gap under AM 1.5 G irradiation (100 mW cm−2). Reproduced from ref.26 with 

permission from The Royal Society of Chemistry.  
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iii) Efficient charge transport in the semiconductor 

As previously stated, under light irradiation e- and h+ are generated in the semiconductor. 

Ideally, these photocarriers should possess a good and efficient transport mobility in order to 

avoid their recombination. The likelihood of photocarriers recombination is usually expressed 

in terms of either their carrier lifetime (τR) or their carrier diffusion length (LD), as shown in 

equation 2-13. These two factors are related according to:  

 𝐿𝐷 ≅ √𝐷𝜏𝑅  2-13 

where D is the diffusivity of the free carriers.  The LD values can vary from several nanometers 

to hundreds of micrometers depending on the type of material, nanostructure, crystallinity and 

grain boundaries.  

iv) The conduction and valence band edge positions must meet the redox potentials 

for the hydrogen and oxygen half reactions  

Only a limited number of semiconductor materials straddle the redox potentials required for 

overall water splitting, which often requires materials with large band gap (Fig. 2-4). PEC 

technology offers the advantage that semiconductor materials can meet the requirements of 

only half of the water splitting reaction (either reduction or oxidation). In Sections 2.3.5.1 and 

2.3.5.2 the most common materials employed for these reactions are reviewed.  

v)  Low overpotentials for the reduction/oxidation of water 

Ideally, the materials employed should have low overpotentials, meaning that the interfacial 

charge transfer should be fast to avoid accumulation of charges at the surface that would lead 

to an increase in photocarrier recombination. To improve this, several electrocatalysts such as 

Co-based compounds and RuO2 are usually deposited on top of the photoelectrode. More 

examples are reviewed in Sections 2.3.5.1 and 2.3.5.2. 

vi) Materials must be of low-cost and environmentally friendly 

Finally, materials used in PEC devices must be inexpensive, earth abundant and ideally 

prepared via a green synthetic route.  

2.3.5.1 Photocathode materials  

In PEC devices, photocathode materials are the responsible for the hydrogen evolution 

reaction and are usually p-type semiconductors. In these systems, the hydrogen evolution 

reaction occurs at the semiconductor-electrolyte interface and takes place when CB of the 

semiconductor is more negative than the reduction potential of H2O to H2.29 A PEC diagram 

where the light absorbing material is a photocathode is shown in Fig. 2-12. Under these 
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circumstances, photogenerated e- are directly transferred to the electrolyte solution where they 

react with water to produce hydrogen, whereas holes migrate to the counter electrode to 

undertake the oxidation reaction of water.  

 

Fig. 2-12 One-step excitation PEC device consisting of a photocathode as the light absorbing material. 

Only a limited amount of materials can be employed as photocathodes in PEC devices due 

their high instability and photocorrosion once in contact with the electrolyte solution and light 

exposure, respectively.33 As stated earlier, metal oxides are often the most stable materials in 

electrolyte solutions at different pH. However, only a small amount of metal oxides are 

intrinsically p-type. The most common p-type metal oxide is Cu2O, but it suffers from 

photocorrosion.36 For this reason, most photocathodes require the deposition of a protective 

layer on top of the semiconductor, the choice of which also depends on the band position of 

the protective material in relation to the band positions of the photocathode.38   

Cu2O is one of the most highly used photocathode materials in PEC devices, due to its 

abundance and low toxicity. It has a direct band gap of 2.0 eV, which translates to a high 

theoretical photocurrent of ca. 15 mA cm-2 and potential STH efficiency of 18 % under solar 

light irradiation. However, its stability under electrolyte and light conditions is very poor since 

the reduction and oxidation potential of Cu2O to Cu and CuO, respectively, falls within its 

band gap.33,39 Therefore, in order to optimize the stability of this material several studies have 

been focusing on either depositing a protective layer such as another metal oxide on top of 

Cu2O or by depositing an n-type semiconductor to form a p-n junction that will not only 

improve the stability but also charge transfer. For instance, in 2011, Paracchino et al.40 

reported a photocurrent density of -7.6 mA cm-2 at 0 VHRE  under simulated solar light 

conditions for a Cu2O based photocathode. In this publication, they synthesized Cu2O via an 

electrodeposition method and used atomic layer deposition (ALD) to coat the surface with Al-

doped zinc oxide and titanium oxide (Al:ZnO/TiO2). In addition, they also electrodeposited Pt 

nanoparticles to activate the hydrogen evolution reaction and overcome the overpotential that 
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was formed when the photocathode and electrolyte were in contact. Using this configuration, 

stable photocurrents were achieved for 1 h but rapidly decreased near zero values after that 

time. Similarly, Tilley et al. 41 reported in 2014 the use of the same Al:ZnO/TiO2-Cu2O using 

RuO2 instead of Pt nanoparticles. By using this configuration, they considerably enhanced the 

stability of the system. After 8 h of irradiation the system was still stable. However, it was not 

until very recently (in 2018), where L. Pan et al. reported the best performing Cu2O 

photocathode in general for photocatalytic hydrogen production known so far. The device, 

consisting of a nanostructured Cu2O layer with Ga2O3 forming a p-n junction, a TiO2 

protective layer and a RuOX as a hydrogen evolution catalyst, achieved benchmark 

photocurrent densities of -10 mA cm-2 at 0 VRHE, a photovoltage of 1 V and a stability beyond 

100 h.42 An alternative approach to protect Cu2O photocathodes is by depositing a protective 

layer of CuO on top of the Cu2O. For instance, Zang and Wang reported an improved 

photocurrent performance and stability for CuO-Cu2O composites than for bare Cu2O.43 This 

improvement was attributed to the inhibition of Cu2O photocorrosion and to the decrease in 

photocarriers recombination for the final CuO-Cu2O composite.  

Other common p-type semiconductor materials found in literature are copper based 

chalcogenide semiconductors such as Cu(In,Ga)Se2 (CIGS),and Cu2ZnSnS4 (CZTS).38,39,44 

The research of copper chalcogenide semiconductors for photocathodes in PEC devices was 

triggered after their great performance in photovoltaic applications which was ascribed due to 

their high absorption coefficients, narrow band gaps and good carrier transport properties. In 

2004 and 2005, Valderrama et al. were one of the first authors to report the use of CIGS as a 

photocathode material in a PEC device for hydrogen production.45,46 They found that the 

amount of hydrogen produced considerably increased under light conditions. Nevertheless, as 

for Cu2O, these materials also require a protective layer to avoid photocorrosion and often a 

hydrogen evolution catalyst to minimize the overpotential between the electrode and 

electrolyte. For instance, Koo et al. reported the design of a photocathode consisting of 

CIGS/CdS/TiO2/Pt where TiO2 was acting as a protective layer.47 Another type of 

chalcogenide material with relevant research interest is CZTS. Unlike CIGS, CZTS is also 

gaining research interest because their composition consists of more abundant and less toxic 

elements. A detailed explanation of these chalcogenide semiconductors in PEC devices is 

beyond the scope of this thesis but a full explanation and state of the art of these materials can 

be found in the reviews published by Chen et al. 48 and Wang et al.49 

Silicon (Si) photocathodes are also of relevant interest in the scientific community due to the 

high abundance of this material on the Earth’s surface and its use in industry. Si has a band 

gap (Eg=1.1 eV) capable of absorbing a large amount of the solar spectrum and adequate CB 

edge for the photoreduction reaction of water. Nevertheless, it also suffers from low stability 
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in electrolyte solutions and requires a co-catalyst for its successful application.50,51 To 

overcome these limitations, several publications have reported the use of a TiO2 protective 

layer on top of the Si material. The coating of Si surfaces, on the other hand, can also become 

an issue, since it can hinder the electron conduction at the semiconductor-electrolyte interface. 

In this regard, Seger et al.52 successfully demonstrated that a 100 nm layer of TiO2 protected 

the Si surface without limiting the electron transfer from the semiconductor to the electrolyte 

achieving a stability higher than 72 h. Along the same lines, Dai et al.53 reported the deposition 

of Pt catalyst using ALD on the surface of silicon nanowires. They demonstrated an easy 

method of catalyst loading in nanowire particles and found that these materials had better 

photocatalytic performance and charge transfer improvement than planar Si due to an increase 

in surface area. In 2014, Choi et al. also demonstrated that protection of Si with a layer of 

Al2O3 deposited using ALD inhibited the oxidation of the Si photocathode and reduced the 

overpotential for the hydrogen evolution reaction.54  

2.3.5.2 Photoanode materials  

In a typical PEC device, the oxidation reaction of water (oxygen evolution reaction) takes 

place at the photoanode-electrolyte interface. These electrodes usually consist of n-type 

semiconductors in which their VB edge is more positive than the oxygen evolution reaction of 

H2O to O2.29  A typical PEC device consisting of a photoanode as the light absorbing material 

is shown in Fig. 2-13. Under light irradiation, photogenerated h+ accumulate at the surface of 

the electrode where they react with water to produce oxygen, whereas photogenerated e- 

migrate across the external circuit to reach the counter electrode to undergo the hydrogen 

evolution reaction.29  

 
Fig. 2-13 One-step excitation PEC device consisting of a photoanode as the light absorbing material.  

Unlike p-type semiconductor materials for photocathode applications, a larger amount of n-

type materials can be employed in photoanode electrodes since they tend to be more stable 
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than p-type semiconductors. Among the different available materials, metal oxides such as 

Fe2O3, BiVO4, WO3 and TiO2 are the most common materials used in these devices.38,44,55  

Fe2O3 (hematite) photoanodes 

Iron oxide has gained large scientific attention in the past years as a photoanode material for 

PEC devices owing to its high visible light absorption (Eg=2.0 eV), which translates into 

theoretical maximum photocurrents of 10.5 mA cm-2 under solar light conditions (STH= 12.9 

%),  non-toxicity, high abundance on the Earth surface (Fe is the 4th most abundant element 

on Earth), low-cost and high stability. All these numerous advantages make Fe2O3 a promising 

and excellent candidate material for PEC devices. In addition to these outstanding features, 

Fe2O3 also possesses several disadvantages that still limit the practical application of this 

material. Some of these disadvantages include: low conductivity and fast recombination of 

photocarriers, low electron mobility, large overpotential for water oxidation reactions and 

relatively low absorption coefficient.38,56 

To overcome some of these limitations and improve the PEC performance of hematite, several 

approaches have been studied in the past years, including doping, fabrication of 

nanostructured devices and surface modifications.38,56   

Hematite doping has been widely studied throughout the last years due to its potential to 

improve the structural, electronic and optical properties of hematite. Among the different 

elements that have been used for hematite doping, Sn4+ is currently one of the most promising 

ones to improve its PEC performance.57 The first attempt of Sn4+ doped Fe2O3 was carried out 

in 1981 by Kennedy et al.58 However, it was not until 2010 when a significant improvement 

in the PEC performance of Fe2O3 photoanodes was achieved, drawing a breakthrough in the 

field of hematite.  K. Sivula et al. reported photocurrent density values of 0.56 mA cm-2 at 

1.23 VRHE reaching values higher than 1 mA cm-2 at 1.55 VRHE  when growing hematite on 

fluorine-doped tin oxide (FTO) substrates from a solution-based colloidal method.59 The 

authors found that after 800 °C annealing treatment, Sn4+ from FTO substrate diffused onto 

the structure of hematite causing substitutional doping of Fe3+ for Sn4+ which resulted in a 

better absorption coefficient and improved carrier conductivity of the hematite, enhancing the 

photoactivity of the photoanode.  

Alternatively, an approach to deal with the poor carrier mobility and facilitate efficient hole 

transportation to the hematite surface consists of designing nanostructured electrodes (i.e 

photoelectrodes with a certain morphology). This nanostructuring approach helps to overcome 

some of the main limitations encountered in metal oxides, such as poor absorption coefficients 

and minority carrier diffusion length. The main advantages of nanostructured materials over 

compact materials are reviewed in detail in Section 2.3.7. The vast availability and variety of 
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deposition techniques such as electrochemical deposition, spray pyrolysis and chemical vapor 

deposition have eased the design of such photoelectrodes.56  One of the first publications that 

demonstrated the advantages of nanostructuring Fe2O3 photoanodes was published by A. Kay 

et al.60 In this publication, a cauliflower-like Fe2O3 photoanode grown by atmospheric 

pressure chemical vapor deposition (APCVD) from Fe(CO)5 and tetraethoxysilane achieving 

photocurrent density values of 2.2 mA cm-2 at 1.23 VRHE was reported (Fig. 2-14). Such 

outstanding performance was attributed to the shorter pathway that photogenerated holes had 

to travel to reach the semiconductor-electrolyte interface, thanks to the characteristic dendritic 

morphology.  

 

Fig. 2-14 Cauliflower-like Fe2O3 films grown by APCVD. Reprinted with permission from ref.60 Copyright (2006) 

American Chemical Society.   

A few years later, in 2013, a further optimization of the APCVD deposition process of the 

above mentioned Fe2O3 photoanodes, resulted in a significant enhancement of the PEC 

performance, reaching photocurrent values of 2.5 mA cm-2 at 1.23 VRHE under 1 sun 

illumination.61  

The large oxygen evolution overpotential typically encountered for hematite photoanodes has 

also been troublesome in hematite research. To overcome this limitation, researchers have 

been working on loading co-catalysts such as cobalt, cobalt-phosphate (Co-Pi), IrO2 and 

FeOOH on the surface of hematite. The addition of such co-catalysts resulted successful in 

speeding up the water oxidation kinetics and lowering the onset potential of hematite 

photoanodes.56,62 For instance, loading of Co into the cauliflower-like Fe2O3 resulted in an 

onset cathodic shift of 80 mV and a slight increase in photocurrent density values (2.7 mA cm-

2 at 1.23 VRHE, 1 sun).60 Similarly, incorporation of Co-Pi shifted the onset potential by ca. 
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350 mV, from ca. 1.2 to 0.9 VRHE, IrO2 from 1.0 to 0.8 VRHE and FeOOH from ca. 0. 13 to 0 

VRHE .62–64  

Recently, iron titanates, hybrids of Fe2O3 and TiO2 have also attracted scientific attention. 

These materials are typically formed via a solid-state reaction of Fe2O3 and TiO2 in which, 

after thermal annealing various iron titanates such as Fe2TiO5, Fe3TiO4 and FeTiO3 can be 

formed. Among the different configurations, Fe2TiO5 (iron titanate pseudobrookite) has been 

the most studied one as a photoanode material for PEC water splitting. Overall, Fe2TiO5 is an 

n-type semiconductor having a band gap of ca. 1.9-2.1 eV and showing better photocarrier 

separation efficiencies than their origin materials (Fe2O3 and TiO2).65 In addition, its CB and 

VB positions are well located in relation to the water splitting potential, as shown in Fig. 2-15. 

Although a promising material for PEC water splitting due to its inherent features, recent 

studies reveal poor PEC efficiencies and performances for the pure Fe2TiO5 phase.66 This is 

mainly because its absorption coefficient is of ca. 4.6 x 104 cm-1 at a wavelength of 500 nm, 

requiring a film thickness of 650 nm to absorb 95 % of the incident light.67 Thin films of 

pristine Fe2TiO5 have reported photocurrent density values of ca. 0.2 mA cm-2 at 1. 23 VRHE 

(100 mW cm-2, AM 1.5G) and onset potentials of 1.0 VRHE.66 Therefore, the challenge still 

relies on developing pristine nanostructured Fe2TiO5 films that would minimize the poor light 

absorption of this material. Nevertheless, it shows favorable activities when coupled to either 

TiO2 or Fe2O3 to form heterojunctioned photoanodes.68–70 For instance, the PEC improvement 

in Fe2TiO5-TiO2 systems is mainly attributed to enhanced light absorption towards the visible 

region of the solar spectrum, whereas in Fe2TiO5-Fe2O3 heterojunctions the enhancement is 

ascribed to a combination of factors, such as passivation of Fe2O3 trapping surface states with 

Fe2TiO5 and improved charge separation efficiency due to favorable band alignment between 

both oxides.65  

 

Fig. 2-15 Energy band structure of TiO2, Fe2TiO5 and Fe2O3. Reproduced from ref.65 with permission from The 

Royal Society of Chemistry.  
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BiVO4 photoanodes 

BiVO4 is also an attractive material that has been widely studied as a photoanode in PEC 

devices. BiVO4 can exist in three different polymorphs; monoclinic scheelite, tetragonal 

scheelite and tetragonal zircon structures. The band gap of such polymorphs falls within the 

range of 2.4 to 2.9 eV. Among the different polymorphs, monoclinic BiVO4 is the most active 

one for photocatalytic water splitting applications, having a theoretical photocurrent density 

of 7.4 mA cm-2 at 1.23 VRHE and STH efficiency of 9.1%.33,71  

The first use of BiVO4 as a photocatalyst was reported by Kudo et al. where they demonstrated 

its photocatalytic activity under visible light irradiation for O2 evolution under aqueous 

media.72 Since then, BiVO4 has also been investigated as a promising candidate material for 

PEC water splitting.  However, as many other metal oxides, BiVO4 also suffers from several 

drawbacks: it has relatively low IPCE values at low potentials, suffers from fast photocarrier 

recombination due to short electron diffusion length and photocurrent stability is poor due to 

both dissolution of V5+ ions in the solution and surface reactions at the photoelectrode such as 

O2 and H2O2, that act as recombination centres.33,71  

Similar to hematite photoanodes, in order to overcome bottlenecks encountered in BiVO4 

photoanodes researchers are working on modifying its band structure and electronic properties 

by incorporating metal ions into the site of V in within the BiVO4 lattice structure. Among the 

different doping elements that have been studied (Mo6+, W6+, Ta5+, Zr4+, Si4+, Sr2+, Zn2+ and 

Ag+), mainly Mo6+ and W6+ reported an improvement in the PEC performance. Both metal 

ions (Mo6+ and W6+) contributed to an increase in the carrier concentration promoting electron 

transfer from the film onto the substrate and thus giving rise to better PEC performance.38,71 

An interesting study of gradient doping of BiVO4 with W for improved charge separation was 

published by F. F. Abdi et al.73 In the study, they prepared gradient doped W-BiVO4, starting 

from 1 % W at the interface with the back contact to 0 % W at the semiconductor electrolyte-

interface via a spray pyrolysis method. This configuration resulted in band-bending over the 

entire film (bulk and surface) which increased drastically the charge carrier separation 

efficiency, from 38 to 60 % for a homogeneously W-doped and gradient W-doped BiVO4 

photoanode, respectively.   

The poor surface kinetics encountered in BiVO4 photoanodes is usually treated with the load 

of oxygen evolution catalysts. The incorporation of such catalysts reduces the e- and h+ 

recombination and lowers the onset potential of the system. Likewise hematite photoanodes, 

typical oxygen evolution catalysts for BiVO4 also include Co3O4, RhO2, Co-Pi and 

FeOOH/NiOOH.71 The incorporation of these electrocatalysts in the system has successfully 

improved the IPCE performance, lowered the onset potential and improved the PEC 
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photostability of BiVO4 photoanodes.  In fact, one of the highest photocurrent responses for 

BiVO4 achieved so far involved the use of FeOOH/NiOOH as an oxygen evolution catalyst.74 

In this article, Kim et al. reported a photocurrent performance of 1.7 mA cm-2 at 1.23 VRHE 

under 1-sun illumination for undoped BiVO4 photoanode, and a photocurrent performance of 

4.5 mA cm-2 under the same conditions for BiVO4 catalyzed with a dual layer of 

FeOOH/NiOOH as an oxygen evolution catalyst.74 This enhancement in the PEC performance 

was attributed to a reduction of the e- and h+ recombination and shifting of flat band potential 

to lower values. More precisely, FeOOH reduced the interface recombination while NiOOH 

decreased the potential drop at the Helmholtz-layer shifting the flat band potential to lower 

values.  

Enhancement of the e- and h+ separation efficiency giving rise to improved PEC performance 

has also been achieved by designing BiVO4 composite heterojunctions. Some examples of 

these composites include WO3-BiVO4 and SnO2-BiVO4.75,76   

One of the highest PEC performances found in literature for undoped and uncatalyzed BiVO4 

photoanodes was reported by Trzesniewski et al. in 2016.77 In this publication, the authors 

reported a novel method for improving the PEC performance of undoped BiVO4 photoanodes. 

They found that long exposure of BiVO4 photoanodes under AM 1.5 illumination at the open 

circuit potential significantly improved the photoanode performance reaching photocurrent 

density values of 3.3 mA cm-2 at 1.23 VRHE under 1-sun illumination, along with a cathodic 

shift in the onset potential and increased photovoltage. It was found that this method improved 

both surface and bulk properties of the photoanode, most likely due to passivation of surface 

states and photoreduction of V5+ to V4+, respectively. In 2018, H. S. Han et al.78 reported even 

higher PEC performances on BiVO4 photoanodes  by tailoring the surface of BiVO4 so that a 

majority of {0 0 1} facets were exposed to the surface. The resultant photoanode exhibited a 

PEC performance of 3.9 mA cm-2 at 1.23 VRHE, being 15.6 times higher than the PEC 

performance of a randomly oriented BiVO4 photoanode. The PEC enhancement was ascribed 

to an improved charge transfer efficiency. Further improvement in PEC performance was 

achieved after an acid surface etching treatment and Co-Pi loading, obtaining PEC 

performances of 6.1 mA cm-2 at 1.23 VRHE. Overall this publication demonstrated that facet 

engineering can boost significantly the PEC performance of BiVO4 photoanodes. 

WO3 photoanodes 

WO3 has been intensively studied as a photoanode material for PEC devices owing to its 

attractive advantages including chemical stability at pH lower than 7, low band gap (Eg=2.5-

2.8 eV) which accounts for approximately 12 % of the solar radiation on the Earth’s surface, 

and stability against photocorrosion.  Its theoretical photocurrent and STH are of 3.9 mA cm-2 
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and 4.8 %, respectively. The VB of WO3 is well located for the oxygen evolution reaction of 

water (2.8-3.1 VRHE). However, its CB is placed at positive potentials (0.2-0.3 VRHE), therefore 

an external bias is required to trigger the hydrogen evolution reaction.26,38,79,80  An interesting 

feature of WO3 is that it can crystallize in five different polymorphs as temperature increases: 

low temperature monoclinic ε-WO3, triclinic δ-WO3 (from -43 to 17 °C), room temperature 

monoclinic γ-WO3 (from 17 to 330 °C) orthorhombic β-WO3 (from 740 to 1400 °C) and 

tetragonal α-WO3 (from 740 to 1400 °C).81 One of its main disadvantages is that it possesses 

an indirect band gap (more energy is required to generate the electron-hole pair) which often 

requires the preparation of relatively thick films to absorb the maximum possible light. 

Usually, thick films suffer from higher recombination rates of photocarriers, resulting in lower 

efficiencies.82 In order to address some of these issues, research in WO3 photoanodes has also 

been triggered towards the development of new WO3 morphologies, elemental doping, 

heterojunction design and addition of oxygen evolution electrocatalysts to lower the onset 

potential of the oxygen evolution reaction.82  

A relatively easy approach for developing nanostructured WO3 photoanodes is using 

electrochemical deposition methods such as electrochemical anodization and cathodic 

electrodeposition. These deposition methods are cost effective and a wide range of thin film 

WO3 morphologies can be achieved by simply changing the experimental conditions such as 

precursors employed, electrode substrate and applied potential. For instance, in 2011 Fraga et 

al. reported a self-ordered W-WO3 nonporous electrode prepared by anodization of W foil in 

NaF solution (Fig. 2-16a).83 This photoelectrode achieved a photocurrent density of 17 mA 

cm-2 at 1.7 VAg/AgCl under visible light irradiation (420-630 nm). A relevant publication 

combining the effect of nanostructured photoanodes and heterojunctions was reported by Lei 

and Sreekantan in 2013.84 In this publication, however, they grew WO3-TiO2 nanotube 

photoelectrodes using electrochemical anodization for the growth of TiO2 and a wet 

impregnation method for the addition of WO3. Interestingly, the combination of WO3 and the 

large surface area of WO3-TiO2 nanotubes resulted in a 1.5 increase in photocurrent 

performance in comparison with pure TiO2 (Fig. 2-16b). Nevertheless, this article also 

highlights that excess of WO3 loading can be detrimental for the PEC performance owing to 

aggregate formation that can act as recombination sites for photogenerated electrons and holes. 

A widely cited publication in the field of nanostructured WO3 heterojunctions was published 

by Su et al. in 2011.75 In this article the authors also reported the effect that a nanostructured 

BiVO4-WO3 photoanode had on the PEC performance over planar BiVO4-WO3 photoanodes 

and pure WO3 and BiVO4 (Fig. 2-16c). These composites were synthesized using a 

solvothermal method for the growth of WO3 and spin coating for the deposition of BiVO4.  

The outcomes of this publication are twofold: First, an enhancement in the PEC performance 
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for WO3-BiVO4 photoanodes over pure WO3 was observed owing to a better visible light 

absorption for the composite. Second, WO3-BiVO4 photoanodes having a nanorod 

morphology revealed better IPCE performance (from 9.3% to 31%) and better PEC 

performance than planar photoanodes owing to the slower recombination rate of electron and 

holes and better charge transfer in the nanostructured photoanodes.  

 

Fig. 2-16 Nanostructured photoanodes. (a) Nanoporous W-WO3 photoanode, (b) WO3-TiO2 nanotubes and (c)  

WO3-BiVO4 nanorods. Adapted from (a) ref.83, (b)  ref.84 Copyright (2012) Elsevier and (c) ref.75 Copyright (2011) 

American Chemical Society.  

As in the aforementioned semiconductor photocatalysts, another strategy to reduce the onset 

potential of the system and enhance the oxygen evolution reaction is by loading an oxygen 

evolution catalyst on the WO3 photoanode. WO3 is only stable in acid conditions, therefore 

the choice of the electrocatalyst must also meet this requirement. In line with this, typical 

oxygen evolution catalysts for these systems are manganese or cobalt based. In 2011 Liu et 

al. published the design of WO3 photoanode grown by ALD and coated with a Mn-based 

electrocatalyst.85 This coating improved both the stability of WO3 photoanode in neutral pH 

by avoiding a direct contact of the WO3 with the electrolyte and doubled the amount of oxygen 

produced during the water splitting reaction. An example of a cobalt-based electrocatalyst 

deposited on top of WO3 photoanodes was reported by Seabold and Choi.86 In this publication, 

the authors revealed how the loading of Co-Pi electrocatalyst both reduced the onset potential 

and enhanced the PEC performance of the photocatalyst. A common drawback of WO3 

photoanodes is that under light irradiation the photogenerated holes can also be used to form 

peroxo species that tend to accumulate at the surface of the photocatalyst and promote the 

electron and hole recombination which tends to lower the efficiency and stability of these 

photoanodes. However, loading of Co-Pi at the WO3 photoanode favored the oxygen evolution 

reaction of water over the formation of peroxo species, which in turn resulted in a better 

photostability and PEC performance than a non-loaded WO3 photoanode owing to the 

minimization of the electron and hole recombination.  

The low O2 Faradaic efficiency typically obtained in WO3 photoanodes was investigated by  

J. C. Hill and K. Shin Choi.87 They carried out a systematic investigation on the effect of using 

different electrolytes, containing different anions such as acetate, chloride, phosphate, 

perchlorate and sulfate, and cations (Li+, Na+ and K+) at different pH (1, 3 and 5) for the 
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photooxidation of water. In particular, they studied how changing these conditions affected 

the portion of photogenerated holes used for the water oxidation reaction (i.e Faradaic 

efficiency). First, it was concluded that when acetate and chloride were present in the solution, 

oxidation of acetate and chloride took place, suppressing the O2 evolution reaction. 

Alternatively, when a phosphate solution was used mainly O2 and peroxo species coming from 

water oxidation were formed. The amount of O2 evolved increased gradually with increasing 

pH. A similar trend was observed in perchlorate solutions, although the O2 evolution Faradaic 

efficiency was much lower than in the case of phosphate solutions. When sulfate solutions 

were used, photo-oxidation of sulfate to persulfate competed also with O2 evolution and 

peroxo species formation. Interestingly, as pH increased the O2 Faradaic efficiency also 

increased, suggesting an improvement in the kinetics of the O2 evolution reaction. The use of 

different cations also changed significantly the O2 Faradaic efficiency. The highest values 

were obtained when K+ ions were present in solution, whereas the lowest values when Li+ was 

present. This was attributed to the much higher interaction of Li+ to the WO3 surface, which 

blocked active reaction sites for the O2 evolution reaction to occur.  

TiO2 photoanodes 

TiO2 is an n-type semiconductor due to its intrinsic oxygen deficiency in the structure and one 

of the most popular semiconductor materials for water splitting applications. Since the 

discovery of TiO2 as a suitable material for PEC water splitting  in 1972 28 great scientific 

interest and effort have been put in the development of both efficient and stable TiO2 devices. 

TiO2 has a large amount of advantages including good electronic properties, low cost, non-

toxicity and chemical stability in both acid and basic conditions. These features not only make 

TiO2 to be present in many current applications such as paint, tooth paste and sun cream for 

UV protection, but also to be highly appealing for applications in the energy and 

environmental field, such as photovoltaics and photochromic devices, sensing, photocatalysis, 

photocatalytic degradation of organic pollutants and construction materials aiming to oxidize 

the highly toxic nitrogen oxides (NOx) to convert them to NO3
-.88–91  

TiO2 can exist in three different crystalline polymorphs: anatase, rutile and brookite, although 

anatase and rutile are the most relevant in the photocatalysis field. The CB and VB edges for 

TiO2 are well placed for the overall water splitting reaction of water being of -0.2 and +3.0 

VRHE, respectively.92 Among the several advantages reported for TiO2, this material is still far 

away from practical applications in PEC devices due to its low efficiency, which is commonly 

ascribed to photocarrier recombination, but mainly to the reduced use of the solar spectrum. 

The band gap of TiO2 is about 3.2 eV (3.2 eV for anatase and 3.0 eV for rutile), therefore only 

UV light with wavelengths smaller than 380-390 nm can be utilized for photocarriers 
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generation. The UV light contribution of the solar radiation energy is only about 3-5 %, while 

the visible light accounts for 50 % of the spectrum. This implies that only a small fraction of 

the solar spectrum is currently used to activate TiO2 photocatalyst, leading to theoretical 

photocurrent efficiencies of 1.1 and 1.8 mA cm-2, for anatase and rutile, respectively, and STH 

of 1.3 % for anatase and 2.2 % for rutile.26,92,94 

In the following section (Section 2.3.6), the main strategies of semiconductor band gap 

engineering to tackle the aforementioned limitations of TiO2 photoelectrodes are reviewed.  

2.3.6 Band gap engineering of metal oxides 

Band gap engineering relies on the modification of the electronic energy structure of a 

semiconductor in order to promote the development and design of an active photocatalyst 

under visible light irradiation with better charge separation efficiency. There are two main 

strategies to control the electronic energy structure of photocatalysts: composite 

semiconductors (heterojunctions) and cation or anion doping. Although a band gap 

modification does not properly occur in a composite system, they are still described and 

considered in this section due to the enhanced utilization of the solar light that these systems 

can offer.  

2.3.6.1 Composite semiconductors 

Composite semiconductors also known as heterojunctions are a feasible alternative to create 

active visible-light photocatalysts as well as to reduce electron and hole recombination. 

Composite semiconductors consist of coupled photocatalysts with different band gap or CB 

and VB potentials.88,95 Three main types of heterojunction architectures exist, as shown in Fig. 

2-17: Type I (straddling), where the CB of SCII is higher than that of SCI and the VB of SCII 

is lower than SCI. Therefore, holes and electrons will travel to the CB and VB of component 

SCI, and accumulate there. In a type II (staggered) heterojunction, after excitation with light, 

photoexcited electrons will travel from the CB of component SCII to the CB of component 

SCI, whereas holes will travel from the VB of component SCI to the VB of component SCII. 

Finally, a type III (broken) heterojunction is the same as a type II but with a higher difference 

in VB and CB positions.34 
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Fig. 2-17 Type I (straddling), II (staggered) and III (broken) heterojunction architectures. SCI refers to 

semiconductor 1 and SCII to semiconductor II. Semiconductors can be either p-type or n-type. 

In the field of PEC water splitting, heterojunctions are an inherent feature of the process itself. 

In PEC devices, junctions between the electrolyte and the semiconductor material are always 

formed, whereby electron transfer takes place between the electrolyte and the semiconductor 

material resulting in equilibration of the Fermi Level and band bending of the semiconductor, 

as previously described in Section 2.3.1 and 2.3.2. Nevertheless, in this section, 

heterojunctions with enhanced visible light absorption and minimization of electron and hole 

recombination will be reviewed, with special attention to TiO2 based heterojunctions.  

A large amount of semiconductor materials with a smaller band gap than TiO2 such as WO3, 

Fe2O3, CeO2, BiVO4 and MoO3 have successfully been coupled with TiO2 to form 

heterojunctions that provide a synergic effect in improving both photocarriers charge 

separation and visible light absorption. For instance, in regard to WO3-TiO2 heterojunctions 

two relevant publications were reported by J.H Park et al. and W. Smith et al. 96,97 In 2006, 

TiO2 nanotubes were grown using electrochemical anodization and were coated with WO3 

precursor using electrophoresis followed by calcination at 450 C.96 The resultant WO3-TiO2 

nanotubes showed a significant improvement in visible light absorption owing to the presence 

of WO3.  In 2011, two types of nano-shell structures, consisting of WO3 at the core and TiO2 

at the shell and viceversa, were synthesised.97 These structured WO3-TiO2 photoanodes were 

grown on top of indium tin oxide (ITO) using an electron-beam evaporation system. In this 

study the authors found that the best sample was the one where WO3 was at the core and TiO2 

at the shell, showing a much larger absorption in the visible range and better photocurrent 

performance.  
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A few publications have also been reported dealing with the coupling of TiO2 with Fe2O3. For 

instance, a widely cited publication in this field was authored by S. Kuang et al.98  In this 

work, TiO2 nanotubes were prepared by anodization followed by deposition of Fe(OH)3 using 

sequential chemical bath deposition to form Fe2O3-TiO2 nanotubes. Maximum photocurrent 

density values of ca. 0.5 mA cm-2 at 0.1 VSCE were achieved, which outperformed by a factor 

of five pristine TiO2 samples. As in other heterojunctioned systems, this improved PEC 

performance was attributed to the delay in electron and hole recombination (photogenerated 

electrons travel from the CB of TiO2 to the CB of Fe2O3) and improved visible light absorption. 

The coupling of TiO2 with CeO2 has also proven to be successful in both reducing the band 

gap of the material and improving the PEC performance. Recently, Y. Tan et al. designed 

TiO2 nanotubes using electrochemical anodization and incorporated Ce in the form of Ce2O, 

CeO2 and Ce.99 The resultant photoanodes were able to split water at 0 V vs. EOCP (open circuit 

potential). This great achievement was attributed to a better visible light absorption and 

improved electron-hole separation efficiency.  

MoO3-TiO2 heterojunctions have also demonstrated better visible light absorption and 

improved photocatalytic performance over pristine TiO2. For instance, M. Lu et al. reported 

an enhancement in photocatalytic activity towards photodegradation of Rhodamine B for 

MoO3-TiO2 heterojunction over pristine TiO2.100 M. Yang et al. also reported an enhancement 

in photocatalytic performance for MoO3-TiO2 nanotubes prepared using electrochemical 

anodization reaching a photocurrent performance of 200 µAcm-2 at 0.6 VAgCl.101 In 2016, H. 

Liu et al. also published an improvement in the photocatalytic performance of a MoO3-TiO2 

heterojunction over pristine TiO2 when used for photodegradation of Rhodamine B.102 

2.3.6.2 Cation or anion doping 

A well-known method for modifying the electronic structure of a semiconductor to extend its 

visible absorption range is doping, which consists of replacing some elements from the host 

material with external elements. Typically, doping of photocatalysts can be carried out either 

by cation (also known as metal doping) or anion doping and depending on the interaction of 

the external element with the host material, two main electronic band structure modifications 

may occur (Fig. 2-18).26,88,91,95,103,104 In the first case (Fig. 2-18b), the band gap of the 

semiconductor is not modified, but doping introduces additional energy states below and 

above the CB and VB, respectively. Upon light irradiation, these impurity energy levels can 

extend the light absorption towards the visible region of the spectrum, showing an add-on 

shoulder on the absorbance spectrum (Fig. 2-18b) when compared to an un-doped intrinsic 

semiconductor (Fig. 2-18a). Alternatively, doping of a semiconductor can result in a 

modification of the CB and VB due to strong orbital overlap of the dopant with the states that 
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form the edge of the VB and CB,  leading to an overall band gap reduction when compared to 

un-doped semiconductor (Fig. 2-18c). In this situation, a red shift is usually observed in the 

UV-Vis spectrum.26    

 

Fig. 2-18 Schematic of band gap engineering of doped semiconductors. (a) Intrinsic semiconductor, (b) doping- 

induced intraband energy states and (c) doping-induced band gap narrowing. Adapted and reproduced from ref.26 

with permission from The Royal Society of Chemistry.   

Cation doping consists of the replacement of the metal ions present in the semiconductor with 

alternative metals. This metal substitution allows tuning the electronic structure of the 

photocatalyst since impurity energy levels are created within the band gap of the 

photocatalysts, which may result in a diminishment of the band gap facilitating absorption in 

the visible range (Fig. 2-18b,c).95 

There is a bit of controversy in literature in determining whether or not cation doping can 

increase the photocatalytic response in comparison to pristine TiO2. On one hand, cation 

doping can reduce the band gap of the material which helps maximize the light absorption of 

TiO2 in the visible region of the solar spectrum, but on the other hand, cation doping might 

also contribute to the formation of recombination centers for photogenerated electrons and 

holes being detrimental for the photocatalytic performance of the photocatalyst.26,88,95  

In the early 90’s, W. Choi et al. reported the effects of cation doping for the photocatalytic 

activity of TiO2 (colloidal TiO2) using 21 different metals. The authors reported that for a 

better charge transfer of electrons and holes to the surface of the photocatalyst, metal ions 

should be doped near the surface of TiO2 particles since a deep metal-ion doping promotes 
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electron and hole recombination owing to the difficulty for electrons and holes to migrate to 

the interface of the photocatalyst. Furthermore, they also noticed that the concentration of the 

doped metal as well as the ability to trap electrons and holes had a significant effect on the 

photocatalytic activity of doped TiO2. Above an optimum concentration of doped metal, the 

photocatalytic activity decreased due to an increase in electron and hole recombination, 

whereas metals with the ability to trap both electrons and holes enhanced the photocatalytic 

activity. Based on these, among the 21 metals studied, it was found that only Cu and Fe ions 

could be recommended for an improvement of the photocatalytic activity.105  

More recently, researchers argued that the reason behind the poor photocatalytic response of 

some metal-doped photocatalysts was that metals were not actually incorporated into the 

lattice of the photocatalysts (i.e TiO2). Instead, they were impregnated on the surface of the 

semiconductor, resulting in the formation of recombination sites and blocking reaction 

sites.92,106 The substitution of Ti atoms in the TiO2 lattice structure with an external metal 

reduced the band gap of the material without compromising the surface of the photocatalyst.106  

Metal doping of TiO2 has proved to be relatively successful in both enhancing visible-light 

absorption and improving the PEC response for doped-TiO2 photoanodes. For instance, Y. 

Yan et al. reported an enhancement of the PEC performance for photoanodes of Ta-doped 

TiO2 nanotubes in comparison with pristine TiO2. This enhancement in PEC performance was 

attributed to decreased band gap, lower charge transfer resistance and higher charge carriers 

density.107 Along the same lines, W. Zhao et al. successfully demonstrated that Fe-doped TiO2 

also resulted in a better PEC performance than pristine TiO2 which was attributed to a smaller 

band gap and thus better light absorption.108 In 2014, C. Wang studied the effect that different 

metals such as Fe, Mn and Co had on the PEC performance of TiO2 nanorods.109 Among the 

different metals studied, the authors concluded that Fe-doped TiO2 was the most successful, 

being five times higher than pure TiO2, whereas Co-doped TiO2 had the poorest activity, but 

still outperforming pure TiO2. Metal doping of TiO2 with Ni, Ga and Cu-Ni has also been 

recently published, all of them showing an improved photoresponse in comparison with non-

doped TiO2.110–112 In all cases, the PEC improvement was mainly attributed to a decreased 

band gap that promoted better light absorption of the solar spectrum. Very few studies have 

reported Mo-doped TiO2 for PEC water splitting applications. In 2015 T. Zhang et al. reported 

Mo-doped TiO2 photoanodes using a two-step anodization process.113 The authors also 

reported an improvement in PEC performance for Mo-doped TiO2 photoanodes in comparison 

with pure TiO2 attributed to a diminishment in the recombination of electrons and holes due 

to a mixed phase of anatase/rutile and better light absorption.  Furthermore, a larger amount 

of studies dealing with  Mo-doped TiO2 have been focused on photodegradation of organic 

dyes, showing also better photocatalytic response for Mo-doped samples than pure TiO2.114–
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118 In all the aforementioned publications, the substitution of the corresponding metal with the 

Ti atoms in the TiO2 lattice structure was confirmed by different characterization techniques 

such as XRD and XPS, where a shift in peaks ascribed to metal substitution was observed. A 

summary of the PEC performance for the above-mentioned semiconductors along with the 

preparation method is illustrated in Table 2-1. 

Table 2-1 Reported photocurrent performances and preparation method of several metal doped TiO2. 

M-doped 

photoanode 
Preparation 

Photocurrent 

density 

(mA cm-2)* 

Reference 

Ta:TiO2 

TiO2 nanotubes prepared by anodic 

oxidation, and Ta doping using 

magnetron sputtering 

Ta:TiO2 : 0.11 at 

0.6VRHE  

TiO2 : 0.07 at 

0.6VRHE  

107 

Fe:TiO2 Hydrothermal method 
Fe:TiO2 : ~ 2.92  

TiO2 : ~ 0.56  
109 

Co:TiO2 Hydrothermal method 
Co:TiO2 : ~ 0.76  

TiO2 : ~ 0.56  
109 

Mn:TiO2 Hydrothermal method 
Mn:TiO2 : ~1.25  

TiO2 : ~ 0.56  
109 

Ni:TiO2 Anodization 
Ni:TiO2 : ~ 0.84  

TiO2 : ~ 0.47  
110 

Black-Ni:TiO2 Anodization 

Black-Ni:TiO2 : ~ 

4.5  

TiO2 : ~ 0.47  

110 

Gd:TiO2 Anodization 

Gd:TiO2: ~ 5.1  

TiO2 : ~ 3.3  

(UV light, adjusted 

to 100 mWcm-2) 

111 

Cu-Ni:TiO2 Screen printed on FTO 
Cu-Ni:TiO2 : ~ 2.3  

TiO2 : ~ 0.4  
112 

Mo:TiO2 
Anodization and hydrothermal 

synthesis 

Mo:TiO2 :  ~ 0.8 

TiO2 : ~0.4  
113 

* Reported photocurrent density value at 1.23 VRHE under 1 sun illumination (AM 1.5G, 100 mW cm-2) 

unless otherwise stated. 

Anion doping is another alternative approach to form visible-light driven oxide 

photocatalysts. Typically, the top of the VB of an oxide photocatalysts consists of O 2p atomic 

orbitals coming from the oxide lattice structure.  The substitution of some of these oxygens in 

the oxide lattice with anions such as N, S or C results in a mixing of O 2p orbitals with p states 

of doped anions that shifts the VB edge upward and narrows the band gap energy of the 

photocatalyst (Fig. 2-18c).95 Alternatively, anion doping may also add additional energy levels 

in within the band gap of the semiconductor without altering the band gap of the host material, 

as demonstrated by J. Wang et al. in N-doped TiO2 (Fig. 2-18b).119 Unlike cation or metal 

doping, anions are less likely to form recombination centers and seem to be more effective to 

enhance the photocatalytic activity in the visible region of the spectrum.91,95,103 
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Like metal doping, anion doping has also been proved to be successful in the development of 

visible light semiconductors and in the enhancement of the PEC performance of TiO2 

photoanodes.  One of the most common visible-light driven photocatalyst is nitrogen-doped 

(N) TiO2 and it was first reported by S. Sato in the form of NOx-doped TiO2 in 1986.120 

However, it was not until 2001 when researchers started to consider N-doped-TiO2 as a 

promising material in photocatalytic applications. In this year, R. Asahi et al. demonstrated 

an improvement in the photocatalytic activity of N-doped TiO2 for photodegradation of 

methylene blue and gaseous acetaldehyde owing to band gap narrowing.121 Although a large 

number of N-doped-TiO2 publications dealt with powdered photocatalysts suspended in 

aqueous solutions, a certain amount of publications have also reported an improvement in N-

doped-TiO2 photoanodes for PEC water splitting applications over pristine TiO2. For instance, 

in 2016 Y. Ding and P. Nagpal reported an enhancement in the PEC performance for N-doped 

TiO2 and C-doped TiO2 nanotubes in comparison with pure TiO2 nanotubes attributed to a 

better light absorption and increased charge-transfer rate over pure TiO2.122 S. Hejazi et al. 

also concluded that N-doped-TiO2 nanotubular photoanodes contributed to a better PEC 

performance over un-doped TiO2.123 Other publications by J. Cao et al.124 and K. Ranganathan 

et al.125 also proved a better PEC performance for N-doped-photoanodes. The PEC 

performance of some of these N-doped TiO2 photoanodes along with their preparation method 

is listed in Table 2-2. 

Similar to N doping, carbon (C) doping has also proved to improve the PEC performance of 

un-doped TiO2 photoanodes. However, the number of publications is much smaller than N-

doped TiO2. A highly relevant and cited publication for C-doped TiO2 was published by J. 

Park et al. in 2005.126 In this publication the authors synthesized C-doped-TiO2  nanotube 

arrays via the electrochemical anodization technique. For comparison, they also prepared un-

doped TiO2 nanotube arrays. It was found that C-doped TiO2 nanotubes had a much higher 

PEC performance than un-doped TiO2. The authors attributed this improvement to a combined 

effect of decreased band gap and morphology. A summary of PEC performances is listed in 

Table 2-2. 

Table 2-2 Reported photocurrent performances and preparation method of several anion doped TiO2. 

A-doped photoanode Preparation 
Photocurrent density 

(mA cm-2)* 
Reference 

N:TiO2 Anodization 
N:TiO2 :  ~ 0.17  

TiO2 : ~ 0.045 
122 

C:TiO2 Anodization 
C:TiO2 :  ~ 0.07  

TiO2 : ~ 0.045 
122 

N:TiO2 Anodization 
N:TiO2 :  ~ 0.8  

TiO2 : ~ 0.2 
123 

N:TiO2 
Pulsed laser 

deposition 

N:TiO2 : ~  0.4  

TiO2 : ~ 0.1 
124 
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N:TiO2 Doctor Blading 
N:TiO2 : 0.15  

TiO2 : ~ 0.06  
125 

Ni-C-N:TiO2 Anodization 

Ni-C-N:TiO2 : ~ 0.250  

TiO2 : ~ 0.01  

 

127 

C:TiO2 Anodization 
C:TiO2 : ~ 1.8  

TiO2 : ~ 0.8  
128 

*Reported photocurrent density value at 1.23 VRHE under 1 sun illumination (AM 1.5G, 100 mW cm-2) 

unless otherwise stated. 

2.3.7 Nanostructured materials 

Over the last decade, nanostructured materials have made important progress and many 

materials such as TiO2 or Fe2O3 have shown significant improvements in their performance 

when compared to dense and flat films. In this section, the main advantages and disadvantages 

of nanostructured materials, with a special focus on TiO2 photoanodes are reviewed.  

Nanostructured materials offer shorter pathways for charge carrier collection. This means 

that upon light excitation, photogenerated carriers have to travel either to the semiconductor-

electrolyte interface of the photoelectrode or to the back contact to reach the external circuit 

and perform the water splitting reaction. The longest distance that photocarriers have to travel 

to reach the surface (L), relies upon the depletion layer width (W) and the charge carrier 

diffusion distance (LD).  Therefore, if a nanostructure can be engineered so that L is shorter or 

equal to the sum of W and LD the likelihood of photocarriers recombination reduces and the 

charge collection efficiency improves. Fig. 2-19 shows a schematic representation of a 

photoelectrode comparing a flat and compact surface (Fig. 2-19a) with a nanostructured one 

(Fig. 2-19b). In a flat film, only photocarriers generated close to the semiconductor-electrolyte 

interface will avoid recombination, whereas those formed far from the surface will most likely 

recombine before reaching the surface-electrolyte interface. Alternatively, in the case of 

nanostructured photoelectrodes, regardless of where the photocarriers are generated the 

distance to reach the surface-electrolyte interface will always be shorter or equal than L, 

minimizing the probability of photocarrier recombination and increasing the amount of 

photocarriers reaching the surface.15,51,129  
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Fig. 2-19 Schematic diagram showing the photocarriers pathway in (a) flat film and (b) nanostructured film. W and 

LD refer to the width of the space charge layer and the charge carrier diffusion length, respectively. Adapted from 

ref.130 Copyright (2011) Elsevier.  

An additional advantage of nanostructured over bulk or flat photoelectrodes is their higher 

surface area. If the surface area is high, a larger number of photocarriers reach the 

semiconductor-electrolyte interface, promoting enhanced charge transfer and maximizing the 

photocurrent performance of the devices. In other words, this allows water redox reactions to 

occur at much lower voltages which could potentially avoid the need of expensive co-

catalysts.51 Nevertheless, increasing the surface area might also imply an increase in the 

number of surface defects, that could eventually act as photocarrier recombination centers.  

Additionally, since in a PEC process the reaction takes place at the semiconductor-electrolyte 

interface, tailoring the nanostructure of the material so that its most photocatalytically active 

facet is exposed at the surface could enhance, even more, the photocurrent performance of the 

device.129 For instance, anatase TiO2 crystals grow predominantly with {1 0 1} facets exposed, 

being the most stable surface, as shown in Fig. 2-20.131  Recently, research has shown that the 

most photocatalytically active facets for anatase TiO2 are {0 1 0} and {0 0 1}, therefore there 

are numerous research efforts in growing nanostructured anatase TiO2 crystals with those 

specific facets exposed.129,131–133 

 

Fig. 2-20 Equilibrium shape of anatase TiO2 crystals and evolved shapes. Reprinted with permission from ref.131 

Copyright (2014) American Chemical Society.  
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Another benefit of nanostructuring is the higher light absorption. Although the absorption 

coefficient (-1) of a material is independent of its nanostructure, the high aspect-ratio of 

nanostructured materials facilitates absorption of light that has been previously scattered from 

the material, as shown in Fig. 2-21b. Conversely, on a flat surface, the scattered light is lost 

due to direct reflection from the flat surface (Fig. 2-21a).  

 

Fig. 2-21 Light distribution in (a) flat and (b) nanostructured film. d and -1 refer to film thickness and optical 

penetration depth, respectively. Short arrows stand for scattered or reflected light. Reproduced from ref.51 with 

permission from The Royal Society of Chemistry.   

Finally, one of the main disadvantages of nanostructuring is the possibility of reducing the 

depletion layer thickness or space charge layer. Typically, to reduce photocarriers 

recombination, the space charge layer must be at its maximum. This is mainly because of the 

electric field formed within the space charge layer, which is responsible for triggering the 

photocarriers either at the surface or back contact of the photoelectrode for the water splitting 

reaction. Therefore, when engineering a nanostructure, if the nanomaterial is smaller than the 

depletion layer an increase of photocarrier recombination may be observed due to difficulty 

of charge separation.  

Overall, even though some disadvantages may exist in nanostructured materials, their 

numerous advantages prevail and indeed have resulted successful in improving the PEC 

performance of many materials such as Fe2O3 and TiO2. 56,134,135  

Table 2-3 lists characteristics of nanostructured TiO2 photoanodes for PEC water splitting 

applications from some of the most relevant recent publications. The preparation method, the 

nanostructure obtained along with the corresponding figures of merit (photocurrent density 

and IPCE) are presented and summarized. The hydrothermal/solvothermal method is one of 

the most employed methods for the fabrication of nanostructured TiO2 photoanodes, although 

mainly rutile TiO2 is obtained. On the other hand, there is a lack of high-performing TiO2 

photoanodes prepared using CVD methods and variants, such as AACVD or MOCVD, for 

PEC applications. The mechanism and parameters influencing the morphology during an 

AACVD process will be discussed in detail in Chapter 3. The highest photocurrent density 

values are primarily obtained for both rutile TiO2 and rutile/anatase TiO2 heterojunctions 
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having nanorod/nanowire structures, where a PEC performance of ~ 2.6 mA cm-2 has been 

achieved. 136,137 The highest reported photocurrent density value for pure anatase TiO2 is of 

1.59 mA cm-2, but it must be noted that IPCE values were not reported for this sample.138    

Table 2-3 Summary of crystal phase, preparation method, nanostructure, photocurrent density and IPCE of pristine 

TiO2 photoanodes reported in literature.  

TiO2 

crystal 

phase 

Preparation Nanostructure 

Photocurrent 

density 

(mA cm-2)a 

IPCE 

at 350 

nmb 

Reference 

Anatase 

and rutile 
MOCVD dendritic ~1.2c 85 139 

Anatase AACVD 
cauliflower-

structured 
~0.16 n/a 140 

Rutile hydrothermal branched nanorods ~ 0.85 
~57 at 

0.6VRHE 
141 

Anatase 

and rutile 
drop casting nanowires ~ 2.6 ~ 90 136 

Anatase 
electrochemical 

anodization 
nanotubes ~ 0.90 ~ 35 142 

Rutile hydrothermal nanowires ~ 0.80 ~ 90 143 

Rutile 

(hydrogen 

treated) 

hydrothermal nanowires ~ 2.5 

~ 100 

at 

0.4VRHE 

137 

Rutile hydrothermal nanowires ~ 0.70 

~ 40 at 

1.5 

VRHE 

144 

Anatase 
electron-beam 

evaporation 
nanorods ~ 0.015 

~ 79 at 

1.6 

VRHE 

145 

Anatase anodization nanopore/nanotube 1.59 n/a 138 

Rutile hydrothermal nanorods 0.98 n/a 146 

a Reported photocurrent density value at 1.23 VRHE under 1 sun illumination (AM 1.5G, 100 mW cm-2) 

unless otherwise stated. 

b IPCE measured at 1.23 VRHE unless otherwise stated.  

c Theoretical photocurrent calculated by integrating IPCE spectra.  
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2.3.8 Polyoxotitanium oxo/alkoxy clusters as TiO2 precursors 

Polyoxotitanium oxo/alkoxy (POT) clusters (also known as cages) are compounds of the type 

of [TiXOy (OR)Z] consisting of TiXOy inorganic titanium oxide cores encapsulated within an 

organic alkoxy ligand periphery (OR).147 These compounds are of great interest because they 

are considered both as models for studying the structural chemistry of bulk TiO2 and as TiO2 

precursors after a controlled calcination process, as shown below: 

 

 

2-14 

Conversely to bulk TiO2, they are very soluble in many organic solvents such as toluene and 

tetrahydrofuran (THF), facilitating its characterization via NMR or mass spectrometry 

techniques. Furthermore, they can be easily characterized by single-crystal X-Ray diffraction, 

which allows a simple correlation with the structural features of bulk TiO2 (anatase and 

rutile).148 

An additional advantage of these POT clusters is the facile modification of their chemical 

structure. For instance, a dopant metal can be easily incorporated into the POT structure to 

form metal-doped polyoxotitanium (HM-POT) cage/cluster also known as heterometallic 

polyoxotitanate cage. These HM-POT cages having the structure of [TiXOy(OR)ZMnXm], 

where M is a metal and L an halide, are highly appealing for photocatalytic applications since 

they can act as a single source precursors (SSP) for metal-doped TiO2 (TiO2(M)) leading to 

the potential synthesis of active visible light photocatalysts.147,149,150 
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Two key concepts must be taken into account when dealing with the use of POT cages for the 

formation of TiO2: The condensation number, which defines the ratio of the number of Ooxo:Ti 

atoms in the TixOy core (y/x) and measures the degree to which the TixOy core of a cage 

approximates to the composition of bulk TiO2, and the cage nuclearity, which is the total 

number of Ti atoms in the structure.147 Slightly modified definitions of the condensation 

number and cage nuclearity are used for the case of HM-POT cages. In these systems, the 

condensation number is defined as the ratio of the number of [(Ooxo)/(Ti+M)] atoms, whereas 

cage nuclearity refers to the total number of Ti + M atoms.147  Therefore, the higher the 

condensation number and cage nuclearity the easier the synthesis of TiO2 and TiO2(M).  

In 2014, P. Coppens et al. studied the relationship between the condensation number and cage 

nuclearity from a list of reported polyoxotitanium clusters with nuclearity values equal to or 

greater than 11 (Fig. 2-22). No clear trend was observed when plotting condensation vs. 

[TixOy(OR)z]
H2O

-Z ROH

calcination
TiO2

[TixOy(OR)zMnXm]
H2O

-Z ROH

calcination
TiO2(M)
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nuclearity for the clusters studied (Fig. 2-22a).148 However, when the plot was performed from 

classifying the different alkoxide ligands forming the cluster a relationship emerged (Fig. 

2-22b). Clusters consisting of ethoxy (OEt) terminated clusters showed relatively low 

condensation numbers, whereas for clusters consisting of larger ligands such as isopropoxy 

(OiPr), higher condensation numbers were achieved. The authors attributed this phenomenon 

to the effect of steric repulsion in the coordination shell of larger alkoxide ligands.148 

 

Fig. 2-22 Nuclearity versus condensation ratio for a list of polyoxotitanium clusters with nuclearity values 11. (a) 

No distinction between alkoxides groups and (b) for ethoxy and isopropoxy-substituted polyoxotitanate cluster. 

Reprinted with permission from ref.148 Copyright (2014) American Chemical Society.  

Nevertheless, a much clear correlation between the modified condensation number and metal 

nuclearity was observed in HM-POT clusters, as shown in Fig. 2-23. 

 

Fig. 2-23 Graph of number of metal atoms (x + n) in a structurally characterized HM-POT cages [TixOy(OR)zMnXm] 

vs. the modified condensation number (y/ (x + n)). The best fit line (in red) has been drawn so that it tends to zero 

as the condensation number tends to 0 and tends to 2.0 as the condensation number tends to infinity. Reproduced 

from ref.147 with permission from The Royal Society of Chemistry.    

POT and HM-POT cages can be synthesized via either a sol-gel or solvothermal synthesis. 

Typically, a sol-gel approach involves a nucleophilic reaction of metal-alkoxides (Ti(OR)4) 
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with H2O. The water is usually supplied by adding traces of water to the reaction mixture or 

from a by-product of an esterification reaction of, for instance, acetic acid and ROH. A 

common reaction pathway proposed in the literature is described below, in which the degree 

of polymerization (n) depends on the initial [H2O]/Ti(OR)4 ratio.148  

 
 

2-16 

 
 

2-17 

The incorporation of additional functional groups into the titanium oxo cluster,  to synthesize 

for example HM-POT cages via a sol-gel approach, is usually carried out in one pot synthesis 

or by grafting the ligand in a pre-formed cluster.93  

Alternatively, POT and HM-POT cages can also be synthesized by solvothermally treating 

titanium (IV) alkoxides (Ti(OR)4) in the presence of the corresponding alcohol (ROH) as a 

solvent (POT), or by adding a metal dopant precursor in the previous reaction mixture (HM-

POT), as described below:147  
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These POT and HM-POT cages offer different nuclearities, spatial arrangements, and bond 

types depending on the precursors used during their solvothermal preparation, since they 

direct the path to obtain thermodynamically stable cages. The integrity and high purity 

obtained for these cages make them promising candidates as a single source precursor (SSP). 

Examples of the structure of some of these cages are shown in Fig. 2-24.  

Ti(OR)4 + H2O Ti(OR)3OH + ROH

nTi(OR)3(OH)+ TinOm(OR)4n-2m
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nTi(OR)3(OH)+ TinOm(OR)4n-2m

Ti(OR)4

ROH

D

[TixOy(OR)z]

Ti(OR)4

ROH

MXw D

[TixOy(OR)zMnXm]

Ti(OR)4

ROH

D

[TixOy(OR)z]

Ti(OR)4

ROH

MXw D

[TixOy(OR)zMnXm]



 

 

 

49 

 

Fig. 2-24 Structures of (a) [Ti28O38(OEt)38(EtOH)1.4CeCl], (b) [Ti16O16(OEt)32] and (c) [{Ti4Mo2O8(OEt)10}2]. 

Adapted from (a) ref. 151 with permission from The Royal Society of Chemistry (b) ref.152 Published by The Royal 

Society of Chemistry and (c) ref.149 Copyright (2011) American Chemical Society.   

POT and HM-POT cages as SSP have been mainly studied in the field of photodegradation of 

pollutants and photochemical water oxidation/reduction. In 2013 Y. Lv et al. reported the use 

of [Ti28O38(OEt)38(EtOH)1.4CeCl],  [Ti8O7(HOEt)(OEt)21Ce] and [Ti2O(OEt)8(EtOH · CeCl)]2 

as SSP for ceria doped TiO2 in the form of TiO2(Ce3+) and Ce2Ti2O7 for photocatalytic 

degradation of Rhodamine B under visible light.151 In their work, Ce-doped TiO2 and Ce2Ti2O7 

particles were prepared by dissolving the corresponding cage in ethanol followed by 

calcination at 150 °C in air.  Results indicated that the higher photocatalytic activity towards 

photodegradation of Rhodamine B was for the Ce2Ti2O7 sample. This was attributed to a lower 

band gap that resulted in higher absorption in the visible region of the spectra. Recently, W. 

Luo and G. Ge reported the use of Ti6O3(OOCCH2COO)2(OiPr)14 and 

Ti6O3(OOCC2H4COO)2(OiPr)14 POT cages for photodegradation of methyl orange under UV 

light with the assistance of H2O2.153 The authors dispersed microcrystals in an aqueous 

solution of methyl orange. It was found that Ti6O3(OOCC2H4COO)2(OiPr)14 had the highest 

photocatalytic activity.  

In 2013, Wu et al. reported for the first time two metal-phenanthroline substituted HM-POT 

cages, [Ti17O28(OiPr)16(CoIIphen)2] and [Ti17O28(OiPr)18(CdIIphen)2] using a solvothermal 

process. These two cages were successfully deposited on indium tin oxide (ITO) coated glass 

by a solution coating method followed by evaporation at room temperature. Interestingly,  

PEC measurements of these films revealed a photocurrent of -0.4 µA for 

[Ti17O28(OiPr)16(CoIIphen)2], whereas a much lower signal was obtained for 

[Ti17O28(OiPr)18(CdIIphen)2].154  Along the same lines, HM-POT cages were also studied as 

SSP for the formation of CoOx water oxidation electrocatalysts using 

[Ti12O15(OiPr)17]+[(CoBr)6Ti15O24(OiPr)18(Br)]- and (CoI)Ti11O14(OiPr)17 cages.155 Electrodes 

of these POT cages were prepared by a drop-casting method on top of FTO-coated glass. It 

was found that the performance of this Co-electrocatalyst was comparable to the well-known 
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water oxidation electrocatalyst (Co-Pi) reported by Nocera, and widely used for improving 

the PEC performance.156 In 2014, Y. Lin et al. reported the use of Ti6O4(OEt)-

4(OPri)4(OOCC6H5)8, Ti6O4(OEt)8[OOC(CH3)3]8 and Ti6O4(OCH3)8[OOC(CH3)3]8 oxo cages 

for photocatalytic hydrogen production in water suspensions using methanol as a hole 

scavenger and UV irradiation.157 These clusters achieved H2 production rates of 383.6, 258 

and 279.7 mmol h-1 g-1, respectively. Similarly, in 2016 W. H. Fang et al. synthesized the 

largest titanium oxo cluster ever reported (3.6 nm), with a chemical formula of Ti52(μ-OH)2(μ-

O)14(μ3-O)50(μ4- O)8(PA)34(OiPr)28 (HPA= propionic acid).158 This cluster was synthesized 

following a solvothermal reaction. Additionally, it showed good stability in both alkaline and 

acidic aqueous suspensions for at least 24 h. This high stability was most likely attributed to 

the protection effect of large organic ligands surrounding the core of the cluster.  Once tested 

for photocatalytic H2 production in the presence of a hole scavenger (methanol) and under UV 

light it reached H2 production rates of 398 mol h-1 g-1.  

A photoelectrode for water oxidation application using [Ti2(OEt)9(NiCl)]2 cage was reported 

by Y. Lai et al. in 2013.159 In this publication, the authors deposited [Ti2(OEt)9(NiCl)]2 on top 

of a nanostructured WO3 photoanode using a drop-casting method. Hydrolysis and 

polycondensation of the cage gave rise to amorphous TiO2, which helped to stabilize WO3 and 

NiOx that was acting as an electrocatalyst for the system. Photocurrent measurements under 

solar light irradiation (1 sun, AM 1.5G) showed a photocurrent of around 200 µA cm-2 at 

0.94 VRHE for the photoanode. Along the same lines, J. Hou et al. synthesized two benzene 

dicarboxcylate (BDC) and salicylate (SAL) substituted POT cages Ti13O10-(o-

BDC)4(SAL)4(OiPr)16 and Ti13O10(o-BDC)4(SAL-Cl)4(OiPr)16.160 These POT cages were 

deposited on ITO-coated glass and annealed at three different temperatures; room temperature, 

280 and 500 °C. The film prepared at room temperature had the same composition and 

structure as the starting cage, whereas at 280 °C the organic components of the cage were lost 

and at 500 °C the POT cage was transformed to anatase TiO2. PEC studies indicated that the 

highest photocurrent was obtained for the sample annealed at 500 °C, reaching a photocurrent 

value of 5 µA cm-2 using a xenon lamp without any filter.  

More recently, S. Eslava et al. reported the use of Ti16O16(OEt)32  and graphene oxide (GO) 

for the synthesis of TiO2 nanoflakes to be used for photocatalytic hydrogen production in 

aqueous suspensions using methanol as a hole scavenger.152 These TiO2 nanoflakes increased 

by a factor of five the amount of solar hydrogen produced in comparison to standard TiO2 P25. 
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Chapter 3. Aerosol-assisted chemical vapor deposition: Processes 

and influence of deposition parameters on the morphology of the 

films  

In this chapter, fundamentals and mechanisms of chemical vapor deposition (CVD) and 

aerosol-assisted chemical vapor deposition (AACVD) for thin films preparation are presented. 

A literature review highlighting the main deposition parameters of AACVD (precursor, 

temperature, solvent and substrate) with greatest influence on the final morphology and 

nanostructure of the film are discussed and reviewed in detail.  

3.1 Fundamentals of CVD and AACVD systems 

Chemical vapor deposition (CVD) is a deposition technique that has been widely used for the 

formation of thin solid films on substrate materials, since it offers good film uniformity, 

composition control and excellent step coverage. As its name suggests, this deposition method 

involves a chemical reaction of vapor-phase precursors, through several key steps, 

summarized in Fig. 3-1. First, precursor molecules are transported into a heated reaction 

chamber by means of either an inert carrier gas (argon or nitrogen) or vacuum (1). Once in the 

reaction chamber, weak physisorption of precursor molecules on the substrate surface’ occurs 

along with gas-phase reactions to produce reactive intermediates and gaseous by-products (2-

4). Further transport of atoms across the surface leads to nucleation and surface chemical 

reactions for film growth (5-6). Finally, desorption and mass transport of remaining 

decomposition by-products (7-9) allows the formation of films of the desired material.161,162  

 

Fig. 3-1 Schematic diagram showing the main steps in a conventional CVD process. Adapted from ref.163 Copyright 

1969 Springer Nature.  

The first industrial application of CVD was reported in 1893, where Lodyguine patented the 

deposition of W onto carbon lamp filaments.164 Around that period, CVD processes were 
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widely used in industry, mainly in the field of extraction and pyrometallurgy for the production 

of high purity refractory metals such as Ti and Ni, as shown below:165 

 𝑇𝑖𝐼4
1200 °𝐶
→      𝑇𝑖 + 2𝐼2  (𝑇ℎ𝑒 𝑉𝑎𝑛 𝐴𝑟𝑘𝑒𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) 

 
3-1 

 𝑁𝑖(𝐶𝑂)4
150°𝐶
→    𝑁𝑖 + 4𝐶𝑂 (𝑇ℎ𝑒 𝑀𝑜𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) 3-2 

   

However, it was not until the last 50 years that CVD technology took a new perspective and 

started to focus on the deposition rather than extraction process of metals. This new approach 

made CVD technology to become pioneer in coating technologies with a wide range of 

applications such as fabrication of electronic and optoelectronic devices, surface modification 

coatings, ceramic fibers and gas sensors.162,165 

CVD technology has attracted great interest from the scientific community, especially in the 

semiconductor field due to its abundant advantages. It can produce highly dense and pure 

materials, and produced films are uniform with good reproducibility. Furthermore, surface 

morphology, crystallinity and orientation of the films can be easily controlled, facilitating to 

meet the targets for each specific application.165 However, one of its main disadvantages is 

that only chemical precursors which are volatile and thermally stable can be used in 

conventional CVD process, limiting the range of precursors that can be investigated.162,165,166 

In this regard, several CVD variants such as plasma enhanced CVD (PECVD), atmospheric 

pressure CVD (APCVD), metal organic CVD and aerosol-assisted CVD (AACVD) have been 

developed in the past years, so that a wider span of materials and films could be deposited 

depending on the process employed.165 In this chapter, AACVD will be the only technique 

reviewed, being the primary scope of this thesis.  

In an AACVD process chemical precursors are dissolved in a solvent from which an aerosol 

is generated and transported to the reactor chamber by a carrier gas. This holds out the 

advantage that chemical precursors used do not need to be volatile, but soluble in any solvent 

from which an aerosol could be easily generated.162,166 This benefit over conventional CVD 

systems allows a wider choice and availability of chemical precursors used for the production 

of high-quality thin films and facilitates the delivery and vaporization of precursors.166 A 

schematic diagram of an AACVD process, summarizing the main steps is shown in Fig. 3-2.  
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Fig. 3-2 Schematic diagram summarizing the main steps and process involved in AACVD. Adapted from ref.162 

with permission from The Royal Society of Chemistry.  

Briefly, in an AACVD deposition process the chemical precursors are dissolved in a solvent 

from which an aerosol is generated via either an ultrasonic aerosol generator, pneumatic 

aerosol Jet or electrostatic aerosol atomizer.166 The ‘precursor mist or aerosol’ is then 

transported to the heated reactor chamber by a carrier gas, usually argon or nitrogen, although 

compressed air can also be used for the deposition of some oxide products.166 Once the 

‘precursor mist’ is in the heated reactor chamber, the solvent undergoes rapid 

evaporation/decomposition (1-2), leaving the vaporized precursor in its gaseous state, which 

decomposes/react to form the desired film (3). The film can be formed either via a 

heterogeneous or homogeneous reaction or a combination of both (3). Typically, in a 

heterogeneous reaction system the vaporized precursor suffers from preliminary 

decomposition in the gas phase. The resultant intermediate products are then adsorbed on the 

surface of the heated surface undergoing chemical reactions/decomposition to form the 

desired film. Alternatively, homogeneous reaction processes occur when the temperature of 

the reactor chamber is too high. Under these conditions, vaporized precursor 

decomposes/reacts primarily in the gas phase giving rise to the formation of films with very 

fine particles and structures. 162,166 Finally, diffusion of by-products to the exhaust system 

occurs (4).   

3.2 Influence of deposition parameters on the morphology of the films 

AACVD is a versatile technique in which film growth can be easily controlled by varying 

different experimental parameters such as precursor, temperature, solvent and substrate used. 

By changing these parameters, deposition conditions are modified giving rise to thin films 

with different morphologies, nanostructures and eventually material properties. This control 

over the morphology of the films is of special interest in PEC applications, in which 

nanostructured devices tend to offer better performances than flat films, as briefly discussed 

in Chapter 2.51,167 In this regard, AACVD emerges as a promising deposition method for the 
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design of efficient nanostructured thin films for PEC applications. In the following sections, 

the main four parameters affecting the morphology and growth of the films will be discussed 

along with relevant examples.  

3.2.1 Precursor 

The choice of the chemical precursor plays an important role in the final morphology of the 

film. AACVD of different precursors under the same experimental conditions (i.e same 

deposition temperature, substrate, flow and carrier solvent) leads to films with different 

morphologies due to different reaction/decomposition paths of each chemical precursor during 

the deposition process. For instance, S. Basharat et al. demonstrated that when preparing 

Ga2O3 from a mixture of [Ga(NMe2)3]2 and ROH (R = CH2CH2NMe2, CH(CH2NMe2)2, 

CH(CH3)CH2NMe2, CH2CH2OMe and C(CH3)2CH2OMe)) in toluene at 550 C different 

morphologies were obtained.168 When a mixture of [Ga(NMe2)3]2 with HOCH(CH2NMe2)2 

was deposited spherical particles were obtained (Fig. 3-3a) whereas when 

HOCH(CH3)CH2NMe was used a snowflake-like morphology was observed (Fig. 3-3b). Post-

annealing in air at 600 °C for 24 h ([Ga(NMe2)3]2 with HOCH(CH2NMe2)2) resulted in films 

with similar morphology but larger particle size (Fig. 3-3c,d).  

 

Fig. 3-3 SEM micrographs of as-deposited Ga2O3 films deposited at 550 C in toluene on a SiCO coated float- 

glass substrate. Films were deposited from a mixture of [Ga(NMe2)3]2 with (a) HOCH(CH2NMe2)2 and (b) 

HOCH(CH3)CH2NMe. SEM micrographs of post-annealed film at 600 C for 24 h of [Ga(NMe2)3]2 with 

HOCH(CH2NMe2)2 at (c) 9,000 and (d) 50,000 magnification. Adapted and reproduced from ref.168 with 

permission from The Royal Society of Chemistry. 

Likewise, H. Kim et al. reported that when using different WOx precursors completely 

different morphologies were achieved.169 Fig. 3-4 shows SEM micrographs of W18O49 films 

prepared using WO(OCH3)3(acac) and WO(OCH2C(CH3)3)3(dpm) as WOx precursors under 

the same experimental deposition conditions. It was found that when using WO(OCH3)3(acac) 

nanorod-like structures were formed (Fig. 3-4a-b), whereas when WO(OCH2C(CH3)3)3(dpm) 

was used a combination of nanorods and 3D-dendritic like structures were obtained (Fig. 3-4 

c-d), suggesting the presence of nucleation sites along the nanorods.   
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Fig. 3-4 SEM micrographs of W18O49 films deposited from (a-b) WO(OCH3)3(acac) and (c-

d) WO(OCH2C(CH3)3)3(dpm) at 550 C in diglyme. Adapted and reproduced from ref.169 Copyright 2012 

Electrochemical Society.   

As for WOx precursors, when a variety of PbS precursors were used for AACVD deposition 

of PbS films, different nanostructures were attained (Fig. 3-5).170 For instance, 

when [Pb(S2CNMeBenzyl)2] was used large cubes and rods of ca. 10 m were obtained (Fig. 

3-5a), whereas when [Pb(S2CNMehep)2] was used plate-like morphologies of ca. 8 m were 

formed (Fig. 3-5b).  

 

Fig. 3-5 SEM micrographs of PbS thin films deposited from (a) [Pb(S2CNMeBenzyl)2] and (b) [Pb(S2CNMehep)2] 

at 525 C in toluene. Adapted and reproduced from ref.170 with permission from The Royal Society of Chemistry.   

AACVD has also been widely used for the synthesis of doped metal oxides, such as Mg or W-

doped TiO2.171,172 To achieve that, a mixture of chemical precursors containing the chemical 

precursor of the desired metal oxide along with small amounts of the dopant precursor were 

added into the reactor chamber to obtain (un)doped-metal oxide thin film. In this regard, since 

the mixture involves different precursors, different morphologies were usually obtained for 

the doped and undoped metal oxide films due to different reaction/decomposition paths of the 
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mixture. For instance, S. Shakir et al. reported Mg-doped TiO2 photoanodes grown by 

AACVD.171 The authors found that when Mg precursor was added in the reaction mixture 

films were significantly more porous than undoped TiO2 films (Fig. 3-6).  

 

Fig. 3-6 Low (a-c) and High (a1-c1) resolution SEM micrographs of (a, a1) un-doped TiO2, (b, b1) 1 % mol Mg- 

doped TiO2 and (c, c1) 2 % mol Mg- doped TiO2. All films were deposited at 450 C for 2 h from a mixture of 

titanium isopropoxide and Mg(NO3)2. 6H2O (dopant source) in methanol. Reproduced from ref.171 Copyright 2017 

Elsevier.  

Similarly, when adding W(OEt)5 in a solution of Ti(OEt)4 for the preparation of W-doped 

TiO2 films, films consisting of compact domes (Fig. 3-7a) that gradually transformed to 

pyramidal-like features (Fig. 3-7b-f) after incorporation of W(OEt)5 in the reaction mixture 

were formed.172 
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Fig. 3-7 SEM micrographs of (a) un-doped TiO2 and (b-f) W-doped TiO2 with varying atomic percentages of W, 

from 0.63 to 4.65 %. All films were deposited from a mixture of Ti(OEt)4 with dopant amounts of W(OEt)5 in 

toluene. Deposition was performed at 500 C for 45 min. Reproduced from ref. 172 by Scientific Reports.  

3.2.2 Temperature 

The deposition temperature during an AACVD process can also affect significantly the 

microstructure of the film due to different decomposition/reaction paths of the chemical 

precursor. As mentioned in Section 3.1, if deposition temperature is too high films usually 

tend to form primarily due to homogeneous nucleation of particles giving rise to films with 

finer structures and porosity. Conversely, at lower deposition temperatures films tend to be 

formed mainly via heterogeneous reactions and larger microstructures are usually observed. 

For instance, different morphologies and microstructures were observed when depositing 

titanium isopropoxide at deposition temperatures of 400, 500 and 550 C.173 SEM micrographs 

of these films revealed that at 400 C films were mainly amorphous with no characteristic 

morphology (Fig. 3-8a) whereas at 500 and 550 C, angular crystallites with well-defined 

shape were formed (Fig. 3-8b,c). The different deposition temperature also affected the TiO2 

crystalline phase obtained: at a deposition temperature of 400 C, only tetragonal anatase TiO2 

was observed; at 500 C an equal mix of both anatase and rutile was present; whereas at 550 

C mainly rutile TiO2 with small traces of anatase existed.  



 

 

 

58 

 

Fig. 3-8 SEM micrographs of TiO2 films deposited by AACVD from titanium isopropoxide and methanol on glass 

substrates at (a) 400, (b) 500 and (c) 550 C. Adapted and reproduced from ref. 173 Copyright 2011 Wiley. 

Similarly to these TiO2 films, A. Tahir et al. also observed significant differences in the 

microstructure when TiO2 films prepared from a solution of titanium isopropoxide in 

toluene:ethanol where deposited at 350 and 400 C.140 At 350 C, TiO2 films showed rod-like 

features (Fig. 3-9a) whereas at 400 C granular morphologies forming cauliflowers-like 

structures were observed (Fig. 3-9b). In both cases, the films consisted of pure anatase TiO2. 

 

Fig. 3-9 SEM micrographs of TiO2 films deposited by AACVD from titanium isopropoxide in a mixture of toluene 

and ethanol (4:1 volume ratio) grown at (a) 350 and (b) 400 C on FTO-glass substrates. Adapted and reproduced 

from ref.140 Copyright 2012 Wiley.  

The growth of composites of TiO2 by AACVD also exhibited different morphologies as a 

function of deposition temperature. For instance, M. Ehsan et al. reported the growth of CeO2-

TiO2 composites from the reaction product of Ce(OAc)3·xH2O and Ti(iPro)4 in methanol by 

AACVD. 174 SEM micrographs of the obtained films presented different surface morphologies 

at deposition temperatures of 550 and 600 C (Fig. 3-10). Both samples exhibited similar 

morphologies consisting of spherical-shaped particles. Nevertheless, the sample prepared at 

550 C (Fig. 3-10a, a1) showed a rougher surface comprising mesoporous microspheres with 

a pore size range of 10-28 nm, whereas at 600 C (Fig. 3-10 b,b1) smoother surfaces with finer 

nanostructures were obtained.  
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Fig. 3-10 SEM micrographs of CeO2-TiO2 composites prepared by AACVD on FTO-glass grown at (a, a1) 550 

and (b, b1) 600 C. Reproduced from ref.174 Copyright 2018 Springer Nature. 

A significantly greater change in morphology as deposition temperature increased was 

observed in Mn2O3-TiO2 composites deposited from a trinuclear molecular complex with the 

chemical structure of [Mn2Ti(3-O) (TFA)6 (THF)3] (TFA=trifluoroacetato and 

THF=tetrahydrofuran).175 Compact structures with irregular-shaped agglomerates (Fig. 

3-11a), rectangular-shaped rod crystallites (Fig. 3-11b), spinal columns growing vertically 

from the substrate (Fig. 3-11c) and square-shaped particles forming agglomerated rectangular 

blocks (Fig. 3-11d) were formed at 400, 450, 500 and 550 C, respectively. It is believed that 

the drastic change in morphology as deposition temperature increases was most likely 

attributed to the different decomposition/reaction path of the chemical precursor. At the 

highest deposition temperatures, the precursor was most likely undergoing a combination of 

homogeneous and heterogeneous reactions which led to the formation of more porous films.  

 

Fig. 3-11 SEM micrographs of Mn2O3-TiO2 composite films prepared by AACVD at deposition temperatures of 

(a) 400, (b) 450, (c) 500 and (d) 550 C. Adapted and reproduced from ref.175 Copyright 2016 Elsevier. 

Likewise, Fig. 3-12 shows SEM micrographs of W18O49 deposited from 

WO(OCH2C(CH3)3)3(dpm) at a range of temperatures (250- 550 C).169 Compact and thin 

films were grown at low temperatures (250 and 350 C) whereas nanostructured morphologies 
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consisting of nanorods (450 C) and 3D-dendritic like structures (550 C) were formed at 

higher temperatures.  

 

Fig. 3-12 SEM micrographs of W18O49 films deposited from WO(OCH2C(CH3)3)3(dpm) at deposition temperatures 

of (a,e) 250, (b,f) 350, (c,g) 450 and (d,f) 550 C. (a-d) Top-view SEM micrographs. (e-h) Cross-sectional 

micrographs. Adapted and reproduced from ref.169 Copyright 2012 Electrochemical Society.   

The morphology of PbS thin films was also easily tuned by changing the deposition 

temperature in the AACVD process. For instance, J. Akhtar et al. reported morphologies 

consisting of cubes and rectangles, snowy flakes, long strips and feather-like crystallites at 

350, 400, 450 and 500 C, respectively (Fig. 3-13).170  

 

Fig. 3-13 SEM micrographs of PbS films deposited from [Pb(S2CNOct2)2] at deposition temperatures of (a) 350, 

(b) 400, (c) 450 and (d) 500 C. Reproduced from ref.170 with permission from The Royal Society of Chemistry.  
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In spite of the main homogeneous and heterogenous reactions taking place at the reactor 

chamber, different surface growth mechanisms can also alter the nanostructure of the as-

deposited films. A detailed study on the growth mechanism of WOx as a function of substrate 

temperature along the AACVD reactor was published by M. Ling and C. Blackman.176 Fig. 

3-14 shows SEM micrographs of the different WOx morphologies obtained along the AACVD 

reactor as a function of reactor distance and substrate temperature. Within the first 25 mm of 

the AACVD reactor, where the substrate temperature was below 351°C, dense and planar 

films were formed. However, at a distance of 25 to 45 mm from the reactor inlet, where the 

substrate temperature was of 358 °C nanorod morphologies were formed.  

 

Fig. 3-14 SEM micrographs showing variation in morphology of WOx thin films with structures that vary from 

planar to NRs as a function of distance from the reactor inlet and the corresponding substrate surface temperature. 

Reproduced from ref.176 Copyright 2015 Wiley. 

The authors ascribed these morphological changes to the competition of different growth 

mechanisms that occurred on the substrate surface, as shown in Fig. 3-15. For instance, at the 

lowest deposition temperature and close to the reactor inlet a layer-by-layer growth 

mechanism mostly occurred, giving rise to dense and planar films. Further away from the 

reactor inlet and at high deposition temperatures, a layer plus island growth took place, 

whereas at the highest substrate temperature mainly island growth occurred, which promoted 

the nanorod morphology.  



 

 

 

62 

 

Fig. 3-15 Representative atomistic processes during thin film growth via AACVD with three growth modes: (a) 

layer-by-layer growth, (b) layer plus island growth and (c) island growth corresponding to various structures from 

planar to nanorod of WOX. Reproduced from ref.176 Copyright 2015 Wiley.  

3.2.3 Solvent 

Solvents can play a key role in tuning the morphology of an AACVD process and their 

influence on the final morphology is dependent upon the materials deposited and the chemical 

precursors used. The different inherent features of solvents, such as volatility or solubility with 

the precursor used can alter delivery rates and mass-transport properties of the solution in the 

reaction system and thus, modify the reaction pathways of chemical precursors in the gas 

phase. Modification of such reaction pathways leads to the formation of different reaction 

intermediates that can result in films with diverse morphologies and crystalline phases.162,177 

For instance, C. Edusi et al. reported that when depositing titanium (IV) isopropoxide using a 

variety of solvent compositions different morphologies and crystalline phases (anatase or 

rutile) were obtained.178 Fig. 3-16 shows SEM micrographs of TiO2 films deposited using 

different composition mixtures of ethanol and methanol. When only ethanol (Fig. 3-16a) was 

used as a carrier solvent mainly plate-like sheets morphologies were obtained, whereas needle-

shaped structures were observed when methanol was used as a carrier solvent (Fig. 3-16b). In 

contrast, a mixture of both solvents led to films with pyramidal and rectangular-shaped 

crystallites (Fig. 3-16c,d). XRD analysis of these TiO2 films indicated that films deposited 

using pure methanol as a carrier solvent consisted of TiO2 rutile, whereas films deposited with 

ethanol were pure anatase TiO2. When the composition ratio between these solvents was 

amended changes in the crystalline structure and composition were also observed. For 

instance, films prepared with a solvent ratio of ethanol/methanol of 50:50 and 75:25 were 

composed of TiO2 rutile, whereas when the solvent ratio was 99:1, pure anatase was obtained. 

In contrast, when the solvent ratio was of 90:10 a mixture of rutile and anatase was achieved. 
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From these results it was inferred that methanol was the driving force for the formation of 

rutile TiO2. Additional experiments with non-alcohol solvents, such as dichloromethane and 

hexane as carrier solvents also gave rise to films with a TiO2 anatase crystal structure.  

 

Fig. 3-16 SEM micrographs of TiO2 films deposited at 550 C on steel substrates by AACVD using different carrier 

solvents. (a) ethanol 100 %, (b) methanol 100 %, (c) 10 % methanol and 90 % ethanol and (d) 25 % methanol and 

75 % ethanol. Reproduced from ref.178 Copyright 2012 Wiley. 

Similar examples were found in literature when preparing Al-doped ZnO films via AACVD. 

In this publication, D. Potter et al. carried out a systematic study for the deposition of Al-

doped ZnO using a range of carrier solvents mixed with methanol.179 Different morphologies 

were obtained when different solvent compositions were used, as shown in Fig. 3-17.  

 

Fig. 3-17 SEM micrographs of 10 % mol Al-doped ZnO films deposited via AACVD at 450 C using (a) methanol, 

(b) methanol and toluene, (c) methanol and tetrahydrofuran, (d) methanol and n-hexane, (e) methanol and 
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cyclohexane and (f) methanol and ethylacetate as carrier solvents. All mixtures consist of a 1:1 volume ratio. 

Reproduced from ref.179 Published by the Royal Society of Chemistry.  

All films were polycrystalline with plate-like grains of different sizes. In particular, films 

prepared using methanol mixed with tetrahydrofuran, n-hexane and ethylacetate exhibited the 

largest grains (Fig. 3-17c, d, f). The crystal structure of all samples was the same regardless 

of the solvent used, although preferential growth along the (0 0 2) diffraction plane was 

enhanced as the polarity of the solvent increased. This trend was correlated with the polar 

crystal structure of Wurtzite ZnO along the c-axis. The higher the polarity of the solvent, the 

stronger the interactions with the (0 0 2) surface and the solvent, promoting crystal growth 

along that direction. 

The influence of carrier solvent on the morphology and crystal structure was also well studied 

in the deposition of fluorine-doped SnO2 thin films.180 Fig. 3-18 shows SEM images of 

fluorine-doped SnO2 thin films prepared using either propan-2-ol (Fig. 3-18a-c) or ethanoic 

acid (Fig. 3-18d-f) at different deposition temperatures. As discussed in Section 3.2.2, the 

deposition temperature has an important influence on the morphology obtained as well as the 

carrier solvent used. When propan-2-ol was used particles had a pyramidal-shaped 

morphology (Fig. 3-18a-c), whereas when ethanoic acid was used, granular and spherical 

morphologies were obtained (Fig. 3-18d-f). No changes were observed in the crystal structure 

regardless of the solvent used and very similar crystallite sizes in the range of 30 nm were 

calculated when both solvents were used.  

 

Fig. 3-18 SEM micrographs of fluorine-doped SnO2 deposited via AACVD at a deposition temperature of (a-d) 

500, (b-e) 550 and (c-f) 600 C using (a-c) propan-2-ol and (d-f) ethanoic acid as carrier solvents. Adapted and 

reproduced from ref.180 with permission from The Royal Society of Chemistry. 

The change of solvent did not affect significantly the final morphology of W18O49 films 

prepared by AACVD at 350 C.177 Fig. 3-19 shows W18O49 films prepared using either 

benzonitrile, dimethoxymethane or toluene as carrier solvents. In all cases, nanorod 
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morphologies were obtained, although depending on the solvent used different sizes and 

thicknesses of nanorods were formed. For instance, the thickest and thinnest nanorods were 

formed when benzonitrile and toluene were used as carrier solvent, respectively.  

 

Fig. 3-19 SEM micrographs of W18O49 deposited via AACVD at 350 C using (a) benzonitrile, (b) 

dimethoxymethane and (c) toluene as carrier solvents. Adapted with permission from ref.177 Copyright (2015) 

American Chemical Society.  

A detailed morphological study upon changing the ethanol carrier solvent concentration for 

ZnFe2O4 films prepared via AACVD was carried out by A. Tahir et al.181 In this study, the 

authors reported significant structural changes from compact to rod-like morphologies when 

increasing the amount of ethanol in a carrier solvent mixture consisting of ethanol and 

methanol (Fig. 3-20). When no ethanol was added into the carrier solvent solution, films 

consisted of compact films with hexagonal-shaped crystallites (Fig. 3-20a). As the amount of 

ethanol increased, from 10 to 50 % vol. the size of the hexagonal-shaped crystallites also 

increased (Fig. 3-20b-f). At a higher concentration of ethanol (50 – 80 % vol.) a drastic change 

in morphology from hexagonal compact to plate-like structures was observed (Fig. 3-20g-i) 

until concentrations of 90 – 100 % vol. of ethanol where nanorods morphologies were obtained 

(Fig. 3-20j-k). These pronounced structural and morphological changes upon increasing the 

concentration of ethanol were attributed to different reaction/decomposition pathways, from 

heterogeneous to homogeneous as the amount of ethanol increased. Ethanol has a higher 

exothermic enthalpy of combustion than methanol (-1277.17 vs. -676.15 KJ mol-1), implying 

that as the solution approaches the heated reactor chamber, the precursor primarily 

decomposes in the gas phase following a homogenous reaction pathway giving rise to highly 

structured films.181  
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Fig. 3-20 SEM micrographs of ZnFe2O4 deposited via AACVD at 450 C using ethanol and methanol as carrier 

solvents. (a) SEM micrograph of ZnFe2O4 using only methanol and (k) using only ethanol. (b-j) SEM micrographs 

of ZnFe2O4 films obtained when changing vol.% of ethanol in 10 % increments. Reproduced from ref.181 Copyright 

2013 Elsevier.  

3.2.4 Substrate 

The use of different substrates, much less studied than the influence of the precursor, 

deposition temperature and solvent, has also been reported to impact on the morphology and 

crystal structure of the films during an AACVD deposition process. For instance, C. Edusi et 

al. reported a substrate-selective deposition towards morphology and crystal structure when 

titanium (IV) isopropoxide was deposited on glass, steel and titanium substrates.173 SEM 

micrographs of TiO2 films deposited at different temperatures (400, 500 and 550 C) and on 

different substrates (glass, titanium and steel) are shown in Fig. 3-21. At deposition 

temperatures of 400 C, TiO2 films deposited on glass were mainly amorphous (Fig. 3-21a) 

whilst angular and rectangular-shaped crystallites were formed on both titanium and steel 

substrates (Fig. 3-21d,g). Similar tendencies were observed at higher deposition temperatures. 

For instance, at 500 C , compact angular-shaped crystallites were formed on glass (Fig. 3-21 
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b) whereas nanorods-like structures pointing out the substrate were formed on both titanium 

and steel (Fig. 3-21e,h). Likewise, when the deposition temperature was increased to 550 C, 

nanorod-like structures were formed on both glass and titanium (Fig. 3-21c,f) whereas needle-

like morphologies were formed on steel (Fig. 3-21i). Furthermore, XRD patterns also revealed 

changes in the crystal structure obtained depending on the substrate used. For instance, at a 

deposition temperature of 400 C, only anatase TiO2 phase was formed on glass, whereas pure 

rutile was obtained on both steel and titanium substrates. Similarly, at deposition temperatures 

of 500 and 550 C, a mixture of anatase and rutile was obtained on glass substrates and pure 

TiO2 rutile was only observed in both steel and titanium.  

 

Fig. 3-21 SEM micrographs of TiO2 deposited via AACVD on (a) glass at 400 C, (b) glass at 500 C, (c) glass at 

550 C, (d) titanium at 400 C, (e) titanium at 500 C, (f) titanium at 550 C, (g) steel at 400 C, (h) steel at 500 

C and (i) steel at 550 C. Reproduced from ref. 173 Copyright 2011 Wiley. 

Substrate-selective deposition was also observed in CdS films deposited 

from Cd[S2CNCy2]2.py (py=pyridine) on both FTO and soda-glass substrates at a range of 

deposition temperatures (350, 400 and 450 C), as shown in Fig. 3-22.182  
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Fig. 3-22 SEM micrographs of CdS thin films deposited on (a-c) FTO and (d-f) soda glass at 350, 400 and 450 C 

from THF solution, respectively. Reproduced from ref.182 Copyright 2012 Wiley.  

At 350 C, films deposited on FTO, presented a combination of well-defined plate-like and 

nanorods morphologies (Fig. 3-22a), whilst films on soda-glass consisted of compact 

agglomerates of crystallites randomly distributed on the glass substrate (Fig. 3-22d). At 

400 C, films consisted of particulate pillars deposited on FTO (Fig. 3-22b) whereas dendritic 

flower-like assemblies were formed on glass-soda (Fig. 3-22e). Finally, at 450 C heaps of 

agglomerated particles were formed on FTO substrates (Fig. 3-22c) whereas flake like 

structures were formed on soda-glass substrates (Fig. 3-22f).  
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Chapter 4. Mo-doped TiO2 photoanodes prepared from a bimetallic 

oxo cage 

4.1 Publication: Mo-doped TiO2 photoanodes using [Ti4Mo2O8(OEt)10]2 

bimetallic oxo cages as a single source precursor 

4.1.1 Preface 

As discussed in previous chapters, TiO2 is one of the most studied metal oxides in the field of 

PEC water splitting. Nevertheless, its limited visible-light absorption due to large band gap 

(3.2 eV for anatase and 3.0 eV for rutile) is still troublesome for its practical application in a 

water splitting device, since only a small portion of the solar spectrum can be used. During 

the last decade, research efforts have been put into trying to engineer the electronic band 

structure of TiO2 towards the visible range, so that a larger portion of the solar spectrum could 

be absorbed. Among the different approaches, doping of TiO2 has resulted in some cases 

successful in increasing visible light absorption and hence, improving its PEC performance, 

as reviewed in Chapter 2.  

In this work, we demonstrate an effective approach to deposit molybdenum-doped titania 

(Mo-doped TiO2) photoanodes from a heterometallic polyoxotitanate oxo/alkoxy cage with 

the chemical formula of [Ti4Mo2O8(OEt)10]2 using a spray pyrolysis method. Systematically 

preparing films at different temperatures, we demonstrate that Mo atoms not only dope TiO2 

but also work as a pore agent. It evaporates during the calcination increasing the porosity in 

the films and helping in their nanostructuring. Furthermore, we also show that the PEC 

performance of Mo-doped TiO2 photoanodes is highly dependent on the annealing 

temperature employed, 700 C being the optimized annealing temperature. Extensive 

characterization of the optimized sample including EPR, SEM, TEM, XRD, XPS, EIS, and 

UV-Vis spectroscopy helped to understand the improved performance of Mo-doped TiO2 

annealed at 700 C. Briefly, at this temperature there is a significant reduction in the band gap, 

from ca. 3.1 eV for pristine TiO2 to 2.6 eV for Mo-doped TiO2, the sample exhibits the highest 

surface area and substitutional doping occurs mainly in rutile TiO2.  

In summary, this works highlights the benefits of using a heterometallic polyoxotitanate 

oxo/alkoxy cluster as a single source precursor for the preparation of cation-doped TiO2 

photoanodes, and the importance that the cation, in this case molybdenum, has on both the 

film morphology and electronic structure of TiO2 for PEC water splitting applications. 

Moreover, we expect that these results will stimulate new research on the production of 

sustainable solar fuels using polyoxotitanium oxo clusters.  
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Abstract 

Photoelectrochemical solar water splitting is a promising and sustainable technology for 

producing solar fuels such as clean hydrogen from water. A widely studied photoanode 

semiconductor for this application is TiO2, but it suffers from a large band gap (3.2 eV) and 

fast recombination of electrons and holes. Herein, we present a novel, facile and rapid strategy 

to develop Mo-doped TiO2 (Mo:TiO2) mixed anatase-rutile photoanodes using 

[Ti4Mo2O8(OEt)10]2 bimetallic oxo cages as a single source precursor. These cages dissolved 

in tetrahydrofuran deposit by spray pyrolysis at 150 °C forming films with hierarchical 

porosity on the micrometer and nanometer scale. XPS, EDXS and UV-Vis spectroscopy reveal 

Mo atoms evaporate during annealing in air at temperatures 650-800 °C, contributing to the 

formation of nanostructures and porosity. XPS depth profiling, XRD, EDXS, Raman, and 

electron paramagnetic resonance indicate that remaining Mo atoms are well spread and 

incorporated in the TiO2 lattice, at interstitial or substitutional sites of the rutile or anatase 

phases depending on the annealing temperature. Photocurrent measurements show that 

Mo:TiO2 photoanodes optimized at 700 °C outperform a TiO2 photoanode prepared in a 

similar manner by a factor of two at 1.23 VRHE. Finally, UV-Vis spectroscopy, conduction and 
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valence band calculations, and incident-to-photon efficiency measurements show these 

Mo:TiO2 photoanodes possess a narrower band gap than TiO2 and higher efficiency in the 

visible light range (5 % at 400 nm). These outcomes open a new avenue in the exploitation of 

titanium oxo cages and advance the development of photoelectrodes for water splitting and 

energy applications.    

Introduction 

The abundant solar energy, 1.3 x 105 TW year-1 reaching the Earth’s surface, can be utilized 

to produce hydrogen fuel by splitting water, offering an excellent and sustainable alternative 

to fossil fuels. Among solar absorber candidates in photoelectrochemical (PEC) solar water 

splitting devices, TiO2 is one of the most promising ones due to its chemical and thermal 

stability, long durability, excellent optical and electronic properties, low cost and non-

toxicity.88,94,183 However, TiO2-based PEC cells are still far from commercialization mainly 

due to both fast recombination of photogenerated electrons and holes in TiO2 and its large 

band gap (3.2 eV for the anatase phase) that results in a reduced use of the solar spectrum. 

One strategy to overcome its limitations is doping it with transition metals. The metal doping 

increases the solar light absorption of TiO2 and performance by incorporating additional 

energy levels within the band gap of the semiconductor.95,184 Nevertheless, this only seems to 

occur when there is an actual substitution of Ti atoms in the TiO2 lattice structure with the 

external metal (known as substitutional doping), that reduces the band gap of the material 

without compromising the surface of the photocatalyst.106 Otherwise, if metals are simply 

impregnated on the surface of the semiconductor they may result in electron-hole 

recombination and blocking of reaction sites.92,106  

Research on metal doping of TiO2 with Ta, Fe, Co, Mn, and Ni is abundant and has proved to 

be successful in both reducing the band gap and improving the photoelectrochemical 

performance (PEC).107–110 For instance, Yan et al. reported an enhancement in the PEC 

performance for Ta-doped TiO2 nanotube photoanodes in comparison to pristine TiO2.107 This 

enhanced PEC performance was attributed to a decrease in the band gap, lower charge transfer 

resistance and higher charge carrier density. Similarly, Zhao et al. successfully demonstrated 

that Fe-doped TiO2 results in a better PEC performance than pristine TiO2, attributed to a 

smaller band gap and thus a better light absorption.108 However, very few studies have been 

reported for Mo doping of TiO2 and the few ones were mainly focused on photodegradation 

of organic dyes, not PEC water splitting.114–118 In 2015 Zhang et al. reported Mo-doped TiO2 

photoanodes prepared using two steps of Ti foil anodization and a third one of hydrothermal 

doping, obtaining an improved PEC performance over pure TiO2 photoanodes.113 The 
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improvement was attributed to a decrease in the recombination of electrons and holes in the 

mixed phase of anatase and rutile and to better light absorption.  

Heterometallic titanium oxo (HMTO) cages such as [TixOy(L)zMnXm], where L is a ligand, M 

a metal and X a halide, can be prepared with a wide range of metal compositions (e.g. with M 

= Co, Ni, and Mo), nuclearities, spatial arrangements, and functionalities via simple 

solvothermal methods and isolated by crystallization.147,151,155,156,159,160 Some of these cages, 

also called clusters, have successfully been used as precursors for photocatalysts or 

electrocatalysts, for example using graphene oxide as a sacrificial template or impregnating 

WO3 photoanodes.152,159 However, their wide adoption as single source precursors still 

requires finding facile and effective approaches that overcome their instability in water or 

humid environments. 

In this publication, we report for the first time a facile and rapid synthesis of porous Mo-doped 

TiO2 photoanodes using a [Ti4Mo2O8(OEt)10]2 HMTO cage as a single source precursor. 

Stability of the cages during the deposition is ensured using anhydrous tetrahydrofuran as 

solvent and spray pyrolysis as deposition method. We reveal that upon deposition, the 

calcination at temperatures above 600 °C induces sublimation of Mo atoms adding porosity 

and nanostructured features to remaining TiO2, while the rest of Mo atoms effectively occupy 

substitutional or interstitial sites in the TiO2 lattice. The resulting Mo:TiO2 photoanode 

optimized at 700 °C outperforms by a factor of two a pure TiO2 photoanode prepared in a 

similar manner in PEC solar water splitting. The results herein presented therefore reveal new 

strategies to develop efficient photoelectrodes for water splitting applications using Mo as 

both a sacrificial agent and dopant and opens an avenue to exploit HMTO cages as single 

source precursors using spray pyrolysis. 

Experimental 

Materials 

Titanium (IV) ethoxide [Ti(OEt)4], anhydrous molybdenum (V) chloride (MoCl5, 99.99%), 

anhydrous tetrahydrofuran (≥99.9 %, inhibitor free), anhydrous ethanol (<0.0003% water), 

titanium isopropoxide (TTIP, 97%), acetylacetone (AcAc) ,  cobalt nitrate (Co(NO3)2), iron 

chloride hexahydrate (FeCl3.6H2O), sodium acetate (NaOAc) and tetrabutylammonium 

hexafluorophosphate (TBAPF6) were provided by Sigma Aldrich. Cobalt (II) chloride (CoCl2, 

anhydrous 97%) was provided by Alfa Aesar.  Aluminoborosilicate glass (ABS) coated with 

fluorine-doped tin oxide (FTO) transparent conductive layer (8Ω sq-1) was provided by 

Solaronix, CH. These FTO-ABS substrates were cleaned ultrasonically in a 2% aqueous 

Hellmanex III solution followed by dipping in deionized water, acetone and isopropyl alcohol, 
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ultrasonicating in each step for 3min. Finally, the substrates were rinsed with deionized water 

and dried with compressed air. 

Synthesis of [Ti4Mo2O8(OEt)10]2 

[Ti4Mo2O8(OEt)10]2 oxo cages (Fig. 4-1) were synthesized using a solvothermal process as 

described in a previous article by Eslava et al.149 Briefly, Ti(OEt4) (14 mL, 66.8 mmol), MoCl5 

(1.128g, 4.12 mmol) and anhydrous ethanol (14 mL) were carefully mixed in a 45 mL Teflon-

lined stainless steel autoclave and heated to 150 °C for 24 hours. The autoclave was left 

overnight to cool down to room temperature and mm size brown-red crystals were obtained 

(88% yield). Elemental analysis (%) calculated for C40H100Mo4O36Ti8: C 25.7, H 5.3; found: 

C 25.6, H 5.3. Due to the humidity sensitive nature of these reactants, all manipulations were 

carried out in an air-free atmosphere involving the use of a glove box and Schlenk line when 

necessary.  

 

Fig. 4-1 Ball and stick drawing of [Ti4Mo2O8(OEt)10]2 represented from CCDC no. 812604.149 Mo: green; Ti: 

purple; O: red; C: grey. 

 

Preparation of Mo:TiO2 and TiO2 films 

Mo-doped TiO2 (abbreviated as Mo:TiO2) and pure TiO2 films to be studied as photoanodes 

were prepared using a manual spray-pyrolysis system (Clarke CAB3P) on FTO-ABS. The 

solutions employed for the spray pyrolysis deposition were prepared in an argon atmosphere 

using a Schlenk line. Nevertheless, the actual spray pyrolysis deposition process was 

conducted in air, but vessels were kept closed when possible. The precursor solution for the 

Mo:TiO2 photoanodes was prepared by dissolving [Ti4Mo2O8(OEt)10]2 (0.96g) in anhydrous 

tetrahydrofuran (20 mL). The precursor solution for the preparation of pure TiO2 was carried 

out following an established method.185 Briefly, a 0.2M solution of TTIP was prepared by 
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diluting TTIP and AcAc in a 3:2 volumetric ratio and topping up with absolute ethanol in 

order to obtain 0.2M solution of TTIP.  

The spray pyrolysis deposition of previous precursor solutions to prepare Mo:TiO2 and TiO2 

photoanode films was conducted as follows. In a first stage, FTO-ABS was pre-heated on a 

hot plate at 150 °C. Secondly, the as-prepared precursor solutions were sprayed on top of the 

pre-heated FTO-ABS, at a constant distance of ca. 5 cm from the surface of the FTO-ABS to 

the spray pyrolysis nozzle. Three deposition layers were performed per sample. Finally, the 

as-prepared Mo:TiO2 and TiO2 films were annealed at different temperatures between 450 and 

800 °C for 2h in air at a ramp rate of 10 °C min-1. This range of temperatures was chosen to 

ensure full conversion of the precursor to the metal oxide and to evaluate the effect that 

different annealing conditions might have on the photoanode performance.   The resultant 

photoanodes were denoted as Mo:TiO2-### and TiO2-###, where ### is the corresponding 

annealing temperature (°C).  

Cobalt phosphate (Co-Pi) loading on Mo:TiO2-700 photoanodes was carried out by photo-

electrodeposition.186,187 The electrolyte consisted of 0.5mM of cobalt nitrate in 0.1M 

potassium phosphate buffer (pH=7) and the applied potential 1 VRHE was kept for 20s under 

simulated sunlight (AM 1.5G, 100 mWcm-2) from a filtered 300W Xenon lamp source. 

Illumination was directed towards the back of the FTO-ABS working electrode. CoFeOx was 

deposited on Mo:TiO2-700 by electrodeposition.188 The electrolyte consisted of 10mM 

FeCl3·6H2O, 16mM CoCl2 and 0.1M NaOAc dissolved in deionized water. The pH of the 

solution was 4.90. The deposition was carried out by positively sweeping the voltage from 1.1 

to 1.4 VAg/AgCl three times. In both depositions, a Compactstat. potentiostat (Ivium 

Technologies) was used and an electrochemical cell consisting of a Pt counter electrode, a 

silver chloride (Ag/AgCl/3.5M KCl) reference electrode, and a Mo:TiO2-700 photoanode as 

working electrode.   

Characterization 

13C {H} NMR was conducted at room temperature using a 500 MHz Agilent Propulse 

spectrophotometer. Samples were dissolved in dried deuterated benzene (C6D6). CHN 

elemental analysis was performed on a Carlo Erba Flash 2000 Elemental Analyser. Field 

emission scanning electron microscopy images (FE-SEM) were acquired using a JEOL 

FESEM6301F and energy dispersive X-ray spectroscopy (EDXS) was carried out in a SEM 

6480LV equipped with a high sensitivity Oxford INCA X-Act SDD X-ray detector. X-Ray 

diffraction (XRD) patterns were collected in the 2 Theta range 10-80° with a Bruker AXS D8 

Advance using Cu Kα (0.154 nm) radiation with a total integration time of 960 s. Raman 

spectroscopy was carried out on a Renishaw inVia system using a 532 nm diode-pumped solid 
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state laser (DPSS) manufactured by Cobolt. The laser beam was focused onto the sample using 

a 50x long distance objective. X-Ray photoelectron spectroscopy (XPS) depth profiling was 

performed using a ESCALAB 250 Xi instrument manufactured by Thermo Fisher Scientific. 

Measurements were carried out using a monochromated Al Kα X-Ray source with an energy 

of 1486.68 eV. The X-Ray spot size was of 900 μm and the pass energy for the high resolution 

scans was of 50 eV. The depth profile for the sample was obtained by etching the surface of 

the sample with an Ar+ ion gun (2000 eV, high current) for different times (0, 60, 180 and 420 

s).  C 1s XPS spectra was used as an internal charge correction. Samples studied via electron 

paramagnetic resonance (EPR) spectroscopy were evacuated at 393 K for over 12 h to reduce 

the influence of physisorbed water. Samples were maintained under static vacuum (10-5 mbar) 

for the duration of the experiments. For EPR analysis, powder samples were prepared by 

drying and calcining in air at 650, 700 and 800°C in a porcelain dish a solution of 0.96 g of 

[Ti4Mo2O8(OEt)10]2 in 20 ml of anhydrous tetrahydrofuran. High resolution transmission 

electron microscopy (HRTEM) images were obtained using a JEOL JEM-2100Plus 

microscope. Ultraviolet-visible (UV-Vis) spectra were collected in a Cary 100 diffuse 

reflectance UV-Vis spectrophotometer. 

(Photo)electrochemical measurements 

(Photo)electrochemical performance of photoanodes was evaluated using a CompactStat. 

potentiostat (Ivium Technologies). Photocurrents were measured under simulated sunlight 

(AM 1.5G, 100 mWcm-2) from a filtered 300W Xenon lamp source (Lot Quantum Design) or 

under UV illumination (365 nm, 3.6 mWcm-2) from a ModuLight IM3412 LED light (Ivium 

Technologies). PEC cells consisted of three electrodes with Pt as the counter electrode, silver 

chloride (Ag/AgCl/3.5M KCl) as the reference electrode and as-prepared photoanodes as the 

working electrodes. 

Electrochemically active surface area (ECSA) of photoanodes was investigated using cyclic 

voltammetry (CV), scanning from 0 to 0.17 VAg/AgCl at scan rates between 10 and 250 mV s-1, 

in 1M KOH solution (pH=13.7). ECSA is proportional to the double layer capacitance (Cdl), 

which is estimated from the slope of the plot Δj vs. scan rate and dividing by two.189 Δj is equal 

to (ja-jc), where ja and jc are the anodic and cathodic current densities, respectively, in this case 

taken at 0.1VAg/AgCl in the CV scans.190  

Conduction and valence band (CB & VB) positions were measured from CV curves recorded 

in acetonitrile containing 0.1M of tetrabutylammonium hexafluorophosphate (TBAPF6) at a 

scan rate of 50 mV s-1 and using the following formula:191–193  
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 𝐶𝐵 (𝑜𝑟 𝑉𝐵) (𝑒𝑉) =  −4.8 − (𝐸 − 𝐸1/2)    4-1 

   

where E is the onset of the redox potential and E1/2 is the formal potential of Fc/Fc
+ system 

(0.43 VAg/AgCl).194 

Photoelectrochemical performances of photoanodes were carried out in a 1M KOH (pH=13.7) 

electrolyte solution. Illumination was directed towards the back of the FTO-ABS working 

electrode and a mask was placed on top of the photoelectrode to define the illuminated area. 

Photocurrent-time curves were performed at an applied bias of 1.23 V vs the reversible 

hydrogen electrode (VRHE). Photocurrent-potential curves were recorded at a scan rate of 20 

mV s-1. The measured Ag/AgCl potentials (EAg/AgCl) were converted to RHE potentials (E°RHE) 

following the Nernst equation: 

 𝐸𝑅𝐻𝐸
0 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙

0 + 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059𝑝𝐻 4-2 

where E°Ag/AgCl is 0.205 V at 25°C (3.5M KCl).  Photoelectrochemical impedance spectroscopy 

(PEIS) was carried out under simulated sunlight (AM 1.5G, 100 mWcm-2) at a direct current 

(DC) potential of 1.23 VRHE and an alternating current (AC) potential frequency range of 

100000-0.01 Hz with an amplitude of 5 mV. Incident photon-to-current efficiency (IPCE) 

measurements were calculated using the same Xe light source and a triple grating Czerny-

Turner monochromator. The intensity of monochromatic light was measured at the working 

electrode position with SEL033/U photodetector (International Light Technologies). The 

following equation was used to calculate the IPCE values:32 

 𝐼𝑃𝐶𝐸 (𝜆) =
|𝑗 (𝑚𝐴 𝑐𝑚−2)|  × 1239.8 (𝑉 𝑛𝑚) 

𝑃𝑚𝑜𝑛𝑜 (𝑚𝑊 𝑐𝑚
−2) ×  𝜆 (𝑛𝑚)

 4-3 

   

where j is the photocurrent density measured under single wavelength (λ) light illumination 

and Pmono is the incident irradiation power. Oxygen (O2) measurements were conducted using 

a Pyroscience FireStingO2 fibre-optic oxygen meter combined with a TROXROB10 oxygen 

probe, together with a TDIP temperature sensor to give automatic compensation for minor 

fluctuation in the PEC cell temperature. O2 readings were recorded every 10 min for ca. 410 

min. The probe was fitted into the headspace of the airtight PEC cell. The PEC cell was purged 

with a N2 flow to ensure air O2 removal before the irradiation started. The measurements were 

carried out under simulated sunlight (AM 1.5G, 100 mW cm-2) with an applied bias of 1.23 

VRHE. Light was irradiated for 340 min. The Faradaic efficiency was calculated by dividing 

the measured amount of evolved O2 by the theoretical amount of expected O2 for measured 
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photocurrents (assuming 100% Faradaic efficiency).  See more details in Supporting 

Information. 

Results and Discussion 

The synthesis of [Ti4Mo2O8(OEt)10]2 cages was successfully performed using a solvothermal 

synthesis. The 13C {H} NMR spectra of the product showed the ten characteristic sharp 

resonances of the cage at δ 75.24, 75.12, 73.80, 73.49, 73.38, 73.30, 72.65, 71.67, 71.22 and 

70.06 ppm belonging to the different –OCH2– environments in the structure, in agreement 

with literature (Fig. 4-2).149 In addition, CHN elemental analysis further confirmed the 

successful formation of [Ti4Mo2O8(OEt)10]2 (wt % calculated for C40H100Mo4O36Ti8: C 25.7, 

H 5.3; found: C 25.6, H 5.3). Fig. 4-1 shows a ball and stick model of the cage, which 

highlights a heterometallic oxo core with four MoV atoms in a rectangle and eight TiIV atoms. 

Mo and Ti atoms bridge together by a combination of μ3-, μ4-O and μ2-OEt (CCDC no. 

812604). 

 

Fig. 4-2 13C {H} NMR spectra of the –OCH2–  resonance region of [Ti4Mo2O8(OEt)10]2, in agreement with literature 
149. 

Spray pyrolysis was used to deposit solutions of [Ti4Mo2O8(OEt)10]2 cages or titanium 

isopropoxide-acetylacetone (TTIP-AcAc), respectively. The as-deposited films were then 

annealed in air at temperatures between 450 and 800 °C for 2 hours and allowed to cool to 

room temperature. The morphology of the as-prepared films was evaluated using SEM. Fig. 

4-3 shows SEM images at different magnifications of Mo:TiO2 prepared at different annealing 

temperatures (650, 700 and 800 °C), along with a film prior to calcination for comparison (i.e. 

a film of [Ti4Mo2O8(OEt)10]2 cages deposited by spray pyrolysis at 150 °C). At lower 

magnification (Fig. 4-3, 1st row), all Mo:TiO2 films, even the un-annealed sample, exhibit 

almost the same morphology, showing aggregated islands evenly distributed on top of FTO-

ABS support. At slightly higher magnification (Fig. 4-3, 2nd row), a large amount of 

micrometer cavities on Mo:TiO2 films are observed. These cavities contribute to an increase 
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of surface area, which in turn must result in more active sites for the PEC oxygen evolution 

reaction. At even higher magnification (Fig. 4-3, 3rd row), it can be observed that well-defined 

nanostructures form as the annealing temperature increases. A highly smooth and fine surface 

is present before calcination (Fig. 4-3i), but after calcination, grain-rice-shaped nanostructures 

appear creating nanometer-size porosity and extra surface area (Fig. 4-3j-l). 

 

Fig. 4-3 SEM images of Mo:TiO2 at different magnifications. (a,e and i) Film after spray-pyrolysis deposition at 

150 ⁰C, (b,f, and j) Mo:TiO2-650, (c,g and k) Mo:TiO2-700 and (d,h and l) Mo:TiO2-800. 

SEM images of the pure TiO2 film at different magnifications are shown in Fig. 4-4. Unlike 

Mo:TiO2 films, TiO2-650 (prepared with TTIP-AcAc) do not show neither the presence of 

cavities nor nanostructures.  

 

Fig. 4-4 SEM images of TiO2-650 photoanode. 

This comparison therefore reveals the benefits of using [Ti4Mo2O8(OEt)10]2 cages as a 

precursor. Their decomposition and transformation to Mo-doped TiO2 during the spray 

pyrolysis and posterior calcination leads to the formation of cavities, nanostructures and 

porosity. Cavities must result from the drying step upon spray pyrolysis at 150 °C. More 

cavities may form during the calcination and oxidation of the cages' carbon content up to 400-

500 °C. Above this temperature, the grain rice shaped nanostructures and its associated 

porosity must result from the sintering of TiO2 and especially from the very likely sublimation 

of Mo atoms. Previous reports have shown that MoO3 sublimes above 700 °C.195 The 
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sublimation of Mo atoms was confirmed by atomic quantification from XPS data (Fig. 4-5a). 

The amount of Mo in the films decreased with temperature. For example, at the top surface 

(XPS-etching time 0 s) it went from 10.6 at% for Mo:TiO2-650 to 4.9 and 4.3 at% for 

Mo:TiO2-700 and Mo:TiO2-800, respectively, indicating Mo sublimes within the temperatures 

of study. Accordingly, the percentage of carbon (C) decreases with temperature and that of Ti 

increases. Carbon is present from solvents and cage ethoxides and deposition of volatile 

organic compounds during storage. The Mo sublimation was further confirmed by an 

experiment of simply heating MoCl5 up to 700°C in air, which showed its complete 

sublimation. Therefore, Mo atoms work as pore formers, sacrificial agents that increase the 

porosity in the films and allow their nanostructuring.  

The XPS depth profiling indicated that Mo is homogeneously distributed at different depths, 

but some gradient is formed at highest temperatures of 700 and 800 °C, with more C and Mo 

present at the surface (Fig. 4-5a). This may result from the gasification and sublimation taking 

place and accumulation at the top during the process. Corresponding XPS depth profiling for 

Mo-TiO2 at different temperatures are shown in Fig. 4-18 (Supporting information).    

 

Fig. 4-5 (a) Atomic percentage (at %) distribution of Ti, Mo and C obtained via XPS depth profiling. (b) Capacitive 

current Δj versus scan rate curves of Mo:TiO2 and TiO2-650. 

ECSA measurements are shown in Fig. 4-5b and the corresponding CV curves in Fig. 4-19 

(Supporting information). In such measurements, the slope of the current density vs. scan rate 

can be related to the double layer capacitance, which  is directly proportional to the ECSA.190 

Based on the obtained results, Mo:TiO2-700 possess the highest surface area (Cdl=0.10 mF 

cm-2), whereas TiO2-650 is the sample with the smallest surface area (Cdl=0.01 mF cm-2). 

These results agree well with SEM images, where grain-rice-shaped nanostructures and 

porosity are observed for Mo:TiO2-700 (Fig. 4-3k) and very flat films for TiO2-650 (Fig. 4-4). 

Among all Mo:TiO2 photoanodes, Mo:TiO2-800 is the sample with the smallest surface area, 

due to the largest grains formed at highest temperature (Fig. 4-3l). 
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SEM-EDXS analysis was also carried out to evaluate the distribution of Ti, O and Mo atoms 

at the surface of the films. Fig. 4-6 reveals a uniform distribution of Ti and Mo atoms at the 

surface of Mo:TiO2-650 and Mo:TiO2-700. The amount of Mo atoms at the surface of 

Mo:TiO2-800 is considerably lower supporting the hypothesis that Mo species sublime during 

the calcination.  

 

Fig. 4-6 SEM-EDXS images of Mo:TiO2 photoanodes. (a-d) Mo:TiO2-800, (e-h) Mo:TiO2-700 and (i-l) Mo:TiO2-

650. 

Fig. 4-7a and Fig. 4-7b show the XRD patterns of the resulting Mo:TiO2 and TiO2 films on 

FTO-ABS. Mo:TiO2-650 and Mo:TiO2-700 exhibit diffraction peaks corresponding to both 

anatase TiO2 and rutile TiO2. The diffraction peaks at 2θ 25.3 and 48.0° are indexed to the 

diffraction planes (1 0 1) and (2 0 0) of anatase TiO2, respectively (ICDD-JCPDS no. 75-

1537). The diffraction peaks at 2θ 27.4, 36.1, 39.2, 44.0, 54.3, 69.0 and 69.8° correspond to 

(1 1 0), (1 0 1), (2 0 0), (2 1 0), (2 1 1), (3 0 1) and (1 1 2) diffraction planes, resp., of rutile 

TiO2 (ICDD-JCPDS no. 88-1173). The diffraction intensity of the rutile phase increases and 

that of anatase decreases with annealing temperature (Fig. 4-7a), indicating that the conversion 

of anatase to rutile was promoted at highest temperatures.196 Actually, Mo:TiO2-800 only 

shows diffraction peaks indexed to rutile TiO2, due to the high calcination temperature 

employed. No diffraction peaks corresponding to any Mo phase such as MoO3 are observed 

in any of the samples, which suggests that Mo6+/5+ could be incorporated into the lattice of 

TiO2. MoO2 was unlikely to be formed since phase transformation from tetragonal MoO2 to 

orthorhombic MoO3 occurs at temperatures above 350°C.100 
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Fig. 4-7 (a) XRD patterns and (b) XRD diffraction profiles on (1 0 1) plane of anatase TiO2 and (1 1 0) plane of 

rutile TiO2 of Mo:TiO2, TiO2-650 and FTO-ABS substrate. A: anatase, R: rutile and black dot: FTO. (c) Raman 

spectra from 100 to 1000 cm-1of Mo:TiO2, TiO2-650 and FTO-ABS substrate. A: anatase, R: rutile, M: Mo. 

In Fig. 4-7b an expansion of the (1 0 1) and (1 1 0) diffraction peaks of anatase and rutile, 

respectively, of the different Mo:TiO2 and pure TiO2 films is shown. A shift of the anatase and 

rutile diffraction peaks towards lower angles for Mo:TiO2-700 and Mo:TiO2-800 in 

comparison to pure TiO2 is observed, which indicates incorporation of Mo6+ or Mo5+ atoms in 

the TiO2 lattice structure upon exposure to those temperatures.115 The reported ionic radius for 

Mo6+ and Mo5+ are 0.0620 and 0.0610 nm, respectively, whereas the Ti4+ ionic radius is 0.0605 

nm.115,197,198 The similarity in the ionic radius of these ions facilitates the aliovalent substitution 

of Ti4+ atoms for Mo6+/5+ in the TiO2 lattice, and due to the slightly larger size of Mo6+/5+ in 

comparison to Ti4+ a shift in the diffraction pattern towards lower angles is observed. 

However, Mo:TiO2-650 shows a smaller shift towards lower angles, suggesting that at lower 

temperatures the majority of Mo6+/5+ atoms are not occupying Ti4+ sites in the TiO2 lattice 

structure. Instead, Mo6+/5+ must be distributed on the surface of TiO2 or occupying interstitial 

sites within the TiO2 lattice, without distorting the crystal structure of either anatase or rutile 

TiO2. In fact, this may also suggest that Mo6+ atoms could be present in the form of MoO3 that 

could be either highly dispersed on the TiO2 surface or of amorphous structure, and therefore 

not detectable by XRD analysis. 

Raman spectroscopy was also carried out to further verify the presence of rutile TiO2, anatase 

TiO2 and the substitution of Mo for Ti atoms in the lattice structure of TiO2. Fig. 4-7c shows 

the Raman spectra of all films. The presence of anatase-TiO2 and rutile-TiO2 is confirmed by 

the sharp peaks observed in all Raman spectra, with the exception of Mo:TiO2-800 for which 

only rutile TiO2 is observed, in agreement with the XRD patterns (Fig. 4-7a and Fig. 4-7b).  

The sharp bands at ca. 145, 395, 515 and 635 cm-1 correspond to Raman active modes of 

anatase TiO2 and bands at 230, 445 and 610 cm-1 to Raman active modes of rutile TiO2.199,200 

Interestingly, some bands ascribed to the presence of Mo are also observed.  For instance, in 

the region between 870-970 cm-1 there are bands belonging to hydrated terminal Mo-O and 

Mo-O-Mo vibrations.201,202 The presence of crystalline MoO3 can be discarded since its 

characteristic main bands at 996, 820 and 666 cm-1 are not observed, which is in accordance 
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with XRD analysis. Moreover, the weak bands observed in the range 100-200 cm-1 are 

attributed to bending modes of Mo-O-Mo.203 This verifies the incorporation of Mo atoms into 

the lattice of TiO2, suggesting the presence of Ti-O-Ti, Mo-O-Mo and Mo-O-Ti bonds in 

Mo:TiO2.204 The Mo Raman vibrations are most evident for Mo:TiO2-700 and drastically 

decrease for Mo:TiO2-800, indicating that at 700 °C the Mo incorporation into the oxide 

crystalline structure is at its maximum. This temperature dependence is attributed to 

evaporation of the Mo species, which as previously shown, sublime at relatively low 

temperatures. Along the same lines, the Mo Raman vibrations for Mo:TiO2-650 are relatively 

weak, which further confirms that the vast majority of Mo atoms are not incorporated in the 

TiO2 lattice structure, instead they are impregnated on the surface of TiO2 or distributed in 

interstitial sites of the TiO2 structure, which agrees well with XRD patterns.  

The composition and chemical state of Mo:TiO2 films were further characterized by XPS. Fig. 

4-8 shows the XPS high resolution spectra at the surface of Mo:TiO2 samples.  Ti 2p resolution 

spectra show the two characteristic peaks of Ti4+ in TiO2 at 458 and 464 eV in the Mo:TiO2 

films.199,205 The O 1s spectra for Mo:TiO2 films are shown in Fig. 4-8b. The peak at lower 

binding energies mainly corresponds to crystal lattice oxygen O-Ti4+, whereas the smaller 

peaks at higher binding energies correspond to hydroxyl groups or adsorbed water on the 

surface i.e. Ti-OH or Mo-OH.199,205 Fig. 4-8c shows the high-resolution XPS surface spectra 

of Mo 3d. Surface Mo 3d spectra of all Mo:TiO2 films show the characteristic peaks of Mo6+ 

situated at binding energies at 232 and 235 eV.206–208 An additional doublet appears at lower 

binding energies for all Mo:TiO2 films, attributed to the presence of some Mo5+ centers in the 

films.209  XPS O 1s and Ti 2p spectra of TiO2-650 are shown in Fig. 4-9. The binding energies 

for Ti 2p and O1s are in agreement with Mo:TiO2 samples. 

 

Fig. 4-8 XPS spectra of (a) Ti 2p, (b) O 1s and (c) Mo 3d of Mo:TiO2. Scattered points correspond to raw data 

acquired in the measurements and solid lines to the fitted values.  
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Fig. 4-9 XPS spectra of TiO2-650. (a) Survey, (b) O 1s and (c) Ti 2p. 

Electron paramagnetic resonance (EPR) spectroscopy was undertaken (at 120 K) to 

investigate the nature of the Mo doping within the series of TiO2 lattice structures. EPR 

spectroscopy only detects the presence of paramagnetic species, thus the Mo5+ species are 

observed whereas there is no detection of Mo6+ centers. The EPR data (Fig. 4-10) indicate the 

presence of Mo5+ in all the films, in agreement with the XPS analysis. Variation in g values 

for the different samples demonstrated the existence of multiple Mo5+ species. As an example, 

the EPR spectrum of Mo:TiO2-650 indicated the presence of MoO3+ species on the surface, 

characterized by an axial g-tensor (g⊥ = 1.932 and g|| = 1.886) and corresponding weak 

hyperfine satellite lines originating from coupling of the unpaired electron to the two nuclear 

spin active isotopes of molybdenum (95,97Mo, both with spin I = 5/2 and total natural 

abundance of 25.5%; A⊥ = 112 MHz and unresolvable A||).  Additional contributions from 

bulk Mo5+ (g1 = 1.944, g2 = 1.944, g3 = 1.839; A1 = 198, A2 = 75 and A3 = 93 MHz) and a small 

contribution from Mo5+ in substitutional anatase lattice positions (g1 = 1.917, g2 = 1.828, g3 = 

1.828) was also detected in the Mo:TiO2-650 sample. In contrast, the EPR spectra obtained 

for both the Mo:TiO2-700 and Mo:TiO2-800 samples confirmed the existence of substitutional 

and interstitial doping in the TiO2 rutile lattice. The variation in Mo sites displayed via EPR 

for Mo:TiO2-650 and both Mo:TiO2-700 and Mo:TiO2-800 confirms that substitutional doping 

mainly occurs in rutile TiO2. 
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Fig. 4-10 CW X-Band EPR spectra of degassed samples at 393K of Mo:TiO2, experimental (solid line) and 

simulation (dashed-line). 

The particle size and crystallinity of Mo:TiO2 were evaluated using TEM and SAED-TEM. 

Fig. 4-11 shows the corresponding SAED diffraction patterns, bright-field TEM and HRTEM 

images of Mo:TiO2. To perform these analysis, a few milligrams of film deposited on FTO-

ABS was scratched and dispersed in ethanol followed by TEM grid loading.  

 

Fig. 4-11 SAED-TEM diffraction patterns, TEM and HRTEM images: (a-c) Mo:TiO2-800, (d-f) Mo:TiO2-700, (g-

i) Mo:TiO2-650, (j-l) TiO2-650, (m) TiO2-650, (n) Mo:TiO2-650, (o) Mo:TiO2-700 and (p) Mo:TiO2-800. For 

clarity, images (b), (i) and (p) do not have scales consistent with the rest. 

The SAED-diffraction patterns (Fig. 4-11, 1st column) indicate a high polycrystalline 

character of these Mo:TiO2 and TiO2 particles. The corresponding diffraction pattern along 

with peak identification is shown in the inlet of these figures. These data agree well with XRD 

where diffraction peaks corresponding to TiO2 anatase and rutile are shown in Mo:TiO2-650, 
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Mo:TiO2-700 and pure TiO2, whereas only TiO2 rutile is observed in Mo:TiO2-800. Particle 

size distributions are shown in Fig. 4-12. In all Mo:TiO2 samples, the particles possess a well-

defined particle shape in comparison to pure TiO2. Nevertheless, a large variability of particle 

sizes is observed in Mo:TiO2-650 suggesting an insufficient annealing temperature for the 

formation of  uniform particles.  Mo:TiO2-800 has the highest particle size due to aggregation 

and sintering of particles at high calcination temperatures.210,211 

 

Fig. 4-12 Particle size distributions. (a) Mo:TiO2-650, (b) Mo:TiO2-700 and (c) Mo-TiO2-800. 

HRTEM images are shown in Fig. 4-11m-p. These images also reveal the highly crystalline 

character of Mo:TiO2 and pure TiO2. The measured lattice spacing for the TiO2-650 sample 

agrees well with XRD analysis, since lattice spacings corresponding to the (1 0 1) diffraction 

plane of TiO2 anatase and (1 0 1) of TiO2 rutile are observed. In line with this, lattice spacings 

for Mo:TiO2 also agree well with XRD and Raman analysis. More precisely, Mo:TiO2-650 

and Mo:TiO2-700 show diffraction planes corresponding to both TiO2 rutile and anatase 

crystalline phases, whereas only rutile TiO2 particles are observed in Mo:TiO2-800. 

UV-Vis spectroscopy Tauc plots of Mo:TiO2 and pure TiO2 films are depicted in Fig. 4-13a 

and the corresponding absorption spectra are shown in Fig. 4-13b. All Mo:TiO2 samples 

exhibit lower band-gap energy values ranging from 2.6 to 2.7 eV compared to TiO2-650, ca. 

3.1 eV, being in accordance with literature reports.92 The overall band-gap reduction for all 

Mo:TiO2 is attributed to the incorporation of Mo6+/5+ centers in the TiO2 lattice structures, 

contributing to the formation of a shallow donor energy level below the CB of TiO2.204,212 Two 

distinguished slopes are observed for Mo:TiO2-800. The higher energy one is related to the 

band gap, while the lower one we assign it to an Urbach tail caused by sample disorder (i.e 

Ti-O, Ti-O-Mo bond breaking due to anatase transformation to rutile and Mo sublimation).213 

This sample disorder extends visible light absorption.  

The CB and VB position of TiO2-650 and Mo:TiO2 photoanodes were determined using CV 

curves (Fig. 4-15). Detailed information of the electrochemical characteristics of TiO2 and 

Mo:TiO2 are shown in Table 4-1. A schematic diagram of the relative position of CB and VB 

energy levels for TiO2-650 and Mo:TiO2 samples is shown in Fig. 4-14.  Interestingly, in all 

Mo:TiO2 samples the CB offset is narrowed down from approximately -3.01 eV for TiO2- 650 
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to ca. -4.2 eV for Mo:TiO2.  This further confirms that the incorporation of Mo5+/+6
 atoms at 

the TiO2 lattice structure reduces the overall band-gap of TiO2. The electrochemical band gap 

values obtained from CV curves are also shown in Table 4-1. The difference between the 

electrochemical band gap and optical band gap of TiO2 and Mo:TiO2 photoanodes is of 0.1-

0.5 eV, which falls within the range of error.214 

 

Fig. 4-13 Tauc plots of Mo:TiO2-650, Mo:TiO2-700, Mo:TiO2-800 and pure TiO2-650 photoanodes measured via  

diffuse reflectance UV-Vis spectroscopy. (b) Diffuse reflectance UV-Vis absorption spectra of Mo:TiO2-650, 

Mo:TiO2-700, Mo:TiO2-800 and pure TiO2-650 photoanodes.  

 

Fig. 4-14 Schematic diagram of CB and VB energy levels obtained by CV of Mo:TiO2 and TiO2 photoanodes. 

 

Fig. 4-15 Cyclic Voltammetry curves of TiO2-650 and Mo:TiO2 photoanodes in acetonitrile containing 0.1M of 

TBAPF6 at a scan rate of 50 mv s-1. 
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Table 4-1 Electrochemical characteristics of the bare TiO2 and Mo:TiO2 photoanodes. 

Sample Eox
peak (V)/ VB (eV) Ered

peak (V)/ CB (eV) Eg (eV) 

Mo:TiO2-650 2.32 / -6.69 -0.19 / -4.18 2.51 

Mo:TiO2-700 2.08 / -6.45 -0.22 / -4.15 2.30 

Mo:TiO2-800 2.23 / -6.60 -0.23 / -4.14 2.46 

TiO2-650 2.22 / -6.59 -1.36 / -3.01 3.58 

The photocurrent density (at 1.23 VRHE) as a function of annealing temperature for front 

illumination (via the electrolyte-film interface) and back illumination (via the ABS) was 

evaluated for Mo:TiO2 and pure TiO2 films and the results are shown in Fig. 4-16a. 

Photocurrent performances are higher when films are illuminated from the back, which 

indicates the porous photoanodes have a sufficient thickness. Fig. 4-16a also indicates that the 

optimal annealing temperature for pure TiO2 is 650 °C (and for Mo:TiO2 is 700 °C). In view 

of these results, all the following photoelectrochemical experiments were carried out directing 

the light towards the back of the photoelectrode (via the ABS) and using TiO2-650 as a 

benchmark against Mo:TiO2 films.  

 

Fig. 4-16 (a) Variation of photocurrent density as a function of annealing temperature for Mo:TiO2 and pure TiO2 

(at 1.23 VRHE). Solid lines correspond to photoanodes where illumination was directed towards the back of the 

FTO-ABS and dashed-lines where illumination was directed towards the front of the working electrode. Error bars 

indicate standard error above and below the mean. (b) Photocurrent-potential curves of Mo:TiO2 and pure TiO2. 

(c) Photocurrent potential curves of Mo:TiO2-700, Mo:TiO2-700-CoFeOx and Mo:TiO2-700-Co-Pi. (d) 

Photocurrent-time curves for 9,000s of Mo:TiO2 and pure TiO2 at an applied bias of 1.23 VRHE. (e) Photocurrent-

time curves for 250s of Mo:TiO2 and TiO2-650 at an applied bias of 1.23 VRHE under UV illumination (365 nm, 

3.6 mW cm-2). (f) Nyquist plots of Mo:TiO2 and pure TiO2 in 1M KOH. DC of 1.23 VRHE; AC potential frequency 

range 105-0.01 Hz with an amplitude of 5 mV. The inset of the figure shows the equivalent circuit used to fit the 

data (solid lines). All electrochemical measurements were carried out in 1M KOH aqueous electrolyte. All were 

irradiated with simulated sunlight (AM 1.5G, 100 mWcm-2) except (e). 
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Photocurrent-potential (J-V) and photocurrent-time (J-t) curves are also shown in Fig. 4-16. 

J-V curves (Fig. 4-16b) under chopped simulated solar light indicate that Mo:TiO2-700 

outperforms the rest by almost a factor of two, reaching about 0.20 mA cm-2 at 1.23 VRHE. 

This suggests that the annealing temperature has a significant effect. We assign this 

enhancement to a combination of (i) a smaller band gap, able to capture a higher fraction of 

the solar spectrum; (ii) higher surface area, as evidenced by FE-SEM and ECSA 

measurements (Fig. 4-3 & Fig. 4-5b); and (iii) to the presence of an anatase-rutile type-II 

heterojunction, that lowers the electron and hole recombination rate.200,215–217 The slightly 

lower photocurrent observed for Mo:TiO2 samples at lower applied bias in comparison to 

TiO2-650 might arise from the different charge distribution at the space-charge region of 

Mo:TiO2 that can affect the band-bending properties of the as-prepared photoanodes.32 In fact, 

Z-potential measurements of powdered suspensions of Mo:TiO2 particles revealed a highly 

negatively charged surface at a broad pH range (pH 1-14). This highly negative surface may 

lead to the formation of an accumulation layer when the Mo:TiO2 films are in contact with the 

electrolyte, requiring a larger applied bias to switch to a depletion layer and promote the 

migration of photocarriers.32  

Two different co-catalysts, cobalt phosphate (Co-Pi) and CoFeOx have been evaluated in order 

to reduce the onset potential of Mo:TiO2-700. Previous reports have shown that both co-

catalysts are excellent candidates for reducing the on-set potential owing to the decrease in 

electron-hole recombination at the electrode/electrolyte interface and reduction of surface 

charge recombination.186,188,218 Fig. 4-16c shows the J-V curves for Mo:TiO2-700 without co-

catalyst and with either Co-Pi or CoFeOx. Optimal deposition conditions were found to be 20s 

of deposition time for CoPi loading and 3 cycles for CoFeOx (positively sweeping the voltage 

from 1.1 to 1.4 VAg/AgCl). Interestingly, both co-catalysts show a similar behaviour, where an 

enhancement in photocurrent is observed at low bias.  At higher bias the driving force for the 

electron-hole separation comes from the higher bias applied itself rather than the co-catalyst, 

so main improvements with co-cotalyst addition are only seen at low bias.186 

Photocurrent-time curves at 1.23 VRHE also confirm that Mo:TiO2-700 exhibits a twofold 

increase in photocurrent performance and reveals better photostability in comparison to TiO2-

650 (Fig. 4-16d). The photostability for Mo:TiO2 and TiO2-650 photoanodes was quantified 

as the percentage of the photocurrent performance at the end of the last illuminated cycle (J) 

against the photocurrent performance at the end of the first illumination cycle (J0), as 

previously reported by Paracchino et al.40 After 9,000s of chopped light irradiation, Mo:TiO2-

700 presented the best photostability with a J/J0 of 99.0%, followed by Mo:TiO2-650 

(J/J0=95.7%), Mo:TiO2-800 (J/J0=93.5%) and finally TiO2-650 (J/J0=81.7%). Interestingly, all 

Mo:TiO2 photoanodes resulted in an enhancement in the photostability in comparison to pure 
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TiO2, although only Mo:TiO2-700 showed an improvement in the photocurrent performance 

over TiO2-650. Unlike Mo:TiO2-700, Mo:TiO2-800 exhibits a lower photocurrent than TiO2 

at an applied bias of 1.23 VRHE. This lower photocurrent performance is attributed to a 

combination of plausible reasons: First, Mo:TiO2-800 only exhibits rutile TiO2 in its 

composition due to the high annealing temperature employed for the preparation, as depicted 

in XRD and Raman experiments. Rutile TiO2 is known to be less active than the anatase one, 

despite having a narrower band gap.219 Second, unlike a rutile-anatase heterojunction where 

electrons and holes separate, the single phase rutile Mo:TiO2-800 must suffer from higher 

electron-hole recombination.200,215–217  Third, SEM images (Fig. 4-3) and ECSA measurements 

(Fig. 4-5b) also indicate a smaller surface area for Mo:TiO2-800 with larger grains compared 

to Mo:TiO2-700. Finally, many other factors such as particle size, aggregate shape and size 

may also influence the final photoelectrochemical performance of the Mo:TiO2-800 film. In 

fact, TEM images showed higher particle size and aggregation for the Mo:TiO2-800 

photoanode, mainly due to the high annealing temperature employed. 

Unlike Mo:TiO2-800, Mo:TiO2-650 shows both anatase and rutile TiO2 crystalline phases, as 

demonstrated by XRD analysis and Raman spectroscopy and the measured band gap is 

considerably lower than pure TiO2. Therefore, the poorer photoresponse behavior of Mo:TiO2-

650 must be due to the type of Mo doping and to the film morphology. As shown in SEM-

EDXS and XPS analyses, Mo:TiO2-650 possesses the highest amount of Mo amongst the 

Mo:TiO2 photoanodes and XRD analysis shows a small shift towards lower angles. This fact 

suggests that the clear majority of Mo6+/5+ atoms are dispersed around the surface or occupying 

interstitial sites of the TiO2 lattice structure, rather than being occupying Ti4+ positions in the 

TiO2 lattice structure. The presence of larger quantities of Mo6+/5+ atoms on the surface of TiO2 

can reduce the photocurrent performance by creating recombination sites and blocking 

reaction sites.92,106 Morphology and surface area can also play an important role in the 

photocurrent performance of photoanodes. As shown in the SEM images (Fig. 4-3j), very fine 

and poorly defined nanostructures are observed, which results in less surface area exposed for 

the water oxidation. This is further confirmed with ECSA measurements (Fig. 4-5b), where 

Mo:TiO2-650 shows a significantly smaller surface area in comparison to Mo:TiO2-700.  

Photocurrent-time curves of Mo:TiO2-700 and TiO2-650 photoanodes at 1.23 VRHE were also 

recorded using a UV lamp (365 nm, 3.6 mW cm-2) and are shown in Fig. 4-16e. Under these 

conditions, Mo:TiO2-700 also outperforms the performance of pure TiO2, reaching a 

photocurrent value of ca. 0.65 mA cm-2 compared to ca. 0.2 mA cm-2, respectively. 

In order to further understand the enhancement in photoresponse for the Mo:TiO2-700 

photoanode, the charge transfer properties of photogenerated electrons and holes were studied 
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using PEIS. Fig. 4-16f shows Nyquist plots of the as-prepared photoanodes recorded at a DC 

potential of 1.23 VRHE under illumination and AC potential frequency range of 100000-0.01 

Hz. The inset of Fig. 4-16f shows the equivalent circuit used to fit the Nyquist plots. It consists 

of an ohmic resistance and two RC elements in series, where Rs corresponds to the resistance 

of the cell, R1 to the resistance of the electronic process in the bulk semiconductor along with 

Constant Phase Element 1 (CPE1), and R2 to the resistance of the interfacial charge transfer 

between the electrolyte and the photoanode along with CPE2.220 The corresponding fitted 

resistance values are listed in Table 4-2.  

Table 4-2 Calculated resistance parameters from EIS data.  

Sample Rs (Ω) R1 (Ω) R2 (Ω) 

Mo:TiO2-650 11.99 10,098 64,870 

Mo:TiO2-700 13.11 1,512 9,902 

Mo:TiO2-800 12.07 10,098 36,055 

TiO2-650 11.77 6,931 34,431 

As expected, the resistance values of the Mo:TiO2-700 photoanode are smaller than that of 

Mo:TiO2-650, Mo:TiO2-800 and TiO2-650, suggesting a better separation efficiency and faster 

transfer rate of photogenerated electrons and holes. This enhancement in the charge transfer 

properties of the Mo:TiO2-700 photoanode agrees well with the J-t curves (Fig. 4-16d), that 

showed better photostability and a twofold photocurrent increase. This improvement is 

attributed to the presence of oxygen vacancies, formed to balance charges after partial doping 

with Mo6+/5+. Oxygen vacancies are known to improve the electrical conductivity and charge 

transportation of TiO2.137,221 Since Mo:TiO2-700 shows an optimal substitutional doping of 

Mo atoms into TiO2, an enhancement in electron conductivity and charge transportation 

occurs, giving rise to higher photocurrents and stability.137,221  

IPCE measurements for Mo:TiO2-700 and pure TiO2 photoanodes are shown in Fig. 4-17a. 

Pure TiO2 values slowly increase from 0% at 500 nm to 1.4% at 400 nm and reach a maximum 

of 35% at 320nm. However, Mo:TiO2-700 IPCE values increase from 0% at 500 nm to 5% at 

400 nm and reach a maximum of 40% at 330nm. These IPCE results with monochromatic 

light confirm the superior performance of Mo:TiO2-700 over pure TiO2 on absorbing and 

utilizing visible light, and corroborate the photocurrent results and impedance analysis with 

polychromatic solar light. 

O2 evolution and photocurrent measurements were performed on Mo:TiO2-700 at 1.23 VRHE 

under 1 sun illumination for 340 min (Fig. 4-17b). The amount of O2 in the headspace of the 

PEC cell increased linearly with time during irradiation. Using the photocurrent-time curve 

obtained (Fig. 4-20, Supporting Information), the theoretical amount of O2 expected for a 
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water oxidation reaction with 100% Faradaic efficiency was calculated and also represented 

in Fig. 4-17b. Comparison between values indicated that Mo:TiO2-700 photoanode has a 

Faradaic efficiency of approx. 60% (details of calculations are shown in Supporting 

Information). Similar efficiency values have been obtained on bare photoanodes without 

oxygen evolution electrocatalysts.86  

 

Fig. 4-17 (a) IPCE spectra at 1.23 VRHE of Mo:TiO2-700 and pure TiO2. (b) Amount of O2 gas evolved at 1.23 

VRHE under simulated sunlight (AM 1.5G, 100 mW cm-2). The amount of O2 quantified with a fluorescence probe 

is represented by solid markers, whereas the theoretical amount of O2 calculated assuming a 100% Faradaic 

efficiency is shown with empty markers. 

 

Conclusions 

In this work a facile and rapid approach for the design of Mo:TiO2 photoanodes using a 

heterometallic oxo cage of the type [Ti4Mo2O8(OEt)10]2 as a single source precursor has been 

demonstrated. The performance of the resultant photoanodes is highly reliant on the annealing 

temperature employed owing to its effects on the crystallinity, morphology and doping of 

TiO2, being 700 °C the optimal annealing temperature. At this temperature, the Mo:TiO2  

photoanode  (Mo:TiO2-700) presents better photostability and a two-fold increase in 

photocurrent performance (0.20 mA cm-2 at 1.23 VRHE) in comparison to a TiO2 photoanode 

(0.10 mA cm-2 at 1.23 VRHE). This improvement both in the photocatalytic performance and 

stability is attributed to a combination of several factors that become optimized at 700 °C: 

First, Mo:TiO2-700 exhibits the presence of anatase TiO2 and in minor amount rutile TiO2, 

forming a heterostructure that is known to reduce the electron and hole recombination rate. 

Second, Mo:TiO2-700 has a smaller band gap than the obtained at different temperatures or 

without Mo doping, which allows for a better use of the solar spectrum and higher efficiencies 

(IPCE: 5% at 400nm). Third, in Mo:TiO2-700 there is preferred substitutional doping of 

Mo6+/5+ atoms for Ti4+ atoms in the TiO2 lattice structure, causing the presence of oxygen 

vacancies which improve the electrical conductivity and charge transportation of the film. 

Fourth, Mo:TiO2-700 shows a large amount of cavities, porosity and well-defined 
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nanostructures, resulting in the photoanode with the highest surface area. This characteristic 

morphology is associated to the spray pyrolysis deposition of [Ti4Mo2O8(OEt)10]2 and to the 

partial sublimation of Mo species during the annealing process. On balance, these results 

clearly demonstrate a simple and effective methodology for preparing Mo-doped TiO2 

photoanodes with tuned electronic band properties and morphology and reveal the crucial 

parameters that allow the exploitation of heterometallic oxo cages in thin films for energy 

applications. These results open up the possibility for exploring a wide range of different 

heterometallic oxo cages for the fabrication of metal oxides photoanodes. 
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4.1.5 Supporting information 

 

Fig. 4-18 Ti 2p, O 1s and Mo 3d XPS spectra of Mo:TiO2 photoanodes at different etching times. Additional peaks 

at Ti 2p and Mo 3d XPS spectra appear at different etching times due to reduced Ti and Mo species, respectively 

caused by Ar bombardment.  

 

Fig. 4-19 Cyclic voltammetry curves for (a) TiO2-650, (b) Mo:TiO2-650, (c) Mo:TiO2-700 and (d) Mo:TiO2-800 
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Faradaic efficiency calculation 

To calculate the Faradaic efficiency, first the amount of O2 evolved in the headspace of the 

PEC cell was calculated using the ideal gas law and the % O2 measurements.  Next, the 

theoretical amount of O2 expected for a water oxidation reaction with 100 % Faradaic 

efficiency was calculated. The following equation was used:  

𝑄 = 𝑛(𝑒−) ∗ 𝐹 

where Q is the charge in C, obtained from the photocurrent-time curve (Fig. 4-20);  n (e-) is 

the number of electrons in mol; and F is the Faraday constant (96485.3329 C mol-1).  The 

theoretical amount of O2 generated was calculated by dividing n (e-) by four, which is the 

number of electrons involved in the oxidation of water. Finally, the Faradaic efficiency was 

calculated by dividing the amount of O2 evolved in the headspace by the theoretical amount 

of O2 expected for 100 % Faradaic efficiency (µmol/µmolx100).86 

 

Fig. 4-20 Photocurrent-time curve of Mo:TiO2-700 obtained during the O2 measurement experiment at 1.23 VRHE. 
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4.1.6 Commentary  

4.1.6.1 Calculation of crystal lattice parameters 

In the manuscript, we stated that substitutional doping of Mo6+/5+ atoms for Ti4+ atoms in the 

TiO2 lattice structure occurs, and this has been proven by a shift in the XRD pattern towards 

lower angles and by means of EPR spectroscopy. Even though the ionic radii of Mo6+ and 

Mo5+ are very similar with the Ti4+ ionic radius small changes in the lattice structure 

parameters (a and c) can occur which may further confirm the substitutional doping. Due to 

the slightly larger size of Mo6+/5+ atoms in comparison to Ti4+, it is expected that both lattice 

parameters and volume cell will increase as substitutional doping increases.  In line with this, 

calculated cell parameters for Mo:TiO2 samples are shown in Table 4-3. It should be noted 

that these parameters have been calculated only from the rutile (TiO2) phase which is the 

common phase at the three annealing temperature studied (650, 700 and 800 °C). Rutile TiO2 

(but also anatase) has a tetragonal crystal structure, and the lattice parameters can be calculated 

according to:222  

 
1

𝑑
=
ℎ2 + 𝑘2

𝑎2
+
𝑙2

𝑐2
 4-4 

  

Table 4-3 Calculated lattice parameters of Mo:TiO2 photoanodes from TiO2 rutile crystal phase.  

Sample a (Å) c (Å) Cell Volume (Å3) 

Mo:TiO2-650 4.609 2.962 62.9 

Mo:TiO2-700 4.615 2.970 63.2 

Mo:TiO2-800 4.615 2.976 63.4 

From Table 4-3 it can be observed how lattice parameters are quite similar for both Mo:TiO2-

700 and Mo:TiO2-800, and slightly different for Mo:TiO2-650 sample. In fact, Mo:TiO2-650 

has the smallest lattice parameters which is in agreement with XRD and EPR data shown in 

the manuscript, where substitutional doping in rutile TiO2 was mainly confirmed for Mo:TiO2-

700 and Mo:TiO2-800. The smallest cell volume is also found in Mo:TiO2-650 sample. One 

might argue that the difference in the lattice parameters might also arise from the different 

annealing temperatures employed in each sample. In this regard, V. Štengl et al. reported a 

linear increase for both a and c parameters in rutile TiO2 when a Mo-doped TiO2 sample was 

annealed at different temperatures.118 Conversely, B. Yarmand et al. reported that for rutile 

TiO2 films both a and c lattice parameters decrease as annealing temperature increase.223 In 

any case, our samples show neither a linear increase nor a decrease of a and c lattice 

parameters. All this along with XRD patterns and EPR studies further confirms that Mo6+/5+ 

atoms are occupying substitutional positions mainly in Mo:TiO2-700 and Mo:TiO2-800 

samples.  This substitutional doping most likely induces the presence of oxygen vacancies to 
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compensate charge imbalance, as described with the Kröger-Vink notation used to describe 

different situations in doped metal oxides:14,118 

 𝑀𝑜𝑂3 ↔ 𝑀𝑜𝑇𝑖
∙∙ + 𝑉𝑂

∘∘ +  2𝑂𝑂 4-5 

   

where 𝑀𝑜𝑇𝑖 is a molybdenum ion (Mo6+) at a titanium lattice site, 𝑂𝑂 is oxygen occupying an 

oxygen lattice site and 𝑉𝑂 is an oxygen vacancy. The (
..) and (°°) represents the excess and 

deficiency of the charges, respectively.  

4.1.6.2 Integration of IPCE curve over AM 1.5G solar spectrum 

In the manuscript we did not report the product of integrating the calculated IPCE curves over 

AM 1.5G solar spectrum. The result of this integration gives an estimation of the photocurrent 

density values obtained at the measured potential of the IPCE curve. In this regard, integration 

of IPCE curves for TiO2-650 and Mo:TiO2-700 results in estimated photocurrent density 

values of ca. 0.2 and ca. 0.3 mA cm-2 at 1.23 VRHE, respectively. These values are slightly 

higher than the ca. 0.1 and 0.2 mA cm-2 obtained in J-V curves at 1.23 VRHE for TiO2-650 and 

Mo:TiO2-700, respectively. This variation is attributed to spectral mismatch between the 

simulated solar light (filtered Xe light) and the real AM 1.5G solar spectrum used in the 

integration.224 

Furthermore, it should be noted the gradual decrease in IPCE values at wavelengths below 

340 nm for both samples. This decrease is due to light being absorbed by the FTO-ABS 

substrate at these wavelengths (we are performing back-side IPCE), as demonstrated in 

transmittance measurements of the substrate (Fig. 4-21): 

 

Fig. 4-21 UV-Vis spectrum of FTO-ABS substrate. 
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Chapter 5. Nanostructured TiO2 photoanodes grown by aerosol-

assisted chemical vapor deposition 

5.1 Publication: TiO2 photoanodes with exposed {0 1 0} facets grown by aerosol-

assisted chemical vapor deposition of a titanium oxo/alkoxy cluster 

5.1.1 Preface 

TiO2 was the first material that was used for photoelectrochemical water splitting applications 

and hence it has been widely studied throughout the last 50 years. As mentioned along this 

thesis, TiO2 suffers from some limitations such as a wide band gap (3.2 eV for anatase and 3.0 

for rutile) and fast recombination of electron and holes, which limits its practical applications. 

In Chapter 4, we have shown how doping TiO2 can overcome some of these limitations and 

improve PEC performances. Alternatively, growing nanostructured TiO2 photoanodes has 

also proved effective for improving its PEC performance mainly due to its higher surface area 

that promotes charge transfer across larger solid-liquid interfaces, shortened photo carriers 

pathways and induced light scattering which facilitates the generation of multiple electron and 

hole pairs, as discussed in detail in Chapter 2.51 Among the different polymorphs in which 

TiO2 exists, anatase TiO2 is known to be the most photocatalytic active one. Therefore, an 

approach to enhance even more the performance of nanostructured TiO2 is by preparing 

anatase TiO2 films with high-energy facets such as {0 1 0} or {0 0 1} exposed on the surface 

of the TiO2 nanostructure. These facets, specially {0 1 0} have been reported to be the most 

photoactive facet owing to its favorable surface atomic and electronic structure.132 

There is plenty of interest in the scientific community to prepare high – temperature stable 

anatase TiO2, not only in the field of photoelectrochemistry, but also in the smart tile ceramic 

industry, where anatase TiO2 is used as a functional coating for antibacterial and self-cleaning 

properties due to its better photocatalytic activity over other TiO2 polymorphs, such as rutile 

and brookite.225  

In this publication, we report for the first time the formation of nanostructured anatase TiO2 

photoanodes having the morphology of ‘desert-roses’ with a majority of {0 1 0} facets 

exposed. This preferential growth orientation is achieved by a unique combination of aerosol- 

assisted chemical vapor deposition and the use of a titanium oxo/alkoxy cluster as precursor. 

In addition, a set of temperature studies reveal that these nanostructured TiO2 films keep the 

metastable anatase TiO2 films up to 900 C (⁓ 200 C above the conventional anatase-rutile 

phase transformation), with a gradual conversion to rutile phase above 1000 C, which would 

also find applications in the smart-tile ceramic industry. Overall these nanostructured TiO2 

photoanodes achieved high photocurrent efficiencies (⁓ 0.67 mA cm-2 at 1.23 VRHE, 1 sun 

illumination) and IPCE of ⁓ 100 % at 350 nm. Characterization techniques such as SEM, TEM 
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and time-resolved measurements reveal the unique advantages of this highly nanostructured 

anatase TiO2 photoanode. 
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Abstract 

Photoelectrochemical water splitting is a promising technology for the development of solar 

fuels. Titanium dioxide (TiO2) is one of the most studied metal oxides in this field as a 

photoanode. Achieving its full potential requires controlling its morphology and crystallinity 

and especially the exposure of its most active crystal facets. Herein, we present the formation 

of nanostructured TiO2 photoanodes with anatase phase and high exposure of the {0 1 0} facet, 

the most active TiO2 phase and facet. TiO2 photoanodes were prepared from a Ti7O4(OEt)20 

titanium oxo/alkoxy cluster solution using aerosol-assisted chemical vapor deposition. 

Characterization techniques such as SEM and TEM reveal that these TiO2 photoanodes consist 

of morphologies resembling the crystals of gypsum, sand and water found in nature, also 

known as desert roses. Furthermore, TEM and XRD analysis also reveal that the metastable 

anatase TiO2 phase is maintained up to 1000 °C and exceeds the typical anatase-to-rutile 

phase-transition temperature of 500-750 °C, a feature that could be exploited in the smart 

ceramics industry. Photoelectrochemical measurements show that these desert-rose TiO2 

photoanodes achieve excellent photocurrent densities with an incident photon-to-current 

efficiency of ⁓100% at 350 nm and a faradaic efficiency for oxygen evolution of ⁓90%. 
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Introduction 

A key approach to reduce global warming is to change and decarbonize the current energy 

portfolio, highly based on fossil fuels, to a more sustainable one.4 The abundant solar energy 

reaching the Earth’s surface (1.3 x 105 TW year-1) provides a clean alternative and can be used 

to produce clean hydrogen from water via photoelectrochemical (PEC) water splitting. Among 

the different light harvesting materials used as photoanodes in PEC cells, TiO2 is the most 

studied material owing to its good properties such as chemical and thermal stability, low cost, 

electronic properties and long durability.88,183 Moreover, TiO2 also finds applications in the 

decomposition of organic pollutants, photovoltaics, self-cleaning coatings, electrochromic 

display devices, Li-ion batteries and biomedical devices.183,226 Nevertheless, it suffers from a 

few disadvantages, such as the large band gap and fast recombination of electrons and holes, 

which can limit its practical application, especially in PEC devices.129 An approach to 

overcome some of these limitations is by designing nanostructured TiO2 crystals with most 

active facets exposed, since they can offer more available active surface area for the charge 

transfer process at the photocatalyst-electrolyte interface.51 Under equilibrium conditions, 

anatase TiO2 crystals typically grow with a majority of {1 0 1} facets exposed that have one 

of the lowest surface energy (0.44 J m-2) and poor PEC or photocatalytic activity.131 In this 

regard, there is a great scientific interest in growing anatase TiO2 crystals with high energy 

facets exposed, such as {0 1 0} and {0 0 1}, which are known to be the most active ones for 

photocatalytic or PEC applications, especially the {0 1 0} facet.132,227–229 

Nowadays, the hydrothermal method is the most employed method for the fabrication of 

nanostructured TiO2 photoanodes and a wide range of different morphologies have been 

achieved so far, such as nanotubes,230 nanorods,231 nanowires,232 nanobelts233 and even flower-

like nanostructures.234 Chemical vapor deposition (CVD) is an alternative method for the 

preparation of nanostructured TiO2 films. This method allows the fabrication of robust films 

with a relatively low processing cost, facilitating the scale up.165 Different variants of CVD 

have been used for TiO2 growth, such as aerosol-assisted CVD or metal-organic CVD 

(MOCVD). For instance, Gardecka et al. successfully synthesized nanostructured and 

dendritic TiO2 photoanodes using MOCVD and titanium tetraisopropoxide as the precursor.139 

Other morphologies such as cauliflower-like structures, needle-like structures and compact 

domes with pyramidal features (doped with W) have also been successfully  grown by 

AACVD using titanium isopropoxide and titanium ethoxide as TiO2 precursors.140,172,173,178,235 

In this publication, we present the first formation of nanostructured anatase TiO2 having the 

appearance of crystals of gypsum, sand and water, typically known as “desert roses”, with a 

high exposure of one of the most photocatalytically-active TiO2 {0 1 0} facet. A similar 
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morphology had only been produced before with rutile TiO2 phase using a hydrothermal 

method and MoO3 to stabilize {0 0 1} sufaces,236 but never with anatase TiO2 that is the most 

photocatalytically-active phase. This “desert rose”-like anatase TiO2 is grown by AACVD on 

different substrates using a sophisticated but inexpensive precursor - a titanium oxo/alkoxy 

cluster, also called cage, with formula Ti7O4(OEt)20. Upon deposition, the films are covered 

in carbon residue, but posterior calcination in air reveals the TiO2 {0 1 0} facet is predominant 

on the surface of the rose petals. When deposited on a conductive transparent support and 

tested in PEC cells for water oxidation, the resulting desert-rose TiO2 photoanodes exhibit 

high photocurrents and stability and 100% incident-to-photon efficiency (IPCE) performance 

at 350 nm. Therefore, the results herein presented reveal new strategies for the design and 

fabrication of nanostructured TiO2 photoanodes using AACVD technology and metal 

oxo/alkoxy clusters. 

Experimental 

Materials 

Titanium (IV) ethoxide [Ti(OEt)4], anhydrous toluene (≥99.9%) and ethanol (<0.0003% 

water) were provided by Sigma Aldrich. Aluminoborosilicate glass (ABS) coated with a 

fluorine-doped tin oxide (FTO) transparent conductive layer (8Ω sq-1) was provided by 

Solaronix SA, Switzerland. These FTO-ABS substrates withstand 800 °C heating in air, with 

no deterioration of the FTO conductivity.237 They were cleaned by ultrasonication in a 2% 

aqueous Hellmanex III solution, deionized water, acetone and isopropyl alcohol (each step for 

3 min), followed by rinsing in deionized water and compressed-air drying and an oxygen 

plasma treatment for 20 min to enhance surface energy. Alumina substrates (100mm x 100mm 

x 1mm) for high-temperature studies were provided by Almath and quartz substrates (25mm 

x12mm) for time-resolved microwave conductivity measurements were provided by H. 

Baumbach & Co Ltd.  

Synthesis of Ti7O4(OEt)20 

Ti7O4(OEt)20 titanium oxo/ethoxy cluster was synthesized by a controlled hydrolysis in toluene 

as Eslava et al. previously described.149 Briefly, 0.34 mL of deionized water and 5.0 mL of 

anhydrous ethanol were added dropwise to a solution containing 7.0 mL of Ti(OEt)4 in 

anhydrous toluene (15 mL) under argon atmosphere. After overnight stirring, evaporation of 

the solvent resulted in the formation of a white/yellowish crystalline solid precipitate of 

Ti7O4(OEt)20.  
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Preparation of TiO2-Rose and TiO2 photoanodes 

Photoanodes were prepared using AACVD. The aerosol droplets were generated using a TSI 

Model 3076 Constant Output Atomiser, a 0.05 M solution of Ti7O4(OEt)20 in toluene, and 

nitrogen as a carrier gas at a constant flowrate of 1.5 L min-1 (Fig. 5-1). Depositions were 

carried out onto FTO-ABS, quartz or alumina substrates placed horizontally inside a tube 

furnace. Deposition times of 0.5, 1, 1.5 and 2 h at 500 °C and deposition temperatures of 400, 

500, 600 and 700 °C for 1 h were performed to assess the growth mechanism and optimization. 

The optimal deposition conditions for PEC performance were found to be 500 °C and 1 h. At 

the end of the deposition, the substrate was left to cool down under nitrogen flow. The obtained 

films were further annealed in air at a heating rate of 10 °C min-1 up to 800 °C, kept at this 

temperature for 2 h, and then left to cool down in air. The obtained photoanodes at 500 °C 

with 1 h deposition conditions were denoted as TiO2-Rose-AD (as-deposited) and TiO2-Rose-

800 (annealed). For comparison, TiO2 photoanodes were prepared following the same 

methodology but using 0.05 M Ti(OEt)4 (same precursor molar concentration) and 0.35 M 

Ti(OEt)4 (same Ti molar concentration) toluene solutions instead. The resultant photoanodes 

were accordingly denoted as TiO2-0.05M-AD, TiO2-0.35M-AD, TiO2-0.05M-800 and TiO2-

0.35M-800. 

 

Fig. 5-1 Schematic of the AACVD setup used in the deposition. The aerosol is generated with an aerosol Jet 

atomizer.  

Characterization 

Unit cell calculations were performed at 150 K in a RIGAKU SuperNova manufactured by 

Agilent Technologies.  Field-emission scanning electron microscopy micrographs (FE-SEM) 

were acquired using a JEOL FESEM6301F instrument. X-ray photoelectron spectroscopy 
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(XPS) was performed using a Thermo Fisher Scientific K-alpha+ spectrometer using a micro-

focused monochromatic Al x-ray source (72 W). C 1s peak was used for internal charge 

correction. X-ray diffraction (XRD) patterns were collected from 10 to 80° (2θ) Bragg-

Brentano with a Bruker AXS D8 Advance using Cu Kα (0.154 nm) radiation, 0.023° (2θ) 

steps and a total integration time of 960 s. The rutile TiO2 fraction in the films was calculated 

using the following equation:238  

 𝑋𝑟𝑢𝑡𝑖𝑙𝑒 = (1 +
𝐼𝑎𝑛𝑎𝑡𝑎𝑠𝑒
1.26 𝐼𝑟𝑢𝑡𝑖𝑙𝑒

)
−1

 5-1 

 where Ianatase is the measured intensity of the anatase (1 0 1) diffraction plane and Irutile is the 

measured intensity of the rutile (1 1 0) diffraction plane. The amount of anatase in the film 

was the remaining fraction (Xanatase=1-Xrutile), since no other phases were observed. The 

coherent diffraction domain size was calculated using the Scherrer equation at the (1 0 1) 

anatase TiO2 diffraction.239 Preferred crystal orientation in the film was evaluated by 

calculating texture coefficients (TC(h k l)) using the Harris method and a powder diffraction 

standard for anatase (ICDD-JCPDS 75-1537).240 Raman spectroscopy was carried out on a 

Renishaw inVia system using a 532 nm diode-pumped solid-state laser (DPSS) manufactured 

by Cobolt. The laser beam was focused onto the sample using a 50x long distance objective. 

Thermogravimetric analysis (TGA) was performed using a Setaram Setsys Evolution 16 

TGA-DTA-DSC equipment for TiO2 powders (a few mg of TiO2 was scratched from the 

FTO). TGA of Ti7O4(OEt)20 and Ti(OEt)4 precursors were performed in a glove box under 

argon atmosphere using a PerkinElmer TGA 4000 apparatus.  High-resolution transmission 

electron microscopy (HRTEM) micrographs of films were obtained using a JEOL JEM-

2100Plus microscope. For the sample preparation, a few milligrams of film was scratched and 

dispersed in ethanol followed by TEM grid loading. Time-resolved microwave conductivity 

measurements (TRMC) were carried out using a set up and procedure previously described in 

literature.241–243 During measurements, a change in the microwave power reflected by the 

cavity upon excitation with a 3 ns pulse laser was monitored. For these experiments, 

measurements were performed using a wavelength tunable optical parametric oscillator (OPO) 

coupled to a diode-pumped Q-switched Nd:YAG 3-ns pulse laser at wavelengths of 350, 650 

and 1200 nm. A dielectric constant of 41 was used for the calculation of the TRMC signal.244  

Ultraviolet-visible (UV-Vis) absorption spectra were collected in an Agilent Cary 100 diffuse 

reflectance UV-Vis spectrophotometer. UV-Vis transflectance measurements were collected 

in a Lambda 950 spectrometer (Perkin Elmer) with an integrating sphere (150 mm InGaAs) 

and mounting the sample in the center. 
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PEC measurements 

PEC performance of photoanodes was evaluated using a CompactStat. potentiostat (Ivium 

Technologies). Photocurrents were measured under simulated sunlight (AM 1.5G, 

100 mWcm-2) from a filtered 300 W xenon lamp source (Lot Quantum Design) or under UV 

illumination (365 nm, 3.6 mWcm-2) from a ModuLight IM3412 LED light (Ivium 

Technologies). PEC cells were prepared with a three-electrode configuration with Pt as the 

counter electrode, a silver chloride (Ag/AgCl/3.5M KCl) reference electrode and as-prepared 

photoanodes as the working electrode. 1 M aqueous KOH (pH=13.7) was used as the 

electrolyte solution. Illumination was directed towards the back of the FTO-ABS working 

electrode and a mask was placed on top of the photoelectrode to define the illuminated area. 

Photocurrent-time curves were measured at an applied bias of 1.23 V vs the reversible 

hydrogen electrode (VRHE). Photocurrent-potential curves were recorded at a scan rate of 20 

mV s-1. The measured Ag/AgCl potentials (EAg/AgCl) were converted to RHE potentials (E°RHE) 

and vice versa using the Nernst equation. 

PEC impedance spectroscopy (PEIS) was carried out under simulated sunlight (AM 1.5G, 100 

mW cm-2) at the light open circuit potential (OCP) of the cell at a frequency range of 105–0.1 

Hz with an amplitude of 10 mV. EIS measurements at different potentials were also performed 

under dark conditions to obtain Mott-Schottky plots. These measurements were carried out at 

a fixed frequency of 500 and 1000 Hz, based on the following equation:138 

 
1

𝐶2
=

2

𝑁𝑑𝑒𝜀0𝜀
[(𝑈𝑠 −𝑈𝐹𝑏) −

𝐾𝐵𝑇

𝑒
] 5-2 

where C is the semiconductor depletion layer capacitance, Nd the electron carrier density, e 

the elemental charge value, 𝜀0 the permittivity of the vacuum, 𝜀 the relative permittivity of the 

semiconductor, Us the applied potential, UFb the flat band potential, and [KBT/e] a temperature-

dependent correction term. The electron carrier density (ND) was obtained from Mott-Schottky 

plots using the following equation: 

 𝑁𝐷 = (
2

𝑒𝜀𝜀0
)(
𝑑 (1

𝐶2⁄
)

𝑑(𝑈𝑠)
)

−1

  5-3 

where 𝜀=41 for anatase TiO2 and [d(1/C2)/d(Us)]-1 is the inverse of the slope obtained from 

Mott-Schottky plot. 

Incident photon-to-current efficiency (IPCE) measurements were calculated using the same 

Xe light source and a triple grating Czerny-Turner monochromator.32 The intensity of 

monochromatic light was measured at the working electrode position with a SEL033/U 
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photodetector (International Light Technologies). Oxygen (O2) measurements were conducted 

using a Pyroscience FireStingO2 fibre-optic oxygen meter combined with a TROXROB10 

oxygen probe, together with a TDIP temperature sensor to give automatic compensation for 

minor fluctuation in the PEC cell temperature. The probe was fitted into the headspace of the 

airtight PEC cell, initially purged with a N2 flow to ensure air O2 removal before the irradiation 

started. The O2 measurements were carried out at 1.23 VRHE bias under simulated sunlight 

(AM 1.5G, 100 mW cm-2) irradiated for 180 min. O2 in the electrolyte solution was estimated 

using Henry’s law and added to the measured values in the headspace.245,246 The Faradaic 

efficiency was calculated by dividing the calculated amount of evolved O2 at the end of the 

experiment (after values stabilized) by the theoretical amount of expected O2 for measured 

photocurrents (assuming 100% Faradaic efficiency and O2 formation by four electrons).  

Results and Discussion 

Structural characterization 

Titanium oxo/ethoxy cluster Ti7O4(OEt)20 (Fig. 5-2) was firstly reported in 1967 by K. 

Watenpaugh and C. N. Caughlan as one of the first hydrolysis products of Ti(OEt)4 in dry 

ethanol bubbled with partially-dried air.247  

 

Fig. 5-2 Ball and stick model of Ti7O4(OEt)20 represented from CDCC 169789.248 Ti: Green, O: Red and C: Grey. 

Hydrogen atoms are omitted for clarity.  

In this work, we successfully prepared it in gram scale following a controlled hydrolysis of 

Ti(OEt)4 with distilled water in anhydrous toluene. Unit cell calculations confirmed the 

successful synthesis of Ti7O4(OEt)20 with the unit cell parameters [a 13.806(8), b 20.223(12) 

and c 12.155(5) Å] matching the ones firstly reported by R. Schmid et al. (CDCC 169789).248 

Its deposition by AACVD on FTO-ABS substrates resulted in black films due to carbon 

residues from the ethoxide groups and toluene solvent employed during the deposition (TiO2-

Rose-AD, Fig. 5-3a inset). Annealing in air at 800 °C removed this carbon and films turned 

white (TiO2-Rose-800, Fig. 5-3d inset).  
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Fig. 5-3 SEM micrographs of TiO2 photoanodes grown by AACVD. (a-c) TiO2-Rose-AD and (d-f) TiO2-Rose-

800. Insets in (a) and (d) show photographs of TiO2-Rose-AD and TiO2-Rose-800 photoanodes, respectively. 

Fig. 5-3 (a-f) shows SEM micrographs of TiO2-Rose-AD and TiO2-Rose-800. Both exhibit 

almost the same morphology, with a structure resembling the crystals of gypsum, sand and 

water, typically known as “desert roses”. Such roses have a size of 1-1.5 µm and consist of 

many plate-like sheets resembling rose petals. They offer a good and homogeneous coverage 

of the FTO support. There are no significant structural changes between TiO2-Rose-AD (Fig. 

5-3a-c) and TiO2-Rose-800 (Fig. 5-3d-f) at low magnifications. However, at highest 

magnification, TiO2-Rose-AD shows some surface roughness on the petals assigned to the 

carbon residues. 

 

Fig. 5-4 SEM cross-sectional micrographs of TiO2-Rose-800 photoanodes deposited for (a) 0.5  (b) 1 (c) 1.5 and 

(d) 2 h.  
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Fig. 5-5 SEM micrographs at different magnifications of TiO2-Rose-800 photoanodes deposited at different times 

(a, e, i) 0.5, (b, f, j) 1, (c, g, k)  1.5 and (d, h, l) 2 h on top of FTO-substrates. 

The deposition time during AACVD process was studied. Fig. 5-4 shows SEM cross-sectional 

micrographs of desert rose TiO2 photoanodes obtained at four different deposition times and 

all annealed at 800 °C. The thickness of the films increased from 0.77 (σ=0.05) µm for 0.5 h 

to 2.6 (σ=0.20), 2.8 (σ=0.07), and 2.5 (σ=0.26) µm for 1, 1.5 and 2 h, respectively (σ stands 

for std deviation). Desert-rose flowers grow perpendicular to the FTO substrate with plate-

like petals emerging from the stem of the flower and achieving a good coverage of the support. 

Interestingly, after 1 h of deposition, the thickness of the films remains practically constant 

between 2.6 and 2.8 µm, although some random flowers grow as a second layer (see some 

roses in the background of the micrographs in Fig. 5-4 c-d). This growth is confirmed by top-

view SEM micrographs of the same photoanodes (Fig. 5-5). A homogeneous first layer of 

similar-size roses is achieved at 0.5 and 1 h deposition time, but excessive time leads to some 

secondary larger flowers above the first layer. A deposition of 1 h was found to be optimal for 

PEC performance. The deposition temperature was also studied at 400, 600 and 700 °C for 

1h. Films did not grow at 400 °C but the higher deposition temperatures were successful (Fig. 

5-6 SEM micrographs). Finer nanostructures were observed at higher temperatures, which are 

typical when precursor decomposition and/or chemical reactions mostly occur in the vapor 

phase, followed by surface adsorption and heterogeneous reactions.166 No plate-like “petal” 

morphologies were obtained at different temperatures, so 500 °C was confirmed to be optimal 

for nanostructured growth, together with 1 h deposition time. Following work was carried out 

using films deposited at these conditions. This optimization based on morphology was further 

confirmed by PEC measurements (results not shown). 
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Fig. 5-6 SEM micrographs at different magnifications of (a-c) TiO2 deposited at 600 °C and (d-f) 700 °C for 1h on 

top of FTO-substrates. 

HR-TEM micrographs of both TiO2-Rose-AD and TiO2-Rose-800 film fragments are shown 

in Fig. 5-7. First, it is noteworthy to highlight the presence of a thin amorphous carbon layer 

at the crystallite interface of TiO2 particles for TiO2-Rose-AD (Fig. 5-7a-c).  

 

Fig. 5-7 TEM and HRTEM micrographs of (a-c) TiO2-Rose-AD and (d-f) TiO2-Rose-800. Fast Fourier 

transformation (FFT) patterns and inverse FFT image are shown in the inset of (b-c) and (f). (f) Region highlighted 

in (e). (g) Wulff construction of anatase crystals and (h) evolved shape with high exposure of {0 1 0} facets. (i) 

SEM micrograph highlighting the facets.  

After annealing in air, TiO2-Rose-800 shows no distinguished amorphous carbon layer (Fig. 

5-7d-f). TiO2-Rose-800 consists of well-defined faceted morphologies (Fig. 5-7d and Fig. 

5-7e). Indexing of diffraction spots (Fig. 5-7f) from fast Fourier Transformed (FFT) 

diffraction patterns correspond to (1 0 1), (0 0 4), and (2 0 0) (see insets in Fig. 5-7f) of anatase 

TiO2, suggesting exposure of {1 0 1}, {0 0 1} and {1 0 0}/{0 1 0} facets. The angles of 68.3, 

22 and 90° highlighted in the Fig. 5-7f inset are consistent with the theoretical angles between 

{1 0 1} and {0 0 1}, {2 0 0} and {1 0 1}, and {1 0 0} and {0 0 1} of the anatase crystal, 

respectively. An equilibrium shape of anatase crystals according to the Wulff construction and 

the evolved shape with high exposure of {0 1 0} are shown in Fig. 5-7g-h, respectively.249,250 

Fig. 5-7f also shows a 112° angle assigned to the angle between {1 0 1} and {0 0 1} facets, 
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revealing that the edges of the crystals consist of {0 0 1} and {1 0 1} facets, whereas their 

central part consist of {0 1 0} facets. Generally, anatase particles preferentially expose {1 0 

1} facets as in Fig. 5-7g but TiO2-Rose films bear a preferential exposure of TiO2 {0 1 0} 

facets (Fig. 5-7h). This assignment of facets is shown on a SEM micrograph in Fig. 5-7i. 

The composition and chemical state of film surfaces were evaluated using XPS analysis (Table 

5-1).  

Table 5-1 Atomic percentage (at%) composition of Ti, O and C of TiO2 photoanodes. 

Sample Ti (at%) O (at%) C (at%) 

TiO2-Rose-800 21.9 59.9 18.2 

TiO2-Rose-AD 12.4 31.2 55.7 

TiO2-Rose-AD possess a large amount of carbon on the surface, 55.7 at%, that agrees well 

with the black color appearance, HR-TEM micrographs and attributed deposited carbon. 

Conversely, TiO2-Rose-800 just shows 18.1 at% C, assigned to volatile organic compounds 

deposited during storage of samples. TGA in air on TiO2-Rose-AD sample (Fig. 5-8) showed 

one single predominant step at   ̴ 400 C, indicating the temperature at which carbon deposits 

burn off in air.  

 

Fig. 5-8 Thermogravimetric analysis (TGA) in air of TiO2-Rose-AD on FTO-ABS substrate. 

Ti 2p high resolution XPS spectra are shown in Fig. 5-9a and corresponding binding energies 

listed in Table 5-2. In both TiO2-Rose-AD and TiO2-Rose-800, the two characteristic peaks 

of Ti4+ in anatase TiO2 attributed to Ti 2p1/2 and Ti 2p3/2 are observed.251 Interestingly, a shift 

towards higher binding energies is observed for TiO2-Rose-AD, indicating the possibility of 

Ti-O-C bonds in the film.252 O 1s high resolution XPS spectra are shown in Fig. 5-9b and 

corresponding binding energies listed in Table 5-2. Three peaks at different binding energies 

are observed. The main peak at lower binding energies corresponds to crystal lattice O-Ti4+ in 

the TiO2 lattice structure, whereas the smaller peaks at slightly higher energies are attributed 
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to hydroxyl groups or adsorbed water on the surface.199 As observed for Ti 2p, a shift towards 

higher binding energies is observed for TiO2- Rose-AD, suggesting that crystal lattice oxygen 

is also attached to a non-anatase element, supporting the hypothesis of Ti-O-C bonds in the 

as-deposited samples.252 Finally, C 1s XPS spectra are shown in Fig. 5-9c. The main peak at 

284.8 eV corresponds to C-C bonds whereas the smaller peaks at higher binding energies are 

assigned to different carbon environments, such as C-OH and C-O-C.253,254 Interestingly, no 

additional peaks at  ̴ 281.5 eV corresponding to Ti-C are observed for TiO2-Rose-AD. 

Therefore, only C-O-Ti bonds are confirmed on TiO2-Rose-AD films. 252,255 The smaller peaks 

at   ̴ 293 and    ̴295 eV mainly observed in TiO2-Rose-800 correspond to K 2p3/2 and K 2p1/2, 

respectively, impurities from the KOH electrolyte used during PEC measurements.256 

 

Fig. 5-9 XPS spectra of (a) Ti 2p, (b) O 1s and (c) C 1s of TiO2-Rose-800 and TiO2-Rose-AD. Scattered points 

correspond to raw data acquired in the measurements and solid lines to the fitted values.     

Table 5-2 Ti 2p and O 1s of the crystal lattice O-Ti4+ binding energies.  

Sample Ti 2p1/2 /eV Ti 2p3/2 /eV O2- 1s /eV 

TiO2-Rose-800 463.9 458.2 529.4 

TiO2-Rose-AD 465.2 459.4 530.7 

Fig. 5-10a shows the XRD patterns of both TiO2-Rose-800 and TiO2-Rose-AD films on FTO-

ABS substrates. All XRD patterns only show the characteristic peaks of tetragonal anatase 

TiO2 phase. In particular, the diffraction peaks at 25.2, 48.0, 55.1, 62.8, 75.0 and 76.0 ° (2θ) 

correspond to (1 0 1), (2 0 0), (2 1 1), (2 0 4), (2 1 5) and (3 0 1) diffraction planes (ICDD-

JCPDS 75-1537). These diffraction planes agree with the ones observed in HRTEM 

micrographs. TC of (1 0 1) and (2 0 0) of TiO2-Rose samples are listed in Table 5-3.  
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Fig. 5-10 XRD patterns of TiO2-Rose-800 and TiO2-Rose-AD photoanodes prepared using Ti7O4(OEt)20. Standard 

powder pattern of anatase TiO2 is shown as well as XRD pattern of FTO-ABS. Dot: FTO-ABS diffraction peak. 

(b) Percentage of anatase TiO2 as a function of annealing temperature for TiO2-Rose photoanodes. 

Table 5-3 Texture coefficients for TiO2-Rose films. 

Sample TC101 TC200 

TiO2-Rose-800 0.51 1.49 

TiO2-Rose-AD 0.61 1.39 

The TC101 is   ̴ 0.55 whereas TC200 is    ̴1.45 for both TiO2-Rose samples which indicates 

preferential growth orientation along (2 0 0) diffraction plane. This suggests dominant crystal 

growth along [0 1 0] direction and exposure of {0 1 0} facets.229,257,258 The crystal structure of 

anatase TiO2 highlighting the crystal planes is shown in Fig. 5-11.  

 

 

 

Fig. 5-11 Anatase TiO2 crystal structure showing different crystal planes: (0 0 4) in orange, (1 0 1) in red and (2 0 

0) in green. 
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The preferred orientation of TiO2-Rose agrees well with SEM (Fig. 5-3) and HRTEM (Fig. 

5-7) micrographs where plate-like sheets and rectangular shape particles are observed, 

respectively. The diffraction planes together with the morphological analysis carried out in 

HRTEM micrographs confirm that the TiO2-Rose films are mainly exposed of {0 1 0} anatase 

TiO2 facets with some regions of {1 0 1} and {0 0 1} facets.229,249,259,260  

None of the diffraction planes shown in Fig. 5-10a are indexed to rutile TiO2 phase despite 

annealing at 800 °C, above the typical anatase-to-rutile phase-transformation temperature 

which is  600 °C for powders and expected to be slightly higher for substrate-constrained films 

(ca. 750 °C).196,261 To further investigate the maximum temperature until which the metastable 

but more photocatalytically active anatase phase is preserved, Ti7O4(OEt)20 precursor was 

deposited by AACVD on top of alumina substrate at 500 °C and further annealed in air for 2 

h at 900-1200 °C. The use of a different support did not affect the final morphology of TiO2 

(Fig. 5-12). The XRD patterns are shown in Fig. 5-13 and the percentage of each phase vs. 

temperature in Fig. 5-10b.  

 

Fig. 5-12 SEM micrograph of TiO2-Rose deposited on top of alumina at 500 °C. 

 

Fig. 5-13 XRD patterns of TiO2-Rose on alumina substrates. Standard powder patterns of anatase (blue) and rutile 

(red) TiO2 are shown for comparison. 
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TiO2-Rose shows presence of pure anatase TiO2 up to 900 °C and a gradual transformation to 

rutile phase for temperatures of 1000 °C and above (Fig. 5-10b). A high anatase percentage 

(22 %) is obtained in the film at 1000 °C air annealing. These results reveal that these films 

achieved using AACVD would offer advantages when used as functional coatings on smart 

tiles with antibacterial and self-cleaning properties. The ceramics of tiles require temperatures 

above 900 °C for their preparation, which limits their coating to rutile phase which is less 

photocatalytically active than anatase.225 

High-temperature-stable anatase TiO2 is typically achieved by doping TiO2 with metal and 

non-metal ions co-doping (combining both metal and non-metal ions) and by enriching with 

oxygen, which strengthens Ti-O-Ti bonds and thus delays the transformation to rutile phase.225 

Recently, high-temperature anatase TiO2 photoanodes have also been synthesized by 

anodization of titanium foils followed by a solvothermal treatment, keeping stable anatase 

phase up to 900 °C.262 The authors attributed the anatase high temperature stability to a phonon 

confinement effect, typically observed in anatase TiO2 with small crystallite sizes (  ̴ 30 

nm).263,264 Since neither doping treatment nor oxygen enrichment modifications were 

undertaken to our TiO2 samples, coherent crystal domain size calculations and Raman analysis 

were carried out to further investigate the possibility of this phonon confinement effect on our 

films. 262,264 

Table 5-4 shows the calculated anatase coherent crystal domain size of TiO2-Rose 

photoanodes annealed in air at different temperatures (patterns in Fig. 5-14). The largest 

domain size is found in the as-deposited sample, 46.6 nm, most likely due to the presence of 

interstitial carbon in the anatase TiO2 lattice structure. Substitutional doping of C4+ with Ti4+ 

can be discarded owing to the large difference between their ionic radius, being 16 and 61 pm 

for C4+ and Ti4+, respectively.265 At annealing temperatures ranging from 600 to 800 °C, the 

domain size is significantly smaller, from 28 to 36 nm, and in the range where phonon 

confinement can occur.263,264  

 

Table 5-4 Anatase coherent crystal domain size of TiO2-Rose after annealing in air at different temperatures. 

Annealing T (°C) a Size (nm) 

AD 46.6 

600 27.6 

700 34.3 

800 35.9 

900 44.6 

1000 47.4 
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1100b 62.3 

1200b 61.1 

a XRD performed on FTO substrates for all samples except 1000 °C, that was performed on alumina substrates.  

b It corresponds to the rutile coherent crystal domain size calculated at (110) diffraction plane. Anatase TiO2 is not 

present at these temperatures. 

 

 

 

 

Fig. 5-14 XRD patterns of TiO2-Rose films prepared using Ti7O4(OEt)20  and deposited on FTO-ABS  substrate. 

Standard powder pattern of anatase (blue) TiO2 and FTO-ABS is also shown.  

We attribute this reduction in size to the removal of interstitial carbon present in as-deposited 

samples. Moreover, the presence of amorphous carbon in the anatase TiO2 grain boundaries 

must also have limited the TiO2 domain sizes.265,266 Amorphous carbon in the interface of TiO2 

crystals was confirmed in HRTEM micrographs of TiO2-Rose-AD (inset of Fig. 5-7(e-f)) and 

by XPS analysis, where Ti-O-C bonds were observed. Above 900 °C, grain boundary 

restrictions disappear and anatase TiO2 domain sizes grow up to   ̴ 50 nm owing to sintering 

of cyrstals.210,211 This crystal domain growth is accompanied by a transformation from anatase 

to rutile (Fig. 5-10b). 

Raman spectroscopy was carried out to further confirm the possibility of phonon confinement. 

As previously reported in literature a shift of the Eg Raman mode at 144 cm-1 of anatase TiO2 

towards lower wavenumber supports the phonon confinement model of high-temperature 

anatase TiO2.262,264 Fig. 5-15 shows the Raman spectra of TiO2-Rose annealed at different 

temperatures (600 to 900 °C) confirming the shift towards lower wavenumber values when 

annealing temperature is increased. This Raman shift along with the calculated anatase 

coherent crystal domain size around 30 nm supports that high-temperature anatase TiO2 may 

be achieved through phonon confinement effects, in addition to substrate constraint effects. 
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Fig. 5-15 Raman spectra of Eg Raman mode of anatase TiO2 (144 cm-1) for TiO2-Rose prepared using Ti7O4(OEt)20  

precursor and  annealed at 600, 700 800 and 900 °C for 2 h in air.  

Fig. 5-16 shows the Raman spectra of TiO2-Rose films. In all cases, only Raman bands 

ascribed to tetragonal anatase TiO2 are observed, in agreement with XRD patterns. 

Particularly, the sharp bands at ca. 144, 198, 400, 520 and 640 cm-1 correspond to Eg, Eg, B1g, 

B1g and Eg Raman vibration modes of anatase TiO2, respectively.267 Two additional bands at 

ca. 1340 and 1590 cm-1 appear for TiO2-Rose-AD only, assigned to D and G bands of graphitic 

carbon structures (Fig. 5-16b).268 These results agree well with XPS and HRTEM, where Ti-

O-C bonds and amorphous carbon layers were observed for TiO2-Rose-AD. 

 

Fig. 5-16 Raman spectra of (a) TiO2-Rose-800 and (b) TiO2-Rose-AD photoanodes. 

UV- Vis spectroscopy measurements for TiO2-Rose-800 and TiO2-Rose-AD are shown in Fig. 

5-17. As expected, a clear absorption edge at   ̴400 nm is observed for TiO2-Rose-800, whereas 

lower transflectance values at higher wavelengths with no clear absorption edge is observed 

for TiO2-Rose-AD owing to carbon coverage. 
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Fig. 5-17 UV-Vis spectra of TiO2-Rose-800 and TiO2-Rose-AD on quartz substrates. 

Photoelectrochemical characterization 

PEC performance of TiO2-Rose films on FTO-ABS substrates was evaluated. No PEC activity 

was observed for TiO2-Rose-AD when irradiated (Fig. 5-18), which we ascribe to the carbon 

residues coverage and consequent light shielding.  

 

Fig. 5-18 Photocurrent potential curves of TiO2-Rose-AD and TiO2-AD under 1 sun chopped illumination (AM 

1.5G, 100 mW cm-2) in 1M KOH (pH=13.7) solution.   

However, TiO2-Rose-800 shows high PEC response  ̶ a photocurrent plateau of    ̴ 0.67 mA 

cm-2 with simulated sunlight (Fig. 5-19a) and 3.0 mA cm-2 with UV light (365 nm, 3.6 mW 

cm-2, Fig. 5-19b). Photostability measurements for 2 days including some recovery periods in 

the dark are shown in Fig. 5-19c. After 24 h of continuous light irradiation, 70 % of the total 

photocurrent is still maintained and a 6 h period in the dark recovers 15 % of original 

photocurrent. The photocurrent decrease is assigned to photocorrosion with photogenerated 

electrons and holes trapped in the structure.269 Actually, during the irradiation time the TiO2 
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changed color from white to brownish, attributed to the reduction of Ti4+ to Ti3+ by trapped 

photogenerated electrons (Fig. 5-19c inset).269  During the recovery period in the dark, the 

TiO2 becomes white again, due to the back oxidation to Ti4+ with atmospheric oxygen, 

recovering some PEC activity. 

 

Fig. 5-19 (a) Photocurrent potential curves of TiO2-Rose-800 under 1 sun chopped illumination (AM 1.5G, 100 

mW cm-2). (b) Photocurrent potential curves of TiO2-Rose-800 under UV chopped illumination (365nm, 3.6 mW 

cm-2). (c) Photocurrent-times curves of TiO2-Rose-800 at an applied bias of 1.23 VRHE under 1 sun illumination 

(AM 1.5G, 100 mW cm-2). Inset shows a photograph of the photonanode with a darkened circular area due to 24 h 

irradiation. (d) IPCE spectra at 1.23 VRHE of TiO2-Rose-800. All measurements were performed at 1 M KOH 

(pH=13.7) from back-side illumination.   

IPCE values for TiO2-Rose-800 start to increase from 400 nm and reach a remarkable 100 % 

at 350 nm (Fig. 5-19d). Below 350 nm wavelengths IPCE values decrease due to FTO-ABS 

substrate light absorption, as confirmed by transmittance measurements on FTO-ABS 

substrates (Fig. 5-20a). The use of front-illumination avoids such decrease at wavelengths 

below 350 nm, but maximum IPCE values are then 67 % due to a longer electron path where 

more electron-hole recombination can occur (Fig. 5-20b).270,271 
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Fig. 5-20 (a) UV- Vis spectrum of FTO-ABS substrate. (b) Front-side IPCE spectra at 1.23 VRHE of TiO2-Rose-

800 in 1M KOH (pH=13.7).  

Integrating the product of the IPCE curve (Fig. 5-19d) and the photon intensity in the AM 1.5 

G solar spectrum results in a photocurrent density value of 0.9 mA cm-2 at 1.23 VRHE, which 

is slightly higher than the 0.67 mA cm-2 obtained in J-V and J-time curves at 1.23 VRHE (Fig. 

5-19a and Fig. 5-19d). This variation is attributed to a spectral mismatch between the 

simulated sunlight (filtered Xe source) used in the J-V and J-time measurements and the real 

AM 1.5 G solar spectrum used in the IPCE integration.224 These high IPCE and integrated 

photocurrent values further confirm the excellent performance of these rose-like shaped 

photoanodes prepared using Ti7O4(OEt)20 oxo clusters.  

To further understand why the as-deposited dark TiO2 samples (TiO2-Rose-AD) show no PEC 

activity, as compared to those post annealed at 800 °C in air (TiO2-Rose-800), we investigated 

the charge carrier dynamics (i.e., mobility and lifetime) of these samples deposited onto quartz 

substrates, by TRMC. This technique probes the generation and decay of mobile charges upon 

pulsed irradiation at various wavelengths (350, 650 and 1200 nm).  

 

Fig. 5-21 Time resolved microwave conductance signals for TiO2-Rose-800 and TiO2-Rose-AD films using a 350 

nm laser pulse with a photon flux of 3.97 x 1013 photons cm-2pulse-1.  (b) Time resolved microwave conductance 

signals for TiO2-Rose-AD recorded using 350, 650 and 1200 nm laser pulses with a photon flux of 3.97 x 1013, 

2.01 x 1014 and 1.22 x 1014 photons cm-2 pulse-1, respectively.    
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Fig. 5-21a shows the microwave conductance transients of TiO2-Rose-800 and TiO2-Rose-

AD after a 3 ns laser pulse of 350 nm with a photon flux of 3.97 x 1013 photons pulse-1 cm-2, 

in which we are probing the charge dynamics for excitation energies above the band gap of 

anatase TiO2 (3.2 eV). It has been previously reported that the TRMC signal from TiO2 is 

predominately a measure of electron mobility and lifetime, since holes are rapidly 

trapped.241,272 A strong initial TRMC signal (φΣμ) for TiO2-Rose-800 (3.40 x 10-2 cm2 V-1 s-1) 

indicates higher electron mobilities compared to the moderate signal of TiO2-Rose-AD 

(6.64 x 10-3 cm2 V-1 s-1)  at equivalent photon flux. Interestingly, the TRMC signal decays for 

the two samples are different. As shown in Fig. 5-22a, the TRMC signal for the TiO2-Rose-

800 sample can be fitted with a combination of an exponential decay (< 100 ns) with a time 

constant  of 13 ns and a power law decay (> 100 ns) with a decay exponent of   ̴ 0.5. The 

exponential decay is assigned to band-to-band recombination pathway, while the power law 

decay can be attributed to trap-limited bimolecular recombination mechanism.273–276 In 

contrast, the TRMC signal for the TiO2-Rose-AD sample can be fitted with only a power law 

decay with a decay exponent of  ̴ 0.5 (Fig. 5-22b); only trap-limited bimolecular recombination 

occurs in this sample. This behavior is consistent with the relatively constant mobility and 

similar decay kinetics at various light intensities (Fig. 5-23). 

 

Fig. 5-22 Fitted curves of time resolved microwave conductance signals for (a) TiO2-Rose-800 and (b) TiO2-Rose-

AD using a 350 nm laser pulse with a photon flux of 3.97 x 1013 photons cm-2 pulse-1.  
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Fig. 5-23  Time-resolved microwave conductance signals for (a) TiO2-Rose-800 and (b) TiO2-Rose-AD using a 

350 nm laser pulse with various photon flux intensities: 3.97 x 1013 (black), 3.11 x 1013 (green), 2.0 x 1013 (red), 

1.80 x 1013(blue), 1.36 x 1013(yellow) and  1.15 x 1013 (purple) photons cm-2 pulse-1. 

TRMC measurements were also performed at longer wavelengths of 650 and 1250 nm. Since 

these wavelength energies are lower than the band gap of TiO2, these measurements 

effectively probe the photogenerated charges that can reside within the band gap. Expectedly, 

no TRMC signal for TiO2-Rose-800 sample was observed for these excitation wavelengths. 

However, a clear TRMC transient signal for TiO2-Rose-AD (Fig. 5-21b) was observed for 

both 650 and 1200 nm excitation wavelengths. The mobility slightly decreases with increasing 

wavelength (5.78 x 10-3 and 3.61 x 10-3 cm2 V-1 s-1 for the 650 and 1200 nm excitation, 

respectively), but the decay still follow the same power law mechanism (see Fig. 5-24). We 

attribute this to the carbon impurities embedded in the un-annealed samples that introduce 

localized electron trapping states, delaying the electron and hole recombination, but also 

minimalizing charge mobility.277 These localized states sit at energetic positions deep within 

the band gap of anatase TiO2. Therefore, photogenerated charge carriers in the carbon doped 

TiOxCy (TiO2-Rose-AD) samples will not sit below the water oxidation potential, nor have a 

high enough photovoltage to achieve photoactivity for water splitting. This explains the 

absence of photocurrent from this sample (Fig. 5-18). 
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Fig. 5-24 Time resolved microwave conductance signals for TiO2-Rose-AD using a 350, 650 and 1200 nm laser 

pulse with a photon flux of 3.97 x 1013, 2.01 x 1014 and 1.22 x 1014 photons cm-2 pulse-1, respectively. 

Fig. 5-25 shows a schematic representation of the processes occurring in the two different 

samples. The main difference between the two is in the absence of band-to-band 

recombination for the TiO2-Rose-AD sample. This suggests that carriers, even after excitation 

beyond the band gap, rapidly decay into the trap states, which later do not contribute to any 

photocurrent. Our observations are in agreement with surface photovoltage (SPV) 

measurements of carbon-doped titania which elucidated deep-isolated and catalytically-poor 

trap states.278,279 

 

Fig. 5-25 Schematic diagram representing the difference in the photo-generated charge carrier dynamics for TiO2-

Rose-800 and TiO2-Rose-AD when excited with 350, 650 or 1200 nm laser pulses with a photon flux of 3.97 x 

1013, 2.01 x 1014 and 1.22 x 1014 photons cm-2 pulse-1, respectively.   

EIS measurements under simulated sunlight were carried out to understand charge transfer 

processes in the photoanodes. Fig. 5-26a shows Nyquist plots along with the equivalent circuit 

used, which include a R1/CPE1 pair which describes the semiconductor resistance and 

capacitance at the depletion layer and a second R2/CPE2 pair for the resistance and capacitance 

of the semiconductor at the interface between the electrolyte and photoanode (Helmholtz 

layer).280 Based on the obtained fitted results, TiO2-Rose-800 photoanode has resistance 

values of 35.6 Ω for R1 and 821 Ω for R2. The small resistance values suggest a better 
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separation efficiency and faster transfer rate for photogenerated electrons and holes at the 

electrode/electrolyte interface.280,281 This good charge-transfer properties agree well with J-V 

curves, where high photocurrent performances are obtained for TiO2-Rose-800. 

 

Fig. 5-26 (a) Nyquist plots of TiO2-Rose-800 at the open circuit potential (OCP) of the cell under 1 sun illumination 

(AM 1.5G, 100 mW cm-2). (b) Mott-Schottky plots at a fixed frequency of 500 Hz and 1000Hz of TiO2-Rose-800 

in 1M KOH (pH=13.6).  

EIS measurements in the dark were carried out to characterize the intrinsic properties of the 

photoanodes, such as carrier densities (ND) and flat-band potentials. The EIS data were 

acquired in the form of Mott-Schottky plots at 500 and 1000 Hz, as shown in Fig. 5-26b. Plots 

indicate that the sample possess a positive slope, typical of n-type semiconductors.138 The flat-

band potentials, obtained from the X-axis intercept of the Mott-Schottky plots, shows a very 

small variation of 0.02 𝑉 between the two frequencies, which indicates a very low frequency 

dispersion and true measured value for the flat-band potential.282 A flat-band potential of 0.12 

VRHE and an electron carrier density of 6.43 x 1018 cm-3 were calculated at 500 Hz. Similar 

flat-band potential values have been previously reported in literature for nanostructured TiO2 

photoanodes.138  

O2 evolution measurements at 1.23 VRHE were carried out for TiO2-Rose-800 and results are 

shown in Fig. 5-27. Fig. 5-28 shows the Intensity-time curve obtained during the 

measurements. The amount of O2 gas evolved was accumulated inside the cell, and thus O2 

content increased over time. The calculated Faradaic efficiency for TiO2-Rose-800 

photoanodes is ~90 % at the end of the oxygen measurement, providing further evidence that 

these photoanodes have high activity for oxygen evolution. 



 

 

 

127 

 

Fig. 5-27 Amount of O2 gas evolved at 1.23 VRHE under simulated sunlight (AM 1.5G, 100 mW cm-2). The amount 

of O2 quantified with a fluorescence probe is represented by solid markers, whereas the theoretical amount of O2 

calculated assuming a 100 % Faradaic efficiency is shown with empty markers. 

 

Fig. 5-28 Photocurrent-time curve of TiO2-Rose-800 obtained during the O2 measurement experiment at 1.23 VRHE. 

Simulated sunlight is switched off after 180 min. 

 

Precursor dependence  

TiO2 photoanodes using Ti(OEt)4 as a starting precursor at two different concentrations have 

also been prepared for comparison. Fig. 5-29 shows SEM micrographs of both TiO2 

photoanodes. Randomly distributed particles of irregular shape are observed for the 0.35 M 

deposition (TiO2-0.35M-800) while plate-like particles are observed for the 0.05 M deposition 

(TiO2-0.05M-800). As expected, thicker films were obtained when using a 0.35 M solution of 

Ti(OEt)4. Importantly, the desert-rose morphology is not achieved in any, which indicates that 

the desert rose morphology is unique to the use of Ti7O4(OEt)20 precursor.  
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Fig. 5-29 SEM micrographs at different magnifications of (a-d) TiO2-0.35M-800 photoanodes and (e-h) TiO2-

0.05M-800 photoanodes on top of FTO-substrates. 

Their optical properties were compared. Fig. 5-30 shows the Kubelka-Munk function F(R) of 

diffuse reflectance UV-Vis spectra, related to the absorption coefficient (α).32 TiO2-Rose-800 

shows the highest absorption coefficient at 350 nm, followed by TiO2-0.35M-800 and TiO2-

0.05M-800. Therefore, the spectra indicate that the desert rose like films absorb the most light, 

ascribed to their higher film density and thickness.  

 

Fig. 5-30 Diffuse reflectance UV-Vis spectra of TiO2-Rose-800, TiO2-0.05M-800 and TiO2-0.35M-800. 

Their XRD patterns are shown in Fig. 5-31 showing anatase phase in all the cases. Importantly, 

the preferred orientation observed for TiO2-Rose-800 towards the (2 0 0) diffraction plane is 

no longer observed for TiO2-0.05M-800 and TiO2-0.35M-800 films, indicating again that the 

desert rose morphology with {0 1 0} facets exposed parallel to the FTO-ABS substrate is 

unique to the use of Ti7O4(OEt)20 clusters. 
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Fig. 5-31 XRD patterns of TiO2-Rose-800, TiO2-0.05M-800 and TiO2-0.35M-800 films on FTO-ABS substrate. 

Standard powder patterns of anatase TiO2 (blue) and FTO-ABS (grey) are also shown for comparison. 

Finally, PEC and IPCE performances are shown in Fig. 5-32 and Fig. 5-33. TiO2-Rose-800 

exhibits the highest PEC performance at all applied voltages, but specially at low voltages, 

indicating a better potential onset which we assign to its unique morphology. Furthermore, 

TiO2-Rose-800 also has the highest IPCE performance at 1.23 VRHE (Fig. 5-32b). 

 

Fig. 5-32 (a) Photocurrent potential curves of TiO2-Rose-800, TiO2-0.05M-800 and TiO2-0.35M-800 under 1 sun 

chopped illumination (AM 1.5G, 100 mW cm-2). (b) IPCE spectra at 1.23 VRHE of TiO2-Rose-800, TiO2-0.05M-

800 and TiO2-0.35M-800. All measurements were performed in 1M KOH (pH=13.7).   
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Fig. 5-33 Photocurrent obtained using front and backside illumination for TiO2-Rose-800, TiO2-0.05M-800 and 

TiO2-0.35M-800 at (a) 1.23 VRHE and (b) 0.3 VRHE.  

The significant PEC performance of TiO2-Rose-800, which reaches 100% IPCE, is mainly 

attributed to the desert-rose morphology and exposure of {0 1 0} facets at multiple layers. 

Comparison to TiO2-0.05M-800 and TiO2-0.35M-800, which lacks {0 1 0} exposure supports 

this assignment as well as related literature on the activity of different TiO2 facets.132 As 

revealed by Pan et al., anatase crystals with larger exposure of {0 1 0} facets possess the 

highest photocatalytic activity owing to the combination of 100% coordinated Ti5c atoms on 

the surface and a more favorable CB position.132 The combination of these two factors allows 

all photogenerated electrons be efficiently transferred via surface Ti5c atoms, reducing the 

probability of electron-hole recombination and thus improving the PEC performance.132 

Moreover, as revealed in the cross-sectional SEM micrographs of TiO2-Rose-800, each rose 

grows perpendicularly to the FTO-ABS substrate, leaving a small gap between each flower 

for the electrolyte to permeate while exposing multiple layers of TiO2 {0 1 0} facets per 

substrate area. This desert-rose characteristic morphology, with multiple plate-like sheets 

growing from the stem of the flower, also contribute to a superior light scattering and 

absorption in comparison to more irregular morphologies such as the ones found for TiO2-

0.05M-800 and TiO2-0.35M-800 samples.226 

It is believed that the formation of this specific desert-rose morphology arises from the 

different chemical structure of Ti7O4(OEt)20 in comparison to Ti(OEt)4 when used as AACVD 

precursor. For instance, Ti7O4(OEt)20 precursor has a condensation degree of 0.57 (O/Ti=4/7) 

unlike 0 (nul) in Ti(OEt)4. It consists of seven TiO6 octahedra units that form a titanium oxo 

core which is surrounded by a large number of ethoxide groups, whereas the Ti(OEt)4 lacks 

such titanium oxo core.248 Such a different chemical structure might result in a completely 

different decomposition path during the AACVD deposition. To confirm the different 

decomposition, we carried out TGA analysis of Ti7O4(OEt)20. Fig. 5-34a shows that the 

thermal decomposition of Ti7O4(OEt)20 occurs in three main steps at 224, 277 and 331 °C 

giving rise to a mass of 27.4% for the decomposition residue (TiO2). The biggest weight loss 
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(51.1%) from ca. 100 to 225 °C corresponds mainly to decomposition of alkoxy ligands and 

formation of fragments containing titanium oxide species.283 In contrast, the TGA pattern of 

Ti(OEt)4 shows that decomposition occurs in one single step at    ̴160 °C (Fig. 5-34b). 

 

Fig. 5-34 Thermogravimetric analysis (TGA) in Ar of (a) Ti7O4(OEt)20 and (b) Ti(OEt)4. 

 

Conclusions 

We have demonstrated the growth of nanostructured TiO2 films having a morphology like the 

crystals of gypsum, sand and water found in nature, known as desert roses. This morphology 

was successfully grown by AACVD of Ti7O4(OEt)20 with N2 as a carrier. The desert-rose TiO2 

consists of plate-like particles with preferential exposure of {0 1 0} anatase TiO2 facets, 

further confirmed by analyzing lattice fringes on the surface. Roses grow perpendicular to 

substrates such as FTO or alumina, offering an excellent substrate coverage with multiple 

layers of plate-like TiO2 per substrate area. In addition, desert-rose TiO2 show a high 

preservation of the metastable anatase phase despite annealing in air at very high temperatures, 

even 1000 °C. Rutile phase only appears above 900 °C, unlike typical 600 °C threshold. Such 

feature could be exploited in smart tiles with antibacterial and self-cleaning properties, whose 

ceramics require high temperature preparation. When desert-rose TiO2 films are deposited on 

FTO-ABS substrates and annealed in air, they offer excellent photoelectrochemical 

performance as photoanodes for oxygen evolution in aqueous electrolytes. Photocurrent 

plateaus of   ̴ 0.67 mA cm-2 under simulated sunlight (100 mW cm-2) or 3.0 mA cm-2 under 

365 nm UV light (3.6 mW cm-2) are achieved as well as an IPCE of    ̴100% at 350 nm. Such 

remarkable performance is attributed to an excellent morphology, preferential exposure of {0 

1 0} TiO2 facets and, upon calcination, the minimization of surface states that would otherwise 

trap photoinduced charge carriers. On balance, we have extended the use of metal oxo/alkoxy 

clusters to AACVD for functional coatings, discovering a novel and simple strategy to obtain 

a faceted semiconductor without the use of dopants. These results will trigger research in using 
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metal oxo clusters in the preparation of efficient, nanostructured and stable photoelectrodes, 

as well as, other possible components of energy devices. 
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5.1.5 Commentary 

5.1.5.1 Influence of post-annealing and deposition temperature on the PEC 

performance  

The PEC performance of photoanodes was also evaluated as a function of annealing 

temperature. As previously discussed in Section 5.1.4, the optimal annealing temperature in 

terms of photocurrent density for TiO2-Rose photoanodes deposited at 500 C for 1 h in 

toluene was found to be 800 C for 2 h. Fig. 5-35 shows additional photocurrent density values 

obtained using front and backside illumination at 1.23 VRHE of TiO2-Rose photoanodes 

annealed at different temperatures (500 to 800 C) for 2 h in air. 

 

Fig. 5-35 Photocurrent density values obtained from front and back-side illumination for TiO2-Rose at 1.23 VRHE 

after annealing in air for 2 h (500 to 800 °C). Measurements were performed in 1M KOH (pH=13.6) under 1 sun 

illumination (AM 1.5G, 100 mW cm-2) 

It can be observed how photocurrent densities are mostly higher when illumination is directed 

from the back of the photoanode (ABS-FTO-TiO2) suggesting slower electron carrier transport 

in the film.14 In addition, the overall increase in photocurrent density values as annealing 

temperature increases is most likely attributed to the removal of localized trapping states 

caused by embedded carbon impurities in the film as demonstrated earlier in TRMC 

measurements for the TiO2-Rose-AD. Fig. 5-36 shows SEM micrographs of TiO2-Rose 

photoanodes post-annealed at 500, 600, 700 and 800 C. As discussed earlier, there are no 

significant structural changes between the as-deposited sample (Fig. 5-36a) and the post-

annealed in air at temperatures ranging from 500 to 800 C (Fig. 5-36b-e). Nevertheless, a 

slightly change in color – from black to brownish to white – is observed as annealing 

temperature increases (see inset of Fig. 5-36). This change in color is attributed to the presence 

of amorphous carbon on the surface of the sample, forming trapping states and resulting in 

poor PEC performances, as shown earlier (Fig. 5-35).  
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Fig. 5-36 SEM micrographs of TiO2-Rose photoanodes grown by AA-CVD at 500 C for 1h and annealed in air 

for 2 h at (a) as-deposited (no-annealing), (b) 500 (c) 600 (d) 700 and (e) 800 C. Insets in (a-e) show photographs 

of TiO2-Rose annealed at the corresponding temperature.  

The presence of carbon on the surface of these samples was further confirmed by Raman 

spectroscopy. Fig. 5-37 shows Raman spectra of the carbon region (from 800 to 1800 cm-2) of 

as-deposited and post-annealed samples. As-deposited and TiO2-Rose-500 samples show 

strong Raman bands at ca. 1340 and 1600 cm-1 corresponding to D and G bands of graphitic 

carbon structures, respectively.268 As annealing temperature increases, these D and G bands 

become weaker until 800 °C where these bands disappear, indicating that most of the carbon 

is removed from the surface. This agrees well with the white color appearance and the high 

PEC performance obtained for TiO2-Rose-800.  

 

Fig. 5-37 Raman spectra of TiO2-Rose photoanodes grown by AA-CVD at 500 C for 1h and annealed at 500, 600, 

700 and 800 for 2 h in air. 

The deposition temperature of the Ti7O4(OEt)20 precursor was also studied at 400, 600 and 

700 °C for 1 h. As mentioned earlier, no films were obtained at 400 °C but films with finer 

structures were formed at 600 and 700 °C (Fig. 5-6). As deposited samples were also black in 
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color due to carbon residues and after post-annealing in air at different temperatures films 

became white.  

Raman spectra and XRD patterns indicate that in spite of the deposition temperature employed 

only tetragonal anatase TiO2 is observed (Fig. 5-38 and Fig. 5-39). For instance Raman spectra 

of as-deposited samples show characteristic Raman bands at ca. 144, 198, 400, 520 and 640 

cm-1 corresponding to Eg, Eg, B1g, B1g and Eg Raman vibration modes of anatase TiO2, 

respectively and bands at 1340 and 1590 cm-1 corresponding to D and G bands, respectively 

of graphitic carbon structures are observed.267,268  

 

Fig. 5-38 Raman spectra of as-deposited TiO2 photoanodes grown at (a) 600 C and (b) 700 C for 1 h. 

Fig. 5-39 shows XRD patterns of TiO2 films grown at 600 and 700 °C for 1 h and post-

annealed for 2 h in air at different temperatures (500-800 °C). As in the films deposited at 500 

°C for 1 h, only diffraction peaks corresponding to tetragonal anatase TiO2 are observed, even 

after post-annealing at 800°C in air for 2 h. In particular, the diffraction peaks at 25.2, 48.0, 

55.1 and 62.8° (2θ) correspond to (1 0 1), (2 0 0), (2 1 1) and (2 0 4) diffraction planes, 

respectively (ICDD-JCPDS 75-1537). 

 

Fig. 5-39 XRD patterns of TiO2 films grown at (a) 600 and (b) 700 °C for 1h and annealed at different temperatures 

(600-800 C). Standard powder pattern of anatase TiO2 is shown as well as XRD pattern of FTO-ABS. Dot: FTO-

ABS diffraction peak. AD: As-deposited film. 



 

 

 

136 

Table 5-5 Anatase coherent crystal domain size of TiO2 films grown at 600 and 700 °C for 1 h and annealed in air 

for 2 h at different temperatures. 

 Deposited at 600 °C Deposited at 700 °C 

Annealing T (°C) Size (nm) Size (nm) 

AD 54.0 52.8 

500 34.0 28.6 

600 21.9 22.4 

700 26.6 24.8 

800 23.3 23.6 

Table 5-5 shows the coherent crystal domain size of TiO2 films prepared at 600 and 700 °C. 

As in the case of TiO2 films grown at 500 °C, the largest domain size is found for the as-

deposited sample. We attribute this to the presence of interstitial carbon in the anatase TiO2 

lattice structure. As annealing temperature increases, crystal domain sizes are in the range of 

20-27 nm, where phonon-confinement can occur. Therefore, we also attribute the high-

temperature anatase TiO2 to a combination of phonon confinement and substrate constrained 

effects. Interestingly, when comparing crystal domain sizes of samples deposited at 500 with 

the ones at 600 and 700 °C, samples grown at 500 °C possess slightly larger crystal domain 

sizes (28-36 nm), being consistent with the finer nanostructures observed for samples 

deposited at 600 and 700°C.  

The PEC performance of these photoanodes post-annealed at 800 °C for 2 h was also evaluated 

(Fig. 5-40). TiO2 films deposited at 600 and 700 °C exhibited similar performances of ca. 

0.1 mA cm-1 at 1.23 VRHE, being significantly lower than TiO2 films deposited at 500 °C for 

1 h. The low performance of these samples is most likely due to the finer nanostructures 

obtained after deposition, as previously shown in Fig. 5-6.   

 

Fig. 5-40 (a) Photocurrent density values obtained from back-side illumination at 1.23 VRHE for TiO2-Rose 

photoanodes grown at deposition temperatures of 500, 600 and 700°C and post-annealed in air at 800 °C for 2 h. 

(b) Representative photocurrent potential curves of TiO2 grown at deposition temperatures of 500, 600 and 700 °C 

and post-annealed in air at 800 °C for 2 h. All measurements were performed in 1M KOH (pH=13.6) under 1 sun 

illumination (AM 1.5G, 100 mW cm-2). 
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In summary, from these temperature optimization studies it was concluded that optimal post-

annealing temperature is 800 °C for 2 h and 500°C for deposition temperature. At these 

conditions, desert-rose TiO2 photoanodes with no amorphous carbon were obtained, achieving 

maximum photocurrent densities of ca. 0.65 mA cm-2 at 1.23 VRHE.   

5.1.5.2 Influence of solvent used on morphology and PEC performance   

The effect of two different solvents, tetrahydrofuran (THF) and toluene, towards the final 

morphology and PEC performance of the photoanodes was also investigated. These solvents 

were chosen due to the good stability and solubility of the Ti7O4(OEt)20 precursor under these 

conditions. Fig. 5-41 shows SEM micrographs of TiO2-Rose-800 performed in toluene (a-c) 

and THF (d-f). Interestingly, the desert-rose morphology with plate-like sheets was still 

obtained when THF was used, although the roses were slightly smaller and composed of a 

larger number of sheets of smaller size, in comparison to TiO2-Rose-800 prepared when 

toluene was used. It must be noted that both samples were prepared under the same 

experimental conditions (1 h of deposition at 500 C using N2 as a carrier gas at a constant 

flow rate of 1.5 L min-1), but the precursor usage rate was of ca. 0.3 and ca. 0.7 mL min-1 for 

toluene and THF, respectively. This large difference in precursor usage is mainly attributed to 

the difference in viscosity between the solvents, being of 0.59 and 0.55 mPa s for toluene and 

THF, respectively.284 The aerosol can be easily generated from solutions with lower viscosities 

so larger amounts of precursor solution are usually used.179 

 

Fig. 5-41 SEM micrographs of TiO2 photoanodes grown by AA-CVD and annealed at 800 C for 2 h. Deposition 

performed in (a-c) toluene and (d-f) THF. 

It has been previously reported in literature that in aerosol deposition methods the solvents 

can play a key role in determining the TiO2 crystalline phase (anatase or rutile) since each 

precursor can react differently with the solvent leading to the formation of different 

intermediates resulting in different TiO2 crystalline phases deposited, as discussed in detail in 
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Chapter 3. Fig. 5-42 shows the XRD patterns of TiO2-Rose prepared in THF and annealed at 

600, 700, 800 and 900 C. All XRD patterns only show the characteristic peaks of tetragonal 

anatase TiO2 phase, as when toluene was used as a carrier solvent. In particular, the diffraction 

peaks at 25.2, 48.0, 55.1, 62.8, 75.0 and 76.0 ° (2θ) correspond to (1 0 1), (2 0 0), (2 1 1), (2 

0 4), (2 1 5) and (3 0 1) diffraction planes (ICDD-JCPDS 75-1537). TC101 and TC200 calculated 

from XRD patterns (Fig. 5-42) at different annealing temperatures are listed in Table 5-6.  

TC101 fall in the range of 0.6-0.7, whereas TC200 are of 1.3-1.4. As in the case of TiO2-Rose 

photoanodes prepared using toluene, when THF is employed preferential growth orientation 

along the (2 0 0) diffraction plane is also observed. This agrees well with SEM micrographs, 

where plate-like sheets typical of a preferential orientation growth were also observed. This 

indicates that in this particular case, similar reaction intermediates must be formed when using 

either toluene or THF, giving rise to tetragonal anatase TiO2 phase after deposition with a 

similar desert-rose morphology.  

 

Fig. 5-42 XRD patterns of TiO2-Rose films prepared using Ti7O4(OEt)20 and THF annealed at different 

temperatures (600-800 C). Standard powder pattern of anatase TiO2 is shown as well as XRD pattern of FTO-

ABS. Dot: FTO-ABS diffraction peak. AD: As-deposited film. 

Table 5-6. Anatase coherent crystal domain size and texture coefficients of TiO2-Rose prepared using THF after 

annealing in air at different temperatures. 

Annealing T (°C) TC101 TC200 Size (nm) 

AD 0.73 1.27 18.6 

600 0.62 1.38 26.6 

700 0.68 1.32 26.6 

800 0.71 1.29 31.2 

900 0.60 1.40 39.4 

It is to be noted that as in the case of TiO2-Rose photoanodes prepared using toluene as carrier 

solvent, none of the XRD diffraction peaks is indexed to rutile TiO2 phase, even when high 

annealing temperatures are employed (i.e. 900 C). As before, we attribute this phenomenon 
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to a combination of phonon confinement and substrate constrained effects. Table 5-6 shows 

the calculated anatase coherent crystal domain sizes of TiO2-Rose photoanodes prepared using 

THF as carrier solvent and annealed in air at different temperatures. Unlike in the case of 

TiO2-Rose photoanodes prepared using toluene, the smallest domain size is found in the as-

deposited sample. This might indicate that during AACVD deposition, carbon structures are 

mainly on the surface of the film or in the TiO2 grain boundaries, instead of being occupying 

interstitial positions in the anatase TiO2 structure. As annealing temperature increases, from 

600 to 900 C, crystal domain sizes slightly increase from ca. 26 to 39, being still in the range 

where phonon confinement can occur. 263,264 As before, the presence of carbon in the TiO2 

grain boundaries must have limited the growth of TiO2 domain sizes. Fig. 5-43 shows the 

Raman spectra of Eg Raman mode of TiO2-Rose photoanodes prepared in THF. As in the case 

of TiO2-Rose photoanodes prepared in toluene, a slightly shift towards lower wavenumber 

values is also observed as annealing temperature increases, further supporting the phonon 

confinement model for high-temperature anatase TiO2.262,264 

 

Fig. 5-43 Raman spectra of Eg Raman mode of anatase TiO2 (144 cm-1) for TiO2-Rose prepared using THF and 

annealed at 600, 700, 800 and 900 C for 2 h in air. 

Coherent crystal domain sizes of TiO2-Roses prepared in THF fall in the range of ca. 26 to 39 

nm at an annealing temperature range of 600 to 900 °C, whereas when samples are prepared 

in toluene, crystal domain sizes are slightly larger (ca. 28 to 45 nm) at the same annealing 

temperatures (Table 5-4). This can be explained by the different volatility values of toluene 

and THF, being of 29 and 200 hPa (20 °C), respectively.285 When THF is used as carrier 

solvent, due to being more volatile than toluene, solvent evaporation/decomposition starts 

earlier and proceeds quicker along the reactor chamber resulting in the formation of multiple 

small particulates that nucleate forming smaller crystallites. On the other hand, when toluene 

is used, solvent evaporation/decomposition takes place at a slower rate forming less nucleation 

sites and allowing larger crystals to be formed.180 This is also in agreement with SEM 
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micrographs, where smaller plate-like sheets are observed for TiO2-Rose samples prepared 

using THF (Fig. 5-41). 

Fig. 5-44 shows the Raman spectra of TiO2-Rose-800 and TiO2-Rose-AD prepared in THF 

and toluene, for comparison. Sharp Raman bands corresponding only to tetragonal anatase 

TiO2 are observed in TiO2-Rose-800 (THF)  (Fig. 5-44a). In particular, the bands at ca. 144, 

198, 400, 520 and 640 cm-1 correspond to Eg, Eg, B1g, A1g -B1g and Eg Raman vibration modes 

of anatase TiO2, respectively, agreeing well with XRD patterns (Fig. 5-42).267  

 

Fig. 5-44 Raman spectra of (a) TiO2-Rose-800 , (b) TiO2-Rose-AD prepared using THF and (c) TiO2-Rose-AD 

using toluene. 

Raman spectrum of TiO2-Rose-AD (THF) shows two additional intense bands at ca. 1340 and 

1590 cm-1, corresponding to D and G bands of graphitic carbon structures (Fig. 5-44b ).268 

Very weak Raman bands corresponding to tetragonal anatase TiO2 are observed. When 

comparing the TiO2-Rose-AD Raman spectrum of the samples prepared using toluene (Fig. 

5-44c) and THF (Fig. 5-44b), it is observed how sharper and more intense Raman bands 

corresponding to tetragonal anatase TiO2 are observed when toluene is used (Fig. 5-44c), 

whereas very weak Raman bands are observed in the case of THF (Fig. 5-44b). This indicates 

that larger amounts of carbon residues are deposited on the surface of TiO2-Rose-AD when 

THF is used. In fact, this is in agreement with the higher precursor usage rate of THF in 

comparison to toluene.  

PEC performances of TiO2-Rose photoanodes prepared in toluene and THF were evaluated 

and results are shown in Fig. 5-45. Fig. 5-45a shows a comparison of the photocurrent density 

values obtained from back-side illumination at 1.23 VRHE at different annealing temperatures 

in air when either toluene or THF was used as a carrier solvent. Interestingly, photocurrent 

density values are higher when toluene is used, being 800 C the optimal post-annealing 

temperature. The higher PEC performance of TiO2-Rose photoanodes prepared in toluene is 

most likely due to the slightly different composition of the desert-rose morphology. As stated 

earlier, the plate-like sheets forming the roses of the TiO2-Rose photoanodes prepared in 

toluene are slightly larger, which might result in more exposed {0 1 0} facets, resulting in an 

improvement of the PEC performance.  
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Fig. 5-45 (a) Photocurrent density values obtained from back-side illumination for TiO2-Rose prepared using 

toluene and THF and annealed at different temperatures (500 to 800 C) at 1.23 VRHE. (b) Representative 

photocurrent potential curves of TiO2-Rose-800 prepared in toluene and THF from back-side illumination. All 

measurements were performed in 1M KOH (pH=13.6) under 1 sun illumination (AM 1.5G, 100 mW cm-2).  

5.1.5.3 Influence of substrate used on morphology and crystalline phase 

A solution of 0.05M of Ti7O4(OEt)20 in toluene was deposited on top of different substrates 

including FTO-ABS, alumina, glass and silicon at 500 C for 1 h using N2 as a carrier gas in 

order to study the influence of substrate used in the morphology and crystalline phase (anatase 

or rutile) of TiO2 films. Previous reports have shown a substrate-selective deposition, both in 

terms of morphology and crystalline phase, when using titanium isopropoxide as TiO2 

precursor on  either titanium metal, steel or glass substrates, as discussed in Chapter 3.173 Fig. 

5-46 shows SEM micrographs of TiO2 films prepared by depositing Ti7O4(OEt)20 precursor 

on FTO-ABS, alumina, glass and silicon. Two different distinct morphologies are observed 

when using different substrates. For instance, similar morphologies having the appearance of 

desert roses are observed when Ti7O4(OEt)20 is deposited on top of FTO-ABS (Fig. 5-46a) and 

alumina (Fig. 5-46b), whereas smaller and finer nanostructured roses are formed when using 

either glass (Fig. 5-46c) or silicon (Fig. 5-46d) as deposition substrate. The fact that two 

different morphologies are observed when different substrates are used suggest that chemical 

reaction/precursor decomposition mainly takes place at the surface and not in the vapor 

phase.173 Interestingly, both FTO-ABS and alumina substrates have a rough surface, whereas 

glass and silicon are known to possess very smooth surfaces. This indicates that ‘desert rose’ 

morphologies are most likely formed in rough surfaces, whereas finer and smaller roses are 

formed when flat surfaces, such as glass or silicon are used.  
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Fig. 5-46 SEM micrograph of TiO2-Rose deposited at 500 °C for 1 h on top of (a) FTO-ABS, (b) alumina (c) glass 

and (d) silicon. 

XRD patterns of all as-deposited TiO2 samples are shown in Fig. 5-47. Despite the type of 

substrate used all samples only exhibit the characteristic peaks of tetragonal anatase TiO2 

phase. None of the diffraction peaks is indexed to rutile TiO2. TC101 and TC200 calculated from 

XRD patterns (Fig. 5-47) are shown in Table 5-7. Interestingly, preferential growth orientation 

along (2 0 0) is observed when FTO-ABS, glass, alumina and silicon are used, whereas slightly 

preferred orientation towards (1 0 1) diffraction plane is observed when alumina is used as a 

substrate.  

 

Fig. 5-47 XRD patterns of TiO2-Rose on FTO-ABS, alumina, glass and silicon. Standard powder pattern of anatase 

is TiO2 is also shown. 
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Table 5-7 Texture coefficients of TiO2 films deposited on different substrates.  

Annealing T (°C) TC101 TC200 

FTO-ABS 0.61 1.39 

Alumina 1.21 0.79 

Glass 0.14 1.86 

Silicon 0.18 1.82 

5.1.5.4 Influence of using H2O2 and methanol as a hole scavenger and Co-Pi as a co-

catalyst on the PEC performance 

Hole scavengers, such as H2O2 and methanol are commonly used for understanding the charge 

transport efficiencies of the photoanodes.286 When a hole scavenger is added in the electrolyte, 

it is assumed that surface electron and hole recombination is suppressed, due to the fast 

reaction of photogenerated holes with the scavenger. Therefore, under these conditions, 

photocurrent onset potentials are expected to shift cathodically and photocurrent density 

values plateau at lower bias.286  Fig. 5-48 shows PEC performance of TiO2-Rose-800 

photoanodes with and without hole scavenger (H2O2).  

 

Fig. 5-48 Photocurrent potential curves of TiO2-Rose-800 measured in 1M KOH (pH=13.6) and 1M KOH + 0.1M 

H2O2 (pH=13.3) from back-side illumination. All measurements were performed under 1 sun illumination (AM 

1.5G, 100 mW cm-2). 

In the absence of a hole scavenger, the onset potential is of ca. 0.2 VRHE and photocurrent 

density values start to plateau at applied bias above 0.4 VRHE. On the other hand, when H2O2 

is added the onset potential is slightly shifted towards higher voltages, significantly higher 

dark currents are observed and photocurrent density values decrease. As reported by H. Zhu 

et al. this infrequent phenomenon indicates that when H2O2 is added, a reduction side reaction 

of H2O2 owing to photogenerated trapped electrons takes place, leading to a decrease in 

saturated photocurrent densities and a positive shift of the onset potential.287 These results 

agree well with TRMC measurements discussed in Section 5.1.4, where trap limited 

recombination exists. Upon light irradiation, electrons can get trapped in these states reducing 
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the H2O2, specially in alkaline conditions, where owing to the fast kinetics of the H2O2 

reduction reaction, photogenerated electrons tend to reduce H2O2 rather than being injected in 

the conduction band of the semiconductor. In order to assess the maximum performance of 

these TiO2-Rose-800 photoanodes, PEC measurements in the presence of a less reactive hole 

scavenger (methanol) were performed. Fig. 5-49 shows J-V curves of TiO2-Rose-800 

photoanodes in 1M KOH and in 1M KOH with methanol. At these conditions, the onset 

potential is shifted cathodically (ca.-0.1 VRHE) and photocurrent plateaus at lower voltages, 

since the injection barrier for minority carriers is removed. Overall, photocurrent density 

values are higher at low bias in the presence of methanol but at higher applied bias (above 0.5 

VRHE), where photocurrent plateaus, photocurrent performances are very similar. This 

indicates that at a high applied bias, electron and hole recombination is minimal even without 

hole scavenger and all photogenerated holes participate in the water oxidation reaction. 

 

Fig. 5-49 Photocurrent potential curves of TiO2-Rose-800 measured in 1M KOH (pH=13.6) and 1M KOH + 4 % 

methanol (pH=13.6) . All measurements were performed under 1 sun illumination (AM 1.5G, 100 mW cm-2). 

The effect of co-catalyst towards the PEC performance of TiO2-Rose-800 photoanodes was 

also evaluated. It is known that addition of co-catalysts on the surface of photoanodes can 

contribute in a reduction of the onset potential and enhancement of photocurrent densities due 

to improved charge transfer.288 A co-catalyst that has recently attracted great interest within 

the scientific community is cobalt phosphate (Co-Pi) due to its numerous advantages such as 

high abundance on earth, functionality under benign conditions and self-healing properties 

(catalyst corrosion can be reversed upon application of a potential).289 In line with this,  cobalt 

phosphate (Co-Pi) was photodeposited on the surface of TiO2-Rose-800 photoanodes 

following an experimental method previously described in literature.186,187 Fig. 5-50 shows J-

V curves of pristine TiO2-Rose-800 and TiO2-Rose-800 photoanodes with different amounts 

of Co-Pi. The amount of Co-Pi was controlled by the deposition time (20 to 300 s). After 

addition of Co-Pi the sample changed color, from white to brownish.  
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Fig. 5-50 Photocurrent potential curves of TiO2-Rose-800, TiO2-Rose-800 with different loadings of Co-Pi. The 

amount of Co-Pi was controlled by the deposition time. All measurements were performed in 1M KOH (pH=13.6) 

under 1 sun illumination (AM 1.5G, 100 mW cm-2) from back-side illumination.  

Addition of Co-Pi did not result in an improvement neither of the PEC performance nor of the 

onset potential.186 At low loading of Co-Pi (20 s of deposition), the onset potential and 

photocurrent density values at low bias (0.2-0.3 VRHE) are very similar, whereas at higher 

applied bias photocurrent values are the lowest of all Co-Pi samples studied. When larger 

amounts of Co-Pi are deposited (50 to 300 s of deposition), slightly higher photocurrents than 

20s-Co-Pi samples are observed but still lower than pristine TiO2.  In addition, these samples 

also exhibit high dark currents above 1.1 VRHE and anodic transients. Similar dark currents 

were reported in literature when large amounts of co-catalyst were added.218 The decrease in 

photocurrent performances at low bias is often related to the thickness of the Co-Pi layer. 

When the Co-Pi layer is thin enough, only one layer of Co2+/3+ is attached to the TiO2 surface 

via phosphate groups and photogenerated holes can be easily captured to produce the active 

species (Co4+) for the photocatalytic reaction and thus an enhancement in photocurrent is 

observed, especially at low bias. Nevertheless, when this layer is too thick, photogenerated 

holes are transferred to the Co-Pi/electrolyte interface via multiple Co-Pi molecules resulting 

in a decrease in photocurrent and an increase in electron and hole recombination.186 Another 

reason for the decrease in photocurrent could be light absorption by Co-Pi catalyst. To avoid 

this, measurements were performed from backside illumination.  

The decrease in photocurrent performances for TiO2-Rose-800 with high loadings of Co-Pi 

(50 to 300 s) is most likely due to the Co-Pi layer being too thick as demonstrated with the 

large dark currents observed at high applied bias and the presence of anodic transients. 

Nevertheless, the decrease in photocurrent when Co-Pi is deposited for 20 s might also arise 

from other factors. Pristine TiO2-Rose-800 sample show low onset potential (ca. 0.15 VRHE) 

and high photocurrent values even at low bias, indicating minimal electron and hole 

recombination, suggesting that even when small amounts of Co-Pi are added, the driving force 
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for electron-hole separation at small applied bias is larger than the co-catalyst itself, and the 

co-catalyst might act as a recombination center minimizing the photocurrent performance. 

5.1.5.5 Transient absorption and photocurrent spectroscopy measurements 

Transient absorption and photocurrent spectroscopy measurements were performed in TiO2-

Rose-800 samples to determine charge carrier dynamics during the water oxidation reaction, 

using a set-up and procedure previously described in literature.290,291 The photogenerated 

charge carrier features were identified after a pulse band gap excitation from which the change 

in the intensity of a transmitted monochromatic probe light as a function of time was 

monitored. These measurements were performed in a three-electrode PEC cell configuration 

with Pt as the counter electrode, a Ag/AgCl reference electrode and the TiO2-Rose-800 

photoanode as working electrode in 1M NaOH (pH=13.6). Measurements were performed 

from front-side illumination.  

Use of hole scavengers to identify photogenerated electron and hole spectra 

Transient absorption spectra (TAS) measured at two different potentials, 0.2 VRHE (close to 

the flat band potential) and 1.23 VRHE and at two different time delays (10 s and 10 ms) are 

shown in Fig. 5-51. As previously reported, these spectra are commonly used to identify the 

regions where photogenerated electrons and holes can be detected.292 A similar trend is 

observed at the two potentials studied: at a wavelength range of 650-800 nm absorbance values 

are relatively constant but rapidly increase at wavelengths below 600 nm. When comparing 

absorption values below 600 nm for both potentials studied, it is depicted higher absorption 

values at 1.23 VRHE than at 0.2 VRHE. At higher applied bias (1.23 VRHE) photocarrier 

recombination diminishes, increasing the lifetime of photocarriers and giving rise to higher 

absorption values. This is a first indication that this region most likely corresponds to 

photogenerated holes, since photoelectrons are usually recorded at much higher 

wavelengths.292 
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Fig. 5-51 Transient absorption spectra measured at 0.2 VRHE and 1.23 VRHE. Signals were recorded at 10 μs and 

10 ms after a 355 nm laser excitation and measured in 1 M NaOH. 

TAS spectra were measured in the presence of a hole scavenger to further confirm the nature 

of this absorption increase. Fig. 5-52a shows TAS spectra measured at 0.2 VRHE with and 

without the presence of hole scavenger at two different time delays (10 s and 10 ms). In the 

presence of a hole scavenger TAS spectra flattens below 600 nm, when compared to a 

spectrum without hole scavenger, indicating that photoholes are quenched in a 

premicrosecond time scale. This confirms that photohole fingerprint falls in the range of 500-

600 nm, as suggested earlier. The higher increase in absorption values towards the IR region 

in the presence of methanol might also indicate that some photogenerated electrons are 

detected at those wavelengths due to longer electron lifetimes in the presence of a hole 

scavenger. 292,293 Similarly, TAS spectra at potentials above the flat-band potential of TiO2-

Rose are shown in Fig. 5-52b. As expected, in the presence of hole scavenger, photoholes are 

rapidly quenched below 600 nm, which also confirms the photohole fingerprint region at low 

wavelengths.  

 

Fig. 5-52 (a) Transient absorption spectra measured at 0.2 VRHE. (b) Transient absorption spectra measured at 1.23 

VRHE (NaOH) and 0.5 VRHE (MeOH).  Signals were recorded at 10 μs and 10 ms after a 355 nm laser excitation 

and measured in either 1M NaOH or 1M NaOH + 4 % MeOH. 
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Transient absorption decays  

The dynamics of photogenerated holes and electrons was evaluated by means of transient 

absorption decays probed at 500 and 800 nm, respectively, with the addition of a hole 

scavenger (methanol) at 0.2 VRHE (Fig. 5-53). The addition of methanol did not show any 

significant difference in TAS decays probed at 500 nm (Fig. 5-53a, photoholes region). This 

might suggest that close to the UFB the scavenging effect is minimal and that holes reach the 

TiO2 surface to react with water at similar rates of those when the methanol is present. 

Conversely, TAS decays probed at 800 nm (Fig. 5-53b, photoelectron region) show slightly 

longer decay times in the presence of methanol, suggesting some carriers recombination in 

absence of methanol. When methanol is added, electron-hole recombination diminishes and 

electron lifetime increases. This agrees well with front-side J-V curves shown in Fig. 5-54 

where some carrier recombination was observed at 0.2 VRHE when comparing measurements 

with and without hole scavenger. These observed features are related to the characteristic 

desert-rose morphology of these TiO2 photoanodes, consisting of multiple plate-like sheets. 

Upon light irradiation, photogenerated holes are generated close to the semiconductor-

electrolyte interface and can easily react with water for the water oxidation reaction, while 

photogenerated electrons migrate to the back contact. The slightly higher recombination 

observed in photogenerated electrons in the absence of hole scavenger is due to the larger 

carrier pathway that electrons have to travel to reach the back contact, which increases their 

likelihood of recombination (front-side illumination measurements performed).  

 

Fig. 5-53 Dynamics of (a) photogenerated holes (probed at 500 nm) and (b) photogenerated electrons (probed at 

800 nm). Measurements were performed at 0.2 VRHE in a three-electrode PEC system in 1M NaOH (pH=13.6) with 

and without hole scavenger (4 % methanol). 



 

 

 

149 

 

Fig. 5-54 Photocurrent potential curves of TiO2-Rose 800 measured using a continuous wave 365 nm LED light 

source in 1 M NaOH (pH=13.6) with and without hole scavenger (4% methanol). Measurements were performed 

from front-side illumination using the same set-up as in TAS measurements.  

To further understand the dynamics of photogenerated holes in the water splitting reaction 

TAS decays at different applied bias were measured and results are shown in Fig. 5-55.  

 

Fig. 5-55 Dynamics of photogenerated holes (probed at 500 nm) as a function of applied bias. Measurements were 

performed in a three-electrode PEC system in 1M NaOH (pH=13.6). 

TAS decays reveal a slightly increase in yield and photogenerated holes lifetime as applied 

potential increases specially from 0.2 to 1.23 VRHE. In fact, hole signals beyond 10 ms are 

observed in all applied voltages, even at 0.2 VRHE. This is attributed to a diminishment in 

electron-hole recombination due to an increase in band-bending and stronger electric field in 

the space-charge region.291 At applied bias of 1.5 VRHE, the TAS decay curve is very similar 

to the one measured at 1.23 VRHE, suggesting that at these potentials electron-hole 

recombination is minimal and all photogenerated holes participate in the water oxidation 

reaction.64,290 This agrees well with measured J-V curves, where photocurrent plateaus at these 

voltages (Fig. 5-54).   
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When comparing our TAS decays at different applied voltages with previously reported values 

for dense and flat anatase TiO2 films significant differences can be observed.291 For instance, 

for flat and dense anatase TiO2 films (Fig. 5-56), as applied potential increases the 

photogenerated hole lifetime increase significantly (TAS signals differ significantly), even at 

1.5 VRHE whereas in our nanostructured TiO2 films above and applied bias of 0.5 VRHE TAS 

decays differences are smaller. Bi-molecular recombination seems to occur on the pre-ms 

timescale, being consistent with front-side IPCE measurements, where at those conditions 

IPCE of 100 % was not achieved (Fig. 5-20). Such small variations in photogenerated hole 

decays are most likely related to the highly nanostructured anatase TiO2 in the TiO2-Rose-800 

film. With these nanostructures, the relative volume of the space-charge layer with respect to 

the bulk increases, reducing the electron and hole recombination and increasing the plateau 

current.291 This agrees well with J-V curves, where photocurrent values plateau at ca. 0.6 VRHE 

in nanostructured TiO2 films (Fig. 5-54) and around 1.0 VRHE in flat TiO2 films.291 

 

Fig. 5-56 Decay kinetics of holes measured at a probe wavelength of 500 nm for dense and flat anatase TiO2 

photoanodes measured in 1M NaOH (pH=13.6) at various applied potentials (VRHE). Reprinted with permission 

from ref.291 Copyright (2017) American Chemical Society.  

Light-Induced Spectroelectrochemistry (LI-SEC) 

Light-induced spectroelectrochemistry (LI-SEC) was used to determine the kinetics of the 

water oxidation reaction on TiO2-Rose photoanodes. For such measurements, the optical 

absorption was monitored using continuous wave illumination to mimic the behavior of 

photogenerated charges in a lab-scale PEC setup where continuous simulated sunlight is 

normally used, as previously described in literature.294 Photocurrent densities were also 

measured simultaneously, so that direct correlations with photocurrent transients and 
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photogenerated holes could be performed. The light-induced absorption recorded at 550 nm 

and the photocurrent densities measured at 1.23 VRHE are shown in Fig. 5-57. 

 

Fig. 5-57 (a) Light-induced absorption of holes at 550 nm measured in 1M NaOH (pH=13.6) at 1.23 VRHE. LI-SEC 

signals were collected at different light intensities using an excitation wavelength of 365 nm. (b) Transient 

photocurrent measurements were measured simultaneously. 

When the light is turned on (0 s) the LI-SEC absorption signal increases until reaching plateau 

(ca. 1 to 5 s) and slowly decreases when the light is turned off due to slow reaction with water 

(ca. 5.5 to 10 s) (Fig. 5-57a). As previously observed in other metal oxides and anatase TiO2, 

the rise and decay processes when the light is turned on and off are faster when light intensity 

increases.291,294 When the light is turned off the slow decay in TAS signal is most likely 

attributed to multiple holes that accumulate at the surface for the water splitting reaction.291  

Unlike LI-SEC signals, significantly faster changes in photocurrent were observed when the 

light was turned on and off (Fig. 5-57b). For instance, photocurrent values plateau almost at 

the same time that the light was turned on, and quickly decreased to zero values when the light 

was turned off after 5 s of continuous light illumination.  

Fig. 5-58 shows the relationship that exists between LI-SEC signals and photocurrent densities 

as a function of light intensity.  

 

Fig. 5-58 (a) Steady state light-induced signal and photocurrent density vs. current used to monitor light intensities.  

(b) log-log plot of the rate of reaction vs. surface hole density.  
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Photocurrent density values follow a linear relationship with light intensity, whereas a non-

linear relationship is observed for light induced signals (Fig. 5-58a). To further analyze these 

differences a kinetic model described in previous publications has been applied.294 Briefly, 

this model is described in equation 5-4: 

 
𝑑𝑝𝑠
𝑑𝑡
= 𝐽ℎ𝑜𝑙𝑒𝑠 − 𝑘𝑊𝑂. 𝑝𝑠

𝛽
 5-4 

where the variation of surface holes (ps) is equal to the incoming hole flux (Jholes) minus the 

holes transferred to the electrolyte for the water oxidation reaction. ps values can be calculated 

from light induced signals and assuming a hole extinction coefficient of TiO2 of 

1980 M-1 cm-1. In this model the hole consumption from back electron recombination is 

neglected, since at high applied bias it is assumed that this recombination is minimal. This 

model also assumes a Faradaic efficiency of 1. Assuming steady state conditions (such as the 

ones employed for LI-SEC measurements) this model can be further simplified to:294 

 
𝑑𝑝𝑠
𝑑𝑡
= 0;  𝐽ℎ𝑜𝑙𝑒𝑠 = 𝑘𝑊𝑂. 𝑝𝑠

𝛽
 5-5 

in which a log-log plot of equation 5-5 results in a linear relationship where β (order of 

reaction) and kwo (rate of reaction) can be easily extracted from the gradient and the intercept 

of the log-log plot, respectively (Fig. 5-58b). From the fitting, a third-order reaction is obtained 

(𝛽 = 2.67 ±  0.12 ) with a rate water oxidation constant of (𝑘𝑤𝑜 = 1.46 ±

0.12 ℎ𝑜𝑙𝑒𝑠−2 𝑠−1 𝑛𝑚4). These results agree well with previous publications with anatase 

TiO2, where β~3 was also found under the same experimental conditions employed (1M 

NaOH, pH=13.6). 291 
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Chapter 6. Fe2TiO5 based photoanodes grown by aerosol-assisted 

chemical vapor deposition 

6.1 Publication: Zn doped Fe2TiO5 photoanodes grown by aerosol-assisted 

chemical vapor deposition 

6.1.1 Preface 

Fe2TiO5, a hybrid of Fe2O3 and TiO2, has recently awakened great interest within the scientific 

community. Being a combination of two of the most studied metal oxides in the field of water 

splitting, this material can overcome some of the main limitations encountered in the 

corresponding metal oxides. For instance, Fe2TiO5 has a band gap of 1.9-2.1 eV, which 

corresponds to the visible region of the solar spectrum and it shows better charge separation 

efficiencies than Fe2O3 and TiO2, as briefly discussed in Chapter 2.  

Although many publications have emerged based on Fe2TiO5 in the last five years, most of 

them have shown that PEC efficiencies are mainly improved when a thin layer of Fe2TiO5 is 

deposited on top of either TiO2 or Fe2O3 photoanodes to form heterojunctioned systems.65 In 

fact, PEC systems consisting only of Fe2TiO5 have sometimes shown onset potentials of 1.0 

VRHE and maximum photocurrent performances of 0.2 mA cm-2 at 1.23 VRHE, being worse that 

what could be achieved in pristine TiO2 and Fe2O3.66 Therefore, a feasible approach for 

improving the performance of Fe2TiO5 photoanodes could be doping, since it could allow a 

modification of the electronic structure of the material resulting in improved PEC 

performances. 

In this work, we demonstrate for the first time Zn-doped Fe2TiO5 based photoanodes grown 

by AACVD. After long annealing temperatures, Fe2TiO5 based photoanodes were formed, 

resulting in an improvement of the PEC performance after incorporation of Zn2+ ions into the 

system. Through the use of extensive characterization techniques such as XPS, UPS, and EIS 

methods it is demonstrated how addition of Zn2+ promotes an upward shift of the energy Fermi 

level (EF) and an increase in charge carrier concentration, which overall results in an enhanced 

PEC performance from ca. 0.2 to 0.6 mA cm-2 at 1.23 VRHE, for pristine and Zn-doped Fe2TiO5 

photoanodes, respectively.  

In summary, this work highlights the benefits that doping Fe2TiO5 with transition metals such 

as Zn2+ has towards its electronic properties and PEC performance and opens up a new path 

for exploiting doped Fe2TiO5 systems.  
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Abstract 

Photoelectrochemical water splitting is an environmentally-friendly and promising 

technology for the production of solar fuels. TiO2 and α-Fe2O3 are two of the most studied 

semiconductors in the field, but they possess several disadvantages that limits their practical 

application. When combining these two materials, Fe2TiO5 can be formed, which possesses 

more favorable features for the water splitting reaction. Herein, we present the formation of 

Fe2TiO5 photoanodes prepared using aerosol-assisted chemical vapor deposition. When doped 

with Zn2+, their photoelectrochemical performance increases significantly, from ca. 0.2 to 0.6 

mA cm-2 at 1.23 VRHE outperforming pristine Fe2TiO5 photoanodes. Characterization 

techniques such as XPS, UPS and Mott-Schottky plots reveal that Zn2+ plays a role in 

modifying the electronic properties of Fe2TiO5 photoanodes increasing the carrier 

concentration and leading to an upward shift of the energy Fermi level. In addition, charge 

transfer efficiency calculations and PEIS measurements reveal improved charge transfer 

properties for Zn-doped-Fe2TiO5, overall demonstrating a promising approach for the design 

of better-performing Fe2TiO5 based photoanodes. 

Introduction 

Recent reports on climate change, such as the one released by the international panel on 

climate change (IPCC), have highlighted the urgent need for changing our current energy 

portfolio highly based on fossil fuels to a more sustainable one where solar energy plays a key 

role.4 Solar energy is abundant, reaching the Earth’s surface approximately 3.4 1024 J in one 
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year, but we need to develop technologies such as photoelectrochemical (PEC) water splitting 

to store the solar energy in the chemical bonds of solar fuels.295 Among the different light 

harvesting materials used in PEC devices, α-Fe2O3 (hematite) and TiO2 are frequently studied 

as photoanode absorbers. α-Fe2O3 has a band gap of 2.0-2.2 eV, so it can harvest the visible 

region of the solar spectrum and has the potential to achieve solar-to-fuel conversion 

efficiencies in the range of 12.7-16.8 %.56,296 In addition, it is abundant on the Earth’s crust 

and non-toxic. TiO2, with large minority carrier diffusion length, is also abundant and shows 

chemical and thermal stability, low cost, good electronic properties and long durability.88,183 

Nevertheless, both materials still possess several challenges for their practical application in 

PEC devices. For instance, α-Fe2O3 suffers from a relatively low absorption coefficient, large 

overpotential for water oxidation, poor majority carriers conductivity and short diffusion 

lengths of minority carriers.56 On the other hand, TiO2 has a relatively large band gap (3.0-3.2 

eV) that only absorbs the UV region of the solar spectrum (⁓ 4%) and suffers from a fast 

electron and hole recombination.129  

Several approaches have been attempted to tackle the drawbacks of α-Fe2O3 and TiO2. For 

instance, α-Fe2O3 has been improved by loading of co-catalysts such as Co-Pi, CoFeOx or 

IrO2, by nanostructuring (as nanowires, nanorods…), through nanoheterostructures or by 

elemental doping.56,218,297–299 Along the same lines, TiO2 has been improved by doping with 

transition metals (Ta, Fe, and Mo among others), designing nanoheterostructures and 

nanostructuring.107,108,139,300,301 Despite the progress, there is still plenty of room for improving 

these materials to reach enough solar-to-hydrogen conversion efficiencies that would facilitate 

commercialization. Currently, the highest solar-to-hydrogen efficiency achieved in PEC 

systems is of 10 % for more than 40 h.302 

The preparation of Fe2TiO5, iron titanate pseudobrookite, a hybrid of α-Fe2O3 and TiO2 with 

Fe-O-Ti bonds, offers an n-type semiconductor with synergistic properties such as a smaller 

band gap of 1.9-2.1 eV and better separation of photocarriers, together with stability in 

aqueous media.66,67 Several synthetic methods have been employed to prepare thin films of 

Fe2TiO5 for PEC applications. In 2014, E. Courtin et al. reported for the first time the Fe2TiO5 

phase in thin films, prepared by sol-gel synthesis along with a dip coating process.303 

Depending on the Fe:Ti ratio used in the precursors, up to three different phases were observed 

in final films: TiO2 anatase, α-Fe2O3 hematite and Fe2TiO5 pseudobrookite. Achieving only 

pseudobrookite with traces of hematite required the highest Fe0.3:Ti0.7 molar precursor ratio. 

Alternatively, P. S. Bassi et al. synthesized a pure phase of Fe2TiO5 using a solvothermal 

method and concluded that Fe2TiO5 has better band level positions than α-Fe2O3 for water 

splitting applications.66 The deposition of Fe2TiO5 on top of α-Fe2O3 has also been attempted. 

In 2014 Q. Liu et al. reported the synthesis of Fe2TiO5 on top of aligned TiO2 nanotubes grown 
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by electrochemical deposition.68 The authors showed a significant improvement in the PEC 

performance of TiO2 by the addition of a thin layer of Fe2TiO5 and CoOx catalyst. This 

increased the incident photon to current efficiency (IPCE) at 400 nm and 1.23 VRHE from 5 to 

40 %, which was mainly attributed to anisotropic charge carrier transport and reduced charge 

carrier transfer resistance.68 Similarly, J. Deng et al. demonstrated that a thin layer of Fe2TiO5 

on α-Fe2O3 photoanodes enhanced IPCE from 8 to 19 % at 400 nm and 1.23 VRHE owing to a 

reduced accumulation of photogenerated holes commonly observed in α-Fe2O3 photoanodes.69 

C. Li et al. also added 4 nm of Fe2TiO5 by atomic layer deposition on α-Fe2O3 increasing IPCE 

at 400 nm and 1.23 VRHE from 5 to 16 %.304 P. S. Bassi et al. demonstrated crystalline 

heterojunction of Fe2TiO5 and α-Fe2O3 deposited by solvothermal technique.  This type II 

band alignment between the two oxides resulted in  an enhancement of IPCE at 400 nm and 

1.23 VRHE from 3 to 17.5 %.70 Surface state passivation by Al3+ along with incorporation of 

FeOOH as a cocatalyst also resulted successful for improving PEC performance of Fe2TiO5 

photoanodes, reaching photocurrent density values of 0.52 mA cm-2 at 1.23 VRHE.305  

Doping metal oxide semiconductors with foreign elements is an effective approach to tune 

their properties. For example, the band gap of TiO2 has been decreased with Mo, N, C, and 

others.128,300,306 Zn2+ doping has been explored in both α-Fe2O3 and TiO2, resulting in a cathodic 

shift of the onset potential of α-Fe2O3 or an upwards shift of the Fermi level of TiO2 providing 

more electrons to the conduction band.307–311 To the best of our knowledge the effect of doping 

Fe2TiO5 has rarely been studied, especially for PEC applications. In 2017, O. Linnik et al. 

reported the synthesis of Fe2TiO5 thin films doped with N for photocatalytic degradation of 

pollutants, showing an enhancement of the photocatalytic activity in comparison to non-doped 

Fe2TiO5.312 Further experiments and characterization of these N-doped Fe2TiO5 films also 

found that N helps stabilize the Fe2TiO5 phase at higher annealing temperatures, avoiding 

segregation of the corresponding single metal oxides.313  

In this publication, we report the synthesis of Zn-doped Fe2TiO5 thin films grown by aerosol-

assisted chemical vapor deposition (AACVD). Photoelectrochemical measurements reveal 

that Zn-doped Fe2TiO5 films outperform significantly the pristine Fe2TiO5, Fe2O3 and Zn-

doped Fe2O3 films. Characterization techniques such as X-ray photoelectron spectroscopy, 

(photoelectrochemical) impedance spectroscopy and ultraviolet photoelectron spectroscopy 

reveal that addition Zn2+ modifies significantly the electronic properties of Fe2TiO5 

contributing in an overall improvement of the charge transfer processes giving rise to better 

photoelectrochemical performances. 
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Experimental 

Materials 

Titanium (IV) isopropoxide, iron (III) acetylacetonate, zinc acetate dihydrate, ethyl acetate 

and methanol were provided by Sigma Aldrich. Fluorine doped tin oxide (FTO) coated glass 

substrates (TEC 7) were provided by Pilkington. These substrates were cleaned ultrasonically 

with a soap solution followed by ethanol and deionized water and finally dried with 

compressed air.  

Preparation of Fe2TiO5, Zn-doped Fe2TiO5, Fe2O3 and Zn-doped Fe2O3 

All photoanodes were prepared using AACVD. The aerosol droplets were generated using a 

TSI Model 3076 Constant Output atomizer using argon as a carrier gas. Pristine Fe2TiO5 and 

Zn-doped Fe2TiO5 were prepared following a modification of a procedure previously 

described.314 Typically, titanium (IV) isopropoxide (1.478 mL, 5.0 mmol) was dissolved in 10 

mL of methanol and mixed together with a solution of iron (III) acetylacetonate (3.531 g, 10 

mmol) in 100 mL of ethyl acetate. Zn-doped Fe2TiO5 photoanodes were prepared by adding 

zinc acetate dihydrate (0.0549 g, 0.25 mmol) to the previous iron and titanium solution. For 

comparison, Fe2O3 and Zn-doped Fe2O3 photoanodes were also prepared removing the 

titanium precursor from the solution. Therefore, for Fe2O3 samples a solution of iron (III) 

acetylacetonate (3.531 g, 10 mmol) in 100 mL of ethyl acetate and 10 mL of methanol was 

used and for Zn-doped Fe2O3 photoanodes the same solution with additional zinc acetate 

dihydrate (0.0549 g, 0.25 mmol). All samples were deposited for 1 h at 450 °C. The obtained 

films were annealed in air at 500°C for 12 h and 650 °C for 2 h using a heating rate of 10 °C 

min-1. The resultant photoanodes were denoted as Fe2TiO5 and Fe2O3 for the pristine samples 

and Fe2TiO5-Zn and Fe2O3-Zn for the Zn2+-doped samples. 

Characterization  

X-ray diffraction (XRD) patterns were collected from 10 to 60° (2θ) using a Bruker D8 

diffractometer with Cu Kα (0.154 nm) radiation. Measurements were carried out in a grazing 

incidence geometry. The coherent diffraction domain size was calculated using the Scherrer 

equation at the (2 0 0) and (1 0 1) for Fe2TiO5 and Fe2O3 samples, respectively. Raman 

spectroscopy was performed on a Renishaw inVia system using a 532 nm diode-pumped solid-

state laser (DPSS) manufactured by Cobolt. A 50x long distance objective was used to focus 

the laser beam onto the sample. UV-Vis measurements were carried out in a Lambda 950 

spectrometer (Perkin Elmer) with an integrating sphere (150 mm InGaAS). The samples were 

mounted in the center. Diffuse-reflectance UV-Vis measurements were performed in an 

Agilent Cary 100 spectrophotometer. Field-emission scanning electron microscopy 
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micrographs (FE-SEM) were acquired using a JEOL FESEM6301F instrument. X-ray 

photoelectron spectroscopy (XPS) was performed with a monochromatic Al Kα X-ray-source 

(1486.74 eV, Specs Focus 500 monochromator). C 1s was used for internal charge 

correction. Ultraviolet photoelectron spectroscopy (UPS) was carried out with a He I source 

(E = 21.218 eV) in the same chamber. A hemispherical analyzer (Specs Phoibos 100) was 

used for both XPS and UPS measurements. The base pressure of the system was ∼10−9 mbar. 

PEC measurements 

Photoelectrochemical (PEC) performance of photoanodes was measured under simulated 

solar light using a WACOM Super Solar Simulator (Model WXS-505-5H, AM 1.5, Class 

AAA) and an EG&G Princeton Applied Research Potentiostat/Galvanostat (Model 273A). 

PEC cells were prepared using a three- electrode configuration with Pt as the counter 

electrode, a silver chloride reference electrode (Ag/AgCl-reference electrode, XR300, 

Radiometer Analytical, EAg/AgCl=0.197 VRHE) and the as-prepared photoanodes as the working 

electrode. Illumination was directed towards the back of the photoanode (Glass-FTO-sample). 

1 M NaOH (pH=13.6) was used as electrolyte. All the measured potentials (EAg/AgCl) were 

converted to RHE potentials (ERHE) using the Nernst equation. J-V curves for charge injection 

and charge separation efficiencies were recorded using the above-mentioned configuration but 

adding 10%(v/v) of H2O2 in the 1M NaOH electrolyte. Charge injection efficiencies were 

calculated using the following equation:  

 ɳ𝑖𝑛𝑗 =
𝐽𝑝ℎ𝑜𝑡𝑜 (𝑁𝑎𝑂𝐻)

𝐽𝑝ℎ𝑜𝑡𝑜 (𝑁𝑎𝑂𝐻+𝐻2𝑂2)
 6-1 

 and charge separation efficiencies were calculated using equation 6-2:  

 ɳ𝑠𝑒𝑝 =
𝐽𝑝ℎ𝑜𝑡𝑜 (𝑁𝑎𝑂𝐻)

𝐽𝑚𝑎𝑥
 6-2 

where Jphoto(NaOH) and Jphoto(NaOH+H2O2) are the measured photocurrent density values in 1M 

NaOH and 1M NaOH plus H2O2, respectively. Jmax is the theoretical maximum photocurrent 

density obtained when all the absorbed photons are converted into current density and it is 

calculated by integrating the absorbance spectra with standard AM 1.5G spectrum.70,286 

Incident photon-to-current efficiency (IPCE) measurements were performed using an Xe lamp 

(LOT, LSH302), an Acton Research monochromator (Spectra Pro 2155) and an electronic 

shutter (Uniblitz LS6). The intensity of the monochromated light was measured by a calibrated 

photodiode (PD300R-UV, Ophir) just after a clean FTO-glass substrate placed at the working 
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electrode position, in the absence of PEC cell quartz window or PEC cell electrolyte. The 

IPCE was calculated using the equation below:  

 𝐼𝑃𝐶𝐸 (𝜆) =
|𝑗 (𝑚𝐴 𝑐𝑚−2)|  × 1239.8 (𝑉 𝑛𝑚) 

𝑃𝑚𝑜𝑛𝑜 (𝑚𝑊 𝑐𝑚
−2) ×  𝜆 (𝑛𝑚)

 6-3 

where j is the photocurrent density measured under single wavelength (λ) light illumination 

and Pmono is the incident irradiation power.   

Absorbed photon-to-current efficiency (APCE) was calculated according to: 

 𝐴𝑃𝐶𝐸 (𝜆) =
𝐼𝑃𝐶𝐸(𝜆)

1 − 10−A(𝜆)
 6-4 

Where A is the absorbance measured at a wavelength 𝜆 . 

PEC impedance spectroscopy (PEIS) was carried out under simulated sunlight (AM 1.5G, 100 

mW cm-2) using a CompactStat. Potentiostat (Ivium technologies). Measurements were 

performed in a frequency range from 105 to 0.1 Hz, with an AC voltage amplitude of 10 mV 

at a potential range of 0.6 to 1.2 VRHE with 0.05V steps, in 1M NaOH. EIS measurements in 

the dark were also measured to obtain Mott-Schottky plots. These measurements were 

performed at a fixed frequency of 100 and 1000 Hz based on the following equation: 

 
1

𝐶2
=

2

𝑁𝑑𝑒𝜀0𝜀
[(𝑈𝑠 −𝑈𝐹𝑏) −

𝐾𝐵𝑇

𝑒
] 6-5 

where C is the semiconductor depletion layer capacitance, Nd the electron carrier density, e 

the elemental charge value, 𝜀0 the permittivity of the vacuum, 𝜀 the relative permittivity of the 

semiconductor, Us the applied potential, UFb the flat band potential, and [KBT/e] a temperature-

dependent correction term. The electron carrier density (ND) was obtained from Mott-Schottky 

plots using the following equation: 

 𝑁𝐷 = (
2

𝑒𝜀𝜀0
)(
𝑑 (1

𝐶2⁄
)

𝑑(𝑈𝑠)
)

−1

  6-6 

where 𝜀=100 and 80 for Fe2TiO5 and Fe2O3, respectively, and  

[d(1/C2)/d(Us)]-1 is the inverse of the slope obtained from Mott-Schottky plot. 

Results and discussion 

Fig. 6-1 shows the XRD patterns of Fe2TiO5, Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn photoanodes 

prepared on FTO. Fe2TiO5 and Fe2TiO5-Zn show the characteristic diffraction peaks of 

Fe2TiO5 pseudobrookite (JCPDS 009-0182) along with some traces of α-Fe2O3 (JCPDS 006-
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0502) and TiO2 rutile (diffraction peak at 27.6°, JCPDS 88- 1173). No diffraction peaks 

corresponding to ZnO or ZnFe2O4 are observed for Fe2TiO5-Zn and Fe2O3-Zn, suggesting that 

Zn2+ is homogeneously dissolved in the solid or accumulated in amorphous regions. A broad 

peak at ca. 56° corresponding to Fe1.7Ti0.23O3 is observed in Fe2TiO5.315 Incorporation of Zn2+ 

enhances the crystallinity of Fe2TiO5 leading to sharper and narrower diffraction peaks for 

Fe2TiO5 phase. The coherent crystal domain sizes calculated from the full width at half 

maximum at (2 0 0) diffraction peak for Fe2TiO5 and Fe2TiO5-Zn are of ca. 21 nm. Similarly, 

crystal domain sizes of Fe2O3 and Fe2O3-Zn calculated at (1 1 0) diffraction plane are of ca. 

32 nm. Interestingly, the incorporation of Zn2+ did not modify the crystal domain sizes of both 

doped and undoped Fe2TiO5 and Fe2O3.  

 

Fig. 6-1 XRD patterns of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn. Yellow dot: Fe2TiO5, red dot: Fe2O3, blue 

dot: TiO2 rutile, green dot: Fe1.7Ti0.23O3 and black dot: FTO.  

The calculated lattice parameters obtained from the XRD patterns are shown in Table 6-1. 

Small variations are observed in lattice parameters. For instance, for Fe2TiO5 samples 

(orthorhombic system), small differences are observed mainly in b and c parameters. 

Similarly, for Fe2O3 samples (hexagonal system) small differences are observed in c.   

Table 6-1 Calculated lattice parameters. 

Sample a (Å) b (Å) c (Å) 

aFe2O3 5.058 n/a 13.455 

aFe2O3-Zn 5.032 n/a 13.731 

bFe2TiO5 9.801 9.946 3.729 

bFe2TiO5-Zn 9.824 9.884 3.763 

a Lattice parameters calculated considering a hexagonal crystal structure. 
b Lattice parameters calculated considering an orthorhombic crystal structure. 

Raman spectra of Fe2TiO5, Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn are shown in Fig. 6-2. Only 

Raman bands ascribed to α-Fe2O3 are observed for both Fe2O3 and Fe2O3-Zn, in agreement 

with XRD patterns. Particularly, sharp bands at 223.7 and 494.4 cm-1 corresponding to A1g 
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vibration modes and 243, 290.8, 408.3 and 607.1 cm-1 belonging to Eg vibration modes are 

observed. 316,317 Additional bands at 204, 342, 410 and 800 corresponding to vibrational modes 

of Fe2TiO5 are observed for Fe2TiO5 and Fe2TiO5-Zn agreeing well with XRD results.68,318–320 

 

Fig. 6-2 Raman spectra of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn. P: Fe2TiO5 (pseudobrookite) and H: Fe2O3 

(hematite). 

UV-Vis spectra of the as-prepared photoanodes are shown in Fig. 6-3. Both undoped samples, 

Fe2TiO5 and Fe2O3, exhibit similar absorption edges at   ̴ 580 nm, whereas Zn doped samples, 

Fe2TiO5-Zn and Fe2O3-Zn, exhibit a red shift of the absorption edge to   ̴ 590 nm. Higher 

absorption values are observed for the Zn-doped samples, in agreement with the slightly 

darker color observed in photographs of the photoanodes (see inset of Fig. 6-3a). Accordingly, 

Tauc plot analysis shown in Fig. 6-3b reveal smaller band gap values for Zn2+ doped samples, 

being of 2.09 and 2.10 eV for Fe2O3-Zn and Fe2TiO5-Zn, respectively, in comparison with 

2.13 eV for both Fe2O3 and Fe2TiO5 undoped samples. We attribute the slight decrease in the 

band gap to the formation of new molecular orbitals below the CB with the addition of Zn.321 

Band-gap values around 2.1 eV are consistent with previously reported band-gap calculations 

of Fe2TiO5 and Fe2O3.59,66,322  
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Fig. 6-3 UV- Vis absorbance spectra and (b) Tauc plots measured via diffuse reflectance UV-Vis spectroscopy of 

Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn. Insets in (a) show photographs of all photoanodes prepared. 

 

Fig. 6-4 shows SEM micrographs of Fe2TiO5, Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn. Two different 

morphologies are observed for Fe2O3 and Fe2TiO5 based photoanodes: Fe2TiO5 and Fe2TiO5-

Zn (Fig. 6-4 a,b) show a very fine structure consisting of small particles whereas larger 

particles with a ‘worm’-like morphology are depicted for both Fe2O3 and Fe2O3-Zn samples 

(Fig. 6-4 c,d). Importantly, the addition of Zn2+ did not modify significantly the final 

morphology of the films. Cross-sectional SEM micrographs (Fig. 6-5) indicate that films’ 

thickness is of 420-560 nm for Fe2TiO5 based photoanodes whereas slightly thinner 190 nm 

films are obtained for Fe2O3 based films. Incorporation of Zn2+ also results in the formation of 

more compact films, when compared to pristine Fe2O3 and Fe2TiO5.  

 

Fig. 6-4 SEM micrographs of (a) Fe2TiO5, (b) Fe2TiO5-Zn, (c) Fe2O3 and (d) Fe2O3-Zn. 
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Fig. 6-5 SEM cross-sectional micrographs of (a) Fe2TiO5, (b) Fe2TiO5-Zn, (c) Fe2O3 and (d) Fe2O3-Zn. 

The composition and chemical state of the surface of the films were evaluated using XPS 

analysis. Zn 2p3/2 high-resolution XPS spectra of Fe2TiO5-Zn and Fe2O3-Zn are shown in Fig. 

6-6a. Both samples show the characteristic peak of Zn2+ at ca. 1020 eV. The signal for 

Fe2TiO5-Zn is significantly lower than Fe2O3-Zn. Survey XPS spectra indicate that Fe2TiO5-

Zn and Fe2O3-Zn contains ca. 0.11 and 0.60 at% of Zn2+ on the surface, respectively. The 

presence of Zn2+ in Fe2TiO5-Zn was further confirmed using SEM-EDX (Fig. 6-7). 

 

Fig. 6-6 XPS spectra of (a) Zn 2p, (b) Ti 2p and (c) Fe 2p of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn. Scattered 

points correspond to raw data acquired in the measurements and solid lines to the fitted values.  

 

Fig. 6-7 SEM-EDX spectrum of Fe2TiO5-Zn. 
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Ti 2p high resolution XPS spectra of Fe2TiO5 and Fe2TiO5-Zn are shown in Fig. 6-6b. In both 

samples, the two characteristic peaks of Ti4+ corresponding to Ti 2p1/2 and Ti 2p3/2 are 

observed.251 Interestingly, a shift towards lower binding energies is observed for Fe2TiO5-Zn, 

suggesting the possibility of oxygen vacancies in the film to compensate charge imbalance 

introduced into the lattice due to addition of Zn2+.323,324 Due to the similar difference in ionic 

radii between Zn2+ (0.74 Å) and Ti4+ (0.605 Å), Zn2+ ions are most likely to be occupying Ti4+ 

positions in the Fe2TiO5 lattice structure, without distorting significantly the crystal structure, 

as demonstrated in calculated lattice parameters (Table 6-1).321 These results agree well with 

the absence of changes in crystal domain sizes calculated from XRD patterns with the addition 

of Zn2+ ions. Fig. 6-6c shows Fe 2p high resolution XPS spectra of all photoanodes. All 

samples show the characteristic peaks of Fe 2p1/2 and Fe 2p3/2 at 725 and 711 eV, respectively, 

along with satellite signals at around 8 eV above the Fe 2p3/2, corresponding to Fe3+.325 The 

characteristic band at 715 eV corresponding to Fe2+ was not observed which indicates the 

unique presence of Fe3+ ions on the surface of the samples.326,327 

The PEC performance of Fe2TiO5, Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn was evaluated under 

simulated sunlight (Fig. 6-8a). The highest photocurrent density was for Fe2TiO5-Zn, where 

photocurrent densities of ca. 0.6 mA cm-2 at 1.23 VRHE were achieved. Conversely, 

significantly lower photocurrent densities values (ca. 0.2 mA cm-2 at 1.23 VRHE) were observed 

for Fe2TiO5, Fe2O3 and Fe2O3-Zn. Slightly higher photocurrent density values and better onsets 

are observed for Fe2O3-Zn in comparison to Fe2O3 (Fig. 6-8a and Fig. 6-9 c-d). There are high 

photocurrent spikes, transients, observed for Fe2O3 and Fe2O3-Zn in comparison with Fe2TiO5 

and Fe2TiO5-Zn (Fig. 6-9). The anodic transients in photoanodes typically indicate the 

trapping of holes in surface states which initially minimizes electron-hole recombination and 

allows transfer of electrons to the external circuit.328 Upon saturation of surface states with 

holes, electron-hole recombination occurs and photocurrent measured decreases. When light 

is switched off, surface states are discharged so cathodic transients are observed. Based on 

this, Fe2TiO5 and Fe2TiO5-Zn show a lower presence of surface states, since they show smaller 

photocurrent transients. 
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Fig. 6-8 (a) Photocurrent potential curves in 1 M NaOH (pH=13.6) and (b) in 1 M NaOH + 10 % (v/v) H2O2 

(pH=11.9) of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn. All measurements were performed under chopped AM 

1.5 illumination. 

 

Fig. 6-9 Photocurrent potential curves of (a) Fe2TiO5, (b) Fe2TiO5-Zn, (c) Fe2O3 and (d) Fe2O3-Zn highlighting the 

anodic and cathodic transients. All measurements were performed in 1M NaOH (pH=13.6) under chopped AM 1.5 

illumination. 

To further investigate charge transport efficiencies, PEC performances were measured in the 

presence of a hole scavenger (H2O2) and results are shown in Fig. 6-8b. Under these 

conditions, photocurrent transients disappear since all the holes reaching the surface of the 

sample are transferred to the electrolyte. With the presence of a hole scavenger (H2O2), all 

photocurrent density values are higher, as expected. The highest photocurrent density is 

observed for Fe2TiO5-Zn being of ca. 1.1 mA cm-2 at 1.23 VRHE. Significantly lower 

photocurrent density values are obtained for Fe2O3, Fe2O3-Zn and Fe2TiO5, being of ca. 0.6 

mA cm-2 for both Fe2O3 and Fe2O3-Zn and ca. 0.3 mA cm-2 for Fe2TiO5 at 1.23 VRHE. 
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Charge separation and charge injection efficiencies have been calculated comparing 

photocurrents with and without H2O2 hole scavenger and results are shown in Fig. 6-10. As 

firstly reported by H. Dotan et al., charge separation efficiency refers to the fraction of 

photogenerated holes that do not recombine in the bulk of the photoanode and successfully 

reach the surface-electrolyte interface, whereas charge injection efficiency refers to the holes 

that once on the surface-electrolyte interface are injected to the electrolyte for the water 

oxidation reaction instead of being trapped in surface states.286 Charge injection efficiencies 

of all photoanodes show two different trends (Fig. 6-10a). At a first glance, the highest 

injection efficiencies are observed for Fe2TiO5-Zn, where maximum efficiencies of 60 % are 

achieved. For this sample, injection efficiencies start to increase from ca. 8 % at 0.9 VRHE to 

60 % at 1.35 VRHE reaching plateau values beyond this voltage. Conversely, a completely 

different trend is observed for Fe2TiO5, Fe2O3 and Fe2O3-Zn. For these samples, a plateau 

efficiency is never achieved and injection efficiency gradually increases as a function of 

applied bias. For Fe2TiO5 injection efficiencies increase from 1.6 % at 0.8 VRHE to 90 % at 1.5 

VRHE. Similarly, for Fe2O3-Zn efficiencies increase from 0.85 % at 0.8 VRHE to 65 % at 1.5 

VRHE and finally, for Fe2O3 efficiencies increase from 0.8 % at 0.8 VRHE to 45 % at 1.5 VRHE. 

These two trends indicate that for Fe2TiO5-Zn the applied potential is high enough to suppress 

recombination due to surface states, whereas for Fe2TiO5, Fe2O3 and Fe2O3-Zn samples surface 

state recombination still takes place even at high applied bias.329 Overall, the better injection 

efficiency values for both Fe2TiO5-Zn and Fe2TiO5 indicate either faster water oxidation 

kinetics or slower charge recombination at the surface of the photoanodes, whereas the lower 

efficiency values of Fe2O3 and Fe2O3-Zn suggest that these two samples possess a larger 

amount of surface states and defects.70,329,330 

 

Fig. 6-10 (a) Charge injection and (b) charge separation efficiencies of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn.  

Charge separation efficiencies are shown in Fig. 6-10b. Briefly, this efficiency has been 

calculated by dividing the Jphoto in 1M NaOH+H2O2 with Jmax which refers to the maximal 

theoretical photocurrent density of the films depending on their visible light absorption. This 

Jmax value has been obtained by integrating the absorbance spectra with standard AM 1.5G 
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spectrum.70,286 The integrated absorbance spectra and the standard AM 1.5G spectrum along 

with the calculated Jmax are shown in Fig. 6-11 and Table 6-2. 

 

Fig. 6-11 Number of photons absorbed from the solar visible light spectrum (AM 1.5G) for Fe2TiO5-Zn Fe2TiO5, 

Fe2O3 and Fe2O3-Zn. 

Table 6-2 Theoretical maximum photocurrent density obtained by integrating the absorbance spectra with AM 

1.5G spectrum. 

Sample Jmax (mA cm-2) 

Fe2TiO5 3.94 

Fe2TiO5-Zn 5.27 

Fe2O3 4.22 

Fe2O3-Zn 4.73 

Interestingly, at low bias (0.65 VRHE) the highest separation efficiency is observed for Fe2O3, 

being of 8.8 %, followed by Fe2TiO5-Zn (4.6 %), Fe2O3-Zn (3.0 %) and Fe2TiO5 (1.8 %). 

Nevertheless, from 0.8 to 1.5 VRHE Fe2TiO5-Zn has the highest separation efficiency values, 

whereas Fe2TiO5 has the lowest values. This suggests that incorporation of Zn2+ in Fe2TiO5 

lattice structure enhances bulk charge separation. In contrast, charge separation efficiencies of 

Fe2O3-Zn and Fe2O3 are very similar and follow the same trend, suggesting that incorporation 

of Zn2+ does not alter the bulk charge separation. 

Photostability measurements under simulated sunlight for Fe2TiO5-Zn are shown in Fig. 

6-12a. As for the J-V curves, an anodic transient is observed when the light is turned on and 

cathodic transient when the light is turned off, indicating accumulation and dissipation of 

charges under these conditions.331 Nevertheless, if discarding the initial anodic transient, after 

0.7h of continuous light irradiation 71 % of the initial photocurrent is maintained, indicating 

a good photostability under simulated sunlight. The observed decrease in photocurrent density 

over time is most likely due to photocorrosion on the surface of the photoanode by 

accumulated holes. 
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Fig. 6-12 (a) Photocurrent-time curve for 3,600s of Fe2TiO5-Zn at an applied bias of 1.23 VRHE under 1 sun solar 

illumination (AM 1.5). (b) IPCE spectra at 1.23 VRHE of Fe2TiO5 and Fe2TiO5-Zn. All measurements were 

performed in 1M NaOH (pH=13.6).  

IPCE values of Fe2TiO5 and Fe2TiO5-Zn are depicted in Fig. 6-12b. The highest IPCE values 

are obtained for Fe2TiO5-Zn. IPCE values of Fe2TiO5-Zn gradually start to increase from 0.6 

% at 590 nm to 23 % at 340 nm, whereas Fe2TiO5 offer lower IPCE values and lower IPCE 

onset wavelength. Integration of the IPCE curves for Fe2TiO5 and Fe2TiO5-Zn over AM 1.5G 

solar spectrum results in a photocurrent density value of 0.19 and 0.62 mA cm-2, respectively, 

being consistent with the measured photocurrent density values at 1.23 VRHE. Calculated 

APCE values for Fe2TiO5 and Fe2TiO5-Zn are shown in Fig. 6-13. The highest values are 

obtained for Fe2TiO5-Zn films, increasing gradually from 4.0 % at 400 nm to 33.9 % at 340 

nm. This suggests that after Zn2+ incorporation in the Fe2TiO5 structure, absorbed photons are 

utilized more efficiently due to improved charge separation, as previously indicated in 

calculated charge separation efficiencies. 

 

Fig. 6-13 APCE spectra at 1.23 VRHE of Fe2TiO5 and Fe2TiO5-Zn at 1.23 VRHE. 

EIS measurements in the dark were carried out in the form of Mott-Schottky plots to 

characterize the intrinsic properties of the photoanodes, such as flat band potential (VFB) and 

carrier concentration (ND). Mott-Schottky plots of Fe2TiO5 and Fe2TiO5-Zn recorded at 100 

Hz are shown in Fig. 6-14a, whereas Mott-Schottky plots for Fe2O3 and Fe2O3-Zn recorded at 
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1000 Hz are shown in Fig. 6-14b. Both plots indicate that the samples possess a positive slope, 

typical of n-type semiconductors.138 Flat band potentials (VFB) and electron carrier densities 

(ND) of all samples are listed in Table 6-3. It was found that incorporation of Zn2+ did not 

modify the VFB of Fe2TiO5 and Fe2O3 based photoanodes. The highest ND values are obtained 

for Fe2TiO5-Zn (9.1 x 1017 cm-3) whereas significantly lower ND values are obtained for 

pristine Fe2TiO5 (2.1 x 1017 cm-3) indicating better charge transport efficiencies for the 

Fe2TiO5-Zn.138 These results agree well with charge efficiency calculations (Fig. 6-10) 

discussed earlier in the text, where higher efficiencies were obtained for Fe2TiO5-Zn. Unlike 

Fe2TiO5-Zn and Fe2TiO5, ND values for Fe2O3 and Fe2O3-Zn are rather similar, 3.4 x 1017 and 

4.4 x 1017 cm-3, respectively. This indicates that Zn2+ ions play a role in modifying the 

electronic properties of Fe2TiO5, contributing to an enhancement in the photoelectrochemical 

performance.  

 

Fig. 6-14 (a) Mott Schottky plots measured at a fixed frequency of 100 Hz of Fe2TiO5-Zn and Fe2TiO5. (b) Mott 

Schottky plots measured at a fixed frequency of 1000 Hz of Fe2O3 and Fe2O3-Zn. All measurements were 

performed in 1M NaOH (pH=13.6).   

Table 6-3 Charge carrier concentration and flat band potential obtained from Mott- Schottky plots.  

Sample ND (cm-3) VFB (RHE) 

Fe2TiO5 2.1 x 1017 0.71 

Fe2TiO5-Zn 9.1 x 1017 0.76 

Fe2O3 3.4 x 1017 0.52 

Fe2O3-Zn 4.4 x 1017 0.55 

EIS under simulated solar light at different voltages (0.6 to 1.2 VRHE) was carried out to further 

understand charge transfer process and determine the role of Zn2+ in the photoanodes. EIS data 

was collected in the form of Nyquist plots and fitted according to the equivalent circuit shown 

in the inset of Fig. 6-15, consisting of two RC units.218,332 In this model, Rs refers to the circuit 

resistance (resistance of electrolyte, FTO and external contact), Rtrap to the resistance of 

trapping of holes in the surface states and Rct,ss to the charge transfer resistance of holes from 

the surface states to the electrolyte. Similarly, the capacitance of the system is accounted with 
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Cbulk which refers to the capacitance of the bulk of the material and Css which describes the 

capacitance of the surface states.218,332  

 

Fig. 6-15 Representative Nyquist plots of Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn measured at 1 VRHE under 

simulated solar light (AM 1.5). Equivalent circuit used to fit the data is shown in the inset of the plot. 

As previously reported in literature, Fe2O3 based photoanodes follow predominantly an 

indirect hole transfer mechanism for the water oxidation reaction, where holes get trapped in 

surface states before being transferred to the electrolyte.333,334 Assuming this mechanism for 

both Fe2TiO5 and Fe2O3, an increase in Css values must result in a decrease of Rct,ss values. In 

line with this, Fig. 6-16a and Fig. 6-16b show the fitted Css and Rct,ss values vs. applied voltage 

for as-prepared photoanodes. Fe2O3 and Fe2O3-Zn have the lowest Css whereas higher values 

are found for Fe2TiO5-Zn and Fe2TiO5. As expected, when comparing Css and Rct values, it 

can be seen how a deep in the Rct value is consistent with a local maximum in Css coinciding 

with an increase in the photocurrent density values. It is to be noted how the local Css 

maximum and therefore the local Rct minimum for Fe2O3 is slightly shifted towards higher 

voltages (1.0 VRHE). This can be explained by the large photocurrent transients observed in J-

V curves below 1.0 VRHE (Fig. 6-9) and that a steady photocurrent is only observed at voltages 

above 1.0 VRHE. 

Fitted Cbulk values are displayed in  Fig. 6-16c. The highest Cbulk values are observed for 

Fe2TiO5-Zn, followed by Fe2O3, Fe2O3-Zn and Fe2TiO5. Cbulk values agree well with Mott-

Schottky plots and calculated ND values in Table 6-3, where Fe2TiO5-Zn had the highest ND 

value, almost four times higher than Fe2TiO5, attributed to Zn doping in the bulk. In addition, 

Fe2O3 and Fe2O3-Zn show very similar Cbulk values as a function of applied bias, which 
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suggests that addition of Zn2+ did not alter the bulk electronic properties of the material (ND 

values are also very similar). 

 

Fig. 6-16 (a) Css, (b) Rct,ss, (c) Cbulk and (d) Rtrap obtained from EIS fitting as a function of applied potential for 

Fe2TiO5-Zn, Fe2TiO5, Fe2O3 and Fe2O3-Zn.  

Fitted Rtrap values are displayed in Fig. 6-16d. The lowest Rtrap values are found for Fe2TiO5-

Zn and Fe2TiO5 specially at the potential window of 0.85-1.05 VRHE, whereas Fe2O3-Zn and 

Fe2O3 exhibit higher resistance. This trend clearly shows that Fe2TiO5 based photoanodes 

show minor hole recombination with surface states in comparison with Fe2O3 based 

photoanodes. Furthermore, a local Rtrap minimum at 0.9 VRHE is observed for Fe2TiO5-Zn, 

correlating well with its Rct,ss local minimum and Css maximum profile. All this indicates a 

more efficient charge transfer kinetics during the water oxidation reaction, which highlights 

the benefit of incorporating Zn2+ in Fe2TiO5 materials.333 

To further understand the effect of incorporating Zn2+ in the electronic properties of the 

material, UPS measurements were undertaken to calculate the position of the Fermi level (EF), 

conduction band (CB) and valence band (VB). Fig. 6-17a and Fig. 6-17b show the UPS spectra 

with bias (Ubias= 2 V) and no bias of Fe2TiO5, Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn, respectively, 
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used to calculate the energy cut-off (Ecut-off) region of the secondary electron and the valence 

band maximum (VBM). The work function (ϕ) was calculated using the equation shown in the 

inset of Fig. 6-17, and results are displayed in Table 6-4.311,335,336 The calculated values for all 

samples fall in the range of previously reported values.66,337  

 

Fig. 6-17 UPS measurements using a He I photon source (E=21.2 eV) with (a) an applied bias of 2 V and (b) 

without applied bias. From these measurements, Ecut-off, work function (ϕ) and valence band maximum (VBM) 

were determined.  

Table 6-4 Work function (ϕ) and valence band maximum (VBM) values obtained from UPS measurements. 

Sample Φ (eV) VBM (eV) 

Fe2TiO5 4.36 1.83 

Fe2TiO5-Zn 4.07 2.10 

Fe2O3 4.77 1.93 

Fe2O3-Zn 4.88 1.82 

From these values along with the UV-Vis spectra (for determining the CB position), a 

schematic energy diagram was estimated and represented in Fig. 6-18. 
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Fig. 6-18 Schematic diagram of band level positions calculated from UPS measurements (Fig. 6-17) for Fe2TiO5, 
Fe2TiO5-Zn, Fe2O3 and Fe2O3-Zn with respect to the vacuum level and the normal hydrogen electrode (NHE) 

potential.  

An upward shift of the EF towards the CB for Fe2TiO5-Zn in comparison with Fe2TiO5 is 

observed, agreeing with Mott-Schottky and ND calculations, where higher ND values were 

found for Fe2TiO5-Zn. Higher carrier concentration (ND) leads to an upward shift of the EF, 

facilitating the charge separation at the semiconductor-electrolyte interface.138,338 Conversely 

to Fe2TiO5 and Fe2TiO5-Zn, a minimal variation in the EF is observed for Fe2O3 and Fe2O3-

Zn, being consistent with calculated ND values from Mott-Schottky plots, where an 

insignificant increase in the ND was observed after incorporation of Zn2+. This band diagram 

is consistent with previously reported CB and VB positions for Fe2O3 and Fe2TiO5 based 

photoanodes.65 From these differences in the EF positions it is inferred that incorporation of 

Zn2+ only modifies the electronic properties of Fe2TiO5 photoanodes. This may indicate that 

for the case of Fe2TiO5-Zn, Zn2+ ions are incorporated into the crystal structure of Fe2TiO5, 

whereas for Fe2O3-Zn, Zn2+ ions are most likely distributed on the surface of Fe2O3, since 

minimal differences in EF level are observed. These results are in agreement with charge 

separation efficiencies and Cbulk values obtained from PEIS, where a similar trend was 

observed for both Fe2O3 and Fe2O3-Zn, whereas significant differences were found for 

Fe2TiO5 and Fe2TiO5-Zn.  

Conclusions 

In this work we have demonstrated the effect of doping Fe2TiO5 photoanodes with Zn2+ for 

photoelectrochemical devices. These photoanodes were grown by aerosol-assisted chemical 

vapor deposition and relatively dense films with very fine structures were obtained. 

Photoelectrochemical measurements revealed that optimized Zn-doped Fe2TiO5 photoanodes 

exhibited a 3-fold enhancement in photocurrent density values in comparison with pristine 

Fe2TiO5 at 1.23 VRHE, from ca. 0.2 to 0.6 mA cm-2. This enhancement in PEC performance 
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was attributed to better charge separation and injection efficiencies after incorporation of Zn2+ 

ions. Impedance spectroscopy and Mott-Schottky measurements revealed a significant 

increase in carrier concentration (ND) and better charge transfer kinetics for Fe2TiO5-Zn 

samples. Furthermore, ultraviolet photoelectron spectroscopy measurements showed an 

upward shift of the Fermi level (EF) after incorporation of Zn2+, agreeing well with the highest 

ND values calculated for Fe2TiO5-Zn suggesting incorporation of Zn2+ in the Fe2TiO5 crystal 

lattice. For comparison, Fe2O3 and Fe2O3-Zn photoanodes were also prepared under the same 

conditions. These photoanodes showed significantly lower photoelectrochemical performance 

and poorer charge transfer efficiencies in comparison to Fe2TiO5 based photoanodes. In 

addition, both Fe2O3 and Fe2O3-Zn showed very similar photocurrent density values, which 

was mainly attributed to the most likely distribution of Zn2+ ions on the surface of the film 

features rather than in the bulk. On balance, these results demonstrate, for the first time, a 

simple methodology for the preparation of Zn-doped Fe2TiO5 photoanodes with improved 

photoelectrochemical performance over pristine Fe2TiO5. 
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6.1.4 Commentary 

6.1.4.1 Optimization of annealing temperature for the formation of Fe2TiO5 

Formation of Fe2TiO5 usually requires long annealing temperatures to allow a successful 

diffusion of atoms. In the manuscript, we reported that Fe2TiO5 based photoanodes were 

annealed at 500 °C for 12 h followed by 650 °C for 2 h with a ramp rate of 10 °C min-1. This 

optimized annealing temperature is a result of a temperature optimization study carried out at 

three different annealing temperatures (500, 600 and 650 °C) at different annealing times. Fig. 

6-19 shows a summary of the different crystalline phases (Fe2O3, TiO2 and Fe2TiO5) obtained 

at the studied annealing temperatures and times from XRD patterns. All films were prepared 

as described in the experimental section of the manuscript (1 h of deposition at 450 °C) and 

annealed at 500, 600 and 650 °C for different hours. Among the different annealing 

temperatures studied, annealing at 500 °C for long hours resulted in a majority of the Fe2TiO5 

phase. At higher annealing temperatures (600 and 650 °C) mainly Fe2O3 (hematite) was 

formed.  

 

Fig. 6-19 Crystal phases obtained after different annealing temperatures. Circles containing a black outline 

correspond to samples with an additional post-annealing treatment at 650 °C for 2 h. The larger the color the larger 

content of the phase. Data obtained qualitatively from different XRD patterns.    

Fig. 6-20 shows photocurrent-potential curves of all samples containing the Fe2TiO5 phase. 

The highest photocurrent density values were obtained for the samples annealed at 500 °C for 

12 h and 24 h with an additional post-annealing of 650 °C for 2 h, in which photocurrent 

density values of ca. 0.2 mA cm-2 at 1.23 VRHE were achieved. The additional annealing at 650 

°C for 2 h improved the crystallinity of the Fe2TiO5, which resulted in an overall improvement 

of the PEC performance. In this regard, the optimal annealing temperature of 500 °C for 12 h 

and 650 °C for 2 h was chosen as the optimal annealing temperature for the formation of 

Fe2TiO5 based photoanodes.  
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Fig. 6-20 Photocurrent potential curves of samples containing a majority of Fe2TiO5 crystal phase. All 

measurements were performed in 1M NaOH (pH=13.6) under chopped AM 1.5 illumination. 

6.1.4.2 Preparation of Zn-doped Fe2TiO5 photoanodes with higher loadings of Zn2+ 

In the manuscript, we have reported the formation of Zn-doped Fe2TiO5 (Fe2TiO5-Zn) from a 

solution containing iron (III) acetylacetonate (3.531 g, 10 mmol), titanium (IV) isopropoxide 

(1.478 mL, 5.0 mmol) and zinc acetate dihydrate (0.0549 g, 0.25 mmol) in ethyl acetate and 

methanol. Attempts were also performed to study the effect of preparing Fe2TiO5-Zn from a 

solution containing 0.1097 g (0.5 mmol) of zinc acetate dihydrate. Nevertheless, at those Zn2+ 

loadings, the Fe2TiO5 could not be achieved and only Fe2O3 and TiO2 phases were formed. 

Therefore, we believe that addition of high loadings of Zn2+ favors phase segregation to Fe2O3 

and TiO2.  

6.1.4.3 Optimization of film thickness 

The preparation of thickest Fe2TiO5 films was also attempted by increasing the deposition 

time of the AACVD process from 1 to 2 h deposition time. This was performed aiming to 

increase the light absorption of the film and thus improve the PEC performance of the material.  

Fig. 6-21 shows SEM cross-sectional micrographs of films deposited for 1 h (a) and 2 h (b). 

After 2 h of deposition, films were ticker (ca. 867 nm) and slightly more porous than those 

films deposited for 1 h.  
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Fig. 6-21 SEM cross-sectional micrographs of films prepared for (a) 1 h and (b) 2 h deposition time. Both films 

were deposited at 450 °C from a solution containing titanium (IV) isopropoxide (1.478 mL, 5.0 mmol) and iron 

(III) acetylacetonate (3.531 g, 10 mmol) in ethyl acetate and methanol and annealed at 500 °C for 12 h and 650 °C 

for 2 h.  

XRD patterns (Fig. 6-22) of the films at different annealing temperatures indicated that for 

those thick films mainly TiO2 and Fe2O3 phases were formed. Such thick films might limit 

atom diffusion and avoid the formation of Fe2TiO5.  

 

Fig. 6-22 XRD patterns of films deposited for 2 h and annealed at different temperatures. Black dot: FTO substrate, 

blue dot: TiO2 (rutile), red dot: Fe2O3 and orange dot: Fe3O4.  
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Chapter 7.  Conclusions and outlook 

This PhD thesis has been primarily focused on the design and fabrication of nanostructured 

metal oxides, with a special focus on TiO2 photoanodes for photoelectrochemical (PEC) water 

splitting applications. It is clear from internationally renowned reports such as the one recently 

released by the intergovernmental panel on climate change (IPCC), that the need of mitigating 

the effects of climate change must become a priority for the current society. In this regard, it 

is essential to establish a synergy between policymakers, scientist and politicians in order to 

commit towards a more sustainable world, in which, for instance renewable sources of energy 

become the primary source of energy of the 21st century. As extensively reviewed in this 

thesis, PEC water splitting could become a feasible alternative technology that could play a 

key role in this energy transition, primarily because H2 is considered as the future energy 

vector. Although a promising technology, it has been shown in Chapter 2 how finding suitable 

materials that would make this technology both economically and practically feasible still 

remains a challenge, mainly because materials do not absorb neither the entire spectrum of the 

solar light, their kinetics for water splitting reaction is slow or carrier lifetimes are short.  

This thesis has experimentally demonstrated how the use of polyoxotitanium oxo/alkoxy 

clusters as metal oxide precursors allows the formation of doped-TiO2 photoanodes with 

improved visible-light absorption and highly nanostructured pure-TiO2 photoanodes with 

enhanced kinetics and photocurrent performances. In particular, using [Ti4Mo2O8(OEt)10]2 we 

have shown how optimized Mo-doped TiO2 photoanodes showed improved PEC 

performances over a pristine TiO2 photoanode prepared by a spray pyrolysis method. This 

work showed the importance of substitutional doping in the TiO2 lattice structure towards the 

enhancement of PEC performance and also demonstrated that at high annealing temperatures 

Mo species evaporated which contributed to the formation of nanostructured and porous 

photoanodes with improved PEC activity. Secondly, in this thesis we have also shown for the 

first time the formation of highly nanostructured TiO2 photoanodes having the morphology of 

crystals of gypsum, sand and water, also known as ‘desert roses’. These desert-rose TiO2 

photoanodes were grown from the Ti7O4(OEt)20 titanium oxo/alkoxy cluster using aerosol-

assisted chemical vapor deposition (AACVD), a highly versatile deposition method for 

preparing nanostructured thin films. The resultant photoanodes showed preferential exposure 

of the {0 1 0} anatase facet, often known to be as one of the most photocatalytic active facets. 

These desert-rose TiO2 photoanodes showed high PEC performances, low onset potentials and 

high preservation of the anatase TiO2 phase despite annealing at temperatures above 900 °C. 

Furthermore, the high stability of the metastable anatase TiO2 allows this material to find 

applications not only in the PEC field but also in the ceramic industry, for smart tile 
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applications. Overall, these two studies revealed the so far unexplored advantages of using 

polyoxotitanium oxo/alkoxy clusters as TiO2 precursors for PEC water splitting applications.  

Finally, in the last experimental work of this thesis, the preparation of Fe2TiO5 photoanodes, 

a hybrid of TiO2 and Fe2O3, has been explored using AACVD. It was found that doping of 

Fe2TiO5 with Zn2+ showed a 3-fold enhancement in the PEC performance when compared 

with pristine Fe2TiO5. According to the several characterization methods employed, this 

enhancement was mainly attributed to better both charge separation and injection efficiencies 

after addition of Zn2+ ions along with higher carrier concentration and better charge transfer 

kinetics. To the best of our knowledge, this is the first time that Zn-doped Fe2TiO5 have been 

studied as a photoanode. Although some traces of Fe2O3 were present in both Fe2TiO5-Zn and 

Fe2TiO5 samples, it is clear how Fe2TiO5-based photoanodes can play a key role in moving 

forward in the field of PEC water splitting.  

From both the theory and experimental chapters presented in this thesis, it is established that 

future research in PEC water splitting still needs to be primarily focused on both finding new 

materials and further understanding the main limitations of existing materials to be able to 

tackle them. Although throughout the years, the emergence and advancement of new 

technologies and characterization methods including time-resolved spectroscopies and 

impedance methods have helped to elucidate the main points to overcome, still PEC water 

splitting is far away from its practical applications. As mentioned in this thesis, TiO2 has been 

extensively studied in the last 40 years and significant progress and improvements have been 

achieved especially when designing nanostructured TiO2. However, from the low theoretical 

solar-to-hydrogen (STH) efficiency values reported for TiO2 (1.3 and 2.2 %, for anatase and 

rutile, respectively), being significantly smaller than the current goal of achieving STH > 10 

%, it is clear that the future large-scale PEC device will not solely be composed of TiO2, but 

of a combination of materials. For instance, Si, III-V and chalcopyrite semiconductors have 

recently shown high efficiencies for water splitting, but they suffer from photocorrosion when 

in contact with an electrolyte. To avoid this, TiO2 is widely used as a protection layer owing 

to its both high stability over a wide range of pH values and excellent optical transmittance. 

Therefore, it is obvious to consider that is still essential to develop efficient TiO2–based 

photoanodes with improved visible light absorption and understand its photochemical 

properties in order to advance in the field of PEC water splitting. This PhD thesis has 

successfully demonstrated several strategies to move one step closer to the milestone of 

designing a stable visible light photoelectrode with high STH efficiencies: the introduction of 

dopants, the design of nanostructures and the development of novel materials with improved 

visible light absorption.  
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