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Figure 7: The common terms used in a molecular mechanics force field (MMFF). All 

terms are summed together to give the total (potential) energy of the system. For the first 

four terms 𝑘𝑟, 𝑘𝜃, 𝑘𝜑, and 𝑘𝜔 are force constants dependant on the distance (𝑟), angle 

(𝜃), dihedral (𝜑) and torsion angle (𝜔) respectively. For the van der Waals (vdW) term, 

𝜖𝑖𝑗 is the well depth (minimum potential energy value possible), 𝜎𝑖𝑗 is the distance 

between atoms 𝑖 and 𝑗 at which the potential energy is 0, and 𝑟𝑖𝑗 is the distance between 

atoms 𝑖 and 𝑗 respectively. For the electrostatic term, 𝑞𝑖 is the charge of atom 𝑖 and 𝜀0 is 

the dielectric constant. ..................................................................................................... 43 

Figure 7: The common terms used in a molecular mechanics force field (MMFF). All 

terms are summed together to give the total (potential) energy of the system. For the first 

four terms 𝑘𝑟, 𝑘𝜃, 𝑘𝜑, and 𝑘𝜔 are force constants dependant on the distance (𝑟), angle 

(𝜃), dihedral (𝜑) and torsion angle (𝜔) respectively. For the van der Waals (vdW) term, 

𝜖𝑖𝑗 is the well depth (minimum potential energy value possible), 𝜎𝑖𝑗 is the distance 

between atoms 𝑖 and 𝑗 at which the potential energy is 0, and 𝑟𝑖𝑗 is the distance between 

atoms 𝑖 and 𝑗 respectively. For the electrostatic term, 𝑞𝑖 is the charge of atom 𝑖 and 𝜀0 is 

the dielectric constant. ..................................................................................................... 44 

Figure 8: Exemplar Leonard-Jones Potential describing the strength of a vdWs 

interactions between two interacting particles. The locations of σ (distance at which the 

intermolecular potential energy is 0, i.e. the vdWs radius) and ϵ (well depth) are 

indicated on the figure. As can be seen from the graph, after a short distance of ~6 Å, 

the potential energy is already near 0. For the equation used to calculate the Leonard-

Jones potential, see Figure 7. ......................................................................................... 49 

Figure 9: Schematic Representation of the thermodynamic cycle used in MMPB/GBSA 

calculations.  (The top three molecules are depicted inside a blue background to indicate 

they are solvated, whilst the bottom three are depicted as being in the gas phase). The 

model system shown is a TCR-pHLA complex, with the pHLA shown as the receptor 

and the TCR shown as the ligand. ................................................................................... 53 

Figure 10: (A) Structural representation of the 1E6 TCR-pHLA interaction with the 

inset showing a zoom in on the TCR-pHLA binding site. The conserved GPD motif in 

the peptide and TCR residues that interact with these residues are shown as sticks. For 

the 4 peptides that also interact with the TCR via their position 1 residue (X), the side-

chain of this residue is also indicated with orange sticks. (B) Peptide sequences and their 

respective pHLA melting temperatures (Tm) as determined by CD spectroscopy 

(Reported previously, Cole et al. 2016). ......................................................................... 63 

Figure 11: Combined p/T matrices for each pHLA studied. Solid spheres represent the 

experimental data, transformed to ΔG by (Eq 12). The coloured surfaces are the 

resulting fit of these values to (Eq 13). Each panel is labelled as the specific pHLA 

complex. .......................................................................................................................... 65 
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Figure 12: Differences in flexibility at the peptide binding groove for all 6 pHLA 

complexes investigated. (A-B). Change in Cα RMSF (Average – pHLA) for the α1 and 

α2 domain (A) and peptide (B), meaning a positive ΔRMSF value indicates an increase 

in rigidity for that pHLA complexes residue relative to the average. C) ΔRMSF values 

as shown in A-B colour mapped on the pHLA structure (HLA as cartoon, peptide as 

ball-and-stick), with blue indicating increasing rigidity, and red indicating increasing 

flexibility (again relative to the average RMSF value for that residue). Heat mapping is 

scaled from -0.5 – 0.5 Å for all complexes. The black dots towards the bottom of each 

graph indicate residues with significantly different ΔRMSF values as determined by a 

two-sample t-test (p < 0.05). A colour bar is also included for reference. ...................... 67 

Figure 13 Differences in flexibility at the peptide binding groove for all 6 pHLA 

complexes investigated. (A-B) Change in Cα RMSF (Average – pHLA) for the α3 

domain (A) and β2m (B), meaning a positive ΔRMSF value indicates an increase in 

rigidity for that pHLA complexes residue relative to the average. (C) ΔRMSF values as 

shown in A-B colour mapped on the pHLA structure, with blue indicating increasing 

rigidity, and red indicating increasing flexibility (again relative to the average RMSF 

value for that residue). Heat mapping is scaled from -0.5 – 0.5 Å for all complexes. The 

locations of the α3 and β2m solvent exposed loops are indicated throughout the figure. 

The black dots towards the bottom of each graph indicate residues with significantly 

different ΔRMSF values as determined by a two-sample t-test (p < 0.05). A colour bar is 

also included for reference. .............................................................................................. 69 

Figure 14: Dynamic cross correlation matrices (DCCMs) for all 6 pHLA complexes 

simulated. On the Y-axis is each residue of the peptide, which is plotted against all other 

residues (377 total) on the HLA. The matrices are colour mapped according to the 

degree of correlated motion between the two residues, with a value of +1 meaning 

perfectly correlated and –1 meaning perfectly anticorrelated motion. Complete DCCM 

plots of the pHLA against the pHLA are provided in Supplementary Figure S3. ........ 71 

Figure 15: Peptide dependent tuning of the allosteric communication network. 

Community networks determined for all pHLA complexes studied. Networked 

communities are shown as coloured spheres, with the radii of the sphere indicating the 

number of residues within the community. Edges between the nodes/communities 

represent communication pathways between the nodes, with the thickness of the edge 

indicting the degree of correlation between the two communities (thicker = greater 

correlation).  All pHLA complexes are shown from the same orientation, such that N-

terminus of the peptide is in the foreground. The results here are provided in tabulated 

form in Supplementary Table S2. ................................................................................. 72 
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Figure 16: Structural analysis of pHLA-targeting reagents. Structures of the TCRs and 

TCR-mimics, in complex with pHLA, were analysed to determine the structural 

mechanism underpinning their binding characteristics. (A) TCRs (blue ribbon) or TCR-

mimics (orange ribbon) binding to peptide (red sticks) and HLA (green ribbon) 

compared to the binding range employed by all published wild-type TCR structures 

(grey cartoon). Yellow arrows indicate unconventional binding modes.  (B) Coloured as 

in A, top down view of TCR, or TCR-mimic binding to pHLA. Black circles represent 

the center of binding. Yellow arrows indicate unconventional binding modes. (C) 

Structural analyses of TCRs versus TCR-mimics binding to pHLA. Bonds were 

assessed using the program contact (CCP4), implementing a 3.4 Å cut-off for H-bonds 

and a 4 Å cut-off for Van der Waals interactions. Any peptide residue with at least one 

interaction with the TCR is documented, with peptide residues with >10 contacts shown 

in bold, and the residue making the most contacts underlined. Any HLA residue with >5 

interactions with the TCR is documented, with HLA residues with >10 contacts shown 

in bold. Buried surface area (BSA) Å2 was determined using ePISA. ........................... 91 

Figure 17: Alanine scan analysis reveals distinct molecular recognition patterns. The 

contribution of peptide side chains to binding specificity was analysed using alanine 

scan mutagenesis (by surface plasmon resonance). Binding affinities of the TCRs and 

TCR-mimic antibodies were determined using single cycle kinetic analysis. Bar graphs 

show binding affinity as a % relative to the binding affinity to the index peptide. (A) 

A2-SLL affinity-enhanced TCRs, (B) A2-SLL TCR-mimics, (C) A1-EVD affinity-

enhanced TCRs, (D) Hyb3, (E) A2-RMF affinity-enhanced TCRs, and (F) ESK-1...... 95 

Figure 18: Deep sequencing of peptides from randomised pHLA phage-libraries 

demonstrates the binding degeneracy of pHLA-targeting reagents. Sequence logos 

(Icelogo software) and heat maps were generated from NGS sequencing of pan 3 data 

identifying the distribution of amino acid identities per position of the peptide selected 

by A2-SLL-reactive affinity-enhanced TCRs and TCR mimic antibodies. The 

abundance of an amino acid is shown by intensity of colour. Outlined boxes identify the 

amino acids of the cognate antigen SLL. Data shown is the average of two experimental 

repeats. (A) 1G4_α5β100 (B) 1G4_α5β51, (C) 1G4_α58β61, (D) 3M4E5, (E) 

3M4E5_T2, and (F) 3M4E5_T3. .................................................................................. 100 

Figure 19: Molecular dynamics simulations reveal broad side chain contacts with the 

peptide drive specificity. Relative number of Hydrogen bonds (H-bonds) and Van der 

Waals (vdWs) interactions formed between either the main or side chain of each peptide 

residue to the TCR/TCR-mimic over the course of our MD simulations. Total side 

versus main chain ratios for H-bonds and vdWs interactions are shown, with the larger 

value (side or main for each category) scaled to 100 % (absolute values for all contacts 

are provided in Supp Figure S2).  (A) 1G4_α58β61-A2-SLL, (B) MAG-IC3-A1-EVD, 

(C) WT1_α7β2-A2-RMF, (D) 3M4E5-A2-SLL, (E) Hyb3.3-A1-EAD, (F) ESK-1-A2-

RMF. ............................................................................................................................. 102 
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Figure 20: Binding free energy decomposition analysis of TCR and TCR-mimic-pHLA 

interactions. Per-residue decomposition of the binding free energy obtained from our 

MMPBSA calculations, to identify energetic hotspots for each TCR or TCR-mimic 

interaction with cognate pHLA. A top down view of each pHLA is shown, with the 

peptide depicted as sticks and the HLA as a surface. Colour mapping of the 

decomposition results for each residue was performed across the entire binding interface 

and used to indicate which residues across this interface favour (blue) or disfavour (red) 

binding (with white indicating no preference). (Bar graphs for all decomposition results 

are provided in Supp Figure S3). (A) 1G4_α58β61-A2-SLL, (B) MAG-IC3-A1-EVD, 

(C) WT1_α7β2-A2-RMF, (D) 3M4E5-A2-SLL, (E) Hyb3.3-A1-EAD, (F) ESK-1-A2-

RMF. .............................................................................................................................. 104 

Figure 21: Redirected T cell killing of antigen positive and negative cell lines using 

pHLA-targeting bispecifics. The activity of the ImmTAC molecules and the TCR-

mimic-anti-CD3 fusions was tested against a range of antigen positive and antigen 

negative cell lines (tumour and healthy cells) using IncuCyte killing assays. Data are 

plotted using area under the curve analysis. (A) IMC-1G4_α58β61, 3M4E5_T2-anti-

CD3 and 3M4E5_T3-anti-CD3 T cell re-direction against HLA-A*02:01+/NY-ESO-1+ 

(NCI-H1755) and HLA-A*02:01+/NY-ESO-1- (HEP-G2, Ren8 and HISMC) cells lines. 

(B) IMC-MAG-IC3 and Hyb3.3-anti-CD3 T cell re-direction against HLA-

A*01:01+/MAGE-A3+ (HCC1428), HLA-A*01:01+/MAGEA1+ (HCC1428 and NCI-

H1703) and HLA-A*01:01+/MAGE- (COLO205 and HISMC) cells lines. ................. 106 

Figure 22: The NYBR1 TCR exhibits no cellular off-target reactivity and utilises a 

broad, peptide side-chain centric binding mode. (A) The activity of IMC-NYBR1 was 

tested against a range of HLA-A*02:01+/NYBR1+ (CAMA1 and CAMA1 β2m) and 

HLA-A*02:01+/NYBR1- cell lines (MDA-MB-231, HA13, HAo14, HDMEC2, Ren8, 

CM12 HCC1419, NCI-H661, SNU475 and SNU398) using IFNγ ELISpot (bar graphs) 

and IncuCyte killing assays (area under the curve analysis) in two donors. (B) Above: 

Side on view of the structure of the NYBR1 TCR (blue ribbon) in complex with A2 

(green ribbon) -SLS (red sticks). Below: Top down view of the NYBR1 TCR-A2-SLS 

interaction. Black circles represent the center of binding. The table shows a structural 

analysis of the NYBR1-A2-SLS complex. Bonds were assessed using the program 

contact (CCP4), implementing a 3.4Å cut-off for H-bonds and a 4Å cut-off for vdWs 

interactions. Buried surface area (BSA) Å2 was determined using ePISA. (C) The 

contribution of peptide side chains to binding specificity was analysed using alanine 

scan mutagenesis (by surface plasmon resonance). Binding affinities of the NYBR1-A2-

SLS interaction was determined using single cycle kinetic analysis. Bar graphs show 

binding affinity as a % relative to the binding affinity to the index peptide. (Figure 

Legend Continued on the next page). ......................................................................... 108 
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Figure 23: (A) Exemplar structure of a TCR-pHLA complex, with a different portions 

of the TCR and pHLA labelled. (B) Zoom in on the binding TCR-pHLA showing the 6 

CDR loops responsible for binding the pHLA. (C) Table of all TCR-pHLA complexes 

investigated in this study. Note the α and β-chain framework (FWα and FWβ) are non-

hypervariable loops that flank the CDR loops. (A complete list of all mutations made 

onto each CDR loop can be found in Table S1). .......................................................... 130 

Figure 24: (A-D) Aligned structures of the binding interface for all four sets of TCR-

pHLA complexes investigated: (A) – NY-ESO, (B) – MEL5, (C) – DMF5 and (D) – 

Tax A6. In all cases, the WT TCR is coloured in white. (E) Structural analyses of all 

TCR-pHLAs complexes under investigation. The dTRangle is a measure of the TCR 

variable domains orientational similarity for 2 different structures (see Methods).251 For 

this, we compare the WT to each HA TCR. The docking angle (which describes the 

angle the TCR engages the pHLA) and dTRangle were determined using the STCRDAB 

server. Buried solvent accessible surface area (BSASA) was determined using the LCPO 

algorithm within CPPTRAJ. Hydrogen bonds (H-bonds) are defined for donor-acceptor 

distances ≤ 3.5 Å and donor-hydrogen-acceptor angles 135-225°. Van der Waals (vdWs) 

interactions are considered for all heavy atoms within 4 Å of each other. ................... 130 

Figure 25: Total average number of Hydrogen bonds (A) and vdWs (B) contacts 

between the TCR and pHLA from 10 independent 100 ns long MD simulations for each 

system (using the time from 10-100 ns to measure contacts). Different TCRs are 

grouped into their own section, with all WT TCRs coloured in green and all affinity 

matured TCRs coloured purple. .................................................................................... 130 

Figure 26: Differences in flexibility between the affinity matured TCRs variable 

regions and their counterpart WT TCRs. (A–D) ΔRMSF values (HA variant RMSF–

WT RMSF) for all NY-ESO TCRs, with panels A and B corresponding to the CDRα 

and CDRβ of the Apo TCRs respectively, and panels C and D corresponding to CDRα 

and CDRβ of the TCRs in complex with pHLA respectively. (E–H) ΔRMSF values (HA 

variant RMSF–WT RMSF) for the three pairs of HA and WT TCRs, with panels E and 

F corresponding to the CDRα and CDRβ of the Apo TCRs respectively, and panels G 

and H corresponding to CDRα and CDRβ of the TCRs in complex with pHLA 

respectively. A more negative ΔRMSF value indicates increased rigidity for the HA 

variant relative to the WT. Complete RMSF plots for all TCRs simulated are provided in 

Figures S1-S4. .............................................................................................................. 130 

Figure 27: Experimental vs computational ΔΔGbind values obtained from our 

MMGBSA calculations for all TCR-pHLA systems studied. For the three pairs of 

TCRs with a single WT and affinity matured TCR, lines are drawn to guide the eye. 

Error bars plotted are the standard deviation obtained from the 25 replicas performed per 

complex (see Methods). ................................................................................................ 130 
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Figure 28: Changes in the energetic footprint between the WT and affinity 

matured TCRs. For all TCR-pHLA complexes, the HLA (top) and TCR (bottom) 

structures are plotted as surfaces with the peptide shown in both structures as sticks. All 

plots are colour mapped according to the MMGBSA per residue decomposition results, 

going from blue (favours binding) to white (no preference) to red (disfavours binding). 

Separate scaling is used for each of the 4 sets of TCRs. All pHLA and TCR structures 

are shown in the same orientation, such that the peptide N-terminus is left and the C-

terminus right. Several mutations sites are indicated on the high affinity variants (purple 

labels: CDRα mutations; green labels: CDRβ mutations). ............................................ 130 

Figure 29: NY-ESO variants show largely additive energetic effects upon affinity 

maturation. A. Per-residue ΔG differences between the high affinity (HA) variants and 

WT-NY-ESO (i.e. ΔΔG), with positions mutated indicated throughout in red. ΔΔG 

differences between the WT and the given HA TCR are coloured blue if < –0.5 kcal 

mol–1 (favourable for binding) and red if > 0.5 kcal mol–1 (unfavourable for binding), 

with values in between coloured green. (B–G) Colour mapping of the above per residue 

ΔΔG values onto all carbon atoms of the high affinity variants (with the WT-NY-ESO 

structure shown in green for reference). Colour mapping is performed from blue to 

white to red with blue indicating a favourable change and red indicating an unfavourable 

change for the affinity matured variant. Figures are divided to focus on the different 

regions of the TCR subjected to affinity maturation (CDR2α, CDR3α, CDR2β and 

CDR3β), and subdivided when mutations are not consistent between HA TCRs. 

(c58c61/2 means both c58c61 and c58c62 are shown). ................................................. 130 

Figure 30: Changes in Energetics at the TCR-pHLA Interface upon affinity 

maturation. (A) Per-residue ΔG differences between the three high affinity (HA) 

variants and their counterpart WT TCRs (i.e. ΔΔG), with positions mutated indicated 

throughout in red. ΔΔG differences between the WT and the given HA TCR pair are 

coloured blue if < –0.5 kcal mol–1 (favourable for HA) and red if > 0.5 kcal mol–1 

(unfavourable for HA), with all values in-between coloured green. (B–G) Colour 

mapping of the above per residue ΔΔG values onto all carbon atoms of the high affinity 

variants (with the WT-TCR structure shown in green for reference). Colour mapping is 

performed from blue to white to red with blue indicating a favourable change and red 

indicating an unfavourable change for the affinity matured variant respectively. Figures 

are divided up to show the regions which show the major changes upon affinity 

maturation. ..................................................................................................................... 130 

Figure 31: (A) Exemplar structure of a TCR-pHLA complex, with a different portions 

of the TCR and pHLA labelled. (B) Zoom in on the binding TCR-pHLA showing the 6 

CDR loops responsible for binding the pHLA. (C) Table of all TCR-pHLA complexes 

investigated in this study. Note the α and β-chain framework (FWα and FWβ) are non-

hypervariable loops that flank the CDR loops. (A complete list of all mutations made 

onto each CDR loop can be found in Table S1). ........................................................... 133 
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Figure 32: Differences in the average number of H-bonds, vdWs contacts and the 

BSASA from our MD simulations. All WT TCRs are coloured in green and all affinity 

matured TCRs are coloured in purple. Bars for the H-bonds and vdWs contacts are 

divided in two based on HLA-TCR interactions (darker colour and hashed bars) and 

peptide-TCR interactions (lighter colour). The totals obtained are from 10 independent 

100 ns long MD simulations of each TCR-pHLA complex (using the last 90 ns of each 

simulation). Error bars plotted for A and B are the standard deviation of the averages 

from the 10 replicas. Error bars plotted for C are the standard deviation obtained from 

combining all snapshots from all replicas together. ...................................................... 136 

Figure 33: Differences in flexibility between the affinity matured TCRs variable 

regions and their counterpart WT TCRs. (A–D) ΔRMSF values (HA variant RMSF – 

WT RMSF) for all NY-ESO TCRs, with panels A and B corresponding to the CDRα 

and CDRβ of the Apo TCRs respectively, and panels C and D corresponding to CDRα 

and CDRβ of the TCRs in complex with pHLA respectively. (E–H) ΔRMSF values (HA 

variant RMSF – WT RMSF) for the three pairs of HA and WT TCRs, with panels E and 

F corresponding to the CDRα and CDRβ of the Apo TCRs respectively, and panels G 

and H corresponding to CDRα and CDRβ of the TCRs in complex with pHLA 

respectively. A more negative ΔRMSF value indicates increased rigidity for the HA 

variant relative to the WT. The points towards the bottom of each graph indicate 

residues with significantly different ΔRMSF values as determined by a two-sample t-

test (p < 0.05). Crosses are used to indicate the locations of mutated regions of the TCRs 

(using the same colouring as line graph). Complete RMSF plots for all TCRs simulated 

are provided in Figures S1-S4. ..................................................................................... 138 

Figure 34: Experimental vs computational ΔΔGbind values obtained from our 

MMGBSA calculations for all TCR-pHLA systems studied. For the three pairs of TCRs 

with a single WT and affinity matured TCR, lines are drawn to guide the eye. Error bars 

plotted are the standard deviation obtained from the 25 replicas performed per complex 

(see Methods). ............................................................................................................... 140 

Figure 35: NY-ESO variants show largely additive energetic effects upon affinity 

maturation. A. Per-residue ΔG differences between the high affinity (HA) variants and 

WT-NY-ESO (i.e. ΔΔG), with positions mutated indicated throughout in red. ΔΔG 

differences between the WT and the given HA TCR are coloured blue if < –0.5 kcal 

mol–1 (favourable for binding) and red if > 0.5 kcal mol–1 (unfavourable for binding), 

with values in between coloured green. (B–G) Colour mapping of the above per residue 

ΔΔG values onto all carbon atoms of the high affinity variants (with the WT-NY-ESO 

structure shown in green for reference). Colour mapping is performed from blue to 

white to red with blue indicating a favourable change and red indicating an unfavourable 

change for the affinity matured variant. Figures are divided to focus on the different 

regions of the TCR subjected to affinity maturation (CDR2α, CDR3α, CDR2β and 

CDR3β), and subdivided when mutations are not consistent between HA TCRs. 

(c58c61/2 means both c58c61 and c58c62 are shown). ................................................ 142 
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Figure 36: Changes in Energetics at the TCR-pHLA Interface upon affinity 

maturation. (A) Per-residue ΔG differences between the three high affinity (HA) 

variants and their counterpart WT TCRs (i.e. ΔΔG), with positions mutated indicated 

throughout in red. ΔΔG differences between the WT and the given HA TCR pair are 

coloured blue if < –0.5 kcal mol–1 (favourable for HA) and red if > 0.5 kcal mol–1 

(unfavourable for HA), with all values in-between coloured green. (B–G) Colour 

mapping of the above per residue ΔΔG values onto all carbon atoms of the high affinity 

variants (with the WT-TCR structure shown in green for reference). Colour mapping is 

performed from blue to white to red with blue indicating a favourable change and red 

indicating an unfavourable change for the affinity matured variant respectively. Figures 

are divided up to show the regions which show the major changes upon affinity 

maturation. ..................................................................................................................... 145 

Figure 37: A, Representative structures of glucose (green) and xylose (blue) from our 

MD simulations demonstrating they have the same binding interface with NADP+. B, 

Normalized histograms (bin width 0.1 Å) of the hydrogen transfer distance of glucose 

and xylose from MD simulations of ssGDH. C, QM cluster model created of glucose in 

complex with NADP+, with asterisks indicating atoms fixed throughout the optimisation 

process.  (D–G) Reaction mechanism obtained from the QM model, starting from the 

reactant (D), to the deprotonated reactive intermediate (E), the transition state (F), and 

finally the product. (G). ................................................................................................. 175 

Figure 38: The temperature-dependence of NADP+ reduction by glucose (A) and 

xylose (B). Solid and dashed lines show the fitted to Eq 16 for the protiated and 

deuterated Glucose/xylose (D1), respectively. (C), the resulting KIE extracted from the 

lnkcat (ln min-1) in panels A and B. The solid line is the modelled KIE based on the 

parameters extracted from Eq 16 (Solid lines in panels A and B). ................................ 176 

Figure 39: Numerical model showing how the magnitude of the glucose 1° KIE versus 

temperature is affected by differences in the isotope effect on Δ𝐶𝑃 ‡. ΔH‡ and ΔS‡ 

values used for modelling given in Table 2. .................................................................. 178 

Figure 40: The effect of isotopic labelling on ΔΔ𝐶𝑃 ‡. (A) The temperature-dependence 

of kcat for each isotopologue of glucose. Solid lines are fits to Eq 16. (B) Resulting KIEs 

extracted from the fits in panel A. C, correlation between the increase in molecular mass 

(through isotopic substitution) and the extracted magnitude of ΔΔ𝐶𝑃 ‡. The solid line is 

a simple rectangular hyperbola and is to aid the eye only to illustrate the trend. D, 

structures of each isotopologue used in the panel A. ..................................................... 181 

Figure 41: (A) The absorbance spectra of MAO-B after treatment with BZA over time. 

Inset, the effect on the 415 nm peak over time. (B) Fluorescence excitation/emission 

matrix resolves oxidized and semiquinone flavin states (highlighted in solid black 

boxes). Scale bar is relative intensity Conditions: 50 mM HEPES 0.5 % w/v Triton X-

100, 20 °C. For absorption experiments 40 mM BZA, anaerobic conditions as Materials 

and Methods. .................................................................................................................. 196 
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Figure 42: X-band cw-EPR spectra of WT (top, black) and Y398F (bottom, black) 

MAO-B, with their respective fitted simulations (red). EPR microwave 

frequency = 9.3916 GHz (WT) & 9.3926 GHz (Y398F), microwave power = 0.2 mW, 

modulation amplitude = 0.5 mT, temperature = 16 K. ................................................... 197 

Figure 43: The temperature-dependence of MAO-B with BZA (A) and KYN (B) with 

reduced Triton and nanodisc environments, fit to the MMRT equation. Conditions, 50 

mM HEPES 0.5 % w/v reduced Triton X-100 pH 7.5. Reduced Triton X-100: 1.5 mM 

BZA, 0.75 mM KYN. Nanodiscs: 3 mM BZA, 0.66 mM KYN. .................................. 200 

Figure 44: MAO-B in POPC/POPE membrane environment. The substrate binding area 

is shown in light green and light blue (residues 80-210, 286-390) for each monomer. 

The active site area is shown in dark green and dark blue (residues 4-79, 211-285, and 

391-452). The C-terminal tail and transmembrane helix are shown in red (residues 453-

520). The binding site gating loop is shown in magenta (residues 99-112). Images A and 

B inset denote the two main entrances (or tunnels) to the binding site (denoted Entrance 

A and Entrance B throughout the manuscript), with a representative tunnel (navy 

spheres) shown for both entrances.  Key residues which describe the location of the 

entrance are shown as sticks and labelled. Entrance B is newly identified here, Entrance 

A has been previously described.345 .............................................................................. 202 

Figure 45: The summed tunnel frequency from the substrate binding site of MAO-B to 

solvent, identified by Caver.363 BZA0 – No BZA is bound in either monomer. BZA1 – 

BZA is bound only in monomer 1. All are from triplicate MD runs. B, The average 

maximum bottleneck (Å) from the substrate binding site of MAO-B to the solvent, as 

identified by Caver. C + D, All tunnels identified by Caver over all three MD simulation 

repeats for BZA0 (C) and BZA1 (D). FAD and BZA (when present) are shown as yellow 

sticks. Tunnels are colored according to entrance/exit pathway used, with magenta and 

green representing Entrances A and B respectively. Blue tunnels indicate pathways 

which go through neither of the two main entrances described. ................................... 203 

Figure 46: (A–D) Distance between the N5 (FAD) and CH2 group of BZA for wtMAO-

B and all three enzyme variant simulations. A black dotted line indicates the start of 

each new trajectory (all runs performed in triplicate). Additional measurements for all 

BZA containing simulations can be found in Figures S16 and S17. (E+F), Normalized 

histograms (bin width 0.25 Å) of principle principal component 2 (PC2) for all BZA1 

simulations of the bound (E) and unoccupied monomers (F). (G) ‘Porcupine’ plot of 

PC2, with arrows indicating the direction of the PC2 eigenvector and arrow size 

indicating the magnitude of the corresponding eigenvalue, for all Cα atoms with 

eigenvalues greater than 4 Å. The gating loop residues (99 – 112) are coloured in red, 

and the approximate location of the bilayer is indicated with a black dotted line. (A 

mobility plot of PC2 is provided in Figure S18A.). key for catalysis (see Supporting 

Information Materials and Methods and Table S5). .................................................... 205 
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Abstract  
 

Approximately 90% of all therapeutic targets in the human proteome operate solely inside 

the cell, making them unavailable for recognition by antibodies which instead bind 

antigens presented on the exterior of the cell surface. To target the 90%, the human 

immune system utilises a class of binding proteins known as T-cell receptors (TCRs). 

These TCRs recognise peptide fragments sourced from proteins produced inside the cell 

that have subsequently been degraded and transported to the cell surface by the human 

leukocyte antigen (HLA, pHLA with peptide bound). TCRs are membrane bound and 

attached to T-cells and use their six complementarity-determining region (CDR) loops to 

bind antigenic pHLA molecules (i.e. peptides that come from protein antigens). TCR 

binding to pHLA molecules induces an immune response from the T-cell, which 

ultimately leads to the antigen presenting cells death. The capability of TCRs to identify 

antigens which are not naturally expressed on the cell surface (unlike antibodies) has 

helped drive the development of a new class of therapeutics that consist of a soluble, 

bispecific TCR engineered to bind a specific antigenic pHLA for the treatment of various 

diseases (such as cancers and viral infections). Natural TCRs bind with characteristically 

poor affinities (~µM) and half-lives (~seconds), which are undesirable properties for a 

therapeutic. The CDR loops on TCRs are therefore normally subjected to affinity 

maturation to produce TCRs with affinities in ~pM range for their target pHLA. This does 

however carry a significant risk in terms of safety, as the very large majority of peptides 

presented by HLA molecules are sourced from endogenous (i.e. healthy) proteins and 

must not be bound by the TCR in order to avoid the production of an autoimmune response 

on the healthy cells.  

These requirements for a highly specific TCR that binds with high affinity to its target 

pHLA is the primary motivation for this thesis, as herein, fundamental engineering 

principles for generating TCRs with these properties are determined and protocols to 

evaluate these properties are developed and demonstrated. This insight is obtained 

through combinations of structural analysis, molecular dynamics simulations and free 

energy calculations, providing an atomistic description of how this has occurred for 

several TCRs. Furthermore, we characterise how different peptide cargo can tune the 

molecular flexibility of the entire pHLA molecule, including regions distal from the HLA 

binding site. These findings suggest peptide dependant tuning of the HLA molecule may 

play a role in regulating the functional outcome of an immune response.  

Ultimately, this work and the principles identified herein will aid in the rational design of 

high affinity and high specificity TCRs as therapeutics for various diseases.  
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Chapter 1:  

Introduction and Background  
 

The main thrust of this thesis focusses on using engineered T-cell Receptors (TCRs) as 

therapeutics, with a focus towards both gaining key insights into design principles for 

affinity and specificity, as well as characterising the allosteric regulation of the TCRs 

therapeutic target, the peptide-human leukocyte antigen (pHLA). As each results chapter 

in this thesis contains its own introduction, this section will provide a broader overview 

of the topics covered. Herein, I will first describe TCRs and pHLAs in their natural context 

(as vital parts of the immune system) before moving on to discuss the application of TCRs 

as therapeutics and the challenges associated with this. 

1.1 The Human Immune System  
 

All organisms contain an immune system which acts to protect the host against disease. 

In humans, the immune system is highly complex, with many mechanisms in place to 

protect against pathogens.1 This system can be broken down into multiple “layers” of 

protection, the first of which can be described as simple physical barriers that prevent 

entry into the host such as the skin. Other examples of this layer include coating the 

airways with mucus to catch microorganisms as they are inhaled, or stomach acid, which 

provides a hostile environment (low pH) for most microorganisms. The next layer is the 

“innate immune system” which is found in all plants and animals, as well as most 

bacteria.2 The innate immune response is fast acting and non-specific (in the sense that 

the response to different pathogens is the same).  

The final layer of the immune system is the “adaptive (or acquired) immune system”.3 

The adaptive immune system is significantly slower acting than the innate immune 

response, but highly specific towards the given pathogen (or pathogen infected cells). The 

adaptive immune system recognizes “non-self” (i.e. not natively produced) molecules 

such as proteins or lipids which are referred to as antigens. A key benefit of the adaptive 

immune system is in the generation of “memory cells”, which are produced during the 

first exposure to a given antigen. These memory cells can lie dormant in the body for 

several years unless they re-identify their target antigen from the host becoming re-

infected. Upon exposure to the given antigen these memory cells can trigger an effective 

adaptive immune response significantly more rapidly when compared to the first exposure 

event. Interestingly, this “training” of the adaptive immune system to recognize and then 

remember a given antigen is the basic process by which vaccines work.4   
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1.2 Antigen Binding by The Adaptive Immune system  
 

Two related classes of proteins are used by the adaptive immune system to identify and 

target antigens.3 The first are antibodies (also known as immunoglobulins), which are 

produced by B-cells as either membrane bound (protruding out of a given B-cell and into 

the extracellular surface) or as soluble proteins. Human antibodies adopt a “Y” shaped 

quaternary structure (see Figure 1), whereby there are two antigen binding domains 

located on the ends of the forks of the Y (known as the antigen-binding fragment regions, 

Fab regions), whilst the bottom of the Y (known as the fragment crystallizable region, Fc 

region) is used to communicate with other parts of the immune system. Antibodies bind 

antigens through six specialised loops, known as complementarity-determining regions 

(CDRs). These CDR loops are “hypervariable” in sequence composition which is 

essential for providing coverage against the wide variety of possible epitopes (antigen 

binding sites).3 The second class of targeting protein used by the adaptive immune system 

is the T-cell receptor (TCR), which are produced by T-cells as membrane bound proteins 

(see Figure 1). These proteins share common structural features with the Fab region of 

an antibody, including in the use of six CDR loops to bind their target antigens. TCRs 

consist of two different chains (α and β or a less common variant made of γ and δ chains) 

which both contribute equally to forming the antigen binding site by providing three CDR 

loops per chain to bind the epitope.  

Figure 1: Diagrams of the structural configurations of antibodies and TCRs. The 

transmembrane region is indicted as optional in antibodies as they can be expressed as 

either soluble or membrane bound proteins. 
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A key difference between TCRs and antibodies is in the nature of the epitopes they target. 

Whilst antibodies can target a range of different molecular surfaces found on proteins (or 

other molecules like lipids and sugars), TCRs bind only a small fragment of an antigen. 

These small fragments are presented to the TCR by a multi-domain protein complex 

known as the major histocompatibility complex (MHC), with the TCR binding to both the 

antigen fragment and the MHC.5 The following subsection will now describe the 

mechanism by which MHC molecules present antigens for TCR recognition.  

 

1.3 Antigen Presentation to T-Cell Receptors 
 

As discussed briefly above, TCRs differ from antibodies in that they target only small 

fragments of antigens presented on the cell surface. These antigens (which are most often 

peptides, but can also be lipids or metabolites6) are displayed on the cell surface by 

binding to the major histocompatibility complex (MHC). Please note that the MHC is a 

general term used to describe this molecule which is found in all vertebrates.4 The human 

leukocyte antigen (HLA) is the human form of the MHC and the term “HLA” will now 

be used throughout to avoid any confusion.  

HLA molecules bind peptides available inside the cell to form the peptide-HLA (pHLA) 

complex. Once a pHLA complex is produced, it is transported to the cell surface and 

presented facing outwards into the extracellular milieu, allowing for TCR recognition.7 It 

should be noted at this point that HLA molecules bind to and present both endogenous 

(self-produced and therefore “healthy”) and antigenic peptides. It is primarily the role of 

the TCR to bind (and therefore trigger an immune response) to only antigenic peptides 

and not the self-peptide-HLA (self-pHLA) molecules which are also presented on the 

surface of the cell (discussed further in Section 1.5).  

There are two major classes of HLA molecules (Class I and II) and both perform different 

roles in the immune system. HLA class I molecules present peptide fragments on the 

surface of their cells, with these peptides sourced from proteins produced inside the cell 

(see Figure 2). This process occurs in all nucleated cells (cells with a nucleus), with the 

first step being the degradation of proteins into small peptides via the proteasome.8 The 

peptide fragments which bind to the HLA strongly enough are then transported and 

presented onto the cell surface for TCR recognition. Unlike Class I, HLA Class II 

molecules source peptides for presentation from outside the cell.9 Proteins outside the cell 

surface are internalised and degraded into peptides. The peptides produced that can bind 

HLA Class II are then transported to the cell surface for TCR recognition. HLA Class II 

expression and presentation is performed only by certain immune cells, which include 

dendritic and B-cells.9 This is due to the different roles the two HLA Classes have in the 

immune system. HLA Class I molecules are recognised by TCRs located on cytotoxic T-

cells, which kill the cell (by the release of cytotoxic compounds) presenting the HLA 
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Class I molecule.8 HLA Class II molecules are instead recognised by TCRs present on T-

helper cells.9 Unlike in Class I, antigen recognition (in this case by the T-helper cells) 

does not kill the HLA Class II presenting cell. T-helper cells are instead responsible for 

up/down regulating the local immune response. To ensure the correct T-cell type binds 

the correct HLA Class, a co-receptor present on the T-cell must also bind the pHLA in 

order to trigger an immune response.4 Cytotoxic T-cells contain a CD8 co-receptor 

molecule which can only bind to HLA Class I molecules8, whereas T-helper cells contain 

a CD4 co-receptor molecule which can only bind to HLA Class II molecules.9 These co-

receptors are both located far away from the TCR/peptide binding site. 

 

1.4 Structural Characterisation of the pHLA Complex 
 

HLA Class I and II molecules are composed of two different protein subunits (Figure 

3A).9 In HLA Class I, a single protein chain forms both the peptide binding groove and 

the connection to the interior of the cell (via a transmembrane helix). This protein chain 

is in complex with a small (100 residue) β2-microglobulin (β2m) domain, which binds 

well away from the peptide binding site. In contrast, HLA Class II consists of two protein 

subunits of approximately equal size, with both domains connected to the interior of the 

cell (again via a transmembrane helix). In HLA Class II, both domains also play a roughly 

equal role in forming the peptide binding groove (Figure 3A). In both HLAs, the binding 

groove consists of a β-sheet base with a flanking α-helix either side to form the cavity. As 

Figure 2: Schematic representation of antigen processing, presentation and T-cell 

binding pathways for HLA Class I and II. In the HLA Class I pathway, the antigen is 

first degraded in the proteasome (1), then bound to a HLA molecule (if it can bind) to 

form a pHLA complex (2), before being presented on the cell surface for both TCR and 

CD8 co-receptor recognition (3). In HLA Class II, antigens from the extracellular milieu 

are internalised (1), degraded by the proteasome (2), then peptides which are able to bind 

to a HLA Class II molecule (3) are presented on the cell surface for both TCR and CD4 

co-receptor recognition (4). 
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the results chapters of this thesis focus on HLA Class I molecules (due to their increased 

relevance as therapeutic targets, see Section 1.3), the remainder of this section will focus 

on characterising the structural features of HLA Class I in more detail.  

HLA Class I Molecules tend to bind peptides of sequence lengths between 8–12, primarily 

through interactions between the HLA and the first and last few residues of the peptide.10 

The regions of the HLA responsible for binding the N and C-terminal residues of the 

peptide are referred to as the A and F-pockets respectively (See Figure 3B+C). This 

“anchoring” effect of the N and C-terminal portions of the peptide often results in these 

residues playing a less significant role in TCR recognition, as they are relatively buried 

into the HLA’s peptide binding pockets. The central portion of the peptide however tends 

to “bulge out” of the binding pocket, making these residues primarily responsible for 

regulating TCR affinity to the pHLA.  

There are 177 isoforms of HLA Class I molecules1, and the combination of A and F-

pockets and peptide N and C-terminal residues will largely control whether a particular 

peptide will bind to a given HLA isoform, and therefore can be presented to a TCR. 

Extensive studies have been performed to characterise the peptide sequence space that 

individual HLA isoforms are capable of binding.11–13 A commonality identified is the 

occurrence of peptide “anchors”, which are peptide residues that have to be one of very 

few amino acids in order to enable binding to the HLA isoform. Generally, HLA Class I 

molecules possess two “primary” and two “secondary” anchors (a primary anchor has a 

stronger effect than a secondary anchor), with one of each located in both the N and C-

terminal residues.8      

Figure 3: (A) Schematic diagrams of the HLA Class I and II complexes. All domains 

which make up both complexes are labelled, with domains that are part of the same 

protein coloured the same. The black dotted lines represent the location of the membrane. 

(B) Representative structure of HLA Class I molecule with peptide bound. (C) Top down 

view of the peptide binding site of HLA Class I. Residues which make up the A-pocket 

(peptide N-terminal binding site) and F-pocket (peptide C-terminal binding site) are 

coloured in green and orange respectively. The α-helices which form the groove are 

labelled on the figure. For panels B+C, protein structure taken from PDB 3UTQ.98 
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1.5 How do Naturally Occurring TCRs Achieve Specificity? 
 

Given only the 20 standard amino acids, there are theoretically ~1x1013 (2010) possible 

different peptide sequences for a peptide of length 10 amino acids long. Furthermore, the 

very large majority of peptides that will be presented by the HLA will be from endogenous 

(native and healthy) proteins (and therefore should not be recognized by a TCR). This 

provides the ~2x107 mature TCRs produced by the average human host with a seemingly 

impossible challenge.14 That is, they must be both highly cross reactive (to ensure 

coverage of the vast sequence space possible for antigenic peptides) whilst simultaneously 

being non-cross reactive to the vast number of self-pHLA complexes that will also be 

presented on healthy cells, to ensure an autoimmune response does not occur. Prior studies 

have shown that individual mature TCRs are indeed able to bind (at least) somewhere 

between the high thousands to millions of non-native pHLAs.15,16 

To overcome the aforementioned challenge, the immune system utilises a process known 

as “thymic selection”, in which a naive pool of ~1011 T-Cells (each with different TCRs) 

are selected against several criteria to produce the ~2x107 mature T-cells.14,17 The first 

step of thymic selection (see Figure 4) is “positive selection”, in which naive T-cells are 

tested for their ability to bind self-pHLA molecules.6 T-cells that are unable to bind self-

pHLA are subjected to apoptosis (cell death). This step is important to remove TCRs that 

would likely be of limited value as they would not be able to recognise any pHLA. The 

T-cells that survive positive selection then undergo “negative selection”, in which T-cells 

that bind too strongly to self pHLA are subjected to apoptosis (to remove TCRs that could 

cause autoimmune problems by inducing an immune response towards healthy cells).6  

One consequence of thymic selection is that the TCRs produced tend to bind their targets 

with relatively weak affinities (KD normally ~µM).18 These relatively weak affinities and 

subsequently weak half-lives (normally in the seconds18) mean multiple TCRs on a single 

T-cell need to bind multiple pHLA on a single (diseased) cell in order to generate a strong 

enough signal for an immune response to be generated.19 This requirement for multiple 

TCRs to bind a diseased cell provides an unfortunate “escape mechanism” often used by 

diseased cells to avoid destruction. That is, the diseased cells down regulate the production 

of pHLA on the cell surface (previous studies have observed as few as 10 antigen specific 

pHLA presented per cell for several different cancers), making it very challenging for the 

“critical mass” of simultaneous TCR binding events to occur that would allow for the 

diseased cells eradication.19  
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1.6 Structural Features of the TCR-pHLA Complex 
 

TCRs bind pHLA through their six hypervariable loops (see Figure 5), with both the 

peptide and the two alpha helices of the HLA (α1 and α2) that form the peptide binding 

groove responsible for interactions with the TCR. TCRs tend to dock diagonally over the 

pHLA complex such that the CDR3 loops make contacts primarily with the peptide (as 

well as some HLA residues) and the CDR1+2 loops primarily engage the HLA residues 

on the alpha helices (see Figure 5B+C). The orientation at which the TCR docks can be 

characterised by determining the “docking angle” of the TCR with respect to the pHLA.5 

This measurement determines the angle between the major axis of the peptide and the 

vector between the (conserved) interface cysteine residues on the variable domains, with 

the canonical range of docking angles observed for (crystallised) TCRs between 40 to 

85°.5  

An approach first used to characterise the orientation of the two antibody variable domains 

with respect to one another,20 has been modified for use with TCRs21 (known as 

“Abangle” for antibodies and “TRangle” for TCRs). This approach gives six 

Figure 4: Positive and negative thymic selection of T-cells by the Thymus. Naive T-

cells are produced in the thymus and their affinity towards self-peptides is evaluated. If 

a peptide binds too strongly (scenario 1) or too weakly (scenario 3) the T-cell is 

subjected by apoptosis (cell death). Only in scenario 2 is the T-cell (and its 

corresponding TCR) allowed to mature.  
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measurements (five angles and one distance) to describe the differences in variable 

domain orientations.  Interestingly, clustering of the available structures of antibodies and 

TCRs based on their Abangle/TRangle parameters results in them being clustered into 

separate groups. Furthermore, by computationally modifying TCRs to adopt standard 

antibody variable domain orientations, it was shown that the TCR could no longer bind 

the pHLA with a canonical (i.e. TCR-like) docking angle.21 This may therefore suggest 

that engineering antibodies for the application of pHLA recognition could be more 

challenging than engineering TCRs, as the TCR scaffold has arguably evolved to bind 

with an orientation optimal for peptide discrimination.21  

In Section 1.5, the biological mechanism for thymic selection was described, in which the 

TCRs produced are simultaneously cross-reactive, yet “specific” in the sense that they do 

not bind endogenous pHLA molecules presented on healthy cells. This does not explain 

however the physical chemical mechanism of how TCRs are able to do this. Whilst still 

not fully understood, arguments have been proposed in the literature to rationalise these 

observations. The major argument is that TCRs have “hotspot” peptide and HLA residues 

which are primarily responsible for driving binding affinity, meaning if all or most of 

these residues are present, the TCR is likely to bind.22 Recent work has identified a single 

TCR that can bind over a million different peptide sequences presented on the same HLA 

isoform.16 Several peptide sequence motifs were identified from this, with the most 

populated being: xOxGPDxxxO”, whereby “O” is a hydrophobic amino acid and “x” can 

be any amino acid.16 A follow-up study in which eight of the identified peptides in the 

above described motif were crystallised identified the importance of the central “GPD” 

residues in binding the TCR.23 In all eight cases, between 41-50% of all X-ray contacts 

formed between the TCR and pHLA were from just these three residues.23 

Recent work by Riley et al. demonstrated that a single TCR was able to bind two 

distinctive classes of peptide sequences by adopting essentially the same TCR 

conformation for the two different peptides.24 In this study, yeast display of many pHLA 

complexes was used to identify 53 different peptide sequences that could bind the same 

TCR (to form the TCR-pHLA complex). Analysis of the peptides sequences showed two 

distinct classes of peptide that could be differentiated by the presence of either a “DRG” 

or “GIG” motif in the center of the peptide, with each of these motifs “bulging” out of the 

HLA binding groove to engage the TCR. Several of the above identified peptides were 

crystallised, which interestingly showed that the TCR used essentially the same 

orientation to bind both types of motifs (all atom RMSD difference in the CDR loops for 

the TCR was < 1 Å for all examples). In contrast, the two classes of peptides adopted 

vastly different conformations, (with backbone RMSD differences of 3.5 Å).24 This 

demonstrates that not only can the CDR loops of the TCR make use of conformational 

flexibility to enable binding of different pHLA surfaces (not seen in this case but seen in 

others25), but that different peptides can adopt different conformations in the HLA groove 

to facilitate TCR binding. 
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1.7 The Application of T-cells and TCRs as Therapeutics.  
 

This section provides an overview of the different types of therapeutics either available 

today or currently under investigation that utilise TCRs or T-cells to combat disease. 

These therapeutics can be broken down into four major categories (see Figure 6), by 

partitioning based on the receptor molecule used to recognise the antigen and on the 

solubility of the drug.  

The first category in Figure 6 are so called IMMTACs (Immune mobilising monoclonal 

T-cell receptors Against Cancer), which are soluble, bispecific (can bind two different 

epitopes) and affinity enhanced (KD for target pHLA ~pM) TCRs.26 As these TCRs are 

Figure 5: (A) Exemplar structure of the TCR-pHLA complex, with the six CDR loops and 

different portions of the overall scaffold coloured differently for clarity. (B+C) Zoom in on 

the TCR-pHLA binding site from two different orientations (same colouring as in A). 

Protein structure taken from PDB: 2P5E.45  
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engineered to be soluble (and therefore are not attached to a T-cell) they contain a co-

receptor which binds with picomolar affinity to CD3 receptors on T-cells.26 This enables 

them to recruit T-cells to destroy the antigen presenting cell.  

The second category in Figure 6 are tumour-infiltrating lymphocytes (TILs), which can 

be used in an approach known as adoptive cell therapy (ACT). In ACT, cells from the 

immune system are given to a patient to kill diseased (often cancerous) cells. In TIL 

therapy, T-cells located near tumours are taken from the patient and then multiplied in a 

lab before reinjecting the T-cells back into the patient.27 The basic idea behind this process 

is that the hosts immune system is too weak to fight the tumour but has already produced 

the necessary T-cells to do so. Therefore, supplementing with additional anti-tumour T-

cells can artificially “increase the strength of the immune system” and ultimately assist in 

fighting the disease. TIL therapy is similar to category 1 in that a TCR is used for pHLA 

recognition, however in this case the TCR used is membrane bound and (normally) of low 

affinity (~µM). A major challenge associated with TIL therapy is the risks of toxicity tend 

to be far greater than for soluble therapeutics due to the significantly longer long-half lives 

of T-cells in the body (compared to soluble proteins like TCRs).28 Whilst one could 

engineer the TCRs in TILs to be of high affinity, this is not commonly performed because 

of the increased risk of toxicity.  

The third category in Figure 6 are chimeric antigen receptor T-cells (CAR T-cells).29 

CAR T-cells are T-cells produced by either the patient or a donor which are then 

engineered to produce specific antigen receptors (normally an antibody or antibody 

fragment) to bind a given antigen. The major differences between this category and 

category 2 is in the use of targeting protein (not a TCR) and the nature of the target antigen 

(pHLA for category 2 compared to a whole protein bound to the exterior of the cell surface 

for category 3).29   

Finally, category 4 in Figure 6 refers to the many types of soluble antibody therapeutics 

(or other engineered protein scaffolds that could be used in its place).30 As with category 

1, soluble therapeutics need a way to destroy the antigen presenting cell (and not just bind 

to it). Two commonly used strategies are to (1) add a co-receptor binding site that can 

recruit another part of the immune system to kill the cell (e.g. a T-cell as seen in Figure 

6) or (2) attach a drug molecule to the antibody via a partially chemically labile linker that 

will be released at the site of the diseased cell to kill it (commonly known as antibody-

drug conjugates).31  
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Figure 6: Schematic diagram of the various types of therapeutics available that utilise 

T-cells to kill diseased/cancerous cells. The dotted lines indicate binding between 

different molecules. In examples 1+2 the antigen presented is a peptide from a pHLA 

molecule, whilst in 3+4 it is a protein expressed on the surface of the cell. A description 

of each of the therapy type is provided in the text. This figure was adapted from one 

produced by Immunocore Ltd. Original figure is available at: 

https://www.immunocore.com/technology 
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1.7.1 The Advantages and Challenges Associated with Soluble, High Affinity TCRs 

as Therapeutics  

 

Chapters 4 and 5 in this thesis focus on gaining insight into fundamental design principles 

for achieving high specificity and high affinity in TCR based therapeutics. These chapters 

are performed in collaboration with scientists from Immunocore, a company that develops 

IMMTACs (category 1 in Figure 6). This subsection will therefore focus on the 

advantages and challenges associated with the use of IMMTAC style therapeutics.  

Targeting pHLA molecules (instead of surface expressed proteins like antibodies or most 

engineered protein scaffolds do) provides access to the internal proteome and a greater 

number of potential targets. It is estimated that ~90% of all potential disease targets are 

located inside the cell (and these targets can be presented by HLA Class I molecules to 

TCRs) as opposed to the ~10% available to drugs that can only recognise antigens on the 

cell surface.32  

The use of a WT-TCR (sourced from either the patients or a donor) with ~µM affinity has 

arguably a reduced risk of toxicity in comparison to an affinity matured nM-pM TCR (as 

the affinity maturation process may have had the unintended consequence of producing a 

TCR with reasonable affinity for an self-pHLA molecule). As discussed in Section 1.5 

however, the low affinity of WT-TCRs can provide diseased cells the opportunity to 

escape TCR recognition by down regulating the expression of antigenic pHLA. Previous 

studies have shown soluble TCRs with picomolar affinity (and subsequently much longer 

half-lives) can kill cells with as low as 5-10 copies of the pHLA target present on an 

individual cell.33 If one can therefore produce affinity matured TCRs that have a large 

enough therapeutic window, then one would expect them to work more effectively than a 

WT-TCR as a therapeutic. A further point to consider is the reduction in the dose required, 

which is likely to be approximately inversely proportional to the affinity for the antigenic 

pHLA.  

Whilst questions have been raised about the fundamental structural/orientational 

differences between TCRs and antibodies21 (see Section 1.6) and whether these 

differences make TCRs better suited than antibodies (or other proteins scaffolds) for 

specific pHLA recognition, there is no reason to think one could not use an antibody 

instead, and indeed several examples exist in the literature of generating antibodies to do 

exactly that.34–36  

Evaluating the specificity of a high affinity TCR (or any engineered protein) as a potential 

therapeutic often requires a large number of cell-based assays, which are both time 

consuming and expensive. This bottleneck could of course be elevated in the future by an 

improved understanding of what makes a specific TCR, and better computational 

protocols to predict the specificity of candidate TCRs more accurately.   
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1.8 The Application of Computation to Understand and Engineer 

TCRs.  
 

The following section aims to provide insight into how computation has been used to 

study and, in some cases, engineer TCRs. Please note that the theoretical aspects of the 

computational methods used in this thesis are covered in detail in Chapter 2.  

 

1.8.1 Methods to Calculate Protein-Protein Binding Free Energies.  

 

The large number of methods available to calculate protein-protein (or protein-ligand) 

binding free energies can be separated out into “pathway” and “end-state” calculation 

approaches. Common pathway methods include free energy perturbation or 

thermodynamic integration and work based on the principle of defining a reaction 

coordinate (or multiple reaction coordinates) that describe the transition from one state to 

another, in order to calculate the free energy difference between the states. These 

approaches can utilise alchemical (unphysical) pathways to describe the change in free 

energy and thermodynamic cycles can be constructed to produce either absolute or 

relative binding free energies (i.e. ∆𝐺 or ∆∆𝐺 respectively).37  

End-state free energy methods instead calculate the free energy of the two desired states 

separately (i.e. bound and unbound) and then directly subtract their free energies from one 

another. Although in this case one explicitly obtains a ∆𝐺 value, the approximations and 

errors associated with end-state methods mean they are commonly used to predict ∆∆𝐺 

values or to rank a group of similar ligands instead. End-state approaches can be 

performed on a single or multiple conformation(s), with ranking of the protein-ligand 

complexes normally performed using empirical “scoring functions”. Scoring functions 

are based around countering the number and strength of various types of interactions (e.g. 

hydrophobic, hydrogen bonds etc…) between the receptor and ligand to determine the 

strength of the overall interaction.38 The coefficients used for each interaction term are 

normally determined by non-linear regression. An alternative to using a scoring function 

is to use a MMFF to calculate the electrostatic and vdWs interactions between the receptor 

and ligand and then model the solvation effects with an implicit solvent model such as the 

Generalized Born (GB) or Poisson-Boltzmann (PB) equation. This approach is known as 

the MMPB/GBSA (Molecular Mechanics Generalized Born/ Poisson-Boltzmann Surface 

Area) method (described in detail in Section 2.5).39 One could also consider describing 

some or all of the atoms with a quantum mechanical (QM) model, potentially offering 

increased accuracy. Considering the overall size of the TCR-pHLA complex (not only in 

terms of total numbers of atoms, but also that the binding interface is very large), 

approaches that use QM are unlikely to be worth the additional computational cost (most 

QM methods computing times scale significantly greater than linearly with an increasing 

numbers of atoms38). Further, for the same amount of computing resources, if one were 
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to use a QM method to describe a TCR-pHLA interface, the amount of sampling possible 

(both in terms of number of conformations per complex and number of mutations tested) 

would be significantly reduced as compared to an MMFF method.  

A completely different way to calculate the binding free energy could be to utilise 

machine learning (ML) approaches. ML methods normally require a large amount of 

(reliable) experimental data to generate models that are predictive. ML approaches have 

had reasonable success in predicting which peptide sequences can bind a given HLA 

isoform.40 This is arguably because as long as the HLA A and F-pocket residues are 

compatible with the peptide N and C-terminal residues, binding is reasonably likely to 

occur (see Section 1.4).  

 

1.8.2 Prior Attempts to Perform Rational TCR Engineering 

 

In comparison to the available literature and software programmes/protocols available for 

antibody modelling and design (for example RosettaAntibody41 and the MOE antibody 

modeler suite42), TCRs have been subjected to a relatively limited amount of study. 

Further, most publications that have generated high affinity TCRs appear to have done so 

through high throughput (semi-)random mutagenesis protocols.26,43–45 Two examples do 

exist in the literature however in which molecular docking was used to generate higher 

affinity TCRs.46,47 In the first of these two publications, single point mutations were 

predicted for the TCR α-chain towards binding the Tax peptide/HLA-A2 complex, with 

four point mutations combined to obtain a mutant with an ~100-fold increased affinity 

towards the pHLA.46 In this approach Rosetta was first used to identify potential 

beneficial mutations from the starting crystal structure of the WT-TCR-pHLA. Following 

experimental testing a scoring function named “ZAFFI” (Zlab AFFInity enhancement) 

was developed by taking terms from both the ZRANK48 and Rosetta49 scoring functions 

and parameterising these terms to improve the fitting to the obtained experimental data. 

In the second publication, ZAFFI was used to predict single point mutations this time on 

the melanoma-associated Melan-A/MART-1 peptide bound to HLA-A2.47 Combination 

of two single point mutations resulted in a 400-fold increase in affinity relative to the WT. 

These results demonstrate the potential of docking and computational chemistry towards 

rationally designing TCRs.  

If the TCR-pHLA complex structure is not known docking will be required to obtain a 

starting model from which to design mutations. Even with structures of the apo TCR and 

pHLA, accurate predicition of the complex structure can be challenging. This is in part 

due to the conformational flexibility available to both the CDR loops and the peptide, as 

major conformational changes have previously been observed upon going from the 

unbound to the bound state for both the TCR and peptide.24,50 This means rigid body 

docking approaches are highly likely to be inappropriate for TCR-pHLA complexes.51 A 
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docking approach specifically designed for TCR-pHLA docking known as 

TCRFlexDock52 has also been developed. In this approach, iterative rigid-body moves 

and side chain re-packing is combined with CDR loop and peptide backbone translations, 

in order to sample a large amount of conformational space to obtain a predicted docking 

pose(s).52    

 

1.9 Aims and Objectives  
 

Chapters 3-5 of this thesis explore some of the fundamental aspects of TCR-pHLA 

recognition and pHLA immunology. The research objectives for each chapter are 

presented below:   

 

1.9.1 Objective 1: The role of Peptide Cargo in Allosterically Regulating the HLA 

In Chapter 3, we aimed to determine how different peptide cargo can tune the molecular 

flexibility of the HLA. We explored this using both experiment (pressure and temperature 

(p/T) perturbation) and computation (MD simulations). Our p/T perturbation experiments 

demonstrated significant changes in the conformational dynamics of the pHLA, 

dependant on the peptide cargo. We applied MD simulations to rationalise how different 

peptide cargo could modulate the molecular flexibility of the rest of the HLA molecule. 

Our MD simulations identified several regions across the HLA which had their flexibility 

tuned by the peptide cargo. This includes many regions distal from the peptide binding 

site. We then analysed how different peptides were able to modulate the regions distal 

from the peptide binding site, and the pathways used to do so.  

 

1.9.2 Objective 2: Engineering Principles for TCR-pHLA Specificity  

In Chapter 4, we wished to determine fundamental design principles towards developing 

high specificity TCR-pHLA therapeutics. This was done through a combination of 

experimental (biochemical and structural) and computational (MD simulations and free 

energy calculations) approaches. We demonstrated that our MD simulations and free 

energy calculations were able to rationalise the observed specificity differences seen for 

the case studies considered, demonstrating the approaches used could have future 

applicability in rational design efforts. Our analyses suggested that an increased number 

of contacts between the TCR and peptide (in particular the side chains of the peptide) 

combined with binding with a broad energetic footprint (i.e. no hotspots/many favourable 

contacts) was likely to lead to a more specific TCR.  
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1.9.3 Objective 3: Engineering Principles for TCR-pHLA Affinity  

Following on from the results obtained in Chapter 4, in Chapter 5 we wished to gain 

insight into what drives affinity enhancement in engineered TCRs. We performed 

structural analysis, MD simulations and free energy calculations on several case studies 

of affinity maturation, with the aim to understand at the atomic level how affinity was 

enhanced. Analysis of the contacts formed between the TCR and pHLA either from the 

crystal structures or from MD simulations were unable to rationalise the differences in 

affinity. Analysis of changes in flexibility showed some instances of increased rigidity for 

the affinity matured apo TCR (which would be entropically favourable for binding). Our 

free energy calculations were able to reproduce the experimental affinity relationships. 

The decomposition of these results to the per-residue level allowed for the identification 

of several approaches used by TCRs to enhance affinity. Finally, we also demonstrated 

that the energetic footprint between the TCR and pHLA was by and large preserved over 

the course of the affinity maturation process, an important consideration when attempting 

to engineer specific TCRs.   
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Chapter 2:  

Theory of Methodology 
 

Physical methods to describe atoms and molecules can be broken down into two major 

classes, differentiated by the application of either quantum or classical physics to describe 

them. In quantum mechanical (QM) descriptions, atoms are described as wave-like, with 

a wave function used to provide information about the probability of finding a given 

particle at a particular position, as well as said particles momentum. Further, QM methods 

describe energy in a “quantised” manner, meaning only certain energies (energy levels) 

are allowed to be adopted by the system. In comparison, classical physics based methods 

describe energy as continuous and treat atoms as point particles. Generally, QM methods 

offer a much greater deal of accuracy, yet tend to be significantly slower than classical 

physics based approaches. As Chapters 3-5 of this thesis deal with the describing the 

dynamical properties of large protein complexes, a classical physics based approach 

(through the use of a molecular mechanics force field) is used as it provides a good balance 

between accuracy and speed.  

The following chapter aims to provide the reader with the theoretical background behind 

the simulation approaches used throughout this thesis.  

 

2.1. A Molecular Mechanics Force Field  
 

A molecular mechanics force field (MMFF) is an empirically derived model that describes 

the physical behaviour of atoms and molecules.53 This is achieved by describing atoms 

(or in some cases groups of atoms) as individual particles and using several empirically 

derived equations to describe the interactions between particles. Whilst many different 

MMFFs exist, most take the general form depicted in Figure 8. These terms can be broken 

down into “bonding” (𝐸𝑏𝑜𝑛𝑑, 𝐸𝑎𝑛𝑔, 𝐸𝑑𝑖ℎ and 𝐸𝑖𝑚𝑝) and “non-bonding” (𝐸𝑣𝑑𝑤 and 𝐸𝑒𝑙𝑒𝑐) 

terms, which sum together to give the total potential energy of the system. Bonding 

interactions are normally described by making the “harmonic approximation” (i.e. a 

harmonic potential is used to describe the relationship between the potential energy and 

the distance between atoms). Whilst the harmonic approximation is accurate for 

describing near-equilibrium bond length potential energies and can be solved rapidly with 

a computer, it is important to consider one of its major limitations. Bond breaking is an 

anharmonic process in which once the bond has “broken” the energetic penalty does not 

change (significantly). A harmonic model would therefore be highly inappropriate for 

describing chemical reactions, as bond breaking would be over-penalised. To more 

appropriately describe chemical reactions, one could modify the reacting atoms MMFF 

to describe their 𝐸𝑏𝑜𝑛𝑑 terms with an anharmonic model, as is done in the case of empirical 

valence bond simulations.54 Alternatively, one could turn to quantum mechanical methods 

for describing chemical reactivity.55 
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MMFFs are usually parametrised through some combination of experimental and 

computational calculations, with the quality of the MMFF tested/validated by assessing 

its ability to reproduce certain experimental observations.53 For example, the TIP3P water 

model is commonly used in biological simulations to provide a reasonable description of 

the behaviour of water at physiologically relevant temperatures (298 to 310 K) and 

Figure 7: The common terms used in a molecular mechanics force field (MMFF). All terms 

are summed together to give the total (potential) energy of the system. For the first four terms 

𝑘𝑟, 𝑘𝜃, 𝑘𝜑, and 𝑘𝜔 are force constants dependant on the distance (𝑟), angle (𝜃), dihedral (𝜑) 

and torsion angle (𝜔) respectively. For the van der Waals (vdW) term, 𝜖𝑖𝑗 is the well depth 

(minimum potential energy value possible), 𝜎𝑖𝑗 is the distance between atoms 𝑖 and 𝑗 at which 

the potential energy is 0, and 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗 respectively. For the 

electrostatic term, 𝑞𝑖 is the charge of atom 𝑖 and 𝜀0 is the dielectric constant.  
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pressures (1 atm).56 A further benefit is that several biological MMFFs are co-developed 

to work with the TIP3P water model (for example several CHARMM MMFFs57). TIP3P 

is however known to be a poor choice for high or low temperature/pressure simulations 

due to its inability to describe the phase diagram of water (for example, TIP3P has a 

melting temperature of 146 K58). In this case a different water model such as TIP4P/2005 

would be better suited to reproduce the phase behaviour of water.59 The above example 

demonstrates the importance of choosing an appropriate MMFF that is able to well 

describe the properties one wishes to gain insight into. Further, MMFFs are often 

produced to describe one class of molecules at a time (i.e. amino acids/proteins - Amber 

FF14SB60, CHARMM36M61; lipids - Lipid1462; sugars - GLYCAM0663; and small 

organic molecules - GAFF64, CGenFF65). This is arguably because molecules in the same 

class are likely to have similar characteristics and trying to make a MMFF too general is 

likely to lead to an MMFF that is inaccurate.  

 

2.2 Geometry Optimisation  
 

A MMFF allows us to evaluate the potential energy (PE) of a system for a given set of 

atomic coordinates. A complete evaluation of all possible arrangements for a given system 

would therefore provide us with a complete description of the potential energy surface 

(PES), including the location of global and local minima(s) as well as the location of 

saddle points (i.e. transition states). Evaluating the PE of all possible configurations would 

be extremely expensive even for relatively small systems and highly inefficient (as many 

of the configurations evaluated would be of extremely high PE, for instance due to atom 

overlap). Thankfully, several algorithms exist that allow one to identify local minima or 

saddle points and even compute the minimum energy pathway between them.53 

Energy minisation is the process by which a given set of coordinates are “optimised” to 

the nearest local minimum by minimising the potential energy of the system until it cannot 

be further reduced. Fast geometry optimisation procedures such as the steepest descent 

(SD) algorithm work by calculating the first partial derivative for an initial set of 

coordinates.38 The coordinates are then moved a short distance (often referred to as the 

“step size”) in the direction of the negative gradient. This procedure is iterated until the 

gradient obtained for the current configuration is smaller than a given threshold, at which 

point the current geometry is considered to be at the local minimum. Whilst this procedure 

is rapid it often struggles to converge in systems with a large number of dimensions as it 

does not “remember” anything about the shape of the PES between steps.  

Geometry optimisation is highly similar to energy minimisation (in that both aim to 

minimise the energy of the system), however geometry optimisation procedures rely on 

calculating or estimating the second partial derivative of the potential energy (commonly 

known as the Hessian), increasing the accuracy of the process.38 The Hessian is a matrix 

of size 3n x 3n, where n is the total number of atoms in the system. In the conjugate 

gradient (CG) approach the Hessian is estimated and used to improve the quality of the 

prediction of the direction in which to move the coordinates in for a given step.38 The CG 

method also uses the results of prior steps to help guide the minimisation procedure, 
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meaning it does not have to move in the direction of the smallest gradient. For systems 

with a large number of degrees of freedom, this tends to result in a reduction in the number 

of steps required to optimise the geometry.38  

In this thesis, energy minimisation is used to relax the system prior to MD simulations. 

Energy minimisation is first performed using the SD algorithm followed by the CG 

algorithm. This takes advantage of the high speed of SD to efficiently remove any “kinks” 

in the structure and/or relax highly energetically unfavourable conformations. Then the 

CG algorithm can be used to efficiently converge towards the local minimum.  

 

2.3 Molecular Dynamics Simulations  
 

The first derivative of the potential energy (PE) as a function of the atomic coordinates 

(𝑟) is equal to the negative of the force (𝐹).66 With knowledge of the force “felt” by each 

atom alongside each atoms mass (𝑚) we can make use of Newton’s second law of motion 

(Eq 1) to calculate the acceleration (𝑎) of each atom.   

 𝐹(𝑡) = 𝑚𝑎 = − 
𝜕𝑃𝐸

𝜕(𝑟)
= 𝑚

𝜕2𝑟

𝜕𝑡2
 (Eq 1) 

 

As can be seen above, the second partial derivative of the forces provides the displacement 

(𝑟) of the atomic coordinates with respect to time (𝑡). In a molecular dynamics (MD) 

simulation, we assume constant acceleration over a short period of time (referred to as the 

time-step, ∆𝑡). This enables us to calculate the new positions of the atomic coordinates 

after time ∆𝑡 has passed. We then recalculate the forces on the atoms of the newly updated 

coordinates to predict the coordinates after a further time step (i.e. 2∆𝑡 from the starting 

time). The iteration of this procedure therefore allows us to simulate the dynamics of a 

system over time. In order to calculate the position of the atomic coordinates after the first 

time step (i.e. 𝑡 + ∆𝑡) we solve (Eq 1) numerically to the second order giving (Eq 2).   

 

 
𝜕2𝑟

𝜕𝑡2
≈  

𝑟(𝑡 + ∆𝑡) +  𝑟(𝑡 − ∆𝑡) − 2𝑟(𝑡)

∆𝑡2
=  

𝐹(𝑡)

𝑚
  (Eq 2) 

 

The above equation can then be rearranged to give the displacement of the coordinates 

after the first time-step (i.e. 𝑟(𝑡 + ∆𝑡), see (Eq 3).  

 𝑟(𝑡 + ∆𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡) + 
∆𝑡2𝐹(𝑡)

𝑚
   (Eq 3) 
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To deal with the issue that at 𝑡 = 0 we do not know/have the coordinates of 𝑟(𝑡 − ∆𝑡), 

velocities are randomly assigned to each atom, making sure that the total kinetic energy 

of the system is consistent with simulation temperature (see Section 2.3.2 for further 

details).53    

Whilst the assumption of constant acceleration is incorrect because the forces felt by each 

atom are positionally dependent, a larger timestep would increase the efficiency of an MD 

simulation. The major limitation placed on the maximum time-step possible for a MD 

simulation is the requirement to well describe the fastest motions of the system (bond 

vibrations and rotations).38 For example, a C-H stretch has a frequency of ~3000 cm−1, 

which corresponds to a bond oscillation time of ~11 fs. Therefore, time steps close to or 

higher than the bond oscillation time could result in unrealistic conformations obtained 

over the course of the simulation. As the oscillation time is inversely proportional to the 

square root of the reduced mass of the two atoms in the bond, bonds containing hydrogen 

tend to have the shortest oscillation times. A commonly used procedure in MD 

simulations is to constrain the bond length for any bond that contains a hydrogen atom, 

which tends to allow one to increase the timestep used from 1 fs to 2 fs, effectively 

doubling the simulation speed.66 In this thesis, the SHAKE algorithm67 is used to achieve 

this for all MD simulations run. Coarse-grained simulations (in which small groups of 

atoms are merged into “super atoms”) will simulate particles which have a significantly 

larger reduced mass, allowing for much larger time steps to be used. For example, for 

MARTINI, a coarse-grained MMFF for biomolecules, using a timestep of between 20–

40 fs is recommended for MD simulations.68  

The following subsections will now provide detail on some key considerations for running 

an MD simulation (particularly focussed on simulations of biomolecules in explicit 

solvent as performed in this thesis).  

 

2.3.1 Periodic Boundary Conditions  

 

Most MD simulations aim to recapitulate experiment, in which a protein would be 

surrounded by a large amount of bulk water. Simulating a protein surrounded by a droplet 

of water would give rise to “surface effects”, meaning water molecules at the exterior of 

the droplet would not be solvated by water (as they should be in bulk solution).53 This 

could result in water molecules evaporating off into empty space or overcompensating for 

the limited number of interactions surrounding them to form highly ordered water 

molecules. To alleviate this issue, MD simulations often use periodic boundary conditions 

(PBCs). In a PBC simulation, the solute(s) are solvated in a rectangular (other shapes are 

also possible) box of solvent and this box is replicated in all x, y, and z directions.66 These 

additional boxes are called “images” and are identical to the central box. On a practical 

level, PBCs mean any atom that passes through the box boundary will re-enter the box 

from the opposite side, instead of drifting off into empty space (as in the water droplet 
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example). Furthermore, non-covalent interactions can be “felt” through the box walls, 

meaning that all solvent molecules are completely solvated, giving a closer representation 

to the behaviour of bulk water.  

 

2.3.2 Pressure and Temperature Regulation 

 

MD simulations are often run using one of three different ensembles, whereby for each 

ensemble, the terms provided are kept constant. These ensembles are: NVE, NVT and 

NPT, where N is the number of particles, V is the volume, E is the energy, T is the 

temperature and P is the pressure.  NVE simulations are the fastest, followed by NVT and 

then NPT simulations. This is because an NVT simulation requires a thermostat whilst an 

NPT simulation requires both a thermostat and barostat (pressure regulator), and an NVE 

simulations requires neither.  

The temperature of an MD simulation is usually measured by its relationship to the kinetic 

energy (𝐾𝐸), see (Eq 4).    

 

𝐾𝐸 =  
3

2
𝑁𝑘𝑏𝑇 = 〈∑

1

2
𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

〉 (Eq 4) 

 

Where 𝑁 is the number of atoms, 𝑘𝑏 is the Boltzmann constant and 𝑚𝑖 and 𝑣𝑖 are the mass 

and velocity of atom 𝑖 respectively. It is important to note that the average temperature is 

proportional to the kinetic energy, and that on the microscopic scale the kinetic energy 

should fluctuate around this average value (following a Gaussian distribution).53 An NVE 

simulation (in which no thermostat is present) would follow a constant energy scheme, 

not representative of this microscopic variation. Thermostats enable the representation of 

this natural variation, through modifying the velocities of the atoms in the system. In this 

thesis, a Langevin thermostat69 is used to regulate the temperature. Langevin thermostats 

work by implicitly modelling the effects of viscosity and random collisions with the 

surroundings on the system, resulting in both the addition and removal of kinetic energy 

around the target temperature.   

The pressure (𝑃) of an MD simulation is measured using the Virial theorem70, which 

relates the forces applied to the simulation box to the pressure (see (Eq 5).  

 

𝑃 =  
1

3𝑉
〈3𝑁𝑘𝑏𝑇 + ∑ 𝑓𝑖𝑟𝑖

𝑁

𝑖=1

〉 (Eq 5) 

 

Where 𝑉 is the volume and 𝑓 and 𝑟 are the forces and positions of atom 𝑖. Alike 

thermostats, barostats regulate the instantaneous pressure (pressure at any given time) to 
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fluctuate around the average pressure.53 Most barostats work by either modifying the size 

of the simulation box (whilst scaling the coordinates appropriately so the pressure change 

is felt throughout the system and not just at boundary) or by modifying the velocities (and 

therefore forces) to give constant pressure. In this thesis, a Berendsen barostat71 is used to 

regulate the pressure. This is achieved by coupling the system to a weakly interacting 

pressure bath, which scales the volume of the periodic box at set intervals, producing 

fluctuations in the pressure around the target pressure.  

 

2.3.3 Dealing with Long Range Electrostatics Interactions 

 

As discussed in Section 2.1, non-bonded interactions in MMFFs are described by both 

van der Waals (vdWs) and electrostatic interactions. Calculation of non-bonded 

interactions tends to be the slowest part of an MD simulation timestep (as there would be 

𝑛2 pairwise distances to evaluate, where 𝑛 is the number of atoms). The vdWs repulsive 

and attractive terms scale by 𝑟−12 to the 𝑟−6 respectively, meaning after a short distance 

their strength is negligible (see Figure 9). To reduce simulation cost, a distance cut-off 

for vdWs interactions is normally applied such that only interactions within the cut-off 

are considered (this is typically between 8–12 Å).53 Electrostatic interactions however 

scale by 𝑟−1, which would mean ignoring their interactions after short distance cut-off 

would be inappropriate. In implicit solvent simulations, electrostatic interactions normally 

do not have a cut-off (or at least a very large cut-off is used). In explicit solvent 

simulations, electrostatic interactions are treated explicitly if within a certain cut-off 

distance (normally selected to be the same size as the vdW cut-off). Longer range 

interactions are treated by grid-based Ewald summation approaches like the particle mesh 

Ewald (PME) method.72 In these approaches, explicit charges (from all atoms) are spread 

onto a grid covering the entire periodic box and used to define the long range electrostatic 

interactions felt by each atom in all directions.  

It is important to consider non-bonding interactions when deciding on an appropriate box 

size. That is, one does not want to select a periodic box size that is small enough to allow 

the solute to directly interact with itself. Furthermore, the solute can indirectly interact 

with itself by perturbing the solvent. It is therefore important to consider that the box size 

is large enough such that the solvent is in a “bulk-like” state when approaching the box 

boundaries.53 



 

49 

 

 

 

 

2.3.4 A General MD Simulation Protocol  

 

The setup and running of an MD simulation can be broken down into five general stages 

which are: preparation of the system, geometry optimisation, heating, equilibration and 

production. The following subsection provides details on the key parts of each of these 

steps.  

System preparation involves generating a complete atomic model of the system one wants 

to study alongside the parameters needed to describe the system. The structure of the 

solute can be obtained from X-ray crystal, NMR solution or cryo-EM structures. 

Alternatively, if the structure of the biomolecule is not known, it could be predicted with 

homology modelling or ab initio structure prediction (or some combination of the two).73 

Missing residues (from an experimentally determined structure) should be modelled back 

in where appropriate. Simulations of protein complexes where the structure of the 

complex is not known can be performed by manually docking the receptor and ligand or 

using one of the many different docking algorithms available.74 An important 

Figure 9: Exemplar Leonard-Jones Potential describing the strength of a vdWs 

interactions between two interacting particles. The locations of σ (distance at which the 

intermolecular potential energy is 0, i.e. the vdWs radius) and ϵ (well depth) are indicated 

on the figure. As can be seen from the graph, after a short distance of ~6 Å, the potential 

energy is already near 0. For the equation used to calculate the Leonard-Jones potential, 

see Figure 8. 
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consideration for structures solved by crystallography is that the resolution is not normally 

<1 Å. This means the tautomerisation and/or protonation states of histidine residues and 

the position of the side chain amine or carbonyl groups of asparagine and glutamine 

residues cannot be resolved by experiment. Several programs exist to solve this problem 

by identifying the most likely states based on the criteria of optimising the hydrogen bond 

network.75 It is recommended to validate the obtained results by eye to ensure the 

outputted results make sense. The protonation states of titratable residues (or other 

titratable species) should be considered based on the desired simulation pH. Several 

empirical methods exist to rapidly predict the pKa of titratable residues which should 

normally suffice.76 Once the solute has been prepared, one needs to solvate the structure 

in a box of water in order to perform PBC simulations. Finally, the system needs to be 

parameterised and one should take care not only to select MMFF(s) that well describe the 

properties one is interested in obtaining, but also that the MMFFs selected are compatible 

with one another.53 

For the energy minisation step, one should ensure a sufficient number of steps are 

performed such that the structure is close to the local minimum. If not, instabilities can 

arise in the subsequent heating step (as the forces projected onto atoms in high energy 

states can be very large). The heating step is the first point at which velocities (and 

therefore kinetic energy) is assigned to the system. It is generally recommended to start 

from a low temperature (to avoid the introduction of large velocities) and relatively slowly 

heat the system to the desired target temperature.53 In the simulations of TCRs or pHLAs 

performed here, following an initial energy minisation of only the solvent molecules or 

hydrogen atoms, the solvent is heated to the target temperature (using restraints on all 

solute heavy atoms throughout) to allow it to relax around the solute structure(s). Then, 

the entire system is energy minimised again and then heated to the target temperature (this 

time with only gentle restraints on the Cα of any protein atoms).  

Heating is normally performed in the NVT ensemble. It is important to consider that the 

solvent box added will be purposefully too large for the size of the system. This is done 

to allow water molecules adequate room to adjust upon heating, so systems are less likely 

to become trapped in high energy states. As the box size is kept constant during an NVT 

simulation, NPT equilibration simulations should be performed so that an appropriate box 

size can be obtained for the target pressure and temperature. If one plans to later swap 

back to NVT or NVE simulations after NPT equilibration, one should calculate the 

average box size (as this property will fluctuate over the course of the NPT simulations) 

after the box is equilibrated and use this for NVT or NVE simulations. Before moving 

onto production MD simulations (the point at which trajectory information is used for 

analysis) one should validate that the biomolecule itself has stabilised. One way to asses 

this would be to calculate the root-mean-square deviation (RMSD) of the protein over the 

course of equilibration procedure (only beginning production MD simulations once this 

has converged to a reasonably fluctuating level).  
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2.4 Allosteric Analysis of MD Simulations  
 

In Chapter 3, some less commonly used simulation analysis techniques are performed in 

order to probe for allosteric communication between different parts of the protein 

complex. Herein, a short description is provided on the two approaches used.   

 

2.4.1 Dynamic Cross Correlation Matrices (DCCM) 

 

The identification of correlated motion between atoms over the course of a simulation(s) 

can help to identify regions distal from one another that appear to be dynamically linked 

to one another. The amount of cross correlation (𝐶𝑖,𝑗) between atoms 𝑖 and 𝑗 can be 

calculated using (Eq 6).77  

 𝐶𝑖,𝑗 =  〈∆𝑟𝑖. ∆𝑟𝑗〉/(〈∆𝑟𝑖
2〉. 〈∆𝑟𝑗

2〉)1 2⁄  (Eq 6) 

 

Where ∆𝑟 is the displacement from the mean position for the 𝑖th or 𝑗th atom. The value 

obtained will be between 1 and −1, with 1 indicating perfectly correlated motion, −1 

indicating perfectly anti-correlated motion and 0 indicating no correlation between the 

atoms. In the above terminology, anti-correlated motion between two particles would 

mean the two particles movements are correlated with one another but they move (on 

average) in the opposite direction to one another (as opposed to just “correlated”, in which 

case they move in the same direction as one another). Cross correlation values obtained 

through MD simulations tend to always be non-zero. A cut-off is therefore often used to 

ascertain whether the correlation observed between the two atoms should be considered 

meaningful. Commonly, the correlation between the Cα carbon of each residue is used as 

a proxy to measure the degree of cross correlation between residues. Calculating the 

degree of cross correlation between all residues would give a matrix of these values 

(referred to as a dynamic cross correlation matrix, DCCM).  

 

2.4.2 Community Network Analysis (CNA)  

 

Community Network Analysis (CNA, sometimes also referred to as correlation network 

analysis) is an approach which builds upon a pre-determined DCCM for a given system 

by clustering groups of highly correlated residues together into communities and 

calculating the degree of correlation (which acts as a proxy for communication) between 

different communities.78 This data can be represented in a graphical manner, in which a 

node on a graph corresponds to a community, and the edges between nodes indicate the 

strength of communication between the two communities (with increasing edge thickness 
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indicating increased correlation/communication). Clustering of residues into communities 

is performed using the Girvan–Newman algorithm,79 which uses a “non-hierarchal” 

approach to cluster communities. This means edges are progressively removed from the 

protein network if they are more likely to be between communities (the smaller the 

magnitude of correlation, the more likely the edge should be between communities and 

not in the same community). The quality of the clustering partition can be evaluated by 

calculating the “modularity”. The modularity provides a value between 0 and 1 and 

assesses the overall degree of inter-community correlation against the intra-community 

correlation. A higher modularity value is desired as it is indicative of increased inter-

community correlation and decreased intra-community correlation. 

2.5 Molecular Mechanics Poisson-Boltzmann/Generalised Born Surface 

Area Calculations  
 

The following section describes the theoretical basis for the Molecular Mechanics 

Poisson-Boltzmann/Generalised Born Surface Area (MMPB/GBSA) approach in order to 

predict binding free energies. Practical considerations for the application of 

MMPB/GBSA based on prior literature findings are also discussed.  

 

2.5.1 Theoretical basis.  

 

Unlike free energy perturbation methods which slowly transition from one state to another 

through a series of intermediates, MMPB/GBSA is an end-state free energy calculation 

method.39 This means the Gibbs free energy of the complex, receptor and ligand are 

calculated separately and then combined in order to obtain the Gibbs free energy of 

binding (∆𝐺𝑏𝑖𝑛𝑑, as shown in Figure 10).  

As indicated in Figure 10, ∆𝐺𝑏𝑖𝑛𝑑 is obtained by constructing a thermodynamic cycle 

such that the solvation free energy change is calculated separately from the gas phase free 

energy change. The general equation used in MMPB/GBSA to calculate all the terms 

required for ∆𝐺𝑏𝑖𝑛𝑑 is shown in (Eq 7).80  

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑖𝑛𝑡 +  ∆𝐸𝑒𝑙 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑝𝑜𝑙 + ∆𝐺𝑛𝑝𝑜𝑙 − 𝑇∆𝑆 (Eq 7) 

 

Where ∆𝐸𝑖𝑛𝑡, ∆𝐸𝑒𝑙 and ∆𝐸𝑣𝑑𝑤 are the change in internal, electrostatic and vdWs energies 

upon binding respectively. ∆𝐺𝑝𝑜𝑙 is the polar contribution to the solvation free energy and 

is obtained by solving either the Generalised Born (GB) or Poisson–Boltzmann (PB) 

equations. ∆𝐺𝑛𝑝𝑜𝑙 is the nonpolar contribution to the solvation free energy. Finally, 𝑇∆𝑆 

is the change in entropy of the solutes upon binding, which in combination with ∆𝐸𝑖𝑛𝑡, 

∆𝐸𝑒𝑙 and ∆𝐸𝑣𝑑𝑤 form the parts of the equation responsible for gas phase contributions to 

∆𝐺𝑏𝑖𝑛𝑑. The following sub-sections below discuss how each term is obtained.  
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2.5.2 Calculation of Internal Energy, Electrostatic and van der Waals Terms  

 

In the case of ∆𝐸𝑖𝑛𝑡, ∆𝐸𝑒𝑙 and ∆𝐸𝑣𝑑𝑤, these terms can be obtained directly from the chosen 

force field potential energy terms (∆𝐸𝑖𝑛𝑡 in this case covers all bonding, angle, dihedral 

and improper torsions terms). These terms can be provided by a single point energy 

calculation on the given snapshot/structure.  

 

2.5.3 Calculation of the Solvation Free Energy  

 

The polar contributions to the solvation free energy are obtained most commonly by 

solving either the Poisson–Boltzmann (PB) or Generalised Born (GB) equations (other 

methods have also been used such as 3DRISM81). Both the PB and GB models are 

“implicit” as instead of explicitly treating the solvent molecules as particles, they are 

described by a continuum model (CM).66 In a CM, the solute polarises the continuum 

(from the partial charges on its atoms) to build up charge density at the border between 

the solute and continuum. The charge density will be of opposite sign to the local solute 

charge, with the magnitude of the charge density regulated by both the magnitude of the 

partial charges in the solute and the dielectric constant (i.e. the polarity) of the solute. If 

Figure 10: Schematic Representation of the thermodynamic cycle used in MMPB/GBSA 

calculations.  (The top three molecules are depicted inside a blue background to indicate 

they are solvated, whilst the bottom three are depicted as being in the gas phase). The 

model system shown is a TCR-pHLA complex, with the pHLA shown as the receptor and 

the TCR shown as the ligand. 
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one can calculate the charge density over the entire surface of the molecule (𝜎(𝑟)), it can 

be used to calculate the polar solvation free energy of the molecule (𝐺𝑝𝑜𝑙), see (Eq 8).  

𝐺𝑝𝑜𝑙 =  
1

2
∫ 𝜎(𝑟). 𝑉(𝑟) 𝑑𝑟

𝑠

0

  (Eq 8) 

 

Where 𝑉(𝑟) is the electrostatic potential at position 𝑟 on the surface of the molecule. The 

integration is performed over the entire surface of the calculation, with a reduced 

integration grid spacing resulting in increased accuracy but increased computational cost. 

To obtain 𝜎(𝑟) one can solve either the PB or GB equation. The solution to the PB 

equation is shown in (Eq 9).82  

𝜎(𝑟) =  
1

4𝜋
(1 −

1

𝜀(𝑟)
) ∇𝑉(𝑟). 𝑛(𝑟) (Eq 9) 

 

Where 𝜀(𝑟) is the position dependant dielectric constant and 𝑛(𝑟) is a unit vector (vector 

with magnitude of one) perpendicular to the solute surface.  

The GB equation approximates the PB equation, by treating the point charges exposed to 

the surface individually before summing the resulting terms together to obtain 𝐺𝑝𝑜𝑙 (see 

(Eq 10).66 

𝐺𝑝𝑜𝑙 =  −
1

2
(1 −

1

𝜀(𝑟)
) ∑ ∑

𝑞𝑖𝑞𝑗

√𝑅𝑖𝑗
2 +  𝑟𝑖. 𝑟𝑗 . 𝑒(−𝑅𝑖𝑗

2 4𝑟𝑖.𝑟𝑗⁄ )

𝑎𝑡𝑜𝑚𝑠

𝑗

𝑎𝑡𝑜𝑚𝑠

𝑖

 (Eq 10) 

 

Where 𝑞𝑖 and 𝑟𝑖 is the charge and radii of atom 𝑖 respectively. 𝑅𝑖𝑗 is distance between the 

atoms 𝑖 and 𝑗. 

Both the PB and GB models calculate the electrostatic contribution to the solvation free 

energy but do not consider the role of the solute in organising/ordering water molecules 

(or solvent more generally) to form a hydration layer over the protein. This phenomenon 

(referred to commonly as the hydrophobic effect) is what is calculated in the term “𝐺𝑛𝑝𝑜𝑙” 

and can be estimated by assuming the solvent accessible surface area (SASA) of the 

protein has a linear relationship with 𝐺𝑛𝑝𝑜𝑙.
83   

 

2.5.4 Calculation of Solute Entropy  

 

The final term left to calculate is 𝑇∆𝑆, the change in solute entropy (solvent entropy 

contribution is calculated as discussed in Section 2.5.2). Several methods now exist to 
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calculate this term, with the most commonly used approach being normal mode analysis 

(NMA). This approach is computationally expensive in terms of the time taken per 

snapshot, as well as being memory intensive to store the Hessian. The time taken is further 

exacerbated by the need to optimise the snapshots to its local minimum prior to NMA 

(otherwise the first derivative of the potential energy with respect to the atomic 

coordinates will not be zero). It has often been observed that the variation between 

snapshots from NMA can be quite large, meaning that obtaining meaningful results 

requires a lot of sampling and the use of lots of snapshots. For the above reasons, alongside 

the fact that MMPB/GBSA is often primarily used for relative (not absolute) binding free 

energies, explains why many studies skip the calculation of 𝑇∆𝑆 altogether.84,85 One 

approach developed by Ryde and co-workers to deal with some of the limitations 

associated with NMA is to truncate the protein around the binding site for the optimisation 

and frequency calculations, whilst retaining a small buffer region that is fixed in place to 

stabilise the protein over these steps. This approach can significantly reduce the time taken 

to run NMA as well as the errors obtained.86,87  

An alternative approach is to calculate the mass-weighted covariance matrix from a 

simulation trajectory or trajectories. This approach is known as “quasi-harmonic analysis” 

(QHA), with the eigenvalues obtained from the covariance matrix corresponding to the 

vibrational frequencies of the system.88 A severe limitation of this approach is the length 

of time required in order to converge, which is likely to be on the µs or ms time scale for 

biomolecules.89 One way to increase the rate of calculation could be to strip the hydrogen 

atoms from the calculation (reducing the number of modes and therefore time taken to 

converge). The vibrational modes of bonds containing hydrogen are relatively high 

(~3000 cm−1), meaning they will have a small impact on the total entropy value obtained.  

A recently developed approach by Duan et al. known as the interaction “Interaction 

Entropy” (IE) method has gained popularity due to the fact that separate calculations are 

not required to calculate 𝑇∆𝑆.90 In this method, the variance (over the course of a 

simulation(s)) of the gas phase interaction energy (𝐸𝑒𝑙 and 𝐸𝑣𝑑𝑤 terms) is used to calculate 

the entropy of the given state.  

 

2.5.5 Practical Considerations When Performing MMPB/GBSA Calculations 

 

The approximations associated with the MMPB/GBSA approach mean it is not generally 

considered reliable for accurately calculating absolute binding free energies.85 Instead, 

MMPB/GBSA can be used to rank or predict relative binding free energies for a series of 

similar ligands. Each calculation is performed on a single snapshot/conformation at a time 

making the procedure well suited for parallelisation.39 Whilst MMPB/GBSA can be 

performed on a single structure, it is generally accepted that sampling (normally via MD 

simulations) will improve the reliability of the results obtained.85 In the case of performing 
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MD simulations, several studies have shown that running multiple short simulations 

achieves more (statistically) reliable and accurate results as opposed to one or a few long 

MD simulations.91–93 The benefit of taking MD simulations snapshots more often than 

every 10 ps appears to be limited of value, as inclusion of intermediary frames are unlikely 

to be decorrelated from one another.91 MMPB/GBSA calculations should theoretically be 

performed in vacuo as solvent contributions are calculated implicitly. However, as both 

PB and GB methods represent bulk solvent behaviour (and therefore may not particularly 

well describe the first few solvation layers) some studies have tested the effect of 

including a small shell of explicit water molecules around the binding site, with mixed 

success.94–96 Finally, a common approximation used in MMPB/GBSA is to perform 

simulations of only the complex and obtain structures for the receptor and ligand by 

deleting either part as appropriate. This procedure (referred to as the single trajectory 

approach) makes the ∆𝐸𝑖𝑛𝑡 term cancel out, reduces the calculation time significantly (as 

less MD simulations needs to be run) and tends to result in a reduction in the magnitude 

of the error values.84,85,93  
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Chapter 3: Peptide Dependant 

Allosteric Regulation of the pHLA 

Complex 
 

In this chapter, we applied pressure/temperature perturbation experiments, and 

molecular dynamics (MD) simulations, to explore how different peptide cargo could 

govern the molecular flexibility of the overall pHLA complex. We found that the 

motions of the pHLA were dependent on and mediated by (relatively) small alterations 

in the peptide cargo, suggesting that allosteric mechanisms can meditate HLA 

flexibility. Differences in protein dynamics for different peptide cargo manifested 

primarily in the HLA molecule (as opposed to the peptide). Changes in flexibility were 

found in several regions known to be involved in antigen processing (via tapasin, 

TAPBPR interactions) and CD8 co-receptor interactions, calling into question the role 

of the peptide in mediating these interactions. Additionally, these motions might directly 

influence TCR-mediated antigen discrimination through flexibility motions transmitted 

to the HLA-binding groove. This work is of significant interest to those studying the 

molecular mechanisms that govern T-cell mediated antigen recognition, as well as the 

growing community of researchers and companies developing T-cell based therapies 

(vaccine design, CARs, bi-specifics, etc). My role in this chapter was in performing all 

of the MD simulations and subsequent analysis. I also wrote the results and discussion 

for the MD simulations.  
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Abstract 
 

Most biomolecular interactions are thought to increase the (local) rigidity of a complex, and this 

paradigm is applied when designing new drugs. Here, we focussed on the Human Leukocyte 

Antigen (HLA), which plays a crucial role in the adaptive immune system by presenting 

peptides for recognition by the αβ T cell receptor (TCR). The role that the peptide plays in 

tuning HLA flexibility during TCR recognition is potentially crucial in determining the 

functional outcome of an immune response, with obvious relevance to the growing list of 

immunotherapies that target the T-cell compartment. We have applied high-

pressure/temperature perturbation experiments, combined with molecular dynamics simulations, 

to explore the drivers that affect molecular flexibility for a series of different peptide-HLA 

complexes. We find that different peptide sequences affect peptide-HLA flexibility in different 

ways, with the peptide cargo tuning a network of correlated motions throughout the pHLA 

complex, including in areas remote from the peptide binding interface, in a manner that could 

influence T cell antigen discrimination.  

 

Introduction 
 

The T-cell receptor (TCR), expressed on the surface of T-cells, scans for antigens on the surface 

of virtually every cell in the body. TCR-antigen recognition can mediate clearance of germs and 

neoplasms, and plays a major role in autoimmunity and transplantation.44,97–100 As such, a better 

understanding of the molecular determinants that govern TCR-antigen interactions is key to 

identifying novel therapeutic interventions that can enhance (cancer immunotherapy, vaccines), 

or inhibit (regulation of autoimmunity) T-cell activation. The natural TCR ligands are the peptide-

human leukocyte antigens (pHLA) class I and class II. Classically, pHLA class I is recognized by 

CD8+ T-cells, and pHLA class II is recognized by CD4+ T-cells. These ligands feature a number 

of unique characteristics (analogous in both the pHLA class I and pHLA class II systems) that 

have important implications for both protein dynamics and T-cell mediated immunity. First, the 

antigen binding site is composed of a composite that includes the HLA-binding groove (formed 

by the HLA α1 and α2 domains for HLA class I, the focus from hereon in) and a short 9-13 amino 

acid peptide that can be derived from a completely unrelated protein (the source of these peptides 

is generally the immune-proteasome that degrades the majority of intracellular proteins, which 

can derive from foreign or mutated self-proteins).101,102 Intriguingly, although the peptide only 

accounts for ~2% of total amino acids in the pHLA, its position within the binding groove ‘pins’ 
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the entire complex together, i.e. HLA molecules do not generally form a stable structure without 

a bound peptide.103 These peptides are edited by the antigen processing machinery in the 

endoplasmic reticulum (ER) before being transported to the cell surface for TCR interrogation.104 

Second, during binding, the TCR interacts directly with both the HLA surface and the peptide 

(composite antigen binding site).105,106 How the TCR retains the delicate balance between HLA 

binding and peptide dependence (peptide-independent recognition of HLA would result in T-cell 

activation against virtually every nucleated cell in the body) is still not fully understood. Finally, 

pHLA is unique in biology because it can form a trimeric complex with both the TCR and co-

receptor molecules (CD8 for pHLA class I and CD4 for pHLA class II).107–110 Although the co-

receptors bind to an invariant site distal from the TCR, this interaction is known to play a role in 

TCR thymic selection111, and can tune TCR cross-reactivity by altering T-cell potency.112,113 

 

Many studies have focused on understanding the relationship between the biophysical 

characteristics of the TCR-pHLA interaction and T-cell potency18,23,114–117, and the role of TCR 

flexibility during pHLA engagement.25,99,126,118–125 These studies have demonstrated that the 

optimal TCR-pHLA interactions can be mediated by a highly flexible binding mode, probably 

contributing to the ability of TCRs to recognize multiple different pHLAs.16,23,127–130 This 

flexibility has been observed in the flexible loops that form the binding site of the TCR, 

contributing towards the notion that TCRs ‘meld’ around the pHLA surface during binding.131 

Although flexibility has also been reported in both the HLA-bound peptide50,132–135 and the HLA 

helices136–138, the role that different peptides play in modulating HLA dynamics globally, and what 

impact the dynamics might have on T-cell antigen recognition, is only beginning to be 

explored.139,140 On the one hand, a more dynamic pHLA molecule could enable TCR binding of 

the peptide cargo in an ‘optimal’ conformation for T-cell activation, or to enable recognition by a 

greater range of different TCRs. On the other hand, a more dynamic pHLA may confer a higher 

entropic cost during TCR binding that might reduce affinity, or could lead to the unwanted 

recognition of self-antigens leading to autoimmunity.  

 

In the context of protein-protein and protein-ligand interactions, molecular flexibility is defined 

by a multi-dimensional free energy landscape (FEL), comprising a large number of energetic 

minima and maxima that define differently stable conformational sub-states of the same protein 

(or protein complex). Peptide-dependent effects on HLA dynamics could influence the functional 

interaction between TCR and pHLA, as well as other molecules known to interact with these 



 

62 

 

receptors. We hypothesized that nature of the peptide cargo might alter the equilibrium of 

conformational states that exist and are accessible to the HLA molecule (i.e. its FEL). To address 

this hypothesis, we use combined pressure/temperature (p/T) dependent fluorescence 

spectroscopy and molecular dynamics (MD) simulations to expose differences in the 

thermodynamics of the differing pHLA complexes and to identify the atomistic determinants of 

pHLA flexibility. These data provide new insights in the role that the peptide plays in tuning the 

flexibility of HLA, a feature that might contribute to modulation of TCR antigen recognition and 

T-cell mediated immunity. 

 

Results and Discussion 
 

Pressure-temperature matrices expose differing thermodynamic contributions to pHLA flexibility. 

We focused on the well characterized 1E6 TCR system, a TCR that naturally recognizes the HLA-

A*02:01-restricted ALWGPDPAAA15-24 peptide from the preproinsulin protein, and plays a 

biological role in human type 1 diabetes.98,141–143 We have previously reported a number of altered 

peptide ligands (APLs) for the 1E6 TCR using structural, biophysical and cellular analysis. These 

data demonstrated that, despite a highly conserved, hotspot driven, binding mode (Figure 11A), 

the binding affinity and cellular potency of the 1E6 TCR for the different APLs was substantially 

affected, independently of pHLA stability (Figure 11B).23 Thus, this well characterized set of 

APLs provided a biological relevant model system to further examine the contribution of the 

antigenic peptide on HLA flexibility.  
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Molecular flexibility is usefully thought of as the transitions between different conformational 

states (energetic minima) on the protein FEL. Combined pressure/temperature (p/T) denaturation 

studies have been used in several cases to extract the complete suite of thermodynamic parameters 

that define the FEL for protein folding, so called elliptical phase diagrams.144 In the present study 

we wish to explore the FEL specifically relating to native protein conformational change. Non-

denaturing hydrostatic pressure is an excellent probe of native protein dynamics since it acts by 

perturbing the pre-existing equilibrium of states, favouring more compact conformations.145 Non-

denaturing pressure therefore gives access to the conformational changes that are natively 

accessible on the proteins FEL. Intrinsic Trp emission is a ready reporter of the effect of p/T 

perturbation because Trp emission intensity is sensitive to changes in the immediate molecular 

environment through a range of mechanisms.146 Changes in Trp emission are therefore reporters 

of protein conformational change and as such can be used to calculate an equilibrium constant for 

Figure 11: (A) Structural representation of the 1E6 TCR-pHLA interaction with the inset showing 

a zoom in on the TCR-pHLA binding site. The conserved GPD motif in the peptide and TCR 

residues that interact with these residues are shown as sticks. For the 4 peptides that also interact 

with the TCR via their position 1 residue (X), the side-chain of this residue is also indicated with 

orange sticks. (B) Peptide sequences and their respective pHLA melting temperatures (Tm) as 

determined by CD spectroscopy (Reported previously, Cole et al. 2016). 
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the change across a perturbation series. The change in Trp emission can be converted to an 

equilibrium constant, see (Eq 11). 

𝐹𝑖

∑ 𝐹
(𝑝, 𝑇) =

𝐾(𝑝, 𝑇)

1 + 𝐾(𝑝, 𝑇)
 (Eq 11) 

 

Where 𝐹𝑖 is the integral of the emission intensity of Trp for a given pressure/temperature. For a 

simple 2 state transition, e.g. an equilibrium between 2 conformational sub-states, the temperature 

dependence of the equilibrium constant is given by (Eq 12). 

𝑙𝑛𝐾 = (−∆𝐺)/𝑅𝑇 (Eq 12) 

 

The combined p/T dependence of ΔG reflects the free energy difference between the 2 notional 

sub-states and so is a proxy for the degree of conformational ‘flexibility’. ΔGP,T is then given by 

(Eq 13).  

∆𝐺𝑃,𝑇 =  ∆𝐺0 + ∆𝑉0(𝑃 − 𝑃0) + ∆𝛼′(𝑃 − 𝑃0)(𝑇 − 𝑇0) +
∆𝛽′

2
(𝑃 − 𝑃0)2

− ∆𝑆0(𝑇 − 𝑇0) − ∆𝐶𝑃 [𝑇 (𝑙𝑛 (
𝑇

𝑇0
) − 1) + 𝑇0] 

(Eq 13) 

 

Where T0 is a reference temperature. ΔH, ΔS, ΔG0, ∆𝐶𝑝, ΔV0, Δβ and Δα reflect the changes in 

enthalpy, entropy, Gibbs free energy, heat capacity, activation volume, compressibility and 

expansivity between the 2 notional conformational sub-states that define the equilibrium, 

respectively. Note that this model assumes both ∆𝐶𝑝 and Δα are constant with respect to both 

pressure and temperature. The model assumes a two-state transition because the model for a more 

complex number of states would be intractable when fitting the experimental data. 

 

These analyses demonstrated that the p/T relationship clearly differed for different pHLA 

complexes (Figure 12, Table 1). The contribution of the different thermodynamic parameters to 

the magnitude of ΔG were highly specific for each peptide sequence. For example, with RQFa 

and RQFi, the contribution from ΔS was large compared to other parameters; for ALW the 

contribution from ∆𝐶𝑝 was large compared to other parameters. MVW, RQW and YQF peptides 

had significant contributions from ΔV0 and Δβ, which were not observed for RQFa, RQFi and 

ALW peptides. These data point to a peptide sequence specific effect on the FEL reflecting HLA 

conformational flexibility. That is, different peptide sequences affect pHLA molecular flexibility 

in different ways. Most intriguingly, our data suggest the peptide-HLA interaction is governed by 
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a complex interplay of a range of different thermodynamic contributions, which do not have an 

obvious relationship to peptide sequence. 

 

Table 1: Parameters extracted from surface fits shown in Figure 12. Tm values previously 

published.23 

 

 

Molecular dynamics simulations identify both local and distal changes in flexibility for different 

peptide cargo. The p/T analysis demonstrated significant differences in the global molecular 

flexibility and thermodynamics of the pHLA binary complexes, dependent on the peptide cargo. 

In an attempt to rationalise the differences observed experimentally, we used molecular dynamics 

 

 Tm (oC) ΔG0  

(kJ mol-1) 

ΔS  

(kJ mol-1) 

ΔCp  

(kJ mol-1 K-1) 

ΔV (cm3  

mol-1) x 10-3 

Δβ (cm3 mol-1 

mPa-1) x 10-5 

Δα  

(K-1) x 10-5 

RQFi 58.8 8.1 ± 0.1 -0.07 ± -0.6 -0.6 ± 0.2 2 ± 1 -1.3 ± 1.1 3.4 ± 3.5 

YQF 60.3 8.3 ± 0.1 -0.02 ± 0.33 0.3 ± 0.3 5 ± 1 -3.6 ± 1.5 8.5 ± 4.9 

RQW 54.3 8.7 ± 0.2 -0.04 ± 0.02 0.6 ± 0.4 4 ± 2 2.4 ± 2.1 5.0 ± 6.7 

RQFa 49.4 8.8 ± 0.1 -0.06 ± 0.01 -0.3 ± 0.2 0 ± 1 6.3 ± 1.0 1.1 ± 3.1 

ALW 60 8.7 ± 0.2 -0.01 ± 0.02 1.7 ± 0.3 0 ± 2 -7.1 ± 2.0 -4.6 ± 6.3 

MVW 56.7 8.8 ± 0.2 -0.06 ± 0.02 0.0 ± 0.4 6 ± 2 -4.8 ± 2.4 8.7 ± 7.7 

 

Figure 12: Combined p/T matrices for each pHLA studied. Solid spheres represent the 

experimental data, transformed to ΔG by (Eq 12). The coloured surfaces are the resulting fit of 

these values to (Eq 13). Each panel is labelled as the specific pHLA complex. 
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(MD) simulations, performing 10 replicas of 150 ns each for each pHLA under investigation, 

giving a total of 9 µs of simulation time. Using this approach, the (backbone) flexibility of the 

pHLA can be inferred by calculating the root mean square fluctuations (RMSF) of each residues 

Cα carbon over the course of the simulations.  

 

To investigate the impact of different peptide cargo on the flexibility of the HLA, we first 

calculated the Cα RMSF for the peptide and the α1 and α2 domains of the pHLA (Figure 13, 

Supp Figure S1). We then extended this analysis to the α3 and β2m domains for each pHLA 

(Figure 14, Supp Figure S1). As we were primarily interested in the differences in pHLA 

flexibility with different peptides cargos, we calculated the average RMSF value for each residue 

in all complexes, and subtracted this from each pHLA complex RMSF value, meaning a residue 

with a positive ΔRMSF value indicates an increased flexibility against the average.  

 

Significant differences (p < 0.05) were observed for only 2 of the peptide residues (of 10 total). 

Interestingly, flexibility differences were not necessarily correlated with regions of the peptide 

that differed between APLs, demonstrating the interconnected nature of the peptide.  For instance, 

the N-termini had largely very similar flexibility (with the exception of RQW), despite the N-

terminal residues differing substantially between peptides. In contrast, ΔRMSF analysis of the 

central ‘GPD’ motif of peptide (known to be the main binding site for the TCR and conserved in 

all APLs investigated in terms of sequence and conformation) demonstrated significant changes 

in flexibility, particularly between RQW and MVW, which showed increased and decreased 

flexibility relative to the average, respectively. This is of particular interest as the conserved 

‘GPD’ motif accounts for 41-50% of all contacts between the 1E6 TCR and the 6 pHLA 

complexes investigated.23 These changes in peptide flexibility could, therefore, have a direct 

impact on the interaction between the TCR-pHLA complex (for instance by modulating the 

entropic cost of binding).  
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Figure 13: Differences in flexibility at the peptide binding groove for all 6 pHLA complexes 

investigated. (A-B). Change in Cα RMSF (Average – pHLA) for the α1 and α2 domain (A) and 

peptide (B), meaning a positive ΔRMSF value indicates an increase in rigidity for that pHLA 

complexes residue relative to the average. C) ΔRMSF values as shown in A-B colour mapped on 

the pHLA structure (HLA as cartoon, peptide as ball-and-stick), with blue indicating increasing 

rigidity, and red indicating increasing flexibility (again relative to the average RMSF value for that 

residue). Heat mapping is scaled from -0.5 – 0.5 Å for all complexes. The black dots towards the 

bottom of each graph indicate residues with significantly different ΔRMSF values as determined by 

a two-sample t-test (p < 0.05). A colour bar is also included for reference.  



 

68 

 

In contrast to the peptides, which demonstrated relatively small changes in flexibility, significant 

differences (p < 0.05) in flexibility were detected in 45 residues (out of 180 total) for the α1 and 

α2 helices, 35 residues (out of 97 total) residues in the α3 domain and 54 residues (out of 100 

total) in the β2m domain of the HLA. Whilst it is possible that additional HLA residues show 

differences in flexibility for different peptide cargo, our results demonstrate the importance of 

performing many replicas and statistical analysis on those replicas to prevent the observation of 

what may be false positives.147 The observed significant differences in flexibility were largely 

confined to the solvent exposed loops in the HLA domains, including loops 3 and 5 in the α1 and 

α2 domains, respectively. These loops are known to play a role during interactions with tapasin 

and TAPBPR during peptide editing in the ER.148,149 Additionally, loops 8 and 10 on the α3 

domain and loop 6 on the β2m domain, which are known to play a role in interactions with the 

CD8 co-receptor107, demonstrated high degrees of differences in flexibility. We also note that the 

statistically significant changes in flexibility we detected in loop 10 in the α3 domain with 

different peptide cargo are consistent with a previous report demonstrating flexible tuning of this 

loop during peptide binding.140 Thus, these changes in flexibility, dependent on peptide cargo, 

could play a role in tuning the antigen processing pathway, or in modulating the interaction with 

the CD8 co-receptor, which is known to play a key role in altering T-cell potency and cross-

reactivity.112,150–152 Overall, differences in flexibility identified by MD analysis were largely 

observed in the HLA, despite the differences in sequence being confined to the peptide cargo. 

This unexpected finding of ‘the tail wagging the dog’ may be indicative of allosteric mechanisms 

in which the sequence of the peptide modulates regions of the HLA known to play a role in 

different immunological pathways. 
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Figure 14 Differences in flexibility at the peptide binding groove for all 6 pHLA complexes 

investigated. (A-B) Change in Cα RMSF (Average – pHLA) for the α3 domain (A) and β2m (B), 

meaning a positive ΔRMSF value indicates an increase in rigidity for that pHLA complexes residue 

relative to the average. (C) ΔRMSF values as shown in A-B colour mapped on the pHLA structure, 

with blue indicating increasing rigidity, and red indicating increasing flexibility (again relative to 

the average RMSF value for that residue). Heat mapping is scaled from -0.5 – 0.5 Å for all 

complexes. The locations of the α3 and β2m solvent exposed loops are indicated throughout the 

figure. The black dots towards the bottom of each graph indicate residues with significantly 

different ΔRMSF values as determined by a two-sample t-test (p < 0.05). A colour bar is also 

included for reference.  
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Identification of correlated motions between the peptide and HLA. With the observed significant 

differences in flexibility for regions both local and distal from the peptide binding site in mind, 

we computed dynamic cross correlation matrices (DCCMs) for all 6 pHLAs under investigation 

(Supp Figure S2). DCCMs measure the degree of correlated motion between each atom (in this 

case the Cα carbon of each residue) over the course of the simulation(s). The measurement assigns 

a value between +1 (perfectly correlated motion) and –1 (perfectly anti-correlated motion), with 

0 indicating no correlation between the residues. This analysis can therefore be used to identify 

residues distal from one another that are dynamically linked. To focus primarily on the 

relationship between the peptide and the HLA, we truncated the obtained DCCMs to allow for 

easier analysis of their relationship (Figure 15). Large differences in the overall degree of 

correlated motion between the peptide and HLA occur, with RQW most strikingly showing a 

decreased level of correlated motion. Further, a much larger degree of coupling between the C-

terminal end of the peptide and the rest of the HLA is observed, as compared to the N-terminus 

and central portion of the peptide. Thus, these data suggest that the C-terminal residues of the 

peptide may play a more important role in regulating the global dynamics of the HLA, possibly 

via the F-pocket of the HLA binding groove.  In particular, we observed consistently positively 

correlated motion between the C-terminal residues of the peptide and the α1 helix as well as 

residues 114-134, which make up a large part of the F-pocket. Interestingly, we also observed a 

consistent change across all pHLA complexes of positively correlated to anti-correlated motion 

along the α2 helix (positive starting at the α2-1 portion of the helix). The degree of correlation 

between the peptide and domains distal from the peptide binding site (α3 and β2m domains) also 

showed consistent regions of correlated motions for different pHLA complexes. Whilst in the case 

of RQW, and to a lesser extent RQFa, these correlations were weaker, residues within the range 

210-250 on the α3 domain showed correlated motion to the peptide. These residues include those 

in loop 10, which we herein, and others140, observed significant differences in flexibility 

dependent on the peptide cargo.  
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Peptide dependent tuning of the allosteric communication network. The observed differences in 

flexibility and correlated motions for different peptide cargo in the HLA point to an allosterically 

linked network across the pHLA complex. With this in mind, we turned to community network 

analysis (CNA)79 to determine the mechanisms by which the peptide communicates dynamical 

changes to regions distal from the binding site. In CNA, residues are grouped into ‘communities’ 

of similar dynamics (communities are groups of residues local to one another that share highly 

correlated motions). The strength of the communication pathway between different communities 

is determined by the overall amount of correlated motion between members of the 2 given 

different communities. These data can therefore be represented in graphical form, in which a node 

corresponds to a community (with the size of the node indicating the number of residues in that 

community), and edges between nodes indicating the strength of the communication pathway 

(with an increased thickness indicating increased correlation) (Figure 16).  

Figure 15: Dynamic cross correlation matrices (DCCMs) for all 6 pHLA complexes simulated. 

On the Y-axis is each residue of the peptide, which is plotted against all other residues (377 total) 

on the HLA. The matrices are colour mapped according to the degree of correlated motion between 

the two residues, with a value of +1 meaning perfectly correlated and –1 meaning perfectly 

anticorrelated motion. Complete DCCM plots of the pHLA against the pHLA are provided in 

Supplementary Figure S3. 
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The pHLA complexes were partitioned into 9 communities each (chosen based on a consistently 

high modularity score and an ability to partition the different pHLA complexes as similarly as 

possible), apart from RQW, which was partitioned into 10 communities because the first 6 

residues of the peptide consistently grouped into their own community even at much lower overall 

community numbers (Supp Figure S3). All communities located in the peptide binding groove 

(peptide and α1 and α2 domains) were highly interconnected to one another. Communication from 

the binding groove to the β2m domain appeared to occur through a single community, generally 

located towards the end of the α1 helix and part of the residues that form the F-pocket (peptide C-

Figure 16: Peptide dependent tuning of the allosteric communication network. Community 

networks determined for all pHLA complexes studied. Networked communities are shown as 

coloured spheres, with the radii of the sphere indicating the number of residues within the 

community. Edges between the nodes/communities represent communication pathways between 

the nodes, with the thickness of the edge indicting the degree of correlation between the two 

communities (thicker = greater correlation).  All pHLA complexes are shown from the same 

orientation, such that N-terminus of the peptide is in the foreground. The results here are provided 

in tabulated form in Supplementary Table S2. 
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terminal binding site). This contrasted with observations made for the top portion of the α3 

domain, in which multiple communities in the peptide binding groove showed a significant level 

of directly correlated communication with residues belonging to the α3 domain. These 

observations may help to rationalise why the C-terminal peptide residues tended to show a much 

greater degree of correlated motions with HLA residues. That is, the residues responsible for 

binding the C-terminal portion of the peptide appear to be dynamically linked to both the α3 and 

β2m domain, in contrast to the residues responsible for binding the N-terminal portion of the 

peptide. 

 

Conclusions 
 

Here, we used cutting edge experimental approaches and molecular dynamic simulations to 

demonstrate that the peptide cargo is able to tune the conformational dynamics of HLA. More 

specifically, the precise amino acid composition of the peptide cargo differentially engages a 

network of correlated protein dynamics that spans the HLA. For instance, the C-terminus of the 

peptide appears to be able to regulate the conformational dynamics of the entire pHLA complex 

as well as the main TCR-peptide contact zone, potentially modulating TCR binding. Our data 

point to the peptide cargo having the ability to tune a network of allosteric dynamics in the pHLA 

complex and may play a role in tuning a number of pathways involved in T-cell mediated 

immunity. These include peptide editing during antigen processing, interactions with the CD8 co-

receptor, and direct TCR interactions with the peptide and HLA. These findings may be pertinent 

for peptide vaccine design and may help explain why even minor alterations in peptide sequence 

can completely alter the direction of the immune response.134,153,154 Our study also has broader 

implications for the understanding of protein interaction networks, particularly allosteric 

mechanisms, in which changes in a relatively small component of the protein complex (in this 

case a few mutations in a 10 amino acid peptide) can a modulate flexibility distal to the changes 

and throughout the complex (in this case HLA, a 4 domain protein complex made up of nearly 

400 amino acids). 
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Materials and Methods 
 

Protein expression and refolding. HLA-A*02:01 and β2m were expressed and refolded using 

competent BL21 DE3 E. coli cells transfected with pGMT7 expression plasmids as previously 

described.155,156 Refolded protein was purified by anion exchange using a Poros50HQ column, 

followed by size exclusion into phosphate buffered saline using gel filtration column - Superdex™ 

200 Increase 10/300 GL. Purification followed previously described protocol.155,156 Dynamic light 

scattering (Zetasizer) was used to confirm sample homogeneity. For pressure/temperature varying 

fluorescence measurements samples were exchanged into a HEPES buffer (50mM HEPES, 

150mM NaCl, pH 7.4) using a PD-10 desalting column containing Sephadex™ G-25 medium, 

following manufacturer instructions. 

 

Pressure/temperature dependent fluorimetry. Pressure/temperature measurements were 

performed using an ISS high-pressure cell (ISS, Champaign, IL, USA) fitted with a custom fibre 

optic mounting connecting to the fluorimeter and the water bath. Peptide-HLA complexes were 

excited at 295nm, tryptophan emission was measured between 325-500 nm. Emission and 

excitation slits were set to 15nm to minimise the signal to noise ratio (due to optimal set up of the 

pressure cell). Initial measurements were made at 10 °C and increased in 5 °C increments up to 

30 °C. The pressure dependence at each temperature was measured at 50, 400, 800, 1200, and 

1600 bar. Measurements were taken in triplicate. Following each full pressure/temperature range, 

repeat scans were taken at lower pressure/temperature conditions to ensure extreme the 

pressure/temperature conditions had not denatured the protein. For all measurements the 

appropriate buffer controls were subtracted prior to data processing.  

 

MD simulations. Previously solved X-ray crystal structures of the 6 pHLA complexes 23,98 were 

used as the starting point for all MD simulations (see Supp Table S1 for a list of structures used). 

Any missing residues were added using Modeller v9.157 PropKa 3.0158 was used to predict the 

protonation states of all proteins investigated for a pH 7 (resulting in all residues being simulated 

in their standard protonation states). MolProbity75 was used to determine the optimum 

tautomerisation states for every His residue (tautomerisation states used for all simulations are 

provided in Supp Table S1) and make any required Asn/Gln side chain flips (under the criteria 

of optimising the hydrogen bonding network). The results were visually inspected and care was 

taken to ensure consistency between all pHLAs investigated. All systems were then solvated in 

an octahedral water box (retaining any crystal waters) such that no protein atom was within 10 Å 
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of the box boundary. Simulations were performed at an effective [NaCl] of 150 mM (to match 

experiments), with excess Na+ ions added as required to ensure neutrality. MD simulations were 

performed using Amber16, describing the protein and water molecules with the ff14SB force 

field60 and TIP3P water model159 respectively. Following a protocol of minimisation, heating and 

equilibration (see section “Structure Equilibration Procedure” below), all pHLA complexes were 

subjected to 10 x 150 ns of production MD simulations in the NPT ensemble (at 300 K and 1 atm), 

with snapshots collected every 10 ps. Production MD simulations were performed using a 2 fs 

time step and with the SHAKE algorithm applied. An 8 Å direct space non-bonded cut-off was 

applied with long range electrostatics evaluated using the particle mesh Ewald algorithm.72 

Temperature was regulated using Langevin temperature control (collision frequency of 1 ps−1), 

whilst pressure was controlled with a Berendsen barostat (setting the pressure relaxation time to 

1 ps).  

 

Structure Equilibration Procedure Upon preparation of all six pHLAs complexes investigated, 

the following procedure was used to equilibrate structures for production MD simulations 

performed at 300 K and 1 atm. Minimisation of all hydrogen atoms and solvent molecules 

(including Na+ and Cl−), using 500 steps of steepest descent followed by 500 steps of conjugate 

gradient. To keep all other atoms (i.e. the protein heavy atoms) in place during the minimisation, 

10 kcal mol−1 Å−1 positional restraints were applied. Retaining the positional restraints on all 

protein heavy atoms, the system was then heated rapidly from 50 K to 300 K in the NVT ensemble 

over the course of 200 ps. This system was again minimised for a further 500 steps of steepest 

descent followed by 500 steps of conjugate gradient, this time only applying positional restraints 

(of size 5 kcal mol−1 Å−1) to the Cα carbon atoms. These Cα restraints were retained as the system 

was again heated from 25 K to 300 K over the course of 50 ps in the NVT ensemble. Simulations 

were then performed in the NPT ensemble (1 atm, 300 K), first gradually reducing the 5 kcal mol−1 

Å−1 Cα carbon restraints over the course of 50 ps of simulation time. This was done in 5 steps (5, 

4, 3, 2, 1 kcal mol−1 Å−1) of 10 ps each. A final 1 ns long simulation was then performed in which 

no restraints were used. The end structure from this run was then used as the starting structure for 

a production MD simulation. All dynamics steps used the SHAKE algorithm. Simulations 

performed in the NVT ensemble used Langevin temperature control (with a collision frequency 

of 1 ps−1) and used a simulation timestep of 1 fs. Simulations performed in the NPT ensemble 

again used Langevin temperature control (collision frequency of 1 ps−1) and a Berendsen barostat 

(1 ps pressure relaxation time), with a simulation timestep of 2 fs. Simulations of replicas were 
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performed by taking the structures after the second minimisation step (and before the second 

heating step). Replicas were therefore assigned different random velocity vectors on the 

subsequent heating step.  

 

MD Trajectory Analysis. Routine trajectory analysis was performed with CPPTRAJ.160 Cα RMSF 

calculations were performed for all complexes after discarding the first 10 ns of simulation time 

(for equilibration) and averaged over each run. RMS fitting was performed to the Cα of stable 

(over the course of our MD simulations) secondary structure residues of the HLA. We used the 

following residues for RMS fitting: 4-13, 22-38, 51-54, 58-86, 95-104, 111-127, 134-181, 187-

196, 199-209, 215-220 and 242-263 of Chain A (i.e. the α1, α2 and α3 domains), and residues 6-

11, 21-30, 36-41, 60-70, 78-83 and 91-94 of Chain B (i.e. the β2m domain). For both RMSF 

DCCM and CNA calculations, RMS fitting was first performed to the crystal structure in order to 

create an average structure. Following this, all snapshots were then re-fitted to the average 

structure for the subsequent calculations. Dynamic cross correlation matrices (DCCMs) and 

community network analysis (CNA) were calculated using a combination of the Bio3D161 and 

igraph162 libraries within the package R. Briefly, all ten independent simulations were combined 

into a single trajectory, RMS fitting each frame to an average structure of all ten simulations 

combined. DCCMs were calculated for all 387 x 387 residues in each pHLA before truncating the 

matrix to show the degree of correlated motion between the peptide and all HLA residues. CNA 

was performed on the aforementioned complete DCCM results, using a Girvan-Newman 

clustering protocol79 to cluster communities of similar dynamics together. Edges with a correlation 

score of < |0.4| were discarded prior to clustering. The resulting communities were further filtered 

using a maximum distance cut-off between pairs of atoms of 8 Å (throughout 100% of the 

simulation time). Whilst the standard procedure in CNA is to plot the community number that 

gives the highest modularity, it is also acceptable when comparing multiple similar complexes, to 

choose a high scoring modulatory value that better groups the resulting structures.163 The 

modularity is an overall measure of the level of correlation between community members and 

non-community members, with a higher score indicating increased intercommunity correlation 

and decreased intra-community correlation, and therefore a better division of the data. We choose 

a community number of 10 for RQW and 9 for all other pHLA complexes based on the above 

criteria and in all cases, the difference between the maximal possible modularity score and the 

selected community score was no greater than 0.02 (Supp Figure S3). A value of 10 was selected 

for RQW as the N-terminal portion of the peptide consistently grouped to itself even at much 

lower community numbers (lowest evaluated community number was 4).  
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Figure S1: Per residue Cα RMSF values of (A) the peptides, (B) the α1 and α2 domains, (C) 

the α3 domains and (D) the β2m domains for all 6 pHLA complexes investigated, with the 

average per residue value also indicated. with the average per residue value also indicated. 

Below the plot is the p-value obtained from a two-sample t-test between the most and least 

flexible RMSF value of each residue. A red dotted line is plotted at a p-value of 0.05, which is 

the cut-off used to determine significance. 



 

80 

 
 

Figure S2: Complete dynamic cross correlation matrices (DCCMs) for all six pHLA complexes 

investigated. Both x and y-axis consist of 387 residues total (287 HLA, 100 β2m and 10 peptide), 

with regions indicated on the figure. The Cα carbon of each residue is used for the measurement. 

All Matrices are colour mapped according to their degree of correlated motion calculated from the 

aggregate 1.5 µs of MD simulations per pHLA complex. A value of +1 (red) indicates perfectly 

correlated motion, whilst -1 (blue) means perfectly anticorrelated motion. 
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Figure S3: Modularity vs number of communities for each pHLA. The red line on each plot 

indicates the number of communities chosen for community network analysis as seen in Figure 

6 in the main text. In all cases except RQW, this is 9 communities, with RQW set to 10 

communities. 
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Supplementary Table S1. PDB IDs used and histidine tautomerisation state assignments for all 

MD simulations.  

pHLA Complex 

and peptide sequence 

PDB ID HIDa Tautomerisation State 

MVW: 

MVWGPDPLYV 

5C0H Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

ALW: 

ALWGPDPAAA 

3UTQ Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

RQFa: 

RQFGPDWIVA 

5C0J Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

RQW: 

RQWGPDPAAV 

5C0F Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

YQF: 

YQFGPDFPIA 

5C0E Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

RQFi: 

RQFGPDFPTI 

5C0I Chain A: 4, 71, 115, 189, 193, 261. 

Chain B: 51. 

a, HID corresponds to a histidine residue which is singly protonated on its Nδ1 nitrogen, with all 

other histidine residues simulated as singly protonated on their Nε2 nitrogen.  
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Supplementary Table S2. Community Assignments and total correlation values between 

communities for all pHLA complexes studied. (This data is represented graphically in Figure 16 

of the main text of the publication). Residues are broken down into their PDB chain IDs (e.g. 

“A:” corresponds to Chain A). 

pHLA Complex Community Number and Residues Assignments Correlation Between Communities 

MVW 

1:(A:1-10+25-35+49-50+98-115+129+158-170) 
2:(A:11+95-97+119-122) 
3:(A:12-24+36-48+57-94)+(C:1-9) 
4:(A:51-56+171-180) 
5:(A:116-118+123-157)+(C:10) 
6:(A:181-187+205-214+232-244+263-269) 
7:(A:188-204+215-231+245-262+270-277) 
8:(B:1-7+28-37+54-65+83-92) 
9:(B:8-27+38-53+66-82+93-100) 

1---2, 0.881, 1---2, 0.881,  
1---3, 0.820, 1---4, 0.882,  
1---5, 0.898, 1---8, 0.570,  
2---3, 0.872, 2---5, 0.908,  
2---8, 0.736, 3---4, 0.924,  
3---5, 0.900, 4---6, 0.702,  
5---8, 0.715, 6---7, 0.965,  
6---9, 0.662, 8---9, 0.927. 

ALW 

1:(A:1-9+29-30+99-115+129+159-170) 
2:(A:10-24+63-98+119-120)+(C:1-7+9) 
3:(A:25-62) 
4:(A:116-118+123-128+130-157+158)+(C:8+10) 
5:(A:121-122)+(B:1-7+29-37+55-64+83-92) 
6:(A:171-182) 
7:(A:183-187+206-215+233-244+263-269) 
8:(A:188-205+216-232+245-262+270-277) 
9:(B:8-28+38-54+65-82+93-100) 

1---2, 0.862, 1---3, 0.904,  
1---4, 0.929, 1---5, 0.623,  
1---6, 0.879, 2---3, 0.814,  
2---4, 0.899, 2---5, 0.819,  
3---5, 0.490, 3---6, 0.569,  
3---9, 0.500, 4---5, 0.908,  
5---9, 0.935, 6---7, 0.790,  
7---8, 0.969, 7---9, 0.671. 

RQFa 

1:(A:1-8+100-114+129+160-171) 
2:(A:9-25+69+71-99+115-123)+(C:7+9) 
3:(A:26-36+48-56+172-181) 
4:(A:37-47+57-68+70)+(C:1-6) 
5:(A:124-128+130-159)+(C:8+10) 
6:(A:182-187+206-215+232-244+263-270) 
7:(A:188-205+216-231+245-262+271-277) 
8:(B:1-9+27-37+54-65+84-91) 
9:(B:10-26+38-53+66-83+92-100) 

1---2, 0.885, 1---3, 0.894,  
1---4, 0.464, 1---5, 0.884,  
2---3, 0.688, 2---4, 0.861,  
2---5, 0.863, 2---8, 0.685,  
3---4, 0.826, 3---6, 0.664,  
3---8, 0.424, 6---7, 0.947,  
6---8, 0.663, 6---9, 0.635,  
8---9, 0.905. 

RQW 

1:(A:1-8+29-32+52+99-115+159-181) 
2:(A:9-25+93-98+116-124+338) 
3:(A:26-28+33-56+61) 
4:(A:57-60+62-92)+(C:7-10) 
5:(A:125-158) 
6:(A:182-188+205-+214+232-244+262-271) 
7:(A:189-204+215-231+245-261+272-277) 
8:(B:1-9+27-37+55-60+62-65+83-92) 
9:(B:10-26+38-54+66-82+93-100) 
10:(C:1-6) 

1---2, 0.835, 1---3, 0.901,  
1---5, 0.835, 1---6, 0.685,  
1---10, 0.453, 2---3, 0.720,  
2---4, 0.858, 2---5, 0.902,  
2---8, 0.918, 3---4, 0.910,  
4---5, 0.689, 6---7, 0.961,  
6---8, 0.666, 6---9, 0.652,  
8---9, 0.906. 

YQF 

1:(A:1-8+10+25-36+46-54+101-113+158-181) 
2:(A:9+98-100+114-136+154-157)+(B:1-2) 
3:(A:11-24+37-44+64-97+1-9) 
4:(A:45+55-63) 
5:(A:137-153)+(C:10) 
6:(A:182-187+206-215+233-244+262-271) 
7:(A:188-205+216-232+245-261+272-277) 
8:(B:3-7+28-35+54-65) 
9:(B:8-27+36-53+66-100) 

1---4, 0.858, 1---6, 0.733,  
1---8, 0.478, 2---3, 0.907,  
2---5, 0.882, 2---8, 0.806,  
3---4, 0.863, 3---5, 0.850,  
3---8, 0.753, 6---7, 0.974,  
6---9, 0.735, 8---9, 0.923. 

RQFi 

1:(A:1-8+26-34+101-113+158-181) 
2:(A:9-25+38-44+93-97+119-122)+(B:338) 
3:(A:35-37+45-69)+(C:2) 
4:(A:70-92)+(C:1+3-10) 
5:(A:98-100+114-118+123-157) 
6:(A:182-188+205-213+232-244+264-269) 
7:(A:189-204+214-231+245-263+270-277) 
8:(B:1-7+28-37+54-60+62-65+85-87) 
9:(B:8-27+38-53+66-84+88-100) 

1---2, 0.838, 1---3, 0.811, 
1---4, 0.636, 1---5, 0.886, 
1---6, 0.707, 1---8, 0.495, 
2---3, 0.833, 2---4, 0.804, 
2---5, 0.901, 2---8, 0.935, 
3---4, 0.856, 3---8, 0.408, 
4---5, 0.776, 6---7, 0.968, 
6---9, 0.702, 8---9, 0.935. 
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Chapter 4: 

Design Principles for Engineering 

Highly Specific TCRs  
 

The use of soluble TCRs as therapeutics requires high affinities towards the pHLA 

target and a large therapeutic window to avoid unwanted side-effects. Experimental 

testing of engineered high affinity TCRs for specificity is both time-consuming and 

expensive, requiring a large number of cell-based assays. Therefore, a clear 

understanding at the atomistic level of how to rationally engineer TCRs specific for their 

targets has clear benefits in the field of rational drug design. In this chapter we applied a 

combination of structural, biochemical and computational approaches to investigate the 

molecular rules that define pHLA specificity. In this manuscript we compare three 

different examples of a TCR and TCR-mimic (antibodies engineered to bind pHLA) 

targeting the same pHLA. We determine thoroughly characterise their specificity 

experimentally before using computation to rationalise these observations and suggest 

design principles for producing highly specific TCRs or TCR mimics. My role in this 

project was in performing all of the MD simulations and free energy calculations. I also 

wrote the results and discussion sections pertaining to my obtained results.  
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Abstract 
 

Tumour-associated peptide-human leukocyte antigen complexes (pHLA) represent the largest 

pool of cell surface expressed cancer-specific epitopes, making them attractive targets for cancer 

therapies. Soluble bispecific molecules, that incorporate an anti-CD3 effector function, are being 

developed to redirect T cells against these targets using two different approaches. The first 

achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g. ImmTAC 

molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For 

both classes of reagent, target-specificity is vital considering the vast universe of potential pHLA 

molecules that can be presented on healthy cells. Here, we made use of structural, biochemical 

and computational approaches to investigate the molecular rules underpinning the reactivity 

patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage 

pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed 

over several HLA and peptide side-chains. As ImmTAC molecules, these TCRs also retained a 

greater degree of pHLA-selectivity, with less off-target activity in cellular assays. Conversely, 

TCR-mimic antibodies tended to exhibit binding modes focussed more towards hotspots on the 

HLA surface and exhibited a greater degree of cross-reactivity.  Our findings extend our 

understanding of the basic principles that underpin pHLA selectivity and exemplify a number of 

molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, 

aiding the development of future reagents. 

 

Introduction 
 

The ability to selectively target tumour-specific antigens holds great promise for the development 

of specific cancer treatments, but their identification remains a key challenge. Peptide fragments 

presented on the cell surface by human leukocyte antigens (pHLAs) represent the intracellular 

proteome, and because this also includes dysregulated and cancer-specific proteins7,164, pHLAs 

constitute an important source of tumour-specific antigens. However, targeting these molecules is 

difficult for two reasons. First, their natural presentation levels can be very low (often below 10 

copies of each specific peptide epitope per cell)19; and second, peptides are co-recognised in the 

context of HLA, a molecule expressed by most cells (i.e. peptide-selectivity could be lost if HLA 

interactions dominate the binding interface).165,166 
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The immune system naturally overcomes these hurdles via selective T cell receptor (TCR) 

recognition of pHLA, enabling T cell triggering towards low-level antigens.167–169 Although the 

mechanisms that determine peptide-selectivity by natural TCRs are not fully understood, the 

binding mode employed by the TCR is likely to be fundamentally important, evidenced by the 

conserved binding mode observed for virtually all TCR-pHLA structures solved to date.6 This 

canonical interaction places the TCR diagonally across the HLA binding groove, positioning the 

somatically rearranged TCR CDR3 loops centrally over the antigenic determinant (peptide) with 

the germline-encoded CDR1/2 loops positioned primarily over the HLA helices, enabling natural 

TCRs to detect pHLA in a peptide-dependent manner. Despite the need for precise peptide-

selectivity, a limited number of TCRs must still maintain the ability to recognise millions of 

potential target antigens.127,128 Consequently, TCRs have been shown to cross-react with a vast 

array of different peptides16,127,129,130, but are selected in the thymus to avoid having specificities 

overlapping with abundant self-epitopes to maintain self-tolerance. Although the mechanisms that 

underpin these characteristics have yet to be determined, the relatively weak binding affinity of 

thymically selected TCRs (KDs in the micromolar affinity range18,170) has been shown to be 

important for T cell sensitivity116, and is likely also important for maintaining self-tolerance.  

 

The weak affinity of naturally selected TCRs, combined with difficulties manufacturing a 

membrane-bound protein as a soluble reagent, imposes certain challenges on their use for 

therapeutic applications. Consequently, the most widely used T cell-based therapies involve the 

adoptive transfer of either expanded antigen-specific T cells, or T cells genetically modified to 

express an artificial antigen-specific TCR (specific peptide affinity-enhanced receptor; SPEAR)171 

or antibody (chimeric antigen receptor; CAR).172 Although promising, these therapies are 

complicated by the need to prepare therapeutic T cells on a patient-by-patient basis and an inability 

to control dosing in response to potential toxicities.28 

 

Soluble bispecific T cell redirectors, consisting of antigen recognition and T cell engaging 

domains, bypass many of the limitations of the adoptive transfer approach.173 The antigen 

recognition of pHLA-targeting reagents can be via a TCR or antibody domain. ImmTAC 

molecules (Immune-mobilising monoclonal T cell receptors Against Cancer) are bispecific 

molecules with an engineered soluble TCR fused to an anti-CD3 effector function33; thus, it that 

redirects T cells specifically towards cells presenting a target pHLA.33 The TCR component of 

ImmTAC molecules are stabilised with an inter-chain disulphide bond174 and affinity-enhanced 

using phage display to generate highly stable, soluble TCR reagents that can bind to pHLA with 
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low-picomolar affinities, and with binding half-lives of several hours (in comparison to half-lives 

of seconds for natural soluble TCRs).33,175 These attributes enable ImmTAC molecules to elicit 

anti-tumour responses at picomolar concentrations against cells expressing very low levels of 

pHLA on the cell surface. In comparison, BiTEs can utilise antibodies to target pHLA (TCR-

mimic antibodies) as soluble T cell engaging bispecific molecules.34,35,183–186,36,176–182 Antibodies, 

unlike TCRs that are anchored in the cell membrane, can exist naturally as soluble effector 

molecules (and as such are easier to engineer as soluble reagents) and typically have a natural 

strong affinity for their antigen (nanomolar range), making them attractive for development as 

soluble therapeutics173. The main challenge for a targeted pHLA therapeutic is achieving sufficient 

specificity in the context of a vast landscape of potential self-antigens. For instance, even on 

individual cell types, data from our in-house mass spectrometry database and published direct 

evidence demonstrates that the number of unique peptides can be in the range of tens of 

thousands.187–190 Considering the full human protein coding genome, the number of peptides 

presented has been estimated to be over 11 million.191 

 

In this study, we used a combination of structural, molecular and computational approaches to 

understand the molecular mechanisms underpinning the pHLA-selectivity and, consequently, the 

potential cross-reactivity of soluble bispecific T cell redirectors. We demonstrate that utilisation 

of a native TCR-like binding mode was not predictive of peptide-selectivity. In fact, peptide-

selectivity, as defined by lower levels of pHLA cross-reactivity and less off-target activity in 

cellular testing, was associated with an energetic signature characterised by broad interactions 

with several peptide side-chains as well as the peptide backbone. These findings have important 

implications for the underlying rules that determine pHLA discrimination and identify key 

considerations in the design of immunotherapeutics that target these cell surface proteins. 

 

Results 
 

Structural analysis of pHLA-targeting reagents 

We selected TCR-mimic antibodies (TCR-mimics) according to in vitro and in vivo testing and 

based on the availability of crystal complex structures to enable molecular analysis 

(Supplementary Table S1). Several additional TCR-mimics have been reported; however, most 

lacked sufficient published information for inclusion (sequence, structure, and specificity data). 

As the peptide antigen can have a major influence on specificity (i.e. some peptides may have 
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close homology to self-peptides), we chose affinity-enhanced TCRs based on their recognition of 

identical, or closely related, pHLA determinants compared to the TCR-mimics. Here, we assessed 

reagents designed to recognise the NY-ESO-1157-165 cancer testis antigen-derived peptide, 

SLLMWITQC, presented by HLA-A*02:01 (A2-SLL), the MAGE-A1161-169/MAGE3-A3168-176 

melanoma-associated antigen-derived peptides, EADPTGHSY (A1-EAD) and EVDPIGHLY 

(A1-EVD), presented by HLA-A*01:01, and the WT126-134 Wilms tumour antigen derived peptide, 

RMFPNAPYL, presented by HLA-A*02:01 (A2-RMF). Although not a direct comparison, the 

A1-EAD and A1-EVD still represented a useful system to include due to the similar tumour 

expression patterns of both proteins, the same HLA restriction, and similar peptide sequences ‒a 

consequence of both peptides representing the same region of the highly related MAGE proteins.   

 

In addition to the previously published crystal structures for TCR-mimic antibodies and affinity-

enhanced TCRs in complex with A2-SLL34,43,45, A2-RMF36, and A1-EVD/A1-EAD192,193 (Figure 

17A), we solved the structure of the affinity-enhanced WT1_α7β2 TCR in complex with A2-RMF 

at 2.8 Å to complete the set (Table 2). Together, these data were analysed to identify any structural 

features that might influence the peptide-selectivity of each reagent. We compared the normal 

range of binding (crossing and engagement zone) of natural TCRs6 with both affinity-enhanced 

TCRs and TCR-mimic antibodies. The affinity-enhanced TCRs (1G4_α58β61 TCR, MAG-IC3 

TCR and WT1_α7β2 TCR) bound within the normal range of natural TCR topologies with the 

CDR3 loops of both chains focussed over the central peptide bulge (amino acids 4-6) (Figure 

17B). This binding mode enabled the affinity-enhanced TCRs to form contacts with five of the 

nine amino acids in the peptide, and multiple interactions with the α1 and α2 domains of the HLA 

(Figure 17C).  
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Figure 17: Structural analysis of pHLA-targeting reagents. Structures of the TCRs and TCR-mimics, in 

complex with pHLA, were analysed to determine the structural mechanism underpinning their binding 

characteristics. (A) TCRs (blue ribbon) or TCR-mimics (orange ribbon) binding to peptide (red sticks) and 

HLA (green ribbon) compared to the binding range employed by all published wild-type TCR structures 

(grey cartoon). Yellow arrows indicate unconventional binding modes.  (B) Coloured as in A, top down view 

of TCR, or TCR-mimic binding to pHLA. Black circles represent the center of binding. Yellow arrows 

indicate unconventional binding modes. (C) Structural analyses of TCRs versus TCR-mimics binding to 

pHLA. Bonds were assessed using the program contact (CCP4), implementing a 3.4 Å cut-off for H-bonds 

and a 4 Å cut-off for Van der Waals interactions. Any peptide residue with at least one interaction with the 

TCR is documented, with peptide residues with >10 contacts shown in bold, and the residue making the most 

contacts underlined. Any HLA residue with >5 interactions with the TCR is documented, with HLA residues 

with >10 contacts shown in bold. Buried surface area (BSA) Å2 was determined using ePISA. 
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Table 2: Data collection and refinement statistics for WT1_α7β2-A2-RMF and NYBR1-A2-SLS 

structures. One crystal was used for solving each structure. Figures in brackets refer to the highest 

resolution bin. 

  WT1_α7β2-A2-RMF NYBR1-A2-SLS 

PDB code 
 

6R2L 

Data collection     

Space group P 21 21 21 P 1 21 1 

Cell dimensions     

    a, b, c (Å) 94.6, 114.8, 185.4 52.2, 99.3, 111.4 

    a, b, g  ()  90, 90, 90 90, 90.5, 90 

Resolution (Å) 114.75 – 3 (2.95 -2.95) 52.2 – 2.36 (2.36-2.3) 

Beam Line 
 

I04-1 

Beam time code In17077-18 14843-1 

Rmerge (%) 32.6 (220.4) 20.7 (108.9) 

I / sI 8.8 (1.2) 9.7 (1.3) 

Completeness (%) 99.9 (99.9) 99.7 (99.7) 

Redundancy 14.1 (14.3) 3.7 (3.6) 

No. reflections 700,229 (54,486) 188,042 (13,553) 

Refinement     

No Rfree reflections  2,370 2,435 

Rwork / Rfree 25.1/29.1 21.4/26.5 

R.m.s. deviations     

Bond lengths (Å) 0.006 0.011 

Bond Angles (°) 1.253 1.853 

Mean B value (Å2) 75.5 40.0 

Wilson B factor (Å2) 75.8 25.9 

Estimated coordinate error based on 

maximum likelihood (Å) 

0.423 0.221 
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The 1G4_α58β61 and WT1_α7β2 TCRs were more peptide focussed than the MAG-IC3 TCR in 

terms of the percentage (57%, 36% and 14%, respectively) and number (115, 64 and 16, 

respectively) of peptide bonds. The 1G4_α58β61 and WT1_α7β2 TCRs also exhibited a larger 

buried surface areas (BSAs) than MAG-IC3, but all were within, or near to, the normal range 

(1240 – 2400 Å2)6. The 3M4E5 TCR-mimic antibody bound in a very similar fashion to natural 

TCRs, making contacts with five peptide residues, 38% peptide contacts, and a BSA of 2502 Å2. 

However, the structural analysis revealed focussing of interactions at peptide residue W5, where 

half of the peptide contacts were concentrated (24/51). Although the 1G4_α58β61 TCR also made 

many contacts with the large exposed side chain of W5 (54/115), binding was less focussed on 

this residue and additional important contacts were made with other peptide residues, particularly 

M4 (31/115) and Q8 (15/115). Peptide binding hotspots have been detected for natural 

TCRs23,130,194; however, this structural feature has been associated with auto-reactive TCRs and 

can correlate with a high level of TCR cross-reactivity.16,23 In contrast, the Hyb3.3 and ESK-1 

mimic antibodies both bound to their respective pHLA using unconventional topology. Hyb3.3 

binding was C-terminally shifted with an engagement angle substantially outside of the natural 

TCR-pHLA range. Despite this unusual topology, Hyb3.3 retained broad peptide contacts across 

6 of the 9 amino acids, making 25% peptide contacts and a BSA of 2024 Å2 (Figure 17C). ESK-1 

binding was N-terminally shifted with an unconventional engagement angle. This binding mode 

positioned the TCR-mimic antibody so that the CDR3 loops were focussed over the α2 helix of 

the HLA, resulting in a very limited interaction with the peptide. This binding mode resulted in 

ESK-1 making only 10% peptide contacts and the majority of these were formed with peptide 

residue 1. This HLA-centric binding mode, where only one peptide residue was contacted, raised 

questions about the ability of the ESK-1 TCR-mimic to retain specificity. However, for all the 

other HLA-targeting reagents considered here, their structures appear to retain many of the 

features observed for natural TCR-pHLA interactions.  

 

Alanine scan analysis reveals distinct molecular recognition patterns 

Alanine scan mutagenesis was used to investigate the molecular recognition pattern of the affinity-

enhanced TCRs and TCR-mimic antibodies using surface plasmon resonance (Figure 18; Suppl 

Figure S1). For each reagent, we generated a panel of soluble pHLAs in which each peptide 

residue was replaced with an alanine (or a serine if the native residue was already an alanine), 

except for the canonical anchor residues at positions 2 and 9. The 1G4_α58β61 TCR bound to 

A2-SLL with a KD of 57 pM. However, binding was not detected when residues 4, 5 and 6 were 
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mutated to alanine, and the affinity was substantially reduced when residues 7 and 8 were mutated 

(Figure 18A). These findings are consistent with the 1G4_α58β61-A2-SLL co-complex crystal 

structure showing that the central MW motif forms a central peptide bulge making multiple 

contacts with the TCR CDR3 loops, and peptide residue Q8 points up away from the HLA surface 

enabling contacts with the TCR CDR1β loop (Figure 17). A similar pattern was observed for the 

1G4_α5β51 A2-SLL restricted TCR (KD of 1.4nM), with small reductions in affinity also 

observed a peptide positions 1 and 3, whereas the 1G4_α5β100 A2-SLL restricted TCR, that 

bound with a weaker affinity (KD of 5 nM) was highly sensitive to alanine mutations at every 

position along the peptide backbone (Figure 18A). We repeated the alanine scan analysis on the 

A2-SLL-reactive 3M4E5 TCR-mimic and included two published higher affinity versions of 

3M4E5 (3M4E5_T2 and 3M4E5_T3) because they were closer in affinity to the 1G4_α5β100 and 

1G4_α5β51 affinity-enhanced TCRs, allowing a more direct comparison. The 3M4E5 (KD = 44 

nM in scFv format) and 3M4E5_T2 TCR-mimic antibodies (KD = 2.8 nM in scFv format) were 

both sensitive to alanine mutation at peptide residues 4, 5 and 6 (Figure 18B), whereas mutations 

at all other positions of the peptide did not reduce binding affinity. 3M4E5_T3 (KD = 5.5 nM in 

scFv format) demonstrated a similar trend, being sensitive to alanine substitution at peptide 

residues 4 and 5 (Figure 18B). Alanine substitutions at peptide residues 1, 3, 7, and 8 had no 

impact on binding affinity for any of the A2-SLL TCR-mimics, demonstrating a more focussed 

binding mode around peptide residues 4, 5, and 6, compared to the affinity-enhanced TCRs. These 

findings were also consistent with the crystal structure of 3M4E5-A2-SLL that demonstrated 

binding was focussed towards these central residues of the peptide.  

 

The high level of sensitivity to alanine substitutions across the peptide backbone was also 

observed for the A1-EVD specific MAG-IC3 (KD = 3.8 nM) and MAG-IC5 (KD = 17 nM) TCRs 

(Figure 17C). The stronger affinity MAG-IC3 TCR demonstrated reduced or abrogated affinity 

towards every alanine mutant tested, whilst the MAG-IC5 TCR was sensitive to mutations at all 

positions apart from peptide residues 6 and 7. The MAG-IC3-A1-EVD co-complex crystal 

structure was consistent with this finding, demonstrating a complex network of contacts across 

the peptide backbone (Figure 17). The Hyb3.3 TCR-mimic antibody recognises the same peptide 

region as MAG-IC3 and MAG-IC5 but derived from a different MAGE protein (MAGE-A1) and 

binds with an affinity of KD = 18 nM. The MAGE-A3 and MAGE-A1 peptides are conserved at 

all positions except for the N-terminal anchor (position 2), position 5 and position 8. Although the 

Hyb3.3-A1-EAD complex structure demonstrated non-canonical topology, the interactions with 

the peptide apparent in the structure were comparable to most TCR-pHLA complexes (Figure 17).  
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Figure 18: Alanine scan analysis reveals distinct molecular recognition patterns. The contribution of 

peptide side chains to binding specificity was analysed using alanine scan mutagenesis (by surface 

plasmon resonance). Binding affinities of the TCRs and TCR-mimic antibodies were determined 

using single cycle kinetic analysis. Bar graphs show binding affinity as a % relative to the binding 

affinity to the index peptide. (A) A2-SLL affinity-enhanced TCRs, (B) A2-SLL TCR-mimics, (C) 

A1-EVD affinity-enhanced TCRs, (D) Hyb3, (E) A2-RMF affinity-enhanced TCRs, and (F) ESK-1. 
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This observation was reflected in the alanine scan analysis that demonstrated some degree of 

sensitivity to alanine substitutions at all positions tested apart from peptide residue 1 (Figure 

18D). The WT1_α7β2 TCR, which bound A2-RMF with a KD of 70 nM, exhibited abrogated or 

highly reduced binding for all residues except at peptide position 6. The WT1_α27β2 (KD = 13 

nM) and WT1_α42β2 (KD = 0.76 nM) TCRs showed a similar trend, with the strongest binding 

WT1_α42β2 TCR exhibiting the greatest level of sensitivity to alanine substitutions across the 

peptide backbone (Figure 18E). The ESK1 TCR-mimic antibody, which has a relatively weak 

affinity for A2-RMF of KD = 2 µM in scFv format (Supp Figure S1), demonstrated broad 

degeneracy in peptide binding, being tolerant to alanine substitutions at all positions of the peptide 

except for peptide residue 1 (Figure 18F). Here, availability of the ESK-1-A2-WT-1 structure 

provided insight into this observation, confirming that virtually all contacts between ESK-1 and 

the WT-1 peptide were focussed on peptide residue 1 (Figure 17). 

 

TCR-mimic antibodies bind to several commonly expressed self-peptides  

Although alanine scan analysis is useful to understand positional sensitivity of pHLA-targeting 

receptors, it is unclear how these data relate to the broader cross-reactivity of these reagents, 

particularly their ability to discriminate against common self-peptides. To gain further insight into 

self-discrimination, we designed a new experimental approach for screening multiple pHLA 

complexes in a high throughput format by modifying the MAGPIX platform. We designed 

multiplex experiments using MagPlex beads coated with HLAs in complex with a range of 

commonly expressed self-peptides. Self-peptide-HLAs recognised by affinity-enhanced TCRs or 

TCR-mimics were detected using MAGPIX analysis (Table 3+Table 4). In all cases, the affinity-

enhanced TCR reagents only generated a signal against their respective index peptides, whereas 

the TCR-mimic antibodies (in scFv format to avoid avidity-mediated binding) were more 

promiscuous. The 3M4E5_T2 scFv was reactive against four broadly expressed HLA-A*02:01 

restricted self-peptides and the ESK1 scFv demonstrated reactivity against six broadly expressed 

HLA-A*02:01 restricted self-peptides, in addition to their target antigens A2-SLL and A2-RMF, 

respectively (Table 3). The Hyb3.3 scFv was reactive against almost all the HLA-A*01:01 

restricted self-peptides tested (9/12), as well as A1-EAD (Table 4). In all cases, the self-peptides 

recognised by the TCR-mimic antibodies shared very little sequence similarity revealing a high 

level of potential cross-reactivity compared to the affinity-enhanced TCRs developed to target 

identical, or very similar, peptide antigens. 
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Table 3: MAGPIX analysis to investigate a panel of commonly expressed HLA-

A*0201-restricted self-peptides. Peptides generating a signal above background (3 times 

median intensity of all bead regions bound to native helper-phage) were classified as 

positive binders, and binding expressed as a percentage of signal obtained from binding 

to index peptide in each case.  Percentage binding for each interaction is reported as the 

average of several experimental repeats. 

HLA Antigen Peptide 

1G4_α5β100  

TCR 

1G4_α58β61  

TCR 

3M4E5_T2  

scFv 

WT1_α7β2  

TCR 

ESK-1 

scFv 

A2 SLLMWITQC 

NY-ESO(157-

165) 100.0 100.0 100.0 0.0 0.0 

A2 RMFPNAPYL WT1(126-134) 0.0 0.0 0.6 100.0 100.0 

A2 AIVDKVPSV COPG1(147-155) 0.0 0.0 0.0 0.0 0.0 

A2 ALVVQVAEA HEXB(34-42) 0.0 0.0 0.0 0.0 0.1 

A2 SLDQPTQTV EIF3C(834-842) 0.0 0.0 0.0 0.0 0.0 

A2 GLATDVQTV PSMB3(55-63) 0.0 0.0 0.0 0.0 0.0 

A2 ILTDITKGV EEF2(661-669) 0.0 0.0 0.0 0.0 0.0 

A2 IMLEALERV 

SNRPGP15(68-

76) 0.0 0.0 0.0 0.0 0.0 

A2 VMDSKIVQV KPNA1(434-442) 0.0 0.0 0.1 0.0 0.2 

A2 RLQEDPPAGV UBE2A(15-24) 0.0 0.0 0.0 0.0 0.3 

A2 KIYEGQVEV RPL5(117-125) 0.0 0.0 0.0 0.0 0.2 

A2 NLAENISRV PYGM(271-279) 0.0 0.0 0.0 0.0 0.0 

A2 LLDVPTAAV IFI30(16-24) 0.0 0.0 0.0 0.0 0.0 

A2 SLSEKTVLL CD59(106-114) 0.0 0.0 0.0 0.0 0.0 

A2 ALNEKLVNL EIF3F(349-357) 0.0 0.0 0.0 0.0 0.0 

A2 ILDKKVEKV 

HSP90AB1(570-

578) 0.0 0.0 0.1 0.0 0.3 

A2 ILDQKINEV ODC1(23-31) 0.0 0.0 0.0 0.0 0.0 

A2 VLIDYQRNV XPO1(784-792) 0.0 0.0 0.0 0.0 0.0 

A2 GLIEKNIEL 

DNMT1(425-

433) 0.0 0.0 0.0 0.0 0.0 

A2 FLDPNNIPKA ALG8(305-314) 0.0 0.0 0.0 0.0 0.0 

A2 SLQSTILGV LONP2(51-59) 0.0 0.0 0.2 0.0 0.0 
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Table 4: MAGPIX analysis to investigate a panel of commonly expressed HLA-A*0101-

restricted self-peptides. Peptides generating a signal above background (3 times median intensity 

of all bead regions bound to native helper-phage) were classified as positive binders, and binding 

expressed as a percentage of signal obtained from binding to index peptide in each case. 

Percentage binding for each interaction is reported as the average of several experimental repeats. 

HLA Antigen Peptide MAG-IC3 TCR Hyb3.3 scFv 

A1 EVDPIGHLY MAGE-A3(168-176) 100.0 70.0 

A1 EADPTGSHY MAGE-A1(161-169) 0.0 100.0 

A1 YSDKYGLGY PLK1(417-425) 0.0 90.7 

A1 DTDHYFLRY PIGT(165-173) 0.0 16.8 

A1 STDHIPILY GFPT1(218-226) 0.0 0.4 

A1 HSDPSILGY GIGYF1(1012-1020) 0.0 15.2 

A1 KSDVHLNFY HLTF(499-507) 0.0 0.0 

A1 HTDILKEKY DTWD1(262-270) 0.0 0.0 

A1 IADMGHLKY PCNA(241-249) 0.0 1.0 

A1 LTELPDWSY MRPL52(43-51) 0.0 0.0 

A1 ASDPFFRHY GPN2(210-218) 0.0 77.3 

A1 ETEKDFSRY AQR(1757-895) 0.0 4.3 

A1 GTVYEDLRY UBE2C(71-79) 0.0 0.1 

 

Deep sequencing of peptides from randomised pHLA phage-libraries demonstrates the binding 

degeneracy of pHLA-targeting reagents 

Despite the ability of 3M4E5 to bind pHLA in a TCR-like conformation, the alanine scan profile 

and MAGPIX analysis revealed lower levels of peptide-selectivity compared to the affinity-

enhanced TCRs. To probe this discrepancy further, we developed a novel approach for the 

characterisation of TCR-peptide degeneracy using randomised pHLA libraries displayed on phage 

(Coles C et al. Submitted). We used this system to identify peptide motif preferences for the 

affinity-enhanced TCRs and TCR-mimics that recognised A2-SLL. In broad agreement with the 

structural and alanine scan analyses, the affinity-enhanced TCRs, 1G4_α5β100, 1G4_α5β51 and 

1G4_α58β61 showed strong preferences for the native SLL peptide sequence at residues W5, T7, 

Q8 and V9 (Figure 19A-C). In contrast, the TCR mimic 3M4E5 demonstrated a preference for 

the native SLL peptide sequence only at W5, with all other positions showing very little amino 

acid preference (Figure 19D-F). Although W5 was selected by 3M4E5_T2 and 3M4E5_T3, it 

was not the dominant amino acid preference at this position, with phenylalanine (F) being 

preferred by both reagents. 3M4E5_T2 and 3M4E5_T3 also displayed very little selectivity in 
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terms of amino acid preference at any other position. These findings are consistent with the alanine 

scan results demonstrating that the A2-SLL reactive TCR-mimics could tolerate alanine 

substitutions at any residue outside of the central MW-peg in the SLL peptide, while the affinity-

enhanced TCRs were selective across the peptide backbone.  

 

Using this information, we assessed the number of unique peptides selected by each reagent to 

gain insight into their comparative cross-reactivity. Analysis of next generation sequencing data 

identified an average of 7,068 unique peptides (687,241 total reads) for 1G4_α5β51, 4,455 unique 

(689,928 total reads) for 1G4_α5β100, and 9,012 unique (696,992 total reads) for 1G4_α58β61. 

The TCR-mimics selected between three and fifteen times more unique peptides compared to the 

affinity-enhanced TCRs with 50,765 unique peptides (740,196 total reads) for 3M4E5, 60,699 

unique (692,455 total reads) for 3M4E5_T2 and 32,934 unique (727,824 total reads) for 

3M4E5_T3. Overall, these data suggest that the A2-SLL affinity-enhanced TCRs are less cross-

reactive (in terms of total number of peptides recognised) and less promiscuous in terms of their 

ability to tolerate amino acid variation across the peptide backbone, compared to the A2-SLL 

TCR-mimics. 
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Figure 19: Deep sequencing of peptides from randomised pHLA phage-libraries demonstrates 

the binding degeneracy of pHLA-targeting reagents. Sequence logos (Icelogo software) and heat 

maps were generated from NGS sequencing of pan 3 data identifying the distribution of amino 

acid identities per position of the peptide selected by A2-SLL-reactive affinity-enhanced TCRs 

and TCR mimic antibodies. The abundance of an amino acid is shown by intensity of colour. 

Outlined boxes identify the amino acids of the cognate antigen SLL. Data shown is the average 

of two experimental repeats. (A) 1G4_α5β100 (B) 1G4_α5β51, (C) 1G4_α58β61, (D) 3M4E5, 

(E) 3M4E5_T2, and (F) 3M4E5_T3. 
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Molecular dynamics simulations reveal peptide-selectivity is associated with distinctive energetic 

modes of binding 

Although the structural and alanine scan analyses provided useful insights into the recognition 

mode employed by the pHLA-targeting molecules described here, they were not fully predictive 

of the recognition patterns observed in the MAGPIX and randomised pHLA library analysis. For 

example, despite the A2-SLL and A1-EAD reactive TCR-mimics forming seemingly broad 

peptide contacts, according to the structural analysis, and promising alanine scan profiles, these 

reagents bound substantially more self-peptides in the MAGPIX analysis than the affinity-

enhanced TCRs. Furthermore, the A2-SLL reactive TCR-mimics were characterised by more 

degenerate peptide binding in the randomised pHLA library analysis. Consequently, we 

performed molecular dynamics (MD) simulations to extend the ‘snapshot’ view available from 

crystal structures. We subjected all six structures described in Figure 17 to two, 500 nanosecond 

long MD simulations to investigate the biochemical nature and lifetime of contacts formed 

between the peptide and affinity-enhanced TCRs or TCR-mimics. Interactions were dissected into 

contacts formed between the peptide side chain (amino acid specific) and main chain 

(conformation specific) versus time and separated into hydrogen bonding and Van der Waals 

(VdW) type interactions. In all cases, the affinity-enhanced TCRs made a higher number of long-

lived contacts with side chain atoms across the peptide compared to main chain interactions 

(Figure 20A-C). In contrast, 3M4E5 made a lower number of peptide side chain contacts (Figure 

20D), reflected by a lower overall ratio of peptide side chain contacts (Hbond ratio: 0.5, vdW 

ratio: 2.23) compared to the 1G4_α58β61 TCR (Hbond ratio: 1.49, vdW ratio: 5.41) (Supp Figure 

S2). Hyb3.3 made virtually no contacts with peptide side chain residues (Hbond ratio: 0.16, vdW 

ratio: 0.24), focussing primarily or exclusively on interactions with the peptide backbone (Figure 

20E, Supp Figure S2). ESK-1 did make peptide side-chain interactions, but only with the exposed 

R1, in line with the alanine scan analysis (Figure 20F, Supp Figure S2). These data suggest that 

more limited side chain-mediated recognition pattern, as observed for the TCR-mimics, might 

contribute to greater levels of peptide degeneracy. 
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Figure 20: Molecular dynamics simulations reveal broad side chain contacts with the peptide 

drive specificity. Relative number of Hydrogen bonds (H-bonds) and Van der Waals (vdWs) 

interactions formed between either the main or side chain of each peptide residue to the 

TCR/TCR-mimic over the course of our MD simulations. Total side versus main chain ratios for 

H-bonds and vdWs interactions are shown, with the larger value (side or main for each category) 

scaled to 100 % (absolute values for all contacts are provided in Supp Figure S2).  (A) 

1G4_α58β61-A2-SLL, (B) MAG-IC3-A1-EVD, (C) WT1_α7β2-A2-RMF, (D) 3M4E5-A2-

SLL, (E) Hyb3.3-A1-EAD, (F) ESK-1-A2-RMF. 
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The energetic landscape of each affinity-enhanced TCR/TCR-mimic-pHLA complex was 

characterised by calculating their binding free energies (using the Molecular Mechanics Poisson–

Boltzmann Surface Area (MMPBSA) approach).39 The MMPBSA approach has been used 

extensively to predict relative protein-ligand and protein-protein binding free energies.85,195 More 

specifically, it has been used to rationalise the effect of mutations on antibody-antigen 

complexes196, the role of a water bridged interaction in TCR-pHLA affinity197, and to predict 

reliable relative binding free energies of pHLA complexes.92 Here, we performed 25 x 4 

nanosecond  MD simulations per complex for MMPBSA analysis, to ensure reliable and 

converged results.85,91,92 MMPBSA calculations have the advantage that they can be decomposed 

into per-residue contributions to the binding free energy, allowing one to predict each residue’s 

preference towards binding. Analysis of the decomposition results demonstrated that the affinity-

enhanced TCRs were characterised by broad energetic signatures, whereby the binding energy 

was distributed over at least three peptide residues, with multiple disparate regions driving affinity 

across the HLA surface (Figure 21A-C; Supp Figure S3A-C). On the other hand, the TCR-

mimics were more HLA-focussed with one, or two, energetic hotspots focussed on single HLA 

residues (Figure 21D-F; Supp Figure S3D-F). For example, although the 1G4_α58β61 TCR 

made substantial energetic interactions with HLA residue R65 (-12 kcal mol-1), this was balanced 

by interactions with multiple peptide residues (W5: -11 kcal mol-1, M4: -8 kcal mol-1, Q8: -7 kcal 

mol-1) and other HLA residues (Q155: -6 kcal mol-1). No energetic hotspots were detected for the 

WT1_α7β2 TCR, with most of the binding energy being equally balanced over HLA residues 

R65, R75 and Q155 and peptide residues P4, N5 and Y8 (all around -6 kcal mol-1) and the MAG-

IC3 TCR had a balanced energetic footprint with important binding contributions from HLA 

residues E63, N66 and V158, as well as peptide residues E1, D3, P4 and H7 (all around -5 kcal 

mol-1). In contrast, all of the TCR-mimics utilised more focussed energetic binding to engage their 

cognate pHLAs. The chief energetic contribution for 3M4E5 was made by HLA residue R65 (-16 

kcal mol-1) with an additional peptide hotspot at W5 (-7 kcal mol-1). For ESK-1, energetic hotspots 

were detected at HLA residue K66 (-15 kcal mol-1) and peptide residue R1 (-13 kcal mol-1), with 

very little contribution from any other peptide residues. Finally, Hyb3.3 binding was characterised 

by strong energetically favourable interactions only with HLA residues K146 (-11 kcal mol-1) and 

R65 (-11 kcal mol-1), with the EAD peptide playing a minor role.  
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Figure 21: Binding free energy decomposition analysis of TCR and TCR-mimic-pHLA 

interactions. Per-residue decomposition of the binding free energy obtained from our MMPBSA 

calculations, to identify energetic hotspots for each TCR or TCR-mimic interaction with cognate 

pHLA. A top down view of each pHLA is shown, with the peptide depicted as sticks and the HLA 

as a surface. Colour mapping of the decomposition results for each residue was performed across 

the entire binding interface and used to indicate which residues across this interface favour (blue) 

or disfavour (red) binding (with white indicating no preference). (Bar graphs for all decomposition 

results are provided in Supp Figure S3). (A) 1G4_α58β61-A2-SLL, (B) MAG-IC3-A1-EVD, (C) 

WT1_α7β2-A2-RMF, (D) 3M4E5-A2-SLL, (E) Hyb3.3-A1-EAD, (F) ESK-1-A2-RMF. 
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Together with the previous analyses, the molecular dynamic simulations provide further evidence 

that, rather than being driven by the recognition of a dominant amino acid at a single position on 

the HLA or peptide, broad interactions across the peptide (particularly with peptide side chains) 

was associated with greater peptide-selectivity. 

 

Re-directed T cell killing of antigen-positive and negative cell lines using pHLA-targeting 

bispecifics 

On-target versus off-target reactivity of affinity-enhanced TCRs and TCR-mimics were assessed 

in functional T cell redirection assays against antigen-positive and antigen-negative cell lines. 

Soluble bispecific molecules were generated by fusing an anti-CD3 scFv to the β-chain of the 

affinity-enhanced 1G4_α58β61 (IMC-1G4_α58β61), and MAG-IC3 TCRs (IMC-MAG-IC3), or 

the heavy chain of the TCR-mimic scFv 3M4E5_T2 (3M4E5_T2-anti-CD3), 3M4E5_T3 

(3M4E5_T3-anti-CD3), and Hyb3.3 (Hyb3.3-anti-CD3). Reagents recognising A2-RMF were not 

included because, consistent with evidence from other studies 198, we were unable to detect the 

peptide on WT1+ tumour cells by mass spectrometry analysis (data not shown). IMC-1G4_α58β61 

redirected T cell killing of A2+/NYESO+ NCIH-1755 cells was approximately twenty-times more 

sensitive when compared to 3M4E5_T2-anti-CD3 and 3M4E5_T3-anti-CD3, in line with the 

difference in affinity between these reagents (Figure 22A, Supp Figure S4). No redirected T cell 

killing of A2+/NYESO- targets was detected for IMC-1G4_α58β61, whereas 3M4E5_T2-anti-

CD3 and 3M4E5_T3-anti-CD3 both induced redirected T cell killing of the A2+/NYESO- antigen-

negative cell lines HEP-G2, Ren8 and HISMC at EC50s similar to those for the A2+/NY-ESO-1+ 

cell line NCIH-1755. Similarly, Hyb3.3-anti-CD3 demonstrated T cell redirected killing of 

multiple A1+/MAGE-A1- antigen-negative cell lines, as well as A1+/MAGE-A1+ antigen positive 

cell lines, demonstrating no, or a very small specificity window. In contrast, IMC-MAG-IC3 

mediated redirected T cell killing of A1+/MAGE-A3- antigen negative cells was absent (HISMC 

cells) or only occurred at very high concentrations (NCI-H1703 and COLO205) , demonstrating 

a clear specificity window compared to redirected T cell killing against HCC1428 A1+/MAGE-

A3+ antigen positive cells (Figure 22B, Supp Figure S5).  
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Overall, the HLA-targeting bispecifics based on the natural TCR scaffold retained much higher 

levels of specificity in cellular testing, consistent with the MAGPIX, and randomised pHLA 

library analyses. These findings support the hypothesis that dispersed peptide contacts with the 

comparatively broad peptide side-chain focussed energetic signature is more predictive of the 

ability to discriminate between different peptides. 

 

The NYBR1 TCR exhibits no cellular off-target reactivity and utilises a broad, peptide side-chain 

centric binding mode 

In order to test the notion that peptide-selectivity is associated with broad contacts with peptide 

side chains and a dispersed energetic profile, we extended our analysis to include an affinity-

enhanced TCR that was known to be highly selective for its target pHLA. The NYBR1 TCR was 

affinity-matured against a novel cancer specific HLA-A*02:01 restricted peptide (SLSKILDTV; 

referred to as SLS peptide from hereon) derived from the NY-BR-1 lineage antigen and used to 

Figure 22: Redirected T cell killing of antigen positive and negative cell lines using pHLA-

targeting bispecifics. The activity of the ImmTAC molecules and the TCR-mimic-anti-CD3 

fusions was tested against a range of antigen positive and antigen negative cell lines (tumour and 

healthy cells) using IncuCyte killing assays. Data are plotted using area under the curve analysis. 

(A) IMC-1G4_α58β61, 3M4E5_T2-anti-CD3 and 3M4E5_T3-anti-CD3 T cell re-direction 

against HLA-A*02:01+/NY-ESO-1+ (NCI-H1755) and HLA-A*02:01+/NY-ESO-1- (HEP-G2, 

Ren8 and HISMC) cells lines. (B) IMC-MAG-IC3 and Hyb3.3-anti-CD3 T cell re-direction 

against HLA-A*01:01+/MAGE-A3+ (HCC1428), HLA-A*01:01+/MAGEA1+ (HCC1428 and 

NCI-H1703) and HLA-A*01:01+/MAGE- (COLO205 and HISMC) cells lines. 
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generate an ImmTAC molecule (IMC-NYBR1). In cellular testing, as assessed by both IFNγ 

release and target cell killing, IMC-NYBR1 demonstrated exquisite specificity, as evidenced by 

absence of T cell redirection against 10 A2+/NY-BR-1- antigen-negative cell lines, even at high 

concentrations (up to 2 nM of IMC-NYBR1 for a 47 pM affinity reagent) (Figure 23A). The 

structure of the NYBR1-A2-SLS complex (solved at 2.3 Å resolution; Table 2) demonstrated that 

NYBR1 bound canonically, with a normal crossing angle (63.6°) and a BSA slightly above the 

reported range (2835 Å2), engaging with 7 of the 9 peptide residues (32% peptide contacts) 

(Figure 23B). This binding mode enabled fine specificity across the peptide, evidenced by 

sensitivity to alanine substitutions at every peptide position apart from peptide position 1 (Figure 

23C). Analysis of contacts and energetics from MD simulations demonstrated a highly peptide 

side-chain mediated interaction (Figure 23D) with important contributions from 6 of the 9 

residues in the SLS peptide (Figure 23E, Supp Figure S6). Although there was a slight energetic 

focus towards HLA residue Q155 (-6 kcal mol-1) and peptide residue K4 (-9 kcal mol-1), a number 

of energetic contributions were made across the entire HLA surface and peptide (Figure 23E). 

Thus, consistent with our other observations in this study, the fine specificity of the NYBR1 TCR 

was associated with a broad energetic binding mode characterised by interactions with multiple 

peptide side-chains. 
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Figure 23: The NYBR1 TCR exhibits no cellular off-target reactivity and utilises a broad, peptide 

side-chain centric binding mode. (A) The activity of IMC-NYBR1 was tested against a range of 

HLA-A*02:01+/NYBR1+ (CAMA1 and CAMA1 β2m) and HLA-A*02:01+/NYBR1- cell lines 

(MDA-MB-231, HA13, HAo14, HDMEC2, Ren8, CM12 HCC1419, NCI-H661, SNU475 and 

SNU398) using IFNγ ELISpot (bar graphs) and IncuCyte killing assays (area under the curve 

analysis) in two donors. (B) Above: Side on view of the structure of the NYBR1 TCR (blue ribbon) 

in complex with A2 (green ribbon) -SLS (red sticks). Below: Top down view of the NYBR1 TCR-

A2-SLS interaction. Black circles represent the center of binding. The table shows a structural 

analysis of the NYBR1-A2-SLS complex. Bonds were assessed using the program contact 

(CCP4), implementing a 3.4Å cut-off for H-bonds and a 4Å cut-off for vdWs interactions. Buried 

surface area (BSA) Å2 was determined using ePISA. (C) The contribution of peptide side chains 

to binding specificity was analysed using alanine scan mutagenesis (by surface plasmon 

resonance). Binding affinities of the NYBR1-A2-SLS interaction was determined using single 

cycle kinetic analysis. Bar graphs show binding affinity as a % relative to the binding affinity to 

the index peptide. (Figure Legend Continued on the next page).  
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(Figure Legend Continued) 

(D) Relative number of Hydrogen bonds (H-bonds) and vdWs interactions formed between either 

the main or side chain of each peptide residue to the NYBR1 TCR over the course of our MD 

simulations. Total side versus main chain ratios for H-bonds and vdWs interactions are shown, 

with the larger value (side or main for each category) scaled to 100 % (absolute values for all 

contacts are provided in Supp Figure S2). (E) Per-residue decomposition of the binding free 

energy obtained from our MMPBSA calculations. A top down view of the pHLA is shown, with 

the peptide depicted as sticks and the HLA as a surface. Colour mapping of the decomposition 

results for each residue was performed across the entire binding interface and used to indicate 

which residues across this interface favour (blue) or disfavour (red) binding, (with white 

indicating no preference) (bar graphs for all decomposition results are provided in Supp Figure 

S3). 

 

Discussion 
 

The identification of cancer-specific targets for solid tumours is challenging because cell surface 

antigens are often expressed on a wide range of tissues. Molecules such as CD19 and others have 

proved effective targets for liquid tumours because on-target toxicity is limited to mainly 

haematopoietic cells that can repopulate from the bone marrow following treatment.199 Another 

key source of antigens is dysregulated or mutated intracellular proteins. However, many of these 

proteins are only presented on the cell surface in the context of pHLA. It is interesting to note that, 

even in response to very common human pathogens (i.e. influenza), natural antibodies recognising 

pHLA have not been detected, suggesting that humoral responses to pHLA are either ineffective, 

or dangerous to the host. Unlike antibodies, TCRs are selected to recognise pHLA in the thymus, 

which deletes T cells with TCRs that bind strongly to self-pHLA (and presumably removes TCRs 

that bind in a peptide-independent manner). This process is controlled in part by HLA co-

engagement by the T cell co-receptors, CD8 and CD4, removal of which in CD8/CD4 co-receptor 

knockout mice has been shown to select T cells with TCRs that can bind to non-major 

histocompatiblility complex proteins, such as CD155.111,200 A number of recent reports have also 

suggested that, probably as a consequence of thymic selection, TCRs have co-evolved to recognise 

pHLA.201–203 This ‘co-evolution’ model is consistent with findings from a recent study revealing 

that TCRs have a unique variable domain orientation compared to antibodies, the absence of 

which might restrict antibodies from reproducing the natural ability of TCRs to discriminate 

between different HLA-presented peptides.21 Thus, TCRs have multiple unique selection 

mechanism and structural features that guide pHLA recognition. We have previously 

demonstrated that affinity-enhanced TCRs maintain many of the binding characteristics of their 
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thymically-selected wild-type progenitors, with stronger binding generally being driven through 

the formation of new interactions with both the peptide and HLA surface.43,45,129,204–206 This feature 

likely provides an advantage for generating affinity-enhanced TCRs with the ability to retain a 

similar specificity profile compared to natural, thymically-selected TCRs. 

 

The literature indicates that T cell potency is tuned by a TCR affinity threshold that is optimal in 

the low micromolar to high nanomolar range.116,180,207–211 For soluble bispecific reagents, this 

affinity threshold is controlled at the effector end of the molecule, while the affinity of the pHLA 

targeting end must be optimised according to antigen presentation. For most tumour associated 

pHLAs, their natural presentation levels can be very low (often below 10 copies of each specific 

peptide epitope per cell).19,182 Consequently, binding in the femto- to picomolar affinity range is 

needed to achieve a therapeutically relevant receptor occupancy level; a feat that has been 

achieved for monovalent TCR-based bispecifics.33,175 The literature, together with the data 

presented here, suggests that, with current technologies, engineering a TCR-mimic antibody to 

achieve this affinity range whilst maintaining peptide-selectivity is more challenging.177 Some 

soluble TCR-mimics have been designed as full antibodies, thus achieving much stronger binding 

through avidity effects.179 However, this essentially halves the number of effector molecules per 

target cell; a major issue if antigen expression is already limiting.  

 

Here, we interrogated the molecular basis of pHLA-recognition of a panel of T cell redirecting 

bispecifics using a combination of structural, biochemical and computational approaches. All the 

affinity-enhanced TCRs utilised a canonical native TCR-like binding mode, maintaining broad 

contacts across the peptide backbone. This finding likely represents the advantage of using 

reagents that have been developed from a thymically-selected TCR progenitor. Our data also 

reveal that a native TCR-like binding mode is necessary, but not sufficient for enabling peptide-

selectivity. For instance, despite the 3M4E5 TCR-mimic binding in an almost identical fashion to 

a native TCR, with peptide contacts across the peptide backbone, it still performed poorly in 

cellular cross-reactivity assays. Our MD simulation analysis demonstrated that 3M4E5 bound via 

two main hotspots: one on peptide residue W5 and one on HLA residue R65. These findings were 

mirrored in the randomised pHLA library analysis that demonstrated the A2-SLL-reactive TCR-

mimics were all more degenerate (in terms of amino acid preferences across the peptide backbone) 

as compared to the A2-SLL-reactive affinity-enhanced TCRs and were predicted to select a far 

larger number of unique peptide sequences. Interestingly, this hotspot mediated binding mode has 

also been observed for some natural TCRs, but has been shown to correlate with high levels of 
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TCR cross-reactivity and has been implicated in autoimmunity.23,212 The ESK-1 and Hyb3.3 TCR-

mimics also employed hotspot-binding modes, especially focussed towards residues on the HLA 

surface, and demonstrated loss of peptide-selectivity in biochemical (ESK-1 and Hyb3.3) and 

cellular (Hyb3.3) testing. In contrast, the TCR-based reagents tested all exhibited superior peptide-

selectivity in biochemical and cellular tests and were characterised by binding modes that included 

a greater combination of balanced energetic interactions across the peptide and HLA surface. This 

was exemplified by the NYBR1 TCR (by far the cleanest molecule tested in both the molecular 

and cellular analysis), which also demonstrated a broad energetic binding mode with the majority 

of peptide contacts through side-chain interactions. Although the TCR-mimics selected in this 

study were generated using a different approach to the affinity-enhanced TCRs, our data suggest 

that the reagents based on the natural TCR-scaffold were better able to discriminate between 

different peptides by utilising peptide-specific binding interactions. 

 

Even though we focussed on three published TCR-mimic antibodies because of available 

structures34–36, our data also have implications for other published studies of TCR-mimics. For 

instance, the TCR-mimic ESK-1 has been shown to target the Wilms tumour antigen in mouse 

models178,179, despite evidence demonstrating that the A2-RMF antigen is not expressed.198 This 

finding, combined with the data shown here, suggest that the activities reported for ESK-1 may 

be mediated by recognition of another peptide, or in a peptide-independent fashion. Although it is 

clear that engineering pHLA selectivity is still one of the major challenges for TCR-mimics213, 

there are emerging reagents that exhibit more promising specificity profiles, including reagents 

targeting an HLA-A*02:01 restricted EBV LMP2A426-434 (CLGGLLTMV) epitope214, and an 

alpha-fetoprotein158-166 (FMNKFIYEI) epitope215, the second of which has entered clinical trials 

as a CAR for the treatment of liver cancer. Our data demonstrate the importance of robust 

specificity testing of pHLA-targeting molecules, in line with our own preclinical safety testing 

package216, that should be considered for the development of soluble pHLA-targeting bispecifics.   

 

In summary, we demonstrate that by combining structural and biochemical data with atomistic 

MD simulations, the interactions underpinning pHLA recognition can be dissected in detail and 

can be used to better understand the specificity of pHLA-targeting reagents. Overall, these 

findings extend our understanding of the molecular rules that determine selective recognition of 

pHLA and shed additional light on how TCRs engage pHLA in a peptide-dependent fashion. 
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Finally, these observations also highlight the challenges associated with engineering pHLA-

targeting molecules that can truly mimic TCR-like specificity. 

 

Methods 
 

TCR engineering 

To obtain TCRs with affinity-enhanced for HLA-A*02:01 SLLMWITQC (NY-ESO-1157-165), 

HLA-A*01:01 EVDPIGHLY (MAGE-A3161-134) and HLA-A*02:01 RMFPNAPYL (WT-1126-134), 

the wild-type 1G4, MAGE-A3 and WT1 TCRs were subjected to phage display as previously 

described 175. A panel of high affinity TCRs were obtained with mutations in the α and/or the β 

chain (data not shown). TCRs from these panels were selected for this study according to their 

similarity in affinity to available TCR-mimic antibodies. Additionally, some stronger affinity-

engineered TCRs were selected according to the availability of corresponding TCR-pHLA 

complex structures, to enable direct structural comparisons with the TCR-mimic antibodies. 

 

Construct design, protein expression and purification  

The modified TCRs, the TCR-mimics, β2m and the HLA-A*01:01, and HLA-A*02:01 heavy 

chains were cloned into the pGMT7 vector and expressed in the BL21 (DE3) Rosetta pLysS E.coli 

strain as described previously.110,170 TCR constructs for biophysical analysis were designed to 

include the variable and constant domains of both chains (α and β) with an engineered inter-chain 

disulphide bond as previously described.174 Antibody reagents for biophysical analysis were 

generated as single chain fusions (scFv) with a linker between the variable heavy and light chains 

(the constant domains were not included in the construct). Hyb3.3 scFv expression cassette was 

cloned into pCEP4, and protein expressed in mammalian cells using the ExpiCHO Expression 

System (ThermoFisher Scientific), as it did not express in E. coli. TCR constructs for T cell re-

direction experiments were generated with an anti-CD3 scFv fused to the TCR β-chain as 

previously described (ImmTAC molecules). TCR-mimic antibody constructs for T cell re-

direction experiments were designed as scFv with an anti-CD3 scFv fused to the heavy-chain. The 

HLA-A*01:01 and HLA-A*02:01 heavy chains were expressed with a biotinylation tag (for SPR 

experiments), or without it (for crystallisation screens) and refolded in the presence of β2m and a 

specific peptide, as previously described.98 TCRs and scFv were both refolded and purified using 

a previously described TCR refolding protocol.174 For a 250 ml ImmTAC molecule refold, 6.5 mg 

α-chain was mixed with 16 mg β-chain. The refolds were extensively dialysed against 20 mM Tris 
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pH8 at 8°C and purified by Poros50HQTM 10/100, Poros50HSTM 10/100 (Life Technologies) and 

Superdex S200HRTM 10/300 (GEH) columns.33 

 

Analysis of on-target and off-target T cell reactivity via re-direction using anti-pHLA/anti-CD3 

bispecific reagents 

The activity of the ImmTAC molecules (TCR-CD3 scFv fusions) and the TCR-mimic scFv-CD3 

scFv fusions was tested through their ability to redirect T cells against a range of antigen-positive 

and antigen-negative cell lines (tumour and healthy cells). Incucyte killing assays were performed 

according to the manufacturer’s instructions (Sartorius, UK). Briefly, 100,000 PBMCs per well 

were added to 10,000 target cells per well. Target cells included HLA-A*02:01 and HLA-A*01:01 

positive tumour cell lines, which were positive or negative for expression of target protein, as well 

as a panel of healthy cell lines. Target cells were incubated on plates overnight at 37°C in 5% 

CO2 before addition of ImmTAC molecules, or TCR-mimic bispecific reagents at 10-7 – 10-12 M 

followed by PBMCs and CellPlayer kinetic caspase apoptosis assay kitTM. Cells were scanned 

every 3 hours for 70 hours, and data were quantified using IncuCyte ZOOM softwareTM (Sartorius, 

UK). Results were analysed using GraphPad Prism. For IFNγ ELISPOT assay, experiments were 

performed according to the manufacturer’s instructions (BD BioSciences, UK). Briefly, 80,000 

PBMCs per well were added to 50,000 target cells per well. Target cells included HLA-A*0201 

positive tumour cell lines, positive or negative for expression of target protein, as well as a panel 

of healthy cell lines. ImmTAC molecules, or TCR-mimic bi-specific reagents were added at 10-7 

– 10-12 M and incubated overnight at 37°C in 5% CO2. Data were quantified after development 

using an automated ELIspot reader (ImmunoSpot Series 5 analyser, Cellular Technology Ltd.). 

 

MAGPIX peptide screening 

Affinity-enhanced TCRs and TCR-mimic scFvs were subjected to peptide cross-reactivity 

analysis using a MagPLEX bead kit (Invitrogen, UK). Several common peptides expressed by 

healthy cells were refolded with either biotin-tagged HLA-A*02:01, or biotin-tagged HLA-

A*01:01 (detailed in Table 3). Phagemid-encoded TCRs/TCR-mimics were expressed on the 

surface of bacteriophage M13, fused to capsid protein pIII217, and binding to biotinylated self-

peptide-HLA complexes attached to neutravidin-conjugated MagPLEX™ magnetic beads 

assayed. Positively bound beads were identified by MAGPIX analysis using a phage- specific PE-

conjugated antibody. Peptides generating a signal above background (3 times median intensity of 

all bead regions bound to native helper-phage) were classified as positive binders, and binding 

expressed as a percentage of signal obtained from binding to index peptide in each case.  Averages 
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of triplicate measurements for each interaction were determined within each experiment, and 

percentage binding for each interaction is reported as the average of several experimental repeats. 

SPR Single cycle kinetic analysis  

Purified TCRs and TCR-mimic scFv were subjected to SPR analysis using a BIAcore3000TM. 

Briefly, pHLAs were biotinylated as described previously 150 and were immobilised onto a 

streptavidin-coupled CM5 sensor chip. For alanine scan analysis, 500 RUs of each alanine scan 

mutant were loaded onto individual flow cells. Flow cell one was loaded with free biotin to act as 

a control surface. All measurements were performed at 25°C in PBS buffer (Sigma, UK) at a flow 

rate of 30 µl/min. Binding profiles of the TCRs and TCR-mimic antibodies were determined using 

single cycle kinetic analysis as previously reported.205,206  TCRs and TCR-mimic antibodies were 

injected at a top concentration of around 20 µM, followed by four injections using serial 1/3 

dilutions. KD values were calculated assuming Langmuir binding (AB = B*ABmax / (KD + B)) and 

data were analysed using the kinetic titration algorithm (BIAevaluationTM 3.1).218 

 

Generation of scHLA libraries and panning 

scHLA libraries were generated as previously described (Coles et al. Submitted). Briefly, scHLAs 

were displayed on the surface of phage with the peptide component disulphide trapped in a single 

chain trimer (dsSCT). Diversity was encoded at the peptide level by introducing a flat distribution 

of 19 amino acids (excluding cysteine, to avoid cyclic peptide formation). All 19 amino acids 

were represented at the HLA primary anchors, Pos2 and Pos9, however, to maximise the 

functionality of the library with peptide correctly bound in the antigen binding groove, the amino 

acid distribution was biased towards to known anchor residue preferences for HLA-A*02:01. This 

phagemid library was introduced by electroporation into E. coli  TG1 cells and grown in  2xYT 

amp 2% glucose media to OD600 = 0.5 and HelperPhage added at an infection ratio of ~ 20:1 

phage to E. coli. Phage particles were isolated by PEG precipitation and 0.45 μM filtration. 

Panning was performed using 200nM for pan 1, and then decreasing concentrations (0.048 nM – 

94nM) in subsequent pans to increase selection pressure. Biotinylated affinity-enhanced TCRs 

(1G4_α5β100, 1G4_α5β51 and 1G4_α58β61) and TCR-mimic antibodies (3M4E5, 3M4E5_T2 

and 3M4E5_T3) were captured on streptavidin-coated paramagnetic beads and incubated with the 

library of purified phage particles preblocked in 3% MPBS buffer. Phage particles were eluted in 

trypsin and used to infect early log phase TGI E. coli cells and plated onto YTEag plates at 30°C 

for 16 h. Three rounds of selection were performed. 
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Deep sequencing of pHLA libraries 

DNA was isolated from each glycerol stock by miniprep (Zymoprep II kit, Zymo Research). 

Sequencing libraries were prepared with molecular indexing based on a method described in.219 

Briefly, a primer containing molecular index was annealed to a region upstream of the peptide 

sequence on the scHLA-pIM627 phagemid DNA and single primer extension reaction was carried 

out with Kapa HiFi DNA polymerase (Roche Diagonostics). Following a reaction cleanup with 

ExoProStar (GE Healthcare) and column purification (Macherey-Nagel), second PCR reaction 

was carried out with primers specific to the primer containing molecular index and a reverse 

primer designed to the β2M gene. Sequencing libraries were prepared from purified PCR products 

(Ampure XP beads, Beckman coulter) using NebNext Ultra II DNA library prep kit (NEB) 

according to manufacturer’s instructions. Library QC was performed with Agilent bioanalyser HS 

kit (Agilent biosystems) and library DNA concentrations were measured with Qubit HS dsDNA 

kit (Life technologies). Libraries were sequenced using Illumina V3 SBS chemistry on the MiSeq 

sequencer. Basecalling and sample demulitplexing was performed using MiSeq reporter to 

generate fastq files and were processed with custom analysis pipeline. Peptide repertoire analysis 

was performed using excel and sequence Logos were generated using IceLogo standalone tool.220 

Sequence clustering analysis was performed with GibbsCluster-2.0 web server using default 

settings.221  

 

X-ray crystallography 

Crystals were grown at 18°C by vapour diffusion via the sitting drop technique. All crystallization 

screening and optimisation experiments were completed with an Art-Robbins Phoenix dispensing 

robot (Alpha Biotech Ltd, U.K.). 200 nL of 10-15 mg/ml TCR-pHLA complex mixed at a 1:1 

molar ratio was added to 200 nL of reservoir solution. Intelli-plates were then sealed and incubated 

in a crystallization incubator at 18°C (RuMed, Rubarth Apperate GmbH, Germany) and analyzed 

for crystal formation using a Rock Imager 2 (Formulatrix, Bedford, MA USA). Crystals selected 

for further analysis were cryoprotected with ethylene glycol to 25% and then flash-cooled in liquid 

nitrogen in Litho loops (Molecular Dimensions, UK). For WT1_α7β2-A2-RMF, optimal crystals 

were obtained in 0.1 M HEPES pH 7, 0.1M ammonium, 20% v/v Sok-CP7. For NYBR1-A2-SLS, 

optimal crystals were obtained in Pact premier (Molecular Dimensions) condition B07 (0.2 M 

sodium chloride, pH 6.0, 0.1 M MES and 20% PEG 6000. Diffraction data were collected at 

several different beamlines at the Diamond Light Source, Oxford, using a Dectris Pilatus 6M 

detector. Using the rotation method, 1000 frames were recorded each covering 0.2° of rotation. 

Reflection intensities were estimated with the XIA2 package and the data were scaled, reduced 
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and analysed with AIMLESS and the CCP4 package. TCR/pHLA complex structures were solved 

with molecular replacement using PHASER, using PDB 4I4W as a starting model for pHLA, and 

PDB 3O4L as a starting model for NYBR1 TCR. Accession code WT1_α7β2-A2-RMF: TBD and 

NYBR1-A2-SLS: 6R2L. 

 

MD Simulations and MMPBSA calculations 

Periodic boundary simulations and Molecular Mechanics Poisson–Boltzmann Surface Area 

(MMPBSA) calculations were performed with the Amber16 suite of programs.222 X-ray crystal 

structures of the seven TCR/Fab-pHLA complexes investigated were used as the starting points 

for molecular dynamics (MD) simulations. Missing residues were added using Modeller v9.75 

MolProbity was used to modify histidine tautomerisation states (tautomerisation states used can 

be found in Supp Table S1) and Asn/Gln side chain orientations under the criteria of optimising 

the internal hydrogen bonding network. PropKa 3.0158 was used to check the likely protonation 

states of all titratable residues for pH 7 (all residues were modelled in their standard protonation 

states). Each system was solvated in a rectangular box of water (with all crystallographic waters 

retained), extending at least 10 Å away from any protein atom. Sodium or chloride ions were 

added as necessary to neutralise the total system charge. The ff14SB 60 and TIP3P 159 force-fields 

were used to describe protein and water molecules, respectively. Following minimisation, heating 

and equilibration (see section titled “Structure Equilibration Procedure” below for further details), 

each system was subjected to two, 500 ns long production MD simulations (random velocity 

vectors assigned upon heating) in the NPT ensemble (1 atm, 298 K). Production MD simulations 

were run with the SHAKE algorithm applied, a 2 fs time step and a collision frequency of 1 ps−1. 

An 8 Å direct space non-bonded cut-off was applied with long range electrostatics evaluated using 

the particle mesh Ewald algorithm.72 Hydrogen bonding (including water bridged hydrogen 

bonds) and vdW interactions were evaluated from snapshots saved every 10 ps, using the last 450 

ns of each trajectory (900 ns per TCR/Fab-pHLA). A hydrogen bond was defined as ‘on’ if the 

donor acceptor distance was within 3.0 Å and the donor hydrogen acceptor angle was within 45° 

to 180°. A vdW interaction was defined as ‘on’ if two heavy atoms were within 4 Å of one another. 

 

Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) calculations were performed 

using MMPBSA.py.MPI39, using 25 independent (random velocity vectors assigned upon heating) 

4 ns long MD simulations (see Supporting Information for further details) for each structure. From 

each run, 300 equally spaced snapshots were taken from the last 3 ns of each MD simulation for 

MMPBSA calculations, giving a total of 7500 frames per complex. MMPBSA calculations were 
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performed with an implicit salt concentration of 150 mM, and with 30 explicit water molecules 

(which were all defined as part of the receptor) retained in each snapshot. The 30 closest water 

molecules to any binding site residue heavy atom were retained in each snapshot by using the 

‘closest’ command in CPPTRAJ160, (see section titled “Selection of explicit waters for MMPBSA 

calculations” below for further details).  

 

Structure Equilibration Procedure.  

The following procedure was used to prepare for production MD simulations for both the long 

time-scale (2 x 500 ns) and short time scale (25 x 4 ns) simulations used in this study. First, 

hydrogen atoms and solvent molecules were relaxed with 500 steps of steepest descent followed 

by 500 steps of conjugate gradient (using 10 kcal mol−1 Å−1 positional restraints on all protein 

heavy atoms). The system was then heated linearly from 50 K to 298 K (NVT ensemble) over the 

course of 200 ps (retaining the 10 kcal mol−1 Å−1 positional restraints on all protein heavy atoms). 

The whole system was then minimised for a further 500 steps of steepest descent followed by 500 

steps of conjugate gradient with 5 kcal mol−1 Å−1 positional restraints on all Cα carbon atoms. 

Retaining the Cα carbon restraints, each system was again heated from 25 K to 298 K over the 

course of 50 ps in the NVT ensemble. The Cα carbon restraints were then gently removed in linear 

steps of (5, 4, 3, 2, 1, 0 kcal mol−1 Å−1) of 10 ps each in the NPT ensemble. Following this, 

production MD simulations were run. For NVT simulations, the timestep was set to 1 fs (with the 

SHAKE algorithm applied) and a collision frequency of 1 ps−1 was used with Langevin 

temperature control. Simulations in the NPT ensemble were performed with a timestep of 2 fs 

(with the SHAKE algorithm applied), using a Berendsen barostat for pressure control (1 ps 

pressure relaxation time) and Langevin temperature control (collision frequency of 1 ps−1). 

 

Selection of explicit waters for MMPBSA calculations 

The InterfaceResidues.py script (available at https://pymolwiki.org/index.php/InterfaceResidues) 

run through PyMOL on each crystal structure was used to identify in an unbiased manner the 

binding site residues for each TCR/Fab-pHLA. Criteria for selecting interfacial residues were set 

based on the results of Maffucci et al.223 (Cut-off for change in solvent accessible surface area 

was set to 0.5 Å2 for all residues). Following this, CPPTRAJ160 (part of the AmberTools suite of 

programmes), was used to select the closest 30 water molecules to the selected interfacial residues 

using the ‘closest’ command. Stripping solvent using large residue selections such as the ones 

generated in these calculations can be time consuming if performed on the entire water box. To 

greatly increase the speed of this calculation, we performed two ‘closest’ calculations (one to 
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remove most of the waters in the periodic box, and the second to select the 30 closest waters 

molecules for MMPBSA calculations). An example script of how to do this within CPPTRAJ is 

available upon request. 
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Supplementary Figure S1: – Binding affinity analysis of affinity-enhanced TCRs and TCR-mimics. 

The interaction between each affinity-enhanced TCR, or TCR-mimic with cognate pHLA molecules were 

analysed using surface plasmon resonance. Binding affinities of the affinity-enhanced TCRs and TCR-

mimics were determined using single cycle kinetic analysis, or equilibrium binding analysis (for ESK-1). 

Five injections of each reagent were performed using 3:1 dilution between injections. Raw data (dotted line) 

and fits (solid line) are shown for each plot. Representative data from three independent experiments are 

shown. (A-B) A2-SLL affinity-enhanced TCRs (1G4_α58β61 and 1G4_α5β100), (C-E) A2-SLL TCR-

mimics (3M4E5, 3M4E5_T2 and 3M4E5_T3), (F-G) A1-EVD affinity-enhanced TCRs (MAG-IC3 and 

MAG-IC5), (H) Hyb3-A1-EAD, (I-K) A2-RMF affinity-enhanced TCRs (WT1_α7β2, WT1_α27β2 and 

WT1_α42β2), (L) ESK-1-A2-RMF. 
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Supplementary Figure S2: – Molecular dynamic analysis of the TCR and TCR-mimic-peptide 

interface. Molecular dynamics was performed to access the average number of side chain or main chain 

peptide contacts over time. Average number of hydrogen bonds and vdWs interactions formed per 

frame between the peptide and the TCR/Fab over the course of our long time scale MD simulations. Per-

residue peptide contributions are divided into main (blue and light blue) and side (red and light red) chain 

contributions.  A) 1G4_α58β61-A2-SLL, B) MAG-IC3-A1-EVD, C) WT1_α7β2-A2-RMF, D) 3M4E5-

A2-SLL, E) Hyb3.3-A1-EAD, F) ESK-1-A2-RMF. G) NYBR1 TCR, H) Ratio of total peptide side chain 

against peptide main chain hydrogen bonds (red) and vdWs interactions (blue) for each TCR/Fab-pHLA. 

Ratios are stated above each bar to 3 significant figures. The red and blue dotted lines represent the y-axis 

location for a ratio of 1 for Hydrogen bonds and vdWs interactions respectively. A black dotted line denotes 

the position of an axis break used to allow ESK-1 Fab to be plotted on the same graph. 
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Supplementary Figure S3: Per-residue decomposition of the binding free energy obtained from 

MMPBSA calculations for key regions of (A) 1G4_α58β61-A2-SLL, (B) MAG-IC3-A1-EVD, (C) 

WT1_α7β2-A2-RMF, (D) 3M4E5-A2-SLL, (E) Hyb3.3-A1-EAD, (F) ESK-1-A2-RMF. A more negative 

value indicates increased favourability towards binding. Bars are coloured as follows: blue, less than -1 

kcal mol
-1

; green, between -1 and 1 kcal mol
-1

; and red, greater than 1 kcal mol
-1

. 

 



 

123 

 

 

 

  

Supplementary Figure S4: The activity of IMC-1G4_α58β61, 3M4E5_T2-anti-CD3 and 

3M4E5_T3-anti-CD3 was tested against HLA-A*02:01+/NY-ESO-1+ (NCI-H1755) and HLA-

A*02:01+/NY-ESO-1- (HEP-G2, Ren8 and HISMC) cells lines using Incucyte killing assays. 

Experiments were performed according to the manufacturer’s instructions (Sartorius, UK). 

100,000 PBMCs per well were added to 10,000 target cells per well. Target cells were incubated 

on plates overnight before addition of ImmTAC molecules, or TCR-mimic bispecific reagents 

followed by PBMCs. Cells were scanned every 3 hours for 70 hours. Data are plotted using cell 

death over time. Data from 1 out of 2 donors shown. 
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Supplementary Figure S5: The activity of IMC-MAG-IC3 and Hyb3.3-anti-CD3 was tested 

against HLA-A*01:01+/MAGE-A3+ (HCC1428), HLA-A*01:01+/MAGEA1+ (HCC1428 and 

NCI-H1703) and HLA-A*01:01+/MAGE- (COLO205 and HISMC) cells lines using Incucyte 

killing assays. Experiments were performed according to the manufacturer’s instructions 

(Sartorius, UK). 100,000 PBMCs per well were added to 10,000 target cells per well. Target cells 

were incubated on plates overnight before addition of ImmTAC molecules, or TCR-mimic 

bispecific reagents followed by PBMCs. Cells were scanned every 3 hours for 70 hours. Data are 

plotted using cell death over time. Data from 1 out of 2 donors shown. 
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Supplementary Figure S6: Per-residue decomposition of the binding free energy obtained from 

MM-PBSA calculations for key regions of NYBR1-A2-SLS. A more negative value indicates 

increased favourability towards binding. Bars are coloured as follows: blue, less than -1 kcal 

mol
-1

; green, between -1 and 1 kcal mol
-1

; and red, greater than 1 kcal mol
-1

.  
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Supplementary Table S1. Summary of cancer-targeting TCR-mimic antibodies reported in the 

literature. 

 TCR-mimic Target/peptide HLA-A* In vivo data Structure Refs 

3M4E5 NY-ESO-1/SLIMWITQC 02:01 3M4E5_T2 3M4E5 34,177,224 

ESK-1 WT1/RMFPNAPYL  02:01 ESK-1 ESK-1 36,178,225 

Hyb3.3, G8 MAGE-A1/EADPTGHSY  01:01 Hyb3.3 Hyb3.3 35,181,226 

PR20 PRAME/ALYVDSLFFL 02:01 PR20 No 176 

38 LMP2A/CLGGLLTMV 02:01 38 No 214 

G2D12 GP100/KTWGQYWQV  02:01 No No 227 

1A9, G1 GP100/IMDQVPFSV 02:01 No No 227 

2F1 GP100/YLEPGPVTA 02:01 No No 227 

GPA7 GP100/ITDQVPFSV 02:01 GPA7 No 228 

4A9 hTERT/ILAKFLHWL 02:01 No No 229 

3H2 hTERT/RLVDDFLLV 02:01 No No 229 

M2B1 MUC1/LLLTVLTVV 02:01 No No 230 

7D4 MAGE-A3/FLWGPRALV 02:01 No No 231 

RL4B/3.2G1, 1B10 hCGβ/GVLPALPQV 02:01 RL4B/3.2G1 No 232,233 

3F9 hCGβ/TMTRVLQGV 02:01 No No 233 

1B8 Her2/ KIFGSLAFL 02:01 No No 234 

CAG10 MART-1/EAAGIGILTV 02:01 CAG10 No 235 

Fab-D2 TARP/FLRNFSLML 02:01 No No 236 

T1-116C, T1-29D p53/RMPEAAPPV 02:01 T1-116C No 237,238 

T2-108A p53/GLAPPQHLIRV 02:01 No No 238 

TA2 Tyrosinase/YMDGTMSQV 02:01 No No 182 

RL6A p68/YLLPAIVHI 02:01 RL6A No 239 

RL21A MIF/FLSELTQQL 02:01 RL21A No 240 

8F4 Proteinase 3/VLQELNVTV 02:01 No No 241 

#131 HA-1H/VLHDDLLEA 02:01 No No 211 
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Supplementary Table S2. Histidine tautomerisation state assignments for all MD simulations.  

Structure  HID
a
 Tautomerisation State 

α58β61 TCR Chain A: 3, 70, 74, 93, 114, 145, 260.  

Chain E: 151. 

3M4E5 Fab Chain A: 3, 70, 74, 93, 114, 145, 260.  

Chain D: 51. 

MAG-IC3 TCR Chain A: 3, 70, 93, 260. 

Chain E: 153. 

Hyb3.3 Fab Chain A: 3, 70, 93, 260.  

Chain D: 172, 212. 

Chain E: 95B , 189.  

α7β2 TCR Chain A: 3, 70, 74, 93, 114. 

Chain B: 51. 

Chain D: 77. 

Chain E: 208. 

ESK-1 Fab Chain A: 3, 70, 93, 114.  

Chain D: 192.  

NYBR1 TCR Chain A: 3, 70, 74, 93, 151, 260. 

Chain E: 158.  
aHID corresponds to a histidine residue which is singly protonated on its Nδ1 nitrogen, with all 

other histidine residues simulated as singly protonated on their Nε2 nitrogen. 
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Chapter 5: 

Drivers for High Affinity TCR-pHLA 

Interactions: Insights from Structure 

and Dynamics 
 

The focus in Chapter 4 was to determine protein engineering principles for developing 

TCRs that are highly specific towards their given pHLA target. In this chapter, we now 

turn to determining engineering principles for affinity enhancement of TCRs. In order to 

do this, we performed structural analysis, MD simulations and free energy calculations 

on four case studies of TCR affinity maturation available from the literature. We first 

demonstrated the limitations of contact analysis (either from X-ray crystal structures or 

MD simulations) to rationalise changes in affinity. We then evaluated how the flexibility 

of the TCR had changed over the course of affinity maturation, identifying instances in 

which the apo high affinity (HA) TCR was more rigid than its corresponding apo wild-

type (WT) TCR. This is an energetically favourable effect for the HA-TCR, as the 

entropic penalty associated with solute rigidification upon binding would be reduced 

(relative to the WT-TCR). This beneficial effect was largely found to be “compensated” 

for however, by the HA-TCR binding the pHLA bound structure tighter than the 

corresponding WT-TCR does. Finally, we used free energy calculations to identify at 

the per-residue level what changes/mutations to the TCR have driven affinity 

enhancement across all four case studies. Our free energy calculations were able to 

correctly predict the affinity hierarchy for all four case studies, and comparison of the 

WT and HA energetic footprints show the binding hotspots on the TCR and pHLA to be 

largely preserved. This has important implications in the design of specific TCRs, as 

preservation of the energetic footprint used by the thymically selected WT-TCR is 

arguably more likely to create a non-cross-reactive TCR. In this study, I performed all of 

the structural analysis, MD simulations and free energy calculations. I also wrote the 

draft manuscript.  
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Abstract  

Immuno-oncology (IO) approaches that utilise T-cell receptors (TCRs) are becoming 

highly attractive because of their potential to target virtually all cellular proteins, including 

cancer specific proteins, via the recognition of peptide human leukocyte antigen 

complexes (pHLA) that are presented at the cell surface. However, because natural TCRs 

generally recognise cancer derived pHLAs with very weak affinities (high μM to low mM 

range), efforts have been made by several companies and academic laboratories to 

enhance their affinities, in some cases by several million-fold. Here, we investigate 

whether shared mechanisms drive the enhancement in affinity by studying the crystal 

structures of several published, and one new, affinity enhanced TCRs compared with 

structures of their natural progenitor TCRs. Additionally, we performed in depth 

molecular dynamic simulations to better understand the nature of the affinity 

enhancements. These data demonstrate that affinity enhancements can be achieved within 

the natural TCR-pHLA binding mode via relatively subtle modifications to the interface 

contacts. However, the individual energetic components of the TCR-pHLA interaction 

that governed the affinity enhancements were distinct and highly variable for each TCR 

under investigation. Our data demonstrate that that native TCR binding mode has the 

potential to bind pHLA with antibody-like (up to low pM) affinities via a range of 

different energetic mechanisms. This finding raises an important biological questions: 
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why are natural TCRs selected to bind to pHLA in the μM affinity range? Finally, this 

first comprehensive analysis of affinity enhanced TCRs has important implications for 

the future rational design of affinity enhanced TCRs for cancer therapy.  

 

Introduction   
 

αβ T-cell receptor (TCs) recognition of short antigenic peptide fragments presented at the 

cell surface by human leukocyte antigens (pHLA) governs T-cell immunity. These 

peptide fragments represent virtually all intracellular proteins, allowing TCRs to access a 

much larger pool of potential therapeutic targets than monoclonal antibodies (mAbs), 

which primarily bind to extracellular antigens.32 This advantage has encouraged the 

development of soluble engineered TCRs as therapeutics for viral and cancerous 

diseases.43,174,175 These soluble TCRs have been designed as bispecific T-cell engagers, 

making use of their pre-existing antigen recognition site to bind a specific pHLA molecule 

on a target cell, and an immune effector function to recruit and activate T-cells.26 This 

approach of utilising a soluble bispecific TCR to target cancer has been shown to induce 

tumour regression33 and clinical trials are currently under way for multiple diseases.  

However, unlike mAbs, which can utilise somatic hypermutation to generate affinities for 

their target antigen in the nM-pM range, naturally occurring TCRs bind pHLA with 

relatively weak affinities (~µM) and short half-lives (on the timescale of seconds).18 These 

characteristics are undesirable for therapeutic molecules. Thus, a number of 

approaches46,47,175,242–244 usually focussed on introducing affinity enhancing mutations 

within the six complementarity-determining region (CDR) loops that comprise the TCR 

binding site (see Figure 32A+B), have been used to improve the binding characteristics 

of the TCR-pHLA interaction. One approach, using phage display, has been shown to 

yield TCRs with affinities up to the low pM range, and subsequently much longer half-

lives (in the hours to days range) for their target pHLA complex.175  Soluble bispecific 

TCRs generated using this phage display approach (ImmTAC molecules) can re-direct T-

cell responses against cancer cells, leading to tumour regression33, presenting as a few as 

10 antigen specific pHLA per APC19.  

To ensure coverage against all possible peptide antigens, the ~2x107 TCRs (produced per 

human) are highly cross-reactive128, with prior studies showing that a single TCR is able 

to bind over a million different peptide antigens presented on a single HLA.16 This cross-

reactivity has been rationalised as being induced by specific residue “hotspots” on the 

pHLA, meaning if all or most of these residues are present, the TCR will bind to a 

reasonable degree.212 The dangers of such cross-reactivity (binding endogenous pHLA 

molecules to induce an autoimmune response) for TCRs are largely abrogated by thymic 

selection, in which TCRs with affinities too high for any endogenous pHLA molecule are 

deleted. Whilst high affinity (HA) TCRs have obvious advantages from a therapeutic 
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perspective, the mutations made to increase their affinity come with the risk of inducing 

cross-reactivity with endogenous pHLA molecules.22 It is therefore of significant interest 

to understand if affinity matured TCRs tend to preserve the “energetic footprint”/residue 

hotspots used by the thymically selected wild-type (WT) TCR, as this is likely to reduce 

cross-reactivity with a self-pHLA molecule. Further, the development of computational 

“assays” that would allow one to determine the extent to which mutations have altered 

this energetic footprint could be of value in rational design approaches.  

With many possible mechanisms for affinity enhancement (such as improved 

electrostatics, burial of hydrophobic matter, expulsion of unfavourable water molecules 

and a reduction in the entropic cost of solute binding, by rigidification of the protein(s)), 

one would like to know if there are common methods by which TCRs can enhance 

affinity. It would be very challenging to ascertain the above information experimentally, 

whereas computational methods can provide detailed insight at the atomic level regarding 

the features of affinity enhancement. Further, the development of computational “assays” 

that would allow one to determine the extent to which mutations have altered this 

energetic footprint could be of value in rational design approaches.   

Our study aims to provide fundamental insight into what drives affinity maturation in 

TCR molecules targeting pHLA. Such increased understanding is of direct importance in 

the rational design of high affinity and antigen-selective TCRs. Herein, we consider four 

separate case studies of TCR affinity maturation from the literature, and perform a 

combination of structural analysis, molecular dynamics (MD) simulations and binding 

free energy calculations to determine the drivers for affinity enhancement in all four cases. 

All case studies chosen, crystal structures of both the WT TCR and the corresponding HA 

variant(s) of the TCR in complex with the pHLA were compared, providing input for 

structural analysis and good starting points for MD simulations. Our first case study 

(Figure 32C) is composed of the WT and four HA variants targeting the NY-ESO-1157-

165 cancer-testis antigen-derived peptide (sequence: SLLMWITQC), presented by HLA-

A*02:01 (A2-SLL).43,45,245 The remaining three case studies are pairs of a single WT and 

HA variants with two of the three pairs (DMF5 and MEL5, Figure 32C) targeted towards 

the MART-126–35 peptide bound to HLA-A*0201, with peptide sequence 

ELAGIGILTV.175,246 The final pair of TCRs (Tax A6, Figure 32C) recognise the HTLV-

111–19 peptide, presented by HLA A*0201 with sequence LLFGYPVYV.175  
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Results and Discussion 
 

Structural comparisons of WT and affinity matured TCRs show preservation of the WT 

binding mode. We analysed the crystal structures of all TCR-pHLA complexes 

investigated herein (Table 5), focussing first on how the TCR engaged with the pHLA 

molecule. We first measured how the relative orientation of the TCR variable domains 

(Vα and Vβ) may have changed as a result of affinity maturation by measuring their 

Figure 32: (A) Exemplar structure of a TCR-pHLA complex, with a different portions of 

the TCR and pHLA labelled. (B) Zoom in on the binding TCR-pHLA showing the 6 CDR 

loops responsible for binding the pHLA. (C) Table of all TCR-pHLA complexes 

investigated in this study. Note the α and β-chain framework (FWα and FWβ) are non-

hypervariable loops that flank the CDR loops. (A complete list of all mutations made onto 

each CDR loop can be found in Table S1). 
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TRangle21 parameters. To compare how similar the variable domain orientations are for 

two different TCRs, one can calculate the dTRangle (see Methods) between the two TCRs, 

with values <10° suggesting the orientations are highly similar.21 Comparison of the 

dTRangle values (for WT vs HA, see Table 5) structures show no significant change in the 

relative orientation upon affinity maturation. We also calculated the “docking angle” for 

each TCR (Table 5), which measures the angle at which the TCR engages the pHLA, 

with canonical TCR docking angles in the range of 40-85°.5 For all cases, we observe no 

significant change in the docking angle upon affinity maturation. Interestingly, we note 

that the docking angles of both Tax A6 and DMF5 sit just below the previously described 

canonical docking angle range (Table 5). The above observations suggest (at least in these 

cases) that affinity maturation has not significantly impacted the core scaffold of the TCR 

or how it docks to bind the pHLA.  

 

We next considered the number of hydrogen bonds (H-bonds) and van der Waals (vdWs) 

interactions between the TCR and pHLA (Table 5). No clear relationship between affinity 

and the number of H-bonds and/or vdWs interactions formed was observed. As neither 

measure considers the relative strength or occupancy of different H-bonds or vdWs 

Table 5: Structural analyses of all TCR-pHLAs complexes under investigation. The dTRangle 

is a measure of the TCR variable domains orientational similarity for 2 different structures 

(see Methods).41 For this, we compare the WT to each HA TCR. The docking angle (which 

describes the angle the TCR engages the pHLA) and dTRangle were determined using the 

STCRDAB server. Buried solvent accessible surface area (BSASA) was determined using 

the LCPO algorithm within CPPTRAJ. Hydrogen bonds (H-bonds) are defined for donor-

acceptor distances ≤ 3.5 Å and donor-hydrogen-acceptor angles 135-225°. Van der Waals 

(vdWs) interactions are considered for all heavy atoms within 4 Å of each other. 



 

135 

 

 

contacts, these results are unsurprising. We also note that water-bridged H-bonds (which 

were not considered in Table 5, as resolving water in crystal structures is resolution 

dependent) may play an important role in driving affinity. For example, the crystal 

structure of the HA MEL5 TCR (MEL5 α24β17) contains 9 observed bridged water H-

bonds between the TCR and pHLA, which cannot be compared to the WT MEL5 TCR, 

as its X-ray resolution is not sufficient (3 Å) to place water molecules.206 Comparisons in 

the change of the buried solvent accessible surface area (BSASA) show an increase upon 

affinity maturation in the three pairs (MEL5, DMF5 and Tax A6) of WT and single HA 

variants (Table 5). This observation is consistent with an increase in the number of vdWs 

contacts formed for each of the HA TCRs (Table 5), which suggests that a larger amount 

of interfacial water is expelled upon binding. In the case of the NY-ESO TCRs, no clear 

trend was established between the change in BSASA and affinity.  

Contact analysis of molecular dynamics simulations. Our X-ray analysis showed no 

obvious structural differences between WT and their counterpart HA TCRs, perhaps 

because one cannot estimate the strength/occupancy of H-bonds/vdWs from single 

structures and because bridged water interactions cannot be fairly compared. To overcome 

these limitations, we turned to molecular dynamics (MD) simulations to obtain insight 

into how the number of contacts between the TCR and pHLA change over time and 

consider the role (if any) of molecular flexibility in driving affinity. In order to do this, 

we performed ten 100 ns long MD simulations of all TCRs in both their apo and pHLA 

bound forms (totalling 22 µs of MD simulation). The use of many independent replicas 

(such as the 10 performed here) is important for obtaining reliable and reproducible 

results.147   

From our MD simulations with pHLA bound, we calculated the average number of H-

bonds (including water bridged H-bonds) and vdWs contacts formed between the TCR 

and pHLA (Figure 33A+B). For MEL5 and DMF5 there was a small increase in both the 

average number of H-bonds and vdWs contacts between the TCR and pHLA for the 

higher affinity complexes, contrasting with the NY-ESO and Tax A6 TCRs which showed 

no clear relationship between affinity and number of contacts. To measure the extent to 

which contacts to individual pHLA residues were preserved upon affinity maturation, we 

calculated the total number of H-bonds and vdWs contacts formed between the TCR and 

each pHLA residue. Of the 10 pHLA residues most contacted by the WT NY-ESO TCR, 

8 or 9 are also preserved in the top 10 for all NY-ESO variants (in terms of both the 

average number of H-bonds and vdWs contacts, see Tables S4+S5). For the Tax A6 

TCRs, the affinity matured variant preserved between 9-10 of the top 10 WT contacts 

(Tables S6+S7), whilst for the DMF5 and MEL5 TCRs, between 7-9 of the top 10 WT 

contacts were preserved in the affinity matured variants (Tables S6+S7). These results 

demonstrate that the affinity matured TCRs studied here mostly preserve the contacts 

formed between the WT TCR and the pHLA.  
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We also applied our MD simulations to determine how the average BSASA differed for 

all TCR-pHLA complexes (Figure 33C). Further, the variance of the BSASA can be used 

to provide insight into how the overall rigidity of the binding interface differs for each 

TCR-pHLA complex (a smaller variance would suggest a less flexible binding interface). 

Whilst the DMF5 and MEL5 TCRs show an increase in the BSASA for the affinity 

matured variant (consistent with the crystal structure analysis, Figure 32), the Tax A6 

TCRs show essentially no change in BSASA for the affinity matured TCRs (inconsistent 

with the crystal structure analysis). For the NY-ESO TCRs, a small general increase in 

the BSASA was observed for the affinity matured variants, however these results were all 

within error of one another. Interestingly, all NY-ESO TCRs showed a reduction in the 

variance of the BSASA, suggesting the binding interface has become overall more rigid 

(standard deviations of 157 Å2 for the WT as compared to between 75-90 Å2 for all HA 

TCRs). A reduction in variance for the higher affinity variant was also observed for the 

MEL5 TCRs (from 291 to 182 Å2) and to a lesser extent the DMF5 TCRs (from 365 to 

297 Å2), whilst the Tax A6 TCRs show essentially no difference (from 147 to 154 Å2).  

Reductions in flexibility are not required for affinity maturation. Changes in 

rigidity/flexibility of the unbound (apo) TCRs could occur over the course of affinity 

maturation (due to multiple mutations). Rigidification of the CDR loops (and/or the 

scaffold as a whole) could act as a mechanism by which affinity is enhanced (by reducing 

the entropic penalty associated with rigidification upon binding). We therefore made use 

of our MD simulations of all TCRs in their apo and pHLA bound states to calculate the 

Figure 33: Differences in the average number of H-bonds, vdWs contacts and the 

BSASA from our MD simulations. All WT TCRs are coloured in green and all affinity 

matured TCRs are coloured in purple. Bars for the H-bonds and vdWs contacts are divided 

in two based on HLA-TCR interactions (darker colour and hashed bars) and peptide-TCR 

interactions (lighter colour). The totals obtained are from 10 independent 100 ns long MD 

simulations of each TCR-pHLA complex (using the last 90 ns of each simulation). Error 

bars plotted for A and B are the standard deviation of the averages from the 10 replicas. 

Error bars plotted for C are the standard deviation obtained from combining all snapshots 

from all replicas together.  
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changes in root mean square fluctuation (ΔRMSF) upon affinity maturation (Figure 34). 

Further, we evaluated the significance of the ΔRMSF differences observed by performing 

a two-sample t-test (p < 0.05). Our results demonstrate the importance of using many 

replicas and performing subsequent statistical tests to determine if the observed 

differences in ΔRMSF were in fact significant or not. 

For the NY-ESO TCRs, we observed a large decrease in the flexibility of the CDR3α loop 

for the three variants that contain mutations in this loop (c5c1, c58c61 and c58c62, see 

Figure 34A+B). This increase in rigidity can be rationalised by the substitution of a 

glycine residue for a more conformationally restricted amino acid (G97D). Furthermore, 

the carboxyl side-chain of this mutated residue was able to form an interloop hydrogen 

bond with T99 (S99 in the WT TCR), which would further rigidify the loop. For all three 

other mutated CDR loops in the NY-ESO TCRs (CDR2α, CDR2β and CDR3β), no 

significant changes are observed between the apo TCRs. An increase in the flexibility of 

the HVα loop is observed for TCR variants c49c50, c58c62 and c58c61, which is likely 

induced by mutations made in the CDR2α loop given the close proximity between the two 

loops (see Figure 32) and that fact that c5c1 does not contain CDR2α mutations. 

Comparison of the crystal structures of the CDR2α mutated and WT loops shows the 

mutated loops to be translated further away from the HVα loop in order to form additional 

contacts with the pHLA, meaning the flexibility of the HVα loop is likely increased due 

to a reduction in the number/strength of contacts formed to the CDR2α loop. 

Whilst there was a clear example (CDR3α loop) of affinity maturation increasing the 

rigidity of the apo TCR, it is important to consider that a higher affinity TCR is likely to 

bind the pHLA with increased rigidity relative to the WT. This would mean the beneficial 

increases in rigidity seen for the apo simulations could therefore be offset by a more rigid 

TCR when bound to the pHLA. We therefore calculated the ΔRMSF values for pHLA 

bound simulations of the NY-ESO TCRs (Figure 34C+D). Comparison of the apo and 

pHLA bound ΔRMSFs show that for the CDR3α loop, the increased rigidity in the apo 

TCR was largely compensated for by increased rigidity when bound to pHLA, suggesting 

no beneficial entropy gain for the higher affinity TCR variants with CDR3α mutations. 

Whilst mutations in the CDR2α and CDR3β loops appear to have an insignificant impact 

on the flexibility of either the apo or pHLA bound states, the CDR2β and HVβ loops are 

more rigid in the c5c1 and c58c61 variants pHLA bound form, which share the same set 

of CDR2β loop mutations and a single HVβ loop mutation (T69I). This data would 

therefore suggest these mutations to have an entropically unfavourable impact on the 

overall affinity (which is likely offset by an improved enthalpic contribution, discussed 

later).  
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Figure 34: Differences in flexibility between the affinity matured TCRs variable regions 

and their counterpart WT TCRs. (A–D) ΔRMSF values (HA variant RMSF – WT RMSF) 

for all NY-ESO TCRs, with panels A and B corresponding to the CDRα and CDRβ of the Apo 

TCRs respectively, and panels C and D corresponding to CDRα and CDRβ of the TCRs in 

complex with pHLA respectively. (E–H) ΔRMSF values (HA variant RMSF – WT RMSF) for 

the three pairs of HA and WT TCRs, with panels E and F corresponding to the CDRα and 

CDRβ of the Apo TCRs respectively, and panels G and H corresponding to CDRα and CDRβ 

of the TCRs in complex with pHLA respectively. A more negative ΔRMSF value indicates 

increased rigidity for the HA variant relative to the WT. The points towards the bottom of each 

graph indicate residues with significantly different ΔRMSF values as determined by a two-

sample t-test (p < 0.05). Crosses are used to indicate the locations of mutated regions of the 

TCRs (using the same colouring as line graph). Complete RMSF plots for all TCRs simulated 

are provided in Figures S1-S4.   
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The affinity matured MEL5 TCR contains a total of 17 mutations from the WT spread 

over seven loops and a further two mutations located in the remainder of the variable 

domain scaffold. Comparison of the apo ΔRMSFs (Figure 34E–F) indicated only the 

HVα and CDR2β loops at the TCR binding interface to change significantly upon affinity 

maturation. The large (both positive and negative) scale changes seen in the CDR2β loop 

is likely the result of the large scale rearrangement of this loop upon affinity maturation206. 

The increased rigidity observed in the residues between the CDR1β and CDR2β loops in 

both the apo and pHLA bound simulations can be rationalised by the L44Q mutation, 

which is located ~15 Å from the closest pHLA residue. Whilst this mutation may well 

have had a beneficial effect on the pHLA binding affinity, it is possible this mutation (and 

others) were selected because they instead stabilised the TCR such that it could be better 

expressed on phage particles during affinity selection. This could ultimately lead to 

mutations being taken forward that do not impact the affinity of the TCR-pHLA complex. 

The pHLA bound simulations of the MEL5 TCRs show several regions of increased 

rigidity for the higher affinity variant, including the CDR1α, CDR3α, and CDR3β loops. 

This observation of a generally more rigid binding interface for the higher affinity TCR 

is consistent with the previously discussed reduction in the variance of the BSASA for the 

higher affinity MEL5 TCR.  

Prior thermodynamic analysis on both the WT and HA MEL5 TCR suggested an 

improvement in the entropy term of the binding free energy upon affinity maturation 

(from a TΔS° of ∼8.3 kcal mol−1 to ∼18.1 kcal mol−1).206 The ΔRMSF data discussed 

above suggest this favourable effect is likely not (at least primarily) driven through 

changes in rigidity, and is would instead be the result of an improved of entropy of 

solvation term (which would be consistent with an large increase in the BSASA for the 

higher affinity MEL5 TCR-pHLA complex, see Figure 33C).   

For the pair of Tax A6 TCRs (which differ by four point mutations in the CDR3β loop), 

we observed little significant changes in flexibility for both the apo and pHLA bound 

simulations. This lack of difference (in the pHLA bound simulations) is consistent with 

the BSASA calculations described above and would therefore suggest changes in 

flexibility are largely insignificant in affecting binding affinity. The WT and affinity 

matured DMF5 TCRs only differ by two point mutations (D26Y and L98W on the CDR1α 

and CDR3β loops respectively). Comparison of the WT and affinity matured apo TCR 

simulations (Figure 34E–F) showed virtually no differences in flexibility between the 

WT and the HA variant. In the pHLA bound simulations (Figure 34G–H), no notable 

effect can be observed for the CDR3β mutation. In contrast however, the CDR1α loop 

had increased rigidity in the HA variant. This increased rigidity in the CDR1α loop is 

likely also responsible for the observed increased rigidity seen in the neighbouring 

CDR2α and HVα loops.  
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From the four examples discussed, it is clear that changes in flexibility/rigidity during 

TCR maturation can play a role in increasing or decreasing affinity in some cases (NY-

ESO TCR, MEL5 TCR and to a lesser extent DMF5), but not all (Tax A6). Entropy-

enthalpy compensation should also be considered: increased rigidity of a TCR in complex 

with pHLA (an entropic effect disfavouring binding, which may or may not be fully 

compensated for by increased rigidity in the apo TCR) can aid the formation of favourable 

contacts between the TCR and pHLA (an enthalpic effect favouring binding).   

Energetic hot spots are preserved over the course of affinity maturation. To study how the 

CDR loop mutations have enhanced the affinity between the TCR and pHLA, we 

performed binding free energy calculations using the Molecular Mechanics Generalized 

Born Surface Area (MMGBSA) method.39 This approach (described in more detail in the 

Methods) uses MD simulations to sample conformations of the complex, receptor and 

ligand and subject these snapshots to an empirical calculation in order to determine the 

binding free energy (ΔGbind). 

Comparison of our calculated ΔΔGbind values with the experimentally determined results 

showed that the differences in affinity between the WT and HA TCRs were identified 

correctly. In the case of the set of five NY-ESO TCRs, we obtained an R2 value of 0.78 

between simulation and experiment (Figure 35). In the cases of the three pairs of WT and 

affinity matured TCRs, the increase in affinity was correctly predicted for each pair 

(Figure 35). These results indicate that our simulations are able to identify the (atomic 

level) differences between the WT and HA TCR-pHLA complexes that result in increased 

affinity.  

 

Figure 35: Experimental vs computational ΔΔGbind values obtained from our MMGBSA 

calculations for all TCR-pHLA systems studied. For the three pairs of TCRs with a single 

WT and affinity matured TCR, lines are drawn to guide the eye. Error bars plotted are the 

standard deviation obtained from the 25 replicas performed per complex (see Methods).    
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 Decomposing the calculated binding energies onto the per residue level can indicate 

which interactions are the main drivers for the increased binding affinity in the HA TCR 

variants. Whilst our primary focus was on the differences between WT and HA TCR 

variants (i.e. ΔΔGbind), we showed that WT energetic hotspots across the TCR-pHLA 

interface are largely conserved upon affinity maturation (Figure S5), in line with the 

contacts analysis above.  

Mutations can directly or indirectly drive affinity enhancement. Overall analysis of the 

per-residue decomposition indicated that the NY-ESO TCR loop mutations had a largely 

additive effect on TCR-pHLA binding, i.e. the contribution of mutations in one loop was 

not affected by mutations in other loops. This additivity could be expected, because the 

overall TCR conformation was well preserved across all the NY-ESO TCRs studied. For 

example, the X-ray Cα RMSD (vs. the WT TCR) of the TCR variable domains for all 

affinity matured variants is < 0.4 Å.  

The two different CDR2α loop mutations (see Figure 36A–C) both appear to have 

enhanced affinity via the same mechanism: large hydrophobic (and aromatic) groups were 

introduced where they can be effectively buried at the interface (either S53W or S52F + 

S53W). The G97D mutation in the CDR3α loop was predicted to be unfavourable for all 

three cases in which it occurred (Figure 36A+D). This is not surprising as the mutation 

results in the partial burial of a negatively charged residue upon binding (which will incur 

a large desolvation penalty). However, the mutation had two clear benefits. The first was 

the formation of an internal hydrogen bond within the CDR3α loop to T99 (S99 in the 

WT TCR), which helped to rigidify the Apo HA CDR3α loops relative to the WT (see 

above and Figure 3A). Second, the mutation occurred at the same time as the S96L and 

S99T mutations, which more than compensate for the negative effect introduced by G97D 

(likely partly because the loop is more rigid, so the other residues can form strong and 

persistent interactions with the pHLA). This raises an important point: whilst one mutation 

(in isolation) can have a negative effect on binding affinity, this can be offset by inducing 

improvements in the contribution to binding affinity of other residues nearby. Further 

analysis of the impact of CDR3α mutations suggested enhanced interactions with HLA 

residue R65 and CDR2β residue D54. This improvement may again be in part due to the 

decreased mobility of the loop, which allows for an increase in the total average number 

of hydrogens bonds formed between the TCR and R65 (WT and non CDR3α mutated 

c49c50 combined H-bond occupancies of 2.3 and c5c1, c58c62 and c58c61 occupancies 

of 2.9-3.2, Table S5).  

For the CDR2β mutations, the substitution of the methyl side chain of A50 for a larger 

hydrophobic side chain (A50V or A50I) was primarily responsible for the increased 

binding affinity. Furthermore, the G49A mutation (seen only in c58c61) further increased 

the favourability towards binding, which was in contrast to the more polar G49S mutation 

in c49c50 and c58c62 (Figure 36A+E+F). These results would suggest affinity 

enhancement is driven in the same way as described earlier for the CDR2α mutations (by 

the burial of hydrophobic side chains).  
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Figure 36: NY-ESO variants show largely additive energetic effects upon affinity 

maturation. A. Per-residue ΔG differences between the high affinity (HA) variants and WT-

NY-ESO (i.e. ΔΔG), with positions mutated indicated throughout in red. ΔΔG differences 

between the WT and the given HA TCR are coloured blue if < –0.5 kcal mol–1 (favourable for 

binding) and red if > 0.5 kcal mol–1 (unfavourable for binding), with values in between coloured 

green. (B–G) Colour mapping of the above per residue ΔΔG values onto all carbon atoms of 

the high affinity variants (with the WT-NY-ESO structure shown in green for reference). 

Colour mapping is performed from blue to white to red with blue indicating a favourable change 

and red indicating an unfavourable change for the affinity matured variant. Figures are divided 

to focus on the different regions of the TCR subjected to affinity maturation (CDR2α, CDR3α, 

CDR2β and CDR3β), and subdivided when mutations are not consistent between HA TCRs. 

(c58c61/2 means both c58c61 and c58c62 are shown). 
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The above observations are in contrast with the CDR3β mutations that appeared to have 

increased affinity largely through indirect effects, by increasing the favourability towards 

binding of the CDR1β loop residue E28. This improvement in E28 (seen only in TCRs 

with CDR3β loop mutations) is likely the result of increased preorganisation of E28 for 

binding through an increased strength hydrogen bond between the side chain carboxyl 

group and the backbone of residue V/L94 (average occupancy in WT and c49c50 

simulations is between 0.50-0.56, compared to c5c1, c58c62 and c58c61 where it is 

between 0.83-0.86).  

HLA residue Q155 showed an improvement in affinity for all NY-ESO affinity matured 

TCRs. This includes c5c1 and c49c50 that did not contain any CDR2α or CDR3β 

mutations, respectively, and are the loops responsible for engaging Q155 (see Figure 

36B+C+G), suggesting mutations in either loop (CDR2α or CDR3β) can improve the 

favourability of Q155 towards binding.  

Differences between the WT and HA Tax A6 TCRs all occurred on the CDR3β loop 

(A99M, G100S, G101A and R102Q), and prior structural analysis of the differences 

between the WT and HA complexes suggested the increased affinity to be due to an 

increased number of contacts between the TCR and pHLA.204 Mutations A99M and 

G100S were primarily responsible for the enhanced affinity (Figure 37A+B). In line with 

the prior structural characterisation, we see an increase in the total average number of 

contacts made between the TCR and the pHLA residues A149 and A150, which sit below 

the CDR3β loop residues A99M and G100S. Specifically, the total average number of H-

bonds formed to both A149 and A150 doubled from 0.4 to 0.8 for both residues (Table 

S6), alongside an increase in the total average number of vdWs contacts formed (Table 

S7).  

In the case of MEL5, a total of 19 mutations on 7 loops gave rise to the approximate 3x105 

fold increase in affinity, which was found to be primarily entropically driven.206 It is 

therefore unsurprising to see that alongside the reduced mobility of the affinity matured 

TCR (see Figure 34), several of the most favourable of mutations (CDRα D27F and 

CDRβ G52P and I53F) increased the total amount of buried hydrophobic matter at the 

binding interface (Figure 37A+E–G). This would likely be an entropically favourable 

process due to the expulsion of ordered water molecules that surround these hydrophobic 

or aromatic groups upon binding. The only mutation which showed a large negative effect 

on affinity was V93D CDRα, which can be rationalised in the same manner as seen for 

NY-ESO CDR3α G97D (Figure 36A+D). That is, D93 (V93 in the WT) forms an 

interloop hydrogen bond with K96R, which would help to rigidify the loop (as seen in 

Figure 37E+G) and therefore reduce the entropic penalty associated with binding.  

Interestingly, of the 19 mutations present in MEL5 α24β17, only 9 showed substantial 

energetic differences. Of the remaining 10 mutations, two positions (CRD1α R28L and 

CDR3β T100M) made direct and favourable interactions with the pHLA but were of 

similar strength in both the WT and HA TCR. The other eight mutations did not make 
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direct contact with the pHLA and are instead likely to be involved in regulating the 

flexibility, stability and/or conformational sampling of the TCR. 

Two point mutations (D26Y on CDR1α and L98W on CDR3β) on DMF5 gave rise to an 

approximate 400-fold enhancement in affinity.47 Analysis of the effect of the D26Y 

mutation (Figure 37A+C) suggested that not only is the mutation itself directly 

favourable, but it also enhances the contribution to affinity of K66 on HLA, through the 

formation of a hydrogen bond between the two residues. The reduced favourability 

towards binding observed for the other nearby charged residues (peptide E1 and HLA 

E58) was likely a desolvation effect induced by the burial of the tyrosine side chain (which 

would displace some of the solvent around these charged residues). In the case of L98W 

(Figure 37A+D), the burial of a large hydrophobic residue unsurprisingly leads to 

increased contribution to the binding affinity. 

The affinity matured TCRs discussed here provide examples of mutations whose effects 

are largely localised around the mutation site, as well as mutations that cause significant 

effects on the contributions to binding affinity of residues distal from the mutation site. In 

some cases, such non-local effects can be induced due to a change in the long-range 

electrostatics (in particular when a charged residues is introduced/removed). 

Alternatively, if the motions of different CDR loops are strongly correlated to one another, 

one may see a change in the conformational sampling of both loops upon mutation of 

either loop. A prior study on the degree of coupling between the CDR loops in WT Tax 

A6 and DMF5 found Tax A6 CDR loops to be largely uncoupled, whereas the dynamics 

of DMF5 loops where strongly correlated to one another.123 This would help to rationalise 

the observation that energetic changes in Tax A6 are largely localised to the mutation 

sites, in contrast with DMF5 mutations (Figure 37B–D).  
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Figure 37: Changes in Energetics at the TCR-pHLA Interface upon affinity 

maturation. (A) Per-residue ΔG differences between the three high affinity (HA) 

variants and their counterpart WT TCRs (i.e. ΔΔG), with positions mutated 

indicated throughout in red. ΔΔG differences between the WT and the given HA 

TCR pair are coloured blue if < –0.5 kcal mol–1 (favourable for HA) and red if > 

0.5 kcal mol–1 (unfavourable for HA), with all values in-between coloured green. 

(B–G) Colour mapping of the above per residue ΔΔG values onto all carbon atoms 

of the high affinity variants (with the WT-TCR structure shown in green for 

reference). Colour mapping is performed from blue to white to red with blue 

indicating a favourable change and red indicating an unfavourable change for the 

affinity matured variant respectively. Figures are divided up to show the regions 

which show the major changes upon affinity maturation. 
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Conclusions  
 

Here, we used structural analysis, MD simulations and free energy calculations to 

extensively characterise four case studies of TCR affinity maturation. Our data 

demonstrates the limitations of contact analysis only (both on X-ray structures and from 

MD simulations) for rationalising changes in affinity for TCRs. In some cases (NY-ESO 

and MEL5), rigidification of the apo TCRs occurred upon affinity maturation, which led 

to an entropic advantage for binding affinity. However, this entropic advantage was by 

and large negated for by the HA TCRs binding the pHLA tighter than their counterpart 

WT TCRs do (entropically unfavoured). However, this effect was not significant in the 

other two cases. These results are in agreement with a large scale study on the relationship 

between antibody affinity maturation and rigidity, where in some cases rigidification was 

observed to help drive affinity enhancement, however it was by no means a global trend 

nor a requirement.247 Our free energy calculations reproduce the experimental affinity 

relationships for all four cases studies and demonstrate the energetic footprint was by and 

large preserved upon affinity maturation. This ability to accurately predict affinity 

hierarchies (which we are currently investigating in more detail) has promise in rational 

design efforts. We have demonstrated the use of atomistic simulation to characterise the 

energetic footprint of different HA TCRs, allowing comparison with the their thymically 

selected (WT) counterparts. This could be used to “filter” potential therapeutic candidates 

prior to extensive experimental specificity/safety validation. Our analysis indicates that 

the introduction and burial of large aromatic or hydrophobic side chains is a common 

occurrence in affinity maturation. This observation ties in with the fact that the most 

commonly identified residues in protein-protein binding sites are Trp, Met and Phe.248 

However, relying too much on hydrophobic interactions (vs. more directional and thus 

specific electrostatic interactions) to drive affinity enhancements could have negative 

effects on the specificity of the TCR.  

 

Methods  
 

Molecular Dynamics Simulations. Starting structures for all simulations were obtained 

from previously solved X-ray crystal structures from multiple studies(see Table S2+S3 

for a complete list of structures used).43–45,47,105,204–206,245,249 Molecular dynamics (MD) 

simulations of apo TCR structures were initiated from either the apo X-ray structure 

coordinates (if available) or from the TCR-pHLA bound structure if not. MolProbity75 

was used to determine the optimum tautomerisation states for all histidine residues 

(tautomerisation states used for all simulations are provided in Table S2+S3) and make 

any required Asn/Gln side chain flips (under the criteria of optimising the hydrogen 

bonding network). Protonation states of all titratable residues were assigned using PropKa 

3.0158 for pH 7, leading to all residues treated in their standard protonation states. The 

results of these calculations were visually inspected, and care was taken throughout to 
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ensure consistency in tautomerisation and Asn/Gln flips where appropriate (i.e. same 

settings for the pHLA with different TCR variants). All structures were then solvated in 

an octahedral water box (retaining any crystal waters), ensuring all protein atoms were at 

least 10 Å away from the box boundary, with Na+ or Cl− counter ions added as necessary 

to ensure an overall neutral charge. MD simulations were performed using GPU 

accelerated Amber16222, with the ff14SB force field60 and TIP3P water model used to 

describe protein and water molecules respectively. All systems investigated were 

equilibrated to 300 K and 1 atm in the NPT ensemble (protocol described in the 

Supporting Information). Subsequently, production MD simulations were performed for 

100 ns each with 10 replicas performed per TCR-pHLA or apo-TCR (replicas assigned 

different random velocity vectors during equilibration procedure, see SI Methods). 

Production MD simulations were run using a 2 fs time step with the SHAKE algorithm 

applied to any bond containing a hydrogen atom. An 8 Å direct space non-bonded cut-off 

was applied with long range electrostatics evaluated using the particle mesh Ewald72 

algorithm. Temperature was regulated using Langevin temperature control (collision 

frequency of 1 ps−1), whilst pressure was controlled with a Berendsen barostat (setting the 

pressure relaxation time to 1 ps).  

MD Trajectory and Crystal Structure Analysis. Trajectory and X-ray structure analysis 

was primarily performed with CPPTRAJ160, using frames collected every 10 ps for 

analysis of MD simulations. H-bonds (including water bridged H-bonds) between atoms 

of the TCR and pHLA were defined as formed if the donor acceptor distance was within 

3.5 Å and the donor hydrogen acceptor angle was 180 ± 45° (crystal structure hydrogen 

atom positions were energy minimised prior to hydrogen bond analysis). If two heavy 

(non-hydrogen) atoms were within 4 Å of one another, a vdWs contact was considered to 

be formed between the two atoms. The total number of H-bonds and contacts formed 

between the TCR and a particular pHLA residue were then summed (see Tables S4–S7). 

RMSF and RMSD calculations were performed on the Cα atoms of the relevant residues 

with RMS fitting performed to a consistent set of TCR residues in the variable domains 

that are not highly flexible (N-terminal residues and all CDR loop residues were omitted, 

see SI Methods for further details), therefore ensuring a fair comparison between apo and 

pHLA bound simulations. RMSFs, H-bonds and vdWs contacts were calculated by 

discarding the first 10 ns of simulation time (meaning 10 replicas of 10-100 ns used) to 

allow for structure equilibration. Buried solvent accessible surface area (BSASA) was 

determined using the LCPO algorithm250, available with the “molsurf” command within 

CPPTRAJ160. The six TRangle terms and the TCR-pHLA docking angle was determined 

using the STCRDab webserver.251 The TRangle terms were then used to calculate the 

dTRangle as shown in Equation (14).251  

 𝑑TRangle =  √∑(𝜃𝑖,𝑊𝑇 − 𝜃𝑖,𝐻𝐴 )2  (14) 
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Where 𝜃𝑖,𝑊𝑇  is the ith TRangle parameter for the WT TCR and  𝜃𝑖,𝐻𝐴 is the ith TRangle 

parameter for HA TCR. 

MMGBSA Methodology. The molecular mechanics generalized Born surface area 

(MMGBSA) method is a binding free energy calculation method which has been widely 

used to predict relative binding free energies.85,252 The approach uses a combination of 

MD simulations (for sampling to obtain many snapshots) and empirical calculations (on 

the obtained snapshots) to predict ΔGbind. It is important to note that these calculations 

should not be relied upon to provide accurate absolute binding free energies (i.e. ΔGbind), 

instead they can be used to provide relative binding free energies between similar ligands 

(i.e. ΔΔGbind) and identify residues that contribute (favourably or unfavourably) towards 

binding.85 In the MMGBSA approach, the different contributions to affinity are calculated 

individually and summed together to obtain ∆𝐺𝑏𝑖𝑛𝑑 (see Equation (Eq 7)). 

 ∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑒𝑙 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑝𝑜𝑙 + ∆𝐺𝑛𝑝𝑜𝑙 − 𝑇∆𝑆 (7) 

 

Where ∆𝐸𝑒𝑙 and ∆𝐸𝑣𝑑𝑤  are obtained directly from the molecular mechanics force field 

terms and describe the gas phase interaction energy. The polar and non-polar contributions 

to the solvation free energy are described by ∆𝐺𝑝𝑜𝑙 and ∆𝐺𝑛𝑝𝑜𝑙 respectively. ∆𝐺𝑝𝑜𝑙  is 

calculated by solving the GB equation, whilst ∆𝐺𝑛𝑝𝑜𝑙  is obtained from a function that 

assumes a linear relationship between the solvent accessible surface area and ∆𝐺𝑛𝑝𝑜𝑙. 

Finally, 𝑇∆𝑆 describes the change in entropy of the solute upon binding, most often 

calculated through normal mode analysis (NMA). NMA is computationally expensive 

(for large systems like TCR-pHLA) and also tends to produce large errors that do not 

improve the accuracy of the calculation.253 Furthermore, as it is not possible to decompose 

the results from NMA to a per-residue level, we did not perform NMA for our MMGBSA 

calculations. As shown in Figure 35, we were able to obtain good agreement with 

experiment without this term.  

MMGBSA Procedure. MMGBSA calculations were performed using 

MMPBSA.py.MPI39, using 25 independent (random velocity vectors assigned upon 

heating) 4 ns long MD simulations (separate to the above described 100 ns long 

simulations), starting from the X-ray structure, as this approach has previously been 

shown to provide converged and accurate relative binding free energies for both small 

molecule drugs91 and pHLA binding92. These simulations were run under the same 

conditions as the aforementioned longer timescale simulations (and are described in full 

in the SI). MD Simulations were performed on the complex structure only (often referred 

to as the single trajectory approach), with these simulations used to obtain snapshots of 

the free receptor and ligand. The single trajectory approximation is used throughout the 

literature, as it tends to significantly reduce the energetic noise and improve the 

predictability of the obtained results.84 From each replica, 300 equally spaced snapshots 

were taken from the last 3 ns of each MD simulation for MMGBSA calculations, giving 

a total of 7500 frames per complex. MMGBSA calculations used the GB-Neck2 (i.e. igb 
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= 8) solvation model and an implicit salt concentration of 150 mM. The obtained results 

were decomposed into their per-residue contributions to the total free energy, with the 

values obtained used to calculate the differences between the wild type (WT) and HA 

variants (as plotted in Figures Figure 36+Figure 37).  
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Supporting Information Methods 
 

MD Equilibration Procedure  

The following procedure was used to prepare all systems simulated for production MD 

simulations at 300 K and 1 atm. Furthermore, the equilibration protocol used is identical for 

both our “long” timescale (5 x 100 ns) and “short” time scale (25 x 4 ns) MD simulations. All 

dynamics steps applied the SHAKE algorithm to constrain all bonds containing hydrogen. 

Replicas simulations were initiated from the second heating step of the following protocol (with 

each replica therefore assigned different random velocity vectors at this stage).  

 

First hydrogens atoms and solvent molecules were energy minimised (using 500 steps of 

steepest descent followed by 500 steps of conjugate gradient minimisation). To prevent the 

movement of non-hydrogen and non-solvent atoms during the minimisation, 10 kcal mol−1 Å−1 

positional restraints were used to keep all heavy atoms fixed. Then the solvent was heated 

rapidly from 50 K to 300 K (NVT ensemble, 1 fs timestep) over the course of 200 ps, with the 

previously described restraints still maintained. The positional restraints were then replaced with 

5 kcal mol−1 Å−1 positional restraint on only the Cα carbon atoms and subjected to another round 

of energy minimisation (500 steps of steepest descent followed by 500 steps of conjugate 

gradient). Retaining these positional restraints, the system was heated from 25 K to 300 K over 

the course of 50 ps (NVT ensemble, 1 fs time step). Simulations were then performed in the 

NPT ensemble (1 atm, 300 K, 2 fs time step) by first gradually reducing the 5 kcal mol−1 Å−1 Cα 

carbon restraints over the course of 50 ps. This was done by reducing the restraint weight by 1 

kcal mol−1 Å−1 every 10 ps. The end structure from this run was then used as the starting 

structure for production MD simulations. Simulations performed in the NVT ensemble used 

Langevin temperature control (with a collision frequency of 1 ps−1) and used a simulation 

timestep of 1 fs. Simulations performed in the NPT ensemble again used Langevin temperature 

control (collision frequency of 1 ps−1) and a Berendsen barostat (1 ps pressure relaxation time). 

 

RMS Fitting Procedure 

To ensure fair comparison between the WT and HA TCR structures, RMS fitting (for RMSF 

calculations) was performed using the same set of residues in the TCR variable region. Residues 

excluded from the RMS fitting procedure were the first five N-terminal residues and all CDR 

loop residues (due to their high mobility, which would therefore provide a poor fit). Residues 

used for RMS fitting from Chain A were therefore: 6-22,33-46,55-65,73-94,103-113. Residues 

used for RMS fitting from Chain B were: 6-21,30-47,54-65,73-91,102-111. RMS fitting of MD 

simulation snapshots was first performed to the crystal structure, with this RMS fitted trajectory 

used to create an average structure. Following this, all snapshots were then re-fitted to the 

average structure for the subsequent RMSF calculation. 
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Supporting Information Tables 
 

Table S1: CDR loop mutations for all TCRs under investigation. Wild-type (WT) residues 

subject to mutations are in bold, whilst mutated residues in the affinity matured variants are 

underlined and coloured red.  
TCR CDR1α CDR2α FWα CDR3α CDR1β FWβ CDR2β CDR3β 

NY-ESO 

WT 

c5c1 
c49c50 

c58c62 

c58c61 

N/A  

Res: 51-53 

QSS 

QSS 
PFW 

TPW 

TPW 

N/A 

Res: 95-99 

TSGGS 

LLDGT 
TSGGS 

LLDGT 

LLDGT 

N/A N/A 

Res: 48-52 

VGAGI 

VGAGT 
VSVGM 

VSVGM 

VAIQT 

Res: 94-96 

VGN 

LGN 
VGN 

LGN 

VGN 

Tax A6 

WT 

c134 

N/A N/A N/A N/A N/A N/A N/A 

Res: 98-102 

LAGGR 

LMSAQ 

DMF5 

WT 

YW 

Res: 25-27 

SDR 

SYR 

N/A N/A N/A N/A N/A N/A 

Res: 97-99 

SLS 

SWS 

MEL5 

WT 

α24β17 

Res: 27-30 

DRGS 

FLGS 

Res: 50-54 

IYSNG 

TYREG 

Res: 69-71 

SQY 

SQH 

Res: 93-97 

VAGKS 

DGGRL 

N/A 
Res: 43-45 

GLQ 

GPQ 

Res: 50-53 

SVGI 

WGPF 

Res: 99-104 

TGELF 

MGGWQ 

 

 

 

 

 

Table S2. PDB IDs and histidine tautomerisation state assignments for all NY-ESO MD 

simulations.  
TCR-pHLA Systema HID Tautomerisation Statesb HIE Tautomerisation Statesc 

NY-ESO - WT 

PDB: 2BNR245 

HLA: 3, 70, 74, 93, 114, 145, 260. 

β2m:  

CDRα:  

CDRβ: 151. 

HLA: 151, 188, 191, 192, 197, 263. 

β2m: 13, 31, 51, 84.  

CDRα: 112.  

CDRβ:  27, 45, 134, 164, 204. 

NY-ESO – c5c1 

PDB: 2PYE45 SAME AS WT SAME AS WT 

NY-ESO – c49c50 

PDB: 2F5343 SAME AS WT SAME AS WT 

NY-ESO - c58c62 

PDB: 2P5W45 SAME AS WT SAME AS WT 

NY-ESO - c58c61 

PDB: 2P5E45 SAME AS WT SAME AS WT 

a, All Apo-TCR simulations used the same tautomerisation states as those in the TCR-pHLA simulations.  
b, HID corresponds to a histidine residue which is singly protonated on its Nδ1 nitrogen. 
c, HIE corresponds to a histidine residue which is singly protonated on their Nε2 nitrogen.  
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Table S3. PDB IDs and histidine tautomerisation state assignments for the MD simulations of 

the Tax A6, DMF5 and MEL5 WT and HA TCRs.  
TCR-pHLA Systema HID Tautomerisation Statesb HIE Tautomerisation Statesc 

DMF5 – WT 

PDB: 3QDG249 

HLA: 3, 70, 74, 93, 114, 151, 191, 

192, 260.   

β2m: 51.  

CDRα:   

CDRβ: 32, 50, 138, 168.  

HLA: 145, 188, 197, 263. 

  

β2m: 13, 31, 84.  

CDRα:  

CDRβ: 155, 208.  

DMF5 – YW 

PDB: 4L3E47 SAME AS WT SAME AS WT 

Tax A6 – WT 

PDB: 1AO7105 

HLA: 3, 70, 74, 93, 114.  

 

β2m:  

CDRα:  

CDRβ:  

HLA: 145, 151, 188, 191, 192, 260, 

263. 

β2m: 13,31, 51, 84.  

CDRα:  

CDRβ: 29, 47, 139, 156, 169, 209. 

Tax A6 – c134 

PDB: 4FTV204 SAME AS WT SAME AS WT 

MEL5 – WT 

PDB: 3HG144 

HLA: 3, 70, 74, 114.  

 

β2m:  

CDRα:  

CDRβ: 5, 207.  

HLA: 93, 145, 151, 188, 191, 192, 

197, 260, 263.  

β2m: 13, 31, 51, 84.  

CDRα: 71. 

CDRβ: 137, 154, 167.  

MEL5 – α24β17 

PDB: 4JFF206 SAME AS WT SAME AS WT 

a, All Apo-TCR simulations used the same tautomerisation states as those in the TCR-pHLA simulations.  
b, HID corresponds to a histidine residue which is singly protonated on its Nδ1 nitrogen. 
c, HIE corresponds to a histidine residue which is singly protonated on their Nε2 nitrogen. 
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Table S4: Average number of vdWs contacts formed between the TCR to each pHLA residue for all NY-

ESO simulations. For each TCR-pHLA complex the 10 pHLA residues with the greatest number of 

contacts are coloured red, with their rank provided in brackets. 

 TCR-pHLA Complex 

Residue WT c5c1 c49c50 c58c62 c58c61 

HLA: 19 0.0 0.0 0.2 0.3 0.7 

HLA: 62 1.4 0.7 1.5 0.5 0.6 

HLA: 65 14.6 (4) 19.2 (3) 16.3 (4) 14.3 (4) 19.5 (3) 

HLA: 66 4.2 6.0 (9) 2.4 6.1 (9) 5.6 (10) 

HLA: 68 2.4 2.1 4.2 3.7 3.7 

HLA: 69 2.5 3.7 2.4 4.2 3.5 

HLA: 71 0.0 0.0 0.1 0.1 0.0 

HLA: 72 11.6 (6) 13.3 (4) 16.9 (3) 15.4 (3) 14.8 (4) 

HLA: 73 4.0 5.9 (10) 4.7 (10) 6.0 (10) 6.0 (9) 

HLA: 75 1.7 0.5 3.6 1.8 2.0 

HLA: 76 0.8 1.9 1.4 1.9 1.9 

HLA: 146 0.1 0.0 0.0 0.2 0.1 

HLA: 149 0.0 0.0 0.0 0.3 0.2 

HLA: 150 7.1 (9) 5.0 4.0 2.4 2.4 

HLA: 151 4.9 (10) 5.0 6.5 (8) 5.2 4.8 

HLA: 152 0.3 0.0 0.0 0.0 0.0 

HLA: 154 2.1 2.1 1.4 4.0 4.9 

HLA: 155 16.4 (3) 11.9 (6) 11.5 (6) 9.9 (6) 11.7 (6) 

HLA: 158 0.0 0.0 0.7 0.4 0.6 

HLA: 163 0.0 1.0 0.0 0.7 1.0 

Pep: 4 21.1 (2) 27.8 (2) 21.5 (2) 28.3 (2) 28.0 (2) 

Pep: 5 44.4 (1) 42.7 (1) 44.4 (1) 42.4 (1) 42.8 (1) 

Pep: 6 9.4 (7) 7.8 (7) 9.5 (7) 7.7 (7) 7.7 (7) 

Pep: 7 7.1 (8) 7.4 (8) 6.2 (9) 7.3 (8) 6.7 (8) 

Pep: 8 12.5 (5) 13.1 (5) 12.0 (5) 12.7 (5) 12.7 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5: Average number of hydrogen bonds formed between the TCR to each pHLA residue for all 

NY-ESO simulations. For each TCR-pHLA complex the 10 pHLA residues with the greatest number of 

contacts are coloured red, with their rank provided in brackets. 
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 TCR-pHLA Complex 

Residue WT c5c1 c49c50 c58c62 c58c61 

HLA: 19 0.1 0.3 0.2 0.2 0.4 

HLA: 43 0.0 0.0 0.1 0.1 0.0 

HLA: 58 0.0 0.1 0.0 0.1 0.1 

HLA: 61 0.0 0.0 0.1 0.0 0.1 

HLA: 65 2.3 (2) 3.2 (1) 2.3 (2) 2.9 (1) 3.2 (1) 

HLA: 66 0.5 0.7 0.4 0.7 (10) 0.7 

HLA: 68 0.4 0.6 0.5 (10) 0.4 0.6 

HLA: 70 0.0 0.1 0.0 0.0 0.1 

HLA: 71 0.0 0.0 0.0 0.1 0.0 

HLA: 72 1.7 (4) 1.1 (8) 2.2 (3) 1.0 (7) 0.9 (8) 

HLA: 73 0.6 1.6 (5) 0.7 (9) 1.6 (4) 1.6 (5) 

HLA: 75 0.4 0.3 0.4 0.3 0.2 

HLA: 80 0.0 0.0 0.0 0.1 0.0 

HLA: 146 0.0 0.3 0.3 0.4 0.3 

HLA: 149 0.1 0.1 0.1 0.2 0.2 

HLA: 150 1.5 (6) 1.1 (7) 0.2 0.5 0.6 

HLA: 151 1.0 (8) 0.8 0.3 0.7 0.7 (10) 

HLA: 154 0.2 0.3 0.0 0.4 0.4 

HLA: 155 2.1 (3) 1.8 (4) 1.2 (5) 1.2 (5) 1.6 (4) 

HLA: 163 0.1 0.0 0.0 0.0 0.0 

Pep: 1 0.0 0.1 0.0 0.0 0.1 

Pep: 4 1.1 (7) 1.4 (6) 1.0 (6) 1.2 (6) 1.3 (6) 

Pep: 5 1.0 (9) 0.9 (10) 0.9 (8) 0.9 (9) 0.9 (9) 

Pep: 6 1.7 (5) 1.8 (3) 1.8 (4) 1.8 (3) 1.8 (3) 

Pep: 7 1.0 (10) 1.0 (9) 1.0 (7) 1.0 (8) 1.0 (7) 

Pep: 8 2.5 (1) 2.6 (2) 2.5 (1) 2.6 (2) 2.6 (2) 
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Table S6: Average number of hydrogen bonds formed between the TCR to each pHLA residue for our 

simulations of WT and HA DMF5, MEL5 and Tax A6. For each TCR-pHLA complex the 10 pHLA 

residues with the greatest number of contacts are coloured red, with their rank provided in brackets.   
TCR-pHLA Complex 

 DMF5 MEL5 Tax A6 

Residue WT YW WT α24β17 WT c134 

HLA: 19 0.0 0.0 0.1 0.0 0.0 0.0 

HLA: 43 0.0 0.0 0.2 0.0 0.0 0.0 

HLA: 55 1.1 (5) 1.0 (5) 0.0 0.0 0.9 (9) 1.1 (8) 

HLA: 58 1.0 (6) 0.3 0.1 0.8 0.5 0.5 

HLA: 59 0.2 0.0 0.0 0.0 0.0 0.0 

HLA: 61 0.3 0.1 0.1 0.3 0.0 0.0 

HLA: 62 0.1 0.0 0.0 0.0 0.0 0.0 

HLA: 65 1.6 (3) 1.5 (4) 2.1 (1) 2.0 (2) 2.5 (1) 2.6 (1) 

HLA: 66 0.9 (9) 0.6 (10) 0.0 0.7 1.0 (7) 1.3 (5) 

HLA: 68 0.0 0.1 0.5 (8) 1.0 (9) 0.0 0.0 

HLA: 72 2.4 (1) 2.0 (1) 1.5 (2) 2.7 (1) 0.2 0.2 

HLA: 73 0.2 0.1 0.6 (7) 0.0 0.0 0.0 

HLA: 75 0.5 0.5 0.2 0.0 0.0 0.0 

HLA: 145 0.1 0.0 0.0 0.0 0.0 0.0 

HLA: 146 0.2 0.1 0.0 0.0 0.0 0.0 

HLA: 149 0.2 0.0 0.0 0.0 0.4 0.2 

HLA: 150 0.1 0.0 0.0 0.1 0.4 0.8 

HLA: 151 0.1 0.0 0.0 0.2 0.4 0.8 

HLA: 154 0.0 0.1 0.3 1.3 (6) 0.3 0.2 

HLA: 155 0.9 (7) 0.7 (8) 0.5 (9) 0.8 (10) 1.0 (6) 1.5 (4) 

HLA: 157 0.0 0.0 0.0 1.1 (8) 0.1 0.1 

HLA: 158 0.2 0.2 0.0 0.2 0.3 0.2 

HLA: 161 0.1 0.1 0.0 1.1 (7) 0.2 0.3 

HLA: 162 0.0 0.0 0.0 0.1 0.0 0.0 

HLA: 163 0.5 0.5 0.4 (10) 0.6 0.9 (8) 0.9 (10) 

HLA: 166 0.8  0.4 0.9 0.1 1.4 (4) 1.1 (9) 

HLA: 167 0.3 0.4 0.0 0.5 0.5 0.5 

HLA: 170 0.0 0.1 0.4 0.0 0.1 0.1 

Pep: 1 1.8 (2) 1.7 (3) 0.6 (6) 1.5 (4) 0.0 0.0 

Pep: 2 0.5 0.7 (9) 0.2 0.4 0.7 0.5 

Pep: 3 0.1 0.0 0.0 0.0 0.0 0.0 

Pep: 4 1.3 (4) 1.8 (2) 1.2 (3) 1.4 (5) 2.2 (3) 1.9 (3) 

Pep: 5 0.1 0.2 0.1 0.0 1.1 (5) 1.1 (7) 

Pep: 6 0.0 0.1 0.2 0.1 0.9 (10) 1.2 (6) 

Pep: 7 0.8 (10) 0.7 (7) 0.9 (5) 1.6 (3) 2.3 (2) 2.1 (2) 

Pep: 9 0.9 (8) 0.8 (6) 0.4 0.2 0.0 0.0 
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Table S7: Average number of vdWs contacts formed between the TCR to each pHLA residue for our 

simulations of WT and HA DMF5, MEL5 and Tax A6. For each TCR-pHLA complex the 10 pHLA 

residues with the greatest number of contacts are coloured red, with their rank provided in brackets.  
TCR-pHLA Complex 

 DMF5 MEL5 Tax A6 

Residue WT YW WT α24β17 WT c134 

HLA: 43 0.0 0.0 0.4 0.0 0.0 0.0 

HLA: 55 3.0 3.5 0.0 0.0 2.7 3.6 

HLA: 56 0.0 0.2 0.0 0.0 0.0 0.0 

HLA: 58 0.1 2.9 0.3 2.0 0.1 0.5 

HLA: 59 1.2 2.3 0.0 0.3 0.4 1.0 

HLA: 61 0.0 0.9 0.0 0.0 0.0 0.0 

HLA: 62 0.0 3.2 1.6 0.2 0.0 0.0 

HLA: 63 0.0 0.3 0.0 0.0 0.0 0.0 

HLA: 65 7.1 (4) 8.5 (3) 13.9 (1) 19.9 (2) 17.1 (3) 17.1 (2) 

HLA: 66 4.1 (9) 8.3 (4) 1.8 4.0 8.3 (6) 9.1 (6) 

HLA: 68 0.0 0.0 2.2 1.6 2.7 2.8 

HLA: 69 5.6 (7) 7.1 (5) 3.6 (9) 3.1 5.7 (8) 5.7 (9) 

HLA: 70 0.1 0.5 2.3 1.4 0.0 0.0 

HLA: 72 10.4 (1) 12.2 (1) 8.0 (4) 25.4 (1) 2.2 2.5 

HLA: 73 1.3 1.5 2.9 1.7 2.2 2.1 

HLA: 75 1.3 1.7 0.9 6.6 (8) 0.0 0.0 

HLA: 76 1.7 2.1 1.3 4.2 (10) 0.0 0.0 

HLA: 145 0.0 0.1 0.0 0.0 0.0 0.0 

HLA: 146 0.0 0.8 0.0 0.0 0.0 0.0 

HLA: 149 0.0 0.7 0.0 0.0 0.8 0.2 

HLA: 150 0.8 4.8 (9) 0.0 0.1 5.1 (9) 8.4 (8) 

HLA: 151 0.2 0.0 1.0 0.7 3.5 4.6 (10) 

HLA: 152 0.0 0.0 0.0 0.0 0.5 1.2 

HLA: 154 0.1 0.6 4.2 (8) 6.3 (9) 1.2 1.9 

HLA: 155 7.6 (3) 5.8 (8) 9.2 (2) 10.4 (3) 13.3 (4) 12.9 (4) 

HLA: 157 0.0 0.0 0.0 8.0 (6) 0.5 0.1 

HLA: 158 2.1 1.8 1.4 2.2 2.3 1.6 

HLA: 159 1.9 1.6 0.7 1.4 0.9 0.8 

HLA: 161 0.0 0.0 0.0 2.2 0.0 0.1 

HLA: 162 0.0 0.0 0.0 0.3 0.0 0.1 

HLA: 163 1.7 2.0 3.5 (10) 2.8 2.4 2.6 

HLA: 166 1.0 1.8 4.3 (7) 0.4 4.2 (10) 3.6 

HLA: 167 1.4 2.7 0.3 4.2 2.2 2.0 

HLA: 170 0.7 1.7 1.5 0.7 2.1 1.0 

Pep: 1 6.5 (5) 6.1 (6) 0.8 4.2 2.8 3.2 

Pep: 2 2.3 2.0 0.4 1.2 1.6 1.2 

Pep: 3 1.7 1.7 1.2 2.1 0.2 0.0 

Pep: 4 8.4 (2) 9.1 (2) 5.5 (5) 8.7 (5) 9.5 (5) 8.9 (7) 

Pep: 5 5.9 (6) 6.1 (7) 8.1 (3) 6.9 (7) 25.5 (1) 26.8 (1) 
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Pep: 6 1.9 0.1 2.3 2.9 3.0 2.7 

Pep: 7 4.2 (8) 4.3 (10) 5.1 (6) 9.3 (4) 7.4 (7) 9.3 (5) 

Pep: 8 2.7 0.0 1.8 3.0 17.2 (2) 17.1 (3) 

Pep: 9 4.0 (10) 0.0 0.2 2.1 0.0 0.0 
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Supporting Information Figures 
 

 

Figure S1: Cα RMSF values for all Apo (A + B) and pHLA bound (C + D) NY-ESO 

TCRs simulated. The α-chain RMSFs for the apo and pHLA bound simulations are plotted 

in panels A and C respectively, whilst the β-chain RMSFs for the apo and pHLA bound 

simulations are plotted in panels B and D respectively. Below each plot is the p-value 

obtained from a two-sample t-test between the WT and each affinity matured NY-ESO 

TCR (following the same colour scheme). A red dotted line is plotted at a p-value of 0.05, 

which is the cut-off used to determine significance. 
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Figure S2: Cα RMSF values for both Apo (A + B) and pHLA bound (C + D) DMF5 

TCRs simulated. The α-chain RMSFs for the apo and pHLA bound simulations are plotted 

in panels A and C respectively, whilst the β-chain RMSFs for the apo and pHLA bound 

simulations are plotted in panels B and D respectively. Below each plot is the p-value 

obtained from a two-sample t-test between the WT and the high affinity DMF5 TCRs. A 

red dotted line is plotted at a p-value of 0.05, which is the cut-off used to determine 

significance. 
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Figure S3: Cα RMSF values for both Apo (A + B) and pHLA bound (C + D) MEL5 

TCRs simulated. The α-chain RMSFs for the apo and pHLA bound simulations are plotted 

in panels A and C respectively, whilst the β-chain RMSFs for the apo and pHLA bound 

simulations are plotted in panels B and D respectively. Below each plot is the p-value 

obtained from a two-sample t-test between the WT and the high affinity DMF5 TCRs. A 

red dotted line is plotted at a p-value of 0.05, which is the cut-off used to determine 

significance. 
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Figure S4: Cα RMSF values for both Apo (A + B) and pHLA bound (C + D) Tax A6 

TCRs simulated. The α-chain RMSFs for the apo and pHLA bound simulations are plotted 

in panels A and C respectively, whilst the β-chain RMSFs for the apo and pHLA bound 

simulations are plotted in panels B and D respectively. Below each plot is the p-value 

obtained from a two-sample t-test between the WT and the high affinity DMF5 TCRs. A 

red dotted line is plotted at a p-value of 0.05, which is the cut-off used to determine 

significance. 
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Figure S5: Changes in the energetic footprint between the WT and affinity matured 

TCRs. For all TCR-pHLA complexes, the HLA (top) and TCR (bottom) structures are 

plotted as surfaces with the peptide shown in both structures as sticks. All plots are colour 

mapped according to the MMGBSA per residue decomposition results, going from blue 

(favours binding) to white (no preference) to red (disfavours binding). Separate scaling is 

used for each of the 4 sets of TCRs. All pHLA and TCR structures are shown in the same 

orientation, such that the peptide N-terminus is left and the C-terminus right. Several 

mutations sites are indicated on the high affinity variants (purple labels: CDRα mutations; 

green labels: CDRβ mutations). 
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Chapter 6: 

Conclusions and Future Work  
 

The work from this thesis focussed on gaining fundamental insights into TCRs and their 

therapeutic targets, pHLA molecules. Chapter 3 demonstrated how different peptide 

cargo can tune the molecular flexibility of the entire HLA molecule, including areas distal 

from the peptide binding site. Whilst it is clear that different peptides will modulate the 

TCR recognition process both directly (through peptide-TCR interactions) and indirectly 

(through HLA-TCR interactions), how different peptide cargo could alter the interaction 

between the pHLA and the CD8 co-receptor (required for an immune response, see 

Section 1.3) remains an open question. Furthermore, HLA Class I (or II) pathways 

involve many protein-protein interactions prior to presentation on the cell surface8,9, 

meaning the peptide cargo could play an important role in tuning these interactions as 

well. One should also consider how impactful these changes in peptide cargo are on the 

overall conformational dynamics of the pHLA molecule, and therefore how impactful it 

is in modulating the pHLA molecules interactions with other proteins. For example, 

although we have identified several statically significant differences in flexibility for 

regions of the HLA (which are peptide cargo dependent), the effect/impact of these 

differences may still be too subtle to play an important role in the regulation of 

immunological interactions/pathways. Only through further experimentation and 

simulation could one attempt to determine the significance/role of peptide dependant 

tuning of the pHLA molecule in immunological pathways.  

To further the work outlined in Chapter 3, an increased understanding of how the peptide 

communicates conformational changes to the HLA could be achieved by studying many 

more peptides in increased detail. Our MD simulations of six relatively different peptide 

sequences (as much of the variation in the sequences was in the N and C-termini, which 

are the residues which primarily contact the HLA, see Section 1.4) consistently observed 

the C-terminal peptide residues to be primarily responsible for communication with the 

HLA. One could therefore ask if the C-terminal residues of all peptides that binds the 

HLA isoform studied in Chapter 3 are consistently responsible for the majority of the 

communication between the peptide and HLA, and if so whether this extends to all HLA 

Class I molecules. Regardless of whether the above questions are true or not, studies of 

this nature would help to inform on how to tune the conformational dynamics of the pHLA 

molecule. This could be of use in vaccine design using peptide-mimetics.254 One could 

argue that it would be most beneficial to replicate as best as possible the dynamics induced 

by the antigenic peptide onto the HLA with the peptide-mimetic. Follow on simulations 

should also consider including a lipid bilayer into the MD simulations, in order to be 

closer to the biologically relevant state.  
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As stated above, the impact of peptide dependant tuning of the pHLA molecules 

conformational dynamics has yet to be explored. One such area that could be focussed on 

is how different peptide cargo modulate the strength of the interaction between the pHLA 

and the CD8 co-receptor (which binds the pHLA molecule far from the peptide binding 

site). A study like this would also have the benefit of providing insight into the 

conformational transitions that occur to produce an immune response from the T-cell. 

However, studying the formation of a productive immune synapse (interface between T-

cell and APC) does pose several technical challenges, with the first being correctly 

representing the biologically relevant state(s). Prior studies have shown multiple 

simultaneous TCR-pHLA binding events are required to occur between a given T-cell and 

the antigen presenting cell (APC) in order for an immune response to actually be 

triggered.168 These studies have found at least three simultaneous TCR-pHLA complexes 

needed to be formed (with higher numbers possible and perhaps even more common).168 

This could therefore make simulating the biologically relevant state(s) challenging. A 

previous MD simulation study consisting of just one TCR-pHLA complex, one CD8 co-

receptor and two lipid bilayers consisted of 329,265 atoms,255 which is already large by 

all-atom MD simulation standards. Given the likely requirement to simulate potentially 

multiple copies of the TCR-pHLA and CD8 co-receptors, this number will become even 

larger. Whilst simulations of this size are possible with all-atom MD (a recent 1 µs long 

all-atom study on a HIV capsid containing over 64 million atoms demonstrates this256), 

one would likely need specialist equipment for (reasonably long) simulations of this size 

which are not currently available to most academic labs. One could instead consider 

applying a coarse-grained force field to make the project more tractable. The loss of 

accuracy when switching from all-atom MD to coarse-grained models is likely to be 

problematic, especially as protein-protein interactions are known to be poorly described 

by coarse-grained models (protein-protein interactions tend to be over stabilised and end 

up aggregating with one another).257 

A potentially better suited part of the immune system to study is the process known as 

“peptide editing”, whereby chaperones are used to load peptides onto HLA Class I 

molecules before they are transported to the cell surface.258 Recently solved crystal 

structures of the chaperone TAP-binding protein-related (TAPBPR) in complex with 

pHLA molecules demonstrates they play an active role in both dislodging low affinity 

peptides and loading high affinity peptides onto the HLA.149,259 TAPBPR inserts a loop 

into the HLA F-pocket (C-terminal binding site of the peptide), which can dislodge low 

affinity peptides (for the given HLA) and be dislodged by high affinity peptides (for the 

given HLA).  Alike HLA Class I molecules, TAPBPR is also membrane bound and binds 

to a large portion of the pHLA, including regions distal from the peptide binding groove. 

In Chapter 3 we found several of these regions show significantly different flexibility 

dependant on the peptide cargo, making this protein-protein interaction a good system to 

study in order to evaluate the impact of different peptide cargo. Furthermore, whilst 

crystal structures have captured snapshots of this exchange mechanism, MD simulations 

could provide a much greater deal of insight into how these large scale conformational 
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changes occur, further enhancing our fundamental understanding of this immunological 

mechanism. These large scale conformational changes would be hard to study with 

“normal” MD simulations as they are likely to occur on the µs-ms timescale (making them 

very computationally expensive to sample with normal MD simulations). Enhanced 

sampling techniques such as Gaussian accelerated MD260 (GaMD) or Hamiltonian replica 

exchange261 (HREX) could therefore be used to accelerate the observation of rare events, 

making the project more feasible.  

Work in Chapters 4 and 5 focussed on determining engineering principles for generating 

high specificity and high affinity TCRs. In terms of specificity, TCRs that bind with a 

broad energetic footprint and make interactions with several peptide residues (particularly 

with the peptide side chains) tend to show increased specificity. Additionally, the affinity 

of TCRs can be enhanced by numerous mechanisms, with our findings suggesting that the 

burial of large hydrophobic or aromatic residues are commonly used to enhance affinity. 

The above observations are relatively straight forward to rationalise, and arguably of more 

importance is the validation of computational approaches that allow us to investigate these 

phenomena. Of particular note is the MMPB/GBSA decomposition procedure, which 

provides a measure of each residue’s “favourability” towards being in the bound vs 

unbound state. Care should be taken when interpreting the meaning of a “favourable” or 

“unfavourable” residue (in particular for the purpose of rational design). This is because 

whilst an individual residue may be determined by the decomposition to be unfavourable, 

it could have an overall positive impact on the binding affinity, by increasing the 

favourability towards binding for its neighbouring residues. Examples of this can be found 

in Chapter 5 (see Figure 30+Figure 31). For instance, the NY-ESO TCR mutation G97D 

was calculated to be unfavourable for that residue (likely due to desolvation of the charged 

side chain), but overall had a favourable effect on the binding affinity, by rigidifying the 

apo CDR3α loop and improving the quality of other CDR3α residues interactions with 

the pHLA. An alternative to decomposition analysis is computational alanine scanning, 

for which there are two versions available for the MMPB/GBSA approach (and more 

generally to most computational binding free energy calculation methods).39 In the first 

version, a whole new set of MD simulations are run on the alanine variant and 

MMPB/GBSA calculations are run on these new trajectories. In the second version, the 

side chain of the alanine variant is simply deleted from the previously performed WT MD 

simulations and MMPB/GBSA calculations are performed on these trajectories. Whilst 

both methods are slower than decomposition analysis (as only one MMPB/GBSA 

calculation is required for decomposition), the second alanine scanning version is notably 

faster than the first because it requires no additional MD simulations. All three methods 

ultimately provide different information and it is up to the end user to decide what is most 

relevant and most useful to them.  

Further, the MMPBSA calculations in Chapter 4 were able to rationalise the specificities 

of different TCRs or TCR-mimics, whilst the MMGBSA calculations performed in 

Chapter 5, showed how one could compare the energetic footprints of the WT and 

affinity matured TCRs. This demonstrates how MMPB/GBSA calculations could be used 
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to predict the specificity of a given TCR towards its pHLA target, and therefore it’s 

potential use to filter which TCR variants are taken forward for experimental 

specificity/safety testing.   

The work in Chapter 5 highlighted the relatively common occurrence of large aromatic 

or hydrophobic side chains being buried into the binding site to enhance affinity, which 

is in line with observations that tryptophan, methionine and phenylalanine are the most 

commonly observed residues in protein-protein binding sites.248 If one wishes to take 

advantage of the hydrophobic effect (the entropically favourable expulsion of ordered 

water molecules at the binding interface to become “bulk-like” and therefore more 

disordered), computational calculations on the thermodynamics of water at the binding 

interface of the WT TCR-pHLA complex could be performed. Several such methods exist 

of differing levels of accuracy and speed (e.g. ordered from fastest/most approximate to 

slowest/most accurate: 3D-RISM262, GIST263 or Grand Canonical Monte Carlo264 

methods) and have been used extensively in small molecular drug discovery to rationalise 

quantitative structure–activity relationship models.265–267 The identification of 

unfavourable water binding sites could then lead one to perform experimental or 

computational mutagenesis studies on residues near to these regions (to form new contacts 

that are likely to lead to an increase in affinity as the water molecules they replace are 

relatively unstable). Further, favourable and highly ordered water molecules bound to the 

pHLA which currently do not contact the TCR are likely to be a good target for 

engineering a water bridged hydrogen-bond between the TCR and pHLA (because the 

entropic penalty associated with binding the water molecule has already been largely 

paid). Interestingly, a previous docking study on a TCR-pHLA complex showed an 

improved relationship with experimental affinity data by the inclusion of a water molecule 

that formed a bridged hydrogen bond.268  

Our simulations in Chapter 5 were able to reproduce the experimental affinity 

relationships observed between the WT and affinity matured variants. In work not shown 

in this thesis (as it is currently underway), we are testing the applicability of 

MMPB/GBSA calculations as a medium throughput screening approach for 

computational affinity maturation of TCRs. The amount of MD simulation time required 

(in Chapters 4 and 5 we use 25 x 4 ns per TCR-pHLA) for MMPB/GBSA calculations 

make it far too computationally expensive for high throughput screening. Instead, a 

docking approach such as those detailed in Section 1.8.1 would be far more suited for 

this. Following a docking calculations to predict higher affinity variants, the top X number 

of variants could be screened with MMPB/GBSA to reduce the number required to take 

forward experimentally (where X is a reasonably small number, say 30–100).  

Given the above sections on the possible applications of this work and the methods used, 

a suggested protocol for the use of computation towards TCR engineering is provided 

below. Ideally, at the beginning of the project an experimentally validated pHLA target 

along with a WT-TCR which binds to this pHLA will have been identified and crystallised 

in complex with each other. If the crystal structure is not available, a necessary 
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combination of homology modelling and docking (perhaps with TCR specific docking 

algorithims52) could be used to generate the starting model for rational design. At this 

point, the WT-TCR-pHLA complex should be thoroughly characterised with both 

MMPB/GBSA decomposition analysis and water thermodynamics calculations. The 

information gleaned from these calculations can be used to suggest residues on the TCR 

that one should screen for beneficial mutations, with considerations towards both affinity 

and specificity (as outlined in Chapter 4). High throughput computational docking should 

now be performed on these residues to identify possible mutations that enhance the 

binding affinity. The water thermodynamics calculations used above could be combined 

with water placement algorithms269 to include highly energetically favourable water 

molecules as part of the receptor in these docking protocols. Following the identification 

of possible beneficial mutations, the top portion can be subjected to experimental testing 

or MMPB/GBSA calculations to re-rank the results and reduce the number of variants 

subjected to experimental testing. If MMPB/GBSA calculations are performed on the 

variants, this information can later be used to predict which variants are more likely to 

have a better specificity profile and should be prioritised for experimental 

specificity/safety validation (after confirming they are of high enough affinity). Several 

iterative rounds of computational mutagenesis and screening may need to be performed 

to obtain the target affinities.  

In conclusion, the work from this thesis has extensively characterised the TCR-pHLA 

interaction. This has provided a foundation for several areas of future work, in particular 

in the use of computation in the rational design of TCRs as therapeutics.  
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Appendix Chapter 1: Understanding 

the Role of Heat Capacity in Enzyme 

Catalysis  
 

The final two chapters included in this thesis are publications from collaborative projects 

produced during my PhD thesis. These publications are however not focussed on or 

around TCRs (instead enzymes). To allow for a more straightforward focus in my thesis, 

both of the following chapters have instead been included as appendices only.  

In this first chapter we used a combination of experiment and computation to gain insight 

into the heat capacity of catalysis (Δ𝐶𝑃
‡
), which is a thermodynamic parameter that can be 

incorporated into the Eyring equation to describe a non-linear relationship between 

temperature and enzyme activity that has been observed in several enzymes and cannot 

be explained by unfolding. Δ𝐶𝑃
‡
 is a measure of the change in the distribution and 

frequency of vibrational (and rotational and translational) modes between the ground and 

transition state. As isotope effects are driven by changes in the frequency of vibrational 

modes between isotopologues, we experimentally determined 𝛥𝐶𝑃
‡
 for a number of 

different substrate isotopologues using the model enzyme glucose dehydrogenase (GDH), 

which catalyses the oxidation of several sugars.   

We found small isotopic substitutions (which would have a direct effect on the value of 

ΔCP
‡
 on the order of a few j mol−1 K−1) were able to lead to large scale changes in 𝛥𝐶𝑃

‡
 on 

the kj mol−1 K−1 level. This would suggest small changes in substrate vibrational modes 

are able to give rise to relatively large changes in the distribution/magnitude of vibrational 

modes between the ground and transition state. Our QM cluster model of the enzyme 

active site predicted ~j mol−1 K−1 changes in ΔCP
‡
 upon isotopic substitution, suggesting 

the majority of the change ΔCP
‡
 is sourced from the remainder (not the active site) of the 

enzyme.  

My role in this project was to construct a QM cluster model of the enzyme reaction 

mechanism. This was used to 1) determine the chemical mechanism of the reaction (which 

we obtained to be stepwise with hydride transfer rate limiting, in agreement with the 

experimentally determined KIEs, and 2) simulate the effect of isotopic substitutions with 

the described cluster model, to predict changes in Δ𝐶𝑃
‡
 for different isotopologues.  
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Abstract: Understanding how enzyme catalysis varies with temperature is key to 

understanding catalysis itself, and ultimately, how to tune temperature optima. 

Temperature-dependence studies inform on the change in heat capacity during the 

reaction, Δ𝐶𝑃
‡
,  and we have recently demonstrated that this can expose links between the 

protein free energy landscape and enzyme turnover. By quantifying Δ𝐶𝑃
‡
, we capture 

information on the changes to the distribution of vibrational frequencies during enzyme 

turnover. The primary experimental tool to probe the role of vibrational modes in a 

chemical/biological process is isotope effect measurements, since isotopic substitution 

primarily affects the frequency of vibrational modes at/local to the position of isotopic 

substitution.  We have monitored the temperature-dependence of a range of isotope effects 

on the turnover of a hyper-thermophilic glucose dehydrogenase. We find a progressive 

effect on the magnitude of Δ𝐶𝑃
‡
 with increasing isotopic substitution of D-glucose.  Our 

experimental findings, combined with molecular dynamics simulations and quantum 

mechanical calculations, demonstrate that Δ𝐶𝑃
‡
 is sensitive to isotopic substitution. The 

magnitude of the change in Δ𝐶𝑃
‡
 due to substrate isotopic substitution indicates that small 

changes in substrate vibrational modes are ‘translated’ into relatively large changes in the 

(distribution and/or magnitude of) enzyme vibrational modes along the reaction. 

Therefore, the data suggest that relatively small substrate isotopic changes are causing a 

significant change in the temperature-dependence of enzymatic rates. 

KEYWORDS Heat capacity, isotope effect, enzyme, catalysis, temperature-dependence  

Isotope effects are one of the most powerful tools to investigate chemical mechanism and 

the physical chemical underpinnings of catalysis.270 Enzyme mechanistic studies often 

employ kinetic and binding isotope effects, KIE and BIE, to access information on 
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specific steps in enzyme catalysis and to test the role of protein ‘dynamics’ in enzyme 

turnover.271–273 The power of isotope effects lies in the simplicity of their physical origin. 

That is, isotopic substitution decreases the frequency of all vibrational modes, but does 

not affect the electronic structure of the molecule.274 Therefore, where one observes an 

isotope effect, the physical chemical interpretation of the experimental observation is 

much less ambiguous compared to mutagenesis studies, for example. 

In enzymatic studies, the temperature-dependence of the KIE is often used to infer the 

presence or absence of protein motions that affect the rate of enzymatic turnover.275,276 

The microscopic interpretation of these studies is controversial (see e.g. ref. 277), but at 

least at a basic level these studies seem to validate the notion that protein motions can 

affect enzyme turnover (if not necessarily the catalytic step itself).  Recently, the potential 

role of protein ‘dynamical’ effects on the reaction catalyzed by dihydrofolate reductase 

(DHFR) or HIV-1 protease, have been  assessed based on simulations with mass 

modulated (isotopically substituted) enzymes.278–280 In both systems, a small contribution 

from these dynamical effects to reducing the free energy profile around the transition state 

of the order ~2 kJ mol-1 was found. These authors interpret this difference as arising from 

the coupling between the reaction coordinate and the degrees of freedom of the system. 

However, the major contributor to reducing the free energy barrier arises from 

electrostatic effects.271,281–283  In addition, Åqvist used simulation to reveal the molecular 

origin of entropic effects in catalysis with respect to temperature, and illustrated the 

importance of considering not just the immediate active site, but also remote parts of the 

protein (and surrounding solvent).284 We further point out that others have argued that fast 

(sub-picosecond), local active site protein modes play a role in transition state formation 

(and thereby catalysis).285 A further alternative view is that so-called protein dynamical 

effects are coupled to the reaction coordinate, but provide a small contribution to barrier 

reduction relative to, e.g., the electrostatic contribution via preorganisation.271,281–283  

Although not a catalytic ‘dynamical effect’, when strictly defined,286 differences in 

enzyme fluctuations (or vibrations) that cause a change in heat capacity along the reaction 

can affect the temperature-dependence of enzyme activity.287 Understanding this effect in 

detail may provide new tools to manipulate enzyme optimal temperatures. 

We have recently demonstrated how capturing information on the change in heat capacity 

for activation Δ𝐶𝑃
‡
, informs on differences in the distribution of frequencies of vibrational 

modes between the enzyme-substrate and enzyme-transition state complex.288,289 

Typically, the temperature-dependence of enzyme rate constants is fitted to the Eyring 

equation (Eq 15). 

 𝑘 = (𝑘B𝑇/ℎ)𝑒∆𝑆‡/𝑅𝑒−∆𝐻‡/𝑅𝑇 (Eq 15) 

 

This model assumes that ΔH‡ and ΔS‡ are temperature independent. However, if ΔH‡ and 

ΔS‡ are temperature-dependent, then this implies a non-zero value for Δ𝐶𝑃
‡
. Δ𝐶𝑃

‡
 can be 

extracted from temperature-dependence studies of enzymes fitted using a model that 
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incorporates temperature-dependence of ΔH‡ and ΔS‡, which we have termed 

macromolecular rate theory (MMRT, (Eq 16): 290,291 

 

 
𝑙𝑛𝑘 = 𝑙𝑛

𝑘𝐵𝑇

ℎ
− [

∆𝐻𝑇𝑅

‡ + ∆𝐶𝑃
‡(𝑇 − 𝑇𝑅)

𝑅𝑇
] + [

∆𝑆𝑇𝑅

‡ + ∆𝐶𝑃
‡(𝑙𝑛𝑇 − 𝑙𝑛𝑇𝑅)

𝑅
] (Eq 16) 

 

where T0 is an arbitrary reference temperature. Δ𝐶𝑃
‡
 is the difference in heat capacity 

between the ground and transition states. Δ𝐶𝑃
‡
 determines the change in ΔH‡ and ΔS‡ with 

temperature and thereby defines the non-linearity of the temperature-dependence of the 

Gibbs free energy difference between the ground state and the transition state (ΔG‡). 

Indeed, Roy et al. point to a temperature-dependent activation entropy as the source of 

non-linear temperature-dependence plots.277 Other models that move beyond (Eq 15 have 

been proposed, primarily relating to equilibria of different functional/non-functional 

states.292,293 Whilst we do not discount these models, it appears, based on the range of 

recently published work from different labs,287–289,291 that Eq 16 is useful and broadly 

accurate.  

We expect that the dominant contribution to Δ𝐶𝑃
‡
 in enzymes is the difference in 

distribution and frequency290,291 of the large number of vibrational modes of the molecule 

and its closely associated solvent molecules in the ground and transition states. 

Alternatively, a negative value of Δ𝐶𝑃
‡
 implies that <(δH)2> (the mean squared distribution 

of enthalpies) for the enzyme substrate complex is greater than <(δH)2> for the enzyme-

transition state complex at a given temperature.291 We suggest that the magnitude of Δ𝐶𝑃
‡
 

can therefore be used as a proxy for the changes in vibrational modes (distribution, 

frequency) during enzyme turnover.  

The origin of isotope effects lies in the difference in the frequency of vibrational modes 

between isotope changes. Observing a relationship between (i) increasing isotopic 

substitution of the substrate, (ii) an isotope effect on the rate of turnover, and (iii) Δ𝐶𝑃
‡
 

would suggest that the enzymatic Δ𝐶𝑃
‡
 is sensitive to (substrate) vibrational modes that 

affect the observed reaction rate. Bigeleisen considered the effect of isotopic substitution 

on heat capacity, though not for hydrogen.294 More recently, Tjahjono and Garland295 have 

directly measured the difference in apparent molar heat capacity, 𝐶𝑃
0, for a series of model 

compounds with different levels of deuterium substitution. As with other reports,296 the 

authors find that the deuterium isotope effect on 𝐶𝑃
0 was always positive, i.e. 𝐶𝑃

0 increases 

with the increasing number of deuterium substitutions (Nd) and that the relationship was 

essentially linear: 𝛥𝐶𝑃
0 (J mol-1 K-1) = 2.75Nd – 1.52. The increase in 𝐶𝑃

0 is attributed to 

the increased mass of the isotopologue and the concomitant decrease in frequencies of the 

affected bonds.  
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In a recent appraisal of a range of previously published experimental enzyme systems,289 

we found that there was potentially an isotope effect on Δ𝐶𝑃
‡
. Longbotham et al297 recently 

performed a study exploring a range of isotope effects on labelling the flavin in a model 

flavoenzyme and found their data could only be adequately fitted using Eq 16. These 

authors find a small isotope effect on Δ𝐶𝑃
‡
 outside experimental error for some, but not 

all, labelling patterns. Based on these intriguing findings we are inspired to explore the 

potential for isotope effects combined with Eq 16 to inform on changes in enzyme 

vibrational modes along the chemical reaction coordinate and their relationship to 

temperature-dependence. Herein, we use a hyperthermophilic enzyme, Sulfolobus 

solfataricus glucose dehydrogenase (ssGDH) as a model system to explore the 

contribution of enzymatic isotope effects on heat capacity differences during the reaction. 

Our data provide an experimental link between the temperature-dependence of enzyme 

turnover and (low frequency) vibrational modes. Importantly, the results raise the 

question of how subtle localized changes (through isotopic substitutions in the substrate) 

can lead to a significant change in the enzymatic heat capacity (and thus <(δH)2>) during 

the reaction. 

Results and discussion 
 

Hydride transfer in ssGDH is rate determining. ssGDH is a promiscuous 

hyperthermophilic enzyme that reduces nicotinamide adenine dinucleotide (phosphate) 

(NAD(P)+), with a variety of sugars.298 Milburn et al299 solved the X-ray crystal structure 

with both NADP+ and glucose/xylose bound using a catalytically inactive variant (T41A). 

Notionally the reduction of the nicotinamide (C4) occurs as a hydride transfer from C1 of 

the sugar, concomitant with a proton transfer from the C1 hydroxyl (Scheme S1) to a 

water molecule or hydroxide ion coordinated by a Zn2+ ion. We have performed molecular 

dynamics simulations of ssGDH (Figure 38A) in complex with both glucose and xylose 

(four independent runs of 50 ns, with all four active sites occupied). From our MD 

simulations, consistent with the X-ray crystal structures, we find that the hydride donor-

acceptor (D-A) distance is very similar for glucose and xylose, but not identical, with the 

xylose D-A being ~0.2 Å longer (Figure 38B; Supporting information). Specifically, the 

averages are 2.77 +/- 0.287 Å and 2.93 +/- 0.310 Å; medians are 2.725 Å and 2.895 Å. 

Quantum chemical cluster calculations (Figure 38C–20G) on a 148 atom model of the 

active site of ssGDH in complex with glucose (Figure 38C) suggest a stepwise chemical 

mechanism, whereby proton abstraction from a Zn2+ coordinated hydroxide forms a stable 

alkoxide intermediate on the sugar C1 prior to hydride transfer. When a water molecule 

is modelled as coordinated to the Zn2+ ion (Figure 38C), the D-A distance is 2.49 Å, 

consistent with our MD simulations (above, Figure 38B). When instead a hydroxide ion 

is modelled as coordinated to the Zn2+ ion, the proton on the sugar C1 hydroxyl is readily 

abstracted upon geometry optimization (Figure 38D) to form a reactive intermediate, with 

the resulting anion stabilised by hydrogen bonding interactions to the now Zn2+ bound 

water and T41. This reactive intermediate has a reduced D-A distance of 2.22 Å, which 
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reduces further as the glucose and NADP+ rings pucker to form a transition state (Figure 

38F) with a predicted free energy barrier relative to the reactive intermediate of 32.6 kJ 

mol−1 at 298 K. In synchrony with the hydride transfer, the Zn2+ bound water rotates away 

from glucose, returning to its original position of hydrogen bonding with Q150 and the 

C2 hydroxyl of glucono-D-lactone. In order to compare the predicted and experimental 

activation energies, one must consider the initial deprotonation into the bulk milieu 

(Reactant to Reactive Intermediate; Figure 38D and E, respectively), which cannot be 

determined reliably with the cluster based approach due to the importance of 

inhomogeneous long range interactions in modulating pKa values.300 Instead, one can 

subtract the hydride transfer barrier from the experimental barrier to obtain a predicted 

pKa of 7.2 (Full calculation details can be found in the Supporting Information), which is 

in good agreement with the experimental pH optimum of 8.301  Finally, we note that there 

is no obvious role for water in the rate determining step (deprotonated water acts as a base 

for proton abstraction, whereas the subsequent hydride transfer is rate limiting, see below) 

and so at least this route is not giving rise to a primary solvent isotope effect (see below). 

 

 

Figure 38: A, Representative structures of glucose (green) and xylose (blue) from our MD 

simulations demonstrating they have the same binding interface with NADP+. B, 

Normalized histograms (bin width 0.1 Å) of the hydrogen transfer distance of glucose and 

xylose from MD simulations of ssGDH. C, QM cluster model created of glucose in 

complex with NADP+, with asterisks indicating atoms fixed throughout the optimisation 

process.  (D–G) Reaction mechanism obtained from the QM model, starting from the 

reactant (D), to the deprotonated reactive intermediate (E), the transition state (F), and 

finally the product. (G). 
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Our combined computational and kinetic data (discussed below) provide evidence for the 

mechanistic step observed from our kinetic data. The slightly larger D-A distance in the 

Michaelis complex for xylose versus glucose, calculated from MD simulations, correlates 

with a ~1.6-fold larger kcat value (kcat = 95 and 58 s-1 at 90 °C; Figure 39) and a ~5-fold 

larger Km (Km = 2.5 ±0.3 and 0.5 ± 0.2 mM at 85 °C; Figure S1A and S1B) for glucose 

versus xylose, respectively. This magnitude increase in rate seems reasonable for a 

hydride transfer given a ~0.2 Å difference in D-A distance302,303 (Figure 38B) and implies 

that the observed rate is primarily capturing the hydride transfer step. Similarly, the 

difference in Km is likely reflective of the difference in binding geometry and bonding 

(discussed below). Our QM cluster calculations provide a reasonable mechanism in which 

a Zn2+ coordinated hydroxide ion can deprotonate the glucose C1 hydroxyl to form a 

reactive intermediate. The direct nature of the enzyme assay (NADP+ reduction to 

NADPH), our QM calculations and the observation of a significant primary kinetic 

isotope effect (KIE, see below) suggests that the kinetic data primarily reflect the hydride 

transfer step. 

 

Heat capacity changes during enzyme reaction.  

We have measured the temperature-dependence of kcat for both glucose and xylose, fitted 

to Eq 16, shown in Figure 39A+B. For both glucose and xylose, the temperature vs. 

ln(kcat) data are clearly curved and are therefore appropriately fitted to Eq 16 instead of 

Eq 15. ssGDH is extremely thermally stable301 and we do not find evidence for unfolding 

on the timescales of our assays at any temperature. To capture the curvature in 

temperature-dependence plots accurately, and to capture the experimental system at its 

natural operating temperature (77 °C)301, we have focused on the temperature range 60-

90 °C. From Figure 39A+B we find a significant difference in the magnitude of Δ𝐶𝑃
‡
 with 

Δ𝐶𝑃
‡
 = −3.9 ± 0.3 and −2.3 ± 0.6 kJ mol−1 K−1, for glucose and xylose, respectively. 
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Figure 39: The temperature-dependence of NADP+ reduction by glucose (A) and xylose 

(B). Solid and dashed lines show the fitted to Eq 16 for the protiated and deuterated 

Glucose/xylose (D1), respectively. (C), the resulting KIE extracted from the lnkcat (ln min-

1) in panels A and B. The solid line is the modelled KIE based on the parameters extracted 

from Eq 16 (Solid lines in panels A and B).  
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Potentially, the difference in Δ𝐶𝑃
‡
 between glucose and xylose could arise through a 

difference in the chemical structure of the sugars, i.e. the additional CH2OH group of 

glucose. For example, the hydroxyl of the hydroxymethyl group can form hydrogen 

bonding interactions with either E114 or H297. This additional interaction may cause a 

general rigidification of the glucose and the active site, and thus decrease the absolute 

heat capacity of the ground and transition state. We cannot, however, confidently project 

how this would change Δ𝐶𝑃
‡
 (i.e. how the heat capacity of the ground state is affected 

differently from the heat capacity of the transition state), and thus cannot assign the 

physical origin of the observed differences in Δ𝐶𝑃
‡
 between glucose and xylose. 

Change in 𝜟𝑪𝑷
‡

 with substrate isotopic substitutions.  

To explore the relation between Δ𝐶𝑃
‡
 and substrate vibrational states, we determine the 

effects of substrate isotope substitutions on Δ𝐶𝑃
‡
 for sugar dehydrogenation by ssGDH. 

Figure 39A+B show the temperature-dependence of the primary kinetic isotope effect (1° 

KIE) for hydride transfer for both glucose and xylose using D-glucose (D1) and D-xylose 

(D1), respectively. For both sugars, the KIE is temperature-dependent (Figure 39C) and 

similar in magnitude (~2 – 2.5). Despite the similar magnitude of the KIE for both sugars, 

the isotope effect (IE) on the magnitude of Δ𝐶𝑃
‡
 is significantly different. The 1° IE on 

Δ𝐶𝑃
‡
 is very large for xylose [D-Xylose (D1)], bringing the Δ𝐶𝑃

‡
 value to ~0 within error 

(ΔΔ𝐶𝑃
‡
 = 4.9 ± 1.8 kJ mol−1 K−1). However, for glucose the 1° IE is smaller: D-glucose 

(D1) Δ𝐶𝑃
‡
 = −1.6 ± 0.6 kJ mol−1 K−1 (ΔΔ𝐶𝑃

‡
 = 2.3 ± 0.9 kJ mol−1 K−1). We note that this 

trend in the data is recapitulated when omitting ‘outlier’ data points (Figure S2). 

Moreover, these data do not appear to be due to significant differences in the structure or 

bonding of the reactive complex, since the Km values are the same within error for the 

protiated and deuterated substrate, Km = 3.2 ± 0.4 and 0.7 ± 0.1 mM at 85 °C c.f. Km = 2.5 

±0.3 and 0.5 ± 0.2 mM at 85 °C for glucose versus xylose, respectively. The magnitude 

of ΔΔ𝐶𝑃
‡
 for both xylose and glucose is surprising, as these differences are much larger 

than can be expected from effects on (substrate) heat-capacity for isotopic substitutions 

alone (discussed below). It indicates some (unknown) interaction between the reacting 

species and the enzyme enthalpy distribution that can be perturbed by isotopic 

substitution. 

As discussed previously, the difference in Δ𝐶𝑃
‡
 between glucose and xylose could arise 

through a difference in the sugar-enzyme interactions. However, isotope effects arise from 

differences in the frequency of vibrational modes,274 and not from changes in electronic 

structure that can lead to additional interactions. At a phenomenological level, our data 

therefore provide evidence that Δ𝐶𝑃
‡
 can be significantly perturbed by the frequency of 

bond vibrations in the reacting species. Figure 39C shows the KIE as a curve resulting 

from the temperature-dependence parameters extracted from the fits in Figure 39A+B.  
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The temperature-dependence of the KIE for both glucose and xylose show a qualitatively 

similar relationship; curvature with a maximum at 346 and 343 K, respectively. Typically, 

one observes a decrease in the magnitude of the KIE with respect to temperature when 

fitting data using the Eying/Arrhenius equation (as shown in Figure S3). Figure 40 shows 

a numerical model of the data shown in Figure 39C (using Eq 16), where the magnitude 

of Δ𝐶𝑃
‡
 for the isotopolgue is varied to explore a range of ΔΔ𝐶𝑃

‡
 values and the resulting 

effect on the KIE. From this model, we find that the curvature in the KIE plots is a direct 

result of the isotope effect on Δ𝐶𝑃
‡
. That is, as ΔΔ𝐶𝑃

‡
 tends towards zero (no isotope effect 

on Δ𝐶𝑃
‡
), the KIE plot will become ‘normal’, showing a decrease in magnitude with 

increasing temperature (Figure 22). These data show that a consequence of any significant 

isotope effect on Δ𝐶𝑃
‡
 is that the KIE will tend towards unity and this is also true for all 

temperature-dependent KIEs fitted using e.g. Eq 16. The difference when accounting for 

plot curvature is that the KIE will approach unity at both low and high temperatures. It is 

therefore not surprising that both sugars show a KIE that tends towards 1 at low and high 

temperatures and this will be the case for all isotope effects on Δ𝐶𝑃
‡
. 

Effect of increasing isotopic substitution on 𝛥𝐶𝑃
‡
.  

To explore the relationship between substrate vibrational modes and Δ𝐶𝑃
‡
 further, we use 

glucose to find if there is an isotopic mass dependence on the magnitude of Δ𝐶𝑃
‡
. We have 

increased the isotopic substitution of glucose using both per-deuterated glucose and in 

combination with deuterium oxide (D2O) and monitored the temperature-dependence of 

kcat as shown in Figure 41A. The temperature-dependence of the KIE is shown in Figure 

23B with the corresponding labelled structures shown in Figure 41D. Given that the 

ssGDH mechanism involves a concomitant hydride and proton transfer (discussed above 

 

Figure 40: Numerical model showing how the magnitude of the glucose 1° KIE versus 

temperature is affected by differences in the isotope effect on Δ𝐶𝑃
‡
. ΔH‡ and ΔS‡ values 

used for modelling given in Table 2. 
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and Figure 38C-G), we have essentially two possible 1° KIEs for the hydride (1𝐻
o ) and 

proton (1𝑃
o) transfer. However, we note that our combined experimental and 

computational evidence above suggests that the proton transfer is fast relative to the 

hydride transfer, indicating that there would be no primary KIE for proton transfer and 

the experimental assay thus essentially captures the hydride transfer step. 

Labelling of sites distal to the transferred hydride are a secondary (2°) KIE. In the present 

case, this 2° KIE will be composed of many microscopic 2° KIEs for each labelled 

position (shown in green in Figure 41D). Finally, to label the exchangeable OH groups 

we have performed our experiments in D2O and this will lead to deuteration of all 

exchangeable protons (including amino acid side chains) that are immediately solvent 

accessible. Note that the enzyme itself is not incubated in D2O, only the substrate and so 

the enzyme deuteration occurs only on the timescale of the steady-state assay (~1 min), 

see Materials and Methods. The resulting kinetic parameters are given in Table 6 and for 

the substrate isotope effects. 

One expects an increase in mass of the substrate to alter the frequency of the C-H stretch 

in both the ground and transition state, but whether the expected change still manifests in 

the presence of the active site amino acids is not obvious. Therefore, we have performed 

frequency calculations on the stationary points obtained from the above cluster model 

(Figure 38C), for each of the isotopically substituted states shown in Figure 41 and S1. 

The resulting frequencies are given in Table S1. We find a large decrease in stretching 

frequencies of both the TS and ground state on deuteration of the transferred hydride. On 

additional isotopic substitution there is generally a small decrease in the C-H stretching 

Table 6. Kinetic parameters extracted from fits of Eq 15 and Eq 16 to the temperature-

dependence data shown in Figure 39A. 

 ΔH‡  

(kJ mol-1) a 

ΔS‡  

(kJ mol-1 

K-1) a 

Δ𝐶𝑃
‡
  

(kJ mol-1 

K-1)  

KIE a KIEcalc
 a,d ΔΔH‡  

(kJ mol-1 

K-1)b - 

MMRT 

ΔΔH‡  

(kJ mol-1 

K-1)c - 

Eyring 

D-

glucose 

76.0 ± 2.3 1.33 ± 0.01 -3.8 ± 0.5 − − − − 

D1 78.0 ± 2.1 1.33 ± 0.01 -1.6 ± 0.5 2.1 ± 0.6 2.8 2.0 ± 4.4 1.6 ± 11.7 

D5 86.1 ± 2.5 1.35 ± 0.01 -0.6 ± 0.5 4.0 ± 1.2 0.9 10.1 ± 4.8 7.2 ± 10.6 

D7 80.4 ± 2.0 1.34 ± 0.01 0.0 ± 0.5 2.4 ± 0.9 2.7 4.4 ± 4.4 3.8 ± 9.5 

D12 80.4 ± 1.5 1.33 ± 0.01 0.3 ± 0.4 3.7 ± 1.1 2.3 4.4 ± 4.4 0.9 ± 9.5 

a, Data at 348 K. b, from fits to Eq 16 (MMRT) at 348 K. c, From fits to Eq 15 (Eyring equation). d, 

Calculated from the QM cluster model. 
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frequency for both the ground state and the TS. Again, one expects small changes in 

frequency on increasing mass through isotopic substitution and our calculations suggest 

this expected trend is preserved when the first shell of protein amino acids is also present 

(as in Figure 38C). It is interesting to note that where the amino acids are deuterated 

(solvent exchangeable positions as with our experiments conducted in D2O), the 

frequencies show an additional and significant effect on the calculated frequencies in the 

order of ~1 cm-1. We would stress that clearly elucidating the relationship between the 

change in frequencies at the ground/TS, the protein and ΔΔ𝐶𝑃
‡
 would require very 

extensive (QM/MM) simulation studies. 

There is a significant effect of increased isotope substitution on both the magnitude of the 

observed rate but also the magnitude of Δ𝐶𝑃
‡
 (Figure 41A and Table 6). From Figure 

41B, the KIE increases with increasing isotopic substitution, but not in a linear fashion. 

The absolute magnitude of the KIE depends on the temperature at which the value is 

reported, the different contributions from substitutions at different positions and the fact 

that the temperature-dependence of the isotope effects is different for different isotopic 

substitutions (Table 6). Therefore, one does not necessarily expect the values to follow 

an obvious e.g. linear trend. That said, the maximal KIE does tend to increase with 

increased isotopic substitution, except in the case of Gluc-D7 (Figure 41D) and we note 

the relatively large error on these values. As with the 1° KIE, we observe curvature in the 

magnitude of the KIE for all our isotopic labelling patterns. Figure S3 shows the resulting 

curve from both fits of the data to Eq 15 and Eq 16, and the corresponding extracted data 

are given in Table 6.  

Given the complex nature of the isotopic labelling pattern for each isotopologue, we do 

not wish to overinterpret the microscopic contributions to the absolute magnitude of the 

KIEs. However, it is worth noting that comparison of Gluc-D12 with Gluc-D1 should 

reveal the combined influence of the secondary substitutions, where a ‘normal’ secondary 

KIE would be in the region ~1.1. These effects should be additive, i.e. the individual KIEs 

should be multiplied: 2.1 ± 0.6 ⨉ 1.1 ⨉ 1.1 ≈ 2.5 ± 0.6 which differs from the result 

observed (~3.7 ± 1.1). The large value suggests a significant contribution from secondary 

effects (~1.3 – 1.4). Huskey and Schowen have suggested that large enzyme secondary 

KIEs reflect strong ‘vibrational coupling’ of the secondary sites to the reaction coordinate 

at the transition state.304 More recent studies combining density functional theory (DFT) 

calculations of a model enzyme secondary KIE with high pressure measurements have 

similar findings.305 We note that the notion of vibrational coupling is itself problematic 

and we do not suggest that our data reflect such coupling, not least because no study has 

provided unequivocal evidence for so called vibrational coupling. Given our data we 

cannot confidently assign the origin of these apparently exalted secondary KIEs. 
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The calculated KIEs from our QM cluster model (Table 6), suggest an expected 

secondary KIE of ~3.4 (2.8 ⨉ 1.1 ⨉ 1.1), which differs from the calculated value of 2.3 

(Table 6). That is, the secondary KIE value is not as expected for either the experimental 

measurements or QM calculations. Given the excellent agreement between the 

experimentally measured and calculated 1° KIE (Table 6) the data may indicate that the 

limitations of the (static) QM cluster model and the importance of enzyme KIEs being 

calculated using as full a structural model, including conformational sampling, as 

possible. However, we note that the differences in the absolute magnitude of the 

experimental KIEs are in fact relatively small, particularly when taking into account the 

experimental error as shown in Figure 41B. As we state above, given this limitation, we 

prefer a more conservative interpretation of the labelling study, focusing on the increase 

in isotopic mass rather than the absolute contributions to the KIE from each labelled atom. 

Figure 41C shows the relationship between the extracted Δ𝐶𝑃
‡
 values (from Figure 41A) 

and the increase in isotopic mass of the substrate. From Figure 41C, the isotope effect on 

Δ𝐶𝑃
‡
 appears to increase with respect to the mass of the glucose. These data appear to show 

saturation behaviour, with Δ𝐶𝑃
‡
 trending towards zero with increasing isotopic mass. 

Whilst the initial change in Δ𝐶𝑃
‡
 is relatively large for just one mass unit increase (Gluc-
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Figure 41: The effect of isotopic labelling on ΔΔ𝐶𝑃
‡
. (A) The temperature-dependence of 

kcat for each isotopologue of glucose. Solid lines are fits to Eq 16. (B) Resulting KIEs 

extracted from the fits in panel A. C, correlation between the increase in molecular mass 

(through isotopic substitution) and the extracted magnitude of ΔΔ𝐶𝑃
‡
. The solid line is a 

simple rectangular hyperbola and is to aid the eye only to illustrate the trend. D, structures 

of each isotopologue used in the panel A. 
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D1. ΔΔ𝐶𝑃
‡
 = 2.2 ± 1 kJ mol−1 K−1), we find large (~1 kJ mol−1 K−1) changes in Δ𝐶𝑃

‡
 

associated with further isotopic substitutions. 

Frequency calculations from the QM cluster model indicate these additional increases in 

mass (D5-D12) should only change the frequencies of the reacting species (and immediate 

surrounding) at the ground and transition state by at most a few wavenumbers (Table S1). 

Moreover, the calculated Δ𝐶𝑃
‡
 values are 3 orders of magnitude smaller than measured 

experimentally (Table S2). Finally, the calculated KIEs from the QM cluster model show 

essentially no curvature (Figure S4) compared to the clear curvature observed 

experimentally (Figure 41B) and shown by comparative fitting of Eq 15 and Eq 16 in 

Figure S3. A simplistic conclusion from these data would be that our experimental data 

are not reflecting vibrational frequency changes on isotopic substitution. However, the 

difference between experimental and computational values is that the QM cluster model 

neglects nearly all the protein. Recent molecular dynamics simulations that correctly 

predict significant enzyme Δ𝐶𝑃
‡
 values (~kJ mol-1 K-1) have shown that the Δ𝐶𝑃

‡
 arises 

from energetic fluctuations across the whole molecule, including domains distant from 

the active site.287 It therefore seems likely that the large isotope effect on Δ𝐶𝑃
‡
 has a major 

component arising from changes in protein fluctuations further removed from the active 

site.  

 

Conclusions 
 

We have monitored the isotope effect on Δ𝐶𝑃
‡
 for a hypethermophilic enzyme, finding a 

very large primary isotope effect on the magnitude of Δ𝐶𝑃
‡
 for two different substrates 

(glucose and xylose). The size of the isotope effect on Δ𝐶𝑃
‡
 is very much larger than 

predicted based on a QM cluster model. Further we illustrate an additive effect of increase 

the isotopic mass of glucose on the magnitude of Δ𝐶𝑃
‡
. Taken together, our data shows 

that the change in Δ𝐶𝑃
‡
 is coincident with an increase in isotopic mass. These significant 

changes in Δ𝐶𝑃
‡
 (~ 1-2 kJ mol−1 K−1) are accompanied by only small (~1 cm-1) changes in 

vibrational frequency of the reacting species. If the change in Δ𝐶𝑃
‡
 arises from these small-

scale frequency changes there would need to be some significant ‘amplification’ of the 

small local effect. Therefore, the key question arising from the mass modulation data 

presented here is what is behind the isotopic mass dependence on Δ𝐶𝑃
‡
  (Figure 41C). 

Specifically, if a significant change in enzymatic Δ𝐶𝑃
‡
 (and ΔH‡; Table 6), on the ~kJ 

mol−1 K−1 scale arises when there are only small changes (on the ~1 cm−1 scale) in the 

vibrational frequency of the ground and transition states of the reacting species, how 

might this occur?  

A similar conceptual challenge arises from protein mass modulation studies where 

changing the mass of a protein by isotopic substitution (mass change of ~10%) gives rise 
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to very large changes in the temperature-dependence of the rate (isotope effect on ΔH‡, 

ΔΔH‡, changes by ~0-10 kJ mol−1). These very large changes are difficult to rationalize 

since the expected change in the frequency of protein vibrational modes (for a protein that 

is ~10 % increase in mass) is on the scale of only a few wavenumbers. Previous efforts to 

interpret such data have suggested that large changes in ΔH‡ might be achieved where 

protein vibrational modes become ‘decoupled’ from the enzyme catalyzed 

chemistry.297,306,307 Ranasinghe et al have recently extended this rationale by suggesting 

that mass modulation not only affects protein motions coupled to the enzyme catalyzed 

chemical step, but also the electrostatics associated with longer time-scale events during 

turnover.308  We note that these works have not considered Δ𝐶𝑃
‡
. Moreover, there have 

been a significant number of studies that suggest that protein ‘dynamics’ do not affect 

enzyme catalysis286,309–312 and are not in any way coupled to the reaction coordinate. 

Our study provides a fresh perspective on current hypotheses that seek to understand the 

relationship between enzyme vibrational modes and (the temperature-dependence of) 

catalysis, incorporating a difference in enzyme heat capacity (and thus vibrational modes) 

along the reaction, Δ𝐶𝑃
‡
. Our data point to a model that links small changes in the 

vibrational modes of the substrate (or reacting species) to large changes in enzyme 

fluctuations in different states along the reaction. Δ𝐶𝑃
‡
 reflects the change in the 

distribution (and/or magnitude) of protein vibrational modes between the ground and 

transition state. Therefore, we expect that the apparent disconnect between the scale of 

substrate isotopic mass changes and the (thermodynamic) heat capacity changes might be 

resolved by a deeper understanding of the distribution of these protein vibrational modes 

and how these modes are affected by subtle changes in substrate vibrations. For example, 

based on our present understanding of the physical origin of Δ𝐶𝑃
‡
, we suggest a physical 

model where the isotopic changes in the substrate are translated to a shift in the 

conformational landscape (structural, energetic or both) of the enzyme, resulting in a 

difference in fluctuations between the reactant and transition state complexes.284 

 

Materials and methods  
 

ssGDH expression and purification. 

ssGDH was expressed with AmpR in a pET3a plasmid. It was transformed into BL21 

(DE3) Escherichia coli using heat shock and grown on LB agar with ampicillin (100 

µg/ml) at 37 °C. A 50 ml LB starter culture was used to inoculate 5 x 1L LB until an 

OD600 of 0.5-0.6 was reached. Cells were harvested by centrifugation (4 °C, 8000 rpm, 10 

min) before being lysed by sonication using a lysis buffer (pH 7) containing 100 mM 

HEPES, lysozyme, DNAase and a protease inhibitor cocktail tablet. Soluble and insoluble 

fractions were separated by centrifugation at 4 °C (25,000 rpm, 10 min). Due to the 

thermostability of ssGDH, the soluble fraction was purified by heating the sample to 70 
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°C for 50 min. To remove precipitated protein, samples were centrifuged (4 °C 13,000 

rpm, 10 min) before being dialysed for 4 hours in 100 mM HEPES buffer (pH 7). Samples 

were further purified/concentrated through the use of Vivaspin centrifugal concentrators 

(MWCO = 30 kDa). The concentration of purified samples was measured by the 

absorbance at 280 nm (ε280 = 49,390 M-1 cm-1), obtained via the input of ssGDH amino 

acid sequence into the ExPASy ProtParam tool.313 Approximately 8 ml of 35 mg/ml 

purified sample was obtained. 

Substrates and coenzymes.  

D-glucose, D-xylose, D2O and NADP+ were obtained from Sigma Aldrich. D-glucose (1-

D), D-glucose (1,2,3,4,5,6,6-D7) and D-xylose (1-D) were obtained from Cambridge 

Isotope Laboratories. In this manuscript the varying isotopes and D2O combinations will 

be described with the following nomenclature: D-glucose (1-D) – D1 , D-xylose (1-D) – 

D1, D-glucose + D2O – D5 , D-glucose (1,2,3,4,5,6,6-D7) – D7 , D-glucose (1,2,3,4,5,6,6-

D7) + D2O – D12. 

Enzyme assays. 

Steady-state ssGDH kinetic measurements were carried out using a lidded 1 ml quartz 

cuvette to prevent evaporation at high temperatures and a UV⁄ Vis spectro-photometer 

(Agilent Cary 60 UV-Vis spectrometer) in 100 mM HEPES (pH 8). Accurate 

concentrations of NADP+ were determined using NADP ε260 = 17,800 M-1 cm-1. Enzyme 

activity was measured for each condition at 85 °C by following the formation of NADPH 

at 340 nm using ε340 = 6220 M-1 cm-1 as a direct measurement of ssGDH steady-state rates 

; the data fitted well to Michaelis-Menten kinetics.   Temperature-dependences were 

carried out from 60 °C – 90 °C at 5 °C intervals using initial velocity measurements at 

substrate concentrations maintained above 10x Km to ensure saturation. The data were 

fitted to Eq 15 or Eq 16 as described in the manuscript using OriginPro 2016 (MicroCal). 

The measured pH for experiments performed in D2O was adjusted accordingly to match 

that of the pH in H2O.314 

Molecular dynamics simulations.  

The ssGDH crystal structure 2CDB299 was prepared for simulation using scwrl4315 to 

revert the T41A mutation and modeller316 to model in the missing loop at positions 50-59 

(based on chain A). To obtain similar starting points for the glucose and xylose 

complexes, this loop was used for all four chains and coordinates from 2CDB were also 

used for the xylose complex (where xylose was placed based on alignment with 2CDC299). 

The Amber16 suite of programs was used for periodic boundary simulation and 

analysis222, with the ff14SB force-field for protein atoms60, GLYCAM-06j for 

glucose/xylose63, parameters from Ryde et al. for NADP+,317 TIP3P for water and 

ZAFF318 for the Zn2+ coordinated by Cys93, Cys96, Cys99 and Cys107. For the Zn2+ 

directly adjacent to the substrate binding site, restraints were used to maintain the 

crystallographically observed coordination with Cys39 and His66. After brief 

minimization of the complex and added water, the system was heated to 300 K and 

subsequently equilibrated to 1 atm in the NPT ensemble (with positional restraints on Cα 
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atoms). After gradual release of Cα positional restraints, 50 ns NPT production 

simulations were performed at 300 K and 1 atm. Histograms of the D-A distances were 

calculated over all four binding sites using 10-50 ns of four independent simulations for 

each substrate. (Further details of model setup, restraints and simulation procedures are 

included in the Supporting Information.)  

QM Cluster Model.  

The aforementioned X-ray crystal structure of ssGDH in complex with glucose and 

NADP+ (PDB ID 2CDB299) was used to create a 148 atom model of the active site (Figure 

S5). To preserve the overall structure of the active site, several atoms were fixed 

throughout the optimisation process and care was taken to ensure non-reacting groups 

stayed in the same local minima throughout the reaction. The T41A mutation was reversed 

in silico with the rotamer selected based on our MD simulations. All Calculations were 

performed using Gaussian16,319 employing the M06-2X functional.320 Geometry 

optimisations and frequency calculations were performed in vacuo with the 6-31G(d,p) 

basis set. All models were optimised on an ultrafine integration grid and under tight 

convergence criteria. Single point energies were obtained using the 6-311++G(2d,2p) 

basis set, with the surrounding protein environment accounted for using the SMD 

solvation model with a dielectric constant of 4.321 Thermal corrections to the obtained 

energies were taken from the aforementioned frequency calculations, employing a scale 

factor of 0.97.322  Contributions to tunnelling on the rate of reaction were estimated using 

Wigner’s correction.323 Further details about calculation methodology and the coordinates 

of all stationary points obtained can be found in the Supporting Information. 
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Supporting Information Materials and Methods 

Molecular dynamics simulations: Model setup, restraints and simulation details  

The ssGDH crystal structure 2CDB299 was prepared for simulation using scwrl4315 to 

revert the T41A mutation and modeller324 to model in the missing loop at positions 50-

59, based on the coordinates of the surrounding residues in chain A. The same loop 

conformation was subsequently transferred to the other three chains. To avoid a clash with 

this loop in chain C, conformer B (assigned 50% occupancy) was chosen for His118. (If 

not mentioned, conformer A was chosen for other residues with multiple conformers 

defined, including for the glucose O6.) Asn/Gln flips and His tautomers and were selected 

based on optimal hydrogen bonding contacts through the AmberTools facility reduce, 

with His66 and His319 singly protonated on Nδ1, others on Nε2. The exception was 

His297, which was protonated on Nδ1: test simulations indicated that this tautomer better 

retained the crystallographically determined enzyme-ligand conformation structure. All 

ionizable residues (with exception of the Cys residues coordinating Zn2+, see below) were 

modelled in their standard protonation states (in agreement with pKa predictions by 

PropKa 3.1)158. To obtain similar starting points for the glucose and xylose complexes, 

the same protein starting model was used for the xylose complex  (where xylose was 

placed based on alignment with 2CDC 299).  

The Amber16 suite of programs was used for periodic boundary simulations and 

analysis,222 with the ff14SB force-field for protein atoms,60 GLYCAM-06j for 

glucose/xylose,63 parameters from Ryde et al. for NADP+,317 TIP3P for water and 

ZAFF318 for the Zn2+ coordinated by Cys93, Cys96, Cys99 and Cys107. These Cys 

residues were thus modelled as thiolates (CYM). For the Zn2+ directly adjacent to the 

substrate binding site, the default Amber ion parameters were used. To avoid coordination 

changes around the Zn2+ ion, the following one-sided harmonic restraints were applied if: 

1) the His66 NE2–Zn2+ distance was larger than 2 Å (force constant 70 kcal mol−1 Å−2); 

2) the Asp42 OD2–Cys39 N distance was larger than 1.95 Å (force constant 70 kcal mol−1 

Å−2); 3) the Asp42 OD2–Zn2+ distance was smaller than 4.2 Å (force constant 100 kcal 

mol−1 Å−2).  

In addition to the water molecules present in the crystal structure, a rectangular box of 

water was added using the AmberTools facility tleap such that all protein atoms were at 

least 11.5 Å away from the edge of the box (closeness parameter of 0.9). 20 water 

molecules (at least 5 Å away from the protein) were replaced with Na+ ions to neutralize 

the system. After minimization of solvent and hydrogens (100 steps steepest descent, 400 

steps conjugate gradient), the full system was briefly minimized (400 steps) with 

positional restraints of 5 kcal mol−1 Å−2 on all Cα atoms. Maintaining these positional 

restraints on C atoms, velocities were assigned at 25 K and the system was heated to 300 

K in 50 ps using Langevin temperature control in the NVT ensemble (with a 1 ps−1 

collision frequency). Subsequently, 100 ps of equilibration was performed in the NPT 

ensemble at 1 atm, using the Berendsen barostat (1 ps pressure relaxation time) and 

Langevin dynamics for temperature control (5 ps−1 collision frequency). Thereafter, the 
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positional restraints on C atoms were gradually removed in four consecutive 10 ps 

simulations under the same conditions (4, 3, 2, and 1 kcal mol−1 Å−2 as force constants). 

Production MD (without positional restraints) was then performed in the NPT ensemble 

at 1 atm and 300 K for 50 ns, saving coordinates every 10 ps. All MD simulations were 

performed with the default direct-space cut-off for non-bonded interactions and particle-

mesh Ewald summation for long-range electrostatics, run with pmemd.cuda. Four 

independent simulations were run for each complex (GDH-glucose and GDH-xylose). 

 

QM Cluster Model Calculations: Model Construction, pKa and KIE Calculations  

The X-ray crystal structure of ssGDH in complex with glucose and NADP+ (2CDB)299 

was used to create a 148 atom model of the active site. Truncations of the enzyme active 

site were made across non-polar bonds. All titratable residues included in the model were 

in their standard protonation state. The T41A mutation used to crystallise ssGDH was 

reverted in silico, with the rotamer (side chain alcohol group acting as a hydrogen bond 

acceptor to the alcohol group of the glucose C1) chosen based on its prevalence in our 

MD simulations. To preserve the overall structure of the active site, several atoms were 

fixed throughout the optimisation process and care was taken to ensure non-reacting 

groups stayed in the same local minima throughout the reaction.  

All Calculations were performed using Gaussian16,319 employing the M06-2X 

functional.320 Geometry optimisations and frequency calculations were performed in 

vacuo with the 6-31G(d,p) basis set. All models were optimised on an ultrafine integration 

grid and under tight convergence criteria. Single point energies were obtained using the 

6-311++G(2d,2p) basis set, with the surrounding protein environment accounted for using 

the SMD solvation model with a dielectric constant of 4.321 Thermal corrections to the 

obtained energies were taken from the aforementioned frequency calculations, employing 

a scale factor of 0.97.322 Contributions to tunnelling on the rate of reaction were estimated 

using Wigner’s correction.323  

In order to simulate the deprotonation of the Zn coordinated water to a Zn coordinated 

hydroxide by the bulk milieu (reactant to reactive intermediate), a proton on the Zn 

coordinated water (reactant model) was removed and the structure re-optimised, giving 

the reactive intermediate. During optimisation, the Zn coordinated hydroxide abstracted 

the sugar C1 alcohol group’s proton, forming an alkoxide on the sugar. This therefore led 

us to propose the stepwise mechanism as seen in Scheme S1. To calculate the barrier for 

the transition from reactant to reactive intermediate, the experimentally determined 

barrier at 298 K (73.5 kJ mol-1) was subtracted from the computationally determined 

hydride transfer barrier (32.6 kJ mol-1), with the subsequent energy difference used to 

predict a pKa of 7.2. 
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All polar hydrogen atoms in the cluster model were considered deuterated when 

modelling the SKIE (see Figure S5). Heat capacities of activation (Table S2) were 

calculated from the differences in constant volume heat capacity for the reactive 

intermediate and transitions state models.  

PLEASE NOTE: In the interest of saving paper/space, only the Supporting 

Information Methods are included and not the figures or tables. They can instead be 

found online free of charge at: https://pubs.acs.org/doi/abs/10.1021/acscatal.8b01025 

  

https://pubs.acs.org/doi/abs/10.1021/acscatal.8b01025
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Appendix Chapter 2: Probing the 

Importance of the Environment in 

Regulating Functionally Important 

Enzyme Dynamics  
 

In this second appendix chapter we applied a combination of computational and 

experimental approaches to study the biomedically relevant enzyme monoamine oxidase 

B (MAO-B). The primary aim of this study was to understand how the environment can 

perturb/tune the functionally important dynamics of this enzyme. This was first studied 

experimentally with enzyme temperature dependence studies, which showed how the use 

of different substrates and/or a different membrane environment were able to significantly 

modify the heat capacity of catalysis (∆𝐶𝑝
‡
), suggesting both the substrate and membrane 

are able to tune functionally important dynamics linked to catalysis. We complemented 

our experimental approach with molecular dynamics (MD) simulations of MAO-B in a 

lipid bilayer. Our MD simulations were able to identify and characterise a new entrance 

for substrate/ligand binding, which is of particular relevance considering the that MAO-

B can be inhibited for the treatment of both Parkinson’s disease and depression. 

Furthermore, our MD simulations with substrate bound suggested the possibility of half-

site reactivity. Finally, we used MD simulations in an attempt to understand how the 

previously described distal mutations removed activity from MAO-B. We demonstrated 

that that dynamics of the loop which control substrate/ligand entry were significantly 

altered in all of the variants as compared to the wild-type, suggesting substrate 

binding/product release was disrupted in the variants. My role in this project was to lead 

the setup, running and analysis of the MD simulations of MAO-B, with this aspect of the 

project performed in collaboration with Hannah Jones.  
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Abstract: There is an increasing realization that structure-based drug design may show 

improved success rates by understanding the ensemble of conformations and sub-states 

accessible to an enzyme and how the environment affects this ensemble. Human 

monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for 

the treatment of both Parkinson’s disease and depression. Despite its clinical importance, 

its catalytic mechanism remains unclear and routes to drugging this target would be 

valuable and relevant. Evidence of a radical in either the transition state or resting state of 

MAO-B is present throughout the literature, and is suggested to be a flavin semiquinone, 

a tyrosyl radical or both. Here we see evidence of a resting state flavin semiquinone, via 

absorption redox studies and electron paramagnetic resonance, suggesting that the anionic 

semiquinone is biologically relevant. Based on enzyme kinetic studies, enzyme variants 

and molecular dynamics simulations we find evidence for the crucial importance of the 

membrane environment in mediating the activity of MAO-B and that this mediation is 

related to effects on the protein dynamics of MAO-B. Further, our MD simulations 

identify a hitherto undescribed entrance for substrate binding, membrane modulated 

substrate access, and indications for half-site reactivity: only one active site is accessible 

to binding at a time. Our study combines both experimental and computational evidence 

to illustrate the subtle interplay between enzyme activity, protein dynamics and the 

immediate membrane environment. Understanding key biomedical enzymes to this level 

of detail will be crucial to inform strategies (and binding sites) for rational drug design 

for these drug targets.  

KEYWORDS EPR, Molecular Dynamics, Monoamine Oxidase B, semiquinone, 

enzyme, flavin, membrane 

Human monoamine Oxidase B (MAO-B) catalyzes the oxidative deamination of amines, 

by electron transfer, via its flavin adenine dinucleotide (FAD) cofactor (Scheme 1).325 It 
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is located in the outer mitochondrial membrane,326 as a dimer, with bipartite substrate 

binding and active site cavities.325 MAO-B is the target of treatment for both depression 

and Parkinson’s disease, with inhibitors of the enzyme first being approved as 

pharmaceuticals in the 1960’s.327,328 

Despite the important medical applications associated with MAO-B its chemical 

mechanism remains unclear and there is debate over the role of MAO-B conformational 

change and protein dynamics. Reduction of the FAD has been shown to proceed by a 

tunneling mechanism via primary (1°) and secondary (2°) kinetic isotope effect (KIE) 

studies.329 These studies have suggested that MAO-B catalysis is not linked to fast 

(pico/nanosecond) dynamics.329,330 MAO-B catalysis has been investigated via 

experimental and computational studies, with at least seven different proposed 

mechanisms, including polar nucleophilic,331 radical,332 direct hydride transfer333–335 and 

two step hydride transfer336 (Scheme S2).  

Although the direct single electron transfer (SET) radical mechanism (Scheme S2) has 

previously been discounted experimentally337 and by quantum mechanics/molecular 

mechanics (QM/MM),338 a separate radical mechanism has been proposed by Murray et 

al.339 This was established via a model small molecule reaction that mimics MAO-B to 

provide evidence for a neutral semiquinone flavin that can be formed aerobically. The 

authors suggest that a neutral semiquinone flavin is the reactive species for the oxidation 

of benzylamine (BZA).339  This led to the hypothesis of a radical mechanism whereby 

MAO-B forms a neutral semiquinone flavin via a proximal tyrosine radical (Y398). The 

presence of a stable anionic semiquinone flavin and tyrosyl radical intermediate are also 

reported in MAO-A and MAO-N.340,341 

In our hands, we find spectroscopic evidence for a stable semiquinone in resting state 

MAO-B (vida infra). Here, MAO-B was expressed and purified in Pichia pastoris as 

outlined by Newton-Vinson et al. 342  This protocol attributes observations of 

oxidized/semiquinone MAO-B FAD to reactive oxygen species (ROS) that form upon the 

disruption of the mitochondrial membrane, which they observe upon purification from 

bovine liver, but not from P. pastoris.342
 

Previous observation of a stable anionic semiquinone FAD in MAO-B343,344 led to a 

hypothesis of half-site reactivity. This mechanism posits that one monomer of the MAO-

B dimer is inaccessible to oxygen and substrate, resulting in the formation of the stable 

semiquinone species, whilst the other contains oxidized FAD. Electrons are then shuttled 

Scheme 1: General reaction catalyzed by MAO-B. 
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to the semiquinone species, allowing for the oxidation of the reduced FAD upon 

turnover.344 The authors suggest this might arise from electron shuttling between specific 

amino acids. Potentially, such a mechanism might require significant conformational 

change associated with turnover in each monomer. Indeed, conformational changes have 

been found to be associated with MAO-B turnover, with a molecular dynamics (MD) 

study demonstrating the potential for the membrane to regulate access to the active site 

entrance via two gating loops (residues 85-119 and 155-165).345 Other MD studies have 

been carried out on MAO-B, both with and without a membrane environment, with the 

focus on identifying or improving inhibitors for MAO-B346–350, or ascertaining how 

MAO-B binds to the membrane.351 

Herein, we find evidence for a resting-state anionic semiquinone, and through kinetic and 

computational studies, evidence for conformationally controlled enzyme activity at each 

MAO-B monomer. Crucially, we find that the membrane environment exposes novel 

substrate/product channels that could be potential new drug targets. We thereby link the 

membrane environment, substrate binding and MAO-B conformational change to enzyme 

turnover. 

Results and Discussion 
Evidence for a resting-state semiquinone in MAO-B.  

The presence of purified MAO-B was established by SDS-PAGE (Figure S6; essentially 

a single band via size exclusion chromatography) and via electrospray ionization 

quadrupole time-of-flight (ESI-Q TOF) mass spectrometry in combination with the 

MASCOT server.352 The absorption spectrum of purified MAO-B is shown in Figure 

42A. The spectra share characteristics of an anionic semiquinone FAD (FAD‧-) with an 

absorption feature at ~415 nm.353 The preparation protocol of MAO-B was the same as 

that used by Newton-Vinson et al.,342 with small differences outlined in the Materials and 

Methods. Multiple preparations were completed, including the final polymer partition step 

outlined by Newton-Vinson et al. and without EDTA present, with the ~415 nm spectral 

feature consistently present. The effect of incubation with BZA, under anaerobic 

conditions, on the MAO-B absorption feature at ~415 nm was monitored over time 

(Figure 42A inset).   From Figure 42A inset, we find a decrease in absorption at 415nm 

with respect to time on incubation with BZA, suggesting the ~415 nm spectral feature is 

redox sensitive with a natural MAO-B substrate.  

We note that the absorption spectrum shown in Figure 42A lacks a defined feature around 

~450 nm where one would expect oxidized flavin as well as spectral features at ~475 nm 

that would also characterize a putative anionic semiquinone. We do not have a clear 

explanation for the lack of these features and the complexity of the absorption spectrum; 

the protein is purified to homogeneity, it is identified as MAO-B by mass spectrometry 

and is catalytically active with the natural substrates (Figure 44A, Figure S7 and as 

described below). The electronic environment around both flavins is highly complex, with 

a large number of proximal Tyr residues (Y60, 398 and 435 positioned 3.1, 3.3 and 3.5 Å 
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from the alloxan moiety, respectively). Potentially, this gives rise to a complex absorption 

spectrum arising from different electronic environments for a sub-set of active site 

conformational states. This hypothesis requires MAO-B to be able to explore different 

conformational states and we consider this in more detail below. Given the complexity of 

the absorption spectrum, we turned to fluorescence and electron paramagnetic resonance 

(EPR) spectroscopy to provide more specific evidence for the oxidation state(s) of the 

MAO-B flavin.  

Previously, MAO-B steady-state fluorescence spectroscopy has demonstrated that there 

are two different chromophores present in resting state MAO-B.354 The authors concluded 

that these two different species were consistent with oxidized and semiquinone flavin. To 

establish if we similarly have both oxidized and seminquinoid flavin present (which is not 

obvious from the absorption spectrum), we have monitored the fluorescence excitation-

emission matrix (Figure 42B). Similar to the previous report, the spectra resolve at least 

two different emission peaks suggesting the presence of two different oxidation states of 

the flavin with λEx ~ 400-420 and 460 nm. Notably, the excitation/emission profile at λEx 

~ 460 and λEm ~ 540 nm (Figure 42B) indicates the presence of oxidized flavin. 

The ~415 nm absorption feature could be potentially attributed to a tyrosyl radical, which 

has a characteristic absorbance peak at 410 nm,355 or a mixture of both an FAD 

semiquinone and tyrosyl radical, as seen as intermediates in MAO-A.340,341 Murray et al. 

postulated that the reactive semiquinone FAD was formed by a proximal tyrosyl radical 

(Y398). However, the UV-vis absorption spectrum of Y398F MAO-B also shows the 

spectral feature at ~415 nm (Figure S8A), indicating that this feature is not attributable 

Figure 42: (A) The absorbance spectra of MAO-B after treatment with BZA over time. 

Inset, the effect on the 415 nm peak over time. (B) Fluorescence excitation/emission 

matrix resolves oxidized and semiquinone flavin states (highlighted in solid black 

boxes). Scale bar is relative intensity Conditions: 50 mM HEPES 0.5 % w/v Triton X-

100, 20 °C. For absorption experiments 40 mM BZA, anaerobic conditions as Materials 

and Methods. 
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to a Y398 tyrosyl radical. The Y398F variant also shows a slight increase in Km (Figure 

S9), similar in magnitude to previously reported changes in Km for Y398F.356  

A stringent approach to identifying the nature of the flavin oxidation state is EPR. The 

EPR X-band spectrum of the wild type MAO-B (wtMAO-B) clearly indicates that the 

signal arises from a semiquinone radical (Figure 43), in agreement with the UV-Vis and 

fluorescence spectroscopy (Figure 42). The measured spectra lack the defining features 

which would identify the signal as arising from a tyrosyl radical:  the typical ‘wings’ or 

‘shoulders’ around the central signal at around g = 2 340,357 at X-band (Figure 43), and 

increased g-value anisotropy at higher frequency (and therefore resonant field), i.e. Q-

band (data not shown). Furthermore, the signal persists in the Y398F variant, confirming 

that it is not caused by the proximal tyrosine. Further, computational simulation and fitting 

of the experimental X-band data of the WT and Y398F MAO-B (Table 7) suggests that 

the semiquinone radical species is anionic; the hyperfine environment of a neutral 

semiquinone radical would contain a contribution from an additional hydrogen 

atom.344,358 This is not the case for the signals seen in the X-band spectra. 

Previous studies have illustrated the importance of the membrane environment in 

mediating the normal enzymatic activity of MAO-B.345 To probe if the putative 

semiquinoid species (inferred from spectroscopic studies above) was also stably present 

in the membrane environment, we have conducted spectroscopic studies in an artificial 

membrane environment using l-α-phosphatidylcholine styrene maleic acid co-polymer 

(SMA) nanodiscs, prepared as reported previously.359 We find that the absorption feature 

Figure 43: X-band cw-EPR spectra of WT (top, black) and Y398F (bottom, black) MAO-

B, with their respective fitted simulations (red). EPR microwave frequency = 9.3916 GHz 

(WT) & 9.3926 GHz (Y398F), microwave power = 0.2 mW, modulation 

amplitude = 0.5 mT, temperature = 16 K. 
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at ~415 nm is present in both reduced Triton X-100 and nanodisc environments (Figure 

S8A), implying that the putative anionic semiquinone is not an artifact of the buffer 

system used, and that its presence is not affected by the specific membrane environment 

used. It is clear from these data (Figure 42 and Figure 43) that the FAD of resting state 

MAO-B is able to stably occupy oxidation states other than fully oxidized FAD. Evidence 

for this is recurring in the literature, demonstrated by Raman343, fluorescence354, and 

EPR342,344 spectroscopy. We suggest that these different observations could be 

rationalized by an equilibrium of energetically similar conformational states, which allow 

differently stable oxidation states. Indeed, below we provide evidence that shows MAO-

B is able to sample a range of conformational states.    

 

Table 7. Spectral Parameters of EPR Data Extracted by Simulation and Fitting. 

 

Influence of the membrane environment on MAO-B turnover. 

To assess how/if the membrane environment affects enzyme turnover, we measured 

MAO-B turnover with both BZA and kynuramine dihydrobromide (KYN) at a range of 

temperatures. We monitor enzyme turnover based on the absorption features of 

benzaldehyde product formation at 250 nm for BZA,337 and 4-hydroxyquinoline product 

formation at 316 nm for KYN.360 This assay notionally primarily reflects the rate of 

reduction of the flavin.337 Our temperature-dependence studies allow us to analyze not 

just the observed rate of enzyme turnover but also the thermodynamics of the system. The 

temperature-dependence of the observed rate is shown in Figure 44. 

There has been a recent move to fitting enzyme temperature-dependence data to physical 

models that allow for curvature in the associated plots. Such models often provide a more 

realistic fit to experimental data. We fit the MAO-B temperature-dependence data to a 

model that incorporates the heat capacity of catalysis (Δ𝐶𝑃
‡
) Eq 16 into the Eyring equation 

(Eq 15).290  

   WT MAO-B  Y398F MAO-B 

g-tensor gx 2.00444  2.00444 

 gy 2.00429  2.00429 

 gz 2.00191  2.00191 

 giso 2.00355  2.00355 

A(14N) (MHz) A∥ 39.3  38.4 

 A⟂ 0  0 

A(14N) (MHz) A∥ 34.1  40.1 

 A⟂ 0  0 

Linewidth (mT) 1.1  1.1 

RMSD  0.0255  0.0440 
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 𝑘 = (𝑘B𝑇/ℎ)𝑒∆𝑆‡/𝑅𝑒−∆𝐻‡/𝑅𝑇 (15) 

   

 
𝑙𝑛𝑘 = 𝑙𝑛

𝑘𝐵𝑇

ℎ
− [

∆𝐻𝑇𝑅

‡ + ∆𝐶𝑃
‡(𝑇 − 𝑇𝑅)

𝑅𝑇
] + [

∆𝑆𝑇𝑅

‡ + ∆𝐶𝑃
‡(𝑙𝑛𝑇 − 𝑙𝑛𝑇𝑅)

𝑅
] 

(16) 

 

Where ΔH‡ is the change in enthalpy and ΔS‡ is the change in entropy between the ground 

and transition state of the reaction at an arbitrary reference temperature (T0). This model 

has recently gained traction in studying enzyme temperature-dependencies.287,288,297,361 In 

the absence of other confounding factors, Δ𝐶𝑃
‡
 quantifies the temperature-dependence of 

ΔH‡ and ΔS‡ and reflects the difference in the distribution and frequency of vibrational 

modes between the ground state and transition state.290,291 We have recently suggested 

that Δ𝐶𝑃
‡
 can be used as a proxy for the changes in these vibrational modes during enzyme 

turnover and thus relates to some aspect of the protein’s molecular dynamics.287 This is 

relevant in the present study where the membrane environment may not alter the tertiary 

structure of the enzyme, but potentially alters protein fluctuations, which have previously 

been proposed to affect small molecule binding to the active site.345 

From Figure 44 and Table S3, we find Δ𝐶𝑃
‡
 to be the same within error for both KYN 

and BZA substrates when in a reduced Triton X-100 environment. However, when in 

nanodiscs, the difference in Δ𝐶𝑃
‡
 for the different substrates is ΔΔ𝐶𝑃

‡
 = 2.4 ± 1.0 kJ mol−1. 

The Δ𝐶𝑃
‡
 increases in magnitude from reduced Triton to nanodiscs with KYN, and 

decreases with BZA (Figure 44). These data suggest that the difference in conformational 

fluctuations in the reactant and transition states is different in a more native membrane 

environment and for different substrates. Moreover, we find a significant difference in the 

observed rate of enzyme turnover in the nanodiscs (~5 times faster). These data therefore 

provide experimental evidence of the notion that the membrane environment has a role in 

‘tuning’ the molecular dynamics of MAO-B. However, given we observe a retention of 

the putative anionic flavin semiquinone, we would suggest the membrane does not affect 

the chemical mechanism of enzyme turnover per se.  

Computational evidence for a new entrance to the MAO-B active site mediated by 

the protein-membrane interaction.  

To obtain detailed insight into the role of the membrane environment on protein dynamics, 

we performed MD simulations of the MAO-B dimer embedded in a phospholipid 

membrane. We explore (i) the influence of the phospholipid membrane in modulating 

substrate/inhibitor binding, (ii) the accessibility of small molecules to the active site of 

MAO-B, and (iii) the potential for half-site reactivity, as discussed above. 

MD simulations of MAO-B in complex with FAD in a POPC/POPE lipid bilayer (similar 

to the native environment in the mitochondrial membrane)362 were performed in triplicate 
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for 150 ns in 3 different states: no BZA present (BZA0), one active site occupied with 

BZA (BZA1), and both active sites occupied with BZA (BZA2). Protein Cα RMSD and 

area per lipid head groups (Figure S10) indicated equilibration of both the protein and 

membrane after 50 ns of production MD. The analysis described below is therefore from 

50 to 150 ns.  

Prior simulations of BZA0-MAO-B in a bilayer established that MAO-B ligand binding 

site access is modulated by the membrane.345 We investigate this further using longer 

simulations (150 ns vs. 50 ns) and with substrate (BZA) bound. To measure possible 

access to the substrate cavity of MAO-B via the membrane, we quantify the occurrence 

and features of tunnels in our simulations using Caver 3.0.363 Tunnels identified are 

grouped into clusters, allowing for the quantification of various characteristics, such as 

the frequency of occurrence and smallest width (bottleneck radius), as used here.364 This 

tool has previously been used to identify tunnels for ligand-induced protein flexibility 

analysis,365 to rationalize change in mechanism and kinetics of an enzyme upon a point 

mutation,366 and to identify a tunnel to the FAD moiety in MAO-A.367  

Two main possible entrances for ligands into the MAO-B active site are found at either 

side of the gating loop residues 99 to 112 (Figure 45). Entrance A (Figure 45A) is 

accessed via the membrane and its opening has previously been observed.345 Briefly, a π-

π stacking interaction between Tyr97 and Trp107 is lost as Trp107 buries into the aliphatic 

lipid tails of the bilayer, establishing an additional interaction of MAO-B with the 

phospholipid bilayer.  

Entrance B (Figure 45B) is solvent accessible, and its opening is controlled by the 

conformation of three loop regions (81 to 88, 99 to 112 and 198 to 208). To the best of 

our knowledge, its opening has not yet been observed through protein crystallography or 

Figure 44: The temperature-dependence of MAO-B with BZA (A) and KYN (B) with 

reduced Triton and nanodisc environments, fit to the MMRT equation. Conditions, 50 

mM HEPES 0.5 % w/v reduced Triton X-100 pH 7.5. Reduced Triton X-100: 1.5 mM 

BZA, 0.75 mM KYN. Nanodiscs: 3 mM BZA, 0.66 mM KYN. 
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simulation. To provide a qualitative description of the open and closed conformations of 

this entrance, we have performed clustering analysis on the entrance loop residues (see 

Materials and Methods). Opening of Entrance B (Figure S11) can be described by: 1) 

loop 81-88 separates from loop 199-206, breaking a number of transiently formed 

electrostatic interactions and instead forming interactions with the solvent in the open 

conformation; 2) the central region of the gating loop (residues P102, F103, P104) rotates 

down and away from the hydrophobic core of the entrance cavity. The opening of both 

entrance A and B involves residues directly interacting with the bilayer.  This indicates 

that the membrane is important in modulating access to the substrate binding pocket of 

MAO-B. 

Evidence of asymmetry in MAO-B from MD simulation.  

Previous studies have suggested that the presence of an anionic semiquinone could be 

mechanistically significant as part of a half-site reactivity mechanism.344 To investigate 

the potential for half-site reactivity in MAO-B, tunnels from the N5 of the flavin to the 

solvent were first identified from all MD trajectories with BZA0, BZA1 and BZA2 (with 

three replicates). These data are useful to determine the size of species that could access 

the active site and to investigate whether access to the active site is half-site specific. To 

avoid identifying numerous tunnels that cannot accommodate substrate/product 

molecules, a minimum tunnel radius was set to 1.5 Å. (This avoids identifying water 

tunnels, as water has a Van der Waals radius of ~1.4 Å.368) With this criterion, no tunnels 

were found, which demonstrates a closed active-site on the timescales of our simulations. 

Whilst larger conformational changes may be occurring on longer time-scales (or in 

presence of substrate in the vicinity of a bottleneck) to enable substrate access to the active 

site, a generally closed off active site is in agreement with previous experimental 

findings.344  

Next, tunnels were identified from the substrate binding cavity towards the protein 

surface. The starting point was defined as the centre of mass between the alpha carbon 

(Cα) atoms of residues 168 and 316 (Figure S12). This starting point was chosen as it is 

located within the substrate binding cavity and is common to both previously described 

substrate entrance tunnels (Figure 45). Tunnel frequency and the average bottleneck 

radius of all tunnels identified in both monomers were obtained for BZA0 and BZA1 

(Figure 46A+B).  To aid discussion, we designate each monomer as monomer 1 or 

monomer 2, noting that this does not imply a structural or other difference between 

monomers. 
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Notably, both the frequency and maximum bottleneck radius of tunnels to the substrate 

binding cavity of MAO-B is significantly different for each monomer. In the absence of 

BZA, monomer 1 presents a higher frequency of tunnels, with a larger average maximum 

bottleneck radius. When BZA is present in monomer 1 and not monomer 2, the frequency 

of tunnels and maximum bottleneck measurements are higher for monomer 2 (Figure 

46A+B and Table S4). In Figure 46C+D, the pathways are coloured according to the 

entrance pathway they use from the starting point to the solvent, with the majority of 

tunnels passing the aforementioned entrances A and B (Figure 45). 

The observed ‘closing’ of the active site entrance in the BZA1-bound monomer and 

‘opening’ in the BZA1-unbound monomer are particularly notable. This indicates that when 

BZA is bound to the active site cavity of one monomer, a subsequent BZA is more likely 

to enter the binding site of the opposite monomer. Such asymmetry may prevent binding 

of subsequent BZA into the same monomer, allowing for the release of products, whilst 

increasing the efficiency of binding in the opposite ‘free’ monomer. Previous 

experimental work indicated that binding of inhibitor to the intermediate binding site of 

MAO-B was increased where inhibitor was already bound into the active site (see Figure 

45 for binding/active site differentiation).369 Whilst it is not known whether this is within 

the same monomer, it could explain the asymmetry in binding site access seen here when 

BZA1 is present.  

BZA2 was not considered for half-site reactivity analysis. This was due to BZA leaving 

the active site altogether in one simulation trajectory (Figure S13), meaning that the 

identified tunnels would not be comparable to those where BZA does not leave. This BZA 

Figure 45: MAO-B in POPC/POPE membrane environment. The substrate binding area 

is shown in light green and light blue (residues 80-210, 286-390) for each monomer. The 

active site area is shown in dark green and dark blue (residues 4-79, 211-285, and 391-

452). The C-terminal tail and transmembrane helix are shown in red (residues 453-520). 

The binding site gating loop is shown in magenta (residues 99-112). Images A and B inset 

denote the two main entrances (or tunnels) to the binding site (denoted Entrance A and 

Entrance B throughout the manuscript), with a representative tunnel (navy spheres) shown 

for both entrances.  Key residues which describe the location of the entrance are shown 

as sticks and labelled. Entrance B is newly identified here, Entrance A has been previously 

described.345 
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movement may indicate that BZA2 is potentially an unstable configuration, providing 

further evidence towards asymmetry in MAO-B.  

 

 

Mutagenesis reveals long-range networks of motion are important in MAO-B.  

Our findings above suggest a model where MAO-B intramolecular dynamics are 

intimately linked to the environment. That is, we hypothesize, that functionally important 

MAO-B conformational changes are at least in part controlled by the membrane 

environment. We expect that those conformational changes (or protein dynamics) are 

influenced by the global protein scaffold. To explore this hypothesis, we have turned to 

computationally informed mutagenesis studies.  

We identify enzyme variants that are predicted to affect networks of flexible motion 

throughout MAO-B using the FIRST (floppy inclusion and rigid substructure topography) 

algorithm.370 FIRST uses a single conformation (e.g. a crystal structure) to define a 

constraint-network of movement for a protein. This constraint-network is composed of 

terms describing covalent and non-covalent contributions to the rigidity of the protein, 

allowing prediction of the relative rigidity/flexibility of each residue. These calculations 

can therefore be used to predict the relative rigidity (and therefore stability) of MAO-B 

variants, both on a local (per-residue) and global (sum of all residues) level.  

Figure 46: The summed tunnel frequency from the substrate binding site of MAO-B to 

solvent, identified by Caver.363 BZA0 – No BZA is bound in either monomer. BZA1 – 

BZA is bound only in monomer 1. All are from triplicate MD runs. B, The average 

maximum bottleneck (Å) from the substrate binding site of MAO-B to the solvent, as 

identified by Caver. C + D, All tunnels identified by Caver over all three MD simulation 

repeats for BZA0 (C) and BZA1 (D). FAD and BZA (when present) are shown as yellow 

sticks. Tunnels are colored according to entrance/exit pathway used, with magenta and 

green representing Entrances A and B respectively. Blue tunnels indicate pathways which 

go through neither of the two main entrances described. 
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FIRST was used to perform high-throughput screening to identify point variants that were 

predicted to significantly rigidify the network of flexible motion of wtMAO-B, without 

significantly perturbing the flexibility of residues considered 

In short, we perform computational alanine scanning, by applying FIRST with the 

contribution of each amino-acid side chain to the constraint network discounted in turn. 

This allows us to identify residues with side chains that make a negligible contribution to 

the overall rigidity of MAO-B. All residues identified with the above approach were then 

subjected to in silico mutagenesis to all other canonical amino acids and subsequent 

FIRST analysis.  

From these calculations, we selected three enzyme variants (W184F, F402V and E466Y) 

that, based on our calculations, were predicted to increase the rigidity of the protein 

scaffold, but are distal to the active site (between 13-21 Å from BZA) and do not 

significantly alter the rigidity of catalytically relevant residues (Figure S14A-C; see SI 

Materials and Methods). We find that these variants retain the absorption feature at ~415 

nm (Figure S8A) and their overall structure is not significantly perturbed, at least as 

assessed from their far-UV circular dichroism spectra (Figure S8B). However, despite 

the variants being located a significant distance from the active site, we find that enzyme 

activity is ablated. Given that these variants are expected to alter the network of flexible 

motion, we suggest these data reflect the importance of protein conformational changes 

in MAO-B turnover. Moreover, the importance of such changes may also provide a 

rationale for the differences of our temperature-dependence studies when MAO-B is in 

different environments (Figure 41). 

The FIRST calculations have the advantage that they are rapid and so enable very large 

in silico screening. However, they are thus necessarily approximate and do not reflect the 

realistic (and complex) protein molecular dynamics. An additional important caveat of 

our FIRST calculations is that they do not include the membrane environment. Therefore, 

in an attempt to rationalize the loss of activity for the variants, and explore our hypothesis 

above, we have performed 3 independent 100 ns MD simulations on each variant in the 

BZA1 state (as above, see SI Materials and Methods).  

Based on the flexibility in MD simulations (root-mean square fluctuations, RMSF), each 

variant is predicted to be slightly more rigid (Figure S14D-F) than wtMAO-B. 

Comparison of predictions of relative rigidity (by FIRST) and flexibility (by MD) for 

wtMAO-B show only moderate correlation (Figure S15). Poor correlation is particularly 

found for residues near the bilayer, which is not taken into account in our FIRST 

calculations; this demonstrates the importance of modelling the molecule in a native-like 

environment.  

Figure 47A-D, (additional measurements can be found in Figures S16 and S17) shows 

the fluctuation in the catalytic distance between BZA and FAD (BZA CH2 and FAD N5) 

for each variant and wtMAO-B. There is clearly some fluctuation in individual 

simulations (with excursions to longer distances), but no significant differences are 
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observed between the variants and wtMAO-B. That is, we do not find any evidence (at 

least on these timescales) that catalytically competent conformations are disadvantaged 

in the variants. Therefore, based on these data, we do not expect the immediate active site 

environment to be compromised in the enzyme variants, which correlates with the 

observation of the retention of the putative anionic semiquinone peak in the absorption 

spectrum of each variant (Figure S8). 

 

 

To explore the changes in global protein dynamics for the MAO-B variants in more detail, 

we performed principal component analysis (PCA) on the Cα carbon of residues 1-455 

for all BZA1 simulations (Figure 47 and S18). The vector which describes each PC can 

be projected onto a static structure (to create a porcupine plot; Figure 47G), with the 

magnitude of the vector describing the relative change in each residues position over the 

PC. Analysis of the porcupine plot of PC1 (Figure S18B) shows a global motion 

Figure 47: (A–D) Distance between the N5 (FAD) and CH2 group of BZA for wtMAO-

B and all three enzyme variant simulations. A black dotted line indicates the start of each 

new trajectory (all runs performed in triplicate). Additional measurements for all BZA 

containing simulations can be found in Figures S16 and S17. (E+F), Normalized 

histograms (bin width 0.25 Å) of principle principal component 2 (PC2) for all BZA1 

simulations of the bound (E) and unoccupied monomers (F). (G) ‘Porcupine’ plot of PC2, 

with arrows indicating the direction of the PC2 eigenvector and arrow size indicating the 

magnitude of the corresponding eigenvalue, for all Cα atoms with eigenvalues greater 

than 4 Å. The gating loop residues (99 – 112) are coloured in red, and the approximate 

location of the bilayer is indicated with a black dotted line. (A mobility plot of PC2 is 

provided in Figure S18A.). key for catalysis (see Supporting Information Materials and 

Methods and Table S5). 
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dependent on several flexible regions of MAO-B, whereas PC2 is dominated by the 

movement of the gating loop (residues 99–112) region and residues around it (Figure 

47G). This gating loop sits between Entrance A and B (Figure 45) and is key for substrate 

binding and product release. Histograms of PC2 (Figure 47E+F) show 

reduced/differential conformational sampling of PC2 for all variants compared to 

wtMAO-B. Our MD simulations therefore suggest that the variants have lost activity 

because the mutations have altered the normal dynamics of the gating loop, potentially 

affecting substrate entrance/exit to the active site. The fact that these variants (distal from 

the gating loop) have such a significant and specific effect on the gating loop sampling 

implies the presence of a long-range network of motions in MAO-B (Figure 47G) through 

which dynamics of the gating loop are affected.  

 

Conclusions 
 

MAO-B is an important biomedical target, and as with many such targets, is associated 

with a biological membrane. Such association places enzymes in specific physiological 

contexts, can promote interaction with other species and enable specific structural 

features. Less obvious is the role of the membrane environment in mediating the 

conformational dynamics of enzymes, and whether this is functionally important.  

Previous molecular dynamics studies have illustrated that the immediate membrane 

environment of MAO-B is involved in controlling substrate entrance to channels leading 

to the active site. Here, using enzyme kinetic and mutagenesis studies, we consider the 

role of the membrane environment in tuning the molecular dynamics of MAO-B more 

widely, including its influence on turnover and catalysis. We find that placement of MAO-

B in SMA nanodiscs instead of in reduced Triton X-100 has a significant effect on the 

heat capacity of catalysis (Δ𝐶𝑃
‡
). Differences in Δ𝐶𝑃

‡
 reflect differences in the distribution 

and frequency of vibrational modes between the ground (reactant) and transition states 

and implies that the membrane environment is affecting the global protein dynamics of 

MAO-B and that these dynamics influence the thermodynamics of enzyme turnover. 

Indeed, kcat is ~5 times faster in the nanodisc environment versus reduced Triton X-100. 

These data further hint at the role of the specific lipid composition and fine structure of 

the membrane to tune MAO-B turnover efficiency. These findings are corroborated by 

studying enzyme variants that are predicted to alter the network of flexible motion in the 

enzyme, but do not affect the overall structure. These variants, which are distal to the 

active site, all lead to inactive enzyme, indicating the critical role of ‘optimized’ global 

protein dynamics of MAO-B.  

Through atomistic molecular dynamics simulations with and without substrate bound, we 

find two substrate entrance/product exit channels that are mediated by membrane 

interaction, one of which was not previously described.  The simulations further indicate 

an asymmetry in substrate access in the MOA-B dimer. Specifically, either one or the 
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other monomer may allow substrate access at any one time, with active site occupation in 

one monomer preferentially allowing substrate access to the other. Moreover, the gating 

loop dynamics appear to be highly sensitive to the global enzyme dynamics, potentially 

reflecting long-range networks of enzyme motion. 

Taken together, our study suggests that the global protein dynamics of MAO-B are ‘tuned’ 

by the specific immediate membrane environment. These protein dynamics have a major 

effect on MAO-B function, through tuning fluctuations linked to enzyme turnover, 

including controlling the opening and closing of substrate/product channels. The finding 

that two different channels mediated by the membrane environment are present in MAO-

B illustrates the potential to exploit novel small molecule binding sites with rational drug 

design. Therefore, our study illustrates that when searching for novel small molecule 

binding sites, one should consider not just the static structure of the system in isolation, 

but time-dependent changes in the population of conformational sub-states and in the 

‘native’ environment.371,372 The finding that there may be long range networks of motions 

that can, in particular, affect the gating loop also indicates the potential for allosteric 

inhibitors. Further, as MAO-B resides in the outer mitochondrial membrane of cells, the 

finding of a solvent accessible entrance is important for rational drug design efforts. That 

is, inhibitors that target MAO-B may not need to enter the mitochondrial membrane in 

order to access the active site of MAO-B. 

 

Materials and Methods  
 

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich.  

MAO-B expression and purification.  

MAO-B was expressed and purified following the purification protocol by Newton-

Vinson et al.342 Small variations from the protocol include shake flask fermentation 

instead of bioreactor fermentation, with BMMY (buffered methanol-complex medium) 

media instead of MM (minimal methanol) media for induction, storage of cell pellets in a 

buffer with protease inhibitor tablets instead of PMSF, suspension of pellet in 100 ml of 

breaking buffer instead of 1 L, and cell breakage of 30 s on 30 s off x 10 sonication in 

addition to bead beating.  The purification was completed after MAO-B was passed over 

a DEAE-sepharose FF column, achieving satisfactory purity. The additional polymer 

partition step detailed by Newton-Vinson et al.342 did not change the state of the 

semiquinone MAO-B species seen here, with additional purity achieved by size exclusion 

chromatography if necessary. MAO-B concentration was determined spectroscopically 

using ε415 = 11 000 M−1 cm−1.373 
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Nanodisc preparation.  

Nanodiscs were prepared following methods by McDowall et al.,359 suspended in 50 mM 

HEPES, pH 7.5. and incubated with MAO-B in a 10x molar excess, for 2 hours prior to 

experiments.  

Enzyme assays.  

MAO-B was transferred from Triton X-100 containing buffer to reduced Triton X-100 or 

nanodisc containing buffer using detergent removal spin columns (Thermo Scientific 

Pierce).  Steady-state MAO-B kinetic measurements were carried out using a 1 ml quartz 

cuvette and a UV⁄ Vis spectro-photometer (Agilent Cary 60 UV-Vis spectrometer) in 50 

mM HEPES (pH 7.5), containing 0.5 % (w/v) reduced Triton X-100 or SMA l-α-

Phosphatidylcholine nanodiscs. Enzyme activity was measured by following the 

formation of benzaldehyde using ε250 = 12,800 M−1 cm−1 for BZA,337 and 4-

hydroxyquinoline using ε316 = 12,300 M−1 cm−1  for KYN.360  For each condition substrate 

dependences were monitored at 40 °C ; the data fitted well to Michaelis-Menten kinetics 

(Figure S7).   Temperature-dependences were carried out from 20 °C - 45 °C at 5 °C 

intervals using initial velocity measurements at substrate concentrations maintained above 

10x Km to ensure saturation. The data were fitted to (Eq 16) as described in the manuscript 

using OriginPro 2017.  

Redox assays.  

These experiments were performed anaerobically, all buffer was purged with nitrogen and 

samples were prepared in an anaerobic box. Glucose and glucose oxidase were added to 

maintain anaerobic conditions.  

EPR.  

Measurements were performed using WT and Y398F variant MAO-B in 50 mM HEPES 

0.5% Triton, pH 7.5, flash-frozen in liquid nitrogen in suprasil quartz sample tubes. X-

band cw-EPR spectra were recorded on a Bruker eleXsys E500 spectrometer using a 

standard rectangular Bruker EPR cavity (ER4102T) equipped with an Oxford helium 

cryostat (ESR900). Experimental parameters: microwave power, 0.2 mW; field 

modulation amplitude, 5 G; field modulation frequency, 100 kHz; measuring time 10 s; 

temperature 16 K. Q-band cw-EPR spectra were performed on a Bruker eleXsys E-560 

spectrometer using a ER 5106QT-W1 resonator equipped with a home-built ARS 

cryogen-free cryostat (data not shown). Spectral simulations were performed using the 

Matlab-based Easyspin package.374 

Computational materials and methods.  

The X-ray crystal structure of MAO-B in complex with 6-hydroxy-N-propargyl-1(R)-

aminoindan (1S3E)375 was used as the starting point for all MD simulations. The missing 

C-terminal residues (502 – 520 Chain A and 497 – 520 Chain B) which form the remainder 

of the transmembrane helix were built using Avogadro376 (assuming the standard 

backbone dihedral angles of an α-helix). MAO-B was then inserted into a lipid bilayer 

comprised of a 4:3 ratio of palmitoyloleoylphosphatidylcholine (POPC) and 
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palmitoyloleoyl-phosphatidylethanolamine (POPE) using CHARMM-GUI.377 This 

composition has been used in prior bilayer MD simulations of MAO-B, and was chosen 

to represent the composition of the outer mitochondrial membrane.345,351,362 BZA was 

placed in the active site by alignment with the crystal structure of MAO-B in complex 

with nitrobenzylamine (2C70,378 Cα RMSD 0.118 Å to 1S3E; the latter was used due to 

its higher resolution). All simulations of BZA were performed with the amino group in its 

neutral form, as this is widely believed to be the catalytically competent state of 

BZA.332,338,379 Titratable residues were simulated in their standard protonation states, 

based on calculations with PropKa 3.0158. MolProbity was used to determine the optimum 

tautomerisation states of every His residue, and any required Asn/Gln side chain flips, 

based on optimizing the hydrogen bonding network75. Histidines 91, 115 and 452 were 

singly protonated on their Nδ1, with all others singly protonated on their Nε2. The system 

was then solvated such that there was no protein or lipid atom within 20 Å of the edge of 

the periodic box along the z-coordinate (bilayer normal). The total number of atoms for 

each system simulated was approximately 90,000. 

Periodic boundary simulations were performed with Amber16, using the CHARMM36 

force field to describe protein380 and lipid381 atoms, and TIP3P for water. Parameters for 

FAD in its oxidized form and BZA in its neutral form were taken from Abad et al.338 

Following minimization, heating and equilibration (see SI Materials and Methods), 

production MD simulations were run in the NpT ensemble at 310 K, with semi-isotropic 

coupling to a Monte Carlo barostat. Temperature was regulated using Langevin dynamics 

with a collision frequency of 1 ps−1. A time step of 2 fs was applied with the covalent 

bonds to hydrogen constrained by the SHAKE algorithm. A 12 Å non-bonded cut-off was 

applied with a force switch smoothing function from 10 to 12 Å. Long range electrostatics 

were evaluated with the particle mesh Ewald method.72 For wtMAO-B simulations, a total 

of 9 simulations were performed for 150 ns each, with the first 50 ns of simulation used 

to equilibrate the protein and bilayer (see Figure S10). The BZA2 run in which a BZA 

escapes the active site cavity was extended for a further 50 ns. Enzyme variant simulations 

(W184F, F402V, E466Y) were performed for 3 x 100 ns each in the BZA1 state (see SI 

Materials and Methods for further details). Coordinates were saved every 10 ps for further 

analysis. Routine analysis of trajectories was performed using CPPTRAJ160, from the 

AmberTools suite. Area per lipid calculations were performed with GridMAT-MD,382 

using a grid resolution of 200 x 200 points for each measurement. Tunnel analysis was 

performed with Caver 3.0363. All settings were kept default apart from bottleneck radius 

(1.5 Å).  

ASSOCIATED CONTENT  
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Supporting Materials and Methods 

 

FIRST calculations  

FIRST370 (floppy inclusion and rigid substructure topography) calculations, as mentioned 

in the main text, were carried out on a crystal structure of Monoamine oxidase B (MAO-

B) (PDB 1S3E)375. The aim of this procedure was to establish rigidified mutations of 

MAO-B, and to access their impact on catalysis. Scwrl4315 was used to optimize the side-

chain conformations of 1S3E MAO-B, and calculations were run on both the original and 

optimized structures. Structures that were optimized using Scwrl4 were constrained 

against their FAD cofactor (FAD atoms are treated as non-interacting particles that 

provide steric restraints). Of mutants carried forward for experimental testing, F402V and 

W184F arose from Scwrl4 optimized 1S3E, and E466Y arose from the original 1S3E 

crystal structure. Prior to running calculations, the X-ray structure was pre-processed by 

removing all hetero atoms (apart from FAD), and water molecules with PyMOL, and 

adding hydrogens to all residues (all residues were at their standard protonation state for 

pH 7) using Molprobity75.   

An initial FIRST run was used to generate the constraint files for wildtype (WT) MAO-

B, which describe the strength of the covalent bonds, hydrogen bonds, hydrophobic 

interactions and pi-pi stacking interactions throughout the protein. FIRST was then run 

over 20 energy cut offs (Ecuts), using rigid cluster decomposition (RCD) as previously 

described.383 Results are quantified as 'the fraction of residues in rigid clusters' for each 

Ecut. Ecuts ranged from 0-4 kcal mol−1 with a step size of 0.2 kcal mol−1. The fraction of 

residues in rigid clusters from all Ecuts were then averaged to give a single value to reflect 

the overall rigidity of the protein. This was used as the background value for comparison 

to all further calculations.  

To replicate the premise of alanine scanning, a protocol ‘Sidescan’ (available upon 

request) was developed to produce the constraint files calculated by FIRST with the 

constraint contribution of a specified amino acid side chain past the beta carbon (Cβ) 

missing from the files.  These altered constraint files were produced sequentially for each 

amino acid (not including alanine or glycine) of MAO-B, and the RCD analysis was 

carried out to determine the rigidity value of MAO-B without each amino acid. A random 

sample of residues whose side chains were identified as making no contribution to the 

rigidity of MAO-B, were taken forward for in silico mutagenesis and additional screening 

within FIRST. Scwrl4 was used to mutate these residues to each possible amino acid 

alternative, and the FIRST/RCD calculations were implemented, to predict the relative 

rigidity of each mutant compared to the WT.  

Mutations that improved the overall rigidity of MAO-B were then analyzed using the 

protocol ‘GetRCD’ (available upon request). GetRCD assigned each amino acid in MAO-

B an Ecut (kcal mol−1) value, which reflects the amount of energy required to free that 

residue from its constraint network. This was carried out on the selected mutants to 

ascertain whether they would significantly affect the flexibility/rigidity of the catalytically 
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relevant residues of wtMAO-B (Table S5). If a mutation altered the flexibility/rigidity of 

a catalytically relevant residue by more than 1 kcal mol−1 it was disregarded.   

From these calculations we selected three single point mutations to experimentally test 

(W184F, F402V, E466Y). W184F is located in the FAD binding domain of MAO-B and 

is 13.3 Å away from BZA and 15.9 Å away from the flavin ring of FAD. F402V is located 

in the FAD binding domain of MAO-B and is 15.3 Å away from BZA and 15.3 Å away 

from the flavin ring of FAD. E466Y is located on the C-terminal tail of MAO-B and is 

21.4 Å away from BZA and 16.6 Å away from the flavin ring of FAD. All measurements 

are based on PDB 2C70 (chosen because it is co-crystallized with nitrobenzylamine) and 

based on the closest atom to atom distance of the amino acid backbone and FAD or BZA. 

Graphical representations of the location of each mutant, alongside their predicted change 

in rigidity from FIRST calculations can be found in Figure S14A-C.  

 

Molecular Dynamics (MD) Simulations 

Equilibration Procedure  

Following structure preparation (as described in the main text), all systems were subjected 

to the same equilibration procedure as detailed below. First, all water molecules and 

hydrogen atoms were minimized with 500 steps of steepest descent followed by 500 steps 

of conjugate gradient minimization. The system was then rapidly heated from 100 K to 

310 K in the NVT ensemble over 100 ps, with 10 kcal mol-1 positional restraints on all 

protein and lipid atoms. Whilst retaining the 10 kcal mol-1 restraints on protein atoms, 

lipid restraints were gradually reduced to 2.5 kcal mol-1 over the course of 200 ps. During 

NVT simulation, the timestep was set to 1 fs and a collision frequency of 1 ps-1 was used 

with Langevin temperature control.  Systems were then simulated in the NPT ensemble 

(1 atm, 310 K, semi-isotropic coupling to a Monte Carlo barostat, Langevin temperature 

control with a collision frequency of 1 ps-1, 2 fs time step), with lipid restraints reduced 

from 2.5 to 0 kcal mol-1 over the course of 200 ps. Finally, protein restraints were reduced 

from 10 kcal mol-1 to 0 kcal mol-1 over the course of 1 ns. At this point 50 ns of production 

MD simulations were performed to equilibrate the bilayer and protein (as described in the 

main text).  

Mutant Simulations  

The point mutants (W184F, F402V and E466Y) were each subjected to 3 x 100 ns of MD 

simulation in the BZA1 bound state. The structure of wtMAOB-BZA1 at 50 ns into each 

of the three independent simulations was used to generate three unique starting structures 

for the point mutant MD simulations. BZA was re-orientated to a catalytically competent 

state for Run 3 simulations based on the structure of nitrobenzylamine in complex with 

MAO-B (PDB 2C70). Mutations were made in silico using PyMOL384, and any 

overlapping water molecules with the newly introduced sidechains were removed. For the 

E466Y mutation a single sodium atom was removed from each simulation box to ensure 
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the system had an overall charge zero. Each system was then prepared as described above 

(see Equilibration Procedure). Trajectory analysis was performed without the first 10 ns 

of simulation time, which was used to equilibrate each mutant simulation.  

Trajectory Analysis 

Trajectory analysis was performed using CPPTRAJ160, (part of the AmberTools suite of 

programmes). Per residue Root Mean Square Fluctuations (RMSFs) were performed on 

snapshots at 10 ps intervals using average structures calculated from 1 ns time windows 

over the course of each trajectory. Performing RMSF calculations in this way reduces the 

influence of larger scale conformational changes on the calculation, providing a more 

realistic indication of backbone mobility.385 RMS fitting was performed on the Cα carbon 

of residues 1-455 of each monomer. Clustering analysis was performed using the 

DBSCAN algorithm386, using all backbone heavy atoms of the three loop regions (81–85, 

100–108 and 202–207) which describe the opening of Entrance B.  Principal Component 

Analysis was performed on all BZA1 simulations (WT, W184F, F402V and E466Y) 

simultaneously using the Cα carbon of residues 1-455 of each monomer (with monomers 

inputted separately).  

 

PLEASE NOTE: In the interest of saving paper/space, only the supporting 

information Methods are included and not the figures or tables. They can instead 

be found online free of charge at: 

https://pubs.acs.org/doi/10.1021/acs.biochem.9b00213 
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